島根原子力発電所第2号機 審査資料		
資料番号	NS2-補-023-04 改 02	
提出年月日	2023 年 2 月 28 日	

水平2方向及び鉛直方向地震力の組合せに

関する検討について

2023年2月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

今回提出範囲:

- 検討の目的
- 2. 水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動
 - 2.1 島根原子力発電所の基準地震動
 - 2.2 水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動
- 3. 各施設における水平2方向及び鉛直方向地震力の組合せに対する検討結果
 - 3.1 建物·構築物
 - 3.2 機器·配管系
 - 3.3 屋外重要土木構造物等
 - 3.4 津波防護施設,浸水防止設備及び津波監視設備
- 別紙1 建物・構築物における評価部位の抽出に関する説明資料
- 別紙2 原子炉建物3次元FEMモデルを用いた精査
- 別紙3 原子炉建物3次元FEMモデルによる地震応答解析

別紙4 機器・配管系に関する影響検討

別紙5 方向性を考慮しない水平地震動における位相の異なる模擬地震波の作成

1. 検討の目的

平成 25 年に制定された「実用発電用原子炉及びその附属施設の技術基準に関する規則(平 成 25 年 6 月 28 日原子力規制委員会規則第 6 号)」(以下「技術基準」という。)は、従前の 耐震設計審査指針から充実が図られている。

そのうち,新たに要求された水平2方向及び鉛直方向地震力の組合せについて,耐震設計 に係る工認審査ガイドにおいて,以下の内容が示されている。

耐震設計に係る設工認審査ガイド(抜粋)

- 3.5.2 水平方向及び鉛直方向地震力の組合せ(4.5.2及び5.5.2も同様) 水平2方向及び鉛直方向の地震力による応力の組合せを適切に行っていることを確認する。
 - (1) 動的な地震力の組合せ

水平2方向及び鉛直方向の地震力による応力の組合せを簡易的に行う際には、各方 向の入力地震動の位相特性や建物・構築物の構造、応答特性に留意し、非安全側の評 価にならない組合せ方法を適用していること。

なお、各方向の入力地震動の位相特性や建物・構築物の三次元応答特性により応答 の同時性を考慮する必要がある場合は、各方向の各時刻歴での応答値を逐次重ね合わ せる等の方法により、応答の同時性を考慮していること。

上記審査ガイドを踏まえ、従来の設計手法における水平 1 方向及び鉛直方向地震力を組 み合わせた耐震計算に対して、施設の構造特性から水平 2 方向及び鉛直方向地震力の組合 せによる影響の可能性があるものを抽出し、施設が有する耐震性に及ぼす影響を評価する。

- 2. 水平2方向及び鉛直方向地震力による影響評価に用いる地震動
- 2.1 島根原子力発電所の基準地震動

島根原子力発電所の基準地震動Ssは、「敷地ごとに震源を特定して策定する地震動」 及び「震源を特定せず策定する地震動」を評価して、これらの評価結果に基づき策定して いる。「敷地ごとに震源を特定して策定する地震動」としては、応答スペクトルに基づく 地震動評価及び断層モデルを用いた手法による地震動評価を実施し、その結果を踏まえ、 応答スペクトルに基づく地震動として基準地震動Ss-D,断層モデルを用いた地震動と して基準地震動Ss-F1及びSs-F2を策定している。また、「震源を特定せず策定 する地震動」として基準地震動Ss-N1及びSs-N2を策定している。

基準地震動Ssの応答スペクトル図(水平方向)を図2-1-1に,基準地震動Ssの応答スペクトル図(鉛直方向)を図2-1-2に示す。

図 2-1-1 基準地震動 S s の応答スペクトル(水平方向)

図 2-1-2 基準地震動 S s の応答スペクトル(鉛直方向)

2.2 水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動 水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる基準地震動Ssは, 複数の基準地震動における地震動の特性及び包絡関係を施設の特性による影響も考慮し たうえで確認し、本影響評価に用いる。

3. 各施設における水平2方向及び鉛直方向地震力の組合せに対する検討結果 本資料ではVI-2-1-8「水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の

「2. 基本方針」に記載の対象について建物・構築物,機器・配管系,屋外重要土木構造物等,津波防護施設,浸水防止設備及び津波監視設備に分類し検討した結果を示す。

なお、VI-2「耐震性に関する説明書」の別添として整理している火災防護設備,溢水防護 に係る施設,可搬型重大事故等対処施設,地下水位低下設備に係る施設,代替淡水源を監視 するための設備及び漂流防止装置については下記資料にて水平 2 方向及び鉛直地震力の組 合せに関する検討を行う。

・VI-2-別添 1-4

「火災防護設備の水平2方向及び鉛直方向地震力の組合せに関する影響評価」

・VI-2-別添 2-8

「溢水防護に係る施設の水平2方向及び鉛直方向地震力の組合せに関する影響評価結果」

・VI-2-別添 3-7

「可搬型重大事故等対処施設の水平2方向及び鉛直方向地震力の組合せに関する影響評 価結果」

・VI-2-別添 4-4

「地下水位低下設備に係る施設の水平2方向及び鉛直方向地震力の組合せに関する影響 評価」

・VI-2-別添 5-3

「代替淡水源を監視するための設備の水平2方向及び鉛直方向地震力の組合せに関する 影響評価結果」

・VI-2-別添 6-3

「漂流防止装置の水平2方向及び鉛直方向地震力の組合せに関する影響評価」

3.2 機器・配管系

3.2.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方

機器・配管系における従来の水平方向及び鉛直方向の組合せによる設計手法で は、建物・構築物の振動特性を考慮し、変形するモードが支配的となり応答が大き くなる方向(応答軸方向)に基準地震動を入力して得られる各方向の地震力(床応 答)を用いている。

応答軸(強軸・弱軸)が明確となっている設備の耐震評価においては,水平各方 向の地震力を包絡し,変形モードが支配的となる応答軸方向に入力するなど,従来 評価において保守的な取り扱いを基本としている。 一方,応答軸が明確となっていない設備で3次元的な広がりを持つ設備の耐震評価 においては,基本的に3次元のモデル化を行っており,建物・構築物の応答軸方向の 地震力をそれぞれ入力し,この入力により算定される荷重や応力のうち大きい方を 用いて評価を実施している。設備配置及び応答軸の概念図を図3-2-1に示す。

さらに、応答軸以外の振動モードが生じにくい構造の採用、応答軸以外の振動モ ードが生じにくいサポート設計の採用といった構造上の配慮など、水平方向の入力 に対して配慮した設計としている。

建物への入力地震動方向=建物の応答軸

図 3-2-1 設備配置及び応答軸の概念図

3.2.2 水平方向及び鉛直方向地震力の組合せの影響評価方針

機器・配管系において,水平2方向及び鉛直方向地震力を考慮した場合に影響を受ける可能性がある設備の評価を行う。

評価対象は,耐震重要施設,常設耐震重要重大事故防止設備,常設重大事故緩和 設備,常設重大事故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類 がSクラスのもの)が設置される重大事故等対処施設の機器・配管系並びにこれら の施設への波及的影響防止のために耐震評価を実施する設備とする。

対象とする設備を機種ごとに分類し、それぞれの構造上の特徴をもとに荷重の伝 達方向、その荷重を受ける構造部材の配置及び構成等により水平2方向の地震力によ る影響を受ける可能性がある設備を抽出する。

構造上の特徴により影響の可能性がある設備は、水平2方向及び鉛直方向地震力の 組合せによる影響の検討を実施する。水平各方向の地震力が1:1で入力された場合 の発生値を従来の評価結果の荷重又は算出応力等を水平2方向及び鉛直方向に整理し て組み合わせる又は新たな解析等により高度化した手法を用いる等により、水平2方 向の地震力による設備に発生する荷重や応力を算出する。

これらの検討により、水平2方向及び鉛直方向地震力を組み合わせた荷重や応力の 結果が、従来の発生値と同等である場合は影響のない設備とし、評価対象として抽 出せず、従来の発生値を超えて耐震性への影響が懸念される場合は、設備が有する 耐震性への影響を確認する。

設備が有する耐震性への影響が確認された場合は,詳細な手法を用いた検討等, 新たに設計上の対応策を講じる。

水平2方向及び鉛直方向地震力による影響評価は、基準地震動Ss-D,F1,F 2,N1及びN2を対象とするが、複数の基準地震動Ssにおける地震動の特性及 び包絡関係、地震力の包絡関係を確認し、代表可能である場合は代表の基準地震動 Ssにて評価する。また、水平方向の地震動は、それぞれの位相を変えた地震動を 用いることを基本とするが、保守的な手法を用いる場合もある。

スロッシング評価については、水平2方向の影響が考えられることから、水平2方 向による影響を確認する。燃料プール等のスロッシングによる溢水量評価は、添付 書類「VI-1-1-9-3 溢水評価条件の設定」に記載のとおり、水平2方向及び鉛直方向 の地震力を組み合わせた場合の溢水量として、保守的に水平1方向+鉛直方向の溢水 量に、直交する水平1方向+鉛直方向の溢水量を足し合せ、影響を確認している。

> 6 8

3.2.3 水平2方向及び鉛直方向地震力の組合せ影響評価方法

機器・配管系において,水平2方向及び鉛直方向地震力を考慮した評価*又は水平 1方向及び鉛直方向地震力の組合せで評価した上で,その計算結果に基づき水平2方 向及び鉛直方向地震力の組合せの影響の可能性がある設備を構造及び発生値の増分 の観点から抽出し,影響を評価する。影響評価は従来設計で用いている質点系モデ ルによる評価結果を用いて行うことを基本とする。影響評価のフローを図3-2-2に示 す。

なお、水平2方向及び鉛直方向地震力の組合せの影響を検討する際は、地震時に水 平2方向及び鉛直方向それぞれの最大応答が同時に発生する可能性は極めて低いとし た考え方であるSquare-Root-of-the-Sum-of-the-Squares 法(以下「最大応答の非 同時性を考慮したSRSS 法」という。)を適用する。この組合せ方法については、現 状の耐震評価は基本的に概ね弾性範囲でとどまる体系であることに加え、国内と海 外の機器の耐震解析は、基本的に線形モデルにて実施している等類似であり、水平2 方向及び鉛直方向の位相差は機器の応答にも現れることから、米国Regulatory Guide 1.92の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考としているものである。

注記*:耐震計算書において水平2方向及び鉛直方向地震力を考慮した評価を実施し ている設備を表3-2-1に示す。なお,表3-2-1に示した設備についても本項以 降に検討結果を記載する。

> 7 9

表 3-2-1 耐震計算書において水平 2 方向及び鉛直方向地震力を

設 備		水平2方向を考慮した評価部位	
		全評価部位	一部評価部位*
圧戻	ノズル	0	
二 力 容 器	ブラケット類(蒸気乾燥器支持ブラケット,炉心 スプレイブラケット,給水スパージャブラケッ ト)	0	
原 内 子 部 恒	ジェットポンプ計測配管貫通部シール	0	
	差圧検出・ほう酸水注入系配管(ティーより N11 ノズルまでの外管)	0	
構 圧 造 力	蒸気乾燥器		0
物容器	スパージャ 炉内配管	0	
	ジェットポンプ	0	
燃料プー	ル水位・温度 (SA)	0	
燃料プー	ル水位 (SA)	0	
ECCS2 原子炉隔翻	ストレーナ 難時冷却系ストレーナ	0	
ECCS2 原子恒隔	ストレーナ部ティー 難時冷却系ストレーナ部ティー	0	
原ナ炉 隔離時石 却ポストレー) 部 / イー ECCSストレーナ取付部コネクタ		0	
ECCS	ストレーナ取付部サポート	0	
水圧制御ユニット		0	
ダクト本体	体・サポート		0
中央制御	室待避室遮蔽	0	
原子	サプレッションチェンバ	0	
	サプレッションチェンバサポート	0	
炉格	ハッチ類	0	
約容	原子炉格納容器配管貫通部	0	
器	原子炉格納容器電気配線貫通部	0	
真空破壊装置		0	
ダウンカマ		0	
ベント管		0	
ベント管ベローズ		0	
ベントヘッダ		0	
ドライウェルスプレイ管		0	
サプレッションチェンバスプレイ管		0	
遠隔手動弁操作設備		0	
配管本体,	サポート(多質点はりモデル解析)	0	
水密扉(3	建物内, 燃料移送ポンプエリア)		0
防水壁(ディーゼル燃料移送ポンプエリア)		0	

考慮した評価を実施している設備(1/2)

表 3-2-1 耐震計算書において水平 2 方向及び鉛直方向地震力を

∋n. /#±	水平2方向を考慮した評価部位	
武文 1/用	全評価部位	一部評価部位*
建物開口部竜巻防護対策設備(竜巻防護ネット対策設備)	0	
建物開口部竜巻防護対策設備(竜巻防護鋼板対策設備)	0	
原子炉建物天井クレーン		0
燃料取替機		0
中央制御室天井照明	0	
主排気ダクト	0	
取水槽ガントリクレーン		0

考慮した評価を実施している設備(1/2)

注記*:一部の部位に対して水平2方向及び鉛直方向地震力を考慮した評価を実施している設備に「〇」を記載する。

評価対象となる設備の整理

耐震重要施設,常設耐震重要重大事故防止設備,常設重大事故緩和設備,常設重 大事故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSクラスの もの)が設置される重大事故等対処施設の機器・配管系並びにこれらの施設への波 及的影響防止のために耐震評価を実施する設備を評価対象とし,機種ごとに分類し 整理する(図3-2-2①)。

② 構造上の特徴による抽出

機種ごとに構造上の特徴から水平2方向の地震力が重複する観点,若しくは応答軸 方向以外の振動モード(ねじれ振動等)が生じる観点にて検討を行い,水平2方向の 地震力による影響の可能性がある設備を抽出する(図3-2-22)。

発生値の増分による抽出

水平2方向の地震力による影響の可能性がある設備に対して,水平2方向の地震力 が各方向1:1で入力された場合に各部にかかる荷重や応力を求め,従来の水平1方向 及び鉛直方向地震力の組合せによる設計に対して,水平2方向及び鉛直方向地震力を 考慮した発生値の増分を用いて影響を検討し,耐震性への影響が懸念される設備を 抽出する。

また,建物・構築物,屋外重要土木構造物等,津波防護施設,浸水防止設備及び 津波監視設備の検討により,機器・配管系への影響の可能性がある部位が抽出され た場合は,機器・配管系への影響を評価し,耐震性への影響が懸念される設備を抽 出する。

影響の検討は、機種ごとの分類に対して地震力の寄与度に配慮し耐震裕度が小さい設備を対象とする(図3-2-23)。

④ 水平2方向及び鉛直方向地震力の影響評価
 ③の検討において算出された荷重や応力を用いて,設備が有する耐震性への影響を確認する(図3-2-2④)。

図 3-2-2 水平 2 方向及び鉛直方向地震力の組合せによる影響評価フロー(機器・配管系)

3.2.4 水平2方向及び鉛直方向地震力の組合せの評価設備の抽出

評価対象設備を機種ごとに分類した結果を表3-2-2に示す。機種ごとに分類した設備の各評価部位,応力分類に対し構造上の特徴から水平2方向の地震力による影響を 水平2方向の地震力が重畳する観点より検討し,影響の可能性がある設備を抽出した。

(1) 水平2方向の地震力が重畳する観点

水平1方向の地震力に加えて、さらに水平直交方向に地震力が重畳した場合、水平 2方向の地震力による影響を検討し、影響が軽微な設備以外の影響検討が必要となる 可能性があるものを抽出する。以下の場合は、水平2方向の地震力により影響が軽微 な設備であると整理した(別紙4.1参照)。

なお,ここでの影響が軽微な設備とは,構造上の観点から発生応力への影響に着 目し,その増分が1割程度以下となる機器を分類しているが,水平1方向地震力によ る裕度(許容応力/発生応力)が1.1未満の機器については,個別に検討を行うこと とする。

A. 水平2方向の地震力を受けた場合でも、その構造により水平1方向の地震力し か負担しないもの

制御棒・破損燃料貯蔵ラックのサポートや横置きの容器等は、水平2方向の地 震力を想定した場合、水平1方向を拘束する構造であることや水平各方向で振動 性状及び荷重の負担断面が異なる構造であることにより、特定の方向の地震力 の影響を受ける部位であるため、水平1方向の地震力しか負担しないものとして 分類した。その他の設備についても同様の理由から水平1方向の地震力しか負担 しないものを分類した。

B. 水平2方向の地震力を受けた場合,その構造により最大応力の発生箇所が異な るもの

ー様断面を有する容器類の胴板等は,水平2方向の地震力を想定した場合,そ れぞれの水平方向地震力に応じて応力が最大となる箇所があることから,最大 応力の発生箇所が異なり,水平2方向の地震力を組み合わせても影響が軽微であ るものとして分類した。その他の設備についても同様の理由から最大応力の発 生箇所が異なり,水平2方向の地震力を組み合わせても影響が軽微であるものを 分類した。

C. 水平2方向の地震力を組み合わせても水平1方向の地震による応力と同等とい えるもの

原子炉圧力容器スタビライザ及び原子炉格納容器スタビライザは,周方向 8箇所を支持する構造で配置され,水平1方向の地震力を6体で支持する設計とし ており,水平2方向の地震力を想定した場合,地震力を負担する部位が増え,ま た,最大反力を受けもつ部位が異なることで,水平1方向の地震力による荷重と 水平2方向の地震力を想定した場合における荷重が同等になるものであり,水平 2方向の地震を組み合わせても1方向の地震による応力と同等のものと分類し た。その他の設備についても,同様の理由から水平2方向の地震力を組み合わせ ても1方向の地震による応力と同様のものと分類した。

D. 工認耐震計算書において,保守性(水平2方向の考慮を含む)を考慮した評価を行っているもの

蒸気乾燥器支持ブラケットは、工認耐震計算書において、水平2方向地震を 考慮した評価を行っているため、水平2方向の影響を考慮しても影響がないも のとして分類した。その他の設備についても、同様の理由から工認耐震計算 書にて保守性を考慮しており、水平2方向の影響を考慮しても影響がないもの を分類した。

(2) 水平方向とその直交方向が相関する振動モード(ねじれ振動等)が生じる観点 水平方向とその直交方向が相関する振動モードが生じることで有意な影響が生じ る可能性のある設備を抽出する。

機器・配管系設備のうち,水平方向の各軸方向に対して均等な構造となっている 機器は,評価上有意なねじれ振動は発生しない。

一方,3次元的な広がりを持つ配管系等は,系全体として考えた場合,有意なね じれ振動が発生する可能性がある。しかし,水平方向とその直交方向が相関する 振動モードが想定される設備は,3次元のモデル化を行っており,その振動モード は適切に考慮した評価としているため,この観点から抽出される設備はなかっ た。

(3) 水平1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分の観 点

(1),(2)において影響の可能性がある設備について,水平2方向の地震力が各方向1:1で入力された場合に各部にかかる荷重や応力を求め,従来の水平1方向及び鉛直方向地震力の設計手法による発生値を比較し,その増分により影響の程度を確認し,耐震性への影響が懸念される設備を抽出した。

水平1方向に対する水平2方向の地震力による発生値の増分の検討は、機種ごとの 分類に対して地震力の寄与度に配慮し耐震裕度が小さい設備を対象とする。別紙 4.5に対象の考え方を示し、別紙4.1表1 に(1),(2)において抽出された設備 のうち対象とした部位や応力分類の詳細を示す。水平2方向の地震力の組合せは米 国Regulatory Guide 1.92の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として最大応答の非同時性を考慮したSRSS 法により組み合わせ、発生値の増分を算出する。増分の算出は、耐震計算書で考 慮している保守性により増分が低減又は包絡されることも考慮する。算出の方法 を以下に示す。

- ・耐震計算書のデータを用いた簡易的な算出では、地震・地震以外の応力に分離可能なものは地震による発生値のみ組み合わせた後、地震以外による応力と組み合わせて算出する。
- ・設備によっては解析等で求められる発生荷重より大きな設計荷重を用いているものもあるため、上記組合せによる発生値を設計荷重が上回ることを確認したものは、水平2方向の地震力による発生値の増分はないものとして扱う。
- ・応答軸が明確な設備で、設備の応答軸の方向あるいは厳しい応力が発生する 向きへ地震力を入力している場合は、耐震性への影響が懸念されないものと して扱う。
- 3.2.5 水平2方向及び鉛直方向地震力の組合せの評価設備の抽出結果

3.2.4項(1)及び(2)による影響を整理した結果を別紙4.1に,3.2.4項(3)による影響を整理した結果を別紙4.2に示す。なお、別紙4.2では、別紙4.1にて影響ありとされた設備、又は裕度が1.1未満の設備を抽出して記載しているが、応答軸が明確な設備については耐震性への影響が懸念されないものとして整理している。また、水平2方向の地震力を組み合わせる場合、発生応力は最大応答の非同時性を考慮したSRSS法では最大√2倍、組合せ係数法で最大1.4倍となるため、裕度(許容応力/発生応力)が√2以上ある設備については、水平2方向の地震力による影響の評価は不要とし、別紙4.2で裕度が√2以上あるか確認している。

3.2.6 水平2方向及び鉛直方向地震力の組合せの影響評価

別紙4.1において抽出された設備について、水平2方向及び鉛直方向地震力を想定 した発生値(発生荷重,発生応力,応答加速度)を以下の方法により算出する。 発生値の算出における水平2方向及び鉛直方向地震力の組合せは、米国Regulatory Guide 1.92の「Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として非同時性を考慮したSRSS 法を適用する。

(1) 耐震計算書のデータを用いた算出

耐震計算書の水平1方向及び鉛直方向地震力を組み合わせた評価結果を用いて,以下の条件により水平2方向及び鉛直方向の地震力に対する発生値を算出することを基本とする。

・水平各方向及び鉛直方向地震力をそれぞれ個別に用いて耐震計算書の発生値を算 出している設備は、水平2方向及び鉛直方向地震力を組み合わせて水平2方向を考慮 した発生値の算出を行う。

水平2方向発生值

= ↓(NS方向地震力による発生値)² + (EW方向地震力による発生値)² + (UD方向地震力による発生値)²

・水平1方向と鉛直方向の地震力を組み合わせたうえで耐震計算書の発生値を

各方向で算出している設備は,鉛直方向を含んだ水平各方向別の発生値を組み 合わせて水平2方向を考慮した発生値の算出を行う。

水平2方向発生值

= √(NS + UD 方向地震力による発生値)² + (EW + UD 方向地震力による発生値)²

・水平方向を包絡した地震力と鉛直方向地震力を組み合わせたうえで耐震計算書の
 発生値を算出している設備は、鉛直方向を含んだ水平各方向同一の発生値を組み
 合わせて水平2方向を考慮した発生値の算出を行う。

水平2方向発生值

= 、(水平方向包絡+鉛直方向地震力による発生値)²+(水平方向包絡+鉛直方向地震力による発生値)²

- また、算出にあたっては必要に応じて以下も考慮する。
- ・発生値が地震以外の応力成分を含む場合、地震による応力成分と地震以外の応力成分を分けて算出する。
- 3.2.7 水平2方向及び鉛直方向地震力の影響評価結果

別紙4.2において水平2方向での発生値の増分の影響が無視できないと整理した設備について、3.2.6項の影響評価条件において算出した発生値に対して設備の耐震性への影響を確認する。評価した内容を設備ごとに示し、その影響評価結果については重大事故等の状態も考慮した結果について別紙4.3に示す。

3.2.8 まとめ

機器・配管系において,水平2方向の地震力の影響を受ける可能性がある設備に ついて,従来設計手法における保守性も考慮した上で抽出し,従来の水平1方向及び 鉛直方向地震力の組合せによる設計に対して影響を評価した。その結果,耐震計算 書の発生値を超えて耐震性への影響が懸念される設備については,水平2方向及び鉛 直方向地震力を想定した発生値が許容値を満足し,設備が有する耐震性に影響のな いことを確認した。

本影響評価は、水平2方向及び鉛直方向地震力により設備が有する耐震性への影響 を確認することを目的としている。そのため、耐震計算書の発生値をそのまま用い て水平2方向及び鉛直方向地震力の組合せを評価しており、以下に示す保守側となる 要因を含んでいる。

- ・耐震計算書の発生値(水平1方向及び鉛直方向地震力による応力成分と圧力等の 地震以外の応力成分の組合せ)に対して、係数(√2)を乗じて水平2方向及び鉛 直方向地震力を想定した発生値として算出しているため、係数を乗じる必要のな い鉛直方向地震力による応力成分と圧力等の地震以外の応力成分についても係数 を乗じている。
- ・耐震計算書において水平各方向を包絡した床応答スペクトルを各方向に入力して いる設備は各方向の大きい方の地震力が水平2方向に働くことを想定した発生値

として算出している。

以上のことから,水平2方向及び鉛直方向地震力については,機器・配管系が有 する耐震性に影響がないことを確認した。また,建物・構築物,屋外重要土木構造 物等,津波防護施設,浸水防止設備及び津波監視設備の検討により,機器・配管系 への影響の可能性がある部位は抽出されなかった。

なお、3次元FEMモデルを用いた精査(別紙2)を踏まえて面外応答による影響検 討対象として、原子炉建物(燃料取替階レベル)の壁及び床に設置される機器・配 管系の設備を抽出し、影響を検討した結果、面外応答による影響を考慮しても機 器・配管系の耐震評価に影響がないことを確認した。また、3次元FEM モデルによる 地震応答解析(別紙3)において、3次元FEMモデルの応答スペクトルが質点系モデル の応答スペクトルを上回る箇所があることを踏まえて機器・配管系への影響を検討 した結果、機器・配管系の耐震評価に影響がないことを確認した(別紙4)。

	設備	部位
燃料集合体		燃料被覆管
	炉心シュラウド	上部胴
		下部胴
		中間胴
		上部格子板支持面
		炉心支持板支持面
		レグ
炉	シーラウドサポート	シリンダ
心		プレート
持		下部胴
げ (単)	上部格子板	グリッドプレート
物		補強ビーム
	炉心支持板	支持板
		スタッド
	做 約 古 中 本 日	中央燃料支持金具
	燃料文持金具	周辺燃料支持金具
	制御棒案内管	下部溶接部
		長手中央部
	円筒胴	円筒胴
	下鏡	下鏡
		下鏡と円筒胴の接合部
		原子炉圧力容器支持スカートと円筒胴の
庐		接合部
子	制御棒貫通孔	ハウジング
炉匠		スタブチューブ
力容	原子炉中性子計装孔	原子炉中性子計装ハウジング
器	ノズル	各部位
		スタビライザブラケット
	ブラケット粒	蒸気乾燥器支持ブラケット
	フラケット独	炉心スプレイブラケット
		給水スパージャブラケット
支持構造物 京子炉圧力容器	百之后圧力宏哭其歴ポルト	其碑式ルト
	原子炉圧力容器支持スカート	支持スカート

表3-2-2 水平2方向入力の影響検討対象設備(1/12)

	設備	部位
原子炉	原子炉圧力容器スタビライザ	ロッド
		ブラケット
	原子炉格納容器スタビライザ	パイプ
		フランジボルト
上力		ガセットプレート
容器		レストレントビーム一般部
一行属	制御棒駆動機構ハウジング支持金具	レストレントビーム端部
構		レストレントビーム結合ボルト
這物	ジェットポンプ計測配管貫通部シール	貫通部シール
	差圧検出・ほう酸水注入系配管(ティ	美压栓电管
	ーよりN11ノズルまでの外管)	
		蒸気乾燥器ユニット
原		耐震用ブロック
子炉	気水分離器及びスタンドパイプ	
圧力	シュラウドヘッド	各部位
容	原子炉中性子計装案内管	
品 内	スパージャ	各部位
部構	炉内配管	
造物	ジェットポンプ	ライザ
120		ディフューザ
		ライザブレース
		ラック部材
		(板,シートプレート及びラックベー
使用涩	¥燃料貯蔵ラック	
		ラック取付ボルト
		基礎ホルト
		ラック
制御桐	を・破損燃料貯蔵ラック	サポート
		底部基礎ボルト
		サポート部基礎ボルト
燃料プール水位・温度(SA)		架構
		ワークテーブルフック
		基礎ボルト
燃料プール水位(SA)		検出器保護管
		検出器架台基礎ボルト

表3-2-2 水平2方向入力の影響検討対象設備(2/12)

設備	部位
燃料プール監視カメラ	基礎ボルト
	取付ボルト
	基礎ボルト
燃料ノール監視カメフ用行却設備	取付ボルト
	胴板
)+====	脚
	胴板
	ラグ
· 凭留熟除去糸熟父換器	基礎ボルト
	追設基礎ボルト
	コラムパイプ
	バレルケーシング
立形ホンフ	基礎ボルト
	取付ボルト
	各部位 (フランジ, 取付ボルト以外)
ECCSストレーナ	フランジ
泉ナ炉	ボルト
ECCSストレーナ部ティー	ティー
原子炉隔離時冷却系ストレーナ部ティー	フランジ
FCCSストレーナ取付部コネクタ	コネクタ
	フランジ
	サポートパイプ
ECCSストレーナ取付部サポート	サポートパイプ溶接部
	サポートプレート
	サポートボルト
横形ポンプ	
補機海水ストレーナ	基礎ボルト
ボンブ駆動用タービン	取付ボルト
空調ユニット	
原子炉補機冷却系熱交換器	
	脚
	基礎ボルト
	連結板

表3-2-2 水平2方向入力の影響検討対象設備(3/12)

設備	部位
	胴板
横置円筒形容器	
	基礎ボルト
	胴板
たて置円筒形容器(スカート支持)	スカート
	基礎ボルト
制御棒駆動機構	フランジ
	フレーム
水圧制御ユニット	取付ボルト
	胴板
平底たて置円筒形容器	基礎ボルト
核計測装置	各部位
	基礎ボルト
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[取付ボルト
(二)光明 (府政時期)	基礎ボルト
[4] 达恭(龙杉室街) 	溶接部
(二)光明 (山光,) 御村田寺)	基礎ボルト
公送器 (リホート 判材 固足)	溶接部
判御船 雪左船 (炻形広果)	基礎ボルト
	取付ボルト
	基礎ボルト
制御盤, 電気盤(矩形壁掛)	取付ボルト
	溶接部
モニタリング設備(矩形床置)	取付ボルト
モニタリング設備(矩形壁掛)	基礎ボルト
通信連絡設備(アンデナ類)(矩形床直)	
通信連絡設備(アンテナ類)(矩形壁掛)	
	取付ホルト
ダクト本体、サポート	タクト本体(矩形)
	ダクト本体 (円形)
	サポート

表3-2-2 水平2方向入力の影響検討対象設備(4/12)

	設備	部位
		構造フレーム(鉄骨、鋼板)
中央制御室待避室遮蔽	基礎ボルト	
	遮蔽パネル接合部ボルト	
	構造フレーム接合部高力ボルト	
		遮蔽パネル
		気密用鋼板
		ドライウェル上ふた球形部とナックル部
		の接合部
		円筒部とナックル部の接合部
		ナックル部と球形部の接合部
	ドライウェル	球形部の板厚変化部
		球形部と円筒部の接合部
		円筒部と球形部の接合部
		円筒部
		基部
原	サプレッションチェンバ	サプレッションチェンバ胴中央部上部
- 「 「 炉		サプレッションチェンバ胴中央部下部
格納		サプレッションチェンバ胴中央部内側
容品		サプレッションチェンバ胴中央部外側
奋		サプレッションチェンバ胴エビ継部上部
		サプレッションチェンバ胴エビ継部下部
		サプレッションチェンバ胴エビ継部内側
		サプレッションチェンバ胴エビ継部外側
		サプレッションチェンバ胴と内側サポー
		ト補強板との接合部
		サプレッションチェンバ胴と外側サポー
		ト補強板との接合部
		内側メイルシヤラグ
		外側メイルシヤラグ
	シヤラグ	内側フィメイルシヤラグ
		内側フィメイルシヤラグリブ付根部
		外側フィメイルシヤラグ

表3-2-2 水平2方向入力の影響検討対象設備(5/12)

	設備	部位
原子炉格納容器	シヤラグ	内側メイルシヤラグ接触部 外側メイルシヤラグ接触部 内側フィメイルシヤラグ接触部 タ側フィメイルシヤラグ接触部 コンクリート (ベースプレート部,シヤ プレート部) 基礎ボルト ベースプレート シヤプレート 内側シヤラグサポート シヤラグ取付部
	サプレッションチェンバサポート	サポート ベースとベースプレートの接合部 シアキー ベースプレート シアプレート コンクリート ボルト 基礎ボルト
	ハッチ類	ハッチ円筒胴 ハッチ本体と補強板との結合部
	原子炉格納容器配管貫通部	原子炉格納容器胴とスリーブとの結合部 スリーブ
	原子炉格納容器電気配線貫通部	ドライウェルとスリーブとの結合部
真空破	皮 壊装置	スリーブ スリーブとベント管との結合部
ダウンカマ		ダウンカマ ベントヘッダとダウンカマの結合部
ベント管		ヘッダ接続部 ベント管円筒部 ベント管とドライウェルとの接合部
ベント管ベローズ		ベント管ベローズ

表3-2-2 水平2方向入力の影響検討対象設備(6/12)

設備	部位
	ベントヘッダ
	ベントヘッダ補強リング取付部
ベントヘッダ	ベントヘッダサポート
	サプレッションチェンバ補強リング
	ボルト
	上部スプレイ管案内管
	上部スプレイ管ティー部
	上部スプレイ管案内管サポート
ドライウェルスプレイ管	下部スプレイ管
	下部スプレイ管案内管
	下部スプレイ管ティー部
	下部スプレイ管サポート
	スプレイ管
	スプレイ管えび状の管部
サプレッションチェンバスプレイ管	スプレイ管ティー部
	スプレイ管案内管
	スプレイ管サポート
	シャフト
	コネクタ
ブローアウトパネル閉止装置	軸受取付ボルト
	駆動部取付ボルト
	取付ボルト
可燃性ガス濃度制御系再結合装置ブロワ	ブレース
	ベース取付溶接部
可燃性ガス濃度制御系再結合装置	基礎ボルト
	静的触媒式水素処理装置本体
静的钟媒式水素如理装置	架台
	取付ボルト
	基礎ボルト
遠隔手動弁操作設備 ディーゼル発電機	基礎ボルト
	取付ボルト
	基礎ボルト
	取付ボルト
ガスタービン発電機	基礎ボルト
	取付ボルト

表3-2-2 水平2方向入力の影響検討対象設備(7/12)

設備	部位
スの地震派乳供	基礎ボルト
その他電源設備	取付ボルト
配管本体、サポート(多質点はりモデル解析)	配管、サポート
	ヒンジ部 (ヒンジ板)
叶油磁送吸叶油草	ヒンジ部 (ヒンジピン)
	ヒンジ部 (ヒンジボルト)
(1 万機北側,2 万機北側)	カンヌキ部
	アンカーボルト
	縮小板
1 只搬雨水描达吹炉小丁	固定ボルト
1 亏機取水僧加龄釉小工	取水管 (フランジ部)
	取水管 (管胴部)
民处排水攻逆止会	扉体部
屋外排小路 迟 正开	固定部
	ヒンジ部
取水槽除じん機エリア水密扉(北)	カンヌキ部
	アンカーボルト
	扉板
	芯材
	外部縦柱
取水槽除じん機エリア水密扉 (東)	水密扉戸当り用支柱
取水槽除じん機エリア水密扉 (西)	固定プレート
	締付ボルト
	外部縦柱固定ボルト
	アンカーボルト
	ヒンジ部
	カンヌキ部
水密扉(建物内,燃料移送ポンプエリア)	アンカーボルト
	パネル部 (パネル板)
	パネル部 (パネル芯材)
	パネル部(柱,はり)
	パネル部 (アンカーボルト)
防水壁(取水槽除じん機エリア)	鋼板
	はり
	柱
	アンカーボルト

表3-2-2 水平2方向入力の影響検討対象設備(8/12)

設備	部位
	鋼板
	胴縁
	根太
	はり
防水壁(タービン建物復水器エリア) 	柱
	斜材
	ブレース
	アンカーボルト
	鋼板
	胴縁
叶七座(ゴ・ゴル姆灯政学出ンプテリマ)	はり
防水壁(ワイービル燃料移送ホンフェリア)	柱
	ブレース
	アンカーボルト
	鋼板
植(扑车体型)	はり材
· 医(杜文村空)	柱材
	アンカーボルト
恒(御たた中洋型)	鋼板
・ 低い、「「「「「」」」、「「」」、「「」」、「」、「」、「」、「」、「」、「」、「」	アンカーボルト
	アンカー筋
堰(鉄筋コンクリート製)	主筋
	堰底部のコンクリート
	鋼板
防水板	芯材
	アンカーボルト
	弁本体
床ドレン逆止弁	フローとガイド
	基礎ボルト
	モルタル
貫通部止水処置	電路貫通部金属ボックスのアンカー
	ボルト
津波監視カメラ	架台
	架台溶接部
	取付ボルト

表3-2-2 水平2方向入力の影響検討対象設備(9/12)

設備	部位			
取水槽水位計	取付ボルト			
	円筒部			
	たてリブ			
原子炉本体の基礎	基礎ボルト			
	ベースプレート			
建物開口部竜巻防護対策設備(竜巻防護ネット	フレーム			
対策設備)	アンカーボルト			
建物開口部竜巻防護対策設備(竜巻防護鋼板対	フレーム			
策設備)	アンカーボルト			
	鋼板			
あままでである。 パンプテリマアナギャムなきしょう	架構			
取水槽循環水ホンノエリア防護対束設備	ベースプレート			
	アンカーボルト			
	鋼板			
	はり			
雨水捕海水ポンプェリマ辛半咕萍対空乳供	柱			
収小 僧 御 小 か ン ク エ リ ノ 电 各 的 護 対 束 設 備	架構			
	ベースプレート			
	アンカーボルト			
	クレーン本体ガーダ			
	落下防止ラグ			
原子炉建物天井クレーン	トロリストッパ			
	トロリ			
	吊具			
	燃料取替機構造物フレーム			
	ノリツン脱線防止フク(本体) トロリ脱線防止ラグ(本体)			
	走行レール			
燃料取替機	横行レール			
	ブリッジ脱線防止ラグ(取付ボルト)			
	トロリ脱線防止フク(取付ホルト)			
	市共(ワイヤローフ) 日日(仕知人日)			
	市長(充垢金兵)			
チャンネル着脱装置				
	ローフアエーン			

表3-2-2 水平2方向入力の影響検討対象設備(10/12)

設備	部位		
	ブーム		
エ、シュル町把ゴーノ	回転ポスト		
テャンイル取扱ノーム	固定ポスト		
	基礎ボルト		
	制御棒落下防止ポール		
制御棒貯蔵ハンガ	ポール支持金具		
	基礎ボルト		
	胴板		
百乙烷进几万块叶和大块田	脚		
原于炉伊化糸桶切熱交換畚	基礎ボルト		
	追設基礎ボルト		
	補強材		
	支持鋼材		
	補強斜材		
中央制御室天井照明	取付ボルト (照明ボルト)		
	継手ボルト		
	基礎ボルト		
	溶接部		
防価重れ度	フレーム部材		
	基礎ボルト		
	脚		
タービン補機冷却系熱交換器	基礎ボルト		
	追設基礎ボルト		
	ダクト本体		
主排気ダクト	支持構造物部材		
	支持装置		
	クレーン本体ガーダ		
	脚		
	転倒防止装置アーム		
	トロリストッパ		
取水槽ガントリクレーン	トロリ		
	吊具		
	単軸粘性ダンパ		
	ブレース		
	クレビス		

表3-2-2 水平2方向入力の影響検討対象設備(11/12)

	フレーム取付ボルト		
	フレーム耐震サポート		
除じん機	フレーム耐震ピン		
	アジャストボルト		
	尾軸受取付ボルト		
「百乙辰ウールシールドプラガ	シールドプラグ本体		
	支持部		
<u> </u>	フレーム部材		
	基礎ボルト		
	胴基部		
	開口集中部		

表3-2-2 水平2方向入力の影響検討対象設備(12/12)

別紙4 機器・配管系に関する影響検討

別紙 4.1	機器・配管系の耐震評価における水平2方向入力の
	影響有無整理結果······別紙 4.1-1
別紙 4.2	水平2方向の地震による代表設備の増分影響結果
別紙 4.3	水平2方向の地震による発生値と許容値の比較結果·····・ 別紙4.3-1
別紙 4.4	個別設備に関する補足説明・・・・・・ 別紙 4. 4−1
別紙 4.5	水平2方向及び鉛直方向地震力の影響評価における代表性・・・・・・ 別紙4.5-1
別紙 4.6	水平2方向及び鉛直方向地震力の組合せ方法の検討別紙4.6-1
別紙 4.7	原子炉建物3次元FEMモデルの面外応答に係る
	機器・配管系への影響検討・・・・・・・・・・・・・・・・・・・・・・・・・ 別紙 4.7−1
別紙 4.8	原子炉建物3次元FEMモデルの応答解析結果に係る
	機器・配管系への影響検討

<mark>②機</mark> ま 1	器・配管系の耐震評価における水平2プ 構造設度証価	方向入力の影響整理結果						
<u>承</u> 1	神但 <u>地</u> 反計画	101 124	ビナ () #5	 ①-1 水平2方向の地震力の 重複による影響の有無 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が	①10世年七年の翌日	①-2 水平方向とその モード(ねじれ振動等 (3.2.4項(2)に対応)	直行方向が相関する振動)が生じる観点
		ΨD112	ルンノブガ現	(3.2.4項(1)に対応) ○:影響転彻 △:影響軽微	 株平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D: 工認耐震計算書にて、水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。) 	①-105影響有無の説明	振動モード及び新たれ 応力成分の発生有無 〇:発生する ×:発生しない	な 左記「〇」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
			一次応力	0	_	水平2方向の影響がある。		
	燃料集合体	燃料被覆管	一次+二次応力	0	_	同上	×	-
	1		一次+二次+ピーク応力	0	_	同上		
		上部胴 下部胴	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の 影響は軽微である。【補足説明資料4】		
			一次一般膜応力+一次曲げ応力		В	同上		
	炬心シュラウド		一次一般膜応力	\bigtriangleup	В	同上	×	_
	<i>"</i> ч <i>ч у ч</i>	中間胴	一次一般膜応力+一次曲げ応力		В	同上		
			座屈	Δ	В	同上		
		上部格子板支持面 炉心支持板支持面	支圧応力	Δ	С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。		
		レグ	一次一般膜応力	Δ	В	評価部位は円周配置であるため、水平地震の方向ごとに最大応力点が異なる。し たがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微で ある。	しで 	
1/F			一次一般膜応力+一次曲げ応力	Δ	В	同上		
心	シュラウドサポート		座屈		В	同上		-
支持構		シリンダ ブレート 下部胴	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		
物			一次一般膜応力+一次曲げ応力	\bigtriangleup	В	同上		
	上部格子板	グリッドプレート	一次一般膜応力	Δ	В	評価部位は格子構造であることから,水平地震の方向ごとに最大応力点が異な る。したがって,水平2方向の地震力を組み合わせた場合でも水平2方向の影響は 軽微である。	×	-
			一次一般膜応力+一次曲げ応力	\bigtriangleup	В	同上		
		補強ビーム 支持板	一次一般膜応力		В	水平地震の方向ごとに最大応力点が異なる。したがって、水平2方向の地震力を 組み合わせた場合でも水平2方向の影響は軽微である。		
	炉心支持板		一次一般膜応力+一次曲げ応力	Δ	В	同上	×	_
	, _, _, _, , , , , , , , , , , , , , ,	スタッド	一次一般膜応力	Δ	С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。		
			一次一般膜応力+一次曲げ応力	\triangle	С	同上		
	燃料支持金具	中央燃料支持金具 周辺燃料支持金具	一次一般膜応力		В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】	点が の影 ×	-
			一次一般膜応力+一次曲げ応力	\bigtriangleup	В	同上		
構造す	制御棒案内管	下部溶接部 長手中央部	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】	×	_
117 技	f		一次一般膜応力+一次曲げ応力	Δ	В	同上]	
		n te u	一次一般膜応力		В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料4】	×	_
原	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1 (11)(12)	一次膜応力+一次曲げ応力	\triangle	В	同上	^	
子			一次+二次応力	\triangle	В	同上		
炉			一次+二次+ピーク応力	Δ	В	同上		
力容器	E 5 F 5 F 5 6 F 6 F 6 月 円 円 6 円 円 5 6 月 一 下鏡 「 「 5 6 月 一 下鏡	下鏡 下鏡と円筒胴の接合部 原子炉圧力容器支持スカートと 円筒胴の接合部	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】	x応力点が 2方向の影 × –	
			一次膜応力+一次曲げ応力	Δ	В	同上		
			一次+二次応力	Δ	В	同上		
			一次+二次+ピーク応力	\triangle	В	同上		

<mark>②機</mark> 器	器・配管系の耐震評価における水平2カ 構造改産認知	5向入力の影響整理結果							
表 1	構 這 强 皮 評 恤								
設備		部位	(五分類	 ①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) ○:影響あり △:影響軽微 公:影響軽微 C:水平: も1方 とい D:工認調の地 慮方法 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が 出なまっの	①-1の影響有無の説明	①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3.2.4項(2)に対応)		
					 スマシカのの地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向 の地震力を考慮しているもの(考慮方法を表3に示す。) 		振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	 左記「〇」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由 	
			一次一般膜応力		В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】	バ 影		
		~y~~	次膜応力+次曲げ応力	\triangle	В	同上			
			一次+二次応力	Δ	В	同上			
	制御棒貫通孔		一次+二次+ピーク応力	Δ	В	同上	×	-	
			一次一般膜応力	\bigtriangleup	В	同上			
				Δ	В	同上	1		
		スタブチューブ	一次+二次応力	Δ	В	同上	1		
			一次+二次+ピーク応力	Δ	В	同上	1		
			座屈	Δ	В	同上	1		
		原子炉中性子計装ハウジング	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		_	
	原于炉中性于計装扎		一次膜応力+一次曲げ応力	\triangle	В	同上	× *		
原			一次+二次応力	\triangle	В	同上	-		
子			一次+二次+ピーク応力	\triangle	В	同上			
炉圧力容器) ت ^{يت} ال	各部位	一次一般膜応力	Δ	D	評価においては3次元的に配置されている接続配管の応答を使用しており、この 配管応答は水平2方向を考慮した評価を実施していることから、ノズルについて も水平2方向を考慮した評価となっている。	0	3次元はリモデルの応 答解析結果(配管反 力)を用い,耐震評価 を実施している。	
10			一次膜応力+一次曲げ応力	\triangle	D	同上			
			一次+二次応力	\triangle	D	同上			
			一次+二次+ピーク応力	\triangle	D	同上			
		スタビライザブラケット	一次一般膜応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため,水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって,水平2方向入力の影響は軽微である。【補足説明資料 1】	×	-	
			一次膜応力+一次曲げ応力	Δ	С	同上			
	ブラケット類	蒸気乾燥器支持ブラケット	一次一般膜応力	Δ	D	水平2方向入力時の地震力を4つのブラケットのうち2つで分担した荷重を方向ご とに考慮した評価を行っている。【補足説明資料2】	×	-	
			一次膜応力+一次曲げ応力	\triangle	D	同上			
		「「「「」」「「」」「「」」「」」「「」」」	一次一般膜応力	\triangle	D	水平2方向を考慮した評価を実施している。	×	_	
			一次膜応力+一次曲げ応力	\triangle	D	同上	~		
			一次一般膜応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。			
		給水スパージャブラケット	一次膜応力+一次曲げ応力	\bigtriangleup	D	同上	×	-	
			純せん断応力	\bigtriangleup	D	同上			
原子	原子炉圧力容器基礎ボルト	基礎ボルト	引張応力		С	ボルトは円周状に配置され,水平地震の方向ごとに最大応力の発生点が異なる。 水平2方向の入力を想定した場合にも水平2方向地震における最大応答の非同時 性を考慮することにより,影響は軽微である。【補足説明資料7】	×	_	
炉圧力容			せん断応力		С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料7】	震 足		
器支持構			一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】	āが 〕影 ────────────────×	_	
造	原子炉圧力容器支持スカート	支持スカート	一次膜応力+一次曲げ応力	\bigtriangleup	В	同上			
物			一次+二次応力	\triangle	В	同上			
			一次+二次+ピーク応力	Δ	В	同上	1		
			座屈	\bigtriangleup	В	同上			

<mark>②機</mark> 表 1	器・配管系の耐震評価における水平2カ 構造強度評価	方向入力の影響整理結果							
	1件4旦J3L/2 ITT IIII 25.供	100 H-r	さも公類	 ①-1 水平2方向の地震力の 重複による影響の有無 (2,2,4)(1)(- かは) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が 思なまたの	①-1の影響左無の諸明	①-2 水平方向とその モード(ねじれ振動等 (3.2.4項(2)に対応)	直行方向が相関する振動 が生じる観点	
	αX VH	#D112		 ○:影響をかり △:影響軽微 	 C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D: 工認耐震計算書にて,水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。) 	①-105家會有無の説明	振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	左記「〇」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由	
	原子炉圧力容器スタビライザ	ロッド	引張応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって、水平2方向入力の影響は軽微である。【補足説明資料 1】	×	_	
		ブラケット	せん断応力	\triangle	С	同上	_		
			曲げ応力	\triangle	С	同上			
			引張応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって、水平2方向入力の影響は軽微である。【補足説明資料 1】			
		74.9	せん断応力	\bigtriangleup	С	同上			
	原子炉格納容器スタビライザ		圧縮応力		С	同上	- ×	_	
			田け応刀 組合社広力		C		-		
頉		フランジボルト	引張広力		C		-		
示子			せん断応力		C	同上	-		
炉匠		ガセットプレート	曲げ応力	Δ	С	同上			
力			組合せ応力	\bigtriangleup	С	同上	-		
容器付属構	制御棒駆動機構ハウジング支持金具	レストレントビーム一般部 レストレントビーム端部	曲げ応力	Δ	В	水平方向地震が作用する際に,加振軸上に最大応力が発生する。水平2方向の地 震力が同時に作用した場合においても,それぞれの方向の加振軸上に最大応力が 発生する。したがって,水平2方向入力の影響は軽微である。	ž		
造物		レストレントビーム結合ボルト	引張応力	Δ	В	水平方向地震が作用する際に,加振軸上に最大応力が発生する。水平2方向の地 震力が同時に作用した場合においても,それぞれの方向の加振軸上に最大応力が 発生する。したがって,水平2方向入力の影響は軽微である。	ž	_	
			せん断応力	Δ	В	同上			
			一次一般膜応力		D	水平2方向を考慮した評価を実施している。			
	ジェットポンプ計測配管貫通部シー	貫通部シール	一次膜応力+一次曲げ応力	\triangle	D	同上	×	-	
			一次十二次応力	<u> </u>	D		_		
			一次+_次+ビーク応力		B	同上			
		差圧検出管	一次一般膜応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		従来より、3次元はり	
	差圧検出・ほう酸水注入系配管 (ティーよりN11ノズルまでの外		一次膜応力+一次曲げ応力	Δ	D	同上		モデルの応答解析結果 を用い,耐震評価を実 施しており,ねじれる 状態についても耐震評 価に用いる同種の荷重 として算出される。	
	管)		一次+二次応力	\bigtriangleup	D	同上	_		
			一次+二次+ピーク応力	Δ	D	同上	-		
	* ~ + 4 8 8	蒸気乾燥器ユニット	一次一般膜応力		с	従来評価で評価が厳しくなる方向に地震荷重を与えているため、水平2方向入力 を考慮しても水平1方向の地震荷重と同等となる。したがって水平2方向の影響は 軽微である。	t		
頉	烝気乾燥器		一次一般膜応力+一次曲げ応力	\triangle	С	同上	- ×	—	
子炉		耐震用ブロック	純せん断応力	Δ	D	水平2方向入力時の地震力を4つの耐震用ブロックのうち2つで分担した荷重を方 向ごとに考慮した評価を行っている。【補足説明資料2】			
圧 力 容 器	気水分離器及びスタンドパイプ シュラウドヘッド 回子に中世子計法安内等	各部位	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料4】	×	_	
内			一次一般膜応力+一次曲げ応力	Δ	В	同上			
品構造物	スパージャ	各部位	一次一般膜応力	Δ	D	水平2方向を考慮した評価を実施している。		従来より,3次元はり モデルの応答解析結果 を用い,耐震評価を実施しており、わじれス	
	炉内配管	炉内配管 各部位	各部位	一次一般膜応力+一次曲げ応力		D	同上		状態についても耐震評 価に用いる同種の荷重 として算出される。

 ②機器・配管系の耐震評価における水平2 表1 構造強度評価 	方向入力の影響整理結果						
20, 1 (17,22,24,2,01) (m)	部位		①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) ○:影響あり △:影響軽微	 影響軽微とした分類 A:水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が 	①-1の影響有無の説明	 ①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3.2.4項(2)に対応) 	
ā文 (用		心刀分類		 		振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
原 子 部炉 構圧 ジェットポンプ	ライザ ディフューザ	一次一般膜応力	Δ	D	水平2方向を考慮した評価を実施している。	- 0	従来より,3次元はり モデルの応答解析結果 を用い,耐評価を実 施しており、わどれる
造力 物容 器 内	ライザブレース	一次一般膜応力+一次曲げ応力		D	同上		状態についても耐震評 価に用いる同種の荷重 として算出される。
	ラック部材 (板,シートプレート及びラックベース)	引張応力	0	_	水平それぞれの方向における評価において,最大応力発生箇所は異なるものの, 円形状の一様断面でないため,発生応力は積算される。したがって,水平2方向 入力の影響がある。	,] 	3次元FEMモデルを作成 し、耐震評価を実施し
		せん断応力	0	_	同上	_	(いる。
は田波姆型哈芬ニック		組合せ応力	0	-	同上		
使用消除が料灯廠フツク	ラック取付ボルト	引張応力		с	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影響は軽微である。【補足説明資料6】	×	-
	基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
	ラック	引張応力	0	_	水平それぞれの方向における評価において,最大応力発生箇所は異なるものの, 円形状の一様断面でないため,発生応力は積算される。したがって,水平2方向 入力の影響がある。	DOの, 立方向 学塔は 落が支 消費 こと ご答は支 浮費 にし、 一 一 一 一 、 ご 、 、 、 、 、 、 、 、	
		せん断応力	0	-	同上		
		組合せ応力	0	_	同上		
	サポート	引張応力	Δ	С	水平1方向の地震力の応答が支配的であり、他の水平方向の地震力による応答は 小さいため、水平2方向の地震力が作用した場合においても水平1方向の応答が支 配的となる。したがって、水平2方向入力の影響は軽微である。【補足説明資料 3】		
		せん断応力	Δ	А	水平1方向の地震力のみを負担し,他の水平方向の地震力は負担しない構造と なっている。したがって,水平2方向入力の影響はない。【補足説明資料3】		
制御棒・破損燃料貯蔵ラック		組合せ応力	Δ	С	水平1方向の地震力の応答が支配的であり、他の水平方向の地震力による応答は 小さいため、水平2方向の地震力が作用した場合においても水平1方向の応答が支 配的となる。したがって、水平2方向入力の影響は軽微である。【補足説明資料 3】		
	底部基礎ボルト サポート部基礎ボルト	引張応力	Δ	С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		
		せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		引張応力	Δ	с	水平1方向の地震力の応答が支配的であり,他の水平方向の地震力による応答は 小さいため,水平2方向の地震力が作用した場合においても水平1方向の応答が支 配的となる。したがって,水平2方向入力の影響は軽微である。【補足説明資料 3】		
		せん断応力	Δ	А	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し ないため、水平2方向入力の影響は軽微である。		
		引張(圧縮)応力		D	水半2万向を考慮した評価を実施している。 ロ L		
	架構	でん町応刀 曲げたカ					
		四り心力 組合せ応力					3次元のモデルを用い
燃料プール水位・温度(SA)	<u> </u>	引張応力		D	P - Suite 同上		た解析により、ねじれ
	ワークテーブルフック	せん断応力	Δ	D	同上		モートを考慮した耐震 評価を実施している。
		組合せ応力	\triangle	D	同上		
	基礎ボルト	引張応力	\triangle	D	同上		
基礎ボル	基礎ホルト	せん断応力	\triangle	D	同上		
 ②機器・配管系の耐震評価における水平 表1 構造強度評価 	2 方向入力の影響整理結果						
---	--------------------	--------------	--	--	--	---	---
			 ①-1 水平2方向の地震力の 重複による影響の有無 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が		①-2 水平方向とその面 モード(ねじれ振動等) (3.2.4項(2)に対応)	直行方向が相関する振動 が生じる観点
設備	₩NZ-	応力分類	 (3. 2. 4項(1)に対応) ○:影響あり △:影響軽微 	 異なるもの C:水平2方向の地震を組み合わせても1方向の地震による応力と同等といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮力法を表3に示す。) 	(1)-1の影響有無の説明	振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
	公 山男児難勞	曲げ応力		D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い
燃料プール水位 (SA)	1次山 础 床 曖 目	組合せ応力	Δ	D	同上	0	た解析により、ねじれ
	検出器架台基礎ボルト	引張応力	Δ	D	同上	-	モードを考慮した耐震 評価を実施している。
		せん断応力		D			
	基礎ボルト	せん断応力	Δ	A	ホモンカロ人力の影響がある。 壁掛けのボルトは、壁と平行方向の水平地震力と鉛直地震力のみによりせん断力が発生するため、水平2方向入力の影響はない。		
燃料プール監視カメラ		引張応力	Δ	С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】	×	_
	取付ホルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		引張応力	Δ	С	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影 響は軽微である。【補足説明資料6】		
燃料プール監視カメラ用冷却設備	基礎ボルト 取付ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_
		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
	194C	一次一般膜応力	0	-	水平2方向入力の影響がある。	-	
アキュムレータ	川門 权	一次応力	0			- ×	-
	助	組合せ広力	0			-	
	胴板	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料4】		
	лттра	一次応力		В	同上		
		一次+二次応力		В	同上		
残留熱除去系熱交換器	ラグ	組合せ応力	Δ	В	水平2方向が同時に作用した場合においても、応力評価点が区別されるため、2方 向入力の影響は軽微である。	× ×	-
	基礎ボルト	引張応力	Δ	В	同上	_	
	追設基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
	コラムパイプ バレルケーシング	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		現在考慮しているX,Y
立形ポンプ		引張応力		С	ボルトは円周状に配置され,水平地震の方向ごとに最大応力の発生点が異なる。 水平2方向の入力を想定した場合にも水平2方向地震における最大応答の非同時 性を考慮することにより,影響は軽微である。【補足説明資料7】	0	方向振動モードではね じれ振動は現れない。 よって、ねじれ振動 モードが高次にて現れ
	基礎ボルト 取付ボルト	せん断応力		С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料7】		る可能性があるが,有 意な応答ではないた め,影響がないと考え られる。
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
FCCSZLU-+	各部位(フランジ,取付ボルト以外)	一次膜応力+一次曲げ応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		
原子炉隔離時冷却系ストレーナ	フランジ	曲げ応力	Δ	D	同上	×	-
	ボルト	引張応力	Δ	D	同上		
ECCSストレーナ部ティー 原子炉隔離時冷却系ストレーナ部ティー	ティー フランジ	一次応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。	×	-

