

# 高浜発電所3,4号炉 特別点検(原子炉容器)

2023年9月5日 関西電力株式会社

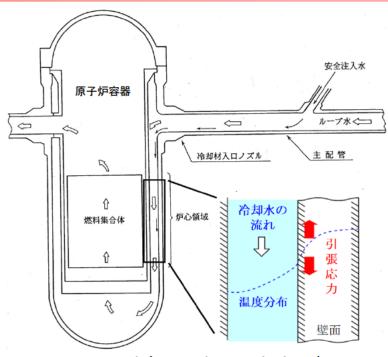
## 目 次

| 1. 要求事項                   | • • • • | 2  |
|---------------------------|---------|----|
| 2. 点検方法                   |         |    |
| 2-1 炉心領域                  | • • • • | 5  |
| 2-2 一次冷却材ノズルコーナー部         | • • • • | 8  |
| 2-3 炉内計装筒                 | • • • • | 10 |
| 2-4 点検方法のまとめ              | • • • • | 12 |
| 3. 点検結果                   | • • • • | 13 |
| 4. 特別点検で得られた知見            | • • • • | 15 |
| 4-1 表面近傍の欠陥(ステンレスクラッドの欠陥) | • • • • | 16 |
| 4-2 低合金鋼材中の欠陥             | • • • • | 16 |
| 4-3 600系Ni基合金のSCC         | • • • • | 17 |
| 5. まとめ                    |         | 18 |

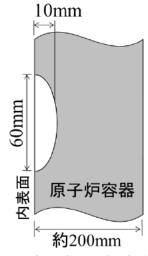
# 1. 要求事項

## 1. 要求事項

#### 「実用発電用原子炉の運転期間延長認可申請に係る運用ガイド」より


| 対象の<br>機器・構造物 | 対象の部位                             | 着目する<br>劣化事象    | 点検方法/点検項目                                                     |
|---------------|-----------------------------------|-----------------|---------------------------------------------------------------|
|               | 母材及び溶接部<br>(炉心領域の100%)            | 中性子<br>照射脆化     | 超音波探傷試験(以下「UT」という。)による欠陥の有無の確認                                |
| <b>店</b> 之桁   | 一次冷却材<br>ノズルコーナー部<br>(クラッドの状態を確認) | 疲労              | 浸透探傷試験(以下「PT」という。)又は渦流<br>探傷試験(以下「ECT」という。)による欠陥の<br>有無の確認    |
| 原子炉容器         | 炉内計装筒(BMI)<br>(全数)                | 応力腐食割れ<br>(SCC) | 目視試験(MVT-1)による炉内側からの溶接部の欠陥の有無の確認及びECTによるBMI内面の溶接熱影響部の欠陥の有無の確認 |

# 2. 点検方法


## 2-1 炉心領域

#### 2-1-1 点検の概要

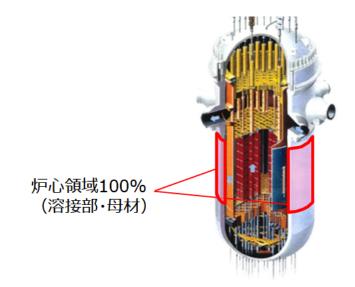
- ▶ 原子炉容器は、中性子照射脆化により延性 脆性遷移温度が上昇する。事故時の炉心冷却のため冷水が注入されると、加圧熱衝撃(以下、「PTS」という。)事象が発生し、中性子照射脆化が進んだ炉心領域に有意な欠陥が存在した場合には、それを起点として脆性破壊が発生する可能性がある。
- ▶ 劣化状況評価では、60年間の運転期間における中性子 照射脆化を想定し、事故時に冷水が注入されたとしても、 仮想的に原子炉容器内表面に想定した深さ10mmのき 裂が進展することなく、原子炉容器が健全であることを PTS評価により確認している。
- ➤ 建設時に母材と溶接部に有意な欠陥がないことを確認し、 運転開始後は供用期間中検査として溶接部に対するUT を実施しており、PTSの観点から考慮すべき欠陥は確認されていないが、今回の特別点検では、これまでの供用期間 中検査では試験対象としていない母材部分まで試験範囲 を広げ、PTS評価の観点から考慮すべき欠陥の有無を炉 心領域全域にわたって確認した。
- ▶ なお、高浜3,4号炉と高浜1,2号炉及び美浜3号炉において点検方法に違いはない。



