島根原子力発電所第2号機 審査資料			
資料番号	NS2-補-027-08 改 26		
提出年月日	2023 年 2 月 14 日		

浸水防護施設の耐震性に関する説明書の補足説明資料

2023年2月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

今回提出範囲:

- 1. 浸水防護施設の設計における考慮事項
 - 1.1 津波と地震の組合せで考慮する荷重
 - 1.2 自然現象を考慮する浸水防護施設の選定
 - 1.3 津波防護に関する施設の機能設計・構造強度設計に係る許容限界
 - 1.4 津波防護施設の強度計算における津波荷重,余震荷重及び漂流物衝突荷重の組合せ
 - 1.5 浸水防護施設の評価における漂流物衝突荷重,風荷重及び積雪荷重の設定
 - 1.6 津波波圧の算定に用いた規格・基準類の適用性
 - 1.7 浸水防護施設のアンカーボルトの設計
 - 1.8 津波防護施設の設計における評価対象断面の選定
 - 1.9 強度計算における津波時及び重畳時の荷重作用状況
 - 1.10 耐震及び耐津波設計における許容限界
 - 1.11 強度計算に用いた規格・基準類の適用性
 - 1.12 津波に対する止水性能を有する施設の評価
- 2. 浸水防護施設に関する補足資料
 - 2.1 防波壁に関する補足説明
 - 2.2 防波壁通路防波扉に関する補足説明
 - 2.3 1号機取水槽流路縮小工に関する補足説明
 - 2.3.1 1 号機取水槽流路縮小工の耐震性についての計算書に関する補足説明
 - 2.3.2 1号機取水槽流路縮小工の強度計算書に関する補足説明
 - 2.3.3 1 号機取水槽流路縮小工の設置による津波防護機能及び取水機能への影響について
 - 2.4 浸水防止設備に関する補足説明
 - 2.5 津波監視設備に関する補足説明
 - 2.6 漂流防止装置に関する補足説明
 - 2.7 強度評価における鉛直方向荷重の考え方
 - 2.8 津波の流入防止に係る津波バウンダリとなる設備の評価

- 2. 浸水防護施設に関する補足資料
 - 2.3 1号機取水槽流路縮小工に関する補足説明
 - 2.3.1 1号機取水槽流路縮小工の耐震性についての計算書に関する補足説明

目次

1.	概	要 ······
2.	位間	置 ••••••••••••••••••••••••••••••••••••
3.	流	路縮小工の耐震評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
3	. 1	構造計画 ······ 5
3	. 2	評価方針 ······ 7
3	. 3	適用規格·基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8
3	. 4	記号の説明 ・・・・・・・・・・・
3	. 5	評価対象部位 ······ 13
3	. 6	固有値解析 ····································
3	. 7	荷重及び荷重の組合せ ······17
3	. 8	許容限界 ······28
3	. 9	評価方法及び評価条件 ・・・・・ 29
3	. 10	評価結果 ······ ··· ··· ··· ··· 55
4.	北	側壁の耐震評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・56
4	. 1	概要 · · · · · · · · · · · · · · · · · · ·
4	. 2	評価条件 ······ 56
4	. 3	地震応答解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	. 4	評価内容
4	. 5	評価結果

1. 概要

本資料は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の 設計方針に基づき、津波防護施設のうち1号機取水槽流路縮小工(以下、「流路縮小工」 という。)及びその間接支持構造物である1号機取水槽北側壁が設計用地震力に対して、 主要な構造部材が十分な構造強度を有することを確認するものである。

流路縮小工及び1号機取水槽北側壁に要求される機能維持の確認は,地震応答解析に基 づく構造部材の健全性評価により行う。 2. 位置

流路縮小工は,1号機取水槽と1号機取水管の境界部に設置し,1号機取水槽北側壁に 間接支持される構造とする。

流路縮小工及び1号機取水槽北側壁の設置位置図を図 2-1 に,流路縮小工及び1号機 取水槽北側壁の詳細位置図を図 2-2 に,流路縮小工の詳細図を図 2-3 に示す。

図 2-2 流路縮小工及び1号機取水槽北側壁の詳細位置図

図 2-3 流路縮小工の鳥瞰図

2.3.1-4

- 3. 流路縮小工の耐震評価
- 3.1 構造計画

流路縮小工は、1号機取水管からの津波の流入を抑制し、1号機取水槽から津波が溢水することを防止するため、1号機取水管の流路を鋼製の縮小板により縮小するものである。流路縮小工は、1号機取水管の終端部のフランジ(以下、「取水管(フランジ部)」という。)に、鋼製の縮小板を取付板及び固定ボルトにより固定する構造とする。よって、流路縮小工は、1号機取水管の管胴部(以下、「取水管(管胴部)」という。)、取水管(フランジ部)、縮小板、取付板及び固定ボルトから構成される。なお、1号機の原子炉補機海水ポンプに必要な海水を取水するため、縮小板に直径 mの開口部を設ける。

流路縮小工の構造計画を表 3.1-1 に示す。

表 3.1-1 流路縮小工の構造計画

3.2 評価方針

流路縮小工は、Sクラス施設である津波防護施設に分類される。

流路縮小工の耐震評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷 重の組合せ並びに許容限界に基づき、「3.1構造計画」に示す流路縮小工の構造を踏ま え、「3.5評価対象部位」にて設定する評価部位において、「3.6固有値解析」で算出し た固有振動数に基づく設計用地震力により算出した応力等が許容限界内に収まること を、「3.9評価方法及び評価条件」に示す方法にて確認する。応力評価の確認結果を「3.10 評価結果」にて確認する。

流路縮小工の評価項目を表 3.2-1に、耐震評価フローを図 3.2-1に示す。

評価方針	評価項目	部位	評価方法	許容限界						
構をする	構造部材 の健全性	縮小板	曲げ軸力,せん断力に対す る発生応力が許容限界以 下であることを確認	短期許容応力度						
		固定ボルト	引張力に対する発生応力 が許容限界以下であるこ とを確認	短期許容応力度						
		取水管 (フランジ部)	曲げ軸力, せん断力に対す る発生応力が許容限界以 下であることを確認	短期許容応力度						
							-			取水管 (管胴部)

表 3.2-1 流路縮小工の評価項目

2.3.1 - 7

3.3 適用規格·基準等

適用する規格・基準類を以下に示す。また、各項目で適用する規格、基準類を表 3.3 -1に示す。

- ・原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル(土木学会, 2005年)(以下「土木学会マニュアル」という)
- ・コンクリート標準示方書[構造性能照査編](土木学会,2002年)
- ・港湾の施設の技術上の基準・同解説(日本港湾協会, 2007年)
- ・鋼構造設計規準-許容応力度設計法-(日本建築学会,2005年改訂)
- ·鋼構造許容応力度設計規準(日本建築学会, 2019年制定)
- ・構造力学公式集(土木学会, 1986年)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)

項目	適用する規格,基準類	備考	
使用材料及び材料定数	コンクリート標準示方書[構造 性能照査編](土木学会,2002年 制定)	_	
荷重及び荷重の組合せ	原子力発電所屋外重要土木構 造物の耐震性能照査指針・マニ ュアル(土木学会,2005年)	各構造部材に作用する動 水圧の算定	
許容限界	鋼構造設計規準-許容応力度 設計法-(日本建築学会,2005 年改訂)	曲げ・軸力照査及びせん断 力照査は,発生応力度が短 期許容応力度以下である ことを確認	
	鋼構造許容応力度設計規準(日 本建築学会,2019年制定)		
評価方法	構造力学公式集(土木学会, 1986年)	流路縮小工に生じる曲げ 応力度及びせん断応力度 の算定	
地震応答解析	原子力発電所耐震設計技術指 針 JEAG4601-1987 (日本電気協会)	有限要素法による2次元	
	原子力発電所屋外重要土木構 造物の耐震性能照査指針・マニ ュアル(土木学会,2005年)	泉形解析	

表 3.3-1 各項目で適用する規格,基準類

3.4 記号の説明

流路縮小工の耐震評価に用いる記号を表 3.4-1~5 にそれぞれ示す。

記号	単位	定義
f	Hz	固有振動数
L	mm	はりの長さ
Е	N/mm^2	ヤング係数
Ι	mm^4	断面2次モーメント
m	kg/mm	質量分布

表 3.4-1 流路縮小工の固有振動数の計算に用いる記号

表 3.4-2 流路縮小工の縮小板の耐震計算に用いる記号

記号	単位	定義	
p ₀	kN/mm^2	縮小板に作用する単位面積あたりの等分布荷重	
Р	kN	縮小板に作用する地震時荷重	
A ₁₁	mm^2	縮小板の作用面積	
a 1	mm	縮小板の外半径	
b 1	mm	縮小板の内半径	
M r 1	kN•mm/mm	縮小板に生じる半径方向の曲げモーメント	
M _{θ1}	kN•mm/mm	縮小板に生じる周方向の曲げモーメント	
ν	—	ポアソン比	
r 1	mm	縮小板の中心から半径方向の距離	
	_	係数(= β_1^2 {(1- ν) β_1^2 +(1+ ν)(1+4 β_1^2 ln β_1)}	
κ_1		$/\{1 - \nu + (1 + \nu) \beta_{1}^{2}\})$	
β_{1}	—	係数(=b ₁ /a ₁)	
ρ_{1}	—	係数(=r ₁ /a ₁)	
σ ₁	N/mm^2	縮小板に生じる最大曲げ応力度	
Z 1	mm^3	縮小板の断面係数	
t 1	mm	縮小板の板厚	
τ 1	N/mm^2	縮小板に生じる最大せん断応力度	
S 1	kN	縮小板に生じるせん断力	
A_{12}	mm^2	縮小板の有効せん断面積	

	• •	
記号	単位	定義
Т	kN/本	内側固定ボルトに作用する引張力
Τ 1	kN/本	縮小板に発生する荷重により内側固定ボルトに作用する引張力
		縮小板に発生する曲げモーメントにより内側固定ボルトに作用
1 2	KIN/ 4×	する引張力
Р	kN	内側固定ボルトに生じる地震時荷重
n	本	内側固定ボルトの本数
М	kN•mm/mm	縮小板に生じる曲げモーメント合力
D 1	mm	フランジ外径
1 1	mm	支点間距離
M _{r 1}	$kN \cdot mm/mm$	縮小板に生じる半径方向の曲げモーメント
M _{θ1}	$kN \cdot mm/mm$	縮小板に生じる周方向の曲げモーメント
А	mm^2	内側固定ボルト1本の有効断面積
σ _b	N/mm^2	内側固定ボルトに生じる最大応力度

表 3.4-3 流路縮小工の固定ボルトの耐震計算に用いる記号

記号	単位	定義
Р'	kN/mm	取水管(フランジ部)に作用する単位長さあたりの等分布荷重
Р	kN	取水管(フランジ部)に作用する地震時荷重
L f	mm	取水管(フランジ部)の外周長
b f	mm	取水管(フランジ部)の外半径
$M_{\rm rf}$	kN•mm/mm	取水管(フランジ部)に生じる半径方向の曲げモーメント
M $_{ heta}$ f	kN•mm/mm	取水管(フランジ部)に生じる周方向の曲げモーメント
a _f	mm	取水管(フランジ部)の内半径
ν		ポアソン比
κ f		係数 (= β_{f^2} {1+(1+ ν) ln β_{f} } / {1- ν + (1+ ν) β_{f^2} })
eta f	—	係数 $(=b_f/a_f)$
ho f		係数 $(=r_f/a_f)$
r f	mm	取水管(フランジ部)の中心から半径方向の距離
σ f	N/mm^2	取水管(フランジ部)に生じる最大曲げ応力度
$Z_{\rm f}$	mm^3	取水管(フランジ部)の断面係数
t f	mm	取水管(フランジ部)の板厚
au f	N/mm^2	取水管(フランジ部)に生じる最大せん断応力度
$S_{\rm f}$	kN	取水管(フランジ部)に生じるせん断力
A 3	mm^2	取水管(フランジ部)付け根の断面積
D _i	mm	取水管(フランジ部)の管内径
t p	mm	取水管(管胴部)の管厚
1 f	mm	取水管(フランジ部)付け根の周長

表 3.4-4 流路縮小工の取水管(フランジ部)の耐震計算に用いる記号

記号	単位	定義	
σ	N/mm ²	取水管(管胴部)に生じる最大曲げ応力度	
		取水管(管胴部)に生じる水平方向の地震時荷重により生じ	
σ dh	N/mm^2	る曲げ最大応力度	
		取水管(管胴部)に生じる鉛直方向の地震時荷重により生じ	
σ _{dv}	N/mm²	る曲げ最大応力度	
_	N /mm2	縮小板に作用する地震時荷重により取水管(管胴部)に生じ	
σ _t	N/ mm²	る最大引張応力度	
6	N/mm^2	取水管(フランジ部)に生じる曲げモーメントにより取水管	
σ _{df} Ν	N/ IIIII	(フランジ部)に生じる最大曲げ応力度	
Mu	kN•mm/mm	取水管(管胴部)に作用する水平方向の地震時荷重により生	
IVIdh		じる曲げモーメント	
M	kN • mm∕mm	取水管(管胴部)に作用する鉛直方向の地震時荷重により生	
IVIdv		じる曲げモーメント	
\mathbf{W}_1	kN	取水管(管胴部)の自重(管内部の水を含む)	
P 1	kN	取水管(管胴部)に作用する地震時荷重	
L _d	mm	取水管(管胴部)の張り出し長さ	
P ₂	kN	取水管(フランジ部)に作用する地震時荷重	
L _f	Ν	取水管(フランジ部)の外周長	
Z _d	mm^4	取水管(管胴部)の断面係数	
a 1	mm	1 号機取水管の外径	
b 1	mm	1号機取水管の内径	
P 3	kN	縮小板に作用する地震時荷重	
А	mm^2	取水管(管胴部)の作用面積	

