島根原子力発電所第2号機 審査資料				
資料番号 NS2-添 2-002-13改01				
提出年月日	2023 年 2 月 17 日			

VI-2-2-13 排気筒の地震応答計算書

2023年2月

中国電力株式会社

1.	概要	1
2.	基本方針	2
2	.1 位置	2
2	.2 構造概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2	.3 解析方針	7
2	.4 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.	解析方法·····	10
3	.1 設計に用いる地震波・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
3	.2 地震応答解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
	3.2.1 水平方向及び鉛直方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
3	.3 解析方法	46
	3.3.1 動的解析	46
	3.3.2 静的解析	46
3	.4 解析条件	48
	3.4.1 材料物性の不確かさ等·····	48
4.	解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
4	.1 動的解析	50
	4.1.1 固有值解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
	4.1.2 地震応答解析結果・・・・・	50
4	.2 静的解析	83

1. 概要

本資料は、VI-2-1-3「地盤の支持性能に係る基本方針」、VI-2-1-6「地震応答解析の 基本方針」及びVI-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関する説 明書」のうちVI-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に 関する基本方針」に基づく排気筒の地震応答解析について説明するものである。

地震応答解析により算定した各種応答値及び静的地震力は、VI-2-1-9「機能維持の基本方針」に示す建物・構築物及び機器・配管系の設計用地震力として用いる。また、各種応答値については排気筒の構造強度の確認に用いる。

- 2. 基本方針
- 2.1 位置

排気筒の設置位置を図 2-1 に示す。

図 2-1 排気筒の設置位置

2.2 構造概要

排気筒は,地盤からの高さ120mである内径3.3mの鋼板製筒身(空調換気系用排気) 筒)を鋼管四角形鉄塔で支えた鋼製鉄塔支持型排気筒である。

排気筒の基礎は鉄筋コンクリート造であり、岩盤に直接設置している。

また、筒身外部には非常用ガス処理系用排気筒が筒身に支持されている。

筒身は第4支持点位置(EL 113.5m*)にて制震装置(粘性ダンパ)を介して鉄塔と 接合されている。

排気筒の概要図を図 2-2 に,主要レベルの概略平面図を図 2-3 に,基礎の概要図 を図 2-4 に示す。

構造概要

構造形状	鋼製鉄塔支持型(制震装置(粘性ダンパ)付)
排気筒高さ	筒身 120.0m (EL 128.5m)
鉄塔高さ	105.0m (EL 113.5m)
鉄塔幅	頂 部 6.5m
	根開き 26.0m
筒身支持点位置	EL 34.5m, EL 62.2m, EL 89.2m, EL 113.5m
基礎	鉄筋コンクリート造

注記*:「EL」は東京湾平均海面(T.P.)を基準としたレベルを示す。

補助柱

Т

¢267.4×6.0

¢ 318.5×6.0

¢711.2×7.9

¢ 609.6× 12.7

¢762.0×12.7 *3

¢609.6×12.7^{*3}

T

STK400

図 2-2 排気筒の概要図(単位:m)

図 2-3 主要レベルの概略平面図

(a) 平面図

図 2-4 基礎の概要図(単位:m)

2.3 解析方針

排気筒の地震応答解析は、VI-2-1-6「地震応答解析の基本方針」に基づいて行う。 図 2-5 に排気筒の地震応答解析フローを示す。

地震応答解析は、「3.1 設計に用いる地震波」及び「3.2 地震応答解析モデル」 において設定した地震応答解析モデルを用いて実施することとし、「3.3 解析方法」 及び「3.4 解析条件」に基づき、「4.1 動的解析」においては、材料物性の不確か さを考慮し、加速度、変位等を含む各種応答値を算定する。

「4.2 静的解析」においては静的地震力を算定する。

注:[]内は,本資料における章番号を示す。 注記*:材料物性の不確かさを考慮する。

図 2-5 排気筒の地震応答解析フロー

2.4 適用規格·基準等

排気筒の地震応答解析において適用する規格・基準等を以下に示す。

- ·原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・ 補-1984((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本 電気協会)
- ・建築基準法・同施行令
- ・鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法-((社)日本 建築学会,1999 改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005 制定)
- ・鋼構造設計規準 -許容応力度設計法-((社)日本建築学会,2005改定)
- ・煙突構造設計施工指針((財)日本建築センター,1982年版)
- ・煙突構造設計指針((社)日本建築学会,2007制定)
- ・塔状鋼構造設計指針・同解説((社)日本建築学会,1980制定)
- ·鋼構造座屈設計指針((社)日本建築学会,1996改定)
- ・容器構造設計指針・同解説((社)日本建築学会,2010改定)

- 3. 解析方法
- 3.1 設計に用いる地震波

排気筒の地震応答解析モデルは、構造物と地盤の相互作用を評価した構造物-地盤 連成モデルとする。この構造物-地盤連成モデルへの入力地震動は、VI-2-1-2「基準 地震動Ss及び弾性設計用地震動Sdの策定概要」に示す解放基盤表面レベルに想定 する地震波を用いることとする。

基準地震動Ss及び弾性設計用地震動Sdの加速度時刻歴波形及び加速度応答スペクトルを図 3-1~図 3-8 に示す。

図 3-1(1) 加速度時刻歷波形(基準地震動 S s, N S 方向)

図 3-1(2) 加速度時刻歷波形(基準地震動 S s, N S 方向)

図 3-2(1) 加速度時刻歷波形(基準地震動 S s, E W 方向)

図 3-2(2) 加速度時刻歷波形(基準地震動 S s, E W 方向)

図 3-3(1) 加速度時刻歷波形(基準地震動 S s, 鉛直方向)

図 3-3(2) 加速度時刻歷波形(基準地震動 S s, 鉛直方向)

図 3-4(1) 加速度応答スペクトル(基準地震動 S s)

図 3-5(1) 加速度時刻歷波形 (弾性設計用地震動 S d, N S 方向)

図 3-5(2) 加速度時刻歷波形 (弹性設計用地震動 S d, N S 方向)

図 3-5(3) 加速度時刻歷波形 (弾性設計用地震動 S d, N S 方向)

図 3-6(1) 加速度時刻歷波形 (弾性設計用地震動 S d, E W 方向)

図 3-6(2) 加速度時刻歷波形 (弹性設計用地震動 S d, E W 方向)

図 3-6(3) 加速度時刻歷波形 (弾性設計用地震動 S d, E W 方向)

図 3-7(1) 加速度時刻歷波形 (弹性設計用地震動 S d, 鉛直方向)

図 3-7(2) 加速度時刻歷波形 (弹性設計用地震動 S d, 鉛直方向)

図 3-8(1) 加速度応答スペクトル(弾性設計用地震動Sd)

図 3-8(2) 加速度応答スペクトル(弾性設計用地震動Sd)

3.2 地震応答解析モデル

地震応答解析モデルは、VI-2-1-6「地震応答解析の基本方針」に記載の解析モデルの設定方針に基づき設定する。地震応答解析モデルの設定に用いた使用材料の物性値 を表 3-1 に示す。

使用材料	ヤング係数 E (N/mm ²)	せん断 弾性係数 G (N/mm ²)	減衰定数 h (%)	備考
鉄筋コンクリート コンクリート: Fc=20.6 (N/mm ²) (Fc=210 (kgf/cm ²)) 鉄筋:SD35 (SD345 相当)	2. 15×10^4	8.98 $\times 10^{3}$	5	基礎
鋼材: SS41 (SS400 相当) SS400 STK41 (STK400 相当) STK400 STK490	2.05×10 ⁵	7.90 $ imes$ 10 ⁴	2	鉄塔
鋼材: SMA41A(SMA400AP 相当)	2.05 $\times 10^{5}$	7.90×10 ⁴	1	筒身

