島根原子力発電所第2号機 審査資料					
資料番号	NS2-添 2-004-05改01				
提出年月日	2023年2月9日				

Ⅵ-2-4-2-4 燃料プール水位・温度(SA)の耐震性についての計算書

2023年2月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

1. 柞	既要 ·····	1
2	-般事項	1
2.1	構造計画 ••••••••••••••••••••••••••••••••••••	1
2.2	評価方針	3
2.3	適用規格・基準等	4
2.4	記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.5	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
3. 言	平価部位	8
4.	固有周期 ••••••••••••••••••••••••••••••••••••	9
4.1	固有値解析方法	9
4.2	解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
4.3	固有値解析結果	11
5. 柞	構造強度評価	<mark>22</mark>
5.1	構造強度評価方法	<mark>22</mark>
5.2	荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<mark>22</mark>
5.3	設計用地震力	<mark>26</mark>
5.4	計算方法	<mark>28</mark>
5.5	計算条件	<mark>36</mark>
5.6	応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<mark>36</mark>
6. 校	幾能維持評価	<mark>39</mark>
6.1	電気的機能維持評価方法	<mark>39</mark>
7. 言	平価結果	<mark>40</mark>
7.1	重大事故等対処設備としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・	<mark>40</mark>

1. 概要

本計算書は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計 方針に基づき、燃料プール水位・温度(SA)が設計用地震力に対して十分な構造強度を有し、 電気的機能を維持できることを説明するものである。

燃料プール水位・温度(SA)は、重大事故等対処設備においては常設耐震重要重大事故防止 設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下、重大事故等対 処設備としての構造強度評価及び電気的機能維持評価を示す。

- 2. 一般事項
- 2.1 構造計画

燃料プール水位・温度(SA)の構造計画を表 2-1 に示す。

計画の概要		
基礎・支持構造	主体構造	(以哈佛道区) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
検出器は,7個の熱電対 で構成されており,熱電 対は保護管に内蔵され, 圧縮継手により架構に固 定する。保護管は,保護 管固定金具を介して架構 に溶接にて固定する。 架構は,基礎ボルトによ り床面に設置され,水中 サポートブロックを壁面 のワークテーブルフック に引掛けて設置する。	熱電対	架構基礎部 基礎ボルト (3 か)可) (平面図) (角形鋼) (字 カルマンカ) 整構基礎部詳細 (3 か)可) 空標 (日市河鋼) (月形鋼) (保面) (月形鋼) (保面) (月形鋼) (保面) (保市) (日市) (日市) (日市) <
		(正面図) (側面図) (単位:mm)

表 2-1 構造計画

2.2 評価方針

燃料プール水位・温度(SA)の応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す燃料プール水位・ 温度(SA)の部位を踏まえ「3. 評価部位」にて設定する箇所において、「4. 固有周期」で 算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構 造強度評価」にて示す方法にて確認することで実施する。また、燃料プール水位・温度(SA) の機能維持評価は、VI-2-1-9「機能維持の基本方針」にて設定した電気的機能維持の方針に基 づき、機能維持評価用加速度が機能確認済加速度以下であることを、「6. 機能維持評価」にて 示す方法にて確認することで実施する。確認結果を「7. 評価結果」に示す。

燃料プール水位・温度(SA)の耐震評価フローを図 2-1 に示す。

図 2-1 燃料プール水位・温度(SA)の耐震評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984 ((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下「設計・建設規格」という。)

2.4 記号の説明

記号	記号の説明	単位
Am	架構の断面積	mm^2
Аb	基礎ボルトの軸断面積	mm^2
<mark>A h</mark>	<mark>ワークテーブルフック付け根部の断面積</mark>	mm ²
<mark>Ahsi*</mark>	<mark>ワークテーブルフックのせん断断面積</mark>	mm ²
A s	スロッシングにおける架構の投影面積	mm^2
b		mm
C d	架構の抗力係数	_
Сн	水平方向設計震度	_
Сv	鉛直方向設計震度	—
d	基礎ボルトの呼び径	mm
Е	縦弾性係数	MPa
F	設計・建設規格 SSB-3121.1(1)に定める値	MPa
F*	設計・建設規格 SSB-3133に定める値	MPa
Fь	基礎ボルトに作用する引張力	Ν
F s	スロッシングにより架構に生じる抗力	Ν
Fx	<mark>ワークテーブルフック部に作用する力(X 方向)</mark>	N
Fy	<mark>ワークテーブルフック部に作用する力(Y方向)</mark>	N
F z	<mark>ワークテーブルフック部に作用する力(Z 方向)</mark>	N
f b m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MPa
f c m	架構の許容圧縮応力	MPa
$f_{ m s}$ b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f s m	架構 <mark>及びワークテーブルフック</mark> の許容せん断応力	MPa
ftm	架構 <mark>及びワークテーブルフック</mark> の許容引張応力(許容組合せ応	MPa
	力)	
ft o	引張力のみを受ける基礎ボルトの許容引張応力	MPa
ft s	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
	(許容組合せ応力)	
g	重力加速度(=9.80665)	m/s^2
<mark>hi*</mark>	<mark>ワークテーブルフックの断面高さ</mark>	mm
Ι	架構の断面2次モーメント	mm^4
i	座屈軸についての断面2次半径	mm
ℓ k	圧縮材の座屈長さ	mm
L	材長	mm
<mark>L</mark> в	ワークテーブルフック付け根部の応力計算に用いる距離(Fzに	mm
	対する)	
L c	ワークテーブルフック付け根部の応力計算に用いる距離(Fyに	mm

