| 島根原子力発電所第2号機 審査資料 |                   |  |  |  |
|-------------------|-------------------|--|--|--|
| 資料番号              | NS2-添 3-013-01改05 |  |  |  |
| 提出年月日             | 2023 年 2 月 17 日   |  |  |  |

VI-3-別添 1-1 竜巻への配慮が必要な施設の強度計算の方針

2023年2月

中国電力株式会社

# 目 次

| 1.   | 概要     |                                                | 1   |
|------|--------|------------------------------------------------|-----|
| 2.   | 強度     | 評価の基本方針                                        | 1   |
| 2. 1 | I<br>評 | 価対象施設                                          | 1   |
| 2. 2 | 2 評    | 価方針                                            | 2   |
| 2.   | 2. 1   | 評価の分類                                          | 2   |
| 3.   | 強度     | 設計                                             | 6   |
| 3. 1 | 構      | 造強度の設計方針                                       | 6   |
| 3. 2 | 2 機    | 能維持の方針                                         | 11  |
| 4.   | 荷重     | 及び荷重の組合せ並びに許容限界                                | 61  |
| 4. 1 | 荷      | 重及び荷重の組合せ                                      | 61  |
| 4. 2 | 2 許    | 容限界                                            | 73  |
| 4.   | 2.1    | 建物・構造物                                         | 73  |
| 4.   | 2.2    | 機器・配管系                                         | 78  |
| 5.   | 強度     | 評価方法                                           | 95  |
| 5. ] | 建      | 物・構造物に関する評価式                                   | 96  |
| 5.   | 1.1    | 鉄筋コンクリート造構造物                                   | 96  |
| 5.   | 1.2    | 排気筒                                            | .01 |
| 5.   | 1.3    | 鋼製構造物                                          | .02 |
| 5. 2 | 2 機    | 器・配管系に関する評価式                                   | .05 |
| 5.   | 2. 1   | 衝突評価が必要な機器1                                    | 05  |
| 5.   | 2.2    | 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ1                   | .06 |
| 5.   | 2.3    | 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ <mark>1</mark> | 21  |
| 5.   | 2.4    | 原子炉補機海水系配管及び弁、高圧炉心スプレイ補機海水系配管及び弁、非常用ディー        | -4  |
|      | ,      | ル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発電設備(燃料        | 斗利  |
|      |        | 送系)配管及び弁並びに非常用ガス処理系配管及び弁                       | 24  |
| 5.   |        | 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ラ         |     |
|      | ,      | ーゼル発電設備ディーゼル燃料移送ポンプ                            | 29  |
| 5.   | 2.6    | ダンパ                                            | .31 |
| 5.   | 2.7    | 角ダクト ····································      | .36 |
| 5.   | 2.8    | 丸ダクト ····································      | 40  |
| 5.   | 2.9    | 隔離弁 ····································       |     |
| 5.   | 2. 10  |                                                |     |
| 5.   | 2. 11  | 処理装置 ····································      | 51  |
| 5.   | 2 12   | 排気消音器 ····································     | 53  |

|    | 5.2.13 排象 | 気管及びべ | ント管 | <br>158 |
|----|-----------|-------|-----|---------|
| 6. | 適用規格・     | 基準等   |     | <br>    |

# 1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第7条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に適合し、技術基準規則第54条及びその解釈に規定される「重大事故等対処設備」を踏まえた重大事故等対処設備に配慮する設計とするため、VI-1-1-3 「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちVI-1-1-3-3-3「竜巻防護に関する施設の設計方針」に基づき、竜巻の影響を考慮する施設が、竜巻に対して要求される強度を有することを確認するための強度評価方針について説明するものである。

強度評価は、VI-1-1-3-3-1「竜巻への配慮に関する基本方針」に示す適用規格・基準等を用いて実施する。

竜巻防護対策設備の設計方針については、VI-3-別添 1-2「竜巻防護対策設備の強度計算の方針」に示し、具体的な計算の方法及び結果は、VI-3-別添 1-3「竜巻防護ネットの強度計算書」、VI-3-別添 1-4「竜巻防護鋼板の強度計算書」及びVI-3-別添 1-5「架構の強度計算書」に示す。

その他の竜巻の影響を考慮する施設の具体的な計算の方法及び結果は、VI-3-別添 1-6「竜巻より防護すべき施設を内包する施設の強度計算書」からVI-3-別添 1-13「波及的影響を及ぼす可能性がある施設の強度計算書」に示す。

なお、屋外の重大事故等対処設備に、飛散して外部事象防護対象施設や同じ機能を有する他の 重大事故等対処設備に影響を与えるものはない。

# 2. 強度評価の基本方針

強度評価は、「2.1 評価対象施設」に示す施設を対象として、「4.1 荷重及び荷重の組合 せ」に示す設計竜巻荷重及びそれと組み合わせる荷重を適切に組み合わせた荷重により生じる応 力等が「4.2 許容限界」で示す許容限界内にあることを、「5. 強度評価方法」に示す方法を 使用し、「6. 適用規格・基準等」に示す規格を用いて確認する。

# 2.1 評価対象施設

VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」にて構造強度上の性能目標を設定している竜巻の影響を考慮する施設を強度評価の対象とする。強度評価を行うにあたり、評価対象施設を以下のとおり分類することとし、表 2-1 に示す。

# (1) 竜巻より防護すべき施設を内包する施設(建物等)

設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある屋外の外部事象防護対象施設のうち、屋内の竜巻より防護すべき施設を防護する外殻となる、竜巻より防護すべき施設を内包する施設(建物等)とする。

# (2) 屋外の外部事象防護対象施設 (建物等を除く)

設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある屋外の 外部事象防護対象施設(建物等を除く)とする。

# (3) 外気と繋がっている屋内の外部事象防護対象施設

設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある,外気と繋がっている屋内の外部事象防護対象施設とする。

(4) 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設

設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある、外部 事象防護対象施設に波及的影響を及ぼす可能性がある施設とする。

# 2.2 評価方針

竜巻の影響を考慮する施設は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」にて設定している構造強度設計上の性能目標を達成するため、「2.1 評価対象施設」で分類した施設ごとに、竜巻に対する強度評価を実施する。

強度評価の評価方針は、それぞれ「衝突評価」の方針、「構造強度評価」の方針及び「動 的機能維持評価」の方針に分類でき、評価対象施設はこれらの評価を実施する。

外部事象防護対象施設及び外部事象防護対象施設に波及的影響を及ぼす可能性がある施設の強度評価は、防護措置として設置する竜巻防護対策設備、竜巻より防護すべき施設を内包する施設の強度評価を踏まえたものであるため、最初に竜巻防護対策設備、竜巻より防護すべき施設を内包する施設について示し、次に外部事象防護対象施設及び外部事象防護対象施設に波及的影響を及ぼす可能性がある施設について示す。

#### 2.2.1 評価の分類

# (1) 衝突評価

衝突評価は、竜巻による設計飛来物による衝撃荷重に対する直接的な影響の評価として、評価対象施設に、貫通、貫入、ひずみが生じた場合においても、当該施設の機能を維持可能な変形に留めることを確認する評価とする。

評価対象施設の構造及び当該施設の機能を考慮し、設計飛来物の衝突により想定される損傷モードを以下のとおり分類し、それぞれの評価方針を設定する。なお、建物・構造物は、設計飛来物の鋼製材の衝突に対し、内包する外部事象防護対象施設の防護の観点から、「貫通」及び「ひずみ」について、評価を実施する。機器・配管系は、竜巻より防護すべき施設を内包する施設又は竜巻防護対策設備により、設計飛来物の鋼製材の衝突から防護されるため、設計飛来物の砂利の衝突に対し、必要最小肉厚を下回らないか確認する観点から、「貫入」について、評価を実施する。

- a. 建物·構造物
  - (a) 貫通
  - (b) ひずみ
- b. 機器·配管系
  - (a) 貫入

#### (2) 構造強度評価

構造強度評価は、竜巻の風圧力による荷重、気圧差による荷重及び設計飛来物による 衝撃荷重により生じる応力等に対し、評価対象施設及びその支持構造物が、当該施設の 機能を維持可能な構造強度を有することを確認する評価とする。構造強度評価は、構造 強度により閉止性及び開閉機能を確保することの評価を含む。

構造強度評価は、評価対象施設の構造を考慮し、以下の分類ごとに評価方針を設定する。

#### a. 建物·構造物

建物・構造物の強度評価のうち、鉄筋コンクリート造構造物と鋼製構造物は、その構造を踏まえた評価項目を抽出する。

- (a) 鉄筋コンクリート造構造物
  - イ. 裏面剥離
  - 口. 転倒及び脱落
  - ハ. 変形
- (b) 鋼製構造物
  - イ. 転倒及び脱落
  - 口. 変形
- (c) 排気筒
  - イ. 変形角

#### b. 機器·配管系

- (a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ
- (b) 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ
- (c) 非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ 系ディーゼル発電設備ディーゼル燃料移送ポンプ
- (d) 原子炉補機海水系配管及び弁、高圧炉心スプレイ補機海水系配管及び弁、非常用 ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディー ゼル発電設備(燃料移送系)配管及び弁
- (e) ダンパ (換気空調設備)

- (f) 角ダクト(換気空調設備)及び丸ダクト(換気空調設備)
- (g) 隔離弁(換気空調設備)
- (h) 送風機(換気空調設備)
- (i) 処理装置(換気空調設備)
- (j) 非常用ガス処理系配管及び弁
- (k) 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系 ディーゼル発電設備ディーゼル機関の付属施設)
- (1) 排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク並びに潤滑油サンプタンクの付属施設)

# (3) 動的機能維持評価

動的機能維持評価は、設計竜巻荷重及びそれと組み合わせる荷重に対し、竜巻時及び 竜巻通過後において、評価対象施設のうち動的機器が、当該施設の動的機能を保持可能 なことを確認する評価とする。

- a. 機器·配管系
  - (a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

表 2-1 強度評価における施設分類

|     |            | 表 2-1 - 強度評価における施設分類<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 強   | 度評価における分類  | 施設名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (1) | 竜巻より防護すべ   | ・原子炉建物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|     | き施設を内包する   | ・タービン建物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|     | 施設(建物等)    | ・廃棄物処理建物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|     |            | ・制御室建物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|     |            | ・ディーゼル燃料貯蔵タンク室                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     |            | ・Bーディーゼル燃料貯蔵タンク格納槽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| (2) | 屋外の外部事象防   | ・原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|     | 護対象施設 (建物等 | ・原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     | を除く)       | ーナ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|     |            | ・排気筒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|     |            | ・原子炉補機海水系配管及び弁、高圧炉心スプレイ補機海水系配管及                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|     |            | び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     |            | 高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     |            | ・非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     |            | 圧炉心スプレイ系ディーゼル燃料移送ポンプ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (3) | 外気と繋がってい   | ・ダンパ(換気空調設備)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|     | る屋内の外部事象   | ・隔離弁(換気空調設備)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|     | 防護対象施設     | ・角ダクト(換気空調設備)及び丸ダクト(換気空調設備)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|     |            | · 送風機 (換気空調設備)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     |            | ・処理装置(換気空調設備)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|     |            | ・非常用ガス処理系配管及び弁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| (4) | 外部事象防護対象   | a. 機械的影響を与える可能性がある施設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|     | 施設に波及的影響   | ・1号機原子炉建物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|     | を及ぼし得る施設   | ・1号機タービン建物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| a.  | 機械的影響を与える  | ・1号機廃棄物処理建物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|     | 可能性がある施設   | ・ 1 号機排気筒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| b.  | 機能的影響を与える  | ・排気筒モニタ室                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|     | 可能性がある施設   | ・復水貯蔵タンク遮蔽壁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|     |            | b. 機能的影響を与える可能性がある施設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|     |            | ・排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     |            | 炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|     |            | ・排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     |            | スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及び                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|     |            | ベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系デ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|     |            | <br>  ィーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|     |            | イタンク並びに潤滑油サンプタンクの付属施設)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|     |            | The state of the s |  |  |

# 3. 強度設計

VI-1-1-3-3-1「竜巻への配慮に関する基本方針」で設定している設計竜巻に対し、「2.1 評価対象施設」で設定している施設が、構造強度設計上の性能目標を達成するよう、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「4. 機能設計」で設定している各施設が有する機能を踏まえ、強度設計の方針を設定する。

各施設の構造強度の設計方針を設定し、設計竜巻荷重及びその他考慮すべき荷重に対し、各施設の構造強度を維持するよう、機能維持の方針において構造設計と評価方針を設定する。

#### 3.1 構造強度の設計方針

VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するための設計方針を「2.1 評価対象施設」で設定している評価対象施設分類ごとに示す。

(1) 竜巻より防護すべき施設を内包する施設(建物等)

竜巻より防護すべき施設を内包する施設(建物等)は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」の「3.1(2)c. 性能目標」で設定している構造強度設計上の性能目標を踏まえ、以下の設計とする。

原子炉建物,タービン建物,廃棄物処理建物,制御室建物,ディーゼル燃料貯蔵タンク室及びBーディーゼル燃料貯蔵タンク格納槽は,設計竜巻荷重及びその他考慮すべき荷重に対し,設計飛来物が竜巻より防護すべき施設に衝突することを防止するために,竜巻より防護すべき施設を内包する施設のうち,竜巻より防護すべき施設を内包する施設の外殻を構成する部材を設計飛来物が貫通せず,また,竜巻より防護すべき施設に波及的影響を与えないために,竜巻より防護すべき施設を内包する施設のうち,竜巻より防護すべき施設を内包する施設の分表を構成する部材自体の転倒及び脱落(裏面剥離を含む)が生じない設計とする。

# (2) 屋外の外部事象防護対象施設(建物等を除く)

屋外の外部事象防護対象施設(建物等を除く)は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」の「3.1(1)c. 性能目標」で設定している構造強度設計上の性能目標を踏まえ、以下の設計とする。

a. 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,取水槽海水ポンプエリアに設けた基礎に本体を基礎ボルトで固定し,ポンプの機能保持に必要な付属品を本体にボルトで固定し,設計竜巻の風圧力による荷重,気圧差による荷重及びその他考慮すべき荷重に対し,主要な構造部材が海水の送水機能を維持可能な構造強度を有すること及び海水を送水するための動的機能を維持する設計とする。

b. 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは,取水槽循環水 ポンプエリアに設けた基礎に支持脚を基礎ボルトで固定し,設計竜巻の風圧力による荷 重,気圧差による荷重及びその他考慮すべき荷重に対し,主要な構造部材が海水中の固形 物を除去する機能を保持可能な構造強度を有する設計とする。

c. 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備 (燃料移送系)配管及び弁

原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び弁は、取水槽床面又は壁面にサポートで支持し、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が原子炉補機及び高圧炉心スプレイ系補機を冷却する機能を保持可能な構造強度を有する設計とする。

非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁は、燃料移送ポンプエリア及び配管ダクト床面又は壁面にサポートで支持し、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が非常用電源設備に燃料を供給する機能を保持可能な構造強度を有する設計とする。

d. 非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプ

非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプは、燃料移送ポンプエリアに設けた基礎に本体を基礎ボルトで固定し、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が非常用電源設備に燃料を供給する機能を保持可能な構造強度を有する設計とする。

- e. 排気筒(非常用ガス処理系配管及び弁(屋外部分)を含む。) 排気筒は、設計竜巻荷重及びその他考慮すべき荷重に対し、主要な構造部材が流路を確保する機能を保持可能な構造強度を有する設計とする。
- (3) 外気と繋がっている屋内の外部事象防護対象施設

外気と繋がっている屋内の外部事象防護対象施設は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」の「3.1(3)c. 性能目標」で設定している構造強度設計上の性能目標を踏まえ、以下の設計とする。

# a. ダンパ (換気空調設備)

ダンパは、原子炉建物の天井面等にサポートにより固定し、設計竜巻の気圧差による荷 重及びその他考慮すべき荷重に対し、開閉可能な機能及び閉止性の保持を考慮して主要な 構造部材が構造健全性を保持する設計とする。

# b. 角ダクト及び丸ダクト(換気空調設備)

角ダクト及び丸ダクトは、原子炉建物の天井面等にサポートで支持し、設計竜巻の気圧 差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が換気空調を行う機能を 保持可能な構造強度を有する設計とする。

# c. 隔離弁(換気空調設備)

隔離弁は、換気空調設備のダクトに固定し、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、開閉可能な機能及び閉止性の保持を考慮して、主要な構造部材が構造健全性を保持する設計とする。

### d. 送風機 (換気空調設備)

送風機は、原子炉建物の床面等にサポートで支持し、設計竜巻の気圧差による荷重及び その他考慮すべき荷重に対し、主要な構造部材が必要な風量を送風する機能を保持可能な 構造強度を有する設計とする。

# e. 処理装置(換気空調設備)

処理装置は、原子炉建物の床面等にサポートで支持し、設計竜巻の気圧差による荷重及 びその他考慮すべき荷重に対し、主要な構造部材が外気を処理する機能を保持する設計と する。

# f. 非常用ガス処理系配管及び弁(屋内部分)

非常用ガス処理系配管及び弁は、配管ダクト床面又は壁面にサポートで支持し、設計竜 巻の気圧差による荷重及びその他の考慮すべき荷重に対し、主要な構造部材が放射性物質 の放出低減機能を保持する設計とする。

「(3) 外気と繋がっている屋内の外部事象防護対象施設」の屋内の外部事象防護対象施設の設計フローを図 3-1 に示す。

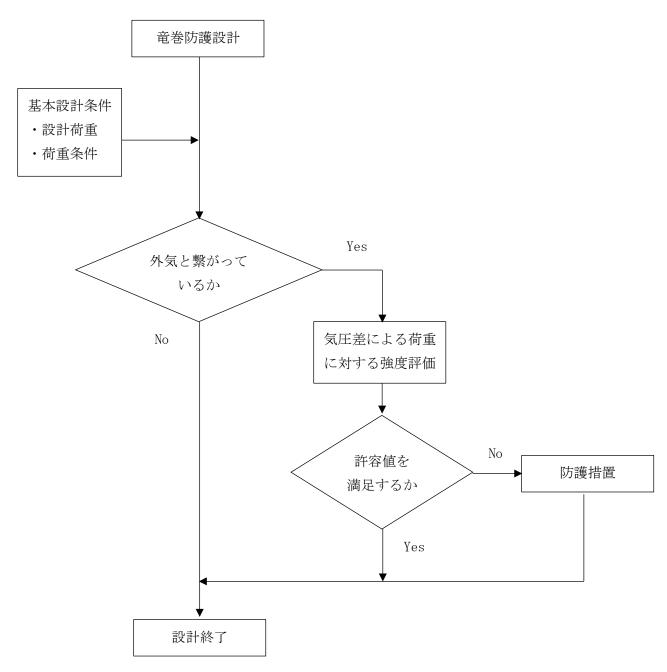



図 3-1 屋内の外部事象防護対象施設の設計フロー

- (4) 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設
  - a. 機械的影響を及ぼす可能性がある施設

機械的影響を及ぼす可能性がある施設は、VI-1-1-3-3-3「竜巻防護に関する施設の設計 方針」の「3. 要求機能及び性能目標」の「3.4(3) 性能目標」で設定している構造強度 設計上の性能目標を踏まえ、以下の設計とする。

(a) 1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室

1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室は,設計竜巻荷重及びその他考慮すべき荷重に対し、排気筒並びに竜巻より防護すべき施設を内包するタービン建物、廃棄物処理建物及び制御室建物に接触及び倒壊による影響を及ぼさない設計とする。

(b) 1号機原子炉建物,1号機排気筒及び復水貯蔵タンク遮蔽壁

1号機原子炉建物,1号機排気筒及び復水貯蔵タンク遮蔽壁は,設計竜巻荷重及びその他考慮すべき荷重に対し,竜巻より防護すべき施設を内包するタービン建物,制御室建物及びBーディーゼル燃料貯蔵タンク格納槽等に倒壊による影響を及ぼさない設計とする。なお,設計飛来物の鋼製材の衝突により,復水貯蔵タンクが損傷し,内包水が漏えいした場合においても,遮蔽壁内は地下で屋外配管ダクトと繋がっており,漏えいした水は屋外配管ダクトに流出するため,復水貯蔵タンク遮蔽壁に静水圧が作用する前に竜巻は通過すると考えられる(表3-17参照)。従って,設計竜巻荷重と復水貯蔵タンクの損傷により漏えいした水の静水圧の組合せは考慮しない。

b. 機能的影響を及ぼす可能性がある施設

機能的影響を及ぼす可能性がある施設は、VI-1-1-3-3-3「竜巻防護に関する施設の設計 方針」の「3. 要求機能及び性能目標」の「3.4(3) 性能目標」で設定している構造強度 設計上の性能目標を踏まえ、以下の設計とする。

(a) 排気消音器 (非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)

排気消音器は、原子炉建物にボルトで固定し、設計竜巻の風圧力による荷重、気圧 差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が排気機能を維持可 能な構造強度を有する設計とする。

(b) 排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク並びに潤滑油サンプタンクの付属施設)

排気管及びベント管は、サポート等により建物に固定し、設計竜巻の風圧力、気圧

差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が排気機能を維持可能な構造強度を有する設計とする。

#### 3.2 機能維持の方針

VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」で設定している構造強度上の性能目標を達成するために、「3.1 構造強度の設計方針」に示す設計方針を踏まえ、VI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を適切に考慮して、各施設の構造設計及びそれを踏まえた評価方針を設定する。

# (1) 竜巻より防護すべき施設を内包する施設(建物等)

竜巻より防護すべき施設を内包する施設の機能維持の方針は,施設の設置状況に応じ, 以下の方針とする。

a. 建物 (原子炉建物, タービン建物, 廃棄物処理建物, 制御室建物)

#### (a) 構造設計

建物は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

建物に作用する荷重は、外殻を構成する屋根スラブ及び外壁に作用し、建物内に配置された耐震壁等を介し、直接岩盤に支持される基礎スラブへ伝達する。

建物の構造計画を表 3-1 に示す。

# (b) 評価方針

#### イ. 衝突評価

建物の衝突評価については、設計飛来物が竜巻より防護すべき施設の外殻を構成する部材を貫通しない設計とするために、設計飛来物による衝撃荷重に対し、当該部材が設計飛来物の貫通を生じない最小厚さ以上であることを計算により確認する。評価方法としては、「5.1.1(3) 強度評価方法」に示す限界厚さ評価式により算出した厚さを基に評価を行う。

最小厚さ以上であることの確認ができない屋根スラブについては、鉄筋が終局状態に至るようなひずみが生じないことを解析により確認する。評価方法としては、 FEMを用いた解析により算出したひずみを基に評価を行う。

竜巻防護対策設備のうち鋼製扉(以下「扉」という。)については、開口部の周辺に外部事象防護対象施設が設置されており、設計飛来物が衝突した場合に貫通し、外部事象防護対象施設に影響を及ぼす可能性がある開口部に設置し、設計飛来物が竜巻より防護すべき施設の外殻を構成する部材を貫通しない設計とするため

に、設計飛来物による衝撃荷重に対し、当該部材が設計飛来物の貫通を生じない必要最小肉厚以上であることを計算により確認する。評価方法としては、「5.1.3(3)強度評価方法」に示す解析による必要最小肉厚と扉の厚さを比較することで評価を行う。

# 口. 構造強度評価

建物の構造強度評価については、竜巻より防護すべき施設に波及的影響を与えない確認として、設計飛来物による衝撃荷重に対し、建物の外殻を構成する部材自体の脱落を生じない設計とするために、外殻となる外壁及び屋根スラブのうち、コンクリートの裏面剥離により内包する外部事象防護対象施設への影響が考えられる箇所については、裏面剥離によるコンクリート片の飛散が生じない最小厚さ以上であることを計算により確認する。評価方法としては、「5.1.1(3) 強度評価方法」に示す限界厚さ評価式により算出した厚さを基に評価を行う。

最小厚さ以上であることの確認ができない外壁及び屋根スラブについては、鉄筋 又はデッキプレートが終局状態に至るようなひずみが生じないことを解析により確 認する。評価方法としては、FEMを用いた解析により算出したひずみを基に評価 を行う。

また、建物を構成する部材自体の転倒及び脱落を生じない設計とするため、設計 竜巻荷重及びその他考慮すべき荷重に対し、屋根スラブ及び屋根スラブのスタッド 並びに外壁に終局状態に至るような応力又はひずみが生じないことを計算及び解析 により確認する。評価方法としては、「5.1.1(3) 強度評価方法」に示す強度評価 式により算出した応力並びに建物の地震応答解析モデルを用いて算出したせん断ひ ずみを基に評価を行う。

扉については、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、 扉支持部材の破断による転倒及び脱落を生じないことを計算により確認する。

表 3-1 建物の構造計画 (1/6)

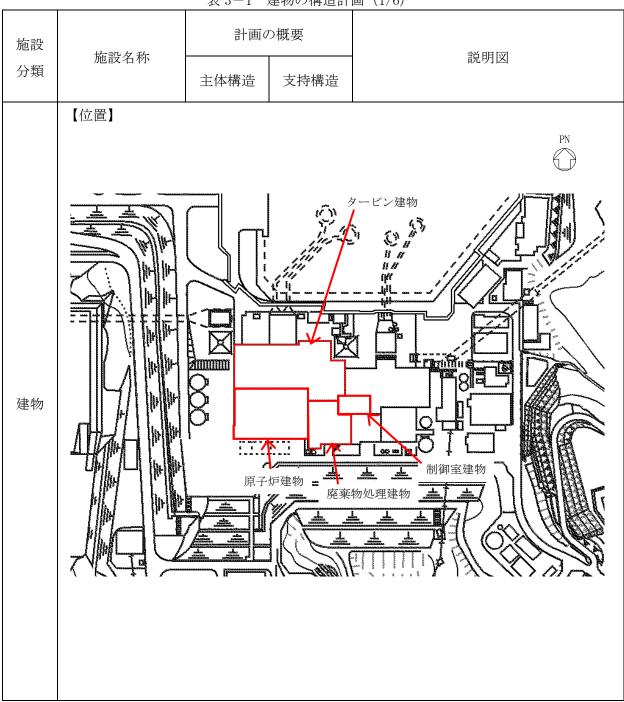



表 3-1 建物の構造計画 (2/6)

|      |                                                                                                       | 表 3-1 建                                                                               | は物の構造計画(2/6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 施設名称 | 計画の                                                                                                   | の概要                                                                                   | 説明図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 旭政石你 | 主体構造                                                                                                  | 支持構造                                                                                  | 成り囚                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 原子炉  | 鉄リ部コト骨す筋一鉄ン造造の大骨を入って、大骨の及では、大骨の及では、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、 | 荷外る及用に耐しブる重設屋びし配震,へ重設屋がし配震事が、置壁を破り、一旦をではをはなる。では、一番では、一番では、一番では、一番では、一番では、一番では、一番では、一番 | 日 63.5<br>日 53.7<br>日 53.8<br>日 23.8<br>日 23 |
|      |                                                                                                       |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

注記\*:「EL」は東京湾平均海面(T.P.)を基準としたレベルを示す。

表 3-1 建物の構造計画 (3/6)

|      | 1                     | 衣 3-1 友                                             | <b>基物の構造計画(3/6)</b> |
|------|-----------------------|-----------------------------------------------------|---------------------|
| 施設名称 | 計画の概要                 |                                                     | 説明図                 |
| 旭权石机 | 主体構造                  | 支持構造                                                | DU71                |
| タービン | 鉄リ部コト骨す筋一鉄ン造造る。ク一筋一鉄成 | 荷外る及用に耐レしブる。重殻屋びし配震ー,へ。建構ス壁建さ及ム礎医ムーのすびに物れびをス達のすがです。 | 第300 日 11.0         |

表 3-1 建物の構造計画 (4/6)

|         | T         | 表 3-1 建物()                                     | )構造計画(4/6)  |
|---------|-----------|------------------------------------------------|-------------|
| 施設名称    | 計画の概要     |                                                | 説明図         |
| 加西汉人口7万 | 主体構造      | 支持構造                                           | Wright Indi |
| 廃棄物処理建物 | 鉄筋造って構成り成 | 荷外る及用配震礎達重設屋びし置壁スすはを根外建構ス壁物れしずめ成うに内た,へのすず作に耐基伝 | 日本の         |

表 3-1 建物の構造計画 (5/6)

|                                       | T           | 表 3-1 建                                                    | <b>勿り(情) (5/6)</b>                |
|---------------------------------------|-------------|------------------------------------------------------------|-----------------------------------|
| 施設名称                                  | 計画(         | の概要                                                        | 説明図                               |
| / / / / / / / / / / / / / / / / / / / | 主体構造   支持構造 |                                                            | 成り<br>国                           |
| 制御室室                                  | 鉄筋造って構成り成   | 荷外る及用に耐しブる重殻屋びし配震,へはを根外,置壁基伝達構ス壁建さ壁礎にあったが成立に物れをス達のすブ作内た介ラす | 日本 (単位:a)  (A — A 断面)  (B — B 断面) |

表 3-1 建物の構造計画 (6/6)

|        | 計画の                                                                 | )概要                         |       |  |
|--------|---------------------------------------------------------------------|-----------------------------|-------|--|
| 施設名称   | 主体構造                                                                | 支持構造                        | 説明図   |  |
| 原建原分物) | 扉のし芯付配ヌ内キしと体構るは鋼,材けしキの受込扉化造。片製扉を,たをカけみ枠さと開扉板取扉カ扉ンに,をせと型とにりにン枠ヌ差扉一るす | にはしヌ枠ンけ込お扉カをのキ差扉いにか扉りをのキ差扉で | 扉の位置図 |  |

