| 島根原子力発電所第2号機 審査資料 |                   |  |  |  |  |
|-------------------|-------------------|--|--|--|--|
| 資料番号              | NS2-添 2-018-04改01 |  |  |  |  |
| 提出年月日             | 2023年1月17日        |  |  |  |  |

VI-2-別添3-4-1 逃がし安全弁用窒素ガスボンベラックの耐震性についての計算書

2023年1月中国電力株式会社

# 目 次

| 1. 棋 | 既要                                                    | 1               |
|------|-------------------------------------------------------|-----------------|
| 2. – | -般事項                                                  | 1               |
| 2. 1 | 構造計画                                                  | 1               |
| 2. 2 | 評価方針                                                  | 5               |
| 2. 3 | 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・           | 6               |
| 2.4  | 記号の説明                                                 | 7               |
| 2.5  | 計算精度と数値の丸め方                                           | 9               |
| 3. 膏 | 平価部位                                                  | 10              |
| 4. 均 | 也震応答解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 10              |
| 4. 1 | 地震応答解析及び構造強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 10              |
| 4. 2 | 荷重の組合せ及び許容応力                                          | 11              |
| 4. 3 | 解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 14              |
| 4. 4 | 固有周期 ·····                                            | 30              |
| 4. 5 | 設計用地震力                                                | 32              |
| 4.6  | 計算方法 ·····                                            | 33              |
| 4.7  | 計算条件                                                  | 36              |
| 4.8  | 応力の評価                                                 | 36              |
| 5. 涯 | 皮及的影響評価 ·····                                         | 37              |
| 5. 1 | 波及的影響評価方法 · · · · · · · · · · · · · · · · · · ·       | 37              |
| 6. 書 | 平価結果                                                  | 37              |
| 6. 1 | 重大事故等対処設備としての評価結果                                     | <mark>37</mark> |

#### 1. 概要

本計算書は、VI-2-別添3-1「可搬型重大事故等対処設備の耐震計算の方針」(以下「別添3-1」という。)の「2.2(2) ボンベ設備」にて設定している構造強度評価の方針に基づき、逃がし安全弁用窒素ガスボンベラック(以下「ボンベラック」という。)が設計用地震力に対して十分な構造強度を有するとともに、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを説明するものである。

ボンベラックは、重大事故等対処設備においては重大事故防止設備のうち可搬型のものに分類される。以下、可搬型重大事故等対処設備としての構造強度評価及び波及的影響評価を示す。

## 2. 一般事項

#### 2.1 構造計画

ボンベラックの構造計画を表2-1から表2-3に示す。

表2-1 構造計画

| 計画の                                     | 概要                                                                                    | 和"吹 推 火 (vi)                                                                                                                                                            |  |
|-----------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 基礎・<br>支持構造                             | 主体構造                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                   |  |
| ボンベラックは、壁面に基礎ボルトにて設定したアンカプレートに溶接にて固定する。 | ボンベラックは, 溶接<br>にて組み立てたフレー<br>ムにボンベ (7本) を<br>固定板及びボンベ押さ<br>えボルトによって<br>固定<br>する構造である。 | アンカブレート       アンカブレート         溶接部       溶接部         ボンベ押さえボルト       ながれた         アンカブレート       アンカブレート         アンカブレート       アンカブレート         ボンベラック (その1)       (単位:mn) |  |

表2-2 構造計画

| 計画の                                     | 概要                                                                  | 和LLL版 / 集 / 生 107                                                                                   |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 基礎・<br>支持構造                             | 主体構造                                                                | · · · · · · · · · · · · · · · · · · ·                                                               |  |  |  |  |  |
| ボンベラックは、壁面に基礎ボルトにで設定したアンカプレートに溶接にて固定する。 | ボンベラックは,溶接にて組み立てたフレームにボンベ (6本)を<br>固定板及びボンベ押さえボルトによって<br>固定する構造である。 | アンカブレート アンカブレート アンカブレート 溶接部 基礎ボルト ぶとべ 脚さえ ボルト フレーム 溶接部 アンカブレート アンカブレート アンカブレート ボンベラック (その2) (単位:mm) |  |  |  |  |  |

 $\omega$ 

表2-3 構造計画

| 計画の                                     | 概要                                                                | 概略構造図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <mark>基礎・</mark> 支持構造                   | 主体構造                                                              | KIND OF THE CONTROL |
| ボンベラックは、壁面に基礎ボルトにて設定したアンカプレートに溶接にて固定する。 | ボンベラックは,溶接にて組み立てたフレームにボンベ (2本)を<br>固定板及びボンベ押さえボルトによって<br>する構造である。 | 上部押さえ 基礎ボルト アンカプレート 溶接部 ボンベータンカプレート 溶接部 ボンベラック (その3) (単位:mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

4

#### 2.2 評価方針

ボンベラックの応力評価は、別添3-1の「2.2 評価方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示すボンベラックの部位を踏まえ「3.評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」及び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。また、ボンベラックの波及的影響評価は、別添3-1の「2.2(2) ボンベ設備」にて設定した波及的影響評価の方針に基づき、基準地震動Ssによる地震力に対し、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを、「5. 波及的影響評価」に示す方法にて確認することで実施する。確認結果を「6. 評価結果」に示す。

ボンベラックの耐震評価フローを図2-1に示す。

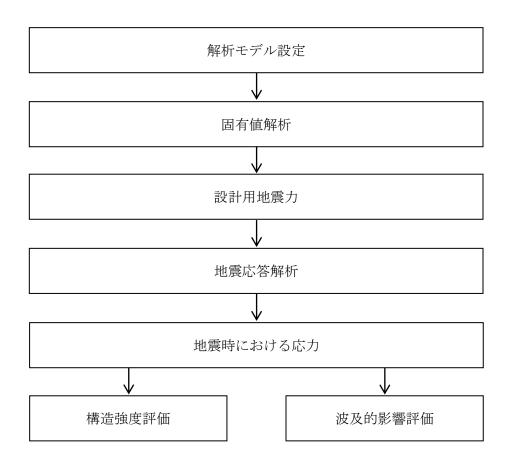



図 2-1 ボンベラックの耐震評価フロー

## 2.3 適用規格・基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984 ((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG 4 6 0 1 −1991 追補版 ((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,2005/2007) (以下「設計・建設規格」という。)

# 2.4 記号の説明

| 2.4 | 記号の説明                              | 記号の説明                                      | 単位                          |  |  |  |  |
|-----|------------------------------------|--------------------------------------------|-----------------------------|--|--|--|--|
|     | Aw                                 | 溶接部の有効断面積(1箇所当たり)                          | $\mathrm{mm}^2$             |  |  |  |  |
|     | Сн                                 | 水平方向設計震度                                   |                             |  |  |  |  |
|     | Cv                                 | 鉛直方向設計震度                                   |                             |  |  |  |  |
|     | E 1                                | 縦弾性係数(ボンベ)                                 | MPa                         |  |  |  |  |
|     | E 2                                | <b>縦弾性係数(フレーム</b> )                        | MPa                         |  |  |  |  |
|     | F                                  | 設計・建設規格 SSB-3121.1(1)に定める値                 | MPa                         |  |  |  |  |
|     | F*                                 | 設計・建設規格 SSB-3121.3又はSSB-3133に定める値          | MPa                         |  |  |  |  |
|     | F w                                | 取付面に対し前後方向に作用する最大せん断力                      | N                           |  |  |  |  |
|     | $F_{w_1}$                          | 取付面に対し平行方向に作用するせん断力                        | N                           |  |  |  |  |
|     | $F \le 2$                          | 取付面に対し前後方向に作用するせん断力( <mark>左右</mark> 方向転倒) | N                           |  |  |  |  |
|     | F w 3                              | 取付面に対し前後方向に作用するせん断力( <mark>前後</mark> 方向転倒) | N                           |  |  |  |  |
|     | $f$ s $rac{m}{}$                  | 溶接部の許容せん断応力                                | MPa                         |  |  |  |  |
|     | $f$ t $rac{	extsf{m}}{	extsf{m}}$ | ボンベラックの許容引張応力                              | MPa                         |  |  |  |  |
|     | g                                  | 重力加速度(=9.80665)                            | $m/s^2$                     |  |  |  |  |
|     | h                                  | 取付面から重心までの距離                               | mm                          |  |  |  |  |
|     | $L_{w}$                            | 溶接長(1箇所当たり)                                | mm                          |  |  |  |  |
|     | $\ell_1$                           | 重心と下側溶接部間の距離                               | mm                          |  |  |  |  |
|     | $\ell_2$                           | 上側溶接部と下側溶接部中心間の距離                          | mm                          |  |  |  |  |
|     | $\ell$ з                           | 左側溶接部と右側溶接部中心間の距離                          | mm                          |  |  |  |  |
|     | I у                                | 断面二次モーメント( y 軸)                            | mm <sup>4</sup>             |  |  |  |  |
|     | Ιz                                 | <mark>断面二次モーメント(z軸)</mark>                 | <mark>mm<sup>4</sup></mark> |  |  |  |  |
|     | m                                  | ボンベ <mark>ラック</mark> の質量                   | kg                          |  |  |  |  |
|     | n                                  | 溶接箇所数                                      | _                           |  |  |  |  |
|     | n vw1                              | 鉛直方向地震により取付面に対し前後方向のせん断力を受けると              | _                           |  |  |  |  |
|     |                                    | して期待する溶接箇所数                                |                             |  |  |  |  |
|     | n HW1                              | 水平方向地震により取付面に対し前後方向のせん断力を受けると              | _                           |  |  |  |  |
|     |                                    | して期待する溶接箇所数                                |                             |  |  |  |  |
|     | S                                  | 溶接部の脚長                                     | mm                          |  |  |  |  |
|     | S                                  | 設計・建設規格 付録材料図表 Part5 表5に定める値               | MPa                         |  |  |  |  |
|     | S u                                | 設計・建設規格 付録材料図表 Part5 表9に定める値               | MPa                         |  |  |  |  |
|     | Ѕу                                 | 設計・建設規格 付録材料図表 Part5 表8に定める値               | MPa                         |  |  |  |  |
| S   | y (R T)                            | 設計・建設規格 付録材料図表 Part5 表8に定める材料の             | MPa                         |  |  |  |  |
|     |                                    | 40℃における値                                   |                             |  |  |  |  |
|     | Τ                                  | 温度条件                                       | ${}^{\sim}$                 |  |  |  |  |
|     | ν                                  | ポアソン比                                      | _                           |  |  |  |  |

| 記号    | 記号の説明                | 単位  |
|-------|----------------------|-----|
| σ     | はり要素の組合せ応力           | MPa |
| σа    | はり要素の軸応力             | MPa |
| σь    | はり要素の曲げ応力            | MPa |
| σх    | シェル要素のX方向応力          | MPa |
| σу    | シェル要素のY方向応力          | MPa |
| О в   | シェル要素の組合せ応力          | MPa |
| τ     | はり要素のせん断応力           | MPa |
| τ w   | 溶接部に生じる最大せん断応力       | MPa |
| τ w з | 取付面に対し平行方向に作用するせん断応力 | MPa |
| τ w 4 | 取付面に対し前後方向に作用するせん断応力 | MPa |
| τху   | シェル要素のせん断応力          | MPa |

