

H4-CA-273-R00

浜岡原子力発電所 基準地震動の策定について

2023年8月1日

基準地震動Ssの策定の全体像及び本資料における説明箇所

第1162回 資料1-1 p.1 一部修正

1 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針	·····p.4~ ·····p.7~ ·····p.10~ ·····p.18~
1.4 基準地震動の策定(概要)	•••••p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	•••••p.93~

- 補足説明資料① 免震構造を採用した緊急時ガスタービン発電機建屋について
- 補足説明資料② 応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との 継続時間の比較
- 補足説明資料③ プレート境界の形状に関する知見について (第1041回審査会合資料のコメント回答の追加分析)

1 検討概要 1 1 基本方針	•••••p.4~
1.1 基本の面 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要)	····p.10~ ····p.18~ ····p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	••••p.93~

<1 検討概要> 基準地震動の策定方針 (基本方針)

【基本方針(1.1参照)】

○基準地震動Ssは、「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」の評価結果の周期0.02 ~5秒の応答スペクトルに基づき、「応答スペクトルに基づく手法による基準地震動」、「断層モデルを用いた手法による基準地震動」、 「震源を特定せず策定する地震動による基準地震動」を策定する。

<1 検討概要> 基準地震動の策定方針 (浜岡原子力発電所の特徴を踏まえた基準地震動の策定方針)

【地震動の顕著な増幅を踏まえた基準地震動の策定方針(1.2参照)】

 ○敷地は、S波低速度層の影響の有無により、地震動の顕著な増幅が見られない敷地西側(1~4号炉周辺)と地震動の顕著な 増幅が見られる敷地東側(5号炉周辺)とに分かれることを踏まえ、<u>敷地西側(1~4号炉周辺)で用いる基準地震動Ss1と</u> <u>敷地東側(5号炉周辺)で用いる基準地震動Ss2をそれぞれ策定</u>。
 ○敷地東側(5号炉周辺)の基準地震動Ss2は、S波低速度層の影響による地震動の顕著な増幅を考慮して策定する。

【免震構造の採用を踏まえた基準地震動の策定方針(1.3参照)】

 ○免震構造物は、免震構造審査ガイドを踏まえ、免震構造物の固有周期の2倍の周期までに着目し、**固有周期の2倍の周期が5秒** 以下の免震構造物を対象とすることとし、別途「免震設計に用いる基準地震動」を策定せず、周期0.02~5秒の応答スペクトルに 基づき策定する基準地震動を免震設計にも用いることとする。

○また、免震構造物は、地震動の顕著な増幅が見られない敷地西側(1~4号炉周辺)に設置するものを対象とすることとし、敷地 西側(1~4号炉周辺)で用いる基準地震動Ss1を免震設計にも用いる。

1 検討概要	••••p.4~
1.1 基本方針	•••••p.7~
1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針	•••••p.10~
1.3 免震構造の採用を踏まえた基準地震動の策定方針	••••p.18~
1.4 基準地震動の策定(概要)	•••••p.27~
2 基準地震動の策定	
2.1 応答スペクトルに基づく手法による基準地震動	•••••p.42~
2.2 断層モデルを用いた手法による基準地震動	•••••p.57~
2.3 震源を特定せず策定する地震動による基準地震動	•••••p.66~
3 まとめ	•••••p.72~
補足説明資料	•••••p.93~

<1 検討概要 1.1 基本方針> 基準地震動の策定の基本方針

○基準地震動(敷地西側(1~4号炉周辺)の基準地震動Ss1及び敷地東側(5号炉周辺)の基準地震動Ss2)は、それ ぞれ「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」の評価結果の周期0.02~5秒の応答ス ペクトルに基づき、「応答スペクトルに基づく手法による基準地震動」、「断層モデルを用いた手法による基準地震動」、「震源を特 定せず策定する地震動による基準地震動」を策定。

【応答スペクトルに基づく手法による基準地震動】

○応答スペクトルに基づく手法による基準地震動Ss-Dは、応答スペクトルに基づく手法による地震動評価結果を包絡し、断層モデルを 用いた手法による地震動評価結果も踏まえて設定。

【断層モデルを用いた手法による基準地震動】

○断層モデルを用いた手法による基準地震動は、断層モデルを用いた手法による地震動評価結果において、応答スペクトルに基づく手法による基準地震動Ss-Dを上回るケースから、Ss-Dを上回る周期で最大の応答スペクトルとなる地震動を設定。

【震源を特定せず策定する地震動による基準地震動】

○震源を特定せず策定する地震動による基準地震動は、震源を特定せず策定する地震動の評価結果において、応答スペクトルに基づく手法による基準地震動Ss-Dを上回るケースから、Ss-Dを上回る周期で最大の応答スペクトルとなる地震動を設定。

 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 其進地震動の策定(概要) 	•••••p.4~ •••••p.7~ •••••p.10~ •••••p.18~ •••••p.27~
2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	•••••p.93~

【敷地における地震動の増幅特性(第1041回審査会合資料2-2-2参照)】 ○地震観測記録及び地下構造調査結果に基づき、敷地における地震動の増幅特性を分析。 ○5号炉周辺の観測点において、地震動の顕著な増幅は、①特定の到来方向(N30E~N70E)の地震波のみに、②短周期の特定 の周期帯(フーリエスペクトルの周期0.2~0.5秒)では見られるが、その他の地震波到来方向では見られない。 ○1~4号炉周辺の観測点において、地震動の顕著な増幅は、いずれの地震波到来方向でも見られない。

 【地震動の顕著な増幅を踏まえた基準地震動の策定方針】
 ○敷地は、S波低速度層の影響の有無により、地震動の顕著な増幅が見られない敷地西側(1~4号炉周辺)と地震動の顕著な 増幅が見られる敷地東側(5号炉周辺)とに分かれることを踏まえ、敷地西側(1~4号炉周辺)で用いる基準地震動Ss1と 敷地東側(5号炉周辺)で用いる基準地震動Ss2をそれぞれ策定。
 ○敷地東側(5号炉周辺)の基準地震動Ss2は、S波低速度層の影響による地震動の顕著な増幅を考慮して策定する。

・敷地西側(1~4号炉周辺)のSs1領域と敷地東側(5号炉周辺)のSs2領域の設定は次ページ参照。

・敷地西側(1~4号炉周辺)で用いる基準地震動Ss1と敷地東側(5号炉周辺)で用いる基準地震動Ss2の策定方針は次々ページ参照。

地震動の顕著な増幅 が見られない。			地震動 が見られ	の顕著な増幅 こる。		
				S波伯	氏速度層の影響による地	震動の顕著な増幅を考慮
敷地調	西側(1~4号炉周 基準地震動Ss1	辺)		敷	也東側(5号炉周辺 基準地震動Ss2	1
応答スペクトルに基づく 手法によるSs1	断層モデルを用いた 手法によるSs1	震源を特定せず策定 する地震動によるSs1		芯答スペクトルに基づく 手法によるSs2	断層モデルを用いた 手法によるSs2	震源を特定せず策定 する地震動によるSs2

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

・緊急時ガスタービン発電機建屋の位置を追記。 ・下線(____)は、一部修正箇所を示す。 12 【敷地西側(1~4号炉周辺)で用いる基準地震動Ss1と敷地東側(5号炉周辺)で用いる基準地震動Ss2の策定方針】 ○敷地西側(1~4号炉周辺)の基準地震動Ss1は、「地震動の顕著な増幅を考慮しない地震動評価」の結果に基づき策定。 ○敷地東側(5号炉周辺)の基準地震動Ss2は、「地震動の顕著な増幅を考慮する地震動評価」の結果に基づくとともに、長周期側 で大きいケースがある「地震動の顕著な増幅を考慮しない地震動評価」の結果にも基づき策定する(次ページ参照)。

・「敷地ごとに震源を特定して策定する地震動(地震動の顕著な増幅を考慮しない)」、「敷地ごとに震源を特定して策定する地震動(地震動の顕著な増幅を考慮)」、「震源を特定せず 策定する地震動」の概要は次々ページ以降を参照(詳細は、「敷地ごとに震源を特定して策定する地震動」は第1041回審査会合資料2-2-2、「震源を特定せず策定する地震動」は第 1162回審査会合資料1-1を参照)。

【敷地東側(5号炉周辺)で用いる基準地震動Ss2の策定方針】 ○「地震動の顕著な増幅を考慮する地震動評価」は、「地震動の顕著な増幅を考慮しない地震動評価」より全ての周期帯で大きくなる 評価を行うものではなく、地震動の顕著な増幅は特定の地震波到来方向で短周期の特定の周期帯のみに見られるとの特徴を反映 した評価を行っている。 ○そのため、例えば、プレート間地震では、「地震動の顕著な増幅を考慮した地震動評価」において、地震動の顕著な増幅が見られる地 震波到来方向(N30E~N70E)に強震動生成域を配置した震源モデルを設定し、短周期の特定の周期帯を顕著に増幅させる地震 動評価を行っており[※]、応答スペクトルの長周期では、「地震動の顕著な増幅を考慮しない地震動評価」の方が大きいケースがある。 ⇒敷地東側(5号炉周辺)の基準地震動Ss2は、「地震動の顕著な増幅を考慮する地震動評価」の結果に基づくとともに、「地震動 の顕著な増幅を考慮しない地震動評価」の結果にも基づき策定する。

※敷地ごとに震源を特定して策定する地震動の詳細は、第1041回審査会合資料2-2-2参照。

<1 検討概要 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針> 基準地震動の策定方針

第1041回 資料2-2-2 p.137 一部修正

(敷地ごとに震源を特定して策定する地震動(地震動の顕著な増幅を考慮しない)の概要)

<mark>敷地ごとに震源を特定して策定する地震動(地震動評価(地震動の顕著な増幅を考慮しない))</mark> ・ 敷地ごとに震源を特定して策定する地震動の詳細は、第1041回審査会合資料2-2-2参照				
【内陸地殼内地震】	【プレート間地震】	【海洋プレ		
【検討用地震】	【検討用地震】	【検討用地震】	【検討用地震(長周期帯に着目)】	
○ 御前崎海脚西部の断層帯による地震(M7.4)○ A-17断層による地震(M7.2)	 ○ 内閣府(2012)による南海トラフで想定される 最大クラスの地震(Mw9.0) 	 ○ 敷地下方の想定スラブ内地震 (M7.0) 	○ 御前崎沖の想定沈み込む海洋プ レート内地震(M7.4)	
【基本震源モデルの設定】	【基本震源モデルの設定】	【基本震源モデルの設定】	【基本震源モデルの設定】	
○ 地質調査結果や強震動予測レシピに基づき設定した震源モデル ※1,2	 内閣府(2012)の最大クラスの地震の強震断層 モデル^{*8}に基づき、破壊開始点を追加して設定した震源モデル^{*9} 	 2009年駿河湾の地震(本 震)^{※11}の震源特性を反映して 設定した震源モデル^{※12,13} 	 2004年紀伊半島南東沖の地震 (本震)^{*14}の震源特性を反映して設定した震源モデル^{*15,16} 	
【不確かさの考慮】	 【不確かさの考慮】	 【不確かさの考慮】	【不確かさの考慮】	
 アスペリティの応力降下量の不確かさ (新潟県中越沖地震の知見を踏まえ強震動予測レシピによるアスペリティの応力降下 量の1.5倍を考慮) ^{×3} 破壊伝播速度の不確かさ (0.72β → 0.87β) ^{×4} 断層傾斜角の不確かさ (35° → 25°) ^{×5} アスペリティの数の不確かさ^{×6} (2つ → 1つに集約して敷地に近い位置に配置) アスペリティの応力降下量と破壊伝播速度の不確かさの組合せ^{×7} アスペリティの応力降下量と断層傾斜角の不確かさの組合せ^{×7} 破壊伝播速度と断層傾斜角の不確かさの組合せ^{×7} 破壊伝播速度と断層傾斜角の不確かさの組合せ^{×7} ※1 アスペリティの位置の不確かさ、破壊開始点の不確かさの組合せ^{×7} ※2 地震発生層上端深さは、微小地震のほとんどが深さ8km以深で発生しているが、ごく一部の微小地震が深さ8km以浅で発生していることを踏まえて深さ5kmに設定。 ※3 壇・他(2001)による関係式 (A=4πr_aΔσ_aβ²) に基づき、短周期レベルも1.5倍。 ※4 βはS波速度を表す。 ※5 震源断層が拡大するようさらに低角の断層傾斜角を考慮。 ※7 A-17断層は地表に痕跡はないものの断層を地表に投影すると敷地の近くにあることを踏まえ、A-17断層による地震で考慮。 	 強震動生成域の位置の不確かさ※10 (過去地震の位置→敷地直下) 強震動生成域の位置と地震規模の不確かさの 組合せ※10 (Mw9.0 → Mw9.1) 強震動生成域の位置と分岐断層の強震動励 起特性に係る不確かさの組合せ※10 強震動生成域の位置と内陸地殻内地震の震 源として考慮する活断層への破壊伝播に係る 不確かさの組合せ※10 **8 内閣府(2012)の強震断層モデル(Mw9.0、基本ケース) **9 地震規模の不確かさ、強震動生成域の応力降下量の不確か さ、破壊開始点の不確かさを予め考慮。 **10 強震動生成域の位置の不確かさについては、過去地震の震度 分布により特定されているため、基本的には認識論的な不確か さに分類されると考えられるが、偶然的な不確かさの要素も有し ており、また、この不確かさを考慮した震源モデルは敷地への影 響が大きいことを踏まえ、不確かさの考慮におけるペースモデルと して扱うこととし、不確かさの組合せも考慮。 	 ○ 短周期レベルの不確かさ (笹谷・他(2006)に基づき、沈み込んだ 深い海洋ブレート内地震の震源特性 (短周期レベル)を考慮) ○ 強震動生成域の数の不確かさ (2つ→1つに集約) ● 断層傾斜角の不確かさ (45°→20°、90°) ● 地震規模の不確かさ (M7.0→M7.4) ● 震源深さの不確かさ (23km→13.8km) ● 断層位置の不確かさ (200強震動生成域からの地震波が同時に敷地に到達するよう配置したケース を考慮) ※11 敷地への影響が最も大きかった最大規模の 沈み込んだ浅い海洋プレート内地震。 	 破壊伝播速度の不確かさ (2.0km/s → 2.55km/s (0.72β)) ^{※4} 断層傾斜角の不確かさ	
【地震動評価(地震動の顕著な増幅を考慮しない)】				
【応答スペクトルに基づく手法】 【断層モデルを用いた手法】				
 ○ Noda et al.(2002)の方法^{※18,19} ○ 統計的グリーン関数法と波数積分法によるハイブリッド合成法 				
※18 Noda et al.(2002)に基づく内陸地震に対する補正は考慮しない。プレート間地震は強震動生成域の応力降下量の不確かさの影響を反映した評価も実施。海洋プレート内地震は観測記録に基づく補正係数を考慮。 ※19 Noda et al.(2002)の方法が適用範囲外となる震源モデルはその他の手法を用いて評価。				