PTS事象発生時の原子炉容器内の 冷却材の流れ



PTS評価において想定する欠陥

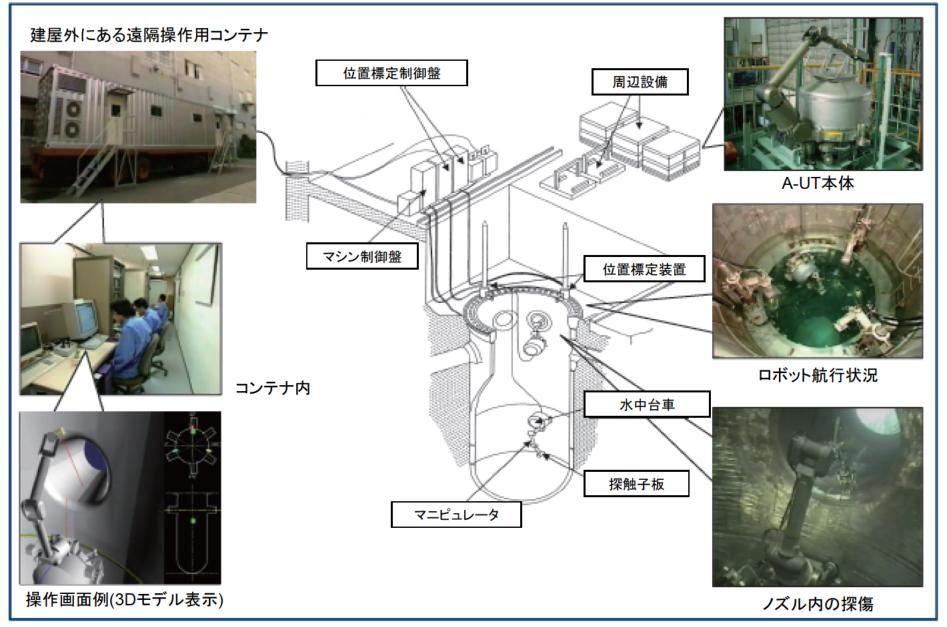

## 2-1 炉心領域

#### 2-1-2 点検方法

- ▶ 炉心領域100% (溶接部・母材) を試験対象とした。
- ▶ 着目する経年劣化モードである中性子照射脆化はPTSの観点から内表面近傍の欠陥が特に重要となることから、内表面近傍(クラッドと母材との境界部から母材側に25mmまでの範囲)の欠陥に対して有効な斜角法70°のUTを実施した。
- ▶ 通常の供用期間中検査で実施している斜角法45°及び 60°、垂直法によるUTについても全板厚(約200mm)に 対して実施した。

#### 2-1-3 点検方法の妥当性

- ▶ 炉心領域に対するUTは、JEAC4207-2008(4号炉は JEAC4207-2016)「軽水型原子力発電所用機器の供 用期間中検査における超音波探傷試験規程」を準用して 実施した。
- ➤ 斜角法70°のUTは、国の原子力発電施設検査技術実証 事業「超音波探傷試験における欠陥検出性及びサイジング 精度の確認に関するもの」(以下「UTS」という。)により、表面 近傍の深さ5mm程度の欠陥が十分検出可能であることが 確認されている。したがって、今回適用した点検方法は、既 往のPTS評価の想定(深さ10mmの表面欠陥)に対して 十分な欠陥検出性能を有している。