#### 2.5 計算精度と数値の丸め方

精度は、有効数字6桁以上を確保する。

表示する数値の丸め方は、表2-4に示すとおりである。

表 2-4 表示する数値の丸め方

| 次 4 g 次小りの外間のプロック |                                       |                         |            |      |            |  |
|-------------------|---------------------------------------|-------------------------|------------|------|------------|--|
| 数値の種類             |                                       | 単位                      | 処理桁        | 処理方法 | 表示桁        |  |
| 固有                | 有周期                                   | S                       | 小数点以下第4位   | 四捨五入 | 小数点以下第3位   |  |
| 震馬                | 度                                     | _                       | 小数点以下第3位   | 切上げ  | 小数点以下第2位   |  |
| 温月                | · · · · · · · · · · · · · · · · · · · | $^{\circ}\! \mathbb{C}$ | _          | _    | 整数位        |  |
| 質量                | <u></u>                               | kg                      | _          | _    | 整数位*1      |  |
| 長                 | 下記以外の長さ                               | mm                      | _          | _    | 整数位*1      |  |
| さ                 | 部材断面寸法                                | mm                      | 小数点以下第2位*2 | 四捨五入 | 小数点以下第1位*3 |  |
| 面和                | 責                                     | $\mathrm{mm}^2$         | 有効数字 5 桁目  | 四捨五入 | 有効数字4桁*4   |  |
| モー                | -メント N·mm 有効数                         |                         | 有効数字 5 桁目  | 四捨五入 | 有効数字4桁*4   |  |
| 力                 | N N                                   |                         | 有効数字 5 桁目  | 四捨五入 | 有効数字 4 桁*4 |  |
| 縦弾性係数             |                                       | MPa                     | 有効数字4桁目    | 四捨五入 | 有効数字3桁     |  |
| 算出応力              |                                       | MPa                     | 小数点以下第1位   | 切上げ  | 整数位        |  |
| 許須                | 許容応力*5 M                              |                         | 小数点以下第1位   | 切捨て  | 整数位        |  |

注記\*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

\*2: 設計上定める値が小数点以下第3位の場合は、小数点以下第3位表示とする。

\*3: 設計上定める値が小数点以下第2位の場合は、小数点以下第2位表示とする。

\*4:絶対値が1000以上のときは、べき数表示とする。

\*5:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏 点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値と する。

#### 3. 評価部位

ボンベラックの耐震評価は、「4.1 地震応答解析及び構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなるボンベラック最弱部及びアンカプレートへの溶接部について実施する。ボンベラックの耐震評価部位については、表2-1から表2-3の概略構造図に示す。

#### 4. 地震応答解析及び構造強度評価

- 4.1 地震応答解析及び構造強度評価方法
  - (1) 地震力は、ボンベラックに対して水平方向及び鉛直方向から作用させる。 また、水平方向及び鉛直方向の動的地震力による荷重の組合せには、SRSS法を適用 する。
  - (2) ボンベラックは溶接により壁面に固定していることから、拘束条件は溶接部を完全拘束とする。
  - (3) ボンベ本体は、基準地震動 S s による地震力に対して転倒しないことを目的としたボンベラックに、上部押さえ、固定板及びボンベ押さえボルトにて固定され収納されている。ここで、ボンベ本体は高圧ガス適用品であり、一般的な圧力容器に比べ、高い耐圧強度を有することから、はるかに剛性が高いものであるが、解析上、断面性状を考慮したはり要素としてモデル化する。
  - (4) 各ボンベから配管への接続管は、接続を容易にするため可とう性をもつ形状としている こと、地震時にはボンベと配管の相対変位は微小であることから、地震時の変位を十分吸 収できるものとする。
  - (5) ボンベラックを構成する鋼材をシェル要素及びはり要素としてモデル化した3次元FEM モデルによる固有値解析を実施する。
  - (6) 耐震計算に用いる寸法は、公称値を使用する。

## 4.2 荷重の組合せ及び許容応力

## 4.2.1 荷重の組合せ及び許容応力状態

ボンベラックの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4-1に示す。

# 4.2.2 許容応力

ボンベラックの許容応力は、別添3-1の「3.2 許容限界」に基づき表4-2に示す。

#### 4.2.3 使用材料の許容応力評価条件

ボンベラックの使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4-3に示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

| Not a light of the |         |                           |                      |             |                         |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|----------------------|-------------|-------------------------|---------------------------------------|
| 施設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 区分      | 機器名称                      | 設備分類 <mark>*¹</mark> | 機器等の区分      | 荷重の組合せ                  | 許容応力状態                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                           |                      |             | $D + P_D + M_D + S_s$ * | IV A S                                |
| 計測制御系統施設                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 制御用空気設備 | 逃がし安全弁用<br>窒素ガス<br>ボンベラック | 可搬/防止                | <u>*</u> *2 | D+Psad+Msad+Ss          | VAS<br>(VASとして<br>IVASの許容限界<br>を用いる。) |

注記\*1:「可搬/防止」は重大事故防止設備のうち可搬型のものを示す。

\*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

\*3: 「 $D+P_{SAD}+M_{SAD}+S_{S}$ 」の評価に包絡されるため、評価結果の記載を省略する。

表4-2 許容応力 (重大事故等その他の支持構造物)

| 双生 4 目在/               | 心// (里八爭以守しり)他() 久州悟垣10// |               |
|------------------------|---------------------------|---------------|
|                        | 許容限界*1, *2                | 許容限界*1, *2    |
|                        | (ボルト等以外(ボンベラック))          | (ボルト等以外(溶接部)) |
| 許容応力状態                 | 一次応力                      | 一次応力          |
|                        | 組合せ                       | せん断           |
| IV A S                 | 1.5.0.*                   | 1.5.6.*       |
| $V_A S$                | 1.5 • f t*                | 1.5 • f s *   |
| (VASとしてIVASの許容限界を用いる。) |                           |               |

注記\*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

\*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を 省略する。

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

| 3.1 V 区/内约11 V 田市中央94日 IIIX II (宝人主要可以定数III) |                         |               |    |            |             |              |                              |
|----------------------------------------------|-------------------------|---------------|----|------------|-------------|--------------|------------------------------|
| 評価部材                                         | 材料                      | 温度条件<br>(℃)   |    | S<br>(MPa) | Sy<br>(MPa) | S u<br>(MPa) | S <sub>y</sub> (RT)<br>(MPa) |
| ボンベラック                                       | SS400<br>(厚さ≦16mm)      | 周囲環境温度        | 40 | _          | 245         | 400          | _                            |
|                                              | STKR400                 | 周囲環境温度        | 40 | _          | 245         | 400          | _                            |
| 溶接部                                          | SS400<br>(厚さ≦16mm)      | 国 国 <b>海 </b> | 40 |            | 245         | 400          |                              |
|                                              | SS400<br>(16mm<厚さ≦40mm) | 周囲環境温度        |    |            | 235         | 400          | _                            |

#### 4.3 解析モデル及び諸元

ボンベラックの解析モデルを図4-1から図4-3に、解析モデルの概要を以下に示す。また、機器の諸元を表4-4から表4-6及び本計算書の【ボンベラックの耐震性についての計算結果】の機器要目に示す。

- (1) ボンベラックを構成する鋼材をシェル要素及びはり要素でモデル化したFEMモデルを 用いる。
- (2) ボンベラックは溶接により壁面に固定していることから、拘束条件は溶接部を完全拘束とする。
- (3) 固定板とボンベはX, Y方向を結合し、上部押さえとボンベはZ方向を結合している。 また、ボンベ下面とフレームは結合していない。
- (4) ボンベ,フレーム及び固定板の質量は、各々の質量をモデル体積で除した密度をモデル 全体に分布させることにより与えるものとする。
- (5) 解析コードは、「ABAQUS」を使用し、固有値、ボンベラックの応力を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、VI-5「計算機プログラム(解析コード)の概要」に示す。