表 3-1 使用材料の物性値

- 3.2.1 水平方向及び鉛直方向
 - (1) 地震応答解析モデル

地震応答解析モデルは、地盤との相互作用を考慮し、構造物-地盤連成の立体 架構モデルとする。排気筒の地震応答解析モデルを図 3-9 に、部材諸元一覧を表 3-2~表 3-7 に示す。また、排気筒の EL 113.5m には 8 台の制震装置(粘性ダン パ)が設置されている。制震装置(粘性ダンパ)の概要を図 3-10 に、諸元を表 3-8 に示す。

地震応答解析は,時刻歴応答解析により行う。なお,減衰は剛性比例型減衰(排 気筒の水平方向1次固有振動数に対し,筒身は1%,鉄塔は2%,基礎は5%と設 定)として評価する。

(2) 地盤ばね

基礎底面の地盤ばねについては、「原子力発電所耐震設計技術指針 JEAG 4601-1991 追補版((社)日本電気協会)」により、成層補正を行ったのち、 振動アドミッタンス理論に基づき求めたスウェイ、ロッキング及び鉛直の地盤ば ねを、近似法により定数化して用いる。地盤ばねの定数化の概要を図 3-11 に、 地盤ばね定数及び減衰係数を表 3-9 に示す。基礎底面ばねの評価には解析コード 「ADMITHF」を用いる。評価に用いる解析コードの検証、妥当性確認等の 概要については、VI-5「計算機プログラム(解析コード)の概要」に示す。

(3) 入力地震動

地震応答解析モデルへの入力地震動は,解放基盤表面で定義される基準地震動 Ss及び弾性設計用地震動Sdから以下の手順で算定する。まず,解放基盤表面 以深の地盤を1次元地盤としてモデル化し,一次元波動論に基づく評価により, EL-215mの入射波を算定する。算定したEL-215mの入射波を排気筒位置での地盤 をモデル化した1次元地盤に入力して一次元波動論に基づく評価を行い,排気筒 基礎底面での地盤応答を評価して入力地震動とする。地震応答解析に用いる地盤 モデルの地盤物性値を表3-10に示す。表3-10に示す地盤物性値のうち,表層 ①-1については,地震動レベル及び試験結果に基づく埋戻土のひずみ依存性を考 慮した等価物性値とする。また,排気筒基礎底面レベルにおけるせん断力及び軸 力(以下「切欠き力」という。)を入力地震動に付加することにより,地盤の切 欠き効果を考慮する。

地震応答解析モデルに入力する地震動の概念図を図 3-12 に、1 次元地盤モデルを図 3-13 に、基礎底面位置(EL 2.0m)における入力地震動の加速度応答スペクトルを図 3-14 及び図 3-15 に示す。入力地震動の算定には、解析コード「SHAKE」を用いる。評価に用いる解析コードの検証、妥当性確認等の概要については、VI-5「計算機プログラム(解析コード)の概要」に示す。

補 VI-2-2-13 R0

S2

図 3-9 地震応答解析モデル

		断面性能			
高さ EL (m)	断面形状 (mm)	断面積 A (×10 ³ mm ²)	せん断 断面積 A _{sx} , _y (×10 ³ mm ²)	断面二次 モーメント I _x , y (×10 ⁹ mm ⁴)	ねじり 定数 J (×10 ⁹ mm ⁴)
128.5 \sim 8.8	ϕ 3, 320×10.0	104.0	52.00	142.4	284.8
$128.5 \sim 8.8$	ϕ 3, 324 × 12. 0*	124.9	62.45	171.2	342.4

表 3-2 筒身部モデル諸元(断面諸元)

注記*: 第1~4支持点の上下1250 mmの区間の断面形状。

表 3	-3	筒身	部モ	デル	諸元	(質点重量)
-----	----	----	----	----	----	--------

高さ	質点重量*
EL (m)	(kN)
128.5	93.7
113.5	227.7
89.2	290.4
62.2	323.5
34.5	305.6
8.8	282.9

注記*:非常用ガス処理系用排気筒の重量を含む。

				断面性能			
部材	高さ EL (m) (mm)		断面積 A (mm ²)	せん断 断面積 A _{sx} , y (mm ²)	断面二次 モーメント I _x , y (×10 ⁶ mm ⁴)	ねじり 定数 J (×10 ⁶ mm ⁴)	
	113.5 \sim 94.5	φ 267.4×6.6	5408	2704	46.0	92.0	
	94.5 \sim 83.0	ϕ 355.6×6.4	7021	3511	107.0	214.1	
	83.0 \sim 69.5	ϕ 406. 4 × 7. 9	9890	4945	196.0	392.8	
主柱材	69.5 \sim 53.5	ϕ 508. 0 × 9. 5	14880	7440	462.0	924.6	
	$53.5 \sim 34.5$	ϕ 609. 6×12. 7	23820	11910	1060.0	2122.2	
	$34.5 \sim 8.5$	ϕ 711. 2×12. 7 8PLs - 22×100 ^{*1}	45470	22735	2992.0	3400.4	
	$113.5 \sim 99.9$	ϕ 216. 3 × 5. 8	3836	1918	21.3	42.5	
	99.9 \sim 76.8	ϕ 267. 4×6. 6	5408	2704	46.0	92.0	
A1 ++	76.8 \sim 62.2	ϕ 318. 5×6. 9	6755	3378	82.0	164.0	
亦 十47	$62.2 \sim 45.0$	ϕ 355. 6×7. 9	8629	4315	130.0	260.9	
	$45.0 \sim 23.9$	ϕ 457.2×9.5	13360	6680	335.0	669.8	
	$23.9 \sim 8.5$	ϕ 558.8×9.5	16390	8195	619.0	1237.0	
	113.5 $H-450\times 3$	U 450×200×10×15*2	13200	9000	487.7	0.815	
		11 430×300×10×13		4200	67.5	0.015	
	109.4, 99.9	ϕ 216. 3×5. 8	3836	1918	21.3	42.5	
水平材	89.2, 76.8	ϕ 267. 4×6. 6	5408	2704	46.0	92.0	
	62.2, 45.0	ϕ 318. 5×6. 9	6755	3378	82.0	164.0	
	34.5	ϕ 609. 6×9. 5	17910	8955	806.0	1612.8	
	23.9	ϕ 406. 4×9. 5	11850	5925	233.0	466.8	

表 3-4(1) 鉄塔部モデル諸元(断面諸元)

注記*1:リブ付きの主柱材のせん断剛性及び軸剛性は補強リブも含めて考慮している。

また,断面二次モーメントは最小値とし、ねじり定数は鋼管のみの値とする。 *2:H形鋼のせん断断面積及び断面二次モーメントは上段がAsx及びIx,下段が Asy及びIyを示す。

			断面性能			
部材	高さ EL (m) (mm)		断面積 A (mm ²)	せん断 断面積 A _{sx} , y (mm ²)	断面二次 モーメント I _x , y (×10 ⁶ mm ⁴)	ねじり 定数 J (×10 ⁶ mm ⁴)
補助柱	$109.4 \sim 99.9$	ϕ 267. 4×6. 0	4927	2464	42.1	84.2
	99.9 \sim 89.2	ϕ 318. 5×6. 0	5891	2946	71.9	143.9
	89.2 ~ 76.8	ϕ 711. 2×7. 9	17450	8725	1080.0	2158.7
	76.8 \sim 62.2	ϕ 609. 6×12. 7	23820	11910	1060.0	2122.2
	$62.2 \sim 45.0$	ϕ 762. 0×12. 7	29900	14950	2100.0	4197.5
	$45.0 \sim 23.9$	ϕ 609. 6×12. 7	23820	11910	1060.0	2122.2