 ②機器・配管系の耐震評価における水平2 表1 構造強度評価 	方向入力の影響整理結果						
	部位	 ①-1 水平2方向(重複による影響の (3.2.4項(1)に対 ○:影響あり △:影響軽微 	 ①-1 水平2方向の地震力の 重複による影響の有無 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が		 ①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3. 2. 4項(2)に対応) 	
設備			 (3. 2. 4項(1)に対応) ○:影響あり △:影響軽微 	 異なるもの C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 	①-1の影響有無の説明	振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
ECCSストレーナ取付部コネクタ	コネクタ フランジ	一次応力	Δ	D	水平2方向を考慮した評価を実施している。	×	-
ECCSストレーナ取付部サポート	サポートパイプ サポートパイプ溶接部 サポートプレート サポートボルト	一次応力	Δ	D	水平2方向を考慮した評価を実施している。	×	_
横形ポンプ		引張応力	Δ	с	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影響は軽微である。【補足説明資料6】		
補機海水ストレーナ ポンプ駆動用タービン 空調ファン 空調ユニット	基礎ボルト 取付ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	-
		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。	-	
	胴板	一次一般膜応力		А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
		一次応力		А	同上	× atexy 震足 5 7 <td></td>	
		一次+二次応力	Δ	А	同上]	
原子炉補機冷却系熱交換器	脚	組合せ応力		А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】	×	_
	基礎ボルト	引張応力	Δ	А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
	連結板	引張応力	Δ	А	水平方向の地震荷重を分散して負担する構造となっているため、水平2方向の地 震荷重が同時に作用した場合においても方向ごとにその地震荷重は分担される。 したがって、水平2方向入力の影響は軽微である。		
	胴板	一次一般膜応力		А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
		一次応力	Δ	А	同上		
		一次+二次応力	Δ	А	同上		
橫置円筒形容器	月月	組合せ応力	Δ	A	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】	×	_
		引張応力		A	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
	基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		

 ②機器・配管系の耐震評価における水平2 表1 構造強度評価 	方向入力の影響整理結果						
20.44			 1 水平2方向の地震力の 重複による影響の有無 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が		 ①-2 水平方向とその直 モード(ねじれ振動等) (3.2.4項(2)に対応) 	1.行方向が相関する振動 が生じる観点
武乂順	当7月75	心刀分類	(3.2.4項(1)に対応) ○:影響あり △:影響軽微	 英なるもの C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 		振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	 左記「〇」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
	胴板	一次一般膜応力		В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		
		一次+二次応力	Δ	В	同上		
	スカート	組合せ応力		В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		
たて置田筒形容哭 (スカート支持)		座屈	Δ	В	同上	×	_
		引張応力	Δ	С	ボルトは円周状に配置され,水平地震の方向ごとに最大応力の発生点が異なる。 水平2方向の入力を想定した場合にも水平2方向地震における最大応答の非同時 性を考慮することにより,影響は軽微である。【補足説明資料7】		
	基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料7】	1	
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
制御棒駆動機構	フランジ	一次応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】	×	_
		一次+二次応力	\bigtriangleup	В	同上	_	
		一次+二次+ピーク応力	\bigtriangleup	В	同上		
		引張応力	Δ	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い た解析により,従来よ
	71-4	せん断応力	\bigtriangleup	D	同上	0	りねじれモードを考慮
水圧制御ユニット		压縮応力 	Δ	D		-	ている。
		曲げ応力		D			
		組合せ応力		D			
	取付ボルト	対策応力		D		- ×	-
	周板	一次一般膜応力		В	四上 評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料4】		
		一次+二次応力	\triangle	В	同上	-	
		座屈	Δ	В	同上	1	
平底たて置円筒形容器		引張応力		С	ボルトは円周状に配置され、水平地震の方向ごとに最大応力の発生点が異なる。 水平2方向の入力を想定した場合にも水平2方向地震における最大応答の非同時 性を考慮することにより、影響は軽微である。【補足説明資料7】	×	_
	基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料7】		
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
核計測装置	各部位			В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料4】	×	-
		-次一般膜応力+-次曲げ応力	\triangle	В	同上		
		引張応力		С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		
伝送器(矩形床置)	基礎ボルト 取付ボルト せん	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_
		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		

 ②機器・配管系の耐震評価における水平2 表1 構造強度評価 	方向入力の影響整理結果						
	ta he		 ①-1 水平2方向の地震力の 重複による影響の有無 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が	①10世郷大概の影明	 ①-2 水平方向とその モード(ねじれ振動等) (3.2.4項(2)に対応) 	『行方向が相関する振動 が生じる観点
市文小用	₩UZ	 ○:影響あり △:影響軽微 	 (3.2.4項(I)にXNL) ○:影響あり △:影響を微 C:水平2方向の地震による応力と同等といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 	①-101家督有無の説明	振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由	
		引張応力	0	_	水平2方向入力の影響がある。		
	基礎ボルト	せん断応力		А	水平1方向及び鉛直方向の地震力のみを負担し,他の水平方向の地震力は負担し ないため,水平2方向入力の影響は軽微である。	×	-
		組合せ応力	0	-	水平2方向入力の影響がある。		
伝送器(矩形壁掛)		引張応力	0	-	水平2方向入力の影響がある。	-	
	溶接部	せん断応力		А	水平1方向及び鉛直方向の地震力のみを負担し,他の水平方向の地震力は負担し ないため,水平2方向入力の影響は軽微である。	×	-
		曲げ応力		A		-	
		祖台セ応力	0		水平2万回入刀の影響がある。 水平2方向入力の影響がある。		
	基礎ボルト	せん断応力	Δ	А	ホー2カ向人力の影響がある。 水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し かいため、水平2方向入力の影響は修飾である。	×	_
		組合せ応力	0	_	水平と方向入力の影響がある。	_	
伝达器 (ザホート鋼材固正)	资控却	り最応力 せん断応力	Δ	A	水平2万回入刀の影響かめる。 水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担しないため、水平2方向入力の影響は軽微である。	-	_
	1012610	曲げ応力		А			
		組合せ応力	0	-	水平2方向入力の影響がある。	-	
		引張応力	Δ	С	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影響は軽微である。【補足説明資料6】		
制御盤,電気盤(矩形床置)	基礎ボルト 取付ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_
		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
		引張応力	0	-	水平2方向入力の影響がある。	4	
	基礎ボルト 取付ボルト	せん断応力	Δ	А	水平1方向及び鉛直方向の地震力のみを負担し,他の水平方向の地震力は負担し ないため,水平2方向入力の影響は軽微である。		
		組合せ応力	0	-	水平2方向入力の影響がある。	4	
制御盤,電気盤(矩形壁掛)		<u>引張応力</u> せん断応力	O	A	水半2方向入力の影響がある。 水平1方向及び鉛直方向の地震力のみを負担し,他の水平方向の地震力は負担し	×	-
	溶接部	1, 24	_		ないため、水平2万回人刀の影響は軽微である。	4	
		曲け応力		A	回上 水平2方向入力の影響がある	-	
		引張応力	Δ	С	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影響は軽微である。【補足説明資料6】		
モニタリング設備(矩形床置)	取付ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_
		組合せ応力	\bigtriangleup	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
		引張応力	0	_	水平2方向入力の影響がある。		
モニタリング設備(矩形壁掛)	基礎ボルト 取付ボルト	せん断応力	Δ	А	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し ないため、水平2方向入力の影響は軽微である。	×	-
		組合せ応力	0	-	水平2方向入力の影響がある。		
		引張応力		С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		
通信連絡設備(アンテナ類)(矩形床置) 基	基礎ボルト	 せん断応力		С	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向地震 における最大応答の非同時性を考慮することにより、影響は軽微である。【補足 説明資料6】	×	_
		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		

<mark>②機器</mark> 表 1	<mark>・配管系の耐震評価における水平2</mark> 5 構造強度評価	方向入力の影響整理結果						
⊒0./# #	the state of the s	六五八 新五	 ①-1 水平2方向の地震力の 重複による影響の有無 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が	①10世年在の翌期	①-2 水平方向とその『 モード(ねじれ振動等) (3.2.4項(2)に対応)	直行方向が相関する振動 が生じる観点	
		部位	心力分類	 (3.2.4項(1)に対応) ○:影響あり △:影響軽微 	 : 影響あり : 影響軽微 C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 	①-1の影響有無の説明	振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
			引張応力	0	_	水平2方向入力の影響がある。		
		基礎ボルト	せん断応力		А	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し ないため、水平2方向入力の影響は軽微である。	×	-
			組合せ応力	0	_	水平2方向入力の影響がある。		
通信連	1絡設備(アンテナ類)(矩形壁掛)		引張応力	Δ	С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		
		取付ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_
			組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
ダクト本体,サポート	ダクト本体(矩形)	座屈	Δ	А	弱軸の有効断面に対し,最大応答を示す方向の地震力により評価を実施しており,水平2方向入力の影響は軽微である。	_		
	ダクト本体(円形)	座屈		D	水平2方向を考慮したモーメント基準で設計したピッチスパンよりも振動数基準 で設計したピッチスパンの方が短いスパンとなることを確認した上で,設計は振 動数基準で実施していることから水平2方向を考慮した評価となっている。	×	_	
		サポート	一次応力(組合せ)	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		
			引張応力	Δ	D	水平2方向を考慮した評価を実施している。		
		構造フレーム(鉄骨,鋼板) 基礎ボルト 遊廠バネル接合部ボルト	せん断応力	\bigtriangleup	D	同上		
			圧縮応力	\bigtriangleup	D	同上	_	
			曲げ応力		D		_	
			組合せ応力		D			3次元FEMモデルを作成 し,耐震評価を実施し ている。
中央制	御室待避室遮蔽		り 振応 力 		D			
1 2 4 1			4合社広力		D		-	
		構造フレーム接合部高力ボルト	せん断応力	Δ	D	同上	-	
		遮蔽パネル 気密用鋼板	組合せ応力	Δ	D	同上		
		ドライウェル上ふた球形部と ナックル部の接合部 円筒部とナックル部の接合部 ナックル部と球形部の接合部	一次膜応力+一次曲げ応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		
原		球形部の板厚変化部 球形部の板厚変化部 球形部と円筒部の接合部 円筒部と球形部の接合部	一次+二次応力	Δ	В	同上	①-2 水平方向とその直行方向が モード(ねじれ振動等)が生じる着 (3.2.4項(2)に対応) 振動モード及び新たな 応力成分の発生する ×:発生しない 左記「C 動モード のご新たな応しないこ 新たな応しないこ シーク、 二 二 注負担し × 二 × 空し検 : り,影 × 方向地震 。 × 方向の影 × ○ 3次元PED し, 耐勇 ている。 応力点が 方向の影 × 応力点が 方向の影 × 応力点が 方向の影 ×	
子炉格納	ドライウェル	円筒部	一次一般膜応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料4】	×	_
容器			一次膜応力+一次曲げ応力	\bigtriangleup	В	同上	4	
ηn			一次+二次応力	\bigtriangleup	В	同上	4	
		基部	一次膜応力+一次曲げ応力	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料4】		
			一次+二次応力	\bigtriangleup	В	同上]	
			座屈	\bigtriangleup	В	同上		

<mark>②機</mark> 署 主 1	器・配管系の耐震評価における水平2♪ 構造☆産証研	ち向入力の影響整理結果						
1 1	·丹坦浅次 IT III				影響軽微とした分類			
	設備	部位	応力分類	 ①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) 	 A:水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担しないもの B:水平2方向の地震力を受けた場合、構造により最大応力の発生箇所が異なるもの 	①-1の影響有無の説明	①-2 水平方向とそのī モード(ねじれ振動等) (3. 2. 4項(2)に対応)	直行方向が相関する振動 が生じる観点
				 ○:影響あり △:影響軽微 	 C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。) 		振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
		サプレッションチェンバ胴中央部上部	一次一般膜応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		
		サブレッションチェンバ胴中央部下部 サプレッションチェンバ胴中央部内側	一次膜応力+一次曲げ応力	\bigtriangleup	D	同上		
		サプレッションチェンバ胴中央部外側	一次+二次応力	\bigtriangleup	D	同上	1	
	サプレッションチェンバ	サプレッションチェンバ胴エビ継部上部 サプレッションチェンバ胴エビ継部下部	一次膜応力+一次曲げ応力	Δ	D	水平2方向を考慮した評価を実施している。	×	_
		サプレッションチェンハ胴エビ維部内側 サプレッションチェンバ胴エビ維部外側 サプレッションチェンバ胴と内側サポート 補強板との接合部 サプレッションチェンバ胴と外側サポート 補強板との接合部	一次+二次応力	Δ	D	同上		
		内側メイルシヤラグ 外側メイルシヤラグ 内側フィメイルシヤラグ の側フィメイルシヤラグリブ付場部	せん断応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため,水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって,水平2方向入力の影響は軽微である。【補足説明資料 1】		
		外側フィメイルシャラグ	曲げ応力	Δ	С	同上		
			組合せ応力	\bigtriangleup	С	同上		
		内側メイルシヤラグ接触部 外側メイルシヤラグ接触部 内側フィメイルシヤラグ接触部 外側フィメイルシヤラグ接触部 コンクリート(ベースプレート部, シヤプレート部)	支圧応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって、水平2方向入力の影響は軽微である。【補足説明資料 1】	5ため,水 震荷重は 説明資料 5ため,水 震荷重は 説明資料 5ため,水 震荷重は 説明資料 × 5ため,水 震荷重は 説明資料	
原子		基礎ボルト	引張応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため,水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって,水平2方向入力の影響は軽微である。【補足説明資料 1】		
炉格納容器	5779	ベースプレート シヤプレート	せん断応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって、水平2方向入力の影響は軽微である。【補足説明資料 1】		
			曲げ応力	<u> </u>	С		-	
		内側シヤラグサポート	利告也心力 引張応力	Δ	с	回上 水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって、水平2方向入力の影響は軽微である。【補足説明資料 1】		
			圧縮応力	\bigtriangleup	С	同上		
		シヤラグ取付部	一次膜応力+一次曲げ応力	Δ	С	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水 平2方向の地震荷重が同時に作用した場合においても方向ごとにその地震荷重は 分担される。したがって、水平2方向入力の影響は軽微である。【補足説明資料 1】		
			一次+二次応力	\triangle	С	同上		
			引張応力	Δ	D	水平2方向を考慮した評価を実施している。	4	
		サポート	せん断応力	^	D		4	
		ベースとベースプレートの接合部	上 縮 応 刀		D		-	
			細合せ応力				-	
			せん断応力	 ∧	D	水平2方向を考慮した評価を実施している。	1	
	サプレッションチェンバサポート	シアキー	支圧圧力	\triangle	 D	同上	×	-
			せん断応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。]	
		ヘースフレート シアプレート	曲げ応力	\bigtriangleup	D	同上	_	
			組合せ応力	\bigtriangleup	D	同上	_	
		コンクリート	E縮応力	\triangle	D	水平2方向を考慮した評価を実施している。	4	
	2 2 2	ボルト 基礎ボルト	引張応力	Δ	D	水平2方向を考慮した評価を実施している。		

<mark>②機</mark> 圭 1	器・配管系の耐震評価における水平2 構造強度証価	方向入力の影響整理結果						
<u>衣</u> 1	博道强及計恤 設備	部位	広力分類	 ①-1 水平2方向の地震力の 重複による影響の有無 (3 2 4項(1)に対応) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも,構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が 異たろもの	①-1の影響右無の説明	①-2 水平方向とその モード(ねじれ振動等 (3.2.4項(2)に対応)	直行方向が相関する振動)が生じる観点
	ניון אנו	HIG 122		 ○:影響あり △:影響軽微 	 C:水平2方向の地震を組み合わせても1方向の地震による応力と同等といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 		振動モード及び新た ^か 応力成分の発生有無 ○:発生する ×:発生しない	左記「〇」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
			一次一般膜応力	\triangle	D	水平2方向を考慮した評価を実施している。		
		ハッチ円筒胴	一次膜応力+一次曲げ応力	Δ	D	同上		
	5		一次+二次応力	Δ	D	同上	~	
	ハッナ類		一次膜応力+一次曲げ応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。	×	_
原		ハッチ本体と補強板との結合部	一次+二次応力	\bigtriangleup	D	同上		
子			一次+二次+ピーク応力		D	同上		
炉		国王にはなら期しては、マレックトのなりが	一次膜応力+一次曲げ応力	\triangle	D	水平2方向を考慮した評価を実施している。		
俗納		原子炉格納容器とスリーブとの結合部	一次+二次応力	\triangle	D	同上	×	-
容	原子炉格納容器配管貫通部		一次一般膜応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		
器		スリーブ	一次膜応力+一次曲げ応力	\bigtriangleup	D	同上	×	-
			一次+二次応力	\triangle	D	同上		
			一次膜応力+一次曲げ応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		
	原子炉格納容器電気配線貫通部	ドライウェルとスリーブとの結合部	一次十二次応力		 D		×	-
			- 次+二次+ピーク応力		 D			
			一次一般膜応力		 D	水平2方向を考慮した評価を実施している。		
		スリーブ	一次膜応力+一次曲げ応力		 D			
			-次+二次広力		D		_	
真空	破壊装置		一次一般范広力		D		×	_
<u></u>	IN ALL		次順広力+ 次曲げ広力	 ∧	D			
		スリーブとベント管との結合部		 ∧	D			
			- 次+ - 次+ピーク広力		D		_	
			一次一般瞳広力		D	 水平9方向を考慮した評価を実施していろ		
		ダウンカマ	一次間広力エー次曲げ広力	 ∧	D			3次元のモデルを用い
		, , , , , , , , , , , , , , , , , , ,			D			た解析により、従来よ
ダウ	ンカマ		一次十二次応力		D	四上 水平9七向な老虎した証価を実施している	0	りねじれモードを考慮
		ベントヘッダトダウンカマの結合部	一次展応力十一次曲り応力		D	ホキ2万向を考慮した計画を実施している。	_	した耐震評価を実施している
					D		_	CV . 20
			一次十二次十七一ク応力		D	回上		の次二のエゴルた田い
		ヘッダ接続部	一次一板膜応力		D	水平2万円を考慮した評価を美施している。	_	50元のモリルを用い た解析により、従来よ
ベン	ト管	ベント管円筒部	一次一般膜応力キー次曲り応力		D		0	りねじれモードを考慮
		ベント管とドライウェルとの接合部			D			した耐震評価を実施し
			一次十二次十ピーク応力		D	旧上		(1.20
ベン	~管ベローズ	ベント管ベローズ	疲労	Δ	D	評価においては,水平2方向を考慮したサプレッションチェンバ及びベント管の 地震応答解析結果(変位)を使用していることから,水平2方向を考慮した評価 となっている。	n o	3次元はりモデルの応 答解析結果を用い,耐 震評価を実施してい る。
			一次一般膜応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		
		ベントヘッダ		\triangle	D	同上	7	
			一次十二次応力		 D			
			一次膜応力+一次曲げ応力		 D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い
		ベントヘッダ補強リング取付部	-次+二次広力		D		0	に解析により、従来よりねじれモードを考慮
			引張広力	A	D			した耐震評価を実施し
			下縮広力	∧	D			ている。
		ベントヘッダサポート	1111111111111111111111111111111111111					
			四17心刀 如今社広力					
ベン	トヘッダ		11年でもの 11年にものの 11年にはのの 11年にはの 11年にはの 11年にはの 11年にはの 11年にはの 11年にはの 11年にはの 11年にはの 11年にはのの 11年にはの			11-		
			対策応力			小十4月回を与思した計画を未施している。 日 L		
		サプレッションエーンが建立リンド	でん町応力		D			
		リノレツンヨンナエンハ棚強リンク	上 稲 応 刀		D	同上	_	3次元のモデルを用い
			囲け応刀		D			た解析により、従来よ
			組合せ応力		D			リねしれモードを考慮
			せん断応力		D	水半2方向を考慮した評価を実施している。	_	ている。
		ボルト	曲げ応力		D	同上		- · · · · · · · · · · · · · · · · · · ·
			支圧圧力		D	同上	_	
			組合せ応力	\triangle	D	同上		

②機器・配管系の耐震評価における水平2 表1 構造強度評価	方向入力の影響整理結果						
-30. <i>44</i> 5			 1 水平2方向の地震力の 重複による影響の有無 であいすかに 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が		 ①-2 水平方向とその直 モード(ねじれ振動等) (3.2.4項(2)に対応) 	1行方向が相関する振動 が生じる観点
ā文) 拥	亩₽1 <u>₩</u> .	心力分類	(3.2.44(1)に対応) ○:影響あり △:影響軽微	 果なるもの C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 	①-10影響有無の説明	振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	 左記「〇」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
		一次応力	Δ	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い た解析により、従来よ
	上即ヘノレイ 見 关い目	一次+二次応力		D	同上		した耐震評価を実施し ている。
	ト迎フプレノ等ティー迎	一次応力		D	水平2方向を考慮した評価を実施している。	0	3次元のモデルを用い た解析により、従来よ
		一次+二次応力	Δ	D	同上	_ 0	した耐震評価を実施している。
		一次応力		D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い
	上部スプレイ管案内管サポート	一次+二次応力		D	同上	0	た解析により、従来よ りねじれモードを考慮 した耐震評価を実施し
		せん断応力		D	同上		ている。
ドライウェルフプレイ等	下部スプレイ管	一次応力		D	水平2方向を考慮した評価を実施している。	- 0	3次元のモデルを用い た解析により、従来よ
		一次+二次応力	Δ	D	同上		した耐震評価を実施している。
	下却スプレイ签安内签	一次応力	Δ	D	水平2方向を考慮した評価を実施している。	0	3次元のモデルを用い た解析により、従来よ りわじれエードを考慮
		一次+二次応力	Δ	D	同上	0	した耐震評価を実施している。
	下却スプレノ等ティー加	一次応力		D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い た解析により、従来よ
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	一次+二次応力		D	同上		ッねしれモードを考慮 した耐震評価を実施し ている。
		一次応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い
	下部スプレイ管サポート	一次+二次応力	Δ	D	同上	0	に時们により、 使来よ りねじれモードを考慮 した耐震評価を実施し
		組合せ応力		D	同上		ている。
		一次応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い
	スプレイ管	一次+二次応力	Δ	D	同上	0	した耐震評価を実施し
		一次+二次+ピーク応力	Δ	D	同上		ている。
出デリーン・ニング シンパフテリノ体	スプレイ签うび壮の答如	一次応力	Δ	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い た解析により、従来よ りわじれモードを考慮
サプレッションチェンバスプレイ管 ス 		一次+二次応力	Δ	D	同上		した耐震評価を実施している。
	スプレイ管ティー部	一次応力	Δ	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い た解析により、従来よ りねじれモードを考慮
		一次+二次応力	Δ	D	同上		した耐震評価を実施している。

 ②機器・配管系の耐震評価における水平2 表1 構造強度評価 	方向入力の影響整理結果						
37.1件 37.1件	ta ka	卡力八海	 ①-1 水平2方向の地震力の 重複による影響の有無 ()いて対抗 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも,構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が 関わますの	①」の影響を知る説明	 ①-2 水平方向とその直 モード(ねじれ振動等): (3.2.4項(2)に対応) 	〔行方向が相関する振動 が生じる観点
nX IM		MUYJ JJ 1 94	 ○: 影響軽微 ○: 影響軽微 	 C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。) 	①10影音有無の記切	振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
	スプレイ管案内管	一次応力	Δ	D	水平2方向を考慮した評価を実施している。	0	3次元のモデルを用い た解析により,従来よ りねじれモードを考慮
サプレッションチェンバスプレイ管		一次十二次応力	Δ	D	同上		した耐震評価を実施し ている。
		一次応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い
	スプレイ管サポート	一次+二次応力	Δ	D	同上	0	に解析により, 使来よりねじれモードを考慮 した耐震評価を実施」
		せん断応力		D	同上		ている。
	シャフト	組合せ応力	0	-	水平2方向入力の影響がある。		
ブローアウトパネル閉止装置	コネクタ	せん断応力		А	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し ないため、水平2方向入力の影響は軽微である。	× ×	_
	軸受取付ボルト	引張応力	0		水平2方向入力の影響がある。	_	
	取付ボルト	せん断応力	\bigtriangleup	А	水平1万回及い鉛直方回の地震力のみを負担し、他の水平方回の地震力は負担し ないため、水平2方向入力の影響は軽微である。		
可燃性ガス濃度制御系再結合装置ブロワ	ブレース	圧縮応力		А	ブレースはブロワの重心とサポートプレート設置位置のずれによる軸方向転倒防 止のため設置している。そのためブレースが受け持つ荷重は現在評価対象として いる軸方向の転倒モーメント分のみと考えられ、軸直方向の水平地震荷重はベー ス溶接部のせん断で受け持つと考えられる。したがって、水平2方向入力の影響 は受けない。	×	_
	ベース取付溶接部	せん断応力	0	-	ベース溶接部で水平方向のそれぞれの水平荷重を負担する。したがって,水平2 方向入力の影響がある。		
		引張応力		С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		
可燃性ガス濃度制御系再結合装置	基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_
		組合せ応力	\bigtriangleup	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
	静的触媒式水素処理装置本体	組合せ応力	0	-	水平2方向入力の影響がある。	_	
	架台	組合せ応力	0	_	水半2方向入力の影響がある。 * 2015 点1 カの影響がある。	-	
	取付ボルト	社の断応力	0		ホームカロハカの影響がある。 同上	-	
故此做世子之主如四北里		組合せ応力	0	_	同上		
前的照媒式小系处理装直		引張応力	0	_	水平2方向入力の影響がある。	~	_
	基礎ボルト	せん断応力		А	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し ないため、水平2方向入力の影響は軽微である。		
		組合せ応力	0	-	引張応力は水平2方向入力の影響があるため、組合せ応力も水平2方向入力の影響 がある。	5	
	#**** 12.5 1	引張応力	\triangle	D	水平2方向を考慮した評価を実施している。	_	3次元のモデルを用い
	査碇小// ト	でん町応刀 組合社広力		D			に解析により耐震評価 を実施している。
遠隔手動弁操作設備		引張応力	\land	D	水平2方向を考慮した評価を実施している。		の次二のエゴルた田い
	取付ボルト	せん断応力	Δ	 D	同上	0	た解析により耐震評価
		組合せ応力	\triangle	D	同上		を実施している。
		引張応力	Δ	С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		
ディーゼル発電機 基取	基礎ボルト 取付ボルト せん脚	せん断応力		С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。	×	_

②機器・配管系の耐震評価における水平25 表1 構造強度評価	方向入力の影響整理結果						
	der ().		 ①-1 水平2方向の地震力の 重複による影響の有無 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも,構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が		①-2 水平方向とその雨 モード(ねじれ振動等) (3. 2. 4項(2)に対応)	直行方向が相関する振動 が生じる観点
設備	עיוק	心刀分類	(3.2.4項(1)に対応) ○:影響あり △:影響軽微	 異なるもの C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 	①-1の影響有無の説明	振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
		引張応力	Δ	С	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影 響は軽微である。【補足説明資料6】		
ガスタービン発電機	基礎ボルト 取付ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		_
		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。	×	-
		引張応力	Δ	С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		
その他電源設備	基礎ボルト 取付ボルト	せん断応力		С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		-
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
配管本体, サポート(多質点はりモデル解	配管,サポート	一次応力	Δ	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い た解析により,従来よ りねじれモードを考慮
Ø1)		一次+二次応力	\bigtriangleup	D	同上		した耐震評価を実施し ている。
	ヒンジ部 (ヒンジ板) ヒンジ部 (ヒンジピン)	曲げ応力	0	_	水平2方向入力の影響がある。	×	-
		せん断応力	0	_	水平2方向入力の影響がある。	×	-
		引張応力	0	_	同上	×	-
		組合せ応力	0	-	同上	×	-
		曲げ応力	0	-		×	-
		せん断応刀	0			X	-
叶进晓这些叶进言		上稲応刀	0			×	
(1号機北側,2号機北側)		お日に応り	0			×	_
	ヒンジ部 (ヒンジボルト)	引張応力	0	_	同上	×	-
	カンマキゴ	曲げ応力	Δ	А	水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担し ない	×	_
		せん断応力	\bigtriangleup	А	同上	×	-
		組合せ応力	Δ	А	同上	×	-
	アンカーボルト	引張応力	0	-	水平2方向入力の影響がある。	×	-
	縮小板	せん断応力 曲げ応力	Δ	C	同上 水平1方向の地震力の応答が支配的であり、他の水平方向の地震力による応答は 小さいため、水平2方向の地震力が作用した場合においても水平1方向の応答が支 配的となる。したがって、水平2方向入力の影響は軽微である。	× ×	_
		せん断応力	Δ	С	同上	×	-
	固定ボルト	引張応力	Δ	С	水平1方向の地震力の応答が支配的であり、他の水平方向の地震力による応答は 小さいため、水平2方向の地震力が作用した場合においても水平1方向の応答が支 配的となる。したがって、水平2方向入力の影響は軽微である。	×	_
1号機取水槽流路縮小工	取水管(フランジ部)	曲げ応力	Δ	С	水平1方向の地震力の応答が支配的であり、他の水平方向の地震力による応答は 小さいため、水平2方向の地震力が作用した場合においても水平1方向の応答が支 配的となる。したがって、水平2方向入力の影響は軽微である。	×	_
		せん断応力	\triangle	С	同上	×	-
	取水管 (管胴部)	曲げ応力	Δ	С	水平1方向の地震力の応答が支配的であり、他の水平方向の地震力による応答は 小さいため、水平2方向の地震力が作用した場合においても水平1方向の応答が支 配的となる。したがって、水平2方向入力の影響は軽微である。	×	_
		せん断応力	Δ	С	同上	×	-

②機器・配管系の耐震評価における水平23 表1 構造強度評価	方向入力の影響整理結果						
設備	2011	 部位 応力分類 ①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) ○:影響あり △:影響軽微 D 	 ①-1 水平2方向の地震力の 重複による影響の有無 (2,2,4万(1))に対応) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が 異なるもの	①_1の影響左無の説明	①-2 水平方向とその雨 モード(ねじれ振動等) (3.2.4項(2)に対応)	直行方向が相関する振動 が生じる観点
U.A. (191	티니스		 C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。) 		振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由	
		曲げ応力	0	-	水平2方向入力の影響がある。	×	-
	扉体部	せん断応力	0	_	同上	×	-
屋外排水路逆止弁		組合せ応力	0	-	同上	×	-
		せん断応力	0	-	水平2方向入力の影響がある。	×	-
	固定部	支圧応力	0	-		×	-
		引張応力	0	-		×	-
	N. N. N. Art	曲げ応力	0	-	水半2方向入力の影響がある。	×	-
	ヒンシ部	せん断応刀	0			X	-
		組合せ応力	0		上 水亚9方向の抽雪力を受けた提合でも、構造に上り水亚1方向の抽雪力」か自由	X	-
雨水博吟い / 桃ヶ川マ北索豆 (北)	カンヌキ部	引張応力		А	ホームカーの地震力を支けた物日でも、構造によりホー1カーの地震力とが負担しない	×	-
取小僧际しん機エリノ 小沼扉 (北)		せん断応力	Δ	А	同上	×	-
		引張応力		А	水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担し	×	_
	アンカーボルト	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					
		せん町応力		A		×	_
				Α	四上 水平2方向の地電力を受けた場合でも、構造により水平1方向の地電力しか負担し。	^	_
	扉砍 芯材	曲げ応力	\triangle	А	ない	×	-
	10142	せん断応力	\bigtriangleup	А	同上	×	-
	外 如 縦 柱	曲げ応力	\bigtriangleup	А	水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担し	×	_
	水密扉プ当り用支柱	井と断広力	^	A.		×	_
	固定プレート	4 全 北 広 力		A		× ×	_
取水槽除じん機エリア水密扉 (東)	/			A .	水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担し	~	
取水槽除じん機エリア水密扉 (西)	縦付ボルト	· · · · · · · · · · · · · · · · · · ·		A	ない	×	_
	外部縦柱固定ボルト	引張応力	\triangle	А	ホームカーの地震力を受けた物日でも、構造によりホーロカーの地震力とが受益しない	×	-
		せん断応力	Δ	А	同上	×	-
		引張応力	\bigtriangleup	А	水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担し ない	×	_
	アンカーボルト	せん断応力		А	同上	×	-
		組合せ応力		А	同上	×	-
		曲げ応力	0	-	水平2方向入力の影響がある。		
	ヒンジ部	せん断応力	0	_	同上		
		組合せ応力	0	-	同上		
		曲げ応力		А	水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担し ない		
	カンヌキ部	せん断応力		А		-	
		組合せ応力		A	同上	-	
		引張応力	\bigtriangleup	А	同上	-	
		引張応力	0	-	水平2方向入力の影響がある。		
	アンカーボルト	せん断応力	0	-	同上		
水密扉(建物内,燃料移送ポンプエリア)		組合せ応力	0	-	同上	×	-
	パネル部 (パネル板)	曲げ応力	0	-	水平2方向入力の影響がある。		
	パネル部 (パネル芯材)	曲げ応力	0		水平2方向入力の影響がある。	_	
	TYT HM (C. TYT MUNKLY	せん断応力	0	_	同上	4	
		曲げ応力	Δ	D	水平2方向を考慮した評価を実施している。	4	
	パネル部(柱.はり)	せん断応力	Δ	D	同上	4	
		軸応力	\triangle	D	同上	4	
		組合せ応力	\triangle	D	同上	4	
		引張応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。	4	
	パネル部(アンカーボルト) ゼ	せん断応力		D		4	
		組合せ応力	\triangle	D	同上		

②機器・配管系の耐震評価における水平2 表1 構造強度評価	方向入力の影響整理結果						
設備	部位	部位 応力分類	 ①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が 異なるもの	 ①-1の影響有無の説明 	①-2 水平方向とその〕 モード(ねじれ振動等) (3. 2. 4項(2)に対応)	直行方向が相関する振動 が生じる観点
10~ (11)	御台 – – – – – – – – – – – – – – – – – – –	 ○:影響あり △:影響軽微 	C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。)		振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由	
	鋼板	曲げ応力	Δ	D	水平2方向を考慮した評価を実施している。		
	胴緑	曲げ応力	Δ	D	水平2方向を考慮した評価を実施している。		
	ארקיר זע	せん断応力	Δ	D	同上		
		曲げ応力		D	水平2方向を考慮した評価を実施している。	_	
防水時(ディーゼル燃料移送ポンプエリア)	はり	せん断応力	<u> </u>	D			
防水壁(ティーセル燃料移送ホンノエリア)	11.	上縮心刀		B		×	_
	ブレース	14日で応力		D	内上 水亚2方向を考慮した評価を実施していろ		
		引張応力		D	水平2万向を考慮した評価を実施している。		
	アンカーボルト	せん断応力		D	同上		
		組合せ応力		D	同上		
	鋼板	曲げ応力	0	-	水平2方向入力の影響がある。		
		曲げ応力	0	-	水平2方向入力の影響がある。		
	はりM 柱材	せん断応力	0	-	同上		
堰(柱支持型)		組合せ応力	0	-	同上		
		引張応力	0	-	水平2方向入力の影響がある。		
	アンカーボルト	せん断応力	0	-	同上		
		組合せ応力	0	-	同上		
	鋼板	曲げ応力	0	-	水平2方向入力の影響がある。	×	_
堰 (鋼板折曲げ型)		引張応力	0	-	水平2方向入力の影響がある。	_	
	アンカーボルト	せん断応力	0	-	同上	_	
		組合せ応力	0	-		_	
	アンカー筋	<u>引張応力</u>	0	_	水半2方向入力の影響がある。	_	
	主筋	せん断応力	0	=		_	
堰 (鉄筋コンクリート製)		組合せ応刀	0			_	
	堰底部のコンクリート	せん町応力	0	_	水平2万向入力の影響かめる。		
	细柜	圧縮応力	0		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		
	3月1次	曲げ広力	0	_	水平2万向入力の影響がある。	_	
	芯材	世ん断広力	0			_	
防水板	2.13	組合せ応力	0			— ×	_
1.4.4.4.104		引張応力	0	_	水平2方向入力の影響がある。	_	
	アンカーボルト	せん断応力	0	_	同上	_	
		組合せ応力	0	-	同上		
		引張応力	Δ	С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。		
	弁本体 フロートガイド	曲げ応力	Δ	В	円筒形状であり水平地震の方向ごとに最大応力発生箇所が異なるため,水平2方 向入力の影響は軽微である。		
		組合せ応力	Δ	С	上記の引張応力及び曲げ応力は、水平2方向の影響が軽微のため、組合せ応力も 水平2方向の影響は軽微である。	×	_
床ドレン逆止弁		引張応力	Δ	С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。		
	基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向地 における最大応答の非同時性を考慮することにより、影響は軽微である。【補 説明資料6】	RE CONTRACTOR OF	
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。	×	_
	モルタル	付着荷重	Δ	А	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。		
貫通部止水処置		圧縮荷重	\triangle	А	水平2方向を考慮した評価を実施している。	×	-
	電路貫通部金属ボックスの	引張応力	0		水平2方向入力の影響がある。		
	アンカーボルト	せん断応力	0		水平2方向入力の影響がある。		

②機器・配官系の耐農評価における水平2 表1 構造強度評価	方回入刀の影響整理結果	•						
<u>≎n./#:</u>	部位	部位	応力分類	 ①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が 異たるちの	①-1の影響有無の説明	 ①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3.2.4項(2)に対応) 	
			 ○:影響あり △:影響軽微 	C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて,水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。)		振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由	
		引張応力	0	_	水平2方向入力の影響がある。			
	fm /s	せん断応力	0	-		_		
	朱台	上縮心刀	0	_		-		
		細り応力	0			-		
		引張広力	0		水平2方向入力の影響がある。	-		
		せん断応力		А	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し ないため、水平2方向入力の影響は軽微である。	1		
	架台溶接部	圧縮応力	0	-	水平2方向入力の影響がある。			
		曲げ応力	Δ	А	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負担し ないため、水平2方向入力の影響は軽微である。			
		組合せ応力	0	-	水平2方向入力の影響がある。	_		
津波監視カメラ	取付ボルト	引張応力	Δ	С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】		_	
		せん断応力		С	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向地震 における最大応答の非同時性を考慮することにより、影響は軽微である。【補足 説明資料6】			
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。			
	架台基礎ボルト	引張応力		С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】			
		せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】			
		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。			
		引張応力	Δ	С	ボルトは矩形配置であり,水平2方向の入力による対角方向への転倒を想定し検 討した結果,水平2方向地震力の最大応答の非同時性を考慮することにより,影 響は軽微である。【補足説明資料6】			
取水槽水位計	基礎ボルト	せん断応力		С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_	
		組合せ応力	\triangle	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。			
	円筒部	組合せ応力度		В	支配的な応力は水平地震による曲げ応力であり、曲げ応力の最大点は地震方向で 異なる。したがって、水平2方向入力の影響は軽微である。	s		
	たてリブ	組合せ応力度		В	支配的な応力は水平地震による曲げ応力であり、曲げ応力の最大点は地震方向で 異なる。したがって、水平2方向入力の影響は軽微である。			
原子炉本体の基礎	基礎ボルト	引張応力度		С	ボルトは円周状に配置され、水平地震の方向ごとに最大応力の発生点が異なる。 水平2方向の入力を想定した場合にも水平2方向地震における最大応答の非同時性 を考慮することにより、影響は軽微である。【補足説明資料7】	± ×	_	
		引抜き力	Δ	С	同上]		
	ベースプレート	曲げ応力度	Δ	С	ボルトは円周状に配置され,水平地震の方向ごとに最大応力の発生点が異なる。 水平2方向の入力を想定した場合にも水平2方向地震における最大応答の非同時性 を考慮することにより,影響は軽微である。【補足説明資料7】	±		
			<u> </u>					

 ②機器・配管系の耐震評価における水平2 表1 構造強度評価 	方向入力の影響整理結果							
		部位 応力分類 応力分類 (①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) ○:影響あり △:影響軽微	 第響軽微とした分類 A:水平2方向の地震 でも、構造により 震力しか負担した 第二水平2方向の地震力の 重複による影響の有無 (なって近いに対け) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が 思わますの	①コの影響左無の営用	①-2 水平方向とその モード(ねじれ振動等) (3.2.4項(2)に対応)	の直行方向が相関する振動)等)が生じる観点 ;)	
市文 1/用	FD1 <u>V</u>		 未なるもの C:水平2方向の地震を組み合わせても1方向の地震による応力と同等といえるもの D:工設耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 	①-1の影響有無の説明	振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	た記「〇」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由		
		引張応力	\triangle	D	水平2方向を考慮した評価を実施している。			
		圧縮応力		D	同上			
	フレーム	せん断応力		D	同上			
建物開口部竜巻防護対策設備(竜巻防護		曲げ応力	\triangle	D	同上	×	_	
ネット対策設備)		組合せ応力	\bigtriangleup	D	同上	_		
		引張応力		D	水平2方向を考慮した評価を実施している。			
	アンガーホルト	せん断応力		D		_		
		組合せ応力		D	回上 シェックナウム老虎した河岸な史佐していて			
	フレーム	せん劇応力		D	水平2万向を考慮した計画を美施している。	_		
建物眼口如音卷陆灌封等到供 (音卷陆灌翎		細合社広力		D		_		
度初開口部电答[0]; 题为束設備(电答[0]; 邊列 板対策設備)		引張広力		D	四二 水平2方向を考慮した評価を実施している。	×	-	
	アンカーボルト	せん断応力		D	同上	_		
		組合せ応力		D	同上	_		
	2502 4 F	曲げ応力	0	_	水平2方向入力の影響がある。			
	到机权	せん断応力	0	-	同上			
	迎構	曲げ応力	0	_	水平2方向入力の影響がある。			
	小 117	せん断応力	0	_	同上			
取水槽循環水ポンプエリア防護対策設備		曲げ応力	0	_	水平2方向入力の影響がある。	×	_	
	ベースプレート	せん断応力	0	-	同上	_		
		組合せ応力	0			_		
	7V. + + + 1	引張応刀 3.3. 修定士	0	_	水平2万向人刀の影響かある。	_		
	<i>J J J – N / </i> V F	せん断応力	0	_		_		
	御店	曲げたカ	0		问上 水亚2			
	調査	せん断応力	0			_		
		曲げ応力	0	-	水平2方向入力の影響がある。			
		圧縮応力	0	_	同上			
	柱	せん断応力	0	_	同上			
		組合せ応力	0	-	同上			
取水槽海水ポンプエリア防護対策設備	架構	曲げ応力	0	_	水平2方向入力の影響がある。	×	-	
		曲げ応力	0	-	水平2方向入力の影響がある。			
	ベースプレート	せん断応力	0	-				
		組合せ応力	0			_		
	アンカーボルト	引張応刀 止/ س広力	0		水平2万向人刀の影響かある。	_		
		2ん例応力 組合社庁力	0			_		
							いたこのエゴッキ田い	
		せん断応力		D	水平2万回及び鉛直万回の地震刀を組み合わせた評価を美施している。		3次元のモテルを用い た解析により、従来よ	
	クレーン本体ガーダ	曲げ応力		D	同上	0	りねじれモードを考慮	
		浮上り量		D			した耐農評価を美施し ている。	
				_			-	
	落下防止ラグ	圧縮応力	Δ	А	すべり方向とすべり直交方向では、それぞれの水平方向地震を受けた場合の挙動 が異なるため、方向ごとに発生応力が異なる。したがって、水平2方向の影響は 軽微である。		_	
原子炉建物天井クレーン	トロリストッパ	せん断応力	Δ	А	すべり方向とすべり直交方向では、それぞれの水平方向地震を受けた場合の挙動 が異なるため、方向ごとに発生応力が異なる。したがって、水平2方向の影響は 軽微である。	b		
		曲げ応力	\triangle	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		の場合をついた日本	
		組合せ応力	\triangle	D	同上		3次元のモデルを用い た解析により、従来よ	
	ト ロリ	浮上り量	Δ	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。	0	りねじれモードを考慮	
	吊具	吊荷荷重		С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。		しに脳展評価を美施し ている。	

②機器・配管系の耐震評価における水平2 表1 構造強度評価	方向入力の影響整理結果						
設備		 ①-1 水平2方向の地震力の 重複による影響の有無 (2.2.4页(1))に対応) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が		①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3.2.4項(2)に対応)		
	出内区	心刀分類	(3.2.4項(1)に対応) ○:影響あり △:影響軽微	 兵なるもの C: 水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D: 工認耐震計算書にて,水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。) 	①-1の影響有無の説明	振動モード及び新たな 応力成分の発生有無 〇:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
	燃料取替機構造物フレーム ブリッジ脱線防止ラグ(本体) トロリ脱線防止ラグ(本体)	せん断応力	Δ	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		3次元のモデルを用い
	走行レール 構行レール	曲げ応力	\bigtriangleup	D	同上		た解析により、従来よ
		組合せ応力	Δ	D	同上	0	した耐震評価を実施し
燃料取替機	ブリッジ脱線防止ラグ(取付ボルト) トロリ脱線防止ラグ(取付ボルト)	せん断応力		D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		ている。
	吊具 (ワイヤロープ)	支持荷重		С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。	×	_
	吊具(先端金具)	引張応力	Δ	С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。	^	
	ガイドレール	せん断応力	0	_	3次元モデルを用いた解析を行っており,水平地震力に対する発生応力が入力方向ごとに異なる。したがって,水平2方向入力の影響がある。		3次元のモデルを用い た解析により,ねじれ モードを考慮した耐震 評価を実施している。
		曲げ応力	0			-	
		組合せ応力	0			0	
	カート	せん断応力	0	-	3次元モテルを用いた解析を行っており、水平地震力に対する発生応力が入力方向ごとに異なる。したがって、水平2方向入力の影響がある。	_	
		細合社広力	0			-	
チャンネル着脱装置	固定ボルト	引張応力	0	_	3次元モデルを用いた解析を行っており,水平地震力に対する発生応力が入力方向ごとに異なる。したがって,水平2方向入力の影響がある。	О ђ	3次元のモデルを用い た解析により,ねじれ モードを考慮した耐電
		せん断応力	Δ	А	壁掛けのボルトは,壁と平行方向の水平地震力と鉛直地震力のみによりせん断力 が発生するため,水平2方向入力の影響はない。		評価を実施している。
	ローラチェーン	吊荷荷重		С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。	×	_
	ブーム 回転ポスト 固定ポスト	組合せ応力	0	_	水平2方向入力の影響がある。	0	3次元のモデルを用い た解析により,ねじれ モードを考慮した耐震 評価を実施している。
チャンネル取扱ブーム	甘T淋-Fu.L	引張応力		С	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影 響は軽微である。【補足説明資料6】		
	左碇 小 ルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		引張応力	0	-	水平2方向入力の影響がある。		3次元のモデルを用い
	制御棒落下防止ポール	せん断応力	0	_	同上	0	た解析により、ねじれ
		組合せ応力	0	-		-	ーエードを考慮した耐震 評価を実施している。
制御棒貯蔵ハンガ	ボール支持金具	 せん断応力 引張応力 	Δ	A	水半2万向人刀の影響がある。 水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、強軸側と弱軸側に変形するため、最大応力発生		
	基礎ボルト	せん断応力	Δ	с	部位は変わらず影響は軽微である。【補足説明資料5】 水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】	×	_

 ②機器・配管系の耐震評価における水平 表1 構造強度評価 	2方向入力の影響整理結果						
27. (#5	部位	広力分類	 ①-1 水平2方向の地震力の B 重複による影響の有無 (3,2,4項(1)に対応) 	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が 異かろもの	 ①-1の影響右無の説明 	 ①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3.2.4項(2)に対応) 	
	FIF E24		 ○:影響あり △:影響軽微 	 C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向 の地震力を考慮しているもの(考 慮方法を表3に示す。) 		振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
	胴板	一次一般膜応力	Δ	А	水平2方向が同時に作用した場合においても,強軸と弱軸の関係が明確であり, 斜め方向に変形するのではなく,支持構造物の強軸側と弱軸側に変形するため, 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
		一次応力		А	同上		
		一次+二次応力		А	同上		
	崩印	組合せ応力	Δ	А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
		引張応力	Δ	А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
原子炉浄化系補助熱交換器	基礎ボルト	せん断応力	Δ	с	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
	追設基礎ボルト	引張応力	Δ	А	水平2方向が同時に作用した場合においても,強軸と弱軸の関係が明確であり, 斜め方向に変形するのではなく,支持構造物の強軸側と弱軸側に変形するため, 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
		せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		組合せ応力		С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
	補強材	引張応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。	4	
		せん断応力	Δ	D	同上	4	
		引張応力	Δ	D	水半2方向を考慮した評価を実施している。	4	
	支持鋼材	圧縮応力	Δ	D		4	の次二のエジュナロい
	補強斜材	せん断応力	Δ	D		4 _	 。
甲央制御至大开照明		囲け応力	Δ	D			モードを考慮した耐震
		組合せ応刀		D		4	評価を実施している。
	取付ボルト (照明ボルト) 継手ボルト	り版応刀 み) 艇内力		D	水平2万円を写慮した評価を実施している。	4	
	松ナ小ルト 基礎ボルト	でん断応力 組合井広力				-	
	· · · · · · · · · · · · · · · · · · ·	和日で応力			円上 水亚9方向を考慮」た証価を実施している	-	
	仰天时	日期広力		-	小〒4月回ても思した町回て大肥してV'る。 水亚2方向入力の影響がある		
		サん断広力	0	-	同上	-	
	フレーム部材	曲げ応力	0			4	
		組合せ応力	0	-	同上	-	
防煙垂れ壁	基礎ボルト	引張応力	Δ	С	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定し検 討した結果、水平2方向地震力の最大応答の非同時性を考慮することにより、影響は軽微である。【補足説明資料6】	- ×	_
		せん断応力	\bigtriangleup	С	同上	1	

 ②機器・配管系の耐震評価における水 表1 構造強度評価 	平2方向入力の影響整理結果						
設備	tra l-t-		①-1 水平2方向の地震力の I 重複による影響の有無 (2.2 4項(1)に対応)	影響軽微とした分類 A:水平2方向の地震力を受けた場合 でも、構造により水平1方向の地 震力しか負担しないもの B:水平2方向の地震力を受けた場合、 構造により最大応力の発生箇所が 異なるもの	 ①-1の影響有無の説明 	 ①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3.2.4項(2)に対応) 	
	当时还	心刀分類	(3.2.44(1)に対応) ○:影響あり △:影響軽微	 異なるもの C:水平2方向の地震を組み合わせて も1方向の地震による応力と同等 といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 	①-1の影響有無の説明	振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振動モードの影響がないことの理由 新たな応力成分が発生しないことの理由
	脚	組合せ応力	Δ	А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
		引張応力	Δ	А	水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、 斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
	基礎ボルト	せん断応力	Δ	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
タービン補機冷却系熱交換器		組合せ応力	Δ	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。	×	-
		引張応力	Δ	А	水平2方向が同時に作用した場合においても,強軸と弱軸の関係が明確であり, 斜め方向に変形するのではなく,支持構造物の強軸側と弱軸側に変形するため, 最大応力発生部位は変わらず影響は軽微である。【補足説明資料5】		
	追設基礎ボルト	せん断応力	۵	С	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向地震 における最大応答の非同時性を考慮することにより,影響は軽微である。【補足 説明資料6】		
		組合せ応力	\bigtriangleup	С	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ応力 も水平2方向の影響は軽微である。		
	ダクト本体	座屈	Δ	D	水平2方向を考慮した評価を実施している。		3次元のモデルを用い
王排気ダクト	支持構造物部材 支持装置	組合せ応力	\bigtriangleup	D	水平2方向を考慮した評価を実施している。	0	た解析により耐震評価 を実施している。
	クレーン本体ガーダ	せん断応力	\bigtriangleup	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		
	走行車輪	曲げ応力	Δ	D	同上		
	走1] レール	組合せ応力	\triangle	D	同上		
		引張応力		D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		3次元のモテルを用い た解析により わじれ
	脚	圧縮応力	Δ	D		0	モードを考慮した耐震
	脚 ト 部 継 ざ ガーダ 継 ぎ	せん断応力		D		_	評価を実施している。
		曲り応力		D		-	
	お別け山壮果マート	祖合セルフ		D	同上	-	
	転回的正装直 ノーム トロリストッパ	田留心力	Δ	A	水平2万向及び站直方向の地震力を組み合われた計画を実施している。 すべり方向とすべり直交方向では、それぞれの水平方向地震を受けた場合の挙動 が異なるため、方向ごとに発生応力が異なる。したがって、水平2方向の影響は 軽微である。	X	
取水槽ガントリクレーン	トロリ	浮上り量	Δ	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。	0	3次元のモデルを用い た解析により,ねじれ モードを考慮した耐震 評価を実施している。
	吊具	吊荷荷重		С	鉛直荷重のみ作用し、水平荷重が作用しないため、水平2方向入力の影響はない。	×	-
		荷重	Δ	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		
	単	変位	Δ	D	同上	1	
	ブレース	圧縮応力	Δ	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。	1	3次元のモデルを用い
		せん断応力	Δ	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。	0	た解析により、ねじれ モードを考慮した耐震 評価を実施している。
	カレビス	曲げ応力	\bigtriangleup	D	同上		
		組合せ応力	\bigtriangleup	D	同上	_	
		回転角度	\triangle	D	同上		

 ②機器・配管系の耐震評価における水 表1 構造強度評価 	平2方向入力の影響整理結果						
-20, 446	並んな	 ①-1 水平2方に 重複による影響 部位 応力分類 (3.2.4項(1)にな ○:影響あり △:影響軽微 	 ①-1 水平2方向の地震力の 重複による影響の有無 (3.2.4項(1)に対応) 	 ①-1 水平2方向の地震力の 重複による影響の有無 ※響軽微とした分類 A:水平2方向の地震力を受けた場合 でも,構造により水平1方向の地震力しか負担しないもの B:水平2方向の地震力を受けた場合, 構造により最大応力の発生箇所が 	①-1の影響有無の説明	 ①-2 水平方向とその直行方向が相関する振動 モード(ねじれ振動等)が生じる観点 (3.2.4項(2)に対応) 	
ILA UTT	ни <u>г</u> .		 ○:影響あり △:影響軽微 	 C:水平2方向の地震を組み合わせても1方向の地震による応力と同等といえるもの D:工認耐震計算書にて、水平2方向の地震力を考慮しているもの(考慮方法を表3に示す。) 		振動モード及び新たな 応力成分の発生有無 ○:発生する ×:発生しない	左記「○」の場合,振 動モードの影響がない ことの理由 新たな応力成分が発生 しないことの理由
	フレーム取付ボルト	せん断応力	Δ	А	水平2方向が同時に作用した場合においても、フレーム取付ボルトは水流方向の せん断力のみ負担するため、水平2方向入力の影響は軽微である。		
	フレーム耐震サポート	せん断応力	Δ	А	水平2方向が同時に作用した場合においても、せん断力を負担する断面が水流方 向、水流直角方向で異なるため、水平2方向入力の影響は軽微である。		
		せん断応力	0	-	水平2方向入力の影響がある。		_
除じん機	フレーム耐震ピン	曲げ応力	0	-	同上	×	
		組合せ応力	0	-	同上		
	アジャストボルト	圧縮応力	Δ	С	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。		
	尾軸取付ボルト	せん断応力	\bigtriangleup	А	水平2方向が同時に作用した場合においても、尾軸取付ボルトは水流方向のせん 断力のみ負担するため、水平2方向入力の影響は軽微である。		
	シールドプラグ本体	曲げモーメント		С	鉛直方向荷重が支配的であるため、水平2方向入力の影響は軽微である。	×	-
原子炉ウェルシールドプラグ		せん断力		С	同上	×	-
	支持部	圧縮力	\bigtriangleup	С	同上	×	-
		引張応力	0	-	水平2方向入力の影響がある。		
		圧縮応力	0	-	同上		3次元のモデルを用い
	フレーム部材	せん断応力	0	-	同上		
耐火障壁		曲げ応力	0	-	同上	0	た解析により、ねしれ モードを考慮した耐電
		組合せ応力	0	-	同上		評価を実施している。
	甘邓子山上	引張応力	0	-	同上		
	産業がアト	せん断応力	0	-	同上		
		せん断応力度	Δ	В	評価部位は円形の一様断面であることから,水平地震の方向ごとに最大応力点が 異なる。したがって,水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		
ガンマ線遮蔽壁	胴基部 閱口集中部	圧縮応力度	Δ	С	鉛直方向荷重のみ作用し、水平方向荷重が作用しない。したがって、水平2方向 入力の影響は軽微である。	− ×	_
	100 H 201 H	曲げ応力度	Δ	В	評価部位は円形の一様断面であることから、水平地震の方向ごとに最大応力点が 異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影 響は軽微である。【補足説明資料4】		
		組合せ応力度	Δ	В	同上	1	
P							