<1 検討概要 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針>

基準地震動の策定方針

(敷地ごとに震源を特定して策定する地震動(地震動の顕著な増幅を考慮)の概要)

第1041回 資料2-2-2 p.138 一部修正 <1 検討概要 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針> 基準地震動の策定方針

(震源を特定せず策定する地震動の概要)

○震源を特定せず策定する地震動は、標準応答スペクトルと2004年北海道留萌支庁南部の地震の基盤地震動について、敷地の一次元地下構造モデルを用いて評価した地震動(顕著な増幅を考慮しない)と地震動の顕著な増幅を考慮する地震動を考慮。

※ 断層モデルを用いた手法で採用した増幅係数を乗じる方法により、地震動の顕著な増幅を考慮する地震動評価を実施(顕著な増幅を考慮しない地震動の評価結果に増幅 係数(フーリエスペクトル比)を乗じることにより、顕著な増幅を考慮した地震動を評価)。

第1162回 資料1-1 p.5 一部修正

 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要) 	····p.4~ ····p.7~ ····p.10~ ····p.18~ ····p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	••••p.93~

<1 検討概要 1.3 免震構造の採用を踏まえた基準地震動の策定方針> 別途「免震設計に用いる基準地震動」を策定するか否かの検討

【耐震設計に用いる基準地震動】

○耐震設計に用いる基準地震動は、短周期に着目し、地震動評価結果の周期0.02~5秒の応答スペクトルに基づき策定。 (浜岡原子力発電所の基準地震動Ss1及びSs2は、地震動評価結果の周期0.02~5秒の応答スペクトルに基づき策定。)

地西側(1~4号炉周辺)で用いる基準地震動Ss1を免震設計にも用いる。

<1 検討概要 1.3 免震構造の採用を踏まえた基準地震動の策定方針> 免震構造を採用した緊急時ガスタービン発電機建屋

【免震構造を採用した緊急時ガスタービン発電機建屋(詳細は補足説明資料①参照)】

○緊急時ガスタービン発電機(GTG)の建屋は、敷地西側(1~4号炉周辺)のSs1領域に位置し(p.12参照)、地上1階建ての建屋で、 <u>1階(免震層の上部基礎版上)に設置するGTG(固有周期は0.02秒程度の極短周期)に作用する地震力を低減させることを目的として、</u> 免震構造を採用。

○免震装置は、鉛プラグ入り積層ゴム及び弾性すべり支承を採用。また、鋼材ダンパーに加え、オイルダンパーを設置して十分な減衰効果を確保。 ○免震層の固有周期は2秒程度※(固有周期がやや短いが、1階(上部基礎版)の極短周期の揺れは十分に低減。)

※免震層の固有周期は、地震応答解析モデルに基づき固有値解析により算定(p.99参照)。

T.P. 40.80

T.P. 36.10

2.9

11.0

<GTG建屋の構造断面図(単位:m)>

22.0

11.0

GL T.P. 40.35

7.8

免震装置

下部基礎版

.

 \otimes

鉛プラグ入り積層ゴム

弾性すべり支承

綱材ダンパー

オイルダンパー

< 免震装置の配置図(単位:m)>

<1 検討概要 1.3 免震構造の採用を踏まえた基準地震動の策定方針> 「敷地からの距離は離れているが地震規模の大きな地震」に係る確認

【「敷地からの距離は離れているが地震規模の大きな地震」に係る確認】 ○免震構造審査ガイドを踏まえ、短周期における影響が大きい「敷地からの距離が近い地震」と比べて、短周期における影響は小さくても やや長周期における影響が大きい地震として、「敷地からの距離は離れているが地震規模の大きな地震」について確認する。

【「敷地からの距離は離れているが地震規模の大きな地震」の検討が必要な場合】

基準地震動の策定に当たり想定している短周期における影響が大きい敷地からの距離が近い検討用地震と比べて、より地震規模が大きい地震が敷地からの 距離が離れた場所に想定される場合*は、その「敷地からの距離は離れているが地震規模の大きな地震」のほうがやや長周期の影響が大きい可能性があることから、その地震を考慮した基準地震動の策定が必要。

※ 例えば、短周期における影響が大きい敷地からの距離が近い地震が、M7クラスの内陸地殻 内地震である場合、敷地から離れた位置のM9クラスのプレート間地震の方がやや長周期の 影響が大きい地震となる場合が想定され得る(右図参照)。

<1 検討概要 1.3 免震構造の採用を踏まえた基準地震動の策定方針> 「敷地からの距離は離れているが地震規模の大きな地震」に係る確認

震や千島海溝のM8.8程度以上のプレート間地震が想定されている。

⇒浜岡原子力発電所は、南海トラフのMw9.0のプレート間地震の震源域 に位置し、この地震より敷地への影響が大きい、「<u>敷地からの距離は離</u> れているが地震規模の大きな地震」は想定されない。

(浜岡原子力発電所は、敷地への影響が大きい地震が短周期とやや長 周期とで同じ南海トラフの最大クラス(Mw9.0)のプレート間地震。)

※ 内閣府(2012)による最大クラスの地震について、内閣府(2015)による最大クラスの長周期地震と比べ、短 周期レベルだけでなく、やや長周期の地震動に影響する強震動生成域の地震モーメントも大きいことを確 認(第1041回審査会合資料2-2-5 補足説明資料③-10 p.190参照)。

<1 検討概要 1.3 免震構造の採用を踏まえた基準地震動の策定方針> 南海トラフの最大クラス(Mw9.0)のプレート間地震の地震動評価の概要

【南海トラフの最大クラス(Mw9.0)のプレート間地震の地震動評価(第1041回審査会合資料2-2-2参照)】

○ 南海トラフの最大クラス(Mw9.0)のプレート間地震の断層モデルを用いた手法による地震動評価においては、短周期を対象とする統計的グリーン関数法に よる評価に加え、やや長周期を対象とする理論的手法による評価も行うハイブリッド法を用いて地震動評価を実施^{※1}。

○ また、やや長周期も強震動生成域の影響が大きいこと^{※2}を踏まえ、強震動生成域を敷地直下に配置したケースを複数設定したうえで、破壊開始点を複数 設置する際に破壊の伝播方向が敷地へ向かうよう配置して、やや長周期に影響するディレクティビティ効果を考慮した地震動評価を実施。

※1 南海トラフの最大クラスの地震の地震動評価について、内閣府(2012)では短周期を対象として統計的グリーン関数法のみにより地震動評価を行い、内閣府(2015)ではやや長周期を対象として理論的手法のみ により地震動評価を行っていることに対し、浜岡原子力発電所の基準地震動の策定に当たっては、短周期とやや長周期の両方を対象としてハイブリッド法により地震動評価を実施。

※2 川辺・釜江(2013)やKurahashi and Irikura(2013)は、やや長周期を含む周期10秒までを対象として、強震動生成域のみの断層モデルにより2011年東北地方太平洋沖地震の観測記録を再現している。また、 これらの知見を踏まえ、内閣府(2015)は、南海トラフ沿いの長周期地震の断層モデルを強震動生成域のみの断層モデルとして設定している。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 検討概要 1.3 免震構造の採用を踏まえた基準地震動の策定方針> 免震設計にも用いる応答スペクトルに基づく手法による基準地震動Ss1-Dの検証

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 検討概要 1.3 免震構造の採用を踏まえた基準地震動の策定方針> 免震構造の採用を踏まえた基準地震動の策定方針(まとめ)

【免震構造の採用を踏まえた基準地震動の策定方針】

- ○免震構造物の固有周期の2倍の周期までに着目し、**固有周期の2倍の周期が5秒以下の免震構造物を対象**として、別途「免震設計に用いる基準地震動」を策定せず、周期0.02~5秒の応答スペクトルに基づき策定した基準地震動を免震設計にも用いることとする。
- ○また、免震構造物は、地震動の顕著な増幅が見られない敷地西側(1~4号炉周辺)に設置するものを対象とすることとし、<u>敷地</u> 西側(1~4号炉周辺)で用いる基準地震動Ss1を免震設計にも用いる。
- ○浜岡原子力発電所は南海トラフのプレート間地震の震源域に位置し、<u>敷地への影響が大きい地震が短周期とやや長周期とで同じ</u> 南海トラフの最大クラス(Mw9.0)のプレート間地震であることから、「敷地からの距離は離れているが地震規模の大きな地震」 の検討を別途行う必要がないことを確認した。
- ○免震設計にも用いる応答スペクトルに基づく手法による基準地震動Ss1-Dは、プレート間地震の断層モデルを用いた手法による時 刻歴波形及び国土交通省の技術的助言における基整促波との比較により継続時間等が保守的であることを確認する。

 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要) 	····p.4~ ····p.7~ ····p.10~ ····p.18~ ····p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	••••p.93~

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (基準地震動の策定フロー及び策定結果)

【基準地震動の策定(詳細は2章参照)】

 ○ 敷地西側(1~4号炉周辺)の基準地震動Ss1(地震動の顕著な増幅を考慮しない)と敷地東側(5号炉周辺)の基準地震動Ss2 (地震動の顕著な増幅を考慮)は、それぞれ「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」の評価 結果の周期0.02~5秒の応答スペクトルに基づき、「応答スペクトルに基づく手法による基準地震動」、「断層モデルを用いた手法による基準 地震動」、「震源を特定せず策定する地震動による基準地震動」を策定。

○ 敷地西側(1~4号炉周辺)の基準地震動Ss1は、固有周期の2倍の周期が5秒以下の免震構造物を対象として、免震設計にも用いる。

※標準応答スペクトルに基づく地震動

・敷地ごとに震源を特定して策定する地震動の詳細は、第1041回審査会合資料2-2-2参照。 ・震源を特定せず策定する地震動の詳細は、第1162回審査会合資料1-1参照。

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (応答スペクトルに基づく手法による基準地震動Ss1)

【応答スペクトルに基づく手法による基準地震動Ss1-D(詳細はp.43~参照)】

- ○応答スペクトルに基づく手法による基準地震動Ss1-D(水平動Ss1-D_H、鉛直動Ss1-D_V)は、各検討用地震の応答スペクトルに基づく地震 動評価結果を包絡し、断層モデルを用いた手法による地震動評価結果の形状等も踏まえて設定^{※1,2}。
- ※1 応答スペクトルに基づく手法による基準地震動Ss1-Dは、敷地への影響が大きいプレート間地震の断層モデルを用いた手法による地震動評価結果(水平動が鉛直動の約2倍)も踏まえ、 水平動をより大きく設定した結果、水平動が鉛直動の約2倍(鉛直動が水平動の約0.5倍)の設計用応答スペクトルとしている(詳細はp.45参照)。
- ※2 設計用応答スペクトルに適合する設計用模擬地震動は、振幅包絡線をNoda et al.(2002)の方法に基づき設定(設定パラメータM8.5、Xeq=136.2km)し、一様乱数の位相を用いた方法で作成(詳細はp.46~50参照)。

(水平動)

(応答スペクトルに基づく地震動評価結果との比較)

<応答スペクトルに基づく手法による基準地震動Ss2-Dの設計用応答スペクトルと地震動評価結果との比較>

(EW方向)

(断層モデルを用いた手法による地震動評価結果との比較)

(鉛直動)

(UD方向)

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (断層モデルを用いた手法による基準地震動Ss2)

【断層モデルを用いた手法による基準地震動Ss2(詳細はp.62~参照)】 〇 断層モデルを用いた手法による地震動評価結果(地震動の顕著な増幅を考慮、地震動の顕著な増幅を考慮しない)において、応答スペクトルに基づく手 法による基準地震動Ss2-Dを上回るケースから、Ss2-Dを上回る周期で最大の応答スペクトルとなる地震動を、断層モデルを用いた手法による基準地震動 Ss2として設定。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (震源を特定せず策定する地震動による基準地震動Ss1)

【**震源を特定せず策定する地震動による基準地震動Ss1(詳細はp.67~参照)】** ○ 震源を特定せず策定する地震動の評価結果(地震動の顕著な増幅を考慮しない)において、応答スペクトルに基づく手法による基準地震動Ss1-Dを上 回るケースから、Ss1-Dを上回る周期で最大の応答スペクトルとなる地震動を、震源を特定せず策定する地震動による基準地震動Ss1として設定。

○ 震源を特定せず策定する地震動による基準地震動Ss1として、Ss1-N(標準応答スペクトルに基づく地震動の評価結果(地震動の顕著な増幅を考慮し ない))を設定。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (震源を特定せず策定する地震動による基準地震動Ss2)

【震源を特定せず策定する地震動による基準地震動Ss2(詳細はp.69~参照)】 ○ 震源を特定せず策定する地震動の評価結果(地震動の顕著な増幅を考慮、地震動の顕著な増幅を考慮しない)において、応答スペクトルに基づく手法 による基準地震動Ss2-Dを上回るケースから、Ss2-Dを上回る周期で最大の応答スペクトルとなる地震動を、震源を特定せず策定する地震動による基準地 震動Ss2として設定。