表 3.4-5 流路縮小工の取水管(管胴部)の耐震計算に用いる記号

3.5 評価対象部位

流路縮小工の評価対象部位は、「3.1構造計画」に設定している構造を踏まえて、地震 に伴う荷重の作用方向及び伝達過程を考慮し、縮小板、固定ボルト、取水管(フランジ 部)及び取水管(管胴部)とする。

なお,縮小板と取付板は固定ボルトにより強固に固定された一体構造であるとともに ,縮小板と取付板は同様の材質及び厚さであることから,荷重が直接作用する縮小板を 代表として評価する。

固定ボルトは内側固定ボルト及び外側固定ボルトにより構成され,それぞれの固定ボ ルトが引張力を負担するが,内側固定ボルトと外側固定ボルトの位置が半径方向で異な ることから,内側固定ボルトのみにより引張力を負担するものとして,保守的に耐震評 価を実施する。

評価対象部位を図 3.5-1 に示す。

縮小板の固定ボルト穴中心と外縁との縁端距離は 27mm で固定ボルト穴径と同程度で あり、縮小板と同様の円環形状である J I S 規格フランジにおける縁端距離と同等であ ることから、縮小板の縁端距離は妥当と判断した。また、固定ボルトにより縮小板は強 固に固定されており、縮小板のせん断方向の変形は抑制されるため、縁端距離が構造成 立性に与える影響は軽微であると考えられる。

固定ボルトの構造概要図を図 3.5-2 に示す。

図 3.5-2 固定ボルト構造概要図

1号機取水管は複数の鋼管を継手した構造であり,縮小板の近傍の継手部(以下,「 1号機取水管継手部」という。)は固定ボルトにより固定している。1号機取水管継手 部の取水管は、1号機取水槽北側壁に巻き込まれるように施工され,固定されているこ とから、1号機取水管継手部の固定ボルトに生じる引張力は軽微である。また,縮小板 の固定ボルトについては、地震時において,縮小板に作用する動水圧が伝達されるが、 1号機取水管継手部は、動水圧が作用しないため、1号機取水管継手部の固定ボルトに 作用する荷重と比べて縮小板の固定ボルトに作用する荷重の方が大きくなることから 縮小板の固定ボルトを代表として評価する。

1号機取水管継手部の位置図を図 3.5-3 に示す。

図 3.5-3 位置図

- 3.6 固有值解析
 - 3.6.1 固有振動数の計算方法
 - (1) 解析モデルの設定

流路縮小工は、取水管(フランジ部)に、鋼製の縮小板を固定ボルトにより固定 する構造であることから、片持ち梁に単純化したモデルとする。図 3.6.1-1 に解 析モデルを示す。

(2) 固有振動数の算出方法

固有振動数について,「構造力学公式集(土木学会,1986年)」に基づき以下 の式より算出する。

$$f = \frac{1.8751^2}{L^2} \sqrt{\frac{E \cdot I}{m}} \cdot 10^3$$

ここで、f:固有振動数(Hz)
L:はりの長さ(mm)
E:ヤング係数(N/mm²)
I:断面2次モーメント(mm⁴)
m:質量分布(kg/mm)

(3) 固有振動数の計算条件

固有振動数の計算条件を表 3.6.1-1 に示す。

表 3.6.1-1 固有振動数の計算条件

	• •		
はりの長さ	ヤング係数	断面2次モーメント	質量分布
L (mm)	$E (N/mm^2)$	I (mm^4)	m (kg/mm)
	2. 0×10^{5}	7099	3. 4569×10^{-4}

(4) 固有振動数の計算結果

固有振動数の計算結果を表 3.6.1-2 に示す。固有振動数は 20Hz 以上であること から,流路縮小工は剛構造である。

表 3.6.1-2 固有振動数の計算結果

固有振動数(Hz)	150.35

- 3.7 荷重及び荷重の組合せ
 - 3.7.1 荷重の組合せ

流路縮小工の評価に用いる荷重の組合せを以下に示す。荷重の組合せを表 3.7.1 -1に、地震時の荷重作用図を図 3.7.1-1に示す。

流路縮小工は水中に設置する構造物であるため

- $G + F_h + S_s$
- ここで, G : 固定荷重 (kN)

F_h :静水圧 (kN)

Ss:基準地震動Ssによる地震荷重(kN)

種別	荷重		記号	算定方法
固定	皈休白香	\bigcirc	G	設計図書に基づいて、対象構造物の体積に材料の
荷重	淞冲日里	\bigcirc		密度を乗じて設定する。
静水圧		\bigcirc	E	管路解析より1号機取水口と1号機取水槽との水
		\bigcirc	I'h	位差による静水圧を考慮する。
基準地震動 S s による 地震荷重	水平地震動	0		基準地震動 Ss による躯体の慣性力を考慮する。
	鉛直地震動	0	S s	縮小板,固定ボルト,及び取水管(フランジ部)は, 主たる荷重が水平方向荷重のため考慮しない。 取水管(管胴部)は基準地震動Ssによる躯体の慣 性力を考慮する。
	動水圧	0	-	管路解析より1号機取水槽の水位が最大となる水 位での動水圧を考慮する。

(北)

表 3.7.1-1 荷重の組合せ

(南)

図 3.7.1-1 地震時の荷重作用図

2.3.1-17

3.7.2 荷重の設定

耐震評価に用いる荷重は以下のとおりとする。なお、荷重の設定に用いる水位及 び流速の詳細については、「2.3.1 1号機取水槽流路縮小工に関する補足説明 参 考資料1 1号機取水槽流路縮小工の強度計算に用いる水位及び流速について」に 示す。

- (1) 固定荷重(G) 固定荷重として,流路縮小工を構成する部材の自重を考慮する。
- (2) 静水圧 (F_h)

流路縮小工の上下流の水位差を考慮した静水圧を考慮することとし,以下の式に より算定する。上下流の水位差は、2条ある1号機取水管ごとに1号機取水口と1 号機取水槽の水位差を算定し、そのうち水位差が大きい値を設定する。

表 3.7.2-1 に静水圧による荷重の算定における計算条件を,図 3.7.2-1 に静水 圧の荷重作用図を示す。

 $F_{h} = \gamma_{w} \times \Delta h \times A$

ここで, F_h:静水圧 (kN)

γw:海水の単位体積重量(=10.1kN/m³)

Δh: 取水口と取水槽の水位差(m)

A :縮小板の面積 (m²)

項目		単位	地震時
1 号機取水槽水位	I	m	EL 0.00
1 号機取水口水位	I	m	EL 0.58
1号機取水口と1号機取水槽の水位差	Δ h	m	0.58
縮小板の面積	А	m^2	7.304
静水圧による荷重	F _h	kN	43

表 3.7.2-1 静水圧による荷重

1号機取水槽

1号機取水管

単位(m)

図 3.7.2-1 静水圧の荷重作用図

(3) 基準地震動 S s による地震荷重 (S s)

地震荷重として,基準地震動Ssに伴う慣性力及び動水圧荷重を考慮する。 流路縮小工の地震時の評価に用いる設計震度は,「3.6固有値解析」から流路縮 小工を剛構造として考慮した「VI-2-10-2-5 1号機取水槽の地震応答計算書」の 地震応答解析結果より,流路縮小工が設置される位置から抽出した加速度に,地盤 物性のばらつきによる影響を考慮して,裕度をもった設計震度を設定する。

基準地震動Ssによる最大加速度分布図及び加速度抽出位置を図 3.7.2-2 に, 最大加速度及び設計震度を表 3.7.2-2 に示す。

(鉛直方向)

図 3.7.2-2 基準地震動 S s による最大加速度分布図及び加速度抽出位置

方向	地震動	位相	解析ケース	最大加速度(cm/s ²)	設計震度 (K _h)
水平	Ss-D	+ -	ケース①	896	1.5
鉛直	$S_s - D$	-+	ケース①	611	1.5

表 3.7.3-2 基準地震動 Ss による最大加速度及び設計震度

a. 慣性力

慣性力は,流路縮小工の重量に設計水平震度を乗じた次式により算出する。 なお,鉛直慣性力は取水管(管胴部)のみ考慮する。

縮小板,固定ボルト,取水管(フランジ部)及び取水管(管胴部)に作用する 慣性力による荷重の算定における計算条件を表 3.7.2-3 に,慣性力の算定に用 いる重量の算定範囲を図 3.7.2-2 に示す。

- $P_{h} = W \times K_{h}$
- $P_v = W \times K_v$
- ここで, P_h :水平慣性力 (kN)
 - **P_v**:鉛直慣性力(kN)
 - W : 重量 (kN)
 - K_h:基準地震動Ssよる設計水平震度
 - K_v:基準地震動Ssよる設計鉛直震度

表 3.7.2-3(1) 慣性力による荷重の算定における計算条件(縮小板,固定ボルト)

項目		単位	地震時
重量	W	kN	25
設計水平震度	K_{h}		1.5
水平慣性力	P_{h}	kN	38

図 3.7.2-3(1) 慣性力の算定に用いる重量の算定範囲(縮小板,固定ボルト)

項目		単位	地震時			
重量	W	kN	46			
設計水平震度	K_{h}	—	1.5			
水平慣性力	P _h	kN	70			

表 3.7.2-3(2) 慣性力による荷重の算定における計算条件

(取水管(フランジ部))

図 3.7.2-3(2) 慣性力の算定に用いる重量の算定範囲(取水管(フランジ部))

表 3.7.2-3(3) 慣性力による荷重の算定における計算条件 (取水管(管胴部))

項目				地震時
	重量	W	kN	96.6
水平	設計水平震度	K_{h}	_	1.5
力回	慣性力	P_{h}	kN	145
	重量	W	kN	96.6
<u> </u>	設計鉛直震度	K v	_	1.5
力回	慣性力	P _v	kN	145

図 3.7.2-3(3) 慣性力の算定に用いる重量の算定範囲(取水管(管胴部))

b. 動水圧 (P_{dw})

動水圧は,以下の Westergaard の式により算定する。

表 3.7.2-4 に動水圧による荷重の算定における計算条件を,図 3.7.2-4 に動水 圧の荷重作用図を示す。

$$P_{dw} = \pm \frac{7}{8} \times C \times K_{h} \times \gamma_{w} \times \sqrt{Z_{dw} \times z_{dw}}$$

ここで、 P_{dw} :動水圧(kN/m²)
C:補助係数(=1.0)
 K_{h} :基準地震動Ssによる水平方向の設計震度
 γ_{w} :海水の単位体積重量(=10.1kN/m³)
 Z_{dw} :水深(m)
 z_{dw} :水面から動水圧を求める点までの深さ(m)

表 3.7.2-4(1) 動水圧による荷重の算定における計算条件 (縮小板,固定ボルト及び取水管(フランジ部))

項目		単位	地震時
設計水平震度	K_{h}	Ι	1.5
1 号機取水槽水位	_	m	EL 0.000
1 号機取水槽底標高	_	m	EL-7.000
縮小板下端標高	_	m	EL-6.825
水深	Z_{dw}	m	7.000
縮小板下端水深	\mathbf{Z} dw	m	6.825
動水圧	p_{dw}	kN/m^2	183.3
縮小板の面積	А	m^2	7.304
動水圧による荷重	P dw	kN	1339

図 3.7.2-4(1) 動水圧の荷重作用図 (縮小板,固定ボルト及び取水管(フランジ部))

項目		単位	地震時
設計水平震度	K_{h}	_	1.5
設計鉛直震度	K v	_	1.5
1 号機取水槽水位	—	m	EL 0.000
1号機取水管底標高	—	m	EL-6.603
取水管(管胴部)下端標高	—	m	EL-6.603
水深	Z_{dw}	m	7.000
取水管(管胴部)下端水深	\mathbf{Z}_{dw}	m	6.603
動水圧	p_{dw}	kN/m^2	276
取水管(管胴部)の面積	А	m^2	1,533
動水圧による鉛直及び水平荷重	P _{dw}	kN	276

表 3.7.2-4(2) 動水圧による荷重の算定における計算条件 (取水管(管胴部))

水平方向

図 3.7.2-4(2) 動水圧の荷重作用図(取水管(管胴部))

3.7.3 荷重の選定

各構造部材における地震時の作用荷重を表 3.7.3-1 に示す。

表 3.7.3-1 地震時の作用荷重

項目		単位	地震時
慣性力	P_{h}	kN	38
動水圧	${\rm P}_{\rm dw}$	kN	1339
静水圧	F_{h}	kN	43
合計値	Р	kN	1420

(縮小板,固定ボルトの作用荷重)

(取水管(フランジ部))

項目		単位	地震時
慣性力	P_{h}	kN	70
動水圧	P_{dw}	kN	1339
静水圧	F_h	kN	43
合計値	Р	kN	1452

(取水管(管胴部))

	項目		単位	地震時
1	慣性力	P_{h}	kN	76
水平	動水圧	P_{dw}	kN	276
力回	合計値	Р	kN	352
	慣性力	P _v	kN	76
<u> </u>	動水圧	P_{dw}	kN	276
力回	合計値	Р	kN	352

3.8 許容限界

許容限界は、VI-2-1-9「機能維持の基本方針」にて設定している許容限界を踏まえて 設定する。

3.8.1 使用材料

流路縮小工を構成する各部材の使用材料を表 3.8.1-1 に示す。

評価対象部位	材質	仕様
縮小板	SS400	t = 40 (mm) *
固定ボルト	SCM435	M30
取水管(フランジ部)	SS400	t = 46 (mm) *
取水管(管胴部)	SS400	t = 24 (mm) *