# b. 構造物 (ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽)

# (a) 構造設計

構造物は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造とする。

構造物は、地下に埋設された鉄筋コンクリート造とし、地上部にはスラブ、開口等 が露出し、露出する開口部には鋼製の蓋を設置する構造とする。

構造物に作用する荷重は、地上に露出したスラブ、鋼製蓋等に作用し、鉄筋コンクリート造の躯体を介し、直接岩盤に支持される基礎スラブへ伝達する構造とする。 構造物の構造計画を表 3-2 に示す。

#### (b) 評価方針

#### イ. 衝突評価

構造物の衝突評価については、設計飛来物による衝撃荷重に対し、設計飛来物が 竜巻より防護すべき施設を内包する施設の外殻を構成する部材を貫通しない設計と するために、地上に露出したスラブ及び鋼製蓋が設計飛来物の貫通を生じない最小 厚さ以上であることを計算により確認する。評価方法としては、スラブについて は、「5.1.1(3) 強度評価方法」に示す限界厚さ評価式により算出した厚さを基 に、鋼製蓋については、「5.1.3(3) 強度評価方法」に示す解析による必要最小肉 厚と鋼製蓋の厚さと比較することで評価を行う。

# 口. 構造強度評価

構造物の構造強度評価については、設計飛来物による衝撃荷重に対し、竜巻より 防護すべき施設に波及的影響を与えないよう、構造物の外殻を構成する部材自体の 脱落を生じない設計とするために、スラブが裏面剥離によるコンクリート片の飛散 が生じない最小厚さ以上であることを計算により確認する。評価方法としては、

「5.1.1(3) 強度評価方法」に示す限界厚さ評価式により算出した厚さを基に評価を行う。

表 3-2 構造物の構造計画 (1/3)

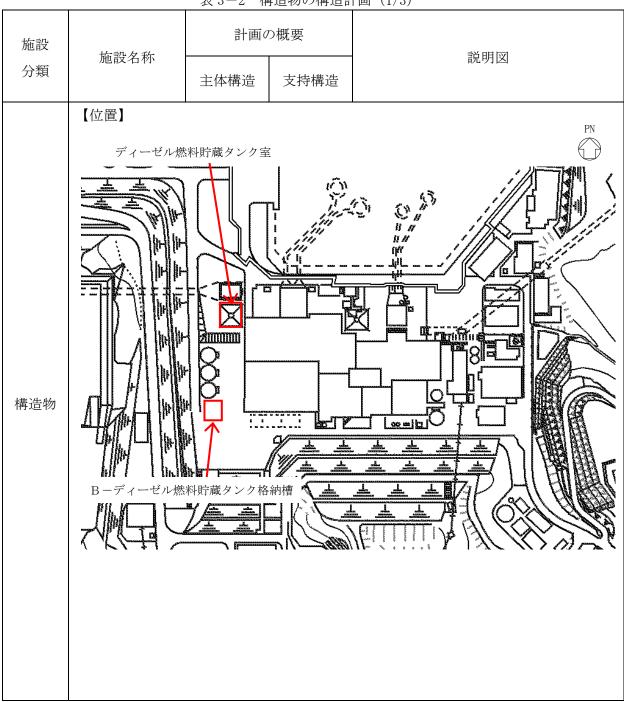



表 3-2 構造物の構造計画 (2/3)

|                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 長3-2 構造物の構            | 造計画 (2/3) |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| + <del>/</del>  | 計画                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | の概要                   | =¥ n□ l5a |
| 施設名称            | 主体構造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 支持構造                  | 説明図       |
| ディーゼル 燃料貯蔵 タンク室 | 地た鉄ト部ラクロをでいる。とは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学の | 荷出クラにン躯スるにコの製筋造基達をいる。 | PN        |

表 3-2 構造物の構造計画 (3/3)

| -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 表 3-2 構造物の                                                                   | 構造計画 (3/3) |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|--|
| 施設名称                         | 計画                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | の概要                                                                          | ≣X 田 1○71  |  |
| <b></b>                      | 主体構造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 支持構造                                                                         | 説明図        |  |
| Bーディー<br>ボタン<br>横<br>タ<br>外槽 | 地れ体クし出はリ部を下たをリ、す鉄ーに設備というというでは、大きののでは、大きののでは、大きののでは、大きののでは、大きののでは、大きののでは、大きののでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、 | 荷出クラにコの基達るの基でのというでは、一及用ク体スをはた一及用ク体スをでは、一角では、一角では、一角では、一角では、一角では、一角では、一角では、一角 | KEY-PLAN   |  |

# (2) 屋外の外部事象防護対象施設(建物等を除く)

a. 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

#### (a) 構造設計

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ,以下の構造としている。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,鋼製の立形ポンプ の上に原動機を取り付け,原動機によりポンプの軸を回転させる。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプはコンクリート基礎に 基礎ボルトで固定し、原動機はポンプの上の原動機台にボルトで結合する。端子箱等 のポンプの機能維持に必要な付属品は、原動機にボルトで結合する。また、作用する 荷重については、各取付ボルトを介して接続する構造部材に伝達し、基礎ボルトに伝 達する。原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造計画を表 3-3に示す。

# (b) 評価方針

#### イ. 衝突評価

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの衝突評価については、竜巻防護ネットを通過する飛来物が原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの外殻を構成する部材を貫通しない設計とするために、竜巻防護ネットを通過する飛来物による衝撃荷重に対し、当該部材が飛来物の貫通を生じない貫通限界厚さ以上であることを計算により確認する。評価方法としては、「5.2.1(3)強度評価方法」に示す評価式により算出した厚さを基に評価を行う。

# 口. 構造強度評価

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価については、設計竜巻の風圧力による荷重、気圧差による荷重及び竜巻防護ネットを通過する飛来物による衝撃荷重に対し、原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ及びポンプの機能保持に必要な付属品を支持する基礎ボルト、取付ボルト並びにポンプの機能維持に必要な付属品を支持する原動機フレームに生じる応力が許容応力以下であることを計算により確認する。評価方法としては、「5.2.2(1)c.強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

# ハ. 動的機能維持評価

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの動的機能維持評価については、設計竜巻の風圧力による荷重、気圧差による荷重、竜巻防護ネットを通過する飛来物による衝撃荷重及びその他考慮すべき荷重に対し、軸受部における発生荷重が、動的機能を維持可能な許容荷重以下であることを計算により確認する。評価方法としては、「5.2.2(1)c. 強度評価方法」に示すとおり、評価式により算出した荷重を基に評価を行う。

表 3-3 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造計画(1/2)

| ₩型及稅          | Ē                                        | 計画の概要                                                    | 크 <sup>사</sup> 마니 [27]                     |  |
|---------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------|--|
| 施設名称          | 主体構造    支持構造                             |                                                          | 説明図                                        |  |
| 【位置】 原子炉補機剂   | 毎水ポンプはム                                  | 屋外の取水槽海水ポンフ                                              | 『エリアに設置する。                                 |  |
| 原子炉補機海水ポンプ    | 鋼製のたて<br>形ポンプ                            | 基礎に基礎ボルトで<br>固定する。                                       | 端子箱空気冷却器                                   |  |
| 原子炉補機海水ポンプモータ | 鋼製の原動<br>機フレーム<br>に付属品が<br>取り付けら<br>れた構造 | ポンプの上にボルト<br>(原動機取付ボル<br>ト)で結合する。<br>付属品は取付ボルト<br>で固定する。 | 通風ダクト 原動機フレーム 原動機取付ボルト 原動機台 ポンプ取付ボルト 基礎ボルト |  |

表 3-3 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造計画(2/2)

| 大 5 5 小 1 // 「                               |                                          |                                              |                                |  |  |
|----------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------|--|--|
| 16-11 6 71.                                  | 計                                        | 画の概要                                         | -7V pp =1                      |  |  |
| 施設名称                                         | 主体構造    支持構造                             |                                              | 説明図                            |  |  |
| 【位置】<br>高圧炉心スプレイ補機海水ポンプは屋外の取水槽海水ポンプエリアに設置する。 |                                          |                                              |                                |  |  |
| 高圧炉心ス<br>プレイ補機<br>海水ポンプ                      | 鋼製のたて 形ポンプ                               | 基礎に基礎ボルトで固定する。                               | 端子箱エンドカバー原動機フレーム               |  |  |
| 高圧炉心ス<br>プレイ補機<br>海水ポンプ<br>モータ               | 鋼製の原動<br>機フレーム<br>に付属品が<br>取り付けら<br>れた構造 | ポンプの上にボルト(原動機取付ボルト)で結合する。<br>付属品は取付ボルトで固定する。 | 原動機取付ボルト原動機台ポンプ取付ボルト基礎ボルト基をボルト |  |  |

# b. 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ

# (a) 構造設計

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは, 「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-3「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ,以下の構造としている。

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは、胴と支持 客が鋳物一体となった円筒型の容器を並べて組み合わせ、支持脚をコンクリート基礎 に基礎ボルトで固定する。また、作用する荷重については、支持脚を介して基礎ボル トに伝達する。原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ の構造計画を表 3-4 に示す。

# (a) 評価方針

# イ. 構造強度評価

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの構造強度 評価については、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮 すべき荷重に対し、原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水スト レーナを構成する基礎ボルトに生じる応力が許容応力以下であることを計算により 確認する。評価方法としては、「5.2.3(1)c. 強度評価方法」に示すとおり、評価 式により算出した応力を基に評価を行う。

表 3-4 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの構造計画

| +6=0.6.4.                                                     | 計画の概要                                                |                    | -× n□ log |  |
|---------------------------------------------------------------|------------------------------------------------------|--------------------|-----------|--|
| 施設名称                                                          | 主体構造                                                 | 支持構造               | 説明図       |  |
| 【位置】<br>原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは屋外の取水槽循環水ポンプエリアに設置する。 |                                                      |                    |           |  |
| 原子炉補機海<br>水ストレーナ<br>及プレイ補機<br>海水ストレーナ                         | 胴及び支持脚<br>が鋳物一体と<br>なった円筒形<br>の容器を組み<br>合わせて構成<br>する | 支持脚を基礎に基礎ボルトで固定する。 | 支持脚       |  |

c. 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備 (燃料移送系)配管及び弁

#### (a) 構造設計

原子炉補機海水系配管及び弁、高圧炉心スプレイ補機海水系配管及び弁、非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

配管及び弁は、鋼製の配管本体及び弁を主体構造とし、支持構造物により床、壁等に支持する。また、作用する荷重については、配管本体に作用する。配管及び弁の構造計画を表 3-5 に示す。

# (b) 評価方針

#### イ. 衝突評価

原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁の衝突評価については,竜巻防護ネット等を通過する飛来物による衝撃荷重に対し,配管及び弁の外殻を構成する部材が,機能喪失に至る可能性のある変形を生じないことを計算により確認する。評価方法としては,「5.2.1(3)強度評価方法」に示すとおり,評価式により算出した貫通限界厚さを基に評価を行う。

### 口. 構造強度評価

原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び弁の強度評価については、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮すべき荷重に対し、配管本体に生じる応力が許容応力以下であることを計算により確認する。非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁の強度評価については、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、発生する応力が許容応力以下であることを計算により確認する。評価方法としては、「5.2.4(3)強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-5 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁の構造計画

| 施設名称 | 計    | ・画の概要 |     |
|------|------|-------|-----|
|      | 主体構造 | 支持構造  | 説明図 |

# 【位置】

原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディーゼル発電設備 (燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁 は屋外の取水槽海水ポンプエリア及び燃料移送ポンプエリアに設置する。

| 備(燃料移送系) | 鋼製の配管本体及<br>び弁で構成する。 | 配管本体及び弁は、支持構造物により床及び壁等から支持する。 | 京持構造物 |
|----------|----------------------|-------------------------------|-------|
|----------|----------------------|-------------------------------|-------|

d. 非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプ

### (a) 構造設計

非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプは、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の

「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプは、ポンプ部と原動機部からなる横型ポンプであり、基礎ボルト及び取付ボルトによって固定されている。また、作用する荷重については、燃料移送ポンプの耐圧部に作用する。非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの構造計画を表 3-6 に示す。

### (b) 評価方針

#### 口. 構造強度評価

非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの強度評価については、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、ポンプ耐圧部に生じる応力が許容応力以下であることを計算により確認する。評価方法としては、「5.2.4(3)強度評価方法」に示すとおり、設計竜巻による荷重に運転時の状態で作用する荷重を加えた応力を基に評価を行う。

表 3-6 非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの構造計画

| 北京しなる                                                                              | 計画の概要                                       |                     | ₹\ 1H \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------|---------------------|------------------------------------------|--|--|
| 施設名称                                                                               | 主体構造                                        | 支持構造                | 説明図                                      |  |  |
| 【位置】                                                                               | 【位置】                                        |                     |                                          |  |  |
| 非常用ディーゼル発電                                                                         | 非常用ディーゼル発電設備A―ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発 |                     |                                          |  |  |
| 電設備ディーゼル燃料                                                                         | 電設備ディーゼル燃料移送ポンプは屋外の燃料移送ポンプエリアに設置する。         |                     |                                          |  |  |
| 非常用ディーゼル発<br>電設備A―ディーゼ<br>ル燃料移送ポンプ及<br>び高圧炉心スプレイ<br>系ディーゼル発電設<br>備ディーゼル燃料移<br>送ポンプ | 鋼製の横型ポンプに付属品が取り付けられた構造                      | 基礎に基礎ボルト等で固定<br>する。 |                                          |  |  |

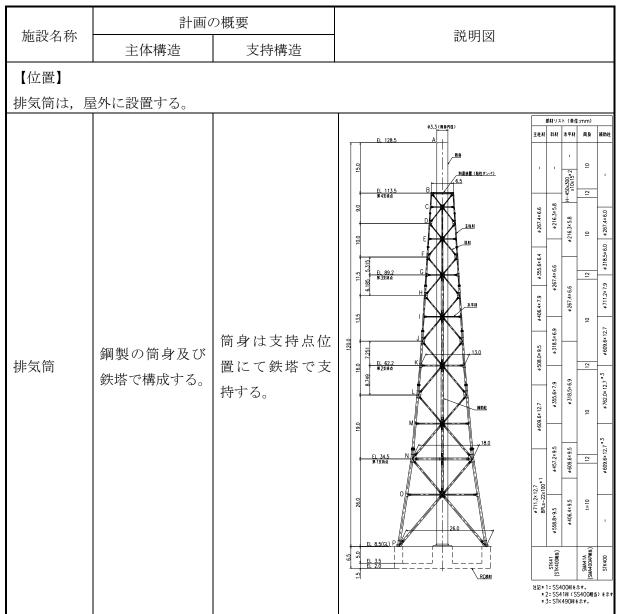
# e. 排気筒

# (a) 構造設計

排気筒は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

排気筒は、地盤からの高さ 120m である内径 3.3m の鋼板製筒身(排気筒(空調換気系用))を鋼管四角形鉄塔で支えた鋼製鉄塔支持型排気筒である。また、筒身外部には排気筒(非常用ガス処理系用)が筒身に支持されている。筒身は第4支持点位置(EL 113.5m)にて制振装置(粘性ダンパ)を介して鉄塔と接合されている。作用する荷重については、筒身及び鉄塔を介して基礎に伝達する。

排気筒の構造計画を表 3-7 に示す。


# (b) 評価方針

# イ. 構造強度評価

排気筒の構造強度評価については,設計竜巻荷重及びその他考慮すべき荷重に対し,排気筒全体が倒壊しないことを計算により確認する。評価方法としては,

「5.2.1(3) 強度評価方法」に示すとおり、FEMを用いた解析により算出した変形角を基に評価を行う。

表 3-7 排気筒の構造計画



# (3) 外気と繋がっている屋内の外部事象防護対象施設

a. ダンパ (換気空調設備)

# (a) 構造設計

ダンパは,「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設 定している荷重を踏まえ,以下の構造としている。

ダンパは鋼製の外板,羽根及びシャフトを主体構造とし,支持構造物で天井面等に支持する。また,作用する荷重については,外板及び羽根に作用し,羽根を介してシャフトに伝達する。ダンパの構造計画を表 3-8 に示す。

# (b) 評価方針

#### イ. 構造強度評価

ダンパの構造強度評価については、開閉可能な機能及び閉止性を考慮して、設計 竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、発生する応力が許容応 力以下になることを計算により確認する。評価方法としては、「5.2.6(3) 強度評 価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-8 ダンパ (換気空調設備) の構造計画

|                |                                     | . ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                          |
|----------------|-------------------------------------|-----------------------------------------|--------------------------|
| + <del>/</del> | 計画の概要                               |                                         | AV 111 FE                |
| 施設名称           | 主体構造                                | 支持構造                                    | 説明図                      |
| 【位置】           |                                     |                                         |                          |
| ダンパは十分なり       | 強度を有する建物                            | (原子炉建物) 内                               | に設置する。                   |
| ダンパ (換気空調設備)   | 外板, 羽根及び<br>シャフトなど<br>の鋼材で構成<br>する。 | 接続ダクトにより支持する。                           | 外板<br>羽根<br>シャフト<br>シャフト |

# b. 角ダクト(換気空調設備)及び丸ダクト(換気空調設備)

## (a) 構造設計

角ダクト及び丸ダクトは、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

角ダクト及び丸ダクトは、鋼製のダクトを主体構造とし、支持構造物により天井面等に支持する。また、作用する荷重については、ダクト鋼板に作用する。角ダクト及び丸ダクトの構造計画を表 3-9 に示す。

# (b) 評価方針

## イ. 構造強度評価

角ダクト及び丸ダクトの構造強度評価については、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、角ダクト及び丸ダクトを構成する鋼製のダクトに生じる応力が許容応力以下であることを計算により確認する。評価方法としては、ダクト形状で評価方法を分類し「5.2.7(3) 強度評価方法」及び「5.2.8(3)強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-9 角ダクト (換気空調設備) 及び丸ダクト (換気空調設備) の構造計画

|          | 表 3-9                                       | 用グクト (換気3    | 三調政佣/及い九~                           | タクト(換気空調設備)の構造計画 |  |  |  |  |  |
|----------|---------------------------------------------|--------------|-------------------------------------|------------------|--|--|--|--|--|
|          | 北京几夕孙                                       | 計画の          | り概要                                 | 국사 미디 (SV)       |  |  |  |  |  |
|          | 施設名称                                        | 主体構造         | 支持構造                                | 説明図              |  |  |  |  |  |
|          | 【位置】                                        |              |                                     |                  |  |  |  |  |  |
|          | 角ダクト(換気空調設備)及び丸ダクト(換気空調設備)は十分な強度を有する建物(原子炉建 |              |                                     |                  |  |  |  |  |  |
| 华        | <b> b ,</b> 制御室建物                           | 及び廃棄物処理建筑    | 物)内に設置する。                           | 0                |  |  |  |  |  |
| <b>生</b> | 角ダクト (換気<br>空調設備) 及び<br>1.ダクト (換気<br>空調設備)  | 鋼製のダクトで構成する。 | ダクトは, 支持<br>構造物壁, 床及<br>はり等<br>はりち。 | 【                |  |  |  |  |  |

# c. 隔離弁 (換気空調設備)

## (a) 構造設計

隔離弁は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定 している荷重を踏まえ、以下の構造としている。

隔離弁は、鋼製の弁箱、弁体及び弁棒で構成し、接続ダクトにより支持する。内部の弁体、弁棒が回転することにより弁の開閉動作を行い、閉止時には、上流と下流の圧力差が気密性を有する弁の耐圧部に作用する。隔離弁の構造計画を表 3-10 に示す。

#### (b) 評価方針

#### イ. 構造強度評価

隔離弁の構造強度評価については、開閉可能な機能及び閉止性を考慮して、設計 竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、発生する応力が許容応 力以下になることを計算により確認する。評価方法としては「5.2.9(3) 強度評価 方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-10 隔離弁 (換気空調設備) の構造計画

| 施設名称        | 計画の       | の概要         | 説明図             |
|-------------|-----------|-------------|-----------------|
| 72BX 1111   | 主体構造      | 支持構造        | NEXTE           |
| 【位置】        | 強度を有する建物  | (原子炉建物及び)   | 廃棄物処理建物)内に設置する。 |
| 隔離弁(換気空調設備) | 鋳鋼材で構成する。 | 接続ダクトで支持する。 | ダクト<br>弁体<br>弁権 |

# d. 送風機 (換気空調設備)

## (a) 構造設計

送風機は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

送風機は、流路を形成するケーシング、冷却するための空気を送り込む羽根車及び原動機からの回転力を伝達する主軸で構成し、床に基礎ボルトで支持する。送風機の構造計画を表 3-11 に示す。

# (b) 評価方針

# イ. 構造強度評価

送風機の構造強度評価については、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、発生する応力が許容応力以下であることを計算により確認する。評価方法としては、「5.2.10(3)強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-11 送風機(換気空調設備)の構造計画

|                 | <u> </u>                                 |                   |                    |
|-----------------|------------------------------------------|-------------------|--------------------|
| + <del>/</del>  | 計画の概要                                    |                   | -¥ na lod          |
| 施設名称            | 主体構造                                     | 支持構造              | 説明図                |
| 【位置】            |                                          |                   |                    |
| 送風機は十分が         | な強度を有する                                  | 生物 (原子炉建物         | 勿及び廃棄物処理建物)内に設置する。 |
| 送風機(換気<br>空調設備) | ケーシング<br>ンケーのグ<br>大のが内のび<br>本本で構成す<br>る。 | 床に基礎ボルトで支持<br>する。 | 羽根車                |

# e. 処理装置(換気空調設備)

## (a) 構造設計

処理装置は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

処理装置は流路を形成するケーシング、ケーシングを固定するはり及び長柱で形成 し、床に基礎ボルトで支持する。処理装置の構造計画を表 3-12 に示す。

## (b) 評価方針

# イ. 構造強度評価

処理装置の構造強度評価については、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、発生する応力が許容応力以下であることを計算により確認する。評価方法としては、「5.2.11 (3) 強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-12 処理装置(換気空調設備)の構造計画

| +5-70 to 14-      | 計画の                         | 概要                | ÷V 817 153       |  |  |  |
|-------------------|-----------------------------|-------------------|------------------|--|--|--|
| 施設名称              | 主体構造                        | 支持構造              | 説明図              |  |  |  |
| 【位置】              |                             |                   |                  |  |  |  |
| 処理装置は十分を          | な強度を有する建物                   | <b>め</b> (原子炉建物及  | び廃棄物処理建物)内に設置する。 |  |  |  |
| 処理装置 (換気<br>空調設備) | ケーシング及<br>びはり等の鋼<br>材で構成する。 | 床に基礎ボル<br>トで支持する。 | ケーシング            |  |  |  |

## f. 非常用ガス処理系配管及び弁

#### (a) 構造設計

非常用ガス処理系配管及び弁は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

非常用ガス処理系配管及び弁は鋼製の配管を主体構造とし,支持構造物により床,壁 等に支持する。また,作用する荷重については,配管本体に作用する。

#### (b) 評価方針

# イ. 構造強度評価

非常用ガス処理系配管及び弁の構造強度評価については、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、発生する応力が許容応力以下であることを計算により確認する。評価方法としては、「5.2.4(3) 強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

### (4) 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設

- a. 機械的影響を及ぼす可能性がある施設
  - (a) 1号機原子炉建物,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室 イ. 構造設計

1号機原子炉建物, 1号機タービン建物, 1号機廃棄物処理建物及び排気筒モニタ室は, 「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ,以下の構造としている。

1号機原子炉建物,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室は,鉄筋コンクリート造(一部鉄骨造)とし,荷重は建物の外殻を構成する屋根スラブ及び外壁に作用し,建物内に配置された耐震壁及びフレームを介し,基礎スラブへ伝達する。

1号機原子炉建物, 1号機タービン建物, 1号機廃棄物処理建物及び排気筒モニタ室の構造計画を表 3-13~表 3-16 に示す。

# 口. 評価方針

#### (イ) 構造強度評価

1号機原子炉建物, 1号機タービン建物, 1号機廃棄物処理建物及び排気筒モニタ室の構造強度評価については, 設計竜巻荷重及びその他考慮すべき荷重に対し, タービン建物, 廃棄物処理建物, 制御室建物及び排気筒に倒壊による影響を及ぼさないことを解析により確認する。評価方法としては, 各建物の地震応答解

析モデルを用いて算出したせん断ひずみ及び層間変形角を基に評価を行う。

また、1号機タービン建物、1号機廃棄物処理建物及び排気筒モニタ室の構造 強度評価については、設計竜巻荷重及びその他考慮すべき荷重に対し、タービン 建物、廃棄物処理建物、制御室建物及び排気筒に接触する変形を生じないことを 解析により確認する。評価方法としては、各建物の地震応答解析モデルを用いて 算出した隣接建物との最大相対変位を基に評価を行う。

## (b) 復水貯蔵タンク遮蔽壁

#### イ. 強度評価

復水貯蔵タンク遮蔽壁は、「3.1 構造強度の設計方針」で設定している設計方針 及びV-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及 び許容限界」で設定している荷重を踏まえ、以下の構造としている。

復水貯蔵タンク遮蔽壁は,鉄筋コンクリート造,荷重は遮蔽壁に作用し,基礎へ 伝達する。

復水貯蔵タンク遮蔽壁の構造計画を表 3-17 に示す。

## 口. 評価方針

## (イ) 構造強度評価

復水貯蔵タンク遮蔽壁の構造強度評価については、設計竜巻荷重及びその他考慮すべき荷重に対し、竜巻より防護すべき施設を内包するBーディーゼル燃料貯蔵タンク格納槽に倒壊による影響及ぼさないことを計算等により確認する。評価方法としては、はり要素により算出した断面力を基に評価を行う。

表 3-13 1 号機原子炉建物の構造計画 (1/2)



表 3-13 1 号機原子炉建物の構造計画 (2/2)

| 荷重は建物の外<br>殻を構成する屋                              |           | 表 3-<br>T            | 13 1万機原于炉                                                                  | 建物の構造計画(2/2)<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-------------------------------------------------|-----------|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 主体構造 支持構造    支持構造   支持構造   ( )                  | 協認夕称      | 計画の概要                |                                                                            | 製 田 図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ### 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         | 为世段之口 47· | 主体構造                 | 支持構造                                                                       | のより」四                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| EL 15.0 (GL)  EL 15.3  EL 11.3  EL 11.3  EL 0.1 |           | ート造 (一部鉄<br>骨造) で構成す | 殻を構成する屋<br>根スラブ及び外<br>壁に作用し、建<br>物内に配置され<br>た耐震壁及びし、<br>レームラブへ伝<br>基礎スラブへ伝 | 日 50 9<br>日 50 |  |

表 3-14 1 号機タービン建物の構造計画 (1/2)



表 3-14 1 号機タービン建物の構造計画 (2/2)

|                                       | 衣ょっ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | - ン鮭物の構造計画 (2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 施設名称                                  | 計画(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | の概要                                       | 説明図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| / / / / / / / / / / / / / / / / / / / | 主体構造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 支持構造                                      | MU기진                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1 号機<br>タービン<br>建物                    | 鉄筋ト骨から、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのではないでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインのでは、サインので | 荷外る及用配震一礎達 重殻屋びし置壁ムスす 建構ス壁物れびし、 のすブ作に耐レ基伝 | 無数タービンの基礎 日 23.8 日 23.7 日 23.8 日 21.1 日 25.8 日 25 |  |

表 3-15 1 号機廃棄物処理建物の構造計画 (1/2)



表 3-15 1 号機廃棄物処理建物の構造計画 (2/2)

|      |        | 5 1 号機廃棄物:                               | 処理建物の構造計画(2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|--------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 施設名称 | 計画の    | の概要                                      | 説明図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 旭政石柳 | 主体構造   | 支持構造                                     | 机切凶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 廃棄物  | 鉄筋トさる。 | 荷外る及用配震礎達重かる及用配震ではを根外建ちた。を根外建な介づのすず作に耐基伝 | EL 29.0 EL 29.0 EL 25.0 EL 25 |

表 3-16 排気筒モニタ室の構造計画 (1/2)

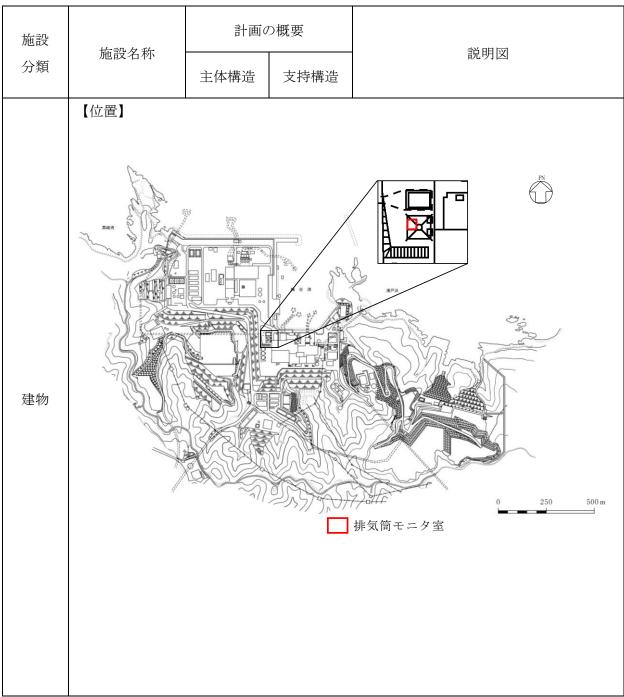



表 3-16 排気筒モニタ室の構造計画 (2/2)

|         | 12.3      | 10 % X(同 1 一 7 三 | EV/1件但可圆(2/2)<br>                         |  |
|---------|-----------|------------------|-------------------------------------------|--|
| 施設名称    | 計画の概要     |                  | 説明図                                       |  |
|         | 主体構造      | 支持構造             | 成切囚                                       |  |
| 排気筒モニタ室 | 鉄筋コンクリウリー | 荷殻根壁内耐礁する。       | A PN EL 12-25 97 EL 8-8  (A — A 断面)  PN B |  |