表2 動的/電気的機能	能維持評価				
機種	 ①-1 水平2方向の地震力の重複 による影響の有無 (3.2.4項(1)に対応) ○:影響あり △:影響軽微 	影響軽微とした分類 A:水平2方向の地震力を受けた場合でも,構造により水 平1方向の地震力しか負担しないもの B:水平2方向の地震力を受けた場合,構造により最大応 力の発生箇所が異なるもの C:水平2方向の地震力を組み合わせても1方向の地震に よる応力と同等といえるもの D:工認耐震計算書にて,水平2方向の地震力を考慮して いるもの	①-1の影響有無の説明	 ①-2 水平方向とその直行 項(2)に対応) 振動モード及び新たな応力 成分の発生有無 ○:発生する ×:発生しない 	方
立形ポンプ	0	_	軸受は円周に均等に地震力を受け持つため、水平2方向入力の影響を受ける。	0	X 2ご は
横形ポンプ	Δ	А	現行の機能確認済加速度における詳細評価※で最弱部である軸系に対して、曲げに対し て軸直角方向の水平1方向の地震力のみを負担し、他の水平方向の地震力は負担しない ため、水平2方向入力の影響は軽微である。	×	
ポンプ駆動用タービン		В	現行の機能確認済加速度における詳細評価※で最弱部である弁箱(主蒸気止め弁ヨーク部(立置き))に対して,水平2方向による最大応力の発生箇所が異なるため影響は軽 微である。	×	
立形機器用原動機	Δ	D	最弱部であるフレームに対して,現行の機能維持確認済加速度における詳細評価※において十分な裕度が確認されており,水平2方向入力による応答増加の影響は軽微である。	×	
横形機器用原動機	Δ	D	最弱部である軸受けに対して,現行の機能維持確認済加速度における詳細評価※において十分な裕度が確認されており,水平2方向入力による応答増加の影響は軽微である。	×	
空調ファン		А	現行の機能確認済加速度における詳細評価※で最弱部である軸系に対して、曲げに対し て軸直角方向の水平1方向の地震力のみを負担し、他の水平方向の地震力は負担しない ため、水平2方向入力の影響は軽微である。	×	
ディーゼル発電設備(機 関本体)	Δ	А	現行の機能確認済加速度における詳細評価※で最弱部である軸系に対して、曲げに対し て軸直角方向の水平1方向の地震力のみを負担し、他の水平方向の地震力は負担しない ため、水平2方向入力の影響は軽微である。	×	
ディーゼル発電設備(ガ バナ)	0	_	ガバナについては水平2方向合成による応答増加の影響がある。ただし,JEAG4601に記載の機能維持確認済加速度は1.86であるが,旧JNES試験より4Gまで機能維持を確認しているため,2方向合成加速度が4G未満であれば問題ない。	×	
弁	Δ	D	工認耐震計算書で水平2方向を考慮した評価を実施し、応答加速度が機能確認済加速度 以下であることを確認している。	×	
制御棒駆動水圧系スクラ ム弁	0	_	制御棒駆動水圧系スクラム弁については水平2方向合成による応答増加の影響がある。	×	
制御棒挿入性	0	_	水平2方向入力の影響がある。	×	
盤		А	電気盤、制御盤等に取付けられているリレー、遮断器等の電気品は、基本的に1次元的 な接点の0N-0FFに関わる比較的単純な構造をしている。加えて、基本的には全て梁、 扉等の強度部材に強固に固定されているため、器具の非線形応答はないと考えられる。 したがって、電気品は水平1方向の地震力のみを負担し、他の水平方向の地震力は負担 しないため、水平2方向入力の影響は軽微である。【補足説明資料8】	×	
伝送器・指示計	Δ	А	伝送器・指示計の掃引試験結果において、X、Y各成分に共振点はなく、出力変動を生じないことを確認していることから、X、Y2方向成分にも共振点はないものと考えられる。よって、X、Y2方向入力に対しても応答増加は生じないものと考えられることから、水平2方向入力の影響は軽微である。	×	
		D		0	3済 と 出

向が相関する振動モード ((ねじれ振動等) が生じる観点(3.2.4
記「〇」の場合,振動モー たな応力成分が発生しない	ードの影響がないことの理由 いことの理由
又はY 方向振動モードで/ 5向入力によって,ねじれ あるが,有意な応答ではフ	はねじれ振動モードは現れない。水平 ル振動モードが高次にて現れる可能性 ないため、影響がないと考えられる。
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
欠元モデルの応答解析結果 から,ねじれる状態につい される	を用い、耐震評価を実施しているこ いても耐震評価に用いる荷重として算

表 2 動的/電気的機能	能維持評価				
機種	 ①-1 水平2方向の地震力の重複 による影響の有無 (3.2.4項(1)に対応) ○:影響あり △:影響軽微 	影響軽微とした分類 A:水平2方向の地震力を受けた場合でも,構造により水 平1方向の地震力しか負担しないもの B:水平2方向の地震力を受けた場合,構造により最大応 力の発生箇所が異なるもの C:水平2方向の地震力を組み合わせても1方向の地震に よる応力と同等といえるもの D:工認耐震計算書にて,水平2方向の地震力を考慮して いるもの	①−1の影響有無の説明	 ①-2 水平方向とその直行 項(2)に対応) 振動モード及び新たな応力 成分の発生有無 ○:発生する ×:発生しない 	方 方 方
燃料プール水位(SA)		D	工認耐震計算書で水平2方向を考慮した評価を実施し、検出器保護管に生じる応力が、 弾性範囲内となることを確認している。	0	3 と 日
燃料プール監視カメラ		А	水平2方向の入力で対角方向に応答することはないため,水平2方向入力の影響は軽微で ある。。	×	
燃料プール監視カメラ用 冷却設備		А	水平2方向の入力で対角方向に応答することはないため,水平2方向入力の影響は軽微で ある。	×	
モニタリング設備	Δ	А	掃引試験結果において,X,Y各成分に共振点はなく,出力変動を生じないことを確認していることから,X,Y2方向成分にも共振点はないものと考えられる。よって,X,Y2方向入力に対しても応答増加は生じないものと考えられることから,水平2方向入力の影響は軽微である。	×	
通信連絡設備(アンテナ 類)	0	-	水平2方向入力の影響がある。	×	
原子炉建物ブローアウト パネル		D	3方向同時加振試験結果により水平2方向入力による影響が軽微であることを確認している。	×	
ガスタービン発電機	Δ	А	水平2方向の入力で対角方向に応答することはないため,水平2方向入力の影響は軽微で ある。	×	
床ドレン逆止弁		А	掃引試験結果において,X,Y各成分に共振点はなく,出力変動を生じないことを確認していることから,X,Y2方向成分にも共振点はないものと考えられる。よって,X,Y2方向入力に対しても応答増加は生じないものと考えられることから,水平2方向入力の影響は軽微である。	×	
津波監視カメラ		А	水平2方向の入力で対角方向に応答することはないため,水平2方向入力の影響は軽微で ある。	×	
取水槽水位計	Δ	А	掃引試験結果において,X,Y各成分に共振点はなく,出力変動を生じないことを確認していることから,X,Y2方向成分にも共振点はないものと考えられる。よって,X,Y2方向入力に対しても応答増加は生じないものと考えられることから,水平2方向入力の影響は軽微である。	×	
地下水位低下設備揚水ポ ンプ	0	_	水平2方向入力の影響がある。	×	
地下水位低下設備水位計	Δ	А	掃引試験結果において,X,Y各成分に共振点はなく,出力変動を生じないことを確認していることから,X,Y2方向成分にも共振点はないものと考えられる。よって,X,Y2方向入力に対しても応答増加は生じないものと考えられることから,水平2方向入力の影響は軽微である	×	
遠隔手動弁操作設備(貫 通シャフト,中間ギア)		D	工認耐震計算書で2方向同時加振試験による機能維持を確認している。	×	
遠隔手動弁操作設備(L 型ジョイント)	Δ	D	工認耐震計算書で水平2方向を考慮した評価を実施し、応答加速度が機能確認済加速度 以下であることを確認している。	×	
遠隔手動弁操作設備(フ レキシブルシャフト連結 部)	0		水平2方向入力の影響がある。	×	

向が相関する振動モード(ねじれ振動等)が生じる観点(3.2.4
記「〇」の場合, 振動モードの影響がないことの理由 たな応力成分が発生しないことの理由
欠元モデルの応答解析結果を用い,耐震評価を実施しているこ から,ねじれる状態についても耐震評価に用いる荷重として算 される。
_
_
_
_
_
_
_
_
_
_
_
_
_
_

20	工船间展计异音にて,小十4万间の地	四辰刀を勾慮している政備の金柱相木					
	設備	部位	応力分類	 水平2方向の考慮方法 ①:入力で組み合わせているもの ②-1:発生荷重を組み合わせているもの(SRSS法) ②-2:発生荷重を組み合わせているもの(絶対値和法) ②-3:発生荷重を組み合わせているもの(ベクトル和法) ③-1:発生応力を組み合わせているもの(SRSS法) ③-2:発生応力を組み合わせているもの(絶対値和法) ③-3:発生応力を組み合わせているもの(ベクトル和法) ④-3:発生応力を組み合わせているもの(ベクトル和法) ④:その他 	①又は④の設備の具体的な考慮方法	工認耐震計算書図書番号	
			一次一般瞙広力	\bigcirc	水平2方向を考慮した配管解析の応答を入力としている。		
			- 次膜応力+ - 次曲げ応力	 			
	ノズル	各部位	一次十二次応力	1	同上	VI-2-3-3-1-2	
原			一次+二次+ピーク応力	1	同上		
- 一 炉		芝戸社場四古地ゴラケルト	一次一般膜応力	0	水平2方向を考慮した荷重を入力としている。		
圧		然気乾燥奋文持ノフクット 	次膜応力+次曲げ応力	0	同上		
力		伝シュプレイブラケット	一次一般膜応力	0	水平2方向を考慮した荷重を入力としている。		
谷器	ブラケット類	炉心スノレイノラクット	次膜応力+次曲げ応力	0	同上	VI-2-3-3-1-2	
цц			一次一般膜応力	1	水平2方向を考慮した荷重を入力としている。		
		給水スパージャブラケット	- 次膜応力+- 次曲げ応力	1	同上		
			純せん断応力	1	同上		
厧			一次一般膜応力	1	水平2方向を考慮した荷重を入力としている。		
子	ジェットポンプ計測配管貫通部シー	- 雪诵部シール	一次膜応力+一次曲げ応力	1	同上	VI-2-3-3-2-4	
炉	12	貝迪部シール	一次+二次応力	1)	同上	123324	
上力			一次+二次+ピーク応力	1)	同上		
容器			一次一般膜応力	D	水平2方向を考慮した震度を入力としている。		
附属	差圧検出・ほう酸水注入系配管 (ティーよりN11ノズルまでの外	差圧検出管	一次膜応力+一次曲げ応力	Ū.	同上	VI-2-3-3-2-5	
構造	管)		一次+二次応力	0	同上	1120020	
物			一次+二次+ピーク応力	D	同上		
	蒸気乾燥器	耐震用ブロック	純せん断応力	1	水平2方向を考慮した荷重を入力としている。	VI-2-3-3-3-2	
原子炉	スパージャ		一次一般膜応力	①	水平2方向を考慮した震度を入力としている。	VI-2-3-3-3-6 VI-2-3-3-3-7	
止力容器- -	炉内配管	各部位	一次一般膜応力+一次曲げ応力	D	同上	VI-2-3-3-3-8 VI-2-3-3-3-9 VI-2-3-3-3-10	
内部構造:	22 1 .18	ライザ	一次一般膜応力	D	水平2方向を考慮した震度を入力としている。	VII. 0. 0. 0. 0. 5	
物	ンエットホンノ	フィノユーリ ライザブレース	一次一般膜応力+一次曲げ応力	0	同上	VI-2-3-3-3-5	
	•		引張(圧縮)応力	0	水平2方向を考慮した設計用地震力で構造強度評価を実施している。		
		カロ 1単	せん断応力	0	同上		
		采博	曲げ応力	1	同上		
			組合せ応力	0	同上		
燃料フ	[。] ール水位・温度(SA)		引張応力	0	同上	VI-2-4-2-4	
		ワークテーブルフック	せん断応力	0	同上		
			組合せ応力	0	同上		
		甘醂ゴルト	引張応力	0	同上		
		25-1/2 小/ ビー・	せん断応力	0	同上		
			曲げ応力	2-3	-		
除たし		1次山前床或日	組合せ応力	2-3	_	VI-2-4-2-5	
がい キャナノ	ア小型 (SA)	検出咒想会其神ぞれた	引張応力	2-3		v1-2-4-2-0	
		1次山静不口盔硬小/ビト	せん断応力	(2) -3	-		

設備	部位	応力分類	 水平2方向の考慮方法 ①:入力で組み合わせているもの ②-1:発生荷重を組み合わせているもの(SRSS法) ②-2:発生荷重を組み合わせているもの(絶対値和法) ③-3:発生荷重を組み合わせているもの(ベクトル和法) ③-1:発生応力を組み合わせているもの(SRSS法) ③-2:発生応力を組み合わせているもの(絶対値和法) ③-3:発生応力を組み合わせているもの(ベクトル和法) ④-3:発生応力を組み合わせているもの(ベクトル和法) 	①又は④の設備の具体的な考慮方法	工認耐震計算書図書番号
	 各部位(フランジ,取付ボルト以外)		②-1		VI-2-5-4-1-3
ECCSストレーナ	フランジ	曲げ広力		_	VI-2-5-5-1-2
原子炉隔離時冷却系ストレーナ					VI-2-5-5-2-2 VI-2-5-5-4-1
	ホルト	引張心刀	(2)-1		
ECCSストレーナ部ティー 原子炉隔離時冷却系ストレーナ部ティー	ティー フランジ	一次応力	@-1	_	VI-2-5-4-1-5 VI-2-5-5-1-4 VI-2-5-5-2-4 VI-2-5-6-1-4
ECCSストレーナ取付部コネクタ	コネクタ フランジ	一次応力	@-1	_	VI-2-5-4-1-6 VI-2-5-5-1-5 VI-2-5-5-2-5
ECCSストレーナ取付部サポート	サポートパイプ サポートパイプ溶接部 サポートプレート サポートボルト	一次応力	@-1	_	VI-2-5-4-1-7 VI-2-5-5-1-6 VI-2-5-5-2-6
		引張応力	3-1	-	
	フレーム	せん断応力	3-1	-	
		圧縮応力	3-1	-	
水圧制御ユニット		曲げ応力	3-1	_	VI-2-6-3-2-1-1
		組合せ応力	3-1	_	
	取付ボルト	引張応力	2-1	_	
	AK11 V V V 1	せん断応力	2-1	_	
ダクト本体、サポート	ダクト本体(円形)	座屈	0	入力をベクトル和法で組み合わせる。	VI-2-8-3-1-1
	サポート	一次応力(組合せ)	<u></u> 1	-	
		引張応力	4	発生荷重を組合せ係数法で組み合わせる。	
		せん断応力	4	発生荷重を組合せ係数法で組み合わせる。	
	構造フレーム(鉄骨, 鋼板)	圧縮応力	(4)	発生荷重を組合せ係数法で組み合わせる。	
		曲げ応力	(4)	発生荷重を組合せ係数法で組み合わせる。	
		組合せ応力	(4)	発生何重を組合せ係数法で組み合わせる。	
中央制御至侍避至遮敝	基礎ボルト	 引張応刀	4	発生何里を組合せ係数法で組み合わせる。	V1-2-8-4-4
	遮蔽パネル接合部ボルト	せん町応力	4	第生何里を組合で係数法で組み合わせる。 アルサポチンタントレス	
	構造フレート接合如言力ポルト	祖白で応力		先生何里を組合せば数法で組み合わせる。 系件芸重を組合せば数法で組み合わせる。	
	1972/ビーム13日中回/パルト 遮蔽パネル 気密用鋼板	組合せ応力	<u>به</u>	元上回当で加口に応気なく組みロシビる。 発生荷重を組合せ係数法で組み合わせる。	
	サプレッションチェンバ胴山丸郊ト郊	一次一般膜応力	③-1	_	
	サプレッションチェンバ胴中央部下部	一次膜広力+一次曲げ広力	<u>(3)-1</u>		
li l	サフレッションナェンバ胴中央部内側 サプレッションチェンバ胴中央部外側	一次十二次広力	<u></u> 		
イン 子 炉 格 サプレッションチェンバ	サプレッションチェンバ胴エビ継部上部 サプレッションチェンバ胴エビ継部下部	一次膜応力+一次曲げ応力	③-1	-	VI-2-9-2-2
約 容 器	サプレッションチェンバ胴エビ継部内側 サプレッションチェンバ胴エビ継部外側 サプレッションチェンバ胴と内側サポート 補強板との接合部 サプレッションチェンバ胴と外側サポート 補強板との接合部	一次+二次応力	3-1	_	

<mark>表 3</mark>	工認耐震計算書にて、水平2方向の地	也震力を考慮している設備の整理結果			
	設備	部位	応力分類	 水平2方向の考慮方法 ①:入力で組み合わせているもの ②-1:発生荷重を組み合わせているもの(SRSS法) ②-2:発生荷重を組み合わせているもの(絶対値和法) ③-3:発生荷重を組み合わせているもの(ベクトル和法) ③-1:発生応力を組み合わせているもの(SRSS法) ③-2:発生応力を組み合わせているもの(純対値和法) ③-3:発生応力を組み合わせているもの(ベクトル和法) ④-3:発生応力を組み合わせているもの(ベクトル和法) 	①又は④の設備の
			引張応力	2-1	_
		1-1-2 I	せん断応力	2-1	_
		リホート ベースとベースプレートの接合部	圧縮応力	2-1	
			曲げ応力	2-1	
			組合せ応力	2-1	
		シアキー	せん断応力	2-1	_
	サプレッションチェンバサポート		支圧圧力	2-1	_
			せん断応力	2-1	
		ペース フレート シアプレート	曲げ応力	2-1	_
			組合せ応力	2-1	_
		コンクリート	圧縮応力	2-1	_
		ボルト 基礎ボルト	引張応力	@–۱	-
			一次一般膜応力	3-2	_
	機器搬入口 逃がし安全弁搬出ハッチ 制御棒駆動機構搬出ハッチ	ハッチ円筒胴	一次膜応力+一次曲げ応力	3-2	_
			一次+二次応力	3-2	_
		ハッチオはレ浦玲坊しの社会会	一次膜応力+一次曲げ応力	4	ドライウェル側の評価では水平2方向を 評価では発生応力を絶対値和法で組み合
		ハッナ本体と補強板との結合部	一次+二次応力	4	同上
			一次+二次+ピーク応力	4	同上
原		アクセスハッチスリーブ	一次一般膜応力	3-2	-
子			一次膜応力+一次曲げ応力	3-2	-
炉			一次+二次応力	3-2	-
格納容器	サプレッションチェンバアクセスハッチ	 チ アクセスハッチ本体とサプレッションチェンバ 胴との結合部 アクセスハッチスリーブと補強リブとの結合部 	一次膜応力+一次曲げ応力	3-1	-
		補強リブとサプレッションチェンバ胴との結合 部	一次+二次応力	3-1	-
		補強リブ	組合せ応力	3-1	-
			一次一般膜応力	4	発生応力を組合せ係数法で組み合わせる。
		ハッチ円筒胴	一次膜応力+一次曲げ応力	4	同上
			一次+二次応力	4	同上
	所員用エアロック	1. "十十日,按我打了,你什么如	一次膜応力+一次曲げ応力	4	ドライウェル側の評価では水平2方向を 評価では発生応力を組合せ係数法で組み
		ハッナ本体と補強板との結合部	一次+二次応力	4	同上
			一次+二次+ピーク応力	4	同上
		広て伝教独宏聖しマリ、ブレの社会 如	一次膜応力+一次曲げ応力	D	水平2方向を考慮した荷重及び配管解析(
		原丁炉俗約谷器とヘリーノとの相口部	一次+二次応力	D	同上
	原子炉格納容器配管貫通部		一次一般膜応力	1	水平2方向を考慮した配管解析の応答を)
		スリーブ		1	同上
			一次+二次応力	1	同上
	医乙烯基丙酮基甲基甲基基甲基		一次膜応力+一次曲げ応力	4	ドライウェル側の評価では水平2方向を の評価では発生応力を絶対値和法で組み
	原于炉格納谷葢電気配線貫通部	トフイワエルとスリーフとの結合部	一次+二次応力	4	同上
			一次+二次+ピーク応力	4	同上

表3 工認耐震計算書にて,水平	2方向の地震力を考慮している設備の整理結果			
設備	部位	応力分類	 水平2方向の考慮方法 ①:入力で組み合わせているもの ②-1:発生荷重を組み合わせているもの(SRSS法) ②-2:発生荷重を組み合わせているもの(絶対値和法) ③-3:発生荷重を組み合わせているもの(ベクトル和法) ③-1:発生応力を組み合わせているもの(SRSS法) ③-2:発生応力を組み合わせているもの(絶対値和法) ③-3:発生応力を組み合わせているもの(ベクトル和法) ④:その他 	①又は④の設備の
		一次一般膜応力	<u>@</u> -2	
	スリーブ		2-2	-
		一次+二次応力	2-2	-
真空破壊装置		一次一般膜応力	4	スリーブ側の評価では発生荷重を絶対値 では発生応力をSRSS法で組み合わせる。
	スリーブとベント管との結合部		4	同上
		一次+二次応力	4	同上
		一次+二次+ピーク応力	4	同上
		一次一般膜応力	2-1	-
	ダウンカマ		2-1	-
ガウンカー		一次+二次応力	2-1	-
タリンガマ			3-1	-
	ベントヘッダとダウンカマの結合部	一次+二次応力	3-1	-
		一次+二次+ピーク応力	3-1	-
		一次一般膜応力	3-1	-
	a Hita 4= 01	-次一般膜応力+-次曲げ応力	3-1	-
	ベック伝統部	一次+二次応力	3-1	-
		一次+二次+ピーク応力	3-1	-
		一次一般膜応力	2-1	-
		-次一般膜応力+-次曲げ応力	2-1	-
ベント管	ペント官円同部	一次+二次応力	2-1	-
		一次+二次+ピーク応力	2-1	-
		一次一般膜応力	٩	ドライウェル側の評価では水平2方向を の評価では発生荷重をSRSS法で組み合わ
	ベント管とドライウェルとの接合部	-次一般膜応力+-次曲げ応力	4	同上
		一次+二次応力	4	同上
		一次+二次+ピーク応力	4	同上
ベント管ベローズ	ベント管ベローズ	疲労	D	水平2方向を考慮した変位を入力として
		一次一般膜応力	3-1	-
	ベントヘッダ		3-1	-
		一次+二次応力	3-1	-
	ぶいし 。 ゲ妹母 リング 田 (+ か		3-1	-
	ベントバック 補強リンク 取付 部	一次+二次応力	3-1	-
		引張応力	2-1	-
		圧縮応力	2-1	-
	ヘントヘッタサホート	曲げ応力	2-1	-
23.1 28		組合せ応力	2-1	-
~> > ~ > >		引張応力	2-1	-
		せん断応力	@-1	-
	サプレッションチェンバ補強リング	圧縮応力	@-1	-
		曲げ応力	2-1	-
		組合せ応力	@-1	-
		せん断応力	2-1	-
	-12 -2 -1	曲げ応力	2-1	-
	シントレ	支圧圧力	2-1	-
		組合せ応力	2-1	-

表3 工認耐震計算書にて,水平2方向の	り地震力を考慮している設備の整理結果			
設備	部位	応力分類	 水平2方向の考慮方法 ①:入力で組み合わせているもの ②-1:発生荷重を組み合わせているもの(SRSS法) ②-2:発生荷重を組み合わせているもの(絶対値和法) ②-3:発生荷重を組み合わせているもの(ベクトル和法) ③-1:発生応力を組み合わせているもの(SRSS法) ③-2:発生応力を組み合わせているもの(絶対値和法) ③-3:発生応力を組み合わせているもの(ベクトル和法) ④-3:発生応力を組み合わせているもの(ベクトル和法) ④:その他 	①又は④の設備の
	ト部スプレイ管案内管	一次応力	@-2	-
		一次+二次応力	2)-2	
	ト部スプレイ管ティー部	一次応力	2	
		一次+二次応力	2	
		一次応力	2-1	
	上部スプレイ管案内管サポート	一次+二次応力	2-1	
		せん断応力	2-1	
ドライウェルスプレイ管	下部スプレイ管	一次応力	2-2	
		一次+二次応力	2-2	
	下部スプレイ管案内管	一次応力	2-2	
		一次+二次応力	2-2	
	下部スプレイ管ティー部	一次応力	2-2	
		一次+二次応力	2-2	
	下部スプレイ管サポート	一次応力	2-1	
		一次+二次応力	2-1	
		組合せ応力	2-1	
		一次応力	2-1	
	スプレイ管	一次+二次応力	2-1	
		一次+二次+ピーク応力	2-1	
	スプレイ管えび状の管部	一次応力	2-1	
		一次+二次応力	2-1	
サプレッションチェンバスプレイ管	スプレイ管ティー部	一次応力	2-1	
		一次+二次応力	2-1	
	スプレイ管案内管	一次応力	2-1	
		一次+二次応力	2-1	
		一次応力	2-1	
	スプレイ管サポート	一次+二次応力	2-1	
		せん断応力	2-1	
		引張応力	②-2	
	基礎ボルト	せん断応力	2-2	
遠隔手動弁操作設備		組合せ応力	<u>②</u> -2	
		引張応力	2-1	
	取付ボルト	せん断応力	2-1	
		組合せ応力	2-1	

表3 工認耐震計算書にて、水平2方向の地	震力を考慮している設備の整理結果					
設備	部位	応力分類	 水平2方向の考慮方法 ①:入力で組み合わせているもの ②-1:発生荷重を組み合わせているもの(SRSS法) ②-2:発生荷重を組み合わせているもの(絶対値和法) ③-3:発生荷重を組み合わせているもの(ベクトル和法) ③-1:発生応力を組み合わせているもの(SRSS法) ③-2:発生応力を組み合わせているもの(絶対値和法) ③-3:発生応力を組み合わせているもの(ベクトル和法) ④ :その他 	①又は④の設備の具体的な考慮方法	工認耐震計算書図書番号	
配管本体、サポート(多質点はりモデル解		一次応力	2)-1	_	$\begin{array}{c} VI-2-4-3-1-3\\ VI-2-4-3-2-1\\ VI-2-5-2-1-1\\ VI-2-5-3-1-2\\ VI-2-5-3-2-1\\ VI-2-5-3-2-1\\ VI-2-5-5-1-3\\ VI-2-5-5-3-2\\ VI-2-5-5-3-2\\ VI-2-5-5-3-2\\ VI-2-5-5-2\\ VI-2-5-6-1-3\\ VI-2-5-7-1-6\\ VI-2-5-7-1-6\\ VI-2-5-7-3-1\\ VI-2-5-8-1-1\\ VI-2-5-8-1-1\\ VI-2-6-3-2-1-2\\ VI-2-6-4-1-3\\ \end{array}$	
	配管,サポート	一次十二次応力	@-1		$\begin{array}{c} V1-2-6-4-1-3\\ V1-2-6-4-1-3\\ V1-2-6-6-1-1\\ V1-2-7-2-1-1\\ V1-2-8-3-2-1\\ V1-2-8-3-3-1\\ V1-2-9-4-4-2-1\\ V1-2-9-4-4-2-1\\ V1-2-9-4-4-4-2\\ V1-2-9-4-5-1-1\\ V1-2-9-4-5-2-1\\ V1-2-9-4-5-2-1\\ V1-2-9-4-5-4-1\\ V1-2-9-4-5-4-1\\ V1-2-9-4-5-4-1\\ V1-2-9-4-7-1-1\\ V1-2-9-4-7-1-1\\ V1-2-9-4-7-1-1\\ V1-2-9-4-7-1-1\\ V1-2-9-4-7-1-1\\ V1-2-9-4-7-1-1\\ V1-2-10-1-2-7\\ V1-2-10-1-2-3-6\\ V1-2-11-2-8\\ V1-2-10-2-11\\ \end{array}$	
水密扉(建物内、燃料移送ポンプエリア)	パネル部(柱, はり)	曲 曲	(d) (d) (d) (d) (d)	発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。		
	パネル部(アンカーボルト)	 5.1 5.1<td>4 4 2</td><td> 光生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 </td><td>-</td>	4 4 2	 光生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 	-	
	<u></u> 銅校	曲 前 応 力 世 ん 断 応 力 曲 げ 応 力 曲 げ 応 力		 人力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。 	-	
防水壁(ディーゼル燃料移送ポンプエリア)	はり 柱 ブレース	せん断応力 圧縮応力 組合せ応力 引張応力		 人力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。 	VI-2-10-2-8	
	アンカーボルト	引張応力 せん断応力 組合せ応力		入力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。 入力を組合せ係数法で組み合わせる。	- - -	
建物開口部竜巻防護対策設備(竜巻防護 ネット対策設備)	フレーム	引張応力 圧縮応力 せん断応力 曲げ応力 組合せ応力	(4) (4) (4) (4) (4) (4) (4) (4)	発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。		
	アンカーボルト	<u> </u>	<u>ب</u> (ب) (ب) (ب)	元上心ノンセロロロ所数仏 (旭のロ4)とる。 発生応力を組合せ係数法で組み合わせる。 発生応力を組合せ係数法で組み合わせる。	-	

表3 工認耐震計算書にて,水平2方向の地	也震力を考慮している設備の整理結果			
設備	部位	応力分類	水平2方向の考慮方法 ①:入力で組み合わせているもの ②-1:発生荷重を組み合わせているもの(SRSS法) ②-2:発生荷重を組み合わせているもの(絶対値和法) ③-3:発生荷重を組み合わせているもの(ベクトル和法) ③-1:発生応力を組み合わせているもの(総対値和法) ③-2:発生応力を組み合わせているもの(ベクトル和法) ③-3:発生応力を組み合わせているもの(ベクトル和法) ④-3:発生応力を組み合わせているもの(ベクトル和法) ④:その他	①又は④の設備の具
		せん断応力	(4)	発生応力を組合せ係数法で組み合わせる。
	フレーム	曲げ応力	4	発生応力を組合せ係数法で組み合わせる。
建物開口部竜券防護対策設備(竜券防護鋼		組合せ応力	4	発生応力を組合せ係数法で組み合わせる。
板対策設備)		引張り応力	<u>(4)</u>	発生応力を組合せ係数法で組み合わせる。
	アンカーボルト	せん断応力	4	発生応力を組合せ係数法で組み合わせる。
		組合せ応力	4	発生応力を組合せ係数法で組み合わせる。
		せん断応力	0	水平2方向を考慮した応答解析を行い、各
	クレーン本体ガーダ	曲げ応力	0	この荷重を用いて各部位の発生応力を算出
百子后建物王サクレーン		浮上り量	0	水平2方向を考慮した応答解析を行い、浮
尿丁炉建物入开グレーン	Ь III 7 Ь	曲げ応力	0	水平2方向を考慮した応答解析を行い、各
		組合せ応力	0	この荷重を用いて各部位の発生応力を算出
	トロリ	浮上り量	0	水平2方向を考慮した応答解析を行い、浮
	燃料取替機構造物フレーム	せん断応力	2)-2	_
	ブリッジ脱線防止ラグ(本体) トロリ脱線防止ラグ(本体)	曲げ広力	2-2	
燃料取替機	走行レール 横行レール	組合社応力	2)-2	
	ブリッジ脱線防止ラグ(取付ボルト) トロリ脱線防止ラグ(取付ボルト)	せん断応力	© -2	-
		引張応力	2-1	
	相短树	せん断応力	2-1	_
		引張応力	2-1	_
		圧縮応力	2-1	-
	文持鋼材 補強斜材	せん断応力	2-1	-
中央制御室天井照明		曲げ応力	2-1	-
		組合せ応力	2-1	_
	取付ボルト (照明ボルト) 継手ボルト	引張応力	2-1	-
		せん断応力	2-1	-
	基礎ホルト	組合せ応力	2-1	
	溶接部	せん断応力	2-1	
	ダクト本体	座屈	2-1	_
主排気ダクト	支持構造物部材 支持裝置	組合せ応力	@-1	-
	クレーン本体ガーダ	せん断応力	0	
	走行車輪	曲げ応力	D	水半2万回を考慮した応答解析を行い、各 この荷重を用いて各部位の発生応力を算出
	走行レール	組合せ応力	\square	
		引張応力	\square	
	脚	圧縮応力	1	
	脚下部継ぎ	せん断応力	1	水平2万回を考慮した応答解析を行い、谷 この荷重を用いて各部位の発生応力を算出
	カータ継ぎ	曲げ応力	1	
		組合せ応力	0	
	転倒防止装置アーム	組合せ応力	D	水平2方向を考慮した応答解析を行い,各 この荷重を用いて各部位の発生応力を算出
収入帽カントリクレーン	トロリ	浮上り量	1	水平2方向を考慮した応答解析を行い、浮
	畄 軸 ¥b/tt ダンパ	荷重	1)	水平2方向を考慮した応答解析を行い、荷
		変位	0	水平2方向を考慮した応答解析を行い、変
	ブレース	圧縮応力	D	水平2方向を考慮した応答解析を行い,各 この荷重を用いて各部位の発生応力を算出
		せん断応力	0	
	カレビフ	曲げ応力	1	水平2カ回を考慮した応答解析を行い,各 この荷重を用いて各部位の発生応力を算出
		組合せ応力	0	
		回転角度	<u>()</u>	水平2方向を考慮した広答解析を行い 回

の具体的な考慮方法	工認耐震計算書図書番号
- 3.	
- Z	
. ຈ _ີ	
:る。	VI-2-11-2-6
る。	
ころ。	
5.	
・2。。 各部位の荷重を求めている。 第出している。	
浮上り量を算出していろ	
	VI-2-11-2-7-1
各部位の荷重を求めている。	
〔昇田している。	
浮上り量を算出している。	
_	
	W -9-11-9-7-9
-	VI 2 11 2 7 2
_	
-	
_	
_	
—	
_	
-	VI-2-11-2-7-10
_	
_	
_	
-	
—	
-	
	VI-2-11-2-7-13
_	
- 各部位の荷重を求めている。 算出している。	
- 各部位の荷重を求めている。 - 質出している	
合部位の何里を求めている。 第出している。 ※ Lh 号も答用している	VI-2-11-2-7-14
けエソ里を昇山している。	
荷重を算出している。	
変位を筧出していろ	
次山で井山しく♥ 3。	
、各部位の荷重を求めている。 ·算出している。	
各部位の荷重を求めている。 9第出している。	
回転角度を算出していろ	

③水平2方向の地震による代表設備の増分影響検討結果(基準地震動Ss) 表1 構造強度評価

設備	応答軸が明確か(補足説 明資料 に対応) 〇:応答軸が明確 ×:応答軸が明確でない	部位	応力分類	代表設備	水平1方向及び鉛直方 向地震力における裕 度が√2以上か 〇:√2以上 ×:√2未満	① 発生値 (水平1方向)	② 発生値 (水平2方向)	発生値 の増分 =②÷①
			一次応力		0	_	-	-
燃料集合体	×	燃料被覆管	一次+二次応力	燃料集合体	0	_	_	_
			一次+二次+ピーク応力		0	—	—	_
		ラック部材	引張応力		0	-	-	
使用済燃料貯蔵フック	×	(板,シートプレート及びフッ クベース)	せん断応力	使用済燃料貯蔵フック	0	—	—	
			組合せ応力		0	-	-	
判御捧,碰捐燃料贮费 与 3.7	~	5 <i>h</i>	引張応刀 	制御棒・破損燃料貯蔵ラッ	0	_	_	
前仰悸・収頂燃料貯蔵ノツク	~	799	せん断応力	- <i>D</i>	0			
		++++++++++++++++++++++++++++++++++++++	祖台セ応力		0	_	_	
燃料ノール監視カメリ	X	基礎ホルト	列張応力 	燃料ノール監視カメラ	0	_	_	
			一次一般膜応力	4	0	—	—	
アキュムレータ	×	胴板	一次応力	アキュムレータ	0	—	—	
		n+n	一次十二次心刀	4	0	-	-	
	X) 内 山 山 山 山 山 山 山 山 山 山 山 山 山	組合せ応力		0	_	_	
	×	基礎ボルト	り 張応 力 知 会 は 亡 五		0			
伝送器(矩形壁掛)			祖信セ応力 引進亡力	低圧炉心スプレイホンプ出	0	_		
	×	溶接部	51 汞心力 組合社さ力		0	_	_	<u> </u>
			祖吉で応力		0		_	
	×	基礎ボルト	組合社広力	- スクラム排出水容器水位	0	_	_	
伝送器(サポート鋼材固定)			<u>引張広力</u>	サプレッションプール水温	0	_	_	_
	×	溶接部	組合せ応力	度	0	_	_	-
		其礎ボルト	引張応力	 1・2号SPDS伝送用ア 	0	_	_	_
	×	取付ボルト	組合せ応力	ンテナ用中継器盤	0	_	_	_
制御盤,電気盤(矩形壁掛)			引張応力	A=SRM/IRM前置増幅	0	_	_	-
	×	俗拔部	組合せ応力	器盤	0	_	_	_
	×	基礎ボルト	引張応力		0	_	_	_
モニタリング設備(矩形壁掛)		取付ボルト	組合せ応力	- 燃料取替階放射線モニタ	0		_	_
通信連絡設備(アンテナ粘)(拓)			引張応力	衛星雷話設備田アンテナ	0	_	_	_
形壁掛	×	基礎ボルト	組合せ応力	(中央制御室)	0	_	_	_
	×	シャフト	組合せ応力		0	_	_	_
ブローアウトパネル閉止装置	×	軸受取付ボルト 駆動部取付ボルト 取付ボルト	引張応力	ブローアウトパネル閉止装 置	0	_	_	-
可燃性ガス濃度制御系再結合装置 ブロワ	×	ベース取付溶接部	せん断応力	可燃性ガス濃度制御系 再結合装置ブロワ	0	_	_	-
	×	静的触媒式水素処理装置本体	組合せ応力		0	_	-	_
	×	架台	組合せ応力]	0	_	—	-
			引張応力		0	—	-	- 1
静的触媒式水素処理装置	×	取付ボルト	せん断応力	静的触媒式水素処理装置	0	—	—	-
			組合せ応力]	0	—	—	—
	~	其礎ボルト	引張応力		0	—	_	—
	X	基礎 示ルト	組合せ応力		0	—	-	-

)	増分の判定 ○:影響が無視で さない △:影響が軽微	発生値(水平2方向)の算出方法 ①地震・地震以外に分離し,地震による応力を SRSS ②NS・EW方向別々の応力をSRSS(地震・地震以 外は分離せず) ③地震・地震以外に分離し,NS・EW方向別々の 地震による応力をSRSS ④その他(算出方法を記載)
	_	_
	_	_
	_	_
	_	_
	_	_
	—	-
	_	_
	—	_
	—	_
	—	-
	—	_
	_	_
	—	_
	—	_
	—	—
	—	-
	—	_
	_	—
	_	_
_		
	—	_
	—	-
	_	_
		_
	_	_
	_	
	_	
	_	_
	_	_
	_	_
	—	-
	_	—
	—	_
	—	—
	_	—

3水	平2方向の地震による代表設備の増分影響検討結果	(基準地震動Ss)
表1	構造強度評価	

設備	応答軸が明確か(補足説 明資料 に対応) 〇:応答軸が明確 ×:応答軸が明確でない	部位	応力分類	代表設備	水平1方向及び鉛直方 向地震力における裕 度が√2以上か 〇:√2以上 ×:√2未満	① 発生値 (水平1方向)	② 発生値 (水平2方向)	発生値 の増分 =②÷①	増分の判定 ○ : 影響が無視で きない △ : 影響が軽微	発生値(水平2方向)の算出方法 ①地震・地震以外に分離し,地震による応力を SRSS ②NS・EW方向別々の応力をSRSS(地震・地震以 外は分離せず) ③地震・地震以外に分離し,NS・EW方向別々の 地震による応力をSRSS ④その他(算出方法を記載)
			曲げ応力		0	_	_	_	-	-
			せん断応力	1	0	-	-	-	-	_
	X	ヒンン部 (ヒンン板)	引張応力	1	0	—	-	—	-	-
			組合せ応力]	0	—	-	—	-	-
			曲げ応力	叶冲成这些叶冲	0	_	-	—	_	_
防波壁通路防波扉	×	トンジ部 (トンジピン)	せん断応力	────────────────────────────────────	0	—	-	-	-	—
(1号機北側,2号機北側)			圧縮応力	側)	0	—	-	-	-	—
			組合せ応力		0	-	-	-	-	_
	×	ヒンジ部 (ヒンジボルト)	せん断応力	_	0	_	-	-	-	-
			引張応力	1	0	—	_	_	_	—
	×	アンカーボルト	引張応力	4	0	—	-	_	-	-
			せん断応力		0	_	-	_	-	-
	N N	喜 体如	田け応刀	4	0	_	-	_	-	—
	X	月11年日3	せん断応刀	4	0	_	_			—
屋外排水路逆止弁		固定部	組合 し 応 力	屋外排水路逆止弁	0		_			_
	×		せん劇心力		0		_			
	~		又 <u></u> 二 応 力		0	_	_		_	
			曲げ広力		0	_	_	_	_	_
取水槽除じん機エリア水密扉	×	ヒンジ部	世ん断広力	■取水槽除じん機エリア水密 ■扉(北)	0	_	_	_	_	_
(北)			組合せ応力		0	_	_	_	_	_
		ヒンジ部	曲げ応力	水密扉(建物内,燃料移送	X	265N/mm^2	281N/mm^2	1.07	0	(2)
	×		せん断応力		0	_	_	-	-	-
			組合せ応力		×	268N/mm^2	285N/mm^2	1.07	0	2
		× アンカーボルト	引張応力		0	—	-	—	-	-
水密扉(建物内、燃料移送ポンプ	×		せん断応力		0	—	-	—	-	-
			組合せ応力	ホンノエリノ	0	—	-	—	-	-
	×	パネル部 (パネル板)	曲げ応力		0	—	-	-	-	_
			曲げ応力	-	0	_	-		-	-
	X	パネル部(パネル芯材)	せん断応力		0	-	-	-	-	-
	×	鋼板	曲げ応力		0	_	_	_	_	_
			曲げ広力	-	0	_	_		_	_
	×	はり材	せん断応力	-	0	_	_	_	_	_
堰(柱支持型)		柱材	組合せ応力	堰 (柱支持型)	0	_	-	_	_	-
			引張応力	-	0	_	-		-	-
	×	アンカーボルト	せん断応力	1	0	-	-	-	-	_
			組合せ応力	1	0	—	-	—	-	-
	×	鋼板	曲げ応力		0	_	_	_	-	-
			引張広力		\bigcirc	_	_	_	_	_
と (婀	×	アンカーボルト	せん断応力		0	_	-	_	-	_
			組合せ応力	1	0	—	_	-	-	-
			引張応力		0	—	-	-	-	-
	×	アンカー筋 主 É	せん断応力	1	0	—	-	-	-	_
堰(鉄筋コンクリート制)		王加	組合せ応力	堰(鉄筋コンクリート制)	0	—	-	-	-	_
			せん断応力		0	_	_	_	_	_
	×	堰底部のコンクリート	厂炉内市	4						
			圧補応刀		U	_	_	_	_	—

③水平2方向の地震による代表設備の増分影響検討結果(基準地震動Ss) 表1 構造強度評価

設備	応答軸が明確か(補足説 明資料 に対応) 〇:応答軸が明確 ×:応答軸が明確でない	部位	応力分類	代表設備	水平1方向及び鉛直方 向地震力における裕 度が√2以上か 〇:√2以上 ×:√2未満	① 発生値 (水平1方向)	② 発生値 (水平2方向)	発生値 の増分 =②÷①
	×	鋼板	曲げ応力		0	_	_	_
			曲げ応力	1	0	-	_	-
	×	芯材	せん断応力		0	_	_	_
防水板			組合せ応力	防水板	0	—	—	-
			引張応力	4	0	-	_	
	×	アンカーボルト	せん断応力	4	0	—	—	
			組合せ応力		0	-	-	
貫通部止水処置	×	電路貫通部金属ボックスのアン	引張応力	貫通部止水処置	0	-	—	
		カーホルト	せん断応力	JAMER MINCE	0	-	-	-
			引張応力		0	—	_	-
			せん断応力		0	—	—	—
	×	架台	圧縮応力	2 号機排気筒津波監視カメ ラ	0	_	_	_
津波芒相カメラ			曲げ応力		0	—	_	_
年 (2 皿 优 / / /			組合せ応力		0	—	_	_
		架台溶接部	引張応力		0	-	_	-
	×		圧縮応力		0	—	—	—
			組合せ応力		0	—	—	_
	~	網板	曲げ応力		0	-	-	-
	^	到11次	せん断応力]	0	—	—	-
		架構	曲げ応力	雨业講従環业ポンプェリマ	0	-	_	-
版水 捕獲得水ポンプェリア防護計	×		せん断応力		0	—	_	-
取小僧宿菜パルシノエリア防護対策設備		ベースプレート	曲げ応力	- 取示情循環示ホンクエック 防護対策設備	0	—	—	-
	×		せん断応力		0	—	—	-
			組合せ応力	7	0	-	—	-
		アンカーボルト	引張り応力	7	0	-	—	-
	×		せん断応力	1	0	—	—	—
			組合せ応力	1	0	-	—	—
		鋼板	曲げ応力		0	-	—	-
	×	はり	せん断応力		0	—	_	_
			曲げ応力	7	0	—	—	-
	~	+ 2	圧縮応力	7	0	—	—	-
	X	杜	せん断応力	7	0	—	—	-
取水捕海水ポンプェリア陆進計等			組合せ応力		0	—	—	-
和小恒西小小マノムリノ 的 愛知 東 設備	×	架構	曲げ応力	護対策設備	0	—	—	_
			曲げ応力	-	0	—	—	-
	×	ベースプレート	せん断応力	1	0	-	—	—
			組合せ応力	1	0	-	-	-
			引張り応力	1	0	-	—	<u> </u>
	×	アンカーボルト	せん断応力	1	0	-	-	- 1
			組合せ応力		0	—	—	—

D	増分の判定 ○ : 影響が無視で さない △ : 影響が軽微	発生値(水平2方向)の算出方法 ①地震・地震以外に分離し,地震による応力を SRSS ②NS・EW方向別々の応力をSRSS(地震・地震以 外は分離せず) ③地震・地震以外に分離し,NS・EW方向別々の 地震による応力をSRSS ④その他(算出方法を記載)
	_	_
	_	_
	_	_
	—	_
	_	—
	_	_
	-	-
	_	—
	_	_
	_	_
	_	—
	—	_
	_	-
	—	—
		_
	_	_
		—
	—	_
	_	—
	-	—
	_	_
	—	—
	_	_
	_	_
_	_	_
	—	_
	—	_
	_	_
	—	_
	_	_
	_	
	_	—
	-	—

③水平2方向の地震による代表設備の増分影響検討結果(基準地震動Ss) 表1 構造強度評価

設備	応答軸が明確か(補足説 明資料 に対応) 〇:応答軸が明確 ×:応答軸が明確でない	部位	応力分類	代表設備	水平1方向及び鉛直方 向地震力における裕 度が√2以上か 〇:√2以上 ×:√2未満	① 発生値 (水平1方向)	② 発生値 (水平2方向)	発生値 の増分 =②÷①	増分の判定 ○:影響が無視で きない △:影響が軽微	発生値(水平2方向)の算出方法 ①地震・地震以外に分離し,地震による応力を SRSS ②NS・EW方向別々の応力をSRSS(地震・地震以 外は分離せず) ③地震・地震以外に分離し,NS・EW方向別々の 地震による応力をSRSS ④その他(算出方法を記載)
			せん断応力	-	0	-	-	-	-	_
	×	ガイドレール	曲げ応力		0	—	-	-	-	-
			組合せ応力		0	-	—	—	-	-
チャンネル着脱装置			せん断応力	チャンネル着脱装置	0	-	-	—	-	-
	×	カート	曲げ応力	7	0	-	—	_	-	-
			組合せ応力	1	0	-	-	—	-	-
	×	固定ボルト	引張応力		0	—	-	—	-	-
チャンネル取扱ブーム	×	ブーム 回転ポスト 固定ポスト	組合せ応力	チャンネル取扱ブーム	0	_	_	_	_	_
	×	制御棒落下防止ポール	引張応力	制御棒貯蔵ハンガ	0	-	-	—	-	—
			せん断応力		0	-	—	—	-	-
制御棒貯蔵ハンガ			組合せ応力		0	-	-	—	-	-
	×	ポール支持金具	せん断応力		0	—	—	-	-	-
			引張応力	叶振毛を咲	0	-	-	-	-	
叶便手と時	X		せん断応力		0	-	—	—	-	-
防煙華和壁	×	ノレーム部材	曲げ応力	的煙華和壁	0	-	—	—	-	-
			組合せ応力	1	0	-	-	—	-	-
			せん断		0	—	-	—	-	-
除じん機	×	フレーム耐震ピン	曲げ応力	除じん機	0	—	—	_	—	-
			組合せ応力		0	—	_	_	_	_
			引張り応力		0	-	-	—	-	—
	×	フレーム部材	圧縮応力	- 耐火障壁(格納容器ガスサ ンプリング装置冷却器)	0	-	-	—	-	-
			せん断応力		0	-	—	—	-	—
耐火障壁			曲げ応力		0	—	—	-	-	_
			組合せ応力		0	—	—	-	-	-
	×	其礎ボルト	引張り応力	耐火障壁(中央制御室送風	0	_	_	_	_	-
	^	245 H/C (1) / F .	せん断応力	機)	0	—	_	—	-	—

表2(1) 動的/電気的機能維持評価								
機種	応答軸が明確か(補足説 明資料 に対応) 〇:応答軸が明確 ×:応答軸が明確でない	代表設備	水平1方向及び鉛直方 向地震力における裕 度が√2以上か 〇:√2以上 ×:√2未満	① 応答加速度 (水平1方向) [G]	② 応答加速度 (水平2方向) [G]	発生値 の増分 =②÷①	増分の判定 ○ : 影響が無視 できない △ : 影響が軽微	応答加速度(水平2方向)の算出方法 ①:応答加速度(水平1方向)を√2倍 ②:NS・EW方向別々の応答加速度をベクト ル和 ③:その他(算出方法を記載)
立形ポンプ	×	原子炉補機海水ポンプ	0	_	_	_	_	_
ディーゼル発電設備 (ガバナ)	×	非常用ディーゼル発電設備(ガバナ)	0	_	—	_	_	_
制御棒駆動水圧スクラム弁	×	制御棒駆動水圧スクラム弁	0	_	—	_	_	_
通信連絡設備(アンテナ類)	×	衛星電話設備用アンテナ(緊急時対策)	0	—	—	-	_	_
地下水位低下設備揚水ポンプ	×	地下水位低下設備揚水ポンプ	0	—		_	_	_
遠隔手動弁操作設備(フレキシブルシャ フト連結部)	×	遠隔手動弁操作設備(フレキシブル シャフト連結部)	0	_	_	_	_	_

表2(2) 動的/電気的機能維持評価								
機種	応答軸が明確か(補足説 明資料 に対応) 〇:応答軸が明確 ×:応答軸が明確でない	代表設備	水平1方向及び鉛直方 向地震力における裕 度が√2以上か 〇:√2以上 ×:√2未満	① 相対変位 (水平1方向) [mm]	② 相対変位 (水平2方向) [mm]	発生値 の増分 =②÷①	増分の判定 ○ : 影響が無視 できない △ : 影響が軽微	相対変位(水平2方向)の算出方法 ①:相対変位(水平1方向)を√2倍 ②:NS・EW方向別々の相対変位をベクトル 和 ③:その他(算出方法を記載)
制御棒挿入性	×	—	×	35.0	35.8	1.02	0	③NS方向の変位18.6mm, EW方向の変位 35.0mmから相対変位を組合せ係数法で算出 √ ((18.6×1.0) ² + (35.0×0.4) ²) ≒35.8mm

④水平2方向の地震による発生値と許容値の比較結果(基準地震動Ss) 表1 構造強度評価

設備	代表設備	部位	応力分類	発生値 (水平1方向)	発生値 (水平2方向)	許容値	判定	多くうじ房に兄び
水密扉(建物内,燃料移送ポンプ		レンパン加	曲げ応力	$265 \mathrm{N/mm}^2$	$281 \mathrm{N/mm}^2$	$345 \mathrm{N/mm}^2$	0	
エリア)		נים ע עם און	組合せ応力	$268 \mathrm{N/mm}^2$	$285 \mathrm{N/mm}^2$	$345 \mathrm{N/mm}^2$	0	

発生値(水平2方向)の算出方法 ①:地震・地震以外に分離し,地震による応 力をSRSS ②:NS・EW方向別々の応力をSRSS(地震・地 震以外は分離せず) ③:地震・地震以外に分離し,NS・EW方向 別々の地震による応力をSRSS ④:その他(算出方法を記載)

2

④水平2方向の地震による発生値と許容値の比較結果(基準地震動Ss) 表2 動的/電気的機能維持評価

設備	代表設備	相対変位 (水平1方向)	相対変位 (水平2方向)	確認済相対変位	判定	発生値(水平2方向)の算出方法 ①:地震・地震以外に分離し,地震い ②:NS・EW方向別々の応力をSRSS(均 ③:地震・地震以外に分離し,NS・E ④:その他(算出方法を記載)
制御棒挿入性	_	35.Omm	35.8mm	40mm	0	④NS方向の変位18.6mm, EW方向の変位 √ ((18.6×1.0) ² + (35.0×0.4) ²) ±

による応力をSRSS 地震・地震以外は分離せず) EW方向別々の地震による応力をSRSS

位35.0mmから相対変位を組合せ係数法で算出 ≒35.8mm

<mark>別紙 4.4</mark>

個別設備に関する補足説明資料

今回の提出範囲

 水平2方向同時加振の影響評価(原子炉圧力容器スタビライザ,原子炉格納容器スタビ ライザ及びシヤラグ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
ライザ及びシヤラグ) ····································
2. 水平2方向同時加振の影響評価(蒸気乾燥器支持ブラケット) ・・・・・・・・・・ 6
3. 水平2方向同時加振の影響評価(制御棒・破損燃料貯蔵ラック)・・・・・・・・・・ 8
4. 水平 2 方向同時加振の影響評価(円筒形容器)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5. 水平2方向同時加振の影響評価(応答軸が明確である設備)・・・・・・・・・・・・・・25
6. 水平2方向同時加振の影響評価(矩形配置されたボルト)・・・・・・・・・・・ 28
7. 水平2方向同時加振の影響評価(円周配置されたボルト)・・・・・・・・・・・ 33
 水平2方向同時加振の影響評価(電気盤) ····································
 水平2方向同時加振の影響評価(動的機能維持)
 水平2方向同時加振の影響評価(疲労評価)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 制御棒挿入性評価に対する水平2方向地震力の組合せ方法・・・・・・・・・・・・・・・42

- 1. 水平2方向同時加振の影響評価(原子炉圧力容器スタビライザ,原子炉格納容器スタビラ イザ及びシヤラグ)
- 1.1 はじめに

本項は、原子炉圧力容器スタビライザ(以下「RPV スタビライザ」という。)(図1-1),原子炉格納容器スタビライザ(以下「PCV スタビライザ」という。)(図1-2)及びシヤラグ(図1-3)に対する水平2方向同時加振の影響についてまとめたものである。

RPV スタビライザ, PCV スタビライザ及びシヤラグは,地震時の水平方向荷重を周方向 45°間隔で8体の構造部材にて支持する同様の設計であるため,以下水平2方向同時加 振の影響については, RPV スタビライザを代表に記載する。

1.2 現行評価の手法

RPV スタビライザは、周方向 45°間隔で8体配置されており、図 1-4 に地震荷重と各 RPV スタビライザが分担する荷重の関係を示す。

水平方向の地震荷重に関して現行評価では, RPV スタビライザ6体に各水平方向地 震力(X方向, Y方向)の最大地震力が付加されるものとしている。

$$f = MAX\left(\frac{F_{\chi}}{4}, \frac{F_{\gamma}}{4}\right)$$

ここで,

f : RPV スタビライザ1 個が受け持つ最大地震荷重
 F_x:X方向地震よりスタビライザ全体に発生する荷重
 F_y:Y方向地震よりスタビライザ全体に発生する荷重

図 1-1 原子炉圧力容器スタビライザ

図1-3 シヤラグ

図 1-4 原子炉圧力容器スタビライザの水平地震荷重の分担(水平1 方向)

1.3 水平2方向同時加振の影響

RPV スタビライザは、水平2方向の地震力を受けた場合においても、図1-5及び表1 -1に示すとおり方向別地震荷重F(Fx又はFy)に対する最大反力を受け持つ部位が 異なる。

<X方向加振時>

<Y方向加振時>

図 1-5 原子炉圧力容器スタビライザの水平地震荷重の分担

位置		方向別地震力I	Fに対する反力
<u>1</u>	ム国	X 方向	Y 方向
	0°	$\frac{F_{X}}{4}$	0
2	45°	$\frac{\sqrt{2}}{8}$ F x	$\frac{\sqrt{2}}{8}$ F _Y
3	90°	0	$\frac{F_{\gamma}}{4}$
4	135°	$\frac{\sqrt{2}}{8}$ F x	$\frac{\sqrt{2}}{8}$ F _Y
(5)	180°	$\frac{F_{X}}{4}$	0
6	225°	$\frac{\sqrt{2}}{8}$ F _x	$\frac{\sqrt{2}}{8}$ F _Y
7	270°	0	$\frac{F_{Y}}{4}$
8	315°	$\frac{\sqrt{2}}{8}$ F x	$\frac{\sqrt{2}}{8}$ F _Y
上 五	是大	$\frac{F_{\chi}}{4} = f$	$\frac{F_{\gamma}}{4} = f$

表 1-1 原子炉圧力容器スタビライザ各点での分担荷重

水平2方向地震力の組合せの考慮については,表1-1に示した水平1方向反力を用い て,X方向,Y方向同時には最大の地震力が発生しないと仮定し,以下の2つの方法にて 検討を行った。

- 組合せ係数法: F_Y=0.4F_Xと仮定し、X 方向、Y 方向のそれぞれの水平1 方向応 答結果を算術和する
- ② 最大応答の非同時性を考慮した SRSS 法: F_Y=F_Xと仮定し, X 方向, Y 方向のそ れぞれの水平1方向応答結果を二乗和平方根にて合成する