表 3.8.1-1 使用材料

注記*:「2.3.1 1号機取水槽流路縮小工に関する補足説明 参考資料2 1号機取水槽流路縮小工における要求機能を喪失しうる事象について」に示すエロージョン摩耗に対する設計・施工上の配慮として、縮小板の余裕厚を4mmとして考慮し、板厚を44-4=40(mm)と設定する。また、取水管(フランジ部)及び取水管(管胴部)についても、余裕厚を4mmとして考慮し、取水管(フランジ部)の板厚を50-4=46(mm)、取水管(管胴部)の板厚を28-4=24(mm)と設定する。

3.8.2 許容限界

許容限界は、VI-2-1-9「機能維持の基本方針」に基づき設定する。

流路縮小工を構成する各部材の許容応力度は「鋼構造設計規準-許容応力度設計 法-(日本建築学会,2005年改訂)」及び「鋼構造許容応力設計規準(日本建築学 会,2019年制定)」に基づき表 3.8.2-1 の値とする。

亚伍县在加出	++ FF	短期許容応力度 (N/mm ²)		
評価対象部位		曲げ	せん断	引張
縮小板	SS400	235	135	—
固定ボルト	SCM435	—	—	560
取水管(フランジ部)	SS400	215	124	—
取水管(管胴部)	SS400	235	135	_

表 3.8.2-1 流路縮小工を構成する各部材の許容限界

3.9 評価方法及び評価条件

流路縮小工を構成する各部材に発生する応力を用いて算定する応力度が,許容限界以下 であることを確認する。流路縮小工の耐震評価は、VI-2-1-9「機能維持の基本方針」にて 設定している荷重及び荷重の組合せ並びに許容限界を踏まえて、「3.5評価対象部位」に て設定する評価対象部位に作用する応力等が「3.8許容限界」にて示す許容限界以下であ ることを確認する。

3.9.1 縮小板

縮小板の管軸方向(水平方向)に対する耐震評価を実施する。外径を固定とする 有孔円板に等分布荷重が作用するものとして検討する。

評価対象位置図を図 3.9.1-1 に,縮小板のモデル図を図 3.9.1-2 に示す。

図 3.9.1-2 縮小板のモデル図 2.3.1-30

(1) 縮小板に作用する単位面積あたりの等分布荷重

縮小板に作用する単位面積あたりの等分布荷重について,以下の式より算出する。 また,縮小板に作用する単位面積あたりの等分布荷重の計算に用いる入力値を表 3. 9.1-1 に示す。

$$p_0 = \frac{P}{A_{11}}$$

A₁₁ = (a₁² - b₁²) × π
 ここで、p₀:縮小板に作用する単位面積あたりの等分布荷重(kN/mm²)
 P:縮小板に作用する地震時荷重(kN)
 A₁₁:縮小板の作用面積(mm²)
 a₁:縮小板の外半径(mm)
 b₁:縮小板の内半径(mm)

表 3.9.1-1 縮小板に作用する単位面積あたりの等分布荷重の計算に用いる入力値

記号	単位	定義	入力値
Р	kN	縮小板に作用する地震時荷重	1,420
a 1	mm	縮小板の外半径	1,925
b 1	mm	縮小板の内半径	

上記の評価式に,表 3.9.1-1 の入力値を代入すると縮小板に作用する単位面積 あたりの等分布荷重は以下のとおりとなる。

$$A_{11} = (a_1^2 - b_1^2) \times \pi$$

= (1,925² -) × 3.1416
= 7,304,220 mm²

$$p_0 = \frac{P}{A_{11}} = 1,420/7,304,220$$

 $= 0.0001944 \, \text{kN/mm}^2$

(2) 縮小板に生じる曲げモーメント

縮小板に生じる曲げモーメントについて,「構造力学公式集(土木学会,1986年)」 に基づき以下の式より算出する。また,縮小板に生じる曲げモーメントの計算に用 いる入力値を表 3.9.1-2 に示す。

$$\begin{split} M_{r1} &= \frac{p_0 a_1^2}{16} \bigg[(1+\nu)(1-\kappa_1) + 4\beta_1^2 - (3+\nu)\rho_1^2 - \frac{(1-\nu)\kappa_1}{\rho_1^2} + 4\beta_1^2 (1+\nu) \ln \rho_1 \bigg] \\ M_{\theta 1} &= \frac{p_0 a_1^2}{16} \bigg[(1+\nu)(1-\kappa_1) + 4\nu\beta_1^2 - (1+3\nu)\rho_1^2 - \frac{(1-\nu)\kappa_1}{\rho_1^2} + 4\beta_1^2 (1+\nu) \ln \rho_1 \bigg] \\ \kappa_1 &= \beta_1^2 \frac{(1-\nu)\beta_1^2 + (1+\nu)(1+4\beta_1^2 \ln \beta_1)}{1-\nu+(1+\nu)\beta_1^2} \\ \beta_1 &= \frac{b_1}{a_1} \\ \beta_1 &= \frac{b_1}{a_1} \\ \rho_1 &= \frac{r_1}{a_1} \\ \vdots &= \frac{r_1}{a_1} \\ \vdots &= \frac{r_1}{a_1} \\ \vdots &= \frac{r_1}{a_1} \\ D_0 &: \pi \ln \sqrt{a} \text{ ic } \pm \text{ ic } 3 \# 2 \pi \text{ jo } 6 \pi \text{ if } \pi - \varkappa \vee \text{ b} (\text{ kN} \cdot \text{ nm/mm}) \\ &= \frac{r_1}{a_1} \\ p_0 &: \pi \ln \sqrt{a} \text{ ic } \pi \text{ if } \pi + \pi \text{ if } \pi \text{ if } \pi + \pi \text{$$

表 3.9.1-2 縮小板に作用する曲げモーメントの計算に用いる入力値

記号	単位	定義	入力値
P ₀	kN/mm²	縮小板に作用する単位面積あたり の等分布荷重	1.944×10^{-4}
a 1	mm	縮小板の外半径	1,925
b ₁	mm	縮小板の内半径	
ν	_	ポアソン比	0.3
r ₁	mm	縮小板の中心から半径方向の距離	1,925

上記の評価式に,表 3.9.1-2の入力値を代入すると縮小板に生じる曲げモーメントは以下のとおりとなる。

$$\beta_{1} = \frac{b_{1}}{a_{1}}$$

$$= \boxed{1}/1,925$$

$$= 0.61039$$

$$\rho_{1} = \frac{r_{1}}{a_{1}}$$

$$= 1,925/1,925$$

$$= 1.0000$$

$$\kappa_{1} = \beta_{1}^{2} \frac{(1-\nu)\beta_{1}^{2} + (1+\nu)(1+4\beta_{1}^{2}\ln\beta_{1})}{1-\nu+(1+\nu)\beta_{1}^{2}}$$

= $0.61039^{2} \frac{(1-0.3) \times 0.61039^{2} + (1+0.3)(1+4\times0.61039^{2}\ln0.61039)}{1-0.3+(1+0.3) \times 0.61039^{2}}$
= 0.19013

$$M_{r1} = \frac{p_0 a_1^2}{16} \left[(1+\nu)(1-\kappa_1) + 4\beta_1^2 - (3+\nu)\rho_1^2 - \frac{(1-\nu)\kappa_1}{\rho_1^2} + 4\beta_1^2(1+\nu)\ln\rho_1 \right]$$

= $\frac{1.944 \times 10^{-4} \times 1,925^2}{16} \left[(1+0.3)(1-0.19013) + 4 \times 0.61039^2 - (3+0.3) \times 1.0000^2 - \frac{(1-0.3) \times 0.19013}{1.0000^2} + 4 \times 0.61039^2 \times (1+0.3)\ln 1.0000 \right]$

 $= -40.07 \text{ kN} \cdot \text{mm/mm}$

$$M_{\theta 1} = \frac{p_0 a_1^2}{16} \left[(1+\nu)(1-\kappa_1) + 4\nu\beta_1^2 - (1+3\nu)\rho_1^2 - \frac{(1-\nu)\kappa_1}{\rho_1^2} + 4\beta_1^2(1+\nu)\ln\rho_1 \right]$$

= $\frac{1.944 \times 10^{-4} \times 1,925^2}{16} \left[(1+0.3)(1-0.19013) + 4\times0.3\times0.61039^2 - (1+3\times0.3) \times 1.0000^2 + \frac{(1-0.3) \times 0.19013}{1.0000^2} + 4\times0.61039^2 \times (1+0.3)\ln 1.0000 \right]$
= $-12.02 \text{ kN} \cdot \text{mm/mm}$
(3) 縮小板に作用する最大曲げ応力度

縮小板に作用する最大曲げ応力度について,「構造力学公式集(土木学会,1986年)」に基づき,以下の式より算出する。また,縮小板に生じる最大曲げ応力度の計算に用いる入力値を表 3.9.1-3 に示す。

$$\sigma_1 = \frac{\sqrt{M_{r1}^2 + M_{\theta_1}^2}}{Z_1}$$

 $Z_1 = \frac{t_1^2}{6}$

表 3.9.1-3 縮小板に作用する最大曲げ応力度の計算に用いる入力値

記号	単位	定義	入力値
t 1	mm	縮小板の板厚	40
M_{r1}	kN•mm/mm	縮小板に作用する半径方向の曲げモーメント	40.07
$M_{\theta 1}$	kN•mm/mm	縮小板に作用する周方向の曲げモーメント	12.02

上記の評価式に,表3.9.1-3の入力値を代入すると縮小板に作用する曲げモー メントは以下のとおりとなる。

$$Z_{1} = \frac{t_{1}^{2}}{6}$$

$$= \frac{40^{2}}{6}$$

$$= 266.67 \text{ mm}^{3}/\text{mm}$$

$$\sigma_{1} = \frac{\sqrt{M_{r1}^{2} + M_{\theta_{1}}^{2}}}{Z_{1}}$$

$$= \frac{\sqrt{(40.07)^{2} + (12.02)^{2}}}{266.67}$$

$$= 0.1569 \text{ kN/mm}^{2}$$

$$= 157 \text{ N/mm}^{2}$$

(4) 縮小板に作用する最大せん断応力度

縮小板に作用する最大せん断応力度について,以下の式より算出する。また,縮 小板に生じる最大せん断応力度の計算に用いる入力値を表 3.9.1-4 に示す。

$$\tau_1 = \frac{S_1}{A_{12}}$$

 $A_{12} = 2 \cdot \pi \cdot a_1 \cdot t_1$

表 3.9.1-4 縮小板に作用する最大せん断応力度の計算に用いる入力値

記号	単位	定義	入力値
S_1	kN	縮小板に作用するせん断力	1,420
a 1	mm	縮小板の外半径	1,925
t 1	mm	縮小板の板厚	40

上記の評価式に,表 3.9.1-4 の入力値を代入すると縮小板に生じる最大せん断応力度は以下のとおりとなる。

$$A_{12} = 2 \cdot \pi \cdot a_1 \cdot t_1$$

= 2 × 3.1416 ×1,925×40
= 483,806 mm²

$$\tau_1 = \frac{S_1}{A_{12}}$$
$$= \frac{1,420}{483,806}$$
$$= 0.00293 \text{ kN/mm}^2$$

$$= 3 \text{ N/mm}^2$$

3.9.2 固定ボルト

固定ボルトについては、管軸方向(水平方向)に対する耐震評価を実施する。固 定ボルトには、縮小板に作用する水平力により生じる固定ボルトの引張力に加え、 縮小板外縁に作用する曲げモーメントに伴い生じる固定ボルトの引張力を有効断 面積で除することで求めた応力度が許容応力度以下であることを確認する。

評価対象位置図を図 3.9.2-1 に,固定ボルトのモデル図を図 3.9.2-2 に示す。

2.3.1 - 37

(1) 固定ボルトに生じる最大応力度

固定ボルトに作用する最大応力度は、以下の式より算出する。また、固定ボルト に生じる最大応力度の計算に用いる入力値を表 3.9.2-1 に示す。

なお,縮小板に生じる曲げモーメントは半径方向及び周方向の曲げモーメントの 合力とした。

$$T = T_1 + T_2$$

$$T_1 = \frac{P}{n}$$

$$T_2 = M \cdot \pi \cdot D_1 \cdot \frac{1}{n \cdot l_1}$$

$$M = \sqrt{M_{r1}^2 + M_{\theta 1}^2}$$

$$\sigma_b = \frac{T}{A}$$

ここで、T:内側固定ボルトに作用する引張力(kN/本)

T₁:縮小板に発生する荷重により内側固定ボルトに作用する
 引張力(kN/本)

T₂:縮小板に発生する曲げモーメントにより内側固定ボルトに作用す る引張力(kN/本)

P:内側固定ボルトに作用する地震時荷重(kN)

n:内側固定ボルトの本数(本)

M:縮小板に生じる曲げモーメント合力 (kN・mm/mm)

D₁:フランジ外径 (mm)

l₁:支点間距離(mm)

M_{r1}:縮小板に生じる半径方向の曲げモーメント(kN・mm/mm)

 $M_{\theta 1}$:縮小板に生じる周方向の曲げモーメント (kN・mm/mm)

A:内側固定ボルト1本の有効断面積(mm²)

σ_b:内側固定ボルトに生じる最大応力度(kN/mm²)