表 3-4(2) 鉄塔部モデル諸元(断面諸元)

表 3-5 鉄塔部モデル諸元 (質点重量)

高さ	質点重量*
EL (m)	(kN)
113.5	107.2
109.4	113.2
99.9	146. 4
89.2	246.4
76.8	315.6
62.2	528.0
45.0	525.2
34.5	611.2
23.9	669.6
8.5	597.6

注記*:各高さの総重量を示す。
			断面性能					
高さ EL (m)		断面形状 (m)	断面積 A (m ²)	せん断 断面積 A _{sx} , y (m ²)	断面二次 モーメント I _x , y (m ⁴)	ねじり 定数 J (m ⁴)		
8.8 ~ 3.5 (管	笥身部)	6.0×6.0	36.00	30.00	108.00	182.30		
$8.5 \sim 3.5$ (\$	鉄塔部)	2.5×2.5	6.25	5.21	3.26	5.49		
$3.5 \sim 2.0$		28.5 \times 28.5	812.3	676.9	54980	92780		

表 3-6 基礎部モデル諸元(断面諸元)

表 3-7 基礎部モデル諸元 (質点重量)

高さ	質点重量
EL (m)	(kN)
8.8	2118.3
8.5	1471.2
3.5	95283.2
2.0	14337.9

図 3-10 制震装置(粘性ダンパ)の概要図(単位:mm)

ばね定数	減衰係数
К	С
(kN/m/台)	(kN・s/m/台)
1.5×10^4	72

表 3-8 制震装置(粘性ダンパ)の諸元

ばね定数: OHzのばね定数Kcで定数化

減衰係数 : 地盤-構造物連成系の1次固有円振動数ω1に対応する虚部の値と 原点とを結ぶ直線の傾きCcで定数化

図 3-11 地盤ばねの定数化の概要

ばね	地盤ばね	ばね定数	減衰係数
番号	成分	Кс	C c
K1	底面・水平	1.74×10 ⁸ (kN/m)	1.51×10^6 (kN · s/m)
K2	底面・鉛直	3.15×10 ⁸ (kN/m)	3.26×10^6 (kN · s/m)
K3	底面・回転	3.67×10 ¹⁰ (kN \cdot m/rad)	2.32×10 ⁵ (kN · m · s/rad)

表 3-9 地盤ばね定数と減衰係数

	10	10 1/1/10				에 되어 표려 한	
田東田		S波速度	P波速度	単位体積重量	ポアソン比	せん断弾性係数	減衰定数
眉笛名	ז	V s (m/s)	Vp (m/s)	γ (kN/m ³)	ν	$G~(\times 10^5 k \text{N/m}^2)$	h (%)
丰屋①_1	S s	127*	422*	20.7	0.45	0.341*	8*
衣眉U 1	S d	156*	516*	20.7	0.45	0.512*	7^*
岩盤②		900	2100	23.0	0.388	19.0	3
岩盤(3)	1600	3600	24.5	0.377	64.0	3
岩盤④		1950	4000	24.5	24.5 0.344 95.1		3
岩盤⑤		2000	4050 26.0 0.339 105.9		105.9	3	
岩盤⑥		2350	4950	27.9	0.355	157.9	3

表 3-10 排気筒の地震応答解析に用いる地盤モデルの地盤物性値

注記*:地震動レベル及び試験結果に基づく埋戻土のひずみ依存性を考慮した等価物性値

〔地震応答解析モデル〕

図 3-12 地震応答解析モデルに入力する地震動の概念図

(b) EW方向

図 3-14(1) 入力地震動の加速度応答スペクトル(基準地震動 S s, EL 2.0m)

周期 (s)

EW方向

1

10

0.01

(b)

0.1

図 3-15(2) 入力地震動の加速度応答スペクトル(弾性設計用地震動Sd, EL 2.0m)

3.3 解析方法

排気筒について、動的解析により応答加速度、応答変位、応答せん断力、応答曲げ モーメント及び応答軸力を算定する。また、静的解析により静的地震力を算定する。 排気筒の地震応答解析には、解析コード「SNAP-LE」を用いる。評価に用い る解析コードの検証、妥当性確認等の概要については、VI-5「計算機プログラム(解 析コード)の概要」に示す。

3.3.1 動的解析

排気筒の動的解析は、VI-2-1-6「地震応答解析の基本方針」に記載の解析方法 に基づき、時刻歴応答解析により実施する。

基準地震動Ss-D及びSs-N1並びに弾性設計用地震動Sd-D, Sd-N1及びSd-1については、2方向(水平1方向(0°方向又は45°方向)及び 鉛直方向)の同時入力とする。また、基準地震動Ss-F1, Ss-F2及び Ss-N2並びに弾性設計用地震動Sd-F1, Sd-F2及びSd-N2につ いては、3方向(水平2方向及び鉛直方向)の同時入力とする。

3.3.2 静的解析

(1) 水平地震力

水平地震力算定用の基準面は基礎版上端(EL 3.5m)とし,基準面より上の部分(地上部分)の地震力は,地震層せん断力係数を用いて,次式により算定する。

 $Q_{i} = n \cdot C_{i} \cdot W_{i}$ $C_{i} = Z \cdot R_{t} \cdot A_{i} \cdot C_{0}$

ここで,

- Q_i : 第 i 層に生じる水平地震力
- n :施設の重要度分類に応じた係数(1.0)
- C_i:第i層の地震層せん断力係数
- W_i : 第 i 層が支える重量
- Z : 地震地域係数 (1.0)
- R_t : 振動特性係数 (0.8)
- A_i: : 第 i 層の地震層せん断力係数の高さ方向の分布係数
- C₀ :標準せん断力係数(0.2)

(2) 鉛直地震力

鉛直地震力は,鉛直震度 0.3 を基準とし,建物・構築物の振動特性,地盤の種類等を考慮して,次式によって算定する鉛直震度を用いて定める。

 $C_V = R_V \cdot 0.3$

ここで,

- C_v :鉛直震度
- R_v : 鉛直方向振動特性係数 (0.8)

3.4 解析条件

3.4.1 材料物性の不確かさ等

解析においては、「3.2 地震応答解析モデル」に示す物性値及び定数を基本ケ ースとし、材料物性の不確かさを考慮する。材料物性の不確かさを考慮した地震 応答解析は、排気筒応答への影響の大きい地震動に対して実施することとし、基 本ケースの地震応答解析の応答値のいずれかが最大となる地震動に対して実施す ることとする。

材料物性の不確かさのうち,地盤物性については,地盤調査結果の平均値を基 に設定した数値を基本ケースとし,地盤物性の不確かさ検討にあたっては,S波 速度及びP波速度に対して標準偏差に相当するばらつき(±1σ)を考慮する。

また,制震装置(粘性ダンパ)の減衰係数については,性能変動としての±30% に加えて,維持管理時に8台のうち1台を取り外す場合を想定して,上限値は標 準値の1.3倍,下限値は制震装置(粘性ダンパ)を7台としたうえで標準値の0.7 倍とする。

