島根原子力発電所第2号機 審査資料						
資料番号 NS2-添 3-014-16改01						
提出年月日	2023年3月1日					

VI-3-別添 2-8 廃棄物処理建物の強度計算書

2023年3月

中国電力株式会社

目 次

1.	ŧ	既要・					• •					 •	 	 	 	 	• •	• •	• •	 	٠.	 	 	 1
2.	- 2	基本力	す針										 	 	 	 	• •			 		 	 	 1
2.	1	位置	∃		• •								 	 	 	 				 		 	 	 1
2.	2	構造	き概	要·									 	 	 	 				 		 	 	 2
2.	3	評価	方	針·									 	 	 	 				 		 	 	 5
2.	4	適用	規	格・	· 基	準	等						 	 	 	 				 		 	 	 7
3.	Ē	強度評	平価!	方法	去及	びご	評	価値	条件	牛・			 	 	 	 				 		 	 	 8
3.	1	評価	対	象音	邓位	<u>.</u>			·				 	 	 	 				 		 	 	 8
3.	2	荷重	[及	び禕		(O	組	合	せ・				 	 	 	 				 		 	 	 8
	3.	2.1	荷	重・									 	 	 	 				 		 	 	 8
	3.	2.2	荷	重の	り組	1合	せ						 	 	 	 				 		 	 	 12
3.	3	許名	了限.	界·									 	 	 	 				 		 	 	 12
3.	4	解析	ŕŦ,	デル	レ及	びご	諸:	元·					 	 	 	 				 		 	 	 14
	3.	4.1	モ	デル	レ化	ご の	基	本	方釒	<u></u>			 	 	 	 				 		 	 	 14
	3.	4.2	解	析詞	者元	<u>:</u>			· • •				 	 	 	 				 		 	 	 17
3.	5	評価	方	法·									 	 	 	 	• •			 		 	 	 18
	3.	5. 1	屋	根ノ	スラ	・ブ	のi	評個	価ラ	方法	去.		 	 	 	 				 		 	 	 18
	3.	5.2	耐	震星	きの)評	価	方	去·				 	 	 	 				 		 	 	 21
4.	Ē	強度評	平価:	結身	長・・								 	 	 	 				 		 	 	 22
4.	1	屋相	見ス	ラフ	ブの) 評	価	結	果·				 	 	 	 				 		 	 	 22
4.	2	耐急	毫壁	の評	平価	i結	果						 	 	 	 				 		 	 	 27

1. 概要

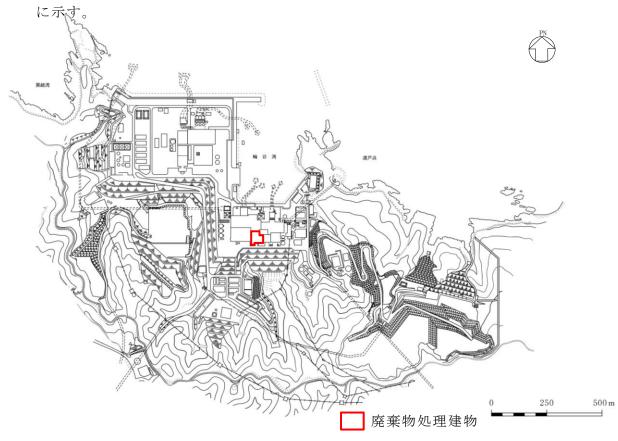
本資料は、VI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」に示すとおり、廃棄物処理建物が降下火砕物及び積雪の堆積時においても、内包する防護すべき施設に降下火砕物を堆積させない機能の維持を考慮して、建物全体及び建物の主要な構造部材が構造健全性を維持することを確認するものである。

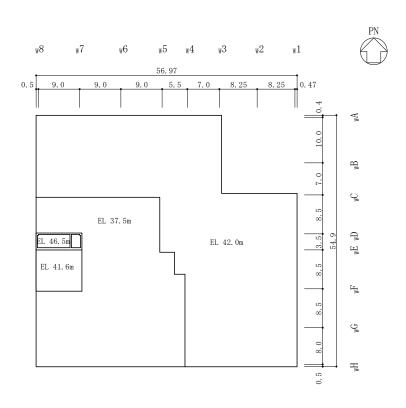
2. 基本方針

廃棄物処理建物は、VI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ、本資料では、「2.1 位置」、「2.2 構造概要」、「2.3 評価方針」及び「2.4 適用規格・基準等」を示す。