記号	記号の説明	単位						
Q b	基礎ボルトに作用するせん断力(1本当たり)	MPa						
S u	設計・建設規格 付録材料図表 Part5 表9に定める値							
Sу	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa						
S _y (RT)	設計・建設規格 付録材料図表 Part5 表8に定める材料の	MPa						
	40℃における値							
V	スロッシングによる流速	m/s						
W	検出器の荷重	Ν						
Zp	架構の断面におけるねじり断面係数	mm^3						
Zx	架構の断面におけるx軸方向の断面係数	mm^3						
Zy	架構の断面におけるy軸方向の断面係数	mm ³						
Zhy	<mark>ワー</mark> クテーブルフック付け根部の断面における y 軸方向の断面	mm ³						
	<mark>係数</mark>							
Z h z	<mark>ワー</mark> クテーブルフック付け根部の断面における z 軸方向の断面	mm ³						
	<mark>係数</mark>							
π	円周率	—						
σb	基礎ボルトに生じる引張応力	MPa						
τb	基礎ボルトに生じるせん断応力	MPa						
σbx	架構に生じるx方向の曲げ応力	MPa						
σby	架構に生じるy方向の曲げ応力	MPa						
<mark>σht</mark>	<mark>ワークテーブルフックに生じる引張応力</mark>	<mark>MPa</mark>						
<mark>σ ha</mark>	<mark>ワークテーブルフックに生じる組合せ応力</mark>	<mark>MPa</mark>						
σ t (c)	架構に生じる軸応力	MPa						
τh	<mark>ワークテーブルフックに生じるせん断応力</mark>	<mark>MPa</mark>						
τ х	架構に生じるx方向のせん断応力	MPa						
τу	架構に生じるy方向のせん断応力	MPa						
au p	架構に生じるねじり応力	MPa						
ρ	水の密度	kg/m^3						
ρb	架構に生じる曲げ応力	MPa						
$ ho{ m m}$	架構に生じる組合せ応力	MPa						
ρs	架構に生じるせん断応力	MPa						
ρt(c)	架構に生じる引張(圧縮)応力	MPa						
ν	ポアソン比							
νс	圧縮材の座屈安全率							
Λ	限界細長比							
λ	圧縮材の細長比	—						
<mark>注記*:A</mark> hsi	及びh i の添字 i の意味は,以下の通りとする。							

i=1:ワークテーブルフック付け根部

i = 2: ワークテーブルフック先端部

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。 表示する数値の丸め方は,表2-2に示すとおりである。

		五日日 五小 / の		
数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第4位	四捨五入	小数点以下第3位
震度		小数点以下第3位	切上げ	小数点以下第2位
温度	°C	_		整数位
質量	kg	_		整数位
長さ	mm	_	_	整数位*1
面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*2
モーメント	N•mm	有効数字5桁目*3	四捨五入	有効数字4桁*2,*3
力	Ν	有効数字5桁目*3	四捨五入	有効数字4桁*2,*3
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4	MPa	小数点以下第1位	切捨て	整数位

表 2-2 表示する数値の丸め方

注記*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

- *3:計算機プログラム固有の桁処理により算出値が有効数字4桁以下となる場合は, 計算機プログラム保有の最大桁数表示とする。
- *4:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降 伏点は比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値 とする。

3. 評価部位

燃料プール水位・温度(SA)の耐震評価は、「5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる基礎ボルト、架構及びワークテーブルフックについて実施する。燃料 プール水位・温度(SA)の耐震評価部位については、表 2-1の概略構造図に示す。

- 4. 固有周期
- 4.1 固有值解析方法

燃料プール水位・温度(SA)の固有値解析方法を以下に示す。

- (1) 燃料プール水位・温度(SA)は,「4.2 解析モデル及び諸元」に示す三次元はりモデル により固有周期を算出する。
- 4.2 解析モデル及び諸元

燃料プール水位・温度(SA)の解析モデルを図4-1に,解析モデルの概要を以下に示 す。また,機器の諸元を本計算書の【燃料プール水位・温度(SA)(L/TE216-1, 2, 3, 4, 5, 6, TE216-4)の耐震性についての計算結果】のその他の機器要目に示す。

