再処理施設、廃棄物管理施設、MOX燃料加工施設標準応答スペクトルを考慮した地震動を踏まえた基礎地盤及び周辺斜面の安定性評価について

令和5年2月16日

余白

R2.7.13 資料1-5 p3 加除修正

【基礎地盤及び周辺斜面の評価概要】

- ▶ 既許可(R2.7.29[再処理施設]、R2.8.26[廃棄物管理施設]、R2.12.9[MOX燃料加工施設])の申請での評価※1
 - 耐震重要施設等※2、常設重大事故等対処施設※2及び安全上重要な施設等※3を支持する地盤に「将来活動する可能性のある断層等」は認められない。
 - 基準地震動(Ss-A、Ss-B1~B5、Ss-C1~C3)による地震力に対して、基礎地盤のすべり、基礎の支持力、基礎底面の傾斜(地殻変動含む)について、いずれも評価基準値を満足することを確認した。また、水平方向の地震動のみ定義されている基準地震動Ss-C4による基礎地盤の安定性を確認した。
 - 耐震重要施設等*2、常設重大事故等対処施設*2及び安全上重要な施設等*3については、岩盤に直接またはMMRを介して支持されていることから、 周辺地盤の変状(不等沈下、液状化、揺すり込み沈下)による影響を受けるおそれはないことを確認した。
 - 以上のことから、耐震重要施設等^{**2}、常設重大事故等対処施設^{**2}及び安全上重要な施設等^{**3}の基礎地盤は、基準地震動による地震力に対して十分 な安定性を有しており、耐震重要施設等^{**2}、常設重大事故等対処施設^{**2}及び安全上重要な施設等^{**3}の安全機能が重大な影響を受けることがないこと を確認した。

- ▶ 今回申請(R4.1.13)での評価
 - 基準地震動(Ss-C5)による地震力に対して、基礎地盤のすべり、基礎の支持力、基礎底面の傾斜について、いずれも評価基準値を満足することを確認した。
 - 以上のことから、既許可(R2.7.29[再処理施設]、R2.8.26[廃棄物管理施設]、R2.12.9[MOX燃料加工施設])の申請での評価を含め、耐震重要施設 等**2、常設重大事故等対処施設**2及び安全上重要な施設等**3の基礎地盤は、基準地震動による地震力に対して十分な安定性を有しており、耐震重要施設等**2、常設重大事故等対処施設**2及び安全上重要な施設等**3の安全機能が重大な影響を受けることがないことを確認した。
- 注)耐震重要施設等※2、常設重大事故等対処施設※2及び安全上重要な施設等※3に重大な影響を与える周辺斜面は存在しないことから、周辺斜面は評価対象外とする。
- ※1:既許可(R2.7.29[再処理施設]、R2.8.26[廃棄物管理施設]、R2.12.9[MOX燃料加工施設])の申請において実施した検討
 - ・基準地震動の見直しに伴い、基礎地盤の安定性評価の見直しを行った。
 - ・水平方向の地震動のみ定義されている基準地震動Ss-C4について、以下の検討より、基礎地盤の安定性を確認した。
 - 検討①: 安定性評価において支配的であるSs-C1を用いて、バンドパス処理した地震動による評価結果から、安定性評価に影響を与える周期帯を特定することにより、Ss-C4による評価はSs-C1の評価をもって十分な安全裕度を確保していると工学的に判断した。
 - 検討②:Ss-C4(水平動)と一関東評価用地震動(鉛直動)により、基礎地盤のすべり、支持力及び傾斜の評価基準値を満足していることを確認した。
 - ・鷹架層の強度特性及び静的変形特性については、地盤の応力状態をより再現できる試験方法(CU試験)に見直した。
 - ・評価対象施設(全ての耐震重要施設等*2及び安全上重要な施設等*3と追加した常設重大事故等対処施設*2)から小規模施設及び洞道を除いた解析対象施設に直交する2断面を基本とし、再処理施設21断面、廃棄物管理施設5断面、MOX燃料加工施設7断面を解析対象断面とした。
 - ・評価対象施設について、周辺地盤の変状(不等沈下、液状化、揺すり込み沈下等)による影響を評価した。
 - ・地殻変動による基礎地盤の変形の影響について、出戸西方断層に伴う地盤の傾斜を、食い違い弾性論に基づき評価した。
- ※2:再処理施設及びMOX燃料加工施設に該当する施設
 - 「耐震重要施設等」は、耐震設計上の重要度分類Sクラスの機器・系統及びそれらを支持する建物・構築物(波及的影響を確認する施設を含む(MOX除く)。)
 - 「常設重大事故等対処施設」は、常設重大事故等対処設備を支持する建物・構築物
- ※3:廃棄物管理施設に該当する施設
 - 「安全上重要な施設等」は、耐震設計上の重要度分類Sクラスの機器・系統及びそれらを支持する建物・構築物(波及的影響を確認する施設を含む。)
- 上記※2及び※3については、以下同様とする。

目 次

1. 評価方針・・・・・・・5	5. 周辺地盤の変状による施設への影響評価・・・・131
2. 地質の概要・・・・・・11	5.1 再処理施設
3. 解析用物性值 ••••••24	5.2 廃棄物管理施設
4. 地震力に対する基礎地盤の安定性評価・39	5.3 MOX燃料加工施設
4.1 解析対象断面の設定	6. 地殻変動による基礎地盤の変形の影響評価・・・136
4.1.1 再処理施設	6.1 再処理施設
4.1.2 廃棄物管理施設	6.2 廃棄物管理施設
4.1.3 MOX燃料加工施設	6.3 MOX燃料加工施設
4.2 解析対象断面図	7. 一関東評価用地震動による影響評価・・・・・・141
4.3 小規模施設及び洞道の鉛直断面図	7.1 再処理施設
4.4 安定性評価フロー	7.2 廃棄物管理施設
4.5 評価項目	7.3 MOX燃料加工施設
4.6 解析モデル	8. まとめ・・・・・・160
4.7 入力地震動	
4.8 評価結果	参考資料
4.8.1 再処理施設	
4.8.2 廃棄物管理施設	
4.8.3 MOX燃料加工施設	

目次

1. 評価方針

- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

参考資料

R2.7.13 資料1-5 p6 再掲

再処理施設及びMOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設、廃棄物管理施設の安全上重要な施設等の基礎地盤及び周辺斜面の安定性評価について審査ガイドに準拠し以下に示す事項を確認する。

■ 基礎地盤

1. 活断層の有無

耐震重要施設等、常設重大事故等対処施設及び安全上重要な施設等が設置される地盤には、将来活動する可能性のある断層等が露頭していないことを確認する。

2. 地震力に対する基礎地盤の安定性

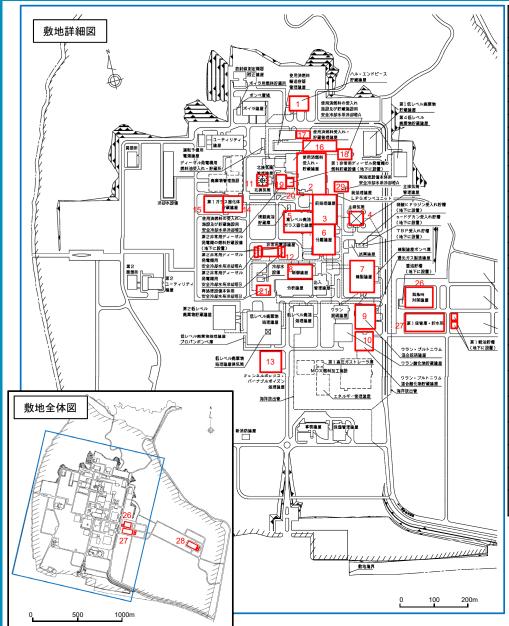
耐震重要施設等、常設重大事故等対処施設及び安全上重要な施設等が設置される地盤の安定性について以下を確認する。

- (1) 基礎地盤のすべり
- (2) 基礎の支持力
- (3) 基礎底面の傾斜
- 3. 周辺地盤の変状による施設への影響評価

地震発生に伴う周辺地盤の変状(不等沈下、液状化、揺すり込み沈下等)による影響を受けないことを確認する。

4. 地殻変動による基礎地盤の変形の影響評価

地震発生に伴う地殻変動による基礎地盤の傾斜及び撓みの影響を受けないことを確認する。


■ 周辺斜面

基準地震動の地震力により耐震重要施設等、常設重大事故等対処施設及び安全上重要な施設等に重大な影響を与える周辺斜面 は存在しないことから、評価対象外とする。

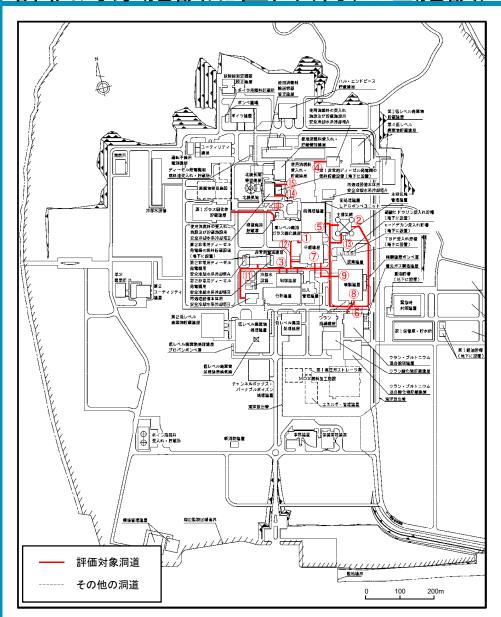
評価対象施設配置図(再処理施設)

R2.7.13 資料1-5 p7 再掲

	表示 / T - L - A - L - E - D.	
番号	評価対象施設 「再処理施設の耐震重要施設等 及び常設重大事故等対処施設 ※1	主要設備(Sクラス)
1	ハル・エンドピース貯蔵建屋	貯蔵プール
2	使用済燃料受入れ・貯蔵建屋	燃料貯蔵プール
3	前処理建屋	溶解槽
4	主排気筒(基礎)及び主排気筒管理建屋	主排気筒
5	高レベル廃液ガラス固化建屋	高レベル濃縮廃液貯槽
6	分離建屋	抽出塔
7	精製建屋	プルトニウム濃縮液一時貯槽
8	制御建屋	制御建屋中央制御室換気設備
9	ウラン・プルトニウム混合脱硝建屋	硝酸プルトニウム貯槽
10	ウラン・プルトニウム混合酸化物貯蔵建屋	貯蔵室からの排気系
11	北換気筒(基礎)	C(周辺施設に波及的損壊を与えないことをSsで確認)
12	非常用電源建屋 (冷却塔及び燃料油貯蔵タンク含む)	非常用ディーゼル発電機 (電気設備)
13	チャンネルボックス・バーナブルポイズン処理建屋	貯蔵室
14	第1ガラス固化体貯蔵建屋(東棟)	収納管、通風管
15	第1ガラス固化体貯蔵建屋(西棟)	収納管、通風管
16	使用済燃料輸送容器管理建屋	C(輸送容器に波及的損壊を与えない ことをSsで確認)
17	使用済燃料輸送容器管理建屋 (トレーラ エリア)	C(輸送容器に波及的損壊を与えない ことをSsで確認)
18	使用済燃料の受入れ施設及び貯蔵施設用 安全冷却水系冷却塔A(基礎)	冷却塔
19	使用済燃料の受入れ施設及び貯蔵施設用 安全冷却水系冷却塔B(基礎)	冷却塔
20	第1非常用ディーゼル発電設備用 重油タンク室	重油タンク
21	再処理設備本体用安全冷却水系冷却塔B (基礎)	冷却塔
26	緊急時対策建屋(重油貯槽含む)	C(重大事故が発生した場合において必要な機能が喪失しないことをSsで確認)
27	第1保管庫・貯水所(第1軽油貯槽含む)	C(重大事故が発生した場合において必要な機能が喪失しないことをSsで確認)
28	第2保管庫・貯水所(第2軽油貯槽含む)	C(重大事故が発生した場合において必要な機能が喪失しないことをSsで確認)
29	再処理設備本体用安全冷却水系冷却塔A (基礎)	冷却塔

※1 他施設及び設備に波及的損壊を与えないことを確認する施設を含む。

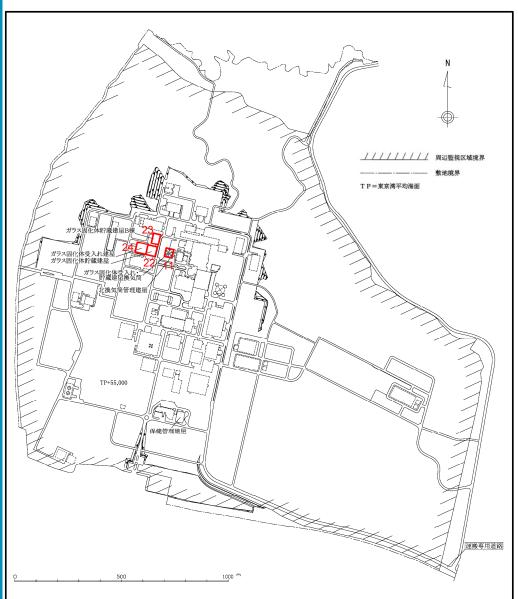
評価対象施設


その他の再処理施設

廃棄物管理施設及びMOX燃料加工施設

評価対象施設配置図(再処理施設)

R2.7.13 資料1-5 p8 再掲



番号	評価対象施設 「再処理施設の耐震重要施設等〕	主要設備(Sクラス)
1	分離建屋/高レベル廃液ガラス固化建屋間洞道	高レベル放射性廃液等を移送するためのプロセス配管類
2	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その1)	換気ダクト、廃ガス処理系の配管類
3	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その2)	安全冷却水系配管
4	使用済燃料受入れ・貯蔵建屋/安全冷却水系冷 却塔A基礎間洞道	安全冷却水系配管
5	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その3)	安全冷却水系配管
6	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その4)	安全冷却水系配管
7	分離建屋/精製建屋/ウラン脱硝建屋/ウラン・ プルトニウム混合脱硝建屋/低レベル廃液処理建 屋/低レベル廃棄物処理建屋/分析建屋間洞道 (その1)	プルトニウム溶液等を移送するためのプロセ ス配管類
8	精製建屋/ウラン・プルトニウム混合脱硝建屋建 屋間洞道	プルトニウム溶液等を移送するためのプロセス配管類
9	分離建屋/精製建屋/ウラン脱硝建屋/ウラン・ プルトニウム混合脱硝建屋/低レベル廃液処理建 屋/低レベル廃棄物処理建屋/分析建屋間洞道 (その2)	プルトニウム溶液等を移送するためのプロセ ス配管類
10	高レベル廃液ガラス固化建屋/第1ガラス固化体 貯蔵建屋間洞道	トレンチ移送台車 (ガラス固化体の遮蔽容器付き)
11)	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その5)	安全冷却水系配管
12	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その6)	非常用電源ケーブル
13)	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その7)	非常用電源ケーブル
14)	使用済燃料受入れ・貯蔵建屋/安全冷却水系冷 却塔B基礎間洞道(その1)	安全冷却水系配管
15	使用済燃料受入れ・貯蔵建屋/安全冷却水系冷 却塔B基礎間洞道(その2)	安全冷却水系配管

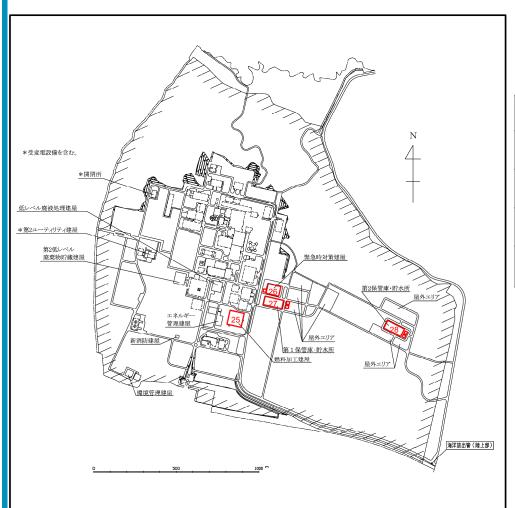
評価対象施設配置図(廃棄物管理施設)

R2.7.13 資料1-5 p9 再掲

番号	評価対象施設 ※1	主要設備(Sクラス)
11	北換気筒(ガラス固化体受入れ・ 貯蔵建屋換気筒)(基礎)	C(周辺施設に波及的損壊を与えないことをSsで確認)
22	ガラス固化体貯蔵建屋	収納管、通風管
23	ガラス固化体貯蔵建屋B棟	収納管、通風管
24	ガラス固化体受入れ建屋	C(輸送容器に波及的損壊を与えないためにSsで確認)

※1 他施設及び設備に波及的損壊を与えないことを確認する施設を含む。

評価対象施設


その他の廃棄物管理施設

___ ___ 再処理施設及びMOX燃料加工施設

評価対象施設配置図(MOX燃料加工施設)

R2.7.13 資料1-5 p10 再掲

番号	評価対象施設 (MOX燃料加工施設の耐震重要施設等) 及び常設重大事故等対処施設	主要設備(Sクラス)		
25	燃料加工建屋	粉末調整工程等のグローブボックス		
26	緊急時対策建屋(重油貯槽含む)	C(重大事故が発生した場合において必要な機能が喪失しないようSsで確認)		
27	第1保管庫・貯水所(第1軽油貯槽含む)	C(重大事故が発生した場合において必要な機能が喪失しないようSsで確認)		
28	第2保管庫・貯水所(第2軽油貯槽含む)	C(重大事故が発生した場合において必要な機能が喪失しないようSsで確認)		

評価対象施設

その他のMOX燃料加工施設

----| | 再処理施設及び廃棄物管理施設

目次

- 1. 評価方針
- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

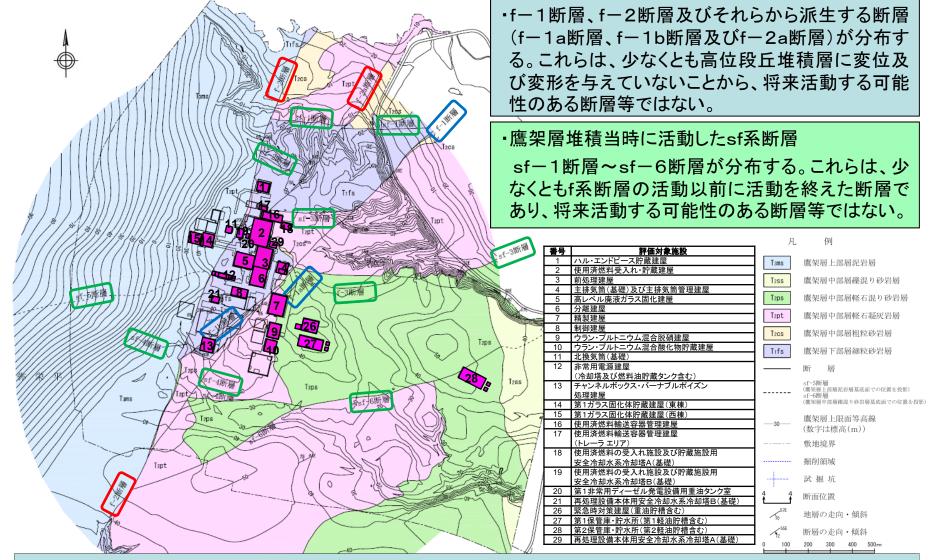
参考資料

敷地内地質層序表

R2.7.13 資料1-5 p12 再掲

地	地質時代			地層	名 名	記 号	主な層相及び岩相	
		完新		崖錐堆積層		dt	礫, 砂, 粘土	
	第	* #		沖	沖積低地堆積層		al	礫,砂,粘土,腐植土
	後 火 山 灰 層 1m						1m	褐色の粘土質火山灰
	四	更	期	F	中位段	丘堆積層	M2, M1	主に石英粒子からなる淘汰の良い中粒砂~粗粒砂
		der	中			· 连堆積層 (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	H 5	主に石英粒子からなる淘汰の良い中粒砂~粗粒砂 (************************************
		新	期			【注】		
新	紀	世	前	六	ケ	所 層	R	砂、シルト、礫
			期					
		鮮新世		レトレレトレトレト↓↓↓ 砂子又層		人人人人人 下部層	S 1	
生			後期					
	_{tr}					泥岩層	Тзms	泥岩 一部に凝灰岩を挟む。
						礫混り 砂岩層	T 2ss	礫混り砂岩
代	第三	中新	i selar			軽石混り 砂岩層	T 2ps	砂岩・凝灰岩互層 礫混り砂岩 砂岩 - 混り砂岩 (3) 砂質軽石凝灰岩(2) 軽石混り砂岩(2) 砂質軽石凝灰岩(1) 軽石混り砂岩(1)
	紀			軽石 凝灰岩層	T 2pt	凝灰岩 軽石強灰岩 軽石質砂岩 礫岩		
		粗粒。		T 2cs	砂質軽石凝灰岩 粗粒砂岩			
	- *** *** *** *** *** *** *** *** *** *					細粒	Tıfs	#粒砂岩 一部に粗粒砂岩を挟む。
							Tıms	泥岩 一部に凝灰質砂岩,砂質軽石凝灰岩を挟む。

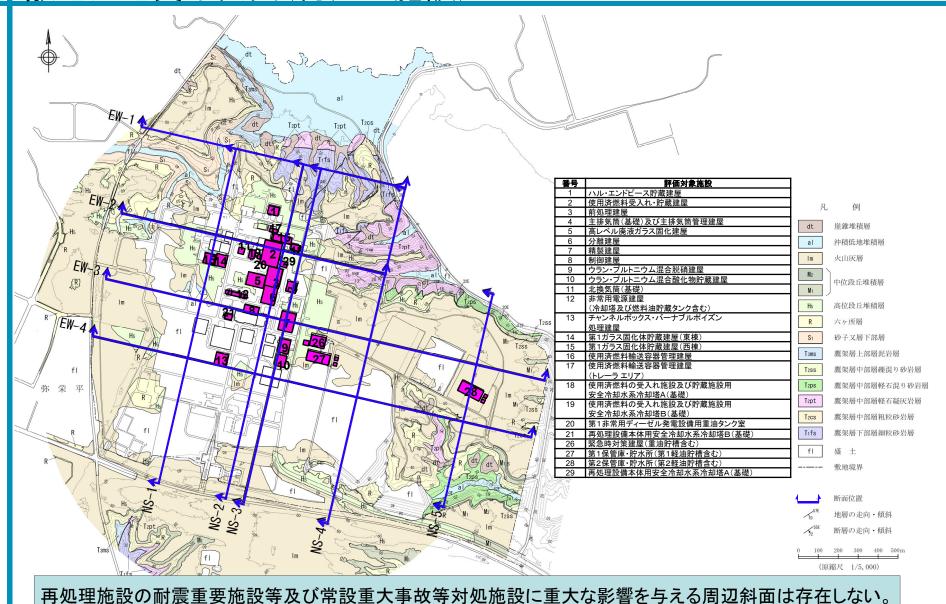
注) — は,整合関係を示す。 ~ ~ は,不整合関係を示す。 主な層相及び岩相の上下順序は、層位関係を示す。


【注】:従来「砂子又層上部層(S₃)」としていた地層のうち、敷地近傍の第四系下部 ~中部更新統について、本資料では「六ヶ所層(R)」と仮称する。

- ・鷹架層は砂岩、泥岩、凝灰岩からなり、層相から下部層、中部層及び上部層に区分される。また、層相の特徴から、下部層は2層に、中部層は4層に細区分される。
- ・砂子又層下部層は、凝灰質砂岩等からなり、敷地内西部に分布し、下位の鷹架層を不整合に覆う。
- ・六ヶ所層は、砂及びシルト等からなり、砂子又層下部層を不整合に覆う。
- ・高位段丘堆積層(H₅面堆積物)は、主に海成砂からなる。最上部付近に甲地軽石(18万年~28万年前頃^{※1})を挟む。
- ・なお、下位層上面の谷部を埋積するように、砂、礫及びシルトからなる古期低地堆積層が局所的に分布する。
- ・敷地が位置する段丘面は、標高60m程度である。示標テフラの年代・層位関係、H5面周辺の段丘面分布等から、酸素同位体ステージ7(MIS7)に対比される。
- ※1:示標テフラの年代は、放射性年代値、桑原(2007)⁽¹⁾、Matsu'ura et. al.(2014)⁽²⁾等の 文献値及び層位関係から判断した値である。

鷹架層の地質構造(上限面地質図・等高線図)(再処理施設)