上記検討の結果を表 1-2 に示す。いずれの検討方法を用いても,水平 2 方向反力の組 合せ結果の最大値は f となり,これは水平 1 方向反力の最大値と同値である。

したがって、RPV スタビライザに対して水平2方向の影響はない。

		組合せ係数法を用いた	最大応答の非同時性を考慮した
	位置	水平2方向反力の組合せ	SRSS 法を用いた水平2方向反力の
		$(F_{Y}=0.4F_{X})$	組合せ (F _Y =F _X)
1	0°	$\frac{F_{X}}{4} = f$	$\frac{F_{\chi}}{4} = f$
		$\frac{\sqrt{2}}{8} \operatorname{F}_{X} + \frac{\sqrt{2}}{8} \operatorname{F}_{Y}$	$\sqrt{\left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2 + \left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2}$
2	45°	$=\sqrt{2}\times 1.4\times \frac{\mathrm{F}_{\chi}}{8}$	$=\frac{F_{X}}{F_{X}}=f$
		$=0.990\times\frac{F_{\chi}}{4} < f$	4
3	90°	$\frac{\mathrm{F}_{\mathrm{Y}}}{4} = 0.4 \times \frac{\mathrm{F}_{\mathrm{X}}}{4} < \mathrm{f}$	$\frac{F_{Y}}{4} = \frac{F_{X}}{4} = f$
		$\frac{\sqrt{2}}{8} \operatorname{F}_{X} + \frac{\sqrt{2}}{8} \operatorname{F}_{Y}$	$\sqrt{\left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2 + \left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2}$
4	135°	$=\sqrt{2}\times 1.4\times \frac{\mathrm{F}_{\mathrm{X}}}{8}$	$=\frac{F_{X}}{F_{X}}=f$
		$=0.990\times\frac{F_{\chi}}{4} < f$	4
5	180°	$\frac{F_{X}}{4} = f$	$\frac{F_{\chi}}{4} = f$
		$\frac{\sqrt{2}}{8} \operatorname{F}_{X} + \frac{\sqrt{2}}{8} \operatorname{F}_{Y}$	$\sqrt{\left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2 + \left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2}$
6	225°	$=\sqrt{2} \times 1.4 \times \frac{F_{\chi}}{8}$	$=\frac{F_{X}}{F_{X}}=f$
		$=0.990\times\frac{F_{\chi}}{4} < f$	4
7	270°	$\frac{\mathrm{F}_{\mathrm{Y}}}{4} = 0.4 \times \frac{\mathrm{F}_{\mathrm{X}}}{4} < \mathrm{f}$	$\frac{F_{Y}}{4} = \frac{F_{X}}{4} = f$
		$\frac{\sqrt{2}}{8} F_{\chi} + \frac{\sqrt{2}}{8} F_{\chi}$	$\sqrt{\left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2 + \left(\frac{\sqrt{2}}{8} F_{\chi}\right)^2}$
8	315°	$=\sqrt{2} \times 1.4 \times \frac{\mathrm{F}_{\chi}}{8}$	$=\frac{F_{X}}{f}=f$
		$=0.990\times\frac{\mathrm{F}_{\chi}}{4}<\mathrm{f}$	4
	最大	f	f

表1-2 原子炉圧力容器スタビライザ各点における水平2方向の考慮

- 2. 水平2方向同時加振の影響評価(蒸気乾燥器支持ブラケット)
- 2.1 はじめに

本項は,蒸気乾燥器支持ブラケットに対する水平2方向同時加振の影響についてまと めたものである。

2.2 現行評価の手法

蒸気乾燥器支持ブラケットは、4体配置されており、位置関係は図 2-1のとおりとなる。

蒸気乾燥器支持ブラケットは、図 2-2 のとおり蒸気乾燥器支持ブラケットの直交方向 のせん断荷重を負担する構造であり、4 体で耐震用ブロックを介し蒸気乾燥器を支持する 設計である。しかし、耐震用ブロックと蒸気乾燥器支持ブラケットの間にはクリアランス が存在し、水平地震動の入力方向によっては、4 体のうち対角のブラケット 2 体のみがそ の荷重を負担する可能性があるため、現行評価では対角のブラケット 2 体により、水平 2 方向の地震荷重を支持するものとして評価している。

図 2-3 に、評価においてブラケットに負荷される水平方向の地震荷重を示す。

$$F_{\gamma} = \frac{F}{2}$$

F : 蒸気乾燥器から受ける地震時の水平方向荷重

Fx:X方向地震よりブラケットに発生する水平方向荷重

F_Y: Y方向地震よりブラケットに発生する水平方向荷重

2.3 水平2方向同時加振の影響

蒸気乾燥器支持ブラケットは,現行評価において,水平2方向の地震荷重を同時に考慮し,ブラケットと耐震用ブロックの接触状態として想定される最も厳しい状態として 4体のブラケットのうち2体でその荷重を支持すると評価しており,水平2方向同時加 振による現行の評価結果への影響はない。

図 2-1 蒸気乾燥器支持ブラケット位置図

別紙 4.4-6 **77**

図 2-2 蒸気乾燥器支持ブラケットと耐震用ブロックの取合いイメージ

図 2-3 評価におけるブラケットの負荷荷重

- 3. 水平2方向同時加振の影響評価(制御棒・破損燃料貯蔵ラック)
- 3.1 はじめに

本項は、制御棒・破損燃料貯蔵ラック(以下「ラック」という。)のサポートに対す る水平2方向同時加振の影響についてまとめたものである。

3.2 サポートの構造

本サポートは、ラックの耐震上弱軸方向となる短辺方向の転倒防止を目的として、使 用済燃料貯蔵プール壁面から腕を張り出す形で設置されており、ラックの短辺方向側を 支持し、長辺方向側は荷重を受けない構造となっている(図 3-1)。

3.3 水平2方向の地震力による影響について

現行評価において、サポートの応力は、地震力によりラックから入力される荷重(反力)、サポート自身の荷重(自重及び自身の慣性力)と、部材の断面特性を用いて下記の 地震条件時のそれぞれについて求めている。

- ・長辺方向(水平 X 方向)+鉛直方向
- ・短辺方向(水平 Y 方向)+鉛直方向

長辺方向(X方向)の地震の場合,サポートはラックを支持していないため、ラック から入力される荷重(反力)は生じず,サポート自身の慣性力による応力のみが発生す る。短辺方向(Y方向)の地震の場合,サポートには、ラックからの反力と自身の慣性 力による応力が発生する。サポート自身の慣性力は、いずれの方向の地震においても、 ラックからの反力と比較して小さい。

したがって、サポートの応力は、水平1方向(短辺方向(Y方向))の地震力の応答 が支配的であり、他の水平方向の地震力による応答は小さいため、水平2方向入力の影響は軽微である。

図 3-1 制御棒・破損燃料貯蔵ラック設置状態

- 4. 水平2方向同時加振の影響評価(円筒形容器)
- 4.1 はじめに

本項は,水平地震動が水平2方向に作用した場合の円筒形容器に対する影響を FEM で 確認した結果をまとめたものである。

円筒形容器については、別紙4.1にて記載しているとおり、X 方向地震とY 方向地震 とでは最大応力点が異なるため、それぞれの地震による応力を組み合わせても影響軽微 としている。本項には、別紙4.1にて記載していることを解析にて確認することを目的 として、円筒形容器の FEM モデルを用いた解析を実施した結果を示す。ここで、本検討 は軸方向応力、周方向応力及びせん断応力の組合せに基づく胴の応力強さを対象とした ものである。

具体的な確認項目として,以下2点を確認した。

- ① X方向地震とY方向地震とで最大応力点が異なることの確認
- ② 最大応力点以外に、X方向地震とY方向地震による応力を組み合わせた場合に影響のあるような点があるかを確認
- 4.2 影響評価検討

評価検討モデル及び応力の定義について図 4-1 に示す。なお、応力については要素ご との局部座標系として図 4-1 に示すように定義する。検討方法を以下に示す。

- ・検討方法 : 水平地震力 1G を X 方向へ入力し、周方向の 0° 方向から 90° 方
 向にかけて応力分布を確認する。また、水平 1 方向地震による
 応力を用いて水平 2 方向地震による応力を評価する。
- ・検討モデル : たて置円筒形容器をシェル要素にてモデル化
- ・拘束点
 :容器基部を拘束
- ・荷重条件 : モデル座標の X 方向に水平地震力 1G を負荷
- •解析手法 :静的解析
- ・対象部位及び応力:容器基部における応力強さ
- ・水平2方向同時加振時の考慮方法
 組合せ係数法(最大応答の非同時性を考慮)
 SRSS法(最大応答の非同時性を考慮)

図 4-1 評価検討モデル及び各応力の定義

4.3 検討結果

4.3.1 軸方向応力σ_z

容器基部における水平地震時の軸方向応力コンター図を図 4-2 に示す。

この結果より,最大応力点は0°/180°位置に発生していることが分かる。円筒 形容器のため評価部位が円形の一様断面であることから,Y方向から水平地震力を 入力した場合においても,最大応力点は90°/270°位置に発生することは明白であ るため,水平方向地震動の入力方向により最大応力点は異なる。

また,表4-1にX方向,Y方向,2方向入力時の軸方向応力分布を示す。

中間部 (0°/90° 方向以外) において 2 方向入力時の影響が確認できる。なお, 組合せ係数法及び SRSS 法のそれぞれを用いた水平 2 方向入力時の応力 σ_{z,c}(θ)及 び σ_{z,s}(θ)は,水平 1 方向入力時の軸方向応力解析結果(X 方向入力時応力 σ_{z,X} (θ),Y 方向入力時応力 σ_{z,Y}(θ))により,以下のとおり算出する。 <組合せ係数法>

 $\sigma_{z,c}(\theta) = MAX (\sigma_{z,c(X)}(\theta), \sigma_{z,c(Y)}(\theta))$

ただし、 $\sigma_{z,c(X)}(\theta)$ は $\sigma_{z,X}(\theta)$ に1、 $\sigma_{z,Y}(\theta)$ に0.4の係数を乗じてX・Y方 向入力時それぞれの軸方向応力を組み合わせた応力、 $\sigma_{z,c(Y)}(\theta)$ は $\sigma_{z,Y}(\theta)$ に 1、 $\sigma_{z,X}(\theta)$ に0.4の係数を乗じてX・Y方向入力時それぞれの軸方向応力を組み合 わせた応力であり、以下のように表される。

 $\sigma_{z, c(X)}(\theta) = \sigma_{z, X}(\theta) + 0.4 \times \sigma_{z, Y}(\theta)$ $\sigma_{z, c(Y)}(\theta) = 0.4 \times \sigma_{z, X}(\theta) + \sigma_{z, Y}(\theta)$ <SRSS 法>

$$\sigma_{z,s}(\theta) = \sqrt{\sigma_{z,X}(\theta)^2 + \sigma_{z,Y}(\theta)^2}$$

図 4-2 水平地震時軸方向コンター図(X方向入力)

	X 方向入力時	Y 方向入力時	2 方向入力時応力(MPa)	
角度	応力 (MPa)	応力 (MPa)	組合せ係数法	SRSS 法
	$\sigma_{z,X}(\theta)$	$\sigma_{\rm z,Y}(\theta)$	σ _{z,c} (θ)	$\sigma_{z,s}(\theta)$
			12. 28	
0° 方向	12.28	0.00	$\sigma_{z, c(X)}(0^{\circ}) = 12.28 \times 1 + 0 \times 0.4 = 12.28$	12.28
			$\sigma_{z,c(Y)}(0^{\circ}) = 12.28 \times 0.4 + 0 \times 1 = 4.91$	
			13. 22	
22.5°方向	11.34	4.70	$\sigma_{z, c(X)}(22.5^{\circ}) = 11.34 \times 1 + 4.70 \times 0.4 = 13.22$	12.28
			$\sigma_{z, c(Y)}(22.5^{\circ}) = 11.34 \times 0.4 + 4.70 \times 1 = 9.24$	
			12. 15	
45° 方向	8.68	8.68	$\sigma_{z, c(X)}(45^{\circ}) = 8.68 \times 1 + 8.68 \times 0.4 = 12.15$	12.28
			$\sigma_{z, c(Y)}(45^{\circ}) = 8.68 \times 0.4 + 8.68 \times 1 = 12.15$	
			13. 22	
67.5°方向	4.70	11.34	$\sigma_{z, c(X)}(67.5^{\circ}) = 4.70 \times 1 + 11.34 \times 0.4 = 9.24$	12.28
			$\sigma_{z,c(Y)}(67.5^{\circ}) = 4.70 \times 0.4 + 11.34 \times 1 = 13.22$	
			12. 28	
90°方向	0.00	12.28	$\sigma_{z,c(X)}(90^{\circ}) = 0 \times 1 + 12.28 \times 0.4 = 4.91$	12.28
			$\sigma_{z, c(Y)}(90^{\circ}) = 0 \times 0.4 + 12.28 \times 1 = 12.28$	

	表	4 - 1	水平地震時の軸方向応力分布
--	---	-------	---------------

4.3.2 周方向応力σ。

容器基部における水平地震時の周方向応力コンター図を図4-3に、周方向応力分 布を表4-2に示す。軸方向応力同様に最大応力点は0°/180°位置に発生してお り、最大応力点が異なることについて確認できる。

また,軸方向応力と同様に中間部(0°/90°方向以外)において2方向入力時の 影響が確認できる。なお,組合せ係数法及びSRSS法のそれぞれを用いた水平2方向 入力時の応力 $\sigma_{\phi,c}(\theta)$ 及び $\sigma_{\phi,s}(\theta)$ は,水平1方向入力時の周方向応力解析結 果(X方向入力時応力 $\sigma_{\phi,x}(\theta)$,Y方向入力時応力 $\sigma_{\phi,y}(\theta)$)により,以下のと おり算出する。

<組合せ係数法>

 $\sigma_{\phi,c}(\theta) = MAX (\sigma_{\phi,c(X)}(\theta), \sigma_{\phi,c(Y)}(\theta))$

ただし、 $\sigma_{\phi,x}(x)(\theta)$ は $\sigma_{\phi,x}(\theta)$ に1、 $\sigma_{\phi,y}(\theta)$ に0.4の係数を乗じてX・Y 方向入力時それぞれの周方向応力を組み合わせた応力、 $\sigma_{\phi,x}(\theta)$ は $\sigma_{\phi,y}(\theta)$ に1、 $\sigma_{\phi,x}(\theta)$ に0.4の係数を乗じてX・Y方向入力時それぞれの応力を組み合わ せた応力であり、以下のように表される。

 $\sigma_{\phi,c(X)}(\theta) = \sigma_{\phi,X}(\theta) + 0.4 \times \sigma_{\phi,Y}(\theta)$ $\sigma_{\phi,c(Y)}(\theta) = 0.4 \times \sigma_{\phi,X}(\theta) + \sigma_{\phi,Y}(\theta)$

<SRSS 法>

$$\sigma_{\phi,s}(\theta) = \sqrt{\sigma_{\phi,X}(\theta)^2 + \sigma_{\phi,Y}(\theta)^2}$$

図 4-3 水平地震時周方向応力コンター図(X方向入力)

	X 方向入力時	Y 方向入力時	2 方向入力時応力	(MPa)
角度	応力 (MPa)	応力 (MPa)	組合せ係数法	SRSS 法
	$\sigma_{\phi,X}(\theta)$	$\sigma_{\phi,Y}(\theta)$	$\sigma_{\phi,c}(\theta)$	$\sigma_{\phi,s}(\theta)$
			3.54	
0° 方向	3.54	0.00	$\sigma_{\phi, c(X)}(0^{\circ}) = 3.54$	3.54
			$\sigma_{\phi, c(Y)}(0^{\circ}) = 1.42$	
			3.81	
22.5° 方向	3.27	1.35	$\sigma_{\phi, c(X)}(22.5^{\circ}) = 3.81$	3.54
			$\sigma_{\phi, c(Y)}(22.5^{\circ}) = 2.66$	
			3.50	
45°方向	2.50	2.50	$\sigma_{\phi, c(X)}(45^{\circ}) = 3.50$	3.54
			$\sigma_{\phi, c(Y)}(45^{\circ}) = 3.50$	
			3.81	
67.5°方向	1.35	3.27	$\sigma_{\phi, c(X)}(67.5^{\circ}) = 2.66$	3.54
			$\sigma_{\phi, c(Y)}(67.5^{\circ}) = 3.81$	
			3.54	
90°方向	0.00	3.54	$\sigma_{\phi, c(X)}(90^{\circ}) = 1.42$	3.54
			$\sigma_{\phi, c(Y)}(90^{\circ}) = 3.54$	

表 4-2 水平地震時の周方向応力分布

4.3.3 せん断応力τ

容器基部における水平地震時のせん断応力コンター図を図4-4に示し、せん断応 力分布を表4-3に示す。せん断応力は軸方向及び周方向応力とは異なり、最大応力 は90°/270°位置に生じているが、最大応力と最小応力の生じる点が回転している のみで応力の傾向として最大応力点が異なることについて確認できる。

また,軸方向応力,周方向応力と同様に中間部(0°/90°方向以外)において2 方向入力時の影響が確認できる。なお,組合せ係数法及びSRSS法のそれぞれを用い た水平2方向入力時の応力 $\tau_{c}(\theta)$ 及び $\tau_{s}(\theta)$ は,水平1方向入力時のせん断応力 解析結果(X方向入力時応力 $\tau_{x}(\theta)$,Y方向入力時応力 $\tau_{y}(\theta)$)により,以下の とおり算出する。

<組合せ係数法>

 $\tau_{c}(\theta) = MAX (\tau_{c(X)}(\theta), \tau_{c(Y)}(\theta))$

ただし、 $\tau_{o(X)}(\theta)$ は $\tau_{X}(\theta)$ に1、 $\tau_{Y}(\theta)$ に0.4の係数を乗じてX・Y方向入 力時それぞれのせん断応力を組み合わせた応力、 $\tau_{o(Y)}(\theta)$ は $\tau_{oY}(\theta)$ に1、 $\tau_{X}(\theta)$ に0.4の係数を乗じてX・Y方向入力時それぞれのせん断応力を組み合わせた応 力であり、以下のように表される。

 $\tau_{c(X)}(\theta) = \tau_{X}(\theta) + 0.4 \times \tau_{Y}(\theta)$ $\tau_{c(Y)}(\theta) = 0.4 \times \tau_{X}(\theta) + \tau_{Y}(\theta)$

<SRSS 法>

$$\tau_{s}(\theta) = \sqrt{\tau_{X}(\theta)^{2} + \tau_{Y}(\theta)^{2}}$$

図 4-4 水平地震時せん断応力コンター図(X方向入力)

	X 方向入力時	Y 方向入力時	2 方向入力時応力	(MPa)
角度	応力 (MPa)	応力 (MPa)	組合せ係数法	SRSS 法
	au x ($ heta$)	au Y ($ heta$)	$ au$ $_{ m c}$ ($ heta$)	$ au$ $_{\rm s}$ ($ heta$)
			2.70	
0° 方向	0.00	2.70	$\tau_{c(X)}(0^{\circ}) = 1.08$	2.70
			$\tau_{\rm c (Y)}(0^{\circ}) = 2.70$	
			2.91	
22.5°方向	1.03	2.49	$\tau_{\rm c(x)}(22.5^{\circ})=2.03$	2.70
			$\tau_{\rm c(Y)}(22.5^{\circ})=2.91$	
			2.67	
45°方向	1.91	1.91	$\tau_{\rm c(x)}(45^{\circ})=2.67$	2.70
			$\tau_{\rm c(Y)}(45^{\circ})=2.67$	
			2.91	
67.5°方向	2.49	1.03	$\tau_{c(x)}(67.5^{\circ})=2.91$	2.70
			$\tau_{c(Y)}(67.5^{\circ})=2.03$	
			2.70	
90°方向	2.70	0.00	$\tau_{\rm c(x)}(90^{\circ}) = 2.70$	2.70
			$\tau_{\rm c (Y)}(90^{\circ}) = 1.08$	

表 4-3 水平地震時のせん断応力分布

4.3.4 応力強さσ

胴の応力強さ σ は,表4-1~表4-3に示したX方向,Y方向,2方向入力時それ ぞれの軸方向応力 σ_z ,周方向応力 σ_o 及びせん断応力 τ を組み合わせ,耐震評価結 果として用いている。

<水平1方向のうち、X方向入力時の組合せ応力強さ $\sigma_{x}(\theta)$ > 主応力 $\sigma_{1,x}(\theta), \sigma_{2,x}(\theta), \sigma_{3,x}(\theta)$ は以下のとおりに表される。 $\sigma_{1,x}(\theta) = \frac{1}{2} \left(\sigma_{z,x}(\theta) + \sigma_{\phi,x}(\theta) + \sqrt{(\sigma_{z,x}(\theta) - \sigma_{\phi,x}(\theta))^{2} + 4\tau_{x}(\theta)^{2}} \right)$

$$\sigma_{2, X}(\theta) = \frac{1}{2} \left(\sigma_{z, X}(\theta) + \sigma_{\phi, X}(\theta) + \sqrt{(\sigma_{z, X}(\theta) - \sigma_{\phi, X}(\theta))^{2} + 4\tau_{X}(\theta)^{2}} \right)$$

$$\sigma_{3, X}(\theta) = 0$$

各主応力により,応力強さ
$$\sigma_{x}(\theta)$$
は以下のとおりとなる。
 $\sigma_{x}(\theta) = MAX \left(\left| \sigma_{1, X}(\theta) - \sigma_{2, X}(\theta) \right|, \left| \sigma_{2, X}(\theta) - \sigma_{3, X}(\theta) \right|, \right|$
 $\left| \sigma_{3, X}(\theta) - \sigma_{1, X}(\theta) \right|$

なお、Y 方向入力時の応力強さ $\sigma_{Y}(\theta)$ は、上記の式における X を Y に置き換えた式 により算出する。

ここで $\theta = 0^{\circ}$ の場合,表 4-1より $\sigma_{z, X}(0^{\circ}) = 12.28$,表 4-2より $\sigma_{\phi, X}(0^{\circ}) = 3.54$,表 4-3より $\tau_X(0^{\circ}) = 0$ であるため,

$$\sigma_{1, X}(0^{\circ}) = \frac{1}{2} \left(12.28 + 3.54 + \sqrt{(12.28 - 3.54)^{2} + 4(0.00)^{2}} \right) = 12.28$$

$$\sigma_{2, X}(0^{\circ}) = \frac{1}{2} \left(12.28 + 3.54 - \sqrt{(12.28 - 3.54)^{2} + 4(0.00)^{2}} \right) = 3.54$$

$$\sigma_{3, X}(0^{\circ}) = 0$$

$$\geq t_{X} \mathfrak{Z}_{\circ} \quad \bigcup t_{Z} \mathfrak{Z}_{\circ} \mathfrak{T},$$

$$\sigma_{X}(0^{\circ}) = \mathsf{MAX}(|12.28 - 3.54|, |3.54 - 0.00|, |0.00 - 12.28|) = 12.28$$

<組合せ係数法による水平 2 方向同時加振を考慮した応力強さ $\sigma_{\rm o}(\theta)$ > $\sigma_{\rm o}(\theta)$ の算出フローを図 4-5 に示す。

図 4-5 組合せ係数法による応力強さ算出フロー

X方向入力時の応力に1, Y方向入力時の応力に0.4を乗じて組み合わせた水平2 方向同時加振を考慮した応力は以下のとおりとなる。

$$\sigma_{z, c(X)}(\theta) = \sigma_{z, X}(\theta) + 0.4 \times \sigma_{z, Y}(\theta)$$

$$\sigma_{\phi, c(X)}(\theta) = \sigma_{\phi, X}(\theta) + 0.4 \times \sigma_{\phi, Y}(\theta)$$

$$\tau_{c(X)}(\theta) = \tau_{X}(\theta) + 0.4 \times \tau_{Y}(\theta)$$

水平 2 方向同時加振を考慮した各応力により,主応力 $\sigma_{1,c(X)}(\theta)$, $\sigma_{2,c(X)}(\theta)$, $\sigma_{3,c(X)}(\theta)$ は以下のとおりに表される。

$$\sigma_{1, c(X)}(\theta) = \frac{1}{2} \left(\sigma_{z,c(X)}(\theta) + \sigma_{\phi,c(X)}(\theta) + \frac{1}{2} \left(\sigma_{z,c(X)}(\theta) - \sigma_{\phi,c(X)}(\theta) \right)^{2} + 4\tau_{c(X)}(\theta)^{2} \right)$$

$$\sigma_{2, c(X)}(\theta) = \frac{1}{2} \left(\sigma_{z,c(X)}(\theta) + \sigma_{\phi,c(X)}(\theta) + \frac{1}{2} \left(\sigma_{z,c(X)}(\theta) - \sigma_{\phi,c(X)}(\theta) \right)^{2} + 4\tau_{c(X)}(\theta)^{2} \right)$$

$$\sigma_{3, c(X)}(\theta) = 0$$

0 5, C (A) (0) 0

各主応力により,応力強さ
$$\sigma_{c(X)}(\theta)$$
は以下のとおりとなる。
 $\sigma_{c(X)}(\theta) = MAX \left(\left| \sigma_{1,c(X)}(\theta) - \sigma_{2,c(X)}(\theta) \right|, \left| \sigma_{2,c(X)}(\theta) - \sigma_{3,c(X)}(\theta) \right|, \left| \sigma_{3,c(X)}(\theta) - \sigma_{1,c(X)}(\theta) \right| \right)$

同様に、Y 方向入力時の応力に 1、X 方向入力時の応力に 0.4 を乗じて組み合わせた 水平 2 方向同時加振を考慮した応力により、応力強さ $\sigma_{c(Y)}(\theta)$ を算出する。 この応力強さ $\sigma_{c(X)}(\theta)$ と $\sigma_{c(Y)}(\theta)$ を比較し、大きい値を $\sigma_{c}(\theta)$ とする。 $\sigma_{c}(\theta) = MAX (\sigma_{c(X)}(\theta), \sigma_{c(Y)}(\theta))$

ここで $\theta = 0^{\circ}$ の場合,表4-1より $\sigma_{z,c(X)}(0^{\circ}) = 12.28$,表4-2より $\sigma_{\phi,c}(X)(0^{\circ}) = 3.54$,表4-3より $\tau_{c(X)}(0^{\circ}) = 1.08$ であるため,

$$\sigma_{1, c(X)}(0^{\circ}) = \frac{1}{2} \left(12.28 + 3.54 + \sqrt{(12.28 - 3.54)^2 + 4 \times (1.08)^2} \right) = 12.41$$

$$\sigma_{2, c(X)}(0^{\circ}) = \frac{1}{2} \left(12.28 + 3.54 - \sqrt{(12.28 - 3.54)^2 + 4 \times (1.08)^2} \right) = 3.41$$

$$\sigma_{3, c(X)}(0^{\circ}) = 0$$

$$\text{となる。 したがって, 応力強さ \sigma_{c(X)}(0^{\circ}) は以下のように算出される。$$

$$\sigma_{c(X)}(0^{\circ}) = \text{MAX}(|12.41 - 3.41|, |3.41 - 0.00|, |0.00 - 12.41|) = 12.41$$

同様に,表4-1より $\sigma_{z,c(Y)}(0^{\circ})=4.91$,表4-2より $\sigma_{\phi,c(Y)}(0^{\circ})=1.42$,表4-3より $\tau_{c(Y)}(0^{\circ})=2.70$ であるため,

$$\sigma_{1, c}(Y)(0^{\circ}) = \frac{1}{2} \left(4.91 + 1.42 + \sqrt{(4.91 - 1.42)^2 + 4 \times (2.70)^2} \right) = 6.38$$

$$\sigma_{2, c}(Y)(0^{\circ}) = \frac{1}{2} \left(4.91 + 1.42 - \sqrt{(4.91 - 1.42)^2 + 4 \times (2.70)^2} \right) = -0.05$$

 $\sigma_{3, c(Y)}(0^{\circ}) = 0$

となる。したがって、応力強さ
$$\sigma_{c(Y)}(0^{\circ})$$
は以下のように算出される。
 $\sigma_{c(Y)}(0^{\circ}) = MAX(|6.38-(-0.05)|, |-0.05-0.00|, |0.00-6.38|) = 6.43$

応力強さ $\sigma_{c(X)}(0^{\circ})$ と $\sigma_{c(Y)}(0^{\circ})$ の比較により,組合せ係数法による水平2方 向同時加振を考慮した応力強さ $\sigma_{c}(0^{\circ})$ は,

 $\sigma_{\rm c}(0^{\circ}) =$ MAX(12.41, 6.43) = 12.41 となる。

<SRSS 法による水平 2 方向同時加振を考慮した応力強さ $\sigma_{s}(\theta)$ > 主応力 $\sigma_{1,s}(\theta), \sigma_{2,s}(\theta), \sigma_{3,s}(\theta)$ は以下のとおりに表される。

$$\sigma_{1,s}(\theta) = \frac{1}{2} \left(\sigma_{z,s}(\theta) + \sigma_{\phi,s}(\theta) + \sqrt{\left(\sigma_{z,s}(\theta) - \sigma_{\phi,s}(\theta) \right)^{2} + 4\tau_{s}(\theta)^{2}} \right)$$

$$\sigma_{2,s}(\theta) = \frac{1}{2} \left(\sigma_{z,s}(\theta) + \sigma_{\phi,s}(\theta) - \sqrt{\left(\sigma_{z,s}(\theta) - \sigma_{\phi,s}(\theta) \right)^{2} + 4\tau_{s}(\theta)^{2}} \right)$$

$$\sigma_{3,s}(\theta) = 0$$

各主応力により、応力強さ $\sigma_{s}(\theta)$ は以下のとおりとなる。 $\sigma_{s}(\theta) = MAX(|\sigma_{1, s}(\theta) - \sigma_{2, s}(\theta)|, |\sigma_{2, s}(\theta) - \sigma_{3, s}(\theta)|, |\sigma_{3, s}(\theta) - \sigma_{1, s}(\theta)|)$

ここで $\theta = 0^{\circ}$ の場合には、表 4-1より $\sigma_{z,s}(0^{\circ}) = 12.28$ 、表 4-2より $\sigma_{\phi,s}(0^{\circ}) = 3.54$ 、表 4-3より $\tau_s(0^{\circ}) = 2.70$ であるため、

$$\sigma_{1, s} (0^{\circ}) = \frac{1}{2} \left(12.28 + 3.54 + \sqrt{(12.28 - 3.54)^2 + 4 \times (2.70)^2} \right) = 13.05$$

$$\sigma_{2, s} (0^{\circ}) = \frac{1}{2} \left(12.28 + 3.54 - \sqrt{(12.28 - 3.54)^2 + 4 \times (2.70)^2} \right) = 2.77$$

$$\sigma_{3, s} (0^{\circ}) = 0$$

となる。したがって,

 $\sigma_{s}(0^{\circ}) = MAX(|13.05-2.77|, |2.77-0.00|, |0.00-13.05|) = 13.05$

 $\theta = 0^{\circ}$ の場合に SRSS 法,組合せ係数法を用いて算出した応力強さを表 4-4 にまとめる。

			<u> 女 4 - 4 onoo 存, 附口 5 下数存で 1</u>		
	X方向	Y方向	th soas	和合地	 子孫教法
	入力時	入力時	H) CONC	$1.0 \times X + 0.4 \times Y$	$0.4 \times X + 1.0 \times Y$
	06 61		$(12.28^2 + 0.00^2) =$	$12.28 \times 1.0 + 0.00 \times 0.4 =$	12. $28 \times 0.4 + 0.00 \times 0.1 =$
0 2 (0)	12.20	0. 00	12.28	12.28	4.91
	2 27		$(3.54^2+0.00^2) =$	$3.54 \times 1.0 + 0.00 \times 0.4 =$	$3.54 \times 0.4 + 0.00 \times 0.1 =$
0 0 0	0. 04	0.00	3.54	3.54	1.42
(9) -	00 0	02 6	$(0.\ 00^2 + 2.\ 70^2) =$	$0.\ 00 \times 1.\ 0+2.\ 70 \times 0.\ 4=$	$0.\ 00 \times 0.\ 4+2.\ 70 \times 0.\ 1=$
())	· · ·	7.10	2.70	1.08	2.70
			MAX (13. 05-2. 77 ,	MAX(12.41-3.41 ,	MAX (6. 38-(-0. 05) ,
~ (0)	I	I	[2, 77-0, 00], [0, 00-13, 05]) =	[3.41-0.00], [0.00-12.41]) =	[-0.05-0.00], [0.00-6.38] =
(0)0			13.05	12.41	6.43
				MAX(12.41,	6, 43) = 12, 41
注:本表記載(の数値は計算	(例を示すもの	のであり、実際の評価とは桁数処理の	関係上、一致しないことがある。	

表 4-4 SRSS 法, 組合せ係数法を用いて算出した応力強さ(θ = 0°)

別紙 4.4-22 **93**

	X方向入力時	Y方向入力時	2 方向入力時応	、力強さ(MPa)
角度	応力強さ (MPa) σ X (θ)	応力強さ (MPa) σ Y(θ)	組合せ係数法 σ c (θ)	SRSS 法 σ s(θ)
0° 方向	12.28	5.40	12.41	13.04
22.5°方向	11.47	6.03	13.64	13.04
45° 方向	9.22	9.22	12.91	13.04
67.5°方向	6.03	11. 47	13.64	13.04
90° 方向	5.40	12.28	12.41	13.04

表 4-5 水平地震時の応力強さ分布

図 4-6 水平地震時応力強さ分布図

応力強さは, SRSS 法では全方向において一定であるのに対し,組合せ係数法では 24.75°/65.25°方向に2つのピークを持つ分布となった。応力強さは0°/45° /90°方向付近では, SRSS 法の方が組合せ係数法に比べ大きな値となるのに対し て,組合せ係数法がピークを持つ24.75°/65.25°方向付近では SRSS 法を約5% 上回る結果となった。

水平2方向入力時のSRSS法による最大応力強さは水平1方向入力時の最大応力強 さに対して6%上回る程度であり(表4-6参照),水平2方向による影響は軽微と いえる。一方,水平2方向入力時の組合せ係数法による最大応力強さについては, 水平1方向入力時の最大応力強さに対して11%上回る結果となった。これは水平2 方向の影響軽微と判断する基準(応力の増分が1割)を超えているが、本検討にお いては水平地震力のみを考慮しており、実際の耐震評価においては水平地震力以外 に自重、内圧及び鉛直地震力等を考慮して評価を実施することから、水平2方向を 考慮した際の応力強さの増分は小さくなる。このため、水平2方向による影響は軽 微であると考えられる。

		最大応力強さ	水平2方向/水平1方向
		(MPa)	最大応力強さ比
水平1方向入力		12.28	—
水平2方向	SRSS 法	13.05	1.06
入力	組合せ係数法	13.67	1.11

表 4-6 水平地震時の最大応力強さ及び水平 2 方向による影響

- 5. 水平2方向同時加振の影響評価(応答軸が明確である設備)
- 5.1 はじめに

本項は、応答軸が明確である設備について、水平2方向の地震力を考慮した場合においても設備の有する耐震性に対して影響軽微であることを説明するものである。

5.2 設備の有する耐震性に対して影響軽微であることの説明

設備の応答軸(弱軸・強軸)の方向,あるいは厳しい応力が発生する向きが明確な設備 (以下「応答軸が明確な設備」という。)があり,このような設備については従来設計手 法として,解析時に NS・EW 方向を包絡した地震力(床応答スペクトルなど)を設備の X 方向及び Y 方向から入力し,最大応答で評価する等,保守的な評価を実施している。この ような応答軸が明確な設備については,水平 2 方向の地震力による従来設計手法への影 響が懸念されるようなことはないと考える。その理由を以下に示す。

応答軸が明確な設備については、従来設計手法においても建物・構築物のNS・EW方向の応答を包絡した地震力を設備の各応答軸(図 5-1 X, Y 方向)へ入力しているため、 設備にとって厳しい方向となる弱軸方向への入力を用いた評価を実施している。

水平2方向の地震力を想定した場合,2方向の地震力が合成されるとすると,最大値が 同時に発生する場合,最大で√2倍の大きさの入力となることが考えられるが,応答軸が 明確な設備は対角方向へ転倒し難く,設備の応答軸方向へ応答し易いため,応答はそれぞ れの応答軸方向(弱軸/強軸)に分解され,強軸側の応答は十分に小さくなる。また,強 軸方向に比べて転倒し易い弱軸方向が,最も厳しい条件となるため,実質的には弱軸方向 に1方向を入力した場合の応答レベルと同等となる。各方向における最大値の生起時刻 の非同時性を考慮すると,さらにその影響は小さくなり,弱軸1方向入力による評価と大 きく変わらない結果となる。

設計手法として NS・EW 方向を包絡した地震力(床応答スペクトルなど)を入力して保 守的な評価を実施していることも考えると,応答軸が明確な設備については,水平2方向 の地震力を考慮した場合においても影響軽微であるといえる。

図 5-1 水平 2 方向同時加振時の応答イメージ

上述の考え方は,設備の応答軸の方向と入力の方向の関係によるものであることから, 部位・応力分類によらず,各設備の耐震評価における入力方法によって影響軽微か否かを 判断できると考える。表 5-1 に応答軸が明確な設備の例を示す。

設備	構造図	説明	備考
横置円筒形容器		横置円筒形容器は矩 形形状の支持脚によ り支持されており強 軸と弱軸の関係が明 確である。この応答軸 の方向に地震力を入 力した評価を実施し ている。	NS・EW 包絡 地震力を用 いている。
空調ファン,空調 ユニット,横形ポ ンプ, 電気盤 (ボ ルト),ディーゼル 発電機 (ボルト) 等	転倒方向	空調ファン等は矩形 に配置されたボルト にて支持されている。 対角方向の剛性が高 く,水平地震力に対し て斜め方向へ転倒す ることなく,弱軸/強 軸方向にしか応答せ ず,その方向に地震を 入力した評価を実施 している。	NS・EW 包絡 地震力を用 いている。

表 5-1 応答軸が明確な設備について

- 6. 水平2方向同時加振の影響評価(矩形配置されたボルト)
- 6.1 はじめに

本項は,水平2方向に地震力が作用した場合の矩形配置されたボルトに対する影響検 討結果をまとめたものである。強軸・弱軸が明確なものについては,弱軸方向に応答し水 平2方向地震力による影響が軽微であるため,機器の形状を正方形として検討を行った。

6.2 引張応力への影響

水平1方向に地震力が作用する場合と水平2方向に地震力が作用する場合のボルトへの引張力の違いを考察する。なお、簡単のため、機器の振動による影響は考えないこととする。

(1) 水平1方向に地震力が作用する場合

図 6-1 のように X 方向に震度 C_Hが与えられる場合を考慮する。

図 6-1 水平1 方向の地震力による応答(概要)

この場合,対象としている系の重心に作用する水平方向の力 F_Hは,

$$F_{H} = m \mathbf{g} C_{H}$$

と表せ、F_HによりボルトB, Dの中心を結んだ軸を中心に転倒モーメントが生じる。 この転倒モーメントはボルトA, Cにより負担される。

このとき、系の重心に生じる力は、図 6-2 に示すとおりである。

機器が転倒を起こさない場合,転倒支点まわりの転倒モーメントとボルトからの反力 が釣り合うため,水平方向地震動によりボルトが受ける全引張力F_bは,

$$F_{b} = \frac{1}{L} (m \mathbf{g} C_{H} h)$$

となる。

ボルトに発生する引張応力 σ_b は全引張力を断面積 A_b のボルト n_f 本で受けると考え,

$$\sigma_{b} = \frac{F_{b}}{n_{f}A_{b}}$$

である。水平1方向地震力を考慮する場合、ボルトA、Cで全引張力を負担することから、 $n_f = 2$ であるため、ボルトに発生する引張応力 σ_b は、

$$\sigma_{b} = \frac{F_{b}}{2A_{b}} = \frac{m \mathbf{g} C_{H} h}{2A_{b} L}$$

となる。

図 6-2 水平1 方向の地震力による力

(2) 水平2方向に地震力が作用する場合

図 6-3 のように X 方向と Y 方向にそれぞれ震度 C_x , C_y が作用する場合を考慮する。 なお、本検討においては、X 方向と Y 方向に同時に最大震度が作用する可能性は低いと 考え、X 方向の震度と Y 方向の震度を1:0.4($0.4C_x = C_y$) と仮定する。

図 6-3 水平 2 方向の地震力による応答(概要)

このとき、 $\theta = \tan^{-1}(4/10)$ であることから、水平方向の震度C_{XY}は、 C_{XY}=C_Xcos θ +C_Ycos ϕ = $\frac{5}{\sqrt{29}}$ C_X+0.4× $\frac{2}{\sqrt{29}}$ C_X

$$=\frac{5.8}{\sqrt{29}} C_{\rm X}$$

と表せる。このとき、対象としている系の重心に作用する水平方向の力 F_Hは、

$$F_{H} = m g C_{XY} = m g \frac{5.8}{\sqrt{29}} C_{X}$$

となる。このF_Hにより,転倒軸を中心に転倒モーメントが生じ,ボルトA,B,C により負担される。

水平 2 方向の地震力を受け対角方向に応答する場合,各ボルトにかかる引張力を F_A, F_B, F_cとし図 7-4 に示すようにボルトDの中心をとおり水平方向の震度C_{XY} と直交する直線を転倒軸とすると,ボルトA, B, Cに発生する引張力は転倒軸からの 距離に比例するため,

$$F_A : F_B : F_C = 7 : 2 : 5$$

であり、転倒軸まわりのボルトの軸力により発生するモーメントMは、

$$M = \frac{7}{\sqrt{29}} L F_{A} + \frac{2}{\sqrt{29}} L F_{B} + \frac{5}{\sqrt{29}} L F_{C}$$
$$= \frac{7}{\sqrt{29}} L \times F_{A} + \frac{2}{\sqrt{29}} L \times \frac{2}{7} F_{A} + \frac{5}{\sqrt{29}} L \times \frac{5}{7} F_{A}$$
$$= \frac{78}{7\sqrt{29}} L F_{A}$$

である。

転倒しない場合,ボルトの軸力により発生する転倒軸まわりのモーメントMと,水平 方向地震力によるモーメントが釣り合っているので,

m **g** C_{XY} h =
$$\frac{78}{7\sqrt{29}}$$
 L F_A

であり,引張力F_Aは以下のとおりとなる。

$$F_{A} = \frac{7\sqrt{29}}{78 L} (m g C_{XY} h)$$

以上より,最も発生応力の大きいボルトAに発生する応力σ_b'は,

$$\sigma_{\rm b}' = \frac{F_{\rm A}}{A_{\rm b}} = \frac{7\sqrt{29}}{78A_{\rm b}L} ({\rm m} \ {\rm g} \ {\rm C}_{\rm XY} \, {\rm h})$$

であり、水平1方向地震動を考慮した場合のボルトにかかる応力σ b

$$\sigma_{b} = \frac{F_{A}}{2A_{b}} = \frac{1}{2A_{b}L} (m \mathbf{g} C_{H} h)$$

に対して、震度C_{XY}=
$$\frac{5.8}{\sqrt{29}}$$
C_Xであることから、
 $\sigma_{\rm b}' = \frac{7\sqrt{29}}{39 \times 2A_{\rm b}L} (m \, \mathbf{g} \, C_{\rm XY} \, \mathbf{h})$
 $= \frac{7\sqrt{29}}{39 \times 2A_{\rm b}L} \times \frac{5.8}{\sqrt{29}} \times (m \, \mathbf{g} \, C_{\rm X} \, \mathbf{h})$
= 1.04 $\sigma_{\rm b}$

となる。したがって、水平2方向地震を考慮した場合、ボルトに発生する引張応力は 増加するが、その影響は軽微である。

図 6-4 対角方向に応答する場合の転倒軸からの距離

6.3 せん断応力への影響

せん断力は全基礎ボルト断面で負担するが、全ボルトに対するせん断力Q_bは、

$$Q_b = F_H$$

であり、せん断応力 τ b は断面積 A b のボルト全本数 n でせん断力 Q b を受けるため、

$$\tau_{b} = \frac{Q_{b}}{n A_{b}}$$

となる。

水平1方向の地震力を考慮した場合のせん断力Q_b及び水平2方向の地震力を考慮した 場合のせん断力Q_b'はC_{XY}= $\frac{5.8}{\sqrt{29}}$ C_xであるため,

Q b = m g C x
Q b' = m g C x y = m g
$$\frac{5.8}{\sqrt{29}}$$
 C x = 1.08m g C x

となる。水平1方向及び水平2方向地震時に断面積A_b及びボルト全本数nは変わらな いため、水平2方向地震を考慮した場合、ボルトに発生するせん断応力は増加するが、そ の影響は軽微である。

- 7. 水平2方向同時加振の影響評価(円周配置されたボルト)
- 7.1 はじめに

本項は,水平2方向に地震力が作用した場合の円周配置されたボルトに対する影響検 討結果をまとめたものである。

7.2 引張応力への影響

水平1方向に地震力が作用する場合と水平2方向に地震力が作用する場合のボルトへの引張力の違いを考察する。なお、簡単のため、機器の振動による影響は考えないこととする。

(1) 水平1方向に地震力が作用する場合

図 7-1 のように水平 1 方向の震度 C_{H} = MAX (C_{X} , C_{Y}) が与えられる場合を考慮 する。ここで機器の質量をm,重力加速度をgとする。

 $C_{X} > C_{Y}$ の場合,対象としている系の重心に作用する水平方向の力 F_{H} は,

と表せ、F_Hにより最外列のボルトを通る転倒軸を中心に転倒モーメントが生じ

る。このとき、系の重心に生じる力は、図7-2に示すとおりである。

F_Hにより生じる転倒モーメントMは

$$M = F_H h = m g C_X h$$

となり,各ボルトに加わる引張力の分布を図8-3のとおりとしたとき,引張力が最 大となる転倒軸から最も遠いボルトに加わる引張力は,

$$F_1 = \frac{L_1}{\sum_{i=1}^{n} L_i^2} M = \frac{L_1}{\sum_{i=1}^{n} L_i^2} m g C_X h$$

である。

ボルトに発生する引張応力σ bは引張力を断面積Abのボルト1本で受けるため,

$$\sigma_{b} = \frac{F_{1}}{A_{b}} = \frac{L_{1}}{\sum_{i=1}^{n} L_{i}^{2}} \frac{m g C_{X} h}{A_{b}}$$

となる。

(2) 水平2方向に地震力が作用する場合

図 7-1 における水平方向震度 C_H について、水平 2 方向(X 方向及びY 方向)の震度 C_X , C_Y を組み合わせる場合を考慮する。なお、本検討においては、X 方向とY 方向に同時に最大震度が作用する可能性は低いと考え、X 方向の震度とY 方向の震度を 1:0.4(0.4 C_X = C_Y)と仮定する。

このとき、水平方向の震度は、 $C_{H} = \frac{5.8}{\sqrt{29}} C_{X} となり、対象としている系の重心に作用$ $する水平方向の力<math>F_{H}$ は、

$$F_{H} = m g C_{H} = m g \frac{5.8}{\sqrt{29}} C_{X}$$

と表せ、F_Hにより最外列のボルトを通る転倒軸を中心に転倒モーメントが生じる。このとき、系の重心に生じる力は、図 8-2 に示すとおりである。

FHにより生じる転倒モーメントMは

$$M = F_{H}h = m g \frac{5.8}{\sqrt{29}} C_{X}h$$

となり,各ボルトに加わる引張力の分布を第7-3図のとおりとしたとき,引張力が 最大となる転倒軸から最も遠いボルトに加わる引張力は,

$$F_{1} = \frac{L_{1}}{\sum_{i=1}^{n} L_{i}^{2}} M = \frac{L_{1}}{\sum_{i=1}^{n} L_{i}^{2}} g \frac{5.8}{\sqrt{29}} C_{X} h$$

である。

ボルトに発生する引張応力σb'は引張力を断面積Abのボルト1本で受けるため,

$$\sigma_{\rm b}' = \frac{F_{\rm 1}}{A_{\rm b}} = \frac{5.8}{\sqrt{29}} \frac{L_{\rm 1}}{\sum_{i=1}^{n} L_{i}^{2}} \frac{{\rm m}\,{\rm g}\,{\rm C}\,{\rm x}\,{\rm h}}{A_{\rm b}} = 1.08\,\sigma_{\rm b}$$

となる。したがって、水平2方向地震を考慮した場合、ボルトに発生する引張応力 は増加するが、その影響は軽微である。

7.3 せん断応力への影響

せん断力は全基礎ボルト断面で負担するが、全ボルトに対するせん断力Q_bは、

$$Q_{b} = F_{F}$$

であり、せん断応力 τ_b は断面積 A_b のボルト全本数 n でせん断力 Q_b を受けるため、

$$\tau_{b} = \frac{Q_{b}}{n A_{b}}$$

となる。

水平1方向の地震力を考慮した場合のせん断力Q_b及び水平2方向の地震力を考慮した場合のせん断力Q_b、は、水平2方向を組み合わせた水平方向震度 $C_{H} = \frac{5.8}{\sqrt{29}}C_{X}$ であるため、

$Q_{b} = m g C_{X}$

$$Q_{b}'=m g \frac{5.8}{\sqrt{29}} C_{X}=1.08m g C_{X}$$

となる。水平1方向及び水平2方向地震時に断面積A_b及びボルト全本数nは変わら ないため、水平2方向地震を考慮した場合、ボルトに発生するせん断応力は増加する が、その影響は軽微である。

図 7-1 水平方向の地震力による応答(概要)

図 7-3 ボルトに働く引張力

 水平2方向同時加振の影響評価(電気盤) 追而
- 9. 水平2方向同時加振の影響評価(動的機能維持)
- 9.1 はじめに

動的機器の機能維持評価における保守性の観点より,水平2方向同時入力を考慮した 場合の影響をまとめたものである。

9.2 機能維持評価法について

動的機器の機能維持は,動的地震力を適用し,試験による評価,解祈による評価によ り行う。試験による評価では実物モデル等の振動試験を,解析による評価では応力・変 形の解析結果を用いて,要求される安全機能が維持されることを確認する。

機種ごとの代表的な機器について、上記検討を実施した既往の試験・研究の成果から 機能確認済加速度(以下「At」という。)が定められ、これにより、地震動により生じる 加速度レベルが At より小さいことを確認することで、安全機能が維持されることを確認 できる。なお、この手法は全ての機器について、詳細評価を実施するまでもなく機能維 持を確認するための合理的な方法として確立された手法である。

9.3 機能維持確認済加速度の保守性

動的機器の At については、加振台の加振限界及び機器仕様の多様性等の理由から、本 来の機器の機能限界加速度ではなく、保守的な範囲内で定められている。その保守性に ついては、代表機器の At での詳細評価において、機能維持に必要な各部位*の裕度が十 分に高いことからも確認することができる。

注記*:動的機器の評価項目について

解析評価における動的機器の機能維持に必要な基本評価項目(部位)は,振動 特性試験により振動特性及び応答特性を把握し,機能試験の結果を踏まえ,異常 要因分祈に基づき抽出されている。前述のとおりAtは保守的に定められており, 地震応答加速度がAtを上回ったとしても,個別に当該機器の基本評価項目を解祈 評価することで,機器の健全性が確認できる。

9.4 水平2方向同時入力(鉛直方向含む)の影響について

水平2方向同時入力による動的機能維持評価については,影響有無を整理の上,NS方向EW方向の応答加速度をSRSSした結果,Atを満たしており耐震性に問題が無いことを確認することとしているが,保守的に水平1方向の応答加速度を√2倍したとしても,機能維持評価の保守性により,対象の動的機器の安全機能維持確認に問題はないと考えられる。

また,At は水平・鉛直の各方向に設定されるものであるが,水平・鉛直の相関が懸念 されるものは,水平・鉛直同時入力による解析評価により機能維持を確認した上で各方 向の加速度を設定している。そのため,水平・鉛直ごとの個別の評価とすることで問題 ない。 10. 水平2方向同時加振の影響評価(疲労評価)

疲労評価に用いる疲労累積係数は設計疲労線図に基づくため、一次+二次+ピーク応力 強さの増分と、疲労累積係数の増分が比例しない。そのため、水平2方向及び鉛直方向地 震力を考慮した場合の疲労評価への影響を定量的に確認することを目的とし、以下の設備 を対象に一次+二次+ピーク応力強さに水平2方向及び鉛直方向地震力を考慮した疲労評 価を行った。

- ・水平2方向の地震力の重畳による影響軽微,かつ1.1以上の裕度を有する設備(別紙
 4.1)
- ・水平2方向の地震力の重畳による影響あり(別紙4.1),かつ√2以上の裕度を有する設備(別紙4.2)

表 10-1 に示す評価結果のとおり、一次+二次+ピーク応力強さに水平2 方向及び鉛直 方向地震力を考慮した場合にも、設備が有する耐震性に影響がないことを確認した。

ここで、燃料集合体及びクラス1容器の耐震評価に用いる疲労累積係数は、一次+二次 +ピーク応力強さによる疲労累積係数と運転状態I、IIにおける疲労累積係数の和により 算定している。そのため、運転状態I、IIにおける疲労累積係数が支配的な設備について は、水平2方向及び鉛直方向地震力を考慮した場合であっても、疲労累積係数が水平1方 向及び鉛直方向地震力による疲労累積係数と同等となっている。

なお、一次+二次+ピーク応力強さについては、水平2方向及び鉛直方向地震力を考慮 すると、最大√2倍程度となる可能性がある。ここで、簡単に一次+二次+ピーク応力強 さが2倍になると仮定すれば、疲労評価に用いるJSMEに規定される設計疲労線図から求 まる許容繰返し回数は、その特性から最小でも1/10倍程度になる(図10-1参照)。一 方、設計で用いる許容繰返し回数については、設計用疲労線図が最適疲労線図に対して 20倍の余裕があることから、設計疲労線図上で許容繰返し回数が1/10倍程度となったと しても、設計上の余裕の中に収まることがわかる(図10-2参照)。

また,疲労評価に用いる地震による等価繰返し回数についても実際の繰返し回数に対し て余裕をもって設計上設定された回数である。

以上より,別紙4.1及び別紙4.2 では,疲労評価(一次+二次+ピーク応力強さ)も他 の応力分類と同様の整理で耐震性への影響を評価している。

図 10-1 応力 2 倍に対する設計用疲労線図における許容繰返し回数のイメージ図

図 10-2 最適疲労線図と設計用疲労線図のイメージ図

	- 5 21时及03四国20日地运入1	るも感して 文		
設備を発	<u> 雪花 / 田 - 卒77 / 守</u>	疲労累利	賃係数*	よでった向の状態士法年
政浦石 松		水平1方向	水平2方向	小十~刀回いろ悪刀在寺
燃料集合体	燃料被覆管	0. 012	0.044	水平 1 方向評価の繰返しピーク応力強さを√2 倍した繰返しピーク応力強さを適用。
円筒胴	円筒胴	0.005	0.005	水平1 方向評価に適用する荷重が水平2 方向を 考慮した荷重を包絡することを確認
	下鏡	0.009	0.009	
下鏡	下鏡と円筒部の接合部	0. 016	0.016	水平 1 方向評価に適用する荷重が水平 2 方向を 考慮した荷重を包絡することを確認
	原子炉圧力容器支持スカ ートと円筒胴の接合部	0.407	0.407	
四天軍者之	スタブチューブ	0. 187	0.187	水平1方向評価に適用する荷重が水平2方向を
即冲奔貝.迪九	ハウジング	0. 059	0. 059	考慮した荷重を包絡することを確認
原子炉中性子計装孔	原子炉中性子計装ハウジ ング	0. 963	0.963	水平1方向評価に適用する荷重が水平2方向を 考慮した荷重を包絡することを確認
原子炉圧力容器支持スカート	支持スカート	0. 037	0.037	水平1方向評価に適用する荷重が水平2方向を 考慮した荷重を包絡することを確認
非常用ディーゼル発電設備 A-ディーゼル燃料貯蔵タンク	胴板	0. 597	0.945	水平 2 方向及び鉛直方向の地震による応力を SKSS 法により組み合わせて算出した繰返しピ 一ク応力強さを適用
高圧炉心スプレイ系ディーゼル発 電設備ディーゼル燃料貯蔵タンク	胴板	0. 597	0.945	水平2方向及び鉛直方向の地震による応力を SKSS 法により組み合わせて算出した繰返しピ ーク応力強さを適用
注記*:燃料集合体及びクラス1容を	昂の疲労累積係数は,地震 重	動のみによる疲労	累積係数と運転	≅状態Ⅰ, Ⅱにおける疲労累積係数の和

、ドーレデープークホー語メの評価結果 ま 10-1 水 平 9 古向 及71約百 古向 地震 力 を 老虐 し ケー

別紙 4.4-41

112

- 11. 制御棒挿入性評価に対する水平2方向地震力の組合せ方法
- 11.1 はじめに

本資料は、制御棒挿入性評価において水平2方向の地震動が作用した場合の組合せ方 法についてまとめたものである。制御棒挿入性評価においては燃料集合体相対変位を評 価パラメータとして用いていることから、燃料集合体相対変位に対して水平2方向の地 震動が及ぼす影響について検討する。

11.2 制御棒挿入性評価における水平2方向の影響評価方法

制御棒の挿入性評価に対する水平2方向の影響評価については,既往の耐震評価にお いても適用実績のある組合せ係数法(1.0:0.4:0.4)を用いて水平2方向を考慮した場 合の燃料集合体相対変位を算出する方針とする。組合せ係数法の概念図を図11-1に示 す。

○組合せ係数法とは,最大応答の非同時性を考慮して地震力 を設定する方法。

ある軸に作用する地震力を1.0と設定して,残りの軸の地 震力に係数0.4を考慮するもの。

F_x:F_y:F_z=(1.0:0.4:0.4)として3方向の荷重を組み 合わせる。

図 11-1 組合せ係数法の概念図

11.3 水平2方向の影響評価結果

制御棒の挿入性評価に適用する組合せ係数法の評価手順を図 11-2 に示す。また,水 平1方向に対する最大の燃料集合体相対変位と組合せ係数法を用いて水平2方向を考慮 した燃料集合体相対変位の結果を表 11-1 に示す(別紙 4.3 表 2 記載内容を再掲)。