- (1) 燃料プール水位・温度(SA)の架構及び保護管の質量は、架構及び保護管自身の質量の ほか、内包水の質量及び水の付加質量*¹を考慮する。水の付加質量は水平方向及び鉛直方 向に付加する。
- (2) 燃料プール水位・温度(SA)の架構及び保護管の質量は梁要素に等分布に付加し,内包 水の質量及び水の付加質量*¹による荷重は,特定長さに区切った区間分の荷重を集中荷重 として架構及び保護管に設定する。
- (3) 燃料プール水位・温度(SA)の検出器の荷重は、架構の検出器固定部に設定する。
- (4) 燃料プール水位・温度(SA)の検出器は、架構の検出器固定部の他、外部サポートにも 支持する構造であるが、検出器の荷重は計算条件が厳しくなる架構の検出器固定部に作用さ せる。
- (5) 拘束条件として,基礎ボルト部の並進3方向を固定する。また,水中サポートブロック部の水平方向は並進2方向を固定し,鉛直方向は並進方向固定ありと固定なしの2条件で解析 を実施する*²。なお,基礎ボルト部は剛体として評価する。
- (6) 架構と保護管及び水中サポートブロックと架構は、剛性の高い梁要素で接続し、並進及び 回転3方向を固定する。
- (7) 耐震計算に用いる寸法は、公称値を使用する。
- (8) 解析コードは、「NSAFE」を使用し、固有値及び荷重を求める。 なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、VI-5「計算機 プログラム(解析コード)の概要」に示す。
- 注記*1:付加質量とは,機器が流体中で加速度を受けた場合に質量が増加したような効果を模 擬した,機器の形状により定まる仮想質量をいう。
 - 2:解析条件として鉛直方向の並進方向の拘束ありと拘束なしの2条件で評価を行うこと で実機固定条件(下向き並進方向のみ固定)を模擬する。

4.3 固有值解析結果

固有値解析の結果を表 4-1, 表 4-2, 振動モード図を図 4-2~図 4-11 に示す。固有周期 は、0.05 秒を超えており、柔構造であることを確認した。

致了了。 图书间的本人, (新世界中的主法》(新世界中的主义)								
		固有周期(s)		水平方向远	鉛直方向			
モート	早越方问			X方向	Z方向	刺激係数*		
1次	水平			-0.007	0.081	-0.043		
2次	水平			0.136	-0.014	0.017		
3次	水平			0.105	0.525	0.023		
4次	水平			-0.526	0.064	0.005		
5次	鉛直			-0.010	-0.084	0. 131		

表 4-1 固有値解析結果 (鉛直方向の並進方向拘束あり)

注記*:モード質量を正規化するモードベクトルを用いる。

		表 4-2 固有	テ向拘束なし)			
			水平方向远	刺激係数*	鉛直方向	
	4-1	モード 早越万回 固有周期(s)	X方向	Z方向	刺激係数*	
	1次	鉛直		-0.038	0.053	0.089
	2次	鉛直		-0.029	-0.062	0.085
	3次	水平		0.442	0.038	0.310
	4次	水平		-0.004	-0.528	0.018
	5次	鉛直		0.340	0.015	-0.512

注記*:モード質量を正規化するモードベクトルを用いる。

- 5. 構造強度評価
- 5.1 構造強度評価方法
 - 4.2項(1)~(8)のほか,次の条件で計算する。
 - (1) 解析はスペクトルモーダル法にて実施し、固有値解析と同じ解析モデルを使用する。
 - (2) 燃料プール水位・温度(SA)の質量は、検出器の質量、内包水の質量及び水の付加質量のほか、更に精緻に評価するため、排除水質量(水中に設置される機器が排除する水の質量)の減算を考慮する。
 - (3) 地震力は,燃料プール水位・温度(SA)に対して,水平方向及び鉛直方向から作用させる。また,水平方向及び鉛直方向の組み合わせには,絶対値和を適用する。
 - (4) スロッシング荷重は、燃料プール水位・温度(SA)に対して、水平方向から作用させる。
 - (5) スロッシング荷重は、特定長さに区切った区間分の荷重を集中荷重として設定する。
- 5.2 荷重の組合せ及び許容応力
- 5.2.1 荷重の組合せ及び許容応力状態 燃料プール水位・温度(SA)の荷重の組合せ及び許容応力状態のうち重大事故等対処 設備の評価に用いるものを表 5-1 に示す。
 - 5.2.2 許容応力

燃料プール水位・温度(SA)の許容応力は, VI-2-1-9「機能維持の基本方針」に基づき表 5-2 のとおりとする。

5.2.3 使用材料の許容応力評価条件

燃料プール水位・温度(SA)の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 5-3 に示す。

施設区分		機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
	然料物質の 及施設及び 庁蔵施設				$D + P_D + M_D + S_s *^{3, *4}$	IV A S
核燃料物質の 取扱施設及び 貯蔵施設		燃料プール水位・温度(SA)	常設/防止 常設/緩和	 *2	$D + P_{SAD} + M_{SAD} + S_s *^4$	V A S
						(VASとして
						IVASの許容限
						界を用いる。)

表 5-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

注記*1:「常設/防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3:「D+Psad+Msad+Ss」の評価に包絡されるため、評価結果の記載を省略する。