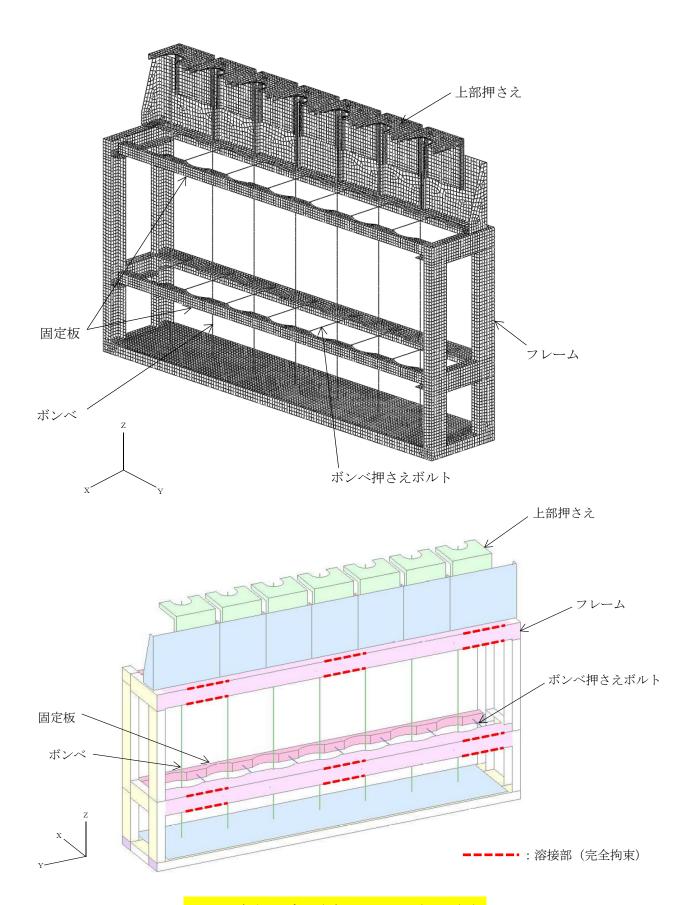



図4-1 解析モデル(ボンベラック(その1))

表4-4 解析モデルの諸元(ボンベラック(その1)) (1/5)

| 項目                     | <mark>記号</mark> | <mark>単位</mark>  | 入力值<br>入力值           |
|------------------------|-----------------|------------------|----------------------|
| 材質(ボンベ)                |                 |                  | <mark>マンガン鋼</mark>   |
| 材質(フレーム)               |                 |                  | SS400                |
| 材質(固定板)                |                 |                  | SS400/STKR400        |
| 温度条件(周囲環境温度)           | T               | $^{f C}$         | <mark>40</mark>      |
| 縦弾性係数(ボンベ)             | E 1             | <mark>MPa</mark> | $2.01 \times 10^{5}$ |
| 縦弾性係数(フレーム)            | E <sub>2</sub>  | <mark>MPa</mark> | $2.02 \times 10^{5}$ |
| ポアソン比                  | v               |                  | <mark>0. 3</mark>    |
| <mark>ボンベラックの質量</mark> | <mark>m</mark>  | <mark>kg</mark>  | <mark>892</mark>     |
| ボンベ数                   | _               | <mark>本</mark>   | <mark>7</mark>       |
| <mark>寸法</mark>        |                 |                  | 表2-1                 |
| 要素数                    |                 | <mark>個</mark>   | <mark>28972</mark>   |
| 節点数                    |                 | <mark>個</mark>   | <mark>30437</mark>   |

表4-4 解析モデルの諸元(ボンベラック(その1)) (2/5)

|      |                 |                                                              | <u> </u>               |                                            |                             |                     |                                             |                              | <u></u>                    |
|------|-----------------|--------------------------------------------------------------|------------------------|--------------------------------------------|-----------------------------|---------------------|---------------------------------------------|------------------------------|----------------------------|
| 部材   | <mark>番号</mark> | 要素番号                                                         | 材質                     | 諸元                                         | <mark>縦弾性係数</mark><br>(MPa) | 断面積<br>(mm²)        | 斯由一次 <sup>3</sup><br>I z (mm <sup>4</sup> ) | Eーメント I y (mm <sup>4</sup> ) | <mark>密度</mark><br>(t/mm³) |
| ボンベ  | 1               | 28355~28970                                                  | <mark>マンガ</mark><br>ン鋼 | ボンベ<br><mark>φ 232×5. 0</mark>             | $2.01 \times 10^{5}$        | $3.566 \times 10^3$ | $2.298 \times 10^{7}$                       | $2.298 \times 10^7$          | $1.429 \times 10^{-8}$     |
|      | 2               | $1\sim582$ , $601\sim2679$ , $2698\sim4360$                  | SS400                  | <mark>溝形鋼</mark><br>100×50×5×7.5           | $2.02 \times 10^{5}$        | _                   |                                             | _                            | 9. 207×10 <sup>-9</sup>    |
|      | 3               | 4361~9024                                                    | <mark>SS400</mark>     | <mark>溝形鋼</mark><br>100×50×5×7.5           | $2.02 \times 10^{5}$        | _                   |                                             | _                            | $9.207 \times 10^{-9}$     |
|      | 4               | <mark>9025~13420</mark>                                      | <mark>SS400</mark>     | <mark>溝形鋼</mark><br>230×30×9               | $2.02 \times 10^{5}$        | _                   |                                             | _                            | $9.207 \times 10^{-9}$     |
| フレーム | <mark>5</mark>  | 13421~16294                                                  | <mark>SS400</mark>     | <mark>山形鋼</mark><br>310×55×9               | $2.02 \times 10^{5}$        | _                   |                                             | _                            | $9.207 \times 10^{-9}$     |
|      | <mark>6</mark>  | 16295~16750                                                  | <mark>SS400</mark>     | <mark>平鋼</mark><br>30×6                    | $2.02 \times 10^{5}$        | _                   |                                             | _                            | $9.207 \times 10^{-9}$     |
|      | <mark>7</mark>  | 16751~20408                                                  | <mark>SS400</mark>     | <mark>山形鋼</mark><br>125×90×10              | $2.02 \times 10^{5}$        | _                   |                                             | _                            | $9.207 \times 10^{-9}$     |
|      | 8               | 24517~27792                                                  | <mark>SS400</mark>     | <mark>板</mark><br><mark>6t-380×1920</mark> | $2.02 \times 10^{5}$        |                     |                                             |                              | $9.207 \times 10^{-9}$     |
|      | 9               | $583 \sim 600$ ,<br>$2680 \sim 2697$ ,<br>$27793 \sim 27874$ | <mark>SS400</mark>     | <mark>板</mark><br>6t-45×88                 | $2.02 \times 10^{5}$        | _                   | _                                           | =                            | $9.207 \times 10^{-9}$     |

表4-4 解析モデルの諸元(ボンベラック(その1)) (3/5)

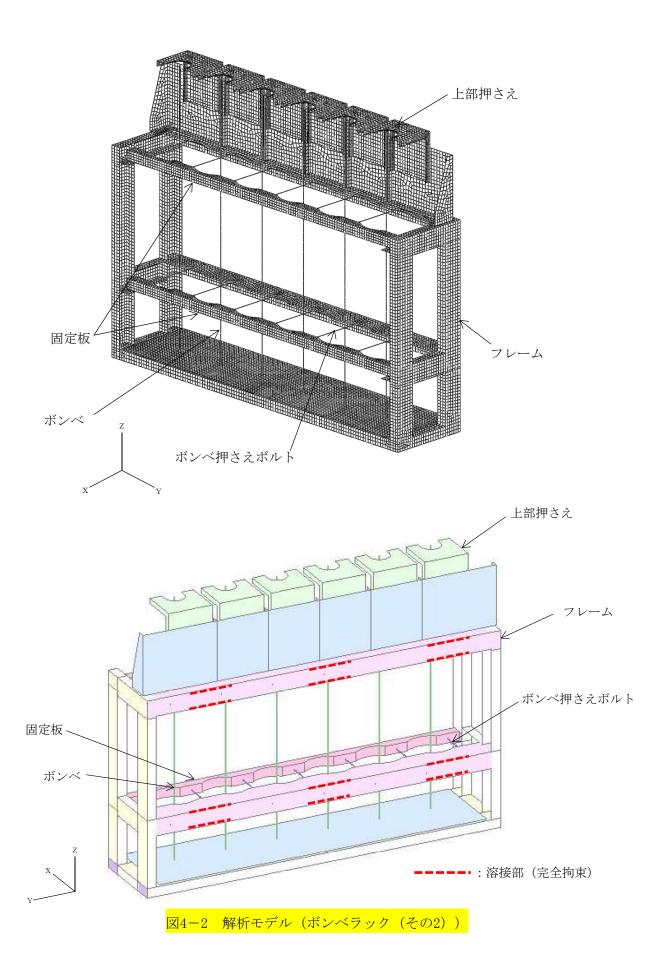

| <mark>部材</mark> | <mark>番号</mark> | 要素番号                      | 材質                 | 諸元               | 縦弾性係数                                        | 断面積                 |                                           | モーメント                   | 密度                   |
|-----------------|-----------------|---------------------------|--------------------|------------------|----------------------------------------------|---------------------|-------------------------------------------|-------------------------|----------------------|
| 山村              | 番万              | 安糸留万                      | <mark>的貝</mark>    | <mark>珀兀</mark>  | (MPa)                                        | (mm <sup>2</sup> )  | I z (mm <sup>4</sup> )                    | I y (mm <sup>4</sup> )  | (t/mm <sup>3</sup> ) |
|                 |                 | <mark>27939,</mark>       |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 27942~27965,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | <mark>27968~27991,</mark> |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 27994~28017,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28020~28043 <b>,</b>      |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28046~28069,              |                    | <mark>M16</mark> | $2.\ 02 \times 10^{5}$ 2.\ 011 \times 10^{2} |                     |                                           |                         |                      |
|                 |                 | 28072~28095,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28098~28121,              |                    |                  |                                              |                     |                                           |                         |                      |
| フレーム            | 10              | 28124~28147,              | <mark>SS400</mark> |                  |                                              | $2.011 \times 10^2$ | 3. $217 \times 10^3$ 3. $217 \times 10^3$ | 9. $207 \times 10^{-9}$ |                      |
|                 |                 | $28150 \sim 28173$ ,      |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28176~28199,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28202~28225,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28228~28251,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28254~28277,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28280~28303,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | 28306~28329,              |                    |                  |                                              |                     |                                           |                         |                      |
|                 |                 | $28332 \sim 28354$        |                    |                  |                                              |                     |                                           |                         |                      |