図 11-1 に示すとおり、水平 2 方向の相対変位は、NS 方向の燃料集合体相対変位及び EW 方向の燃料集合体相対変位にそれぞれ係数 0.4 を考慮して組み合わせて得られた結果 から、より大きい値となる相対変位を適用するものである。表 11-1 に示す結果は、基 準地震動 S s 5 波(基本ケース及び地盤ばらつきケース)の中から、最も相対変位が大 きくなる S s - F 1 (地盤剛性 - σ ケース)に対して、以下(a)、(b)の 2 式より算出さ れる相対変位のうちより大きい結果となる(b)の相対変位を示しているものである。

(a) NS×1.0, EW×0.4
$$\sqrt{(18.6 \times 1.0)^2 + (35.0 \times 0.4)^2} \approx 23.3 \text{mm}$$

(b) NS×0.4, EW×1.0 $\sqrt{(18.6 \times 0.4)^2 + (35.0 \times 1.0)^2} \approx 35.8 \text{mm}$

表 11-1 に示すとおり、水平 2 方向を考慮した場合でも燃料集合体相対変位が確認済

相対変位を下回ることを確認している。

図 11-2 制御棒挿入性評価における組合せ係数法を用いた水平 2 方向の影響評価手順

表 11-1 制御棒挿入性評価における水平 2 方向の影響検討結果

亚価項目	燃料集合体相差	確認済相対変位	
評価項目	水平1方向	水平2方向	(mm)
制御棒挿入性	35.0	35.8	40

注記*:基準地震動Ss5波(基本ケース及び地盤ばらつきケース)の中でも最も燃料集合体 相対変位が大きくなる基準地震動Ss-F1(地盤物性-σケース)による結果を示 す。

11.4 組合せ係数法の適用性

制御棒挿入性評価に組合せ係数法を適用するにあたって,耐震設計の規格や他施設も 含めた適用実績等を整理し,さらに今回工認の評価における保守性の検討を行い,組合 せ係数法の適用性を以下にまとめる。

11.4.1 地震荷重の組合せ方法の規格基準における整理

原子力発電所耐震設計技術指針JEAG4601-1987において、地震荷重の組合 せ方法については図3に示すとおり、絶対値和法での組合せを実施する方針が記載さ れている。

ただし、「鉛直震度」と「水平動的応答」との記載から分かるとおり、本規格が制定 された当時は鉛直方向について動的な地震応答が定義されておらず、鉛直方向は時間 の概念がない静的な震度を適用することが前提であるため、絶対値和を基本とする指 針になっているものである。

6.1.5 地震応答解析

(1) 応答解析法一般

機器・配管系は、その耐震重要度に応じた静的地震力に耐えられるように設計するが、 耐震 As, A クラスは静的地震力と共に動的地震力に対しても耐えられるように設計す る。また、B クラスであって、建屋を含む支持構造物の振動と共振するおそれのあるも のは、B クラス相当の動的地震力によってその安全性を検討する。

動的地震力は,地震応答解析によって算定されるが,機器・配管系の地震応答解析は, 据付床の設計用床応答スペクトルに基づいたスペクトルモーダル解析法を採用すること を基本とする。

設計用床応答スペクトルは、当該系の重心位置に近い或いは耐震支持点の最も多い床 のもの等最も適切な床のものを採用することを基本とするが、耐震安全評価上必要ある 場合は関連する床応答スペクトルによる多入力解析又はそれと同等の近似解析法を用い ることができる。

スペクトルモーダル解析に当たっては、考慮すべきモードは、その刺激係数が無視し 得ない程度のものまでとし、その重畳法は加速度、変位、応力、支点反力等の算定必要 応答に対してそれぞれ Square Root of the Sum of the Squares 法(以下「SRSS」法と いう。)とする。

鉛直震度による応答と水平動的応答の組合せは絶対和法を採用するものとする。

原子炉格納容器,原子炉圧力容器,炉内構造物は,その構造体の規模,多様な耐震支 持法,応答相対変位解析の重要性により原子炉建屋と連成した解析モデル又は分離した サプストクチャー法に類似したモデルによる時刻歴応答解析法の採用を原則とする。た だし,上記のような特殊な重要構造物でなくても,据付点,耐震支持点の地震応答加速 度波形,変位波形を入力として対象機器系の時刻歴応答解析法に基づいた動的地震力を 算定することは差支えない。

図 11-3 JEAG4601-1987 に記載の地震荷重の組合せ方法(機器・配管系) (P481,482 抜粋) 続いて、JEAG4601-1987以降に発刊されている規格として、原子力発電所 耐震設計技術規程JEAC4601-2008における、地震荷重の組合せ方法について の内容を図11-4-1~4-3に示す。

4.3.2 水平地震力と鉛直地震力による荷重の組み合せ法

4.3.2.1 動的地震力における組み合わせ

水平地震動と鉛直地震動を別々に動的解析モデルへ入力して地震荷重を求める場合, 両者の荷重組み合せには以下の方法が適用できる。

a. 二乗和平方根(SRSS)法

水平地震動による最大荷重の二乗と鉛直地震動による最大荷重の二乗を加算し,その 値の平方根を求める方法。

b. 組み合せ係数法

水平地震動による最大荷重及び鉛直地震動による最大荷重のいずれか小さい方に組み 合せ係数 0.4 を乗じて加算する方法。

c. 代数和法

水平地震動による荷重と鉛直地震動による荷重を計算時刻ステップ毎に代数和する方 法。

なお,上記3方法において,地震荷重のかわりに応力を組み合わせてもよい。

また,水平地震動と鉛直地震動を動的解析モデルへ同時入力することにより,地震荷 重を求める方法を用いてもよい。

図 11-4-1 JEAC4601-2008 に記載の地震荷重の組合せ方法(機器・配管系) (P355 抜粋)

3.3.2 設計に用いる地震力

発電用原子炉施設の建物・構築物の設計に用いる地震力は,次の方法により 求めなければならない。

(1) 基準地震動Ssによる地震力

「3.1.4.3 (1)基準地震動Ssによる地震力」に示す地震力の算定においては、 「3.5 地震応答解析」に適合する方法を用いなければならない。この場合にお いて、水平地震動と鉛直地震動を同時に考慮した解析結果より地震力を算定す る。

ただし、水平地震動と鉛直地震動に対して各々別の解析を実施し水平地震力 と鉛直地震力を算定する場合において、水平地震力と鉛直地震力による応力の 組合せは、二乗和平方根法(SRSS法)又は式3.3.2-1に示す組合せ係数法を用 いることができる。

組合せ係数法による地震時応力

= max{(水平地震力による応力+0.4×鉛直地震力による応力), (0.4×水平地震力による応力+鉛直地震力による応力)}

図 11-4-2 JEAC4601-2008 に記載の地震荷重の組合せ方法(建物・構築物) (P73 抜粋)

(3) 地震力の重ね合わせ

水平地震動と鉛直地震動を同時に入力して応答値を求める。ただし、線形解析や等価線形解析において、水平地震動と鉛直地震動に対して各々別の解析を実施する場合、 応答値の組合せは、二乗和平方根法(SRSS法)又は組合せ係数法を用いることができる。

図 11-4-3 JEAC4601-2008 に記載の地震荷重の組合せ方法 (屋外重要土木構造物)(P979 抜粋)

図 11-4-1 に示すとおり,鉛直地震動が動的な地震応答となったことを踏まえて, 機器配管系に対する地震荷重の組合せ方法は,二乗和平方根(SRSS)法,組合せ係数 法及び代数和法の3手法が示されている。また,組合せ係数法については,水平方向 及び鉛直方向の最大荷重のいずれか小さい方に係数として「0.4」を適用するよう記載 されている。

図 11-4-2, 4-3 には,建物・構築物及び屋外重要土木構造物における地震荷重の 組合せについての記載内容を示している。地震荷重の組合せ方法は,建物・構築物に おいても屋外重要土木構造物においても,二乗和平方根法(SRSS 法)及び組合せ係数 法が示されており,建物・構築物に対する方針には,係数「0.4」を適用するよう記載 されている。

さらに、米国 REGULATORY GUIDE 1.92*の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」においても、地震応答の非同時性を考慮して、SRSS 法や組合せ係数法(1.0:0.4:0.4)によって3方向の地震荷重を組合せる方法が示されている。

以上に示すとおり, JEAC4601-2008や REGULATORY GUIDE 1.92 において, 地震荷重の組合せ方法として SRSS 法と組合せ係数法が示されており,組合せ係数法に 適用する係数として「0.4」が定義されている。

注記*: REGULATORY GUIDE 1.92 "COMBINING MODAL RESPONSES AND SPATIAL COMPONENTS IN SEISMIC RESPONSE ANALYSIS"

11.4.2 島根2号機における水平2方向及び鉛直方向の地震応答の組合せに係る方針

(1) 建物・構築物及び屋外重要土木構造物等

今回工認において,建物・構築物及び屋外重要土木構造物等に対する水平2方向及 び鉛直方向の組合せに係る検討では,建物・構築物については組合せ係数法の適用を 基本とし,屋外重要土木構造物等については,二乗和平方根(SRSS)法又は組合せ係 数法の適用を基本としている。ここで,組合せ係数法を適用している建物・構築物の 水平2方向及び鉛直方向に対する荷重の組合せケースについては表3-1-14等で示さ れている(表3-1-14を図11-5として再掲)。図11-5に示すとおり,3方向の地 震荷重の組合せについては,基準地震動Ssによって発生する3方向の荷重に対し て,係数(1:0.4:0.4)及び符号を入れ替えて施設に最も厳しい条件を選定してい る。なお,屋外重要土木構造物等についても,組合せ係数法を適用する場合,建物・ 構築物と同様の考え方で施設に最も厳しい条件を選定している。

表 3-1-1 荷重の組合せケース(水平 2 方向)				
外力の状態	ケース No.	荷重の組合せ		
	3-1	$G + P + 1.0 S s_{SN} - 0.4 S s_{WE} + 0.4 S s_{UD}$		
	3-2	$G + P + 1.0 S s_{SN} + 0.4 S s_{WE} + 0.4 S s_{UD}$		
	3-3	$G + P - 1.0 S s_{SN} - 0.4 S s_{WE} + 0.4 S s_{UD}$		
	3-4	$G + P - 1.0S s_{SN} + 0.4S s_{WE} + 0.4S s_{UD}$		
	3-5	$G + P + 0.4S s_{SN} - 1.0S s_{WE} + 0.4S s_{UD}$		
	3-6	$G + P - 0.4S s_{SN} - 1.0S s_{WE} + 0.4S s_{UD}$		
	3-7	$G + P + 0.4S$ s $_{SN} + 1.0S$ s $_{WE} + 0.4S$ s $_{UD}$		
	3-8	G + P - 0.4S s _{SN} +1.0S s _{WE} +0.4S s _{UD}		
S s 地震時	3-9	$G + P + 1.0S s_{SN} - 0.4S s_{WE} - 0.4S s_{UD}$		
	3-10	$G + P + 1.0S s_{SN} + 0.4S s_{WE} - 0.4S s_{UD}$		
	3-11	$G + P - 1.0S s_{SN} - 0.4S s_{WE} - 0.4S s_{UD}$		
	3-12	$G + P - 1.0S s_{SN} + 0.4S s_{WE} - 0.4S s_{UD}$		
	3-13	$G + P + 0.4S s_{SN} - 1.0S s_{WE} - 0.4S s_{UD}$		
	3-14	$G + P - 0.4S s_{SN} - 1.0S s_{WE} - 0.4S s_{UD}$		
	3-15	$G + P + 0.4S s_{SN} + 1.0S s_{WE} - 0.4S s_{UD}$		
	3-16	$G + P - 0.4S s_{SN} + 1.0S s_{WE} - 0.4S s_{UD}$		
	3-17	$G + P + 0.4S s_{SN} - 0.4S s_{WE} + 1.0S s_{UD}$		
	3-18	$G + P + 0.4S$ s $_{SN} + 0.4S$ s $_{WE} + 1.0S$ s $_{UD}$		
	3-19	$G + P - 0.4S s_{SN} - 0.4S s_{WE} + 1.0S s_{UD}$		
	3-20	$G + P - 0.4S$ s $_{SN} + 0.4S$ s $_{WE} + 1.0S$ s $_{UD}$		
	3-21	$G + P + 0.4S$ s $_{SN} - 0.4S$ s $_{WE} - 1.0S$ s $_{UD}$		
	3-22	$G + P + 0.4S s_{SN} + 0.4S s_{WE} - 1.0S s_{UD}$		
	3-23	$G + P - 0.4S s_{SN} - 0.4S s_{WE} - 1.0S s_{UD}$		
	3-24	$G + P - 0.4S s_{SN} + 0.4S s_{WE} - 1.0S s_{UD}$		

図 11-5 建物・構築物における水平2 方向及び鉛直方向の地震荷重の組合せケースの例 (表 3-1-14 再掲) (2) 機器・配管系

機器・配管系に対する水平2方向及び鉛直方向の組合せの検討においては,前項ま でに示すとおり,先行プラントと同様,円筒容器や矩形配置のボルトに対する影響程 度を確認するために組合せ係数法を適用している。

別紙4.4の4項で検討している円筒容器に対する水平2方向の影響検討について図 11-6に再掲するが, SRSS 法と組合せ係数法で手法による差異は軽微であることを確 認している。

また、本検討において適用した組合せ係数法においては、水平2方向にそれぞれ同 一の荷重を負荷して算出された応力に対し、係数(1:0.4)を考慮して地震による応 力を算出している。一方、図11-4-1に示すとおり、地震による発生荷重に係数を考 慮する方法もあるが、機器・配管系における解析手法は線形解析が基本であることか ら、係数を応力に考慮した場合でも荷重に考慮した場合でも結果は変わらないものと なる。

なお、参考として、応力に対して係数を考慮した場合(図11-6)と比較するため に、入力荷重に対して係数(1:0.4)を考慮した場合の軸方向応力分布を表11-2,3 に示す。表に示すとおり、入力荷重に係数を考慮した場合の発生応力はいずれも図11 -6に示す軸方向応力分布と同一の値となっている。図11-4-1に示すJEAC46 01-2008にも「地震荷重のかわりに応力を組み合わせても良い。」との記載がある が、今回検討した結果からも、荷重もしくは応力に対して組合せ係数法を考慮すれば 同等の結果が得られることが分かる。

図 4-2 水平地震時軸方向コンター図(X方向入力)

	X 方向入力時	Y 方向入力時	2 方向入力時応力(MPa)	
角度	応力 (MPa)	応力 (MPa)	組合せ係数法	SRSS 法
	σ _{z,X} (θ)	σ _{z,Y} (θ)	σ z,c($ heta$)	σ _{z,s} (θ)
			12. 28	
0° 方向	12.28	0.00	$\sigma_{z, c(X)}(0^{\circ}) = 12.28 \times 1 + 0 \times 0.4 = 12.28$	12.28
			$\sigma_{z, c(Y)}(0^{\circ}) = 12.28 \times 0.4 + 0 \times 1 = 4.91$	
			13. 22	
22.5° 方向	11.34	4.70	$\sigma_{z, c(X)}(22.5^{\circ}) = 11.34 \times 1 + 4.70 \times 0.4 = 13.22$	12.28
			$\sigma_{z,c(Y)}(22.5^{\circ}) = 11.34 \times 0.4 + 4.70 \times 1 = 9.24$	
			12. 15	
45° 方向	8.68	8.68	$\sigma_{z, c(X)}(45^{\circ}) = 8.68 \times 1 + 8.68 \times 0.4 = 12.15$	12.28
			$\sigma_{z, c(Y)}(45^{\circ}) = 8.68 \times 0.4 + 8.68 \times 1 = 12.15$	
			13. 22	
67.5° 方向	4.70	11.34	$\sigma_{z, c(X)}(67.5^{\circ}) = 4.70 \times 1 + 11.34 \times 0.4 = 9.24$	12.28
			$\sigma_{z, c(Y)}(67.5^{\circ}) = 4.70 \times 0.4 + 11.34 \times 1 = 13.22$	
			12. 28	
90° 方向	0.00	12.28	$\sigma_{z, c(X)}(90^{\circ}) = 0 \times 1 + 12.28 \times 0.4 = 4.91$	12.28
			$\sigma_{z, c(Y)}(90^{\circ}) = 0 \times 0.4 + 12.28 \times 1 = 12.28$	

表 4-1 水平地震時の軸方向応力分布

図 11-6 機器・配管系における組合せ係数法の適用例 (1/2)

(別紙4.44項より再掲,一部加筆)

図 11-6 機器・配管系における組合せ係数法の適用例(2/2)(別紙 4.4 4 項より再掲)

	X : Y = 1 : 0.4		2 方向入力時応力(MPa)	
	X 方向入力時	Y 方向入力時	如众北伐粉汁	
円皮	応力 (MPa)	応力(MPa)		
	$\sigma_{\rm x,X}$ ($ heta$)	$\sigma_{\rm x,Y}$ ($ heta$)	σ _{x,c} (σ)	
0° 古向	10.00	0.00	12.28	
0 /1[1]	12.20	0.00	$\sigma_{x,c}(x)$ (0°) = 12.28+0=12.28	
22 5° 卡向	11 94	1 00	13. 22	
22.5 万回	11. 34	1.00	$\sigma_{x,c(x)}$ (22.5°) =11.34+1.88=13.22	
45° 专向	8 68	2 47	12.15	
43 万円	8.08	5.47	$\sigma_{x,c(x)}$ (45°) =8.68+3.47=12.15	
67 5° 卡向	4 70	4 54	9.24	
07.5 万回	4.70	4. 54	$\sigma_{x,c(x)}$ (67.5°) =4.70+4.54=9.24	
	0.00	4 01	4. 91	
90 万回	0.00	4.91	$\sigma_{x,c(x)}$ (90°) =0+4.91=4.91	

表 11-2 水平地震時の軸方向応力分布(入力荷重に係数を考慮した場合, X:Y=1:0.4)

表11-3 水平地震時の軸方向応力分布(入力荷重に係数を考慮した場合,X:Y=0.4:1)

	X:Y=	0.4:1	2 方向入力時応力(MPa)
	A 庄 X 方向入力時 Y 方向入力時		如今北位粉汁
円皮	応力(MPa)	応力 (MPa)	
	$\sigma_{\rm x,X}$ ($ heta$)	$\sigma_{\rm x,Y}$ ($ heta$)	0 x, c (0)
0° 卡向	4 01	0.00	4.91
0 /1[1]	4.91	0.00	$\sigma_{x,c}$ (Y) $(0^{\circ}) = 4.91 + 0 = 4.91$
22 5° 专向	4 54	4 70	9.24
22.5 万回	4, 54	4.70	$\sigma_{x,c}$ (Y) (22.5°) =4.54+4.70=9.24
45° 专向	3 17	8 68	12. 15
40 八回	5.41	0.00	$\sigma_{x, \circ}(y)$ (45°) =3.47+8.68=12.15
67 5° 专向	1 00	11 94	13. 22
07.5 刀间	1.00	11. 34	$\sigma_{x,c}$ (Y) (67.5°) = 1.88+11.34=13.22
00° 古向	0.00	10 00	12.28
90 万回	0.00	12.20	$\sigma_{x,c}$ (Y) (90°) =0+12.28=12.28

11.4.3 制御棒挿入性評価に適用する組合せ係数法の保守性の検討

燃料集合体の水平2方向を考慮した相対変位が最大となる基準地震動Ss-F1 (地盤物性-σケース)について、水平2方向入力による変位履歴から最大の相対変位 を算出し、組合せ係数法による結果と比較する。

評価手順を図 11-7 に示す。基準地震動 S s - F 1 は断層モデル手法による基準地 震動であることから,原子炉本体地震応答解析モデルへの入力として,S s - F 1 (NS)に基づく入力地震動を NS 方向モデルに入力し,S s - F 1 (EW)に基づく入力地震 動を EW 方向モデルに入力してそれぞれ燃料集合体中央位置での相対変位の時刻歴デー タを算出する。次に各方向の時刻歴データを時々刻々ベクトル合成することで水平 2 方向入力による変位履歴を求め,この中から最大の相対変位を算出する。

NS/EW 方向の燃料集合体相対変位による変位オービットを図 11-9 に示す。あわせて、燃料集合体相対変位の最大変位を表 11-4 に示す。表 11-4 に示すとおり最大変位は 35.1mm となっており、表 11-1 に示す組合せ係数法を用いた変位 35.8mm と比較して小さい値となっていることから、組合せ係数法の結果は保守的であることが分かる。

図 11-7 制御棒挿入性評価における変位履歴を用いた水平 2 方向の影響評価手順

	燃料			
評価項目	NS 方向変位*1 (A)	EW 方向変位*1 (B)	最大変位*2 (NS-EW 変位の ベクトル和) $\sqrt{(A)^2+(B)^2}$	確認済相対変位 (mm)
制御棒挿入性	1.55	35.0	35.1	40

表 11-4 変位履歴を用いて評価した場合の燃料集合体相対変位

注記*1:最大変位*²が発生した時間における NS/EW 方向の変位。なお, NS/EW 方向それぞれ の全時間帯における最大変位は NS 方向: 18.6mm, EW 方向: 35.0mm となる。

*2:燃料集合体の地震応答の全時間帯について NS 方向変位と EW 方向変位のベクトル和 を行い最も大きかった変位のこと。

原子炉本体地震応答解析モデル(NS 方向) 図 11-8-1

너

너

머머

別紙 4.4-55 126

너

더

図 11-8-2 原子炉本体地震応答解析モデル (EW 方向)

別紙 4.4-56 **127**

図 11-9 変位オービット (燃料集合体相対変位)

11.4.4 制御棒挿入性評価への組合せ係数法の適用性

4.1項及び4.2項に示すとおり、JEAG4601等の規格及び先行プラントの適 用実績における水平2方向の組合せ方法として、組合せ係数法が示されていること、 また建物構築物等の施設を含めて組合せ係数法の適用実績が十分にあることを確認し た。

以上のことから、制御棒挿入性評価に対する水平2方向の組合せ方法として、組合 せ係数法を適用することが可能である。

11.5 制御棒挿入性試験への水平2方向の影響

表 11-1 に示している,制御棒挿入性評価の許容限界として適用している確認済相対 変位 40mm は制御棒挿入性試験結果より設定しているものであるが,これは燃料チャンネ ルの側面に対して平行な方向(水平対辺方向)に加振して得られた結果から定めている ものである。これまで水平方向加振による影響については,図 11-10 に示すとおり,設 計及び工事計画認可申請向け(VI-2-6-2-1「「制御棒の耐震性についての計算書」)に実 施した水平対辺方向の試験で評価していたが,今回,加振試験方向が制御棒挿入性に及 ぼす影響を確認するため,加振方向を水平対角方向として実施した試験結果を図 11-11 に示す。

図 11-11 に示すとおり、水平対角方向加振による制御棒挿入時間(75%ストロークス クラム時間)は、水平対辺方向加振条件と同等かもしくは短い結果となっている。これ は、燃料集合体と制御棒の間隙が、水平対辺方向に比ベ水平対角方向の場合の方が大き くなるためである。燃料集合体と制御棒の間隙のイメージを図 11-12 に示すが、水平対 角方向になることで燃料集合体と制御棒の間隙がおおよそ√2 倍となることから、水平 対角方向よりも水平対辺方向加振の方が厳しい条件となるものである。

なお、水平対角方向の制御棒挿入性試験の試験条件を表 11-5 に示す。表 11-5 に示 すとおり、設計及び工事計画認可申請向けと水平対角方向の影響確認用の水平対辺方向 の各試験は、試験装置が異なるが、試験結果に差はなく、試験装置による差異はない。 また、水平対角方向の試験については、設計及び工事計画認可申請向け(VI-2-6-2-1 「「制御棒の耐震性についての計算書」)に実施した水平対辺方向の試験と同条件で実施 しており試験条件に差異はない。

燃料集合体相対変位 (mm)

図 11-11 制御棒挿入性試験結果(水平対辺方向加振-水平対角方向加振の比較)

図 11-12 燃料集合体と制御棒の間隙のイメージ図

条件項目	水平対辺方向(設計及び工事計	水平対辺方向(影響確認)	水平対角方向(影響確認)
	画認可申請向け)		
	・質量模擬燃料集合体	・同左	・同左
	・制御棒(ボロンカーバイド型)	・同左	・同左
+6% 旦口	・燃料支持金具	・同左	・同左
版 · · · · · · · · · · · · · · · · · · ·	・制御棒案内管	・同左	・同左
装直侢风	 制御棒駆動機構 	・同左	・同左
	・水圧制御ユニット	・同左	・同左
	・試験装置 図 11-13	・試験装置 図11-14	・同左
試験方法	・加振により燃料集合体に相対変	・同左	・同左
	位を発生させ,その状態で 75%		
	ストロークスクラムに要する		
	時間を計測		
	・正弦波により加振	・同左	・同左
温度	室温	同左	同左
圧力	常圧*1	同左	同左
チャンネル			
ボックス	120mil(3.05mm)*2	同左	同左
板厚			

表 11-5 水平対角方向加振試験の条件(水平対辺方向加振試験との比較)

注記*1:アキュムレータ圧力の調整により原子炉定格圧力(6.93MPa[gage])時のスクラムを

模擬

*2:1mil=0.0254mm

図 11-13 設計及び工事計画認可申請向け 制御棒挿入性試験 試験装置概要

図 11-14 影響確認用制御棒挿入性試験(水平対辺方向加振-水平対角方向加振の 比較) 試験装置概要

水平2方向及び鉛直方向地震力の影響評価における代表性

1. はじめに

機器・配管系における水平2方向及び鉛直方向地震力の影響評価において,水平2方向 の影響を考慮した場合に発生値がどの程度増分するかを検討している。その際には,耐 震重要施設,常設耐震重要重大事故防止設備,常設重大事故緩和設備,常設重大事故防 止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSクラスのもの)が設置 される重大事故等対処施設の機器・配管系並びにこれらの施設への波及的影響防止のた めに耐震評価を実施する設備について,機種ごとに裕度の小さい部位を代表して影響評 価を実施している。

2. 水平2方向及び鉛直方向地震力の影響評価における代表性について

水平2方向及び鉛直方向地震力の影響評価にあたっては、機種ごとに裕度の小さい部 位を代表として選定しているが、その代表性について説明する。

各機種のうち一部の機種については、複数の応力分類や評価部位を有していたりする ものがあり、それらについては評価結果に対する地震力の寄与度がそれぞれ変わる場合 がある。従って、本影響評価においては、これらの設備について、耐震裕度が小さい部 位を代表とした上で、地震以外の荷重成分を地震荷重とみなし、水平1方向及び鉛直方 向の組合せによる評価値を水平各方向(それぞれ鉛直方向も含む)で用いるなどの簡易 的かつ保守的な方法(図4.5-1参照)を適用することを基本とする。

この方法を適用する機種は,耐震裕度の小さい部位や応力分類で代表することができる。また,この簡易的かつ保守的な方法を適用しない機種は,評価結果に対する地震力の寄与度に配慮した,影響評価を個別に行う場合もある。

本影響評価の代表部位一覧を別紙4.1表1に示す。

図 4.5-1 地震以外の荷重成分を地震荷重とみなす場合の保守的な算定イメージ

水平2方向地震動と鉛直方向地震動の組合せ方法の検討

1. はじめに

本資料は水平2方向の地震動が作用する場合の荷重の組合せ方法についてまとめたもの である。本内容は電共研「新規制基準対応を踏まえた機器・配管系評価法に関する研究 (Phase2)」(平成31年3月)にて検討されており、本成果により、水平2方向の地震 動が作用する場合に最大値の発生時間の非同時性を考慮した場合の手法として SRSS 法を 用いることは妥当であることを示すものである。

2. 電共研における検討内容

水平2方向の地震動が作用する場合の機器の応答は、2次元挙動を模擬できるモデルに水 平2方向の地震動を同時に時々刻々入力して推定することが望ましい。一方,既往の耐震 設計においては、1質点系の地震応答解析結果を用いたスペクトルモーダル解析が主流で あり、各方向の地震動入力に対し、時間に依存しない機器の最大応答のみを取り扱ってい る。

しかし、水平2方向に対しても同様に、各1方向のスペクトルモーダル解析で得られる応 答の絶対値和を適用すると、最大値の発生時間の非同時性は考慮されないことから、過渡 に保守的な評価となる。このため、新規制基準対応では、より合理的な評価手法として Regulatory Guide 1.92を引用して水平2方向地震動の荷重をSRSS法により組合せている。

本研究では、最大値の発生時間の非同時性を考慮した手法として SRSS 法を用いることの 妥当性について検討している。

- 2.1 検討条件
 - 2.1.1 入力波の選定

入力波は最大加速度が大きい断層波として「代表プラント断層モデル波」,配管の 主要モードが卓越するような周期範囲に卓越ピークを有する観測波として「2011年4 月7日 宮城県沖の地震(以下「4.07地震」という。)を選定した。入力地震波の波形 図と加速度応答スペクトル図を図 4.6-1~図 4.6-4 に示す。入力波は、実機配管の 設計に用いている荷重条件に近いものとして、建屋応答(R/B地下階)を適用した。 (a)NS 方向

(b)EW方向

(c)UD 方向 図 4.6-1 代表プラント 断層モデル波:波形図

(a) NS方向

(b) EW方向

(c) UD方向 図4.6-2 代表プラント 断層モデル波:加速度応答スペクトル図 (a) NS方向

(b) EW方向

(c) UD方向 図4.6-34.07地震:波形図 (a) NS方向

(b) EW方向

(c) UD方向 図4.6-4 4.07地震:加速度応答スペクトル図

2.1.2 解析ケース

本検討で実施する解析ケース一覧を表4.6-1に示す。

配管モデル	入力地震動		解析手法	荷重組合せ*
断層波 実機配管		仕まプラント	時刻歷応答解析法	代数和法
	版展モデル波	スペクトル	SRSS法	
		例信でノル仮	モーダル解析	絶対値和法
モデル	モデル 観測波 4.07地震		時刻歷応答解析法	代数和法
		4.07地震	スペクトル	SRSS法
		モーダル解析	絶対値和法	

表4.6-1 角	解析ケー	スー	覧
----------	------	----	---

注記*:代数和法:水平2方向地震動による荷重と鉛直方向地震動による荷重を計算時刻 ステップごとに代数和する方法。

> SRSS法:水平2方向地震動による各方向最大荷重の二乗と鉛直方向地震動による 最大荷重の二乗を加算し、その値の平方根を求める方法。

絶対値和法:水平2方向地震動による各方向最大荷重と鉛直方向地震動による最大荷重 を絶対値和にて加算する方法。

2.1.3 対象

代表配管モデルは、3次元的な構造を持ち、主要な配管要素である直管、エルボ、ティ、サポート及び弁を含む配管系の中から、1モデル(600A/300A, h=2.0%)を選定した (図4.6-5)。

図4.6-5 実機配管モデル図(鳥瞰図)

- 2.2 検討結果
 - 2.2.1 実機配管モデルの固有値解析結果

前項で選定した代表モデルに対して,固有値解析を実施した。固有値解析結果を表 4.6-2に,主要モード図を図4.6-6~図4.6-9に示す。

	固有周期T	刺激係数			
モート	(S)	X方向	Y方向	Z方向	
1次	0.079				
2次	0.069				
3次	0.057				
4次	0.051				

表4.6-2 固有值解析結果

図4.6-6 モード図:1次モード:T=0.079s

図4.6-7 モード図:2次モード:T=0.069s

図4.6-8 モード図:3次モード:T=0.057s

図4.6-9 モード図:4次モード:T=0.051s

2.2.2 応答解析結果及び応力算出結果

断層モデル波を入力した各評価点の応答解析結果を表4.6-3に、応力算出結果を図 4.6-10に示す。4.07地震を入力した各評価点の応答解析結果を表4.6-4に、応力算 出結果を図4.6-11に示す。表4.6-3、4.6-4に示す応答解析結果においては、実機 配管モデルを構成する標準的な部材であるエルボ(質点番号:8、13)、ティ(質点 番号:3、52)とアンカ(質点番号:19、98)について、代数和法のケースを基準と した組合せ手法ごとの地震荷重の比率を算定した。

質点番号	組合せ	地震荷重比	部位			
0	SRSS法	1.25	チ ノ			
ა	絶対値和法	1.75	7 1			
E 9	SRSS法	1.20	5 ×			
52	絶対値和法	1.80	7 1			
0	SRSS法	1.10	マルギ			
0	絶対値和法	1.70				
1.0	SRSS法	1.10	エルボ			
15	絶対値和法	1.40	エルか			
10	SRSS法	1.00	アンカ			
19	絶対値和法	1.50				
00	SRSS法	1. 00	アンカ			
98	絶対値和法	1. 50				

表4.6-3 応答解析結果:断層モデル波(代数和法で正規化)

図4.6-10 応力算出結果:断層モデル波

質点番号	組合せ	地震荷重比	部位		
0	SRSS法	1.00	年 /		
ა	絶対値和法	1.56	7.1		
EQ	SRSS法	1.08	5 ×		
02	絶対値和法	1.54	1		
0	SRSS法	1.00	고 사람		
0	絶対値和法	1.76			
1.0	SRSS法	1.05	エルボ		
15	絶対値和法	1.43	111		
10	SRSS法	1.10	アンカ		
19	絶対値和法	1.75	テンプ		
00	SRSS法	1.25	アンカ		
98	絶対値和法	1. 50			

表4.6-4 応答解析結果:4.07地震(代数和法で正規化)

図4.6-11 応力算出結果:観測波(4.07地震)

2.2.3 実機配管モデルに対するSRSS法の適用について

選定した実機配管モデルに対して、代表的な断層波及び観測波を用いて時刻歴応答 解析法により算定した計算時刻ステップごとの地震荷重を代数和法にて組み合わせた 結果並びにスペクトルモーダル解析法により算定した最大地震荷重をSRSS法及び絶対 値和法にて組み合わせた結果の比較検討を実施した。

断層波及び観測波ともに、組合せ法の違いによる各評価点の応答解析結果の差異の 傾向は同様の傾向を示し、SRSS法は代数和法の結果に対して1.00~1.25倍、絶対値和 法は代数和法の結果に対して1.40~1.80倍となった。SRSS法は、水平2方向地震動と 鉛直方向地震動の同時入力による応答を精度よく模擬できている。

以上から、実機配管モデルに対して、スペクトルモーダル解析法により算定した水 平2方向地震動と鉛直地震動による最大地震荷重の組合せ法として、SRSS法を用いて 差し支えないと判断した。 別紙 4.7 原子炉建物 3 次元 FEM モデルの面外応答に係る

<mark>機器・配管系への影響検討</mark>

1.	概	要	• • •	• • •	•••	 • •	• •	•••	•••	 •••	••	 ••	 • •	••	•••	•••	• •	• •	• •	•••	•••	 ••	•	別紙 4.	7-1
2.	検	討方	針			 	•••	•••	•••	 	••	 	 	•••		•••		•••			•••	 •••	•	別紙 4.	7-1
	2.1	検討	寸対	象	•••	 	• •	•••	•••	 •••	•••	 •••	 •••	•••		•••		• •	•••	•••	•••	 •••	•	別紙 4.	7-1
	2.2	検討	寸方	法	•••	 	• •	•••	•••	 •••	•••	 •••	 •••	•••		•••		• •	•••	•••	•••	 •••	•	別紙 4.	7-6
3.	評	価結	果			 	•••	•••	•••	 	•••	 	 	•••		•••		• •			•••	 •••		別紙 4.7	-14
	3.1	簡易	易評	価結	淉	• •	•••	•••	•••	 	••	 	 	•••		•••		• •			•••	 •••		別紙 4.7	-14
	3.2	詳約	評	価結	淉	••	•••	•••	•••	 	••	 	 	•••		•••					•••	 •••		別紙 4.7	-25

1. 概要

別紙2「原子炉建物3次元FEMモデルを用いた精査」の「2.5 地震応答解析結果」よ り,壁の中央部で面外にはらむような最大応答加速度分布となっており、3次元FEMモデ ルの面外応答が質点系モデルの応答を上回る箇所がある。そのため、補足説明資料「補足 023-13 地震応答に影響を及ぼす不確かさ要因の整理」に基づき、面外応答の機器・配管 系への影響検討を実施する。なお、影響検討は、本文の「3.2 機器・配管系」の水平2方 向及び鉛直方向地震力の組合せの影響評価結果を基に実施する。

2. 検討方針

「2.1 検討対象」について,条件比率(詳細は2.2.1 項にて説明)と各検討対象の裕度 (許容値/発生値)を用いた簡易評価及び3次元影響評価用耐震条件(詳細は2.2.1 項に て説明)を用いた詳細評価を行う。影響検討フローを図2-1に示す。

2.1 検討対象

原子炉建物に設置され,最大応答加速度,床応答スペクトル及び時刻歴応答加速度を用 いて評価する以下の機器・配管系を影響検討の対象とする。なお,複数スパン及び層にま たがって直交方向に壁及び床の無い連続した壁に対して,面外応答の影響は大きいことか ら,原子炉建物4階(以下「燃料取替階」という。)に設置される設備を代表とする。

また,燃料取替階の床についても燃料取替階の壁と同様であることから,機器・配管系 に対する面外応答の影響を併せて検討する。影響検討対象の機器・配管系について表 2-1 に,設置位置の概略図を図 2-2 に示す。

- ・設計基準対象施設のうち,耐震重要度分類のSクラスに属する機器・配管系
- ・重大事故等対処施設のうち,常設耐震重要重大事故防止設備,常設重大事故緩和設備 及び常設重大事故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSク ラスのもの)に属する機器・配管系
- ・波及的影響防止のために耐震評価を実施する機器・配管系

- *4:刺激係数を考慮した条件比率を用いた評価を含む。
- *5: VI-2-2-2「原子炉建物の地震応答計算書」に示す基本ケース
- *6: S s 5波は, 基準地震動S s D, F 1, F 2, N1及びN2

図 2-1 原子炉建物 3 次元 FEM モデルの面外応答に係る機器・配管系への影響検討フロー

No.	設備名称
1	使用済燃料貯蔵ラック
2	制御棒・破損燃料貯蔵ラック
3	燃料プール水位・温度(SA)
4	燃料プール水位 (SA)
5	燃料プール冷却系配管
6	燃料プールスプレイ系配管
7	燃料プール監視カメラ(SA)
8	原子炉補機冷却系サージタンク
9	原子炉建物水素濃度
10	静的触媒式水素処理装置入口温度
11	静的触媒式水素処理装置出口温度
12	無線通信設備用アンテナ(中央制御室)
13	発信用アンテナ(1・2号)
14	燃料取替階放射線モニタ
15	燃料プールエリア放射線モニタ(低レンジ)(SA)
16	燃料プールエリア放射線モニタ(高レンジ)(SA)
17	ブローアウトパネル閉止装置
18	静的触媒式水素処理装置
19	格納容器フィルタベント系配管
20	堰
21	建物開口部竜巻防護対策設備
22	原子炉建物天井クレーン
23	燃料取替機
24	チャンネル着脱装置
25	チャンネル取扱ブーム
26	制御棒貯蔵ハンガ

表 2-1 影響検討対象設備

別紙 4.7-5

2.2 検討方法

2.2.13次元影響確認用耐震条件の作成

3 次元 FEM モデルでは,弾性設計用地震動Sdに対する地震応答解析を行っていることから,質点系モデルの基準地震動Ssに対する応答を補正し,面外応答による影響を評価できる応答を作成する。

 I 弾性設計用地震動Sd-D, F1, F2, N1, N2(以下「Sd5波」という。)に 対する3次元FEMモデルと質点系モデルの応答の比(以下「応答比率」という。)を, 全周期において算定する。応答比率の算定イメージを図2-3(1)に示す。
 3次元影響確認用床応答スペクトルの固有周期0.131sを例とすると,0.131sの質点 系モデルの応答aに対する3次元FEMモデルの応答bの比が0.131sの応答比率

(b/a) となる。

なお,3次元 FEM モデルの応答による機器・配管系の耐震評価結果へ与える影響を検討するものであるため,応答比率が1.0を下回る場合でも,その応答比率を乗ずる。

応答比率= <u>3</u>次元 FEM モデルの応答(Sd5波) 質点系モデルの応答(Sd5波)

 Ⅱ 質点系モデル基本ケースの基準地震動Ss-D,F1,F2,N1,N2(以下「Ss5波」という。)に対する固有周期ごとの応答に、応答比率を乗算して、3次元影響確認用床応答スペクトルを算定する。3次元影響確認用床応答スペクトルの算定 イメージを図2-3(2)に示す。

3次元影響確認用床応答スペクトルの固有周期 0.131s を例とすると、0.131s の質 点系モデル基本ケースの基準地震動Ssに対する応答に 0.131sの応答比率(b/a) を乗算した値となる。

3次元影響確認用床応答スペクトル=質点系モデルの応答(Ss5波)×応答比率

Ⅲ 3次元影響確認用床応答スペクトルと耐震計算に用いる設計用床応答スペクトルの 比(以下「条件比率」という。)を算定する。条件比率の算定例を図 2-3(3)に示 す。条件比率は、仮に固有周期が 0.131sの機器・配管系とすると、設計用床応答ス ペクトルによる耐震計算を実施している場合(d/c)となる。

なお,配管系等のスペクトルモーダル解析を実施している設備は,刺激係数を考慮し てモードごとの比率を算出する手法による条件比率(以下「刺激係数を考慮した条件比 率」という。)を用いて簡易評価を行う場合がある。刺激係数を考慮した条件比率の算出 方法は「NS2-補-024-01 原子炉建物の地震応答計算書に関する補足説明資料 別紙 3-8 刺激係数を考慮した条件比率の算出」に示す。

図 2-3(1) 床応答スペクトルにおける応答比率の算定イメージ

図 2-3(2) 3次元影響確認用床応答スペクトルの算定イメージ

図 2-3 (3) 条件比率の算定イメージ

別紙 4.7-7 **159**

ここで,弾性設計用地震動Sdに対する3次元FEMモデルの応答は,図2-4に示す 機器・配管系の設置箇所に対応する節点の応答を用いる。

図 2-4 (1) 機器・配管系の設置箇所(燃料取替階 床 EL42.800m)

図 2-4(2)機器・配管系の設置箇所(燃料取替階 床(北西部詳細) EL42.800m)

No.18 静的触媒式水素処理装置

図 2-4(4)機器・配管系の設置箇所(南面壁 EL42.800m~EL63.500m)

図 2-4 (5) 機器・配管系の設置箇所(南面壁 EL42.800m~EL63.500m)

No.2 制御棒・破損燃料貯蔵ラック

図 2-4 (9) 機器・配管系の設置箇所(燃料プール 北面壁 EL30.500m~EL42.800m)

図 2-4 (10) 機器・配管系の設置箇所(燃料プール 西面壁 EL30.500m~EL42.800m)

図 2-4 (11) 機器・配管系の設置箇所(原子炉建物天井クレーン EL 51.700m)

図 2-4 (13) 機器・配管系の設置箇所 (天井 EL 63.500m)

2.2.2 3 次元 FEM モデルによる影響の評価

3次元 FEM モデルによる機器・配管系の影響評価を以下のとおり実施する。

- (1) 簡易評価による検討対象設備の代表選定 条件比率が耐震計算の裕度を上回る機器・配管系を抽出する。なお、設備に応じた条件比率の適用方法を以下に示す。
 - a. 評価に震度を適用する設備 対象設備の標高における条件比率の全方向最大値を適用する。
 - b.評価に床応答スペクトルを適用する設備 各方向について対象設備の標高,減衰定数,固有周期(0.05~1.0s間)におけ る条件比率の最大値を算出し、全方向最大値を適用する。

床応答スペクトルの条件比率の算定方法を図 2-5 に示す。

図 2-5 簡易評価に用いる各方向における床応答スペクトルの条件比率の算定方法 (評価に床応答スペクトルを適用する設備)

c. 評価に時刻歴応答解析を適用する原子炉建物天井クレーン

原子炉建物天井クレーンは走行車輪部で支持された両端支持はりの構造をし ていることから鉛直方向の応答が支配的である。また,鉛直方向の1次の振動モ ードが支配的であるため,天井クレーンの標高,減衰定数,鉛直方向1次の固有 周期における床応答スペクトルの条件比率(鉛直)を適用する。なお,落下防止 ラグは震度の条件比率(NS方向)を適用する。

(2) 詳細評価

条件比率が耐震計算の裕度を上回る設備について、3次元影響確認用耐震条件を用いて、当該設備の耐震計算書で適用している評価手法と同等の手法による評価を行い、発生値が許容値以下となることを確認する。

3. 評価結果

3.1 簡易評価結果

簡易評価の結果を表3-1に示す。また,設計用床応答スペクトルを用いた評価をして いる各影響検討設備の3次元影響確認用床応答スペクトル(Ss)と耐震計算に用いる設 計用床応答スペクトル(Ss)の比較を図3-1に示す。

No.	設備名称	評価部位	応力分類 等	最小 裕度	条件 比率	刺激係数を 考慮した 条件比率	検討 結果
1	使用済燃料貯蔵ラック	基礎ボルト	引張	1.16	0.85		0
2	制御棒・破損燃料貯蔵 ラック	基礎ボルト (底部)	引張	1.03	0.64	_	0
0	燃料プール	架構	組合せ	1.28	0.73 (⊠ 3-1(1))	—	0
3	水位・温度(SA)	機能維持	_		0.20	_	0
4	燃料プール 水位 (SA)	検出器 保護管	組合せ		0.94 (⊠ 3-1(2))		0
5	燃料プール冷却系 配管 FPC-R-5	配管本体	一次 + 二次応力	1.42	0.90 (⊠ 3-1(3))	_	0
6	燃料プールスプレイ系 配管 SFPS-R-3	配管本体	一次 + 二次応力	1.05	1.42 (⊠ 3-1(4))	1.07	×
7	燃料プール	取付ボルト	引張		1.00	_	0
1	監視カメラ(SA)	機能維持			1.47	_	0
8	原子炉補機冷却系 サージタンク	基礎ボルト	引張	1.02	0.68		0
0	百乙烷建物水丰沸在	基礎ボルト	引張	78.0	0.61	_	0
9	尿丁炉建初小茶儀伎	機能維持	_		1.39		0
10	静的触媒式水素処理	基礎ボルト	引張	26.0	0.74	_	0
10	装置入口温度	機能維持	_		0.54	_	0
11	静的触媒式水素処理 装置出口温度	機能維持			0.54		\bigcirc
19	無線通信設備用	基礎ボルト	引張	7.20	0.61	—	0
12	アンテナ(中央制御室)	機能維持			0.61		0

表 3-1 簡易評価結果(基準地震動 S s) (1/2)

No.	設備名称	評価部位	応力分類 等	最小 裕度	条件 比率	刺激係数を 考慮した 条件比率	検討 結果
1.9	発信用アンテナ	基礎ボルト	引張	25.33	0.57	_	0
15	(1・2号)	機能維持			0.57	_	0
1.4	燃料取替階放射線	取付ボルト	せん断	53.00	2.12	_	0
14	モニタ	機能維持			2.12	_	0
15	燃料プールエリア	基礎ボルト	引張	52.00	1.20	_	0
15	成射線モニク (低レンジ) (SA)	機能維持	_		1.20	_	0
16	燃料プールエリア	基礎ボルト	引張	52.00	1.37	_	0
10	(高レンジ)(SA)	機能維持			1.37	_	0
17	ブローアウトパネル	シャフト (閉状態)	組合せ	2.97	0.86	_	0
17	閉止装置	機能維持	_		1.29	_	0
18	静的触媒式水素処理 装置	本体	組合せ	1.94	0.75	_	0
19	格納容器フィルタ ベント系配管	配管本体	 一次 + 二次応力 	5.30	1.19	_	0
20	堰	鋼板	曲げ	30.11	1.18	_	0
21	建物開口部竜巻防護 対策設備	アンカー ボルト	引張	1.12	0.77	_	0
22	原子炉建物	クレーン 本体ガーダ 中央部	曲げ	1.16	1.12 (⊠ 3-1(5))		0
	大井グレーン	落下防止 ラグ	圧縮	1.17	1.88	—	×
23	燃料取替機	燃料取替機 構造物 フレーム (ガーダ)	組合せ	1.13	1.54 (⊠ 3-1(6))		×
24	チャンネル着脱装置	カート	組合せ	1.18	0.59 (⊠ 3-1(7))	_	0
25	チャンネル取扱 ブーム	回転ポスト (上部)	組合せ	1.11	0.63 (⊠ 3-1(8))	_	0
26	制御棒貯蔵ハンガ	基礎ボルト	引張	1.07	0.50 (⊠ 3-1(9))		0

表 3-1 簡易評価結果(基準地震動 S s) (2/2)

上段:床応答スペクトル 下段:床応答スペクトル条件比率

図 3-1 (1) 燃料プール水位・温度(SA)の条件比率 (基準地震動Ss,鉛直方向,原子炉建物 EL42.800m)

下段:床応答スペクトル条件比率

図 3-1 (2) 燃料プール水位 (SA) の条件比率 (基準地震動Ss,水平方向 (EW),原子炉建物 EL42.800m)

上段:床応答スペクトル 下段:床応答スペクトル条件比率

下段:床応答スペクトル条件比率

図 3-1 (5) 原子炉建物天井クレーンの条件比率 (基準地震動Ss,鉛直方向,原子炉建物 EL51.700m)

下段:床応答スペクトル条件比率

図 3-1(6)燃料取替機の条件比率

(基準地震動Ss,水平方向(NS),原子炉建物 EL42.800m)

図 3-1 (7) チャンネル着脱装置の条件比率 (基準地震動Ss, 鉛直方向, 原子炉建物 EL42.800m)

図 3-1 (8) チャンネル取扱ブームの条件比率 (基準地震動Ss,水平方向 (EW),原子炉建物 EL42.800m)

図 3-1 (9) 制御棒貯蔵ハンガの条件比率 (基準地震動Ss,水平方向(EW),原子炉建物 EL42.800m)

3.2 詳細評価結果

(1) 詳細評価条件

詳細評価が必要となった機器・配管系の評価の耐震条件は,2.2.1 項に示す3次元影響 確認用耐震条件を用いた。剛構造である設備は最大応答加速度,柔構造である設備は図3-2に示す床応答スペクトル(拡幅なし)を用いた。

なお, 耐震条件以外の圧力, 温度等の条件は, 耐震計算書と同一の条件である。

(2) 詳細評価結果

評価結果を表 3-2 に示す。詳細評価対象設備の発生値が許容値以下となることを確認 した。

司(世 々 私	萩仲女	亡士八将		詳細評	詳細評 (基準地)	検討			
設傭名称	部1111年11月21	心力分類	条件 種別	構造物名	EL(m)	減衰定数 (%)	発生値 (MPa)	許容値 (MPa)	結果
燃料プー ルスプレ イ系配管 SFPS-R-3	配管本体	一次+ 二次	FRS	原子炉 建物	51.7	2.0	166	376	0
原子炉 建物天井 クレーン [*]	落下 防止 ラグ	圧縮	震度	原子炉 建物	42.8	_	250	254	0
燃料 取替機	ガーダ	組合せ	FRS	原子炉 建物	42.8	2.0	215	275	0

表 3-2 条件比率が設備の裕度を上回った設備の詳細評価結果

注記*:別紙4.7-1にて詳細を示す。

図 3-2 (1) 燃料プールスプレイ系配管の 3 次元影響確認用耐震条件 (原子炉建物 EL m)

178

上段:水平方向(NS)床応答スペクトル 下段:鉛直方向床応答スペクトル

図 3-2 (2) 燃料取替機の3次元影響確認用耐震条件 (原子炉建物 EL42.800m)

(3) 耐震計算書との比較

表3-3に3次元FEM モデルの応答の影響を踏まえた詳細評価による発生値と耐震計算書に記載の発生値の比較結果を示す。表3-3のとおり,対象設備の詳細評価による発生値が耐震計算書に記載の発生値を上回る設備は1設備であることを確認した。よって,補足説明資料「補足023-13 地震応答に影響を及ぼす不確かさ要因の整理」に基づき,この1設備の評価結果をVI-2-12「水平2方向及び鉛直方向地震力の組合せに関する影響評価結果」に反映する。

表3-3 詳細評価における発生値と耐震計算書における発生値(基準地震動Ss)

設備名称	評価部位	応力分類	詳細評価による	耐震計算書に記載	比較
			発生値(MPa)	の発生値(MPa)	結果*
燃料プール スプレイ系配管 SFPS-R-3	配管本体	一次 + 二次応力	166	356	
原子炉建物天井 クレーン	落下防止 ラグ	圧縮	250	216	0
燃料取替機	ガーダ	組合せ	215	242	_

注記*:詳細評価による発生値が耐震計算書に記載の発生値を上回る場合「〇」を記載

4. まとめ

「別紙2 3次元FEM モデルを用いた精査」の「2.5 地震応答解析結果」より,壁の中央部で面 外にはらむような最大応答加速度分布となっていることから,面外応答の機器・配管系への 影響検討を実施した。その結果,面外応答による影響を考慮しても,機器・配管系の耐震性 に影響がないことを確認した。
原子炉建物天井クレーンの落下防止ラグの応力評価

1. はじめに

原子炉建物天井クレーンの重大事故等時の状態を考慮した場合の応力評価について、3次 元影響確認用耐震条件(最大応答加速度)の簡易評価における落下防止ラグの耐震性を確認 できなかったことから、落下防止ラグの詳細評価を実施した。

2. 応力評価対象部位

原子炉建物天井クレーンの応力評価対象部位は,重大事故等時の状態を考慮した場合の評価結果より,3次元影響確認用耐震条件(最大応答加速度)の1.2ZPA 震度を適用した簡易評価で耐震性を確認できなかった落下防止ラグである。

3. 3次元影響確認用耐震条件(最大応答加速度)による応力評価

評価条件を表 1, 評価結果を表 2 に示す。VI-2-11-2-7-1「原子炉建物天井クレーンの耐 震性についての計算書」(以下「耐震計算書」という。)と同じ評価手法を用いた, 落下防止 ラグの 3 次元影響確認用耐震条件(最大応答加速度)による算出応力は許容応力を超えてお り, 耐震性を確認できなかったことから,「4. 落下防止ラグの評価断面の精緻化による評 価」を実施する。

対象	NS 方向 対象 震度		UD 方向 震度	
落下防止ラグ	4.25	*	*	

表1 3次元影響確認用耐震条件(最大応答加速度)を用いた評価条件

注記*:落下防止ラグは,構造により水平方向1方向(NS方向)の地震力のみ負担する ため,他の方向については「-」と記載する。

表2 3次元影響確認用耐震条件(最大応答加速度)を用いた評価結果

対象	応力分類	算出応力 ^{*1} (MPa)	許容応力*2(MPa)
落下防止ラグ	圧縮	405	254

注記*1:3次元影響確認用耐震条件(最大応答加速度)の震度による算出応力

*2: VI-2-11-2-7-1「原子炉建物天井クレーンの耐震性についての計算書」から引 用 4. 落下防止ラグの評価断面の精緻化による評価

耐震計算書で使用した評価断面から、より実機の構造状態に合うように精緻化した評価断 面による応力評価を実施した。4.1項に精緻化した評価断面を示す。

落下防止ラグの評価断面の精緻化による評価結果を表3に示す。落下防止ラグの3次元 影響確認用耐震条件(最大応答加速度)による算出応力は許容応力以下であり,耐震性を確 認できた。

表3 落下防止ラグの評価断面の精緻化による評価結果

対象	応力分類	算出応力 ^{*1} (MPa)	許容応力*2(MPa)
落下防止ラグ	圧縮	250	254

注記*1:3次元影響確認用耐震条件(最大応答加速度)の震度による算出応力

4.1 評価断面の精緻化

3項の評価で裕度が1未満となった箇所は,落下防止ラグの圧縮応力の評価断面である。

図1に耐震計算書で使用した評価断面を示す。

図1 耐震計算書の評価断面

^{*2:} VI-2-11-2-7-1「原子炉建物天井クレーンの耐震性についての計算書」から引 用

圧縮応力の評価断面は, 横材と縦材が溶接で接合された構造となっている。①耐震計 算書の圧縮応力の評価断面は, 保守的な評価となるように②実機のクレーンガーダ側の あたり板と落下防止ラグ側のあたり板の接触範囲に対して, 縦寸法が小さい寸法の評価 断面としている。

今回の検討において,建物の3次元影響確認用耐震条件(最大応答加速度)の応答が 増加したことにより,①耐震計算書の圧縮応力の評価断面に対する入力加速度が大きく なったことから,応力が発生し許容応力を上回る結果となった。

そこで、実機構造を踏まえた評価断面の精緻化を実施し、評価へ反映を行った。

精緻化した評価断面を図2に示す。

上記のとおり①耐震計算書の圧縮応力の評価断面は,実機の接触範囲の縦寸法よりも 小さい寸法の評価断面(縦 mm×横 mmの接触範囲)としていたが,③精緻化し た評価断面においては,実機構造を踏まえ,クレーンガーダ側のあたり板と落下防止ラ グ側のあたり板の接触範囲(縦 mm×横 mmの接触範囲)と同じ寸法を考慮した 評価断面とした。

図2 精緻化した評価断面

5. まとめ

3次元影響確認用耐震条件(最大応答加速度)による影響を考慮しても,落下防止ラグの 応力評価において,耐震性に影響がないことを確認した。 別紙 4.8 原子炉建物 3 次元 FEM モデルの応答解析結果に 係る機器・配管系への影響検討

目 次

1.	概要	別紙 4.8-1
2.	検討方針	別紙 4.8-1
	2.1 検討対象	別紙 4.8- <mark>3</mark>
	2.2 検討方法	別紙 4.8-3
	2.2.1 3 次元影響確認用耐震条件の作成 ······	別紙 4.8-3
	2.2.2 3 次元 FEM モデルによる影響の評価 ・・・・・・・・・・・・・・・・	別紙 4.8-6
3.	検討内容	別紙 4.8-7
4.	評価結果	別紙 4.8- <mark>29</mark>

別紙 4.8-1 原子炉建物 3 次元 FEM モデルによる原子炉圧力容器等の地震応答への影響確認 別紙 4.8-2 計算機プログラム(解析コード)の概要 1. 概要