*4:地震荷重にはプール水のスロッシングによる荷重を含む。

23

		許容限! (ボルト	許容限界* ^{1,*2} (ボルト等)			
許容応力状態		一次	一次応力			
	引張	せん断	圧縮	曲げ	引張	せん断
IV A S						
V A S	1.5 • f t *	1.5 • f s *	15•fa*	1.5 · f b *	1.5 • f t *	1.5 • f s*
(VaSとしてWaSの			1.0 10			
許容限界を用いる。)						

表 5-2 許容応力(重大事故等その他の支持構造物)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件		S y	S u	Sy(RT)
C 1 914 14	1 1 F	(°C)		(MPa)	(MPa)	(MPa)
基礎ボルト	SS400 (径≦16mm)	周囲環境温度	100	221	373	_
架構 (角形鋼,水中サポートブロック)	SUS304TP, SUS304	周囲環境温度	100	171	441	205
<mark>ワークテーブルフック</mark>	SUS304	周囲環境温度	<mark>100</mark>	<mark>171</mark>	<mark>441</mark>	<mark>205</mark>

表 5-3 使用材料の許容応力評価条件(重大事故等対処設備)

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5-4,表 5-5に示す。

「基準地震動Ss」による地震力は、VI-2-1-7「設計用床応答スペクトルの作成方針」に基づき設定する。また、減衰定数はVI-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

表 5-4 設計用地震力(重大事故等対処設備)(鉛直方向の並進方向拘束あり)

据付場 床面高	所及び fiさ(m)	原子炉建物 EL 42.8*1					
固有周	<u>]</u> 期(s)		水平: *2			以下	
減衰定	数(%)			水平:1.0	鉛直:一		
地氛	 夏力	弾性	性設計用地震動Sd 又は静的震度		基準地震動S s		S
T 18*3	固有周期	応答水	応答水平震度		応答水平震度*4		応答鉛直
4-1.0	(s)	NS 方向	EW 方向	震度	NS 方向	EW 方向	震度*4
1次		_	_	_	27.69	27.69	_
2次		_	—	_	13.96	13.96	_
3次		_	_	_	15.88 15.88		_
4次		_			21.61	21.61	_
動的震	動的震度*5,*6 — — —		_	3. 42	3. 42	2.46	
静的寡	震度* ⁷						

注記*1:基準床レベルを示す。

*2:1 次固有周期について記載

- *3: 固有周期が 0.050s 以上のモードを示す。なお, 0.020s 以上 0.050s 未満のモードに対し ては,最大応答加速度又はこれを上回る震度を適用する。
- *4:設計用床応答スペクトルI(基準地震動Ss)を上回る設計用床応答スペクトルにより 得られる震度
- *5:応答水平震度は設計用震度Ⅱ(基準地震動Ss)を上回る設計震度,応答鉛直震度は設計用震度Ⅱ(基準地震動Ss)
- *6:最大応答加速度を1.2倍した震度
- *7:3.6 · C i 及び 1.2 · C v より定めた震度

表 5-5 設計用地震力(重大事故等対処設備)(鉛直方向の並進方向拘束なし)							
据付場所及び		原子炉建物 EL 42.8*1					
	j C (M)	_					
固有周]期(s)		水平	£:*2	鉛直:	*3	
減衰定	数(%)			水平:1.0	鉛直:1.0)	
地震力		弾性設計用地震動 S d 又は静的震度		基準地震動S s			
T 1×*4	固有周期	応答水	平震度	応答鉛直	応答水平震度*5 応		応答鉛直
	(s)	NS 方向	EW 方向	震度	NS 方向	EW 方向	震度*5
1次		_	_	_	30.57	30.57	4.21
2次		_	—	—	26.05	26.05	4.63
3次		_	_	_	14.93	14.93	19.67
4次		_	_	_	16.00	16.00	17.57
動的震度*6, *7		_			3. 42	3. 42	2.46
静的意	震度*8	_	_	_	_	_	_

注記*1:基準床レベルを示す。

*2:3次固有周期について記載

*3:1次固有周期について記載

*4: 固有周期が 0.050s 以上のモードを示す。なお、0.020s 以上 0.050s 未満のモードに対し ては、最大応答加速度又はこれを上回る震度を適用する。

- *5:設計用床応答スペクトルI(基準地震動Ss)を上回る設計用床応答スペクトルにより 得られる震度
- *6:応答水平震度は設計用震度Ⅱ(基準地震動Ss)を上回る設計震度,応答鉛直震度は設 計用震度Ⅱ(基準地震動Ss)