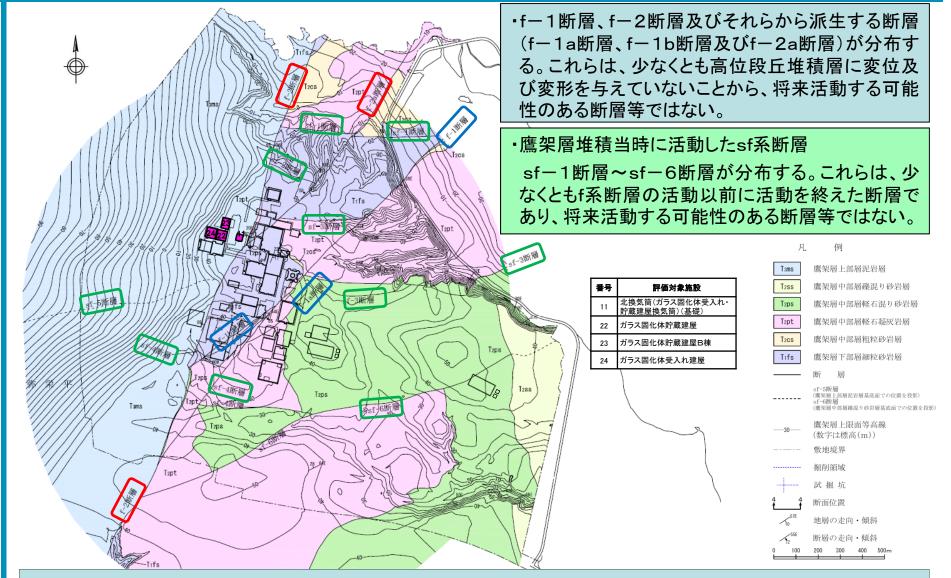
R2.7.13 資料1-5 p13 再掲



再処理施設の耐震重要施設等及び常設重大事故等対処施設を支持する地盤に「将来活動する可能性のある断層等」は認められない。

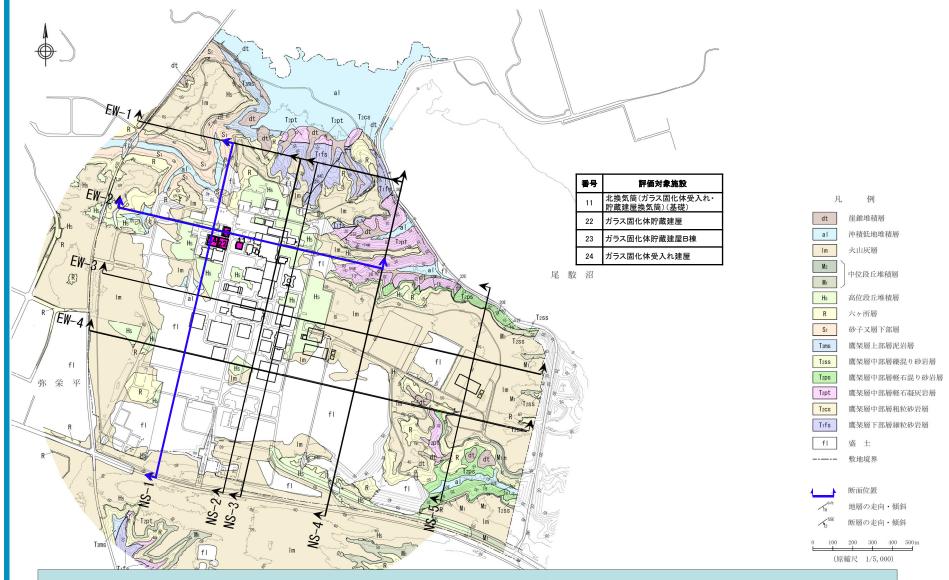
敷地内地質平面図(再処理施設)

R2.7.13 資料1-5 p14 再掲



鷹架層の地質構造(上限面地質図・等高線図)(廃棄物管理施設)

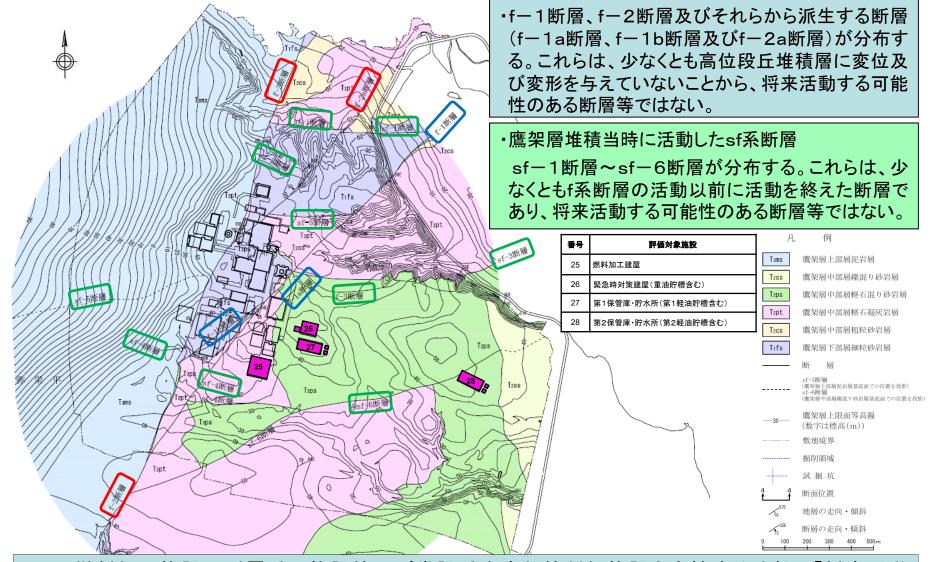
R2.7.13 資料1-5 p15 再掲



廃棄物管理施設の安全上重要な施設等を支持する地盤に「将来活動する可能性のある断層等」は認められない。

敷地内地質平面図(廃棄物管理施設)

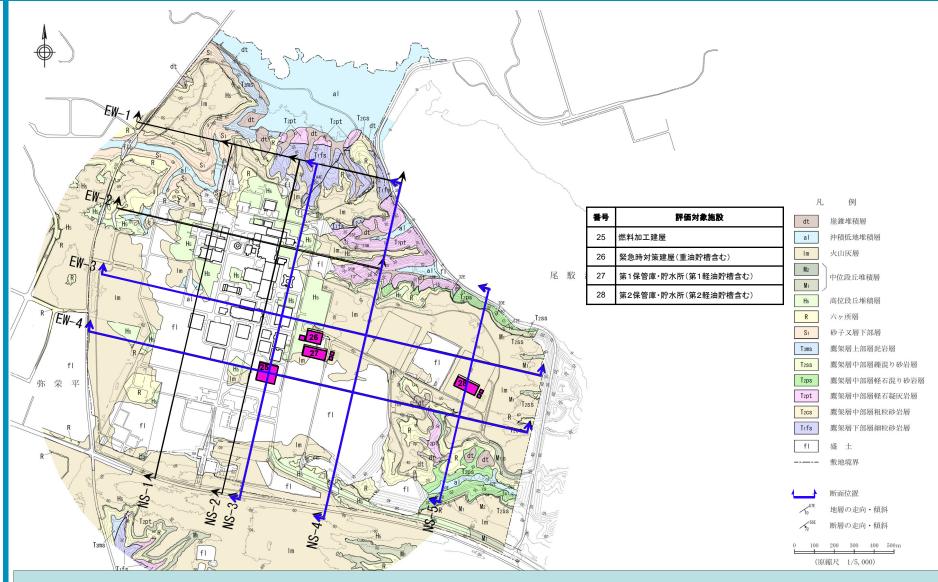
R2.7.13 資料1-5 p16 再掲



廃棄物管理施設の安全上重要な施設等に重大な影響を与える周辺斜面は存在しない。

鷹架層の地質構造(上限面地質図・等高線図)(MOX燃料加工施設)

R2.7.13 資料1-5 p17 再掲

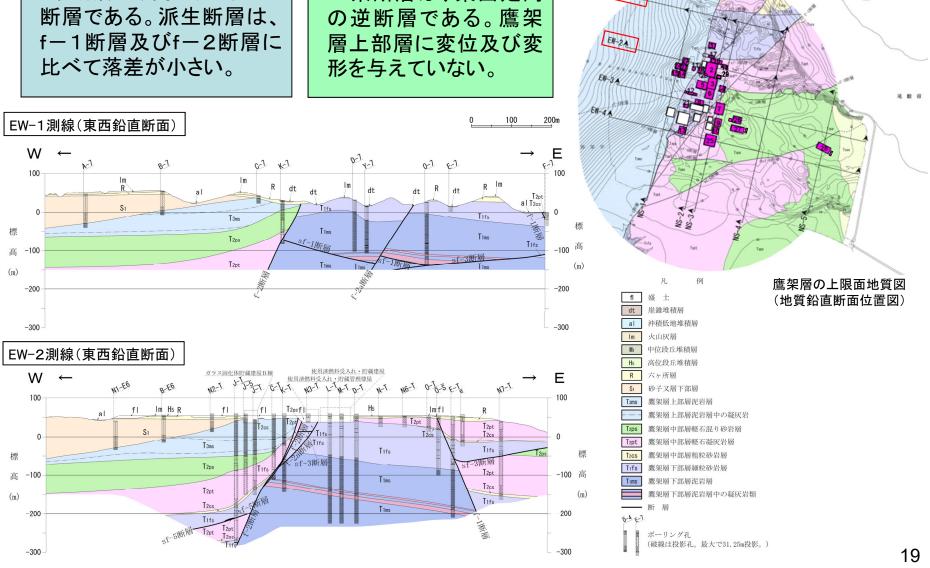


MOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設を支持する地盤に「将来活動する可能性のある断層等」は認められない。

敷地内地質平面図(MOX燃料加工施設)

R2.7.13 資料1-5 p18 再掲

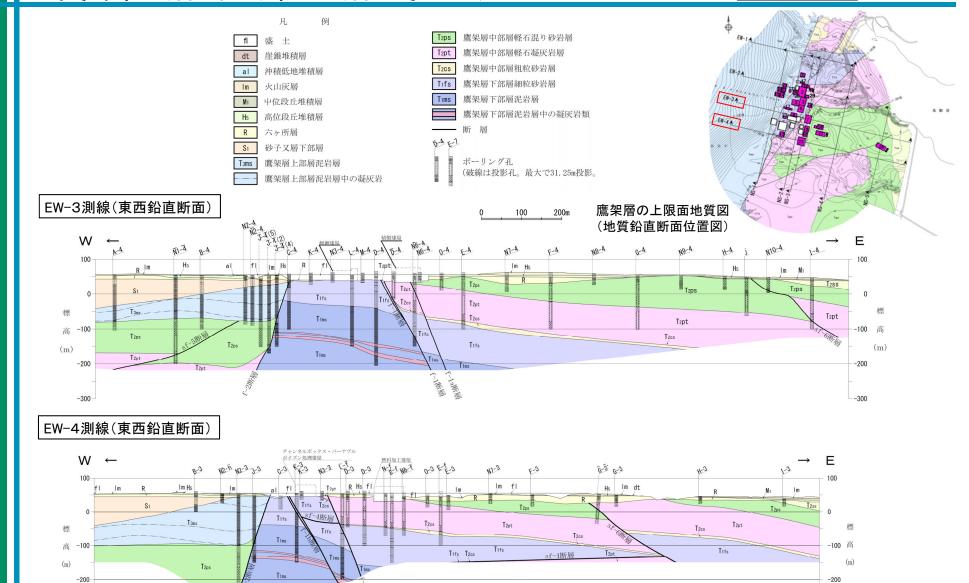
MOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設に重大な影響を与える周辺斜面は存在しない。


地質鉛直断面図(東西断面その1)

R2.7.13 資料1-5 p19 再掲

・f系断層は、南北走向の正 断層である。派生断層は、 f-1断層及びf-2断層に

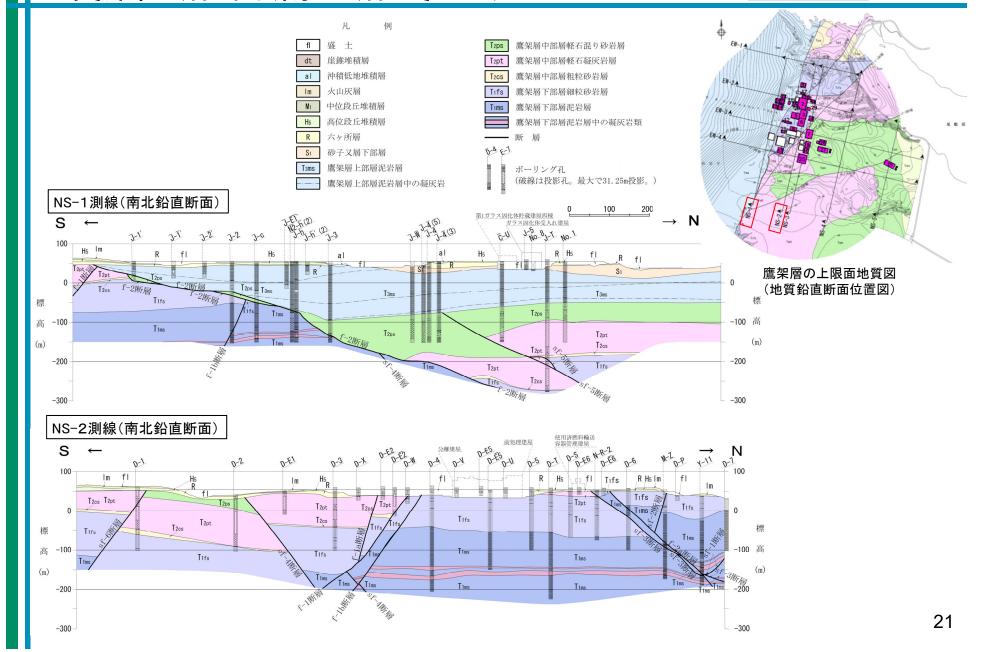
・sf系断層は、東西走向 形を与えていない。



-300

地質鉛直断面図(東西断面その2)

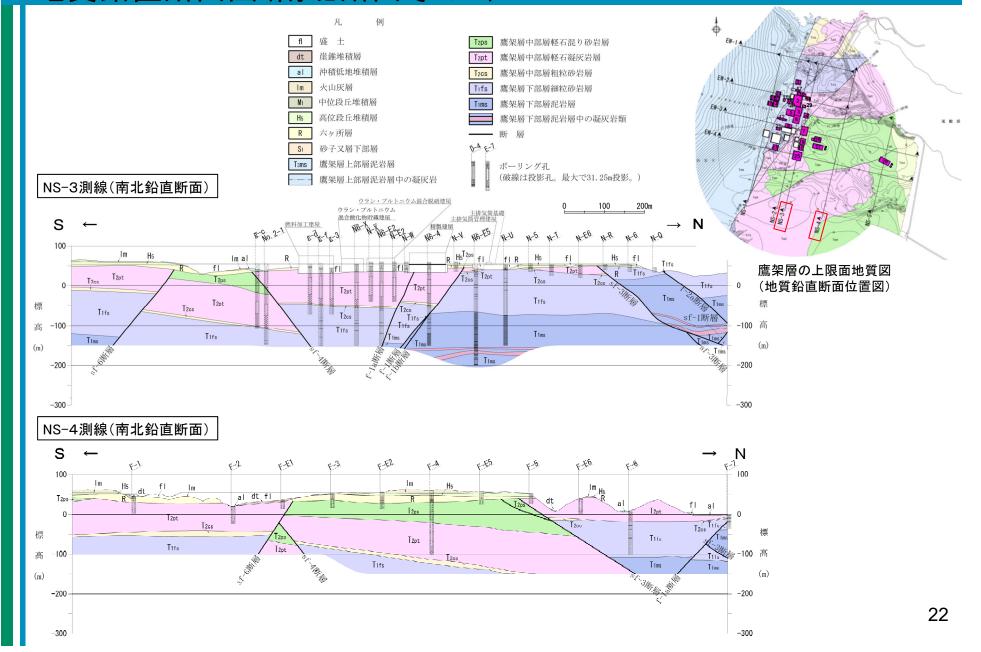
R2.7.13 資料1-5 p20 再掲



-300

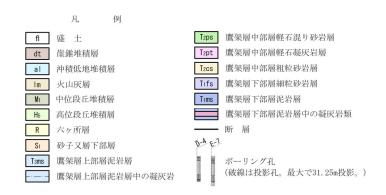
地質鉛直断面図(南北断面その1)

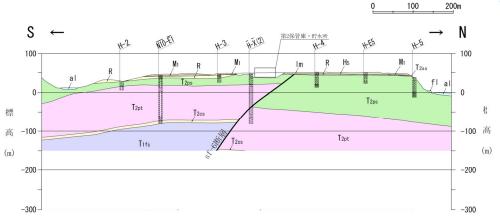
R2.7.13 資料1-5 p21 再掲

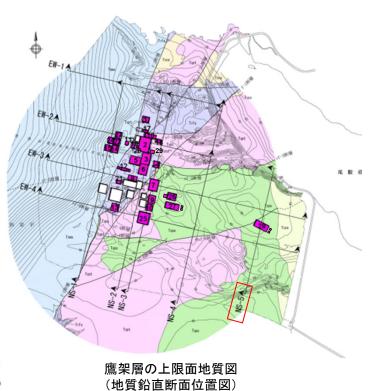


地質鉛直断面図(南北断面その2)

R2.7.13 資料1-5 p22 再掲




地質鉛直断面図(南北断面その3)


R2.7.13 資料1-5 p23 再掲

NS-5測線(南北鉛直断面)

目次

- 1. 評価方針
- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

参考資料

3. 解析用物性値 岩盤分類(1)

R2.7.13 資料1-5 p25 再掲

	岩盤分類法の						
	土) 日本電気協会「原子力発電所耐震設計技	六ヶ所地点の岩盤					
区分	岩塊の特徴	等級区	区分の可否				
	鮮な部分は緻密な岩質を示すが、ハンマー	 岩塊の風化及び節理の発達程度により、2~3段			六ヶ所地点の岩盤のうち、構成粒子が均質で節理の 少ない岩種をこの区分にした。 鷹架層の下部に分布する泥岩、細粒砂岩及び凝灰 質砂岩、鷹架層の中部に分布する粗粒砂岩、軽石 質砂岩、砂岩・泥岩互層及び砂岩・凝灰岩互層、鷹 架層の上部に分布する泥岩がこれに相当する。		
	主として鮮新統に属する泥岩ないし頁岩、砂岩及びその互層等、固結度小でハンマーの打撃により容易に崩れる。 岩質は均質で、おおむね単純な地質構造を示し、節理は少数である。	た不要な場合が多い。 節理の発達状況の差		I			
不均質軟岩 (軟岩Ⅲ類)	中新統及び鮮新統に属する火山砕屑岩類 のうち基質が軟質で硬岩としての分類基準 に適さないもの。 肉眼的に不均質な岩質を示す部分が多く、 レキ類は主に火山岩類、時に基質と同質の 軟質レキより成る。 硬質火山岩類としばしば互層あるいはその 貫入を受ける。	岩相によるグルーピン グが適切。 同一岩相内の等級区 分は地質要素では困 難である。	特に必要な場合は節理 の発達状況等に応じた2 段階程度の岩質等級区 分を行うこともある。	火山 砕屑岩 堆積岩	六ヶ所地点の岩盤のうち、主に礫と基質で構成され、節理がほとんど見られない岩種をこの区分にした。 鷹架層の中部に分布する凝灰岩及び軽石凝灰岩、 鷹架層の下部及び中部に分布する砂質軽石凝灰岩 がこれに相当する。 六ヶ所地点の岩盤のうち、礫と基質で構成され、節理がほとんど見られない岩種をこの区分にした。		
					鷹架層の中部に分布する礫混り砂岩、軽石混り砂岩 及び礫岩がこれに相当する。		

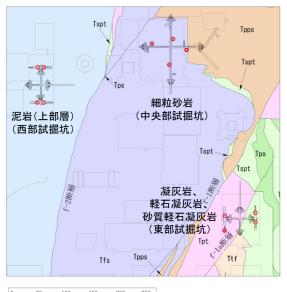
岩盤分類(2)

R2.7.13 資料1-5 p26 再掲

鷹架層の異方性について(試掘坑内弾性波速度測定)

R2.7.13 資料1-5 p27 再掲

- · 試掘坑において平均速度法による弾性波速度測定を実施している。
- · 弾性波速度の平均値を以下に示す。


鷹架層上部層 P波速度:1.67km/s、S波速度:0.56km/s

鷹架層中部層 P波速度:1.76km/s、S波速度:0.62km/s

鷹架層下部層 P波速度:1.95km/s、S波速度:0.84km/s

・ P波速度及びS波速度の平均値は、各試掘坑において、NE-SW方向及びNW-SE方向それぞれで有意な差がないことから、異方性は認められない。

			P波			S波			
測定位置	地層名	方向	平均値	標準偏差	変動係数	平均值	標準偏差	変動係数	測定数
			(km/s)	(km/s)	(%)	(km/s)	(km/s)	(%)	
		全体	1.67	0.03	1.8	0.56	0.02	3.8	104
西部試掘坑	鷹架層上部層 (泥岩(上部層))	NE-SW	1.67	0.03	1.6	0.56	0.02	4.3	52
		NW-SE	1.67	0.03	2.0	0.56	0.02	3.1	52
		全体	1.76	0.07	3.9	0.62	0.06	9.2	103
東部試掘坑		NE-SW	1.77	0.08	4.7	0.61	0.07	12.1	52
	砂質軽石凝灰岩)	NW-SE	1.75	0.05	2.8	0.62	0.03	4.8	51
+ + +7		全体	1.95	0.10	5.0	0.84	0.04	4.2	234
中央部 試掘坑	鷹架層下部層 (細粒砂岩)	NE-SW	1.95	0.08	4.1	0.84	0.02	2.5	117
直入が出りし		NW-SE	1.94	0.11	5.7	0.84	0.05	5.4	117

【変動係数の算出方法】

解析用地盤分類

R2.7.13 資料1-5 p28 再掲

解析用の地盤分類を以下に示す。

- ・鷹架層の岩盤分類に基づき区分する。
- ・断層として、f-1断層、f-2断層をそれぞれ区分する。
- ・表層として、新第三系鮮新統~埋戻し土を区分する。

■鷹架層

泥岩(上部層)(Tmss)
泥岩(下部層)(Tms)
細粒砂岩(Tfs)
凝灰質砂岩(Tts)
軽石質砂岩(Tpps)
粗粒砂岩(Tcs)
砂岩·泥岩互層(Talsm)
砂岩·凝灰岩互層(Talst)
凝灰岩(Ttf)
軽石凝灰岩(Tpt)
砂質軽石凝灰岩(Tspt)
礫混り砂岩(Tss)
軽石混り砂岩(Tps)
礫 岩(Tcg)
風化岩(T(w))

■断層

f-1断層(f-1、f-1a、f-1b) f-2断層(f-2、f-2a)

■ 表層

新第三系鮮新統(PP1)
第四系下部~中部更新統(PP2)
第四系中部更新統~完新統(PH)
造成盛土(fl)
埋戻し土(bk)

解析用地盤物性値の考え方

R2.7.13 資料1-5 p29 再掲

					表層			
			鷹架層 ※1 断層		新第三系鮮新統	第四系下部~中部更 新統、第四系中部更 新統~完新統	造成盛土 **2 埋戻し土 **2	
物理特性	理							
	ピーク	非排水せん断強度	三軸圧縮試験					
特 性 —	残留	非排水せん断強度	三軸圧縮試験					
静的变		初期変形係数			三軸圧縮試験			
変形特性		ポアソン比			三軸圧縮試験			
動		動せん断弾性係数	PS検層によるV _s 及 び湿潤密度により 算出	超音波速度測定に よるV _S 及び湿潤密 度により算出				
的変形特性		動ポアソン比	PS検層によるV _P 超音波速度測定に よるV _P 及びV _S から算出 算出		PS検層によるV _P 及びV _S から算出		:出	
		正規化せん断弾性係数 減衰率のひずみ依存性	繰返し三軸 試験	繰返し単純せん断 試験	繰返し三軸 試験	繰返し三軸試験及び繰返し単純せん断試験	繰返し三軸 試験	

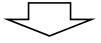
※1: 鷹架層の強度特性及び静的変形特性については申請時UU試験(非圧密非排水条件)に基づき設定していたが、

地盤の応力状態をより再現できる試験条件(CU試験(圧密非排水条件))に基づき設定

なお、試験数の少ない岩種についてはUU試験結果または他岩種の物性を流用

※2:申請時は盛土としていた物性値を、造成盛土及び埋戻し土に区分

地盤物性のばらつきの考え方


R2.7.13 資料1-5 p30 再掲

- 原子力発電所耐震設計技術指針JEAG4601-2008(日本電気協会)
- すべり安全率に対する地盤物性のばらつきの影響については、一般に強度特性が支配的であり、変形特性の影響は小さい。したがって、一般に強度特性のばらつきのみ考慮しておけばよい。
- 原子力発電所の基礎地盤及び周辺斜面の安定性評価技術(土木学会2009)

地盤物性値のばらつき評価法について確率論的な検討を行ない、以下の結論が得られている。

- 地盤物性値を±10%して算定したすべり安全率の差は、せん断強度等の抵抗力に関係する地盤物性の影響が非常に大きく、剛性等の影響は比較的小さい。
- 「代表値±係数×標準偏差」による確率論的手法による地盤物性のばらつきの評価では、地盤物性値がばらついても 「代表値-1.0×標準偏差」によって確率論的に評価したすべり安全率を下回る確率が小さい。

- 地盤のばらつきを考慮したすべり安全率
- 地盤物性のばらつきを考慮したすべり安全率は、試験結果をもとに標準偏差σを求め、強度特性(ピーク強度、残留強度)
 を1σ低減した物性値で算出する。なお、試験数の少ない岩種については、ばらつきの大きい軽石混り砂岩の変動係数を用いて保守的に設定する。
- 各断面のうち最小すべり安全率を示すすべり面に対して地盤のばらつきを考慮して評価する。

解析用地盤物性値(1)