2.1 位置

廃棄物処理建物は、VI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す位置に設置する。廃棄物処理建物の配置を図 2-1

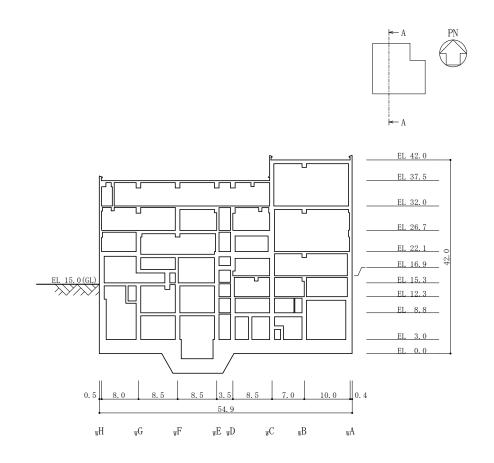



図 2-1 廃棄物処理建物の配置図

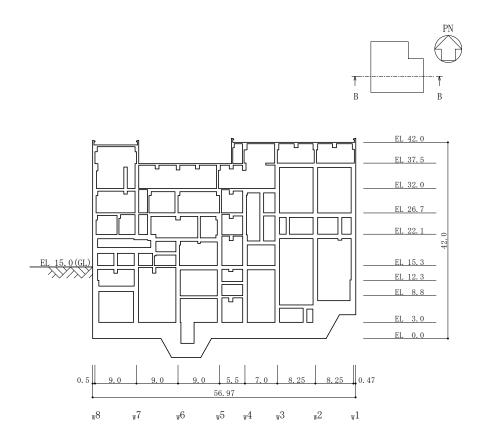
2.2 構造概要

廃棄物処理建物は、VI-3-別添 2-1 「火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて、構造を設定する。

廃棄物処理建物は、主体構造が鉄筋コンクリート造で、高さ 42.0m、地上 5 階、地下 2 階建の建物である。建物の平面は 54.9m (南北方向) ×56.97m (東西方向) となっている。


廃棄物処理建物の屋根面の概略平面図を図2-2に、概略断面図を図2-3に示す。

(単位:m)


図 2-2 廃棄物処理建物の概略平面図

注:「EL」は東京湾平均海面(T.P.)を基準としたレベルを示す。

(単位:m)

図 2-3 廃棄物処理建物の概略断面図 (A-A断面, 南北方向) (1/2)

(単位:m)

図 2-3 廃棄物処理建物の概略断面図 (B-B断面, 東西方向) (2/2)

2.3 評価方針

廃棄物処理建物の強度評価は、VI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」のうち「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している荷重、荷重の組合せ及び許容限界を踏まえて、建物の評価対象部位に発生する応力等が許容限界に収まることを「3. 強度評価方法及び評価条件」に示す方法及び評価条件を用いて計算し、「4. 強度評価結果」にて確認する。強度評価フローを図 2-4 に示す。

廃棄物処理建物の強度評価においては、その構造を踏まえて降下火砕物堆積による 鉛直荷重及びこれに組み合わせる荷重(以下「設計荷重」という。)の作用方向及び 伝達過程を考慮し、評価対象部位を選定する。

降下火砕物堆積による鉛直荷重及び設計荷重に対しては、鉛直荷重に抵抗する評価 対象部位として屋根スラブを、水平荷重に抵抗する評価対象部位として耐震壁を選定 した。

設計荷重は、VI-3-別添 2-1 「火山への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に従い設定する。

屋根及び耐震壁に作用する荷重は、VI-3-別添 2-1 「火山への配慮が必要な施設の強度計算の方針」のうち「5. 強度評価方法」に従い、廃棄物処理建物の応力解析モデル及び質点系モデルを用いて評価する。