「別紙3 原子炉建物3次元 FEM モデルによる地震応答解析」の「3.4 床応答への影響検討」より、3次元 FEM モデルの応答が質点系モデルの応答を上回る箇所があることから、「NS2-補-023-1 地震応答に影響を及ぼす不確かさ要因の整理」に基づき、機器・配管系への影響検討を実施する。

2. 検討方針

3次元 FEM モデルの応答から、3次元影響確認用の床応答スペクトル(以下「3次元影響確認用床 応答スペクトル」という。)及び震度(以下「3次元影響確認用震度」という。また「3次元影響確 認用床応答スペクトル」「3次元影響確認用震度」を総称して「3次元影響確認用耐震条件」という。) を作成し、設計用床応答スペクトル及び設計用震度との比較を行い、条件比率を算出する。比較対 象箇所は、「別紙3原子炉建物3次元 FEM モデルによる地震応答解析」の「3.4 床応答への影響検 討」と同様とする。「2.1 検討対象」に示す機器・配管系について、条件比率と各検討対象の裕度 (許容値/発生値)を用いた簡易評価及び3次元影響確認用耐震条件を用いた詳細評価を行う。影

なお,原子炉建物と連成させる原子炉圧力容器等は3次元 FEM モデルではモデル化されておら ず,3次元影響確認用耐震条件を直接作成できない。原子炉圧力容器等の原子炉建物と連成させた 質点系モデルにより算定される耐震評価条件を用いる設備については,原子炉建物(3次元 FEM モ デル)と原子炉圧力容器等(質点系モデル)を連成させた地震応答解析を実施し,建物3次元 FEM モデルによる原子炉圧力容器等の地震応答への影響を確認する(別紙4.8-1参照)。

- 注記*1:3次元 FEM モデルでの地震応答解析(Sd5波^{*6})及び質点系モデルでの地震応答解析(Sd5波^{*6}) *2:3次元 FEM モデルの応答(Sd5波^{*6})/質点系モデルの応答(Sd5波^{*6})
 - *3:3次元影響確認用耐震条件は、質点系モデル基本ケース*7(Ss5波*8)に応答比率を乗じて作成する。
 - *4:3次元影響確認用耐震条件(震度,床応答スペクトル)に対する耐震計算に用いる設計条件の比率 床応答スペクトルの条件比率は,固有周期に応じた比を用いる。
 - *5:刺激係数を考慮した条件比率を用いた評価を含む。
 - *6: Sd5波は,弾性設計用地震動Sd-D, F1, F2, N1及びN2
 - *7: VI-2-2-2「原子炉建物の地震応答計算書」に示す基本ケース
 - *8:Ss5波は,基準地震動Ss-D,F1,F2,N1及びN2

図 2-1 原子炉建物 3 次元 FEM モデルの応答解析結果に係る機器・配管系への

影響検討フロー

別紙 4.8−2 **189** 2.1 検討対象

原子炉建物に設置される以下の機器・配管系を影響検討の対象とする。なお、燃料取替階以上 に設置される機器については機器設置位置の3次元影響確認用耐震条件を用いて個別に確認する ことから、本検討の対象外とする(別紙4.7参照)。

また,2.に記載のとおり,原子炉圧力容器等の原子炉建物と連成させた質点系モデルにより算 定される耐震評価条件を用いる設備は別紙4.8-1にて評価する。

- ・設計基準対象施設のうち、耐震重要度分類のSクラスに属する機器・配管系
- ・重大事故等対処施設のうち,常設耐震重要重大事故防止設備,常設重大事故緩和設備及び常 設重大事故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSクラスのもの) に属する機器・配管系
- ・波及的影響防止のために耐震評価を実施する機器・配管系
- 2.2 検討方法
 - 2.2.13次元影響確認用耐震条件の作成

3次元 FEM モデルでは,弾性設計用地震動Sdに対する地震応答解析を行っていることから, 弾性設計用地震動Sdに対する3次元 FEM モデルの応答と質点系モデルの応答の比率を用いて 質点系モデルの基準地震動Ssに対する応答を補正し,3次元影響確認用耐震条件を作成する。

以下,床応答スペクトルを例に3次元影響確認用耐震条件の作成方法を示す。震度について も床応答スペクトルと同様に作成する。

I 弾性設計用地震動Sd-D, F1, F2, N1, N2(以下「Sd5波」という。)に対する3次元FEMモデルの応答と弾性設計用地震動Sd5波に対する質点系モデルの応答の比(以下「応答比率」という。)を、全周期において算定する。応答比率の算定にあたっては、「別紙3原子炉建物3次元FEMモデルによる地震応答解析」と同様に3次元FEMモデルの床応答スペクトルを作成する。応答比率の算定イメージを図2-2に示す。なお、3次元FEMモデルの応答による機器・配管系の耐震評価結果へ与える影響を検討するものであるため、応答比率が1.0を下回る場合でも、その応答比率を乗ずる。

応答比率= <u>3</u>次元 FEM モデルの応答(Sd 5波) 質点系モデルの応答(Sd 5波)

Ⅱ 質点系モデル基本ケースの基準地震動Ss-D,F1,F2,N1,N2(以下「Ss5波」 という)に対する固有周期ごとの応答に、応答比率を乗算して、3次元影響確認用床応答ス ペクトルを算定する。3次元影響確認用床応答スペクトルの算定イメージを図2-3に示す。 3次元影響確認用床応答スペクトルは、固有周期0.131sを例とすると、0.131sの質点系モ デル基本ケースの基準地震動Ssに対する応答に0.131sの応答比率を乗算した値となる。

3次元影響確認用床応答スペクトル=質点系モデルの応答(Ss5波)×応答比率

Ⅲ 3 次元影響確認用床応答スペクトルと耐震計算に用いる設計用床応答スペクトルの比(以下「条件比率」という。)を算定する。条件比率の算定例を図 2-4 に示す。条件比率は、仮に固有周期が 0.131sの機器・配管系とすると、設計用床応答スペクトルによる耐震計算を実施している場合(d/c)となる。

条件比率= 3次元影響確認用床応答スペクトル 耐震計算に用いる設計用床応答スペクトル

なお,配管系等のスペクトルモーダル解析を実施している設備は,刺激係数を考慮してモ ードごとの比率を算出する手法による条件比率(以下「刺激係数を考慮した条件比率」とい う。)を用いて簡易評価を行う場合がある。刺激係数を考慮した条件比率の算出方法は「NS2-補-024-01 原子炉建物の地震応答計算書に関する補足説明資料 別紙 3-8 刺激係数を考 慮した条件比率の算出」に示す。

図 2-2 床応答スペクトルにおける応答比率の算定イメージ

図 2-3 3 次元影響確認用床応答スペクトルの算定イメージ

図 2-4 条件比率の算定イメージ

2.2.2 3 次元 FEM モデルによる影響の評価

3次元 FEM モデルによる機器・配管系の影響評価を以下のとおり実施する。

(1) 簡易評価による検討対象設備の代表選定

条件比率が耐震計算の裕度を上回る機器・配管系を抽出する。なお,設備に応じた条件比 率の適用方法を以下に示す。

a. 評価に震度を適用する設備

対象設備の標高における条件比率の全方向最大値を適用する。

b. 評価に床応答スペクトルを適用する設備

各方向について対象設備の標高,減衰定数,固有周期(0.05~1.0s間)における条件比率の最大値を算出し,全方向最大値を適用する。

床応答スペクトルの条件比率の算定方法を図 2-5 に示す。

図 2-5 簡易評価に用いる各方向における床応答スペクトルの条件比率の算定方法 (評価に床応答スペクトルを適用する設備)

(2) 詳細評価

検討対象設備の代表として選定した設備について、3次元影響確認用耐震条件を用いて、 当該設備の耐震計算書で適用している評価手法と同等の手法による評価を行い、発生値が許 容値以下となることを確認する。確認の結果、発生値が許容値を上回る場合は、追加検討を 行う。

(3) 追加検討

詳細評価で発生値が許容値を上回った設備は,設備の評価結果等に応じて個別に設備対 策,評価の精緻化等を行う。 3. 検討内容

(1)3次元影響確認用耐震条件の作成結果

<mark>3 次元影響確認用震度を表 3-1~表 3-2,3 次元影響確認用床応答スペクトルを図 3-1~図 3-</mark>

3 に示す。なお,床応答スペクトルの減衰定数は,耐震裕度の比較的小さい配管系の主要な減衰定 数である 2.0%を代表とする。

また,同図表にはⅥ-2-1-7「設計用床応答スペクトルの作成方針」に示される設計用震度及び設 計用床応答スペクトルを併記して示す。

3 次元影響確認用床応答スペクトルと設計用床応答スペクトルを比較し,各標高・各減衰につい て,3 次元影響確認用床応答スペクトル/設計用床応答スペクトルにより周期ごとの条件比率を算 定する。

表 3-1(1/3) 震度(原子炉建物)

基準地震動Ss,1.0ZPA,水平方向(NS)

構造物名	質点番号	1-1-1-	震度 (×9.80665m/s ²)×1.0			条件比率	
	NS方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	 ③ 3次元影響 確認用耐 震条件 	3/1)	3/2
	6,20	63. 500	2.70	3.69	1.77	0.66	0.48
	7,21	51.700	1.89	2.70	1.41	0.75	0.53
	8, 14, 22, 28	42.800	1.35	1.92	1.09	0.81	0.57
	1, 9, 15, 23, 29	34.800	1.06	1.56	1.04	0.99	0.67
	2, 10, 16, 24, 30	30. 500	1.17	1.74	1.14	0.98	0.66
原子炉 建物	10, 16, 24	30.500 (燃料プール)	1.08	1.55	1.14	1.06	0.74
	3, 11, 17, 25, 31	23.800	1.02	1.44	0.90	0.89	0.63
	4, 12, 18, 26, 32	15. 300	0.92	1.32	0.83	0.91	0.63
	19	10.100	0.96	1.44	0.93	0.97	0.65
	5, 13, 27, 33	8.800	0.86	1.25	0.78	0.91	0.63
	34	1.300	0.74	1.07	0.68	0.92	0.64

	$\left(0 \right) \left(0 \right)$	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
* 3 - 1	(2/3)	賞	
10 1		JR/X	

基準地震動Ss,1.0ZPA,水平方向(EW)

構造物名	質点番号	1 22	震度 (×9.80665m/s ²)×1.0			条件比率	
	EW方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	 ③ 3次元影響 確認用耐 震条件 	3/1)	3/2
	3, 17	63. 500	2.76	4.14	2.29	0.83	0.56
	4, 18, 22	51.700	2.00	2.93	1.92	0.96	0.66
	5, 11, 19, 23	42.800	1.46	2.10	1.20	0.83	0.58
	6, 12, 20, 24, 29	34.800	1.17	1.73	1.03	0.89	0.60
	7, 13, 21, 25, 30	30. 500	1.46	1.95	1.55	1.07	0.80
原子炉 建物	13, 21	30.500 (燃料プール)	1.20	1.77	1.55	1.30	0.88
	8, 14, 26, 31	23.800	0.98	1.43	0.93	0.95	0.66
	1, 9, 15, 27, 32	15. 300	0.87	1.29	0.92	1.06	0.72
	16	10.100	0.98	1.44	0.88	0.90	0.62
	2, 10, 28, 33	8.800	0.88	1.29	0.85	0.97	0.66
	34	1.300	0.81	1.17	0.74	0.92	0.64

ŧ	9 1	(2/2)	雪中	(百才后进版)
X	3-1	(0/0)	辰茂	(原丁炉建初)

基準地震動Ss, 1.0ZPA,鉛直方向

構造物名	質点番号	1-22 - 1-2	震度 (×9.80665m/s ²)×1.0			条件比率	
	鉛直方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	③ 3次元影 響確認用 耐震条件	3/1	3/2
	7	63.500	1.63	2.21	1.10	0.68	0.50
	8	51.700	1.48	2.04	0.95	0.65	0.47
	9,17	42.800	1.51	2.06	1.10	0.73	0.54
	1, 10, 18	34.800	1.49	1.98	1.08	0.73	0.55
	2, 11, 19	30. 500	1.44	1.94	1.02	0.71	0.53
原子炉 建物	11, 19	30.500 (燃料プール)	1.44	1.94	1.02	0.71	0.53
	3, 12, 20	23.800	1.28	1.73	0.87	0.68	0.51
	4, 13, 21	15.300	0.97	1.31	0.70	0.73	0.54
	22	10.100	0.70	1.05	0.63	0.90	0.60
	5, 14	8.800	0.64	0.96	0.63	0.99	0.66
	6, 15, 23	1.300	0.58	0.87	0.60	1.04	0.69

表 3-2(1/3) 震度(原子炉建物)

基準地震動Ss, 1.2ZPA,水平方向(NS)

構造物名	質点番号	ية <u>ب</u>	震度 (×9.80665m/s ²)×1.2			条件比率	
	NS方向	標局 EL (m)	① 設計用 I	② 設計用Ⅱ	 ③ 3次元影響 確認用耐 震条件 	3/1)	3/2
	6,20	63.500	3.23	4.43	2.12	0.66	0.48
	7, 21	51.700	2.27	3.24	1.69	0.75	0.53
	8, 14, 22, 28	42.800	1.62	2.31	1.31	0.81	0.57
	1, 9, 15, 23, 29	34.800	1.27	1.88	1.25	0.99	0.67
	2, 10, 16, 24, 30	30.500	1.40	2.09	1.36	0.98	0.66
原子炉 建物	10, 16, 24	30.500 (燃料プール)	1.30	1.86	1.36	1.05	0.74
	3, 11, 17, 25, 31	23.800	1.23	1.73	1.08	0.88	0.63
	4, 12, 18, 26, 32	15.300	1.10	1.59	0.99	0.90	0.63
	19	10.100	1.15	1.73	1.11	0.97	0.65
	5, 13, 27, 33	8.800	1.03	1.49	0.93	0.91	0.63
	34	1.300	0.89	1.28	0.82	0.93	0.65

	$\left(0 \right) \left(0 \right)$	一一一一	
$\frac{1}{2}$	(2/3)	農店	
10 4	$(\underline{a}, \underline{b})$	JR/X	

基準地震動Ss,1.2ZPA,水平方向(EW)

構造物名	質点番号	1 22	震度 (×9.80665m/s ²)×1.2			条件比率	
	EW方向	標局 EL (m)	① 設計用 I	② 設計用Ⅱ	 ③ 3次元影響 確認用耐 震条件 	3/1)	3/2
	3, 17	63. 500	3.31	4.97	2.75	0.84	0.56
	4, 18, 22	51.700	2.40	3.51	2.30	0.96	0.66
	5, 11, 19, 23	42.800	1.75	2.52	1.44	0.83	0.58
	6, 12, 20, 24, 29	34.800	1.41	2.07	1.24	0.88	0.60
	7, 13, 21, 25, 30	30. 500	1.75	2.33	1.86	1.07	0.80
原子炉 建物	13, 21	30.500 (燃料プール)	1.44	2.13	1.86	1.30	0.88
	8, 14, 26, 31	23.800	1.17	1.71	1.12	0.96	0.66
	1, 9, 15, 27, 32	15.300	1.04	1.55	1.11	1.07	0.72
	16	10.100	1.18	1.74	1.05	0.89	0.61
	2, 10, 28, 33	8.800	1.06	1.56	1.01	0.96	0.65
	34	1.300	0.98	1.41	0.89	0.91	0.64

	~	$\left(\alpha \right) \left(\alpha \right)$		
表 3	-2	(3/3)	震度	(原子炉建物)

基準地震動Ss, 1.2ZPA,鉛直方向

構造物名	質点番号	لية ح	(×9.	震度 80665m/s ²)	条件比率		
	鉛直方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	③ 3次元影 響確認用 耐震条件	3/1)	3/2
原子炉建物	7	63. 500	1.95	2.66	1.32	0.68	0.50
	8	51.700	1.77	2.46	1.14	0.65	0.47
	9,17	42.800	1.81	2.46	1.32	0.73	0.54
	1, 10, 18	34.800	1.79	2.39	1.30	0.73	0.55
	2, 11, 19	30. 500	1.73	2.31	1.23	0.72	0.54
	11, 19	30.500 (燃料プール)	1.73	2.31	1.23	0.72	0.54
	3, 12, 20	23.800	1.54	2.07	1.04	0.68	0.51
	4, 13, 21	15.300	1.16	1.58	0.84	0.73	0.54
	22	10.100	0.84	1.25	0.76	0.91	0.61
	5,14	8.800	0.77	1.16	0.75	0.98	0.65
	6, 15, 23	1.300	0.70	1.05	0.72	1.03	0.69

(基準地震動Ss,水平方向(NS):原子炉建物 EL51.700m)

別紙 4.8-16 **203**

別紙 4.8−17 **204**

別紙 4.8-19 **206**

別紙 4. 8−20 **207**

別紙 4. 8−21 **208**

別紙 4.8-22 **209**

別紙 4. 8−23 **210**

度

眽

0

0.05

0.1

別紙 4.8−24 **211**

図 3-3(2/10) 床応答スペクトル (基準地震動Ss,鉛直方向:原子炉建物 EL51.700m)

0.2

固 有 周 期 [s]

0.5

1.0

別紙 4. 8−26 **213**

(基準地震動Ss, 鉛直方向:原子炉建物 EL10.100m)

別紙 4. 8−27 **214**

4. 検討結果

(1) 簡易評価結果

簡易評価の結果,一部の設備を除き,条件比率が設備の裕度以下となることを確認した。表4-1に条件比率が設備の裕度を上回った設備の簡易評価結果を示す。なお,配管の詳細評価対象は, 評価に用いる各標高で裕度が最小となる配管を代表としている。

設備名称	評価部位	応力分類	而 (基 発生値 ^{*1} (MPa)	討震評価結界 準地震動S 許容値 (MPa)	₹ s) 裕度	条件比率	刺激係数を 考慮した 条件比率	検討 結果
配管(RHR−R−2)	配管本体	一次+二次 応力	353	394	1.11	1.51 (図 4-1)	1.37	×
配管(ADS-R-2SP)	配管本体	一次+二次 応力	260	300	1.15	1.23 (⊠ 4−2)	1.20	×
配管(FCS-R-3)	配管本体	一次+二次 応力	466	438	0.93	1.64 (図 4-3)	1.28	×
		疲労*2	0.6098	1	_			
配管(NGC-R-1)	配管本体	一次+二次 応力	380	438	1.15	1.72 (図 4-4)	1. 35	×
サプレッションチェ ンバ及び関連設備	追而							

表 4-1 条件比率が設備の裕度を上回った設備の簡易評価結果

注記*1:一次+二次応力の発生値が許容値を上回った場合は疲労評価を実施する。

*2:単位は無次元

(2) 詳細評価結果

追而

上段:床応答スペクトル

上段:床応答スペクトル 下段:床応答スペクトル条件比率

図 4-1 配管(RHR-R-2)の条件比率 (基準地震動S s,水平方向(EW),原子炉建物 EL m)(2/3)

上段:床応答スペクトル

図 4-1 配管(RHR-R-2)の条件比率 (基準地震動 S s, 鉛直方向, 原子炉建物 EL m) (3/3)

上段:床応答スペクトル

上段 : 床応答スペクトル

上段:床応答スペクトル 下段:床応答スペクトル条件比率

図 4-2 配管(ADS-R-2SP)の条件比率 (基準地震動 S s, 鉛直方向, 原子炉建物 EL m)(3/3)

上段 : 床応答スペクトル

上段:床応答スペクトル

上段:床応答スペクトル

上段 : 床応答スペクトル

上段:床応答スペクトル

上段:床応答スペクトル

(3)	耐震計算書との比較

追而

追而

別紙 4.8-1 原子炉建物 3 次元 FEM モデルによる 原子炉圧力容器等の地震応答への影響確認

目 次

1.	概要	別紙 4.8-1-1
2.	検討方針	別紙 4.8-1-1
	2.1 検討対象	別紙 4.8-1-3
	2.2 検討方法	別紙 4.8-1-3
	2.2.1 3 次元 FEM-質点系連成モデル耐震条件の作成	別紙 4.8-1-3
	2.2.2 3 次元 FEM-質点系連成モデルによる影響の評価 ・・・・・・・	別紙 4.8-1-4
3.	「3 次元 FEM-質点系連成モデル」のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4.8-1-5
	3.1 解析条件	別紙 4.8-1-5
	3.2 解析モデル	別紙 4.8-1-6
4.	検討内容	別紙 4.8-1-10
	4.1 固有値解析結果	別紙 4.8-1-10
	4.2 3 <mark>次元</mark> FEM 連成解析モデルと今回工認モデルの応答比率 ······	別紙 4.8-1- <mark>20</mark>
	4.3 3 <mark>次元</mark> FEM 連成解析モデル耐震条件の作成 ······	別紙 4.8-1- <mark>241</mark>
5.	檢討結果	別紙 4. 8-1- <mark>350</mark>
6.	まとめ	別紙 4. 8-1- <mark>354</mark>

1. 概要

「別紙3 原子炉建物3次元 FEM モデルによる地震応答解析」の「3.4 床応答への影響検討」 より、原子炉建物としては、3次元的な応答特性を踏まえても、質点系モデルの応答を用いた 評価が概ね保守的であることが確認された。また、一部3次元 FEM モデルの応答が質点系モデ ルの応答を上回る箇所があることから、機器・配管系への影響検討を実施する。しかし、原子 炉建物と連成させる原子炉圧力容器等は3次元 FEM モデルではモデル化されておらず、3次元 影響評価用応答を直接算出できない。原子炉建物と原子炉圧力容器等の接続点における応答比 率を用いて影響検討を実施する方法も考えられるが、一部の周期帯では応答比率が大きく、当 該比率を用いて原子炉圧力容器等の影響評価を実施すると過大評価となる可能性がある。そこ で、本検討では、原子炉建物(3次元 FEM モデル)と原子炉圧力容器等(3次元質点系モデ ル)を連成させた地震応答解析を実施し、建物3次元 FEM モデルによる原子炉圧力容器等の地 震応答への影響を確認する。

2. 検討方針

本検討では、原子炉建物(3次元FEMモデル)と原子炉圧力容器等(3次元質点系モデル)を 連成させたモデル(以下「3次元FEM-質点系連成モデル」という。)と今回工認モデル(質点 系モデル)(以下「今回工認モデル」という。)の応答を比較することにより、建物3次元FEM モデルを連成させることによる原子炉圧力容器等の地震応答への影響を確認する。なお、影 響検討は、弾性設計用地震動Sd のうち位相特性の偏りがなく、全周期帯において安定した 応答を生じさせ、機器・配管系の耐震性評価において支配的なSd – Dに対して実施する。 また、今回工認モデルでは地震動の入力は1方向入力していることから、3次元FEM-質点系連 成モデルにおいても1方向入力で比較する。なお、「別紙3原子炉建物3次元FEMモデルによる 地震応答解析」の「3.2.4 水平2方向及び鉛直方向地震力の組合せによる影響」において、1 方向入力時及び3方向同時入力時の応答の差は小さく、水平2方向及び鉛直方向地震力の組合 せによる影響はほとんどないことを確認している。よって、機器・配管系においても水平2方 向及び鉛直方向地震力の組合せによる影響はほとんどないと考えられる。

弾性設計用地震動Sd-Dにおける3次元FEM-質点系連成モデルと今回工認モデルの応答 比率を用いて今回工認モデルの基準地震動Ss-D,F1,F2,N1及びN2に対する応答 を補正した3次元FEM-質点系連成モデルの影響検討用の床応答スペクトル(以下「3次元FEM-質点系連成モデル床応答スペクトル」という。),震度(以下「3次元FEM-質点系連成モデル震 度」という。)及び荷重(以下「3次元FEM-質点系連成モデル荷重」という。また「3次元FEM-質点系連成モデル床応答スペクトル」「3次元FEM-質点系連成モデル震度」「3次元FEM-質点系 連成モデル荷重」を総称して「3次元FEM-質点系連成モデル耐震条件」という。)を作成し, 機器・配管系の影響検討を実施する。影響検討フローを図2-1に示す。

- 注記*1:3次元FEM-質点系連成モデルの応答(Sd-D)/今回工認モデル(質点系モデル)の応答(Sd-D) *2:3次元FEM-質点系連成モデル耐震条件は,今回工認モデル基本ケース*5(Ss5波*6)に応答比率を乗じて
 - 作成する。
 - *3:3次元FEM-資点系連成モデル耐震条件(震度,床応答スペクトル)に対する耐震計算に用いる設計条件の比率。 床応答スペクトルの条件比率は、固有周期に応じた比を用いる。

 - *4: 刺激係数を考慮した条件比率を用いた評価を含む。 *5: VI-2-2-2「原子伊建物の地震応答計算書」に示す基本ケース
 - *6: Ss5波は,基準地震動Ss-D, F1, F2, N1及びN2

図 2-1 3次元 FEM-質点系連成モデルの応答解析結果に係る機器・配管系への

影響検討フロー

2.1 検討対象

原子炉建物に設置される以下の機器・配管系のうち,原子炉圧力容器等の原子炉建物と連 成させた質点系モデルにより算定される耐震評価条件を用いる設備を影響検討の対象とす る。

- ・設計基準対象施設のうち、耐震重要度分類のSクラスに属する機器・配管系
- ・重大事故等対処施設のうち,常設耐震重要重大事故防止設備,常設重大事故緩和設備及 び常設重大事故防止設備(設計基準拡張)(当該設備が属する耐震重要度分類がSクラ スのもの)に属する機器・配管系
- ・波及的影響防止のために耐震評価を実施する機器・配管系
- 2.2 検討方法
 - 2.2.1 3 次元 FEM-質点系連成モデル耐震条件の作成

3 次元 FEM-質点系連成モデルでは,弾性設計用地震動Sdのうち位相特性の偏りがな く,全周期帯において安定した応答を生じさせ,機器・配管系の耐震性評価において支配 的なSd-Dに対する3次元 FEM-質点系連成モデルと今回工認モデルの応答の比率を用 いて今回工認モデルの基準地震動Ssに対する応答を補正し,3次元 FEM-質点系連成モ デル耐震条件を作成する。

以下,床応答スペクトルを例に3次元 FEM-質点系連成モデル耐震条件の作成方法を示 す。震度及び荷重についても床応答スペクトルと同様に作成する。

I 弾性設計用地震動Sd-Dに対する3次元FEM-質点系連成モデルの応答と弾性設計 用地震動Sd-Dに対する今回工認モデルの応答の比(以下「応答比率」という。) を、全周期において算定する。なお、3次元FEM-質点系連成モデルの応答による機 器・配管系の耐震評価結果へ与える影響を検討するものであるため、応答比率が1.0 を下回る場合でも、その応答比率を乗ずる。

> 応答比率= <u>3</u>次元 FEM-質点系連成モデルの応答(Sd-D) 今回工認モデルの応答(Sd-D)

- Ⅱ 今回工認モデル基本ケースの基準地震動Ss-D,F1,F2,N1,N2(以下 「Ss5波」という)に対する固有周期毎の応答に、応答比率を乗算して、3次元 FEM-質点系連成モデル床応答スペクトルを算定する。
- 3次元 FEM-質点系連成モデル床応答スペクトル

=今回工認モデルの基本ケースの応答(Ss5波)×応答比率

■ 3 次元 FEM-質点系連成モデル床応答スペクトルと耐震計算に用いる設計用床応答スペクトルの比(以下「条件比率」という。)を算定する。

条件比率= 3次元 FEM-質点系連成モデル床応答スペクトル 耐震計算に用いる設計用床応答スペクトル

なお,配管系等のスペクトルモーダル解析を実施している設備は,刺激係数を考慮し てモード毎の比率を算出する手法による条件比率(以下「刺激係数を考慮した条件比率」 という。)を用いて簡易評価を行う場合がある。刺激係数を考慮した条件比率の算出方 法は「NS2-補-024-01 原子炉建物の地震応答計算書に関する補足説明資料 別紙 3-8 刺激係数を考慮した条件比率の算出」に示す。

- 2.2.2 3 次元 FEM-質点系連成モデルによる影響の評価 3 次元 FEM-質点系連成モデルによる機器・配管系の影響評価を以下のとおり実施する。
 - (1) 簡易評価による検討対象設備の代表選定

条件比率が耐震計算の裕度を上回る機器・配管系を抽出する。なお,設備に応じた条件比率の適用方法を以下に示す。

- a. 評価に震度を適用する設備 対象設備の標高における条件比率の全方向最大値を適用する。
- b. 評価に床応答スペクトルを適用する設備

各方向について対象設備の標高,減衰定数,固有周期(0.05~1.0s間)における条件比率の最大値を算出し,全方向最大値を適用する。

- c.設計用荷重を評価に適用する設備
 対象設備の標高における条件比率の全方向最大値を適用する。
- (2) 詳細評価

検討対象設備の代表として選定した設備について、3 次元 FEM-質点系連成モデル耐 震条件を用いて、当該設備の耐震計算書で適用している評価手法と同等の手法による評 価を行い、発生値が許容値以下となることを確認する。確認の結果、発生値が許容値を 上回る場合は、追加検討を行う。

(3) 追加検討

詳細評価で発生値が許容値を上回った設備は,設備の評価結果等に応じて個別に設備 対策,評価の精緻化等を行う。

- 3. 「3 次元 FEM-質点系連成モデル」のモデル化
 - 3.1 解析条件

検討に用いる3次元 FEM-質点系連成モデルを図3-1に示す。

図 3-1 3 次元 FEM-質点系連成モデル

3.2 解析モデル

3次元 FEM-質点系連成モデル及び今回工認モデルの解析条件を表 3-1に示す。

		3 次元 FEM-質点系連成モデル	今回工認モデル	
解	モデル	原子炉建物:3次元 FEM*1	原子炉建物:質点系	
析		原子炉圧力容器等 3 次元質点系 <mark>*2</mark> ,	原子炉圧力容器等:質点系	
モ		* <mark>3</mark>		
デ	節点数	74412	128(NS), 129(EW), 114(UD)	
ル要素数		100196	163(NS), 168(EW), 120(UD)	
コンクリート剛性		実剛性	設計剛性	
<mark>減衰</mark>		ひずみエネルギー比例減衰	ひずみエネルギー比例減衰	
	建物-機器接続方	ウェルシールベローズ,シヤラグ:	ウェルシールベローズ, シヤラグ:	
法		K ₁ , K ₂ (図 3-1 参照) のばねを分散	K ₁ , K ₂ (図 3-1 参照) の 1 本のばね	
		して接続	で接続	
		PCV 下端部:剛体要素で結合	PCV 下端部:剛体要素で結合	
入力地震動		S d – D	S d – D	
入力方向		NS, EW, 鉛直 (1 方向)	NS, EW, 鉛直 (1 方向)	
解析手法		時刻歴モーダル解析	時刻歷解析(直接積分法)	

表 3-1 解析条件

注記*1:「別紙3 原子炉建物3次元FEMモデルによる地震応答解析」「1.2 3次元FEMモデル による耐震性評価の方針」における建物模擬モデルを使用。ただし,建物模擬モデル ではシールドウォールに原子炉圧力容器等の質量を付加しているため,3次元FEM-質点系連成モデルでは,シールドウォールに付加されていた原子炉圧力容器等の質量 を建物模擬モデルの質量から減ずる。

- *2:原子炉圧力容器等は偏心が少なく,同一中心軸を有しているため,各大型機器の質点 系モデルを同一中心軸位置に配置した3次元質点系モデルとした。
- *3:今回工認モデルの水平方向質点系モデル(NS, EW)に基づき,鉛直方向に関する諸元 も定義し,3次元 FEM-質点系連成モデルを作成
- (1) 建物-機器接続方法
 - (a) ウェルシールベローズ

ウェルシールベローズによる建物(3 次元 FEM)と PCV (質点系モデル)との接続について は、径方向のばね接続でモデル化した。全方向の振動が建物と PCV 間に伝達できるよう に、PCV と建物間には 間隔に計 本の径方向ばねで接続した(図 3-2(a)参照)。 なお、ばねで接続した節点間では径方向の荷重を伝達する拘束条件とし、その他の並進 方向(水平、鉛直)及び回転方向は非拘束条件とする。

ばね定数について、以下に示すように水平各方向の合計値が質点系モデルに設定されたばね定数に等しくなるように算出した(図3-2(b)参照)。

(a) ウェルシールベローズのモデル化方法図 3-2 ウェルシールベローズのモデル化(1/2)

(b) ウェルシールベローズのばね定数算出方法

図 3-2 ウェルシールベローズのモデル化(2/2)

(b) シヤラグ

シャラグによる建物(3 次元 FEM)と PCV(質点系モデル)との接続については,周方向の せん断ばねでモデル化した。シャラグの設置位置と形状を考慮したうえ,PCV と建物間 には 間隔に計 本の周方向ばねで接続した(図 3-3(a)参照)。なお,ばねで接続 した節点間では周方向の荷重を伝達する拘束条件とし,その他の並進方向(水平,鉛直) 及び回転方向は非拘束条件とする。

ばね定数について、以下に示すように水平各方向の合計値が質点系モデルに設定されたばね定数に等しくなるように算出した(図 3-3(b)参照)。

(a) シヤラグのモデル化方法

(b) シヤラグのばね定数算出方法図 3-3 シヤラグのモデル化

(c)PCV 下端部

剛体要素で結合し、並進方向(水平、鉛直)及び回転方向を完全拘束の拘束条件とする。

4. 検討内容

4.1 固有值解析結果

3次元FEM-質点系連成モデルと今回工認モデルによる固有値解析比較結果を表4-1に,振動モード図を図4-1~4-3に示す。固有値解析結果より得られた固有振動数の中で,20Hz 以下の主要な次数についてまとめた。水平方向における主要な振動モードの固有値解析比較結果より,3次元FEM-質点系連成モデルと今回工認モデルの固有振動数の差異は最大約6% であり,概ね同様な結果が確認された。また,鉛直方向における主要な振動モードの固有 値解析比較結果より,3次元FEM-質点系連成モデルと今回工認モデルの固有振動数の差異は 約4%であり,概ね同様な結果が確認された。

双4 I (1/3) 固有 直种 机 福禾 (1/3) 问)			
	固有周期[s]		
モードの種類	今回工認モデル	3次元FEM-質点系	差異[%]
		連成モデル	
原子炉建物 1次	0.219	0.222	-1.4
燃料集合体 1次	0.202	0.202	0.0
<mark>炉心シュラウド 1次</mark>	<mark>0. 135</mark>	<mark>0. 135</mark>	<mark>0. 0</mark>
原子炉圧力容器 1次	0. 110	0. 109	0. 9

表4-1 (1/3) 固有值解析結果 (NS方向)

表4-1(2/3) 固有值解析結果(EW方向)

	固有周期[s]		
モードの種類	今回工認モデル	3次元FEM-質点系	差異[%]
		連成モデル	
燃料集合体 1次	0.204	0.202	1.0
原子炉建物 1次	0.200	0.212	-6.0
<mark>炉心シュラウド 1次</mark>	<mark>0. 135</mark>	<mark>0. 135</mark>	<mark>0. 0</mark>
PED-RPV系 1次	0.109	0. 109	0.0

表4-1(3/3) 固有值解析結果(鉛直方向)

	固有周期[s]		
モードの種類	今回工認モデル	3次元FEM-質点系	差異[%]
		連成モデル	
原子炉建物 1次	0.106	0.110	-3.8

- 1 原子炉建物
- 2 原子炉格納容器
- 3 ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル
- 4 原子炉圧力容器
- 5 気水分離器, スタンドパイプ,
 - シュラウドヘッド及び炉心シュラウド上部胴
- 6 炉心シュラウド中間胴
- 7 炉心シュラウド下部胴
- 8 制御棒駆動機構ハウジング(外側)
- 9 燃料集合体
- 10 制御棒案内管
- 11 制御棒駆動機構ハウジング(内側)

別紙 4.8-1-14

別紙 4.8-1-15

- 1 原子炉建物
- 2 原子炉格納容器
- 3 ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル
- 4 原子炉圧力容器
- 5 気水分離器,スタンドパイプ,
 - シュラウドヘッド及び炉心シュラウド上部胴
- 6 炉心シュラウド中間胴
- 7 炉心シュラウド下部胴
- 8 制御棒駆動機構ハウジング(外側)
- 9 燃料集合体
- 10 制御棒案内管
- 11 制御棒駆動機構ハウジング(内側)

今回工認モデル: 0.200s

3次元FEM-質点系連成モデル: 0.212s

図4-2(2/4) 振動モード(EW方向)(原子炉建物 1次)

3次元FEM-質点系連成モデル*:0.135 注記*:今回工認モデルとは逆位相 で出力されている。

図4-2(3/4) 振動モード(EW方向)(炉心シュラウド 1次)

別紙 4.8-1-17

- 1 原子炉建物
- 2 原子炉格納容器
- 3 ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル
- 4 原子炉圧力容器
- 5 気水分離器,スタンドパイプ,
 - シュラウドヘッド及び炉心シュラウド上部胴
- 6 炉心シュラウド中間胴
- 7 炉心シュラウド下部胴
- 8 制御棒駆動機構ハウジング(外側)
- 9 燃料集合体
- 10 制御棒案内管
- 11 制御棒駆動機構ハウジング(内側)

- 今回工認モデル: 0.109s
- 3次元FEM-質点系連成モデル: 0.109s (原子炉圧力容器等部分)

図4-3 振動モード(鉛直方向)(原子炉建物 1次)

4.23次元 FEM 連成解析モデルと今回工認モデルの応答比率

弾性設計用地震動Sd-Dによる、3次元FEM-質点系連成モデルと今回工認モデルの応答 比率を示す。3次元FEM-質点系連成モデルと今回工認モデルの応答比較結果の全体的な傾向 について、以下に示す。

水平方向:

原子炉圧力容器等の地震応答として、今回工認モデルが概ね3次元FEM-質点系連成モデル の応答を包絡することが確認された。上記の理由としては、原子炉圧力容器等の地震動の 入力点である原子炉建物と原子炉圧力容器等の接続点付近(原子炉建物EL 34.8m, 30.5m, 23.8m, 8.8mの接続部付近の節点)において、「別紙3 原子炉建物3次元FEMモデルによる地 震応答解析」の「3.4 床応答への影響検討」に記載のとおり、質点系モデルが概ね原子炉 建物の3次元FEMモデルの応答スペクトルを包絡していることが要因として考えられる。 原 子炉建物と原子炉圧力容器等の接続点付近の節点における建物模擬モデルの床応答スペク トルの応答比率を図4-4に示す。質点系モデルが概ね原子炉建物の3次元FEMモデルの応答 スペクトルを包絡する理由としては、3次元FEMモデルにおいては、質点系モデルでは保守 的に剛性として考慮していなかった壁を精緻にモデル化していること等により、応答が質 点系モデルに比べて全体的に小さくなると考えられる。

なお、一部3次元FEM-質点系連成モデルの方が今回工認モデルよりも応答が大きくなる箇 所がある。上記の理由としては、原子炉圧力容器等の地震動の入力点である原子炉建物と 原子炉圧力容器等の接続点(原子炉建物EL 34.8m, 30.5m, 23.8m, 8.8mの接続部付近の節 点)において、一部の周期帯(約0.10s付近や約0.20s付近)で原子炉建物の3次元FEMモデ ルの応答スペクトルが質点系モデルの応答スペクトルを上回ることが要因として考えられ る。特に、炉心シュラウドについては、卓越周期帯(約0.13s)において、上記の関係とな っているため、3次元FEM-質点系連成モデルの方が今回工認モデルよりも応答が大きくなっ ていると考えられる。

鉛直方向:

原子炉圧力容器等の地震応答として、今回工認モデルが概ね3次元FEM-質点系連成モデル の応答を包絡することが確認された。上記の理由としては、原子炉圧力容器等の地震動の 入力点である原子炉建物と原子炉圧力容器等の接続点(原子炉建物EL 8.8mの接続部付近の 節点)において、質点系モデルが概ね原子炉建物の3次元FEMモデルの応答スペクトルを包 絡していることが要因として考えられる。原子炉建物と原子炉圧力容器等の接続点におけ る床応答スペクトルの応答比率を図4-5に示す。質点系モデルが概ね原子炉建物の3次元 FEMモデルの応答スペクトルを包絡する理由としては、3次元FEMモデルにおいては、質点系 モデルでは保守的に剛性として考慮していなかった壁を精緻にモデル化していること等に より、応答が質点系モデルに比べて全体的に小さくなると考えられる。

(弹性故訂用地震動Sa-D,水平方向(NS),

EL23.8m(原子炉建物と原子炉圧力容器等の接続点付近の節点(建物模擬モデル)))

図 4-4 (8/8) 今回工認モデルと 3 次元 FEM モデルの床応答スペクトル比較及び応答比率 (弾性設計用地震動 S d - D,水平方向(EW), EL10. 1m(原子炉建物と原子炉圧力容器等の接続点付近の節点(建物模擬モデル)))

(1) 震度の応答比率

震度の応答比率を表4-2~表4-12に, 震度 (1.2ZPA) の比較図を図4-<mark>6</mark>~図4-<mark>12</mark>に 示す。

表 4-2	(1/3)	震度	(原子炉格納容器)

弹性設計用地震動Sd-D, 1.0ZPA, 水平方向(NS)

	質点番号		震度 (×9.80665m/s ²)×1.0		
構造物名	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	2/① 応答比率
	41	39.400	0.71	0.68	0.96
	42	37.060	0.68	0.66	0.98
	43	34.758	0.64	0.63	0.99
	44	33.141	0.61	0.62	1.02
	45	29. 392	0. 57	0. 58	1.02
原子炉 格納容器	46	27.907	0.55	0.58	1.06
	47	22.932	0. 47	0.54	1.15
	48	19.878	0. 45	0.51	1.14
	49	16.825	0. 43	0.47	1.10
	50	13.700	0. 43	0.42	0.98
	51	11.900	0. 43	0.39	0.91

	質点番号		震		
			(×9.80665	$5m/s^2$) ×1.0	
構造物名	EW 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	42	39.400	0.77	0.68	0.89
	43	37.060	0.73	0.65	0.90
	44	34.758	0.69	0.61	0.89
	45	33.141	0.66	0.58	0.88
	46	29.392	0.60	0.53	0.89
原子炉 格納容器	47	27.907	0.56	0.52	0.93
	48	22.932	0.45	0.49	1.09
	49	19.878	0.42	0.46	1.10
	50	16.825	0.40	0.42	1.05
	51	13.700	0.39	0.37	0.95
	52	11.900	0. 42	0.35	0.84

表 4-2 (2/3) 震度 (原子炉格納容器) 弾性設計用地震動 S d-D, 1.0ZPA, 水平方向 (EW)

	質点番号		震		
			(×9.80665	$5m/s^2$) × 1.0	
構造物名	鉛直方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	29	39.400	0. 43	0.38	0.89
	30	37.060	0. 43	0.38	0.89
	31	34.758	0. 42	0.37	0.89
	32	33.141	0. 42	0.37	0.89
	33	29.392	0.40	0.36	0.90
原子炉 格納容器	34	27.907	0.40	0.36	0.90
	35	22.932	0.38	0.34	0.90
	36	19.878	0.37	0.33	0.90
	37	16.825	0.36	0.31	0.87
	38	13.700	0.36	0.31	0.87
	39	11.900	0.35	0.31	0.89

表 4-2 (3/3) 震度(原子炉格納容器) 弹性設計用地震動 S d - D, 1.0ZPA, 鉛直方向

	質点番号		震 (×9_80665		
構造物名	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	41	39.400	0.85	0.82	0.97
	42	37.060	0.81	0.79	0.98
	43	34.758	0.77	0.76	0.99
	44	33.141	0.73	0.74	1.02
	45	29. 392	0.68	0.70	1.03
原子炉 格納容器	46	27.907	0.66	0.69	1.05
	47	22.932	0.57	0.65	1.15
	48	19.878	0.53	0.61	1.16
	49	16.825	0.51	0.56	1.10
	50	13.700	0.51	0.50	0.99
	51	11.900	0.51	0.46	0.91

表 4-3 (1/3) 震度 (原子炉格納容器) 弾性設計用地震動 S d-D, 1.2ZPA, 水平方向 (NS)

	質点番号		震度		
構造物名	 EW 方向	標高 EL(m)	(×9.80008 ① 今回工認 モデル	m/s ⁻)×1.2 ② 3 次元 FEM- 質点系連成 モデル	2/① 応答比率
	42	39.400	0.92	0.82	0.90
	43	37.060	0.87	0.78	0.90
	44	34.758	0.83	0.74	0.90
	45	33.141	0.79	0.70	0.89
	46	29.392	0.72	0.64	0.89
原子炉格納容器	47	27.907	0.67	0.62	0.93
	48	22.932	0.54	0.58	1.08
	49	19.878	0.50	0.55	1.10
	50	16.825	0. 47	0.51	1.09
	51	13.700	0. 47	0.45	0.96
	52	11.900	0.50	0.42	0.84

表 4-3 (2/3) 震度 (原子炉格納容器) 弾性設計用地震動 S d - D, 1.2ZPA, 水平方向 (EW)

	質点番号		震		
構造物名	 鉛直方向	標高 EL (m)	(×9.80008 ① 今回工認 モデル	2 3 次元 FEM- 質点系連成 モデル	2/① 応答比率
	29	39.400	0.51	0.45	0.89
	30	37.060	0.51	0.45	0.89
	31	34. 758	0.51	0.45	0.89
	32	33.141	0.50	0.44	0.88
	33	29. 392	0.48	0.43	0.90
原子炉格納容器	34	27.907	0. 48	0.43	0.90
	35	22.932	0.46	0. 41	0.90
	36	19.878	0.45	0.39	0.87
	37	16.825	0. 43	0.37	0.87
	38	13.700	0. 43	0.37	0.87
	39	11.900	0. 42	0.37	0.89

表 4-3 (3/3) 震度(原子炉格納容器) 弹性設計用地震動 S d - D, 1.2ZPA, 鉛直方向

表 4-4 (1/3) 震度 (ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

構造物名	質点番号		震 (×9.80665		
	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	53	29.962	0.98	0.85	0.87
	54	26.981	0.91	0.70	0.77
ガンマ線遮蔽壁	55	24.000	0.75	0.64	0.86
	56	21.500	0.66	0. 58	0.88
	57	19.000	0.56	0.50	0.90
原子炉圧力容器	58	15.944	0.50	0.42	0.84
ペデスタル	59	13.022	0.47	0. 38	0.81

弹性設計用地震動Sd-D, 1.0ZPA, 水平方向(NS)

表 4-4 (2/3) 震度 (ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		震度 (×9.80665m/s ²)×1.0		
構造物名	EW 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	54	29.962	1.02	0.79	0. 78
	55	26.981	0.95	0.67	0.71
ガンマ線遮蔽壁	56	24.000	0.80	0.62	0.78
	57	21.500	0.69	0.57	0.83
	58	19.000	0.61	0. 49	0.81
原子炉圧力容器	59	15.944	0.55	0. 43	0.79
ペデスタル	60	13.022	0.51	0.37	0.73

弹性設計用地震動Sd-D, 1.0ZPA, 水平方向(EW)

表 4-4(3/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		震度 (×9.80665m/s ²)×1.0		
構造物名	鉛直方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	41	29.962	0.57	0.50	0.88
	42	26. 981	0.55	0. 48	0.88
ガンマ線遮蔽壁	43	24.000	0.52	0.45	0.87
	44	21.500	0.48	0.42	0.88
	45	19.000	0.41	0.36	0.88
原子炉圧力容器	46	15.944	0.37	0.32	0.87
ペデスタル	47	13.022	0.36	0.31	0.87

弹性設計用地震動Sd-D, 1.0ZPA, 鉛直方向

表 4-5(1/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

構造物名	質点番号		震 (×9.80665			
	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率	
	53	29.962	1.18	1.01	0.86	
	54	26.981	1.09	0.84	0.78	
ガンマ線遮蔽壁	55	24.000	0.90	0.77	0.86	
	56	21.500	0.79	0.70	0.89	
	57	19.000	0.67	0.60	0.90	
原子炉圧力容器	58	15.944	0.60	0.51	0.85	
ペデスタル	59	13.022	0.56	0.46	0.83	

弾性設計用地震動Sd−D, 1.2ZPA, 水平方向(NS)

表 4-5(2/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		震		
構造物名	EW 方向	標高 EL(m)	(×9.80668 ① 今回工認 モデル	m/s ⁻)×1.2 ② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	54	29.962	1.23	0.94	0.77
	55	26.981	1.14	0.80	0.71
ガンマ線遮蔽壁	56	24.000	0.96	0.75	0.79
	57	21.500	0.83	0.68	0.82
	58	19.000	0.73	0. 59	0.81
原子炉圧力容器	59	15.944	0.66	0.52	0.79
ペデスタル	60	13.022	0.61	0.45	0.74

弾性設計用地震動Sd−D, 1.2ZPA, 水平方向(EW)

表 4-5(3/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		震 (×9.80665		
構造物名	鉛直方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
ガンマ線遮蔽壁	41	29.962	0.69	0.60	0.87
	42	26. 981	0.66	0. 58	0.88
	43	24.000	0.62	0.54	0.88
	44	21.500	0.57	0.50	0.88
	45	19.000	0.50	0. 43	0.86
原子炉圧力容器 ペデスタル	46	15.944	0.44	0. 38	0.87
	47	13.022	0.43	0.37	0.87

弹性設計用地震動Sd-D, 1.2ZPA, 鉛直方向

表 4-6 (1/3) 震度 (原子炉圧力容器)

	「	·
--	---	---

	皙占悉号		震		
	東 派田 7		(×9.80665	$\mathrm{5m/s^2}$) $ imes$ 1.0	
構造物名	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	61	37.494	1.84	1.66	0.91
	62	36. 586	1.75	1.58	0.91
	63	35.678	1.66	1.51	0.91
	64	33. 993	1.52	1.37	0.91
	65	32. 567	1.41	1.24	0.88
	66	31. 557	1.32	1.15	0.88
	67	30. 369	1.21	1.04	0.86
	68	30.218	1.20	1.03	0.86
	69	29. 181	1.14	0.96	0.85
	70	28.249	1.07	0.90	0.85
	71	27.317	1.01	0.86	0.86
原于炉 圧力容器	72	26. 687	0.97	0.83	0.86
) v h h	73	25. 414	0.88	0.78	0.89
	74	25. 131	0.86	0.77	0.90
	75	24. 419	0.80	0.74	0.93
	76	23.707	0.75	0.70	0.94
	77	22.995	0.70	0.67	0.96
	78	22. 283	0.67	0.63	0.95
	79	21.064	0.65	0.57	0.88
	80	20.892	0.65	0.56	0.87
	81	20.214	0.63	0.54	0.86
	82	19.196	0.61	0.51	0.84
	83	18.250	0.59	0.48	0.82

表 4-6 (2/3) 震度 (原子炉圧力容器)

弾性設計用地震動Sd-D, 1.0ZPA, 水平方向(EW)

	質点番号		震		
構造物名	EW 方向	標高 EL(m)	(×9.80665 ① 今回工認 モデル	m/s ²)×1.0 ② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	62	37.494	2.30	1.41	0.62
	63	36. 586	2.19	1.35	0.62
	64	35.678	2.07	1.28	0.62
	65	33. 993	1.86	1.16	0.63
	66	32.567	1.68	1.06	0.64
	67	31.557	1.55	0.98	0.64
	68	30. 369	1.39	0.89	0.65
	69	30.218	1.38	0.88	0.64
	70	29. 181	1.28	0.81	0.64
	71	28.249	1.20	0.75	0.63
	72	27.317	1.11	0.71	0.64
原子炉 圧力容器	73	26.687	1.06	0.68	0.65
,, u нн	74	25.414	0.95	0.66	0.70
	75	25. 131	0.93	0.66	0.71
	76	24. 419	0.87	0.65	0.75
	77	23.707	0.81	0.63	0.78
	78	22.995	0.75	0.62	0.83
	79	22. 283	0.69	0.60	0.87
	80	21.064	0.61	0. 58	0.96
	81	20. 892	0.61	0.57	0.94
	82	20. 214	0.60	0.56	0.94
	83	19.196	0.60	0.53	0.89
	84	18.250	0.60	0.51	0.85

表 4-6 (3/3) 震度 (原子炉圧力容器)

弾性設計用地震動 S	d−D,	1.0ZPA,	鉛直方向
------------	------	---------	------

	質点番号		震		
構造物名	鉛直方向	標高 EL(m)	(×9.80665 ① 今回工認 モデル	im/s ²)×1.0 ② 3 次元 FEM- 質点系連成	②/① 応答比率
	49	37 494	0.49	0 41	0.84
	50	36, 586	0. 49	0. 41	0. 84
	51	35, 678	0. 49	0. 41	0. 84
	52	33, 993	0. 49	0. 41	0. 84
	53	32. 567	0. 49	0.40	0. 82
	54	31.557	0.48	0.40	0.84
	55	30. 369	0.48	0.40	0.84
	56	30. 218	0.48	0.39	0.82
	57	29. 181	0.47	0. 39	0.83
	58	28.249	0.47	0.39	0.83
	59	27.317	0.46	0. 38	0.83
原子炉	60	26.687	0.46	0. 38	0. 83
山川谷砧	61	25.414	0.45	0.37	0.83
	62	25. 131	0.45	0.37	0.83
	63	24. 419	0.44	0.37	0.85
	64	23.707	0.44	0.37	0.85
	65	22.995	0. 43	0.36	0.84
	66	22. 283	0. 43	0.36	0.84
	67	21.064	0.42	0.35	0.84
	68	20.892	0.42	0.35	0.84
	69	20. 214	0.41	0.35	0.86
	70	19. 196	0.41	0.34	0. 83
	71	18.250	0.40	0.34	0.85

表 4-7 (1/3) 震度 (原子炉圧力容器)

弾性設計用地震動 S	d - D.	1.2ZPA.	水平方向	(NS)
TIMPINDAD	ч <i>р</i> ,	1. 221 11,		

	質点番号	震			
			(×9.80665	$5m/s^2$ × 1.2	
構造物名	NS 方向	標咼 EL(m)	① 今回工認 モデル	(2) 3 次元 FEM- 質点系連成 モデル	②/①
	61	37.494	2.21	1.99	0.91
	62	36. 586	2.10	1.90	0.91
	63	35.678	1.99	1.81	0.91
	64	33. 993	1.83	1.64	0.90
	65	32. 567	1.69	1.49	0.89
	66	31.557	1.58	1.38	0.88
	67	30. 369	1.46	1.25	0.86
	68	30.218	1.44	1.24	0.87
	69	29. 181	1.36	1.15	0.85
	70	28.249	1.29	1.08	0.84
	71	27.317	1.21	1.03	0.86
原子炉 圧力容器	72	26.687	1.16	1.00	0.87
	73	25.414	1.05	0.94	0.90
	74	25. 131	1.03	0.92	0.90
	75	24. 419	0.96	0.88	0.92
	76	23.707	0.90	0.84	0.94
	77	22.995	0.84	0.80	0.96
	78	22. 283	0.80	0.76	0.95
	79	21.064	0.78	0.68	0.88
	80	20.892	0.77	0.68	0.89
	81	20. 214	0.76	0.65	0.86
	82	19. 196	0.73	0. 61	0. 84
	83	18.250	0.70	0.57	0.82

表 4-7 (2/3) 震度 (原子炉圧力容器)

弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(EW)

	質点番号		震		
構造物名	 EW 方向	標高 EL(m)	(×9.80663 ① 今回工認 モデル	m/s ⁻)×1.2 ② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	62	37.494	2.76	1.69	0.62
	63	36. 586	2.62	1.61	0.62
	64	35.678	2.49	1.54	0.62
	65	33. 993	2.23	1.39	0.63
	66	32. 567	2.02	1.27	0.63
	67	31.557	1.86	1.18	0.64
	68	30. 369	1.67	1.07	0.65
	69	30.218	1.65	1.06	0.65
	70	29. 181	1.53	0.97	0.64
	71	28.249	1.43	0.90	0.63
	72	27.317	1.33	0.85	0.64
原子炉 圧力容器	73	26.687	1.27	0.82	0.65
	74	25.414	1.14	0.80	0.71
	75	25. 131	1.11	0.79	0.72
	76	24. 419	1.04	0.77	0.75
	77	23.707	0.97	0.76	0.79
	78	22.995	0.89	0.74	0.84
	79	22. 283	0.82	0.72	0.88
	80	21.064	0.73	0.69	0.95
	81	20. 892	0.73	0.69	0.95
	82	20. 214	0.72	0.67	0.94
	83	19.196	0.72	0.64	0.89
	84	18. 250	0.72	0.61	0.85

表 4-7 (3/3) 震度 (原子炉圧力容器)

弹性設計用地震動Sd−D,	1.2ZPA,	鉛直方向
---------------	---------	------

	質点番号		震		
構造物名	鉛直方向	標高 EL(m)	(×9.80665 ① 今回工認 モデル	m/s ²)×1.2 ② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	49	37.494	0. 59	0.49	0.84
	50	36. 586	0.59	0.49	0.84
	51	35.678	0.59	0.49	0.84
	52	33.993	0.59	0.49	0.84
	53	32.567	0.58	0.48	0.83
	54	31.557	0.58	0.48	0.83
	55	30. 369	0.57	0.47	0.83
	56	30.218	0.57	0.47	0.83
	57	29. 181	0.56	0.47	0.84
	58	28.249	0.56	0.46	0.83
	59	27.317	0.55	0.46	0.84
原子炉 下力容器	60	26.687	0.55	0.46	0.84
	61	25. 414	0.54	0.45	0.84
	62	25. 131	0.54	0.45	0.84
	63	24. 419	0.53	0.44	0.84
	64	23.707	0.52	0.44	0.85
	65	22.995	0.52	0.43	0.83
	66	22. 283	0.51	0.43	0.85
	67	21.064	0. 50	0. 42	0.84
	68	20. 892	0. 50	0. 42	0. 84
	69	20. 214	0.50	0. 42	0.84
	70	19. 196	0. 49	0. 41	0.84
	71	18.250	0. 48	0. 41	0.86

表 4-8 (1/3) 震度(炉心シュラウド)