材料物性の不確かさを考慮する地震応答解析ケースを表 3-11 に,地盤物性の 不確かさを考慮した解析用地盤物性値を表 3-12 に示す。

			制震装		
検討ケース	コングリート	地盤物性	(粘性ダン	備考	
	间归生		減衰係数	台数	
ケース1	<u> 乳 乳 甘 滩 砕 </u>	· 一)注: +14 舟凸	插進店	0	基本
(工認モデル)		惊华地盛	惊毕他	8	ケース
ケース2	む計 其 淮 治 庄	標準地盤+σ		0	
(地盤物性+σ)		(+10%, +20%)	惊毕恒	0	
ケース3	<u> 乳 乳 甘 滩 改 由</u>	標準地盤-σ	拪 滩	0	
(地盤物性- σ)		(-10%, -20%)	惊毕恒	0	
ケース4	<u> 乳 乳 甘 滩 改 由</u>	抽 潍 hh 船	標準値	0	
(減衰係数上限)		惊华地盛	$\times 1.3$	0	
ケース5	<u> </u>	插 淮 hh 船	標準値	7	
(減衰係数下限)	以 司	际中地渔	imes0.7	1	

表 3-11 材料物性の不確かさを考慮する地盤応答解析ケース

屈来.	早	地盤の	地盤のS波速度 V s (m/s)				
眉笛		基本ケース	+ σ 相当	-σ相当			
丰屋①_1	S s	127	153	102			
衣眉①-1	S d	156	187	125			
岩盤②		900	1080	720			
岩盤(3	1600	1760	1440			
岩盤(4)	1950	2145	1755			
岩盤(5)	2000	2200	1800			
岩盤(6	2350	2585	2115			

表 3-12 地盤物性の不確かさを考慮した解析用地盤物性値 (a) S波速度

(b) P 波速度

層番	号	基本ケース					
		巫术 / / /					
志屋① 1	S s	422	506	338			
衣眉①-1	S d	516	620	413			
岩盤(2)	2100	2520	1680			
岩盤(3	3600	3960	3240			
岩盤④		4000	4400	3600			
岩盤(5	4050	4455	3645			
岩盤(6	4950	5445	4455			

- 4. 解析結果
- 4.1 動的解析

本資料においては、代表として、基準地震動 S s 及び弾性設計用地震動 S d の基本 ケースの地震応答解析結果を示す。

4.1.1 固有值解析結果

基本ケースの地震応答解析モデルの固有値解析結果(固有周期,固有振動数及 び刺激係数)を表 4-1 に示す。刺激関数図を図 4-1 に示す。

なお,刺激係数は,モードごとに固有ベクトルの最大値を1に規準化して得ら れる値を示す。

- 4.1.2 地震応答解析結果
 - (1) 基準地震動Ss
 基準地震動Ssによる最大応答値を図4-2~図4-8に示す。また、基準地震
 動Ssによる制震装置(粘性ダンパ)の最大応答値及び許容値を表4-2に示す。
 - (2) 弾性設計用地震動Sd
 弾性設計用地震動Sdによる最大応答値を図4-9~図4-15に示す。また,弾
 性設計用地震動Sdによる制震装置(粘性ダンパ)の最大応答値及び許容値を表 4-3に示す。

\/ \/	固有周期	固有振動数	固有振動数 刺激係数*			備老	
扒剱	(s)	(Hz)	X方向	Y方向	Z方向	1佣 石	
1	1.106	0.904	2.225	0.001	0.000	水平X方向1次	
2	1.106	0.904	-0.001	2.225	0.000	水平Y方向1次	
5	0.560	1.785	1.485	0.013	0.000	水平X方向2次	
6	0.560	1.785	-0.013	1.485	0.000	水平Y方向2次	
20	0.113	8.832	0.000	0.000	-1.504	鉛直方向1次(筒身部)	
21	0.110	9.090	0.000	0.000	-1.854	鉛直方向2次(鉄塔部)	

表 4-1 固有值解析結果

注記*:モードごとに固有ベクトルの最大値を1に規準化して得られる刺激係数を示す。

S2 補 VI-2-2-13 R0

図4-1(1) 刺激関数図

S2 補 VI-2-2-13 R0

鉛直方向2次(鉄塔部)

図 4-1(2) 刺激関数図

(単位:cm/s²)

		鉄塔部								
S s	— D	Ss-	-F1	Ss-	-F2	S s -	- N 1	Ss-	-N 2	县土佑
0°	45°	N S	ΕW	ΝS	ΕW	0°	45°	N S *	EW*	取八恒
15	45	886	1328	1043	1528	18	95	1120	1096	1895
12	93	715	1150	851	1248	16	70	989	966	1670
8	17	440	693	510	702	11	40	709	648	1140
8	56	435	690	538	734	9	86	670	603	986
7	94	411	707	515	727	10	09	693	615	1009
8	53	491	799	562	883	11	14	681	635	1114
8	84	600	808	632	1018	9	95	606	653	1018
9	22	605	828	680	1025	9	70	624	613	1025
9	34	631	773	708	977	8	93	625	602	977
10	43	770	957	767	888	7	31	650	733	1043
注:ハッ	チング	tss-	$D \sim S$ s	s - N 2	の最大応	客値の	うち最も	大きい値	直を表示	•

図 4-2(1) 最大応答加速度(基準地震動 S s,水平方向)

----- S s - D $(0^{\circ}, 45^{\circ})$ ----- S s - F 2 (EW)

--- S s - N 1 (0° , 45°)

(鉄塔部)

- S s - N 2 (N S)

- S s - N 2 (EW)

----- $S_s - F_1$ (EW)

---Ss-F2(NS)

EL (m)

113.5 109.4

99.9

89.2

76.8

62.2

45.0

34.5

23.9

8.5 L

1000

2000

3000 (cm/s²)

(単位:cm/s²)

	筒身部										
S	3 s -	– D	Ss-	-F1	Ss-	-F 2	Ss-	- N 1	Ss-	- N 2	最大値
0°	,	45°	N S	ΕW	N S	ΕW	0°	45°	N S *	E W *	取八直
	195	57	1164	1440	1586	1702	19	34	1557	1504	1957
	qc	90	477	736	596	673	q	65	682	838	999
	104	42	468	609	655	490	7	95	666	739	1042
	96	61	484	760	669	553	7	87	732	583	961
	87	72	439	710	548	744	9	98	683	613	998
	79	92	465	728	544	795	10	54	652	618	1054
	80	99	528	835	596	932	11	48	694	658	1148
			010					10			1110
	99	98	652	819	732	1065	10	91	699	680	1091
	97	73	663	861	715	1081	989		644	645	1081
	75	59	478	616	581	860	8	38	535	563	860
	1.05	20	760	0.5.2	769	804	7	<u> </u>	614	721	1020
注・	102 73 m	チング	11Ss -	$D \sim S$	$r_{00} = r_{00}$	094 の最大に	「	<u></u> うち最さ	<u>し44</u> 大きい((31) 値を表示	1029

注記*:排気筒は対称構造物であるため、Ss-N2のNS成分及びEW成分を入れ替えた 地震動による最大応答値の記載は省略する。

図 4-2(2) 最大応答加速度(基準地震動 S s,水平方向)

54

----- S s - F 2 (EW)

-----S s - F 1 (EW)

---Ss-F2(NS)

EL (m)

128.5

113.5 109.4

99.9

89.2

76.8

62.2

45.0

34.5

23.9

8.8

0

1000

S s - N 2 (N S)S s - N 2 (EW)

2000

 $3000 (cm/s^2)$

(筒身部)