許容限界は、VI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に従い設定する。

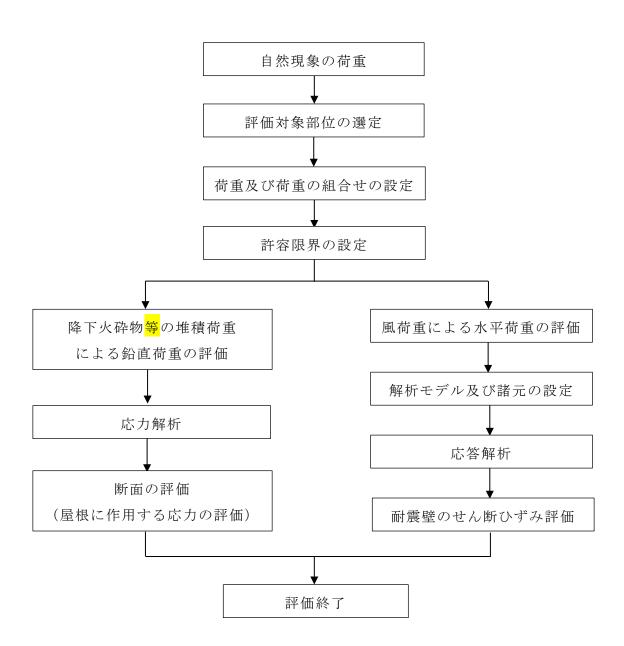


図 2-4 強度評価フロー

2.4 適用規格·基準等

廃棄物処理建物の強度評価に用いる規格・基準等を以下に示す。

- ・建築基準法<mark>及び</mark>同施行令
- ·松江市建築基準法施行細則(平成17年3月31日松江市規則第234号)
- ・原子力発電所耐震設計技術指針 J E A G 4 6 0 1 -1987 ((社) 日本電気協会)
- ·原子力発電所耐震設計技術指針 J E A G 4 6 0 1 -1991 追補版((社)日本電気協会)
- ・原子力発電所耐震設計技術指針重要度分類・許容応力編JEAG4601・補-1984((社)日本電気協会)
- ・鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築学会,1999年改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005年制定)

3. 強度評価方法及び評価条件

3.1 評価対象部位

廃棄物処理建物の評価対象部位は、VI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」のうち「4.2 許容限界」にて示している評価対象部位に従って、屋根スラブ及び耐震壁とする。

3.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、VI-3-別添 2-1 「火山への配慮が必要な 施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重 の組合せを用いる。

3.2.1 荷重

- (1) 屋根スラブ
 - a. 鉛直荷重

表 3-1~表 3-4 に鉛直荷重の一覧を示す。屋根スラブに考慮する鉛直荷重は、常時作用する荷重(Fa)、降下火砕物による荷重(Fa)及び積雪荷重(Fs)を考慮する。常時作用する荷重は、固定荷重*1(G)及び積載荷重*2(P)とする。降下火砕物による荷重は、湿潤密度 1.5g/cm³の降下火砕物が 56cm 堆積した場合の荷重として考慮する。積雪荷重は、発電所敷地に最も近い気象官署である松江地方気象台で観測された観測史上 1 位の月最深積雪 100cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し 35.0cm とし、積雪量 1cm ごとに 20N/m²の積雪荷重が作用することを考慮し設定する。なお、水平方向の風荷重が作用した場合、屋根に対し鉛直上向きの荷重が働き下向き荷重は低減されるため、鉛直荷重に抵抗する部位の評価においては、保守的に水平方向の風荷重は考慮しない。