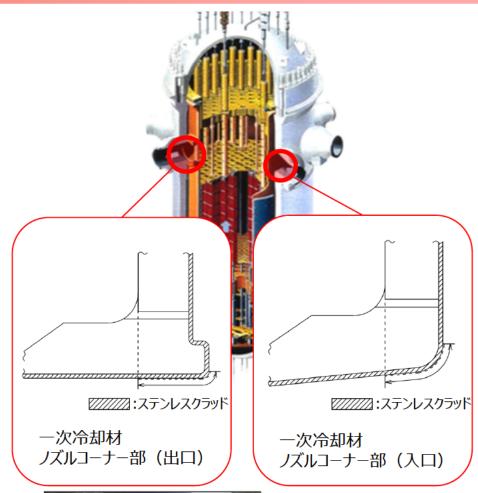



平成16年度UTS報告書(原子力発電施設検査技術実証事業に関する報告書 (超音波探傷試験における欠陥検出及びサイシング精度の確認に関するもの)) P.429

| 屈折角            | 検出可能な<br>最小欠陥寸法(mm)*1                                                                                                                                                                                                                                                                 | 特徵的傾向                                                                                                                     |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| 60°<br>(横波)    | 3.8~11.4<br>[2.5]                                                                                                                                                                                                                                                                     | <ul><li>(1) 欠陥深さ11mmを超える欠陥の検出率は100%であった。</li><li>(2) 欠陥深さ3.8mmから11.4mmの間に検出率0%と100%が混在することから、検出限界はこの間に存在すると考える。</li></ul> |  |
| 70-50°<br>(縦波) | <u>&lt;3.8</u><br>[2.5]<br>70°(クラッド表面欠陥                                                                                                                                                                                                                                               | 全ての欠陥がDAC100%以上のエコー高さで検出されており、検出レベルをDAC20%にした場合の検出<br>、限界はこの寸法以下にあると考えられる。                                                |  |
| 70°<br>(縦波)    | <3.8<br>[2.5] <sup>1</sup>                                                                                                                                                                                                                                                            | 同上                                                                                                                        |  |
| まとめ            | <ul> <li>(1)屈折角 70-50°(縦波)及び70°(縦波)では、欠陥上端がクラッド境界 近傍の欠陥(母材側深さ0.1mm)でも十分検出できた。クラッド直下の UCC模擬の内部欠陥では、欠陥高さ2.4mm (2a:4.8mm)の欠陥が検出できることを確認した。 70°(クラッド表面近傍内部欠陥)</li> <li>(2)屈折角60°(横波)では、欠陥深さ11mm(母材側深さ7mm)を超える深い 欠陥は検出できた。また、UCC模擬の内部欠陥では、欠陥高さ3.8mm (2a:7.6mm)の欠陥が検出できることを確認した。</li> </ul> |                                                                                                                           |  |
| 備考             | *1:鉤括弧内数値は検出可能な最小欠陥深さの欠陥と同じアスペクト比における評価不要欠陥深さ(クラッド厚さ含む)また、くは最小欠陥の検出率が100%であり、検出限界がそれ以下であることを示す。                                                                                                                                                                                       |                                                                                                                           |  |

## 2-1 炉心領域

### 原子炉容器超音波探傷試験装置




\*三菱重工業(株) リーフレットより抜粋

## 2-2 一次冷却材ノズルコーナー部

#### 2-2-1 点検の概要

- ▶ 原子炉容器の低合金鋼の内表面は厚さ5mm程度のステンレスクラッドが非強度部材として施工されており、一次冷却材から保護されている。また、設計上、疲労損傷が発生しないよう、表面は応力集中部が出来ないよう適切なR加工を施すなどの配慮がなされている。
- ▶ 建設時にはステンレスクラッド全面に対してPTを実施して、表面欠陥がないことを確認している。供用期間中はコーナー部の母材に対してUTを実施しているが、強度部材ではないステンレスクラッドに対しては表面試験を行なっていない。
- ▶ 一次冷却材ノズルコーナー部は、原子炉容器の低合金鋼部において比較的疲労累積係数の高い形状変化部位となっていることから、クラッド表面に対して表面試験を実施することで、疲労損傷だけでなく、従来の知見を上回る劣化事象がないことを確認している。
- ▶ なお、高浜3,4号炉と高浜1,2号炉及び美浜3号炉において点検方法に違いはない。





ノズルコーナー部探傷時は、 ECT用の先端工具に取替

## 2-2 一次冷却材ノズルコーナー部

#### 2-2-2 点検方法

- ▶ 入口管台・出口管台の全数(入口管台3箇所、 出口管台3箇所)を試験対象として選定している。
- ▶ 運用ガイドではPTの適用も認められているが、放射 線環境が厳しいことから、水中環境での自動探傷 が可能なECTを適用した。
- ▶ クラッド部については、透磁率変化に起因したノイズ 信号が発生することから、評価精度の向上のため、 通常型プローブに加えて磁気飽和型(MAG型) プローブも併せて適用した。