1 1 1 1		\
(田石	7 ·	0 m)
(+ 1		

					鉄塔部					
S s	— D	Ss-	-F 1	Ss-	-F 2	Ss-	- N 1	Ss-	-N 2	是士値
0°	45°	N S	ΕW	ΝS	ΕW	0°	45°	N S *	E W *	取八삩
15.	34	4.19	9.09	8.07	6.52	16.69		12.02	13.07	16.69
14.	16	3.74	8.14	7.24	5.82	15.10		11.27	11.89	15.10
11.	47	2.82	6.00	5.41	4.32	11. 58		9.59	9.38	11.58
						11.58				
8.	88	2.10	4.11	3.87	3.08	8.34		7.97	7.07	8.88
5.	91	1.59	2.72	2.71	2.14	5.	5.54		4.57	5.91
3.	30	1.29	1.87	1.82	1.56	3.	59	3.51	2.74	3.59
1.	86	0.83	0.96	0.97	1.15	1.	89	1.64	1.33	1.89
1.	29	0.65	0.78	0.69	0.98	1.	36	0.99	0.83	1.36
0.	73	0.43	0.61	0.46	0.71	0.	85	0.45	0.43	0.85
0.	10	0.07	0.08	0.07	0.06	0.	09	0.06	0.07	0.10
注:ハ:	ッチング	はSs-	$-$ D \sim S	s – N 2	の最大局	心答値の	フち最も	っ大きい	値を表示	0

図 4-3(1) 最大応答変位(基準地震動 S s,水平方向)

-----S s - F 2 (EW)

--- S s - N 1 (0° , 45°)

(鉄塔部)

- S s - N 2 (N S)

- S s - N 2 (EW)

--- S s - F 1 (N S)

-----S s - F 1 (EW)

---Ss-F2(NS)

EL (m)

113.5 109.4

99.9

89.2

76.8

62.2

45.0

34.5

23.9

8.5

0

20

40

60 (cm)

(単位:cm)

					筒身部					
S s	— D	Ss-	-F1	Ss-	-F2	Ss-	- N 1	Ss-	-N 2	县土位
0°	45°	N S	ΕW	ΝS	ΕW	0°	45°	N S *	EW*	取八恒
34.	87	6.77	14.77	15.06	8.60	30.	84	25.50	30.51	34.87
23.	21	4.03	8.38	9.09	4.89	19.	50	17.99	19.74	23.21
20.	18	3.39	6.94	7.67	4.19	16.	72	16.07	16.97	20.18
14.	02	2.36	5.06	5.21	3.25	11.	54	11.91	11.39	14.02
8.	95	2.11	4.11	3.87	3.07	8.	34	8.05	7.11	8.95
F	4.9	1 77	2 05	2 00	2 50	G	0.2	E 90	1 1 2	6 02
5.	40	1.11	3.05	2.99	2.39	0.	0.5	5.20	4.40	0.03
3	30	1 34	1 95	1 87	1 63	3	68	3 59	9 7 7	3 68
5.	52	1.04	1. 55	1.07	1.05	J.	00	5.52	2.11	5.00
2.	14	0.92	1.12	1.07	1.32	2.	19	1.87	1.48	2.19
1.	35	0.67	0.81	0.72	1.03	1.	41	1.03	0.87	1.41
0.	57	0.32	0.42	0.34	0.49	0.61		0.40	0.36	0.61
0.	08	0.06	0.08	0.07	0.05	0.04		0.05	0.06	0.08
注:ハッ	ッチング	tss-	$D \sim S$	s - N 2	の最大応	ち答値の	うち最も	大きい	直を表示	-

注記*:排気筒は対称構造物であるため, Ss-N2のNS成分及びEW成分を入れ替えた 地震動による最大応答値の記載は省略する。

図 4-3(2) 最大応答変位(基準地震動 S s,水平方向)

(単位:×10²kN)

	鉄塔部									
S s	— D	Ss-	-F1	Ss-	-F2	S s -	- N 1	Ss-	-N2	县土庙
0°	45°	N S	ΕW	N S	ΕW	0°	45°	N S *	E W *	取八胆
3.	58	1.68	2.89	2.40	2.74	4.	15	2.86	2.93	4.15
4.	58	2.36	3.80	3.11	3.28	5.	37	3.53	3.57	5.37
5.	42	2.67	4.50	3.69	3.79	6.	58	3.87	4.21	6.58
9.	21	2.91	4.07	4.58	2.75	7.	86	8.28	7.66	9.21
10	9	2 10	4 43	4 74	2 1 9	0	1.00		8 10	10.2
10.	2	5.12	4.40	4.74	5.12	0.	<u> </u>	9.04	0.19	10.2
12.	2	5.46	8.09	7.50	7.10	13.	3	12.3	9.54	13.3
15.	0	6.61	9.17	8.51	8.91	16.	1	14.4	11.4	16.1
21.	3	9.98	11.5	11.2	14.8	21.	8	17.7	14.8	21.8
25.	8	13.0	14.5	13.8	19.4	26.	4	20.1	17.7	26.4

図 4-4(1) 最大応答せん断力(基準地震動 S s)

(単位:×10²kN)

筒身部										
Ss-	– D	S s -	-F1	Ss-	-F2	Ss-	- N 1	Ss-	-N2	县土佑
0°	45°	N S	ΕW	N S	ΕW	0°	45°	N S *	E W *	取八恒
1.8	36	1.11	1.37	1.51	1.62	1.	84	1.48	1.43	1.86
2.4	15	0.766	1.44	1.37	1.14	2.	41	1.67	2.20	2.45
2.4	15	0.766	1.44	1.37	1.14	2.	41	1.67	2.20	2.45
2.4	15	0.766	1.44	1.37	1.14	2.	41	1.67	2.20	2.45
3.1	10	0.934	2.19	1.73	1.65	2.	94	2.51	2.66	3.10
		0.004	0 10	1 50	1 05	0	.	0.51	0.00	0.10
3.1	10	0.934	2.19	1.73	1.65	2.	94	2.51	2.66	3.10
0.7	731	0.443	0.698	0.489	0.567	0.	457	0.579	0.491	0.731
0.7	731	0.443	0.698	0.489	0.567	0.	457	0.579	0.491	0.731
0.9	901	0.624	0.922	0.763	1.10	1.	03	0.609	0.628	1.10
0.9	901	0.624	0.922	0.763	1.10	1. 2. 应 <i>估 </i> の	03	0.609	0.628	1.10

図 4-4(2) 最大応答せん断力(基準地震動 S s)

(単位:×10³kN・m)

Γ						鉄塔部					
	S s	— D	Ss-	-F1	S s -	-F2	Ss-	- N 1	S s -	-N 2	是士庙
	0°	45°	N S	ΕW	N S	ΕW	0°	45°	N S *	E W *	取八恒
L	0.	000	0.000	0.000	0.000	0.000	0.	000	0.000	0.000	—
	1.	48	0.696	1.20	0.994	1.13	1.	72	1.18	1.21	1.72
	5.	80	2.91	4.75	3.92	4.21	6.	77	4.50	4.60	6.77
	11.	6	5.72	9.47	7.81	8.21	13.	7	8.57	9.09	13.7
	20.	4	8.26	14.2	12.8	11.4	23.	4	16.7	17.3	23.4
	33.	5	11.2	19.4	18.2	14.0	35.	3	28.8	28.3	35.3
	51.	3	14.1	25.4	24.2	19.1	51.	5	45.5	41.8	51.5
	64.	4	18.3	29.4	30.3	23.8	62.	1	59.3	50.8	64.4
	80.	4	24.7	36.2	38.8	29.2	75.	5	76.7	61.3	80.4
	107		40.9	49.6	54.7	47.1	105		106	85.7	107
Ϋ́	E:ハッ	,チング	はSs-	$D \sim S$ s	s - N 2	の最大応	「答値の	うち最も	大きい値	直を表示	0

図 4-5(1) 最大応答曲げモーメント(基準地震動 S s)

(単位:×10³kN・m)