*7:最大応答加速度を1.2倍した震度

*8:3.6 · C i 及び 1.2 · C v より定めた震度

- 5.4 計算方法
 - 5.4.1 応力の計算方法
 - (1) 地震力及びスロッシング力に対してそれぞれ三次元はりモデルによる個別解析を実施し、地震力及びスロッシング力による応力を絶対値和することにより、図4-1に示す解析モデルに生じる応力を算出する。
 - (2) スロッシングにおける応力の算出においては、VI-1-1-9-3「溢水評価条件の設定」2.3 「地震起因による溢水」に示す基準地震動Ss(Ss-D)による燃料プールの三次元 流動解析により得られた流体速度時刻歴データを用いる。
 - (3) スロッシングにより架構に生じる抗力は,燃料プールの流体速度時刻歴データから架 構設置位置における高さレベルごとの水平方向の最大流速を用いて 算出する。
 - (4) 抗力の算出には以下の式を用い、抗力係数Caは機械工学便覧 日本機械学会編 (2007)より架構が正方形形状であるため2.0とする。なお、抗力の算出においては、流 体速度時刻歴データより燃料プール内の架構設置位置における高さレベルごとの流体速 度の最大値Vを抽出し、以下の式を用いて抗力Fsを算出する。流体速度時刻歴データ は架構に対し支配的となる水平方向のデータを適用する。

$$\mathbf{F} \mathbf{s} = \frac{1}{2} \cdot \mathbf{C} \mathbf{d} \cdot \mathbf{\rho} \cdot \mathbf{A} \mathbf{s} \cdot \mathbf{V}^2$$

(5) 高さレベルごとに算出した抗力により架構に生じる動水圧荷重を付加し,図4-1に示 す解析モデルに生じる応力を算出する。

5.4.1.1 基礎ボルトの計算方法

基礎ボルトの応力は、三次元はりモデルによる地震力及びスロッシング力に対する 解析から基礎ボルト1本当たりの発生力を求めて、その結果を用いて手計算にて計算 する。

個別解析によって得られた基礎ボルト部の評価点の最大発生力を表 5-6に示す。

计有如位	4-7	反力(N)		
入 家 司 小 工	<i>y</i> = <i>x</i>	Fь	\mathbf{Q}_{b}	
	地震力			
基礎ボルト	スロッシング			
	地震力+スロッシング			

表 5-6 基礎ボルト(1 本当たり)発生反力

(1) 引張応力

基礎ボルト(1本当たり)に対する引張応力は、下式により計算する。

引張応力

$\sigma_{b} = \frac{F_{b}}{A_{b}} \qquad \cdots \qquad$	(5. 4. 1. 1. 1)
ここで、基礎ボルトの軸断面積Аьは次式により求める。	
$A_{b} = \frac{\pi}{4} \cdot d^{2} \dots \dots$	(5. 4. 1. 1. 2)

(2) せん断応力 基礎ボルト(1本当たり)に対するせん断応力は、下式により計算する。

せん断応力

 $\tau_{b} = \frac{Q_{b}}{A_{b}}$ (5.4.1.1.3)

5.4.1.2 架構の応力

架構の応力は、三次元はりモデルによる地震力及びスロッシング力に対する解析か ら各節点に生じる応力を求めて、その結果を用いて手計算にて計算する。

表 5-7 発生応力

(単位:MPa)

対象部位	ケース	引張 (圧縮)	せん	し断	ねじり	曲	げ
		σ t (c)	τx	τу	τр	σbx	σby
4n 1#	地震力						
架構	スロッシング						
(角形鋼)	地震力+スロッシング						
架構	地震力						
(水中サポー	スロッシング						
トブロック)	地震力+スロッシング						

注記*:負の値は圧縮応力を示す。

(1) 引張(圧縮)応力
 架構に対する引張(圧縮)応力は、下式により計算する。
 引張(圧縮)応力(ρt (c))

 $\rho_{t(c)} = |\sigma_{t(c)}|$ (5.4.1.2.1)

(3) 曲げ応力

架構に対する曲げ応力は、下式により計算する。

曲げ応力(рь)

(4) 組合せ応力

架構に対する組合せ応力は、下式により計算する。

組合せ応力 (ρm)

5.4.1.3 ワークテーブルフックの応力

ワークテーブルフックの応力は、三次元はりモデルによる地震力及びスロッシング 力に対する架構の解析からワークテーブルフック部に生じる反力を求めて、その結果 を用いて手計算にて計算する。

図 5-2 構造概要(ワークテーブルフック)

解析によって得られたワークテーブルフック部の評価点の最大反力を表 5-8,表 5-9 に示す。

<u> </u>	A A A A A A A A A A A A A A A A A A A				
计免如位	ケーマ	反力(N)			
刘家时归		F x	Fу	F z	
ワークテーブルフック	地震力 +スロッシング				

表 5-8 ワークテーブルフック評価点反力(付け根部評価用)

表 5-9	ワークテーブルフック評価点反力(先端部評価用)	

计有如位	ケーフ	反力(N)			
刘家印伍		Fх	Fу	F z	
ワークテーブルフック	地震力 +スロッシング		1		

(1) 引張応力

ワークテーブルフックに対する引張応力は、下式により計算する。 引張応力(σht)(付け根部)

$$\sigma_{ht} = \frac{F_x}{A_h} + \frac{F_z \cdot L_B}{Z_{hy}} + \frac{F_y \cdot L_C}{Z_{hz}} \quad \dots \quad (5.4.1.3.1)$$

ここで,Ahはワークテーブルフック付け根部の断面積,Zhy,Zhzはワークテ ーブルフック付け根部の断面係数を示す。

(2) せん断応力

ワークテーブルフックに対するせん断応力は,下式により計算する。 せん断応力(τh)(付け根部)