記号	単位	定義	入力値
D_1	mm	フランジ外径	3,850
1 1	mm	支点間距離	0.111
M_{r1}	kN•mm/mm	縮小板に生じる半径方向の曲げモーメント	40.07
${ m M}_{ heta \ 1}$	kN•mm/mm	縮小板に生じる周方向の曲げモーメント	12.02
Р	kN	内側固定ボルトに作用する地震時荷重	1,420
n	本	内側固定ボルトの本数	40
А	mm^2	内側固定ボルト1本の有効断面積	561

表 3.9.2-1 固定ボルトに生じる最大応力度の計算に用いる入力値

上記の評価式に,表 3.9.2-1 の入力値を代入すると固定ボルトに生じる最大応 力度は以下のとおりとなる。

$$T_1 = \frac{P}{n}$$
$$= \frac{1,420}{40}$$
$$= 35.5 \text{ kN/} \text{ kN/$$

$$M = \sqrt{M_{r1}^2 + M_{\theta 1}^2}$$
$$= \sqrt{40.07^2 + 12.02^2}$$
$$= 41.83 \text{ kN} \cdot \text{mm/mm}$$

$$T_2 = M \cdot \pi \cdot D_1 \cdot \frac{1}{n \cdot l_1}$$

= 41.83 × 3.1416 × 3,850 × $\frac{1}{40 \times 0.111}$
= 113.89
\approx 114 kN/\approx

$$\sigma_b = \frac{T}{A_{21}}$$

= $\frac{36 + 114}{563}$
= 0.2664 kN/mm²
= 267 N/mm²

3.9.3 取水管 (フランジ部)

取水管(フランジ部)の管軸方向(水平方向)に対する耐震評価を実施する。取 水管(フランジ部)は内側固定ボルトを介して荷重が作用するものとして,内径を 固定とする有孔円板として検討する。

評価対象位置図を図 3.9.3-1 に,取水管(フランジ部)のモデル図を図 3.9.3-1 に示す。

図 3.9.1-1 評価対象位置図(取水管(フランジ部))

図 3.9.3-1 取水管(フランジ部)のモデル図

(1) 取水管(フランジ部)に作用する単位長さあたりの等分布荷重

取水管(フランジ部)に作用する単位長さあたりの等分布荷重は,以下の式より 算出する。また,取水管(フランジ部)に作用する単位長さあたりの等分布荷重の 計算に用いる入力値を表 3.9.3-1に示す。

$$\mathbf{P}' = \frac{P}{L_f}$$

 $L_f = 2 \cdot \pi \cdot b_f$

- ここで、P':取水管(フランジ部)に作用する単位長さあたりの等分布荷重(kN/mm)
 P:取水管(フランジ部)に作用する地震時荷重(kN)
 L_f:取水管(フランジ部)の外周長(mm)
 - **b**_f: 取水管(フランジ部)の外半径(mm)

表 3.9.3-1 取水管(フランジ部)に作用する単位長さあたりの 等分布荷重の計算に用いる入力値

記号	単位	定義	入力値
Р	kN	取水管 (フランジ部) に作用する地震時荷重	1,452
bf	mm	取水管(フランジ部)の外半径	1,853

上記の評価式に,表 3.9.3-1の入力値を代入すると縮小板に生じる最大せん断応力度は以下のとおりとなる。

 $L_{f} = 2 \times \pi \times b_{f}$ = 2 × 3.1416 × 1,853 = 11,643 mm $P' = \frac{P}{L_{f}}$ = $\frac{1,452}{11,643}$

=0.125 kN/mm

(2) 取水管(フランジ部)に作用する曲げモーメント
 取水管(フランジ部)に作用する曲げモーメントについて,「構造力学公式集(土木学会,1986年)」に基づき,以下の式より算出する。また,取水管(フランジ部)に生じる曲げモーメントの計算に用いる入力値を表 3.9.3-2に示す。

$$\begin{split} M_{rf} &= \frac{P'a_{f}\beta_{f}}{2} \bigg[-1 + (1+\nu)\kappa_{f} + (1-\nu)\frac{\kappa_{f}}{p_{f}^{2}} - (1+\nu)\ln\rho_{f} \bigg] \\ M_{\theta f} &= \frac{P'a_{f}\beta_{f}}{2} \bigg[-\nu + (1+\nu)\kappa_{f} - (1-\nu)\frac{\kappa_{f}}{p_{f}^{2}} - (1+\nu)\ln\rho_{f} \bigg] \\ \kappa_{f} &= \beta_{f}^{2} \frac{1+(1+\nu)\ln\beta_{f}}{1-\nu+(1+\nu)\beta_{f}^{2}} \\ \beta_{f} &= \frac{b_{f}}{a_{f}} \\ \rho_{f} &= \frac{\tau_{f}}{a_{f}} \\ zzc, \ M_{rf} : \pi k \oplus (7 \neg 2 \vee 2 \otimes \pi) \ (z \pm U \Im \# \Delta \pi n n) \\ M_{\theta f} : \pi k \oplus (7 \neg 2 \vee 2 \otimes \pi) \ (z \pm U \Im \# \Delta \pi n n) \\ M_{\theta f} : \pi k \oplus (7 \neg 2 \vee 2 \otimes \pi) \ (z \pm U \Im \# \Delta \pi n n) \\ P' &: \pi k \oplus (7 \neg 2 \vee 2 \otimes \pi) \ (z \pm U \Im \# \Delta \pi n n) \\ \nu : \pi r \vee 2 \vee k \\ \kappa_{f}, \ \beta_{f}, \ \rho_{f} : \Re M \\ a_{f} &: \pi k \oplus (7 \neg 2 \vee 2 \otimes \pi) \ O n \# 4 E \ (nm) \\ b_{f} : \pi k \oplus (7 \neg 2 \vee 2 \otimes \pi) \ O n \# 4 E \ (nm) \\ r_{f} : \pi k \oplus (7 \neg 2 \vee 2 \otimes \pi) \ O n \# 4 E \ (nm) \\ \end{array}$$

記号	単位	定義	入力値
р́	1.25./	取水管(フランジ部)に作用する	0 125
P	KN/ MM	単位長さあたりの等分布荷重	0.125
ν		ポアソン比	0.3
a _f	mm	取水管(フランジ部)の内半径	1,675
b f	mm	取水管(フランジ部)の外半径	1,853
r _f	f MM	取水管(フランジ部)の中心から	1 075
		半径方向の距離	1,075

表 3.9.3-2 取水管(フランジ部)に生じる曲げモーメントの計算に用いる入力値

上記の評価式に,表 3.9.3-2の入力値を代入すると取水管(フランジ部)に生じる曲げモーメントは以下のとおりとなる。

$$\begin{split} \beta_{f} &= \frac{b_{f}}{a_{f}} \\ &= \frac{1,853}{1,675} \\ &= 1.1063 \\ \rho_{f} &= \frac{r_{f}}{a_{f}} \\ &= \frac{1,675}{1,675} \\ &= 1.0000 \\ \kappa_{f} &= \beta_{f}^{2} \frac{1 + (1 + \nu) \ln \beta_{f}}{1 - \nu + (1 + \nu) \beta_{f}^{2}} \\ &= 1.1063^{2} \frac{1 + (1 + 0.3) \ln 1.1063}{1 - 0.3 + (1 + 0.3) \times 1.1063^{2}} \\ &= 0.60433 \end{split}$$

$$M_{\rm rf} = \frac{P'a_{\rm f}\beta_{\rm f}}{2} \bigg[-1 + (1+\nu)\kappa_{\rm f} + (1-\nu)\frac{\kappa_{\rm f}}{\rho_{\rm f}^2} - (1+\nu)\ln\rho_{\rm f} \bigg]$$

= $\frac{0.125 \times 1.675 \times 1.1063}{2} \bigg[-1 + (1+0.3) \times 0.60433 + (1-0.3)\frac{0.60433}{1^2} - (1+0.3)\ln1 \bigg]$
= 24.17 kN · mm/mm

$$M_{\theta f} = \frac{P'a_{f}\beta_{f}}{2} \left[-\nu + (1+\nu)\kappa_{f} - (1-\nu)\frac{\kappa_{f}}{p_{f}^{2}} - (1+\nu)\ln\rho_{f} \right]$$

= $\frac{0.125 \times 1,675 \times 1.1063}{2} \left[-0.3 + (1+0.3) \times 0.60433 - (1-0.3)\frac{0.60433}{1^{2}} - (1+0.3)\ln 1 \right]$
= 7.25 kN · mm/mm

(3) 取水管(フランジ部)に生じる最大曲げ応力度

取水管(フランジ部)に生じる最大曲げ応力度について,「構造力学公式集 (土木学会,1986年)」に基づき以下の式より算出する。また,取水管(フラン ジ部)に生じる最大曲げ応力度の計算に用いる入力値を表 3.9.3-3 に示す。

$$\sigma_f = \frac{\sqrt{M_{rf}^2 + M_{\theta f}^2}}{z_f}$$

 $Z_f = \frac{t_f^2}{6}$

ここで、 o_f:取水管(フランジ部)に生じる最大曲げ応力度(kN/mm²) M_{rf}:取水管(フランジ部)の半径方向の曲げモーメント(kN・mm/mm) M_{0f}:取水管(フランジ部)の周方向の曲げモーメント(kN・mm/mm) Z_f:取水管(フランジ部)の断面係数(mm³/mm) t_f:取水管(フランジ部)の板厚(mm)

表 3.9.3-3 取水管(フランジ部)に作用する最大曲げ応力度の計算に用いる入力値

記号	単位	定義	入力値
$M_{\rm rf}$	1-N	取水管(フランジ部)に生じる半	94 17
	KN • mm/mm	径方向の曲げモーメント	24.17
M _{θf}	kN•mm/mm	取水管(フランジ部)に生じる周	7 95
		方向の曲げモーメント	1.25
t _f	mm	取水管(フランジ部)の板厚	46

上記の評価式に,表 3.9.3-3の入力値を代入すると取水管(フランジ部)に生じる最大曲げ応力度は以下のとおりとなる。

$$Z_f = \frac{46^2}{6}$$

= 352.7 mm³

$$\sigma_f = \frac{\sqrt{M_{rf}^2 + M_{\theta f}^2}}{z_f}$$
$$= \frac{\sqrt{24.17^2 + 7.25^2}}{352.7}$$
$$= 0.0714 \text{ kN/mm}^2$$
$$= 72 \text{ N/mm}^2$$

(4) 取水管(フランジ部)に生じる最大せん断応力度

取水管(フランジ部)に生じる最大せん断応力度は,以下の式より算出する。また,取水管(フランジ部)に生じる最大せん断応力度の計算に用いる入力値を表 3.9.3-4に示す。

$$\tau_f = \frac{S_f}{A_3}$$

 $A_3 = t_f \cdot l_f$ $l_{f} = \pi \cdot (D_i + 2t_p)$ ここで、 τ_f : 取水管 (フランジ部) に生じる最大せん断応力度 (kN/mm²) S_f : 取水管 (フランジ部) に生じるせん断力 (= P) (kN) P: 取水管 (フランジ部) に作用する地震時荷重 (kN) A_3 : 取水管 (フランジ部) 付け根の断面積 (mm²) D_i : 取水管 (フランジ部) の管内径 (mm) t_p : 取水管 (管胴部) の管厚 (mm) t_f : 取水管 (フランジ部) の板厚 (mm) l_f : 取水管 (フランジ部) 付け根の周長 (mm)

表 3.9.3-4 取水管(フランジ部)に作用する最大せん断応力度の計算に用いる入力値

記号	単位	定義	入力値
S _f	kN	取水管(フランジ部)に生じるせ	1 459
		ん断力	1,452
D _i	mm	取水管(フランジ部)の管内径	3, 350
t _p	mm	取水管(管胴部)の管厚	24
$t_{ m f}$	mm	取水管(フランジ部)の板厚	46

上記の評価式に,表 3.9.3-4 の入力値を代入すると取水管(フランジ部)に生じる最大曲げ応力度は以下のとおりとなる。

 $l_{f} = \pi (D_{i} + 2t_{p})$ = 3.1416×(3,350+2×24) = 10,675 mm

 $A_3 = t_f \cdot l_f$ = 46×10,675 = 491,050 mm²

$$\tau_{f} = \frac{S_{f}}{A_{3}}$$
$$= \frac{1,452}{491,050}$$
$$= 0.00296 \text{ kN/mm}^{2}$$
$$\approx 3 \text{ N/mm}^{2}$$

3.9.4 取水管(管胴部)

取水管(管胴部)には,取水管(管胴部)に生じる曲げモーメントに加え,取水 管(フランジ部)に生じる曲げモーメントを考慮する。取水管(管胴部)の検討で は,1号機取水槽北側壁を固定端とした片持ち梁として,管軸方向(水平方向)及 び管軸直交方向(鉛直方向)に対する耐震評価を実施する。

評価対象位置図を図 3.9.4-1 に,取水管(管胴部)のモデル図を図 3.9.4-2 に 示す。

図 3.9.4-1 評価対象位置図(取水管(管胴部))

図 3.9.4-2 取水管(管胴部)のモデル図

(1) 取水管(管胴部)に生じる曲げ応力度
 取水管(管胴部)に生じる曲げ応力度は、以下の式より算出する。また、取水管
 (管胴部)に生じる曲げ応力度の計算に用いる入力値を表 3.9.4-1に示す。

$$\sigma_d = \sqrt{\sigma_{dh}^2 + \sigma_{dv}^2 + \sigma_t + \sigma_f}$$

$$\sigma_{dv} = \frac{M_{dv}}{Z_d}$$

$$\sigma_{dh} = \frac{M_{dh}}{Z_d}$$

$$M_{dv} = \frac{(W_1 + P_1) \cdot L_d}{2} + P_2 \cdot (L_d + \frac{L_f}{2})$$

$$M_{dh} = \frac{P_1 \cdot L_d}{2} + P_2 \cdot (L_d + \frac{L_f}{2})$$

$$Z_d = \frac{\pi}{32 \cdot a_1} \cdot (a_1^4 - b_1^4)$$

$$\sigma_t = \frac{P_3}{A}$$

$$A = (a_1^2 - b_1^2) \times \frac{\pi}{4}$$

ここで, σ_d : 取水管(管胴部)に生じる曲げ応力度(N/mm²)