R2.7.13 資料1-5 p31 再掲

	区分		泥岩(上部層) Tmss	泥岩(下部層) Tms	細粒砂岩 Tfs	凝灰質砂岩 Tts
物理特性	湿潤密度	$\rho_{\rm t}$ $({\rm g/cm}^3)$	$1.60-2.02\times10^{-4}\cdot Z$	1.70	1. $85-1.55\times10^{-4} \cdot Z$	1. 67
強度特性	非排水せん断強度	S _u (MPa)	1.63 (1.42)	$2.82 - 1.18 \times 10^{-2} \cdot Z$ $(2.23 - 1.18 \times 10^{-2} \cdot Z)$	$2.22-1.45\times10^{-2} \cdot Z$ $(1.80-1.45\times10^{-2} \cdot Z)$	$\begin{array}{c} 1.23 - 3.95 \times 10^{-3} \cdot Z \\ (0.97 - 3.95 \times 10^{-3} \cdot Z) \end{array} \times 1$
特性留	表 非排水 s _{ur} d せん断強度 (MPa)		$1.05 - 3.87 \times 10^{-3} \cdot Z$ $(0.92 - 3.87 \times 10^{-3} \cdot Z)$	$1.67 - 3.20 \times 10^{-3} \cdot Z$ $(1.23 - 3.20 \times 10^{-3} \cdot Z)$	$1.55 - 8.17 \times 10^{-3} \cdot Z$ $(1.33 - 8.17 \times 10^{-3} \cdot Z)$	$0.85 - 2.03 \times 10^{-3} \cdot Z$ $(0.62 - 2.03 \times 10^{-3} \cdot Z)^{**1}$
静的変形	初期 変形係数	E 0 (MPa)	551-2.75 Z	938-2.64Z	939-8.69 Z	697 – 3. 32 Z ※ 1
特性	ポアソン比	ν	$0.48+1.9\times10^{-4} \cdot Z$	$0.47+1.6\times10^{-4}\cdot Z$	$0.47 + 2.6 \times 10^{-4} \cdot Z$	0.48+2.3×10 ⁻⁴ · Z ※ 1
	動せん断 G ₀ 弾性係数 (MPa)		502-2.47 Z	986-1.59 Z	1220-5.88 Z	1290
動的変形	動ポアソン比	u d	$0.44+2.8\times10^{-4} \cdot Z$	$0.40+1.1\times10^{-4} \cdot Z$	$0.40 + 2.8 \times 10^{-4} \cdot Z$	0. 39
特性	正規化せん 断弾性係数	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{1+1.35 \cdot \gamma^{0.912}}$	$\frac{1}{1+0.904 \cdot \gamma^{0.933}}$	$\frac{1}{1+1.87 \cdot \gamma^{0.819}}$	$\frac{1}{1+1.59 \cdot \gamma^{1.03}}$
	減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.219 \gamma + 0.0551} + 1.42$	$\frac{\gamma}{0.412\gamma + 0.0752} + 1.25$	$\frac{\gamma}{0.207 \gamma + 0.0249} + 1.29$	$\frac{\gamma}{0.0305 \gamma + 0.0628} + 1.06$

- Zは標高(m)を示す。
- ・ 物性値下段の()はばらつき -1σ を考慮した値を示す。
- ※1: 凝灰質砂岩はCU試験を実施していないため、同じ鷹架層下部層泥岩中に狭在する鍵層であり、UU試験で強度が低い砂質軽石凝灰岩の物性値を流用

解析用地盤物性值(2)

R2.7.13 資料1-5 p32 再掲

区分			軽石質砂岩 Tpps	粗粒砂岩 Tes	砂岩・泥岩互層 Talsm	砂岩・凝灰岩互層 Talst
物理 特性			1. 91	2. 05	1.92	$1.72 - 8.29 \times 10^{-4} \cdot Z$
強度特性	非排水せん断強度	s _u (MPa)	$2.64-1.13\times10^{-2} \cdot Z$ $(1.95-1.13\times10^{-2} \cdot Z)$	1. 19 (0. 82) %2	2. 09 (1. 52)	$1.32 - 7.39 \times 10^{-3} \cdot Z \times 3$ $(0.78 - 7.39 \times 10^{-3} \cdot Z)^{-3} \cdot Z$
特性	非排水せん断強度	s_{ur}		0.88 (0.54) %2	1. 46 (1. 15)	$0.66-3.70\times10^{-3} \cdot Z \times 4$ $(0.32-3.70\times10^{-3} \cdot Z) \times 2$
静的変形	初期 変形係数	E ₀ (MPa)	982-7.30 Z	574	876	327
特性	ポアソン比	ν	$0.47+1.1\times10^{-4}\cdot Z$	0.48	0.48	0. 48
	動せん断 弾性係数			1860	1330	780 – 4. 88 Z
動的変形	動ポア ソン比	ν _d	$0.38+2.0\times10^{-4}\cdot Z$	0. 39	0. 39	$0.43+5.3\times10^{-4} \cdot Z$
特性	正規化せん 断弾性係数	$G/G_0 \sim \gamma$ (%)	$\frac{1}{1+6.07 \cdot \gamma^{1.04}}$	$\frac{1}{1+3.37 \cdot \gamma^{0.663}}$	$\frac{1}{1+3.08 \cdot \gamma^{0.919}}$	$\frac{1}{1+2.77 \cdot \gamma^{0.856}}$
	減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.0940 \gamma + 0.0145} + 0.826$	$\frac{\gamma}{0.121\gamma + 0.00752} + 1.58$	$\frac{\gamma}{0.0664 \gamma + 0.0404} + 0.963$	$\frac{\gamma}{0.0935 \gamma + 0.0144} + 2.04$

Zは標高(m)を示す。

物性値下段の()はばらつき-1σ を考慮した値を示す。

※2:他岩種に比べばらつきの大きい軽石混り砂岩の変動係数(ピーク0.315、残留0.390)を用いて保守的に設定

※3:砂岩・凝灰岩互層はCU試験の実施が1深度のみであることから、UU試験の結果を用いて深度依存(標高)を設定

※4:砂岩・凝灰岩互層の残留強度はピーク強度と同等であることから、残留強度をピーク強度の1/2として設定

解析用地盤物性値(3)

R2.7.13 資料1-5 p33 再掲

	区分		凝灰岩 軽石凝灰岩 Tpt		砂質軽石凝灰岩 Tspt	礫混り砂岩 Tss
物理 特性	湿潤密度	$\rho_{\rm t}$ $({\rm g/cm}^3)$	$1.64-2.86\times10^{-4} \cdot Z$	$1.54 - 2.45 \times 10^{-4} \cdot Z$	1. $62-1.52\times10^{-4} \cdot Z$	$1.91-1.35\times10^{-4}\cdot Z$
強度特性	。 非排水 s _u せん断強度 (MPa)		1.99 (1.55)	1. $34-4.82\times10^{-3} \cdot Z$ (0. $97-4.82\times10^{-3} \cdot Z$)	$1.23 - 3.95 \times 10^{-3} \cdot Z$ $(0.97 - 3.95 \times 10^{-3} \cdot Z)$	1. 95 (1. 33)
特性留	非排水せん断強度	S _{ur} (MPa)	1. 69 (1. 26)	$0.95 - 3.96 \times 10^{-3} \cdot Z$ $(0.62 - 3.96 \times 10^{-3} \cdot Z)$	$0.85 - 2.03 \times 10^{-3} \cdot Z$ $(0.62 - 2.03 \times 10^{-3} \cdot Z)$	1. 37 (1. 09)
静的変形	初期 変形係数	E 0 (MPa)	696-6.60Z	757 – 2. 19 <i>Z</i>	697 – 3. 32 Z	754
特性	ポアソン比 v 0.48+2.4×10 ⁻⁴ ・Z		$0.48+2.6\times10^{-4} \cdot Z$	$0.48 + 2.3 \times 10^{-4} \cdot Z$	0. 48	
動的変形特性	動せん断 G ₀ 弾性係数 (MPa)		761-3.89 Z	848-1.70 Z	880-2.58 Z	773 – 7. 85 Z
	動ポアソン比	ν _d	$0.42+1.1\times10^{-4}\cdot Z$	$0.41+1.3\times10^{-4}\cdot Z$	$0.41+1.3\times10^{-4}\cdot Z$	$0.43+4.7\times10^{-4} \cdot Z$
	正規化せん 断弾性係数	$G/G_0 \sim \gamma$ (%)	$\frac{1}{1+3.78 \cdot \gamma^{0.904}}$	$\frac{1}{1+2.02 \cdot \gamma^{0.768}}$	$\frac{1}{1+2.46 \cdot \gamma^{0.885}}$	$\frac{1}{1+3.25 \cdot \gamma^{0.833}}$
	減衰率		$\frac{\gamma}{0.0682 \gamma + 0.0127} + 1.47$	$\frac{\gamma}{0.163 \gamma + 0.0192} + 1.34$	$\frac{\gamma}{0.119 \gamma + 0.0302} + 1.48$	$\frac{\gamma}{0.0902 \gamma + 0.0157} + 1.08$

- Zは標高(m)を示す。
- ・ 物性値下段の()はばらつき -1σ を考慮した値を示す。

解析用地盤物性値(4)

R2.7.13 資料1-5 p34 再掲

		区分		軽石混り砂岩 Tps	礫岩 Tcg	風化岩 T(W)
物理 特性		湿潤密度	ρ_{t} (g/cm^3) $1.69-1.78\times10^{-3} \cdot Z$		2. 12	1. 56
強度特性	ピーク	非排水せん断強度	s _u (MPa)	$1.23 - 6.72 \times 10^{-3} \cdot Z$ $(0.88 - 6.72 \times 10^{-3} \cdot Z)$	2. 62 (1. 79) ※5	$0.035 + 0.315p \\ (0.008 + 0.315p)$
特性	残留	非排水せん断強度	s _{ur} (MPa)	$0.94-6.47\times10^{-3} \cdot Z$ $(0.62-6.47\times10^{-3} \cdot Z)$	1. 62 (0. 99) ※5	0. 034+0. 314 <i>p</i> (0. 007+0. 314 <i>p</i>)
静的 変形 特性		初期 E ₀ 変形係数 (MPa)		537	1170	38. 0+78. 8 <i>p</i>
		ポアソン比	ν	0.48	0.46 *6	0. 47
動的変形特性		動せん断 弾性係数	<i>G</i> ₀ (MPa)	959-4.51 Z	2520	123
		動ポア ソン比	$ u_{ m d}$	$0.41+3.3\times10^{-4}\cdot Z$	0.35	0.40
		正規化せん G/G 断弾性係数 ~ y (9		$\frac{1}{1+3.52 \cdot \gamma^{0.829}}$	$\frac{1}{1+4.72 \cdot \gamma^{0.900}}$	$\frac{1}{1+2.53 \cdot \gamma^{0.773}}$
		減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.0734 \gamma + 0.0214} + 1.48$	$\frac{\gamma}{0.0973\gamma + 0.00991} + 0.274$	$\frac{\gamma}{0.114 \gamma + 0.0189} + 0.911$

- Zは標高(m)を示す。
- ・pは土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。
- ・ 物性値下段の()はばらつき -1σ を考慮した値を示す。

※5:他岩種に比べばらつきの大きい軽石混り砂岩の変動係数(ピーク0.315、残留0.390)を用いて保守的に設定

※6:礫岩のポアソン比はUU試験結果を流用

解析用地盤物性値(5)

R2.7.13 資料1-5 p35 再掲

		区分		f — 1 断層 f-1, f-1a, f-1b	f — 2 断層 f-2, f-2a	
	理性	湿潤密度	$ ho_{\mathrm{t}}$ $(\mathrm{g/cm}^3)$	1. 28	1.32	
強度	ピーク	非排水 せん断強度	s _u (MPa)	0. 059+0. 494 <i>p</i> (0. 480 <i>p</i>) ※7	0. 108+0. 296 <i>p</i> (0. 064+0. 296 <i>p</i>)	
特性	残留	非排水せん断強度	s _{ur} (MPa)	0. 054+0. 487 <i>p</i> (0. 468 <i>p</i>) ※7	0.095+0.296p ※8 $(0.050+0.296p)$	
14.4	的形	初期 E ₀ 変形係数 (MPa)		34.9+73.3 <i>p</i>	50. 4+63. 1 <i>p</i>	
	形性	ポアソン比	ν	0. 47	0. 49	
		動せん断 弾性係数 (MPa)		$356p^{0.164}$	$326p^{0.151}$	
	的形	動ポア ソン比	ν _d	0. 43	0. 45	
	形性			$\frac{1}{1+4.90 \cdot \gamma^{0.857}}$	$\frac{1}{1+3.46 \cdot \gamma^{1.03}}$	
		減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.0300\gamma + 0.0213} + 4.26$	$\frac{\gamma}{0.0301\gamma + 0.0295} + 2.86$	

・ρは土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。

・物性値下段の()はばらつき -1σ を考慮した値を示す。

 $%7:-1\sigma$ で切片が負となるため、原点を通る直線で設定

※8:ピーク強度を上回らないように低減して設定

解析用地盤物性值(6)

R2.7.13 資料1-5 p36 再掲

	区分			新第三系鮮新統 PP1	区分		第四系下部~ 中部更新統 PP2	第四系 中部更新統 ~完新統 PH
	理性	湿潤密度	$ ho_{ m t}$ $({ m g/cm}^3)$	$2.12-3.12\times10^{-3}\cdot Z$	湿潤密度 ρ _t (g/cm ³)		1. 73	1. 89
	ピー	粘着力	c (MPa)	$0.902 - 9.14 \times 10^{-3} \cdot Z$ $(0.743 - 9.14 \times 10^{-3} \cdot Z)$	非排水	s _u (MPa)		0 ※10
強度特	ク	内部摩擦角	φ (°)	13. 8 (8. 3)	せん断強度			,,,,,,
特性	残	残留粘着力	с _г (MPa)	0. $853 - 8.47 \times 10^{-3} \cdot Z$ (0. $707 - 8.47 \times 10^{-3} \cdot Z$)	非排水	Sur	0. 102+0. 341 <i>p</i>	0 ※10
	留	残留 内部摩擦角	φ _r (°)	13. 8 (8. 3) ※9	せん断強度	(MPa)	(0.025+0.341p)	· ×10
	的形	初期 変形係数	E 0 (MPa)	377 - 3.90 Z	初期 変形係数	E ₀ (MPa)	29.0 + 262p	74.6+434p
	性	ポアソン比	ν	$0.48+1.3\times10^{-4}\cdot Z$	ポアソン比	ν	0. 49	0.49
		動せん断 G ₀ 弾性係数 (MPa)		1000-5.50 Z	動せん断 弾性係数	G ₀ (MPa)	303	189
	的	動ポア ソン比	νd	$0.39+6.5\times10^{-4}\cdot Z$	動ポア ソン比	ν _d	0. 41	0. 45
	形性	正規化せん 断弾性係数	G/G_0 $\sim \gamma$ (%)	$\frac{1}{1+5.32 \cdot \gamma^{0.776}}$	正規化せん 断弾性係数	G/G_0 $\sim \gamma$ (%)	$\frac{1}{1+5.91 \cdot \gamma^{0.758}}$	$\frac{1}{1+15.4 \cdot \gamma^{0.891}}$
		減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.0786 \gamma + 0.00692} + 1.26$	減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.0829 \gamma + 0.00582} + 1.18$	$\frac{\gamma}{0.0570\gamma + 0.00824} + 1.81$

Z は標高(m)を示す。

・ p は土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。

・ 物性値下段の()はばらつき -1σ を考慮した値を示す。

※9:ピーク強度を上回らないように低減して設定

※10:保守的に強度特性を0と設定

3. 解析用物性值

解析用地盤物性値(7)

R2.7.13 資料1-5 p37 再掲

区 分				造成盛土	埋戻し土	
				fl	bk	
物理 特性		湿潤密度 ρ _t (g/cm ³)		$1.66+3.3\times10^{-3}\cdot D$	$1.82 + 2.8 \times 10^{-3} \cdot D$	
強度	ピーク	非排水せん断強度	s _u (MPa)	₀	₀	
特性	残留		s _{ur} (MPa)	₀	₀	
	的的	初期 変形係数	E ₀ (MPa)	9. 96+289 p	22. 1+266 p	
	形性	ポアソン比	ν	0. 48	0.48	
		動せん断 弾性係数	G₀ (MPa)	32. 4+4. 02 <i>D</i>	60.7+8.20 <i>D</i>	
	的彩	動ポア ソン比	ν _d	0. 42	0.39	
	形性	正規化せん 断弾性係数	G/G_{0} $\sim \gamma$ (%)	$\frac{1}{1+9.27 \cdot \gamma^{0.992}}$	$\frac{1}{1+12.7 \cdot \gamma^{0.914}}$	
		減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.0438 \gamma + 0.0150} + 1.74$	$\frac{\gamma}{0.0631 \gamma + 0.00599} + 1.29$	

Dは深度(G.L.-m)を示す。

・ 物性値下段の()はばらつき -1σ を考慮した値を示す。

※10:保守的に強度特性を0と設定

3. 解析用物性值

解析用地盤物性值(8)

R2.7.13 資料1-5 p38 再掲

区 分		流動化処理土(A)			区 分		流動化処理土(B) ※11	MMR ※13	
								Vs 1200	設計基準強度 14.8MPa
物理特別		湿潤密度	$ ho_{ m t}$ $({ m g/cm}^3)$	1. 63	物理 特性	湿潤密度	$ ho_{ m t}$ $({ m g/cm}^3)$	1. 85	2. 35
	ピー	非排水	$s_{ m u}$	0. 347 + 0. 242 <i>p</i>	ピ	粘着力	c (MPa)	0. 95 (0. 95)	- ※14
強度特性	ク	せん断強度	(MPa)	(0.189+0.242p)	強度	内部摩擦角	φ (°)	30. 0 (30. 0)	- ※14
	残	非排水	$s_{ m ur}$	0. 291+0. 016 <i>p</i>	特性残	残留粘着力	c _r (MPa)	0 ※12	- *14
	留	せん断強度	(MPa)	(0.168+0.016p)	留	残留 内部摩擦角	φ _r (°)	0 ※12	- *14
静		初期 変形係数	E ₀ (MPa)	143+448p	静的	初期 変形係数	E ₀ (MPa)	1050	21000
特		ポアソン比	ν	0.46	一 変形 特性	ポアソン比	ν	0. 33	0. 167
		動せん断 弾性係数	G₀ (MPa)	380		動せん断 弾性係数	G ₀ (MPa)	2750	9000
動師変形		動ポア ソン比	$ u_{ m d}$	0. 42	動的 変形 特性	動ポア ソン比	ν _d	0. 33	0. 167
特		正規化せん 断弾性係数	G/G_0 $\sim \gamma$ (%)	$\frac{1}{1+9.63 \cdot \gamma^{1.01}}$		正規化せん 断弾性係数	G/G _θ ~ γ (%)	$\frac{1}{1+5.87 \cdot \gamma^{0.974}}$	線形
		減衰率	h (%) ~ γ (%)	$\frac{\gamma}{0.0798 \cdot \gamma + 0.0150} + 1.48$		減衰率	h (%) ~ γ (%)	0.83 ($\gamma \le 0.01\%$) 0.83+2.59 $\log(\gamma/0.01)$ ($\gamma > 0.01\%$)	5. 0

- ・pは土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。
- ・ 物性値下段の()はばらつき -1σ を考慮した値を示す。
- ※11:流動化処理土の管理値(qu=3.4MPa)に基づき設定しており、ガラス固化体貯蔵建屋B棟(廃棄物管理施設)周辺のみ施工
- ※12:一軸圧縮試験結果に基づき設定しており、残留強度は0と設定
- ※13:コンクリート標準示方書(1980、2007)を参照し設定
- ※14: MMRは鷹架層と比べても十分な強度を有しており、評価においてすべり面を通さないことから、強度特性は設定しない。

目次

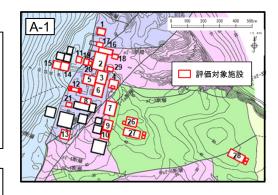
- 1. 評価方針
- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
 - 4.1 解析対象断面の設定
 - 4.1.1 再処理施設
 - 4.1.2 廃棄物管理施設
 - 4.1.3 MOX燃料加工施設
 - 4.2 解析対象断面図
 - 4.3 小規模施設及び洞道の鉛直断面図
 - 4.4 安定性評価フロー
 - 4.5 評価項目
 - 4.6 解析モデル
 - 4.7 入力地震動
 - 4.8 評価結果
 - 4.8.1 再処理施設
 - 4.8.2 廃棄物管理施設
 - 4.8.3 MOX燃料加工施設
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

参考資料

4. 1. 1 再処理施設

解析対象断面の選定フロー

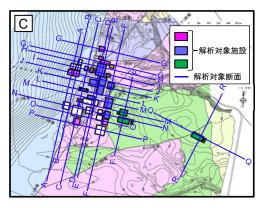
A. 評価対象施設

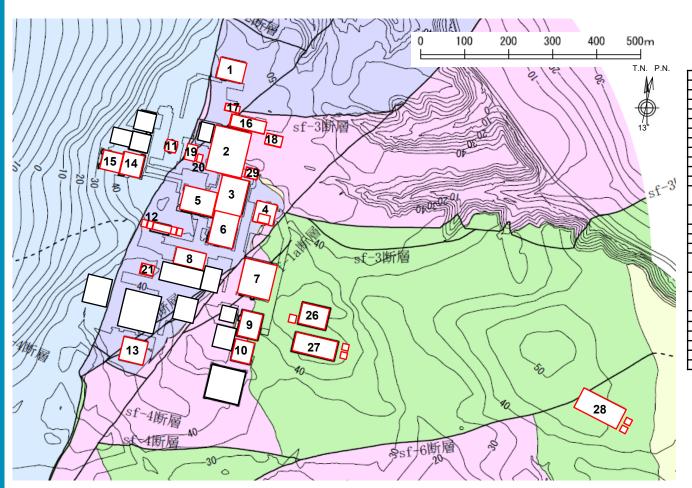

再処理施設のうち、耐震重要施設等及び 常設重大事故等対処施設を評価対象施設と する。

B. 施設の代表性検討

施設の規模・接地圧を勘案し、小規模施設 及び洞道について、近接する評価対象施設 の評価に代表させる。評価対象施設から小 規模施設及び洞道を除いた施設を、解析対 象施設とする。

C. 解析対象断面の選定


解析対象施設に直交する2断面を基本とし、 近接建屋の影響を考慮するため、複数の建 屋が含まれる断面を解析対象断面として選 定する。なお、規模・接地圧が小さく、隣接す る解析対象施設がない施設については、簡 便法(すべり面法)を用いて、対象断面の絞 込みを行う。



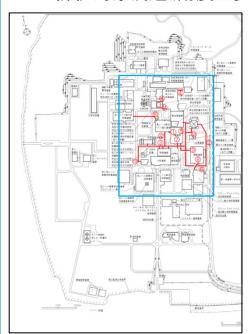
4. 1. 1 再処理施設

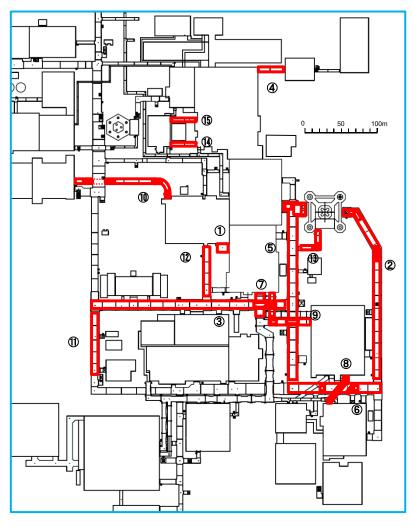
A. 評価対象施設

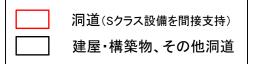
■評価対象施設(耐震重要施設等及び常設重大事故等対処施設)

番号	評価対象施設
1	ハル・エンドピース貯蔵建屋
2	使用済燃料受入れ・貯蔵建屋
3	前処理建屋
4	主排気筒(基礎)及び主排気筒管理建屋
5	高レベル廃液ガラス固化建屋
6	分離建屋
7	精製建屋
8	制御建屋
9	ウラン・プルトニウム混合脱硝建屋
10	ウラン・プルトニウム混合酸化物貯蔵建屋
11	北換気筒(基礎)
12	非常用電源建屋
	(冷却塔及び燃料油貯蔵タンク含む)
13	チャンネルボックス・バーナブルポイズン
	処理建屋
14	第1ガラス固化体貯蔵建屋(東棟)
15	第1ガラス固化体貯蔵建屋(西棟)
16	使用済燃料輸送容器管理建屋
17	使用済燃料輸送容器管理建屋
	(トレーラ エリア)
18	使用済燃料の受入れ施設及び貯蔵施設用
	安全冷却水系冷却塔A(基礎)
19	使用済燃料の受入れ施設及び貯蔵施設用
	安全冷却水系冷却塔B(基礎)
20	第1非常用ディーゼル発電設備用重油タンク室
21	再処理設備本体用安全冷却水系冷却塔B(基礎)
26	緊急時対策建屋(重油貯槽含む)
27	第1保管庫・貯水所(第1軽油貯槽含む)
28	第2保管庫・貯水所(第2軽油貯槽含む)
29	再処理設備本体用安全冷却水系冷却塔A(基礎)

注) コンターは、鷹架層上限面等高線を示す。


R2.7.13 資料1-5 p42 再掲

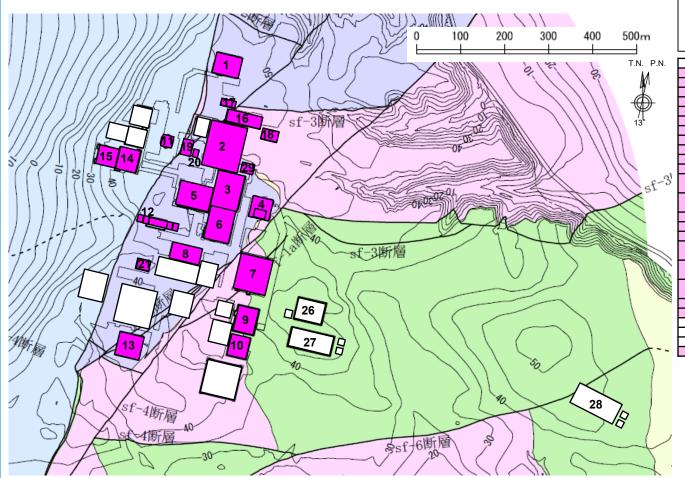



4. 1. 1 再処理施設

A. 評価対象施設

■評価対象洞道(耐震重要施設等)