表 3-17 復水貯蔵タンク遮蔽壁の構造計画 (1/2)

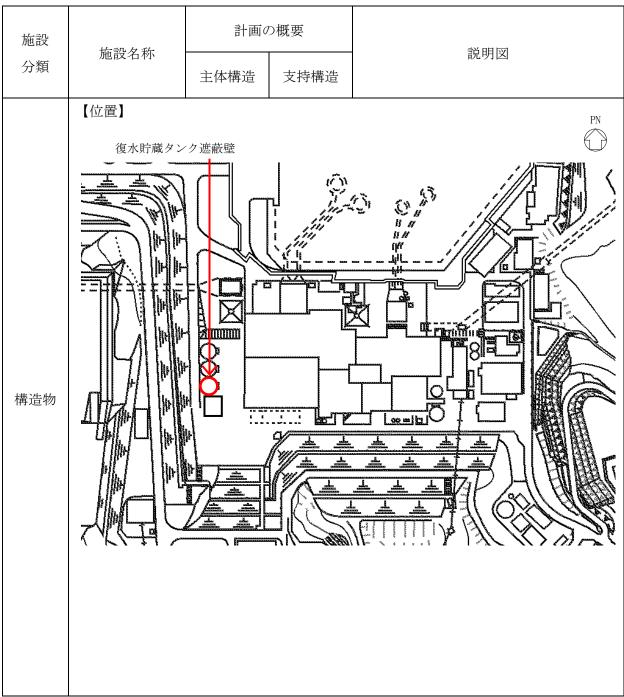



表 3-17 復水貯蔵タンク遮蔽壁の構造計画 (2/2)

| <b>-</b>      | 表 3-17   | 復加川 殿グ イグ 巡削        | を壁の構造計画 (2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +4-=11 17 114 | 計画       | の概要                 | =¥ na lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 施設名称          | 主体構造     | 支持構造                | 説明図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 復水貯蔵タンク遮蔽壁    | 鉄筋コンクリカボ | 荷重は遮蔽壁に作用し、基礎へ伝達する。 | 基礎 (平面図)  acount with a second of the secon |

# (d) 1 号機排気筒

## イ. 構造設計

1号機排気筒は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

1号機排気筒は、地盤からの高さ120mである内径2.8mの鋼板製筒身を鋼管四角 形鉄塔で支えた鋼製鉄塔支持型排気筒である。筒身は支持点位置(EL 37.5m, EL 59.5m, EL 89.5m及びEL 113.5m)にて鉄塔と接合されている。また、作用する荷重 については、筒身及び鉄塔を介して基礎に伝達する。

1号機排気筒の構造計画を表 3-18 に示す。

#### 口. 評価方針

# (イ)構造強度評価

1号機排気筒の構造強度評価については、設計竜巻荷重及びその他考慮すべき 荷重に対し、1号機排気筒が原子炉建物、タービン建物等に倒壊による影響を及ぼ さないことを解析により確認する。評価方法としては、「5.2.1(3) 強度評価方 法」に示すとおり、FEMを用いた解析により算出した変形角を基に評価を行う。

表 3-18 1 号機排気筒の構造計画

| +L-=n b 1L      | 計                                 | 画の概要                   | =¥ n⊓ tod |  |  |
|-----------------|-----------------------------------|------------------------|-----------|--|--|
| 施設名称            | 主体構造                              | 支持構造                   | 説明図       |  |  |
| 【位置】<br>1 号機排気管 | 箭は,屋外に設 <sup>1</sup>              | 置する。                   |           |  |  |
| 1 号機排気筒         | 鋼製で筒が出て、大型を表現では、大型を表現では、大型を表現である。 | 筒身は支持点位置に<br>て鉄塔で支持する。 | 1         |  |  |

# b. 機能的影響を及ぼす施設

(a) 排気消音器 (非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)

#### イ. 構造設計

排気消音器は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

排気消音器は、鋼製の胴板を主体構造とし、原子炉建物屋上に本体を基礎ボルト及び結合ボルトで固定する。また、作用する荷重については、排気消音器を介し、 基礎ボルト及び結合ボルトに伝達する。排気消音器の構造計画を表 3-19 に示す。

#### 口. 評価方針

# (イ) 構造強度評価

排気消音器の強度評価については、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮すべき荷重に対し、基礎ボルト及び結合ボルトに生じる応力が許容応力以下であることを計算により確認する。

評価方法としては、「5.2.12(3) 強度評価方法」に示すとおり、評価式により 算出した応力を基に評価を行う。

表 3-19 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)の構造計画

|                   | 一一一          |                                                     | [1] 禹旭政/ ○/[再旦計四  |
|-------------------|--------------|-----------------------------------------------------|-------------------|
| + <del>/</del> =□ | 計画           | 可の概要                                                | -2V HII E-1       |
| 施設名称              | 主体構造    支持構造 |                                                     | 説明図               |
| 【位置】<br>排気消音器は,原  | 原子炉建物屋上に     | 設置する。                                               |                   |
| 排気消音器             | 鋼製の胴板で 構成する。 | 原子炉建物屋上<br>に設けた基礎に<br>本体を基礎ボル<br>ト及び取付ボル<br>トで固定する。 | 結合ボルト 基礎ボルト 結合ボルト |

(b) 排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク並びに潤滑油サンプタンクの付属施設)

# イ. 構造設計

排気管及びベント管は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ、以下の構造としている。

排気管及びベント管は、鋼製の配管を主体構造とし、サポート等により建物に固 定する。また、作用する荷重については、配管本体に作用する。

排気管及びベント管の構造計画を表 3-20 に示す。

# 口. 評価方針

## (イ) 構造強度評価

排気管及びベント管の強度評価については、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮すべき荷重に対し、排気管及びベント管の配管本体に生じる応力が許容応力以下であることを計算により確認する。評価方法としては、「5.2.13(3) 強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-20 排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル 発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク、ディーゼル燃料デイタンク並びに潤滑油サンプタンクの付属施設)の構造計画

|            |                 | ファマラ ジョ 病心収   | / · 111/CHTH        |
|------------|-----------------|---------------|---------------------|
| U.T. b. cl | 計画の概要           |               | <b>→</b> ¥ 111 1551 |
| 施設名称       | 主体構造            | 支持構造          | 説明図                 |
| 【位置】       |                 |               |                     |
| 排気管は,原子烷   | 戸建物屋上に設置        | きする。          |                     |
| 排気管        | 鋼製の配管で          | 配管は、支持構造      | 配管本体屋外              |
| ベント管       | 鋼製の配管で<br>構成する。 | 物により建物等に固定する。 | 支持構造物屋外             |

「3.2 機能維持の方針」に示す構造設計と作用する荷重の伝達を基に、表 3-21 に示すとおり評価対象部位を設定する。

表 3-21 竜巻の影響を考慮する施設 強度評価対象部位 (1/6)

| 分類         | 施設名称                                | 評価対象部位                                      | 評価項目     | 評価項目分類     | 選定理由                                                                                                                                 |
|------------|-------------------------------------|---------------------------------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 77 /58     | левстатт                            | 屋根スラブ(デ                                     | 衝突       | 貫通         | 電巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部に貫通が生じないことを確認するため、竜巻より防護すべき施設を内包する施設の外殻となる屋根スラブ及び外壁を評価対象部位として選定する。                       |
| 竜巻よ        |                                     | ッキプレート<br>を含む。)<br>スタッド<br>外壁<br>構造躯体<br>単物 | 構造       | 裏面剥離       | 竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部の脱落による影響が生じないことを確認するため、<br>竜巻より防護すべき施設を内包する施設の外殻となる屋根スラブ及び外壁<br>を評価対象部位として選定する。          |
| より防護すべ     | 原子炉建物<br>タービン建物<br>廃棄物処理建物<br>制御室建物 |                                             | 強度       | 転倒及び<br>脱落 | 竜巻より防護すべき施設を内包する施設の外殻となる部分への竜巻による<br>荷重の作用を考慮し、当該部の転倒及び脱落が生じないことを確認するため、構造躯体、屋根スラブ及び屋根スラブを固定するスタッドを評価対象<br>部位として選定する。                |
|            |                                     | 扉                                           | 衝突       | 貫通         | 竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部に貫通が生じないことを確認するため、竜巻より<br>防護すべき施設を内包する施設の外殻となる竜巻の影響に対する防護を期<br>待する扉の扉板を評価対象部位として選定する。    |
| き施設を内包する施設 |                                     |                                             | 構造<br>強度 | 転倒及び<br>脱落 | 竜巻より防護すべき施設を内包する施設の外郭となる部分への竜巻の気圧<br>差による荷重の作用を考慮し、当該部の転倒及び脱落が生じないことを確<br>認するため、竜巻の影響に対する防護を期待する扉の扉板を固定する部位<br>(カンヌキ)を評価対象部位として選定する。 |
| (建物等)      |                                     | 元 歴史 スラブ                                    | 衝突       | 貫通         | 竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部に貫通が生じないことを確認するため、外部に露出している部位であるスラブを評価対象部位として選定する。                                       |
|            | ディーゼル燃料<br>貯蔵タンク室<br>Bーディーゼル        | ,,,,                                        | 構造<br>強度 | 裏面剥離       | 竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部の脱落による影響が生じないことを確認するため、<br>外部に露出している部位であるスラブを評価対象部位として選定する。                              |
|            | 燃料貯蔵タンク<br>格納槽                      | 鋼製蓋                                         | 衝突       | 貫通         | 竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部に貫通が生じないことを確認するため、竜巻の影響に対する防護を期待する鋼製蓋を評価対象部位として選定する。                                     |

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位 (2/6)

|   | 分類          | 施設名称                                                                                                       | 評価対象部位                    | 評価項目 | 評価項目分類          | 選定理由                                                                                                                                                                                                      |
|---|-------------|------------------------------------------------------------------------------------------------------------|---------------------------|------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |             |                                                                                                            | 外殻を構成する<br>部材             | 衝突   | 貫入              | ポンプ据付面より上部の全方向からの飛来物を考慮し、外殻に面する部材<br>に貫通が生じないことを確認するため、ポンプを構成する部材のうち外殻<br>に面する部材を評価対象部位として選定する。                                                                                                           |
|   | 屋外の         | 原子炉補機海水ポンプ及び高圧炉心<br>スプレイ補機海水                                                                               | 基礎ボルト<br>取付ボルト<br>原動機フレーム | 構造強度 | 引張<br>せん断<br>曲げ | 竜巻の風圧力による荷重の影響を受けるポンプ据付面より上部の各部位<br>のうち,支持断面積の小さな部位に大きな応力が生じるため,基礎ボルト,<br>各部取付ボルト及び原動機フレームを評価対象部位として選定する。                                                                                                 |
|   | 外           | ポンプ                                                                                                        | 軸受部                       | 機能維持 | 接触              | 外殻に面する部分への竜巻による荷重の作用を考慮し、施設の外殻を構成する部材の変形によって、ポンプの動作に影響がないことを確認するため、動的機能維持に必要な軸受部を評価対象部位として選定する。                                                                                                           |
| 1 | 部事象防護対象施設(建 | 原子炉補機海水ス<br>トレーナ及び高圧<br>炉心スプレイ補機<br>海水ストレーナ 基礎ボルト 構造強度 せん断                                                 |                           |      |                 | 設計竜巻による荷重は、胴及び支持脚を介して、基礎ボルトに作用する。<br>これらのうち、胴及び支持脚と比較し、断面積が小さく、発生応力が大き<br>くなる基礎ボルトを評価対象部位として選定する。                                                                                                         |
|   | と物等を除く)     | 非常用ディーゼル<br>発電設備Aーディ<br>イーディ<br>・ゼル燃料移送ポ<br>ンプ及び高圧炉イ<br>スプレイ系ディー<br>ゼル発電設備ディー<br>・ゼル燃料移送ポ<br>・ゼル燃料<br>・プンプ | 耐圧部                       | 構造強度 | 変形              | 非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプは、竜巻防護対策設備内に設置していることから、竜巻の風圧力による荷重は直接受けないが、竜巻の気圧差による荷重が耐圧部に作用するため、非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの耐圧部を評価対象部位として選定する。 |

# 表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位 (3/6)

| 分類          | 施設名称                                                                      | 評価対象部位    | 評価項目 | 評価項目分類 | 選定理由                                                                                                                                                      |
|-------------|---------------------------------------------------------------------------|-----------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 屋外          | 原子炉補機海水系配管及び<br>弁並びに高圧炉心スプレイ                                              | 外殻を構成する部材 | 衝突   | 貫入     | 配管の全方向からの飛来物を考慮し、貫入により施設の<br>機能が喪失する可能性がある箇所として配管の最小肉厚<br>部を選定する。                                                                                         |
| の外部事象防護対    | 補機海水系配管及び弁                                                                | 配管本体      | 構造強度 | 曲げ     | 竜巻の風圧力による荷重及び気圧差による荷重は、配管<br>仕様と支持間隔による受圧面積に応じて配管本体に作用<br>するため、配管本体を評価対象部位として選定する。                                                                        |
| 象施設(建物等を除く) | 非常用ディーゼル発電設備<br>(燃料移送系)配管及び弁<br>並びに高圧炉心スプレイ系<br>ディーゼル発電設備(燃料<br>移送系)配管及び弁 | 配管本体      | 構造強度 | 一次一般膜  | 非常用ディーゼル発電設備(燃料移送系)配管及び弁<br>並びに高圧炉心スプレイ系ディーゼル発電設備(燃料<br>移送系)配管及び弁は、建物等内に設置していることか<br>ら竜巻の風圧力による荷重は直接受けないが、竜巻の気<br>圧差による荷重が考えられるため、配管本体を評価対象<br>部位として選定する。 |
|             | 排気筒                                                                       | 筒身及び鉄塔    | 構造強度 | 変形角    | 設計竜巻による荷重は、筒身及び鉄塔に作用するため、<br>筒身及び鉄塔を評価対象部位として選定する。                                                                                                        |

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位(4/6)

|                     |                                    | - 1              | 00 79 6 | で 今 思り つ 肥 政 | 併足與及計劃对象即位(4/0/                                                                                                                                               |
|---------------------|------------------------------------|------------------|---------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 分類                  | 施設名称                               | 評価対象部位           | 評価項目    | 評価項目分類       | 選定理由                                                                                                                                                          |
| 外                   | ダンパ<br>(換気空調設備)                    | 外板<br>羽根<br>シャフト | 構造強度    | 曲げせん断        | 換気空調設備のダンパは建物内に設置されていることから竜巻の風圧<br>力による荷重は直接受けないが、竜巻の気圧差による荷重によって風<br>路である外板に作用する。また、閉止しているダンパには羽根及びシャフトに対しても気圧差による荷重が作用することから、外板、羽根<br>及びシャフトを評価対象部位として選定する。 |
| 外気と繋がって             | 角ダクト(換気空調<br>設備)及び丸ダクト<br>(換気空調設備) | ダクト鋼板            | 構造強度    | 曲げ,座屈        | 換気空調設備のダクトは、建物内に設置していることから竜巻の風圧<br>力による荷重は直接受けないが、竜巻の気圧差による荷重が考えられ<br>るため、ダクト本体の鋼板部を評価対象部位として選定する。                                                            |
| いる屋内の外              | 隔離弁<br>(換気空調設備)                    | 弁箱<br>弁体<br>弁棒   | 構造強度    | 変形           | 換気空調設備の隔離弁は、建物内に設置していることから竜巻の風圧<br>力による荷重は直接受けないが、竜巻の気圧差による荷重が耐圧部に<br>作用することから、隔離弁の閉止性を確認するため耐圧部を評価対象<br>部位として選定する。                                           |
| 事象防護                | 送風機 (換気空調設備) ケーシング 構造強度 曲げ         |                  |         |              | 換気空調設備の送風機は、建物内に設置していることから竜巻の風圧<br>力による荷重は直接受けないが、竜巻の気圧差による荷重が考えられ<br>るため、ケーシングを評価対象部位として選定する。                                                                |
| 象施設                 | 処理装置<br>(換気空調設備)                   | ケーシング            | 構造強度    | 曲げ           | 換気空調設備の処理装置は、建物内に設置していることから竜巻の風<br>圧力による荷重は直接受けないが、竜巻の気圧差による荷重が考えら<br>れるため、ケーシングを評価対象部位として選定する。                                                               |
| と繋がっている屋内の外部事象防護対象施 | 非常用ガス処理系配管及び弁                      | 配管本体             | 構造強度    | 一次一般膜        | 非常用ガス処理系配管及び弁は、建物内に設置していることから竜巻<br>の風圧力による荷重は直接受けないが、竜巻の気圧差による荷重が考<br>えられるため、配管本体を評価対象部位として選定する。                                                              |

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位 (5/6)

| 分類      | 施設名称       | 評価対象部位 | 評価項目 | 評価項目<br>分類 | 選定理由                                                                                              |
|---------|------------|--------|------|------------|---------------------------------------------------------------------------------------------------|
| 外部事     | 1号機原子炉建物   | 構造躯体   | 構造強度 | 変形         | 竜巻より防護すべき施設を内包する施設への倒壊に<br>よる波及的影響を考慮し、1号機原子炉建物の構造<br>躯体である耐震壁及び鉄骨フレームを評価対象部位<br>として選定する。         |
| 事象防護対象施 | 1号機タービン建物  | 構造躯体   | 構造強度 | 変形         | 竜巻より防護すべき施設を内包する施設への倒壊及<br>び接触による波及的影響を考慮し、1号機タービン<br>建物の構造躯体である耐震壁を評価対象部位として<br>選定する。            |
| 設に波及的   | 1号機廃棄物処理建物 | 構造躯体   | 構造強度 | 変形         | 竜巻より防護すべき施設を内包する施設への倒壊及<br>び接触による波及的影響を考慮し,1号機廃棄物処理<br>建物の構造躯体である耐震壁を評価対象部位として<br>選定する。           |
| 影響を及ぼす可 | 排気筒モニタ室    | 構造躯体   | 構造強度 | 変形         | 電巻より防護すべき施設を内包する施設への倒壊及<br>び接触による波及的影響を考慮し、排気筒モニタ室<br>の構造躯体である耐震壁を評価対象部位として選定<br>する。              |
| 可能性がある施 | 1 号機排気筒    | 筒身及び鉄塔 | 構造強度 | 変形角        | 竜巻より防護すべき施設を内包する施設への倒壊及<br>び接触による波及的影響を考慮し、設計竜巻による荷<br>重は、筒身及び鉄塔に作用するため、筒身及び鉄塔を評<br>価対象部位として選定する。 |
| 設       | 復水貯蔵タンク遮蔽壁 | 構造躯体   | 構造強度 | 断面力        | 竜巻より防護すべき施設を内包する施設への倒壊及<br>び接触による波及的影響を考慮し、復水貯蔵タンク<br>遮蔽壁の構造躯体である遮蔽壁を評価対象部位とし<br>て選定する。           |

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位 (6/6)

| 分類             | 施設名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 評価対象部位         | 評価項目 | 評価項目分類 | 選定理由                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|--------|-----------------------------------------------------------------------------------------|
| 外部事象防護対象施設に波及的 | 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル発電設備ディーゼル機関の付属施設)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 結合ボルト<br>基礎ボルト | 構造強度 | 引張せん断  | 消音器に竜巻の風圧力による荷重が作用した際に,<br>本体及び架台を支持するための主要な支持部材で<br>ある結合ボルト及び基礎ボルトを評価対象部位と<br>して選定とする。 |
| 影響を及ぼす可能性のある施設 | 排気管(非常用ディルと (非常用ディルル ) によって (非常用ディン ) によって (非常に ) によって (非常に ) になって (非常に ) になって (非ので ) になって (まれい ) になっ | 配管本体           | 構造強度 | 曲げ     | 排気管及びベント管の機能を維持するために,主要な構成部材である配管本体を評価対象部位として<br>選定とする。                                 |

## 4. 荷重及び荷重の組合せ並びに許容限界

竜巻の影響を考慮する施設の強度評価に用いる荷重及び荷重の組合せを,「4.1 荷重及 び荷重の組合せ」に,許容限界を「4.2 許容限界」に示す。

## 4.1 荷重及び荷重の組合せ

竜巻の影響を考慮する施設の強度評価にて考慮する荷重及び荷重の組合せは、VI -1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」を踏まえ、以下のとおり設定する。

## (1) 荷重の種類

a. 常時作用する荷重 (Fa)

常時作用する荷重は、持続的に生じる荷重であり、自重、水頭圧及び上載荷重とする。

b. 設計竜巻による荷重 (W<sub>T</sub>)

設計竜巻による荷重は、設計竜巻の以下の特性を踏まえ、風圧力による荷重、気 圧差による荷重及び設計飛来物による衝撃荷重とする。設計竜巻の特性値を表 4-1 に示す。

・竜巻の最大気圧低下量(ΔPmax)(N/m²)

 $\Delta$  P m a x =  $\rho$  • V R m  $^2$ 

 $\rho$ : 空気密度(kg/m<sup>3</sup>)

V R m: 竜巻の最大接線風速 (m/s)

・竜巻の最大接線風速 (VRm) (m/s)

 $V_{Rm} = V_D - V_T$ 

VD: 竜巻の最大風速(m/s)

VT: 竜巻の移動速度(m/s)

・竜巻の移動速度 (VT) (m/s)

 $V_T = 0.15 \cdot V_D$ 

VD: 竜巻の最大風速(m/s)

表 4-1 設計竜巻の特性値

| 最大風速           | 移動速度           | 最大接線風速          | 最大気圧低下量   |
|----------------|----------------|-----------------|-----------|
| V <sub>D</sub> | V <sub>T</sub> | V <sub>Rm</sub> | Δ P m a x |
| (m/s)          | (m/s)          | (m/s)           | (N/m²)    |
| 92             | 14             | 78              | 7500      |

## (a) 風圧力による荷重 (Ww)

風圧力による荷重は、竜巻の最大風速による荷重である。

竜巻による最大風速は、一般的には水平方向の風速として設定されるが、鉛直 方向の風圧力に対して脆弱と考えられる竜巻の影響を考慮する施設が存在する 場合には、鉛直方向の最大風速等に基づいて算出した鉛直方向の風圧力について も考慮した設計とする。

風圧力による荷重は、施設の形状により変化するため、施設の部位ごとに異なる。そのため、各施設及び評価対象部位に対して厳しくなる方向からの風を想定し、各施設の部位ごとに荷重を設定する。

ガスト影響係数(G)は設計竜巻の風速が最大瞬間風速をベースとしていること等から,施設の形状によらず竜巻影響評価ガイドを参照して,G=1.0とする。

空気密度( $\rho$ )は「REGULATORY GUIDE 1.76, DESIGN-BASIS TORNADO AND TORNADOMISSILES FOR NUCLEAR POWER PLANTS, Revision1」(米国原子力規制委員会)より  $\rho=1.226$ kg/m³とする。

設計用速度圧については施設の形状に影響を受けないため,設計竜巻の設計用速度圧(q)は施設の形状によらず q = 5189N/m²と設定する。

# (b) 気圧差による荷重 (WP)

外気と隔離されている区画の境界部など,気圧差による圧力影響を受ける設備 及び竜巻より防護すべき施設を内包する施設の建物の外壁,屋根等においては, 竜巻による気圧低下によって生じる施設等の内外の気圧差による荷重が発生す る。

閉じた施設(通気がない施設)については、この圧力差により閉じた施設の隔壁に外向きに作用する圧力が生じるとみなし設定することを基本とする。

部分的に閉じた施設(通気がある施設等)については、施設の構造健全性を評価する上で厳しくなるよう作用する荷重を設定する。

気圧差による荷重は、施設の形状により変化するため、施設の部位ごとに異なる。そのため、各施設の部位ごとに荷重を算出する。

最大気圧低下量( $\Delta$  P max)は空気密度及び最大接線風速から, $\Delta$  P max = 7500N/m<sup>2</sup> とする。

# (c) 設計飛来物による衝撃荷重 (W<sub>M</sub>)

設計飛来物である鋼製材の衝突による影響が大きくなる向きで外部事象防護 対象施設等に衝突した場合の衝撃荷重を算出する。

衝突評価においては,設計飛来物の衝突による影響が大きくなる向きで衝突することを考慮して評価を行う。

竜巻防護ネット等を設置している箇所には、竜巻防護ネット等を設置していること、また、発電所構内においては、資機材等について、適切に管理する運用としていることから、ネットの網目寸法相当等の砂利を飛来物として選定する。計飛来物の寸法、質量及び飛来速度を表 4-2 に示す。設計飛来物の飛来速度については、設置(変更)許可を受けたとおり設定する。

表 4-2 設計飛来物の諸元

| 14                  |                             | 4476                           |
|---------------------|-----------------------------|--------------------------------|
|                     | 鋼製材                         | 砂利                             |
| 寸 法 (m)             | $4.2 \times 0.3 \times 0.2$ | $0.04 \times 0.04 \times 0.04$ |
| 質 量 (kg)            | 135                         | 0. 20                          |
| 水平方向の<br>飛来速度 (m/s) | 51                          | 54                             |
| 鉛直方向の<br>飛来速度 (m/s) | 34                          | 36                             |

## c. 運転時に作用する荷重 (F<sub>p</sub>)

運転時に作用する荷重として,配管等にかかる内圧やポンプのスラスト荷重等の運転時荷重とする。

#### (2) 荷重の組合せ

竜巻の影響を考慮する施設の設計に用いる竜巻荷重は、気圧差による荷重(WP)を考慮した荷重WT1並びに設計竜巻の風圧力による荷重(WW)、気圧差による荷重(WP)及び設計飛来物による衝撃荷重(WM)を組み合わせた複合荷重WT2を以下のとおり設定する。

 $W_{T1} = W_P$ 

 $W_{T2} = W_W + 0.5 \cdot W_P + W_M$ 

竜巻の影響を考慮する施設にはWT1及びWT2の両荷重をそれぞれ作用させる。各施設の荷重の組合せについては,施設の設置状況及び構造を踏まえ適切な組合せを設定する。施設分類ごとの荷重の組合せの考え方を以下に示す。

# a. 竜巻より防護すべき施設を内包する施設 (表 4-3 (1/4))

設計竜巻による荷重とこれに組み合わせる荷重として、風圧力による荷重、気圧差による荷重、設計飛来物による衝撃荷重及び常時作用する荷重の組合せを基本とする。なお、ディーゼル燃料貯蔵タンク室及びBーディーゼル燃料貯蔵タンク格納槽について、屋外に面している鋼製蓋には隙間等があり、閉じた施設ではないため、気圧差による荷重は考慮しない。

#### b. 屋外の外部事象防護対象施設(表 4-3 (2/4))

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ,原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ並びに原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁に関しては,風圧力による荷重,気圧差による荷重及び常時作用する荷重の組合せを基本とする。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ,原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ並びに原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁には運転時にスラスト荷重や内圧等が作用するため,運転時に作用する荷重も考慮する。

非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ非常用ディーゼル発電設備ディーゼル燃料移送ポンプ並びに非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発

電設備(燃料移送系)配管及び弁に関しては、気圧差による荷重、常時作用する荷重の組合せを基本とする。非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ非常用ディーゼル発電設備ディーゼル燃料移送ポンプ並びに非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁には、運転時に内圧が作用するため、運転時に作用する荷重も考慮する。

竜巻防護ネット又は竜巻防護鋼板 (穴あき) により防護される原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ,非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ非常用ディーゼル発電設備ディーゼル燃料移送ポンプ,原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディーゼル発電設備 (燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備 (燃料移送系)配管及び弁に関しては,竜巻防護ネット等を通過する飛来物による衝撃荷重も考慮する。

排気筒に関しては、風圧力による荷重、設計飛来物による衝撃荷重及び常時作用する荷重の組合せを基本とする。排気筒は屋外施設であり閉じた施設ではないため、気圧差による荷重を考慮しない。運転時に作用する荷重については、気圧差同様考慮しない。筒身及び排気筒(非常用ガス処理系用)に関しては、設計飛来物の衝突により貫通することを考慮しても、閉塞することはなく、飛来物の衝突により貫通した場合は速やかに補修する運用としていることから、設計竜巻による荷重とこれに組み合わせる荷重に衝撃荷重を考慮しない。

c. 外気と繋がっている屋内の外部事象防護対象施設(表 4-3 (3/4))

外気と繋がっている屋内の施設である換気空調設備のダンパ,角ダクト,丸ダクト,隔離弁,送風機及び処理装置は建物内に設置しているため,風圧力による荷重及び設計飛来物による衝撃荷重は考慮しないが,外気と繋がっているために施設に作用する気圧差による荷重と常時作用する荷重を組み合わせることを基本とする。

運転時の内圧が給気側は負圧,排気側は正圧となるが,保守性を考慮し気圧差による荷重と同等の向きに作用するものとして,運転時に作用する荷重を組み合わせる。なお,ダンパ及び隔離弁については閉止していることから,運転時に作用する荷重は考慮しない。また,送風機の自重は内圧荷重に比べ十分小さく,自重を考慮しない。

d. 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設 (表 4-3 (4/4))

機械的影響を及ぼす可能性がある施設のうち、1号機原子炉建物、1号機ター

ビン建物,1号機廃棄物処理建物,復水貯蔵タンク遮蔽壁及び排気筒モニタ室に 関しては,風圧力による荷重,気圧差による荷重,設計飛来物による衝撃荷重及 び常時作用する荷重の組合せを基本とする。運転時に作用する荷重については作 用しないため考慮しない。

1号機排気筒に関しては、屋外施設であり閉じた施設ではないため、風圧力に よる荷重、設計飛来物による衝撃荷重及び常時作用する荷重の組合せを基本とす る。運転時に作用する荷重については作用しないため、気圧差同様考慮しない。

機能的影響を及ぼす可能性がある施設である排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設),排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク及び潤滑油サンプタンクの付属施設)は、風圧力による荷重及び常時作用する荷重の組合せを基本とする。

