島根原子力発電所第2号機 審査資料					
資料番号 NS2-添 2-006-75					
提出年月日	2023年2月20日				

VI-2-6-7-1-12 格納容器ガスサンプリング装置 (格納容器水素濃度(SA)及び 格納容器酸素濃度(SA))の 耐震性についての計算書

2023年2月中国電力株式会社

目 次

1. 概	要	1
2. —	般事項	1
2. 1	構造計画	1
3. 固	有周期	3
3. 1	固有周期の確認	3
4. 構	造強度評価	4
4. 1	構造強度評価方法	4
4.2	荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4.3	計算条件	4
5. 機	1100/p-1 1 H	8
5. 1		8
6. 評	価結果	9
6. 1	重大事故等対処設備としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9

1. 概要

本計算書は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA)が設計用地震力に対して十分な構造強度を有し、電気的機能を維持できることを説明するものである。

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))は、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下、重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。なお、格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA)は、VI-2-1-14「機器・配管系の計算書作成の方法」に記載の直立形計装ラックであるため、VI-2-1-14「機器・配管系の計算書作成の方法」な記載の直立形計装ラックであるため、VI-2-1-14「機器・配管系の計算書作成の方法 添付資料-7 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA)) の構造計画を表 2-1 に示す。

表 2-1 構造計画

表 2-1								
計画の	機要	概略構造図						
基礎・支持構造	主体構造	Mirel ITAE (2)						
サンプリング装置は、サンプリング装置取付ボルトにてチャンネルベースに設置する。 チャンネルベースは、溶接にて後打金物に固定され、後打金物は基礎ボルトにて基礎に設置する。	直立形(鋼材及び鋼板を組み合わせた直立形サンプリング装置)	サンプリング装置取付ボルト						
		チャンネルベース 基礎ボルト (ケミカルアンカ) 後打金物 (正面図) (単位: mm)						

3. 固有周期

3.1 固有周期の確認

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))の固有周期は、プラスチックハンマ等により、当該設備に振動を与え自由減衰振動を振動解析装置により記録解析し、確認する。試験の結果、剛構造であることを確認した。固有周期の確認結果を表 3-1 に示す。

表 3-1 固有周期 (単位:s)								
格納容器ガスサンプリング装置	水平							
(格納容器水素濃度(SA)及び	73.1							
格納容器酸素濃度(SA))	۵۸ - خـ							
(2RSR-M2-2)	鉛直							

4. 構造強度評価

4.1 構造強度評価方法

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))の構造強度評価は、VI-2-1-14「機器・配管系の計算書作成の方法 添付資料-7 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 4-1 に示す。

4.2.2 許容応力

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA)の許容応力は、VI-2-1-9「機能維持の基本方針」に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4-3に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【格納容器ガスサンプリング装置(格納容器水素 濃度(SA)及び格納容器酸素濃度(SA)) (2RSR-M2-2)の耐震性についての計算結果】の 設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

	文:1 内里·/西日·// (小高 八里/八) (中国 1/1/10 / 1/10 / 1/10 / 1/10 / 1/10 / 1/10 / 1/10 / 1/10 / 1/10 / 1/10 / 1/10 / 1/10								
施設区分		機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態			
					$D + P_D + M_D + S_s^{*3}$	IV A S			
計測制御 計測装置 系統施設	計測装置	格納容器ガスサンプリング装置 装置 (格納容器水素濃度(SA)及び 格納容器酸素濃度(SA))	常設耐震/防止常設/緩和	*2		VAS (VASとして			
					$D+P_{SAD}+M_{SAD}+S_{S}$	WASの許容限界			
						を用いる。)			

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: 「 $D+P_{SAD}+M_{SAD}+S_{S}$ 」の評価に包絡されるため、評価結果の記載を省略する。

	許容限界* ^{1,*2} (ボルト等)				
許容応力状態	一次応力				
	引張	せん断			
IV A S		1.5 • f s*			
VAS (VASとしてIVASの許容限界を用いる。)	1.5 · f t*				

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

⇒亚 (正 ☆17 + +	++ <i>1</i> 771	温度条件		Sу	S u	S y (R T)
評価部材	14 科	材料 (℃)		(MPa)	(MPa)	(MPa)
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	100	221	373	_
取付ボルト	SS400 (16mm<径≦40mm)	周囲環境温度	100	212	373	_

5. 機能維持評価

5.1 電気的機能維持評価方法

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))の電気的機能維持評価は、VI-2-1-14「機器・配管系の計算書作成の方法 添付資料-7 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))の機能確認済加速度は、VI-2-1-9「機能維持の基本方針」に基づき、実機の据付状態を模擬したうえで、サンプリング装置が設置される床における設計用床応答スペクトルを包絡する模擬地震波による加振試験において電気的機能の健全性を確認した加振台の最大加速度を適用する。機能確認済加速度を表 5-1 に示す。

表 5-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

機器名称	方向	機能確認済加速度
格納容器ガスサンプリング装置 (格納容器水素濃度(SA)及び	水平	
格納容器酸素濃度(S A)) (2RSR-M2-2)	鉛直	

6. 評価結果

6.1 重大事故等対処設備としての評価結果

格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有し、電気的機能を維持できることを確認した。

(1) 構造強度評価結果 構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果 電気的機能維持評価の結果を次頁以降の表に示す。 【格納容器ガスサンプリング装置(格納容器水素濃度(SA)及び格納容器酸素濃度(SA))(2RSR-M2-2)の耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