○ 震源を特定せず策定する地震動による基準地震動Ss2として、Ss2-N(標準応答スペクトルに基づく地震動の評価結果(地震動の顕著な増幅を考 慮))を設定。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (基準地震動Ss1 1/2)

○敷地ごとに震源を特定して策定する地震動及び震源を特定せず策定する地震動の評価結果を踏まえ、敷地西側(1~4号炉 周辺)で用いる基準地震動Ss1としてSs1-D、Ss1-1~Ss1-23、Ss1-Nを設定した。

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (基準地震動Ss1 2/2)

黒色:応答スペクトルに基づく手法による基準地震動Ss1、青色:断層モデルを用いた手法による基準地震動Ss1とした内陸地殻内地震(地震動の顕著な増幅を考慮しない)の地震動

紫色:断層モデルを用いた手法による基準地震動Ss1としたプレート間地震(地震動の顕著な増幅を考慮しない)の地震動、

緑色:断層モデルを用いた手法による基準地震動Ss1とした海洋プレート内地震(地震動の顕著な増幅を考慮しない)の地震動、茶色:震源を特定せず策定する地震動による基準地震動Ss1

其進threath Set		最大加速度(cm/s ²)		n/s²)	
		至平地長期531	NS方向	EW方向	UD方向
	Ss1-D	応答スペクトルに基づく手法による基準地震動	12	00	600
	Ss1-1	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を考慮しない)、アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した震源モデル、破壊開始点1	838	879	552
:	Ss1-2	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を考慮しない)、アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した震源モデル、破壊開始点3	996	1115	535
	Ss1-3	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	976	1105	524
	Ss1-4	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1069	1106	579
	Ss1-5	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1057	932	561
— · —	Ss1-6	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1031	1170	513
	Ss1-7	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1046	1103	554
	Ss1-8	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力隆下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1090	1098	510
	Ss1-9	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	996	1173	551
	Ss1-10	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	938	1128	475
	Ss1-11	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	912	1060	461
	Ss1-12	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1027	1058	527
<u> </u>	Ss1-13	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	947	1026	522
	Ss1-14	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	981	1107	468
	Ss1-15	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	939	1121	515
	Ss1-16	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	921	1099	507
	Ss1-17	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))、の破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	852	1016	519
	Ss1-18	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	883	1027	502
	Ss1-19	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	972	1093	586
	Ss1-20	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1037	1033	489
	Ss1-21	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の 不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	866	1035	531
	Ss1-22	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	231	295	127
	Ss1-23	海洋ブレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	214	278	136
	Ss1-N	標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)	10	34	615

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (基準地震動Ss2 1/2)

○敷地ごとに震源を特定して策定する地震動及び震源を特定せず策定する地震動の評価結果を踏まえ、敷地東側(5号炉 周辺)で用いる基準地震動Ss2としてSs2-D、Ss2-1~Ss2-22、Ss2-Nを設定した。

<1 検討概要 1.4 基準地震動の策定(概要)> 基準地震動の策定(概要) (基準地震動Ss2 2/2)

黒色:応答スペクトルに基づく手法による基準地震動Ss2、赤色:断層モデルを用いた手法による基準地震動Ss2としたプレート間地震(地震動の顕著な増幅を考慮)の地震動

水色:断層モデルを用いた手法による基準地震動Ss2とした海洋プレート内地震(地震動の顕著な増幅を考慮)の地震動、紫色:断層モデルを用いた手法による基準地震動Ss2としたプレート間地震(地震動の顕著な増幅を考慮しない)の地震動 緑色:断層モデルを用いた手法による基準地震動Ss2とした海洋プレート内地震(地震動の顕著な増幅を考慮しない)の地震動、桃色:震源を特定せず策定する地震動による基準地震動Ss2

	基準加震動Ss2		最大加速度(cm/s ²)		1/S ²)
			NS方向	EW方向	UD方向
	Ss2-D	<u>そスペクトルに基づく手法による基準地震動</u>		2000	
	Ss2-1	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と地震規模の不確かさの組合せを考慮した震源モデル、破壊開始点3	1734	1903	566
	Ss2-2	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1612	2048	609
	Ss2-3	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1916	2049	669
	Ss2-4	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1608	2094	626
<u> </u>	Ss2-5	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1967	1923	668
<u> </u>	Ss2-6	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(破壊伝播速度の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	2052	1937	630
<u> </u>	Ss2-7	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1665	1933	550
	Ss2-8	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点1	1233	1750	532
<u> </u>	Ss2-9	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点3	1564	1393	492
	Ss2-10	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、震源深さの不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点2	1161	1577	653
	Ss2-11 (Ss1-3)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	976	1105	524
	Ss2-12 (Ss1-4)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1069	1106	579
	Ss2-13 (Ss1-5)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1057	932	561
<u> </u>	Ss2-14 (Ss1-6)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1031	1170	513
	Ss2-15 (Ss1-8)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1090	1098	510
	Ss2-16 (Ss1-12)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1027	1058	527
	Ss2-17 (Ss1-14)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	981	1107	468
<u> </u>	Ss2-18 (Ss1-15)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	939	1121	515
<u> </u>	Ss2-19 (Ss1-18)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	883	1027	502
	Ss2-20 (Ss1-21)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の 不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	866	1035	531
	Ss2-21 (Ss1-22)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	231	295	127
	Ss2-22 (Ss1-23)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	214	278	136
	Ss2-N	準応答スペクトルに基づく地震動の顕著な増幅を考慮) 1766 1766		66	783

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 検討概要 1.4 基準地震動の策定(概要)> 当初申請からの変更点

下線:当初申請からの変更点 【当初申請】 【今回】 【応答スペクトルに基づく手法による基準地震動】 【応答スペクトルに基づく手法による基準地震動】 ○設計用応答スペクトルは、各検討用地震の応答スペクトルに基づく ○設計用応答スペクトルは、各検討用地震の応答スペクトルに基づく 地震動評価結果を包絡し、断層モデルを用いた手法による地震動 地震動評価結果を包絡し、断層モデルを用いた手法による地震動 評価結果の形状等も踏まえて設定。 評価結果の形状等も踏まえて設定。 ○設計用模擬地震動は、Noda et al.(2002)の方法に基づく振幅包 ○設計用模擬地震動は、Noda et al.(2002)の方法に基づく振幅包 絡形状を、プレート間地震の地震規模を踏まえ、M9.0で設定して 絡形状を、プレート間地震のNoda et al.(2002)の方法による評価 に用いる最大規模の見直しを反映し、M8.5で設定して作成※。 作成。 ⇒Ss1-D(水平動:1200cm/s²、鉛直動:600cm/s²) ⇒Ss1-D(水平動: 1200cm/s²、鉛直動: 600cm/s²) Ss2-D(水平動: 2000cm/s²、鉛直動: 700cm/s²) Ss2-D(水平動: 2000cm/s²、鉛直動: 700cm/s²) 【断層モデルを用いた手法による基準地震動】 【断層モデルを用いた手法による基準地震動】 ○応答スペクトルに基づく基準地震動を上回る周期で最大の応答ス ○応答スペクトルに基づく基準地震動を上回る周期で最大の応答ス ペクトルとなる地震動を選定(方向ごとに設定)。 ペクトルとなる地震動を選定(ケース(NS、EW、UDのセット)ご ⇒Ss1:水平動<u>5波(Ss1-1_H~Ss1-5_H)</u> とに設定)。 鉛直動1波(Ss1-1,) <u>Ss2:水平動12波(Ss2-1_H~Ss2-12_H)</u> ⇒Ss1:23波 (Ss1-1~Ss1-23) <u>鉛直動2波(Ss2-1_V、Ss2-2_V)</u> Ss2:22波(Ss2-1~Ss2-22) 【震源を特定せず策定する地震動による基準地震動】 【震源を特定せず策定する地震動による基準地震動】 ○応答スペクトルに基づく基準地震動を上回る周期で最大の応答ス ○応答スペクトルに基づく基準地震動を上回る周期で最大の応答ス ペクトルとなる地震動を設定。 ペクトルとなる地震動(標準応答スペクトルに基づく地震動)を設定。 ⇒Ss1:1波(Ss1-N) ⇒Ss1:なし Ss2:1波(Ss2-N) Ss2:なし

※ 第745回審査会合のプレート間地震の審査コメント対応の際、2011年東北地方太平洋沖地震(Mw9.0)の強震観測記録において距離減衰式から求められるMwは8.2~8.3程度であること、Noda et al.(2002)の 方法の適用範囲の最大がMj8.5であることを踏まえ、Noda et al.(2002)の方法による地震動評価に用いる最大規模を当初申請から見直したことを反映(p.46参照)。作成した模擬地震動の継続時間について、 断層モデルを用いた手法による地震動評価結果に比べて強震部の継続時間が十分に長い保守的な地震動となっていることを確認(p.49,56参照)。

<1 検討概要 1.4 基準地震動の策定(概要)> 当初申請からの変更点

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

 1 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要) 	····p.4~ ····p.7~ ····p.10~ ····p.18~ ····p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	••••p.93~

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss1-D (設計用応答スペクトル)

○ 応答スペクトルに基づく手法による基準地震動Ss1-D(水平動Ss1-D_H、鉛直動Ss1-D_V)の設計用応答スペクトルは、内陸地殻内地震、プレート間 地震及び海洋プレート内地震の各検討用地震の応答スペクトルに基づく地震動評価結果を包絡し、断層モデルを用いた手法による地震動評価結果の 形状等も踏まえて設定(断層モデルを用いた手法による地震動評価結果との比較は次ページ参照)。

<コントロールポイント>

<各検討用地震の応答スペクトルに基づく地震動評価結果と応答スペクトルに基づく手法による基準地震動Ss1-Dとの比較(応答スペクトル)>

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss1-D (設計用応答スペクトル)

○応答スペクトルに基づく手法による基準地震動Ss1-D(水平動Ss1-D_H、鉛直動Ss1-D_V)と断層モデルを用いた手法による 地震動評価結果との比較は下図のとおり。

<各検討用地震の断層モデルを用いた手法による地震動評価結果と応答スペクトルに基づく手法による基準地震動Ss1-Dとの比較(応答スペクトル)>

- ○応答スペクトルに基づく手法による基準地震動Ss1-D(水平動Ss1-D_H、鉛直動Ss1-D_V)の設計用応答スペクトルは、各検討用地震の応 答スペクトルに基づく地震動評価結果を包絡し、断層モデルを用いた手法による地震動評価結果の形状等も踏まえて設定。
- ○敷地への影響が大きいプレート間地震の断層モデルを用いた手法による地震動評価結果^{※1}も踏まえて、水平動をより大きく設定^{※2}した結果、 設計用応答スペクトルは水平動が鉛直動の約2倍(鉛直動が水平動の約0.5倍)となっている。
- ※1 プレート間地震の断層モデルを用いた手法による地震動評価結果(第1041回審査会合資料2-2-2参照)は水平動が鉛直動の約2倍。
- ※2 応答スペクトルに基づく地震動評価結果の水平動は、最大加速度1000cm/s²の応答スペクトル(左図中の破線)で包絡されるが、より大きい最大加速度1200cm/s²の応答スペクトルを 設定。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss1-D

(設計用模擬地震動の作成)

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss1-D (設計用模擬地震動の作成)

 ○応答スペクトルに基づく手法による基準地震動Ss1-Dの設計用応答スペクトルに適合する模擬地震動は、振幅包絡線をNoda et al.(2002)の方法に基づき設定(設定パラメータM8.5、Xeq=136.2km)し、一様乱数の位相を用いた方法で作成。
 ○作成した応答スペクトルに基づく手法による基準地震動Ss1-Dの設計用応答スペクトルに適合する模擬地震動は、下図のとおり。

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss1-D (設計用模擬地震動の作成(日本電気協会(2023)に示される適合度の確認))

○作成した模擬地震動が、日本電気協会(2023)に示される以下の適合度の条件を満足していることを確認した。

- ・目標とする応答スペクトル値に対する模擬地震動の応答スペクトル値の比(応答スペクトル比)が全周期帯で0.85以上
- ・応答スペクトル強さの比(SI比)が1.0以上

<応答スペクトル比>

<SI比>

$$\text{SIEL} = \frac{\int_{0.1}^{2.5} S_v(T) dt}{\int_{0.1}^{2.5} \bar{S}_v(T) dt}$$

SI:応答スペクトル強さ $S_v(T)$:模擬地震動の応答スペクトル(cm/s) $\bar{S}_v(T)$:目標とする応答スペクトル(cm/s) T:固有周期(s)

模擬地震動	SI比 (周期0.1秒~2.5秒)
Ss1-D _H	1.00
Ss1-D _V	1.00

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss1-D (断層モデルを用いた手法による地震動評価結果の時刻歴波形との比較)

 ○ 応答スペクトルに基づく手法による基準地震動Ss1-Dの継続時間の妥当性確認として、断層モデルを用いた手法による地震動評価結果との比較を実施。
 ○ 応答スペクトルに基づく手法による基準地震動Ss1-Dは、地震規模が大きいMw9.0のプレート間地震の断層モデルを用いた手法による地震動評価結果と 比べて、強震部の継続時間が十分に長い保守的な地震動となっていることから、継続時間として妥当なものと評価。

※下図では、例として、プレート間地震の地震動評価結果のうち最大加速度が最も大きいケースとの比較を示す(他の比較例は補足説明資料②参照)。

━━━━ : 強震部(概ね加速度が水平動は600ガル、鉛直動は300ガル以上となる範囲)

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss1-D (国土交通省の技術的助言における基整促波(静岡SZ1)との比較)