注記*1:固定荷重には躯体重量・仕上重量の他、機器・配管荷重を含む。

*2: 常時の積載荷重(機器搬出入時の荷重等を含む)と除灰時の作業時荷重(0.981kN/m²) のうち大きい方の値を設定する。

表 3-1 鉛直荷重一覧	(屋根スラブ EL 37.5m, スラ	ブ厚さ t=				
		t= 11	.278kN/m ²			
常時作用する荷重(Fa)	固定荷重(G)	t= 13	$6.632 \mathrm{kN/m^2}$			
	積載荷重(P)	0.981kN/	m^2			
降下火砕物によ	る荷重(F a)	8. 238kN/	m^2			
積雪荷重	(F _s)	0.7kN/m	n^2			
			_			
表 3-2 鉛直荷重一	覧(屋根スラブ EL 41.6m,)	スラブ厚さ t=)			
│ │常時作用する荷重(Fd)	固定荷重(G)	15. 985kN	$/m^2$			
THEN TEND A SAM TE (I d)	積載荷重 (P)	0.981kN/	m^2			
降下火砕物によ	る荷重 (F _a)	8. 238kN/	'm²			
積雪荷重	(F _s)	0.7kN/m	1^2			
)		. 278kN/m ²			
	固定荷重(G)		5. 985kN/m ² 7. 162kN/m ²			
常時作用する荷重(F d)	回足彻里(G)		$\frac{102 \text{KN/m}}{0.693 \text{kN/m}^2}$			
			0. 521kN/m ²			
	積載荷重 (P)	0. 981kN/				
 降下火砕物によ		8. 238kN/				
		0.7kN/m				
(見 目 10 里	(1°s)	0. 7 KW/ II	1			
表 3-4 鉛直荷重一覧 (屋根スラブ EL 46.5m, スラブ厚さ t=)						
党時が田子を共乗(F)	固定荷重(G)	11. 278kN/m ²				
常時作用する荷重(Fd)	積載荷重 (P)	0.981kN/	$0.981\mathrm{kN/m^2}$			
降下火砕物によ	$8.238\mathrm{kN/m^2}$					
積雪荷重	0.7kN/m	1^2				

(2) 耐震壁

風荷重の算出に用いる基準風速は、30m/sとする。

風荷重 (W) は、WI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.1(3) c. 水平荷重」に示す式に従い算出する。全高日が 5m を超えるため、日が Z b を超える場合の式を用いる。風荷重 (W) の算出は、建物の形状を考慮して算出した風力係数 C 及び風の受圧面積 A_1 に基づき実施し、風荷重 (W) の算出に用いる受圧面積の算定において、隣接する建物の遮断効果は、安全側の評価となるよう考慮しない。

 $W = q \cdot C \cdot A_1$

ここで

 $q = 0.6 \cdot E' \cdot V_D^2$

 $E' = E r^2 \cdot G$

 $E r = 1.7 \cdot (H/Z_G)^{\alpha} (HがZ_b を超える場合)$

 $E r = 1.7 \cdot (Z_b/Z_G)^{\alpha} (HがZ_b以下の場合)$

Z_G, Z_b, α:地表面粗度区分に応じて建設省告示第1454号に掲げる数値

風荷重算定に使用する入力条件を表 3-5 及び表 3-6 に示す。

表 3-5 設計風荷重の条件

	基準風速	全高	7		ガスト	設計用
施設名称	V_{D}	Н	Z_{G}	α	影響係数	速度圧
	(m/s)	(m)	(m)		G	$q (N/m^2)$
廃棄物処理建物	30	32. 1	350	0. 15	2.05	1564. 4

表 3-6 廃棄物処理建物の風力係数及び受圧面積

(a) 南北方向

高さ(EL)	風力停	系数 C	受圧面積	
(m)	風上*	風下	風上	風下
47. 177~39. 75	0.800	0.4	261	261
$39.75 \sim 34.75$	0.719	0.4	285	285
$34.75 \sim 29.35$	0.661	0.4	308	308
29.35~24.40	0. 591	0.4	282	282
24. 40~19. 50	0. 509	0.4	279	279
19.50~16.10	0. 458	0.4	194	194
16. 10~15. 00	0.458	0.4	63	63

注記*: C (風上) は基準階での値を示す。

(b) 東西方向

高さ(EL)	風力包	系数C	受圧面和	
(m)	風上*	風下	風上	風下
47.177~39.75	0.800	0.4	231	231
$39.75 \sim 34.75$	0.719	0.4	275	275
$34.75 \sim 29.35$	0.661	0.4	297	297
29.35~24.40	0. 591	0.4	272	272
24.40~19.50	0.509	0.4	288	288
19.50~16.10	0. 458	0.4	207	207
16. 10~15. 00	0.458	0.4	67	67