]期(s)	弾性設計用地震動	Sd又は静的震度	基準地別	戛動Ss	
機器名称	設備分類	据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
格納容器ガスサンプリング装置 (格納容器水素濃度(SA)及び 格納容器酸素濃度(SA)) (2RSR-M2-2)		原子炉建物 EL 30.5* ¹			_	_	C _H =2.68*2	Cv=2.23*2	100

注記*1:基準床レベルを示す。

*2:設計用震度 I (基準地震動Ss) を上回る設計震度

1.2 機器要目

部材	m i (kg)	h i (mm)	d i (mm)	Аьі (mm²)	n i	Syi (MPa)	Sui (MPa)
基礎ボルト (i =1)		987	16 (M16)	201. 1	24	221 (径≦16mm)	373 <mark>(径≦16mm)</mark>
取付ボルト (i=2)		868	12 (M12)	113. 1	24	212 (16mm<径≦40mm)	373 (16mm<径≦40mm)

	*				転倒	方向	
部材	ℓ _{1 i} * (mm)	ℓ 2 i * (mm)	nfi*	F i (MPa)	Fi (MPa)	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
基礎ボルト	366. 5		261 —		短辺方向		
(i =1)	719	771	4	_	201		湿 辺刀円
取付ボルト (i=2)	299	396	6		954		何辺士向
	664	716	4		254	_	短辺方向

注記*:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し、 下段は長辺方向転倒に対する評価時の要目を示す。

1.3 計算数值

1.3.1 ボルトに作用する力

(単位:N)

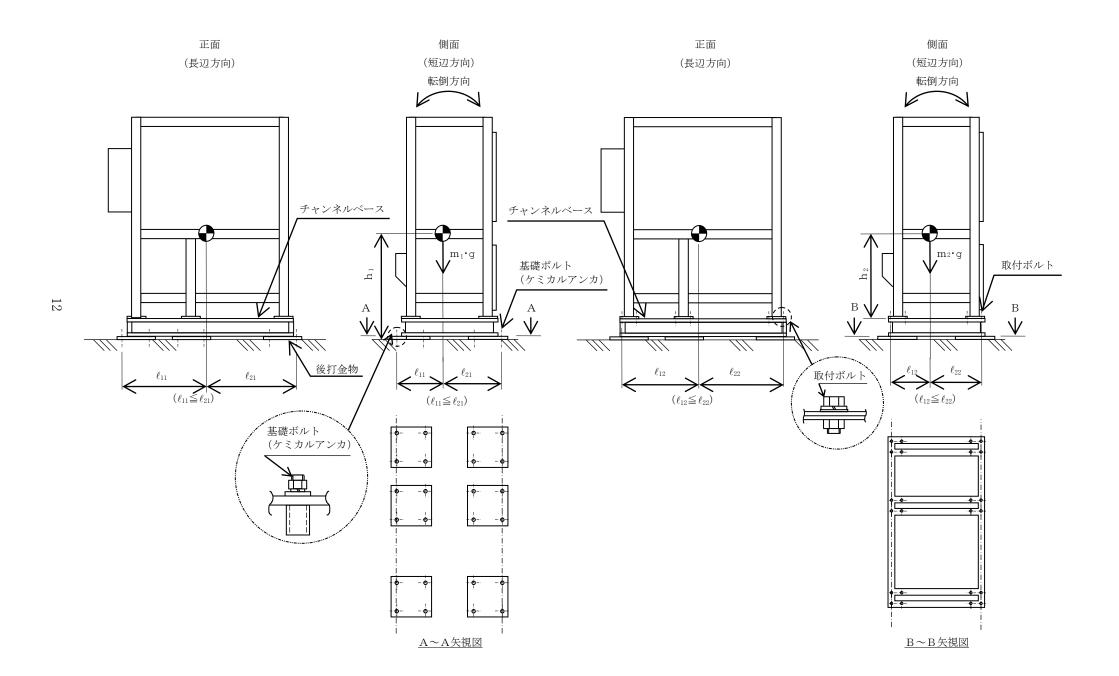
	F	b i	Q b i		
部材	弾性設計用地震動 Sd又は静的震度		弾性設計用地震動 Sd又は静的震度	基準地震動 S s	
基礎ボルト (i=1)	_		_		
取付ボルト (i=2)	_		_		

1.4 結論

1.4.1 ボルトの応力 (単位: MPa)

部材	材料	応力	弾性設計用地震動Sd又は静的震度		基準地震動 S s	
市247	171 171	ルロンノ	算出応力	算出応力 許容応力	算出応力	許容応力
基礎ボルト (i=1)	SS400	引張	_	_	σь1=37	f t s 1 = 156*
		せん断	_	_	τ ы 1=7	f s b 1 = 120
取付ボルト (i=2)	SS400	引張	_	_	σь2=58	f t s 2=190*
		せん断	_	_	τ ь 2=10	f s b 2=146

すべて許容応力以下である。


注記*: f t s i = Min[1.4 · f t o i - 1.6 · τ b i, f t o i]

1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度	
格納容器ガスサンプリング装置 (格納容器水素濃度(SA)及び 格納容器酸素濃度(SA)) (2RSR-M2-2)	水平方向	1.95		
	鉛直方向	1.94		

注記*:設計用震度Ⅱ (基準地震動Ss) により定まる加速度機能維持評価用加速度はすべて機能確認済加速度以下である。