せん断応力(τh)(先端部)

$$\tau_{\rm h} = \frac{F_{\rm X}}{A_{\rm h \, s \, 2}} \qquad (5.4.1.3.3)$$

ここで、A_{hs1}はワークテーブルフック付け根部のせん断断面積、A_{hs2}はワー クテーブルフック先端部のせん断断面積を示す。 (3) 組合せ応力

ワークテーブルフックの組合せ応力は、下式により計算する。 組合せ応力 (σha) (付け根部)

$$\sigma_{ha} = \sqrt{\sigma_{ht}^2 + 3 \cdot \tau_h^2} \cdots (5.4.1.3.4)$$

5.5 計算条件

5.5.1 基礎ボルト,架構及びワークテーブルフックの応力計算条件

応力計算に用いる計算条件は、本計算書の【燃料プール水位・温度(SA)(L/TE216-1, 2,3,4,5,6,TE216-4)の耐震性についての計算結果】の設計条件及び機器要目に示す。

- 5.6 応力の評価
 - 5.6.1 基礎ボルトの応力評価

5.4.1.1項で求めたボルトの引張応力 σ bは次式より求めた許容組合せ応力fts以下であること。ただし、ftoは下表による。

せん断応力 τ bは、せん断力のみを受けるボルトの許容せん断応力f s b以下であること。ただし、f s b は下表による。

	基準地震動Ssによる 荷重との組合せの場合
許容引張応力 <i>f</i> t o	$\frac{\mathbf{F}^*}{2} \cdot 1.5$
許容せん断応力 <i>f</i> s b	$\frac{F^*}{1.5\cdot\sqrt{3}}\cdot 1.5$

S2 補 VI-2-4-2-4 R0

5.6.2 架構の応力評価

5.4.1.2項で求めた架構の引張(圧縮)応力 ρ t(c),せん断応力 ρ s,曲げ応力 ρ b及 び組合せ応力 ρ mは,架構の許容引張応力ftm,許容圧縮応力fcm,許容せん断応力 fsm,許容曲げ応力fbm及び許容組合せ応力ftm以下であること。ただし,ftm,fcm,fsm及びfbmは下表による。

	基準地震動Ssによる 荷重との組合せの場合
許容引張応力	$\frac{\mathbf{F}^*}{1.5} \cdot 1.5$
許容圧縮応力 f с m	$\left(1-0.4\left(\frac{\lambda}{\Lambda}\right)^2\right) \xrightarrow{F^*}{\nu c} \cdot 1.5$
許容せん断応力 <i>f</i> sm	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容曲げ応力 <i>f</i> bm	$\frac{F^*}{1.5} \cdot 1.5$
許容組合せ応力 f tm	$\frac{\mathbf{F}^*}{1.5} \cdot 1.5$

ただし、 ℓ_k 、 Λ 、 λ 、 ν c、 i は次式より求める。

$v_{\rm c} = 1.5 + \frac{2}{3} \left(\frac{\lambda}{\Lambda} \right)$	$)^2$	(5.6.2.1)

$$\Lambda = \sqrt{\frac{\pi^2 \cdot \mathbf{E}}{0.6 \cdot \mathbf{F}^*}} \qquad (5.6.2.2)$$

$$\lambda = \frac{\ell_k}{i} \qquad (5. 6. 2. 3)$$

$$\ell_{k} = 2.1 \cdot L \qquad (5.6.2.4)$$

$$i = \sqrt{\frac{I}{A_{m}}} \qquad (5. 6. 2. 5)$$

5.6.3 ワークテーブルフックの応力評価

5.4.1.3 項で求めたワークテーブルフックの引張応力 σ ht, せん断応力 τ h, 組合せ応 力 σ haは, ワークテーブルフックの許容引張応力ftm, 許容せん断応力fsm, 許 容組み合わせ応力ftm以下であること。ただし, ftm, fsmは下表による。

	基準地震動Ssによる 荷重との組合せの場合
許容引張応力 f t m	$\frac{F^*}{1.5} \cdot 1.5$
許容せん断応力 $f_{ m s\ m}$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容組合せ応力 ftm	$\frac{\mathbf{F}^*}{1.5} \cdot 1.5$

- 6. 機能維持評価
- 6.1 電気的機能維持評価方法

燃料プール水位・温度(SA)の電気的機能維持評価について以下に示す。

なお,機能維持評価用加速度はVI-2-1-7「設計用床応答スペクトルの作成方針」に基づき, 基準地震動Ssにより定まる加速度又は地震応答解析で評価した検出器に生じる最大の応答加 速度のいずれか大きい値とする。

燃料プール水位・温度(SA)の機能確認済加速度は、VI-2-1-9「機能維持の基本方針」に 基づき、同形式の検出器単体の正弦波加振試験において、電気的機能の健全性を確認した評価 部位の最大加速度を適用する。