注記*: C (風上) は基準階での値を示す。

3.2.2 荷重の組合せ

荷重の組合せを表 3-7 に示す。

ケース1は従荷重として、鉛直荷重と水平荷重を用いて評価するため耐震壁を 評価対象とする。ケース2は従荷重として積雪荷重を組み合わせ、鉛直荷重のみ を用いて評価するため屋根スラブを評価対象とする。

荷重* 考慮する 常時作用する 主荷重 従荷重 荷重の 荷重(Fd) 降下火砕物に 積雪荷重 風荷重 組合せ 固定 よる荷重 積載 (F_s) (W) 荷重 荷重 (F_a)

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

表 3-7 荷重の組合せ

注記*:○は考慮する荷重を示す。

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

3.3 許容限界

ケース1

ケース2

廃棄物処理建物の許容限界は、VI-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、「3.1 評価対象部位」にて設定している建物の評価対象部位ごとに設定する。

屋根スラブ及び耐震壁の許容限界を「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005年制定)」(以下「RC-N規準」という。)及び「原子力発電所耐震設計技術指針JEAG4601-1987((社)日本電気協会)」に基づき表3-8に、コンクリート及び鉄筋の短期許容応力度を表3-9及び表3-10に示す。

表 3-8 許容限界

要求機能	機能設計上 の性能目標	部位	機能維持 のための考え方	許容限界 (評価基準値)
	内包する防護すべき施	屋根 スラブ	内包する防護すべき 施設に波及的影響を 及ぼさないために落 下しないことを確認	「RC-N規準」に基 づく短期許容応力度*1
_	護すれる 設に波及的 影響を及ぼ さないこと	耐震壁*2	下しないことを確認 最大せん断ひずみが 波及的影響を及ぼさ ないための許容限界 を超えないことを確 認	せん断ひずみ 4.0×10 ⁻³

注記*1: 許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することとし、さらなる安全余裕を考慮して短期許容応力度とする。

*2:建物全体としては,水平力を主に耐震壁で負担する構造となっており,柱,はり,間仕切壁等が耐震壁の変形に追従すること,また,全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため,各層の耐震壁の最大せん断ひずみが許容限界を満足していれば,建物・構築物に要求される機能は維持される。

表 3-9 コンクリートの短期許容応力度

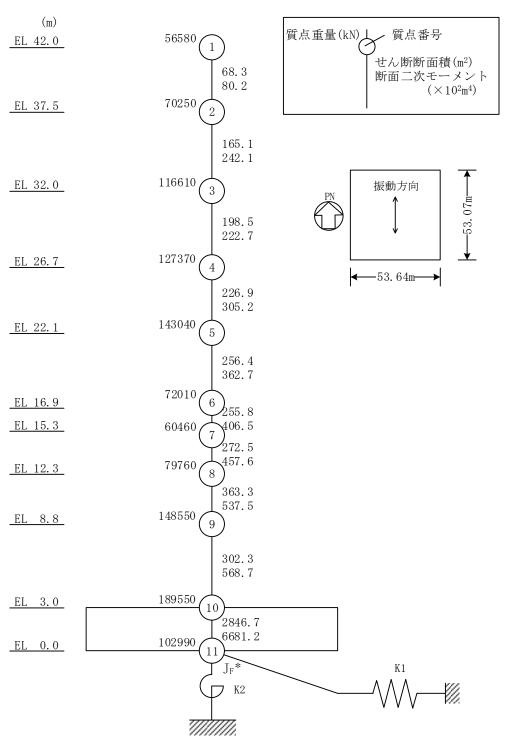
(単位: N/mm²)

設計基準強度 Fc	圧縮	せん断
23. 5	15.6	1.08

表 3-10 鉄筋の短期許容応力度

(単位: N/mm²)