					筒身部					
S s	— D	S s -	-F1	Ss-	-F2	Ss-	- N 1	S s -	-N 2	县土庙
0°	45°	N S	ΕW	N S	ΕW	0°	45°	N S *	E W *	取八恒
0.	000	0.000	0.000	0.000	0.000	0.	000	0.000	0.000	
2.	80	1.66	2.06	2.26	2.43	2.	76	2.22	2.15	2.80
3.	54	1.60	2.48	2.34	2.54	3.	24	2.83	2.72	3.54
5.	29	1.57	3.52	2.65	2.83	4.	94	4.30	4.61	5.29
7.	65	1.92	4.77	4.10	3.47	7.	45	5.96	6.95	7.65
4.	03	0.960	2.39	2.13	1.70	3.	93	3.19	3.73	4.03
1.	78	0.989	1.51	1.24	1.30	1.	82	1.42	1.18	1.82
1.	06	0.599	0.860	0.854	1.04	1.	18	0.945	0.900	1.18
1.	21	0.735	1.09	1.06	1.07	1.	01	1.05	0.878	1.21
0.	741	0.321	0.460	0.440	0.446	0.	781	0.771	0.577	0.781
1.	73	1.05	1.41	1.18	1.80	1.	95	1.25	1.12	1.95
0.	741 73	0.321	0.460	0.440 1.18	0.446 1.80	0. 1.	95	0.771	0.577 1.12	0.781

図 4-5(2) 最大応答曲げモーメント(基準地震動 S s)

注:ハッチングはSs-D~Ss-N2の最大応答値のうち最も大きい値を表示。

(単位:cm/s²)

			鉄塔部	5			
S s	— D	8 - E 1	S - E 9	S s -	- N 1	S - NO	县土体
0°*	45°*	SS - FI	5 s - F 2	0°*	45°*	5 s = N 2	取八胆
1330	1348	1143	1064	1164	1194	1213	1348
1318	1338	1149	1057	1153	1184	1207	1338
1227	1244	1099	1001	1058	1085	1124	1244
1084	1089	964	935	904	913	1001	1089
981	992	845	856	796	809	879	992
900	908	781	756	711	736	810	908
836	864	699	702	602	639	761	864
782	818	617	648	524	558	714	818
755	794	597	642	492	531	714	794
648	668	526	613	379	392	672	672

注:ハッチングはSs-D~Ss-N2の最大応答値のうち最も大きい値を表示。

注記*:0°方向又は45°方向と鉛直方向の同時入力による鉛直成分の応答を示す。

図 4-6(1) 最大応答加速度(基準地震動 S s, 鉛直方向)

())/ /1.		/ 9)
	•	om/c^{4}
(手皿		011/5/

		筒身部	5		
$\begin{array}{c c} S & s - D \\ \hline 0^{\circ *} & 45^{\circ *} \end{array}$	S s - F 1	S s - F 2	S s - 1 0°*	$\frac{N 1}{45^{\circ *}} S s - N 2$	最大值
1429	1070	899	1234	1160	1429
1403	1045	878	1207	1130	1403
1380	1023	859	1184	1104	1380
1325	968	815	1126	5 1040	1325
1265	908	766	1063	3 970	1265
1141	815	702	934	837	1141
996	741	647	784	690	996
766	608	565	553	3 548	766
694	532	532	464	539	694
640	437	496	386	5 534	640
632	401	534	353	575	632

注:ハッチングはSs-D~Ss-N2の最大応答値のうち最も大きい値を表示。

注記*:0°方向又は45°方向と鉛直方向の同時入力による鉛直成分の応答を示す。

図 4-6(2) 最大応答加速度(基準地震動 S s, 鉛直方向)

(単位:cm)

			鉄塔部	5			
S s	— D	$S_{c} = F_{1}$	$S_{c} = F^{2}$	Ss-	- N 1	$S_{c} = N_{c}^{2}$	是士値
0°*	45°*	55 11	55 12	0°*	45°*	55 N 2	取八胆
1.12	1.47	1.04	1.17	1.11	1.56	1.35	1.56
1.17	1.55	1.09	1.22	1.17	1.65	1.43	1.65
1 00	1 60		1.00	1 05	1 70	1 51	1 70
1.23	1.63	1.11	1.26	1.25	1.76	1.51	1.76
1 19	1 58	1 00	1 16	1 17	1 65	1 47	1 65
1.15	1.00	1.00	1.10	1.1/	1.05	1. 11	1.00
1.10	1.48	0.83	1.01	1.02	1.43	1.45	1.48
0.89	1.20	0.65	0.80	0.82	1.13	1.21	1.21
0.62	0.83	0.46	0.56	0.59	0.82	0.87	0.87
0.42	0.56	0.32	0.38	0.41	0.56	0.60	0.60
0.31	0.41	0.23	0.28	0.29	0.40	0.43	0.43
0.02	0.03	0.02	0.02	0.02	0.03	0.03	0.03

注:ハッチングはSs-D~Ss-N2の最大応答値のうち最も大きい値を表示。

注記*:0°方向又は45°方向と鉛直方向の同時入力による鉛直成分の応答を示す。

図 4-7(1) 最大応答変位(基準地震動 S s, 鉛直方向)

(単位 : cm)

		筒身部			
$\begin{array}{c c} S & s & -D \\ \hline 0^{\circ *} & 45^{\circ *} \end{array}$	S s - F 1	S s - F 2	$\begin{array}{c c} S & s & -N & 1 \\ \hline 0^{\circ *} & 45^{\circ *} \end{array}$	Ss-N2	最大値
0.47	0.33	0.28	0.38	0.34	0.47
0.46	0.32	0.27	0.37	0.34	0.46
0.45	0.32	0.27	0.37	0.33	0.45
0.43	0.30	0.26	0.35	0.31	0.43
0.41	0.29	0.24	0.33	0.30	0.41
0.36	0.26	0.22	0.29	0.26	0.36
0.30	0.22	0.18	0.24	0.22	0.30
0.21	0.16	0.13	0.17	0.15	0.21
0.16	0.12	0.10	0.12	0.11	0.16
0.09	0.07	0.06	0.07	0.06	0.09
0.02	0.01	0.01	0.01	0.02	0.02

注:ハッチングはSs-D~Ss-N2の最大応答値のうち最も大きい値を表示。

注記*:0°方向又は45°方向と鉛直方向の同時入力による鉛直成分の応答を示す。

図 4-7(2) 最大応答変位(基準地震動 S s, 鉛直方向)

			鉄塔部	5			
S s	— D	8 - E 1	S - E 9	Ss-	- N 1	S - N 9	县土体
0°	45°	5 s - F 1	5 s - F 2	0°	45°	5 s - N 2	取 八 ॥
0.721	1.02	0.721	0.831	0.830	1.17	0.955	1.17
2.43	3.42	2.45	2.72	2.80	3.96	3.06	3.96
3.50	4.93	3.54	3.88	4.11	5.81	4.51	5.81
5.01	6.98	4.26	5.00	5.55	7.84	7.02	7.84
	10.5		2.00	5.05			
1.12	10.7	5.41	6.60	1.67	10.8	11.3	11.3
11.2	15.5	7.48	8.92	10.8	15.2	16.4	16.4
11.5	15.8	8.02	9.45	11.0	15.4	16.6	16.6
17.3	23.6	11.1	12.0	16.8	22.8	25.2	25.2
17.8	24.0	11.5	12.7	17.2	23.0	25.3	25.3

(単位:×10²kN)

注:ハッチングはSs-D~Ss-N2の最大応答値のうち最も大きい値を表示。

図 4-8(1) 最大応答軸力(基準地震動 S s)

65

S2 補 VI-2-2-13 R0

— S s – N 2

(単位 : ×10²kN)