排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設),排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク及び潤滑油サンプタンクの付属施設)は排気機能が健全であれば良く,仮に設計飛来物による衝撃荷重により貫通しても,その貫通箇所又は本来の排気箇所から排気されるため,設計竜巻による荷重とこれに組み合わせる荷重に衝撃荷重を考慮しない。

また、排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)は屋外施設であり閉じた施設ではないため気圧差による荷重を考慮しない。

排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク及び潤滑油サンプタンクの付属施設)は,運転時に内圧が作用するため,運転時に作用する荷重も考慮する。

上記の施設分類ごとの荷重の組合せの考え方を踏まえ,各評価対象施設における評価項目ごとの荷重の組合せを表 4-3 に示す。

表 4-3 竜巻の影響を考慮する施設の荷重の組合せ(1/4)

|                   |                                    |      |                  |     |      | <del>花</del>    | <b>扩</b> 重                |                            |                            |
|-------------------|------------------------------------|------|------------------|-----|------|-----------------|---------------------------|----------------------------|----------------------------|
| <b>八 朱</b> 石      | 改在紅灰の牡色物乳                          | 評価   | 常時作用する荷重<br>(Fa) |     |      | 風圧力による          | 気圧差に                      | 飛来物によ                      | 運転時に作                      |
| 分類                | 強度評価の対象施設                          | 項目   | 自重               | 水頭圧 | 上載荷重 | 荷重<br>(Ww)      | よる荷重<br>(W <sub>P</sub> ) | る衝撃荷重<br>(W <sub>M</sub> ) | 用する荷重<br>(F <sub>p</sub> ) |
| 竜巻より              | 原子炉建物 タービン建物                       | 衝突   | O*1              | _   | O*1  | O*1             | O*1                       | 0                          | _                          |
| が護すべき             | 廃棄物処理建物<br>制御室建物                   | 構造強度 | O*2              | _   | O*2  | ○* <sup>2</sup> | ○*2                       | 0                          | _                          |
| (建物等)             | ディーゼル燃料貯蔵タンク室<br>Bーディーゼル燃料貯蔵タンク格納槽 | 衝突   | Ι                | -   | _    | -               | -                         | 0                          | _                          |
| (建物等) べき施設を内包する施設 |                                    | 構造強度 | I                | I   | _    | ı               | _                         | 0                          | _                          |

(○:考慮する荷重を示す。)

注記\*1:「設計飛来物の貫通を生じない最小厚さであること」の確認においては考慮しない。

\*2:「設計飛来物の裏面剥離を生じない最小厚さであること」の確認においては考慮しない。

# S2 補 VI-3-別添 1-1 R0

表 4-3 竜巻の影響を考慮する施設の荷重の組合せ(2/4)

|             | <b>双</b> 4 3 1                                                     |      |                  | <u>,</u> |      | 1 (2/4)    | 节 重                       |                            |                            |
|-------------|--------------------------------------------------------------------|------|------------------|----------|------|------------|---------------------------|----------------------------|----------------------------|
| 分類          | 強度評価の対象施設                                                          | 評価   | 常時作用する荷重<br>(Fa) |          |      | 風圧力による     | 気圧差に                      | 飛来物によ                      | 運転時に作                      |
| 刀規          | 近次計画の入り家が良い                                                        | 項目   | 自重               | 水頭圧      | 上載荷重 | 荷重<br>(Ww) | よる荷重<br>(W <sub>P</sub> ) | る衝撃荷重<br>(W <sub>M</sub> ) | 用する荷重<br>(F <sub>P</sub> ) |
|             |                                                                    | 衝突   | _                | _        | _    | _          | _                         | 0                          | _                          |
| 屋<br>外      | 原子炉補機海水ポンプ及び高圧炉心スプレ<br>イ補機海水ポンプ                                    | 構造強度 | 0                | _        | _    | 0          | 0                         | _                          | 0                          |
| 外<br>の<br>外 | イ 補機海水ボンブ                                                          | 機能維持 | _                | _        | 1    | 0          | 0                         | _                          | 0                          |
| (部事象防護対     | 原子炉補機海水ストレーナ及び高圧炉心ス<br>プレイ補機海水ストレーナ                                | 構造強度 | 0                | _        |      | 0          | 0                         | _                          | 0                          |
| 防護対         | 原子炉補機海水系配管及び弁並びに高圧炉                                                | 衝突   | _                | _        |      | _          | _                         | 0                          | _                          |
| 象施設         | 心スプレイ補機海水系配管及び弁                                                    | 構造強度 | 0                | _        | 1    | 0          | 0                         | _                          | 0                          |
| (建物等を除      | 非常用ディーゼル発電設備(燃料移送系)<br>配管及び弁並びに高圧炉心スプレイ系ディ<br>ーゼル発電設備(燃料移送系)配管及び弁  | 構造強度 | _                | _        | _    | _          | 0                         | _                          | 0                          |
| を除く)        | 非常用ディーゼル発電設備Aーディーゼル<br>燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポン<br>プ | 構造強度 | _                | _        | _    | _          | 0                         | -                          | 0                          |
|             | 排気筒                                                                | 構造強度 | 0                | _        | 0    | 0          | _                         | 0                          | _                          |

(○:考慮する荷重を示す。)

表 4-3 竜巻の影響を考慮する施設の荷重の組合せ (3/4)

|           |               |      |                  |     |      | 1           | 苛 重                         |                            |                            |
|-----------|---------------|------|------------------|-----|------|-------------|-----------------------------|----------------------------|----------------------------|
| 分類        | 強度評価の対象施設     | 評価   | 常時作用する荷重<br>(Fa) |     |      | 風圧力によ       | 気圧差に                        | 飛来物によ                      | 運転時に作                      |
| 刀類        | 近次計画が外外側段     | 項目   | 自重               | 水頭圧 | 上載荷重 | る荷重<br>(Ww) | よる <mark>荷重</mark><br>(W p) | る衝撃荷重<br>(W <sub>M</sub> ) | 用する荷重<br>(F <sub>p</sub> ) |
| 外気と繋が     | ダンパ (換気空調設備)  | 構造強度 | 0                | _   |      | _           | 0                           | _                          | _                          |
| 繋がっ       | 角ダクト (換気空調設備) | 構造強度 | 0                | _   |      | _           | 0                           | _                          | 0                          |
| ている日      | 丸ダクト (換気空調設備) | 構造強度 | 0                | _   | l    | _           | 0                           | _                          | 0                          |
| る屋内の外     | 隔離弁(換気空調設備)   | 構造強度 | 0                | _   |      | _           | 0                           | _                          | _                          |
| 部事象       | 送風機 (換気空調設備)  | 構造強度 | _                | _   |      |             | 0                           | _                          | 0                          |
| 外部事象防護対象施 | 処理装置 (換気空調設備) | 構造強度 | _                | _   | _    | _           | 0                           | _                          | 0                          |
| 施設        | 非常用ガス処理系配管及び弁 | 構造強度 | _                | _   | _    | _           | 0                           | _                          | 0                          |

(○:考慮する荷重を示す。)

# S2 補 VI-3-別添 1-1 R0

表 4-3 竜巻の影響を考慮する施設の荷重の組合せ (4/4)

|                                                     |                                                   |      | 荷重 |            |      |    |             |                           |                            |                            |  |
|-----------------------------------------------------|---------------------------------------------------|------|----|------------|------|----|-------------|---------------------------|----------------------------|----------------------------|--|
| 分類                                                  | 強度評価の対象施設                                         | 評価   | 常印 | 寺作用<br>( F |      | 扩重 | 風圧力によ       | 気圧差に                      | 飛来物によ                      | 運転時に作                      |  |
| 刀類                                                  | が成立に関める。                                          | 項目   | 自重 | 水頭圧        | 上載荷重 | 土圧 | る荷重<br>(Ww) | よる荷重<br>(W <sub>P</sub> ) | る衝撃荷重<br>(W <sub>M</sub> ) | 用する荷重<br>(F <sub>p</sub> ) |  |
| 外部事象防護                                              | 1 号機原子炉建物<br>1 号機タービン建物<br>1 号機廃棄物処理建物<br>排気筒モニタ室 | 構造強度 | 0  | _          | 0    | -  | 0           | 0                         | 0                          | _                          |  |
| 外部事象防護対象施設に波及的                                      | 1 号機排気筒<br>復水貯蔵タンク遮蔽壁                             | 構造強度 | 0  | _          | 0    | 1  | 0           | -                         | 0                          | _                          |  |
| ルカック としま とり という | 消音器                                               | 構造強度 | 0  | _          |      | l  | 0           | _                         | _                          | _                          |  |
| 影響を及ぼす可能                                            | 排気管及びベント管                                         | 構造強度 | 0  | _          | _    | _  | 0           | 0                         | _                          | 0                          |  |

(○:考慮する荷重を示す。)

# (3) 荷重の算定方法

「4.1(1) 荷重の種類」で設定している荷重の算出式を以下に示す。

a. 記号の定義

荷重の算出に用いる記号を表 4-4 に示す。

表 4-4 荷重の算出に用いる記号

| 記号             | 単 位              | 定義                                        |
|----------------|------------------|-------------------------------------------|
| A              | $\mathrm{m}^2$   | 施設の受圧面積                                   |
| С              | 1                | 風力係数 (施設の形状や風圧力が作用する部位 (屋根,壁等) に応じて設定する。) |
| G              |                  | ガスト影響係数                                   |
| g              | $m/s^2$          | 重力加速度                                     |
| Н              | N                | 自重による荷重                                   |
| m              | kg               | 質量                                        |
| Δ Р m а х      | $\mathrm{N/m^2}$ | 最大気圧低下量                                   |
| q              | $\mathrm{N/m^2}$ | 設計用速度圧                                    |
| V d            | m/s              | 設計竜巻の風速                                   |
| V R m          | m/s              | 設計竜巻の最大接線風速                               |
| W <sub>M</sub> | N                | 設計飛来物による衝撃荷重                              |
| W P            | N                | 設計竜巻の気圧差による荷重                             |
| Ww             | N                | 設計竜巻の風圧力による荷重                             |
| ρ              | ${\rm kg/m^3}$   | 空気密度                                      |

# b. 自重による荷重の算出

自重による荷重は以下のとおり計算する。

 $H = m \cdot g$ 

# c. 竜巻による荷重の算出

(a) 風圧力による荷重 (Ww)

風圧力による荷重は、「建築基準法施行令」及び「建築物荷重指針・同解説」 ((社) 日本建築学会)に準拠して、次式のとおり算出する。

$$q = \frac{1}{2} \rho V_D^2$$

(b) 気圧差による荷重 (WP)

気圧差による荷重は, 次式のとおり算出する。

$$W_P = \Delta P_{max} \cdot A$$
 $\subset \subset \mathcal{C},$ 

$$\Delta P_{max} = \rho \cdot V_{Rm}^2$$

(c) 設計飛来物による衝撃荷重 (W<sub>M</sub>)

設計飛来物による衝撃荷重は,設計飛来物が衝突する施設,評価対象部位及び 評価方法に応じて適切に設定する必要があるため,個別計算書にその算出方法を 含めて記載する。

評価条件を表 4-5 に示す。

表 4-5 評価条件

| V D (m/s) | $ ho$ $({ m kg/m^3})$ | G<br>(-) | ${ m q} \ ({ m N/m^2})$ | $V_{Rm}$ (m/s) | $\Delta$ P m a x $(N/m^2)$ |
|-----------|-----------------------|----------|-------------------------|----------------|----------------------------|
| 92        | 1. 226                | 1. 0     | 5189                    | 78             | 7500                       |

### 4.2 許容限界

許容限界は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」で設定している構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価項目ごとに設定する。

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた、評価項目ごとの許容限界を表 4-8 に示す。

各施設の許容限界の詳細は,個別計算書で評価対象部位の損傷モードを踏まえ評価項目を選定し,評価項目ごとに許容限界を定める。

「原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG 4 6 0 1・補 -1984」(日本電気協会),「原子力発電所耐震設計技術指針 JEAG 4 6 0 1 -1987」(日本電気協会)及び「原子力発電所耐震設計技術指針 JEAG 4 6 0 1 -1991 追補版」(日本電気協会)(以下「JEAG 4 6 0 1」という。)を準用できる施設については,JEAG 4 6 0 1 に基づき「発電用原子力設備規格 設計・建設規格 JSME SNC 1 -2005/2007」(日本機械学会)(以下「JSME」という。)の付録材料図表及びJISの材料物性値により許容限界を算出している。その他施設や衝撃荷重のみを考慮する施設については、JSMEや既往の実験式に基づき許容限界を設定する。

ただし、JSMEの適用を受ける機器であって、供用状態に応じた許容値の規定がJSMEにないものは機能維持の評価方針を考慮し、JEAG4601に基づいた許容限界を設定する。

### 4.2.1 建物·構造物

- (1) 許容限界の設定
  - a. 衝突評価
    - (a) 貫通 (表 4-8 (1/7))

建物・構造物の衝突による貫通評価においては、設計飛来物による衝撃荷重に対し、設計飛来物が竜巻より防護すべき施設の外殻を構成する部材を貫通しない設計とするために、設計飛来物の貫通を生じない最小厚さ以上であることを計算により確認する評価方針としていることを踏まえ、竜巻より防護すべき施設を内包する施設の外殻を構成する部材の最小厚さを許容限界として設定する。

鋼製構造物の衝突による貫通評価においては,設計飛来物に対する必要最小 肉厚が部材の厚さに収まることを計算により確認する評価方針としているこ とを踏まえ、部材の最小厚さを許容限界として設定する。

# (b) ひずみ (表 4-8 (1/7))

建物・構造物の衝突による貫通評価のうち、設計飛来物の貫通を生じない最

小厚さ以上であることの確認ができない建物の屋根スラブにおいては、設計飛来物による衝撃荷重に対し、屋根スラブの鉄筋が終局状態に至るようなひずみを生じないことを解析により確認する評価方針としていることを踏まえ、鉄筋の破断ひずみを許容限界として設定する。鉄筋の破断ひずみは、JIS規格値/TF(TF=2.0)を許容限界とする。

#### b. 構造強度評価

#### (a) 裏面剥離 (表 4-8 (1/7))

設計飛来物による衝撃荷重に対し、竜巻より防護すべき施設を内包する施設の外殻を構成する部材自体の脱落を生じない設計とするために、裏面剥離によるコンクリート片の飛散が生じない最小厚さ以上であることを計算により確認する評価方針としていることを踏まえ、施設の最小部材厚さを許容限界として設定する。また、許容限界を超えた場合は、裏面剥離に至るようなひずみを生じないことを解析により確認する評価方針としていることを踏まえ、鉄筋又はデッキプレートの破断ひずみを許容限界として設定する。鉄筋又はデッキプレートの破断ひずみは、JIS規格値/TF(TF=2.0)を許容限界とする。

# (b) 転倒及び脱落 (表 4-8 (1/7), (2/7))

鉄筋コンクリート造構造物の転倒及び脱落の評価については、設計竜巻荷重及びその他考慮すべき荷重に対し、竜巻より防護すべき施設を内包する施設の外殻を構成する部材自体の転倒及び脱落を生じない設計とするために、構造躯体のうち耐震壁に終局状態に至るようなひずみが生じないことを計算により確認する評価方針としていることを踏まえ、コンクリートの終局せん断ひずみに基づく制限値を許容限界として設定する。制限値は  $J \, E \, A \, G \, 4 \, 6 \, 0 \, 1 \, C$  に基づき  $2.0 \times 10^{-3}$  とする。

また、屋根スラブに生じる応力については、「鉄筋コンクリート構造計算規準・同解説 一許容応力度設計法一」に基づく短期許容応力度を許容限界とし、屋根スラブのスタッドボルトにおいては、「各種合成構造設計指針・同解説」に基づく許容耐力を許容限界として設定する。

扉の転倒及び脱落の評価については、設計竜巻の気圧差による荷重及びその 他考慮すべき荷重に対し、施設の外殻を構成する部材自体の転倒及び脱落を生 じない設計とするために、扉支持部材の破断による転倒及び脱落が生じないこ とを計算により確認する評価方針としていることを踏まえ、「鋼構造設計規準 一許容応力度設計法一」に基づく短期許容応力度を許容限界として設定する。

### (c) 構造躯体の変形 (表 4-8 (6/7))

外部事象防護対象に波及的影響を及ぼす可能性のある施設については,設計 竜巻による荷重及びその他考慮すべき荷重に対し,1号機原子炉建物,1号機 タービン建物,1号機廃棄物処理建物及び排気筒モニタ室が倒壊しないことを 解析により確認する評価方針としていることを踏まえ,耐震壁についてはコンクリートの終局点に対応するせん断ひずみ,鉄骨フレームについては「建築基準法施行令第82条の2(層間変形角)」に基づく制限値を許容限界として設定する。制限値は、耐震壁についてはJEAG4601に基づき $4.0\times10^{-3}$ ,鉄骨フレームについては「建築基準法施行令第82条の2(層間変形角)」に基づき1/120とする。

また、1号機タービン、1号機廃棄物処理建物、及び排気筒モニタ室については設計竜巻による荷重及びその他考慮すべき荷重に対し、隣接する竜巻より防護すべき施設を内包する建物等に接触する変形を生じないことを解析により確認する評価方針としていることを踏まえ、各建物との離隔距離を許容限界として設定する。

### (d) 変形角 (表 4-8 (4/7, 6/7))

排気筒の構造強度評価においては、設計竜巻荷重及びその他考慮すべき荷重に対し、排気筒全体が倒壊しないことを計算により確認する評価方針としていることを踏まえ、「建築基準法施行令第82条の2(層間変形角)」に基づく制限値を許容限界として設定する。

また、1号機排気筒の構造強度評価においては、設計竜巻荷重及びその他考慮すべき荷重に対し、1号機排気筒が原子炉建物、タービン建物等に倒壊による影響を及ぼさないことを解析により確認する評価方針としていることを踏まえ、「建築基準法施行令第82条の2(層間変形角)」に基づく制限値を許容限界として設定する。

#### (e) 壁の曲げ、せん断 (表 4-8 (6/7))

復水貯蔵タンク遮蔽壁の構造強度評価においては、設計竜巻荷重及びその他 考慮すべき荷重に対し、復水貯蔵タンク遮蔽壁全体が倒壊しないことを計算に より確認する評価方針としていることを踏まえ、「コンクリート標準示方書 (2002)」に基づく設計断面耐力を許容限界として設定する。

### (2) 許容限界設定方法

### a. 記号の定義

許容限界式に使用する記号を表 4-6 に示す。

記号 単位 定義 コーン状破壊面の有効投影面積  $mm^2$  $A_{c}$  $\mathrm{mm}^2$ スタッド頭部の支圧面積  $A_0$ スタッド断面積で、軸部断面積とねじ部有効断面積の小なる方  $mm^2$ a c a の値 コンクリートの支圧強度  $N/mm^2$  $f_n$ スタッド1本当たりの許容引張力  $p_{\ a}$ kN スタッド鋼材の降伏により定まる場合のスタッド1本当たりの kN p a 1 許容引張力 定着したコンクリート躯体のコーン状破壊により定まる場合の kΝ p a 2 スタッド1本当たりの許容引張力 コンクリートの支圧破壊により定まるスタッド1本当たりの許 kNp <sub>a 3</sub> 容引張力  $N/mm^2$ コーン状破壊に対するコンクリートの引張強度  $_{c}$   $\sigma$   $_{t}$ スタッドの引張強度  $N/mm^2$  $_{s}$   $\sigma$   $_{p}$   $_{a}$ 低減係数  $\Phi_1$ 低減係数  $\Phi_2$ 

表 4-6 許容限界式に用いる記号

# b. 許容限界式

### (a) スタッドの許容限界式

コンクリート躯体中に定着されたスタッド 1 本あたりの許容引張力  $P_a$ は,「各種合成構造設計指針 同解説((社)日本建築学会,2010年改定)」に基づき,スタッドの降伏により定まる場合の許容引張力  $p_{a1}$ ,定着したコンクリート躯体のコーン状破壊により定まる場合の許容引張力  $p_{a2}$  及びコンクリートの支圧破壊により定まる場合の許容引張力  $p_{a3}$  のうち,最も小さい値とする。スタッドの許容引張力  $p_a$  の算定式を以下に示す。

$$p_a = M i n \{p_{a1}, p_{a2}, p_{a3}\}$$

ここで.

$$p_{al} = \Phi_1 \cdot s \sigma_{pa} \cdot a c a$$

$$\begin{array}{l} p_{a2} = \Phi_2 \cdot {}_c \sigma_t \cdot A_c \\ \\ p_{a3} = f_n \cdot A_0 \end{array}$$

### 4.2.2 機器·配管系

- (1) 許容限界の設定
  - a. 衝突評価
    - (a) 貫入

衝突による貫入評価においては、設計飛来物による衝撃荷重に対し、外殻を構成する部材が、機能喪失に至る可能性のある変形を生じないことを計算により確認する評価方針としていることを踏まえ、部材厚さを許容限界として設定する。

ただし、耐圧部については部材厚さから計算上必要な厚さを差引いた残りの 厚さを許容限界として設定する。

#### b. 構造強度評価

- (a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ(表 4-8 (3/7)) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価においては,設計竜巻の風圧力による荷重,気圧差による荷重及び竜巻防護ネット等を通過する飛来物の衝撃荷重に対し,原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ,原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの機能維持に必要な付属品を支持する取付ボルト並びにポンプの機能保持に必要な付属品を支持する原動機フレームが,おおむね弾性域に収まることにより,その施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方針としていることを踏まえ,JEAG4601等に準じて供用状態ⅢASの許容応力を許容限界として設定する。
- (b) 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ (表 4-8 (3/7))

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの構造強度評価においては、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮すべき荷重に対し、原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナを支持する基礎ボルトが、おおむね弾性状態に留まることにより、その施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方針としていることを踏まえ、JEAG4601等に準じて許容応力状態IIIASの許容応力を許容限界として設定する。

(c) 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁, 非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系 ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管 及び弁(表4-8(4/7)(5/7))

原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び 弁の構造強度評価においては、設計竜巻の風圧力による荷重、気圧差による荷 重、竜巻防護ネットを通過する飛来物による衝撃荷重及びその他考慮すべき荷 重に対し、配管本体が、おおむね弾性域に収まることにより、その施設の安全 機能に影響を及ぼすことのないことを計算により確認する評価方針としてい ることを踏まえ、JEAG4601等に準じて供用状態ⅢASの許容応力を許 容限界として設定する。

非常用ディーゼル発電設備 (燃料移送系) 配管及び弁,高圧炉心スプレイ系ディーゼル発電設備 (燃料移送系) 配管及び弁並びに非常用ガス処理系配管及び弁の構造強度評価においては,気圧差による荷重及びその他考慮すべき荷重に対し,配管本体が,おおむね弾性域に収まることにより,その施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方針としていることを踏まえ,JEAG4601等に準じて供用状態ⅢASの許容応力を許容限界として設定する。

(d) 非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スま常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの構造強度評価においては、設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの耐圧部が、燃料を供給する機能を維持することを確認する評価方針としていることを踏まえ、ポンプの耐圧試験圧力を許容限界として設定する。

### (e) ダンパ (表 4-8 (5/7))

ダンパの構造強度評価においては、設計竜巻の気圧差による荷重及びその他 考慮すべき荷重に対し、ダンパを構成する外板、羽根及びシャフトが、おおむ ね弾性域に収まることにより、その施設の安全機能に影響を及ぼすことのない ことを計算により確認する評価方針としていることを踏まえ、JEAG460 1等に準じて供用状態ⅢASの許容応力を許容限界として設定する。

### (f) ダクト (表 4-8 (5/7))

ダクトの構造強度評価においては、設計竜巻の気圧差による荷重及びその他 考慮すべき荷重に対し、ダクトを構成するダクト鋼板が、おおむね弾性域に収 まることにより、その施設の安全機能に影響を及ぼすことのないことを計算に より確認する評価方針としていることを踏まえ、JEAG4601等に準じて 供用状態ⅢAS及び座屈に対する評価式を満足する許容応力又はクリップリ ング座屈及び弾性座屈曲げ応力に応じた許容応力を許容限界として設定する。

### (g) 隔離弁 (表 4-8 (5/7))

隔離弁の構造強度評価においては、設計竜巻の気圧差による荷重及びその他 考慮すべき荷重に対し、隔離弁が、おおむね弾性域に収まることにより、その 施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方 針としていることを踏まえ、JEAG4601等に準じて供用状態ⅢASの許 容応力又はクリップリング座屈に応じた許容応力を許容限界として設定する。

#### (h) 送風機 (表 4-8 (5/7))

送風機の構造強度評価においては、設計竜巻の気圧差及びその他考慮すべき 荷重に対し、送風機のケーシングが、おおむね弾性域に収まることにより、そ の施設の安全機能に影響を及ぼすことのないことを計算により確認する評価 方針としていることを踏まえ、クリップリング座屈に応じた許容応力を許容限 界として設定する。

### (i) 処理装置(表 4-8 (5/7))

処理装置の構造強度評価においては、設計竜巻の気圧差及びその他考慮すべき荷重に対し、処理装置のケーシングが、おおむね弾性域に収まることにより、その施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方針としていることを踏まえ、JEAG4601等に準じて供用状態ⅢASの許容値を許容限界として設定する。

(j) 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)(表 4-8 (7/7)) 排気消音器の構造強度評価においては,設計竜巻の風圧力による荷重及びその他考慮すべき荷重に対し,排気消音器を構成する結合ボルト及び基礎ボルトが,おおむね弾性域に収まることにより,その施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方針としていることを踏まえ,JEAG4601等に準じて供用状態 $\mathbf{III}$ ASの許容応力を許容限界として設定す

る。

(k) 排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系 ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディ ーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃 料貯蔵タンク,ディーゼル燃料デイタンク及び潤滑油サンプタンクの付属施 設)(表 4-8 (7/7))

排気管及びベント管の構造強度評価においては、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮すべき荷重に対し、配管本体が、おおむね弾性域に収まることにより、その施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方針としていることを踏まえ、JEAG4601等に準じて供用状態ⅢASの許容応力を許容限界として設定する。

### c. 動的機能維持評価

(a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ(表 4-8(3/7)) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの動的機能維持評価においては,原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの軸受部は,設計竜巻の風圧力による荷重,気圧差による荷重及びその他考慮すべき荷重に対し,軸受部における発生荷重が,動的機能を維持可能な許容荷重以下であることを計算により確認する評価方針としていることを踏まえ,軸受部の接触面圧の許容荷重を許容限界として設定する。

# (2) 許容限界設定方法

# a. 記号の定義

許容限界式に使用する記号を表 4-7 に示す。

表 4-7 許容限界式に用いる記号 (1/2)

| 記 号   | 単位              | 4-7 許容限界式に用いる記号 (1/2)<br>定 義                                 |
|-------|-----------------|--------------------------------------------------------------|
| b     | mm              | ケーシング外半径                                                     |
| d 1   | mm              | ダクト内径                                                        |
| d 2   | mm              | ダクト外径                                                        |
| Е     | MPa             | 縦弾性係数                                                        |
| f 1   | N               | 曲げモーメントによる圧縮荷重                                               |
| f 2   | N               | 最大気圧低下量及び通常運転圧力による圧縮荷重                                       |
| fь    | MPa             | J S M E SSB-3121.1 又は SSB-3131 により規定される供用状態 A 及び B での許容曲げ応力  |
| f c   | MPa             | JSME SSB-3121.1 により規定される供用状態A及びBでの許<br>容圧縮応力                 |
| f s   | MPa             | J S M E SSB-3121.1 又は SSB-3131 により規定される供用状態 A 及び B での許容せん断応力 |
| f t   | MPa             | JSME SSB-3121.1 又はSSB-3131 により規定される供用状態A<br>及びBでの許容引張応力      |
| f t s | MPa             | JSME SSB-3131 により規定されるせん断力と引張力を同時に<br>受けるボルトの許容引張応力          |
| k p   | _               | 座屈係数                                                         |
| L     | mm              | 評価対象板の長さ                                                     |
| L 1   | mm              | 弁箱の面間寸法                                                      |
| Мсг   | kN•mm           | 弾性座屈曲げモーメント                                                  |
| n     | _               | 座屈モードの次数                                                     |
| P m   | N               | 限界荷重                                                         |
| R     | mm              | 内半径                                                          |
| S u   | MPa             | JSME 付録材料図表 Part5 表 9 にて規定される設計引張強さ                          |
| S y   | MPa             | JSME 付録材料図表 Part5表 8 にて規定される設計降伏点                            |
| r m   | mm              | 平均半径                                                         |
| t     | mm              | 板厚                                                           |
| Z     | mm <sup>3</sup> | 断面係数                                                         |
| Z c   | _               | 形状係数                                                         |
| β     | _               | 補正係数                                                         |
| ν     | _               | ポアソン比                                                        |
| Осг1  | MPa             | クリップリング座屈が発生する際に生じる応力                                        |

表 4-7 許容限界式に用いる記号 (2/2)

| 記 号  | 単 位 | 定義                       |  |  |  |  |
|------|-----|--------------------------|--|--|--|--|
| Осг2 | MPa | 弾性座屈曲げ応力                 |  |  |  |  |
| σь   | MPa | 自重による発生応力                |  |  |  |  |
| σрь  | MPa | 設計竜巻による気圧差及び内圧による発生応力    |  |  |  |  |
| σ у  | MPa | 降伏応力                     |  |  |  |  |
| σ θ  | MPa | ダクトに作用する圧力により軸直角方向に生じる応力 |  |  |  |  |
| τ    | MPa | せん断応力                    |  |  |  |  |

### b. 許容限界式

JEAG4601等に準じて許容限界を設定するものについては、表 4-9 及 び表 4-10 に示す許容応力を用いる。また、評価式を用いて許容限界を設定するものについては、以下の許容限界式に準じて、設定する。