表4-4 解析モデルの諸元(ボンベラック(その1)) (4/5)

|                 |    |                                                                                                                                                                                                                                                                             |       |                           | . , , , , , ,               | 12 17 7 (17 0             | /                                           |                               |                            |
|-----------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|-----------------------------|---------------------------|---------------------------------------------|-------------------------------|----------------------------|
| <mark>部材</mark> | 番号 | <mark>要素番号</mark>                                                                                                                                                                                                                                                           | 材質    | <br>  <mark>諸元</mark><br> | <mark>縦弾性係数</mark><br>(MPa) | <mark>断面積</mark><br>(mm²) | 断面二次 <sup>2</sup><br>I z (mm <sup>4</sup> ) | モーメント<br>Iy(mm <sup>4</sup> ) | <mark>密度</mark><br>(t/mm³) |
| フレーム            | 11 | 27940, 27941,<br>27966, 27967,<br>27992, 27993,<br>28018, 28019,<br>28044, 28045,<br>28070, 28071,<br>28096, 28097,<br>28122, 28123,<br>28148, 28149,<br>28174, 28175,<br>28200, 28201,<br>28226, 28227,<br>28252, 28253,<br>28278, 28279,<br>28304, 28305,<br>28330, 28331 | SS400 | M16                       | 2. 02×10 <sup>5</sup>       | 2. $011 \times 10^2$      | $3.217 \times 10^{3}$                       | 3. 217×10 <sup>3</sup>        | 9. 207×10 <sup>-9</sup>    |

# 表4-4 解析モデルの諸元(ボンベラック(その1))(5/5)

| 部材  | 番号              | 要素番号                     | 材質<br>             | <mark>諸元</mark>                 | <mark>縦弾性係数</mark>   | <mark>断面積</mark>   | 断面二次 <sup>3</sup>      | モーメント                  | 密度                     |
|-----|-----------------|--------------------------|--------------------|---------------------------------|----------------------|--------------------|------------------------|------------------------|------------------------|
| 部村  | <u>番万</u>       | <del>安系金万</del>          |                    |                                 | (MPa)                | (mm <sup>2</sup> ) | I z (mm <sup>4</sup> ) | I y (mm <sup>4</sup> ) | (t/mm <sup>3</sup> )   |
|     | <mark>12</mark> | <mark>20409~20620</mark> | <mark>SS400</mark> | <mark>板</mark><br>6t-100×100    | $2.02 \times 10^{5}$ |                    |                        |                        | $9.207 \times 10^{-9}$ |
| 固定板 | <mark>13</mark> | 20621~24516              | STKR400            | <mark>角形鋼管</mark><br>50×50×3. 2 | $2.02 \times 10^{5}$ |                    |                        |                        | $9.207 \times 10^{-9}$ |
|     | 14              | <mark>27875~27938</mark> | <mark>SS400</mark> | <mark>板</mark><br>4. 5t-43×43   | $2.02 \times 10^{5}$ |                    |                        |                        | $9.207 \times 10^{-9}$ |



21

表4-5 解析モデルの諸元 (ボンベラック (その2)) (1/4)

| <u> </u>           |                 | ( ( ( ) 2) )     |                      |
|--------------------|-----------------|------------------|----------------------|
| <mark>項目</mark>    | <mark>記号</mark> | <mark>単位</mark>  | 入力值                  |
| 材質(ボンベ)            |                 |                  | <mark>マンガン鋼</mark>   |
| 材質(フレーム)           |                 |                  | SS400                |
| 材質(固定板)            |                 |                  | SS400/STKR400        |
| 温度条件(周囲環境温度)       | T               | $^{\mathbf{C}}$  | <mark>40</mark>      |
| 縦弾性係数(ボンベ)         | E 1             | <mark>MPa</mark> | $2.01 \times 10^{5}$ |
| 縦弾性係数(フレーム)        | E <sub>2</sub>  | <mark>MPa</mark> | $2.02 \times 10^{5}$ |
| <mark>ポアソン比</mark> | v               |                  | <mark>0. 3</mark>    |
| ボンベラックの質量          | <mark>m</mark>  | <mark>kg</mark>  | <mark>779</mark>     |
| ボンベ数               |                 | <mark>本</mark>   | <mark>6</mark>       |
| 寸法                 |                 |                  | <mark>表2-2</mark>    |
| 要素数                |                 | <mark>個</mark>   | <mark>25772</mark>   |
| 節点数                | _               | 個                | <mark>27080</mark>   |

表4-5 解析モデルの諸元(ボンベラック(その2)) (2/4)

|      |                | I                                                | 1                      |                                            |                             |                     |                                                        |                            |                            |
|------|----------------|--------------------------------------------------|------------------------|--------------------------------------------|-----------------------------|---------------------|--------------------------------------------------------|----------------------------|----------------------------|
| 部材   | 番号             | 要素番号                                             | 材質                     | a<br>諸元                                    | <mark>縦弾性係数</mark><br>(MPa) | 断面積<br>(mm²)        | 断面二次 <sup>2</sup><br>I <sub>z</sub> (mm <sup>4</sup> ) | Eーメント Iy(mm <sup>4</sup> ) | <mark>密度</mark><br>(t/mm³) |
| ボンベ  | 1              | 25243~25770                                      | <mark>マンガ</mark><br>ン鋼 | ボンベ<br>$\phi$ 232×5.0                      | $2.01 \times 10^{5}$        | $3.566 \times 10^3$ | $2.298 \times 10^{7}$                                  | $2.298 \times 10^{7}$      | 1. 429×10 <sup>-8</sup>    |
|      | 2              | $1\sim582$ , $601\sim2617$ , $2636\sim4070$      | SS400                  | <mark>溝形鋼</mark><br>100×50×5×7.5           | $2.02 \times 10^{5}$        | _                   | _                                                      | _                          | 9. 260×10 <sup>-9</sup>    |
|      | 3              | <mark>4071~8426</mark>                           | <mark>SS400</mark>     | <mark>溝形鋼</mark><br>100×50×5×7.5           | $2.02 \times 10^{5}$        | _                   |                                                        | _                          | $9.260 \times 10^{-9}$     |
|      | 4              | 8427~12194                                       | <mark>SS400</mark>     | <mark>溝形鋼</mark><br>230×30×9               | $2.02 \times 10^{5}$        | _                   | _                                                      | _                          | $9.260 \times 10^{-9}$     |
| フレーム | <mark>5</mark> | 12195~14710                                      | <mark>SS400</mark>     | <mark>山形鋼</mark><br>310×55×9               | $2.02 \times 10^{5}$        | _                   | _                                                      | _                          | $9.260 \times 10^{-9}$     |
|      | <mark>6</mark> | 14711~15090                                      | <mark>SS400</mark>     | <mark>平鋼</mark><br>30×6                    | $2.02 \times 10^{5}$        | _                   | _                                                      | _                          | $9.260 \times 10^{-9}$     |
|      | <mark>7</mark> | 15091~18272                                      | <mark>SS400</mark>     | <mark>山形鋼</mark><br>125×90×10              | $2.02 \times 10^{5}$        | _                   | _                                                      | _                          | $9.260 \times 10^{-9}$     |
|      | 8              | 21861~24720                                      | <mark>SS400</mark>     | <mark>板</mark><br><mark>6t-380×1660</mark> | $2.02 \times 10^{5}$        |                     |                                                        |                            | $9.260 \times 10^{-9}$     |
|      | 9              | $583\sim600$ , $2618\sim2635$ , $24721\sim24814$ | <mark>SS400</mark>     | <mark>板</mark><br>6t-45×88                 | $2.02 \times 10^{5}$        | _                   | <u>-</u>                                               | =                          | $9.260 \times 10^{-9}$     |

# 表4-5 解析モデルの諸元 (ボンベラック (その2)) (3/4)

| 部材                | 番号 | 要素番号                                                                                                                                                                                                                                                                                                                                       | 材質                 | 諸元  | <mark>縦弾性係数</mark><br>(MPa) | 断面積<br>(mm²)          |                        | モーメント<br>I y (mm <sup>4</sup> ) | <mark>密度</mark><br>(t/mm³) |
|-------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-----------------------------|-----------------------|------------------------|---------------------------------|----------------------------|
| <mark>フレーム</mark> | 10 | $24881 \sim 24904$ ,<br>$24907 \sim 24930$ ,<br>$24933 \sim 24956$ ,<br>$24959 \sim 24982$ ,<br>$24985 \sim 25008$ ,<br>$25011 \sim 25034$ ,<br>$25037 \sim 25060$ ,<br>$25063 \sim 25086$ ,<br>$25088 \sim 25111$ ,<br>$25114 \sim 25137$ ,<br>$25140 \sim 25163$ ,<br>$25166 \sim 25189$ ,<br>$25192 \sim 25215$ ,<br>$25218 \sim 25241$ | <mark>SS400</mark> | M16 | $2.02 \times 10^{5}$        | $2.011 \times 10^{2}$ | 3. 217×10 <sup>3</sup> | $3.217\times10^{3}$             | 9. 260×10 <sup>-9</sup>    |