R2.7.13 資料1-5 p43 再掲

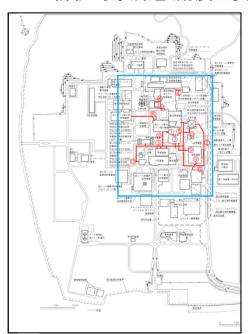

耐震重要施設等

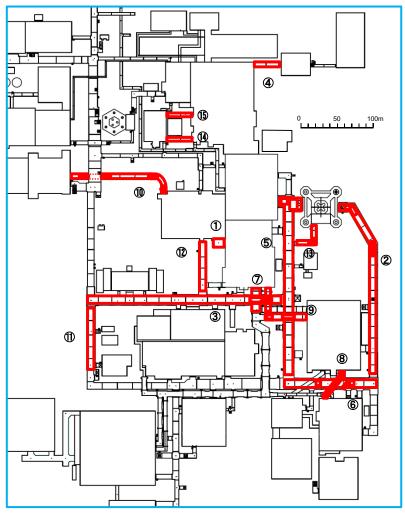
4. 1. 1 再処理施設

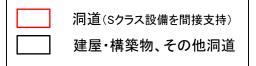
A. 評価対象施設

■評価対象施設の分類(耐震重要施設等)

] その他建屋(モデル化考慮)
番号	評価対象施設
1	ハル・エンドピース貯蔵建屋
2	使用済燃料受入れ・貯蔵建屋
3	前処理建屋
4	主排気筒(基礎)及び主排気筒管理建屋
5	高レベル廃液ガラス固化建屋
6	分離建屋
7	精製建屋
8	制御建屋
9	ウラン・プルトニウム混合脱硝建屋
10	ウラン・プルトニウム混合酸化物貯蔵建屋
11	北換気筒(基礎)
12	非常用電源建屋
	(冷却塔及び燃料油貯蔵タンク含む)
13	チャンネルボックス・バーナブルポイズン
	処理建屋
14	第1ガラス固化体貯蔵建屋(東棟)
15	第1ガラス固化体貯蔵建屋(西棟)
16	使用済燃料輸送容器管理建屋
17	使用済燃料輸送容器管理建屋
	(トレーラ エリア)
18	使用済燃料の受入れ施設及び貯蔵施設用
	安全冷却水系冷却塔A(基礎)
19	使用済燃料の受入れ施設及び貯蔵施設用
	安全冷却水系冷却塔B(基礎)
20	第1非常用ディーゼル発電設備用重油タンク室
21	再処理設備本体用安全冷却水系冷却塔B(基礎)
26	緊急時対策建屋(重油貯槽含む)
27	第1保管庫・貯水所(第1軽油貯槽含む)
28	第2保管庫・貯水所(第2軽油貯槽含む)
29	再処理設備本体用安全冷却水系冷却塔A(基礎)

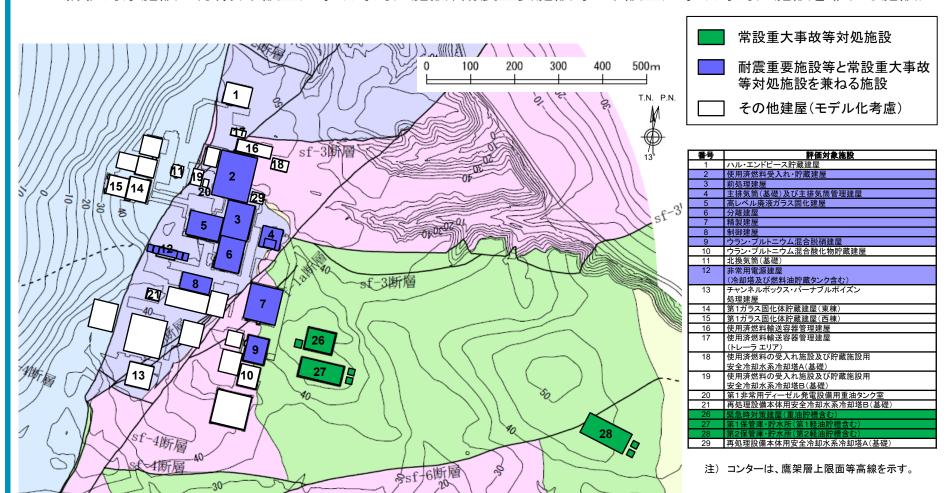

注) コンターは、鷹架層上限面等高線を示す。




4. 1. 1 再処理施設

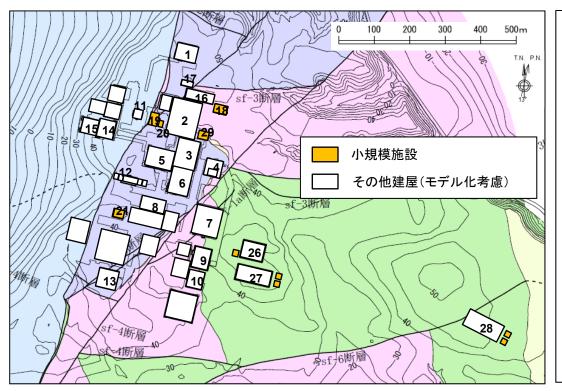
A. 評価対象施設

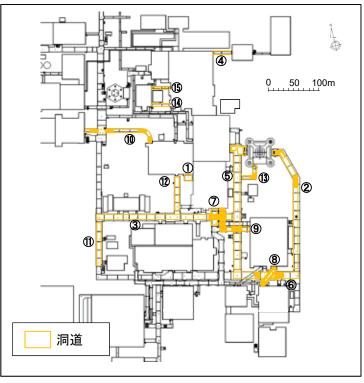
■評価対象洞道(耐震重要施設等)


R2.7.13 資料1-5 p45 再掲

4. 1. 1 再処理施設

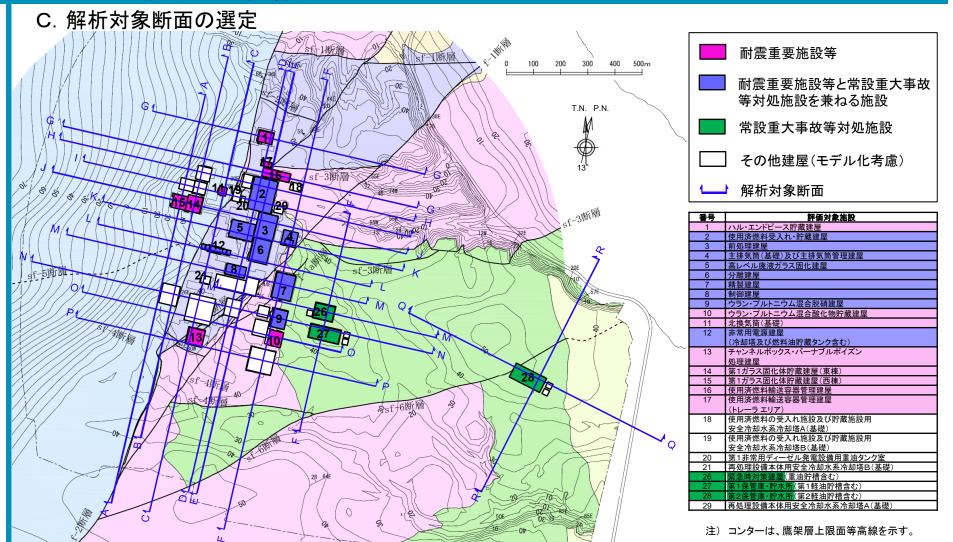
A. 評価対象施設


■評価対象施設の分類(常設重大事故等対処施設、耐震重要施設等と常設重大事故等対処施設を兼ねる施設)



4. 1. 1 再処理施設

B. 施設の代表性検討



- ・使用済燃料の受入れ施設及び貯蔵施設用安全冷却水系冷却塔A・B(基礎)、第1非常用ディーゼル発電設備用重油タンク室、再処 理設備本体用安全冷却水系冷却塔A·B(基礎)、重油貯槽、第1軽油貯槽及び第2軽油貯槽の小規模施設及び洞道については、 近接する評価対象施設と同様に直接またはMMRを介して岩盤に支持されている。
- ・近接する評価対象施設と比較して、小規模施設及び洞道の規模・接地圧は小さいことから、小規模施設及び洞道の基礎地盤安定性 評価に関しては、十分な裕度があると評価する。
- 上記の理由により、小規模施設及び洞道は、近接する評価対象施設の評価(4.8章に提示)に代表させる。

R2.7.13 資料1-5 p47 再掲

1. 1 再処理施設

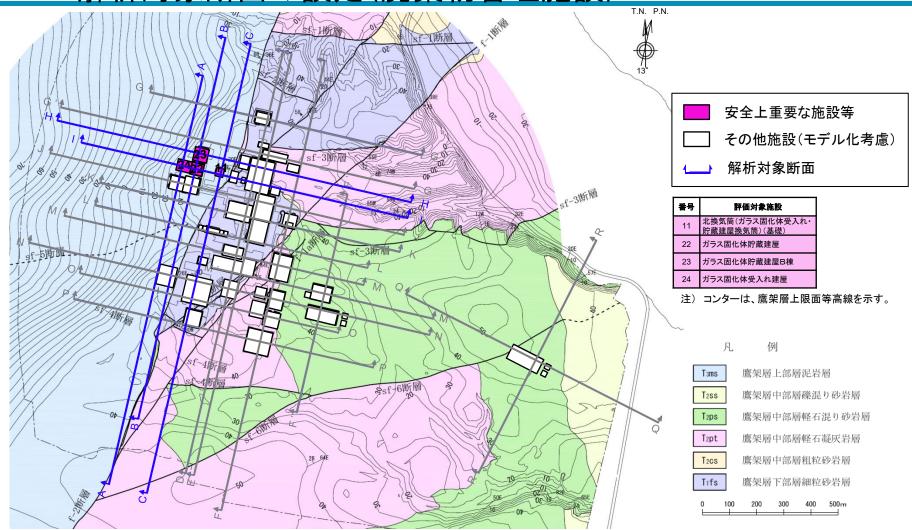
解析対象断面は、解析対象施設に直交する2断面を基本とする。断面選定においては、近 接する建屋の影響を考慮するために、複数の建屋が含まれる断面を選定する。

1.1 再処理施設

C. 解析対象断面の選定

■解析対象断面 一覧表

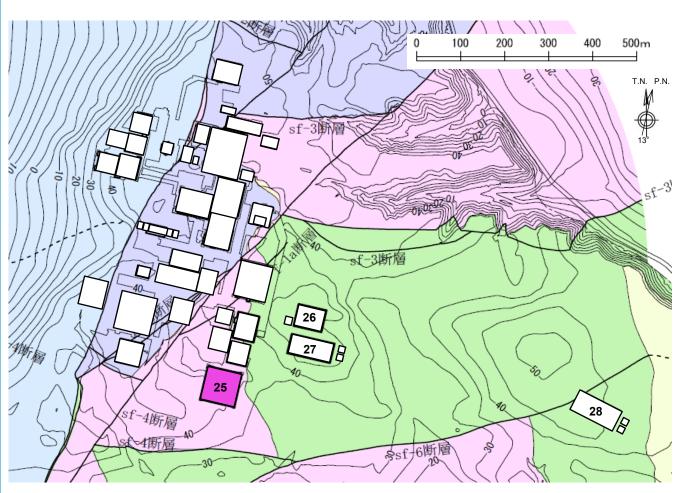
	解析対象施設	解析対象断面		
	門4们 刘 永 他 ā 文	NS方向	EW方向	
1	ハル・エンドピース貯蔵建屋	D-D	G-G	
2	使用済燃料受入れ・貯蔵建屋	D-D,E-E	H-H,I-I	
3	前処理建屋	E-E	J–J	
4	主排気筒(基礎)及び主排気筒管理建屋	F-F	K-K	
5	高レベル廃液ガラス固化建屋	D-D	K-K	
6	分離建屋	E-E	K-K,L-L	
7	精製建屋	F-F	м-м	
8	制御建屋	D-D	м-м	
9	ウラン・プルトニウム混合脱硝建屋	F-F	N-N	
10	ウラン・プルトニウム混合酸化物貯蔵建屋	F-F	0-0	
11	北換気筒(基礎)	C-C	I-I	
12	非常用電源建屋 (冷却塔及び燃料油貯蔵タンク含む)	C-C	L-L	


	₽21 +C +↓ 45, ++- ≥0.	解析対象断面		
	解析対象施設	NS方向	EW方向	
13	チャンネルボックス・バーナブルポイズン 処理建屋	C-C	P-P	
14	第1ガラス固化体貯蔵建屋(東棟)	B-B	J-J	
15	第1ガラス固化体貯蔵建屋(西棟)	A-A	J-J	
16	使用済燃料輸送容器管理建屋	E-E	G'−G'	
17	使用済燃料輸送容器管理建屋(トレーラエリア)	D-D	- ^{※1}	
26	緊急時対策建屋	F'-F'	M'-M'	
27	第1保管庫・貯水所	F'-F'	N-N	
28	第2保管庫·貯水所	R-R	Q-Q	

^{※1} 使用済燃料輸送容器管理建屋(トレーラエリア)は、規模・接地圧が小さく、簡便法(すべり面法)による 評価結果より、NS方向・EW方向とも同程度の安全率を示すことから、複数の評価対象施設を含む NS方向を評価対象断面として選定し、EW方向の評価を省略する。 (簡便法(すべり面法)による評価を参考資料に示す)

R2.7.13 資料1-5 p49 再掲

4.1 解析対象断面の設定(廃棄物管理施設)

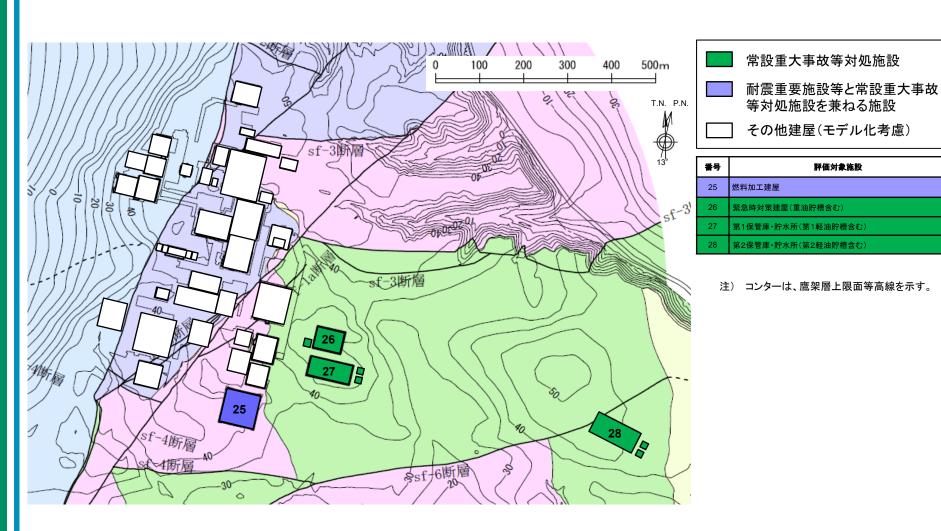


- ▶ 廃棄物管理施設における全ての評価対象施設を解析対象施設とする。
- ▶ 解析対象施設を直交して通る解析対象断面を設定する。

4. 1. 3 MOX燃料加工施設

■評価対象施設の分類(耐震重要施設等)

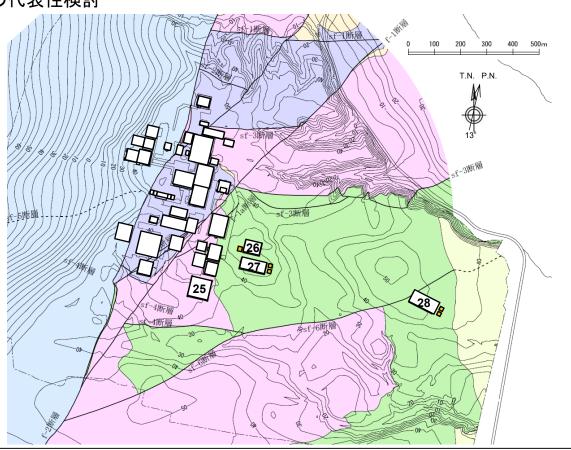
耐震重要施設等	
□ その他施設(モデル化考慮)	


番号	評価対象施設	
25	燃料加工建屋	
26	緊急時対策建屋(重油貯槽含む)	
27	第1保管庫・貯水所(第1軽油貯槽含む)	
28	第2保管庫・貯水所(第2軽油貯槽含む)	

注) コンターは、鷹架層上限面等高線を示す。

4. 1. 3 MOX燃料加工施設

■評価対象施設の分類(常設重大事故等対処施設、耐震重要施設等と常設重大事故等対処施設を兼ねる施設)

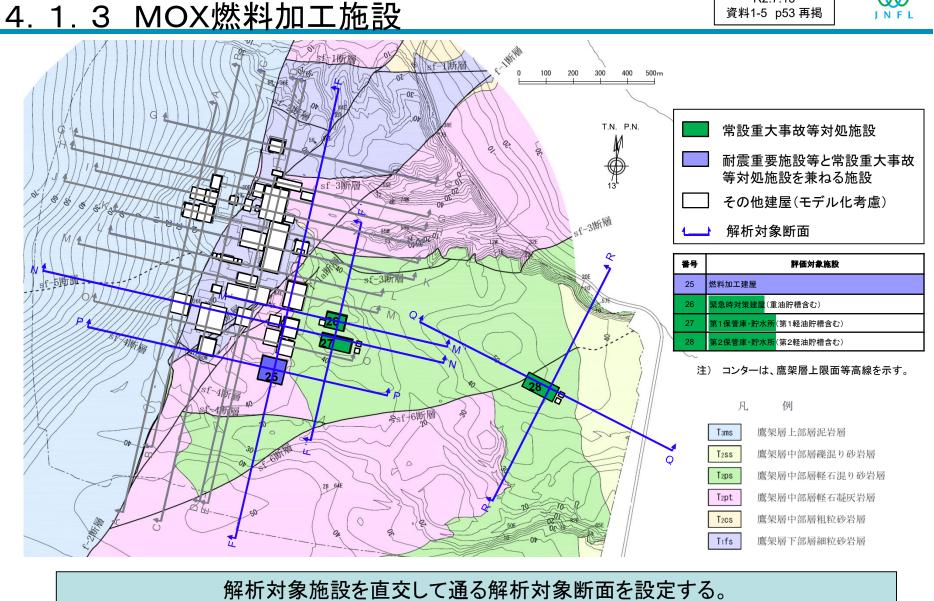


R2.7.13 資料1-5 p52 再掲

4. 1. 3 MOX燃料加工施設

■施設の代表性検討

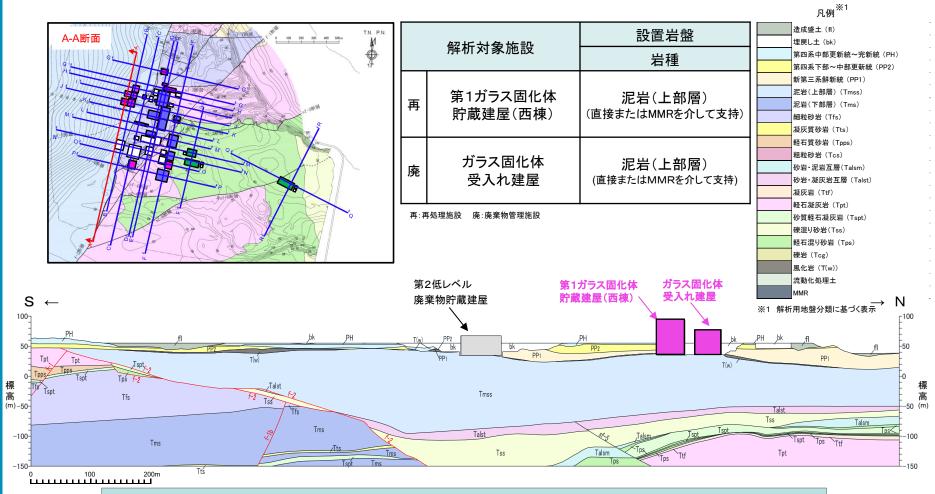
小規模施設
その他建屋(モデル化考慮)


番号	評価対象施設	
25	燃料加工建屋	
26	緊急時対策建屋 <mark>(重油貯槽含む)</mark>	
27	第1保管庫・貯水所 <mark>(第1軽油貯槽含む)</mark>	
28	第2保管庫・貯水所 <mark>(第2軽油貯槽含む)</mark>	

注) コンターは、鷹架層上限面等高線を示す。

- ・重油貯槽、第1軽油貯槽及び第2軽油貯槽の小規模施設については、近接する評価対象施設と同様に直接またはMMRを介して 岩盤に支持されている。
- ・近接する評価対象施設と比較して、小規模施設の規模・接地圧は小さいことから、小規模施設の基礎地盤安定性評価に関しては、 十分な裕度があると評価する。
- 上記の理由により、小規模施設は、近接する評価対象施設の評価(4.8章に提示)に代表させる。なお、評価対象施設から小規模施設を除いた施設を、解析対象施設とする。

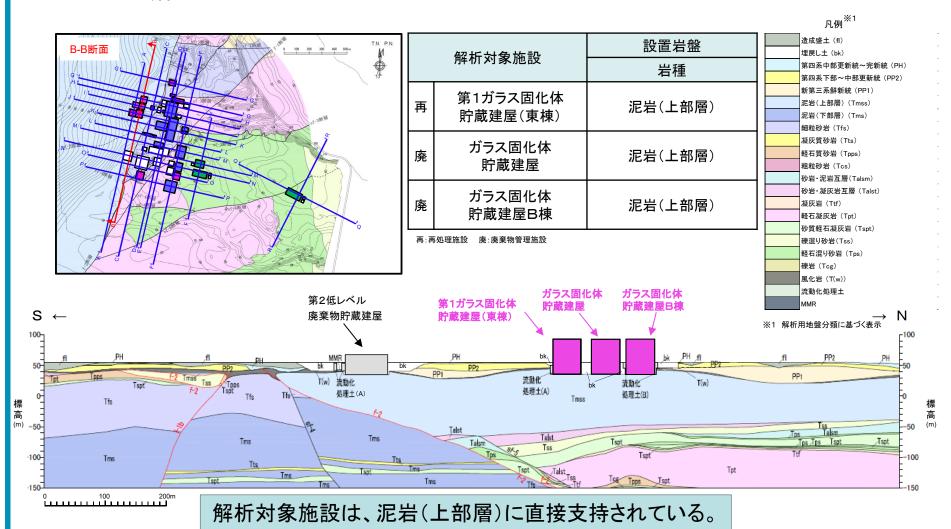
R2.7.13 資料1-5 p53 再掲



R2.7.13 資料1-5 p54 再掲

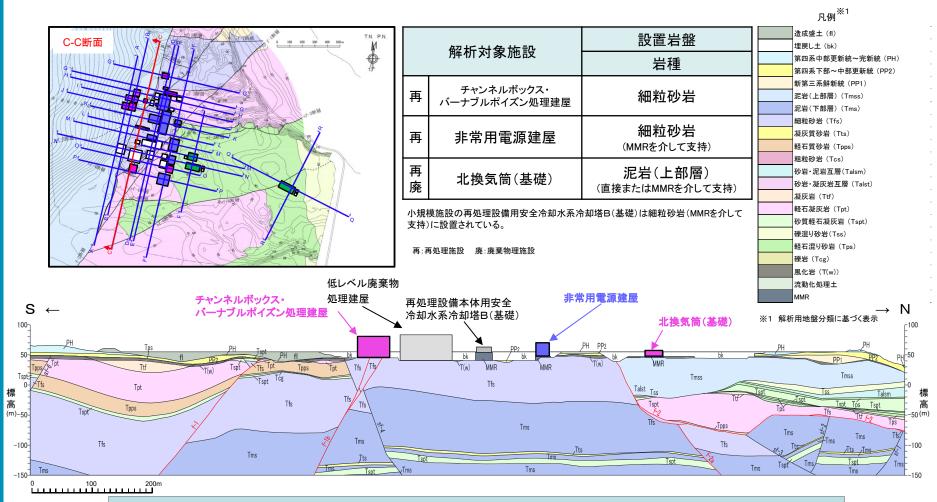
4.2 解析対象断面図

■A一A断面


解析対象施設は、泥岩(上部層)に直接またはMMRを介して支持されている。

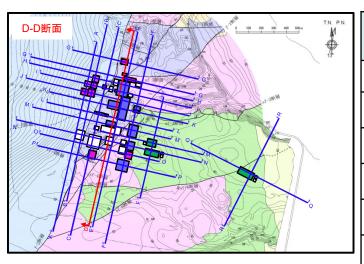
R2.7.13 資料1-5 p55 再掲

4.2 解析対象断面図

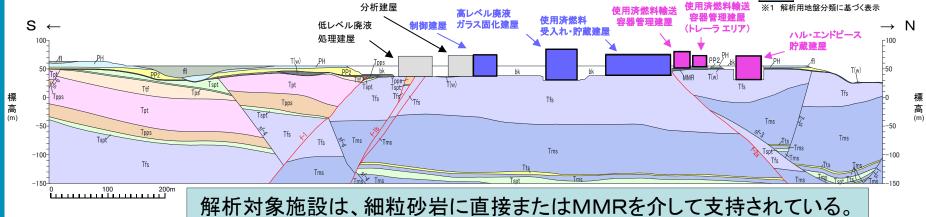

■B一B断面

4.2 解析対象断面図

■C一C断面

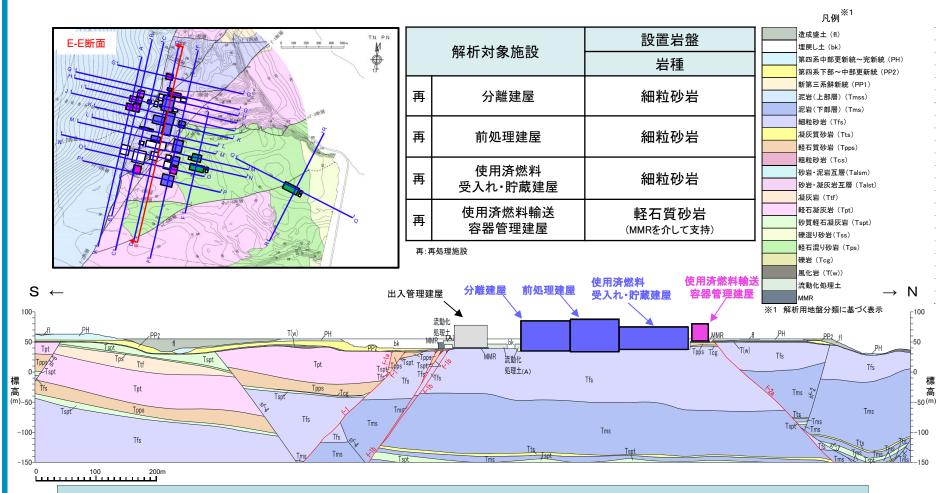

解析対象施設は、細粒砂岩や泥岩(上部層)に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p57 再掲


4.2 解析対象断面図

■D一D断面

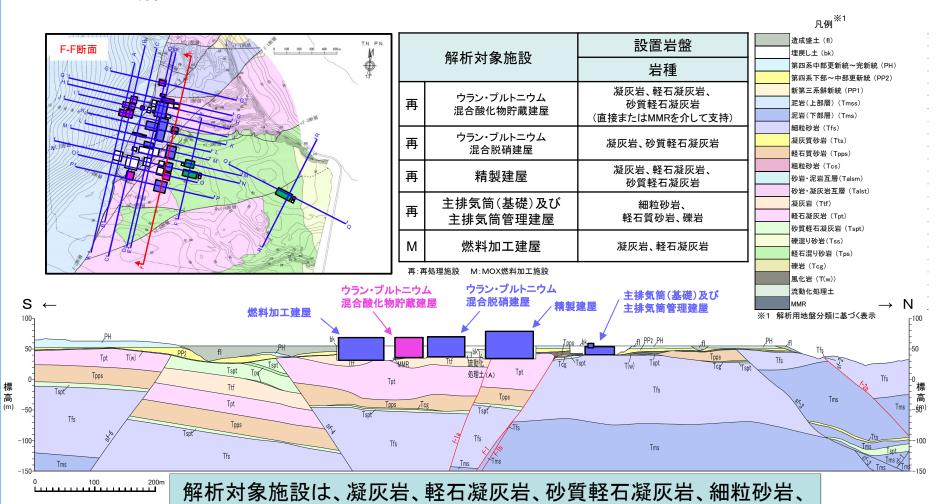
岩種 細粒砂岩 細粒砂岩
細粒砂岩
細粒砂岩
細粒砂岩 (MMRを介して支持)
細粒砂岩 (MMRを介して支持)