### (a) 支持構造物の許容限界式

# イ. ボルト

引張力とせん断力を同時に受けるボルトの許容引張応力 ftsは,次式で算出される。

$$\begin{cases} f_{t s} = 1.4(1.5 \cdot f_{t}) - 1.6 \cdot \tau \\ f_{t s} \leq 1.5 \cdot f_{t} \end{cases}$$

許容引張応力 ftsは,上記2式の小なる値をとる。

# (b) 角ダクトの許容限界式

# イ. 軸方向の荷重に対する許容限界

ダクト自重による軸方向圧縮荷重  $f_1$ と設計竜巻による気圧差及び内圧による軸方向圧縮荷重  $f_2$ の和が許容荷重  $P_m$ 以下であることを確認する。

なお、ダクト自重による軸方向圧縮荷重  $f_1$ はダクト板 1 枚あたりの軸方向圧縮荷重として算出され、設計竜巻による気圧差及び内圧による軸方向圧縮荷重  $f_2$ はダクト板 4 枚あたりの軸方向圧縮荷重として算出される。許容荷重  $P_m$ はダクト板 1 枚あたりとして算出されるため、これらの関係は以下の式で表わされる。

ここで,

$$P_{m} = \frac{\pi}{\sqrt{3(1-\nu)}} \sqrt{E \cdot \sigma_{y}} \cdot t^{2}$$

# (c) 丸ダクトの許容限界式

### イ. 軸直角方向の荷重により生じる応力に対する許容限界

ダクトに作用する圧力により軸直角方向の荷重が生じ、この荷重により生じる応力  $\sigma_{\theta}$ が、クリップリング座屈が発生する際に生じる応力 (座屈応力)  $\sigma_{\rm cri}$ を超えないことを確認する。クリップリング座屈が発生する際に生じる応力  $\sigma_{\rm cri}$ は、円筒殻の座屈応力の式より算出する。

 $\sigma~\theta \leqq \sigma~c~r~1$ 

$$\sigma \text{ crl} = k \text{ p} \left\{ \frac{\pi^2 E}{12(1-\nu^2)} \right\} \cdot \left(\frac{t}{L}\right)^2$$

$$k_{p} = \frac{\left(1+\beta^{2}\right)^{2}}{0.5+\beta^{2}} + \frac{12 \cdot z_{c}^{2}}{\pi^{4} \cdot \left(0.5+\beta^{2}\right) \cdot \left(1+\beta^{2}\right)^{2}}$$

$$\beta = \frac{L \cdot n}{\pi \cdot r_{m}}$$

$$z_{c} = \frac{L^{2}}{r_{m} \cdot t} \sqrt{1-\nu^{2}}$$

ここで, 座屈モードの次数 n は k p が最小となる時の次数とする。

# ロ. 軸方向の荷重により生じる応力に対する許容限界

ダクト自重による軸方向圧縮荷重により生じる曲げ応力 $\sigma_b$ と設計竜巻による気圧差及び内圧により生じる軸方向圧縮荷重による応力 $\sigma_{Pb}$ の和が、弾性座屈曲げ応力 $\sigma_{cr2}$ 以下であることを確認する。

$$\sigma_b + \sigma_{Pb} \leq \sigma_{cr2}$$

$$\sigma_{cr2} = \frac{M_{cr}}{Z}$$

$$M_{cr} = \frac{\beta \cdot E \cdot R \cdot t^2}{\left(1 - \nu^2\right)}, \quad \beta = 0.72$$

$$Z = \frac{\pi}{32} \cdot \frac{d_2^4 - d_1^4}{d_2}$$

# (d) 隔離弁の許容限界式

### イ. 弁箱に対する許容応力

隔離弁に作用する圧力により生じる周方向応力は、クリップリング座屈が発生する際に生じる周方向応力(座屈応力) $\sigma_{cri}$ を超えないこととする。

隔離弁に作用する圧力によるクリップリング座屈が発生する際に生じる 周方向応力  $\sigma_{\rm crl}$  は、円筒殻の座屈応力の式より算出する。

$$\sigma_{c r 1} = \frac{k_{p} \cdot \pi^{2} \cdot E}{12(1 - v^{2})} \left(\frac{t}{L_{1}}\right)^{2}$$

$$k_{p} = \frac{(1 + \beta^{2})^{2}}{0.5 + \beta^{2}} + \frac{12 \cdot z_{c}^{2}}{\pi^{4}(1 + \beta^{2})^{2}(0.5 + \beta^{2})}$$

$$\beta = \frac{L_{1} \cdot n}{\pi \cdot R}$$

$$z_{c} = \frac{L_{1}^{2}}{R \cdot t} \sqrt{1 - v^{2}}$$

# (e) 送風機の許容限界式

### イ. 外圧に対する許容応力

外圧により生じる周方向応力は、クリップリング座屈\*が発生する際に生じる周方向応力(座屈応力) $\sigma$  criを超えないこととする。

外圧によるクリップリング座屈が発生する際に生じる周方向応力 $\sigma$   $_{\rm cr1}$  は、円筒殻の座屈応力の式より算出する。

注記\*:送風機のケーシングが真円とは異なり、局部的に応力がかかる ことから、クリップリング座屈を適用

$$\sigma \text{ cr } 1 = k \text{ p} \left\{ \frac{\pi^2 E}{12 \left( 1 - \nu^2 \right)} \right\} \cdot \left( \frac{t}{L} \right)^2 \times \square$$

$$k_{p} = \frac{\left(1 + \beta^{2}\right)^{2}}{0.5 + \beta^{2}} + \frac{12 \cdot z_{c}^{2}}{\pi^{4} \cdot \left(0.5 + \beta^{2}\right) \cdot \left(1 + \beta^{2}\right)^{2}}$$
$$\beta = \frac{L \cdot n}{\pi \cdot b}, \quad z_{c} = \frac{L^{2}}{b \cdot t} \sqrt{1 - v^{2}}$$

表 4-8 施設ごとの許容限界 (1/7)

| 施設            | 14-11. b. 11.                       | #- <b>-</b>                          |             | 評価            | 機能損傷    | モード                           |                                                             |
|---------------|-------------------------------------|--------------------------------------|-------------|---------------|---------|-------------------------------|-------------------------------------------------------------|
| 分類            | 施設名称                                | 荷重の組合せ                               | 評価対象部位      | 項目            | 応力等の状態  | 限界状態                          | 許容限界                                                        |
|               |                                     | $W_{\mathrm{M}}$                     | 屋根スラブ<br>外壁 |               | 変形      | 貫通                            | 施設の最小部材厚さが貫通限<br>界厚さ以上とする。                                  |
|               |                                     | $F_d + W_T (W_W, W_M)$               | 屋根スラブ       | 衝突            | 変形      | 貫通                            | 鉄筋の発生ひずみが J I S 規<br>格値/TF(TF=2.0) を考<br>慮した値以下とする。         |
| 竜巻より防護すべき施設を内 |                                     | $ m W_{M}$                           | 屋根スラブ<br>外壁 | -<br>構造<br>強度 | 変形      | 裏面剥離に<br>よるコンク<br>リート片の<br>飛散 | 施設の最小部材厚さが裏面剥<br>離限界厚さ以上とする。                                |
|               | 原子炉建物<br>タービン建物<br>廃棄物処理建物<br>制御室建物 | $ F_{d} + W_{T} (W_{W}, W_{M}) $     | 屋根スラブ<br>外壁 |               | 変形      | 裏面剥離に<br>よるコンク<br>リート片の<br>飛散 | 鉄筋及びデッキプレートの発生ひずみが J I S 規格値/T F (TF=2.0) を考慮した値以下とする。      |
|               |                                     | $F_{d} + W_{T}(W_{W}, W_{P})$        | 屋根スラブ       |               | 曲げ、せん断  | 部材の破断<br>による転倒<br>及び脱落        | 「鉄筋コンクリート構造設計<br>規準・同解説-許容応力度設計<br>法-」に基づく短期許容応力度<br>以下とする。 |
| 包するな          |                                     | $F_d + W_T (W_W, W_P)$               | スタッド        |               | 引張      | 部材の破断<br>による転倒<br>及び脱落        | 「各種合成構造設計指針・同解<br>説」に基づく許容耐力以下とす<br>る。                      |
| 施設(建          |                                     | $F_{d} + W_{T}(W_{W}, W_{P}, W_{M})$ | 耐震壁         |               | 変形      | 部材の破断<br>による転倒<br>及び脱落        | コンクリートのせん断ひずみ<br>が制限値 $(2.0 \times 10^{-3})$ 以下とす<br>る。     |
| (建物等)         | ディーゼル燃料                             | <b>W</b> 7                           | スラブ         | 衝突            | 変形      | 貫通                            | 施設の最小部材厚さが貫通限<br>界厚さ以上とする。                                  |
|               | 貯蔵タンク室                              | $W_{ m M}$                           | 鋼製蓋         | 倒大            | <b></b> |                               | 施設の最小部材厚さが必要最 小肉厚以上とする。                                     |
|               | B ーディーゼル<br>燃料貯蔵タン<br>ク格納槽          | W <sub>M</sub>                       | スラブ         | 構造<br>強度      | 変形      | 裏面剥離に<br>よるコンク<br>リート片の<br>飛散 | 施設の最小部材厚さが裏面剥<br>離限界厚さ以上とする。                                |

表 4-8 施設ごとの許容限界 (2/7)

| 施設            | 施設名称         | 荷重の組合せ         | 評価対象部位  | 評価   | 機能損傷モード |       | 許容限界                                         |  |
|---------------|--------------|----------------|---------|------|---------|-------|----------------------------------------------|--|
| 分類            | <b>他</b> 放石你 | 利里の組合で         | 計圖別參刊型  | 項目   | 応力等の状態  | 限界状態  | 计谷似外                                         |  |
| 内包する施設竜巻より防護す | 原子炉建物        | WM             | 扉(扉板)   | 衝突   | 変形      | 貫通    | 施設の最小部材厚さが必要最<br>小肉厚以上とする。                   |  |
| 政(建物等)すべき施設を  | /示           | W <sub>P</sub> | 扉(カンヌキ) | 構造強度 | 曲げ、せん断  | 部材の降伏 | 「鋼構造設計規準-許容応力<br>度設計法-」に基づく短期許容<br>応力度以下とする。 |  |

表 4-8 施設ごとの許容限界 (3/7)

| 施設           | 施設名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 荷重の組合せ                       | 評価対象部位         | 評価       | 機能損傷モ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ナード                             | 許容限界                                                     |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|--|
| 分類           | <b>地</b> 政治外                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 何里の雅石で                       | 計個別家司和         | 項目       | 下の状態   限界状態   での状態   関界状態   送水機能   送水機能   である   であ | 限界状態                            | 计台拟外                                                     |  |
|              | 原子炉補機海水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 外殻を構成する<br>部材  | 衝突       | 貫入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 送水機能の<br>喪失                     | 評価式により算定した貫通限界<br>厚さが、外殻を構成する部材の厚<br>さ未満とする。             |  |
| 屋外           | 海水ポンプ及び<br>高圧炉心スプレ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $F_d + W_T$ $(W_W, W_P,$     | 基礎ボルト<br>取付ボルト | 構造<br>強度 | 引張,せん断                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 部材が弾性 域に留まら                     | 「原子力発電所耐震設計技術指<br>針 JEAG4601-1987」等                      |  |
| の一つ一つ一つ      | $W_{M}$ ) + F $_{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 原動機フレーム                      | 構造<br>強度       | 曲げ       | ず塑性域に<br>入る状態                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | に準じて許容応力状態ⅢAS*の<br>許容応力以下とする。   |                                                          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 軸受部            | 機能<br>維持 | 接触                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 軸と軸受が<br>接触する                   | 軸受荷重が接触面圧の許容荷重<br>以下とする。                                 |  |
| 外部事象防護対象施設(対 | 原子炉補機海水<br>ストレーナ及び<br>高圧炉心スプレ<br>イ補機海水スト<br>レーナ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $F_d + W_T (W_W, W_P) + F_P$ | 基礎ボルト          | 構造<br>強度 | 引張, せん断                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等に準じて許容応力状態ⅢAS*の許容応力以下とする。 |  |
| (建物等を除く)     | 非常用ディーゼード<br>非発電では<br>がイーボーンのでは<br>を選出でする。<br>がは、<br>がは、<br>がは、<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>がいれる。<br>はいれる。<br>がいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいれる。<br>はいる。<br>は、<br>は、<br>は、<br>は、<br>は、<br>は、<br>は、<br>は、<br>は、<br>は、 | $W_P + F_P$                  | 耐圧部            | 構造強度     | 変形                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 耐圧試験圧力以下とする。                                             |  |

注記\*:JEAG4601を基に、表4-9 クラス1・クラス2、3・その他の支持構造物の許容応力を準用する。

表 4-8 施設ごとの許容限界(4/7)

|               | 我 + O 旭 D C                                                 |                                                                     |               |          | 1 1 12 1 21 1 1 1 1 1 |                                     |                                                              |  |
|---------------|-------------------------------------------------------------|---------------------------------------------------------------------|---------------|----------|-----------------------|-------------------------------------|--------------------------------------------------------------|--|
| 施設            | 施設名称                                                        | <br>  荷重の組合せ                                                        | 評価対象部         | 評価       | 機能損傷                  | モード                                 | 許容限界                                                         |  |
| 分類            |                                                             | 19里の組合で                                                             | 位             | 項目       | 応力等の状態                | 限界状態                                | 計谷収外                                                         |  |
| 屋外の外部事象防護対象施設 | 原子炉補機海水系<br>配管及び弁並びに<br>高圧炉心スプレイ                            | $F_d + W_T$                                                         | 外殻を構成<br>する部材 | 衝突       | 貫入                    | 流路を確<br>保する機<br>能の喪失                | 評価式により算定した貫通限界厚さが,外殻を構成する部材の厚さから計算上必要な厚さを差し引いた残りの厚さ未満とする。    |  |
|               | 高圧が心スプレイ<br>補機海水系配管及<br>び弁                                  | $(W_{\mathrm{W}}, W_{\mathrm{P}}, W_{\mathrm{M}}) + F_{\mathrm{P}}$ | 配管本体          | 構造強度     | 曲げ                    | 部材が弾<br>性域にず留<br>生域に入<br>る状態        | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等に準じて許容応力状態ⅢAS*の許容応力値以下とする。    |  |
|               | 非常用ディーゼル 発電設備 (燃料移送系) 配管及びに高圧炉心スプレイ系ディーゼル発電設備 (燃料 移送系) 配管及び | $W_P + F_P$                                                         | 配管本体          | 構造強度     | 一次一般膜                 | 部材が弾<br>性域に留<br>まらず塑<br>性域に入<br>る状態 | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等 に基づく許容応力状態ⅢAS*応じた許容応力値以下とする。 |  |
|               | 排気筒                                                         | $F_d + W_T$ $(W_W, W_M)$                                            | 筒身及び<br>鉄塔    | 構造<br>強度 | 変形                    | 部材の損<br>傷による<br>転倒                  | 変形が「建築基準法施行令第 82<br>条の 2 (層間変形角)」に基づく<br>層間変形角以下とする。         |  |

注記\*: JEAG4601を基に、表4-10 クラス2、3配管の許容応力を準用する。

表 4-8 施設ごとの許容限界 (5/7)

|           |                                        |                                                 | (0/1)            |          |        |                                 |                                                                                                                       |
|-----------|----------------------------------------|-------------------------------------------------|------------------|----------|--------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 施設        |                                        |                                                 |                  | 評価       | 機能損傷   | モード                             |                                                                                                                       |
| 分類        | 施設名称                                   | 荷重の組合せ                                          | 評価対象部位           | 項目       | 応力等の状態 | 限界状態                            | 許容限界                                                                                                                  |
| М         | ダンパ(換気空<br>調設備)                        | $F_d + W_P$                                     | 外板<br>羽根<br>シャフト | 構造強度     | 曲げ、せん断 | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等に基づく許容応力<br>状態ⅢAS*1に応じた許容応力値以下とする。                                                     |
| 外気と繋がって   | 角ダクト(換気<br>空調設備)及び<br>丸ダクト(換気<br>空調設備) | F <sub>d</sub> +W <sub>P</sub> + F <sub>P</sub> | ダクト鋼板<br>(本体)    | 構造強度     | 曲げ、座屈  | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等に準じて許容応力<br>状態ⅢAS* <sup>1</sup> ,座屈に対する評価式を満足<br>する許容応力以下又はクリップリング座<br>屈に応じた許容応力以下とする。 |
| いる屋内の     | 隔離弁(換気空調設備)                            | $F_d + W_P$                                     | 弁箱<br>弁体<br>弁棒   | 構造<br>強度 | 変形     | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 呼び圧力以下とする。                                                                                                            |
| 外部事象防     | 送風機(換気空調設備)                            | $W_P + F_P$                                     | ケーシング            | 構造強度     | 曲げ     | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等に基づく許容応力<br>状態ⅢAS*1に応じた許容応力値以下とす<br>る。                                                 |
| 部事象防護対象施設 | 処理装置(換気<br>空調設備)                       | $W_P + F_P$                                     | ケーシング            | 構造<br>強度 | 曲げ     | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等に基づく許容応力<br>状態ⅢAS*1に応じた許容応力値以下とする。                                                     |
| BA        | 非常用ガス処<br>理系配管及び<br>弁                  | $W_P + F_P$                                     | 配管本体             | 構造<br>強度 | 一次一般膜  | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601-1987」等に基づく許容応力<br>状態ⅢAS* <sup>2</sup> 応じた許容応力値以下とす<br>る。                                     |

注記\*1:JEAG4601を基に、表4-9 クラス1・クラス2、3・その他の支持構造物の許容応力を準用する。

\*2: JEAG4601を基に、表4-10 クラス2、3配管の許容応力を準用する。

機能指傷エード

限界状態

倒壊

応力等の状態

曲げ, せん断

許容限界

変形がコンクリートの終局せ

ん断ひずみに基づく制限値以

「コンクリート標準示方書

(2002)」に基づく設計断面耐

力以下とする。

項目

構造

強度

辟

評価対象部位

耐震

施設

分類

外

があ

る施

設

施設名称

復水貯蔵タン

ク遮蔽壁

荷重の組合せ

 $F_d + W_T (W_W,$ 

 $W_{\rm M}$ )

表 4-8 施設ごとの許容限界 (7/7)

| 施設           | 施設名称           | 荷重の組合せ                                                  | 評価対象部位         | 評価       | 機能損傷   | モード                             | 許容限界                                                                                   |  |
|--------------|----------------|---------------------------------------------------------|----------------|----------|--------|---------------------------------|----------------------------------------------------------------------------------------|--|
| 分類           | <b>旭</b> 放 名 你 | 何里の祖古せ                                                  | 計劃对象部位         | 項目       | 応力等の状態 | 限界状態                            | 计谷拟外                                                                                   |  |
| 外部事象防護対象施設に  | 消音器            | F <sub>d</sub> +W <sub>T</sub> (Ww,<br>W <sub>P</sub> ) | 結合ボルト<br>基礎ボルト | 構造強度     | 引張,せん断 | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601<br>-1987」等に基づく許容応力<br>状態ⅢAS*1に応じた許容応<br>力値以下とする。              |  |
| のる施設に波及的影響を及 | 排気管及び<br>ベント管  | $F_d + W_T (W_W, W_P) + F_P$                            | 配管本体           | 構造<br>強度 | 曲げ     | 部材が弾性<br>域に留まら<br>ず塑性域に<br>入る状態 | 「原子力発電所耐震設計技術指針 JEAG4601<br>-1987」等に基づく許容応力<br>状態ⅢAS* <sup>2</sup> に応じた許容応<br>力値以下とする。 |  |

注記\*1: JEAG4601を基に、表 4-9 クラス1・クラス2、3・その他の支持構造物の許容応力を準用する。

\*2: JEAG4601を基に、表4-10 クラス2、3配管の許容応力を準用する。

表 4-9 クラス1・クラス2, 3・その他の支持構造物の許容応力

| 許容                 |           | 許容応力      | 許容応力* <sup>2</sup><br>(ボルト等) |                      |           |           |
|--------------------|-----------|-----------|------------------------------|----------------------|-----------|-----------|
|                    |           | 一次        | 一次応力                         |                      |           |           |
| 状態                 | 引張        | せん断       | 圧縮                           | 曲げ                   | 引張        | せん断       |
| III <sub>A</sub> S | 1.5 • f t | 1.5 · f s | 1.5 · f c                    | 1.5 · f <sub>b</sub> | 1.5 · f t | 1.5 · f s |

- 注記\*1:「鋼構造設計規準SI単位版」(2002年日本建築学会)等の幅厚比の制限を満足させる。
  - \*2: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。
  - \*3:耐圧部に溶接等により直接取り付けられる支持構造物であって耐圧部と一体の応力解析を行うものについては、耐圧部と同じ許容応力とする。

表 4-10 クラス 2、3配管の許容応力

|          | 表 10 / / ハ Z , O H                                                     |                |
|----------|------------------------------------------------------------------------|----------------|
| 許容       | 許容                                                                     | · 応 力          |
| 応力<br>状態 | 一次一般膜応力                                                                | 一次応力<br>(膜+曲げ) |
| III A S  | Min [Sy, 0.6Su]<br>ただし,オーステナイト系ステン<br>レス鋼及び高ニッケル合金につい<br>ては1.2Sとしてもよい。 | S y            |

### 5. 強度評価方法

評価手法は,以下に示す解析法により,適用性に留意の上,規格及び基準類や既往の 文献において適用が妥当とされる手法に基づき実施することを基本とする。

- ・FEM等を用いた解析法
- ・定式化された評価式を用いた解析法

「原子力発電所の竜巻影響評価ガイド」を参照して、設計竜巻による荷重は地震荷重と同様に施設に作用する場合は、地震荷重と同様に外力として評価をするため、JEAG4601を適用可能とする。ただし、閉じた施設となる屋外配管等については、その施設の大きさ及び形状を考慮した上で気圧差を見かけ上の配管の内圧の増加として評価する。

設計竜巻の風圧力による荷重の影響を考慮する施設については、建築基準法施行令等に基づき風圧力による荷重を考慮し、設備の受圧面に対して等分布荷重として扱って良いことから、評価上高さの1/2又は荷重作用点より高い重心位置に集中荷重として作用するものとする。設計竜巻荷重が作用する場合に強度評価を行う施設のうち、強度評価方法としてポンプ、容器及び建物等の定式化された評価式を用いた解析法を以下に示す。

ただし,以下に示す強度評価方法が適用できない施設及び評価対象部位については, 個別計算書にその強度評価方法を含めて記載する。

### 5.1 建物・構造物に関する評価式

### 5.1.1 鉄筋コンクリート造構造物

#### (1) 評価条件

- a. 貫通限界厚さは、NEI07-13 に示されているDegen式を用いて算定する。Degen式における貫入深さは、「タービンミサイル評価について(昭和 52 年 7 月 20 日 原子炉安全専門審査会)」で用いられている修正NDR C式を用いて算定する。
- b. 裏面剥離限界厚さは、NEI07-13に示されているChang式を用いて算 定する。
- c. 荷重及び応力は力学における標準式を用いて算定する。

### (2) 評価対象部位

評価対象部位及び評価内容を表 5-1 に示す。

施設名称 評価内容 評価対象部位 • 原子炉建物 屋根スラブ 貫通 タービン建物 外壁 裏面剥離 • 廃棄物処理建物 構造躯体 転倒及び脱落 • 制御室建物 スタッド ・ディーゼル燃料貯蔵タンク室 B-ディーゼル燃料貯蔵タン 貫通 スラブ ク格納槽 裏面剥離 • 1 号機原子炉建物 1号機タービン建物 構造躯体 変形 • 1 号機廃棄物処理建物 ・排気筒モニタ室 ・復水貯蔵タンク遮蔽壁 構造躯体 断面力

表 5-1 評価対象部位及び評価内容

### (3) 強度評価方法

### a. 記号の定義

Degen式による貫通限界厚さの算定に用いる記号を表 5-2 に、Chang式による裏面剥離限界厚さの算定に用いる記号を表 <math>5-3 に、力学における標準式による荷重及び応力の算定に用いる記号を表 5-4 に示す。

表 5-2 Degen式による鉄筋コンクリート部の貫通限界厚さの算定に用いる記号

| 記号  | 単位                  | 定義                |                 |
|-----|---------------------|-------------------|-----------------|
| D   | kgf/cm <sup>3</sup> | 設計飛来物             | 物直径密度 (D=W/d³)  |
| d   | cm                  | 設計飛来物             | 勿直径             |
| е   | cm                  | 貫通限界厚             | 享さ こうしゅうしゅう     |
| F c | kgf/cm <sup>2</sup> | コンクリー             | ートの設計基準強度       |
| N   | _                   | 設計飛来物の形状係数        |                 |
| V   | 壁面 設計飛来物の衝突速度(水平)   |                   | 設計飛来物の衝突速度 (水平) |
| V   | m/s                 | 屋根 設計飛来物の衝突速度(鉛直) |                 |
| W   | kgf                 | 設計飛来物重量           |                 |
| X   | cm                  | 貫入深さ              |                 |
| α е | _                   | 低減係数              |                 |

表 5-3 Chang式による裏面剥離限界厚さの算定に用いる記号

| 記号    | 単位                  |         | 定義              |
|-------|---------------------|---------|-----------------|
| d     | cm                  | 設計飛来物   | 勿直径             |
| f c'  | kgf/cm <sup>2</sup> | コンクリー   | ートの設計基準強度       |
| S     | cm                  | 裏面剥離。   | 艮界厚さ            |
| V     | m/s                 | 壁面      | 設計飛来物の衝突速度 (水平) |
| V     | III/ S              | 屋根      | 設計飛来物の衝突速度 (鉛直) |
| $V_0$ | m/s                 | 飛来物基準速度 |                 |
| W     | kgf                 | 設計飛来物重量 |                 |
| α s   | _                   | 低減係数    |                 |

表 5-4(1/3) 力学における標準式による荷重及び応力の算定に用いる記号 (荷重算定用)

| 記号               | 単位  | 定義              |
|------------------|-----|-----------------|
| $W_{\mathrm{M}}$ | N   | 設計飛来物による衝撃荷重    |
| m                | kg  | 設計飛来物質量         |
| V                | m/s | 設計飛来物の衝突速度 (水平) |
| Δ t              | S   | 設計飛来物と被衝突体の接触時間 |
| L 1              | m   | 設計飛来物の最も短い辺の全長  |

表 5-4(2/3) 力学における標準式による荷重及び応力の算定に用いる記号 (屋根スラブ)

| 記号              | 単位     | 定義                                      |
|-----------------|--------|-----------------------------------------|
| L               | m      | 屋根スラブの支持スパン                             |
| M               | kN • m | 設計竜巻による単位幅当たりの曲げモーメント                   |
| Q               | kN     | 屋根スラブに生じる単位幅当たりのせん断力                    |
| ωd              | kN/m   | 常時作用する荷重による単位幅当たりの荷重                    |
|                 | 1.37 / | 設計竜巻による単位幅当たりの荷重                        |
| ωт              | kN/m   | $(=M a x \{\omega_{T1}, \omega_{T2}\})$ |
| ωт1             | kN/m   | 複合荷重W T1 による単位幅当たりの荷重                   |
|                 | 1-N /w | 複合荷重W T2 による単位幅当たりの荷重(設計飛来物による          |
| ω <sub>T2</sub> | kN/m   | 衝撃荷重Wmは考慮しない)                           |

表 5-4(3/3) 力学における標準式による荷重及び応力の算定に用いる記号 (スタッド)

| 記号               | 単位     | 定義                                        |
|------------------|--------|-------------------------------------------|
| L 1              | m      | 屋根スラブの支持スパン                               |
| L 2              | m      | 屋根スラブの支持スパン                               |
| р                | mm     | スタッドの間隔                                   |
| Q                | kN     | 屋根スラブに生じる単位幅当たりのせん断力                      |
| Т                | kN     | スタッドに生じる引張力                               |
|                  | 1 NT / | 設計竜巻による単位幅当たりの荷重                          |
| ωт               | kN/m   | $(=M a x \{\omega_{T1}, \omega_{T2}\})$   |
| ωт1              | kN/m   | 複合荷重WT1による単位幅当たりの荷重                       |
|                  | 1 M /  | 複合荷重W <sub>T2</sub> による単位幅当たりの荷重(設計飛来物による |
| ω <sub>T 2</sub> | kN/m   | 衝撃荷重W <sub>M</sub> は考慮しない)                |

# b. 評価方法

(a) Degen式による裏面剥離限界厚さの算定

Degen式を以下に示す。

1.52≦ X / d ≦13.42 の場合

$$e = \alpha_e \cdot \{0.69 + 1.29 \cdot (X / d)\} \cdot d$$

X/d≦1.52の場合

$$e = \alpha_e \cdot \left\{ 2.2 \cdot \left( X / d \right) - 0.3 \cdot \left( X / d \right)^2 \right\} \cdot d$$

修正NDRC式を以下に示す。

X/d≦2.0の場合

$$X/d = 2 \cdot \{ (12145/\sqrt{F_c}) \cdot N \cdot d^{0.2} \cdot D \cdot (V/1000)^{1.8} \}^{0.5}$$

X/d≥2.0の場合

$$X/d = (12145/\sqrt{F_c}) \cdot N \cdot d^{0.2} \cdot D \cdot (V/1000)^{1.8} +1$$

(b) Chang式による貫通限界厚さの算定 Chang式を以下に示す。

$$S = 1.84 \cdot \alpha_{s} \cdot \left(\frac{V_{0}}{V}\right)^{0.13} \cdot \frac{\left(\frac{W \cdot V^{2}}{0.0980}\right)^{0.4}}{d^{0.2} \cdot f_{c}^{0.2} \cdot f_{c}}$$