表4-5 解析モデルの諸元(ボンベラック(その2))(4/4)

| <del>******</del>   | 亚口.             | 而主巫只                                  |                    | 諸元                           | 縦弾性係数                | wind<br>断面積         |                                    | <mark>モーメント</mark>     | <mark>密度</mark>         |
|---------------------|-----------------|---------------------------------------|--------------------|------------------------------|----------------------|---------------------|------------------------------------|------------------------|-------------------------|
| <mark>部材</mark><br> | <mark>番号</mark> | <mark>要素番号</mark>                     | 材質                 | <mark>始兀</mark>              | (MPa)                | (mm <sup>2</sup> )  | I z (mm <sup>4</sup> )             | I y (mm <sup>4</sup> ) | (t/mm <sup>3</sup> )    |
|                     |                 | 24879, 24880,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | <del>24905</del> , <del>24906</del> , |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | 24931, 24932,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | 24957, 24958,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | 24983, 24984,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | 25009, 25010,                         |                    |                              |                      |                     |                                    |                        |                         |
| フレーム                | 1 1             | 25035, 25036,                         | CC 400             | M16                          | 0.002/105            | 0.0112/102          | $3.217 \times 10^3$                | $3.217 \times 10^3$    | 9. $260 \times 10^{-9}$ |
| ) V — A             | 11              | 25061, 25062,<br>25087,               | <mark>SS400</mark> | M10 2.02                     | $2.02 \times 10^{5}$ | $2.011 \times 10^2$ | $\frac{3.217 \times 10^{\circ}}{}$ | 3. 217 × 10            | 9. 260 × 10 °           |
|                     |                 | 25112, 25113,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | 25138, 25139,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | 25164, 25165,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | 25190, 25191,                         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | <b>25216</b> , <b>25217</b> ,         |                    |                              |                      |                     |                                    |                        |                         |
|                     |                 | <mark>25242</mark>                    |                    |                              |                      |                     |                                    |                        |                         |
|                     | 12              | 18273~18484                           | <mark>SS400</mark> | <mark>板</mark><br>6t-100×100 | $2.02 \times 10^{5}$ | _                   | _                                  |                        | $9.260 \times 10^{-9}$  |
| 固定板                 | <mark>13</mark> | 18485~21860                           | STKR400            | 角形鋼管<br>50×50×3.2            | $2.02 \times 10^{5}$ | _                   | _                                  | _                      | $9.260 \times 10^{-9}$  |
|                     | 14              | 24815~24878                           | SS400              | 板<br>4. 5t-43×43             | $2.02 \times 10^{5}$ | _                   | _                                  | _                      | 9. $260 \times 10^{-9}$ |

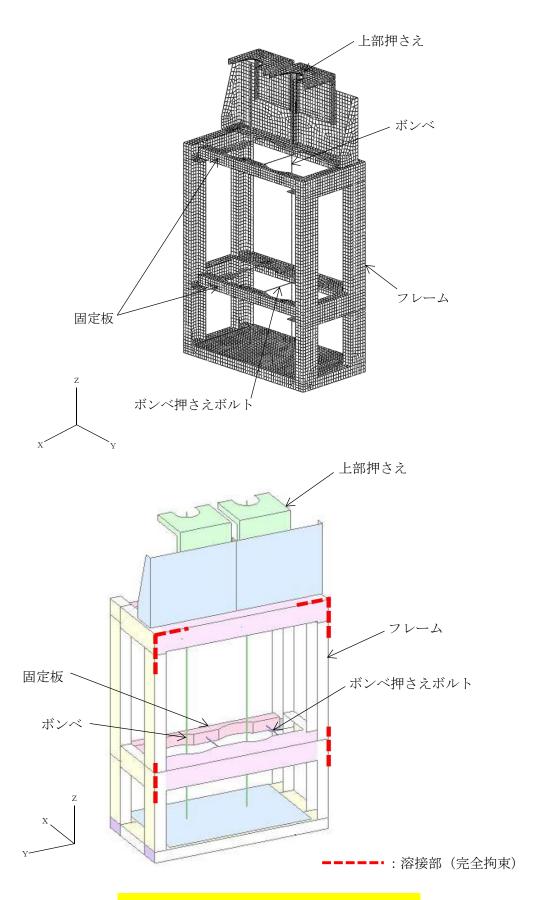



図4-3 解析モデル (ボンベラック (その3))

表4-6 解析モデルの諸元 (ボンベラック (その3)) (1/3)

| <del>項目</del>     | <mark>記号</mark> | <mark>単位</mark>  | 入力值<br>入力值           |
|-------------------|-----------------|------------------|----------------------|
| 材質(ボンベ)           | _               |                  | <mark>マンガン鋼</mark>   |
| 材質(フレーム)          |                 |                  | <mark>SS400</mark>   |
| 材質(固定板)           |                 |                  | SS400/STKR400        |
| 温度条件(周囲環境温度)      | T               | $^{f C}$         | <mark>40</mark>      |
| 縦弾性係数(ボンベ)        | E 1             | <mark>MPa</mark> | $2.01 \times 10^{5}$ |
| 縦弾性係数(フレーム)       | E 2             | <mark>MPa</mark> | $2.02 \times 10^{5}$ |
| ポアソン比             | v               |                  | <mark>0. 3</mark>    |
| ボンベラックの質量         | <mark>m</mark>  | <mark>kg</mark>  | <mark>328</mark>     |
| <mark>ボンベ数</mark> |                 | <mark>本</mark>   | <mark>2</mark>       |
| 寸法                |                 |                  | 表2-3                 |
| 要素数               |                 | <mark>個</mark>   | <mark>13030</mark>   |
| <mark>節点数</mark>  |                 | <mark>個</mark>   | <mark>13716</mark>   |

表4-6 解析モデルの諸元 (ボンベラック (その3)) (2/3)

|      | 1              | I                                                      | 1                  |                                   |                                          |                           |                                                        |                                 |                            |
|------|----------------|--------------------------------------------------------|--------------------|-----------------------------------|------------------------------------------|---------------------------|--------------------------------------------------------|---------------------------------|----------------------------|
| 部材   | 番号             | 要素番号                                                   | 材質                 | <mark>諸元</mark>                   | <mark>縦弾性係数</mark><br>(MPa)              | <mark>断面積</mark><br>(mm²) | 斯面二次 <sup>2</sup><br>I <sub>z</sub> (mm <sup>4</sup> ) | Eーメント<br>I y (mm <sup>4</sup> ) | <mark>密度</mark><br>(t/mm³) |
| ボンベ  | 1              | 12853~13028                                            | マンガ<br>ン鋼          | ボンベ<br>φ 232×5. 0                 | $\frac{\text{(MI A)}}{2.01 \times 10^5}$ | $3.566 \times 10^3$       | $2.298 \times 10^{7}$                                  | $2.298 \times 10^{7}$           | 1. 429×10 <sup>-8</sup>    |
|      | 2              | $1 \sim 483$ , $502 \sim 1954$ , $1973 \sim 2942$      | SS400              | 溝形鋼<br>100×50×5×7.5               | $2.02 \times 10^{5}$                     | _                         | -                                                      | _                               | $9.739 \times 10^{-9}$     |
|      | 3              | <mark>2943~6038</mark>                                 | <mark>SS400</mark> | <mark>溝形鋼</mark><br>100×50×5×7. 5 | $2.02 \times 10^{5}$                     | _                         |                                                        | _                               | $9.739 \times 10^{-9}$     |
|      | 4              | 6039~7294                                              | <mark>SS400</mark> | <mark>溝形鋼</mark><br>230×30×9      | $2.02 \times 10^{5}$                     | _                         |                                                        | _                               | $9.739 \times 10^{-9}$     |
| フレーム | <mark>5</mark> | <mark>7295~8510</mark>                                 | <mark>SS400</mark> | <mark>山形鋼</mark><br>310×55×9      | $2.02 \times 10^{5}$                     | _                         |                                                        | _                               | $9.739 \times 10^{-9}$     |
|      | <mark>6</mark> | 8511~8586                                              | <mark>SS400</mark> | <mark>平鋼</mark><br>30×6           | $2.02 \times 10^{5}$                     | _                         |                                                        | _                               | $9.739 \times 10^{-9}$     |
|      | <mark>7</mark> | <mark>8587~9886</mark>                                 | <mark>SS400</mark> | <mark>山形鋼</mark><br>125×90×10     | $2.02 \times 10^{5}$                     | _                         |                                                        | _                               | $9.739 \times 10^{-9}$     |
|      | 8              | <mark>11395~12538</mark>                               | <mark>SS400</mark> | <mark>板</mark><br>6t-380×620      | $2.02 \times 10^{5}$                     |                           |                                                        |                                 | $9.739 \times 10^{-9}$     |
| _    | 9              | $484 \sim 501$ , $1955 \sim 1972$ , $12539 \sim 12632$ | <mark>SS400</mark> | <mark>板</mark><br>6t-45×88        | $2.02 \times 10^{5}$                     | _                         | _                                                      | _                               | $9.739 \times 10^{-9}$     |

表4-6 解析モデルの諸元(ボンベラック(その3)) (3/3)

| <del>*****</del> | 番号              | <b>武士巫</b> 日         |                    | #W C / / 2 × 2 m J L ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 縦弾性係数                | 斯面積                   |                        | モーメント                  | <mark>密度</mark>        |
|------------------|-----------------|----------------------|--------------------|----------------------------------------------------------|----------------------|-----------------------|------------------------|------------------------|------------------------|
| <mark>部材</mark>  | 番号              | <mark>要素番号</mark>    | 材質                 | <mark>諸元</mark>                                          | (MPa)                | (mm <sup>2</sup> )    | I z (mm <sup>4</sup> ) | I y (mm <sup>4</sup> ) | (t/mm <sup>3</sup> )   |
|                  |                 | $12697 \sim 12703$ , |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | $12706 \sim 12729$ , |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | $12732 \sim 12755$ , |                    |                                                          |                      |                       |                        |                        |                        |
|                  | 10              | $12758 \sim 12781$ , | <mark>SS400</mark> | <mark>M16</mark>                                         | $2.02 \times 10^{5}$ | $2.011 \times 10^2$   | $3.217 \times 10^3$    | $3.217 \times 10^3$    | $9.739 \times 10^{-9}$ |
|                  |                 | 12784~12800 <b>,</b> |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | 12802~12825,         |                    |                                                          |                      |                       |                        |                        |                        |
| フレーム             |                 | 12828~12851          |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | 12704, 12705,        |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | 12730, 12731,        |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | 12756, 12757,        |                    |                                                          |                      |                       |                        |                        |                        |
|                  | 11              | 12782, 12783,        | <mark>SS400</mark> | <mark>M16</mark>                                         | $2.02 \times 10^{5}$ | $2.011 \times 10^{2}$ | $3.217 \times 10^3$    | $3.217 \times 10^3$    | $9.739 \times 10^{-9}$ |
|                  |                 | 12801,               |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | 12826, 12827,        |                    |                                                          |                      |                       |                        |                        |                        |
|                  |                 | 12852                |                    |                                                          |                      |                       |                        |                        |                        |
|                  | 12              | 9887~10098           | <mark>SS400</mark> | <mark>板</mark><br><mark>6t-100×100</mark>                | $2.02 \times 10^{5}$ | _                     |                        |                        | $9.739 \times 10^{-9}$ |
| 固定板              | <mark>13</mark> | 10099~11394          | STKR400            | <mark>角形鋼管</mark><br>50×50×3.2                           | $2.02 \times 10^{5}$ | _                     | _                      | _                      | $9.739 \times 10^{-9}$ |
|                  | 14              | 12633~12696          | SS400              | 板<br>4. 5t-43×43                                         | $2.02 \times 10^{5}$ |                       | _                      | _                      | $9.739 \times 10^{-9}$ |