機能確認済加速度を表 6-1 に示す。

機器名称	方向	機能確認済加速度
燃料プール水位・温度(SA)	水平	
(L/TE216-1)	鉛直	
燃料プール水位・温度(SA)	水平	
(L/TE216-2)	鉛直	
燃料プール水位・温度(SA)	水平	
(L/TE216-3)	鉛直	
燃料プール水位・温度(SA)	水平	
(L/TE216-4)	鉛直	
燃料プール水位・温度(SA)	水平	
(L/TE216-5)	鉛直	
燃料プール水位・温度(SA)	水平	
(L/TE216-6)	鉛直	
燃料プール水位・温度(SA)	水平	
(TE216-4)	鉛直	

表 6-1	機能確認済	加速度

 $(\times 9.8 \text{m/s}^2)$

補 VI-2-4-2-4 R0

S2

- 7. 評価結果
- 7.1 重大事故等対処設備としての評価結果

燃料プール水位・温度(SA)の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており,設計用地震力に対して十分な構造強度を有し,電 気的機能を維持できることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果電気的機能維持評価の結果を次頁以降の表に示す。

【燃料プール水位・温度(SA)(L/TE216-1, 2, 3, 4, 5, 6, TE216-4)の耐震性についての計算結果】

1. 重大事故等対処設備

41

1.1 設計条件<mark>(鉛直方向の並進方向拘束あり)</mark>

	設備分類	据付場所及び床面高さ (m)	固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		
機器名称			水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
燃料プール水位・温度 (SA) (L/TE216-1, 2, 3, 4, 5, 6, TE216-4)	常設/防止 常設/緩和	原子炉建物 EL 42.8 ^{*1}		0.05以下	_	_	C _H =3.42 ^{*2} 又は*3	Cv=2.46*2 又は*3	100

注記*1:基準床レベルを示す。

*2:応答水平震度は設計用震度II(基準地震動Ss)を上回る設計震度,応答鉛直震度は設計用震度II(基準地震動Ss)

*3:設計用床応答スペクトルI(基準地震動Ss)を上回る設計用床応答スペクトルにより得られる震度

1.2 設計条件(鉛直方向の並進方向拘束なし)

			固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動 S s		
機器名称	設備分類	据付場所及び床面高さ (m)	 ・場所及び床面高さ (m) 水平方向 鉛直方向 3公直方向 設計震度 設計震度 		鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)	
燃料プール水位・温度 (SA) (L/TE216-1, 2, 3, 4, 5, 6, TE216-4)	常設/防止 常設/緩和	原子炉建物 EL 42.8 ^{*1}			_		С _н =3.42 ^{*2} 又は*3	Cv=2.46*2 又は*3	100

注記*1:基準床レベルを示す。

*2:応答水平震度は設計用震度II(基準地震動Ss)を上回る設計震度,応答鉛直震度は設計用震度II(基準地震動Ss)

*3:設計用床応答スペクトルI(基準地震動Ss)を上回る設計用床応答スペクトルにより得られる震度

1. <mark>3</mark> 機器要目				-										
部材	W (N)	d (mm)	Аь (mm ²)	Sy (MPa)	S u (MPa)	F (MPa)	F* (MPa)							
基礎ボルト				221 (径≦16mm)	373 (径≦16mm)	_	261							
	r	1			1				1					
部材	A_{m} (mm ²)	I (mm ⁴)	L (mm)	Sy (MPa)	S u (MPa)	Sy(RT) (MPa)	F (MPa)	F* (MPa)						
架構 (水中サポート ブロック)				171	441	205	_	205						
<mark>架構</mark> (角形鋼)	1.740×10^{3}	<mark>6. 220×10</mark>	⁶ 5830	<mark>171</mark>	<mark>441</mark>	<mark>205</mark>	<u> </u>	<mark>205</mark>						
部材	Ah (mm ²)	Ahs1 (mm ²)	Ahs2 (mm ²)	b (mm)	hı h: mm) (mm	$\frac{Z h z}{(mm^3)}$	Zhy (mm ³)	<mark>Lв</mark> (mm)	L c (mm)	<mark>Sy</mark> (MPa)	<mark>Su</mark> (MPa)	Sy(RT) (MPa)	F (MPa)	F* <mark>(MPa)</mark>
<mark>ワークテーブル</mark> フック	<mark>1200</mark>	<mark>800</mark>	<mark>200</mark>	12	100 25	2.000×	10^4 2. 400×10^3	<mark>36. 5</mark>	<mark>66</mark>	<mark>171</mark>	<mark>441</mark>	<mark>205</mark>	_	<mark>205</mark>

1. <mark>4</mark> 計算数値

1. <mark>4</mark>. 1 基礎ボルトに作用する力

(単位:N)

	F	b	Q b		
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動S s	
基礎ボルト	_		_		

1. <mark>4</mark> .2 架構の発生応力 (単位:MPa)										
部材架構	<mark>引張(圧縮)</mark>	せん	し断	ねじり	曲	げ				
	σ t(c)	τ x	τу	τр	σbx	σby				
架構										
<mark>(水中サポート</mark>										
<mark>ブロック)</mark>										
架構										
<mark>(角形鋼)</mark>										
			•	•	-					