	質点番号		(×9.80665	$5m/s^2$) × 1. 2	
構造物名	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	2/① 応答比率
	88	31.557	1.33	1.99	1.50
	89	30. 369	1.10	1.73	1.58
	90	29.181	0.97	1.53	1.58
	91	28.249	0.91	1.38	1.52
	92	27.317	0.85	1.27	1.50
	93	26.687	0.83	1.21	1.46
	94	25. 414	0.81	1.09	1.35
	95	25.843	0.82	1.13	1.38
	96	25. 414	0.81	1.09	1.35
	97	25.131	0.81	1.06	1.31
炉心シュノリト	98	24. 419	0.80	0.98	1.23
	99	23. 707	0.80	0.91	1.14
	100	22.995	0.79	0.85	1.08
	101	22. 283	0.79	0.80	1.02
	102	21.064	0.77	0.73	0.95
	103	21.571	0. 78	0.76	0. 98
	104	21.064	0. 77	0.73	0.95
	105	20.892	0.77	0.72	0.94
	106	20.214	0.76	0.67	0.89
	107	19.196	0.73	0.61	0.84

弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS)

表 4-8 (2/3) 震度 (炉心シュラウド)

	••••		,	• • • /	
	質点番号		震	度	
	標高		(×9.8066	2/1)	
構造物名	EW 方向	EL (m)	① 今回工認 モデル	。 3 次元 FEM- 質点系連成 モデル	応答比率
	89	31. 557	1.32	1.61	1.22
	90	30. 369	1.08	1.40	1.30
	91	29. 181	0.94	1.26	1.35
	92	28.249	0.89	1.17	1.32
	93	27.317	0.86	1.08	1.26
	94	26.687	0.83	1.03	1.25
	95	25. 414	0.81	0.92	1.14
	96	25.843	0.82	0.96	1.18
	97	25.414	0.81	0.92	1.14
にふくしょうとい	98	25.131	0.81	0.89	1.10
が心シュノリト	99	24. 419	0.80	0.83	1.04
	100	23.707	0.78	0.77	0.99
	101	22.995	0.77	0.71	0.93
	102	22. 283	0.76	0.69	0.91
	103	21.064	0.73	0.68	0.94
	104	21.571	0.75	0.69	0.92
	105	21.064	0.73	0.68	0.94
	106	20.892	0.73	0.67	0.92
	107	20. 214	0.71	0.66	0.93
	108	19.196	0.72	0.64	0.89

弾性設計用地震動Sd−D, 1.2ZPA, 水平方向(EW)

表 4-8 (3/3) 震度(炉心シュラウド)

_ 弾性設計用地震動Sd-D、1.22

	質点番号		震		
+非、)七 此如 勾		標高	(×9.8066	5m/s ²)×1.2 ②	2/1)
「「「「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「	鉛直方向	EL(m)	① 今回工認 モデル	3 次元 FEM- 質点系連成 モデル	応答比率
	73	31.557	0.65	0.48	0.74
	74	30. 369	0.65	0.48	0.74
	75	29. 181	0.64	0.48	0.75
	76	28.249	0.64	0.48	0.75
	77	27.317	0.63	0.48	0.77
	78	26.687	0.63	0.48	0.77
	79	25. 414	0.62	0.47	0.76
	80	25.843	0.62	0.47	0.76
	81	25. 414	0.62	0.47	0.76
仮心シュラウド	82	25. 131	0.62	0.47	0.76
MUVY / / / /	83	24. 419	0.61	0.47	0.78
	84	23. 707	0.59	0.46	0.78
	85	22.995	0.58	0.45	0.78
	86	22. 283	0.57	0.45	0.79
	87	21.064	0.55	0.44	0.80
	88	21.571	0.55	0.44	0.80
	89	21. 064	0. 55	0. 44	0.80
	90	20. 892	0. 55	0. 44	0.80
	91	20. 214	0. 53	0. 43	0.82
	92	19.196	0.51	0.43	0.85

表 4-9 (1/3) 震度(燃料集合体(燃料被覆管評価用))

	質点番号		震 (×9.80665		
構造物名	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	2/① 応答比率
	113	25.843	0.68	0.94	1.39
	114	25.131	1.04	1.16	1.12
	115	24. 419	1.32	1.29	0.98
燃料集合体	116	23.707	1.38	1.41	1.03
-	117	22.995	1.21	1.24	1.03
	118	22.283	0.85	0.96	1.13
	119	21. 571	0.65	0.63	0.97

弾性設計用地震動Sd−D, 1.0ZPA, 水平方向(NS)

表 4-9(2/3) 震度(燃料集合体(燃料被覆管評価用))

弹性設計用地震動Sd-D, 1.0ZPA, 水平方向(EW)

	質点番号		震 (×9.80665		
構造物名	EW 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	114	25.843	0.69	0.80	1.16
	115	25.131	1.25	1.24	1.00
	116	24.419	1.72	1.77	1.03
燃料集合体	117	23.707	1.86	1.96	1.06
	118	22.995	1.57	1.70	1.09
	119	22. 283	1.01	1.13	1.12
	120	21. 571	0.62	0. 58	0. 94

表 4-9 (3/3) 震度(燃料集合体(燃料被覆管評価用))

	質点番号		震 (×9.80665		
構造物名	鉛直方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	94	25.843	0.58	0.51	0.88
	95	25.131	0.58	0.51	0.88
	96	24.419	0.58	0.51	0.88
燃料集合体	97	23. 707	0.57	0.50	0.88
	98	22.995	0.57	0.50	0.88
	99	22. 283	0.56	0.49	0.88
	100	21.571	0.55	0.48	0.88

弹性設計用地震動Sd-D, 1.0ZPA, 鉛直方向

表 4-10(1/3) 震度(制御棒駆動機構ハウジング) 弾性設計用地震動 S d - D, 1.2ZPA, 水平方向(NS)

構造物名	質点番号		震 (×9.80665		
	NS 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	127	17.499	0.65	0.61	0.94
	128	16. 508	0.67	0.52	0.78
制御棒駆動機構 ハウジング (内側)	129	15.644	0.72	0.54	0.75
	130	14. 781	0.79	0.60	0.76
	131	13. 917	0.81	0.60	0.75
	132	13.054	0.83	0.60	0.73
	108	17.442	0.69	0.55	0.80
制御棒駆動機構	109	16. 345	0.90	0.65	0.73
ハウジング (外側)	110	15. 248	1.43	0.83	0.59
	111	14. 151	1.37	0.81	0.60
	112	13.054	0.82	0.60	0.74

表 4-10 (2/3) 震度(制御棒駆動機構ハウジング)

構造物名	質点番号	質点番号		震度 (×9.80665m/s ²)×1.2		
	EW 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率	
	128	17.499	0.66	0.59	0.90	
	129	16.508	0.73	0.57	0.79	
制御棒駆動機構 ハウジング (内側)	130	15.644	0.78	0.59	0.76	
	131	14. 781	0.86	0.61	0.71	
	132	13.917	1.03	0.61	0.60	
	133	13.054	1.11	0.60	0.55	
	109	17.442	0.72	0. 59	0.82	
制御棒駆動機構	110	16.345	1.24	0.70	0.57	
ハウジング (外側)	111	15.248	2.22	0.88	0.40	
	112	14.151	2.08	0.83	0.40	
	113	13.054	1.09	0.60	0.56	

基準地震動Ss-D,1.2ZPA,水平方向(EW)

表 4-10 (3/3) 震度(制御棒駆動機構ハウジング)

構造物名	質点番号		震 (×9.80665		
	鉛直方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
	107	17.499	0.49	0.42	0.86
	108	16.508	0.49	0.41	0.84
制御棒駆動機構	109	15.644	0.49	0.42	0.86
(内側)	110	14. 781	0.49	0.42	0.86
	111	13.917	0. 49	0.42	0.86
	112	13.054	0.49	0.42	0.86
	93	17.419	0.49	0.41	0.84
制御棒駆動機構 ハウジング (外側)	113	16.345	0.49	0.41	0.84
	114	15.248	0. 49	0.42	0.86
	115	14.151	0. 49	0.42	0.86
	116	13.054	0. 49	0.42	0.86

弹性設計用地震動Sd-D, 1.2ZPA, 鉛直方向

構造物名	質点番号		湟 (×9.8066		
	NS 方向	標高 EL (m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
原子炉圧力容器下鏡	85	18. 250	0.59	0. 48	0.82
	86	17. 442	0.58	0.46	0.80
	87	16. 508	0.56	0. 44	0. 79

表 4-11 (1/3) 震度(原子炉圧力容器下鏡) 弾性設計用地震動Sd-D, 1.0ZPA,水平方向(NS)

表 4-11 (2/3) 震度(原子炉圧力容器下鏡)

構造物名	質点番号		震度 (×9.80665m/s ²)×1.0			
	EW 方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率	
原子炉圧力容器下鏡	86	18.250	0.60	0.51	0.85	
	87	17.442	0.60	0.49	0.82	
	88	16. 508	0.61	0.48	0.79	

弹性設計用地震動Sd-D, 1.0ZPA, 水平方向(EW)

表 4-11 (3/3) 震度(原子炉圧力容器下鏡) 弾性設計用地震動 S d - D, 1.0ZPA, 鉛直方向

構造物名	質点番号		震度 (×9.80665m/s²)×1.0		
	鉛直方向	標高 EL(m)	① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
原子炉圧力容器下鏡	71	18. 250	0.40	0.34	0.85
	93	17. 419	0.40	0.34	0.85
	108	16. 508	0. 41	0.35	0.86
構造物名	質点番号	標高 EL(m)	震度 (×9.80665m/s²)×1.2		
-----------	-------	-------------	--------------------------	--------------------------------	-------------
	NS 方向		① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
原子炉圧力容器下鏡	85	18. 250	0.70	0.57	0.82
	86	17.442	0.69	0.55	0.80
	87	16. 508	0.67	0.52	0. 78

表 4-12(1/3) 震度(原子炉圧力容器下鏡) 弾性設計用地震動 S d - D, 1.2ZPA, 水平方向(NS)

表 4-12(2/3) 震度(原子炉圧力容器下鏡)

構造物名	質点番号	· 標高 EL(m)	震度 (×9.80665m/s²)×1.2				
	EW 方向		① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率		
原子炉圧力容器下鏡	86	18. 250	0.72	0.61	0.85		
	87	17. 442	0.72	0.59	0.82		
	88	16. 508	0.73	0.57	0. 79		

弹性設計用地震動Sd-D, 1.2ZPA, 水平方向(EW)

表 4-12(3/3) 震度(原子炉圧力容器下鏡) 弾性設計用地震動 S d - D, 1.2ZPA, 鉛直方向

構造物名	質点番号	標高 EL (m)	震度 (×9.80665m/s²)×1.2		
	鉛直方向		① 今回工認 モデル	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率
原子炉圧力容器下鏡	71	18.250	0.48	0. 41	0.86
	93	17. 419	0.49	0. 41	0.84
	108	16.508	0. 49	0. 41	0.84

(弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS):原子炉格納容器)

図 4-<mark>6</mark>(2/3) 震度 (弾性設計用地震動S d-D, 1.2ZPA, 水平方向(EW):原子炉格納容器)

(弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS): ガンマ線遮蔽壁及び 原子炉圧力容器ペデスタル)

(弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(EW): ガンマ線遮蔽壁及び 原子炉圧力容器ペデスタル)

(弾性設計用地震動Sd-D, 1.2ZPA, 鉛直方向:ガンマ線遮蔽壁及び 原子炉圧力容器ペデスタル)

(弹性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS):原子炉圧力容器)

図 4-<mark>8</mark>(2/3) 震度 (弾性設計用地震動S d-D, 1.2ZPA, 水平方向(EW):原子炉圧力容器)

図 4-<mark>9</mark>(1/3) 震度 (弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS): 炉心シュラウド)

(弾性設計用地震動Sd-D, 1.2ZPA, 水平方向 (EW): 炉心シュラウド)

(弹性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS):燃料集合体)

図 4-<mark>10</mark>(2/3) 震度 (弾性設計用地震動 S d - D, 1.2ZPA, 水平方向(EW):燃料集合体)

(弾性設計用地震動Sd-D, 1.2ZPA, 鉛直方向:燃料集合体)

(弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS):制御棒駆動機構ハウジング)

(弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(EW):制御棒駆動機構ハウジング)

(弾性設計用地震動Sd-D, 1.2ZPA, 鉛直方向:制御棒駆動機構ハウジング)

(弹性設計用地震動Sd-D, 1.2ZPA, 水平方向(NS):原子炉圧力容器下鏡)

(弾性設計用地震動Sd-D, 1.2ZPA, 水平方向(EW):原子炉圧力容器下鏡)

(弹性設計用地震動Sd-D, 1.2ZPA, 鉛直方向:原子炉圧力容器下鏡)

(2) 床応答スペクトルの応答比率

床応答スペクトルの応答比率を図4-<mark>13</mark>~図4-<mark>33</mark>に示す。

- 上段:床応答スペクトル
- 下段:床応答スペクトル応答比率

図 4-13 (1/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL39.400m)

上段:床応答スペクトル

図 4-13 (2/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL37.060m)

上段:床応答スペクトル

図 4-13 (3/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL34.758m)

上段:床応答スペクトル

図 4-13 (4/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL33.141m)

上段:床応答スペクトル

図 4-13 (5/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL29.392m)

上段:床応答スペクトル

図 4-13 (6/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL27.907m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-13 (7/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL22.932m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-13(8/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL19.878m)

上段:床応答スペクトル

図 4-13 (9/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL16.825m)

上段:床応答スペクトル

図 4-13 (10/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL13.700m)

上段:床応答スペクトル

図 4-13(11/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器 EL11.900m)

下段:床応答スペクトル応答比率

図 4-14 (1/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL39.400m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-14(2/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL37.060m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-14 (3/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL34.758m)

下段:床応答スペクトル応答比率

図 4-14 (4/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL33.141m)

下段:床応答スペクトル応答比率

図 4-14(5/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL29.392m)

下段:床応答スペクトル応答比率

図 4-14(6/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL27.907m)

下段:床応答スペクトル応答比率

図 4-14(7/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL22.932m)

下段:床応答スペクトル応答比率

図 4-14 (8/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL19.878m)

上段:床応答スペクトル

図 4-14 (9/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL16.825m)

下段:床応答スペクトル応答比率

図 4-14(10/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL13.700m)

下段:床応答スペクトル応答比率

図 4-14 (11/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉格納容器 EL11.900m)

下段:床応答スペクトル応答比率

図 4-15 (1/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL39.400m)

下段:床応答スペクトル応答比率

図 4-15 (2/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL37.060m)

下段:床応答スペクトル応答比率

図 4-15 (3/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL34.758m)

下段:床応答スペクトル応答比率

図 4-15 (4/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL33.141m)

下段:床応答スペクトル応答比率

図 4-15 (5/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL29.392m)

下段:床応答スペクトル応答比率

図 4-15 (6/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL27.907m)

下段:床応答スペクトル応答比率

図 4-15 (7/11) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL22.932m)

下段:床応答スペクトル応答比率

図 4-15 (8/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL19.878m)

下段:床応答スペクトル応答比率

図 4-15 (9/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL16.825m)

下段:床応答スペクトル応答比率

 図 4-15(10/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL13.700m)

下段:床応答スペクトル応答比率

 図 4-15(11/11) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉格納容器 EL11.900m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-16 (1/5) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):ガンマ線遮蔽壁 EL29.962m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-16 (2/5) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):ガンマ線遮蔽壁 EL26.981m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-16 (3/5) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):ガンマ線遮蔽壁 EL24.000m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-16 (4/5) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):ガンマ線遮蔽壁 EL21.500m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-16 (5/5) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):ガンマ線遮蔽壁 EL19.000m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-17 (1/5) 今回工認モデルと 3 次元 FEM-質点系連成モデルの床応答スペクトル及び応 答比率 (弾性設計用地震動 S d - D,水平方向(EW):ガンマ線遮蔽壁 EL29.962m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-<mark>17</mark>(2/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):ガンマ線遮蔽壁 EL26.981m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-<mark>17</mark>(3/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):ガンマ線遮蔽壁 EL24.000m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-<mark>17</mark>(4/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):ガンマ線遮蔽壁 EL21.500m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-<mark>17</mark>(5/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):ガンマ線遮蔽壁 EL19.000m)

上段:床応答スペクトル

 図 4-18 (1/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:ガンマ線遮蔽壁 EL29.962m)

上段:床応答スペクトル

 図 4-18 (2/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:ガンマ線遮蔽壁 EL26.981m)

上段 : 床応答スペクトル

 図 4-18 (3/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:ガンマ線遮蔽壁 EL24.000m)

上段:床応答スペクトル

 図 4-18 (4/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:ガンマ線遮蔽壁 EL21.500m)

上段 : 床応答スペクトル

 図 4-18 (5/5) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:ガンマ線遮蔽壁 EL19.000m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-19 (1/2) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器ペデスタル EL15.944m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-19(2/2) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器ペデスタル EL13.022m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-20(1/2) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器ペデスタル EL15.944m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-20 (2/2) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器ペデスタル EL13.022m)

上段:床応答スペクトル

図 4-21 (1/2) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D, 鉛直方向:原子炉圧力容器ペデスタル EL15.944m)

上段 : 床応答スペクトル

図 4-21 (2/2) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D, 鉛直方向:原子炉圧力容器ペデスタル EL13.022m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (1/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL37.494m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (2/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL36.586m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (3/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの床応答スペクトル及び 応答比率 (弾性設計用地震動 S d - D,水平方向(NS):原子炉圧力容器 EL35.678m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (4/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL33.993m)

上段:床応答スペクトル

図 4-22 (5/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL32.567m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22(6/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL31.557m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (7/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL30.369m)

上段:床応答スペクトル

図 4-22 (8/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL30.218m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (9/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL29.181m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (10/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL28.249m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22(11/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL27.317m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (12/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL26.687m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (13/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL25.414m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (14/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL25.131m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (15/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL24.419m)

上段:床応答スペクトル

図 4-22 (16/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL23.707m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-22 (17/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL22.995m)

上段:床応答スペクトル

図 4-22 (18/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL22.283m)

上段:床応答スペクトル

図 4-22(19/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL21.064m)

上段:床応答スペクトル

図 4-22 (20/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL20.892m)

上段:床応答スペクトル

図 4-22(21/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL20.214m)

上段:床応答スペクトル

図 4-22(22/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL19.196m)

上段:床応答スペクトル

図 4-22 (23/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器 EL18.250m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (1/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弹性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL37.494m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (2/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL36.586m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (3/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL35.678m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (4/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL33.993m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (5/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL32.567m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23(6/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL31.557m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (7/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL30.369m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (8/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL30.218m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (9/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL29.181m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (10/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL28.249m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (11/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL27.317m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (12/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL26.687m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23(13/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL25.414m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (14/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL25.131m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23(15/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL24.419m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (16/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL23.707m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23(17/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL22.995m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23(18/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL22.283m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (19/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL21.064m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (20/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL20.892m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (21/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL20.214m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (22/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL19.196m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-23 (23/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率

(弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器 EL18.250m)

上段:床応答スペクトル

図 4-24(1/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL37.494m)

上段 : 床応答スペクトル

 図 4-24 (2/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL36.586m)

上段 : 床応答スペクトル

 図 4-24 (3/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL35.678m)

上段:床応答スペクトル

図 4-24(4/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL33.993m)

上段 : 床応答スペクトル

 図 4-24 (5/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL32.567m)

上段 : 床応答スペクトル

 図 4-24 (6/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL31.557m)

上段:床応答スペクトル

 図 4-24 (7/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL30.369m)

上段 : 床応答スペクトル

 図 4-24 (8/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL30.218m)

上段 : 床応答スペクトル

 図 4-24 (9/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL29.181m)

上段 : 床応答スペクトル

図 4-24 (10/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動 S d - D, 鉛直方向:原子炉圧力容器 EL28.249m)

上段 : 床応答スペクトル

図 4-24 (11/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL27.317m)

上段 : 床応答スペクトル

図 4-24 (12/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL26.687m)

上段 : 床応答スペクトル

 図 4-24(13/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率
(弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL25.414m)

上段 : 床応答スペクトル

図 4-24 (14/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動 S d - D, 鉛直方向:原子炉圧力容器 EL25.131m)

上段 : 床応答スペクトル

図 4-24(15/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL24.419m)

上段 : 床応答スペクトル

図 4-24 (16/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL23.707m)

上段 : 床応答スペクトル

図 4-24 (17/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL22.995m)

上段 : 床応答スペクトル

図 4-24 (18/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL22.283m)

上段:床応答スペクトル

図 4-24 (19/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL21.064m)

上段 : 床応答スペクトル

図 4-24 (20/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL20.892m)

上段 : 床応答スペクトル

図 4-24 (21/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動 S d - D, 鉛直方向:原子炉圧力容器 EL20.214m)

上段 : 床応答スペクトル

図 4-24 (22/23) 今回工認モデルと 3 次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動 S d - D, 鉛直方向:原子炉圧力容器 EL19.196m)

上段 : 床応答スペクトル

図 4-24 (23/23) 今回工認モデルと3次元 FEM-質点系連成モデルの 床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器 EL18.250m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-25 今回工認モデルと 3 次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動 S d - D,水平方向(NS):上部格子板 EL25.843m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-26 今回工認モデルと 3 次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動 S d - D,水平方向(EW):上部格子板 EL25.843m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-27 今回工認モデルと 3 次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:上部格子板 EL25.843m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-28 今回工認モデルと3次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,水平方向(NS):炉心支持板 EL21.571m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-29 今回工認モデルと3次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,水平方向(EW):炉心支持板 EL21.571m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-30 今回工認モデルと 3 次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:炉心支持板 EL21.571m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

 図 4-31 今回工認モデルと3次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器下鏡 EL18.250m, EL17.442m及びEL16.508m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

 図 4-32 今回工認モデルと3次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器下鏡 EL18.250m, EL17.442m及びEL16.508m)

上段:床応答スペクトル 下段:床応答スペクトル応答比率

図 4-33 今回工認モデルと 3 次元 FEM-質点系連成モデルの床応答スペクトル及び応答比率 (弾性設計用地震動Sd-D,鉛直方向:原子炉圧力容器下鏡 EL18.250m, EL17.419m及びEL16.508m)
(3)荷重の応答比率

荷重の応答比率を表4-13~表4-18に示す。なお、せん断力、モーメント、軸力及び 相対変位の比較図を図4-34~図4-37示す。

		せん断		
友升	標高	1	2	2/1
石桥	EL(m)	今回工認	3 次元 FEM-質点	応答比率
		モデル	系連成モデル	
	39.400	134	121	0.91
	37.060	071	046	0.01
	34. 758	271	240	0.91
	33.141	1670	1460	0.88
	20 202	2050	1840	0.90
	29.392	7660	6200	0.81
原子炉格納容器	21. 501	8170	6660	0.82
	22.932	8800	7380	0.84
	19.878	9170	7900	0.87
	16.825	9940	8850	0.90
	13.700	10200	0160	0.00
	11.900	110200	9160	0.90
	10.100	11000	10000	0.91
	29.962	9700	1570	0 50
	26.981	2700	1570	0. 59
ガンマ線遮蔽壁	24.000	3090	2430	0.79
	21 500	5170	4310	0.84
	10,000	7210	6310	0.88
	19.000	9150	8560	0.94
原子炉圧力容哭	15.944	17000	16900	1.00
ペデスタル	13.022	19600	19000	0.97
	10.100	13000	13000	0.91

表 4-13 (1/4) 荷重(せん断力,弾性設計用地震動Sd-D)

		せん幽		
夕敌	趰 直 FI (m)	1)	2	2/1
	(示同 ĽĽ (Ш)	今回工認	3次元 FEM-質点	応答比率
		モデル	系連成モデル	
	37.494	240	184	0.74
	36. 586	500	104	0.74
	35.678	523	388	0.75
	33.993	1600	1190	0.75
	32 567	1890	1260	0.67
	21 557	3660	2650	0.73
	51.557	4530	3310	0.74
	30.369	4780	3480	0.73
	30. 210	1180	754	0.64
	29. 181	1060	737	0.70
	28. 249	1190	972	0.82
	27.317	1390	1170	0.85
原子炉圧力容器	26.687	1660	1510	0.91
	25. 414	2160	1890	0.88
	25. 131	2410	2050	0.86
	24. 419	2720	2250	0.83
	23. 707	3040	2450	0.81
	22.995	3290	2610	0.80
	22. 283	3600	2800	0.78
	21.064	3770	2910	0.78
	20. 892	4000	3090	0.78
	20.214	4260	3310	0.78
	19.196	5040	5750	1.15
	18.250	5820	6370	1.10
	15.944			

表 4-13(2/4) 荷重(せん断力,弾性設計用地震動 Sd-D)

		せん断力(kN)		
友 新	標高	1	2	2/1
石你	EL(m)	今回工認	3 次元 FEM-質点	応答比率
		モデル	系連成モデル	
	31. 557	20. 6	F0 0	1 40
启 小 八 南任 昭	30. 369	39.6	58.3	1.48
気水分離器, スタンドパイプ	29. 181	265	450	1.70
シュラウドヘッド	28.249	387	699	1.81
及び炉心シュラウ	27 317	423	772	1.83
ド上部胴	21. 511	468	852	1.83
	20.007	645	1210	1.88
	25.414			
	25.843	1520	1510	1. 00
	25.414	2020	2450	1 21
	25.131	2030	2430	1.21
炉心シュラウド	24.419	2030	2500	1. 24
中間胴	23.707	1990	2490	1.26
	22, 995	1900	2460	1.30
	22 283	1820	2570	1.42
	21.064	1830	2700	1.48
	21.004			
	21.571	1630	1520	0.94
恒心シュラウド	21.064	3150	3690	1.18
下部胴	20.892	3140	3710	1 19
	20. 214	2000	2720	1 00
	19.196	2000	3730	1.22

表 4-13 (3/4) 荷重(せん断力,弾性設計用地震動 S d-D)

		せん断力(kN)		
夕称	標高	(1)	2	2/1
214 J.	EL(m)	今回工認	3 次元 FEM-質点	応答比率
		モデル	系連成モデル	
	17.442	127	36.6	0.29
	17.419	127	50.4	0.47
制御棒駆動機構	16.345	01 7	24.0	0.49
(外側)	15.248	51.7	04.0	0.42
	14.151	5. 24	3. 13	0.00
	13.054	11.2	29.5	0.39
	25.843	1440	1420	0.00
	25.131	1010	1420	0.99
	24.419	1010	1030	1.02
燃料集合体	23.707	364	374	1.03
	22.995	394	377	0.96
	22.283	1020	1030	1.01
	21 571	1390	1420	1.03
	21.571		-	_
	21. 371	320	133	0.42
	20. 032	241	89.0	0.37
制御捧安古塔	10 525	95.2	30.7	0.33
前仰仲杀的官	19.000	80.2	35.0	0.44
	10.000	235	88.4	0.38
	17, 400	341	129	0.38
	17.499		-	—
	17.499	369	155	0.43
制御榛駆動機構	16. 508	49.5	36.9	0.75
ハウジング	15. 644	29.5	19.4	0.66
(内側)	14. 781	7.54	3.15	0.42
	13.917	25.2	16.2	0.65
	13.054	20.2		

表 4-13(4/4) 荷重(せん断力,弾性設計用地震動 Sd-D)

		モーメン		
友升	標高	1	2	2/1
名称	EL(m)	今回工認	3 次元 FEM-質点	応答比率
		モデル	系連成モデル	
	39.400	_	_	_
	37.060	313	282	0.91
	34.758	935	847	0.91
	33.141	3450	3120	0.91
	29. 392	11200	10100	0.91
百乙后故如应即	27.907	22200	18700	0.85
原于炉格衲谷岙	22.932	62200	51200	0.83
	19.878	89000	73600	0.83
	16.825	117000	97700	0.84
	13.700	148000	126000	0.86
	11.900	166000	142000	0.86
	10.100	186000	160000	0.87
	29.962	_	—	—
	26.981	8030	4080	0.51
ガンマ線遮蔽壁	24.000	13800	11300	0.82
	21.500	23800	21200	0.90
	19.000	38400	35200	0.92
	15 044	66000	61000	0.93
原子炉圧力容器	10. 944	115000	118000	1.03
ペデスタル	13.022	159000	167000	1.06
	10.100	209000	222000	1.07

表 4-14(1/4) 荷重(モーメント,弾性設計用地震動Sd-D)

		モーメン	モーメント(kN・m)	
夕称	栖车 FI (m)	1	2	2/1
石小		今回工認	3 次元 FEM-質点	応答比率
		モデル	系連成モデル	
	37.494	—	—	_
	36. 586	226	167	0.74
	35.678	700	519	0.75
	33.993	3400	2530	0.75
	32.567	6010	3740	0.63
	31.557	9700	6420	0.67
	30.369	15100	10400	0.69
	30.218	15800	11900	0.76
	29.181	15300	11800	0.78
	28.249	15700	12000	0.77
	27.317	16600	12800	0.78
百乙烷厂五公职	26.687	17300	13400	0.78
原于炉庄刀谷岙	25. 414	19200	14900	0.78
	25.131	19800	15300	0.78
	24. 419	21200	16500	0.78
	23.707	22900	17700	0.78
	22.995	25000	19400	0.78
	22. 283	27300	21300	0.79
	21.064	31500	24600	0.79
	20.892	32200	25100	0.78
	20. 214	34800	27200	0.79
	19. 196	39000	38300	0.99
	18.250	42200	43200	1.03
	15.944	52800	57300	1.09

表 4-14(2/4) 荷重(モーメント,弾性設計用地震動 Sd-D)

		モーメント(kN・m)		
友升	標高	1	2	2/1
石你	EL(m)	今回工認	3 次元 FEM-質点	応答比率
		モデル	系連成モデル	
	31.557	—	_	_
与水分離哭	30. 369	47.0	69.3	1.48
スタンドパイプ,	29.181	361	599	1.66
シュラウドヘッド	28.249	721	1250	1.74
及び炉心シュラウ	27.317	1120	1970	1.76
ド上部胴	26.687	1410	2510	1.79
	25.414	2180	4040	1.86
	25.843	—	—	—
	25. 414	649	644	1.00
		2670	4220	1.59
	25.131	3200	4790	1.50
炉心シュフワド 中間胴	24. 419	4550	6310	1.39
-1)(1)(-1)	23. 707	5890	7950	1.35
	22.995	7190	9700	1.35
	22. 283	8450	11600	1.38
	21.064	10700	14800	1.39
	21.571	—	_	_
	21 064	825	768	0.94
炉心シュラウド	21.004	11200	15100	1.35
下部胴	20.892	11800	15600	1.33
	20. 214	13800	17900	1.30
	19. 196	16800	21700	1.30

表 4-14 (3/4) 荷重(モーメント,弾性設計用地震動 S d-D)

		モーメント(kN・m)		
夕称	標高	(1)	2	2/1
石竹	EL(m)	今回工認	3次元 FEM-質点	応答比率
		モデル	系連成モデル	
	17.442	144	66.5	0.47
	17.419	144	66.5	0.47
制御棒駆動機構	16.345	10.2	4.83	0.48
(外側)	15.248	85.2	34.6	0. 41
	14. 151	84.7	36.6	0.44
	13.054		_	
	25.843	_	—	_
	25.131	1030	1010	0.99
	24.419	1740	1740	1.00
燃料集合体	23.707	1990	2010	1.02
	22.995	1710	1740	1.02
	22. 283	988	1010	1.03
	21.571	_	_	_
	21.571		_	
	20.892	217	90.2	0.42
	20.214	381	151	0.40
制御棒案内管	19. 535	445	171	0.39
	18.856	391	148	0.38
	18.178	232	87.6	0.38
	17.499	_	—	—
	17.499	_	—	_
	16 500	365	154	0.43
制御棒駆動機構	16. 508	48.0	35.8	0.75
ハウジング	15.644	12.5	5.67	0.46
(内側)	14. 781	19.9	12.8	0.65
	13.917	21.8	14.0	0.65
	13.054	_	—	_

表 4-14(4/4) 荷重(モーメント,弾性設計用地震動 Sd-D)

		軸力(kN)		
夕敌	標高	1	2	2/1)
石小	EL(m)	今回工認	3次元 FEM-質点系	応答比率
		モデル	連成モデル	
	39.400	75 0	E 4 7	0.72
	37.060	15.9	34.7	0.75
	34. 758	156	113	0.73
	33 141	526	381	0.73
	20, 202	837	624	0.75
	29. 392	1360	1080	0.80
原子炉格納容器	27.907	1730	1410	0.82
	22.932	2290	1980	0.87
-	19.878	2650	2380	0.90
	16.825	3340	3160	0.95
	13.700	3600	3410	0.95
	11.900	4200	4120	0.00
	10.100	4390	4120	0.94
	29.962	1050	1010	
	26.981	1650	1640	1.00
ガンマ線遮蔽壁	24.000	3540	3190	0.91
	21 500	5350	4630	0.87
	10,000	7010	5960	0.86
	19.000	8830	7650	0.87
原子炉圧力容器	15.944	16500	14800	0.90
ペデスタル	13.022	18200	16600	0.92
	10.100	10200	10000	0.02

表 4-15 (1/4) 荷重(軸力, 弾性設計用地震動 S d - D)

		軸大		
夕新	插 古 Fl (m)	1	2	2/1)
10 10	际向 LL (III)	今回工認	3 次元 FEM-質点系	応答比率
		モデル	連成モデル	
	37.494	52.0	20.0	0.74
	36. 586	53.9	39.0	0.74
	35.678	117	85.7	0.74
	33.993	376	277	0.74
	32, 567	669	495	0.74
	31 557	1210	901	0.75
	20. 260	1490	1120	0.76
	20, 219	1560	1170	0.75
	30. 210	1640	1240	0.76
	29.181	1790	1360	0.76
	28.249	2040	1570	0.77
	27. 317	2160	1670	0.78
原子炉圧力容器	26.687	2280	1770	0.78
	25. 414	2450	1920	0.79
	25.131	2500	1970	0.79
	24. 419	2590	2040	0.79
	23.707	2690	2140	0.80
	22.995	2770	2210	0.80
	22. 283	2880	2320	0.81
	21.064	2950	2400	0.82
	20.892	3100	2540	0.82
	20.214	3260	2710	0.84
	19.196	3360	2800	0.84
	18.250	5840	5200	0.90
	15.944			

表 4-15(2/4) 荷重(軸力,弾性設計用地震動Sd-D)

		軸た		
反折	標高	1	2	2/1)
和你	EL(m)	今回工認	3 次元 FEM-質点系連	応答比率
		モデル	成モデル	
	31.557	19 5	11 0	0.65
気水分離器,	30. 369	10.0	11. 9	0.03
	29. 181	133	85.7	0.65
シュラウドヘッド	28, 249	211	137	0.65
及び炉心シュラウ ド上部胴	27 317	241	157	0.66
	21.011	280	183	0.66
	26.687	- 350	232	0.67
	25.414			
	25.843	38.3	27 5	0.72
_	25.414	426	21.0	0.69
	25. 131	420	201	0.08
炉心シュラウド	24. 419	445	300	0.68
中間胴	23.707	472	320	0.68
	22 995	498	341	0.69
	22.000	523	362	0.70
	22.203	557	391	0.71
	21.004			
	21.571	79.7	88.5	1.12
	21.064	671	495	0.74
炉心シュラウド	20.892	688	510	0.75
下部胴	20.214	791	541	0.76
	19.196		041	0.70
	17.419	837	658	0.79

表 4-15 (3/4) 荷重(軸力, 弾性設計用地震動 S d - D)

		軸大	J (kN)	
夕 我	標高	1)	2	2/1
石柳	EL(m)	今回工認	3 次元 FEM-質点	応答比率
		モデル	系連成モデル	
	25.843	010	100	0.04
	25.131	219	183	0.84
	24.419	367	306	0.84
燃料集合体	23.707	513	430	0.84
	22, 995	659	554	0.85
	22.000	802	677	0.85
	01 571	943	801	0.85
	21.571	_	_	_
	21.571	1050	891	0.85
	20. 892	1090	929	0.86
制御棒案内管	20. 214	1130	966	0.86
	19.535	1170	1010	0.87
	18.856	1210	1040	0.86
	18.178	1250	1080	0.87
	17.499		_	
	17.499	1290	1110	0.87
	16.508	05.5	165	1.79
制御棒駆動機構	15.644	95.5	100	1.73
「内側」	14. 781	83.4	146	1.76
	13.917	71.2	125	1.76
	13.054	58.9	104	1.77
	17.419			
生化生素取香生物生素	16.345	98.6	175	1.78
前御 (御 御 御 御 御 御 御 御 御 御 御 御 御 御 御 御 御 御	15.248	83.7	151	1.81
(外側)	14 151	68.6	125	1.83
	12.054	53.4	97.5	1.83
	15.054			

表 4-15(4/4) 荷重(軸力, 弾性設計用地震動 S d - D)

	ばね反力(kN)		
名称	1	2	2/1
	今回工認	3 次元 FEM-質点	応答比率
	モデル	系連成モデル	
原子炉格納容器	9690	6470	0.75
スタビライザ	8080	0470	0.75
原子炉圧力容器	5670	2940	0.68
スタビライザ	5070	3640	0.08
シヤラグ	9380	6710	0.72
制御棒駆動機構ハウジング	242	131	0.55
レストレントビーム	2-12	101	0.00

表 4-16 荷重(ばね反力,弾性設計用地震動 Sd-D)

表 4-17 荷重(相対変位, 弾性設計用地震動 S d-D)

名称	相対変位(mm)		
	1	2	2/1
	今回工認	3次元 FEM-質点	応答比率
	モデル	系連成モデル	
燃料集合体	17.2	17.4	1.02

表 4-18 荷重(グリッド反力,弾性設計用地震動Sd-D)

名称	グリッド反力(kN)		
	1	2	2/1
	今回工認	3次元 FEM-質点	応答比率
	モデル	系連成モデル	
上部格子板	1550	1550	1.00
炉心支持板	1880	1690	0.90

図 4-34 (1/20) 何里(せん町刀) (弾性設計用地震動Sd-D,水平方向(NS):原子炉格納容器)

別紙 4.8-1-215 **446**

図 4-34 (3/20) 荷重(せん断力) (弾性設計用地震動Sd-D,水平方向(NS):ガンマ線遮蔽壁及び原子炉圧力容器 ペデスタル)

(弾性設計用地震動Sd-D,水平方向(EW):ガンマ線遮蔽壁及び原子炉圧力容器 ペデスタル)

図 4-<mark>34</mark>(5/20) 荷重(せん断力)

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器)

(弹性設計用地震動Sd-D,水平方向(EW):原子炉圧力容器)

(弾性設計用地震動Sd-D,水平方向(NS):気水分離器,スタンドパイプ, シュラウドヘッド及び炉心シュラウド上部胴)

(弾性設計用地震動Sd-D,水平方向(EW):気水分離器,スタンドパイプ,シュラウドヘッド及び炉心シュラウド上部胴)

図 4-<mark>34</mark>(9/20) 荷重(せん断力) (弾性設計用地震動 S d - D,水平方向(NS):炉心シュラウド中間胴)

図 4-<mark>34</mark>(11/20) 荷重(せん断力)

(弾性設計用地震動Sd-D,水平方向(NS): 炉心シュラウド下部胴)

(弾性設計用地震動Sd-D,水平方向(EW): 炉心シュラウド下部胴)

図 4-<mark>34</mark>(13/20) 荷重(せん断力)

(弾性設計用地震動Sd-D,水平方向(NS):制御棒駆動機構ハウジング(外側))

(弾性設計用地震動Sd-D,水平方向(EW):制御棒駆動機構ハウジング(外側))

図 4-<mark>34</mark>(15/20) 荷重(せん断力) (弾性設計用地震動 S d - D,水平方向(NS):燃料集合体)

図 4-<mark>34</mark>(17/20) 荷重(せん断力) (弾性設計用地震動 S d - D,水平方向(NS):制御棒案内管)

図 4-34 (19/20) 荷重(せん断力) (弾性設計用地震動S d-D,水平方向(NS):制御棒駆動機構ハウジング(内側))

制御棒駆動機構ハウジング(内側)(EW方向)

(弾性設計用地震動Sd-D,水平方向(EW):制御棒駆動機構ハウジング(内側))

(弹性設計用地震動Sd-D,水平方向(NS):原子炉格納容器)

図 4-<mark>35</mark>(3/20) 荷重(モーメント)

(弾性設計用地震動Sd-D,水平方向(NS):ガンマ線遮蔽壁及び原子炉圧力容器 ペデスタル)

ペデスタル)

(弾性設計用地震動Sd-D,水平方向(NS):原子炉圧力容器)

(弾性設計用地震動Sd-D,水平方向(NS):気水分離器,スタンドパイプ, シュラウドヘッド及び炉心シュラウド上部胴)

図 4-<mark>35</mark>(9/20) 荷重(モーメント) (弾性設計用地震動 S d - D,水平方向(NS):炉心シュラウド中間胴)

図 4-<mark>35</mark>(10/20) 荷重(モーメント) (弾性設計用地震動Sd-D,水平方向(EW):炉心シュラウド中間胴)

炉心シュラウド下部胴 (NS方向)

(弾性設計用地震動Sd-D,水平方向(NS):炉心シュラウド下部胴)

炉心シュラウド下部胴 (EW方向)

図 4-<mark>35</mark>(12/20) 荷重(モーメント) (弾性設計用地震動Sd-D,水平方向(EW):炉心シュラウド下部胴)

制御棒駆動機構ハウジング(外側)(NS方向)

図 4-<mark>35</mark>(13/20) 荷重(モーメント)

(弾性設計用地震動Sd-D,水平方向(NS):制御棒駆動機構ハウジング(外側))

(弾性設計用地震動Sd-D,水平方向(EW):制御棒駆動機構ハウジング(外側))

燃料集合体 (EW方向) モーメント [kN・m]

図 4-<mark>35</mark>(16/20) 荷重(モーメント) (弾性設計用地震動Sd-D,水平方向(EW):燃料集合体)

図 4-<mark>35</mark>(17/20) 荷重(モーメント) (弾性設計用地震動S d - D,水平方向(NS):制御棒案内管)

図 4-<mark>35</mark>(18/20) 荷重(モーメント) (弾性設計用地震動Sd-D,水平方向(EW):制御棒案内管)

制御棒駆動機構ハウジング(内側)(NS方向)

(弾性設計用地震動Sd-D,水平方向(NS):制御棒駆動機構ハウジング)

制御棒駆動機構ハウジング(内側)(EW方向)

(弾性設計用地震動Sd-D,水平方向(EW):制御棒駆動機構ハウジング)

(弹性設計用地震動Sd-D,原子炉格納容器)

(弾性設計用地震動Sd-D,ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

(弾性設計用地震動Sd-D,原子炉圧力容器)

(弾性設計用地震動Sd-D,気水分離器,スタンドパイプ,シュラウドヘッド 及び炉心シュラウド上部胴)

(弾性設計用地震動Sd-D, 炉心シュラウド中間胴)

制御棒駆動機構ハウジング(外側)

(弾性設計用地震動Sd-D,制御棒駆動機構ハウジング(外側))

(弾性設計用地震動Sd-D,水平方向(NS): 炉心シュラウド-燃料集合体間)

炉心シュラウドー燃料集合体間相対変位(EW方向)

(弾性設計用地震動Sd-D,水平方向(EW): 炉心シュラウド-燃料集合体間)

4.3 3 次元 FEM 連成解析モデル耐震条件の作成

3 次元 FEM 連成解析モデル耐震条件の震度を表 4-19~表 4-29,床応答スペクトルを図 4-38~図 4-58 並びに荷重を表 4-30~表 4-35 に示す。なお,床応答スペクトルの減衰定数 は,耐震裕度の比較的小さい配管系の主要な減衰定数である 2.0%を代表とする。

また,同図表にはVI-2-1-7「設計用床応答スペクトルの作成方針」に示される設計用震度 及び設計用床応答スペクトル並びにVI-2-2-1「炉心,原子炉圧力容器及び原子炉内部構造物 並びに原子炉本体の基礎の地震応答計算書」に示される設計用荷重を併記して示す。

	質点番号			震度		条件比率	
構造物名			()	×9.80665m/s	$^{2}) \times 1.0$		
	NS 方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	 ③ 3 次元 FEM-質点 系連成モデル 耐雪条件 	3/1	3/2
	41	39, 400	1, 43	1, 98	1. 27	0.89	0, 65
		001 100	1. 10	1.00	1	01.00	0.00
	42	37.060	1.32	1.82	1.19	0.91	0.66
	43	34. 758	1.22	1.71	1.13	0.93	0.67
	44	33. 141	1.15	1.68	1.15	1.00	0.69
	45	29.392	1.07	1.53	1.04	0.98	0.68
原子炉 格納容器	46	27.907	1.01	1.52	1.07	1.06	0.71
	47	22.932	1.09	1.58	1.21	1.12	0.77
	48	19.878	1.07	1.50	1.14	1.07	0.76
	49	16.825	0.99	1.44	1.06	1.08	0.74
	50	13. 700	0.95	1.34	0.88	0.93	0.66
	51	11.900	0.92	1.29	0.79	0.86	0.62

表 4-19(1/3) 震度(原子炉格納容器) 基準地震動 S s, 1.0ZPA,水平方向(NS)

表 4-19 (2/3) 震度 (原子炉格納容器)

	質点番号			震度		条件比率	
構造物名							
	EW 方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	 ③ 3 次元 FEM-質点 系連成モデル 耐震条件 	3/1	3/2
	42	39. 400	2.05	2.30	1.37	0.67	0.60
	43	37.060	1.77	2.16	1.30	0.74	0.61
	44	34. 758	1.63	2.03	1.21	0.75	0.60
	45	33. 141	1.56	1.94	1.14	0.74	0. 59
	46	29. 392	1.82	1.70	1.01	0.56	0.60
原子炉 格納容器	47	27.907	1.98	1.65	1.03	0.53	0.63
	48	22. 932	1.13	1.44	1.05	0.93	0.73
	49	19.878	1.13	1.35	0.99	0.88	0.74
	50	16. 825	0.98	1.32	0.93	0.95	0.71
	51	13. 700	0.88	1.17	0.75	0.86	0.65
	52	11.900	0.83	1.25	0.70	0.85	0.56

基準地震動Ss, 1.0ZPA, 水平方向(EW)

表 4-19 (3/3) 震度 (原子炉格納容器)

	質点番号		()	震度 ×9.80665m/s	²) ×1.0	条件比率	
構造物名	鉛直方向	標高 EL(m)	① 設計用 I	② 設計用 II	 ③ 3 次元 FEM-質点 系連成モデル 耐震条件 	3/1	3/2
	29	39.400	0.89	1.29	0.77	0.87	0.60
	30	37.060	0.89	1.29	0.77	0.87	0.60
	31	34. 758	0.88	1.28	0.76	0.87	0.60
	32	33.141	0.87	1.26	0.75	0.87	0.60
	33	29.392	0.86	1.25	0.75	0.88	0.60
原子炉格納容器	34	27.907	0.85	1.23	0.74	0.88	0.61
	35	22.932	0.81	1.19	0.72	0.89	0.61
	36	19.878	0.79	1.14	0.69	0.88	0.61
	37	16.825	0.76	1.11	0.65	0.86	0.59
	38	13.700	0.73	1.10	0.64	0.88	0.59
	39	11.900	0.72	1.08	0.64	0.89	0.60

基準地震動Ss, 1.0ZPA, 鉛直方向

表 4-20 (1/3) 震度 (原子炉格納容器)

	質点番号			震度	2)	条件比率	
構造物名			()	²)×1.2		[
	NS 方向	標高 EL(m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	41	39. 400	1.71	2.37	1.54	0.91	0.65
	42	37.060	1.59	2.18	1.43	0.90	0.66
	43	34. 758	1.46	2.06	1.36	0.94	0.67
	44	33. 141	1.38	2.01	1.37	1.00	0.69
	45	29. 392	1.29	1.85	1.27	0.99	0.69
原子炉 格納容器	46	27.907	1.22	1.83	1.29	1.06	0.71
	47	22. 932	1.31	1.89	1.45	1.11	0.77
	48	19.878	1.28	1.80	1.40	1.10	0.78
	49	16.825	1.18	1.73	1.27	1.08	0.74
	50	13. 700	1.14	1.61	1.06	0.93	0.66
	51	11. 900	1.10	1.55	0.94	0.86	0.61

基準地震動Ss, 1.2ZPA, 水平方向(NS)

表 4-20 (2/3) 震度 (原子炉格納容器)

	質点番号			震度	条件比率		
構造物名							
	EW 方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	 ③ 3 次元 FEM-質点 系連成モデル 耐震条件 	3/1	3/2
	42	39. 400	2.46	2.76	1.66	0.68	0.61
	43	37.060	2.12	2.60	1.56	0.74	0.60
	44	34. 758	1.95	2.43	1.46	0.75	0.61
	45	33. 141	1.87	2.33	1.38	0.74	0.60
	46	29. 392	2.19	2.04	1.21	0.56	0.60
原子炉 格納容器	47	27.907	2.38	1.97	1.22	0.52	0.62
	48	22. 932	1.36	1.74	1.26	0.93	0.73
	49	19. 878	1.36	1.61	1.18	0.87	0.74
	50	16. 825	1.18	1.58	1.15	0. 98	0.73
	51	13. 700	1.06	1.41	0.91	0.86	0.65
	52	11. 900	1.00	1.50	0.84	0.84	0.56

基準地震動Ss, 1.2ZPA, 水平方向(EW)

表 4-20 (3/3) 震度 (原子炉格納容器)

	皙占悉号			震度	条件比率		
構造物名	g		(1	×9.80665m/s	²) ×1.2		20-
	鉛直方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	29	39. 400	1.07	1.55	0.92	0.86	0.60
	30	37.060	1.07	1.55	0.92	0.86	0.60
	31	34. 758	1.06	1.53	0.91	0.86	0.60
	32	33. 141	1.05	1.52	0.89	0.85	0. 59
	33	29. 392	1.03	1.49	0.90	0.88	0.61
原子炉 格納容器	34	27.907	1.01	1.47	0.89	0.89	0.61
	35	22. 932	0.97	1.43	0.86	0.89	0.61
	36	19. 878	0.94	1.38	0.80	0.86	0.58
	37	16. 825	0.92	1.34	0.78	0.85	0. 59
	38	13. 700	0.88	1.31	0.76	0.87	0.59
	39	11. 900	0.86	1.29	0.77	0.90	0.60

基準地震動Ss, 1.2ZPA, 鉛直方向

表 4-21 (1/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号			震度		条件比率		
+#\\/1://// 友		$(\times 9.80665 \text{m/s}^2) \times 1.0$						
		標高			3			
西西加加	NS 专向	EL(m)	1	2	3 次元 FEM-質点	3/11	3/9	
	NO /J [H]		設計用 I	設計用Ⅱ	系連成モデル	0/1	0/2	
					耐震条件			
	53	29.962	2.50	3.14	1.82	0.73	0.58	
	54	26. 981	2.19	2.72	1.40	0.64	0.52	
ガンマ線遮蔽壁	55	24.000	1.80	2.31	1.33	0.74	0.58	
	56	21.500	1.51	1.94	1.14	0.76	0.59	
	57	19.000	1.16	1.64	0.99	0.86	0.61	
原子炉圧力容器	58	15.944	1.00	1.47	0.83	0.83	0.57	
ペデスタル	59	13.022	0.94	1.35	0.73	0.78	0.55	

基準地震動Ss, 1.0ZPA, 水平方向(NS)

表 4-21 (2/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		()	震度 ×9.80665m/s	条件比率		
構造物名	EW 方向	標高 EL(m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	54	29.962	2.25	3.15	1.64	0.73	0.53
	55	26. 981	2.17	2.94	1.40	0.65	0.48
ガンマ線遮蔽壁	56	24.000	1.95	2. 58	1.35	0.70	0.53
	57	21.500	1.65	2.30	1.27	0.77	0.56
	58	19.000	1.39	1.85	1.00	0.72	0.55
原子炉圧力容器	59	15.944	1.14	1.65	0.87	0.77	0.53
ペデスタル	60	13.022	1.03	1.52	0.74	0.72	0.49

基準地震動Ss, 1.0ZPA, 水平方向(EW)

表 4-21 (3/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		()	震度 ×9.80665m/s	条件比率		
構造物名	鉛直方向	標高 EL(m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	41	29.962	1.34	1.89	1.11	0.83	0.59
	42	26. 981	1.29	1.83	1.08	0.84	0.60
ガンマ線遮蔽壁	43	24.000	1.20	1.71	1.00	0.84	0.59
	44	21.500	1.11	1.58	0.93	0.84	0.59
	45	19.000	0.95	1.32	0.78	0.83	0.60
原子炉圧力容器	46	15.944	0.82	1.14	0.67	0.82	0.59
ペデスタル	47	13.022	0. 77	1.11	0.65	0.85	0.59

基準地震動Ss, 1.0ZPA, 鉛直方向

表 4-22(1/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		()	震度 ×9.80665m/s	条件比率		
構造物名	NS 方向	標高 EL(m)	① 設計用 I	② 設計用 II	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	53	29.962	3.00	3. 77	2.16	0.72	0.58
	54	26. 981	2.62	3.26	1.70	0.65	0.53
ガンマ線遮蔽壁	55	24.000	2.16	2. 78	1.60	0.75	0.58
	56	21.500	1.81	2. 33	1.38	0.77	0.60
	57	19.000	1.40	1.97	1.18	0.85	0.60
原子炉圧力容器	58	15. 944	1.20	1. 77	1.01	0.85	0. 58
ペデスタル	59	13.022	1.13	1.62	0.90	0.80	0.56

基準地震動Ss, 1.2ZPA, 水平方向(NS)

表 4-22(2/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	質点番号		(条件比率			
構造物名	EW 方向	標高 EL(m)	① 設計用 I	② 設計用 II	3 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	54	29.962	2.70	3. 78	1.94	0.72	0.52
	55	26. 981	2.60	3. 53	1.67	0.65	0.48
ガンマ線遮蔽壁	56	24.000	2. 33	3.09	1.63	0.70	0.53
	57	21.500	1.98	2.75	1.50	0.76	0.55
	58	19.000	1.67	2.22	1.20	0.72	0.55
原子炉圧力容器	59	15.944	1.37	1.98	1.05	0.77	0.54
ペデスタル	60	13. 022	1.24	1.82	0.90	0.73	0.50

基準地震動Ss, 1.2ZPA, 水平方向(EW)

表 4-22(3/3) 震度(ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

	皙点番号			条件	比率		
			(1	×9.80665m/s	$^{2}) \times 1.2$		
構造物名		標高			3		
	松直士向	EL(m)	1	2	3次元 FEM-質点	3/11	3/9
	如巨刀円		設計用 I	設計用Ⅱ	系連成モデル	3/1)	3/2
					耐震条件		
	41	29.962	1.61	2.27	1.32	0.82	0.59
	42	26. 981	1.55	2.19	1.29	0.84	0.59
ガンマ線遮蔽壁	43	24.000	1.44	2.04	1.20	0.84	0.59
	44	21.500	1.33	1.88	1.10	0.83	0.59
	45	19.000	1.14	1.59	0.92	0.81	0.58
原子炉圧力容器	46	15. 944	0. 98	1.37	0.80	0.82	0. 59
ペデスタル	47	13.022	0.92	1.32	0.77	0.84	0.59

基準地震動Ss,1.2ZPA, 鉛直方向

表 4-23 (1/3) 震度(原子炉圧力容器)

奉毕地辰町SS, 1.02FA, 小平刀町 (NC	基準地震動S	s.	1.0ZPA.	水平方向	(NS)
---------------------------	--------	----	---------	------	------

	厨占来旦			震度		条件比率	
	貝尽留方		(1	×9.80665m/s	²) ×1.0	米什	山平
構造物名	NS 方向	標高 EL (m)	① 設計用 I	② 設計用 II	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1)	3/2
	61	37. 494	5.24	6.57	3. 99	0.77	0.61
	62	36. 586	4.99	6.24	3. 79	0.76	0.61
	63	35. 678	4.73	5.91	3. 59	0.76	0.61
	64	33. 993	4.25	5.30	3. 22	0.76	0.61
	65	32. 567	3.83	4.76	2.79	0.73	0.59
	66	31. 557	3. 55	4.43	2.60	0.74	0.59
	67	30. 369	3.23	4.11	2.36	0.74	0.58
	68	30. 218	3.19	4.07	2. 33	0.74	0.58
	69	29. 181	2.98	3.86	2.19	0.74	0.57
	70	28.249	2.79	3.66	2.08	0.75	0.57
	71	27. 317	2.61	3.47	1.99	0.77	0.58
原子炉 圧力容器	72	26.687	2.48	3.32	1.90	0.77	0.58
)) J. [] [] [] [] [] [] [] [] [] [] [] [] []	73	25. 414	2.26	3.02	1.79	0.80	0.60
	74	25. 131	2.21	2.96	1.78	0.81	0.61
	75	24. 419	2.09	2.78	1.72	0.83	0.62
	76	23. 707	1.97	2.60	1.63	0.83	0.63
	77	22. 995	1.85	2.46	1.58	0.86	0.65
	78	22. 283	1.73	2.33	1.48	0.86	0.64
	79	21.064	1.53	2.10	1.24	0.82	0.60
	80	20.892	1.50	2.06	1.20	0.80	0.59
	81	20. 214	1.39	1.94	1.11	0.80	0.58
	82	19. 196	1.33	1.82	1.02	0.77	0.57
	83	18.250	1.25	1.73	0.95	0.76	0.55

表 4-23 (2/3) 震度(原子炉圧力容器)

基準地震動S	s,	1.0ZPA,	水平方向	(EW)
	~ ,	<u> </u>	/ /	(2011)