R2.7.13 資料1-5 p58 再掲

4.2 解析対象断面図

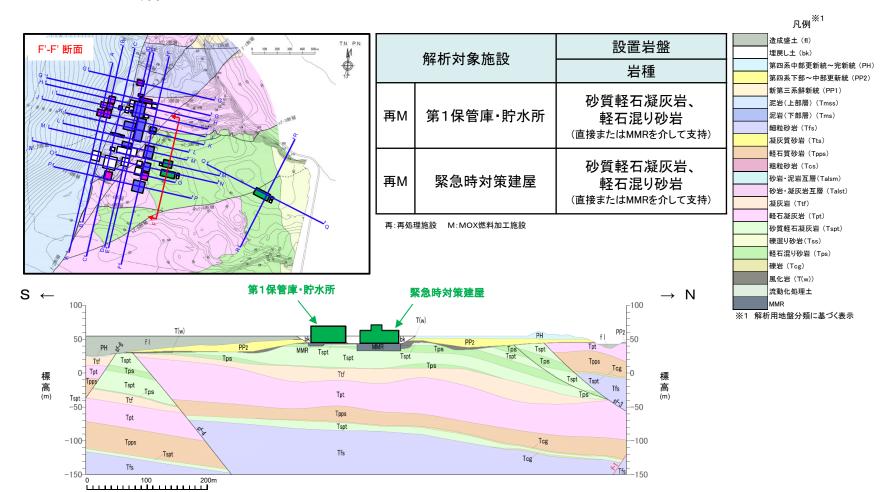
■E一E断面



解析対象施設は、細粒砂岩や軽石質砂岩に直接またはMMRを介して支持されている。

4.2 解析対象断面図

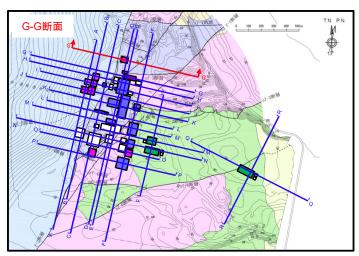
■F一F断面



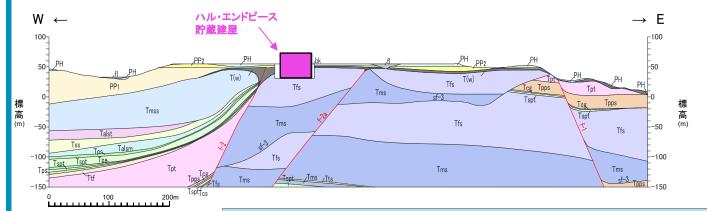
軽石質砂岩や礫岩に直接またはMMRを介して支持されている。

4.2 解析対象断面図

■F'-F'断面


解析対象施設は、砂質軽石凝灰岩や軽石混り砂岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p61 再掲


4.2 解析対象断面図

■G一G断面

	解析対象施設	設置岩盤
	胜们 刈	岩種
再	ハル・ エンドピース 貯蔵建屋	細粒砂岩

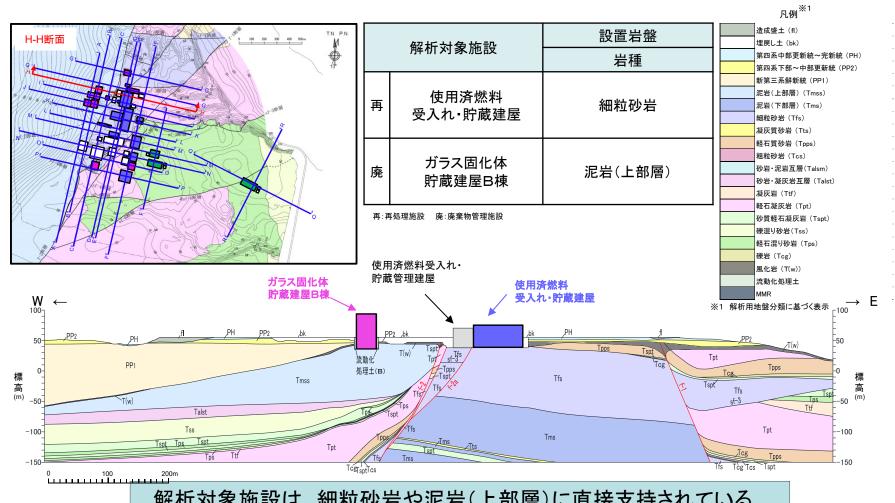
再:再処理施設

解析対象施設は、細粒砂岩に直接支持されている。

R2.7.13 資料1-5 p62 再掲

4.2 解析対象断面図

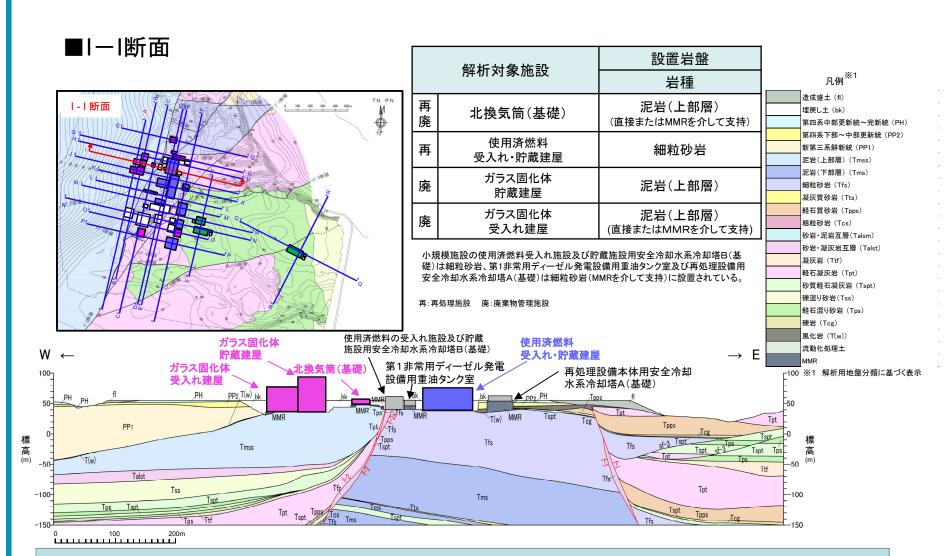
■G'-G'断面


解析対象施設は、細粒砂岩や軽石質砂岩にMMRを介して支持されている。

R2.7.13 資料1-5 p63 再掲

4.2 解析対象断面図

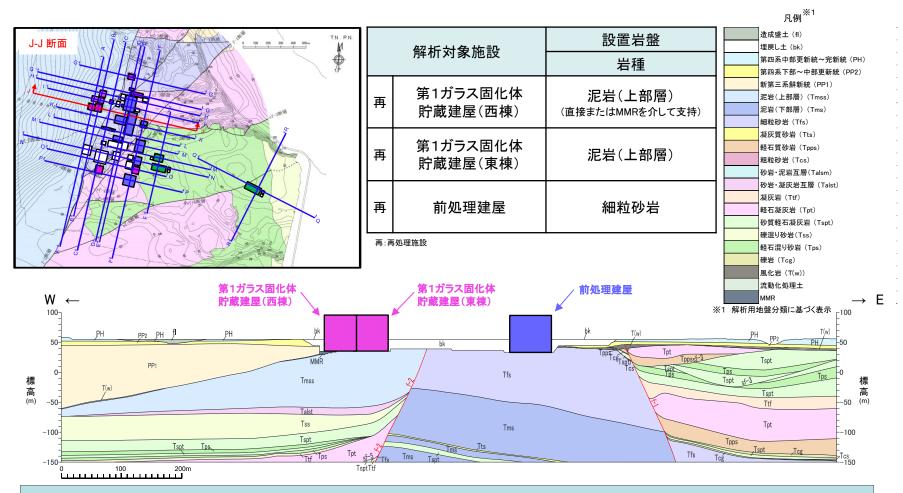
■H一H断面



解析対象施設は、細粒砂岩や泥岩(上部層)に直接支持されている。

R2.7.13 資料1-5 p64 再掲

4.2 解析対象断面図

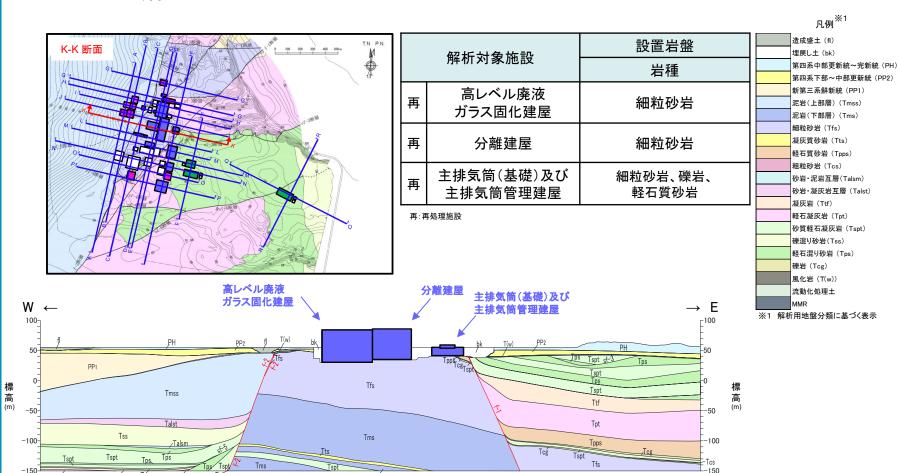

解析対象施設は、泥岩(上部層)や細粒砂岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p65 再掲

4.2 解析対象断面図

■J一J断面

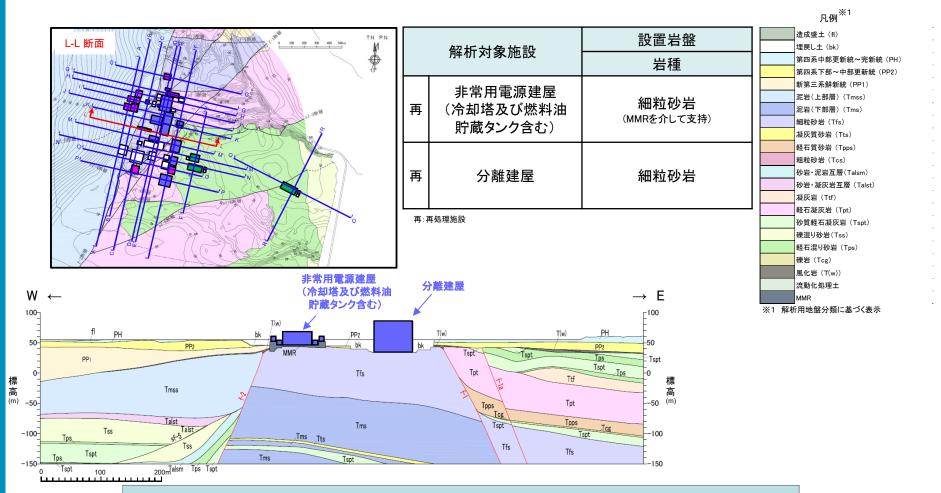
解析対象施設は、泥岩(上部層)や細粒砂岩に直接またはMMRを介して支持されている。


R2.7.13 資料1-5 p66 再掲

4.2 解析対象断面図

200m

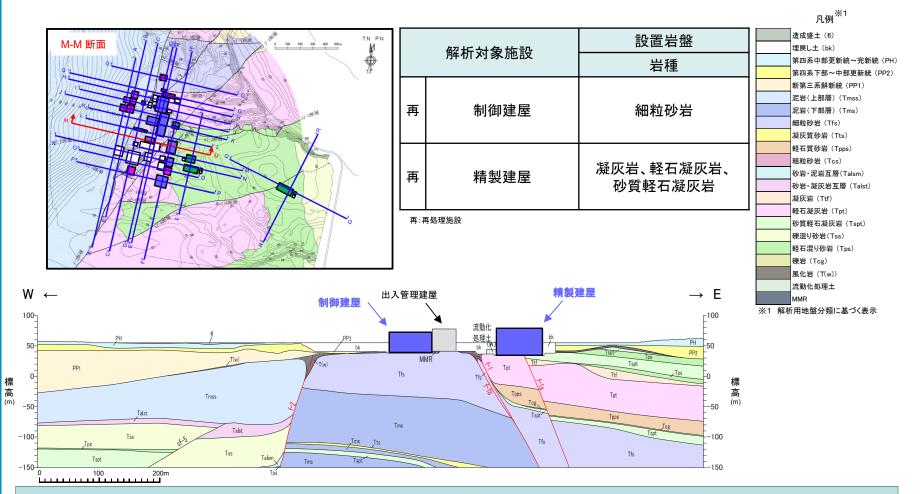
■K一K断面


解析対象施設は、細粒砂岩、礫岩や軽石質砂岩に直接支持されている。

R2.7.13 資料1-5 p67 再掲

4.2 解析対象断面図

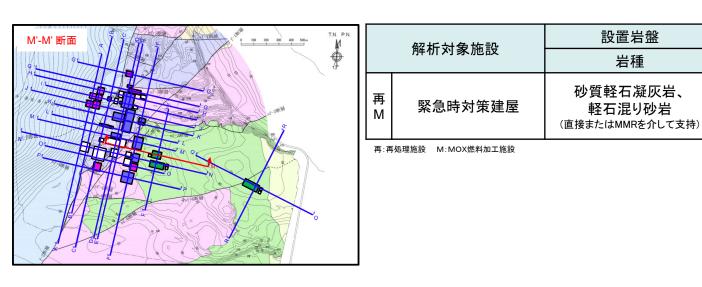
■L一L断面


解析対象施設は、細粒砂岩に直接またはMMRを介して支持されている。

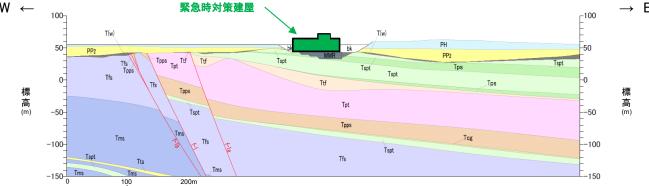
R2.7.13 資料1-5 p68 再掲

4.2 解析対象断面図

■M-M断面

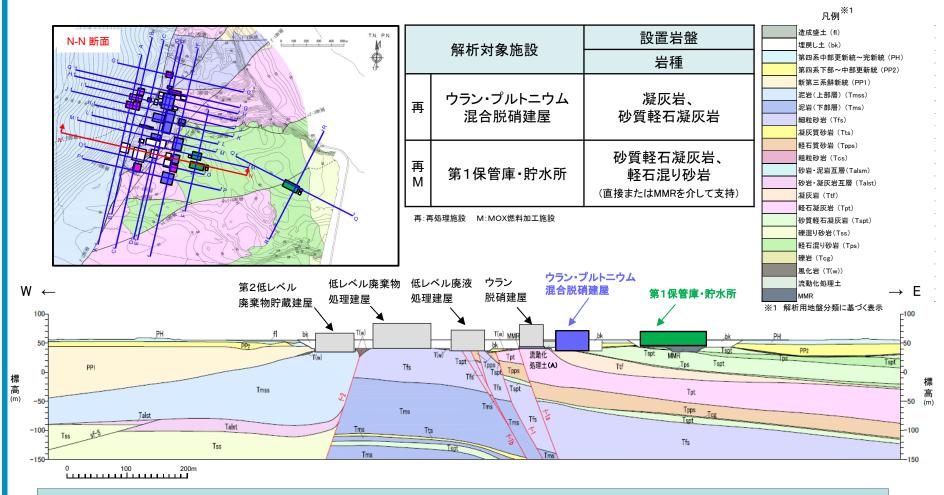

解析対象施設は、細粒砂岩、凝灰岩、軽石凝灰岩や砂質軽石凝灰岩に直接支持されている。

R2.7.13 資料1-5 p69 再掲



4.2 解析対象断面図

■M'-M'断面


解析対象施設は、砂質軽石凝灰岩や軽石混り砂岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p70 再掲

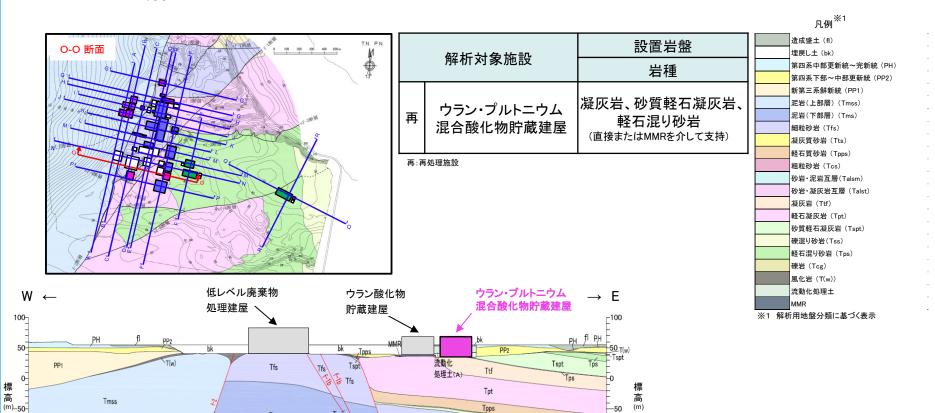
4.2 解析対象断面図

■N-N断面

解析対象施設は、凝灰岩、砂質軽石凝灰岩や軽石混り砂岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p71 再掲

4.2 解析対象断面図


■O一O断面

Tmss

Talst

Tss

0 100 200m

Tpt

Tfs

高

-50

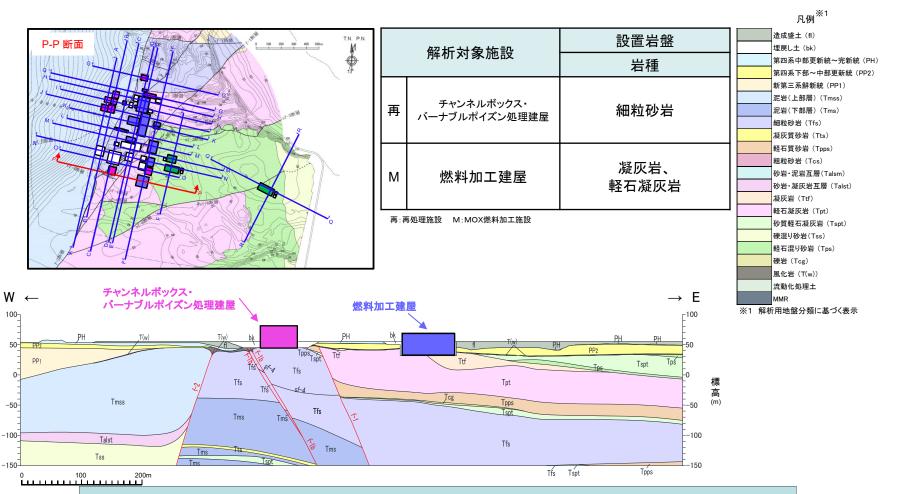
-100

解析対象施設は、凝灰岩、砂質軽石凝灰岩や軽石混り砂岩に直接またはMMRを介して支持されている。

Tms

Tms

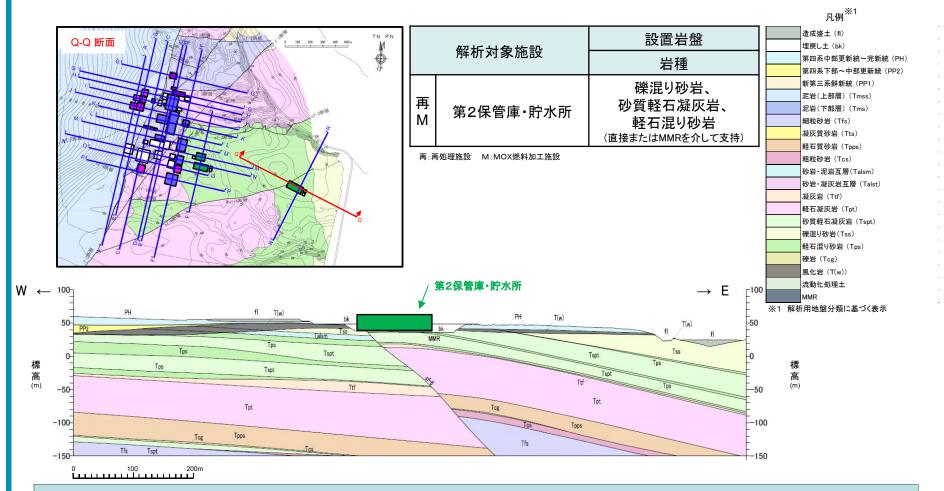
Tms


R2.7.13 資料1-5 p72 再掲

4.2 解析対象断面図

■P一P断面

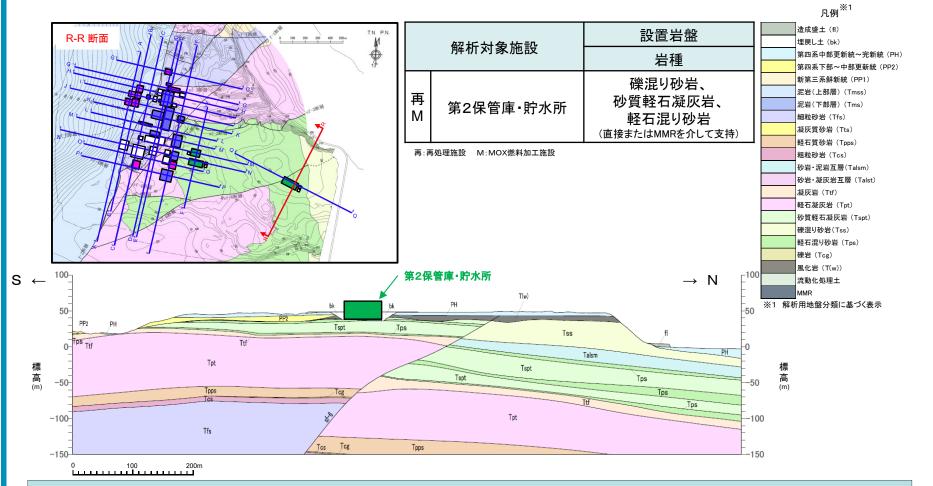
標 高 (m)


解析対象施設は、細粒砂岩、凝灰岩や軽石凝灰岩に直接支持されている。

R2.7.13 資料1-5 p73 再掲

4.2 解析対象断面図

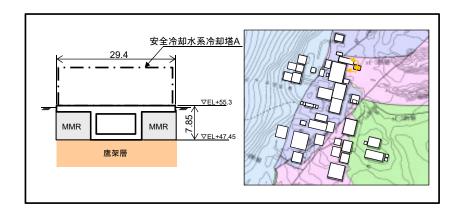
■Q一Q断面


解析対象施設は、礫混り砂岩、砂質軽石凝灰岩や軽石混り砂岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p74 再掲