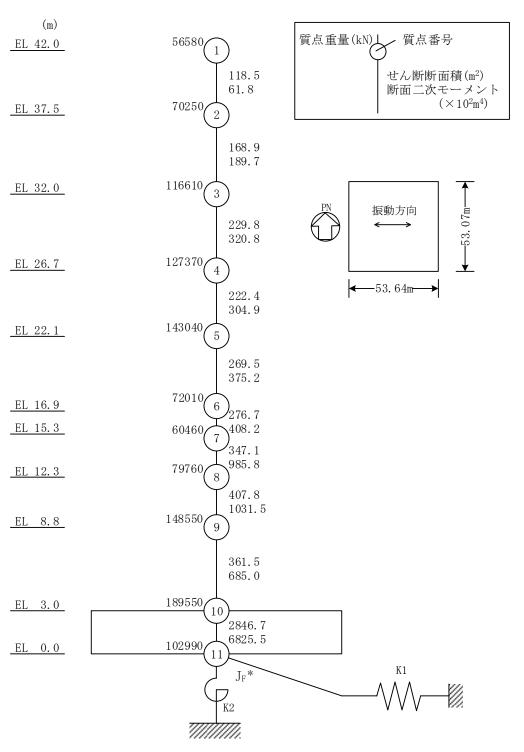
種別*	引張り及び圧縮	せん断
SD35	345	345
(SD345 相当)	343	340


注記*:建設当時の鋼材の種類を、現在の規格に読み替えた許容応力度を示す。

3.4 解析モデル及び諸元

- 3.4.1 モデル化の基本方針
 - (1) 屋根スラブ 屋根スラブは、端部の支持状況に応じたモデル化により応力算出を行う。

(2) 耐震壁


耐震壁は、VI-2-2-9「廃棄物処理建物の地震応答計算書」に示す地震応答解析 モデルを用いて評価する。解析に使用するコードは、「NUPP4」である。な お、解析コードの検証及び妥当性の確認の概要については、VI-5「計算機プログ ラム(解析コード)の概要」に示す。地震応答解析モデルを図 3-1 に示す。

注記*:回転慣性重量(29.35×107kN·m2)

(南北方向)

図 3-1 地震応答解析モデル (水平方向) (1/2)

注記*:回転慣性重量(31.61×107 kN·m2)

(東西方向)

図 3-1 地震応答解析モデル (水平方向) (2/2)

3.4.2 解析諸元

使用材料の物性値を表 3-11 に示す。

表 3-11 使用材料の物性値

使用材料	ヤング係数	せん断弾性係数
使用材料	$E(N/mm^2)$	$G(N/mm^2)$
鉄筋コンクリート	2.25×10^4	9. 38×10^3

3.5 評価方法

- 3.5.1 屋根スラブの評価方法
 - (1) 応力解析方法
 - a. 荷重ケース

降下火砕物堆積時の応力は、単独荷重による応力を組み合わせて求める。 単独荷重の記号を以下に示す。

F d: 常時作用する荷重

Fa:降下火砕物による荷重

F s: 積雪荷重

b. 荷重の組合せケース

荷重の組合せケースを表 3-12 に示す。

表 3-12 荷重の組合せケース

組合せケース	荷重の組合せ
ケース 2	$F_d + F_a + F_s$

c. 応力算出方法

等分布荷重を受ける両端固定ばり及び四辺固定版の曲げモーメント及びせん 断力は下式により求める。

(両端固定ばり)

・端部曲げモーメント (M_E)

$$M_{\rm E} = -\frac{1}{12} w \cdot L^2$$

・中央部曲げモーメント (Mc)

$$M_C = \frac{1}{24} w \cdot L^2$$

せん断力(QE)

$$Q_E = \frac{1}{2} w \cdot L$$

ここで,

w :等分布荷重(N/m)

L: 有効スパン(m)

(四辺固定版)

・短辺方向の端部曲げモーメント (M_{x1})

$$M_{x1} = -\frac{1}{12} w_x \cdot L_x^2$$

・短辺方向の中央部曲げモーメント (Mx2)

$$M_{x2} = \frac{1}{18} w_x \cdot L_x^2$$

・長辺方向の端部曲げモーメント (M_{v1})

$$M_{y1} = -\frac{1}{24} w \cdot L_x^2$$

・長辺方向の中央部曲げモーメント (M_{v2})

$$M_{y2} = \frac{1}{36} w \cdot L_x^2$$

・短辺方向のせん断力 (Q_x)

$$Q_x = 0.52 \cdot w \cdot L_x$$

・長辺方向のせん断力 (Q_v)

$$Q_y = 0.46 \cdot w \cdot L_x$$

ここで,

L_x : 短辺有効スパン(m)