	暂占悉号			震度		条件比率	
	真灬田 勹		()	×9.80665m/s	²) ×1.0	木口	×u+
構造物名	EW 方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	62	37. 494	5.36	7.01	2.90	0.55	0.42
	63	36. 586	5.07	6.62	2.74	0.55	0.42
	64	35. 678	4.78	6.21	2.57	0.54	0.42
	65	33. 993	4.24	5.48	2.30	0.55	0.42
	66	32. 567	3. 76	4.82	2.06	0.55	0.43
	67	31. 557	3. 41	4.34	1.85	0.55	0.43
	68	30. 369	3.00	3.87	1.68	0.56	0.44
	69	30. 218	2.94	3.84	1.64	0.56	0.43
	70	29. 181	2.66	3.62	1.55	0.59	0.43
	71	28.249	2.42	3.42	1.44	0.60	0.43
	72	27. 317	2.22	3.21	1.37	0.62	0.43
原子炉 圧力容器	73	26.687	2.11	3.06	1.33	0.64	0.44
	74	25. 414	1.93	2.85	1.33	0.69	0.47
	75	25. 131	1.89	2.81	1.33	0.71	0.48
	76	24. 419	1.81	2.69	1.35	0.75	0.51
	77	23. 707	1.73	2.55	1.33	0.77	0.53
	78	22.995	1.65	2.42	1.34	0.82	0.56
	79	22. 283	1.56	2.28	1.33	0.86	0.59
	80	21.064	1.41	2.04	1.31	0.93	0.65
	81	20. 892	1.39	2.01	1.26	0.91	0.63
	82	20. 214	1.31	1.91	1.20	0.92	0.63
	83	19. 196	1.27	1.80	1.07	0.85	0.60
	84	18. 250	1.26	1.79	1.02	0.81	0.57

表 4-23 (3/3) 震度 (原子炉圧力容器)

	質点番号		()	震度 ×9.80665m/s	²) × 1. 0	条件	比率
構造物名	鉛直方向	標高 EL (m)	① 設計用 I	② 設計用 II	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	49	37. 494	1.13	1.58	0.89	0.79	0.57
	50	36. 586	1.13	1.56	0.88	0.78	0.57
	51	35. 678	1.13	1.56	0.88	0.78	0.57
	52	33. 993	1.13	1.56	0.88	0.78	0.57
	53	32. 567	1.12	1.56	0.86	0.77	0.56
	54	31. 557	1.11	1.55	0.87	0.79	0.57
	55	30. 369	1.10	1.53	0.86	0.79	0.57
	56	30. 218	1.10	1.52	0.83	0.76	0.55
	57	29. 181	1.09	1.50	0.83	0.77	0.56
	58	28. 249	1.07	1.49	0.83	0.78	0.56
	59	27. 317	1.06	1.47	0.82	0.78	0.56
原子炉 圧力容器	60	26.687	1.05	1.46	0.81	0.78	0.56
	61	25. 414	1.03	1.44	0.80	0.78	0.56
	62	25. 131	1.03	1.43	0.79	0.77	0.56
	63	24. 419	1.02	1.41	0.80	0.79	0.57
	64	23. 707	1.00	1.40	0.79	0.79	0.57
	65	22. 995	0.99	1.38	0.78	0.79	0.57
	66	22. 283	0.98	1.37	0.77	0.79	0.57
	67	21.064	0.95	1.32	0.74	0.78	0.57
	68	20. 892	0.95	1.32	0.74	0.78	0.57
	69	20. 214	0.94	1.31	0.75	0.80	0.58
	70	19. 196	0.91	1.28	0.71	0.79	0.56
	71	18.250	0.90	1.25	0.71	0.79	0.57

基準地震動Ss, 1.0ZPA, 鉛直方向

表 4-24 (1/3) 震度(原子炉圧力容器)

			0 0, 1, 22				
	質点番号		()	莀皮 ×9.80665m/s	$^{2}) \times 1.2$	条件	比率
		標高			3		
構造物名	NS 方向	EL(m)	① 設計用 I	② 設計用Ⅱ	3 次元 FEM-質点 系連成モデル 耐震条件	3/1)	3/2
	61	37. 494	6.29	7.88	4.78	0.76	0.61
	62	36. 586	5.99	7.49	4.54	0.76	0.61
	63	35.678	5.68	7.08	4.30	0.76	0.61
	64	33. 993	5.10	6.36	3. 82	0.75	0.61
	65	32.567	4.60	5.70	3. 39	0.74	0.60
	66	31. 557	4.26	5.31	3.12	0.74	0.59
	67	30. 369	3.88	4.94	2.83	0.73	0.58
	68	30. 218	3.83	4.89	2.84	0.75	0.59
	69	29. 181	3.57	4.64	2.63	0.74	0.57
	70	28.249	3.35	4.40	2.47	0.74	0.57
	71	27. 317	3.13	4.16	2. 39	0.77	0.58
原子炉 圧力容器	72	26.687	2.98	3.98	2. 31	0.78	0.59
<u>— / J н</u> нн	73	25. 414	2.71	3.63	2. 18	0.81	0.61
	74	25. 131	2.65	3.54	2.13	0.81	0.61
	75	24. 419	2.51	3. 33	2.05	0.82	0.62
	76	23. 707	2.36	3.12	1.96	0.84	0.63
	77	22.995	2.22	2.96	1.90	0.86	0.65
	78	22. 283	2.08	2.79	1.77	0.86	0.64
	79	21.064	1.83	2.52	1.48	0.81	0.59
	80	20.892	1.80	2.48	1.47	0.82	0.60
	81	20. 214	1.67	2.33	1.34	0.81	0.58
	82	19. 196	1.60	2.18	1.22	0.77	0.56
	83	18.250	1.50	2.07	1.14	0.76	0.56

基準地震動 S s. 1.2ZPA, 水平方向(NS)

表 4-24 (2/3) 震度(原子炉圧力容器)

			~ ~ , 12				
	質点番号		()	震度 ×9.80665m/s	²) × 1. 2	条件	比率
		標高			3		
構造物名	EW 方向	EL(m)	① 設計用 I	② 設計用Ⅱ	 3 次元 FEM-質点 系連成モデル 耐震条件 	3/1)	3/2
	62	37. 494	6.43	8.40	3. 48	0.55	0.42
	63	36. 586	6.08	7.94	3. 28	0.54	0.42
	64	35.678	5.73	7.46	3.09	0.54	0.42
	65	33. 993	5.09	6.57	2.76	0.55	0.43
	66	32. 567	4.52	5.78	2.43	0.54	0.43
	67	31. 557	4.09	5.19	2.22	0.55	0.43
	68	30. 369	3.59	4.65	2.02	0.57	0.44
	69	30.218	3.53	4.61	2.00	0.57	0.44
	70	29. 181	3.19	4.34	1.85	0.58	0.43
	71	28.249	2.91	4.10	1.72	0.60	0.42
	72	27.317	2.66	3.84	1.64	0.62	0.43
原于炉 圧力容器	73	26.687	2.53	3.68	1.60	0.64	0.44
	74	25. 414	2.31	3.42	1.62	0.71	0.48
	75	25. 131	2.27	3. 38	1.62	0.72	0.48
	76	24. 419	2.18	3.23	1.62	0.75	0.51
	77	23. 707	2.08	3.06	1.62	0.78	0.53
	78	22.995	1.98	2.91	1.63	0.83	0.57
	79	22. 283	1.87	2.75	1.61	0.87	0.59
	80	21.064	1.70	2.45	1.55	0.92	0.64
	81	20.892	1.67	2.42	1.53	0.92	0.64
	82	20. 214	1.57	2.28	1.43	0.92	0.63
	83	19. 196	1.52	2.16	1.29	0.85	0.60
	84	18.250	1.51	2.15	1.22	0.81	0.57

基準地震動Ss, 1.2ZPA, 水平方向(EW)

表 4-24 (3/3) 震度 (原子炉圧力容器)

Γ

		基準地震	፪動Ss,1	.2ZPA, 鉛面	重方向	
哲占釆早				震度		
	貝瓜留方		()	×9.80665m/s	$^{2}) \times 1.2$	
		標高			3	
		EL (m)	\bigcirc	(2)	3 次元 FFM- 質占	

	質点番号		(1	×9.80665m/s	$^{2}) \times 1.2$	条件比率	
構造物名	鉛直方向	標高 EL (m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	49	37. 494	1.36	1.88	1.05	0.78	0.56
	50	36. 586	1.36	1.88	1.05	0.78	0.56
	51	35.678	1.36	1.88	1.05	0.78	0.56
	52	33. 993	1.35	1.88	1.05	0.78	0.56
	53	32. 567	1.35	1.86	1.03	0.77	0.56
	54	31. 557	1.33	1.85	1.02	0.77	0.56
	55	30. 369	1.32	1.83	1.02	0.78	0.56
	56	30. 218	1.32	1.83	1.02	0.78	0.56
	57	29. 181	1.30	1.80	1.01	0.78	0.57
	58	28.249	1.29	1.79	0. 99	0.77	0.56
	59	27.317	1.27	1.77	1.00	0.79	0.57
原子炉 圧力容器	60	26. 687	1.26	1.76	0. 99	0.79	0.57
)) U HH	61	25. 414	1.24	1.73	0.97	0.79	0.57
	62	25. 131	1.23	1.71	0.96	0.79	0.57
	63	24. 419	1.22	1.70	0.95	0.78	0.56
	64	23. 707	1.20	1.68	0.96	0.80	0. 58
	65	22.995	1.19	1.65	0.92	0.78	0.56
	66	22. 283	1.17	1.64	0. 93	0.80	0.57
	67	21.064	1.14	1.59	0.89	0.79	0.56
	68	20. 892	1.14	1.59	0.89	0.79	0.56
	69	20. 214	1.12	1.56	0.88	0.79	0.57
	70	19. 196	1.10	1.53	0.86	0.79	0.57
	71	18.250	1.08	1.50	0.86	0.80	0.58

表 4-25 (1/3) 震度(炉心シュラウド)

	質点番号		(震度 ×9 80665m/s	$^{2}) \times 1 2$	条件比率	
構造物名	NS 方向	標高 EL (m)	① 設計用 I	② 設計用 II	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	88	31. 557	3.04	4.28	4. 28	1.41	1.00
	89	30.369	2.64	3. 57	3. 76	1.43	1.06
	90	29.181	2.35	3.12	3. 29	1.40	1.06
	91	28.249	2.23	2.96	3.00	1.35	1.02
	92	27.317	2.11	2.82	2.82	1.34	1.00
	93	26.687	2.03	2.73	2.66	1.32	0.98
	94	25.414	1.89	2.55	2.30	1.22	0.91
	95	25.843	1.95	2.61	2. 41	1.24	0.93
	96	25.414	1.89	2.55	2.30	1.22	0.91
	97	25.131	1.86	2.51	2.19	1.18	0.88
炉心シュクリト	98	24. 419	1.79	2.42	1.98	1.11	0.82
	99	23.707	1.73	2.34	1.78	1.03	0.77
	100	22.995	1.72	2.34	1.69	0.99	0.73
	101	22.283	1.70	2.34	1.60	0.95	0.69
	102	21.064	1.70	2.30	1.46	0.86	0.64
	103	21.571	1.72	2.34	1.53	0.89	0.66
	104	21.064	1.70	2.30	1.46	0.86	0.64
	105	20.892	1.71	2.30	1.44	0.85	0.63
	106	20.214	1.64	2.25	1.34	0.82	0.60
	107	19. 196	1.60	2.18	1.22	0.77	0.56

基準地震動Ss, 1.2ZPA, 水平方向(NS)

表 4-25 (2/3) 震度(炉心シュラウド)

	質点番号		()	震度 ×9 80665m/s	$^{2}) \times 1 2$	条件比率	
構造物名	EW 方向	標高 EL(m)	① 設計用 I	② 設計用 II	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	89	31. 557	2.95	4.37	3. 55	1.21	0.82
	90	30. 369	2.61	3.60	3. 12	1.20	0.87
	91	29. 181	2.39	3.09	2.79	1.17	0.91
	92	28.249	2.21	2.85	2.51	1.14	0.89
	93	27.317	2.03	2.61	2.20	1.09	0.85
	94	26.687	1.92	2.46	2.05	1.07	0.84
	95	25. 414	1.82	2.31	1.76	0.97	0.77
	96	25.843	1.86	2.34	1.84	0.99	0.79
	97	25. 414	1.82	2.31	1.76	0.97	0.77
伝わる ちちゃ	98	25. 131	1.80	2.30	1.69	0.94	0.74
炉心シュノリト	99	24. 419	1.75	2.30	1.60	0.92	0.70
	100	23. 707	1.70	2.31	1.53	0.90	0.67
	101	22.995	1.65	2.33	1.45	0.88	0.63
	102	22. 283	1.60	2.31	1.41	0.89	0.62
	103	21.064	1.52	2.28	1.43	0.95	0.63
	104	21. 571	1.57	2.34	1.44	0.92	0.62
	105	21.064	1.52	2.28	1.43	0.95	0.63
	106	20.892	1.51	2.27	1. 39	0.93	0.62
	107	20. 214	1.51	2.22	1. 38	0.92	0.63
	108	19.196	1.52	2.16	1.29	0.85	0.60

基準地震動Ss, 1.2ZPA, 水平方向(EW)

表 4-25 (3/3) 震度 (炉心シュラウド)

	皙占悉号			震度		条件比率	
	員が田方		(×9.80665m/s	²) ×1.2	木口	×
構造物名	鉛直方向	標高 EL(m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	73	31. 557	1.40	1.89	0.94	0.68	0.50
	74	30. 369	1.40	1.89	0.94	0.68	0.50
	75	29. 181	1.39	1.88	0.94	0.68	0.50
	76	28.249	1.38	1.86	0.93	0.68	0.50
	77	27.317	1.37	1.85	0.95	0.70	0.52
	78	26.687	1.37	1.83	0.94	0.69	0.52
	79	25.414	1.35	1.80	0.92	0.69	0.52
	80	25.843	1.35	1.82	0. 92	0.69	0.51
	81	25.414	1.35	1.80	0.92	0.69	0.52
(「「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」	82	25. 131	1.34	1.80	0.92	0.69	0.52
が心シュノリト	83	24.419	1.32	1.77	0.92	0.70	0.52
	84	23. 707	1.30	1.74	0. 91	0.70	0.53
	85	22.995	1.28	1.71	0.89	0.70	0.53
	86	22.283	1.26	1.67	0.88	0.70	0.53
	87	21.064	1.22	1.62	0.87	0.72	0.54
	88	21.571	1.22	1.62	0.87	0.72	0.54
	89	21.064	1.22	1.62	0.87	0.72	0.54
	90	20.892	1.21	1.62	0.87	0.72	0.54
	91	20.214	1.19	1.59	0.87	0.74	0.55
	92	19.196	1.15	1.56	0.89	0.78	0.58

基準地震動Ss, 1.2ZPA, 鉛直方向

表 4-26 (1/3) 震度(燃料集合体(燃料被覆管評価用))

	質点番号			震度	条件比率		
			(.	×9.80665m/s	²) × 1. 0		
構诰物名		標高			3		
149,021071	NS卡向	EL(m)	1	2	3次元 FEM-質点	@/M	@/@
	N9 /1 [1]		設計用 I	設計用Ⅱ	系連成モデル	0/1)	0/2
					耐震条件		
	113	25.843	1.62	2.18	2.02	1.25	0.93
	114	25. 131	1.91	2.82	2.11	1.11	0.75
	115	24. 419	2.48	3.69	2.41	0.98	0.66
燃料集合体	116	23. 707	2.61	3.89	2.67	1.03	0.69
	117	22.995	2.32	3.44	2.36	1.02	0.69
	118	22. 283	1.73	2.49	1.88	1.09	0.76
	119	21.571	1.43	1.95	1.27	0.89	0.66

基準地震動Ss,1.0ZPA,水平方向(NS)

表 4-26(2/3) 震度(燃料集合体(燃料被覆管評価用)) 基準地震動 S s, 1.02PA, 水平方向(EW)

	質点番号		(1	震度 ×9.80665m/s	条件比率		
構造物名	EW 方向	標高 EL(m)	① 設計用 I	② 設計用 II	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	114	25.843	1.55	1.95	1.51	0.98	0.78
	115	25. 131	2. 78	2.88	1.92	0.70	0.67
	116	24. 419	3. 83	3. 98	2.73	0.72	0.69
燃料集合体	117	23. 707	4.10	4.43	3.13	0.77	0.71
	118	22.995	3. 45	3.89	2.83	0.83	0.73
	119	22. 283	2.21	2.61	1.95	0.89	0.75
	120	21.571	1.31	1.95	1.23	0.94	0.64

表 4-26 (3/3) 震度(燃料集合体(燃料被覆管評価用))

構造物を	啠占釆巳			震度		条件比率	
	員加田与		(1	×9.80665m/s			
		標高			3		
114,121071	松直士向	EL(m)	1	2	3次元 FEM-質点	(A)/(I)	3/9
	如直刀門		設計用 I	設計用Ⅱ	系連成モデル	U/ ()	0/2
					耐震条件		
	94	25.843	1.35	1.92	1.13	0.84	0.59
	95	25. 131	1.34	1.91	1.12	0.84	0.59
	96	24. 419	1.33	1.89	1.11	0.84	0.59
燃料集合体	97	23. 707	1.32	1.88	1.10	0.84	0.59
	98	22. 995	1.30	1.86	1.10	0.85	0.60
	99	22. 283	1.29	1.83	1.08	0.84	0.60
	100	21. 571	1.27	1.80	1.06	0.84	0.59

基準地震動Ss, 1.0ZPA, 鉛直方向

表 4-27 (1/3) 震度(制御棒駆動機構ハウジング)

	質点番号		()	震度 ×9.80665m/s	条件比率		
構造物名	NS 方向	標高 EL(m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	127	17.499	1.45	2.09	1.31	0.91	0.63
	128	16. 508	1.41	2.01	1.05	0.75	0.53
制御棒駆動機構	129	15.644	1.57	2.27	1.14	0.73	0.51
ハリシンク (内側)	130	14. 781	1.78	2.55	1.30	0.74	0.51
	131	13. 917	1.81	2.66	1.33	0.74	0.50
	132	13.054	1.95	2.63	1.28	0.66	0.49
	108	17.442	1.45	2.04	1.09	0.76	0.54
制御棒駆動機構	109	16.345	2.01	2.79	1.36	0.68	0.49
ハウジング (外側)	110	15.248	3.49	4.82	1.90	0.55	0.40
	111	14. 151	3. 41	4.58	1.83	0.54	0.40
	112	13. 054	1.92	2.60	1.28	0.67	0. 50

基準地震動Ss, 1.2ZPA, 水平方向 (NS)

表 4-27 (2/3) 震度(制御棒駆動機構ハウジング)

	質点番号		()	震度 ×9.80665m/s	条件比率		
構造物名	EW 方向	標高 EL(m)	① 設計用 I	② 設計用 II	 ③ 3 次元 FEM-質点 系連成モデル 耐震条件 	3/1)	3/2
	128	17.499	2.04	2.06	1.24	0.61	0.61
	129	16. 508	1.54	2.18	1.15	0.75	0.53
制御棒駆動機構	130	15.644	1.75	2.34	1.19	0.68	0.51
ハリシンク (内側)	131	14. 781	2.36	3.14	1.49	0.64	0.48
	132	13. 917	2.67	3.60	1.44	0.54	0.40
	133	13.054	2.67	3. 68	1.35	0.51	0.37
	109	17.442	1.52	2.16	1.18	0.78	0.55
制御棒駆動機構	110	16.345	2.88	3.86	1.47	0.52	0.39
ハウジング (外側)	111	15.248	5.65	7.70	2.06	0.37	0.27
	112	14. 151	5.44	7.44	1.99	0.37	0.27
	113	13.054	2.64	3.63	1.36	0.52	0.38

基準地震動Ss,1.2ZPA,水平方向(EW)

表 4-27 (3/3) 震度(制御棒駆動機構ハウジング)

	質点番号		()	震度 ×9.80665m/s	²) ×1.2	条件	比率
構造物名	鉛直方向	標高 EL(m)	① 設計用 I	② 設計用Ⅱ	③ 3 次元 FEM-質点 系連成モデル 耐震条件	3/1	3/2
	107	17.499	1.12	1.56	0.90	0.81	0. 58
	108	16. 508	1.10	1.53	0.86	0.79	0.57
制御棒駆動機構	109	15.644	1.10	1.53	0.88	0.80	0. 58
ハリシング (内側)	110	14. 781	1.11	1.53	0.88	0.80	0.58
	111	13. 917	1.11	1.55	0.89	0.81	0. 58
	112	13.054	1.11	1.55	0.89	0.81	0.58
	93	17.419	1.09	1.52	0.85	0.78	0.56
制御棒駆動機構	113	16.345	1.10	1.52	0.85	0.78	0.56
ハウジング (外側)	114	15.248	1.10	1.53	0.88	0.80	0. 58
	115	14. 151	1.11	1.53	0.88	0.80	0.58
	116	13.054	1.11	1.53	0.88	0.80	0.58

基準地震動Ss, 1.2ZPA, 鉛直方向

表 4-28 (1/3) 震度 (原子炉圧力容器下鏡)

	質点番号		/	震度	条件比率		
			(×9.80665m/s	²) × 1. 0		
構造物名		標高			3		
· 伊迪初石		EL(m)	1	2	3次元 FEM-質点	@/(II)	<u></u>
	INS 万印		設計用 I	設計用Ⅱ	系連成モデル	3/1)	3/4
					耐震条件		
原子炉圧力容器 下鏡	85	18.250	1.25	1.73	0.95	0.76	0.55
	86	17.442	1.21	1.70	0.91	0.76	0.54
	87	16. 508	1.17	1.68	0.89	0.77	0.53

基準地震動Ss, 1.0ZPA, 水平方向(NS)

表 4-28 (2/3) 震度 (原子炉圧力容器下鏡)

構造物名	質点番号			震度	条件比率		
		抽 古	(∧9.80665m/s) × 1.0		
	EW 方向	係同 EL(m)	1	2	③ 3 次元 FEM-質点	@ /A	
			設計用 I	設計用Ⅱ	系連成モデル	3/1)	3/2
					耐震条件		
原子炉圧力容器 下鏡	86	18.250	1.26	1.79	1.02	0.81	0.57
	87	17.442	1.27	1.80	0.99	0.78	0.55
	88	16. 508	1.28	1.82	0.96	0.75	0.53

基準地震動Ss, 1.0ZPA, 水平方向(EW)

表 4-28 (3/3) 震度 (原子炉圧力容器下鏡)

	質点番号			震度	条件比率		
			(×9.80665m/s	²) × 1. 0		
構造物名		標高			3		
· 伊迪初石	秋声七白	EL(m)	1	2	3次元 FEM-質点	@/(II)	<u></u>
	如但刀问		設計用 I	設計用Ⅱ	系連成モデル	3/U	3/2
					耐震条件		
原子炉圧力容器 下鏡	71	18.250	0.90	1.25	0.71	0.79	0.57
	93	17.419	0.91	1.26	0.72	0.80	0.58
	108	16. 508	0.92	1.28	0.74	0.81	0.58

基準地震動Ss, 1.0ZPA, 鉛直方向

表 4-29 (1/3) 震度 (原子炉圧力容器下鏡)

1# \1+ 14 D	皙点番号			震度	条件比率		
			(×9.80665m/s	$^{2}) \times 1.2$		
		標高			3		
伸起初石	NC七白	EL(m)		2	3次元 FEM-質点	@/(1)	@/@
	N2 /] [1]		設計用 I	設計用Ⅱ	系連成モデル	3/U	3/2
					耐震条件		
原子炉圧力容器 下鏡	85	18.250	1.50	2.07	1.14	0.76	0.56
	86	17.442	1.45	2.04	1.09	0.76	0.54
	87	16. 508	1.41	2.01	1.05	0.75	0.53

基準地震動Ss, 1.2ZPA, 水平方向(NS)

表 4-29 (2/3) 震度 (原子炉圧力容器下鏡)

	質点番号			震度	条件比率		
			(×9.80665m/s	²) × 1. 2	 	
楼上生版友		標高			3		
· 博坦初泊	FW 卡向	EL(m)	1	2	3次元 FEM-質点	⁄∩/∩	@/@
	Ew // [H]		設計用 I	設計用Ⅱ	系連成モデル	3/1)	3/2
					耐震条件		
原子炉圧力容器 下鏡	86	18.250	1.51	2.15	1.22	0.81	0.57
	87	17.442	1.52	2.16	1.18	0.78	0.55
	88	16. 508	1. 54	2. 18	1.15	0.75	0. 53

基準地震動Ss, 1.2ZPA, 水平方向(EW)

表 4-29 (3/3) 震度 (原子炉圧力容器下鏡)

	質点番号		(震度 × 0. 80665m/a	条件比率		
構造物名	鉛直方向	標高 EL(m)	① 設計用 I	 2 設計用 Ⅱ 	3 3 次元 FEM-質点 系連成モデル	3/1)	3/2
					耐震条件		
原子炉圧力容器 下鏡	71	18.250	1.08	1.50	0.86	0.80	0.58
	93	17. 419	1.09	1.52	0.85	0.78	0.56
	108	16. 508	1.10	1.53	0.86	0. 79	0.57

基準地震動Ss, 1.2ZPA, 鉛直方向

(基準地震動Ss,水平方向(EW):原子炉格納容器 EL11.900m)

(基準地震動Ss, 鉛直方向:原子炉格納容器 EL37.060m)

(基準地震動Ss, 鉛直方向:原子炉格納容器 EL19.878m)

(基準地震動Ss, 鉛直方向: ガンマ線遮蔽壁 EL29.962m)

(基準地震動Ss, 鉛直方向: ガンマ線遮蔽壁 EL24.000m)

(基準地震動Ss, 水平方向 (NS):原子炉圧力容器ペデスタル EL13.022m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器ペデスタル EL15.944m)

(基準地震動Ss,水平方向 (EW):原子炉圧力容器ペデスタル EL13.022m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL33.993m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL31.557m)

別紙 4.8-1-301 **532**

⁽基準地震動Ss,水平方向(NS):原子炉圧力容器 EL28.249m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL26.687m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL25.131m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL23.707m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL22.283m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL20.892m)

(基準地震動Ss,水平方向(NS):原子炉圧力容器 EL19.196m)

別紙 4.8-1-309 **540**

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL35.678m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL32.567m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL30.369m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL29.181m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL27.317m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL25.414m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL24.419m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL22.995m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL21.064m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL20.214m)

(基準地震動Ss,水平方向(EW):原子炉圧力容器 EL18.250m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL36.586m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL33.993m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL31.557m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL30.218m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL28.249m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL26.687m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL23.707m)

(基準地震動Ss, 鉛直方向:原子炉圧力容器 EL22.283m)

(基準地震動Ss,水平方向(NS):上部格子板 EL25.843m)

(基準地震動Ss,水平方向(EW):上部格子板 EL25.843m)

(基準地震動Ss,鉛直方向:上部格子板 EL25.843m)

(基準地震動Ss,水平方向(NS):炉心支持板 EL21.571m)

(基準地震動Ss, 水平方向(EW): 炉心支持板 EL21.571m)

EL18.250m, EL17.442m及びEL16.508m)

		せん断	力(kN)	
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率
	39.400	363	245	0, 68
	37.060	679	493	0.73
	34. 758	4680	3440	0.74
	33.141	5270	4020	0.74
	29.392	00400	15000	0.70
百己后故外亦明	27.907	23400	16700	0.68
原于炉格納谷奋	22.932	24400	16700	0.69
	19.878	25600	17900	0.70
	16.825	26400	19200	0.73
	13.700	28500	21500	0.76
	11.900	29200	22000	0.76
	10.100	31300	23800	0.77
	29.962	6080	3440	0.50
	26.981	7490	4020	0.00
ガンマ線遮蔽壁	24.000	19600	4930	0.00
	21.500	12600	8820	0.70
	19.000	17400	12800	0.74
	15.944	22800	17900	0.79
原子炉圧力容器	13.022	40400	33600	0.84
ベデスタル	10.100	46400	37600	0.82

表 4-30 (1/4) 荷重(せん断力,基準地震動 S s)

		せん幽	f力(kN)	2/① 条件比率
名称	標高 EL (m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	
	37.494	615	370	0.62
	36. 586	1200	810	0.63
	35.678	2010	2450	0.03
	33.993	3910	2450	0.63
	32.567	4420	2480	0.57
	31.557	8700	5300	0.61
	30.369	10700	6580	0.62
	30 218	11300	6840	0.61
	20, 191	3460	1850	0.54
	29.101	2950	1730	0.59
	28. 249	2990	2050	0.69
	27.317	3320	2350	0.71
原子炉圧力容器	26.687	4050	3080	0.77
	25. 414	5730	4210	0.74
	25. 131	6490	4660	0.72
	24. 419	7480	5170	0.70
	23.707	8450	5710	0.68
	22.995	9220	6150	0.67
	22.283	10200	6600	0.65
	21.064	10700	6910	0.65
	20.892	11300	7300	0.65
	20.214	12000	7750	0.65
	19.196	19200	11000	0.07
	18.250	12000	19700	0.97
	15.944	13800	12700	0.93

表 4-30(2/4) 荷重(せん断力,基準地震動 Ss)

		せん断	力(kN)	
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率
	31. 557	105	129	1 23
気水分離器,	30. 369	737	1050	1 43
スタンドパイプ,	29. 181	1140	1720	1.51
シュラウドヘッド	28.249	1250	1910	1.51
及び炉心シュラウ	27.317	1250	2070	1.50
ト上部胴	26.687	2150	2070	1.54
	25.414	2150	3390	1. 58
	25. 843	2210	9970	0.74
	25.414	4610	4610	1.00
炉心シュラウド	25.131	4010	4010	1.00
	24.419	4630	4790	1.04
中間胴	23.707	4580	4820	1.06
	22.995	4480	4850	1.09
	22. 283	4630	5490	1.19
	21.064	4900	6040	1.24
	21.571	2160	2270	0.75
	21.064	6070	6060	0.70
炉心シュラウド _{下 ゴ}	20.892	0970	0000	0.99
שותקם ו	20.214	6980	6930	1.00
	19.196	6940	7060	1.02

表 4-30 (3/4) 荷重(せん断力,基準地震動 S s)

		せん勝	斤力(kN)	②/① 応答比率
名称	標高 EL(m)	新 ① n) 設計用 I	② 3 次元 FEM- 質点系連成 モデル	
	17.442	0.40	00.0	0.95
	17.419	343	83.0	0.25
制御棒駆動機構	16.345	343	135	0.40
ハワシンク (外側)	15.248	231	80.7	0.35
	14. 151	10.4	5.19	0.50
	13.054	- 215	69.9	0.33
	25.843			
	25.131	2960	2200	0.75
	24. 419	2040	1630	0.80
燃料集合体	23.707	712	611	0.86
	22.995	809	588	0.73
	22.283	2060	1610	0.79
	21.571	2820	2280	0.81
	21.571		_	_
	20.892	954	318	0.34
	20.214	705	205	0.30
制御棒案内管	19. 535	277	70.3	0.26
	18,856	- 234	83.6	0.36
	18 178	- 686	206	0.31
	17 499	1020	302	0.30
	17.400		_	—
	16 508	1140	378	0.34
制御棒駆動機構	15 644	- 139	87.0	0.63
ハウジング	14, 701	85.0	46.8	0.56
(内側)	14. (81	19.4	6.81	0.36
	10.054	74.0	40.1	0.55
	13.054			

表 4-30(4/4) 荷重(せん断力,基準地震動 Ss)

		モーメン	ト(kN・m)	
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率
	39.400	_	_	_
	37.060	848	572	0.68
	34. 758	2400	1710	0.72
	33.141	9280	7050	0.76
	29. 392	29400	22300	0.76
百乙后故如应即	27.907	56600	40200	0.72
原于炉格衲谷奋	22.932	178000	123000	0.70
	19.878	255000	176000	0.70
	16.825	333000	234000	0.71
	13.700	417000	300000	0.72
	11.900	468000	336000	0.72
	10.100	523000	380000	0.73
	29.962	—	—	—
	26.981	20800	8880	0.43
ガンマ線遮蔽壁	24.000	39900	27300	0.69
	21.500	57500	43200	0.76
	19.000	94400	72400	0.77
	15 044	161000	126000	0.79
原子炉圧力容器	15.944	289000	249000	0.87
ペデスタル	13.022	399000	352000	0.89
	10.100	528000	471000	0.90

表 4-31 (1/4) 荷重 (モーメント,基準地震動 S s)

		モーメン	ト(kN・m)		
名称	標高 EL (m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率	
	37.494	_		_	
	36. 586	558	345	0.62	
	35. 678	1730	1080	0.63	
	33. 993	8320	5200	0.63	
	32. 567	14700	7690	0.53	
	31. 557	23400	13100	0.56	
	30. 369	36100	20800	0.58	
	30. 218	37800	24000	0.64	
	29. 181	36900	24100	0.66	
	28.249	37200	23900	0.65	
	27. 317	38800	25200	0.65	
原子炉圧力容器	26.687	40200	26200	0.66	
	25. 414	44700	29100	0.66	
	25. 131	46100	30000	0.66	
	24. 419	49800	32400	0.66	
	23. 707	54200	35300	0.66	
	22. 995	59600	38800	0.66	
	22. 283	65400	43100	0.66	
	21.064	76100	50200	0.66	
	20.892	77700	50600	0.66	
	20.214	84200	55500	0.66	
	19. 196	94400	77900	0.83	
	18.250	105000	89900	0.86	
	15.944	135000	122000	0.91	

表 4-31 (2/4) 荷重 (モーメント,基準地震動 S s)

		モーメン	ト(kN・m)		
名称	標高 EL(m) 設計用 I	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率	
	31. 557	_	_	_	
与水公離哭	30. 369	125	154	1.24	
スタンドパイプ,	29. 181	972	1350	1.39	
シュラウドヘッド	28.249	2030	2960	1.46	
及び炉心シュラウ	27.317	3200	4690	1.47	
ト上部胴	26.687	4040	6040	1.50	
	25.414	6640	10300	1.56	
	25.843	—	—	—	
	95 414	1380	1020	0.74	
	23.414	7080 9390	1.33		
炉心シュラウド 中間胴	25. 131	8120	10200	1.26	
	24. 419	11400	13200	1.16	
	23.707	14600	16500	1.14	
	22.995	17800	20200	1.14	
	22. 283	20900	24100	1.16	
	21.064	26300	30500	1.16	
	21.571	_	_	_	
	21 064	1600	1210	0.76	
炉心シュラウド	21.004	27500	31000	1.13	
下部胴	20.892	28700	31800	1.11	
	20.214	33400	36300	1.09	
	19.196	40500	43900	1.09	

表 4-31 (3/4) 荷重 (モーメント,基準地震動 Ss)

		モーメン	ト(kN・m)		
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率	
	17.442	397	156	0.40	
	17.419	397	156	0.40	
制御棒駆動機構	16.345	24.7	9.89	0.41	
ハリシンク (外側)	15.248	232	79.2	0.35	
	14. 151	236	86.7	0.37	
	13.054	_	_	_	
	25.843	—	_	_	
	25.131	2110	1570	0.75	
	24.419	3560	2700	0.76	
燃料集合体	23.707	4040	3180	0.79	
	22.995	3470	2760	0.80	
	22.283	2010	1630	0.82	
	21.571	_	—	—	
	21.571	_	_	_	
	20.892	648	216	0.34	
	20.214	1130	356	0.32	
制御棒案内管	19. 535	1320	406	0.31	
	18.856	1160	344	0.30	
	18.178	690	205	0.30	
	17.499	_	_	_	
	17.499	_	_	—	
	16 509	1130	375	0.34	
制御棒駆動機構	10. 308	139	87.0	0.63	
ハウジング	15.644	34.1	13.2	0.39	
(内側)	14.781	54.2	29.4	0.55	
	13. 917	63.9	34.7	0. 55	
	13.054	_	_	_	

表 4-31(4/4) 荷重(モーメント,基準地震動 Ss)

		軸力	(kN)		
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率	
	39.400	181	111	0.62	
	37.060	371	226	0.61	
	34. 758	1260	767	0, 61	
	33.141	2010	1260	0, 63	
	29.392	3270	2180	0.67	
原子炉格納容器	27.907	4170	2860	0.69	
	22.932	5550	4030	0.73	
	19.878	6450	4050	0.76	
	16.825	8100	6400	0.70	
	13.700	8190	6490	0.80	
	11.900	8820	6990	0.80	
	10.100	10800	8430	0.79	
	29.962	4950	0.000	0.04	
	26.981	4350	3630	0.84	
ガンマ線遮蔽壁	24.000	9330	7070	0.76	
	21.500	14100	10300	0.74	
	19.000	18500	13400	0.73	
	15, 944	23400	17000	0.73	
原子炉圧力容器	13 022	43200	32400	0.75	
ペデスタル	10.100	47500	36500	0.77	
	10.100				

表 4-32 (1/4) 荷重(軸力,基準地震動 S s)
		軸大	軸力(kN)		
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 応答比率	
	37.494	- 130	85.9	0.62	
	36. 586	301	186	0.62	
	35.678	068	508	0.62	
	33.993	1720	1070	0.02	
	32.567	1730	1070	0.62	
	31.557	3120	1950	0.63	
	30.369	3820	2430	0.64	
	30.218	4010	2510	0.63	
	29.181	4230	2690	0.64	
	28.249	4610	2920	0.64	
	27.317	5250	3370	0.65	
	26.687	- 5560	3620	0.66	
原子炉圧力容器	25, 414	5870	3820	0.66	
	25, 121	6290	4140	0.66	
	23. 131	6440	4240	0.66	
	24.419	6650	4380	0.66	
	23.707	6900	4600	0.67	
	22.995	7110	4740	0.67	
22. 283 21. 064 20. 892 20. 214	22. 283	7390	4990	0.68	
	21.064	7580	5190	0.69	
	20.892	- 7950	5430	0.69	
	20.214	8370	5870	0.71	
	19.196	8600	6030	0.71	
	18.250	15300	11500	0.76	
ļ Ī	15.944				

表 4-32(2/4) 荷重(軸力,基準地震動 Ss)

		軸力		
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	2/① 条件比率
	31.557		23.5	0.55
気水分離器	30. 369	210	160	0.55
スタンドパイプ,	29.181	405	109	0.55
シュラウドヘッド	28.249	495	269	0.55
及び炉心シュラウ	27.317	568	313	0.56
ド上部胴	26.687	658	362	0.56
	25.414	823	460	0.56
	25.843	00.4	54.0	0.61
	25.414	90.4	54.3	0.61
	25.131	1010	570	0.57
炉心シュラウド	24.419	1050	595	0.57
中間胴	23.707	1110	630	0.57
	22.995	1180	675	0.58
	22, 283	1240	721	0.59
	21.064	1320	781	0.60
	21.571			
	21.064	193	181	0.94
炉心シュラウド 下部胴	20.892	1590	985	0.62
	20.214	1630	1020	0.63
	19, 196	1710	1080	0.64
	17. 419	1990	1320	0.67

表 4-32 (3/4) 荷重 (軸力, 基準地震動 S s)

		軸力		
名称	標高 EL(m)	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率
	25.843	576	404	0.71
	25. 131	965	676	0.71
	24. 419	1250	070	0.71
燃料集合体	23.707	1740	950	0.71
	22.995	0110	1240	0.72
	22.283	2110	1500	0.72
	21.571	2480	1760	0.71
制御棒案内管	20.892	2750	1950	0.71
	20.214	2860	2050	0.72
	19, 535	2970	2130	0.72
	18 856	3070	2230	0.73
	10.000	3180	2280	0.72
	17, 400	3280	2380	0.73
	17.499		-	—
	17.499	3370	2450	0.73
制御棒駆動機構	16.508	241	348	1.45
ハウジング	15.644	210	308	1.47
(内側)	14. 781	179	264	1.48
	13.917	149	220	1.48
	13.054			
	17.419	248	369	1 49
制御棒駆動機構	16.345	210	210	1.59
ハウジング	15.248	179	019 964	1.02
(外側)	14. 151	104	204	1. 53
	13.054	134	205	1. 53

表 4-32(4/4) 荷重(軸力,基準地震動 Ss)

	ばね反		
名称	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率
原子炉格納容器 スタビライザ	22600	13700	0.61
原子炉圧力容器 スタビライザ	13200	7420	0.57
シヤラグ	34200	20600	0.61
制御棒駆動機構ハウジング レストレントビーム	681	313	0.46

表 4-33 荷重(ばね反力,基準地震動 Ss)

表 4-34 荷重(相対変位,基準地震動 Ss)

	相対変		
名称	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率
燃料集合体	35.0	27.5	0.79

表 4-35 荷重(グリッド反力,基準地震動Ss)

	グリッド		
名称	① 設計用 I	② 3 次元 FEM- 質点系連成 モデル	②/① 条件比率
上部格子板	3150	2430	0.78
炉心支持板	3940	2970	0.76

5. 検討結果

(1) 簡易評価結果

簡易評価の結果,一部の設備(1設備)を除き,条件比率が設備の裕度以下となることを 確認した。表 5-1に条件比率が設備の裕度を上回った1設備の簡易評価結果を示す。

表 5-1 条件比率が設備の裕度を上回った設備の簡易評価結果

設備名称 評価	評価部位	応力分類	而 (基	討震評価結! 準地震動 S	果 s)	条件比率	刺激係数を 考慮した	検討
		発生値 ^{*1} (MPa)	許容値 (MPa)	裕度		条件比率	結果	
主蒸気系配管	副符卡体	一次+二次 応力	726	375	0.51	1.06	1 05	
(MS-PD-3)	8018 49149	疲労 ^{*2}	0. 5354	1	_	(図5-1)	1.05	

注記*1:一次+二次応力の発生値が許容値を上回った場合は、疲労評価を実施する。

*2:単位は無次元

(2) 詳細評価結果

簡易評価において条件比率が設備の裕度を上回った 1 設備に対して詳細評価を行った結果,発生値が許容値以下であることを確認した。図 5-1 に詳細評価に用いた 3 次元影響確認用応答スペクトルと設計用床応答スペクトルを示す。表 5-2 に条件比率が設備の裕度を上回った1設備の詳細評価結果を示す。

表 5-2 条件比率が設備の裕度を上回った設備の詳細評価結果

設備名称	評価部位 応力分類	応力分類		詳細評価系	条件		詳細評 (基準地窟	価結果 {動 S s)	検討
		条件種別	構造物名	EL(m)	減衰定数 (%)	発生値 ^{*1} (MPa)	許容値 (MPa)	結果	
主蒸気系配管	而签本体	一次+二次 応力	EDC	ガンマ組油英語			360	375	
(MS-PD-3) 凹	印度本件	記管本体 <u>疲労*2</u> 疲労*2		ルンド禄遮സ堂			0.0381	1	

注記*1:一次+二次応力の発生値が許容値を上回った場合は、疲労評価を実施する。

*2:単位は無次元

上段:床応答スペクトル

下段:床応答スペクトル条件比率

上段:床応答スペクトル

下段:床応答スペクトル条件比率

上段:床応答スペクトル

下段:床応答スペクトル条件比率

(3) 耐震計算書との比較

表5-3に3次元FEMモデルの応答の影響を踏まえた詳細評価による発生値と耐震計算書に記載の発生値の比較結果を示す。表5-3のとおり,詳細評価対象設備の詳細評価による発生値が耐震計算書に記載の発生値以下であることを確認した。

表 5-3 詳細評価における発生値と耐震計算書における発生値(基準地震動Ss)

設備名称	評価部位	応力分類	詳細評価による	耐震計算書に記載	比較
			発生値 (MPa)	の発生値 (MPa)	結果*
主蒸気系配管	配管本体	一次+	260	796	
(MS-PD-3)		二次応力	300	720	

注記*:詳細評価による発生値が耐震計算書に記載の発生値を上回る場合「〇」を記載

6. まとめ

「別紙3 原子炉建物3次元FEMモデルによる地震応答解析」の「3.4 床応答への影響検討」より、3次元FEMモデルの応答が質点系モデルの応答を上回る箇所があることを踏まえて機器・配 管系への影響検討を実施した。その結果、3次元FEMモデルによる影響を考慮しても、機器・配 管系の耐震性に影響がないことを確認した。

別紙 4.8-2 計算機プログラム(解析コード)の概要

1.	波形処理プログラム k-WAV	E for Windows	•••••	別紙 4.8-2-1
2.	補正条件作成プログラム			別紙 4.8-2-11

- 1. 波形処理プログラム k-WAVE for Windows
 - 1.1 はじめに

本資料は,別紙4.7「原子炉建物3次元FEMモデルの面外応答に係る機器・配管系への影響 検討」,別紙4.8「原子炉建物3次元FEMモデルの応答解析結果に係る機器・配管系への影響検 討」において使用した計算機プログラム(解析コード)波形処理プログラム k-WAVE for Windows について説明するものである。

解析コードの概要を以降に記載する。

1.2 解析コードの概要

コード名項目	波形処理プログラム k-WAVE for Windows
使用目的	設計用床応答スペクトルの作成
開発機関	株式会社構造計画研究所
開発時期	1998年
使用したバージョン	Ver. 6. 2. 0
コードの概要	波形処理プログラム k-WAVE for Windows (以下「本解析コード」 という。)は、加速度時刻歴から床応答スペクトルを作成するプログ ラムであり、建物・構築物床応答時刻歴から設計用床応答スペクト ルを作成することを目的とする。 一定の固有周期及び減衰定数を有する1質点系の、与えられた加速 度時刻歴に対する最大応答加速度を計算し、周期と減衰定数が同一 の系で計算された複数の床応答スペクトルの包絡値を求め、また床 応答スペクトルの拡幅を行う。
検証(Verification) 及び 妥当性確認(Validation)	 【検証(Verification)】 本解析コードの検証の内容は以下のとおりである。 ・別解析コード「Seismic Analysis System (SAS)」により作成した設計用床応答スペクトルと本解析コードで作成した設計用床応答スペクトルとを比較し、概ね一致していることを確認している。 ・本解析コードの運用環境について、動作環境を満足する計算機にインストールして用いていることを確認している。 【妥当性確認(Validation)】 本解析コードの妥当性確認の内容は、以下のとおりである。 ・本工事計画で使用する機能は床応答スペクトルの作成機能であり、同一の入力条件に対する1自由度系の最大応答加速度を固有周期毎に算定し、別解析コードSASと本解析コードの結果を比較することで、妥当性を確認している。 ・設計用床応答スペクトルを作成する際、入力とする時刻歴データの時間刻み幅、データの形式は、妥当性を確認している範囲内での使用であることを確認している。

・本工事計画における使用用途及び使用方法に関して,	上述の妥当
性確認の範囲内であることを確認している。	

1.3 解析手法

1.3.1 一般事項

本書は、建物・構築物の地震応答解析から算出される加速度時刻歴から床応答スペクトル を作成する解析コードである波形処理プログラム k-WAVE for Windows Ver. 6.2.0(以下「本 解析コード」という。)の説明書である。

本解析コードは、一定の固有周期及び減衰定数を有する1質点系の、与えられた加速度時 刻歴に対する最大応答加速度を計算する。また、周期と減衰定数が同一の系で計算された複 数の床応答スペクトルの包絡値を求め、拡幅した床応答スペクトルの作成を行う。

1.3.2 解析コードの特徴

本解析コードにおける1自由度系を用いた床応答スペクトルの作成は,ニガム法を用いる ことにより行う。主な特徴を下記に示す。

- ・加速度時刻歴から周期及び減衰定数に応じた床応答スペクトルを作成する。
- ・複数の床応答スペクトルを包絡させた床応答スペクトルに対して拡幅した設計用床応答
 スペクトルを作成する。

1.3.3 解析手法

各床面での加速度時刻歴を入力とする1自由度系における応答について,減衰定数をパラ メータとして以下ニガム法より算出する。

各質点における相対変位をx,固有円振動数を ω ,減衰定数をh,地動の加速度時刻 歴を $\dot{y}(t)$ としたとき,系の運動方程式は,

$$\ddot{x} + 2h\omega\dot{x} + \omega^2 x = -\ddot{y}(t) \qquad (1) \exists t$$

と表される。 t は一定時間間隔 Δt 毎に与えられて, \ddot{y}_i と \ddot{y}_{i+1} の間を直線によって補間 し, t_i を原点とするこの区間 $t_i \sim t_{i+1}$ 内の局部的な時間を τ , $\Delta \ddot{y} = \ddot{y}_{i+1} - \ddot{y}_i$ とすれば,

$$\ddot{y}(t) = \frac{\Delta \ddot{y}}{\Delta t}\tau + \ddot{y}_i \qquad 0 \le \tau \le \Delta t$$

と表される。(1)式は区間的に

$$\ddot{x}(\tau) + 2h\omega \dot{x}(\tau) + \omega^2 x(\tau) = -\frac{\Delta \ddot{y}}{\Delta t}\tau - \ddot{y}_i \qquad 0 \le \tau \le \Delta t$$

となる。この非同次微分方程式を解いて、区間のはじめ時刻 ti における初期条件

$$\tau = 0: \quad x = x_i, \quad \dot{x} = \dot{x}_i$$

を与えれば、区間の終わり $\tau = \Delta t$ (時刻 $t_{i+1} = t_i + \Delta t$) における相対変位応答及び相対速 度応答は、次のような形で求まる。

$$\begin{array}{c} x_{i+1} = A_{11}x_i + A_{12}\dot{x}_i + B_{11}\ddot{y}_i + B_{12}\ddot{y}_{i+1} \\ \dot{x}_{i+1} = A_{21}x_i + A_{22}\dot{x}_i + B_{21}\ddot{y}_i + B_{22}\ddot{y}_{i+1} \end{array} \right\}$$
(2)式

ここで、A, Bは、 ω , h, Δt が定まれば一意に定まる係数である。 x_{i+1} , \dot{x}_{i+1} が定まれば、絶対加速度応答は(1)式より

$$(\ddot{x} + \ddot{y})_{i+1} = -(2h\omega\dot{x}_{i+1} + \omega^2 x_{i+1}) \qquad (3)$$

によって求められる。したがって、 t=0 における応答の初期値

 $\begin{aligned} x_1 &= 0 \\ \dot{x}_1 &= -\ddot{y}_1 \Delta t \\ (\ddot{x} + \ddot{y})_1 &= 2h\omega \ddot{y}_1 \Delta t \end{aligned}$

を与えれば、後は(2)式と(3)式によって、応答値が算出される。

1.3.4 解析フローチャート

本解析コードを用いて行う解析フローチャートを図1-1に示す。

1.3.5 検証(Verification)及び妥当性確認(Validation)

1.3.5.1 検証

別解析コード「Seismic Analysis System (SAS)」にて作成した床応答スペクトルを 包絡, 拡幅した設計用床応答スペクトル(検証用データ)と本解析コードで同様に作成し た設計用床応答スペクトル(k-WAVEデータ)の加速度(震度)を比較することで,本解析 コードの検証を行った。

拡幅した設計用床応答スペクトルは3種類のテストデータ(加速度時刻歴)に対して4種類(0.5%,1.0%,2.0%,5%)の減衰を用いて作成している。検証用データとk-WAVEデータとを比較した結果を図1-2~図1-4に示す。両者は一致しており、本解析コードを用いて得られた計算結果の妥当性を確認した。

図1-2 検証用データとk-WAVEデータとを比較した結果 (テストデータ1)

図1-3 検証用データとk-WAVEデータとを比較した結果 (テストデータ2)

図1-4 検証用データとk-WAVEデータとを比較した結果 (テストデータ3)

1.3.5.2 妥当性確認

本解析コードの妥当性確認の内容は、以下のとおりである。

- ・今回の工事計画で使用する機能は床応答スペクトルの作成機能であるため、同一の入 力条件に対する1自由度系の最大応答加速度を固有周期毎に算定し、別解析コードS ASと本解析コードの結果を比較することで、妥当性を確認している。
- ・設計用床応答スペクトルを作成する際,入力とする時刻歴データの時間刻み幅,デー タの形式は,上述の妥当性を確認している範囲内での使用である。
- ・10%拡幅,時刻歴波の時間刻み,固有周期計算間隔はJEAG4601-1987に従っており,妥当性に問題はない。
- ・今回の工事計画認可申請における床応答スペクトル,加速度応答時刻歴に対し、使用 用途及び方法に関する適用範囲が上述の妥当性確認の範囲内であることを確認してい る。

1.3.5.3 評価結果

1.3.5.1及び1.3.5.2より,本解析コードを使用目的に示す床応答スペクトルの作成に用いることは妥当である。

2. 補正条件作成プログラム

2.1 はじめに

本資料は,別紙4.7「原子炉建物3次元FEMモデルの面外応答に係る機器・配管系への影響検 討」,別紙4.8「原子炉建物3次元FEMモデルの応答解析結果に係る機器・配管系への影響検討」 において使用した計算機プログラム(解析コード)補正条件作成プログラムについて説明するも のである。

解析コードの概要を以降に記載する。

2.2 解析コードの概要

コード名項目	補正条件作成プログラム				
使用目的	補正条件を考慮したFRS, ZPAの評価				
開発機関	株式会社構造計画研究所				
開発時期	2021年				
使用したバージョン	Ver.1.0				
コードの概要	補正条件作成プログラム(以下「本解析コード」という。)は波形 処理プログラム k-WAVE for Windows のソルバーを呼び出して,次の ①~⑥が一気通貫で流れる仕様となっている。 ①時刻歴波形や計算条件を読み込む機能 ②FRS・ZPA を作成する機能 ③FRS・ZPA を包絡する機能 ④複数の包絡 FRS・包絡 ZPA を基に, 補正係数を計算する機能 ⑤FRS を拡幅する機能				
検証(Verification) 及び 妥当性確認(Validation)	【検証(Verification)】 本解析コードの検証の内容は以下のとおりである。 ・別解析コード「波形処理プログラム k-WAVE for Windows」と汎用 表計算ソフトで作成した検証用データと比較し,概ね一致している ことを確認している。 ・本解析コードの運用環境について,動作環境を満足する計算機にイ ンストールして用いていることを確認している。 【妥当性確認(Validation)】 本解析コードの妥当性確認の内容は,以下のとおりである。 ・本工事計画で使用する機能は床応答スペクトルの作成機能であり, 同一の入力条件に対する1自由度系の最大応答加速度を固有周期 毎に算定し,別解析コード「波形処理プログラム k-WAVE for Windows」と汎用表計算ソフトで作成した検証用データと比較する ことで,妥当性を確認している。				

用であることを確認している。
・10%拡幅,時刻歴波の時間刻み,固有周期計算間隔はJEAG46
01-1987に従っており,妥当性は確認されている。
 ・本工事計画における使用用途及び使用方法に関して、上述の妥当性
確認の範囲内であることを確認している。

- 2.3 解析手法
 - 2.3.1 一般事項

本書は、建物・構築物の地震応答解析から算出される加速度時刻歴から床応答スペクトル を作成する解析コードである波形処理プログラム k-WAVE for Windowsのソルバーを用いて補 正条件を考慮したZPA・FRSを作成する補正条件作成プログラム(以下「本解析コード」とい う。)の説明書である。

2.3.2 解析コードの特徴

本解析コードは,次の①~⑥が一気通貫で流れる仕様となっている。 ①時刻歴波形や計算条件を読み込む機能 ②FRS・ZPA を作成する機能 ③FRS・ZPA を包絡する機能 ④複数の包絡 FRS・包絡 ZPA を基に,補正係数を計算する機能 ⑤FRS を拡幅する機能 ⑥作成した FRS・ZPA を出力する機能 2.3.3 解析手法・フローチャート

本解析コードを用いて行う解析フローチャートを図2-1に示す。

加速度時刻歴データを3つのグループに分けて設定し、各グループで包絡を実施する。次に グループ1、2の包絡結果で算出した補正係数を、グループ3の包絡結果に乗じることで補正条 件を考慮したFRSを計算する。FRSの拡幅は最後に実行している。なお、包絡手法については 「波形処理プログラム k-WAVE for Windows」では計算周期点以外で交点ができた場合には交 点を考慮した包絡スペクトルを算出するのに対し、本解析コードでは計算周期点のみで包絡 スペクトルを算出する方法を採用している。(図2-2)

図 2-2 包絡手法

別紙 4.8-2-15 602

2.3.4 検証 (Verification) 及び妥当性確認 (Validation)

2.3.4.1 検証

本解析コードで算出した各波形のFRS,包絡FRS,補正係数,拡幅FRS,ZPAを別解析コード「波形処理プログラム k-WAVE for Windows」と汎用表計算ソフトで作成した検証用データと比較することで、本解析コードの検証を行った。

各波形のFRSの比較を図2-3,包絡FRSの比較を図2-4,補正係数の比較を図2-5,拡幅 FRSの比較を図2-6,ZPAの比較を表2-1に示す。本解析コードの算出結果と検証用データ は一致しており、本解析コードを用いて得られた計算結果の妥当性を確認した。

C1-6_F03_4FL_EL42.8_EW_C1 質点系Sd:減衰1.0%

図2-3 各波形のFRSの比較

別紙 4.8-2-16 **603**

図2-6 拡幅FRSの比較

表2-1	ZPAの比較

プログラム	最大加速度 (cm/s ²)		補正係数	最大加速度 (cm/s ²)	[3] ×	水平震度*	
	[1]	[2]		[3]	補止係数	ZPA	$ZPA \times 1.2$
本解析 コード	812. 719	903. 129	1.111	1373.202	1525.963	1.56	1.87
汎用表計算 ソフト	812. 719	903. 129	1.111	1373. 202	1525.963	1.56	1.87

注記*:水平震度は、重力加速度を980.665cm/s²とし、小数点第3位を切り上げて算出

2.3.4.2 妥当性確認

本解析コードの妥当性確認の内容は、以下のとおりである。

- ・今回の工事計画で使用する機能は床応答スペクトルの作成機能であるため、同一の入 力条件に対する1自由度系の最大応答加速度を固有周期毎に算定し、別解析コード「波 形処理プログラム k-WAVE for Windows」と汎用表計算ソフトの結果と本解析コードの 結果を比較することで、妥当性を確認している。
- ・設計用床応答スペクトルを作成する際,入力とする時刻歴データの時間刻み幅,デー タの形式は,上述の妥当性を確認している範囲内での使用である。
- ・10%拡幅,時刻歴波の時間刻み,固有周期計算間隔はJEAG4601-1987に従っており,妥当性に問題はない。
- ・今回の工事計画認可申請における床応答スペクトル,加速度応答時刻歴に対し,使用 用途及び方法に関する適用範囲が上述の妥当性確認の範囲内であることを確認してい る。
- 2.3.4.3 評価結果

2.3.4.1及び2.3.4.2より,本解析コードを使用目的に示す床応答スペクトルの作成に用いることは妥当である。