筒身部											
$\begin{array}{c c} S & s & -D \\ \hline 0^{\circ} & 45^{\circ} \end{array}$	S s - F 1	S s - F 2	$\begin{array}{c c} S & s & -N & 1 \\ \hline 0^{\circ} & 45^{\circ} \end{array}$	S s - N 2	最大値						
1.34	1.00	0.840	1.16	1.08	1.34						
4.54	3.37	2.84	3.90	3.64	4.54						
4.54	3.37	2.84	3.90	3.64	4.54						
4.54	3.37	2.84	3.90	3.64	4.54						
8.23	5.99	5.07	6.99	6.45	8.23						
0.02	5.00	5.07	6.00	6 45	0.00						
0.23	0.99	5.07	0.99	0.40	0.20						
11.5	8.04	6.93	9.53	8.67	11.5						
11.5	8.04	6.93	9.53	8.67	11.5						
13.4	9.63	8.32	10.8	9.78	13.4						
13.4	9.63	8.32	10.8	9.78	13.4						

注:ハッチングはSs-D~Ss-N2の最大応答値のうち最も大きい値を表示。

図 4-8(2) 最大応答軸力(基準地震動 S s)

			达答值							
	Ss-D				S s - N 1		C NO	許容値		
	0°	45°	Ss - FI	5 s - F 2	0°	45°	5 s - N 2			
速度(m/s)	0.91	0.84	0.78	0.77	1.04	0.96	0.98	2.00		
変位 (mm)	115	106	73	70	112	104	115	300		

表 4-2 制震装置(粘性ダンパ)の最大応答値及び許容値(基準地震動 S s)

(単位:cm/s²)

89

最大応答値の記載は省略する。

図 4-9(1) 最大応答加速度(弹性設計用地震動 S d,水平方向)

最大応答値の記載は省略する。

図 4-9(2) 最大応答加速度(弾性設計用地震動 S d, 水平方向)

(単位	:	cm)	

	Sd-N1 (0°,45°)	鉄塔部												
——————————————————————————————————————	——————————————————————————————————————	S d - D		S d - F 1		S d - F 2		S d - N 1		S d - N 2		S d - 1		目上は
S d - F 1 (EW)	——————————————————————————————————————	0°	45°	N S	ΕW	N S	ΕW	0°	45°	N S *	E W *	0°	45°	
─────────────────────────────────────									I					
$S d - F 2 (EW)$														
EL (m)	(鉄塔部)	7.66		2.06	4.54	4.05	3.24	8.31		6.06	6.49	6.77		8.31
		7.07		1.85	4.06	3.63	2.90	7.52		5.67	5.92	6.15		7.52
99.9		5.	72	1.41	3.00	2.71	2.16	5.	5.76		4.69	4.83		5.76
89. 2		4.	42	1.04	2.11	1.96	1.55	4.14		4.00	3.55	3.67		4.42
		2	90	0.73	1 48	1 40	1 09	2	73	2 85	2 29	2	49	2 90
76.8		2.		0.10	1. 10	1. 10	1.00	2.	10	2.00	2.23	2.	10	2.00
62.2		1.	65	0.56	1.04	0.94	0.76	1.	78	1.78	1.40	1.	62	1.78
45.0		0.	91	0.35	0.52	0.49	0.57	0.	95	0.83	0.68	0.	86	0.95
34.5		0.	63	0.27	0.35	0.35	0.49	0.	68	0.51	0.45	0.	57	0.68
23.9		0.	36	0.19	0.26	0.23	0.36	0.	42	0.24	0.25	0.	38	0.42
8.5		0.	05	0.04	0.05	0.04	0.03	<u>0.</u>	05	0.03	0.04	0.	05	0.05
0 20	40 60	在:ハッ	,ナング	はSdー	$D \sim S d$	a — 1 の		学値のう	ら最も大	、さい値	と衣示。			
	(cm) 注記 * : 排気筒は対称構造物であるため, Sd-N2のNS成分及びEW成分を入れ替えた地震動による											替えたり	よる	

最大応答値の記載は省略する。

図 4-10(1) 最大応答変位(弾性設計用地震動 Sd,水平方向)

図4-10(2) 最大応答変位(弾性設計用地震動Sd,水平方向)

71

								(単位	: $\times 10^2 kN$
					鉄塔部				
S d - D	S d -	-F 1	S d -	-F2	S d - N 1	S d -	-N 2	S d - 1	是十位
0° 45°	N S	ΕW	N S	ΕW	0° 45°	N S *	E W *	0° 45°	取八直
1.78	0.759	1.53	1.24	1.39	2.06	1.42	1.49	2.07	2.07
2.26	1.04	2.00	1.62	1.66	2.68	1.74	1.80	2.69	2.69
2.68	1.18	2.34	1.91	1.90	3.28	1.91	2.12	3.05	3.28
4.56	1.30	2.27	2.23	1.40	3.88	4.18	3.80	4.27	4.56
5.05	1.38	2.38	2.30	1.52	4.07	4.82	4.03	4.59	5.05
6.08	2.35	4.10	3.63	3.59	6.59	6.27	5.08	6.34	6.59
7.33	2.88	4.81	4.15	4.48	8.03	7.29	5.88	7.50	8.03
10.5	4.35	5.98	5.71	7.38	10.9	9.03	7.64	10.0	10.9
12.9	5.68	7.12	7.04	9.68	13.1	10.2	9.07	11.8	13.1

--- S d - D (0°, 45°) --- S d - N 1 (0°, 45°)

_____S d − N 2 (E W)

--- S d -1 (0° , 45°)

(鉄塔部)

—— S d – F 1 (N S)

----- S d - F 1 (EW)

----- S d - F 2 (EW)

EL (m)

113.5 109.4

99.9

89.2

72

注:ハッチングはSd-D~Sd-1の最大応答値のうち最も大きい値を表示。

注記*:排気筒は対称構造物であるため、Sd-N2のNS成分及びEW成分を入れ替えた地震動による 最大応答値の記載は省略する。

図4-11(1) 最大応答せん断力(弾性設計用地震動Sd)

図4-11(2) 最大応答せん断力(弾性設計用地震動Sd)

(単位:×10³kN・m)

図 4-12(1) 最大応答曲げモーメント(弾性設計用地震動 S d)

74

-----S d - D (0°, 45°) -----S d - N 1 (0°, 45°)

(単位:×10³kN・m)

図 4-12(2) 最大応答曲げモーメント(弾性設計用地震動 S d)

(単位:cm/s²)

図 4-13(1) 最大応答加速度(弾性設計用地震動 S d, 鉛直方向)

(単位:cm/s²)

4 – F 1	S. 4 N. 2				筒身部			
u – r i	3 u = N 2	S d - D			S d - N 1		S d - 1	目上は
d-F 2	S d - 1 $(0^{\circ}, 45^{\circ})$	0°* 45	°* Sα−FI	S d - F 2	0°* 45°*	5 d - N 2	0°* 45°*	取 八 ॥
)	(筒身部)	714	544	448	633	599	710	714
		701	531	438	619	583	697	701
		690	519	429	606	569	685	690
		662	491	408	575	536	656	662
		631	460	385	540	499	625	631
		568	405	351	471	429	559	568
		494	369	323	390	356	484	494
		370	205	270	971	200	279	270
		519	303	219	271	290	310	519
		355	268	260	234	286	316	355
		328	222	241	194	282	267	328
				0.55		0.05		
		323	219 219	<u>257</u> オー1の長士広	<u>194</u> ダ 値 の ふ ナ 具 ナ →	<u>305</u> - きい値をま三	262	323
	1 - F 1 1 - F 2	d-F1 Sd-N2 d-F2 Sd-1 (0°, 45°) (筒身部)	$d - F 1$ $-S d - N 2$ $d - F 2$ $S d - 1 (0^{\circ}, 45^{\circ})$ (筒身部) 714 701 690 662 631 568 494 379 355 328 328	d - F 1	$d - F 1$ $- S d - N 2$ $d - F 2$ $- S d - 1 (0^{\circ}, 45^{\circ})$ (簡身部) 714 701 531 690 519 662 491 460 385 631 460 494 369 379 305 279 355 268 266 260 328 222 241 323 219 257	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 (cm/s^2) 注記*:0°方向又は45°方向と鉛直方向の同時入力による鉛直成分の応答を示す。