- σ_{dh}: 取水管(管胴部)に生じる水平方向の地震時荷重により生じる曲
 げ最大応力度(N/mm²)
- σ_{dv}: 取水管(管胴部)に生じる鉛直方向の地震時荷重により生じる曲
 げ最大応力度(N/mm²)
- σ_t:縮小板に作用する地震時荷重により取水管(管胴部)に生じる最大
 引張応力度(N/mm²)
- σ_f:取水管(フランジ部)に生じる曲げモーメントにより取水管(フランジ部)に生じる最大曲げ応力度(N/mm²)
- M_{dh}:
 取水管(管胴部)に作用する水平方向の地震時荷重により生じる

 曲げモーメント(kN・mm/mm)
- M_{dv}:
 取水管(管胴部)に作用する鉛直方向の地震時荷重により生じる

 曲げモーメント(kN・mm/mm)
- W1: 取水管(管胴部)の自重(管内部の水を含む)(kN)
- P₁: 取水管(管胴部)に作用する地震時荷重(kN)
- L_d:取水管(管胴部)の張り出し長さ(mm)

2.3.1 - 49

P₂: 取水管(フランジ部)に作用する地震時荷重(kN)
L_f: 取水管(フランジ部)の外周長(mm)
Z_d: 取水管(管胴部)の断面係数(mm³)
a₁: 1号機取水管の外径(mm)
b₁: 1号機取水管の内径(mm)
P₃: 縮小板に作用する地震時荷重(kN)
A: 取水管(管胴部)の作用面積(mm²)

表 3.9.4-1 取水管(管胴部)に生じる曲げ応力度の計算に用いる入力値

記号	単位	定義	入力値
	N (2	取水管(フランジ部)に生じる曲げモーメントによ	205
σ _f	N/ mm ⁻	り取水管(フランジ部)に生じる最大曲げ応力度	205
_	N/mm2	縮小板に作用する地震時荷重により取水管(管胴	7
O t	IN/ IIIII-	部)に生じる最大引張応力度	1
W_1	kN	取水管(管胴部)の自重(管内部の水を含む)	9
P 1	kN	取水管(管胴部)に作用する地震時荷重	352
L _d	mm	取水管(管胴部)の張り出し長さ	450
P 2	kN	取水管(フランジ部)に作用する地震時荷重	70
P 3	kN	縮小板に作用する地震時荷重(kN)	1,420
a 1	mm	1号機取水管の外径	3, 398
b 1	mm	1号機取水管の内径	3, 350

上記の評価式に,表 3.9.4-2の入力値を代入すると取水管(管胴部)に生じる 曲げ応力度は以下のとおりとなる。

$$Z_{d} = \frac{\pi}{32 \cdot a_{1}} \cdot (a_{1}^{4} - b_{1}^{4})$$
$$= \frac{3.1416}{32 \times 3,398} \times (3,398^{4} - 3,350^{4})$$
$$= 213,076,705.2 \text{ mm}^{3}$$

$$M_{dv} = \frac{(W_1 + P_1) \cdot L_d}{2} + P_2 \cdot (L_d + \frac{L_f}{2})$$
$$= \frac{(9 + 352) \times 450}{2} + 70 \times (450 + \frac{50}{2})$$

= 114,475 kN \cdot mm/mm

$$M_{dh} = \frac{P_1 \cdot L_d}{2} + P_2 \cdot (L_d + \frac{L_f}{2})$$
$$= \frac{352 \times 450}{2} + 70 \times (450 + \frac{50}{2})$$
$$= 112,450 \text{ kN} \cdot \text{mm/mm}$$

$$A = (a_1^2 - b_1^2) \times \frac{\pi}{4}$$

$$A = (3,398^2 - 3,350^2) \times \frac{3.1416}{4}$$

$$= 254,394.2 \text{ mm}^2$$

$$\sigma_t = \frac{P_3}{A}$$

$$= \frac{1420}{254,394.2}$$

$$= 0.00582 \text{ kN/mm}^2$$

$$= 6 \text{ N/mm}^2$$
Max

$$\sigma_{dv} = \frac{M_{dv}}{Z_d}$$

= $\frac{114,475}{213,076,705.2}$
= 0.000537 kN/mm²
= 0.537 N/mm²

$$\sigma_{dh} = \frac{M_{dh}}{Z_d}$$

= $\frac{112,450}{213076206.9}$
= 0.000528 kN/mm²
= 0.528 kN/mm²

$$σ_d = √σ_{dh}^2 + σ_{dv}^2 + σ_t + σ_f$$

= √0.537²+0.528² + 6 + 205

= 211.75 N/mm²

≒212 N/mm²

(2) 取水管(管胴部)に生じる最大せん断応力度

取水管(管胴部)に生じるせん断応力度は、以下の式より算出する。また、取水 管(管胴部)に生じるせん断応力度の計算に用いる入力値を表 3.9.3-1に示す。

表 3.9.4-2 取水管(管胴部)に作用する曲げ応力度の計算に用いる入力値

記号	単位	定義	入力値
Р	kN	取水管(管胴部)に作用する地震時荷重	421
D_{i}	mm	取水管(管胴部)の管内径	3, 350
tp	mm	取水管(管胴部)の管厚	24

上記の評価式に,表 3.9.4-2の入力値を代入すると取水管(管胴部)に生じる 曲げ応力度は以下のとおりとなる。

$$\begin{split} A_5 &= \frac{\left\{ \left(\frac{\text{Di}}{2} + t_p\right)^2 \cdot \pi - \left(\frac{\text{Di}}{2}\right)^2 \cdot \pi \right\}}{2} \\ &= \frac{\left\{ \left(\frac{3350}{2} + 24\right)^2 \cdot \pi - \left(\frac{3350}{2}\right)^2 \cdot \pi \right\}}{2} \end{split}$$

=127,132.3mm2

$$\tau_{dv} = \frac{S_{dv} + W_1}{A_5}$$

= $\frac{421 + 9}{127132.3}$
= 0.00338 kN/mm²
\approx 3.4 N/mm²

$$\tau_{dv} = \frac{S_{dv}}{A_5}$$
$$= \frac{421}{127132.3}$$
$$= 0.00331 \text{ kN/mm}^2$$
$$= 3.3 \text{ N/mm}^2$$

$$\tau_{d} = \sqrt{\tau_{dv}^{2} + \tau_{dh}^{2}}$$
$$= \sqrt{3.4^{2} + 3.3^{2}}$$
$$= 4.74 \text{N/mm}^{2}$$
$$\Rightarrow 5 \text{ N/mm}^{2}$$

3.10 評価結果

流路縮小工の耐震評価結果を表 3.10-1 に示す。各部材の断面照査を行った結果,す べての部材において応力度が許容限界以下であることを確認した。

評価対象部位		発生値	(応力度)	許容	応力度	照査値
》 · · · · ·	曲げ	157	N/mm^2	235	N/mm^2	0.67
和自力的权	せん断	3	N/mm^2	135	$\rm N/mm^2$	0.03
固定ボルト	引張	267	N/mm^2	560	$\rm N/mm^2$	0.48
取水管	曲げ	72	N/mm^2	215	$\rm N/mm^2$	0.34
(フランジ部)	せん断	3	N/mm^2	124	N/mm^2	0.03
取水管	曲げ	205	N/mm^2	235	$\rm N/mm^2$	0.90
(管胴部)	せん断	5	N/mm^2	135	N/mm^2	0.04

表 3.10-1 流路縮小工の耐震評価結果

- 4. 北側壁の耐震評価
- 4.1 概要

1号機取水槽において、Sクラス施設である津波防護施設に分類される流路縮小工の 間接支持構造物である1号機取水槽北側壁が設計用地震力に対して、構造強度を有する ことを確認する。

- 4.2 評価条件
 - 4.2.1 適用規格
 - 1号機取水槽の耐震評価にあたっては、コンクリート標準示方書 [構造性能照査編] (土木学会 2002年制定) (以下「コンクリート標準示方書 2002」という。),原子力発電所耐震設計技術指針 JEAG4601-1987 (社団法人 日本 電気協会 電気技術基準調査委員会) (以下「JEAG4601-1987」という。) を適用するが、鉄筋コンクリート部材の曲げ・軸力系及びせん断破壊の許容限界の一 部については、原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル

(2005年6月 土木学会 原子力土木委員会)(以下「土木学会マニュアル 2005」 という。)及びコンクリート標準示方書 2002 を適用する。また,基礎地盤の支持性 能の許容限界については,道路橋示方書・同解説(I共通編・Ⅳ下部構造編)(日本 道路協会平成 14 年 3 月)を適用する。表 4.2.1-1 に適用する規格,基準類を示す。

項目	適用する規格,基準値	備考
使用材料及び	コンクリート 博進子士書 2002	鉄筋コンクリートの材料諸元 (γ,
材料定数	コンクリート 惊 単小 万 音 2002	Ε, ν)
荷重及び荷重	コンカルート 博進 三七書 2002	永久荷重,偶発荷重等の適切な組み合
の組合せ	コンクリート保中小力音 2002	わせを検討
		限界層間変形角を設定した上で,発生
		層間変形角が限界層間変形角を下回る
	土木学会マニュアル 2005	ことを確認
<u> </u>		せん断破壊に対する照査は,発生せん
計谷取か		断力がせん断耐力を下回ることを確認
	道路橋示方書・同解説(I共	基礎地盤の支持性能に対する照査は,
	通編・IV下部構造編)(日本	基礎地盤に発生する応力が極限支持力
	道路協会平成14年3月)	度を下回ることを確認
	I = A C A 6 0 1 - 1097	有限要素法による二次元モデルを用い
地辰応谷胜彻	JEAG4001-1987	た時刻歴非線形解析

表 4.2.1-1 適用する規格,基準類

4.2.2 構造及び補強の概要

1 号機取水槽の平面図を図 4.2.2-1 に、断面図を図 4.2.2-2 及び図 4.2.2-3 に示す。A-A断面の地質断面図を図 4.2.2-4 に示す。

1号機取水槽は、地下2階構造となっており、上部は除じん機エリア、海水ポンプ エリア、ストレーナエリアの3エリアに分かれている。下部は水路となっており、除 じん機エリアの下部は6連のボックスカルバート構造、海水ポンプエリアの下部は3 連のボックスカルバート構造となっている。

1号機取水槽の北側壁は,流路縮小工の間接支持構造物である。北側壁及び流路 縮小工の位置図を図 4.2.2-5 に示す。

北側壁は、設計当時からの基準地震動Ssの増大により、取水槽の耐震性を確保するため、耐震補強を実施するため、後施工せん断補強工法(ポストヘッドバー工法,以下「PHb工法」という。)によるせん断補強を実施する。PHb工法適用範囲を図4.2.2-6に示す。また、その際の配筋図を図4.2.2-6に示す。なお、1号機取水槽ピット部については下部に閉塞版を設置したのちに、コンクリート充填を行う。

図 4.2.2-2 1 号機取水槽 断面図(A-A断面)

2.3.1-60

図 4.2.2-3 1 号機取水槽 断面図(B-B断面) (単位:mm)

注:第1層については解析モデルでは埋戻土の物性を使用

図 4.2.2-4 1 号機取水槽 地質断面図(A-A断面) 2.3.1-62

図 4.2.2-5 1号機取水槽流路縮小工及び北側壁の範囲

📶 : PHb 工法適用箇所

図 4.2.2-6 PHb 工法適用箇所

図 4.2.2-7 1 号機取水槽北側壁後施工せん断補強筋配筋図 2.3.1-64 4.2.3 評価対象断面の選定

1号機取水槽北側壁について,弱軸断面となる南北方向断面を評価対象断面と して選定する。 4.2.4 使用材料及び材料の物性値

構造物の使用材料を表 4.2.4-1 に,材料の物性値を表 4.2.4-2 に示す。

	材料	仕様
雄斗物	コンクリート	設計基準強度 20.6N/mm ²
悟垣初	鉄筋	SD345
]	MMR	設計基準強度 18.0N/mm ²

表 4.2.4-1 使用材料

表 4.2.4-2 材料の物性値

材料	ヤング係数 (N/mm ²)	単位体積重量 (kN/m ³)	ポアソン比
構造物 (鉄筋コンクリート	2.33×10 ⁴	24. 0 ^{*1}	0.2
構造物)	0.00×104	00.6*2	
MMR	2.20×10 ⁴	22.6*2	

注記*1:鉄筋コンクリートの単位体積重量を示す。

*2: 無筋コンクリートの単位体積重量を示す。

4.2.5 地盤物性値

地盤については、Ⅵ-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。地盤の物性値を表 4.2.5-1~表 4.2.5-2 に示す。

層番号	S波速度 V s(m/s)	P波速度 V _p (m/s)	単位体積重量 γ (kN/m ³)	ポアソン比 v	動せん断弾性係数 G _d (× 10 ⁵ kN/m ²)	減衰定数 h (%)
1 層	250	800	20.6	0.446	1.31	3
3 層	1600	3600	24.5	0.377	64.0	3
4 層	1950	4000	24.5	0.344	95.1	3
5 層*	2000	4050	26.0	0.339	105.9	3
6 層*	2350	4950	27.9	0.355	157.9	3