- ○国土交通省の技術的助言*1は、南海トラフ沿いの巨大地震による長周期地震動対策の対象区域(静岡・中京・大阪・関東)を定め、超高 層建築物等(大臣認定を受ける高さが60mを超える建築物及び地階を除く階数が3を超える免震建築物)を対象として、対象区域ごとの工 学的基盤面における設計用長周期地震動(基整促波)を作成し公表している*2。
- ○浜岡原子力発電所は、国土交通省の技術的助言における南海トラフ沿いの巨大地震による長周期地震動対策の静岡地域の対象区域(静岡SZ1)に位置していることから、免震設計に用いる基準地震動Ss1-Dを基整促波(静岡SZ1)と比較。
- ⇒浜岡原子力発電所の基準地震動Ss1-Dは、基整促波(静岡SZ1)と比べ、加速度時刻歴波形において大振幅の繰り返しが多く、応答スペクトルが長周期を含めてより十分に大きいものとなっており、保守的な地震動であることを確認した。
- ※1 国土交通省国住指第1111号「超高層建築物等における南海トラフ沿いの巨大地震による長周期地震動対策について(技術的助言)」 ※2 国土交通省『超高層建築物等における南海トラフ沿いの巨大地震による長周期地震動への対策について』

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss2-D (設計用応答スペクトル)

○ 応答スペクトルに基づく手法による基準地震動Ss2-D(水平動Ss2-D_H、鉛直動Ss2-D_V)の設計用応答スペクトルは、内陸地殻内地震、プレート間 地震及び海洋プレート内地震の各検討用地震の応答スペクトルに基づく地震動評価結果を包絡し、断層モデルを用いた手法による地震動評価結果の 形状等も踏まえて設定(断層モデルを用いた手法による地震動評価結果との比較は次ページ参照)。

<各検討用地震の応答スペクトルに基づく地震動評価結果と応答スペクトルに基づく手法による基準地震動Ss2-Dとの比較(応答スペクトル)>

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss2-D (設計用応答スペクトル)

○応答スペクトルに基づく手法による基準地震動Ss2-D(水平動Ss2-D_H、鉛直動Ss2-D_V)と断層モデルを用いた手法による 地震動評価結果との比較は下図のとおり。

<各検討用地震の断層モデルを用いた手法による地震動評価結果と応答スペクトルに基づく手法による基準地震動Ss2-Dとの比較(応答スペクトル)>

- ○応答スペクトルに基づく手法による基準地震動Ss2-D(水平動Ss2-D_H、鉛直動Ss2-D_V)の設計用応答スペクトルは、各検討用地震の応答スペクトル に基づく地震動評価結果を包絡し、断層モデルを用いた手法による地震動評価結果の形状等も踏まえて設定。
- 敷地への影響が大きいプレート間地震の増幅係数(フーリエスペクトル比)を考慮した地震動評価結果を踏まえて設定した結果、設計用応答スペクトル は水平動が鉛直動の約2.9倍(鉛直動が水平動の約0.35倍)となっている[※]。
- ※ 基準地震動Ss1(地震動の顕著な増幅を考慮しない)の水平動が鉛直動の約2倍であることに対し、地震動の顕著な増幅を考慮する地震動評価で用いた増幅係数の水平動2.6倍と 鉛直動1.8倍との比率(約1.44倍)を考慮すると約2.9倍となり、設計用応答スペクトルの水平動と鉛直動の比率と整合している。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss2-D (設計用模擬地震動の作成)

 ○応答スペクトルに基づく手法による基準地震動Ss2-Dの設計用応答スペクトルに適合する模擬地震動は、振幅包絡線をNoda et al.(2002)の方法に基づき設定(設定パラメータM8.5、Xeq=136.2km)し、一様乱数の位相を用いた方法で作成。
 ○作成した応答スペクトルに基づく手法による基準地震動Ss2-Dの設計用応答スペクトルに適合する模擬地震動は、下図のとおり。

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss2-D (設計用模擬地震動の作成(日本電気協会(2023)に示される適合度の確認))

○作成した模擬地震動が、日本電気協会(2023)に示される以下の適合度の条件を満足していることを確認した。

- ・目標とする応答スペクトル値に対する模擬地震動の応答スペクトル値の比(応答スペクトル比)が全周期帯で0.85以上
- ・応答スペクトル強さの比(SI比)が1.0以上

<応答スペクトル比>

<SI比>

$$\text{SIEL} = \frac{\int_{0.1}^{2.5} S_v(T) dt}{\int_{0.1}^{2.5} \bar{S}_v(T) dt}$$

SI:応答スペクトル強さ $S_v(T)$:模擬地震動の応答スペクトル(cm/s) $\bar{S}_v(T)$:目標とする応答スペクトル(cm/s) T:固有周期(s)

模擬地震動	SI比 (周期0.1秒~2.5秒)
水平動	1.00
鉛直動	1.00

<2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動> 応答スペクトルに基づく手法による基準地震動Ss2-D (断層モデルを用いた手法による地震動評価結果の時刻歴波形との比較)

 ○ 応答スペクトルに基づく手法による基準地震動Ss2-Dの継続時間の妥当性確認として、断層モデルを用いた手法による地震動評価結果との比較を実施。
 ○ 応答スペクトルに基づく手法による基準地震動Ss2-Dは、地震規模が大きいMw9.0のプレート間地震の断層モデルを用いた手法による地震動評価結果と 比べて、強震部の継続時間が十分に長い保守的な地震動となっていることから、継続時間として妥当なものと評価。

※下図では、例として、プレート間地震の地震動評価結果のうち最大加速度が最も大きいケースとの比較を示す(他の比較例は補足説明資料②参照)。

- : 強震部(概ね加速度が水平動は1000ガル、鉛直動は350ガル以上となる範囲)

 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要) 	•••••p.4~ •••••p.7~ •••••p.10~ •••••p.18~ •••••p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	•••••p.93~

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss1

○内陸地殻内地震、プレート間地震及び海洋プレート内地震の各検討用地震の断層モデルを用いた手法による地震動評価結果 において、応答スペクトルに基づく手法による基準地震動Ss1-Dを上回るケースから、Ss1-Dを上回る周期で最大の応答スペクトル となる地震動を、断層モデルを用いた手法による基準地震動Ss1として設定する。

<各検討用地震の断層モデルを用いた手法による地震動評価結果と応答スペクトルに基づく手法による基準地震動Ss1-Dとの比較(応答スペクトル)>

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss1 (断層モデルを用いた手法による基準地震動Ss1(Ss1-1~Ss1-23))

○内陸地殻内地震、プレート間地震及び海洋プレート内地震の各検討用地震の断層モデルを用いた手法による地震動評価結果 のうち、応答スペクトルに基づく手法による基準地震動Ss1-Dを上回る周期で最大の応答スペクトルとなる地震動23波を、断層モ デルを用いた手法による基準地震動Ss1(Ss1-1~Ss1-23)として設定する。

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss1 (断層モデルを用いた手法による基準地震動Ss1(Ss1-1~Ss1-23))

黒色:応答スペクトルに基づく手法による基準地震動Ss1、青色:断層モデルを用いた手法による基準地震動Ss1とした内陸地殻内地震(地震動の顕著な増幅を考慮しない)の地震動

紫色:断層モデルを用いた手法による基準地震動Ss1としたプレート間地震(地震動の顕著な増幅を考慮しない)の地震動、

緑色:断層モデルを用いた手法による基準地震動Ss1とした海洋プレート内地震(地震動の顕著な増幅を考慮しない)の地震動

其進州雲動Sc1				1/S ²)	
		举华地震到051	NS方向	EW方向	UD方向
	Ss1-D	応答スペクトルに基づく手法による基準地震動	12	200	600
	Ss1-1	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を考慮しない)、アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した震源モデル、破壊開始点1	838	879	552
	Ss1-2	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を考慮しない)、アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した震源モデル、破壊開始点3	996	1115	535
	Ss1-3	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	976	1105	524
	Ss1-4	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1069	1106	579
	Ss1-5	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1057	932	561
	Ss1-6	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1031	1170	513
	Ss1-7	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1046	1103	554
	Ss1-8	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始占2	1090	1098	510
	Ss1-9	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース2)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	996	1173	551
	Ss1-10	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	938	1128	475
	Ss1-11	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース2)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	912	1060	461
	Ss1-12	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1027	1058	527
	Ss1-13	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	947	1026	522
	Ss1-14	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	981	1107	468
	- Ss1-15 プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3		939	1121	515
	Ss1-16	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	921	1099	507
	Ss1-17	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	852	1016	519
<u> </u>	Ss1-18	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	883	1027	502
	Ss1-19	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	972	1093	586
	Ss1-20	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1037	1033	489
	Ss1-21	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の 不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	866	1035	531
	Ss1-22	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	231	295	127
	Ss1-23	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	214	278	136

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss1 (断層モデルを用いた手法による基準地震動Ss1(Ss1-1~Ss1-23))

○参考に、断層モデルを用いた手法による基準地震動Ss1について、地震タイプごとの応答スペクトルを下図に示す。

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss2

○内陸地殻内地震、プレート間地震及び海洋プレート内地震の各検討用地震の断層モデルを用いた手法による地震動評価結果 において、応答スペクトルに基づく手法による基準地震動Ss2-Dを上回るケースから、Ss2-Dを上回る周期で最大の応答スペクトル となる地震動を、断層モデルを用いた手法による基準地震動Ss2として設定する。

<各検討用地震の断層モデルを用いた手法による地震動評価結果と応答スペクトルに基づく手法による基準地震動Ss2-Dとの比較(応答スペクトル)>

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss2 (断層モデルを用いた手法による基準地震動Ss2(Ss2-1~Ss2-22))

○内陸地殻内地震、プレート間地震及び海洋プレート内地震の各検討用地震の断層モデルを用いた手法による地震動評価結果 のうち、応答スペクトルに基づく手法による基準地震動Ss2-Dを上回る周期で最大の応答スペクトルとなる地震動22波を、断層モ デルを用いた手法による基準地震動Ss2(Ss2-1~Ss2-22)として設定する。

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss2 (断層モデルを用いた手法による基準地震動Ss2(Ss2-1~Ss2-22))

黒色:応答スペクトルに基づく手法による基準地震動Ss2、赤色:断層モデルを用いた手法による基準地震動Ss2としたプレート間地震(地震動の顕著な増幅を考慮)の地震動

<mark>水色</mark>:断層モデルを用いた手法による基準地震動Ss2とした海洋プレート内地震(地震動の顕著な増幅を考慮)の地震動、 紫色:断層モデルを用いた手法による基準地震動Ss2としたプレート間地震(地震動の顕著な増幅を考慮しない)の地震動 緑色:断層モデルを用いた手法による基準地震動Ss2とした海洋プレート内地震(地震動の顕著な増幅を考慮しない)の地震動

	基准恤雪動Ss2		最大加速度(Cm/S ²)		/S ⁻)
			NS方向	EW方向	UD方向
	Ss2-D	応答スペクトルに基づく手法による基準地震動		00	700
	Ss2-1	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と地震規模の不確かさの組合せを考慮した震源モデル、破壊開始点3	1734	1903	566
	Ss2-2	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1612	2048	609
	Ss2-3	ブレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1916	2049	669
	Ss2-4	ブレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1608	2094	626
<u> </u>	Ss2-5	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1967	1923	668
<u> </u>	Ss2-6	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(破壊伝播速度の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	2052	1937	630
	Ss2-7	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1665	1933	550
	Ss2-8	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点1	1233	1750	532
<u> </u>	Ss2-9	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点3	1564	1393	492
	Ss2-10	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、震源深さの不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点2	1161	1577	653
	Ss2-11 (Ss1-3)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	976	1105	524
	Ss2-12 (Ss1-4)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1069	1106	579
	Ss2-13 (Ss1-5)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1057	932	561
<u> </u>	Ss2-14 (Ss1-6)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1031	1170	513
	Ss2-15 (Ss1-8)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1090	1098	510
	Ss2-16 (Ss1-12)	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1027	1058	527
	Ss2-17 (Ss1-14)	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	981	1107	468
	Ss2-18 (Ss1-15)	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	939	1121	515
	Ss2-19 (Ss1-18)	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	883	1027	502
	Ss2-20 (Ss1-21)	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の 不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	866	1035	531
	Ss2-21 (Ss1-22)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	231	295	127
	Ss2-22 (Ss1-23)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	214	278	136

<2 基準地震動の策定 2.2 断層モデルを用いた手法による基準地震動> 断層モデルを用いた手法による基準地震動Ss2 (断層モデルを用いた手法による基準地震動Ss2(Ss2-1~Ss2-22))

○参考に、断層モデルを用いた手法による基準地震動Ss2について、地震タイプごとの応答スペクトルを下図に示す。

 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要) 	····p.4~ ····p.7~ ····p.10~ ····p.18~ ····p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	·····p.42~ ·····p.57~ ·····p.66~
3 まとめ	•••••p.72~
補足説明資料	•••••p.93~

<2 基準地震動の策定 2.3 震源を特定せず策定する地震動による基準地震動> 震源を特定せず策定する地震動による基準地震動Ss1

○震源を特定せず策定する地震動の評価結果において、応答スペクトルに基づく手法による基準地震動Ss1-Dを上回るケースから、 Ss1-Dを上回る周期で最大の応答スペクトルとなる地震動を、震源を特定せず策定する地震動による基準地震動Ss1として設定する。

<震源を特定せず策定する地震動と応答スペクトルに基づく手法による基準地震動Ss1-Dとの比較(応答スペクトル)>

<2 基準地震動の策定 2.3 震源を特定せず策定する地震動による基準地震動> 震源を特定せず策定する地震動による基準地震動Ss1 (震源を特定せず策定する地震動による基準地震動Ss1(Ss1-N))

○震源を特定せず策定する地震動の評価結果のうち、応答スペクトルに基づく手法による基準地震動Ss1-Dを上回る周期で最大の 応答スペクトルとなる地震動1波を、震源を特定せず策定する地震動による基準地震動Ss1(Ss1-N)として設定する。

<2 基準地震動の策定 2.3 震源を特定せず策定する地震動による基準地震動> 震源を特定せず策定する地震動による基準地震動Ss2

○震源を特定せず策定する地震動の評価結果において、応答スペクトルに基づく手法による基準地震動Ss2-Dを上回るケースから、 Ss2-Dを上回る周期で最大の応答スペクトルとなる地震動を、震源を特定せず策定する地震動による基準地震動Ss2として設定する。