4.2 解析対象断面図

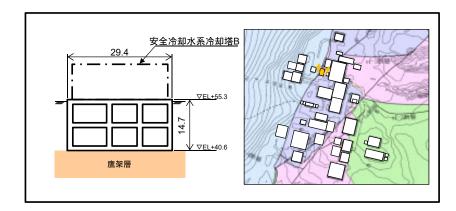
■R-R断面



解析対象施設は、礫混り砂岩、砂質軽石凝灰岩や軽石混り砂岩に直接またはMMRを介して支持されている。

4.3 小規模施設及び洞道の鉛直断面図

■使用済燃料の受入れ施設及び貯蔵施設用安全冷却水系冷却塔A(基礎)



	評価対象施設	設置岩盤
	計圖刈象胞設	岩種
再	使用済燃料の受入れ施設 及び貯蔵施設用安全冷却 水系冷却塔A(基礎)	軽石質砂岩 (直接またはMMRを介して支持)

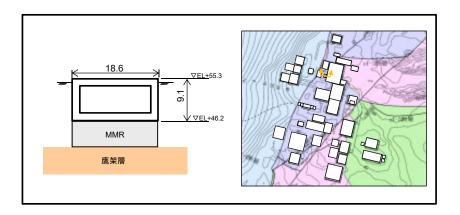
再:再処理施設

使用済燃料の受入れ施設及び貯蔵施設用安全冷却水系冷却塔A(基礎)は、軽石質砂岩に直接またはMMRを介して支持されている。

■使用済燃料の受入れ施設及び貯蔵施設用安全冷却水系冷却塔B(基礎)

	評価対象施設		設置岩盤
			岩種
	再	使用済燃料の受入れ施設 及び貯蔵施設用安全冷却 水系冷却塔B(基礎)	軽石混り砂岩、細粒砂岩

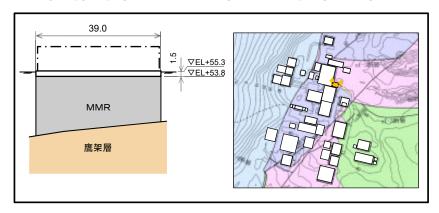
再:再処理施設


使用済燃料の受入れ施設及び貯蔵施設用安全冷却水系冷却塔B(基礎)は、軽石混り砂岩や細粒砂岩に直接支持されている。

R2.7.13 資料1-5 p76 再掲

4.3 小規模施設及び洞道の鉛直断面図

■第1非常用ディーゼル発電設備用重油タンク室



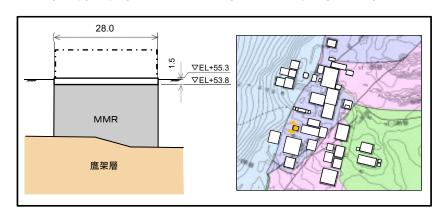
	证件分布协议	設置岩盤
	評価対象施設	岩種
再	第1非常用ディーゼル 発電設備用重油 タンク室	細粒砂岩 (MMRを介して支持)

再:再処理施設

第1非常用ディーゼル発電設備用重油タンク室は、細粒砂岩にMMRを介して支持されている。

■再処理設備本体用安全冷却水系冷却塔A(基礎)

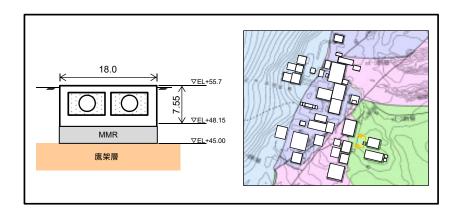
	評価対象施設	設置岩盤
	计	岩種
再	再処理設備本体用安全 冷却水系冷却塔A(基 礎)	細粒砂岩 (MMRを介して支持)


再:再処理施設

再処理設備本体用安全冷却水系冷却塔A(基礎)は、細粒砂岩にMMRを介して支持されている。

4.3 小規模施設及び洞道の鉛直断面図

■再処理設備本体用安全冷却水系冷却塔B(基礎)



		評価対象施設	設置岩盤 岩種
Ī	再	再処理設備本体用安全 冷却水系冷却塔B(基 礎)	細粒砂岩 (MMRを介して支持)

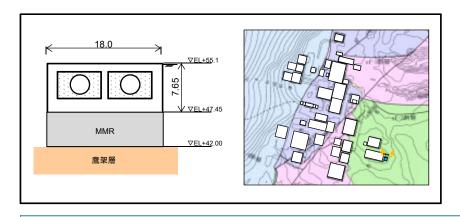
再:再処理施設

再処理設備本体用安全冷却水系冷却塔B(基礎)は、細粒砂岩にMMRを介して支持されている。

■重油貯槽

評価対象施設		設置岩盤岩種
再 M	重油貯槽	砂質軽石凝灰岩 (MMRを介して支持)

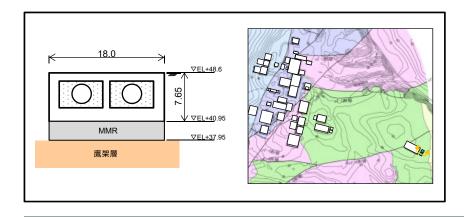
再:再処理施設 M:MOX燃料加工施設


重油貯槽は、砂質軽石凝灰岩にMMRを介して支持されている。

R2.7.13 資料1-5 p78 再掲

4.3 小規模施設及び洞道の鉛直断面図

■第1軽油貯槽



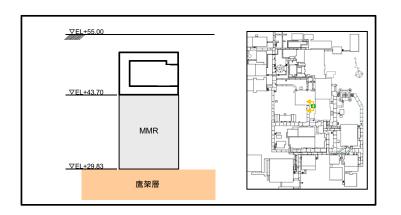
	評価対象施設	設置岩盤 岩種
再 M	第1軽油貯槽	砂質軽石凝灰岩 (MMRを介して支持)

再:再処理施設 M:MOX燃料加工施設

第1軽油貯槽は、砂質軽石凝灰岩にMMRを介して支持されている。

■第2軽油貯槽

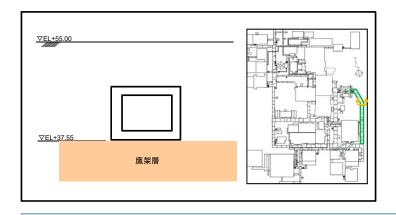
評価対象施設		設置岩盤
		岩種
再 M	第2軽油貯槽	砂質軽石凝灰岩 (MMRを介して支持)


再:再処理施設 M:MOX燃料加工施設

第2軽油貯槽は砂質軽石凝灰岩にMMRを介して支持されている。

R2.7.13 資料1-5 p79 再掲

■①洞道


4.3 小規模施設及び洞道の鉛直断面図

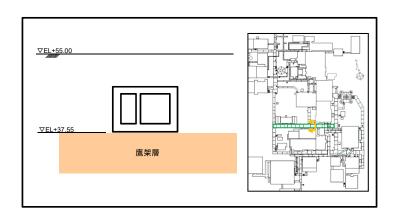
	評価対象施設	設置岩盤 岩種
再	分離建屋/高レベル廃液ガラス 固化建屋間洞道	細粒砂岩 (MMRを介して支持)

再:再処理施設

①洞道は、細粒砂岩にMMRを介して支持されている。

■②洞道

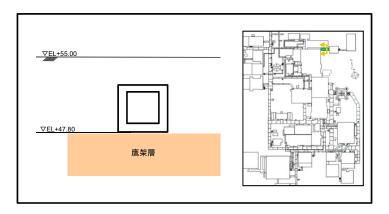
		-n ili én.
	評価対象施設	設置岩盤
	計劃对象地設	岩種
再	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その1)	砂質軽石凝灰岩


再:再処理施設

②洞道は、砂質軽石凝灰岩に直接支持されている。

R2.7.13 資料1-5 p80 再掲

■③洞道


4.3 小規模施設及び洞道の鉛直断面図

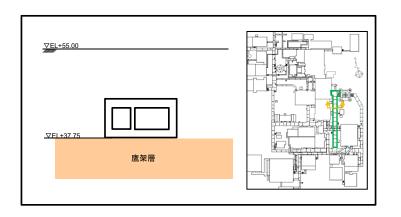
	== /T +4 / / - - n.	設置岩盤
	評価対象施設	岩種
再	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その2)	細粒砂岩 (直接またはMMRを介して支持)

再:再処理施設

③洞道は、細粒砂岩に直接またはMMRを介して支持されている。

■4洞道

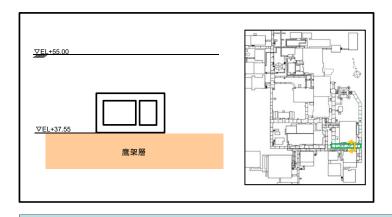
	評価対象施設	設置岩盤 岩種
再	使用済燃料受入れ・貯蔵建屋/ 安全冷却水系冷却塔A基礎間 洞道	軽石質砂岩 (直接またはMMRを介して支持)


再:再処理施設

④洞道は、軽石質砂岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p81 再掲

■⑤洞道


4.3 小規模施設及び洞道の鉛直断面図

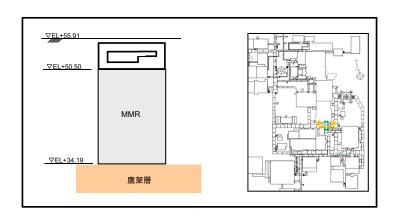
su /프닉슈 뉴 su		設置岩盤		
評価対象施設		岩種		
再	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その3)	細粒砂岩 (直接またはMMRを介して支持)		

再:再処理施設

⑤洞道は、細粒砂岩に直接またはMMRを介して支持されている。

■⑥洞道

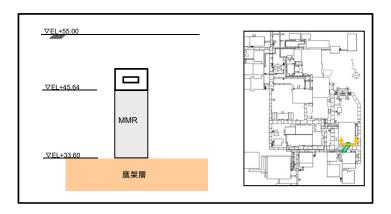
su/エ닉名 to Su		設置岩盤		
	評価対象施設	岩種		
再	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その4)	砂質軽石凝灰岩 (直接またはMMRを介して支持)		


再:再処理施設

⑥洞道は、砂質軽石凝灰岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p82 再掲

■⑦洞道


4.3 小規模施設及び洞道の鉛直断面図

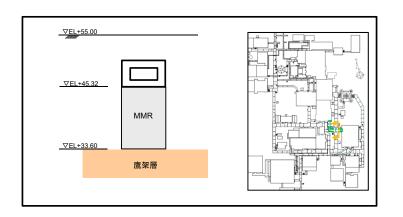
評価対象施設		設置岩盤		
		岩種		
再	分離建屋/精製建屋/ウラン脱 硝建屋/ウラン・プルトニウム混 合脱硝建屋/低レベル廃液処理 建屋/低レベル廃棄物処理建屋 /分析建屋間洞道(その1)	細粒砂岩 ^(MMRを介して支持)		

再:再処理施設

⑦洞道は、細粒砂岩にMMRを介して支持されている。

■⑧洞道

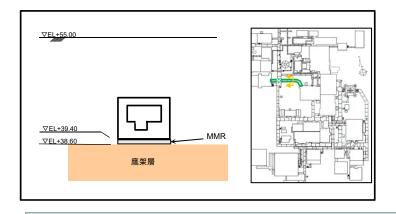
評価対象施設		設置岩盤 岩種
再	精製建屋/ウラン・プルトニウム 混合脱硝建屋建屋間洞道	砂質軽石凝灰岩 (MMRを介して支持)


再:再処理施設

⑧洞道は、砂質軽石凝灰岩にMMRを介して支持されている。

R2.7.13 資料1-5 p83 再掲

■⑨洞道


4.3 小規模施設及び洞道の鉛直断面図

	== (年 \	設置岩盤	
	評価対象施設	岩種	
再	分離建屋/精製建屋/ウラン脱 硝建屋/ウラン・プルトニウム混 合脱硝建屋/低レベル廃液処理 建屋/低レベル廃棄物処理建屋 /分析建屋間洞道(その2)	細粒砂岩 (MMRを介して支持)	

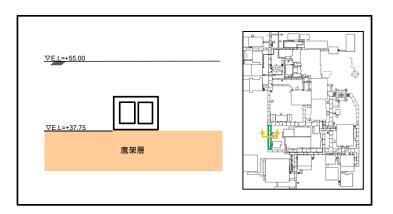
再:再処理施設

⑨洞道は、細粒砂岩にMMRを介して支持されている。

■⑪洞道

	評価対象施設	設置岩盤		
	計 個 外 多 心	岩種		
再	高レベル廃液ガラス固化建屋/ 第1ガラス固化体貯蔵建屋間 洞道	細粒砂岩 (MMRを介して支持)		

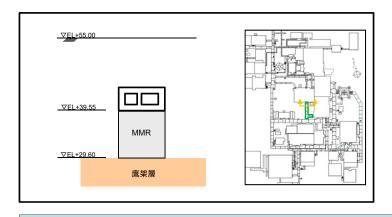
再:再処理施設


⑩洞道は、細粒砂岩にMMRを介して支持されている。

R2.7.13 資料1-5 p84 再掲

4.3 小規模施設及び洞道の鉛直断面図

■⑪洞道



su/エ·사名 to Su		設置岩盤		
評価対象施設		岩種		
再	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その5)	細粒砂岩 (直接またはMMRを介して支持)		

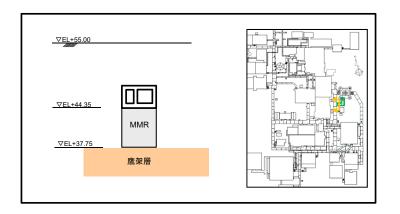
再:再処理施設

⑪洞道は、細粒砂岩に直接またはMMRを介して支持されている。

■12洞道

ST/IT-\-L-A-tr-=N		設置岩盤		
	評価対象施設	岩種		
再	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道建屋間洞道(その6)	細粒砂岩 (直接またはMMRを介して支持)		

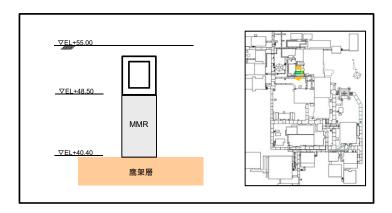
再:再処理施設


⑫洞道は、細粒砂岩に直接またはMMRを介して支持されている。

R2.7.13 資料1-5 p85 再掲

4.3 小規模施設及び洞道の鉛直断面図

■13洞道



== /		設置岩盤		
	評価対象施設	岩種		
再	前処理建屋/分離建屋/精製建屋/高レベル廃液ガラス固化建屋/ウラン・プルトニウム混合脱硝建屋/制御建屋/非常用電源建屋/冷却水設備の安全冷却水系/主排気筒/主排気筒管理建屋間洞道(その7)	細粒砂岩 (直接またはMMRを介して支持)		

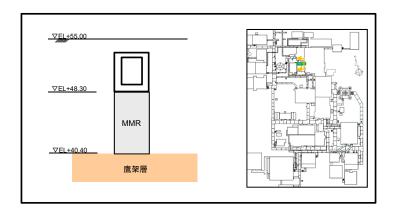
再:再処理施設

13洞道は、細粒砂岩に直接またはMMRを介して支持されている。

■14洞道

	評価対象施設	設置岩盤 岩種		
再	使用済燃料受入れ・貯蔵建屋/ 安全冷却水系冷却塔B基礎間洞 道(その1)	細粒砂岩 (MMRを介して支持)		

再:再処理施設

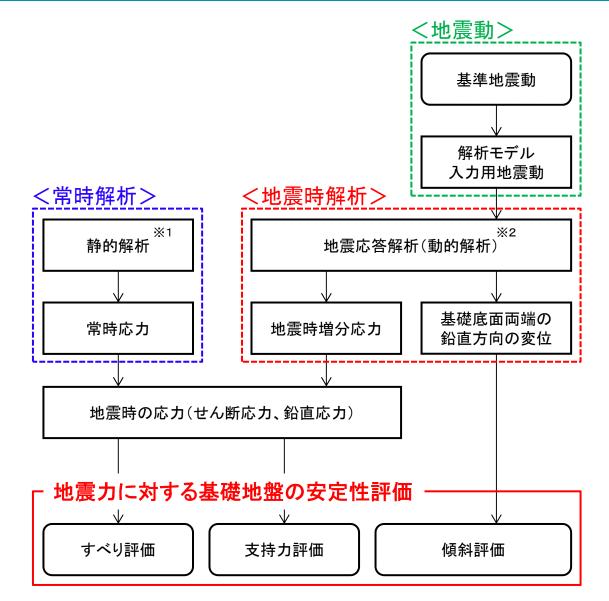

⑭洞道は、細粒砂岩にMMRを介して支持されている。

R2.7.13 資料1-5 p86 再掲

4.3 小規模施設及び洞道の鉛直断面図

■15洞道

	評価対象施設	設置岩盤		
	計1111111111111111111111111111111111111	岩種		
再	使用済燃料受入れ・貯蔵建屋/ 安全冷却水系冷却塔B基礎間洞 道(その2)	細粒砂岩 (MMRを介して支持)		


再:再処理施設

15洞道は、細粒砂岩にMMRを介して支持されている。

R2.7.13 資料1-5 p87 再掲

4.4 安定性評価フロー

X 1

自重によって発生する地盤内の初期応 力の算定を行う。

建屋基礎掘削に伴う解放力及び建屋埋 戻土の荷重を考慮する。

X2

周波数応答解析法による等価線形解析 (二次元動的有限要素法)により検討を 行い、水平及び鉛直地震動を同時に入 力する。

せん断弾性係数及び減衰定数のひずみ依存性を必要に応じて考慮する。

4.5 評価項目

■ 基礎地盤のすべり

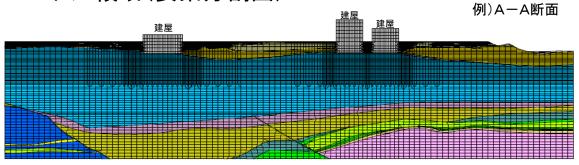
動的解析における時刻歴のすべり安全率が1.5以上であることを確認する。

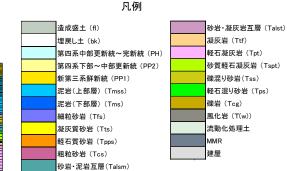
■ 基礎の支持力

基礎地盤は接地圧に対して十分な支持力を有していることを確認する。

■ 基礎底面の傾斜

基礎底面の傾斜は評価基準値の目安である1/2,000 ※を下回ることを確認する。


※基礎地盤及び周辺斜面の安定性評価に係る審査ガイドでは、一般建築物の構造的な障害が発生する限界として、 1/2,000以下(目安値)が示されている。なお、1/2,000程度の傾斜であれば安全上重要な機器の機能が損なわれる ことはないことを確認している。


R2.7.13 資料1-5 p89 再掲

4.6 解析モデル(モデル領域・要素高さ)

■モデル領域(要素分割図)

【原子力発電所耐震設計技術指針 JEAG4601-2008(日本電気協会)】

- ・動的解析用モデル下端の深さは、一般に建屋底面幅の1.5~2倍とする。
- ・動的解析用モデルの側方境界は建屋の振動方向にそれぞれ建屋幅の2.5倍以上離れた点に設ければよい。
- ・下端深さは、「建屋底面幅の1.5~2倍」としてE.L.-150mまでモデル化する。
- ・側方境界は、「建屋幅の2.5倍以上」としてモデル化する。

■要素高さ

$$H_{max} = \frac{1}{m} \cdot \lambda_s = \frac{1}{m} \cdot \frac{V_s}{f_{max}}$$

 λ_s : せん断波の波長

V_s : せん断波の速度(m/s)

 f_{max} : 考慮する地震動の最大周波数(20Hz)

m : 分割係数 (=5とした)

平面ひずみ要素でモデル化し、要素の高さは、最大周波数20Hz及び地盤のせん断波速度Vsより求まる最大要素高さを上回らないよう設定する。

R2.7.13 資料1-5 p90 再掲

4.6 解析モデル(断層モデル化)

■断層モデル化

【原子力発電所耐震設計技術指針 JEAG4601-2008 (日本電気協会)】

弱層のモデル化にあたっては、ジョイントモデルまたはソリッドモデルのいずれを用いてもよい。

【原子力発電所の基礎地盤及び周辺斜面の安定性評価技術 <技術資料>(土木学会2009)】

弱層のモデル化については、ソリッド要素でモデル化しても ジョイント要素でモデル化しても、地盤のすべり安定性に影響 を及ぼすほどの差異は生じない。

断層のモデル化についてはジョイント要素を採用する。

ジョイント要素に用いるバネ定数(k, k,)の設定方法

$$k_s = \frac{G}{t} \qquad k_n = \frac{2(1-\nu_d)}{1-2\nu_d} \frac{G}{t}$$

k_c: せん断バネ定数(N/mm³)

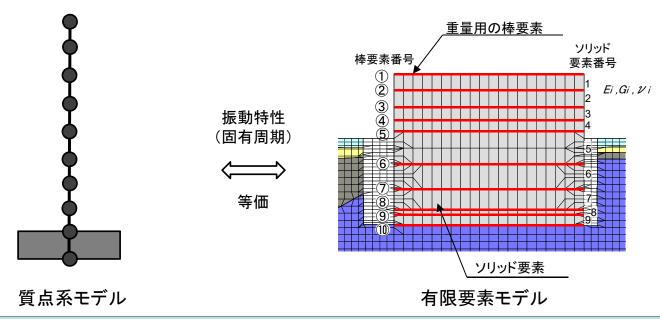
k_n:垂直バネ定数(N/mm³)

G: 断層のせん断弾性係数(N/mm²)

t: 断層モデル化の幅(mm)

 ν_d : 断層の動ポアソン比

※原子力発電所の基礎地盤及び周辺斜面の安定性評価技術 <技術資料>(土木学会2009)より



4.6 解析モデル(建屋モデル化)

■建屋モデル化

原子力発電所の基礎地盤及び周辺斜面の安定性評価技術<技術資料>(土木学会2009)を参考に、建屋の地震応答解析で用いられている質点系モデルに基づき、振動特性を一致させた有限要素モデルを作成する。

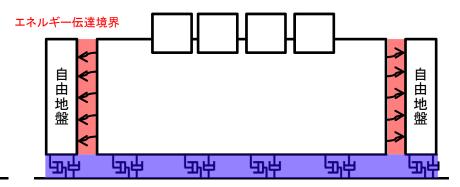
〇ハル・エンドピース貯蔵建屋(評価対象施設番号1)の例

- ・モデル作成にあたっては、水平及び鉛直地震動の同時入力に対応したモデル化を実施する。
- ・各建屋の有限要素モデルには、重量用の棒要素及びソリッド要素を用いる。
- ・各棒要素は質点系モデルの高さ毎に単位奥行き当たりの質量密度を設定する。
- ・質点系モデルから等価の振動特性となる弾性係数(E)、せん断弾性係数(G)、ポアソン比(ν)を求め、 ソリッド要素に設定する。設定した有限要素モデルの物性値を参考資料に示す。

R2.7.13 資料1-5 p92 再掲

4.6 解析モデル(境界条件・地下水位)

■境界条件


【常時解析】

固定境界

常時解析では、側方を鉛直ローラー境界、底面を固定境界として設定する。

【地震時解析】

粘性境界

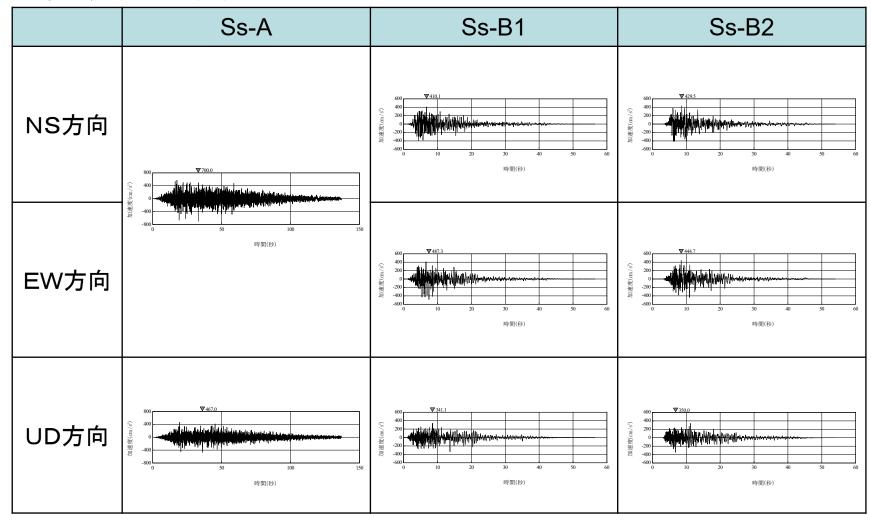
地震時解析では、側方をエネルギー伝達境界、底面を粘性境界としエネルギー逸散を考慮する。