表 4.2.5-1 地盤の解析用物性値(岩盤)

注記*:入力地震動の算定においてのみ用いる解析用物性値

				解析用物性值
物理特性	密度	ho *1	(g/cm^3)	2.11 【2.00】
	間隙率	n		0.45
変形特性	動せん断弾性係数	G m a * 2	(kN/m^2)	163, 600
	基準平均有効拘束圧	ρ _{ma} '*2	(kN/m^2)	98.0
	ポアソン比	ν		0.33
	減衰定数の上限値	h max		0.24
強度特性	粘着力	с'	(N/mm^2)	0.00
	内部摩擦角	ϕ '	(°)	39.75
液状化特性	変相角	φ _p	(°)	28.0
			S 1	0.005
		W 1		7.153
	液状化パラメータ	P 1		0.500
		P 2		0.887
		С 1		3. 494

表 4.2.5-2 地盤の有効応力解析における解析用物性値(埋戻土)

注記*1:括弧内【】の数字は地下水位以浅の数値を表す。

*2:動せん断弾性係数,基準平均有効拘束圧及び液状化パラメータは代表的数値を示す。

4.2.6 評価構造物諸元

1号機取水槽の評価部位を図 4.2.6-1 に示す。

図 4.2.6-1 評価部位位置図
4.2.7 地下水位

設計地下水位は, VI-2-1-3「地盤の支持性能に係る基本方針」に従い設定する。設計地下水位の一覧を表 4.2.7-1 に示す。

表 4.2.7-1 設計地下水位の一覧

施設名称	解析断面	設計地下水位 (EL m)
1号機取水槽	A-A断面	3.0

4.2.8 耐震評価フロー

1号機取水槽の耐震評価フローを図 4.2.8-1 に示す。

4.3 地震応答解析

4.3.1 地震応答解析手法

地震応答解析は、構造物と地盤の相互作用を考慮できる二次元有限要素法により、基準地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による 逐次時間積分の時刻歴応答解析により行うこととし、解析手法については、図 4.3.1-1に示す解析手法の選定フローに基づき選定する。

A-A断面は,設計地下水位以深の液状化対象層が施設と接するため解析手法のフローに基づき「⑤有効応力解析」を選定する。なお,有効応力解析に加え, 液状化しない場合の影響を確認するため,全応力解析も実施する。

構造部材の非線形特性については、鉄筋コンクリートのM-o関係を適切にモ デル化する。また地盤については平面ひずみ要素でモデル化することとし、この うち岩盤及びMMRについては、線形でモデル化する。埋戻土については、地盤 の剛性及び減衰のひずみ依存性を適切に考慮できるマルチスプリング要素でモデ ル化することとし、ばね特性は双曲線モデルを用いて非線形性を考慮する。

地震応答解析の解析コードについては,有効応力解析及び全応力解析で「FL IP」を使用する。なお,解析コードの検証及び妥当性確認等の概要について は、VI-5「計算機プログラム(解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 4.3.1-2 に示す。

図 4.3.1-1 解析手法の選定フロー

図 4.3.1-2 地震応答解析手法の選定フロー

- 4.3.2 地震応答解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を 及ぼさないよう、十分広い領域とする。JEAG4601-1987を参考に、図 4.3.2-1に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物 基礎幅の1.5倍~2倍以上とする。

1号機取水槽の解析モデル領域については、南側に1号機タービン建物及び1 号機原子炉建物が隣接しているため、上記の考え方に加えて、隣接構造物外側の 地盤応答を適切に表現できる範囲までモデル化領域を拡大して設定する。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波 長の5分の1程度を考慮し、要素高さを1m程度まで細分割して設定する。

構造物の要素分割については、土木学会マニュアルに従い、要素長さを部材の 断面厚さ又は有効高さの 2.0 倍以下とし、1.0 倍程度まで細分して設定する。

図 4.3.2-1 モデル化範囲の考え方

有効応力解析において、二次元地震応答解析モデルは、検討対象構造物とその 周辺地盤をモデル化した不整形地盤に加え、この不整形地盤の左右に広がる地盤 をモデル化した自由地盤で構成される。この自由地盤は、不整形地盤の左右端と 同じ地質構成を有する一次元地盤モデルである。二次元地震応答解析における自 由地盤の常時応力解析から不整形地盤の地震応答解析までのフローを図 4.3.2-2 に示す。

図 4.3.2-2 自由地盤の常時応力解析から不整形地盤(二次元有限要素法)の 地震応答解析までのフロー(有効応力解析)

- (2) 境界条件
 - (a) 常時応力解析時

常時応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる 常時応力を算定するために行う。そこで、常時応力解析時の境界条件は底面固 定とし、側方は自重等による地盤の鉛直方向の変形を拘束しないよう鉛直ロー ラーとする。境界条件の概念図を図 4.3.2-3 に示す。

(b) 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を 模擬するため,粘性境界を設ける。底面の粘性境界については,地震動の下降 波がモデル底面境界から半無限地盤へ通過していく状態を模擬するため,ダッ シュポットを設定する。側方の粘性境界については,自由地盤の地盤振動と不 整形地盤側方の地盤振動の差分が側方を通過していく状態を模擬するため,自 由地盤の側方にダッシュポットを設定する。

境界条件の概念図を図4.3.2-4に示す。

図 4.3.2-4 地震応答解析における境界条件の概念図

(3) 構造物のモデル化

1号機取水槽北側壁等の鉄筋コンクリート部材は非線形はり要素及び線形はり 要素, 妻壁及びピット部コンクリート充填部は平面応力要素でモデル化する。

(4) 隣接構造物のモデル化

A-A断面において、1号機タービン建物及び防波壁(多重鋼管杭式擁壁)は取 水槽の隣接構造物に該当するため、1号機タービン建物及び防波壁(多重鋼管杭式 擁壁)をモデル化する。

以下に、それぞれの構造物のモデル化方針を示す。

(a) 1号機タービン建物

A-A断面の解析モデル範囲において隣接構造物となる1号機タービン建物 は、等価剛性として線形の平面ひずみ要素でモデル化する。

1号機タービン建物は「VI-2-11-2-1-2 1号機タービン建物の耐震性につい ての計算書」における多質点系モデル(多軸床柔多質点系モデル(水平))を基 に図4.3.2-5に示す手順で有限要素モデルを作成する。まず、多質点系モデル のフロア毎に重量を、層毎に剛性を集約し、多質点系モデルと振動的に等価な単 軸モデル(水平,鉛直)を作成し、1次モードの固有周期が同等となるよう単軸 モデルのせん断断面積及び断面2次モーメントを補正する。その後、図4.3.2-6に示す関係式を用いて、単軸モデルの水平剛性K_H、鉛直剛性K_v及び曲げ剛 性K_oを有限要素モデルのせん断剛性G、ポアソン比v及びばね定数k_oに変換 し、単軸モデルと有限要素モデルが振動的に等価となるよう一致させる。なお、 重量については、各節点の分担長に応じて層毎に設定する。

1号機タービン建物の有限要素モデルを図 4.3.2-7 に,有限要素モデルの平 面ひずみ要素の物性値を表 4.3.2-1 に,1次モードの固有周期の調整結果を表 4.3.2-2 に示す。

図 4.3.2-5 1号機タービン建物の有限要素モデル作成の考え方

(原子力発電所の基礎地盤及び周辺斜面の安定性評価技術<技術資料> (土木学会,原子力土木委員会,2009年2月)より抜粋)

図 4.3.2-7 1号機タービン建物 有限要素モデル図

物性	せん断弾性係数G	ヤング係数E	ポアソンド・
番号	(kN/m^2)	(kN/m^2)	ホテノン比ッ
1	$7.870 imes 10^4$	2.359×10 ⁵	0.49873
2	1.477×10^{5}	4. 405×10^5	0.49120
3	1.436×10^5	3. 367×10^{6}	0.17235
4	5. 036×10^5	1.469×10^{6}	0.45850
5	5. 398×10^5	1.571×10^{6}	0.45517
6	8.758×10^{6}	1.795×10^{7}	0.02478

表 4.3.2-1 原子炉建物(平面ひずみ要素)の物性値

	有限要素モデル	多質点系モデル (地盤ばねなし)
水平方向	0. 1135	0.1135
鉛直方向	0.0416	0.0416

表 4.3.2-2 固有周期(1次モード)の調整結果

(b) 防波壁(多重鋼管杭式擁壁)

防波壁(多重鋼管杭式擁壁)は、VI-2-10-2-3-3「防波壁(多重鋼管杭式擁 壁)の耐震性についての計算書」に基づき、線形はり要素でモデル化する。

(5) 地盤及びMMRのモデル化

地盤及びMMRは線形の平面ひずみ要素でモデル化する。埋戻土は,地盤の非 線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化する。ま た,改良地盤については評価対象構造物から離れていること,分布が局所的であ ることから埋戻土としてモデル化を行う。

地盤のモデル化に用いる、地質断面図を図4.3.2-9に示す。

注:第1層については解析モデルでは埋戻土の物性を使用 図 4.3.2-9 評価対象地質断面図

(6) 地震応答解析モデル

評価対象地質断面図を踏まえて設定した地震応答解析モデル図を図 4.3.2-10 に示す。

(全体図)

(拡大図) 図 4.3.2-10 地震応答解析モデル図(A-A断面)

(7) ジョイント要素の設定

地盤と構造物との接合面にジョイント要素を設けることにより, 地震時の地盤 と構造物の接合面における剥離及びすべりを考慮する。

ジョイント要素は、地盤と構造物の接合面で法線方向及びせん断方向に対して 設定する。法線方向については、常時状態以上の引張荷重が生じた場合、剛性及 び応力をゼロとし、剥離を考慮する。せん断方向については、地盤と構造物の接 合面におけるせん断強度以上のせん断荷重が生じた場合、せん断剛性をゼロと し、すべりを考慮する。

せん断強度 τ_{f} は次式の Mohr-Coulomb 式により規定される。粘着力 c 及び内部 摩擦角 ϕ は周辺地盤の c , ϕ とし、VI-2-1-3「地盤の支持性能に係る基本方針」 に基づき表 4.3.2-3 のとおりとする。また,要素間の粘着力 c 及び内部摩擦角 ϕ は表 4.3.2-4 のとおり設定する。

 $\tau_{\rm f} = c + \sigma \tan \phi$

ここに, τ_f : せん断強度

c:粘着力(=初期せん断強度τ₀)

地盤	粘着力 c (N/mm²)	内部摩擦角 φ (°)
埋戻土	0.22	22
岩盤 (C _M 級)	1.23	52
MMR (f' $_{c k} = 18.0 \text{N/mm}^2$)	3. 58	40

表 4.3.2-3 周辺地盤との境界に用いる強度特性

接合	条件	粘着力 c	内部摩擦角 <i>ϕ</i>		
材料1	材料2	(N/mm^2)	(°)		
	無筋コンクリート*1	材料2の c	材料2のφ		
構造物	埋戻土	材料2の c	材料2のφ		
	岩盤	材料2の c	材料2のφ		
無筋コンクリート*1	岩盤	* 2	* 2		

表 4.3.2-4 要素間の粘着力と内部摩擦角

注記*1:MMR, 置換コンクリート及び埋戻コンクリートの総称

*2:表面を露出させて打継処理が可能である箇所については、ジョイント要素を 設定しない。

ジョイント要素のばね定数は、土木学会マニュアル 2005 を参考に、数値計算 上、不安定な挙動を起こさない程度に周囲材料の剛性よりも十分に大きな値を設 定する。表 4.3.2-5 にジョイント要素のばね定数を示す。

また,ジョイント要素の力学特性を図 4.3.2-11 に,ジョイント要素の配置を 図 4.3.2-12 に示す。

圧縮剛性 k n	せん断剛性 k s
$(k N/m^3)$	$(k N/m^3)$
1.0×10^{7}	1.0×10^{7}

表 4.3.2-5 ジョイント要素のばね定数

(全体図)

(拡大図)

図 4.3.2-12 ジョイント要素の配置 (A-A断面)

(8) 材料特性の設定

また,図4.3.2-16に鉄筋の応力-ひずみ関係を示す。

(土木学会マニュアル 2005 より引用)

図 4.3.2-13 鉄筋コンクリート部材のM-φ関係

(道路橋示方書・同解説 V耐震設計編(日本道路協会,2002年)より引用) 図 4.3.2-14 鉄筋コンクリート部材の履歴特性(修正武田モデル)

(コンクリート標準示方書 2002 より引用)

図 4.3.2-15 構造部材の非線形特性(コンクリートの応力-ひずみ関係)

(コンクリート標準示方書 2002 より引用)

図 4.3.2-16 構造部材の非線形特性(鉄筋の応力-ひずみ関係)

4.3.3 減衰定数

有効応力解析及び全応力解析における Rayleigh 減衰は,地震力による時系列での地盤剛性の軟化に伴う1次固有振動数の低振動数側へのシフトに応じて,地盤 応答の保守的な評価が行われるよう係数αを0として設定し,低振動数帯で減衰 α [m]の影響がない剛性比例型減衰としている。また,係数βは,「FLIP研究会 14年間の検討成果のまとめ[理論編]」に基づきβ=0.002と設定する。 4.3.4 荷重及び荷重の組合せ

耐震評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を 抽出し,それぞれを組み合わせて設定する。地震荷重には,地震時土圧及び機 器・配管系からの反力による荷重が含まれるものとする。