<震源を特定せず策定する地震動と応答スペクトルに基づく手法による基準地震動Ss2-Dとの比較(応答スペクトル)>

<2 基準地震動の策定 2.3 震源を特定せず策定する地震動による基準地震動> 震源を特定せず策定する地震動による基準地震動Ss2 (震源を特定せず策定する地震動による基準地震動Ss2(Ss2-N))

○震源を特定せず策定する地震動の評価結果のうち、応答スペクトルに基づく手法による基準地震動Ss2-Dを上回る周期で最大の 応答スペクトルとなる地震動1波を、震源を特定せず策定する地震動による基準地震動Ss2(Ss2-N)として設定する。

 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要) 	····p.4~ ····p.7~ ····p.10~ ····p.18~ ····p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 	•••••p.42~ •••••p.57~ •••••p.66~
3 まとめ	•••••p.72~
補足説明資料	•••••p.93~

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<3 まとめ> 基準地震動Ss1 (Ss1-D、Ss1-1~Ss1-23、Ss1-N)

○敷地ごとに震源を特定して策定する地震動及び震源を特定せず策定する地震動の評価結果を踏まえ、敷地西側(1~4号炉 周辺)で用いる基準地震動Ss1としてSs1-D、Ss1-1~Ss1-23、Ss1-Nを設定した。

<3 まとめ> 基準地震動Ss1 (Ss1-D、Ss1-1~Ss1-23、Ss1-N(最大加速度))

黒色:応答スペクトルに基づく手法による基準地震動Ss1、青色:断層モデルを用いた手法による基準地震動Ss1とした内陸地殻内地震(地震動の顕著な増幅を考慮しない)の地震動

紫色:断層モデルを用いた手法による基準地震動Ss1としたプレート間地震(地震動の顕著な増幅を考慮しない)の地震動、

緑色:断層モデルを用いた手法による基準地震動Ss1とした海洋プレート内地震(地震動の顕著な増幅を考慮しない)の地震動、茶色:震源を特定せず策定する地震動による基準地震動Ss1

其淮州潭勳Se1			最大加速度(cm/s		n/s²)
		举华地展到351	NS方向	EW方向	UD方向
	Ss1-D	応答スペクトルに基づく手法による基準地震動	12	00	600
	Ss1-1	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を考慮しない)、アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した震源モデル、破壊開始点1	838	879	552
	Ss1-2	内陸地設内地震(A-17断層による地震)(地震動の顕著な増幅を考慮しない)、アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した震源モデル、破壊開始点3	996	1115	535
	Ss1-3	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	976	1105	524
	Ss1-4	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1069	1106	579
	Ss1-5	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1057	932	561
	Ss1-6	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1031	1170	513
	Ss1-7	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1046	1103	554
	Ss1-8	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1090	1098	510
—·—	Ss1-9	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	996	1173	551
	Ss1-10	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース(1)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	938	1128	475
	Ss1-11	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	912	1060	461
	Ss1-12	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1027	1058	527
— · —	Ss1-13	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	947	1026	522
	Ss1-14	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	981	1107	468
<u> </u>	Ss1-15	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	939	1121	515
	Ss1-16	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17)断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))、の破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	921	1099	507
	Ss1-17	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース())と内陸地殻内地震の震源として考慮する活断層(A-17)断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))、の破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	852	1016	519
_ · _	Ss1-18	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	883	1027	502
	Ss1-19	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	972	1093	586
	Ss1-20	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1037	1033	489
	Ss1-21	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の 不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	866	1035	531
	Ss1-22	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	231	295	127
	Ss1-23	海洋ブレート内地震(御前崎沖の想定沈み込む海洋ブレート内地震)(地震動の顕著な増幅を考慮しない)、断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	214	278	136
	Ss1-N	標準応答スペクトルに基づく地震動の顕著な増幅を考慮しない)	10	34	615

(加速度時刻歴波形(Ss1-D、Ss1-1~Ss1-6))

		水 ¹	平動	鉛直動
本华地辰到551		NS方向	EW方向	UD方向
Ss1-D	応答スペクトルに基づく手法による基準地震動		Ss1-D_H	Ss1-D_V 5
Ss1-1	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を 考慮しない) アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した 震源モデル、破壊開始点1	1400 デ 700 -1400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	1400 第79 5s1-1_EW 5s1-1_EW 5s1-1_EW 0 1400 0 20 40 60 879 -1400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	
Ss1-2	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を 考慮しない) アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した 震源モデル、破壊開始点3	1400 996 5s1-2_NS 1400 996 5s1-2_NS 1400 0 0 1400 0 0 1400 0 0 1400 0 0 1400 0 0 1400 100 120 1400 160 180 1400 160 180	1400 5s1-2_EW 1400 -1115 -1400 -0 0 -1115 -1400 -0 0 20 40 60 80 100 120 140 60 80 160 180 50 100	1400 535-2_UD 700 535 第 700 -1400 -1400 0 20 40 60 80 100 120 140 1400 160 1400 180
Ss1-3	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1400 5s1-3_NS 700 0 97 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 0 1400 140 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 160 1400 140 1400 140 1400 140 1400 140 1400 140 1400 140 1400 140	1400 700 戦 700 -140 -14	1400
Ss1-4	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1400 700 一 1400 1069 551-4_NS 551-4_NS 551-4_NS 0 100 100 100 100 100 100 100	1400 700 戦 -1400 -140	1400 700 第 700 -1400 0 20 40 60 80 100 120 140 160 180 200 時間(s)
Ss1-5	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1400 0 1057 Ss1-5_NS 100 0 0 0 0 100 0 0 0 0 1400 0 0 0 0 1400 0 0 0 100 120 1400 0 0 0 160 180 200	1400 第 700 一 1400 0 20 40 60 80 100 120 140 160 180 200 時間(s) 5s1-5_EW 5s1-5_EW	1400 第 700 0 -1400 0 20 40 60 80 100 120 140 160 180 200 時間(s)
Ss1-6	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1400 0 1031 5s1-6_NS 1400 0 0 0 0 1400 0 0 0 0 1400 0 0 0 0 1400 0 0 0 100 120 1400 0 0 0 140 160 180 200	1400 1400 100 100 100 100 110 11	1400 Ss1-6_UD 700 - 140

<3 まとめ> 基準地震動Ss1 (加速度時刻歴波形(Ss1-7~Ss1-13))

	甘冼州南部0-4	水平動	鉛直動
	基準 地 晨 期 5 S 1	NS方向 EW方向	UD方向
Ss1-7	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点1	5 1400 180 2000 1400 1400 1400 180 200 1400 1400 180 200 1400 180 200 1400 180 200 1400 180 200 180 200 1	1400 第700 一 Ss1-7_UD 第700 第700 1400 140 0 1400 1400 0 1400 0 0 1400 0 0 1400 140 140 1400 140 160 1400 140 160 1400 140 1400 160 1400 160 1400 160 1400 160
Ss1-8	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点2	551-8_NS 140010901090109010901090100	1400 551-8_UD 700 510 9 700 1400 140 1400 140 1400 140 1400 140 1400 140 1400 160 1400 180
Ss1-9	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3	551-9_NS 1400 0 1400 0 1400 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1400 551-9_UD 1400 551 1400 551 1400 140 1400 140 1400 140 1400 140 1400 140 1400 140 1400 160 1400 160 1400 160
Ss1-10	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	1400 20 40 60 80 100 120 140 160 180 200 時間(s) 5 s1-10_NS (1400 - 140 - 150 - 1128 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 140 - 160 180 200) (1400 - 120 - 140 160 180 200) (1400 - 140 - 140 160 180 200) (1400 - 140 - 140 - 140 180 200) (1400 - 140 - 140 180 200) (1400 - 140 -	1400 Ss1-10_UD 第 700 700 第 700 700 1400 100 120 1400 140 160 1400 180 100 1400 140 160 1400 160 180
Ss1-11	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	1400 0 912 Ss1·11_NS 1400 0 1060 Ss1·11_EW 1400 <	1400 5s1-11_UD 第 - 9 - 9 - 1400 14
Ss1-12	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1		1400 Ss1-12_UD 第 700 -527 -1400 -1400 -1400 0 20 40 60 80 100 120 140 160 180 200
Ss1-13	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	551-13_NS 第 700 1-1400 0 20 40 60 80 100 120 140 160 180 200 時間(s) 551-13_NS 551-13_NS 551-13_NS 551-13_NS 551-13_EW 551-13_EW 551-13_EW 0 0 0 0 0 0 0 0 0 0 0 0 0	1400 デ 700 一 1400 0 -1400 0 -1400 0 20 40 60 80 100 120 140 160 180 200 時間(s) Ss1-13_UD Ss1-13_UD

<3 まとめ> 基準地震動Ss1 (加速度時刻歴波形(Ss1-14~Ss1-20))

(加速度時刻歴波形(Ss1-21~Ss1-23、Ss1-N))

	甘准宝雨和Ca1	水平動	鉛直動
	基準地展到351	NS方向	UD方向
Ss1-21	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の不確かさ の組合せを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	1400 700 -70 -7	v v v v v v v v v v v v v v
Ss1-22	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	1400 700 0 -700 0 -700 0 20 40 60 80 100 120 140 140 140 140 140 140 140 14	V v v v v v v v v v v v v v
Ss1-23	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	1400 - 551-23_NS 0 - 214 -700 - 220 40 60 80 100 120 140 160 180 200 時間(s)	v 1400 (1400 (1400) (140
Ss1-N	標準応答スペクトルに基づく地震動(地震動の顕著な増幅を 考慮しない)	1400 第 700 第 700 1400 100 100 100 100 100 100	1400 第 700 一 700 - 1400 - 1400 - 1400 - 20 40 60 80 100 120 140 160 180 200 時間(s)

(速度時刻歴波形(Ss1-D、Ss1-1~Ss1-6))

甘洗妝壶動Ca4		水平	平動	鉛直動
	举华地辰期351	NS方向	EW方向	UD方向
Ss1-D	応答スペクトルに基づく手法による基準地震動		Ss1-D_H ////////////////////////////////////	400 第 200 一 10 10 10 10 10 10 10 10 10 10
Ss1-1	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を 考慮しない) アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した 震源モデル、破壊開始点1	400 55 200 55 55 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 (金 200 (金 200 一 一 一 一 0 20 0 - - - 400 0 - 20 0 - - - - - - - - - - - - -	400 - Ss1-1_UD (200 - Ss1-1_UD (1) - 20
Ss1-2	内陸地殻内地震(A-17断層による地震)(地震動の顕著な増幅を 考慮しない) アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した 震源モデル、破壊開始点3	400	400 5s1-2_EW 9 200 - 9 0 - 9 0 - 9 0 - 9 0 - -400 - - -400 - - -400 - - -400 - - -400 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	400 受 200 受 200 一 20 一 20 - 400 0 20 40 60 80 100 120 140 160 180 200 時間(s)
Ss1-3	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	400 5 200 0 10 10 10 10 10 10 10 10 1	400 受 200 較 -400 0 -400 0 -400 20 -400 20 -400 20 -400 40 -400 60 80 100 120 140 160 180 200 時間(s) 51-3_EW -51-3_EW -51-3_EW	400 変 200 一 型 00 一 型 00 一 一 0 20 40 60 80 100 120 140 160 180 200 時間(s)
Ss1-4	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	400 度 551.4_NS 200 較 0 -400 0 20 -400 0 100 120 140 140 160 180 200	400	400 200 0 一 0 0 0 0 0 0 0 0 0 0 0 0 0
Ss1-5	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	400 200 400 5s1-5_NS 5s1-5_NS 400 -400 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 30 400 551-5_EW 551-5_EW 551-5_EW 400 -400 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 5 200 5 5 5 5 5 5 5 5 0 5 5 0 5 5 0 5 5 0 5 0 0 106 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 107 106 106 106 106 106 106 106 106
Ss1-6	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	400 300 400 400 400 400 400 400	400 200 第 200 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 200 数 -200 -400 0 20 40 -400 0 20 40 -40 -4

<3 まとめ> 基準地震動Ss1 (速度時刻歴波形(Ss1-7~Ss1-13))

		水平動	鉛直動		
	基準地展到351	NS方向 EW方向	UD方向		
Ss1-7	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点1	400 6 200 0	400 200 400 -200 -4		
Ss1-8	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点2	400 62 200 	400 変 200 一 一 400 - - - 400 - - - - - - - - - - - - -		
Ss1-9	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3	400	400 200 第 200 -400 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)		
Ss1-10	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	400	400		
Ss1-11	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の 不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	400 Ss1-11_NS 5s1-11_NS 400 Ss1-11_EW 0 <td< td=""><td>400 </td></td<>	400		
Ss1-12	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	400	400		
Ss1-13	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	400	400 200 第 200 -400 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)		

<3 まとめ> 基準地震動Ss1 (速度時刻歴波形(Ss1-14~Ss1-20))

	甘祥寺寺の1	水平動	鉛直動
	基件 吧 晨 期 SS 1	NS方向 EW方向	UD方向
Ss1-14	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と破壊伝播 速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点1	400 6 200 -10 -10 -10 -10 -10 -10 -10 -	400 - Ss1-14_UD 200
Ss1-15	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と破壊伝播 速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3	400 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	400 受 5s1·15_UD 第 105 第 -400 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ss1-16	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角 の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点1	400 6 7 7 8 9 -400 0 20 40 60 80 100 120 140 160 180 200 -4	400 (200 (200 (134 (134 (134 (134 (134 (134 (134 (134) (136) (136
Ss1-17	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角 の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点2	400 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	400 6 7 7 8 9 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5
Ss1-18	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角 の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3	400 6 79 -400 0 20 40 60 80 100 120 140 160 180 200 -400 0 20 400 -79 -400 0 20 -79 -400 0 20 -79 -400 0 20 -79 -400 0 20 -79 -400 0 20 -79 -79 -79 -400 -79 -79 -400 -40	400 5 5s1-18_UD 第 400 5 5s1-18_UD 第 400 -400 0 20 400 -400 0 -400 0 400 -400 0 -400 0 60 80 100 120 時間(s) -400
Ss1-19	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角 の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点1	400 551-19_NS 400 551-19_NS 400 551-19_NS 400 551-19_EW 551-19_EW 551-19_EW 6 7 7 7 7 7 7 7 7 7 7 7 7 7	400 551-19_UD 551-1
Ss1-20	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角 の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点2	400 6 200 -00 -00 -00 -00 -00 -00 -00	400 200 第 200 一 400 一 400 - - 400 - - - - - - - - - - - - -