■地下水位

解析用地下水位は、保守的に地表面あるいは建屋基礎上端に設定する。

4. 地震力に対する基礎地盤の安定性評価

R2.7.13 資料1-5 p93 加除修正

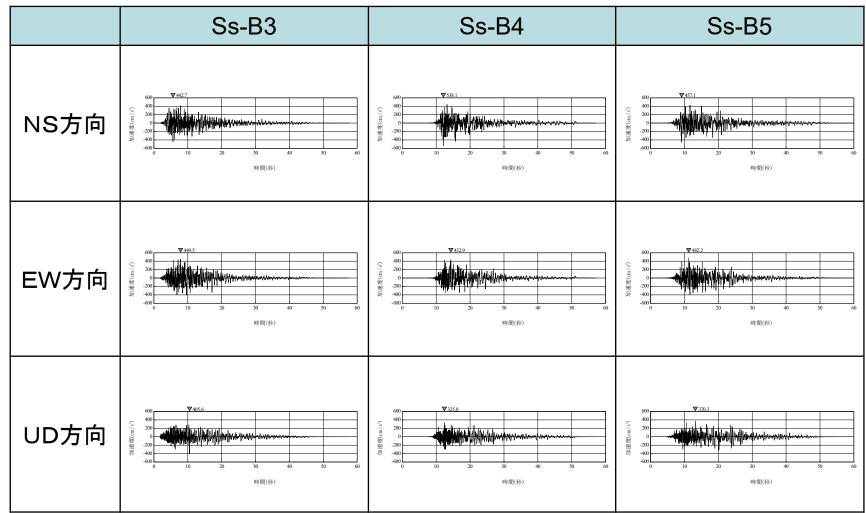

■基準地震動Ss 一覧

甘油電動		最大加速度(Gal)		
	基準地震動 		EW方向	UD方向
Ss-A	 応答スペクトルに基づく基準地震動	70	00	467
Ss-B1	出戸西方断層による地震 [短周期レベルの不確かさケース、破壊開始点2]	410	487	341
Ss-B2	出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重畳ケース、破壊開始点1]	429	445	350
Ss-B3	出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重畳ケース、破壊開始点2]	443	449	406
Ss-B4	出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重畳ケース、破壊開始点3]	538	433	325
Ss-B5	出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重畳ケース、破壊開始点4]	457	482	370
Ss-C1		620		320
Ss-C2	2008年岩手・宮城内陸地震(栗駒ダム[右岸地山])	450 ^{※1}	490 ^{※2}	320
Ss-C3	2008年岩手・宮城内陸地震(KiK−net金ヶ崎)	430	400	300
Ss-C4	2008年岩手·宮城内陸地震(KiK-net一関東)	540	500	_
Ss-C5	標準応答スペクトルを考慮した地震動	62	21	413

J N F L

4.7 入力地震動

■基準地震動Ss 時刻歴波形(1/4)

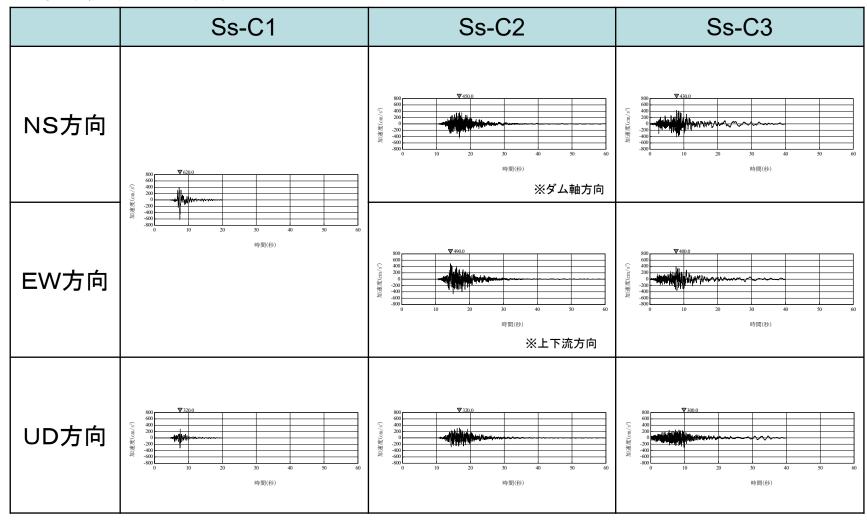

※第100回核燃料施設等の新規制基準適合性に係る審査会合(平成28年2月19日)「資料1-3」より

R2.7.13 資料1-5 p95 再掲

J N F L

4.7 入力地震動

■基準地震動Ss 時刻歴波形(2/4)

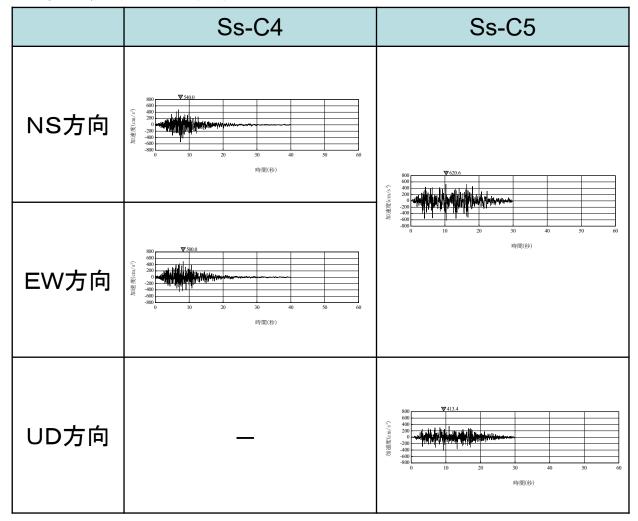


[※]第100回核燃料施設等の新規制基準適合性に係る審査会合(平成28年2月19日)「資料1-3」より

J N F L

4.7 入力地震動

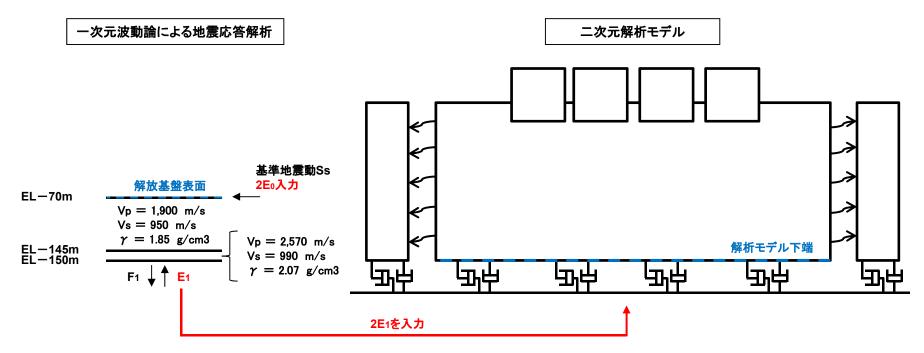
■基準地震動Ss 時刻歴波形(3/4)



※第100回核燃料施設等の新規制基準適合性に係る審査会合(平成28年2月19日)「資料1-3」より

4.7 入力地震動

■基準地震動Ss 時刻歴波形(4/4)

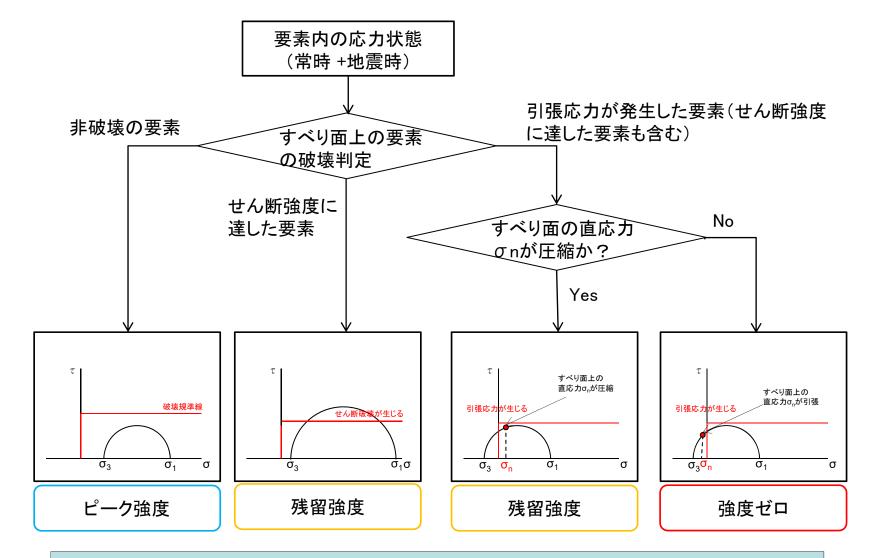


[※]第100回核燃料施設等の新規制基準適合性に係る審査会合(平成28年2月19日)「資料1-3」及び 第436回核燃料施設等の新規制基準適合性に係る審査会合(令和4年4月25日)「資料4-1」より

4.7 入力地震動

■基準地震動の引き戻し

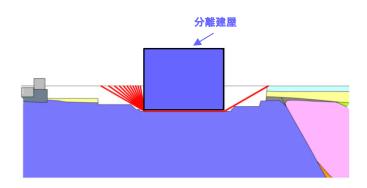
※第60回審査会合(平成27年6月12日)資料1に基づきEL-70m以深をモデル化


入力地震動については、解放基盤表面で定義される基準地震動を、一次元波動論による地震応答解析を 用いて、二次元解析モデルの入力位置(EL-150m)で評価したものを用いる。

- •Ss-Aについては、水平及び鉛直地震動の位相反転を考慮する。
- ・Ss-C1~Ss-C3については、水平地震動の位相反転を考慮し、各断面にNS及びEWの両方向の地震動を用いて評価する。

R2.7.13 資料1-5 p99 再掲

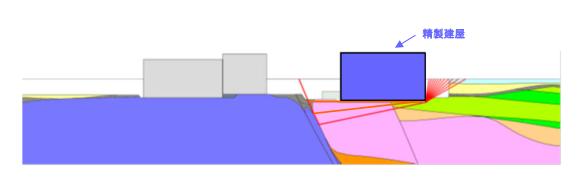
4.8 評価結果(すべり安全率算定時の強度の考え方)

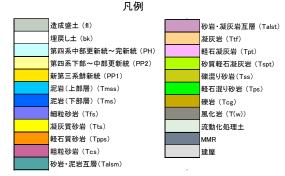

すべり面上の要素内の応力状態に応じた物性値(強度)を設定する。

4.8 評価結果(すべり面選定)

1)建屋底面を通るすべり面

(例)L-L断面




2)断層を通るすべり面

(例)M-M断面

解析モデル内において、解析対象施設直下のすべり面及び解析対 象施設と隣接する施設の直下を連続して通るすべり面に加え、断層 を通るすべり面を設定した。

- ・すべり面は直線とし、岩盤、断層あるいは表層を通り、地表から地表に連続するすべり面を設定した。
- ・建屋端部を固定点に設定し、始点または終点に固定点を通るすべり面を設定した。
- ・建屋端部から地表面へ抜けるすべり面の角度を5°ピッチで変化させ、すべり安全率が最小となるすべり面を探索した。
- ・断層を通るすべり面は、断層の分布等を考慮して設定した。
- ・MMRは鷹架層と比べても十分な強度を有していることから、MMR を通さずにすべり面を設定した。

R2.7.13 資料1-5 p101 再掲

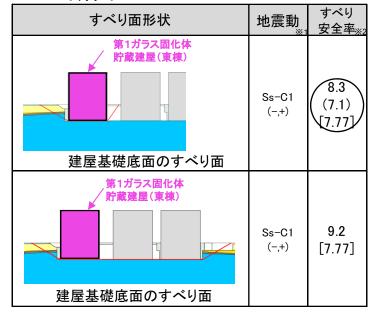
■基礎地盤のすべり評価(各断面における最小すべり安全率)

解析対象断面	解析対象施設	地震動※1	すべり 安全率 ^{※2}	解析対象断面	解析対象施設	地震動※1	すべり 安全率 ^{※2}
А-А	第1ガラス固化体貯蔵建屋(西棟)	Ss-C1 (-, +)	6.9 (5.9) [7.77s]	I—I	使用済燃料受入れ・貯蔵建屋	Ss-C1 (-, +)	7.9 (5.6) [7.66s]
В-В	第1ガラス固化体貯蔵建屋(東棟)	Ss-C1 (-, +)	8.3 (7.1) [7.77s]	J-J	前処理建屋	Ss-C1 (+, +)	6.2 (4.7) [7.65s]
с-с	チャンネルボックス・ バーナブルポイズン処理建屋	Ss-C1 (+, +)	6.4 (4.8) [7.67s]	к-к	高レベル廃液ガラス固化建屋 分離建屋	Ss-C1 (-, +)	7.1 (5.4) [7.66s]
D-D	高レベル廃液ガラス固化建屋	Ss-C1 (-, +)	6.5 (5.0) [7.71s]	L-L	分離建屋	Ss-C1 (+, +)	5.4 (4.2) [7.71s]
E-E	分離建屋、前処理建屋、 使用済燃料受入れ・貯蔵建屋	Ss-C1 (+, +)	7.4 (5.6) [7.66s]	м-м	精製建屋	Ss-C1 (+, +)	3.8 (2.6) [7.72s]
F-F	精製建屋	Ss-C1 (+, +)	4.7 (3.3) [7.66s]	M'-M'	緊急時対策建屋	Ss-C1 (+, +)	3.7 (2.5) [7.67s]
F' —F'	緊急時対策建屋 第1保管庫・貯水所	Ss-C1 (-, +)	4.5 (3.2) [7.66s]	N-N	ウラン・プルトニウム混合脱硝建屋	Ss-C1 (+, +)	4.9 (3.6) [7.67s]
G-G	ハル・エンドピース貯蔵建屋	Ss-C1 (+, +)	7.3 (5.6) [7.65s]	0-0	ウラン・プルトニウム混合酸化物貯蔵建屋	Ss-C1 (+, +)	5.4 (3.9) [7.66s]
G' –G'	使用済燃料輸送容器管理建屋	Ss-C1 (+, +)	13.5 (9.1) [7.66s]	P-P	チャンネルボックス・バーナブルポイズン処理建屋	Ss-C1 (+, +)	6.4 (4.7) [7.66s]
н-н	使用済燃料受入れ・貯蔵建屋	Ss-C1 (+, +)	7.9 (5.9) [7.66s]	Q-Q	第2保管庫・貯水所	Ss-C1 (-, +)	6.6 (4.5) [7.66s]
				R-R	第2保管庫・貯水所	Ss-A (+, +)	5.5 (3.8) [19.39s]

※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転 ※2 ()は物性のばらつきを考慮したすべり安全率

]は発生時刻(秒)

最小すべり安全率はM'-M'断面における3.7であり、他断面においても評価基準値1.5以上を十分に満足していることを確認した。

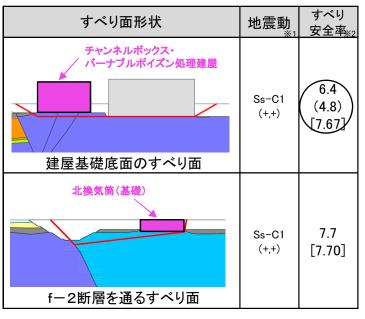


■各断面における安全率一覧(1/13)

△-△無面

すべり面形状	地震動	すべり 安全率 _{※2}
第1ガラス固化体 貯蔵建屋(西棟) 建屋基礎底面のすべり面	Ss-C1 (-,+)	7.4 [7.77]
第1ガラス固化体 貯蔵建屋(西棟) 建屋基礎底面のすべり面	Ss-C1 (-,+)	6.9 (5.9) [7.77]

B一B断面


- ※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一,+)水平位相反転 (一,一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - () は各断面における最小すべり安全率

■各断面における安全率一覧(2/13)

C一C断面

<u> </u>		
すべり面形状	地震動	すべり 安全率 ₆₂
チャンネルボックス・ パーナブルポイズン処理建屋 建屋基礎底面のすべり面	Ss-C1 (+,+)	7.9 [7.67]
非常用電源建屋建屋基礎底面のすべり面	Ss-C1 (-,+)	13.0 [7.63]
北換気筒(基礎) 建屋基礎底面のすべり面	Ss-C1 (-,+)	8.8 [7.70]

- ※1 (+,+)位相反転なし (+,-)鉛直位相反転
 - (一.+)水平位相反転 (一.一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - (は各断面における最小すべり安全率

凡例 造成盛土(fl)

埋戻し土 (bk)

新第三系鮮新統 (PP1) 泥岩(上部層)(Tmss

泥岩(下部層) (Tms) 海灰質砂岩 (Tts)

軽石質砂岩(Tpps) 粗粒砂岩(Tcs)

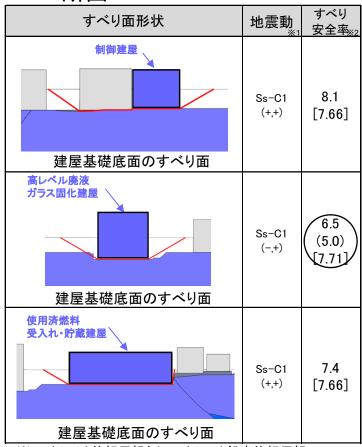
砂岩・泥岩互層(Talsm) 砂岩·凝灰岩互層(Talst) 凝灰岩 (Ttf) 軽石凝灰岩(Tpt)

砂質軽石凝灰岩(Tspt)

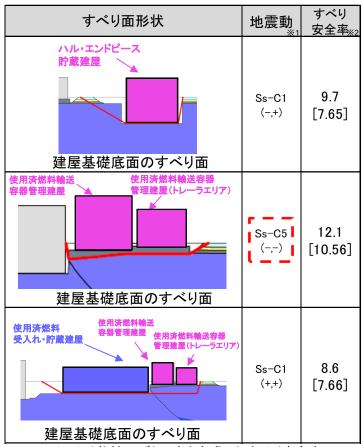
礫混り砂岩(Tss)

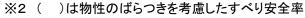
礎岩 (Tce)

風化岩 (T(w)) 流動化処理土


軽石混り砂岩(Tps)

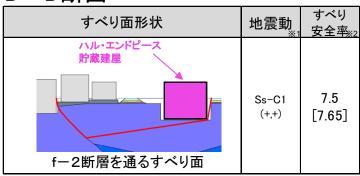
第四系中部更新統~完新統 (PH) 第四系下部~中部更新統 (PP2)


4.8.1 再処理施設(すべり評価)

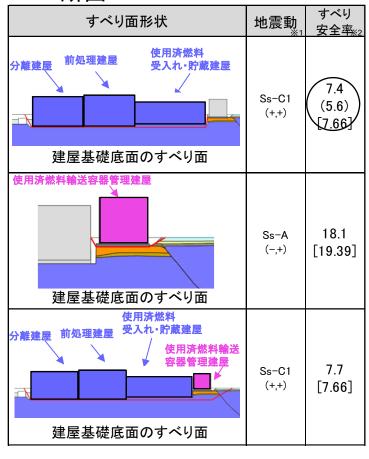

■各断面における安全率一覧(3/13)

D一D断面

※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転


]は発生時刻(秒)

○ は各断面における最小すべり安全率


■各断面における安全率一覧(4/13)

D一D断面

- (十.一)鉛直位相反転 ※1 (+.+)位相反転なし (一.+)水平位相反転 (一.一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率 「]は発生時刻(秒)
 - (は各断面における最小すべり安全率

E一E断面

凡例 造成盛土(fl)

埋戻し土 (bk)

新第三系鮮新統 (PP1) 泥岩(上部層)(Tmss) 泥岩(下部層) (Tms) 海灰質砂岩 (Tts)

軽石質砂岩(Tpps) 粗粒砂岩(Tcs)

礫混り砂岩(Tss) 軽石混り砂岩(Tps)

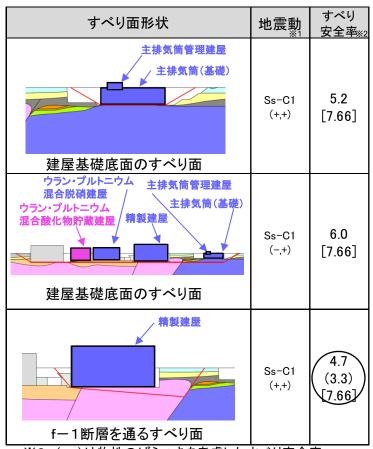
礫岩 (Tcg)

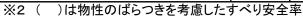
風化岩 (T(w))

流動化処理土

砂岩・泥岩互層(Talsm) 砂岩·凝灰岩互層(Talst) 凝灰岩 (Ttf) 軽石凝灰岩(Tpt) 砂質軽石凝灰岩(Tspt)

第四系中部更新統~完新統 (PH) 第四系下部~中部更新統 (PP2)


4.8.1 再処理施設(すべり評価)


■各断面における安全率一覧(5/13)

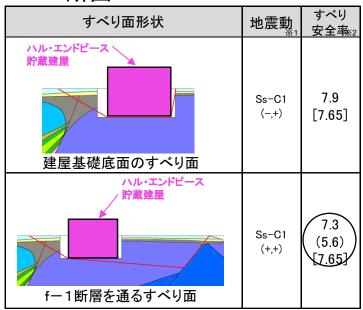
F一F断面

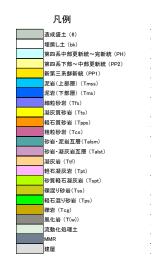
· · ⊢/ · ⊢		
すべり面形状	地震動	すべり 安全率 _{※2}
ウラン・プルトニウム 混合酸化物貯蔵建屋 建屋基礎底面のすべり面	Ss-C1 (+,+)	9.3 [7.72]
ウラン・プルトニウム 混合脱硝建屋 建屋基礎底面のすべり面	Ss-C1 (-,+)	11.0 [7.65]
建屋基礎底面のすべり面 ※1 (+.+)位相反転なし (+)鉛	Ss-C1 (+,+) 直位相反車	5.1 [7.66]

※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一,+)水平位相反転 (一,一)水平鉛直位相反転

[]は発生時刻(秒)

(は各断面における最小すべり安全率



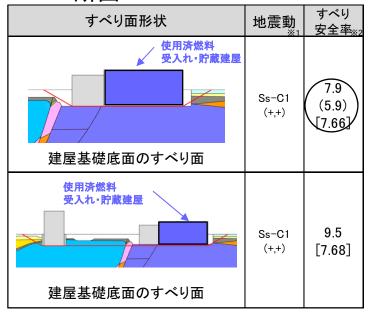

■各断面における安全率一覧(6/13)

F'-F'断面

· · HIH		
すべり面形状	地震動	すべり 安全率 _{%2}
緊急時対策建屋 建屋基礎底面のすべり面	Ss-C1 (+,+)	4.8 [7.66]
第1保管庫·貯水所 建屋基礎底面のすべり面	Ss-C1 (-,+)	5.7 [7.66]
第1保管庫・貯水所 緊急時対策建屋 建屋基礎底面のすべり面	Ss-C1 (-,+)	4.5 (3.2) [7.66]

G一G断面

- ※1 (+,+)位相反転なし (+,-)鉛直位相反転
 - (一.+)水平位相反転 (一.一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率
 - 「]は発生時刻(秒)
 - (は各断面における最小すべり安全率



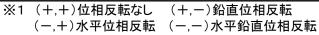
■各断面における安全率一覧(7/13)

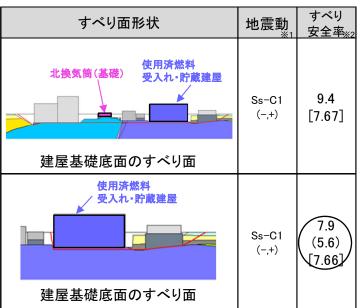
G'-G'断面

すべり面形状	地震動	すべり 安全率 _{※2}
使用済み燃料輸送容器管理建屋建屋建屋基礎底面のすべり面	Ss-C1 (+,+)	13.5 (9.1) [7.66]

H一H断面

- ※1 (+,+)位相反転なし (+,-)鉛直位相反転
 - (一.+)水平位相反転 (一.一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - は各断面における最小すべり安全率




4.8.1 再処理施設(すべり評価)

■各断面における安全率一覧(8/13)

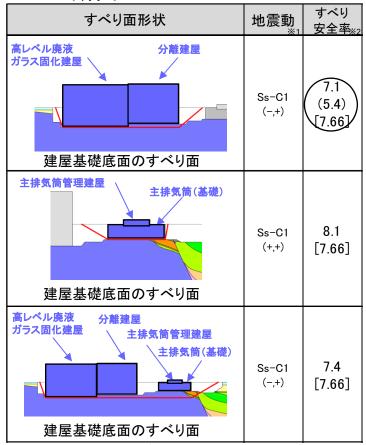
1—1紙面

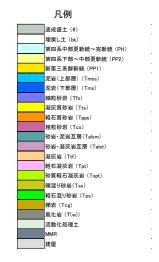
1 1版)[田]		
すべり面形状	地震動	すべり 安全率 _{※2}
北換気筒(基礎) 建屋基礎底面のすべり面	Ss-C5 (-,+)	14.6 [4.25]
使用済燃料 受入れ・貯蔵建屋 建屋基礎底面のすべり面	Ss-C1 (+,+)	8.6 [7.66]
#換気筒(基礎) f-2断層を通るすべり面 ※1 (++)位相反転なし、(+-)鉛	Ss-C1 (-,+)	19.4 [7.66]

凡例 造成盛土(fl)

- ※2 ()は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - (は各断面における最小すべり安全率

8.1 再処理施設(すべり評価)


■各断面における安全率一覧(9/13)


1—.1账而

すべり面形状	地震動	すべり
	※ 1	安全率※2
第1ガラス固化体 貯蔵建屋(西棟) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Ss-C1 (-,+)	6.3 [7.71]
前処理建屋建屋基礎底面のすべり面	Ss-C1 (+,+)	6.2 (4.7) [7.65]
第1ガラス固化体 貯蔵建屋(西棟) f-2断層を通るすべり面	Ss-C1 (-,+)	6.3 [7.71]

※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一,+)水平位相反転 (一,一)水平鉛直位相反転

K一K断面

-)は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - (は各断面における最小すべり安全率

凡例 造成盛土(fl)

埋戻し土 (bk)

泥岩(上部層)(Tmss) 泥岩(下部層) (Tms) 凝灰質砂岩 (Tts)