## 4.4 固有周期

固有値解析の結果を表4-7に示す。固有周期は、0.05秒以下であり、剛構造であることを確認した。また、振動モード図(1次)を図4-4から図4-6に示す。

表 4-7 固有値解析結果

| 機器名称             | モード | 卓越方向 | 固有周期  | 水平方向 | 刺激係数 | 鉛直方向 |
|------------------|-----|------|-------|------|------|------|
|                  |     |      | (s)   | X方向  | Y方向  | 刺激係数 |
| ボンベラック<br>(その 1) | 1次  | 鉛直   | 0.043 | _    | _    | _    |
| ボンベラック<br>(その 2) | 1次  | 鉛直   | 0.042 | _    | _    |      |
| ボンベラック<br>(その3)  | 1次  | 鉛直   | 0.035 | _    | _    | _    |

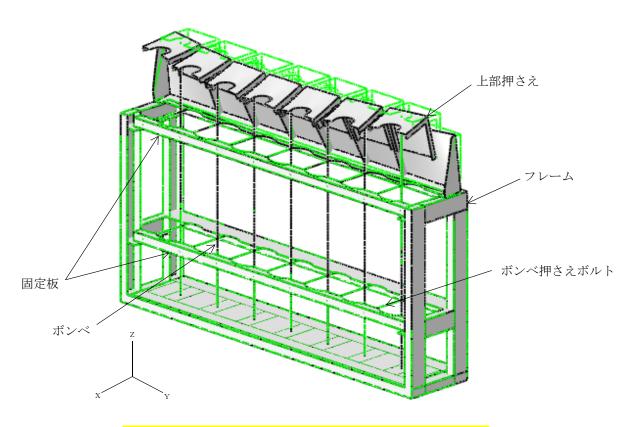



図4-4 振動モード図(1次) (ボンベラック(その1))

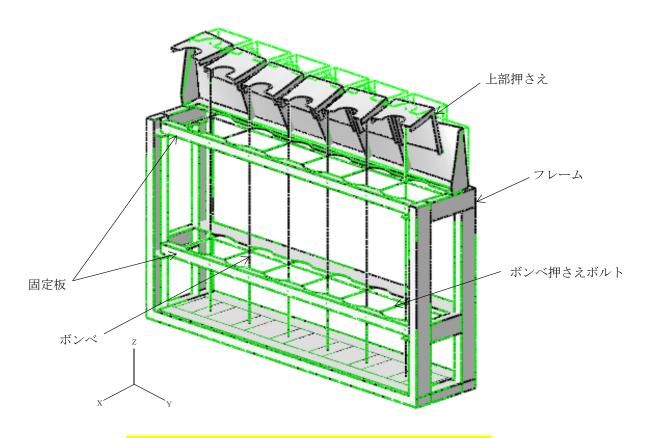



図4-5 振動モード図(1次) (ボンベラック (その2))

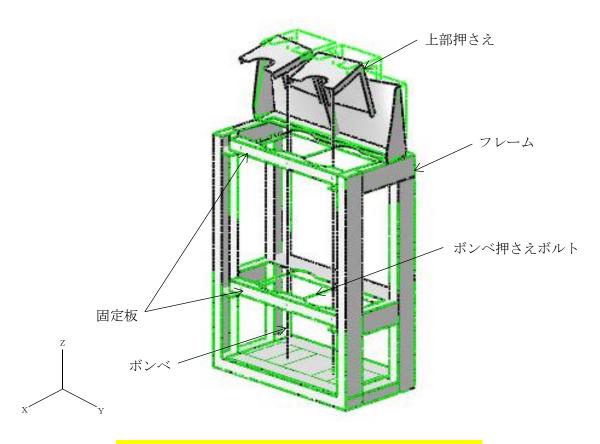



図4-6 振動モード図(1次) (ボンベラック(その3))

# 4.5 設計用地震力

評価に用いる設計用地震力を表4-8に示す。

「基準地震動Ss」による地震力は、VI-2-1-7「設計用床応答スペクトルの作成方針」に基づき設定する。

表 4-8 設計用地震力(重大事故等対処設備)

| 機器名称            | 据付場所<br>及び<br>床面高さ<br>(m)       | 固有周期(s)    |       | 弾性設計用地震動 S d<br>又は静的震度 |              | 基準地震動 S s    |                   |
|-----------------|---------------------------------|------------|-------|------------------------|--------------|--------------|-------------------|
|                 |                                 | 水平<br>方向   | 鉛直方向  | 水平方向<br>設計震度           | 鉛直方向<br>設計震度 | 水平方向<br>設計震度 | 鉛直方向<br>設計震度      |
| ボンベラック<br>(その1) | 原子炉建物<br>EL 23.8<br>(EL 30.5*1) | 0.05<br>以下 | 0.043 | I                      |              | Сн=3.61*2    | $C v = 2.23^{*2}$ |
| ボンベラック<br>(その2) |                                 | 0.05<br>以下 | 0.042 |                        |              |              |                   |
| ボンベラック<br>(その3) |                                 | 0.05<br>以下 | 0.035 |                        |              |              |                   |

注記\*1:基準床レベルを示す。

\*2:設計用震度 I (基準地震動Ss) を上回る設計震度

#### 4.6 計算方法

#### 4.6.1 応力の計算方法

#### 4.6.1.1 ボンベラック (はり要素) の応力

ボンベラックの応力は、自重、鉛直方向地震及び水平方向地震(X,Y)を考慮し、シェル要素及びはり要素による解析結果を用いる。ここで、はり要素の組合せ応力の 算出式は下記による。

| 応力の種類 | 単位  | 応力算出式                                                      |  |  |
|-------|-----|------------------------------------------------------------|--|--|
| 組合せ応力 | MPa | $\sigma = \sqrt{(\sigma_a + \sigma_b)^2 + 3 \cdot \tau^2}$ |  |  |

#### 4.6.1.2 ボンベラック (シェル要素) の応力

ボンベラックの応力は、自重、鉛直方向地震及び水平方向地震(X,Y)を考慮し、シェル要素及びはり要素による解析結果を用いる。ここで、シェル要素の組合せ応力の算出式は下記による。

| 応力の種類 | 単位  | 応力算出式                                                                                                       |  |  | 応力算出式 |  |
|-------|-----|-------------------------------------------------------------------------------------------------------------|--|--|-------|--|
| 組合せ応力 | MPa | $\sigma_{s} = \sqrt{\sigma_{x^{2}} + \sigma_{y^{2}} - \sigma_{x} \cdot \sigma_{y} + 3 \cdot \tau_{xy^{2}}}$ |  |  |       |  |

#### 4.6.1.3 溶接部の応力

(1) ボンベラック取付面に対し平行方向に作用するせん断応力 ボンベラック取付面に対し平行方向に作用するせん断力は全溶接部で受けるもの として計算する。

$$F_{W1} = \sqrt{(m \cdot C_H \cdot g)^2 + (m \cdot (1 + C_V) \cdot g)^2} \cdots (4.6.1.3.1)$$

ボンベラック取付面に対し平行方向に作用するせん断応力 (τw3)

$$\tau_{\text{W}3} = \frac{F_{\text{W}1}}{p_{\text{A}} \cdot A_{\text{W}}} \qquad (4.6.1.3.2)$$

ここで、せん断を受ける溶接部の有効断面積Awは、

$$A_{W} = (S/\sqrt{2}) \times L_{W} \cdots (4.6.1.3.3)$$

(2) ボンベラック取付面に対し前後方向に作用するせん断応力

溶接部に対する力は最も厳しい条件として、図  $4-\frac{7}{7}$ から図  $4-\frac{8}{8}$ で最外列の溶接部を支点とする転倒を考え、これを片側の最外列の溶接部で受けるものとして計算する。

計算モデル図 4-7に示す<mark>左右</mark>方向転倒の場合のせん断力(Fw2)

$$F_{w2} = \frac{m \cdot (1+C_{V}) \cdot h \cdot g}{n_{VW_{1}} \cdot \ell_{2}} + \frac{m \cdot C_{H} \cdot h \cdot g}{n_{HW_{1}} \cdot \ell_{3}} \cdot \cdot \cdot \cdot \cdot (4.6.1.3.4)$$

計算モデル図4-8に示す<mark>前後</mark>方向転倒の場合のせん断力(Fw3)

$$F_{w3} = \frac{m \cdot (1+C_{v}) \cdot h \cdot g + m \cdot C_{H} \cdot \ell_{1} \cdot g}{n_{vw_{1}} \cdot \ell_{2}} \cdots (4.6.1.3.5)$$

ボンベラック取付面に対し前後方向に作用するせん断力

$$F_{w}=M a x (F_{w2}, F_{w3}) \cdots (4.6.1.3.6)$$

ボンベラック取付面に対し前後方向に作用するせん断応力 (τ w 4)