(速度時刻歴波形(Ss1-21~Ss1-23、Ss1-N))

	基準地震動581	NS方向 EW方向	UD方向
Ss1-21	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の不確かさ の組合せを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	$\begin{array}{c} 400 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	N 400 - Ss1-21_UD - - 200
Ss1-22	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	400 200 0 0 0 0 0 0 0 0 0 0 0 0	W 400 空 5s1-22_UD - - - - -
Ss1-23	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	400 - Ss1-23_NS 0	W 400 200 戦闘 - 200 551-23_UD
Ss1-N	標準応答スペクトルに基づく地震動(地震動の顕著な増幅を 考慮しない)	400 5 200 5 0 6 0 76 -400 -40	400 200 400 400 400 400 400 400

<3 まとめ> 基準地震動Ss2 (Ss2-D、Ss2-1~Ss2-22、Ss2-N)

○敷地ごとに震源を特定して策定する地震動及び震源を特定せず策定する地震動の評価結果を踏まえ、敷地東側(5号炉 周辺)で用いる基準地震動Ss2としてSs2-D、Ss2-1~Ss2-22、Ss2-Nを設定した。

p.37 再掲

<3 まとめ> 基準地震動Ss2 (Ss2-D、Ss2-1~Ss2-22、Ss2-N(最大加速度))

黒色:応答スペクトルに基づく手法による基準地震動Ss2、赤色:断層モデルを用いた手法による基準地震動Ss2としたプレート間地震(地震動の顕著な増幅を考慮)の地震動

水色:断層モデルを用いた手法による基準地震動Ss2とした海洋プレート内地震(地震動の顕著な増幅を考慮)の地震動、紫色:断層モデルを用いた手法による基準地震動Ss2としたプレート間地震(地震動の顕著な増幅を考慮しない)の地震動 緑色:断層モデルを用いた手法による基準地震動Ss2とした海洋プレート内地震(地震動の顕著な増幅を考慮しない)の地震動、桃色:震源を特定せず策定する地震動による基準地震動Ss2

		其准地雪勒Se2		、加速度(cm	l/S²)
		至平地辰到032	NS方向	EW方向	UD方向
	Ss2-D	応答スペクトルに基づく手法による基準地震動	20	00	700
— · —	Ss2-1	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と地震規模の不確かさの組合せを考慮した震源モデル、破壊開始点3	1734	1903	566
	Ss2-2	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1612	2048	609
<u> </u>	Ss2-3	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1916	2049	669
	Ss2-4	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1608	2094	626
<u> </u>	Ss2-5	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1967	1923	668
<u> </u>	Ss2-6	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(破壊伝播速度の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	2052	1937	630
<u> </u>	Ss2-7	プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの数の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1665	1933	550
	Ss2-8	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点1	1233	1750	532
<u> </u>	Ss2-9	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点3	1564	1393	492
	Ss2-10	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の顕著な増幅を考慮)、震源深さの不確かさを考慮した震源モデル(「増幅方向」に位置する背景領域の小断層にも増幅係数を 乗じる場合)、破壊開始点2	1161	1577	653
	Ss2-11 (Ss1-3)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	976	1105	524
	Ss2-12 (Ss1-4)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1069	1106	579
	Ss2-13 (Ss1-5)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1057	932	561
<u> </u>	Ss2-14 (Ss1-6)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	1031	1170	513
	Ss2-15 (Ss1-8)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	1090	1098	510
	Ss2-16 (Ss1-12)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	1027	1058	527
	Ss2-17 (Ss1-14)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	981	1107	468
<u> </u>	Ss2-18 (Ss1-15)	ブレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	939	1121	515
<u> </u>	Ss2-19 (Ss1-18)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と 断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	883	1027	502
	Ss2-20 (Ss1-21)	プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の 不確かさの組合せを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	866	1035	531
	Ss2-21 (Ss1-22)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	231	295	127
	Ss2-22 (Ss1-23)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震)(地震動の顕著な増幅を考慮しない)、断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、破壊開始点2	214	278	136
	Ss2-N	標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)	17	66	783
					0.4

p.38 再掲

(加速度時刻歴波形(Ss2-D、Ss2-1~Ss2-6))

<3 まとめ> 基準地震動Ss2 (加速度時刻歴波形 (Ss2-7~S

(加速度時刻歴波形(Ss2-7~Ss2-13))

-	甘洗畑雪和0~0	水平動	鉛直動
	苯华地展到OSZ	NS方向 EW方向	UD方向
Ss2-7	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層 (御前崎海脚西部の断層帯(アスペリティの数の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源 モデル、破壊開始点3	2200 1100 -2200 0 20 40 60 80 100 120 140 160 180 200 B@[s]	2200 1100 一 2200 0 20 0 0 20 0 0 20 0 0 20 0 0 100 0 -550 -500 時間(s) Ss2-7_UD Ss2-7_UD
Ss2-8	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の 顕著な増幅を考慮) 地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する 背景領域の小断層にも増幅係数を乗じる場合)、破壊開始点1	2200 1100 -2200 0 20 40 60 80 100 -2200 0 20 40 60 80 100 120 140 160 180 200 180 200 180 200 100 -2200 0 -2200 0 -2200 0 -2200 0 0 -2200 0 0 0 0 0 0 0 0 0 0 0 0	2200 1100 第 100 -2200 0 20 40 60 80 100 120 140 160 180 200 時間(s)
Ss2-9	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の 顕著な増幅を考慮) 地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する 背景領域の小断層にも増幅係数を乗じる場合)、破壊開始点3	2200 0 1564 Ss2-9,NS 5s2-9,NS 5s2-9,NS 5s2-9,EW 100 0 0 0 0 0 0 0 2200 0 0 0 120 140 160 180 200 100 0 20 40 60 80 100 120 140 160 180 200 100 0 20 40 60 80 100 120 140 160 180 200	2200 2200 1100 一 492 100 一 492 100 一 492 100 一 492 100 0 - 2200 0 - 2200 0 - 200 0 0 0 0 0 0 0 0 0 0 0 0
Ss2-10	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の 顕著な増幅を考慮) 震源深さの不確かさを考慮した震源モデル(「増幅方向」に位置する 背景領域の小断層にも増幅係数を乗じる場合)、破壊開始点2	2200 0 1101 Ss2-10,NS 2200 0 1577 Ss2-10,EW 費 1100 0 100 0 100 1	2200 第1100 一 2200 0 0 -653 一 -2200 0 -2200 0 -2200 0 -2200 0 -2200 0 -2200 0 -200 0 0 0 0 0 0 0 0 0 0 0 0
Ss2-11 (Ss1-3)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	2200 5s2-11.NS 5s2-11.NS 5s2-11.EW 1100 <	2200 Ss2-11_UD 第 0 第 0 -2200 - -2200 - -2200 - -2200 - - -
Ss2-12 (Ss1-4)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	2200 (5) 1100 -2200 5s2-12.NS 0 5s2-12.NS 100 -2200 5s2-12.EW 費 1100 -2200 100 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 時間(s) 時間(s) 5 5 20 10 10 120 140 160 180 200 10 120 140 160 180 200 16 180 200 10 120 140 160 180 200 16 180 200 16 180 200 16 180 100 120 140 160 180 200 180 100 120 140 160 180 200 180 100 120 140 160 180 <td>2200 Ss2-12_UD 第 1100</td>	2200 Ss2-12_UD 第 1100
Ss2-13 (Ss1-5)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	2200 2200 2200 2200 2200 2200 2200 2200	2200 1100 一 2200 0 -561 -2200 0 -2200 0 -20 40 60 80 100 120 140 160 180 200 時間(s)

(加速度時刻歴波形(Ss2-14~Ss2-20))

甘冻神雪野のつ		水平動	鉛直動
	举华地辰期OSZ	NS方向 EW方向	UD方向
Ss2-14 (Ss1-6)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	2200 1001 5s2-14.NS 1100 0 0 0 100 120 140 160 180 200 0 0 20 40 60 80 100 120 140 160 180 200 时間(s) 0 0 120 140 160 180 200 0 0 0 0 120 140 160 180 200 0 0 0 0 0 120 140 160 180 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2200 5 1100 第 7 100 - 5 5 5 5 5 5 5 5 5 5 5 5 5
Ss2-15 (Ss1-8)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点2	2200 1 1100 0 0 0 0 0 0 0 0 0 0 0 0	2200 Ss2-15_UD 1100 510 製 0 -2200 - 0 20 40 60 80 100 1200 - 0 20 40 60 80 100 120 140 160 180 9間間(s) -
Ss2-16 (Ss1-12)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	2200	2200
Ss2-17 (Ss1-14)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	2200 5s2-17,NS 5s2-17,NS 5s2-17,EW 1100	2200 Ss2-17_UD 1100 0 <
Ss2-18 (Ss1-15)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	2200	2200
Ss2-19 (Ss1-18)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角 の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3	2200 5s2-19.NS 5s2-19.NS 5s2-19.EW 1100 <	2200
Ss2-20 (Ss1-21)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地設内地震の震源として 考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の不確かさ の組合せを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	2200 1100 -100 -220 -220 -220 -100 -220 -	2200 Ss2-20_UD 1100 - 第 - -2200 - 0 - -2200 - 0 - -2200 - 0 - -

(加速度時刻歴波形(Ss2-21~Ss2-22、Ss2-N))

基準地震動Ss2		水平動	鉛直動	
		NS方向 EW方向	UD方向	
Ss2-21 (Ss1-22)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	2200	2200 第 1100 第 1100 1 127 第 1100 - 127 - 2200 0 20 40 60 80 100 120 140 160 180 200 時間(s) Ss2-21,UD	
Ss2-22 (Ss1-23)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	22200	2200 1100 1100 136 136 136 136 136 136 136 136	
Ss2-N	標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)	2200 5 1100 一 1100 - - - - - - - - - - - - -	2200 1100 一 2200 一 200 0 20 40 60 80 100 120 140 160 180 200 時間(s)	

(速度時刻歴波形(Ss2-D、Ss2-1~Ss2-6))

甘淮地霊動ららつ		水平動			
		NS方向	EW方向	UD方向	
Ss2-D	応答スペクトルに基づく手法による基準地震動	400 200 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	Ss2-D_H 小小小小小小小 100 120 140 160 180 200 時間(s)	400 200 0 400 -400 0 20 400 -400 0 20 400 -40	
Ss2-1	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と地震規模の不確かさの組合せを考慮した震源 モデル、破壊開始点3	400 200 0 10 10 10 10 10 10 10 10 1	400 30 400 400 400 400 400 400 4	400 200 0 135 0 -400 -400 0 20 400 -400 0 20 400 -400 0 20 400 -400 0 20 400 -4	
Ss2-2	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの 組合せを考慮した震源モデル、破壊開始点2	400 安 200 受 200 一 400 -172 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 5s2-2_EW 9 0 10 10	400 5s2-2_UD 0 0 0 0 0 0 -400 0 0 200 -400 0 0 200 -400 0 0 20 400 100 120 140 160 180 時間(s) 180	
Ss2-3	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と分岐断層の強震動励起特性に係る不確かさの 組合せを考慮した震源モデル、破壊開始点3	400 第 200 5 203_NS 5 2-3_NS 5 2-3_NS 5 2-3_NS 5 2-3_NS 0 -255 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 5 - <td>400 552-3_UD 552-3_UD 552-3_UD 552-3_UD -91 -400 0 0 0 100 120 140 160 180 200 時間(s)</td>	400 552-3_UD 552-3_UD 552-3_UD 552-3_UD -91 -400 0 0 0 100 120 140 160 180 200 時間(s)	
Ss2-4	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層 (御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮 した震源モデル、破壊開始点2	400 変 200 ビ 0 一 400 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400	400	
Ss2-5	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層 (御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを 考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮 した震源モデル、破壊開始点3	400 200 0 0 -00 0 -00 0 -00 0 -00 0 -00 -	400 200 400 400 400 400 400 400	400 200 0 0 0 -400 -400 0 20 -110 -10	
Ss2-6	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層 (御前崎海脚西部の断層帯(破壊伝播速度の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源 モデル、破壊開始点3	400 552-6_NS 552-6_NS 552-6_NS 552-6_NS 0 0 -0 -204 -400 0 20 400 0 0 -204 -0 -204 -400 0 -204 -0 -204 -0 -200 時間(s)	400 200 0 161 5s2-6_EW 5s2-6_EW 5s2-6_EW 400 -400 0 20 400 0 20 0 400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 200 0 0 -400 0 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s) 5s2-6_UD 5s2-6_UD	

<3 まとめ> 基準地震動Ss2 (速度時刻歴波形(Ss2-7~Ss2-13))