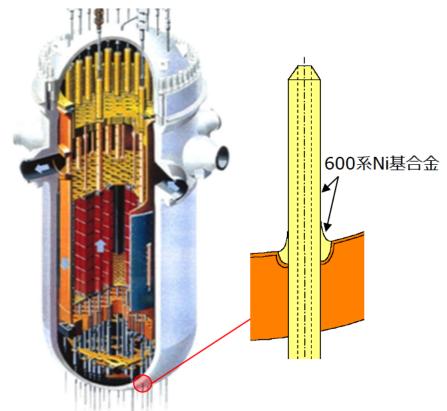
#### 2-2-3 点検方法の妥当性

- ➤ 一次冷却材ノズルコーナー部に対するECTは、 JEAG4217-2010「原子力発電所用機器におけ る渦電流探傷試験指針」(以下「JEAG4217-2010 という。)を準用して実施した。
- ▶ 特別点検に際し、疲労き裂を付与した試験片を製 作し、クラッド表面に開口する1mm程度の疲労き 裂を十分検出できることを確認していることから、今 回適用した点検方法は、クラッドの状態を確認する 上で十分な欠陥検出性を有している。

# 通常型プローブによる波形例 磁気飽和型(MAG型)プローブによる波形例 疲労き裂付与試験片の破壊試験結果

枠囲みの範囲は機密に係る事項ですので公開することはできません。

## 2-3 炉内計装筒


#### 2-3-1 点検の概要

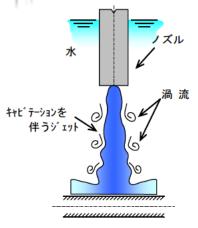

▶ 原子炉容器炉内計装筒(以下「BMI」という。)は、 600系Ni基合金により製造されており、応力腐食割れ(以下「SCC」という。)に対する感受性があることが知られているため、溶接時に残留応力が発生する BMI内外面、溶接部ともに、ウォータジェットピーニング (以下「WJP」という。)を施工している。

表 WJPの実績

|                    | 実施時期                      |                           |  |
|--------------------|---------------------------|---------------------------|--|
|                    | 高浜3号炉                     | 高浜4号炉                     |  |
| BMI内面<br>及び<br>溶接部 | 2007~2008年度<br>(第18回定期検査) | 2009~2010年度<br>(第19回定期検査) |  |

- ➤ 供用期間中は、原子炉容器外面からのベアメタル検 査により漏洩の有無を確認しているが、原子炉容器内 面側からのBMIに対する定期的な試験計画はない。
- ▶ 今回の特別点検では、SCCの発生が懸念されるBMI 内面の熱影響部、及び溶接部を試験範囲とすること で、WJPによるSCCに対する予防保全対策の有効性 を確認している。
- ▶ なお、高浜3,4号炉と高浜1,2号炉及び美浜3号炉 において点検方法に違いはない。





WJP施工の模式図

## 2-3 炉内計装筒

#### 2-3-2 点検方法

- ➤ 試験対象はBMI全数(50本)
- ➤ BMIの内面についてはECT、溶接部については MVT-1を実施した。
- ▶ 試験範囲は溶接部や残留応力発生範囲を十分包含するよう設定している。

#### 2-3-3 点検方法の妥当性

- ▶ BMI内面に対するECTは、JEAG4217-2010 を準用して実施した。
- ➤ 発電設備技術検査協会の確性試験において、 BMI内面ECTで0.5mm程度のSCC欠陥の検 出が可能であることが確認されており、今回の特 別点検においても同等の検出性を有するプロー ブを使用している。
- ➢ 溶接部のMVT-1については、JSME S NA1-2012/2013/2014「発電用原子力設備規格 維持規格」に従い、0.025mm幅のワイヤが識 別可能な手法により試験を行っており、各々の BMIの試験前後で視認性を確認している。
- ➤ 以上のことから、両試験はSCCに対して十分な 欠陥検出性を有している。