- (c) 力学における標準式による荷重の算定
  - イ. 設計飛来物による衝撃荷重

$$W_M = m \cdot V / \Delta t = m \cdot V^2 / L_1$$

ロ. 屋根スラブに発生する単位幅当たりの曲げモーメント

$$M=M a x \{M_1, M_2\}$$

ここで,

$$M_{1} = \frac{9}{128} \cdot (\omega_{T} - \omega_{d}) \cdot L^{2}$$

$$M_2 = \frac{1}{8} \cdot (\omega_T - \omega_d) \cdot L^2$$

ハ. 屋根スラブに発生する単位幅当たりのせん断力

$$Q = \frac{5}{4} \cdot \left(\omega_T - \omega_d\right) \cdot L$$

二. スタッド1本当たりの発生引張力

$$T = Q \cdot \frac{p}{1000 \cdot n}$$

$$\begin{array}{ll}
\mathbb{Z} & \mathbb{Z} & \mathbb{C}, & Q = \frac{\omega_T \left( L_1 + L_2 \right)}{2}
\end{array}$$

n:スタッドの本数(本)

# 5.1.2 排気筒

### (1) 評価条件

- a. 排気筒は筒身と鉄塔が一体となって構成されるため、施設全体で風圧力による一様な荷重を受けるモデルとして評価を行う。この際、排気筒の主要な支持機能を有する鉄塔部材に対して、設計竜巻による設計飛来物が衝突するものとする。排気筒のモデル図を図 5-1 に示す。
- b. 計算に用いる寸法は公称値を使用する。

# (2) 評価対象部位

評価対象部位及び評価内容を表 5-5 に示す。

表 5-5 評価対象部位及び評価内容

| 施設名称                                   | 評価対象部位 | 評価内容 |
|----------------------------------------|--------|------|
| <ul><li>・排気筒</li><li>・1号機排気筒</li></ul> | 筒身及び鉄塔 | ・変形角 |

# (3) 強度評価方法

a. 解析モデル



図5-1 排気筒のモデル図

# b. 評価方法

排気筒について、3次元FEMモデルによる変形評価を実施し、頂部最大変位を排気筒高さで除した全体変形角が許容限界を超えないことを確認する。

# 5.1.3 鋼製構造物

# (1) 評価条件

- a. 設計飛来物が外部事象防護対象施設に衝突する場合の必要最小肉厚を,衝突解析により求める。
- b. 荷重及び応力は力学における標準式を用いて算定する。
- c. 計算に用いる寸法は公称値を使用する。

# (2) 評価対象部位

評価対象部位及び評価内容を表 5-6 に示す。

表 5-6 評価対象部位及び評価内容

| 施設名称                                                        | 評価対象部位 | 評価内容         |
|-------------------------------------------------------------|--------|--------------|
| ・原子炉建物                                                      | 扉      | 貫通<br>転倒及び脱落 |
| <ul><li>・ディーゼル燃料貯蔵タンク室</li><li>・Bーディーゼル燃料貯蔵タンク格納槽</li></ul> | 鋼製蓋    | 貫通           |

# (3) 強度評価方法

### a. 記号の定義

力学における標準式による荷重及び応力の算定に用いる記号を表 5-7 に示す。

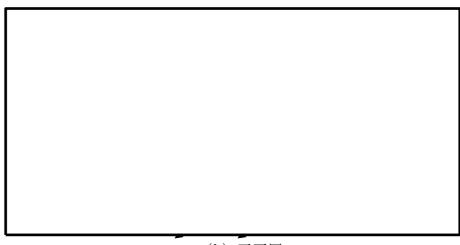
表 5-7 力学における標準式による荷重及び応力の算定に用いる記号 (扉)

| 記号             | 単位                         | 定義              |
|----------------|----------------------------|-----------------|
| A <sub>1</sub> | $\mathrm{m}^2$             | 表面鋼板の受圧面積       |
| A 2            | $\mathrm{mm}^2$            | カンヌキの断面積        |
| L              | mm                         | カンヌキと扉枠の距離      |
| n              | 本                          | カンヌキの本数         |
| R              | N                          | カンヌキ1本当たりに生じる荷重 |
| W <sub>P</sub> | N                          | 設計竜巻の気圧差による荷重   |
| ΔPmax          | $\mathrm{N}/\mathrm{m}^2$  | 設計竜巻の最大気圧低下量    |
| Z              | $\mathrm{mm}^3$            | カンヌキの断面係数       |
| σь             | $\mathrm{N}/\mathrm{mm}^2$ | 曲げ応力度           |
| τ              | $\mathrm{N}/\mathrm{mm}^2$ | せん断応力度          |

# b. 評価方法

(a) 解析による必要最小肉厚の算定

解析における被衝突物の破断ひずみは、JISに規定されている伸びの下限 値を基に設定するが、 $\begin{bmatrix} NEI & 07-13 \end{bmatrix}$ において、TF(多軸性係数)を考慮することが推奨されていることを踏まえ, 安全余裕として二軸引張状 態でTF=2.0を考慮して設定する。


- (b) 力学における標準式による荷重の算定
  - イ. 扉支持部材 (カンヌキ) に生じる荷重

次式により算定する設計竜巻の気圧差による荷重による反力から、各部 材に発生する荷重を算定する。扉のカンヌキに生じる荷重の例を図5-2に 示す。

$$W_P = \Delta P_{max} \cdot A_1$$

$$R = \frac{W_{P}}{n}$$





(b) 正面図

図5-2 カンヌキに生じる荷重の例

カンヌキの詳細図を図5-3に示す。カンヌキに生じる曲げモーメント  $M_k$ 及びせん断力  $Q_k$  は次式により算定する。

$$M_k = R \cdot L$$

 $Q_k = R$ 



図 5-3 カンヌキの詳細図

ロ. カンヌキ1本当たりに生じる曲げ応力度

$$\sigma_b = \frac{M_k}{Z}$$

ハ. カンヌキ1本当たりに生じるせん断応力度

$$\tau = \! \frac{Q_k}{A_2}$$

# 5.2 機器・配管系に関する評価式

# 5.2.1 衝突評価が必要な機器

# (1) 評価条件

衝突評価を行う場合,以下の条件に従うものとする。

a. 貫通計算においては、評価対象部位に飛来物が衝突した際に跳ね返らず、貫通するものとして評価する。

# (2) 評価対象部位

評価対象部位及び評価内容を表 5-8 に示す。

表 5-8 評価対象部位及び評価内容

| 評価対象部位                                                       | 応力等の状態   |
|--------------------------------------------------------------|----------|
| 飛来物が衝突する可能性がある部位のう<br>ち,最小肉厚部等,貫通によって当該施設<br>が機能喪失する可能性がある箇所 | 衝突による貫通力 |

# (3) 強度評価方法

a. 記号の定義

衝突評価に用いる記号を表 5-9 に示す。

表 5-9 衝突評価に用いる記号

| 記号 | 単 位 | 定義                          |
|----|-----|-----------------------------|
| d  | m   | 評価において考慮する飛来物が衝突する衝突断面の等価直径 |
| K  | _   | 鋼板の材質に関する係数                 |
| M  | kg  | 評価において考慮する飛来物の質量            |
| Т  | mm  | 鋼板の貫通限界厚さ                   |
| V  | m/s | 評価において考慮する飛来物の飛来速度          |

# b. 評価方法

### (a) 貫通限界厚さの算出

飛来物が防護対象施設に衝突する場合の貫通限界厚さを「タービンミサイル評価について(昭和52年7月20日 原子炉安全専門審査会)」で用いられているBRL式を用いて算出する。

$$T^{\frac{3}{2}} = \frac{0.5 \cdot M \cdot v^2}{1.4396 \times 10^9 \cdot K^2 \cdot d^{\frac{3}{2}}}$$

#### 5.2.2 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

#### a. 評価条件

(a) 計算モデルは1質点系モデルとし、ポンプ部は全高の1/2の位置に、原動機部は重心位置に複合荷重が作用することとする。また、設計竜巻による風荷重はそれぞれの評価対象部位に対して発生応力が大きくなる方向から当たるものとする。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価対象部位を図 5-4 に示す。また、ポンプ部及び原動機部の応力計算モデル図を図 5-5 に示す。

(b) 原動機フレームのたわみ量計算においては、ポンプ据付面から原動機台上端まで(ポンプ部)と、原動機台上端から原動機上部軸受部まで(原動機部)の片持ちはりと考える。ポンプ部については、ポンプ部の断面性能は原動機台が最も小さいことから、原動機台の断面性能を一様に有する単純円筒形モデルとして評価する。原動機部については、原動機フレームの断面性能を用いて評価する。このため、計算モデルは違う断面性能の一軸中空形モデルとして考え、荷重は全高の半分の位置に作用することとする。

たわみ量計算モデル図を図5-5に示す。

ポンプ据付面より上部の静止体(原動機フレーム等)は、水平方向の複合荷重により、ポンプ据付面を固定端として一方向に変形する。一方、回転体(ポンプ軸及び原動機軸)は、風荷重を受けないため、変形せず、原動機上部から鉛直方向に吊り下げられた状態を維持する。原動機フレーム等の変形により、軸受反力が許容荷重を超えないことを確認する。

- (c) 計算に用いる寸法は公称値を使用する。
- b. 評価対象部位

評価対象部位及び評価内容を表 5-10 に示す。

評価対象部位応力等の状態基礎ボルト,取付ボルト\*引張<br/>せん断原動機フレーム引張エンドカバー取付ボルトせん断

表 5-10 評価対象部位及び評価内容

注記\*:原動機取付ボルト,ポンプ取付ボルト,通風ダクト取付ボルト,空気冷却器取付ボルト,端子箱取付ボルト及びエンドカバー取付ボルトを示す。

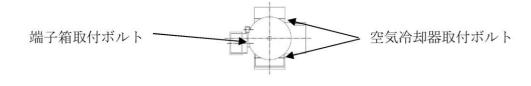
### c. 強度評価方法

### (a) 記号の定義

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価 に用いる記号を表 5-11 に示す。

表 5-11 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価及 び動的機能維持評価に用いる記号 (1/3)

| 記号         | 単 位             | 定義                          |  |  |
|------------|-----------------|-----------------------------|--|--|
| a          | mm              | 部材間の長さ                      |  |  |
| a 1        | mm              | ポンプ据付面からの原動機台上端までの長さ        |  |  |
| a 2        | mm              | 原動機台上端から原動機下部軸受までの長さ        |  |  |
| <b>a</b> 3 | mm              | 原動機台から荷重作用点までの長さ            |  |  |
| A          | $\mathrm{m}^2$  | 受圧面積(風向に垂直な面に投影した面積)        |  |  |
| A 1        | $\mathrm{m}^2$  | 四角形状の部分の受圧面積                |  |  |
| A 2        | $\mathrm{m}^2$  | 円形状の部分の受圧面積                 |  |  |
| Аь         | $\mathrm{mm}^2$ | 各ボルトの軸断面積                   |  |  |
| С          | _               | 建築物荷重指針・同解説により規定される風力係数     |  |  |
| C 1        | _               | 四角形状の部分に対する建築物荷重指針・同解説により規定 |  |  |
| CI         |                 | される風力係数                     |  |  |
| C 2        | _               | 円形状の部分に対する建築物荷重指針・同解説により規定さ |  |  |
| C 2        |                 | れる風力係数                      |  |  |
| Ср         | -               | ポンプ振動による震度                  |  |  |
| d          | mm              | 回転子コア径                      |  |  |
| D          | mm              | 各ボルトのピッチ円直径                 |  |  |
| D m        | mm              | 原動機フレーム外径                   |  |  |
| d m        | mm              | 原動機フレーム内径                   |  |  |
| D p        | mm              | 原動機台外径                      |  |  |
| d p        | mm              | 原動機台內径                      |  |  |
| Е          | MPa             | 縦弾性係数                       |  |  |
| E m        | MPa             | 原動機フレームの縦弾性係数               |  |  |
| Ер         | MPa             | 原動機台の縦弾性係数                  |  |  |
| Ет'        | MPa             | 回転子の縦弾性係数                   |  |  |


表 5-11 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価及び動的機能維持評価に用いる記号(2/3)

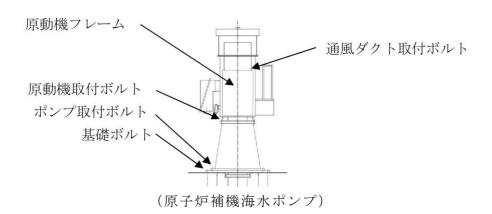

| 記号        | 単位               | プリ的機能維持評価に用いる記方 (2/3) 定 義 |  |  |
|-----------|------------------|---------------------------|--|--|
| F ь       | N                | 各ボルトに対する引張力               |  |  |
| F i       | N                | 転倒支点からLiの距離にあるボルトに対する引張力  |  |  |
| Fн        | N                | 水平方向に作用する荷重               |  |  |
| G         | -                | ガスト影響係数                   |  |  |
| g         | $m/s^2$          | 重力加速度                     |  |  |
| h 1       | mm               | ポンプ据付面から荷重作用点までの距離        |  |  |
| h 2       | mm               | 原動機台から荷重作用点までの距離          |  |  |
| h 1'      | mm               | ポンプ据付面から荷重作用点までの距離        |  |  |
| h 2'      | mm               | 原動機下部軸受から荷重作用点までの距離       |  |  |
| h ³'      | mm               | 荷重作用点から荷重作用点までの距離         |  |  |
| h g       | mm               | 基準面から重心位置までの距離            |  |  |
| h w       | mm               | すみ肉溶接高さ                   |  |  |
| I         | $\mathrm{mm}^4$  | 断面二次モーメント                 |  |  |
| I m       | $\mathrm{mm}^4$  | 原動機フレームの断面二次モーメント         |  |  |
| I m'      | $\mathrm{mm}^4$  | 回転子の断面二次モーメント             |  |  |
| Ιp        | $\mathrm{mm}^4$  | 原動機台の断面二次モーメント            |  |  |
| L g       | mm               | 重心からボルトまでの距離              |  |  |
| L i       | mm               | 転倒支点からボルトの距離              |  |  |
| m         | kg               | 質量                        |  |  |
| M         | N • mm           | 設計竜巻により作用するモーメント          |  |  |
| Ма        | N • mm           | 設計竜巻により作用するモーメント          |  |  |
| Мь        | N • mm           | 設計竜巻により作用するモーメント          |  |  |
| Мс        | N • mm           | 設計竜巻により作用するモーメント          |  |  |
| Мср       | N • mm           | ポンプ振動による転倒モーメント           |  |  |
| Мр        | N • mm           | ポンプの回転によるモーメント            |  |  |
| N         | rpm              | 回転数 (原動機の同期回転数)           |  |  |
| n         | _                | 各ボルトの本数                   |  |  |
| n f       | _                | 引張力を受ける各ボルトの本数            |  |  |
| Qь        | N                | 各ボルトに対するせん断力              |  |  |
| Р         | kW               | 原動機出力                     |  |  |
| Δ Р m a x | $\mathrm{N/m^2}$ | 設計竜巻の最大気圧低下量              |  |  |
| q         | $\mathrm{N/m^2}$ | 設計用速度圧                    |  |  |

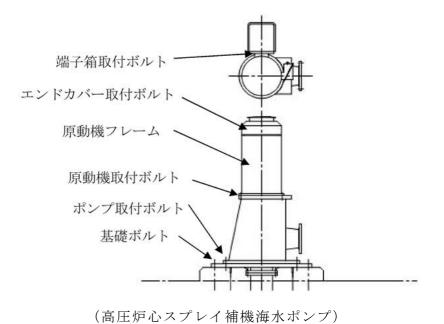
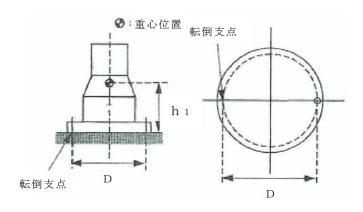
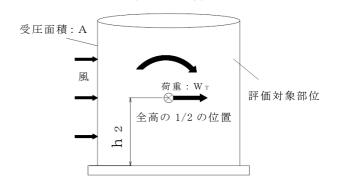
表 5-11 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価及び動的機能維持評価に用いる記号 (3/3)

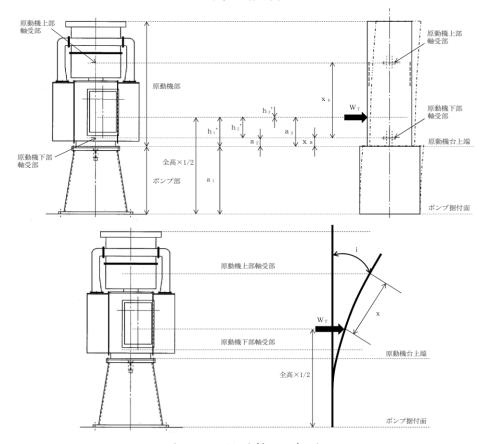
| 記号         | 単 位 | 定義                                             |
|------------|-----|------------------------------------------------|
| W          | N   | 自重                                             |
|            |     | たわみ量及び発生荷重計算において設計竜巻による風圧を                     |
| W'         | N   | 受ける面それぞれのW T2の合計の複合荷重                          |
| W"         | N   | 発生荷重                                           |
| Wм         | N   | 設計竜巻による飛来物の衝撃荷重                                |
| W P        | N   | 設計竜巻による気圧差による荷重                                |
| Wт         | N   | 設計竜巻による複合荷重                                    |
| W T 1      | N   | 設計竜巻による複合荷重 (W <sub>T1</sub> =W <sub>P</sub> ) |
| W T 2      | N   | 設計竜巻による複合荷重( $W_{T2} = W_W + 0.5W_P + W_M$ )   |
| Ww         | N   | 設計竜巻による風圧力による荷重                                |
| X          | mm  | 荷重作用点から評価対象部位までの距離                             |
| х ,        | mm  | 評価対象部位から支点までの距離                                |
| х а '      | mm  | ポンプグランド部から原動機下部軸受部までの距離                        |
| х ь        | mm  | 原動機下部軸受部から原動機上部軸受部までの距離                        |
| У          | mm  | たわみ量                                           |
| <b>y</b> 1 | mm  | ポンプ据付面から原動機台上端部のたわみ量                           |
| <b>y</b> 2 | mm  | 原動機台上端部から原動機下部軸受部のたわみ量                         |
| у 3        | mm  | 原動機台上端部から荷重作用点のたわみ量                            |
| y 4        | mm  | 荷重作用点のたわみ量                                     |
| <b>y</b> 5 | mm  | 荷重作用点から原動機上部軸受部のたわみ量                           |
| У а        | mm  | 原動機下部案内軸受部のたわみ量                                |
| <b>у</b> ь | mm  | 原動機上部案内軸のたわみ量                                  |
| σь         | MPa | 各ボルトに生じる引張応力                                   |
| о w        | MPa | 原動機フレームに生じる引張応力                                |
| τ          | MPa | 各ボルトに生じるせん断応力                                  |
| θ          | rad | 傾斜                                             |
| θ 1        | rad | ポンプ据付面から原動機台上端部の傾斜                             |
| θ з        | rad | 原動機台上端部から荷重作用点の傾斜                              |
| θ 4        | rad | 荷重作用点の傾斜                                       |
| δ          | mm  | フレーム変位量                                        |
| $\delta$ a | mm  | ポンプ据付面から原動機下部軸受部までのフレーム変位量                     |
| 8 :        | mm  | 原動機下部軸受部から電動機上部軸受部までのフレーム変                     |
| δь         | mm  | 位量                                             |

### (b) 計算モデル







図 5-4 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの評価対象部位



# (ポンプ部)



## (原動機部)



(たわみ量計算モデル)

図 5-5 応力計算モデル図

### (c) 評価方法

#### イ. 応力の算出

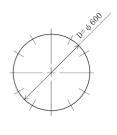
(イ) ポンプ部 (ボルト部)

ポンプ部 (ボルト部) の応力算出方法を以下に,原動機取付ボルト,ポンプ取付ボルト及び基礎ボルトの各ボルト間寸法の配置図を図 5-6~図 5-8 に示す。

· 引張力 σ ь

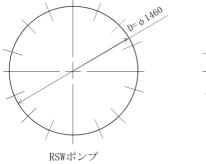
$$F_{b} = \frac{M + M c_{p} + ((m \cdot g \cdot D)/2) \cdot (C_{p}-1)}{3/8 \cdot D \cdot n_{f}}$$

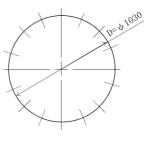
ただし、Fь≤0 ならば引張力は発生しない。


 $F_b>0$  ならば引張力は作用しているので、以下の引張応力の計算を行う。

$$\sigma b = \frac{F b}{A b}$$

・せん断応力 τ


$$\tau = \frac{W T}{A b \cdot n}$$






HPSWポンプ

図 5-6 原動機取付ボルトの配置図





HPSWポンプ

図 5-7 ポンプ取付ボルトの配置図

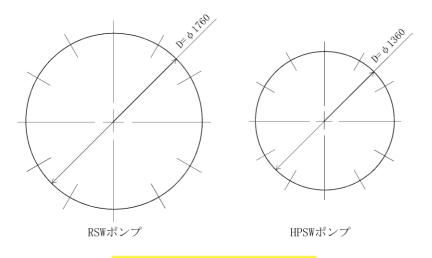



図 5-8 基礎ボルトの配置図

### (口) 原動機部

・原動機フレーム部(RSWポンプ) (HPSWポンプ)
 原動機フレームの応力算出方法を以下に、原動機フレーム取付部の詳細図を図 5-9 に示す。

設計竜巻により作用する転倒モーメントM

$$M = W_T \cdot h_g$$

引張応力σw

$$\sigma w = \frac{5.66 \cdot M}{\pi \cdot h_w \cdot D^2}$$

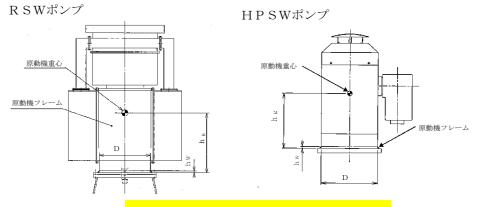



図 5-9 原動機フレーム取付部詳細図

・端子箱取付ボルト部(RSWポンプ)(HPSWポンプ) 端子箱取付ボルトの応力算出方法を以下に<mark>,端子箱取付ボルト部の詳細</mark>図を図 5-10 に示す。 設計竜巻により作用するモーメントM

$$M = W_T \cdot L_g$$

引張応力 σ ь

$$F_{b} = \frac{M + W \cdot h_{g}}{L_{1} \cdot n_{f}}$$

$$\sigma b = \frac{F b}{A b}$$

せん断応力 τ

$$\tau = \frac{F H}{A h \cdot n}$$

ここで,

$$F = \sqrt{W T^2 + W^2}$$

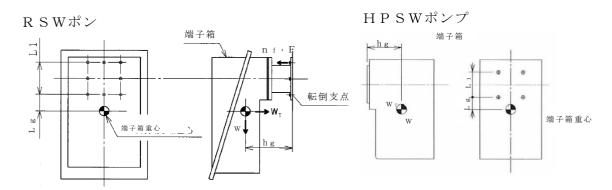



図 5-10 端子箱取付ボルト部詳細図

・通風ダクト取付ボルト部,空気冷却器取付ボルト部 通風ダクト取付ボルト部,空気冷却器取付ボルト部の応力算出方法を<mark>以下に,詳細</mark>図を図 5-11 及び図 5-12 に示す。

設計竜巻によって生じる転倒荷重が、通風ダクト等に作用した際の各取付ボルトに 生じる際の引張応力を算出し評価する。なお、通風ダクトは上部軸受ブラケットとの 接続もあるが、空気冷却器とのみ接続されているとして、評価する。(評価上厳しい 条件)

風による転倒モーメント
$$M = W_T \cdot h_g$$

$$\frac{F_{i}}{L_{i}}$$
=一定・・・②

①, ②式より,

F<sub>b</sub> = 
$$\frac{F_1}{n_f}$$
 =  $\frac{M}{n_f \cdot \sum_{i=1}^{8} L_i^2} L_1$ 

よって,

$$\sigma_b = \frac{F_n}{A_b}$$

せん断応力 τ

$$\tau = \frac{W_T}{A_b \cdot n}$$

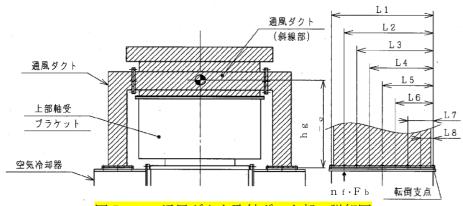



図5-11 通風ダクト取付ボルト部の詳細図

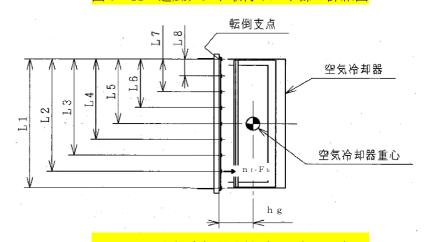



図 5-12 空気冷却器取付ボルト部の詳細図

・エンドカバー取付ボルト(HPSWポンプ)

竜巻によって生じる転倒荷重が、エンドカバーに作用した際の取付ボルトに生じる引張応力を算出し評価する。

(i) ポンプ回転によるモーメント 
$$M_{P} = \frac{60}{2 \cdot \pi \cdot N} \cdot 10^{6} \cdot P$$

(ii) せん断応力

$$\tau = \frac{W_T + 2 \cdot \frac{M_p}{D}}{A_b \cdot n}$$

#### ロ. 発生荷重の計算

## (イ) たわみ量の算出

たわみ量の算出において、竜巻による風圧力を受ける面(原動機台、原動機フレーム、端子箱、通風ダクト及び空気冷却器)のそれぞれの $W_{T2}$ の合計を複合荷重W とする。

$$W' = \sum W_{T2}$$

各部位の受圧部図を図 5-13 及び図 5-14 に示す。

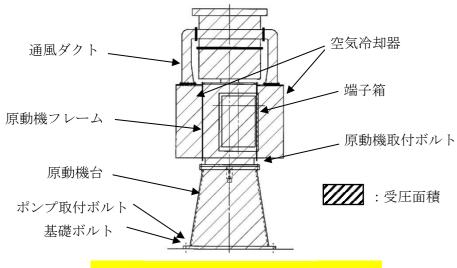



図 5-13 原子炉補機海水ポンプの受圧面積図

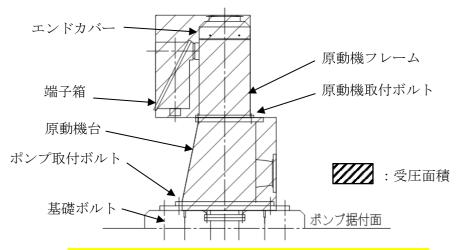



図 5-14 高圧炉心スプレイ補機海水ポンプの受圧面積図

以下のミオソテスの方法より各評価対象部位のたわみ量 y と傾斜  $\theta$  を算出する。なお、荷重は高さの半分の位置に作用することとする。

ミオソテスの方法

$$y = \frac{M \cdot a^{2}}{2 \cdot E \cdot I} + \frac{W' \cdot a^{3}}{3 \cdot E \cdot I}$$

$$\theta = \frac{M \cdot a}{E \cdot I} + \frac{W' \cdot a^{2}}{2 \cdot E \cdot I}$$

$$M = W' \cdot h'$$

### (イ) 原動機下部軸受部

・ポンプ据付面から原動機台上端部のたわみ量 $y_1$ , 傾斜  $\theta_1$ 

$$\mathbf{y}_{1} = \frac{\mathbf{M}_{\mathbf{a}} \cdot \mathbf{a}_{1}^{2}}{2 \cdot \mathbf{E}_{\mathbf{p}} \cdot \mathbf{I}_{\mathbf{p}}} + \frac{\mathbf{W}' \cdot \mathbf{a}_{1}^{3}}{3 \cdot \mathbf{E}_{\mathbf{p}} \cdot \mathbf{I}_{\mathbf{p}}}$$

$$\theta_{1} = \frac{\mathbf{M}_{\mathbf{a}} \cdot \mathbf{a}_{1}}{\mathbf{E}_{\mathbf{p}} \cdot \mathbf{I}_{\mathbf{p}}} + \frac{\mathbf{W}' \cdot \mathbf{a}_{1}^{2}}{2 \cdot \mathbf{E}_{\mathbf{p}} \cdot \mathbf{I}_{\mathbf{p}}}$$

$$\mathbf{M}_{\mathbf{a}} = \mathbf{W}' \cdot \mathbf{h}_{1}'$$
ここで、原動機台の断面図を図 5-15 に示す。

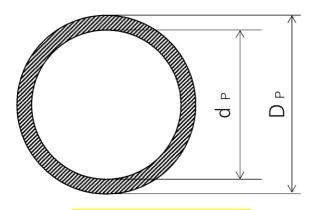



図 5-15 原動機台の断面図

円筒形であるため、断面二次モーメントは以下のとおり算出する。

$$I_{p} = \frac{\pi (D_{p}^{4} - d_{p}^{4})}{64}$$

・原動機台上端部から原動機下部軸受部のたわみ量y2

$$\mathbf{y}_{2} = \frac{\mathbf{M}_{b} \cdot \mathbf{a}_{2}^{2}}{2 \cdot \mathbf{E}_{m} \cdot \mathbf{I}_{m}} + \frac{\mathbf{W}' \cdot \mathbf{a}_{2}^{3}}{3 \cdot \mathbf{E}_{m} \cdot \mathbf{I}_{m}}$$

$$M_b = W' \cdot h_2'$$

 $egin{aligned} \mathbf{M_{b}} &= \mathbf{W^{'}} \cdot \mathbf{h_{2}^{'}} \ \mathbf{CCC}, &\mathbb{R}$  原動機フレームの断面図を図 5-16 に示す