L_v : 長辺有効スパン(m)

w:単位面積あたりの荷重(kN/m²)

$$w_x = \frac{L_y^4}{L_x^4 + L_y^4} w$$

(2) 断面の評価方法

断面の評価は以下の方法で行う。

屋根スラブについては、曲げモーメントによる鉄筋の引張応力度及び面外せん 断力を算定し、各許容限界を超えないことを確認する。

a. 曲げモーメントに対する断面の評価方法

断面の評価は、「RC-N規準」に基づき、次式をもとに計算した評価対象 箇所に生じる曲げモーメントによる鉄筋の引張応力度が、短期許容応力度を超 えないことを確認する。

$$\sigma_{\rm t} \ = \ \frac{M}{a_{\rm t} \ \cdot \ j}$$

ここで,

σ t : 鉄筋の引張応力度(N/mm²)

M : 曲げモーメント(N·mm)

a t : 引張鉄筋断面積(mm²)

j : 断面の応力中心間距離で、断面の有効せいの 7/8 倍の値 (mm)

b. 面外せん断力に対する断面の評価方法

断面の評価は、「RC-N規準」に基づき、評価対象箇所に生じる面外せん 断力が、次式をもとに計算した許容面外せん断力を超えないことを確認する。

$$Q_{A} = b \cdot j \cdot \left\{\alpha \cdot f_{s} + 0.5 \cdot w f_{t} \cdot \left(p_{w} - 0.002\right)\right\}$$

ここで,

QA: 許容面外せん断力(N)

b : 断面の幅(mm)

j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値(mm)

α: 許容せん断力の割増し係数で,次式による。

(2を超える場合は2,1未満の場合は1とする。)

$$\alpha = \frac{4}{M / (Q \cdot d) + 1}$$

M : 曲げモーメント(N·mm)

Q : せん断力(N)

d : 断面の有効せい(mm)

f。 : コンクリートの短期許容せん断応力度(N/mm²)

wf t: せん断補強筋の短期許容引張応力度(N/mm²)

pw: せん断補強筋比で,次式による。(0.002以上とする*)

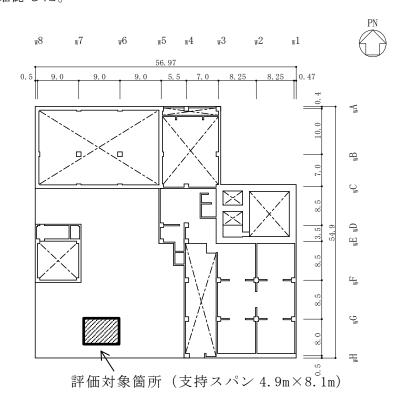
$$p_{w} = \frac{a_{w}}{b \cdot x}$$

a w : せん断補強筋の断面積(mm²)

x : せん断補強筋の間隔(mm)

注記*:せん断補強筋がない領域については、第2項を0とする。

3.5.2 耐震壁の評価方法


耐震壁の評価は、風荷重による耐震壁に発生するせん断ひずみが許容限界を超えないことを確認する。なお、耐震壁の応力計算には、地震応答解析モデルを用い、耐震壁の復元力特性の設定においては、鉛直荷重の増加による軸力を考慮すると第1折れ点の増大が見込まれるため、本評価では保守的に降下火砕物等堆積による鉛直荷重は考慮しない。

4. 強度評価結果

4.1 屋根スラブの評価結果

屋根スラブの評価対象箇所は、各断面の検定値が最も大きい箇所とし、図 4-1 及び図 4-2 に示す。また、評価結果を表 4-1~表 4-3 に示す。

降下火砕物堆積による鉛直荷重等によって発生する曲げモーメントに対する鉄筋の 引張応力度が許容限界を超えないこと及び発生する面外せん断力が許容限界を超えな いことを確認した。

(単位:m)

図 4-1 評価対象箇所 (屋根スラブ, EL 37.5m)