枠囲みの範囲は機密に係る事項ですので公開することはできません。

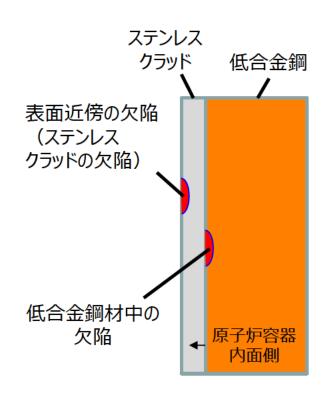
## 2-4 点検方法のまとめ

| 音 | 邓位              | 通常の点検                                                                                                        | 特別点検                                                                                            | 対象範囲                                                            |
|---|-----------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|   | び溶接部<br>或の100%) | ·溶接線+母材10mm幅<br>·超音波探傷試験(UT)<br>·頻度 1回/検査間隔※                                                                 | ·炉心領域100%<br>·超音波探傷試験(UT)                                                                       | 【通常の点検】                                                         |
|   | 冷却材<br>]ーナー部    | ・ノズルコーナー (母材)<br>・超音波探傷試験 (UT)<br>・頻度 1回/検査間隔※                                                               | ・ノズルコーナー (クラッド)<br>・渦流探傷試験 (ECT)                                                                | スロノズルコーナー 【通常の点検】 【特別点検】 【特別点検】 出口ノズルコーナー                       |
| В | BMI             | <ul> <li>・BMI貫通部の外面側</li> <li>・原子炉容器外面からの直接</li> <li>目視(ほう酸の付着等がないことを確認)</li> <li>・頻度 1回/検査間隔※の半分</li> </ul> | <ul> <li>・BMI内面:</li> <li>渦流探傷試験(ECT)</li> <li>・溶接部</li> <li>じょうかわりによる目視<br/>(MVT-1)</li> </ul> | 【特別点検】<br>BMI内面:ECT<br>溶接部:MVT-1<br>【通常の点検】<br>貫通部外面側から<br>直接目視 |

※検査間隔は10年間、第4回目以降の検査間隔は7年間

# 3. 点検結果

## 3. 点検結果


| 対象の<br>機器・構造物 | 対                                                                                            | 象部位                                                                                                              | 特別点検実施期間<br>() 内はデータ採取日                                                                                         | 点検結果                                                       |
|---------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|               | 母材及び溶接部<br>(炉心領域の<br>100%)                                                                   |                                                                                                                  | 高浜3号炉<br>2022.9.26~2022.9.30<br>(2020.9.17~2021.1.7)<br>高浜4号炉<br>2022.10.11~2022.10.17<br>(2022.8.13~2022.10.7) | ➤ 表面近傍の深さ5mm程度の欠陥が<br>検出可能なUTにより確認した結果、<br>有意な欠陥は認められなかった。 |
| 原子炉容器         | ー次冷却材<br>ノズルコーナー部<br>(クラッド部)<br>入口管台 3 箇所<br>出口管台 3 箇所<br>8MI内面<br>BMI<br>(全数<br>50本)<br>溶接部 | 高浜3号炉<br>2022.9.26~2022.9.30<br>(2020.10.7~2021.1.7)<br>高浜4号炉<br>2022.10.11~2022.10.17<br>(2022.8.23~2022.10.7)  | ➤ 1mm程度の欠陥が検出可能なECT<br>により確認した結果、有意な欠陥は<br>認められなかった。                                                            |                                                            |
|               |                                                                                              | 高浜3号炉<br>2022.9.26~2022.9.30<br>(2020.9.3~2020.10.15)<br>高浜4号炉<br>2022.10.11~2022.10.17<br>(2022.7.22~2022.8.24) | ▶ 0.5mm程度のSCC欠陥が検出可能なECTにより確認した結果、有意な欠陥は認められなかった。                                                               |                                                            |
|               |                                                                                              |                                                                                                                  | ▶ 0.025mm幅ワイヤが識別可能な<br>MVT-1により確認した結果、有意な<br>欠陥は認められなかった。                                                       |                                                            |

# 4. 特別点検で得られた知見

## 4. 特別点検で得られた知見

#### 4-1 表面近傍の欠陥(ステンレスクラッドの欠陥)

- ➤ ステンレスクラッドについては、建設時にPTを実施し表面に欠陥が 無いことを確認しており、疲労等の観点から供用期間中のステンレ スクラッド(非強度部材)の経年劣化の可能性は小さい。
- ➢ 溶接部に対する供用期間中検査においてもクラッド部に有意な欠陥は認められていない。
- ▶ 今回の特別点検では、比較的疲労累積係数の高いノズルコーナー部に対してECT、炉心領域100%に対して斜角法70°UTを実施した結果、ステンレスクラッドで疲労やSCCのような有意な経年劣化は発生しておらず、低合金鋼はクラッドにより適切に保護されていることが確認できた。