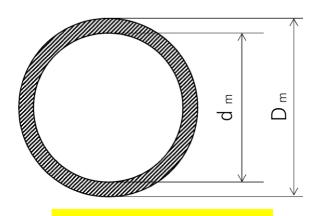



図 5-16 原動機フレームの断面図

円筒形であるため、断面二次モーメントは以下のとおり算出する。

$$I_{m} = \frac{\pi (D_{m}^{4} - d_{m}^{4})}{64}$$

よって、原動機下部軸受部のたわみ量は

ここで, 原動機下部軸受部のたわみ量と傾斜計算モデル図を図 5-17 に示す。

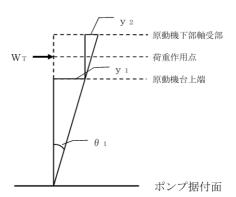



図 5-17 原動機下部軸受部のたわみ量と傾斜計算モデル図

### (口) 原動機上部軸受部

・原動機台上端部から荷重作用点のたわみ量 y 3, 傾斜 θ 3

$$y_{3} = \frac{M_{c} \cdot a_{3}^{2}}{2 \cdot E_{m} \cdot I_{m}} + \frac{W' \cdot a_{3}^{3}}{3 \cdot E_{m} \cdot I_{m}}$$

$$\theta_{3} = \frac{M_{c} \cdot a_{3}}{E_{m} \cdot I_{m}} + \frac{W' \cdot a_{3}^{2}}{2 \cdot E_{m} \cdot I_{m}}$$

 $M_c = W' \cdot h_3$ 

よって、荷重作用点のたわみ量 y 4、傾斜 θ 4

 $y_4 = y_1 + y_3$ 

 $\theta_4 = \theta_1 + \theta_3$ 

荷重作用点から原動機上部軸受部のたわみ量y<sub>5</sub>

 $y_5 = x \cdot \sin(\theta_4)$ 

以上より、原動機上部軸受部のたわみ量は

 $y_{b} = y_{4} + y_{5}$ 

ここで, 原動機上部軸受部のたわみ量と傾斜計算モデル図を図 5-18 に示す。

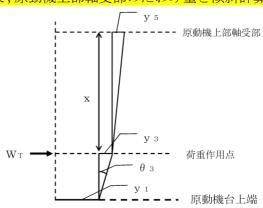



図 5-18 原動機上部軸受部のたわみ量と傾斜計算モデル図

#### (ロ) 発生荷重の算出

軸受部において,フレーム変位により作用する軸受反力と軸受許容荷重を比較し,発生荷重が許容荷重より小さいことを確認する。発生荷重W"は次式より計算する。

δ =評価対象部位の変位量 - 支点の変位量

また,発生荷重は

$$\delta = \frac{W" \cdot x'^{3}}{3 \cdot E \cdot I}$$

より

$$W" = \frac{3 \cdot E \cdot I \cdot \delta}{x^{3}}$$

### (イ) 原動機下部軸受部の発生荷重

$$W" = \frac{3 \cdot E_{m}' \cdot I_{m}' \cdot \delta_{a}}{x_{a}}$$

ここで、 $\delta a = y a$ 

回転子(原動機部)の断面図を図 5-19 に示す。

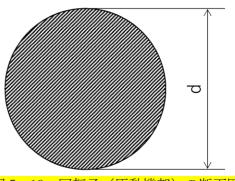



図 5-19 回転子(原動機部)の断面図

回転子の断面二次モーメントは以下のとおり算出する。

$$I_{m}^{,} = \frac{\pi d^{4}}{64}$$

#### (ロ) 原動機上部軸受部の発生荷重

$$W" = \frac{3 \cdot E_{m}' \cdot I_{m}' \cdot \delta_{b}}{x_{b}'}$$

$$\Xi \Xi C, \delta_{b} = y_{b} - y_{a}$$

#### 5.2.3 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ

#### (1) 評価条件

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの強度評価を行う場合,以下の条件に従うものとする。

- a. 設計竜巻の風圧力による荷重,気圧差による荷重,有効運転質量を考慮した荷重が作用する1質点系モデルとして計算を行う。ここで,荷重の作用点は評価上高さの1/2より高いストレーナの重心位置とする。原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの応力の計算モデル図を図5-20に示す。
- b. 計算に用いる寸法は公称値を使用する。

#### (2) 評価対象部位

評価対象部位及び評価内容を表 5-12 に示す。

表 5-12 評価対象部位及び評価内容

| * * * * * * * * * * * * * * * * * * * * |           |
|-----------------------------------------|-----------|
| 評価対象部位                                  | 応力等の状態    |
| 基礎ボルト                                   | 引張<br>せん断 |

## (3) 強度評価方法

### a. 記号の定義

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの強度評価に用いる記号を表 5-13 に示す。

表 5-13 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの強度評価に用いる記号

| 記号              | 単位               | 定義                                             |  |  |
|-----------------|------------------|------------------------------------------------|--|--|
| A               | $\mathbf{m}^2$   | 受圧面積                                           |  |  |
| Аь              | $\mathrm{mm}^2$  | 基礎ボルトの軸断面積                                     |  |  |
| С               | _                | 建築物荷重指針・同解説により規定される風力係数                        |  |  |
| d               | mm               | 基礎ボルト呼び径                                       |  |  |
| Fь              | N                | 基礎ボルトに対する引張力                                   |  |  |
| G               | _                | ガスト影響係数                                        |  |  |
| g               | $m/s^2$          | 重力加速度                                          |  |  |
| h               | mm               | ストレーナ重心高さ                                      |  |  |
| Н               | N                | 自重                                             |  |  |
| 1               | mm               | 重心から基礎ボルト間の水平距離                                |  |  |
| m               | kg               | 容器の有効運転質量                                      |  |  |
| N               | -                | 基礎ボルトの本数                                       |  |  |
| n f             | -                | 引張力を受ける基礎ボルトの本数                                |  |  |
| Q b             | N                | 基礎ボルトに対するせん断力                                  |  |  |
| q               | $N/m^2$          | 設計用速度圧                                         |  |  |
| WP              | N                | 設計竜巻による気圧差による荷重                                |  |  |
| W <sub>T1</sub> | N                | 設計竜巻による複合荷重 (W <sub>T1</sub> =W <sub>P</sub> ) |  |  |
| WT2             | N                | 設計竜巻による複合荷重( $W_{T2}=W_W+0.5W_P+W_M$ )         |  |  |
| Ww              | N                | 設計竜巻による風圧力による荷重                                |  |  |
| ΔPmax           | $\mathrm{N/m^2}$ | 設計竜巻の最大気圧低下量                                   |  |  |
| σь              | MPa              | 基礎ボルトに生じる引張応力                                  |  |  |
| ρ               | $kg/m^3$         | 空気密度                                           |  |  |
| τ               | MPa              | 基礎ボルトに生じるせん断応力                                 |  |  |
|                 |                  | -                                              |  |  |

### b. 計算モデル

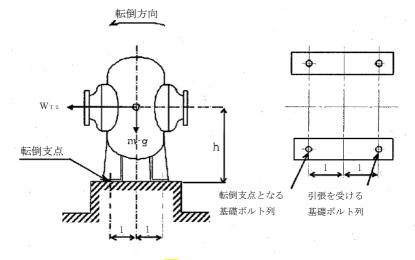



図 5-20 海水ストレーナのモデル図

#### c. 評価方法

### (a) 引張応力

基礎ボルトに対する引張力は最も厳しい条件として、図 5-20 で基礎ボルトを支点とする転倒を考え、これを片側の基礎ボルトで受けるものとして計算する。

引張力

$$F_b = \frac{W_{T2} \cdot h - m \cdot g \cdot 1}{n_f \cdot 2 \cdot 1}$$

引張応力

$$\sigma b = \frac{F b}{A b}$$

ここで、基礎ボルトの軸断面積 A b は

$$A_b = \frac{\pi}{4} d^2$$

#### (b) せん断応力

基礎ボルトに対するせん断力は、基礎ボルト全本数で受けるものとして計算する。 せん断力

 $Q_b = W_{T2}$ 

せん断応力

$$\tau = \frac{Q_b}{A_b \cdot N}$$

5.2.4 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁

#### (1) 評価条件

配管及び弁の強度評価を行う場合、以下の条件に従うものとする。

- a. 配管は一定距離ごとにサポートにより支持されているため、風圧力による一様な荷重を受ける単純支持はりとして評価を行う。評価に用いる支持間隔は、管外径、材質ごとにサポートの支持間隔が最長となる箇所を選定する。配管モデルは、図 5-21 のとおり、曲がり部を直管とみなし評価を行うが、曲がり部の影響を考慮し、当該支持間隔内にある曲がり部の応力係数のうち最大のものを、最大曲げモーメント発生位置における応力に乗じることとする。保温材を使用している配管については、保温材を含めた受圧面積を考慮して評価を行う。弁を設置している場合はサポート支持間隔が短くなるため、弁を設置している場合の受圧面積は最大支持間隔での受圧面積に包絡される。
- b. 非常用ディーゼル発電設備(燃料移送系)配管及び弁、高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁は建物内等に設置されているため、気圧差による荷重を配管内部に受けるものとして計算を行う。非常用ディーゼル発電設備(燃料移送系)配管及び弁、高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁のモデル図を図5-22に示す。なお、気圧差による荷重の影響としては、板厚方向の応力による影響が考えられるが、評価対象施設の管は、耐圧試験を実施しており、気圧差による荷重と耐圧試験圧力((例)気圧差による荷重:0.0075(MPa)、耐圧試験圧力(非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁がびに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁がびに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁がびに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁がびに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁がびに高圧炉心スプレイ系ディーゼル
- c. 計算に用いる寸法は公称値を用いる。

#### (2) 評価対象部位

評価対象部位及び評価内容を表 5-14 に示す。

表 5-14 評価対象部位及び評価内容

| 評価対象部位 | 応力等の状態 |
|--------|--------|
| 配管本体   | 一次応力   |

## (3) 強度評価方法

## a. 記号の定義

配管及び弁の強度評価に用いる記号を表 5-15 に示す。

表 5-15 配管及び弁の強度評価に用いる記号

| 記号        | 単位                        | 定義                                    |  |  |
|-----------|---------------------------|---------------------------------------|--|--|
| A         | $\mathrm{m}^2/\mathrm{m}$ | 単位長さ当たりの受圧面積(風向に垂直な面に投影した面積)          |  |  |
| С         | _                         | 風力係数                                  |  |  |
| D         | mm                        | 管外径                                   |  |  |
| g         | $m/s^2$                   | 重力加速度                                 |  |  |
| G         | -                         | ガスト影響係数                               |  |  |
| i         | _                         | 応力係数でJSME PPC-3810(5)c.に規定する値または1.33の |  |  |
| 1         |                           | いずれか大きい方の値                            |  |  |
| L         | m                         | 支持間隔                                  |  |  |
| m         | kg/m                      | 単位長さ当たりの質量                            |  |  |
| M a       | N • m                     | 風圧力により作用する曲げモーメント                     |  |  |
| Мь        | N • m                     | 自重により作用する曲げモーメント                      |  |  |
| P 1       | MPa                       | 内圧                                    |  |  |
| Рь        | MPa                       | 配管に作用する圧力                             |  |  |
| Δ Р m a x | $\mathrm{N/m^2}$          | 設計竜巻の最大気圧低下量                          |  |  |
| q         | $\mathrm{N/m^2}$          | 設計用速度圧                                |  |  |
| r m       | mm                        | 平均半径                                  |  |  |
| Sprm      | MPa                       | 一次応力                                  |  |  |
| t         | mm                        | 配管の厚さ                                 |  |  |
| V D       | m/s                       | 竜巻の最大風速                               |  |  |
| WP        | N/m                       | 単位長さ当たりの気圧差による荷重                      |  |  |
| Ww        | N/m                       | 単位長さ当たりの風圧力による荷重                      |  |  |
| W         | N/m                       | 単位長さ当たりの自重による荷重                       |  |  |
| Z         | $\mathrm{m}^3$            | 断面係数                                  |  |  |
| σ         | MPa                       | 最大発生応力                                |  |  |
| σWP       | MPa                       | 気圧差により生じる応力                           |  |  |
| σ 内圧      | MPa                       | 内圧により生じる応力                            |  |  |
| σ θ       | MPa                       | 管に生じる周方向応力                            |  |  |
| ρ         | ${\rm kg/m^3}$            | 空気密度                                  |  |  |

### b. 原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び弁

#### (a) 計算モデル

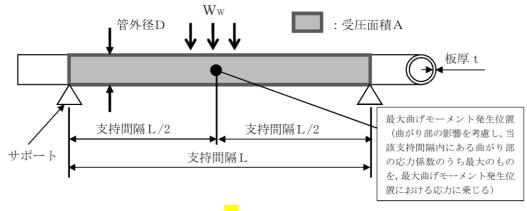



図 5-<mark>21</mark> 配管のモデル図

#### (b) 評価方法

#### イ. 竜巻による応力計算

#### (イ) 風圧力により生じるモーメント

風圧力により生じるモーメントは、風圧力による荷重が配管の支持スパンに等 分布荷重として加わり、曲げモーメントを発生させるものとして、以下の式によ り算定する。

$$M_a = \frac{Ww \cdot L^2}{8}$$

#### (ロ) 気圧差により生じる応力

気圧差により生じる応力は、気圧が低下した分、内圧により生じる一次一般膜 応力が増加すると考えて、その応力増加分を以下の式により算定する。

$$\sigma WP = \frac{\Delta P_{max} \cdot D}{4 t}$$

#### 口. 組合せ応力

竜巻荷重と組み合わせる荷重として、配管に常時作用する自重及び運転時に作用する内圧による荷重を考慮する。自重により生じる曲げモーメント及び内圧により生じる一次一般膜応力は、以下の式により算定する。

$$M_b = \frac{w \cdot L^2}{8}$$
 $\sigma$  内圧 $= \frac{P_1 \cdot D}{4 t}$ 

したがって、応力係数を考慮した自重及び風圧力により生じる曲げ応力と気圧差及び内圧により生じる一次一般膜応力を足し合わせ、配管に生じる応力として以下の式によりSprmを算出する。

$$S_{prm} = \frac{P_b \cdot D}{4 t} + \frac{0.75 \cdot i \cdot \left(M_a + M_b\right)}{Z}$$

$$\Xi \subseteq \mathcal{C}, \quad P_b = \Delta P_{max} + P_1$$

- c. 非常用ディーゼル発電設備(燃料移送系)配管及び弁、高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁
  - (a) 計算モデル

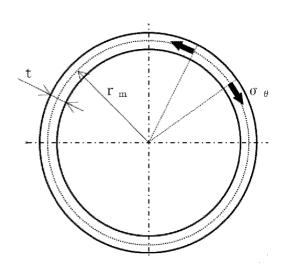



図 5-22 非常用ディーゼル発電設備(燃料移送系)配管及び弁、高圧炉心スプレイ系ディーゼル 発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁のモデル図

## (b) 計算方法

イ. 配管に作用する圧力により生じる周方向応力

配管に作用する圧力は,設計竜巻により発生する気圧差及び運転圧が影響するので,

$$\begin{split} P_b &= \Delta \; P_{\,m\,a\,\,x} + P_1 \\ \sigma_{\,\,\theta} &= \frac{P_{\,b} \cdot r_{\,\,m}}{t} \\ \text{ただし,} \\ r_{\,\,m} &= \frac{D-t}{2} \end{split}$$

5.2.5 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプ

#### (1) 評価条件

非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの強度評価を行う場合,以下の条件に従うものとする。

a. 気圧差による荷重は、非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧 炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの耐圧部に作用する。非 常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル 発電設備ディーゼル燃料移送ポンプの概要図を図 5-23 に示す。

#### (2) 評価対象部位

評価対象部位及び評価内容を表 5-16 に示す。

表 5-16 評価対象部位及び評価内容

| 評価対象部位 | 応力等の状態 |
|--------|--------|
| 耐圧部    | 一次応力   |

#### (3) 強度評価方法

#### a. 記号の定義

非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの強度評価に用いる記号を表 5-17 に示す。

表 5-17 非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル 外発電設備ディーゼル燃料移送ポンプの強度評価に用いる記号

| 記号        | 単 位 | 定義            |
|-----------|-----|---------------|
| Δ Р m a x | MPa | 設計竜巻最大の気圧低下量  |
| Р         | MPa | 設計竜巻により発生する圧力 |
| P 1       | MPa | 最高使用圧力        |

### b. 計算モデル

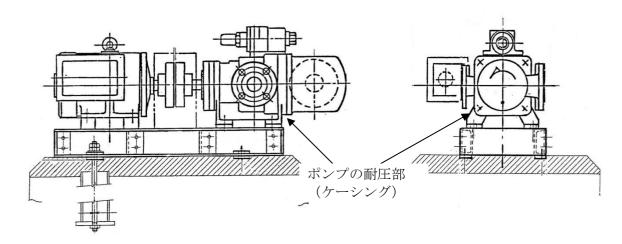



図 5-23 非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼ ル発電設備ディーゼル燃料移送ポンプの概要図

#### c. 評価方法

評価方法は,運転時に作用する内圧に設計竜巻による気圧差を加え,これと燃料移送 ポンプの耐圧試験圧力との比較を行う。運転時に作用する内圧として,燃料移送ポンプ の最高使用圧力 $P_1$ を考慮する。

設計竜巻により発生する圧力は以下のとおり。

 $P = \Delta P_{max} + P_1$ 

#### 5.2.6 ダンパ

#### a. 評価の条件

ダンパの強度評価を行う場合,以下の条件に従うものとする。

- (a) 外板は、外板を 4 辺に分割し、その 1 辺を同等の断面性能を持つ単純支持はりとして計算を行う。外板のモデル図を図  $5-\frac{24}{24}$  に示す。
- (b) 羽根は、4 辺支持長方形板に等分布荷重がかかるものとし、曲げ応力による評価を行 う。羽根のモデル図を図 5-25 に示す。
- (c) シャフトは、ダンパに作用する圧力及び自重により発生する荷重が両端のシャフトに 均等に作用するものとし、シャフト断面についてせん断応力による評価を行う。シャフトのモデル図を図 5-26 に示す。
- (d) 計算に用いる寸法は公称値を使用する。

#### b. 評価対象部位

評価対象部位及び評価内容を表 5-18 に示す。

表 5-18 評価対象位及び評価内容

| 評価対象部位 | 応力等の状態 |
|--------|--------|
| 外板     | 曲げ     |
| 羽根     | 曲げ     |
| シャフト   | せん断    |

## c. 強度評価方法

## (a) 記号の定義

ダンパの強度評価に用いる記号を表 5-19 に示す。

表 5-19 ダンパの強度評価に用いる記号

| 記号           | 表 5-19<br>単 位   | タンハの強度評価に用いる記号 定義    |  |
|--------------|-----------------|----------------------|--|
| a            | mm              | 評価対象板の短辺             |  |
| A            | $\mathrm{mm}^2$ | シャフト断面積              |  |
| b            | mm              | 評価対象板の長辺             |  |
| D            | mm              | シャフト直径               |  |
| е            | mm              | 外板における断面の重心高さ        |  |
| F 1          | N/mm            | 気圧低下による分布荷重          |  |
| F 2          | N/mm            | 自重による分布荷重            |  |
| g            | $m/s^2$         | 重力加速度                |  |
| h            | mm              | 羽根厚さ                 |  |
| Н            | mm              | 外板高さ                 |  |
| E            | MPa             | 縦弾性係数                |  |
| I            | $\mathrm{mm}^4$ | 断面二次モーメント            |  |
| L            | mm              | 面間寸法                 |  |
| m            | kg              | 羽根質量                 |  |
| M 1          | kg              | 外板質量                 |  |
| M 2          | kg              | 上流側フランジ質量            |  |
| М з          | kg              | 下流側フランジ質量            |  |
| Мх           | N • mm          | 外板に作用する曲げモーメント       |  |
| Р            | MPa             | ダンパに作用する圧力           |  |
| Δ Р m a x    | MPa             | 設計竜巻の最大気圧低下量         |  |
| W            | mm              | 外板幅                  |  |
| Z            | mm <sup>3</sup> | 断面係数                 |  |
| ν            | _               | ポアソン比                |  |
| ωmax         | mm              | 羽根の最大変位量             |  |
| <b>о</b> тах | MPa             | 羽根に生じる面外方向の荷重による最大応力 |  |
| σbmax        | MPa             | 外板に生じる最大曲げ応力         |  |
| σ s max      | MPa             | シャフトに生じる最大せん断応力      |  |

### (b) 計算モデル

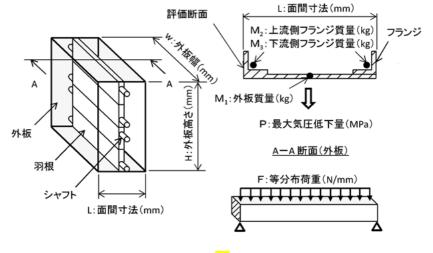



図 5-<mark>24</mark> 外板モデル図

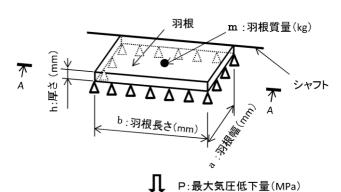
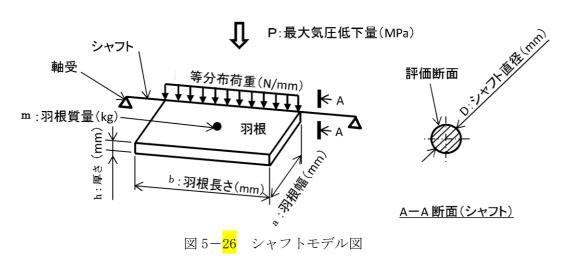






図 5-25 羽根モデル図



#### (c) 評価方法

ダンパに作用する圧力は、設計竜巻の気圧差によって発生する。

$$P = \Delta P_{max}$$

## イ. 外板

外板に作用する最大曲げモーメント

$$M_{x} = \frac{\text{MAX}(W, H) \times (F_{1} + F_{2})}{8}$$

ここで,

 $F_1 = P \times L$ 

$$F_{2} = \frac{(M_{1} + M_{2} + M_{3}) \times 9.80665}{MAX(W, H)}$$

外板に生じる最大曲げ応力

$$\sigma \max = \frac{Mx}{7}$$

ここで,

$$Z = \frac{I}{e}$$

#### 口. 羽根

羽根に生じる応力は、4辺単純支持の長方形板が等分布荷重を受ける場合において、ダンパに作用する圧力及び自重による面外荷重により生じる最大応力 $\sigma$  max とその面外荷重による羽根の最大変位量 $\omega$  max との関係は、以下の式で表される。

機械工学便覧に記載されている 4 辺単純支持の長方形板が等分布荷重を受ける場合の長方形板の大たわみ式を引用する。

$$\sigma_{\text{max}} = \frac{\pi^2 E \omega_{\text{max}}}{8(1 - v^2)} \left\{ \frac{(2 - v^2) \omega_{\text{max}} + 4h}{b^2} + \frac{v (\omega_{\text{max}} + 4h)}{a^2} \right\} \cdot \cdot \cdot (3)$$

$$\frac{256(1-v^2)(F_1+F_2)}{\pi^6 E h^4} = \frac{4}{3} \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2 \frac{\omega_{\text{max}}}{h}$$

$$+ \left\{ \frac{4 \nu}{a^2 b^2} + \left(3 - \nu^2\right) \left(\frac{1}{a^4} + \frac{1}{b^4}\right) \right\} \left(\frac{\omega_{\text{max}}}{h}\right)^3 \quad \cdot \cdot \cdot \textcircled{4}$$

式④で得られるωmaxの値を式③に代入し、σmaxを算出する。

ここで,

 $F_1 = P$ 

$$F_2 = \frac{m \cdot g}{a \cdot b}$$

ハ. シャフト シャフトに生じる最大せん断応力

$$\sigma_{\text{smax}} = \frac{F_1 + F_2}{A}$$

ここで,

$$F_1 = P \cdot a \cdot b$$

$$F_2 = m \cdot q$$

$$F_2 = m \cdot g$$
$$A = \pi \cdot \left(\frac{D}{2}\right)^2$$

### 5.2.7 角ダクト

#### (1) 評価条件

角ダクトの強度評価を行う場合、以下の条件に従うものとする。

- a. 角ダクトは、任意のダクト面に着目すると、ダクト面は両サイドをほかの2つの側面のダクト面で、軸方向(流れ方向)を補強材・フランジで支持された長方形の板とみなすことができる。そのため、鋼板を補強部材と両サイドのウェブで支持された4辺単純支持長方形板とし評価を行う。自重等によりダクトに生じる曲げモーメントに関し、ウェブでの応力分布が線形で、中立面がフランジの両側から等距離の中央線上にあるとする。角ダクトのモデル図を図5-27、図5-28に示す。
- b. 計算に用いる寸法は公称値を使用する。
  - (a) 評価対象部位

評価対象部位及び評価内容を表 5-20 に示す。

表 5-20 評価対象部位及び評価内容

| 機器形状 | 評価対象部位  | 応力等の状態           |
|------|---------|------------------|
| 角ダクト | ダクト(本体) | 曲 <i>げ</i><br>座屈 |

#### (b) 強度評価方法

#### イ. 記号の定義

角ダクトの強度評価に用いる記号を表 5-21 に示す。

表 5-21 角ダクトの強度評価に用いる記号

| _            | 表 3-21            | 用ググトの風及評価に用いる記方        |
|--------------|-------------------|------------------------|
| 記号           | 単 位               | 定義                     |
| a            | mm                | 評価対象板の短辺               |
| b            | mm                | 評価対象板の長辺               |
| С            | mm                | ダクト支持間隔                |
| E            | MPa               | 縦弾性係数                  |
| f 1          | N                 | 曲げモーメントによる圧縮荷重         |
| f 2          | N                 | 最大気圧低下量及び通常運転圧力による圧縮荷重 |
| Н            | mm                | ダクト高さ                  |
| M            | N∙ mm             | 自重による曲げモーメント           |
| Δ Р m a x    | Pa                | 設計竜巻の最大気圧低下量           |
| Р            | Pa                | ダクトに作用する圧力             |
| P 1          | Pa                | 通常運転圧力                 |
| t            | mm                | ダクト厚さ                  |
| W            | mm                | ダクト幅                   |
| W 1          | N/mm              | ダクト単位長さ当たりの荷重          |
| W 2          | $\mathrm{N/mm^2}$ | ダクト単位面積当たりの荷重          |
| ν            | _                 | ポアソン比                  |
| ωmax         | mm                | 軸直角方向の荷重によるダクトの最大変位量   |
| <b>о</b> мах | MPa               | 軸直角方向の荷重により生じる最大応力     |

### b. 計算モデル





角ダクトの軸方向の荷重のモデル図

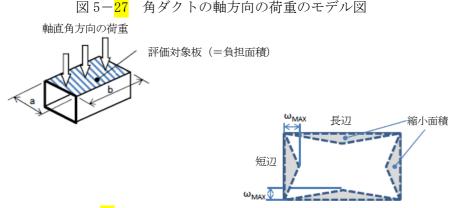



図 5-28 角ダクトの軸直角方向の荷重のモデル図

#### c. 評価方法

ダクトに作用する圧力は、設計竜巻の気圧差及び内圧が影響するので、  $P = \Delta P_{max} + P_1$ 

#### (a) 軸直角方向の荷重による発生応力

4 辺単純支持(周辺で水平,垂直方向の変位拘束,たわみ角は自由)の長方形板 が等分布荷重を受ける場合において,ダクトに作用する圧力及び自重による軸直角 方向の荷重により生じる最大応力σmaxとその軸直角方向の荷重によるダクト鋼 板の最大変位量  $\delta_{max}$  との関係は、以下の式で表される。

機械工学便覧に記載されている 4 辺単純支持の長方形板が等分布荷重を受ける 場合の長方形板の「大たわみの式」を引用する。

$$\sigma_{\max} = \frac{\pi^2 E \omega_{\max} x}{8(1-\nu^2)} \left\{ \frac{(2-\nu^2)\omega_{\max} + 4t}{b^2} + \frac{\nu(\omega_{\max} + 4t)}{a^2} \right\} \quad \cdot \cdot \cdot (5)$$

$$\frac{256(1-v^{2})(P+w_{2})}{\pi^{6}E t^{4}} = \frac{4}{3}\left(\frac{1}{a^{2}} + \frac{1}{b^{2}}\right)^{2} \frac{\omega_{\text{max}}}{t} + \left\{\frac{4v}{a^{2}b^{2}} + (3-v^{2})\left(\frac{1}{a^{4}} + \frac{1}{b^{4}}\right)\right\}\left(\frac{\omega_{\text{max}}}{t}\right)^{3} \cdot \cdot \cdot \cdot 6$$

式⑥より得られる $\omega_{max}$ の値を式⑤へ代入し、 $\sigma_{max}$ を算出する。

#### (b) 軸方向の荷重による発生応力

### イ. 自重による圧縮荷重

ダクトの自重により発生する曲げモーメントによる軸方向の圧縮荷重は,以下の 式により算出する。

$$f_1 = \frac{M}{H}$$

$$\Sigma \subset \mathcal{C},$$

$$M = \frac{w_1 \cdot c^2}{8}$$

### ロ. ダクトに作用する圧力による圧縮荷重

ダクトが軸方向に受ける設計竜巻の気圧差と内圧による圧縮荷重は、以下の式により算出する。

$$f_2 = \frac{(W+2\cdot t)\cdot (H+2\cdot t)\cdot P}{10^6}$$

#### 5.2.8 丸ダクト

(1) 評価条件

丸ダクトの強度評価を行う場合、以下の条件に従うものとする。

- a. 丸ダクトは両端を補強部材で支持された円筒のはりとみなし計算を行う。 丸ダクトのモデル図を図  $5-\frac{29}{29}$ , 図  $5-\frac{30}{30}$ に示す。
- b. 計算に用いる寸法は公称値を使用する。
  - (a) 評価対象部位