甘洪地西到0-0		水平動	鉛直動	
	基準地震動SS2	NS方向	UD方向	
Ss2-7	プレート間地震(地震動の顕著な増幅を考慮) 強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層 (御前崎海脚西部の断層帯(アスペリティの数の不確かさを考慮した 震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源 モデル、破壊開始点3	400 6 200 200 400 0 20 40 60 80 100 120 140 160 180 200 時間(s) 5s2-7_NS 400 400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 200 5	
Ss2-8	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の 顕著な増幅を考慮) 地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する 背景領域の小断層にも増幅係数を乗じる場合)、破壊開始点1	400 6 200 -400 0 20 40 60 80 100 120 140 160 180 200 -400 0 20 40 60 80 100 120 140 160 180 200 -400 0 20 40 60 80 100 100 100 100 100 100 100	400 - Ss2-8_UD 500	
Ss2-9	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の 顕著な増幅を考慮) 地震規模の不確かさを考慮した震源モデル(「増幅方向」に位置する 背景領域の小断層にも増幅係数を乗じる場合)、破壊開始点3	400 6 200 	400 200 数 -300 Ss2-9_UD 第 400 5 -300 -300 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	
Ss2-10	海洋プレート内地震(敷地下方の想定スラブ内地震)(地震動の 顕著な増幅を考慮) 震源深さの不確かさを考慮した震源モデル(「増幅方向」に位置する 背景領域の小断層にも増幅係数を乗じる場合)、破壊開始点2	400 6 200 -400 0 20 400 60 80 100 120 140 160 180 200 -400 0 20 400 113 -400 0 20 400 113 -400 0 20 400 113 -400 0 20 400 113 -400 0 20 400 113 -400 0 20 400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 113 -400 110 -400 110 -400 110 -400 110 -400 110 -400 110 -400 110 -400 110 -400 110 -400 110 -400 110 -400 100 100 100 100 100 100 100	400 200 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -200 -400 -200 -400 -200 -400 -200 -200 -200 -200 -200 -400 -200 	
Ss2-11 (Ss1-3)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	400 g 200 g 2	400 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Ss2-12 (Ss1-4)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	400 552-12_NS 400 -400 -2	400 - Ss2-12_UD 200	
Ss2-13 (Ss1-5)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点2	400 5 c2-13_N5 2 00 - 400 0 20 40 60 80 100 120 140 160 180 200 時間(s) 5 c2-13_N5 0	400 第 200 一 0 0 20 40 60 80 100 120 140 160 180 200 時間(s)	

(速度時刻歴波形(Ss2-14~Ss2-20))

	甘洗州南部0-0	水平動	鉛直動	
	举华地辰期352	NS方向 EW方向	UD方向	
Ss2-14 (Ss1-6)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と分岐断層の強震動励起特性 に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	400 6 7 7 7 7 7 7 7 7 7 7 7 7 7	EW 400 - Ss2-14_UD 200 - 147 - Ss2-14_UD 一 200 - 40 60 80 100 120 140 160 180 200 時間(s)	
Ss2-15 (Ss1-8)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(御前崎海脚西部の断層帯(アスペリティの 応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点2	400 200 -00 -00 -00 -00 -00 -00 -	EW 400 - Ss2-15_UD 200	
Ss2-16 (Ss1-12)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	400 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	EW 200 - Ss2-16_UD	
Ss2-17 (Ss1-14)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地設内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点1	400 552-17_NS 200 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	EW 400 - Ss2-17_UD 200 - Ss2-17_UD 第 200	
Ss2-18 (Ss1-15)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース②)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と 破壊伝播速度の不確かさの組合せを考慮した震源モデル))への 破壊伝播に係る不確かさの組合せを考慮した震源モデル、破壊開始点3	400	EW 200 552-18_UD 552-18_UD 552-18_UD 7500 7552-18_UD 7500 7500 7500 7500 7500 7500 7500 750	
Ss2-19 (Ss1-18)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角 の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3	400 200 200 -400 -200 -	EW 200 200 200 200 200 200 200 20	
Ss2-20 (Ss1-21)	プレート間地震(地震動の顕著な増幅を考慮しない) 強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として 考慮する活断層(A-17断層(破壊伝播速度と断層傾斜角の不確かさ の組合せを考慮した震源モデル))への破壊伝播に係る不確かさの 組合せを考慮した震源モデル、破壊開始点1	400 200 5 2020_NS 0 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s) 5 22-20_NS 0 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	EW 200 3200 522-20_UD 522-20	

(速度時刻歴波形(Ss2-21~Ss2-22、Ss2-N))

基準地震動Ss2		水平動		鉛直動	
		NS方向	EW方向	UD方向	
Ss2-21 (Ss1-22)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 破壊伝播速度の不確かさを考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	400 変 200 数 一 400 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 200 受 200 一 400 一 400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 200 0 0 0 -400 0 20 400 0 20 40 0 20 0 -400 0 20 40 0 -400 0 20 40 0 -400 0 -400 	
Ss2-22 (Ss1-23)	海洋プレート内地震(御前崎沖の想定沈み込む海洋プレート内地震) (地震動の顕著な増幅を考慮しない) 断層傾斜角の不確かさ(30°)を考慮した震源モデル(断層位置及び 強震動生成域の形状の不確かさを考慮した震源モデルに基づく)、 破壊開始点2	400 30 552-22_NS 400 -400 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 200 第 200 -400 0 20 40 60 80 100 120 140 160 180 200 時間(s)	400 552-22_UD 552-22_UD 552-22_UD 552-22_UD 552-22_UD 400	
Ss2-N	標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)	400 9 200 5 0 5 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -400 -40 -4	Ss2-N_H 	400 (200)	

 検討概要 1.1 基本方針 1.2 地震動の顕著な増幅を踏まえた基準地震動の策定方針 1.3 免震構造の採用を踏まえた基準地震動の策定方針 1.4 基準地震動の策定(概要) 	····p.4~ ····p.7~ ····p.10~ ····p.18~ ····p.27~
 2 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動 2.2 断層モデルを用いた手法による基準地震動 2.3 震源を特定せず策定する地震動による基準地震動 3 まとめ 	•••••p.42~ •••••p.57~ •••••p.66~ •••••p.72~

補足説明資料

•••••p.93~

- 補足説明資料① 免震構造を採用した緊急時ガスタービン発電機建屋について
- 補足説明資料② 応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との 継続時間の比較
- 補足説明資料③ プレート境界の形状に関する知見について (第1041回審査会合資料のコメント回答の追加分析)

免震構造を採用した緊急時ガスタービン発電機建屋について

<補E説明資料①免震構造を採用した緊急時ガスタービン発電機建屋について> 免震構造を採用した緊急時ガスタービン発電機建屋 (概要)

【免震構造を採用した緊急時ガスタービン発電機建屋】

○緊急時ガスタービン発電機(GTG)の建屋は、敷地西側(1~4号炉周辺)のSs1領域に位置し(p.12参照)、地上1階建ての建屋で、 1階(免震層の上部基礎版上)に設置するGTG(固有周期は0.02秒程度の極短周期)に作用する地震力を低減させることを目的として、 免震構造を採用。

○免震装置は、鉛プラグ入り積層ゴム及び弾性すべり支承を採用。また、鋼材ダンパーに加え、オイルダンパーを設置して十分な減衰効果を確保。 ○免震層の固有周期は2秒程度※(固有周期がやや短いが、1階(上部基礎版)の極短周期の揺れは十分に低減。)

※免震層の固有周期は、地震応答解析モデルに基づき固有値解析により算定(p.99参照)。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

鋼材ダンパー

オイルダンパー

< 免震装置の配置図(単位:m)>

(平面図)

(外観写真)

<鉛プラグ入り積層ゴム>

(外観写真)

<弾性すべり支承>

<補定説明資料①免震構造を採用した緊急時ガスタービン発電機建屋について> 免震構造を採用した緊急時ガスタービン発電機建屋 (免需は要)

(免震装置)

(平面図)

(外観写真)

<鋼材ダンパー>

最伸長:5100mm, 最圧縮長:3100mm, ストローク:±1000mm, 取付長:4100mm

(A-A断面図)

(外観写真)

<オイルダンパー>

(側面図)

(外観写真)

<緊急時ガスタービン発電機> (重量は約300kN)

<補E説明資料①免震構造を採用した緊急時ガスタービン発電機建屋について> 免震構造を採用した緊急時ガスタービン発電機建屋 (固有周期)

【免震構造を採用したGTG建屋の固有周期】

○GTG建屋について、地震応答解析モデルに基づき、下部基礎版を固定として、主要な免震装置である鉛プラグ入り積層ゴムのひず み100%時の等価剛性を用いて固有値解析を実施。

○ 免震層の固有周期は2秒程度(NS方向、EW方向共に2.007秒)。

※ 免震層は、鉛プラグ入り積層ゴム、弾性すべり支承、鋼材ダンパーを 水平ばね (MSS: Multiple Shear Spring) としてモデル化し、 オイルダンパーはダッシュポットとしてモデル化。 免震層が支持する重量は約60,000kN。

<補E説明資料①免震構造を採用した緊急時ガスタービン発電機建屋について> 免震構造を採用した緊急時ガスタービン発電機建屋 (免震層による応答低減の解析例)

【免震構造を採用したGTG建屋の免震層による応答低減の解析例】

○免震層による応答低減の解析例として、基準地震動Ss1によるGTG建屋の応答解析例(Ss1-D及びSs1-9(プレート間地震の 地震動評価結果のうち最大加速度が最も大きいケース)のEW方向)を示す。免震層によって1階(上部基礎版)の極短周期 (GTGの固有周期は0.02秒程度)の揺れが低減されている。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較

<補足説明資料②応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較> 応答スペクトルに基づく手法による基準地震動Ss1-D (断層モデルを用いた手法による地震動評価結果の時刻歴波形との比較)

 ○ 応答スペクトルに基づく手法による基準地震動Ss1-Dの継続時間の妥当性確認として、断層モデルを用いた手法による地震動評価結果との比較を実施。
 ○ 応答スペクトルに基づく手法による基準地震動Ss1-Dは、地震規模が大きいMw9.0のプレート間地震の断層モデルを用いた手法による地震動評価結果と 比べて、強震部の継続時間が十分に長い保守的な地震動となっていることから、継続時間として妥当なものと評価。

※下図では、例として、プレート間地震の地震動評価結果のうち最大加速度が最も大きいケースとの比較を示す(他の比較例は次ページ参照)。

の組合せを考慮した震源モデル、破壊開始点3

p.49 再掲

<補足説明資料② 応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較> 応答スペクトルに基づく手法による基準地震動Ss1-D (断層モデルを用いた手法による地震動評価結果の時刻歴波形との比較)

○ 応答スペクトルに基づく手法による基準地震動Ss1-Dの強震部の継続時間について、プレート間地震の地震動評価結果のうち最大加速度が最も大きいケース との比較、断層モデルを用いた手法による基準地震動との比較事例を以下に示す。いずれもSs1-Dのほうが強震部の継続時間が十分に長い。

※2 プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と破壊伝播速度の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3

※3 プレート間地震(地震動の顕著な増幅を考慮しない)、強震動生成域の位置(直下ケース①)と内陸地殻内地震の震源として考慮する活断層(A-17断層(アスペリティの応力降下量と断層傾斜角の不確かさの組合せを考慮した震源モデル))への破壊伝播に係る 不確かさの組合せを考慮した震源モデル、破壊開始点3

: 強震部(概ね加速度が水平動は600ガル、鉛直動は300ガル以上となる範囲)

の組合せを考慮した震源モデル、破壊開始点3

<補足説明資料②応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較> 応答スペクトルに基づく手法による基準地震動Ss2-D (断層モデルを用いた手法による地震動評価結果の時刻歴波形との比較)

 ○ 応答スペクトルに基づく手法による基準地震動Ss2-Dの継続時間の妥当性確認として、断層モデルを用いた手法による地震動評価結果との比較を実施。
 ○ 応答スペクトルに基づく手法による基準地震動Ss2-Dは、地震規模が大きいMw9.0のプレート間地震の断層モデルを用いた手法による地震動評価結果と 比べて、強震部の継続時間が十分に長い保守的な地震動となっていることから、継続時間として妥当なものと評価。

※下図では、例として、プレート間地震の地震動評価結果のうち最大加速度が最も大きいケースとの比較を示す(他の比較例は次ページ参照)。

- : 強震部(概ね加速度が水平動は1000ガル、鉛直動は350ガル以上となる範囲)

p.56 再掲

<補定説明資料②応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較> 応答スペクトルに基づく手法による基準地震動Ss2-D (断層モデルを用いた手法による地震動評価結果の時刻歴波形との比較)

○ 応答スペクトルに基づく手法による基準地震動Ss2-Dの強震部の継続時間について、プレート間地震の地震動評価結果のうち最大加速度が最も大きいケース との比較、断層モデルを用いた手法による基準地震動との比較事例を以下に示す。いずれもSs2-Dのほうが強震部の継続時間が十分に長い。

※1 プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と内陸地殻内地震の震源として考慮する活断層(御前崎海脚西部の断層帯(アスペリティの応力降下量の不確かさを考慮した震源モデル))への破壊伝播に係る不確かさの組合せを考慮した震源 モデル、破壊開始点2

※2 プレート間地震(地震動の顕著な増幅を考慮)、強震動生成域の位置と地震規模の不確かさの組合せを考慮した震源モデル、破壊開始点3

※3 断層モデルを用いた手法による基準地震動のうち強震部の継続時間が最も長いケースは、ブレート間地震の地震動評価結果のうち最大加速度が最も大きいケース(Ss2-4)と同じ。

----: 強震部(概ね加速度が水平動は1000ガル、鉛直動は350ガル以上となる範囲)

<補定説明資料②応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較> 応答スペクトルに基づく手法による基準地震動

(断層モデルを用いた手法による地震動評価結果の時刻歴波形との特徴の違いについて)

<補定説明資料②応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較> 勢地における地震動に支配的な強震動生成域 (応答スペクトルの比較)

第1041回 資料2-2-5

p.214 再掲
<補定説明資料②応答スペクトルに基づく手法による基準地震動と断層モデルを用いた手法による地震動評価結果との継続時間の比較> 敷地における地震動に支配的な強震動生成域

(時刻歴波形の比較)

[・]Xshaは、強震動生成域の最短距離(km)を表す。

第1041回 資料2-2-5

p.215 再揭

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

補足説明資料③

プレート境界の形状に関する知見について

<補定説明資料③プレート境界の形状に関する知見について> 2022年4月15日第1041回審査会合コメント及び回答概要一覧

No.	イベイト	回答概要	ページ
1	駿河トラフ下に沈み込む東海地域のフィリピン海プレートの形状に関する新たな知見(Matsubara et al.(2021))の確認について、浜岡原子力発電所の地震動評価に用いている内閣府(2012)のプレート境界の形状と比較して、敷地への影響が支配的な東海SMGA①までの距離が概ね同等となっていることは確認したが、もう少し説明性を上げるため、地震動評価への影響が小さいことを示すこと。	Matsubara et al.(2021)において図示されている範囲のプレート境 界深さを反映した強震断層モデルを作成して、断層モデルを用いた手 法による地震動評価を行い、内閣府モデル(最大クラスの地震)と 地震動評価結果が同程度であることを確認した結果を説明する。	p.111~