地震時に1号機取水槽に作用する機器・配管系からの反力については,機器・ 配管系を解析モデルに付加質量として与えることで考慮する。

荷重の組合せを表 4.3.4-1 に示す。

種別		荷重		算定方法の概要
		飯休白香	\bigcirc	設計図書に基づいて,対象構造物 の体積に材料の密度を乗じて設定
	固定	2014日里	\bigcirc	の体積に材料の金度を来して設定する。
	何里	機器・配管荷重	0	機器・配管系の重量に基づいて設 定する
			\bigcirc	~ / う。
			0	市时心力性がにより設定する。
				地下水位に応した静水圧として考
永久荷重		外水圧	0	慮する。
(堂時荷重)				地下水の密度を考慮する。
(重可で)				内水位に応じた静水圧として考慮
	積載	内水圧	\bigcirc	する。
	荷重			海水の密度を考慮する。
			-	地表面及び構造物天端に考慮す
		積雪荷重	0	る。
		土被り荷重	\bigcirc	常時応力解析により設定する。
				地表面に恒常的に置かれる設備等
		水人上載何里	_	はないことから考慮しない。
		水平地震動	\bigcirc	基準地震動 Ssによる水平・鉛直
	鉛直地震動		0	同時加振を考慮する。
偶発荷重				水位条件及び密度は、永久荷重の
(地震荷重)	動水圧		0	うち内水圧と同様とする。
				地震時動水圧を付加質量により考
				慮する。

表 4.3.4-1 荷重の組合せ

(1) 機器・配管荷重

地震時に1号機取水槽に作用する機器・配管系の荷重図を図4.3.4-1に荷重一 覧表を表4.3.4-2及び表4.3.4-3に示す。機器・配管荷重は、常時・地震時と もに付加質量としてモデル化する。

図 4.3.4-1 解析用機器·配管荷重図

範囲	位置	機器荷重	配管荷重	浸水防止壁	縮小工	合計 (kN/m ²)
а	EL 1.500	1.29	8.90	_	_	10.19
b-1	EL 8.800	6.71	_	—	_	6.71
b-2	EL 1.500	3.71	1.50	—	_	5.21
c-1	EL 8.800	_	_	0.23	_	0.23
c-2	EL 1.500	2.79	4.50	_	_	7.29
d-1	EL 8.800	_	_	0.25	_	0.25
d-2	EL 5.000	5.49	-	—	_	5.49
e-1	EL 8.800	—	-	0.25	_	0.25
e-2	EL 5.000	5.56	-	—	_	5.56
f	EL 8.800	_	_	0.29	_	0.29
g	EL 6.700	1.59	—	_	_	1.59
h	開口部	_	_	_	5.71	5.71

表 4.3.4-2 機器配管荷重一覧(分布荷重)

範囲	合計 (kN/m)	
А	4.59	
В	2.19	
С	2.19	

表 4.3.4-3 機器配管荷重一覧(集中荷重)

(2) 外水圧

外水圧は、地下水位に応じた静水圧を設定する。地下水位については、「2.8 地下水位」のとおりとし、地下水の密度として 1.00g/cm³を考慮する。

(3) 内水圧

取水槽の内部には, EL 0.58m を内水位として設定する。設定の際は, 海水の密 度として, 1.03g/cm³を考慮する。

内水圧図を図 4.3.4-2 に示す。

図 4.3.4-2 内水圧図

(4) 積雪荷重

積雪荷重は、VI-1-1-3-1-1「発電用原子炉施設に対する自然現象等における損 傷の防止に関する基本方針」に基づき,発電所敷地に最も近い気象官署である松 江地方気象台で観測された観測史上1位の月最深積雪100cmに平均的な積雪荷重 を与えるための係数0.35を考慮し35.0 cmとする。積雪荷重については,松江市 建築基準法施行細則により,積雪量1 cmごとに20N/m²の積雪荷重が作用すること を考慮し設定する。 (5) 動水圧

動水圧は Westergaard 式から算定する

(a) 水平方向の動水圧

取水槽内部の海水を固定水として扱い,次式で算定する。水平方向動水圧の 分布図を図 4.3.4-3 に示す。

k_H:水平震度

図 4.3.4-3 水平方向の動水圧分布図

(b) 鉛直方向の動水圧

取水槽内部の海水を固定水として扱い,次式で算定する。鉛直方向動水圧の 分布図を図 4.3.4-4 に示す。

 $p_{w} = k_{V} \times \gamma_{w} \times h$ $p_{w}: 動水圧$

- k_v:鉛直震度
- γw:海水の単位体積重量
- h:水深

図 4.3.4-4 鉛直方向の動水圧分布図

- 4.3.5 地震応答解析の解析ケース
 - (1) 耐震評価における解析ケース
 - (a) 地盤物性のばらつきを考慮した解析ケース

A-A断面の周辺には主に埋戻土が分布していることから, 埋戻土の初期せん断弾性係数のばらつきを考慮する。

解析ケースについては、非液状化の条件を仮定した解析ケース(表 4.3.5-1 に示すケース④及び⑤)を実施することにより、地盤物性のばらつきの影響を 網羅的に考慮する。

地盤のばらつきの設定方法の詳細は、「補足-023-01 地盤の支持性能について」に示す。

		地盤物性		
御折ケーフ	解析手法	埋戻土	岩盤	
丹牛 切上 グ ち 一 人		(G₀:初期せん断	(G _d :動せん断	
		弾性係数)	弾性係数)	
ケース①	古动亡力网巧	亚坎萨	亚坎萨	
(基本ケース)	有须応刀幣別	平均恒	平均恒	
ケース2	有効応力解析	平均值+1σ	平均值	
ケース③	有効応力解析	平均值-1σ	平均值	
ケース④	全応力解析	平均值	平均值	
ケース5	全応力解析	平均值+1σ	平均值	

表 4.3.5-1 解析ケース(A-A断面)

(b) 耐震評価における解析ケースの組合せ

耐震評価における解析ケースを表 4.3.5-2 に示す。耐震評価においては,基 準地震動Ss全波(6波)及びこれらに位相反転を考慮した地震動(6波)を 加えた全 12 波に対し,基本ケース(表 4.3.5-2 に示すケース①)を実施す る。基本ケースにおいて,曲げ・軸力系の破壊,せん断破壊及び地盤の支持力 照査の照査項目ごとに照査値が 0.5を超える照査項目に対して,最も厳しい地 震動を用いて,表 4.3.5-2 に示す解析ケース②~⑤を実施する。すべての照査 項目の照査値がいずれも 0.5 以下の場合は,照査値が最も厳しくなる地震動を 用いて,解析ケースを実施する。また,追加解析ケースを実施する地震動の選 定フローを図 4.3.5-1 に示す。

表 4.3.5-2 耐震評価における解析ケース (A-A断面)

2.3.1-98

図 4.3.5-1 追加解析を実施する地震動の選定フロー

- 4.4 評価内容
 - 4.4.1 入力地震動の設定

入力地震動は、VI-2-1-6「地震応答解析の基本方針」のうち「2.3 屋外重 要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S sを一次元波動論により地震応答解析モデル下端位置で評価したものを用いる。 なお,入力地震動の設定に用いる地下構造モデルは,VI-2-1-3「地盤の支持性 能に係る基本方針」のうち「7.1 入力地震動の設定に用いる地下構造モデル」を 用いる。

図 4.4.1-1 に入力地震動算定の概念図を示す。入力地震動の算定には,解析コード「SHAKE」及び「microSHAKE/3D」を使用する。解析コードの検証及び妥当性確認の概要については,VI-5「計算機プログラム(解析コード)の概要」に示す。

図 4.4.1-1 入力地震動算定の概念図

図 4.4.1-2~図 4.4.1-15 にA-A断面の入力地震動の加速度時刻歴波形及び 加速度応答スペクトルを示す。

(a) 加速度時刻歷波形

図 4.4.1-2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: S s - D)

(a) 加速度時刻歷波形

図 4.4.1-3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(鉛直成分:Ss-D)

(a) 加速度時刻歷波形

図 4.4.1-4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: Ss-F1)

図 4.4.1-5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル

(鉛直成分: S s - F 1)

図 4.4.1-6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル

(水平成分: S s-F 2)

図 4.4.1-7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: Ss-F2)

(a) 加速度時刻歷波形

図 4.4.1-8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: S s - N 1)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 4.4.1-9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: S s - N 1)

図 4.4.1-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: Ss-N2 (NS))

図 4.4.1-11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: Ss-N2 (NS))

図 4.4.1-12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平成分: Ss-N2(EW))

図 4.4.1-13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: Ss-N2(EW))

図 4.4.1-14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル

(水平成分: S d-D)

図 4.4.1-15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直成分: Sd-D)

4.4.2 許容限界の設定

1号機取水層北側壁の耐震安全性評価は、以下に示すように許容限界を設定し 照査を行う。

耐震安全性評価は,限界状態設計法を用いることとし,限界状態設計法につい ては以下に詳述する。

(1) 曲げ・軸力系の破壊に対する許容限界

構造部材の曲げ・軸力系の破壊に対する許容限界は、土木学会マニュアル 2005 に基づき、限界層間変形角(1/100)とする。

土木学会マニュアル 2005 では,層間変形角 1/100 の状態はかぶりコンクリート が剥落する前の状態であることが,屋外重要土木構造物を模したラーメン構造の 破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限 界値とすることで構造全体としての安定性が確保できるとして設定されたもので ある。また,PHb 工法を適用する部材について,PHb 工法はおおむね弾性範囲とな る状況下で使用することから,構造部材に発生する曲げモーメントが鉄筋降伏に 相当する降伏モーメントを下回ることを確認する。鉄筋コンクリートの曲げ・軸 力系の破壊に対する許容限界を表 4.4.2-1 に示す。

曲げ・軸力系の破壊に対する照査において、変形による照査に用いる層間変形 角は地震応答解析により得られた応答値に安全係数(構造解析係数)1.2を乗ずる ことにより、曲げ・軸力系の破壊に対する安全余裕を見込んだ評価を実施する。

断面力による照査の際にも安全係数を見込むこととし、考慮する安全係数の一 覧を表 4.4.2-2 に示す。

確認項目	許容限界				
構造強度を有すること	限界層間変形角	1/100*1			
	曲げモーメント	降伏モーメント* ²			

表 4.4.2-1 曲げ・軸力系の破壊に対する許容限界

*1:
$$\gamma_{i} \frac{R_{d}}{R_{u}} < 1.0$$

ここで、
 γ_{i} :構造物係数 $(\gamma_{i} = 1.0)$
 R_{u} :限界層間変形角 (=1/100)
 R_{d} :照査用層間変形角 $(R_{d} = \gamma_{a} \cdot R)$
 γ_{a} :構造解析係数 $(\gamma_{a} = 1.2)$
 R :発生層間変形角

*2:
$$\gamma_{i} \frac{M_{d}}{M_{y}} < 1.0$$

ここで、
 γ_{i} :構造物係数 $(\gamma_{i} = 1.0)$
 M_{y} :鉄筋降伏に相当する曲げモーメント
 M_{d} :照査用曲げモーメント $(M_{d} = \gamma_{a} \cdot M)$
 γ_{a} :構造解析係数 $(\gamma_{a} = 1.0)$
 M :発生曲げモーメント

表 4.4.2-2 曲げ・軸力系の破壊に対する照査(断面力)において考慮する安全係数

安全係数			曲げ・軸力系の破壊に対		内容	
			する照査			
		応答値算定	限界值算定			
		$\gamma_{m c}$	1.0	1.3	コンクリートの特性値を	
材料係数	コングリート				低減	
	鉄筋 Υ _{m s}		1.0	1.0	_	
部材係数		$\gamma_{\rm b}$	_		曲げ耐力(断面終局に相	
				1.15	当する曲げモーメント)	
					を低減	

(2) せん断破壊に対する許容限界

1号機取水層北側壁については、PHb 工法を適用していることから「(a) PHb によりせん断補強された部材のせん断耐力式」を用いる。

(a) PHb によりせん断補強された部材のせん断耐力式

後施工せん断補強(ポストヘッドバー(PHb))を配置した構造部材のせん断 耐力については、「建設技術審査証明報告書 技術名称 後施工プレート定着型 せん断補強鉄筋「Post-Head-bar」,一般財団法人土木研究センター」(以下 「建設技術証明書」という。)に示されている以下の設計式により求める。

$$\begin{split} &V_{pyd} = V_{cd} + V_{sd} + V_{phb} \\ &V_{phb} = \beta_{aw} \cdot V_{awd} = \beta_{aw} \{A_{aw} \, f_{awyd}(\sin \alpha_{aw} + \cos \alpha_{aw}) / S_{aw} \} Z \, / \gamma_b \\ &\beta_{aw} = 1 \cdot I_y \, / \{2 \cdot (d \cdot d)\} \quad \text{fctt}, \quad \beta_{aw} \leq 0.9 \end{split}$$

ここで,

V _{cd}	: せん断補強鋼材を用いない RC 部材の単位長さ当たりのせん断耐力
V _{sd}	:既存のせん断補強鋼材により受け持たれる壁部材の単位幅当たり
	のせん断耐力
V_{phb}	: PHb により受け持たれる RC 部材の単位長さ当たりのせん断耐力
Vawd	: PHb を通常のスターラップと見なして求められる単位長さ当たりの
•	せん断耐力
• β _{aw}	: PHb のせん断耐力の向上への有効性を示す係数
• A _{aw}	:単位長さ当たりの区間S _{aw} における PHb の総断面積
• f _{awyd}	: PHb の設計降伏強度で 400N/ mm²以下とする 。
• α _{aw}	: PHb が部材軸となす角度
• S _{aw}	: PHb の配置間隔
• <i>z</i>	: 圧縮応力の合力の作用位置から引張鋼材図心までの距離で一般に
	d/1.15としてよい。
• γ _b	: 部材係数(一般に 1.10 としてよい)