(3) 溶接部の応力

$$\tau = M \ a \ x \ (\tau = 3, \tau_{4}) \cdots (4.6.1.3.8)$$

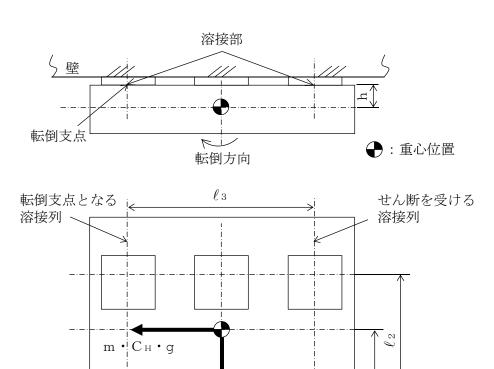



図4-<mark>7</mark> 計算モデル(<mark>左右</mark>方向転倒)

 $|\mathbf{m} \cdot | (1 + C_{v})| \cdot g$ 

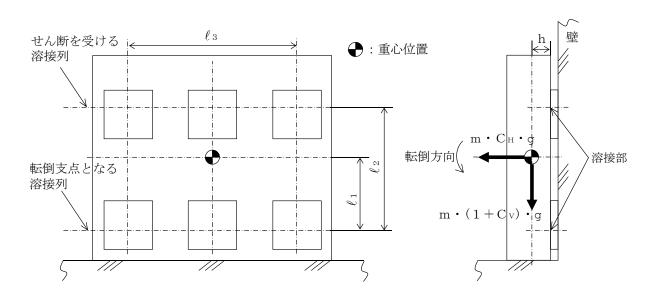



図4-8 計算モデル(<mark>前後</mark>方向転倒)

## 4.7 計算条件

応力解析に用いる自重(ボンベラック)及び荷重(地震荷重)は、本計算書の【ボンベラックの耐震性についての計算結果】の設計条件及び機器要目に示す。

## 4.8 応力の評価

## 4.8.1 ボンベラックの応力評価

4. 6. 1. 1項及び4. 6. 1. 2項で求めた各応力が許容応力以下であること。ただし、組合せ応力が許容引張応力ft m以下であること。

|                              | 弾性設計用地震動Sd又は静的震度                 | 基準地震動Ssによる荷重                |
|------------------------------|----------------------------------|-----------------------------|
|                              | による荷重との組合せの場合                    | との組合せの場合                    |
| 許容引張応力<br>f t <mark>m</mark> | $\frac{\text{F}}{1.5} \cdot 1.5$ | $\frac{F^*}{1.5} \cdot 1.5$ |

## 4.8.2 溶接部の応力評価

4.6.1.3項で求めた溶接部のせん断応力が許容応力fs m以下であること。ただし、fs m は下表による。

|                                        | 弾性設計用地震動Sd又は静的震度                         | 基準地震動Ssによる荷重                               |
|----------------------------------------|------------------------------------------|--------------------------------------------|
|                                        | による荷重との組合せの場合                            | との組合せの場合                                   |
| 許容せん断応力<br>f <sub>s</sub> <sub>m</sub> | $\frac{F}{1.5 \cdot \sqrt{3}} \cdot 1.5$ | $\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$ |

#### 5. 波及的影響評価

#### 5.1 波及的影響評価方法

ボンベラックは、別添3-1の「2.2 評価方針」にて設定した評価方針に従い、当該設備による波及的影響を防止する必要がある他の設備への波及的影響評価を実施する。

ボンベラックの波及的影響評価は、「3. 評価部位」に示す評価部位が、「4.2 荷重の組合せ及び許容応力」に示す荷重の組合せに対し、許容応力を満足することを、「4.5 設計用地震力」に示す設計用地震力及び「4.6 計算方法」に示す方法を用いて評価を行う。

#### 6. 評価結果

## 6.1 重大事故等対処設備としての評価結果

ボンベラックの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有し、波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認した。

#### (1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。 また、ボンベラックの最大応力発生箇所を図6-1から図6-3に示す。

#### (2) 波及的影響評価結果

波及的影響評価の結果を次頁以降の表に示す。

## 【ボンベラック(その1)の耐震性についての計算結果】

## 1. 重大事故等対処設備

#### 1.1 設計条件

| 機器名称                                          | 据付場所及び<br>機器名称 設備分類 床面高さ |                                 | 固有周期(s) |        | 弾性設計用地震動S d<br>又は静的震度 |              | 基準地震動 S s    |              | 最高使用温度 | 周囲環境温度 |
|-----------------------------------------------|--------------------------|---------------------------------|---------|--------|-----------------------|--------------|--------------|--------------|--------|--------|
| <b>                                      </b> | 設備分類                     |                                 | 水平方向    | 鉛直方向   | 水平方向<br>設計震度          | 鉛直方向<br>設計震度 | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | (℃)    | (℃)    |
| ボンベラック<br>(その1)                               | 可搬/防止                    | 原子炉建物<br>EL 23.8<br>(EL 30.5*1) | 0.05以下  | 0. 043 | _                     | _            | Сн=3.61*2    | C v=2. 23*2  | _      | 40     |

注記\*1:基準床レベルを示す。

\*2:設計用震度 I (基準地震動 S s) を上回る設計震度

#### 1.2 機器要目

| 1. D DX H | -         |             |             |            |                        |                      |                      |      |   |       |        |
|-----------|-----------|-------------|-------------|------------|------------------------|----------------------|----------------------|------|---|-------|--------|
| m<br>(kg) | h<br>(mm) | ℓ 1<br>(mm) | ℓ 2<br>(mm) | ℓз<br>(mm) | A w (mm <sup>2</sup> ) | E 1<br>(MPa)         | E 2<br>(MPa)         | ν    | n | n vw1 | n HW 1 |
| 892       | 182       | 395         | 695         | 1560       | 763. 7                 | $2.01 \times 10^{5}$ | $2.02 \times 10^{5}$ | 0. 3 | 6 | 3     | 2      |

| 部材        | 材料                 | S y<br>(MPa) | S u<br>(MPa) | F<br>(MPa) | F * (MPa) |
|-----------|--------------------|--------------|--------------|------------|-----------|
| ボンベラック    | SS400<br>(厚さ≦16mm) | 245          | 400          |            | 280       |
| 11.21.799 | STKR400            | 245          | 400          |            | 280       |
| 溶接部       | SS400<br>(厚さ≦16mm) | 245          | 400          | _          | 280       |

# 1.3 計算数値

1.3.1 溶接部に作用する力

(単位:N)

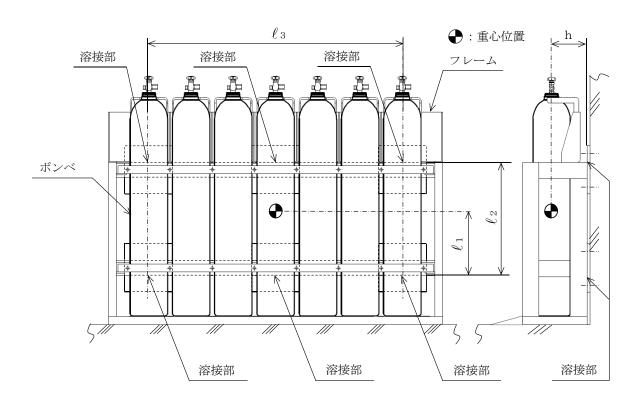
| <del>\$</del> 17. ‡.‡ | F w 3                  |                     |  |  |  |
|-----------------------|------------------------|---------------------|--|--|--|
| 部材                    | 弾性設計用地震動 S d<br>又は静的震度 | 基準地震動 S s           |  |  |  |
| 溶接部                   |                        | $8.449 \times 10^3$ |  |  |  |

## 1.4 結論

1.4.1 固有周期

(単位:s)

| 方向   | 固有周期   |
|------|--------|
| 水平方向 | 0.05以下 |
| 鉛直方向 | 0.043  |


1.4.2 応力及び波及的影響評価

(単位:MPa)

| 1. 1. 2 /b////////////////////////////////// |       | 1. 1. 2    |          |            |                 |                                   |    |  |  |
|----------------------------------------------|-------|------------|----------|------------|-----------------|-----------------------------------|----|--|--|
| 部材 材料                                        |       | <b>六</b> 五 | 弾性設計用地震動 | JSd 又は静的震度 | 基準地別            | 評価                                |    |  |  |
| 司2村                                          | 材料    | 応力         | 算出応力     | 許容応力       | 算出応力            | 許容応力                              | 結果 |  |  |
| ボンベラック                                       | SS400 | 組合せ        | _        | _          | $\sigma_s = 40$ | $f_{\text{t}}_{\text{m}} = 280$   | 0  |  |  |
| 溶接部                                          | SS400 | せん断        | _        | _          | $\tau$ w = 11   | $f_{\rm s} \frac{1}{\rm m} = 161$ | 0  |  |  |

すべて許容応力以下である。

39



ボンベラック (その1)



図6-1 ボンベラック (その1) の最大応力発生箇所

## 【ボンベラック (その2) の耐震性についての計算結果】

## 2. 重大事故等対処設備

## 2.1 設計条件

| 機器名称            | 設備分類  | 据付場所及び 床面高さ                     | 固有周    | ]期(s) | 弾性設計用<br>又は静 | 地震動Sd<br>的震度 | 基準地別         | 震動Ss              | 最高使用温度 | 周囲環境温度 |
|-----------------|-------|---------------------------------|--------|-------|--------------|--------------|--------------|-------------------|--------|--------|
| 7茂 台 27 77      |       |                                 | 水平方向   | 鉛直方向  | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | 水平方向<br>設計震度 | 鉛直方向<br>設計震度      | (℃)    | (℃)    |
| ボンベラック<br>(その2) | 可搬/防止 | 原子炉建物<br>EL 23.8<br>(EL 30.5*1) | 0.05以下 | 0.042 | _            | _            | Сн=3.61*2    | $C v = 2.23^{*2}$ | _      | 40     |