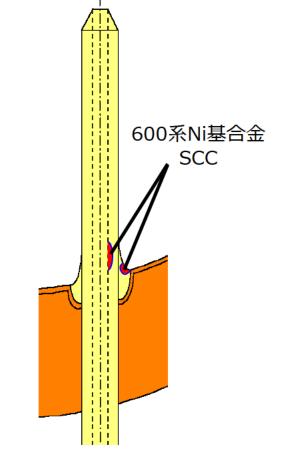


#### 4-2 低合金鋼材中の欠陥

- ▶ 原子炉容器胴部を構成する板材については、その製法の特徴から、母材中に板厚方向の欠陥は想定されない。
- ▶ 溶接入熱条件によりクラッド溶接時に原子炉容器内表面近傍に発生するとされるアンダークラッドクラッキング(以下「UCC」という。)についても、母材の化学成分を踏まえたクラッド溶接入熱の管理により発生を防止している。
- ▶ 炉心領域の溶接部については、熱影響部も含めて供用期間中検査としてUTを実施しており、 UCCのような欠陥は認められていない。

## 4. 特別点検で得られた知見

#### 4-2 低合金鋼材中の欠陥(つづき)


▶ 今回の特別点検では、炉心領域100%に対して斜角法70°UTを実施(45°、60°及び垂直 法も合わせて実施)した結果、炉心領域全域において、PTS評価に影響を及ぼすような有意 な欠陥は認められなかった。

▶ なお、垂直法で一部に不連続部エコーが確認されたが、斜角法のいずれでも検出されていないことから、割れ等の板厚方向の有意な欠陥ではなく、製造過程で発生した板厚に平行な微小スプラグラグを表します。

不連続部指示であると考えられる。

#### 4-3 600系Ni基合金のSCC

- ▶ 従来の知見としては、WJPの施工により、表面の応力状態を圧縮 とすることで、SCCの発生を防止しており、ピーニング効果の持続性 についても問題ないと考えられている。
- ▶ 今回の特別点検では、BMI内面ECT、溶接部MVT-1により欠陥が認められなかったことから、WJPは600系Ni基合金のSCCに対する予防保全対策として有効に機能していることを確認できた。



# 5. まとめ

## 5. まとめ

- ▶ 原子炉容器の特別点検においては、通常の定期点検の範囲を拡大し、以下の範囲 に対して点検を行った結果、いずれの点検においても有意な欠陥は認められなかった。
  - ・ 母材及び溶接部(炉心領域の100%)
  - 一次冷却材ノズルコーナー部のクラッド(入口管台3箇所、出口管台3箇所)
  - · BMI内面の溶接熱影響部及び溶接部 (BMI全数50本)
- ➤ これら点検の結果から以下が確認できた。
  - ・ 炉心領域全域において、PTS評価に影響を及ぼすような有意な欠陥は認められなかった。
  - 一次冷却材ノズルコーナー部において、ステンレスクラッドで有意な経年劣化は発生しておらず、低合金鋼がクラッドにより適切に保護されていることが確認できた。
  - ・ BMIにおいて、600系Ni基合金のSCCに対する予防保全対策として実施した WJPが有効に機能していることを確認できた。
- ⇒ 劣化状況評価にあたっては、特別点検の結果を踏まえ、評価を実施した。

# 参考

## 予防保全活動

高浜3,4号炉の原子炉容器に対する予防保全活動を示す。

| 部位       予防保全活動                                                          |                                                                 | 実施時期                                                                       |                         |
|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|
|                                                                          |                                                                 | 3号炉                                                                        | 4号炉                     |
| 上蓋管台                                                                     | SCC対策の予防保全として上蓋一式取替                                             | 第18回定検<br>(2007~2008年度)                                                    | 第17回定検<br>(2007年度)      |
| 出入口管台                                                                    | SCC対策の予防保全としてWJP施工                                              | 第18回定検<br>(2007~2008年度)                                                    |                         |
| 異材継手                                                                     | セーフエンドの<br>異材継手<br>SCC対策の予防保全として溶接部内面全周を<br>研削後に690系Ni基合金で溶接を実施 |                                                                            | 第20回定検<br>(2011~2017年度) |
| ВМІ                                                                      | SCC対策の予防保全としてWJP施工                                              | 第18回定検<br>(2007~2008年度)                                                    | 第19回定検<br>(2009~2010年度) |
| <ul><li>○上蓋管台</li><li>600系Ni基合金のS<br/>耐食性のある690系<br/>用いた上蓋に取替を</li></ul> | Ni基合金を                                                          | 〇出入口管台セーフエンドの野高浜3号炉では600系Nii<br>SCC対策としてWJPを、高には溶接部内面全周を研削<br>Ni基合金で溶接を実施。 | 基合金の<br>浜4号炉で           |