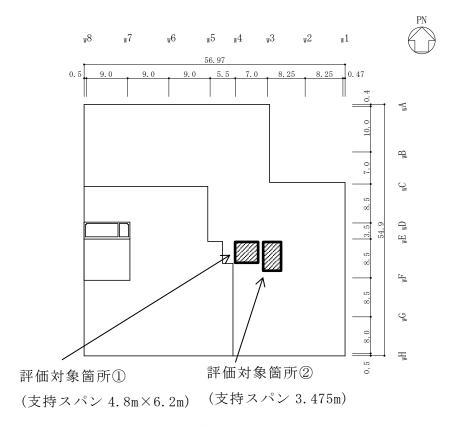


図 4-2 評価対象箇所(屋根スラブ, EL 42.0m)

(単位:m)

表 4-1 屋根スラブの評価結果(EL 37.5m)

	スキー1 産収ペノノの				
	EL(m)	37. 5			
	厚さ t(mm)				
	有効せい d(mm)				
	配筋	D13@200			
	(鉄筋断面積)	$(635 \text{mm}^2/\text{m})$			
	発生曲げモーメント	37. 4			
曲	M(kN·m/m)	37.4			
げモ	鉄筋の引張応力度	281.7			
モーメン	$\sigma_{\rm t}~({ m N/mm^2})$	201. 1			
メン	許容限界	345			
1	(N/mm^2)	240			
	検定値	0.82			
	発生せん断力	54.0			
	Q(kN/m)	54.0			
面	せん断応力度	0. 26			
外	(N/mm^2)	0.20			
せん	せん断スパン比による	1.03			
断力	割増し係数 α	1.05			
	許容限界	1. 11			
	(N/mm^2)	1.11			
	検定値	0. 24			

表 4-2 屋根スラブの評価結果(EL 42.0m) (評価対象箇所①)

	EL	(m)	42.0		
厚さ t(mm)					
有効せい d (mm)					
配筋		上ば筋	D13@100(1270mm²/m)		
(鉄筋断面積)		下ば筋	D13@200(635mm²/m)		
曲げモーメン	発生曲げモーメント		20.0		
	M (kN·m/m)				
	鉄筋の引張応力度		150. 7		
	$\sigma_{\rm t} ({ m N/mm^2})$		150. 1		
ン	許容限界		345		
۱-	(N/mm²)		0.10		
	;	検定値	0.44		
	発生せん断力		52. 9		
	Q (kN/m)				
面	せん断応力度		0.26		
M外せん断力	(N/mm²)				
	せん断スパン比による		1. 19		
	割増し係数 α				
	許容限界		1. 28		
		(N/mm^2)	1.20		
	5	検定値	0. 21		

表 4-3 屋根スラブの評価結果(EL 42.0m) (評価対象箇所②)

表す 5 座低ハノノの計画相末(EL 42.0m) (計画内象画所色)							
	EL(m)	42.0					
	厚さ t(mm)						
有効せい d(mm)							
	配筋	D13@200					
	(鉄筋断面積)	$(635 \text{mm}^2/\text{m})$					
曲げモー	発生曲げモーメント	21.4					
	$M(kN \cdot m/m)$	21.4					
	鉄筋の引張応力度	152.3					
	$\sigma_{\rm t} ({ m N/mm^2})$	132. 3					
ーメント	許容限界	345					
F	(N/mm^2)	340					
	検定値	0.45					
	発生せん断力	36. 9					
	Q (kN/m)						
ᆏ	せん断応力度	0.17					
面外せ	(N/mm^2)	0.17					
ん	せん断スパン比による	1. 21					
断力	割増し係数 α						
	許容限界	1.30					
	(N/mm^2)	1. 50					
	検定値	0.14					

4.2 耐震壁の評価結果

「3.5 評価方法」に基づいた評価結果を表 4-4 に示す。なお、各方向において最大せん断ひずみが生じる部材のみを示す。

水平荷重等によって,評価対象部位に生じるせん断ひずみが許容限界を超えないことを確認した。

表 4-4 耐震壁の評価結果

₩ ⇒ ₩ ¬	評価項目	方向	高さ(EL)	せん断ひずみ	許容限界
検討ケース			(m)	$(\times 10^{-3})$	$(\times 10^{-3})$
b. 7 1	せん断	南北方向	16.9 \sim 15.3	0.00108	4. 0
ケース 1	ひずみ	東西方向	16.9 \sim 15.3	0.000970	4. 0