注記\*1:基準床レベルを示す。

\*2:設計用震度 I (基準地震動 S s) を上回る設計震度

#### 2.2 機器要目

| m<br>(kg) | h<br>(mm) | ℓ <sub>1</sub> (mm) | ℓ 2<br>(mm) | ℓз<br>(mm) | A w (mm <sup>2</sup> ) | E 1<br>(MPa)         | E 2<br>(MPa)         | ν    | n | n vw1 | n HW 1 |
|-----------|-----------|---------------------|-------------|------------|------------------------|----------------------|----------------------|------|---|-------|--------|
| 779       | 181       | 391                 | 695         | 1200       | 763. 7                 | $2.01 \times 10^{5}$ | $2.02 \times 10^{5}$ | 0. 3 | 6 | 3     | 2      |

| 部材      | 材料                 | S y<br>(MPa) | S u<br>(MPa) | F<br>(MPa) | F * (MPa) |
|---------|--------------------|--------------|--------------|------------|-----------|
| ボンベラック  | SS400<br>(厚さ≦16mm) | 245          | 400          | 1          | 280       |
| W2**/99 | STKR400            | 245          | 400          | _          | 280       |
| 溶接部     | SS400<br>(厚さ≦16mm) | 245          | 400          | _          | 280       |

41

## 42

## 2.3 計算数値

2.3.1 溶接部に作用する力

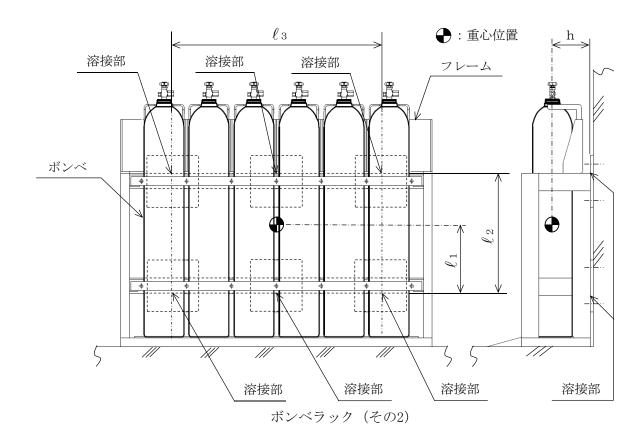
(単位:N)

|                | (1 =)                  |                      |
|----------------|------------------------|----------------------|
| <b>☆</b> □ + + | F.                     | w 3                  |
| 部材             | 弾性設計用地震動 S d<br>又は静的震度 | 基準地震動 S s            |
| 溶接部            | _                      | 7. $314 \times 10^3$ |

## 2.4 結論

2.4.1 固有周期

(単位:s)


| 方向   | 固有周期   |
|------|--------|
| 水平方向 | 0.05以下 |
| 鉛直方向 | 0.042  |

#### 2.4.2 応力及び波及的影響評価

(単位:MPa)

| _ | . 生 2 心力及 0 改及 1 成 2 时间 |       |      |                     |      |                 |                                 |    |  |
|---|-------------------------|-------|------|---------------------|------|-----------------|---------------------------------|----|--|
|   | <b>☆</b> 7 ++           | 材料    | 応力   | 弾性設計用地震動 S d 又は静的震度 |      | 基準地震            | §動S s                           | 評価 |  |
|   | 部材                      | M 科   | ルロンノ | 算出応力                | 許容応力 | 算出応力            | 許容応力                            | 結果 |  |
|   | ボンベラック                  | SS400 | 組合せ  | _                   | _    | $\sigma_s = 39$ | $f_{\text{t}}_{\text{m}} = 280$ | 0  |  |
| Ī | 溶接部                     | SS400 | せん断  | _                   | _    | $\tau$ w = 10   | $f_{\rm s}{}_{\rm m} = 161$     | 0  |  |

すべて許容応力以下である。



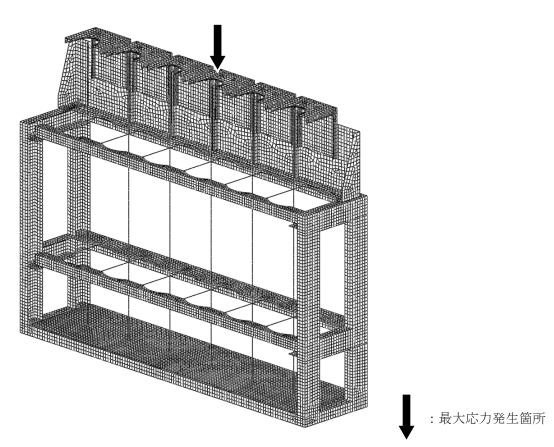



図6-2 ボンベラック (その2) の最大応力発生箇所

## 【ボンベラック(その3)の耐震性についての計算結果】

## 3. 重大事故等対処設備

## 3.1 設計条件

|  | 機器名称    設備分類    |       | 据付場所及び                          | 固有周期(s) |        | 弾性設計用地震動 S d<br>又は静的震度 |              | 基準地震動 S s    |              | 最高使用温度 | 周囲環境温度 |  |
|--|-----------------|-------|---------------------------------|---------|--------|------------------------|--------------|--------------|--------------|--------|--------|--|
|  |                 | 設佣分組  | 備分類 床面高さ<br>(m)                 | 水平方向    | 鉛直方向   | 水平方向<br>設計震度           | 鉛直方向<br>設計震度 | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | (℃)    | (℃)    |  |
|  | ボンベラック<br>(その3) | 可搬/防止 | 原子炉建物<br>EL 23.8<br>(EL 30.5*1) | 0.05以下  | 0. 035 | _                      | _            | Сн=3.61*2    | C v=2.23*2   | _      | 40     |  |

注記\*1:基準床レベルを示す。

\*2:設計用震度 I (基準地震動 S s) を上回る設計震度

#### 3.2 機器要目

| _ | 0.0 000   |           |                       |            |            |                        |                      |                      |      |   |       |        |
|---|-----------|-----------|-----------------------|------------|------------|------------------------|----------------------|----------------------|------|---|-------|--------|
|   | m<br>(kg) | h<br>(mm) | $\ell_{	ext{1}}$ (mm) | ℓ2<br>(mm) | ℓз<br>(mm) | A w (mm <sup>2</sup> ) | Eı<br>(MPa)          | E 2<br>(MPa)         | ν    | n | n vw1 | n HW 1 |
|   | 328       | 178       | 317                   | 605        | 760        | 763. 7                 | $2.01 \times 10^{5}$ | $2.02 \times 10^{5}$ | 0. 3 | 4 | 2     | 2      |

| 部材              | 材料                      | S y<br>(MPa) | S u<br>(MPa) | F<br>(MPa) | F* (MPa) |
|-----------------|-------------------------|--------------|--------------|------------|----------|
| ボンベラック          | SS400<br>(厚さ≦16mm)      | 245          | 400          | I          | 280      |
| <i>MJ Y y y</i> | STKR400                 | 245          | 400          | _          | 280      |
| 溶接部             | SS400<br>(16mm<厚さ≦40mm) | 235          | 400          | _          | 280      |

44

## 45

## 3.3 計算数値

3.3.1 溶接部に作用する力

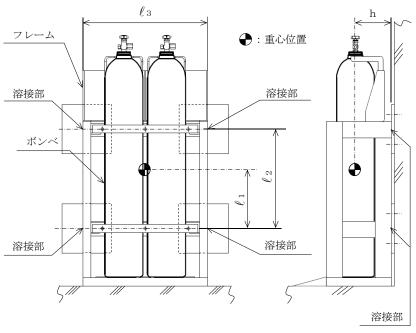
(単位:N)

| THE STATE 117  | (1 =)                  |                      |  |  |  |
|----------------|------------------------|----------------------|--|--|--|
| <b>☆</b> □ + + | F w 3                  |                      |  |  |  |
| 部材             | 弾性設計用地震動 S d<br>又は静的震度 | 基準地震動 S s            |  |  |  |
| 溶接部            | _                      | 4. $571 \times 10^3$ |  |  |  |

## 3.4 結論

3.4.1 固有周期

(単位:s)


| 方向   | 固有周期   |
|------|--------|
| 水平方向 | 0.05以下 |
| 鉛直方向 | 0. 035 |

3.4.2 応力及び波及的影響評価

(単位:MPa)

| 0. 1. 2 /b////////////////////////////////// |        |      |                               |      |                    |                                   |    |  |  |  |
|----------------------------------------------|--------|------|-------------------------------|------|--------------------|-----------------------------------|----|--|--|--|
| 部材                                           | 材料     | 応力   | 弾性設計用地震動 S d 又は静的震度 基準地震動 S s |      |                    |                                   | 評価 |  |  |  |
| 前外                                           | 171 AH | かいノノ | 算出応力                          | 許容応力 | 算出応力               | 許容応力                              | 結果 |  |  |  |
| ボンベラック                                       | SS400  | 組合せ  | _                             | _    | $\sigma_s = 29$    | $f_{\text{t}}_{\text{m}} = 280$   | 0  |  |  |  |
| 溶接部                                          | SS400  | せん断  | _                             | _    | τ <sub>w</sub> = 6 | f <sub>s</sub> <sub>m</sub> = 161 | 0  |  |  |  |

すべて許容応力以下である。



ボンベラック (その3)

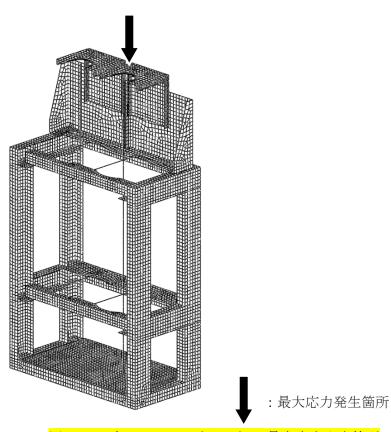



図6-3 ボンベラック (その3) の最大応力発生箇所