評価対象部位及び評価内容を表 5-22 に示す。

表 5-22 評価対象部位及び評価内容

| 機器形状 | 評価対象部位  | 応力等の状態   |
|------|---------|----------|
| 丸ダクト | ダクト(本体) | 曲げ<br>座屈 |

### (b) 強度評価方法

イ. 記号の定義

丸ダクトの強度評価に用いる記号を表 5-23 に示す。

表 5-23 丸ダクトの強度評価に用いる記号

| 記号    | 単位              | 定義                       |
|-------|-----------------|--------------------------|
| A 1   | $\mathrm{mm}^2$ | ダクト全断面積                  |
| A 2   | $\mathrm{mm}^2$ | ダクト板の断面積                 |
| С     | mm              | ダクト支持間隔                  |
| d 1   | mm              | ダクト内径                    |
| d 2   | mm              | ダクト外径                    |
| M     | N∙ mm           | 自重による曲げモーメント             |
| L     | mm              | ダクト板の長さ                  |
| Р     | MPa             | ダクトに作用する圧力               |
| ΔPmax | MPa             | 設計竜巻の最大気圧低下量             |
| P 1   | MPa             | 通常運転圧力                   |
| R     | mm              | 内半径                      |
| r m   | mm              | 平均半径                     |
| t     | mm              | ダクト厚さ                    |
| ν     | _               | ポアソン比                    |
| W     | N/mm            | ダクト単位長さ当たりの荷重            |
| Z     | $\mathrm{mm}^3$ | 断面係数                     |
| σь    | MPa             | 自重による発生応力                |
| σРЬ   | MPa             | 設計竜巻による気圧差及び内圧による発生応力    |
| σР    | MPa             | ダクトに作用する圧力による発生応力        |
| σ θ   | MPa             | ダクトに作用する圧力により軸直角方向に生じる応力 |

## ロ. 計算モデル

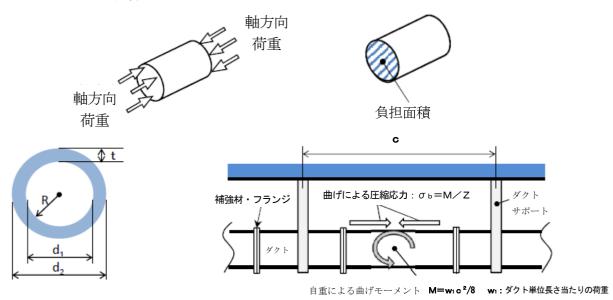



図 5-29 丸ダクトの軸方向荷重のモデル図



ハ. 評価方法

ダクトに作用する圧力は、設計竜巻の気圧差及び内圧が影響する。

$$P = \Delta P_{max} + P_{1}$$

(イ) ダクトに作用する圧力により生じる周方向応力

$$\sigma_{\theta} = -\frac{r_{m}P}{t}$$

- (ロ) 面内荷重による発生応力
  - (i) 自重による発生応力 ダクトが軸方向に受ける自重による曲げ応力は、以下の式により算出する。

$$\sigma_b = \frac{M}{Z}$$

ここで,

$$M = \frac{\text{w c}^{2}}{8}$$

$$Z = \frac{\pi}{32} \cdot \frac{\text{d } 2^{4} - \text{d } 1^{4}}{\text{d } 2}$$

# (ii) ダクトに作用する圧力による発生応力

ダクトが軸方向に受ける設計竜巻の気圧差と内圧による圧縮応力は,以下の 式により算出する。

$$\sigma_P = P \times \frac{A_1}{A_2}$$

ここで,

$$A_1 = \frac{\pi}{4} \times d_2^2$$

$$A_2 = \frac{\pi}{4} \times (d_2^2 - d_1^2)$$

#### 5.2.9 隔離弁

#### (1) 評価条件

隔離弁の強度評価を行う場合,以下の条件に従うものとする。

- a. 弁箱は、両端を補強部材で支持された円筒のはりとみなし、計算を行う。弁箱のモデル図を図  $5-\frac{31}{31}$ に示す。
- b. 弁体は、円形の弁体面積に受ける荷重を長方形の評価面積に作用するとみなし、弁体評価面積の断面と同等の断面性能を持つ単純はりとして、曲げ応力による計算を行う。 弁体のモデル図を図 5-32 に示す。
- c. 弁棒は、内部圧力及び自重により発生する荷重が両端の弁棒に作用するものとし、弁 棒断面についてせん断応力による計算を行う。弁棒のモデル図を図 5-33 に示す。
- d. 計算に用いる寸法は公称値を使用する。

#### (a) 評価対象部位

評価対象部位及び評価内容を表 5-24 に示す。

 機器形状
 評価対象部位
 応力等の状態

 弁箱
 座屈

 隔離弁
 弁体
 曲げ

 弁棒
 せん断

表 5-24 評価対象部位及び評価内容

## (b) 強度評価方法

#### イ. 記号の定義

隔離弁の強度評価に用いる記号を表 5-25 に示す。

表 5-25 隔離弁の強度評価に用いる記号

|                | 表 5-25 降        | 開解弁の強度評価に用いる記号<br> |
|----------------|-----------------|--------------------|
| 記号             | 単位              | 定義                 |
| A              | $\mathrm{mm}^2$ | 弁棒断面積              |
| D              | mm              | 弁棒直径               |
| е              | mm              | 主軸から断面最端点までの距離     |
| F 1            | N               | 最大気圧低下量による荷重       |
| F 2            | N               | 自重による荷重            |
| g              | $m/s^2$         | 重力加速度              |
| h              | mm              | 弁体厚さ               |
| Н              | mm              | 弁体幅                |
| I              | $\mathrm{mm}^4$ | 断面二次モーメント          |
| Q              | mm              | 弁体評価面の長さ           |
| L 1            | mm              | 弁箱の面間寸法            |
| L 2            | mm              | 弁体長さ               |
| M              | kg              | 弁体質量               |
| Мх             | N•mm            | 弁体に作用する曲げモーメント     |
| P              | MPa             | 隔離弁に作用する圧力         |
| ΔPmax          | MPa             | 設計竜巻の最大気圧低下量       |
| R              | mm              | 内半径                |
| r m            | mm              | 平均半径               |
| t              | mm              | 弁箱厚さ               |
| W              | mm              | 弁体評価面の幅            |
| ν              | _               | ポアソン比              |
| Z              | $\mathrm{mm}^3$ | 断面係数               |
| <b>о</b> тах   | MPa             | 弁箱に生じる周方向応力        |
| <b>о</b> в тах | MPa             | 弁体に生じる最大曲げ応力       |
| os max         | MPa             | 弁棒に生じる最大せん断応力      |

## (c) 計算モデル L:面間寸法(mm) P:最大気圧低下量(MPa) 弁箱 M: 弁箱質量(kg) d t:板厚(mm) r m: 平均半径(mm) R: 内半径(mm) A-A断面(弁箱) 図 5-31 弁箱モデル図 弁箱 Ш Ш I:断面二次モーメント(mm⁴) (評価断面) L.: 弁体長さ(mm) P:最大気圧低下量 ℓ:評価面長さ(mm) (MPa) h(弁体板厚) w:評価面幅(mm) H: 弁体幅(mm) F<sub>1</sub>+F<sub>2</sub>:集中荷重(N) 弁体セットピン M:弁体質量(kg) A-A 断面(弁体) 弁棒 弁体 曲げモーメントが作用する面 図 5-32弁体モデル図 弁箱 U Ш A: 弁棒断面積(mm²) L2:弁体長さ(mm) (評価断面) D:弁棒直径(mm) **←** A H: 弁体幅(mm) F1:集中荷重(N) P:最大気圧低下量 (MPa) M:弁体質量(kg) A-A 断面(弁棒) 図 5-33 弁棒モデル図

## (d) 評価方法

隔離弁に作用する圧力は、設計竜巻の気圧差によって発生する。

$$P = \Delta P_{max}$$

#### イ. 弁箱

弁箱に生じる周方向応力

$$\sigma_{\text{max}} = \frac{r_{\text{m}} \times P}{t}$$

### 口. 弁体

弁体に作用する曲げモーメント

$$M_x = (F_1 + F_2) \times \frac{1}{4}$$

ここで,

$$F_1 = P \times \left(\pi \times \left(\frac{H}{2}\right)^2\right)$$

$$F_2 = M \cdot g$$

弁体に生じる最大曲げ応力

$$\sigma$$
 b max =  $\frac{Mx}{Z}$ 

ここで,

$$Z = \frac{I}{e}$$

$$I = \frac{\ell}{12} \times (w h^{3})$$

#### ハ. 弁棒

シャフトに生じる最大せん断応力

$$\sigma \text{ s max} = \frac{\text{F }_1 + \text{F }_2}{\text{A}}$$

ここで,

$$F_{1} = P \times \left\{ \pi \cdot \left(\frac{L_{2}}{2}\right)^{2} \right\}$$

$$F_{2} = M \cdot g$$

$$A = \pi \times \left(\frac{D}{2}\right)^{2}$$

## 5.2.10 送風機

#### (1) 評価条件

送風機の強度評価を行う場合、以下の条件に従うものとする。

- a. 送風機は両端を補強部材で支持された円筒のはりとみなし、計算を行う。送風機のモデル図を図  $5-\frac{34}{6}$ に示す。
- b. 計算に用いる寸法は公称値を使用する。

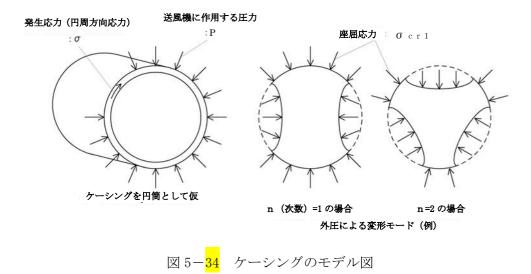
#### (2) 評価対象部位

評価対象部位及び評価内容を表 5-26 に示す。

表 5-26 評価対象部位及び評価内容

| 評価対象部位 | 応力等の状態 |
|--------|--------|
| ケーシング  | 座屈     |

#### (3) 強度評価方法


a. 記号の定義

送風機の強度評価に用いる記号を表 5-27 に示す。

表 5-27 送風機の強度評価に用いる記号

| 記号        | 単 位 | 定義                    |
|-----------|-----|-----------------------|
| а         | mm  | ケーシング内半径              |
| b         | mm  | ケーシング外半径              |
| Р         | MPa | 送風機に作用する圧力            |
| Δ Р m а х | MPa | 設計竜巻の最大気圧低下量          |
| P 1       | MPa | 通常運転圧力                |
| t         | mm  | ケーシングの肉厚              |
| σ         | MPa | 送風機に作用する圧力により生じる周方向応力 |

## b. 計算モデル



## c. 評価方法

送風機に作用する圧力は、設計竜巻の気圧差及び内圧が影響する。  $\mathbf{P} = \Delta \; \mathbf{P}_{\,\mathrm{max}} + \mathbf{P}_{\,\mathrm{l}}$ 

(a) 送風機に作用する圧力により生じる周方向応力

$$\sigma = \frac{2b^2}{b^2 - a^2} P$$

## 5.2.11 処理装置

#### (1) 評価条件

- a. 処理装置のケーシングは両サイドを補強部材で支持された長方形の板とみなすことができる。そのため、ケーシングの両サイドを補強部で支持された4辺単純支持長方形板とし、評価を行う。処理装置のモデル図を図5-35に示す。
- b. 計算に用いる寸法は公称値を使用する。

#### (2) 評価対象部位

評価対象部位及び評価内容を表 5-28 に示す。

表 5-28 評価対象部位及び評価内容

| 評価対象部位 | 応力等の状態 |
|--------|--------|
| ケーシング  | 座屈     |

## (3) 強度評価方法

a. 記号の定義

処理装置の強度評価に用いる記号を表 5-29 に示す。

表 5-29 処理装置の強度評価に用いる記号

| 記号           | 単 位 | 定義                    |
|--------------|-----|-----------------------|
| a            | mm  | 長方形板の短辺               |
| b            | mm  | 長方形板の長辺               |
| E            | MPa | 縦弾性係数                 |
| Р            | MPa | 処理装置に作用する圧力           |
| ΔPmax        | MPa | 設計竜巻の最大気圧低下量          |
| P 1          | MPa | 通常運転圧力                |
| t            | mm  | ケーシング厚さ               |
| ν            | _   | ポアソン比                 |
| ωmax         | mm  | 面外方向の荷重によるケーシングの最大変位量 |
| <b>о</b> тах | MPa | 面外方向の荷重により生じる最大応力     |

### b. 計算モデル

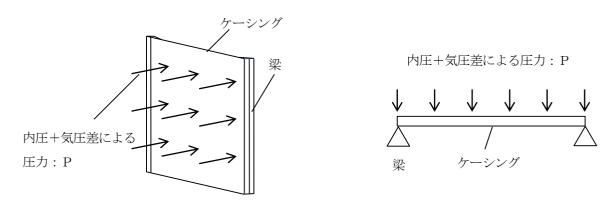



図 5-<mark>35</mark> 処理装置のモデル図

#### c. 評価方法

処理装置に作用する圧力は、設計竜巻により発生する気圧差及び内圧が影響する。  $P = \Delta P_{max} + P_1$ 

### イ. ケーシングの変形

4 辺単純支持(周辺で水平、垂直方向の変位拘束、たわみ角は自由)の長方形板が等分布荷重を受ける場合において、処理装置に作用する圧力及び自重による面外荷重により生じる最大応力 $\sigma$  maxとその面外荷重によるケーシングの最大変位量 $\omega$  maxとの関係は、以下の式で表される。

機械工学便覧に記載されている 4 辺単純支持の長方形板が等分布荷重を受ける場合の長方形板の「大たわみの式」を引用する。

$$\sigma_{\max} = \frac{\pi^{2} E \omega_{\max} x}{8(1-\nu^{2})} \left\{ \frac{(2-\nu^{2})\omega_{\max} x + 4 t}{b^{2}} + \frac{\nu (\omega_{\max} x + 4 t)}{a^{2}} \right\} \qquad \cdot \cdot \cdot ?$$

$$\frac{256(1-\nu^{2}) P}{\pi^{6} E t^{4}} = \frac{4}{3} \left( \frac{1}{a^{2}} + \frac{1}{b^{2}} \right)^{2} \frac{\omega_{\max} x}{t}$$

$$+ \left\{ \frac{4\nu}{a^{2} b^{2}} + (3-\nu^{2}) \left( \frac{1}{a^{4}} + \frac{1}{b^{4}} \right) \right\} \left( \frac{\omega_{\max} x}{t} \right)^{3} \qquad \cdot \cdot \cdot 8$$

式 $\otimes$ より得られる $\omega_{\text{max}}$ の値を式 $\odot$ へ代入し、 $\sigma_{\text{max}}$ を算出する。

#### 5.2.12 排気消音器

## (1) 評価条件

消音器の強度評価を行う場合、以下の条件に従うものとする。

- a. 重心位置に風圧力による荷重が作用する1質点系モデルとして計算を行う。なお、 基礎ボルトに関しては、非常用ディーゼル発電設備ディーゼル機関と高圧炉心スプ レイ系ディーゼル発電設備ディーゼル機関の排気消音器で取付位置が異なるためそ れぞれで評価を行う。消音器のモデル図を図5-36に示す。
- b. 計算に用いる寸法は公称値を使用する。

#### (2) 評価対象部位

評価対象部位及び評価内容を表 5-30 に示す。

表 5-30 評価対象部位及び評価内容

| 評価対象部位 | 応力等の状態 |
|--------|--------|
| 基礎ボルト  | 引張     |
| 結合ボルト  | せん断    |

## (3) 強度評価方法

## a. 記号の定義

消音器の強度評価に用いる記号を表 5-31 に示す。

表 5-31 消音器の強度評価に用いる記号(1/2)

| 記号               | 単 位              | 定義                      |
|------------------|------------------|-------------------------|
| А                | $\mathbf{m}^2$   | 排気消音器の受圧面積              |
| Аь               | $\mathrm{mm}^2$  | ボルトの断面積                 |
| С                | _                | 建築物荷重指針・同解説により規定される風力係数 |
| d                | mm               | ボルト呼び径                  |
| Fь               | N                | ボルトに生じる引張荷重             |
| G                | _                | ガスト影響係数                 |
| g                | $m/s^2$          | 重力加速度                   |
| h 1              | mm               | 取付面から重心までの高さ            |
| h 2              | mm               | 脚結合部から重心までの高さ           |
| Q 1              | mm               | 軸方向における基礎ボルトと重心の距離      |
| <b>Q</b> 2       | mm               | 軸方向における基礎ボルトと重心の距離      |
| Qз               | mm               | 軸方向における結合ボルトと重心の距離      |
| Q 4              | mm               | 軸方向における結合ボルトと重心の距離      |
| Q <sub>1</sub> ' | mm               | 軸直角方向における基礎ボルトと重心の距離    |
| Q <sub>2</sub> ' | mm               | 軸直角方向における基礎ボルトと重心の距離    |
| Qз'              | mm               | 軸直角方向における結合ボルトと重心の距離    |
| Q <sub>4</sub> ' | mm               | 軸直角方向における結合ボルトと重心の距離    |
| m                | kg               | 排気消音器の質量                |
| n                | _                | ボルトの本数                  |
| n f              | _                | 引張荷重を受けるボルトの本数          |
| Qь               | N                | ボルトに生じるせん断荷重            |
| q                | $\mathrm{N/m^2}$ | 設計用速度圧                  |

表 5-31 消音器の強度評価に用いる記号(2/2)

| 記号  | 単 位      | 定義           |  |  |
|-----|----------|--------------|--|--|
| V D | m/s      | 設計竜巻の最大風速    |  |  |
| WT  | N        | 設計竜巻による荷重    |  |  |
| Ww  | N        | 風圧力により作用する荷重 |  |  |
| σ < | MPa      | ボルトに生じる引張応力  |  |  |
| τ   | MPa      | ボルトに生じるせん断応力 |  |  |
| ρ   | $kg/m^3$ | 空気密度         |  |  |

# 計算モデル

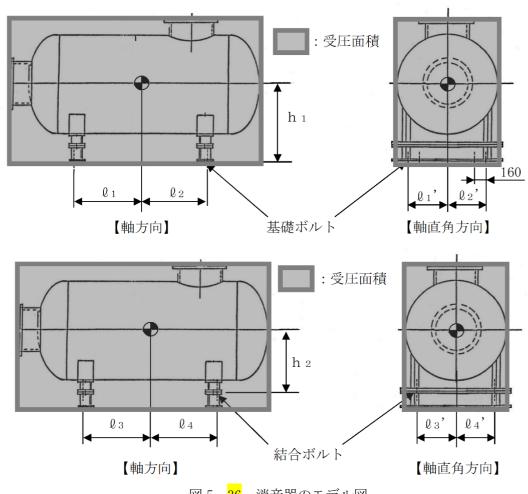



図 5-<mark>36</mark> 消音器のモデル図

### c. 評価方法

(a) 基礎ボルトの引張応力

基礎ボルトに対する引張力は最も厳しい条件として、図 5-22 で基礎ボルトを支点とする転倒を考え、これを片側の基礎ボルトで受けるものとして計算する。なお、軸直角方向と軸方向の各引張応力を比較し、値の大きい値を採用する。

### イ. 軸直角方向

(イ) 引張力

$$F_{b} = \frac{\left(W_{w} \cdot h_{1} - m \cdot g \cdot \ell_{1}'\right) \cdot \left(\ell_{1}' + \ell_{2}'\right)}{\left(\ell_{1}' + \ell_{2}'\right)^{2} + \left(\ell_{1}' + \ell_{2}' - 160\right)^{2}}$$

(口) 引張応力

$$\sigma_b = \frac{F_b}{n_f \cdot A_b}$$

ここで, 基礎ボルトの軸断面積 A b は

$$A_b = \frac{\pi}{4} d^2$$

- 口. 軸方向
  - (イ) 引張力

$$F_b = \frac{W_W \cdot h_1 - m \cdot g \cdot \ell_1}{\ell_1 + \ell_2}$$

(口) 引張応力

$$\sigma_b = \frac{F_b}{n_f \cdot A_b}$$

(b) 基礎ボルトのせん断応力

基礎ボルトに対するせん断応力は,基礎ボルト全本数で受けるものとして計算する。

イ. せん断力

$$Q_b = W_W$$

ロ. せん断応力

$$\tau = \frac{Q_b}{n \cdot A_b}$$

### (c) 結合ボルトの引張応力

結合ボルトに対する引張力は最も厳しい条件として、図 5-22 で結合ボルトを支点とする転倒を考え、これを片側の結合ボルトで受けるものとして計算する。なお、強度評価においては軸直角方向と軸方向の各引張応力を比較し、値の大きいほうを採用する。

#### イ. 軸直角方向

(イ) 引張力

$$F_b = \frac{W_W \cdot h_2 - m \cdot g \cdot \ell_3'}{\ell_3' + \ell_4'}$$

(ロ) 引張応力

$$\sigma_b = \frac{F_b}{n_f \cdot A_b}$$

#### 口. 軸方向

(イ) 引張力

$$F_b = \frac{Ww \cdot h_2 - m \cdot g \cdot \ell_3}{\ell_3 + \ell_4}$$

(ロ) 引張応力

$$\sigma_b = \frac{F_b}{n_f \cdot A_b}$$

#### (d) 結合ボルトのせん断応力

結合ボルトに対するせん断応力は,基礎ボルト全本数で受けるものとして 計算する。

イ. せん断力

$$Q b = W W$$

口. せん断応力

$$\tau = \frac{Q_b}{n \cdot A_b}$$

## 5.2.13 排気管及びベント管

#### (1) 評価条件

- a. 配管は一定距離ごとにサポートよって支えられているため、風圧力による一様な荷重を受ける単純支持はりとして評価を行う。評価に用いる支持間隔はサポートの支持間隔が最長となる箇所を用いる。なお、排気管及びベント管は、配管端部が片持ち形状となっていることから、配管端部についても片持ちはりとして評価を行う。排気管及びベント管のモデル図を図5-37に示す。
- b. 計算に用いる寸法は公称値を使用する。

### (2) 評価対象部位

評価対象部位及び評価内容を表 5-32 に示す。

表 5-32 評価対象部位及び評価内容

| 評価対象部位      | 応力等の状態 |
|-------------|--------|
| 排気管<br>ベント管 | 一次応力   |

## (3) 強度評価方法

## a. 記号の定義

排気管及びベント管の強度評価に用いる記号を表 5-33 に示す。

表 5-33 排気管及びベント管の強度評価に用いる記号

|                           | X 目及び、ンド目の強度計画に用いる記号                                                                                       |
|---------------------------|------------------------------------------------------------------------------------------------------------|
| 単位                        | 定義                                                                                                         |
| $\mathrm{m}^2/\mathrm{m}$ | 単位長さ当たりの受圧面積(風向に垂直な面を投影し                                                                                   |
|                           | た面積)                                                                                                       |
| _                         | 建築物荷重指針・同解説により規定される風力係数                                                                                    |
| mm                        | 配管外径                                                                                                       |
| $m/s^2$                   | 重力加速度                                                                                                      |
| _                         | ガスト影響係数                                                                                                    |
| m                         | 受圧部長さ (片持ち部)                                                                                               |
| m                         | 支持間隔                                                                                                       |
| kg/m                      | 単位長さ当たりの質量                                                                                                 |
| $N \cdot m$               | 風圧力による曲げモーメント                                                                                              |
| MPa                       | 内圧                                                                                                         |
| $\mathrm{N/m^2}$          | 設計竜巻の最大気圧低下量                                                                                               |
| MPa                       | 設計用速度圧                                                                                                     |
| m/s                       | 設計竜巻の最大風速                                                                                                  |
| mm                        | 板厚                                                                                                         |
| N                         | 気圧差による荷重                                                                                                   |
| N/m                       | 単位長さ当たりの風圧力による荷重                                                                                           |
| N/m                       | 単位長さ当たりの自重による荷重                                                                                            |
| $\mathbf{m}^3$            | 断面係数                                                                                                       |
| MPa                       | 配管に生じる応力                                                                                                   |
| MPa                       | 気圧差により生じる応力                                                                                                |
| MPa                       | 複合荷重により生じる応力                                                                                               |
| MPa                       | 風圧力により生じる応力                                                                                                |
| MPa                       | 自重により生じる応力                                                                                                 |
| MPa                       | 内圧により生じる応力                                                                                                 |
| ${\rm kg/m^3}$            | 空気密度                                                                                                       |
|                           | m²/m  — mm m/s² — m m m kg/m N·m MPa N/m² MPa m/s mm N N/m N/m N/m MPa |

# b. 計算モデル

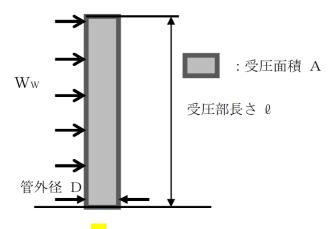



図 5-37 排気管及びベント管モデル図

## c. 評価方法

#### (a) 竜巻による応力計算

イ. 風圧力により生じる応力

風圧力による荷重が配管の支持間隔に等分布荷重として加わり,曲げ応力を発生させるものとして,以下の式により算定する。

$$\sigma ww = \frac{M}{Z} = \frac{Ww \cdot L^{2}}{2 \cdot Z}$$

$$\Xi \subseteq \mathfrak{C},$$

$$Z = \frac{\pi}{32 \cdot D} \cdot \left\{ D^{4} - (D - 2t)^{4} \right\}$$

ロ. 気圧差により生じる応力

気圧差による荷重は、気圧が低下した分、内圧により生じる一次一般膜 応力が増加すると考えて、その応力増加分を以下の式により算定する。

$$\sigma w P = \frac{\Delta P_{max} \cdot D}{4 \cdot t}$$

したがって、イ.,ロ.項の複合荷重により生じる応力 $\sigma$ WT1及び $\sigma$ WT2 は以下の式により算出する。

$$\sigma$$
 W T 1 =  $\sigma$  W P  
 $\sigma$  W T 2 =  $\sigma$  W W + 0.5 •  $\sigma$  W P

(b) 組合せ応力

竜巻荷重と組み合わせる荷重として、配管に常時作用する自重及び運転時 に作用する内圧を考慮する。自重により生じる曲げ応力及び内圧により生じ る一次一般膜応力は、以下の式により算定する。

イ. 自重により生じる応力

$$\sigma = \underline{M} = \frac{M \cdot L^2}{2 \cdot Z}$$

ロ. 内圧により生じる応力

$$\sigma$$
 內压 =  $\frac{\mathbf{P} \cdot \mathbf{D}}{4 \cdot \mathbf{t}}$ 

したがって、自重及び風圧力による荷重により生じる曲げ応力と気圧差による荷重及び内圧により生じる一次一般膜応力を足し合わせ、配管に生じる応力として以下の式により $\sigma$ 1及び $\sigma$ 2を算出する。

 $\sigma$  1 =  $\sigma$  6 f f +  $\sigma$  ηΕ +  $\sigma$  WT 1  $\sigma$  2 =  $\sigma$  6 f f +  $\sigma$  ΝΤ 2

#### 6. 適用規格·基準等

(1) 適用規格·基準等

竜巻の影響を考慮する施設の強度評価に用いる適用規格・基準等は、VI -1-1-3-3-1「竜巻への配慮に関する基本方針」による。

- 建築基準法及び同施行令
- ・建築物荷重指針・同解説 (日本建築学会 2004 改定)
- ・原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG460 1・補-1984)(日本電気協会 電気技術基準調査委員会 昭和59年9月)
- •原子力発電所耐震設計技術指針(JEAG4601-1987)(日本電気協会電気技術基準調査委員会 昭和62年8月)
- ·原子力発電所耐震設計技術指針(JEAG4601·追補版-1991)(日本電気協会 電気技術基準調査委員会 平成3年12月)
- ・発電用原子力設備規格(設計・建設規格 JSME S NC1-2005 (2007年追補版含む。)) (日本機械学会 2007年9月)
- ・ISE7607-3 軽水炉構造機器の衝撃荷重に関する調査 その3 ミサイルの衝 突による構造壁の損傷に関する評価式の比較検討(昭和51年10月 高温構 造安全技術研究組合)
- ・タービンミサイル評価について (昭和 52 年 7 月 20 日 原子炉安全専門審査 会)
- ・鋼構造設計規準 -許容応力度設計法-((社)日本建築学会,2005改定)
- ・鉄筋コンクリート構造計算規準・同解説 許容応力度設計法- ((社) 日本建築学会, 1999 改定)
- ・日本産業規格(JIS)
- ·各種合成構造設計指針 同解説((社)日本建築学会,2010年改定)
- Methodology for Performing Aircraft Impact Assessments for New Plant Designs (Nuclear Energy Institute 2011 Rev8P (NEI07-13))
- ·理科年表(国立天文台,第85冊,2003年)
- ・コンクリート標準示方書 構造性能照査編((社)土木学会,2002年)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説 ((社) 日本建築学会, 2005 制定)

#### (2) 参考文献

- Wichman, K. R. et al, :Local Stress in Spherical and Cylindrical Shells due to External Loadings, Welding Research Council bulletin, March 1979 revision of WRC bulletin 107/August 1965.
- · Bijlaard, P. P. : Stresses from Radical Loads and External Moments in

Cylindrical Pressure Vessels, The Welding Journal, 34(12), Research Supplement, 1955.