<補足説明資料③ プレート境界の形状に関する知見について> Matsubara et al.(2021)

 ○ 浜岡原子力発電所では、内閣府の南海トラフの巨大地震モデル検討会において複数の研究成果を踏まえてプレート境界の形状が設定された内閣府(2012)の最大 クラスの地震の断層モデル(内閣府モデル(最大クラスの地震))を用いて地震動評価を行っている。
 ○ 東海地域のフィリピン海プレートの形状に係る新たな知見であるMatsubara et al.(2021)について、一研究成果ではあるが、地震動評価への影響を確認する。

- Matsubara et al.(2021)は、陸域の定常観測点と駿河湾内の臨時海底観測点における地震観測データを活用して、東海地域の速度構造を地震波トモグラフィー 法により解析し、その速度構造における低速度かつ高Vp/Vsな海洋地殻の分布、微小地震の震源分布、低角逆断層型の地震の分布を考慮して、フィリピン海プレー ト上面の形状を推定している。
- 推定したフィリピン海プレート上面の形状について、右図のとおり、同じく地震波トモグラフィー法による速度構造等に基づき推定されたHirose et al.(2008)によるフィリピン海プレート上面の形状と併せて図示し、駿河トラフから沈み込むフィリピン海プレートの上面は深さ20km程度までの部分が既往のモデルよりも少し浅くなったとしている。

<補足説明資料③ プレート境界の形状に関する知見について> Matsubara et al.(2021)

○ Matsubara et al.(2021)では、地震波トモグラフィー法による速度構造の 推定に当たり、2000年10月~2017年12月の陸域の定常観測網のデー タと駿河湾内に設置された臨時海底地震計のデータのP波、S波の到達 時刻データ、陸域で実施された4発の人工地震探査の到達時刻データを 用いており、定常観測点と臨時海底地震計を組み合わせることにより、プ レート境界と交差する波線を用いた解析ができるようになり、浅い沈み込 み帯の形状が明らかになったとしている。

○チェッカーボードテストによると、地震波トモグラフィー法による速度構造の解析は、陸域の解析精度が高く、海域の遠州灘沖や御前崎半島周辺では解析精度が低いものの、臨時海底地震観測がされた駿河湾内については陸側と同様に解析精度が高いと考えられる。

○ 内閣府(2012)は、フィリピン海プレートの形状(プレート境界の形状)について、平成20年度から実施している東海・東南海・南海地震の連動性評価研究 プロジェクト(以下、「連動性評価プロジェクト」という。)において、探査深度がフィリピン海プレートまで達する多くの地下構造探査が実施され、概ね深さ20 ~50kmに至る構造を調査・分析した研究成果、Hirose et al.(2008)、Ide et al.(2010)の研究成果、深部低周波地震の分布を踏まえ、プレート境界の 形状を設定している。

○ 内閣府(2012)によるプレート境界の形状のうち、深さ10km及び20kmの等深線は、以下のとおり、地下構造探査結果等に基づきプレート境界の形状が検討された連動性評価プロジェクト(2009)に基づき設定されている。

②深さ10km及び20kmの等深線 連動性評価プロジェクト(2009)とHirose et al.(2008)の結果は、概ね一致している。 ここでは、連動性評価プロジェクトによる等深線を基とし、滑らかに繋いだ線とした。なお、四国東部沖における10kmの等深線については、 海底地形及びHirose et al.(2008)の結果を参照し、比較的緩やかな曲率を持つ線とした。

○ 浜岡原子力発電所では、上記のとおり内閣府の南海トラフの巨大地震モデル検討会において複数の研究成果を踏まえてプレート境界の形状が設定された 内閣府(2012)の最大クラスの地震の断層モデル(内閣府モデル(最大クラスの地震))を用いて地震動評価を行っている。

<<p><補足説明資料③ プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の比較

- Matsubara et al.(2021)は、最新の記録を用いて行った地震波トモグラフィー法による速度構造等に基づき東海地域のプレート境界の 形状を推定し、同じく地震波トモグラフィー法による速度構造等に基づき推定されたHirose et al.(2008)のプレート境界の形状と比較し、 駿河トラフから沈み込むフィリピン海プレートは深さ20km程度までが既往のモデルより少し浅くなったとし、深さ10kmの等深線がやや西側 に位置している。
- ○内閣府(2012)のプレート境界の形状は、地下構造探査結果等による連動性評価プロジェクト(2009)に基づき深さ10km及び20kmの 等深線が設定されており、右図のとおり、深さ10kmの等深線は、Hirose et al.(2008)よりやや西側に位置し、最新の記録を用いて推 定されたMatsubara et al.(2021)とより整合的である。また、深さ10km以外の等深線についても、内閣府(2012)はMatsubara et al.(2021)と概ね整合している。

第1041回 資料2-2-1

p.218 再掲

<補足説明資料③プレート境界の形状に関する知見について> 第1041回 資料2-2-1 p.219 再掲 Matsubara et al.(2021)と内閣府(2012)の比較

(Matsubara et al.(2021)のプレート境界と内閣府モデル(最大クラスの地震)の強震断層モデルとの比較)

○内閣府モデル(最大クラスの地震)に基づく強震断層モデルについて、敷地への影響が支配的な東海SMGA①を配置した敷地直下及びその周辺に着目して、 Matsubara et al.(2021)のプレート境界と断面比較をすると、敷地からやや離れたMatsubara et al.(2021)が推定結果として示している南端のところでやや違いが見られるものの、地震動評価に影響が大きい敷地直下を中心に両者は概ね整合している。

○ 影響確認のための試算として、内閣府モデル(最大クラスの地震)に基づく強震断層モデルをベースにMatsubara et al.(2021)において図示されている範囲の プレート境界深さを反映し、敷地への影響が支配的な東海SMGA①の断層最短距離Xsh及び等価震源距離Xeqを算定した結果、いずれも内閣府モデル (最大クラスの地震)に基づく強震断層モデルと概ね同等となっている。

※Matsubara et al.(2021)のプレート境界が図示されていない範囲は内閣府(2012)に基づく。Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<補定説明資料③プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の地震動評価結果の比較 (追加確認検討の概要)

○前ページのとおり、東海地域のプレート境界の形状を推定した新たな知見(Matsubara et al.(2021))について、地震動評価への影響確認として、地震動
評価に影響が大きい敷地直下及びその周辺について内閣府(2012)と概ね整合していることを確認した。

【追加確認検討】

 ここでは、内閣府モデル(最大クラスの地震)の強震断層モデルをベースに、Matsubara et al.(2021)において図示されている範囲のプレート境界深さを反映した強震断層モデルを作成して、断層モデルを用いた手法による地震動評価を行い、内閣府モデル(最大クラスの地震)と地震動評価結果を比較する。
 評価対象領域は、Matsubara et al.(2021)がプレート境界上面の形状を推定している範囲を踏まえ、「駿河湾域+東海域」とする。
 評価対象ケースは、敷地への影響が大きい直下ケース(敷地直下に強震動生成域を配置した直下ケース①(地震動の顕著な増幅を考慮しない)、直下ケース②(地震動の顕著な増幅を考慮しない)、 直下ケース(地震動の顕著な増幅を考慮))とする。

<補足説明資料③プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の地震動評価結果の比較 (直下ケース①(地震動の顕著な増幅を考慮しない)(応答スペクトル))

○直下ケース①(地震動の顕著な増幅を考慮しない)を対象とした断層モデルを用いた手法による地震動評価結果について、 Matsubara et al.(2021)において図示されている範囲のプレート境界深さを反映した場合の地震動レベルは、内閣府モデル(最大 クラスの地震)に基づく場合と同程度となっていることを確認した。

<補足説明資料③プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の地震動評価結果の比較 (直下ケース①(地震動の顕著な増幅を考慮しない)(加速度時刻歴波形))

(直下ケース①(地震動の顕著な増幅を考慮しない)(プレート間地震))

・統計的グリーン関数法による。

<補足説明資料③プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の地震動評価結果の比較 (直下ケース②(地震動の顕著な増幅を考慮しない)(応答スペクトル))

○直下ケース②(地震動の顕著な増幅を考慮しない)を対象とした断層モデルを用いた手法による地震動評価結果について、 Matsubara et al.(2021)において図示されている範囲のプレート境界深さを反映した場合の地震動レベルは、内閣府モデル(最大 クラスの地震)に基づく場合と同程度となっていることを確認した。

<補足説明資料③プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の地震動評価結果の比較 (直下ケース②(地震動の顕著な増幅を考慮しない)(加速度時刻歴波形))

(直下ケース②(地震動の顕著な増幅を考慮しない)(プレート間地震))

・統計的グリーン関数法による。

<補足説明資料③プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の地震動評価結果の比較 (直下ケース(地震動の顕著な増幅を考慮)(応答スペクトル))

○直下ケース(地震動の顕著な増幅を考慮)を対象とした断層モデルを用いた手法による地震動評価結果について、Matsubara et al.(2021)において図示されている範囲のプレート境界深さを反映した場合の地震動レベルは、内閣府モデル(最大クラスの地震) に基づく場合と同程度となっていることを確認した。

<補定説明資料③プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の地震動評価結果の比較 (直下ケース(地震動の顕著な増幅を考慮)(加速度時刻歴波形))

・統計的グリーン関数法による。

<補足説明資料③ プレート境界の形状に関する知見について> Matsubara et al.(2021)と内閣府(2012)の比較 (まとめ)

- ○浜岡原子力発電所では、内閣府の南海トラフの巨大地震モデル検討会において複数の研究成果を踏まえてプレート境界の 形状が設定された内閣府(2012)の最大クラスの地震の断層モデル(内閣府モデル(最大クラスの地震))を用いて地震動 評価を行っている。
- ○東海地域のプレート境界の形状を推定した新たな知見(Matsubara et al.(2021))について、一研究成果ではあるが、地 震動評価への影響の確認を行い、地震動評価に影響が大きい敷地直下及びその周辺について内閣府(2012)と概ね整合して いることを確認した。
- ○また、Matsubara et al.(2021)において図示されている範囲のプレート境界深さを反映した強震断層モデルを作成して、断層 モデルを用いた手法による地震動評価を行い、内閣府モデル(最大クラスの地震)と地震動評価結果が同程度であることを 確認した。

参考文献

[和文]

- ・川辺秀憲, 釜江克宏(2013)「2011年東北地方太平洋沖地震の震源のモデル化」『日本地震工学会論文集』第13巻, 第2号, pp.75-87。
- ・平成28年6月24日国住指第1111号 超高層建築物等における南海トラフ沿いの巨大地震による長周期地震動対策について(技術的助言)。
- 国土交通省『超高層建築物等における南海トラフ沿いの巨大地震による長周期地震動への対策について』 (https://www.mlit.go.jp/jutakukentiku/build/jutakukentiku house fr 000080.html)。
- ・地震調査研究推進本部『海溝型地震の長期評価』(2023年1月13日公表)(https://www.jishin.go.jp/evaluation/evaluation_summary/#kaiko_rank)。
- ・東海・東南海・南海地震の連動性評価プロジェクト(2009)「サブプロジェクト1の研究成果の活用および地域研究会の開催」『連動性を考慮した地震動・津波予測及び地震・津 波被害予測研究 平成20年度報告書』。
- ・東京電力株式会社(2009b)「資料第1-2号 耐専スペクトルの適用性検討(内陸地殻内地震を対象とした追加検討内容)」『原子力安全委員会 「応答スペクトルに基づく 地震動評価」に関する専門家との意見交換会』平成21年5月22日。
- ・内閣府(2012)『南海トラフの巨大地震モデル検討会中間とりまとめ』南海トラフの巨大地震モデル検討会,平成23年12月27日。『南海トラフの巨大地震による震度分布・津波 高について(第一次報告)』南海トラフの巨大地震モデル検討会,平成24年3月31日。『南海トラフの巨大地震モデル検討会(第二次報告)強震断層モデル編 – 強震断層 モデルと震度分布について – 』南海トラフの巨大地震モデル検討会,平成24年8月29日。
- ・内閣府(2015)『南海トラフ沿いの巨大地震による長周期地震動に関する報告』南海トラフの巨大地震モデル検討会,首都直下地震モデル検討会,平成27年12月。『南海トラ フ沿いの巨大地震による長周期地震動に関する報告(図表集)』南海トラフの巨大地震モデル検討会,首都直下地震モデル検討会,平成27年12月。
- •日本電気協会(2023)『原子力発電所耐震設計技術指針 JEAG4601-2021』。

[英文]

- Hirose, F., J. Nakajima, and A. Hasegawa(2008), "Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography", JOURNAL OF GEOPHYSICAL RESEARCH, VOL.113, B09315.
- Ide, S., K. Shiomi, K. Mochizuki, T. Tonegawa, and G. Kimura(2010), "Split Philippine Sea plate beneath Japan", GEOPHYSICAL RESEARCH LETTERS, VOL.37, L21304.
- Kurahashi, S and K. Irikura(2013), "Short-Period Source Model of the 2011 Mw 9.0 Off the Pacific Coast of Tohoku Earthquake, Susumu Kurahashi and Kojiro Irikura", Bulletin of the Seismological Society of America, Vol.103, No.2B, pp.1373-1393.
- Matsubara, M., K. Shiomi, H. Baba, H. Sato, and T. Nishimiya(2021), "Improved geometry of the subducting Philippine Sea plate beneath the Suruga Trough", Global and Planetary Change, 204.
- Noda, S., K. Yashiro, K. Takahashi, M. Takemura, S. Ohno, M. Tohdo, and T. Watanabe(2002), "RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES", The OECD-NEA Workshop on the Relations between Seismological Data and Seismic Engineering Analyses, Oct.16-18, Istanbul.