- ・I_v : PHb の埋込側に必要な定着長
- ・d-d':補強対象部材の圧縮鉄筋と引張鉄筋の間隔(d-d'≧I_v)

PHb が負担するせん断耐力は、先端型定着体の定着長が 3.5D~5.5D であることから、通常のせん断鉄筋に比べ補強効率が低下する。PHb が負担するせん断耐力は 同定着長と補強対象部材の主鉄筋間隔から算出される有効率 β_{aw} を通常のせん断 補強鉄筋の負担分に乗じることにより考慮されている。図 4.4.2-1 に有効率算定 における概念図を示す。

図 4.4.2-1 ポストヘッドバー (PHb) の有効率算定の概念図

なお,設計上の保守的な配慮として,ポストヘッドバー(PHb)によるせん断補 強を配置する場合は,対象とする構造部材の主鉄筋の降伏以下の場合に適用する こととし,せん断破壊に対する照査値は 0.80 程度とする。 また,土木学会マニュアル 2005 におけるせん断耐力式による評価においては,表 4.4.2-3 に示すとおり,複数の安全係数が見込まれていることから,せん断破壊に 対して安全余裕を見込んだ評価を実施することが可能である。

小 ◇ K *		せん断照査		中安		
女主体级			応答値算定	限界值算定	P1谷	
		$\gamma_{m\ c}$	1.0	1.3	コンクリートの特性値を	
材料係数	コンクリート		1.0		低減	
	鉄筋	$\gamma_{m\ s}$	1.0	1.0	—	
部材係数*	コンクリート	$\gamma_{b\ c}$	_	1.3	せん断耐力(コンクリー	
					ト負担分)を低減	
	鉄筋 γ	$\gamma_{b\ s}$	_	1.1	せん断耐力(鉄筋負担	
					分)を低減	
構造解析係数			1.05		応答値(断面力)の割り	
		Υ _a	1.05		増し	

表 4.4.2-3 せん断耐力式による評価において考慮している安全係数

注記*:土木学会マニュアルでは、部材係数 $\gamma_b = \gamma_{b1} \cdot \gamma_{b2}$ とされている。

$$\gamma_{b 1} = \begin{cases}
1.3 & (コンクリート) \\
1.1 & (鉄筋)
\end{cases}$$

$$\gamma_{b\ 2} = \begin{cases} 1.0 & (R \le 0.01) \\ \frac{100 R + 2}{3} & (0.01 < R \le 0.025) \\ 1.5 & (R > 0.025) \end{cases}$$

ここで, R:層間変形角

 γ_{b2} は層間変形角の値によらず、部材が降伏していない状態であれば、 $\gamma_{b2} = 1.0$ としてよいとされている。

(3) 基礎地盤の支持機能に対する許容限界

基礎地盤に発生する接地圧に対する許容限界は、VI-2-1-3「地盤の支持性能に 係る基本方針」に基づき、岩盤の極限支持力度とする。

基礎地盤の支持性能に対する許容限界を表 4.4.2-4 に示す。

表 4.4.2-4 基礎地盤の支持性能に対する許容限界

評価項目	甘花林	許容限界	
	左硬 ^也 盗	(N/mm^2)	
極限支持力度	C _M 級又はC _H 級岩盤	9.8	

- 4.5 評価結果
 - 4.5.1 地震応答解析結果

地震応答解析結果として曲げ・軸力系の破壊に対する照査及びせん断破壊に対 する照査を行っている項目のうち最も厳しい照査値に対する「断面力分布」,曲 げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を示す ケースの地盤の「最大せん断ひずみ分布」,「過剰間隙水圧比分布」を記載す る。なお,断面力分布は単位奥行きあたりの断面力を図示する。

(1) 解析ケースと照査値

耐震評価においては、基準地震動Ss全波(6波)及びこれらに位相反転を考 慮した地震動(6波)を加えた全12波に対し、基本ケースを実施する。基本ケー スにおいて、曲げ・軸力系の破壊、せん断破壊及び地盤の支持力照査の照査項目 ごとに照査値が0.5を超える照査項目に対して、最も厳しい地震動を用いて解析 ケース②~⑤を実施する。すべての照査項目の照査値がいずれも0.5以下の場合 は、照査値が最も厳しくなる地震動を用いて、解析ケース②~⑤を実施する。

なお,解析ケース④及び⑤については追而とする。

解析ケース②~⑤を実施する地震動について、表 4.5.1-1に示す。

上記実施ケースの結果を踏まえ,照査値に十分な裕度を有することから,追加 解析を実施しない。

断面	解析ケース②~⑤を 実施する地震動	備考	
A-A断面	S s - D ()	せん断破壊から選定	

表 4.5.1-1 解析ケース②~⑤を実施する地震動

(2) 断面力分布(曲げ・軸力系の破壊に対する照査)

曲げ・軸力系の破壊に対する照査において,最も厳しい照査値となる解析ケースの照査時刻における断面力図(曲げモーメント,軸力,せん断力)を図4.5.1-1に示す。

(c)せん断力 (kN)

(d)断面力分布図図化範囲

図 4.5.1-1 曲げ・軸力系の破壊に対する照査値最大時の断面力図 (A-A断面,解析ケース①, S s-D (--)) (3) 断面力分布(せん断破壊に対する照査)

せん断破壊に対する照査において,最も厳しい照査値となる解析ケースの照査 時刻における断面力図(曲げモーメント,軸力,せん断力)を図4.5.1-2に示 す。

数値:評価位置における断面力

(a)曲げモーメント (kN・m)

数値:評価位置における断面力

(b)軸力(kN)(+:引張,-:圧縮)

数値:評価位置における断面力

(c)せん断力 (kN)

(d)断面力分布図図化範囲

図 4.5.1-2 せん断破壊に対する照査値最大時の断面力図

(A-A断面, 解析ケース③, Ss-D(--))

(4) 最大せん断ひずみ分布

曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を 示すケースについて,発生した最大せん断ひずみを確認する。

最大照査値を示す解析ケースの一覧を表 4.5.1-2 に,最大せん断ひずみ分布図 を図 4.5.1-3 に示す。

 対象断面
 対象ケース
 照査項目

 A-A断面
 解析ケース③
 せん断に対する照査

表 4.5.1-2 最大照査値を示すケースの一覧

(全体図)

(拡大図)
 図 4.5.1-3 最大せん断ひずみ分布図(A-A断面(北壁))
 (解析ケース③, Ss-D(--))

(5) 過剰間隙水圧比分布

曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査で最大照査値を 示す結果について、地盤に発生した過剰間隙水圧比分布を確認する。

最大照査値を示す解析ケースの一覧を表 4.5.1-3 に,過剰間隙水圧比分布図を 図 4.5.1-4 に示す。

 対象断面
 対象ケース
 照査項目

 A-A断面
 解析ケース③
 せん断に対する照査

表 4.5.1-3 最大照査値を示すケースの一覧

(全体図)

(拡大図) 図 4.5.1-4 最大過剰間隙水圧比分布図(A-A断面) (解析ケース③, Ss-D(--)) 4.5.2 曲げ・軸力系の破壊に対する評価結果

構造強度を有することの確認における曲げ・軸力系の破壊に対する評価結果を 表 4.5.2-1 に示す。

また, PHb 工法の適用範囲内の確認における曲げ・軸力系の破壊に対する評価結 果を表 4.5.2-2~表 4.5.2-4 に示す。

照査値は,応力度を許容限界で除した値として時々刻々求め,全時刻において 最大となる照査値を記載する。

表 4.5.2-1の全ケースにおいて、コンクリートの照査用層間変形角が限界層間 変形角(1/100)を下回ることを確認した。また、表 4.5.2-2の全ケースにおい て、照査用モーメントが降伏モーメントを下回っていることを確認した。

解析 ケース	地震動		照査用 限界 層間変形角 層間変形角 R _d * R _u		照査値 R _d /R _u		
	0 5	++	8.46×10 ⁻⁵	1.0×10^{-2}	0.01		
		-+	8.89×10 ⁻⁵	1.0×10^{-2}	0.01		
	5 s - D	+	8.55 $\times 10^{-5}$	1.0×10^{-2}	0.01		
			9. 40×10^{-5}	1.0×10^{-2}	0.01		
	S s - F 1	++	5.38 $\times 10^{-5}$	1.0×10^{-2}	0.01		
\square	S s - F 2	++	6.59×10 ⁻⁵	1.0×10^{-2}	0.01		
(I)	S s - N 1	++	6.75 $\times 10^{-5}$	1.0×10^{-2}	0.01		
		-+	7.19×10 ⁻⁵	$1.0 imes 10^{-2}$	0.01		
	S s - N 2	++	6. 18×10^{-5}	1.0×10^{-2}	0.01		
	(NS)	-+	6.71×10 ⁻⁵	1.0×10^{-2}	0.01		
	S s - N 2	++	6.06×10 ⁻⁵	1.0×10^{-2}	0.01		
	(EW)	-+	5.64 $\times 10^{-5}$	1.0×10^{-2}	0.01		
2	Ss-D		9. 29×10^{-5}	1.0×10^{-2}	0.01		
3	Ss-D		9. 37×10^{-5}	1.0×10^{-2}	0.01		
4	Ss-D		追而				
5	Ss-D		追而				

表 4.5.2-1 曲げ・軸力系の破壊に対する評価結果(構造強度を有することの確認)

注記*:照查用層間変形角 R_d =最大層間変形角 $R \times$ 構造解析係数 γ_a (=1.2)

				照査用		
解析 ケース	解析 地震動 ケース		モーメント	軸力	モーメント	照査値
			M_{d} * (kN •	(kN/m)	M_y (kN \cdot	$M_{ m d}/M_{ m y}$
			m)		m)	
		++	-220	-161	-699	0.32
	S a - D	-+	-217	-244	-727	0.30
	5 S - D	+ -	-205	-87	-674	0.31
			-249	-217	-718	0.35
	S s - F 1	++	-213	-246	-727	0.30
$\begin{array}{c c} S & s - 1 \\ \hline S & s - 1 \\ \hline S & s - 1 \\ \hline \end{array}$	S s - F 2	++	-174	22	-635	0.28
	S s - N 1	++	-176	-133	-689	0.26
		-+	-153	-112	-682	0.23
	S s - N 2	++	-200	-215	-717	0.28
	(NS)	-+	-199	-229	-722	0.28
	S s - N 2	++	-192	-57	-664	0.29
	(EW)		-188	-228	-721	0.27
2	Ss-D		-211	50	-623	0.34
3	Ss-D		-206	72	-614	0.34
4	Ss-D		追而			
5	Ss-D		追而			

表 4.5.2-2 曲げ・軸力系の破壊に対する評価結果(PHb 工法の適用範囲内の確認)

注記*:照査用モーメント=発生モーメントM×構造解析係数γ_a(=1.0)

4.5.3 せん断破壊に対する評価結果

構造強度を有することの確認におけるせん断破壊に対する評価結果を表 4.5.3-1 に示す。照査値は、せん断力を許容限界で除した値として時々刻々求め、全時刻 において最大となる照査値を記載する。

同表より,全ケースにおいて,照査用せん断力がせん断耐力を下回ることを確認した。また,その際の照査値がおおむね0.8 に収まっていることから,PHb 工法の適用範囲内であることを確認した。

解析ケース	地震動		照査用 せん断力 V _d *(kN)	せん断 耐力 V _{vd} (kN)	照査値 V _d /V _{yd}
		++	483	730	0.67
		-+	495	730	0.68
	S s - D	+	475	757	0.63
			507	730	0.70
	S s - F 1	++	-443	994	0.45
	S s - F 2	++	418	730	0.58
(l)	S s - N 1	++	396	795	0.50
		-+	-385	974	0.40
	S s - N 2	++	353	730	0.49
	(NS)	-+	370	730	0.51
	S s - N 2	++	450	730	0.62
	(EW)	-+	329	730	0.46
2	Ss-D		507	730	0.70
3	Ss-D		514	730	0.71
4	S s - D			追而	
5	Ss-D			追而	

表 4.5.3-1 せん断破壊に対する評価結果

注記*:照査用せん断力 V_d =発生せん断力 $V \times$ 構造解析係数 γ_a (=1.05)

4.5.4 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する評価結果を表 4.5.4-1 に示す。また,最大接地圧 分布図を図 4.5.4-1 に示す。

同表より,基礎地盤に発生する最大接地圧が,極限支持力度を下回ることを確認した。

解析 最大接地圧 極限支持力度 照查値 地震動 R_{11} (N/mm²) R_{d} (N/mm²) ケース R_{d}/R_{u} + +1.51 9.8 0.16 -+1.62 9.8 0.17 S s - D+-1.779.8 0.19 _ _ 9.8 0.16 1.49 S s - F 1 + +1.10 9.8 0.12 ++S s - F 21.15 9.8 0.12 (1)++1.05 9.8 0.11 S s - N 1-+1.45 9.8 0.15 S s - N 2++1.12 9.8 0.12 -+(NS)1.24 9.8 0.13 S s - N 2+ +1.28 9.8 0.14 (EW)-+1.07 9.8 0.11 (2)S s - D_ _ 1.53 9.8 0.16 3 S s - D1.40 9.8 0.15 _ _ 追而 4 S s - D_ _ 追而 (5)S s - D_ _

表 4.5.4-1 基礎地盤の支持性能に対する照査結果(A-A断面)