43

注記*:<mark>負の値</mark>は圧縮応力を示す。

<mark>1.4.3 ワーク</mark>	1.4.3 ワークテーブルフックに作用する力(付け根部評価用) (単位 : N)										
部材	F	x	F	У	Fz						
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s					
ワークテーブル フック	_		_		_						

<mark>1.4.4 ワー</mark> ク	1.4.4 ワークテーブルフックに作用する力(先端部評価用) (単位:N)										
部材	F	x	F	У	F z						
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s					
ワークテーブル フック	_		_	_	_						

1. <mark>5</mark>	結	論
1. <mark>5</mark> .	1	基礎ボルトの応力

(単位	:	MPa)

±17++	++*1	亡士	弾性設計用地震動	動Sd又は静的震度	基準地震動 S s		
司がな	1/1 1/4	ルロンJ	算出応力	許容応力	算出応力	許容応力	
甘7株-ビル」	66400	引張	_	_	σ b=12	$f_{t s} = 156^*$	
産碇小ルト	55400	せん断	—	_	au b=7	$f_{\rm s \ b} = 120$	
	~			>>> == .	f an East f	1.0 (]	

すべて許容応力以下である。

注記*: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_b, f_{to}]$

	1. <mark>5</mark> .2 架構の応力						(単位:MPa)	
	***	++101	÷-+	弾性設計用地震動	めSd又は静的震度	基準地震動 S s		
	部で	竹科	心刀	算出応力	許容応力	算出応力	許容応力	
			<mark>引張(圧縮)</mark>	<mark>—</mark>	-	$\rho_{t(c)}=11^*$	$f_{\rm cm} = 120$	
	架構	SUS304TP	<mark>せん断</mark>	<u> </u>	-	ρ s = 22	f sm=118	
	(角形鋼)		<mark>曲げ</mark>	<mark>—</mark>	-	$\rho_{\rm b} = 120$	$f_{\rm bm} = 205$	
			<mark>組合せ</mark>	<mark>—</mark>	-	$\rho_{\rm m} = 135$	$f_{\rm tm} = 205$	
			引張(圧縮)	—	_	ρ t(c)=2*	$f_{\rm cm} = 201$	
	架構 (水中サポートブロック)	CUC204	せん断	_		ρ s=22	f sm = 118	
		505304	曲げ	_	_	$\rho_{\rm b} = 154$	$f_{\rm bm}$ = 205	
			組合せ			ρ _m =160	f t m = 205	

すべて許容応力以下である。

注記*:発生応力は圧縮応力を示す。

1.5.3	ワークテ	ーブルフ	ック	(付け根部)	の応ナ
1.0.0	/ / /	1101	//		- マンルロ・ノン

(単位:MPa)

立 7 十十	材料	応力	弾性設計用地震動Sd又は静的震度		基準地震動 S s	
口心心			算出応力	許容応力	算出応力	許容応力
	ク SUS304	引張	_	_	σ h t =129	f t m = 205
ワークテーブルフック (付け根部)		せん断	_	—	τ h=10	$f_{\rm sm} = 118$
		組合せ	_	_	σ h a =130	f t m = 205

すべて許容応力以下である。

1.5.4 ワークテーブル	·フック(5	<mark>先端部)の応力</mark>				(単位:MPa)
立17 十十	材料	応力	弾性設計用地震動Sd又は静的震度		基準地震動 S s	
「マイロ			算出応力	許容応力	算出応力	許容応力
ワークテーブルフック (先端部)	SUS304	せん断	_	_	τ h=83	f _{sm} =118

すべて許容応力以下である。

45

1. <mark>5. 6</mark> 電気的機能維持の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度	
燃料プール水位・温度(SA)	水平方向	7.25		
(L/TE216-1)	鉛直方向	3. 07		
燃料プール水位・温度(SA)	水平方向	7.25		
(L/TE216-2)	鉛直方向	3. 07		
燃料プール水位・温度(SA)	水平方向	7.25		
(L/TE216-3)	鉛直方向	3. 07		
燃料プール水位・温度(SA)	水平方向	7.25		
(L/TE216-4)	鉛直方向	3. 07		
燃料プール水位・温度(SA)	水平方向	7.25		
(L/TE216-5)	鉛直方向	3.07		
燃料プール水位・温度(SA)	水平方向	7.25		
(L/TE216-6)	鉛直方向	3.07		
燃料プール水位・温度(SA)	水平方向	7.25		
(TE216-4)	鉛直方向	3. 07		

注記*:設計用震度I(基準地震動Ss)により定まる評価部位における応答加速度であり、全ての検出器取付 位置のうち最大となる位置の応答加速度の値を各々の検出器の評価に対して共通で適用する。

機能維持評価用加速度はすべて機能確認済加速度以下である。

1.<mark>6</mark> その他の機器要目

(1) 材料物性値

項目	記号	単位	入力値
質量	m	kg	
温度条件 (雰囲気温度)	Т	°C	100
縦弾性係数	E	MPa	190000
ポアソン比	ν	_	0.3
要素数	_	個	
節点数		個	

5

(6)

4