図 4-13(2) 最大応答加速度(弾性設計用地震動 S d, 鉛直方向)

(単位 : cm)

図 4-14(1) 最大応答変位(弾性設計用地震動 S d, 鉛直方向)

78

(単位:cm)

— S d – F 1	—— S d – N 2	筒身部								
— S d – F 2	$ S d - 1 (0^{\circ}, 45^{\circ})$	S d - D	Sd — F1	S d - F 2	S d - N 1	S d - N 2	S d - 1	最大値		
EL (m)	(筒身部)	0.23	0.16	0.14	0.19	0.18	0.23	0.23		
128.5										
112 5		0.23	0.16	0.14	0.19	0.17	0.22	0.23		
109.4		0.23	0.16	0.14	0.19	0.17	0.22	0.23		
99.9		0.21	0.15	0.13	0.18	0.16	0.21	0.21		
		0.20	0.14	0.12	0.17	0 15	0.20	0.20		
89. 2		0.20	0.14	0.12	0.17	0.15	0.20	0.20		
76.8		0.18	0.13	0.11	0.15	0.13	0.18	0.18		
62. 2		0.15	0.11	0.09	0.12	0.11	0.15	0.15		
45.0		0.11	0.08	0.07	0.09	0.08	0.10	0.11		
10.0		0.08	0.06	0.05	0.06	0.05	0.08	0.08		
34.5		0.08	0.00	0.05	0.00	0.05	0.08	0.08		
23.9		0.05	0.03	0.03	0.04	0.03	0.05	0.05		
8.8		0.01 注・ハッチング	0.01	<u>0.01</u> d = 1 の最大応約	<u>0.01</u> 文値のうち最もま	0.01 きい値を表示	0.01	0.01		
0	1 2 3 (cm) 注話	L*:0°方向又は	、 よ 45° 方向と鉛直	1. シャスパルイ 1. 方向の同時入力	による鉛直成分	の応答を示す。				

図 4-14(2) 最大応答変位(弾性設計用地震動 Sd, 鉛直方向)

								(単位	: $\times 10^2$ kN	
鉄塔部										
S d	— D	S d = E 1	S J — E 9	S d -	- N 1	S 4 - N 9	S d	- 1		
0°	45°	5 d - F 1	5 d - F 2	0°	45°	5 a - N 2	0°	45°	取八॥	
0.357	0.503	0.377	0.418	0.411	0.580	0.483	0.426	0.599	0.599	
1.20	1.69	1.29	1.38	1.40	1.97	1.55	1.44	2.02	2.02	
1.72	2.43	1.87	1.96	2.05	2.90	2.29	2.11	2.97	2.97	
2.54	3.54	2.22	2.53	2.76	3.90	3.51	2.70	3.80	3.90	
3.89	5.42	2.79	3.32	3.81	5.38	5.64	3.81	5.32	5.64	
5.66	7.82	3.79	4.50	5.37	7.52	8.21	5.00	6.93	8.21	
5.85	8.00	4.07	4.77	5.48	7.64	8.31	5.24	7.17	8.31	
8.58	11.7	5.78	6.09	8.41	11.4	12.6	7.14	9.89	12.6	
8.85	11.9	5.98	6.45	8.57	11.5	12.7	7.41	10.2	12.7	

図 4-15(1) 最大応答軸力(弾性設計用地震動 S d)

S d - F 1	— S d – N 2
	— 3 u – N Z

(単位:×10²kN)

		筒身部								
- S d - F 2		S d - D			S d - N 1		S d - 1	目上は		
(m)	(筒身部)	0° 45°	5 d - F 1	5 d - F 2	0° 45°	5 d - N 2	0° 45°	〒		
		0.671	0.508	0.418	0.592	0.558	0.665	0.671		
		2.27	1.71	1.41	2.00	1.88	2.25	2.27		
		2 27	1 71	1 41	2 00	1.88	2 25	2 27		
		2.21	1.11	1. 11	2.00	1.00	2.20	2.21		
		2.27	1.71	1.41	2.00	1.88	2.25	2.27		
		4.11	3.04	2.53	3.57	3.33	4.07	4.11		
		4 11	2.04	0 50	0 57	0.00	4.07	4 11		
		4.11	3.04	2.00	5.57	3.33	4.07	4.11		
		5 72	4 07	3 48	4 83	4 45	5 63	5 72		
		0.12	1. 01	0.10	1.00		0.00	0.12		
 _		5.72	4.07	3.48	4.83	4.45	5.63	5.72		
		6.67	4.80	4.17	5.41	4.98	6.47	6.67		
		6 67	4 80	4 17	5 41	4.00	6 47	6 67		
	!	0.07	4.80	4.17	5.41	4.98	0.47	0.07		

注:ハッチングはSd-D~Sd-1の最大応答値のうち最も大きい値を表示。

図 4-15(2) 最大応答軸力(弾性設計用地震動 S d)

81

EL (m) 128.5

113.5 109.4

99.9

89.2

76.8

62.2

45.0

34.5

23.9

 $(\times 10^2 \text{kN})$

										5 u /	
		制震装置(粘性ダンパ)の最大応答値									
	Sd-D		S 4 – E 1		S d - N 1		S 4 - N 9	S d - 1		許容値	
	0°	45°	Sd-F1	5 d - F 2	0°	45°	5 d - N 2	0°	45°		
速度(m/s)	0.45	0.41	0.40	0.39	0.52	0.48	0.49	0.53	0.49	2.00	
変位 (mm)	58	53	37	36	56	51	58	56	52	300	

表 4-3 制震装置(粘性ダンパ)の最大応答値及び許容値(弾性設計用地震動 Sd)

4.2 静的解析

「3.3 解析方法」による解析方法で算定した地震層せん断力係数 1.0・C_i及び静的地震力(水平地震力)を表 4-4 及び図 4-16 に示す。

表 4-4 地震層せん断力係数(1.0・C_i)及び水平地震力

(a) 鉄塔

EL	第i層が支える重量	地震層せん断力係数	水平地震力
(m)	W _i (kN)	1.0 • C i	Q_i (kN)
113.5~109.4	107	0.867	92.77
109.4~99.9	220	0.791	174.02
99.9~89.2	367	0.625	229.38
89.2~76.8	613	0.445	272.79
76.8~62.2	929	0.342	317.72
62. 2 \sim 45. 0	1457	0.277	403.59
$45.0\sim 34.5$	1982	0.236	467.75
34.5~23.9	2593	0.210	544.53
23.9~8.5	3263	0.188	613.44
8.5~3.5	3860	0.160	617.60

(b) 筒身

EL	第 i 層が支える重量	地震層せん断力係数	水平地震力					
(m)	W _i (kN)	1.0 • C i	Q_{i} (kN)					
128.5 \sim 113.5	94	0.843	79.24					
113.5~89.2	321	0.534	171.41					
89.2~62.2	612	0.328	200.74					
62. 2 \sim 34. 5	935	0.243	227.21					
34.5~8.8	1241	0.196	243.24					
8.8~3.5	1524	0.160	243.84					