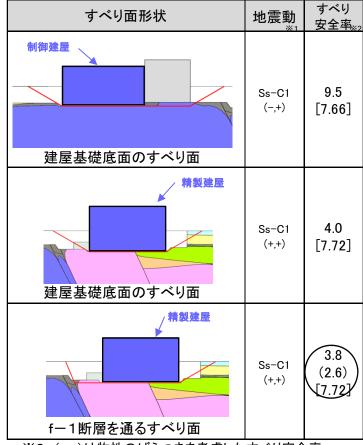
軽石質砂岩(Tpps) 粗粒砂岩(Tcs)

砂岩·泥岩互層(Talsm) 砂岩·凝灰岩互層(Talst) 凝灰岩 (Ttf) 軽石凝灰岩(Tpt)

砂質軽石凝灰岩(Tspt) 礫混り砂岩(Tss) 軽石混り砂岩(Tps) 礫岩 (Tcg) 風化岩 (T(w)) 流動化処理土

第四系中部更新統~完新統 (PH) 第四系下部~中部更新統(PP2) 新第三系鮮新統 (PP1)

4.8.1 再処理施設(すべり評価)


■各断面における安全率一覧(10/13)

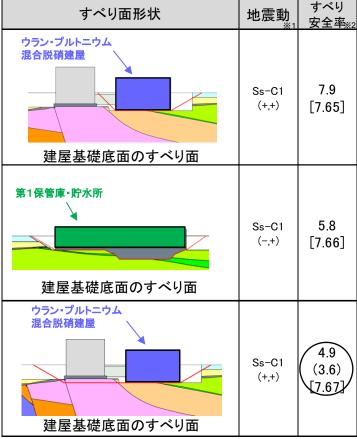
1 — 1 縣市

すべり面形状	地震動	すべり 安全率 _{*2}				
分離建屋建屋基礎底面のすべり面	Ss-C1 (+,+)	5.4 (4.2) [7.71]				
非常用電源建屋 (冷却塔及び燃料油 貯蔵タンク含む) 建屋基礎底面のすべり面	Ss-C1 (-,+)	10.1 [7.74]				
非常用電源建屋 (冷却塔及び燃料油 貯蔵タンク含む) 建屋基礎底面のすべり面	Ss-C1 (-,+)	7.4 [7.72]				

※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転

M-M断面

-)は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - (は各断面における最小すべり安全率


4.8.1 再処理施設(すべり評価)


■各断面における安全率一覧(11/13)

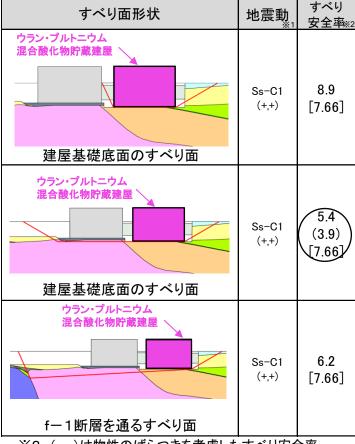
M'-M' 新面

141 141 144 1444		
すべり面形状	地震動	すべり 安全率 _{※2}
緊急時対策建屋 建屋基礎底面のすべり面	Ss-C1 (+,+)	3.7 (2.5) [7.67]

N一N断面

※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一,+)水平位相反転 (一,一)水平鉛直位相反転

-)は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - (は各断面における最小すべり安全率


4.8.1 再処理施設(すべり評価)


■各断面における安全率一覧(12/13)

N一N断面

すべり面形状	地震動	すべり 安全率 _{%2}
ウラン・プルトニウム 混合脱硝建屋 fー1断層を通るすべり面	Ss-C1 (+,+)	5.8 [7.66]

O一O断面

※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転)は物性のばらつきを考慮したすべり安全率

[]は発生時刻(秒)

(は各断面における最小すべり安全率

凡例 造成盛土 (fl)

埋戻し土 (bk)

新第三系鮮新統 (PP1)

泥岩(上部層) (Tmss) 泥岩(下部層) (Tms) 細粒砂岩(Tfs) 凝灰質砂岩 (Tts)

軽石質砂岩(Tpps)

砂岩·泥岩互層(Talsm)

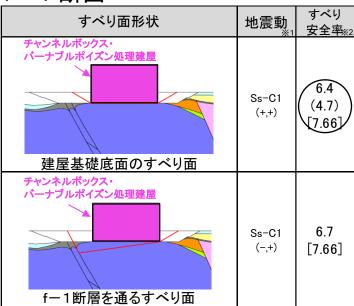
砂岩·凝灰岩互層(Talst) 凝灰岩 (Ttf) 軽石凝灰岩(Tpt) 砂質軽石凝灰岩(Tspt)

粗粒砂岩(Tcs)

礫混り砂岩(Tss) 軽石混り砂岩(Tps)

礫岩 (Tcg)

風化岩 (T(w))


流動化処理土

第四系中部更新統~完新統 (PH) 第四系下部~中部更新統(PP2)

4.8.1 再処理施設(すべり評価)

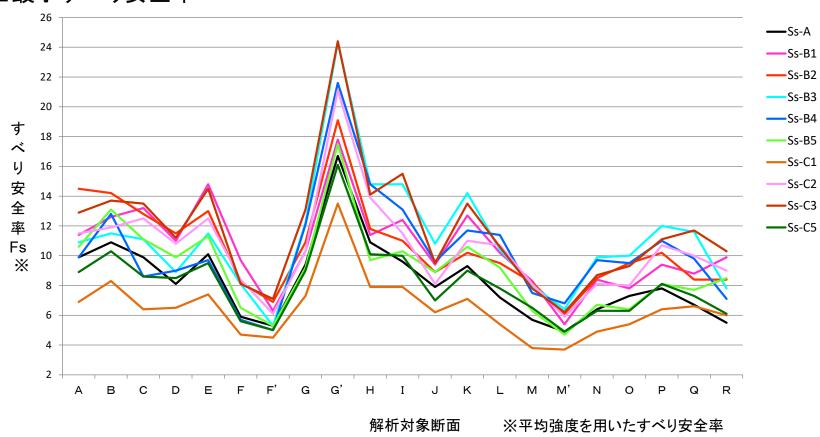
■各断面における安全率一覧(13/13)

P一P断面

Q一Q断面

すべり面形状	地震動	すべり 安全率 _{※2}
第2保管庫・貯水所 建屋基礎底面のすべり面	Ss-C1 (-,+)	6.6 (4.5) [7.66]

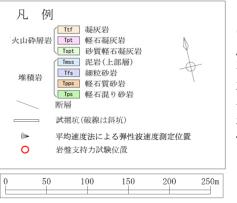
すべり面形状	地震動 _{※1}	すべり 安全 <u>率</u> 2
第2保管庫-貯水所	Ss-A (+,+)	5.5 (3.8) [19.39]
建屋基礎底面のすべり面		



- ※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - (は各断面における最小すべり安全率

4.8.1 再処理施設(すべり安全率の比較)

■最小すべり安全率


基準地震動Ssに対する安定性評価において、Ss-C1地震動は支配的な入力地震動である。再処理施 設の評価では最小すべり安全率は3.7であり、評価基準値(1.5以上)に対して十分な安全裕度を確保し ていることを確認した。

- 再処理施設(支持力試験結果)
- 解析対象施設の基礎底面における基礎の支持力を評価する。
- 岩盤支持力試験における最大荷重を評価基準値として設定し、動的解析から求められる基礎の接地圧が評価基準値を 超えていないことを確認する。
- ・解析対象施設の基礎は、f系断層に仕切られた岩盤上に設置されていることから、鷹架層の各部層毎に評価する。

分類	部層区分	評価基準値 (MPa)	備考
西側地盤	鷹架層上部層 (泥岩(上部層))	8.6	
中央地盤	鷹架層下部層 (細粒砂岩)	10.4	各部層毎の岩盤 支持力試験の最 大荷重の平均値
東側地盤	鷹架層中部層 (軽石凝灰岩、 砂質軽石凝灰岩)	7.5 **	

※東側地盤については、建屋基礎が 鷹架層中部層(軽石凝灰岩、砂質軽 石凝灰岩、軽石混り砂岩、凝灰岩、礫 混り砂岩)に設置されており、強度の 小さい軽石凝灰岩及び砂質軽石凝灰 岩の岩盤支持力試験結果に基づく評 価基準値に代表させる。

R2.7.13 資料1-5 p117 加除修正

■基礎の支持力評価

10.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
7.5
7.5
10.4
10.4
7.5
7.5
7.5
7.5

4.8.1 再処理施設(支持力評価)

番号	解析対象施設	断面方向	地震動 ※1	接地圧 (MPa)※2	設置地盤	評価基準値 (MPa)
11	*	NS	Ss-A (+, -)	0.2 [36.14]	西側	8.6
11	北換気筒(基礎)	EW	Ss-C1 (+, +)	0.4 [7.66]	西側	8.6
12	**	NS	Ss-C1 (-, +)	0.7 [7.65]	中央	10.4
12	非常用電源建屋	EW	Ss-A (+, -)	0.7 [19.77]	中央	10.4
13	チャンネルボックス・	NS	Ss-C1 (+, +)	1.1 [7.68]	中央	10.4
13	* バーナブルポイズン処理建屋	EW	Ss-C1 (+, +)	1.2 [7.66]	中央	10.4
14	*	NS	Ss-C1 (+, +)	1.1 [7.76]	西側	8.6
14	第1ガラス固化体貯蔵建屋(東棟)	EW	Ss-A (+, -)	0.8 [36.14]	西側	8.6
15	*	NS	Ss-C1 (-, +)	1.0 [7.81]	西側	8.6
15	第1ガラス固化体貯蔵建屋(西棟)	EW	Ss-A (+, -)	0.8 [36.14]	西側	8.6
16	*	NS	Ss-C5 ()	0.5 [10.57]	中央	10.4
10	使用済燃料輸送容器管理建屋	EW	Ss-A (-, -)	0.6 [36.13]	中央	10.4
17	使用済燃料輸送容器管理建屋 * (トレーラエリア)	NS	Ss-C1 (-, +)	0.5 [7.65]	中央	10.4
26	***	NS	Ss-A (+, -)	0.8 [36.13]	東側	7.5
20	緊急時対策建屋	EW	Ss-C1 (-, +)	1.1 [7.66]	東側	7.5
27	***	NS	Ss-A (+, +)	0.6 [19.61]	東側	7.5
27	第1保管庫・貯水所	EW	Ss-B5 (+, +)	1.3 [24.26]	東側	7.5
00	***	NS	Ss-A (+, +)	0.8 [36.25]	東側	7.5
28	第2保管庫·貯水所	EW	Ss-C1 (+, +)	0.7 [7.70]	東側	7.5

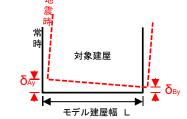
※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転

※2 []は発生時刻(秒)

- 耐震重要施設等と常設重大事故等対処施設を兼ねる施設

耐震重要施設等の最大接地圧は西側地盤では第1ガラス固化体貯蔵建屋(東棟)で1,1MPa、中央地盤では分離建屋(常設重大事故等対処施設を兼 ねる施設)で2.3MPa、東側地盤では精製建屋(常設重大事故等対処施設を兼ねる施設)で1.6MPaであり、また、東側地盤にある常設重大事故等対処 施設の地震時最大接地圧は第1保管庫・貯水所で1.3MPaであり、他建屋においても接地圧に対して十分な支持力を有していることを確認した。

R2.7.13 資料1-5 p118 加除修正



■基礎底面の傾斜評価

番号	解析対象施設	断面方向	地震動 ※1	モデル 建屋幅 (cm)	最大相対変位量 (mm)※2	傾斜
		NS	Ss-C5 (+, -)	4850	4.1 [10.59]	1/11,700
1	ハル・エンドピース貯蔵建屋	EW	Ss-C1 (+, +)	5350	5.8 [7.69]	1/9,200
		NS	Ss-C1 (+, +)	12150	4.6 [7.78]	1/26,100
2	2 使用済燃料受入れ・貯蔵建屋	EW	Ss-A (+, -)	8231	4.7 [19.56]	1/17,600
	V 1	NS	Ss-C5 (+, +)	8680	3.9 [16.55]	1/22,200
3	前処理建屋	EW	Ss-C5 (+, +)	6920	4.3 [10.62]	1/16,100
	主排気筒(基礎)及び	NS	Ss-C1 (+, +)	5400	5.0 [7.66]	1/10,700
4	主排気筒管理建屋	EW	Ss-C1 (+, +)	5400	6.0 [7.51]	1/9,000
	*. *. * # I' P / I'-	NS	Ss-C1 (-, +)	5900	8.0 [7.68]	1/7,300
5	高レベル廃液ガラス固化建屋	高レヘル廃液カラス面化建産 EW Ss-C5 (+, +) 8430	8430	5.8 [16.70]	1/14,500	
	6 分離建屋 NS Ss-C5 (+, +) 8860 EW Ss-C1 (+, +) 6525	NS	Ss-C5	8860	6.3 [16.72]	1/14,000
6		8.2 [7.69]	1/7,900			
	det della te	NS	Ss-C1 (-, +)	9170	11.7 [7.68]	1/7,800
7	精製建屋	EW	Ss-C1 (+, +)	7670	11.4 [7.70]	1/6,700
	4.44	NS	Ss-C5 (+, -)	4190	4.0 [10.83]	1/10,400
8	制御建屋	EW	Ss-A (+, -)	7140	3.4 [20.85]	1/20,800
	ウラン・プルトニウム	NS	Ss-C1 (+, +)	7157	8.6 [7.67]	1/8,300
9	混合脱硝建屋		Ss-C5 (+, -)	5745	8.7 [10.67]	1/6,600
	ウラン・プルトニウム	NS	Ss-C5 (+, +)	5485	8.4 [10.57]	1/6,500
10	混合酸化物貯蔵建屋	EW	Ss-C5 (+, -)	5150	6.2 [16.96]	1/8,200
	II. 45. 6= 65 (++ 74+)	NS	Ss-C1 (-, +)	3500	4.3 [7.80]	1/8,100
11	北換気筒(基礎)	EW	Ss-C1 (+, +)	3031	3.0 [7.77]	1/10,000
<u>''</u> 1	(十十)位相反标约 (十) (公古)	位相反転			

再処理施設(傾斜評価)

番号	解析対象施設	断面方向	地震動 ※1	モデル 建屋幅 (cm)	最大相対変位量 (mm)※2	傾斜
12	非常用電源建屋	NS	Ss-C5 (+, +)	2480	3.2 [16.69]	1/7,700
12	非吊用电 源建 <u>净</u>	EW	Ss-C1 (-, +)	8840	8.9 [7.74]	1/9,900
13	チャンネルボックス・	NS	Ss-C5 (+, +)	6100	7.3 [16.72]	1/8,300
13	バーナブルポイズン処理建屋	EW	Ss-A (+, -)	6087.5	5.9 [19.45]	1/10,300
	第4 ギニュ 国ル 仕助 井 浄 民 / 末 柱 〉	NS	Ss-C1 (+, +)	4700	7.2 [7.83]	1/6,400
14	第1ガラス固化体貯蔵建屋(東棟)	EW	Ss-C1 (+, +)	10680	8.8 [7.90]	1/12,000
15	第4 ¥= 7 图 14 4 的	NS	Ss-C1 (-, +)	4700	9.3 [7.86]	1/5,000
15	第1ガラス固化体貯蔵建屋(西棟)	FW S	Ss-C1 (+, +)	10680	8.8 [7.90]	1/12,000
16	体田泽縣树粉光常思英田诗目	NS	Ss-A (+, +)	3100	2.6 [19.41]	1/11,900
10	使用済燃料輸送容器管理建屋	EW	Ss-A (+, +)	9593	4.1 [19.54]	1/23,400
17	使用済燃料輸送容器管理建屋 (トレーラエリア)	NS	Ss-C5 (+, +)	6162	3.6 [4.80]	1/17,200
26	双名吐勃尔建民	NS	Ss-C1 (-, +)	5800	5.5 [7.68]	1/10,400
20	緊急時対策建屋	EW	Ss-C1 (-, +)	7400	6.6 [7.67]	1/11,100
27	第1促答床, 贮水配	NS	Ss-C5 (+, +)	5200	4.0 [10.64]	1/12,900
21	第1保管庫・貯水所	EW	Ss-C1 (-, +)	11300	6.5 [8.25]	1/17,400
28	等2亿色度, 贮水配	NS	Ss-C5 (+, -)	5200	3.0 [16.96]	1/17,200
28	第2保管庫・貯水所	FW	Ss-C1	11300	6.0	1/18 700

〇最大相対変位量

 $\delta A_y - \delta B_y$ 〇最大傾斜

 $\delta A_y - \delta B_y$

※1 (+,+)位相反転なし (+,-)鉛直位相反転

(一,+)水平位相反転 (一,一)水平鉛直位相反転

※2 []は発生時刻(秒)

基礎底面の最大傾斜は第1ガラス固化体貯蔵建屋(西棟)における1/5,000であり、他建屋においても評価基準値の目安である1/2,000を十分に下回ることを確認した。

R2.7.13 資料1-5 p119 再掲

■基礎地盤のすべり評価(各断面における最小すべり安全率)

解析対象断面	解析対象施設	地震動※1	すべり 安全率 ^{※2}
A-A	ガラス固化体受入れ建屋	Ss-C1 (-, +)	6.9 (5.9) [7.77s]
В-В	ガラス固化体貯蔵建屋 ガラス固化体貯蔵建屋B棟	Ss-C1 (+, +)	9.1 (7.9) [7.76s]
с-с	北換気筒(ガラス固化体受入れ・貯蔵建屋換気筒)(基礎)	Ss-C1 (+, +)	7.7 (6.7) [7.70s]
н-н	ガラス固化体貯蔵建屋B棟	Ss-C1 (-, +)	7.8 (6.7) [7.77s]
I—I	ガラス固化体受入れ建屋 ガラス固化体貯蔵建屋	Ss-C1 (-, +)	6.7 (5.8) [7.72s]

(-,+)水平位相反転 (-,-)水平鉛直位相反転

※1(+,+)位相反転なし (+,-)鉛直位相反転 ※2()は物性のばらつきを考慮したすべり安全率 (-+)水平位相反転 (--)水平鉛直位相反転 []は発生時刻(秒) []は発生時刻(秒)

最小すべり安全率はI-I断面における6.7であり、他断面においても 評価基準値1.5以上を十分に満足していることを確認した。

R2.7.13 資料1-5 p120 再掲

4.8.2 廃棄物管理施設(すべり評価)


■各断面における安全率一覧(1/3)

Δ-Δ無面

すべり面形状	地震動	すべり 安全率 _{※2}
ガラス固化体受入れ建屋 建屋基礎底面のすべり面	Ss-C1 (-,+)	7.9 [7.78]
ガラス固化体受入れ建屋 建屋基礎底面のすべり面	Ss-C1 (-,+)	6.9 (5.9) [7.77]

- ※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率 []は発生時刻(秒)
 - 〇 は各断面における最小すべり安全率

B-B断面

基礎地盤のすべり安全率は、いずれも評価基準値1.5以上を十分に満足していることを確認した。

建屋基礎底面のすべり面

凡例

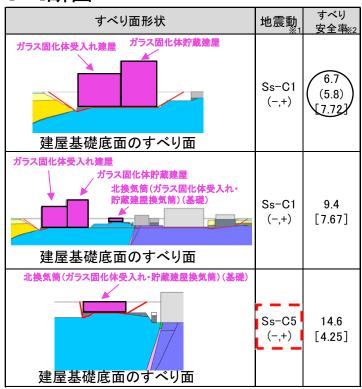

4.8.2 廃棄物管理施設(すべり評価)

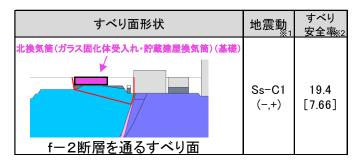
■各断面における安全率一覧(2/3)

C一C断面

<u> </u>		
すべり面形状	地震動	すべり 安全 _{へ2}
北換気筒(ガラス固化体受入れ・ 貯蔵建屋換気筒)(基礎) 建屋基礎底面のすべり面	Ss-C1 (-,+)	8.8 [7.70]
北接気筒(ガラス固化体受入れ・ 貯蔵建屋換気筒)(基礎) f-2断層を通るすべり面	Ss-C1 (+,+)	7.7 (6.7) [7.70]

H一H断面

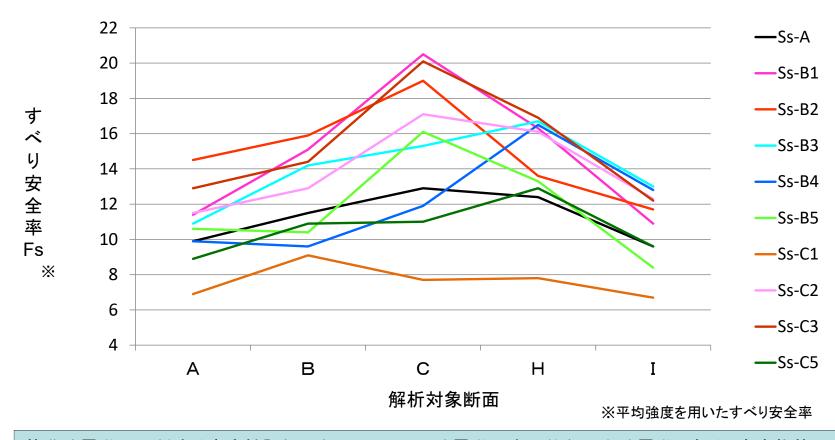

- ※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一,+)水平位相反転 (一,一)水平鉛直位相反転
-)は物性のばらつきを考慮したすべり安全率 **※2**([]は発生時刻(秒)
 - は各断面における最小すべり安全率



4.8.2 廃棄物管理施設(すべり評価)

■各断面における安全率一覧(3/3)

I一I断面


- ※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一.+)水平位相反転 (一.一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率 []は発生時刻(秒) ○ は各断面における最小すべり安全率

4.8.2 廃棄物管理施設(すべり安全率の比較)

■最小すべり安全率

基準地震動Ssに対する安定性評価において、Ss-C1地震動は支配的な入力地震動である。廃棄物管 理施設の評価では最小すべり安全率は6.7であり、評価基準値(1.5以上)に対して十分な安全裕度を確 保していることを確認した。

4. 地震力に対する基礎地盤の安定性評価 4.8 評価結果

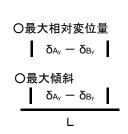
廃棄物管理施設(支持力及び傾斜評価)

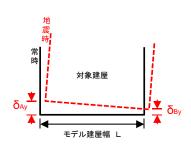
R2.7.13 資料1-5 p124 加除修正

■基礎の支持力評価

	番号	解析対象施設	断面方向	地震動 ※1	接地圧 (MPa)※2	設置地盤	評価基準値 (MPa)
Ī	11	北換気筒(ガラス固化体受入れ・	NS	Ss-A (+, -)	0.2 [36.14]	西側	8.6
	11	貯蔵建屋換気筒)(基礎)	EW	Ss-C1 (+, +)	0.4 [7.66]	西側	8.6
ſ	00	ボニュ田ルは贮井砕民	NS	Ss-C5 (-, -)	0.8 [10.56]	西側	8.6
	22	ガラス固化体貯蔵建屋	EW	Ss-C5 (-, +)	0.9 [16.66]	西側	8.6

番号	解析対象施設	断面方向	地震動 _{※1}	接地圧 (MPa)※2	設置地盤	評価基準値 (MPa)
23	ガラス固化体貯蔵建屋B棟	NS	Ss-A (-, +)	0.8 [19.62]	西側	8.6
23	カラス回11体灯劇建座B保	EW	Ss-A (-, +)	0.7 [19.61]	西側	8.6
04	ガニュ団ルは平1ね 建民	NS	Ss-C1 (+, +)	0.9 [7.75]	西側	8.6
24	ガラス固化体受入れ建屋	EW	Ss-C1 (+, +)	0.9 [7.73]	西側	8.6


※1(+,+)位相反転なし (+,-)鉛直位相反転 (-+)水平位相反転 (--)水平鉛直位相反転


※2「]は発生時刻(秒)

最大接地圧はガラス固化体貯蔵建屋及びガラス固化体受入れ建屋における0.9MPaであり、 他建屋においても接地圧に対して十分な支持力を有していることを確認した。

■基礎底面の傾斜評価

番号	解析対象施設	断面方向	地震動 ※1	モデル 建屋幅 (cm)	最大相対変位量 (mm) _{※2}	傾斜
11	北換気筒(ガラス固化体受入れ・	NS	Ss-C1 (-, +)	3,500	4.3 [7.80]	1/8,100
11	貯蔵建屋換気筒)(基礎)	EW	Ss-C1 (+, +)	3,031	3.0 [7.77]	1/10,000
22	ガラス固化体貯蔵建屋	NS	Ss-A (+, -)	4,700	4.7 [19.45]	1/9,900
22	ガラヘ回に体射敞建産	EW	Ss-C1 (+, +)	4,600	7.1 [7.89]	1/6,400
23	ガラス固化体貯蔵建屋B棟	NS	Ss-C1 (-, +)	4,700	5.4 [7.75]	1/8,600
23	カラス回化体灯 厳建座 日保	EW	Ss-C1 (+, +)	3,405	5.8 [7.73]	1/5,800
24	ガラス固化体受入れ建屋	NS	Ss-C1 (-, +)	4,700	10.0 [7.75]	1/4,700
24	カラへ回に神気人れ建産	EW	Ss-C1 (+, +)	5,200	10.4 [7.78]	1/5,000

※1(+,+)位相反転なし (+,-)鉛直位相反転 (-.+)水平位相反転 (-.-)水平鉛直位相反転

※2[]は発生時刻(秒)

基礎底面の最大傾斜はガラス固化体受入れ建屋における1/4,700であり、 他建屋においても評価基準値の目安である1/2,000を十分に下回ることを確認した。

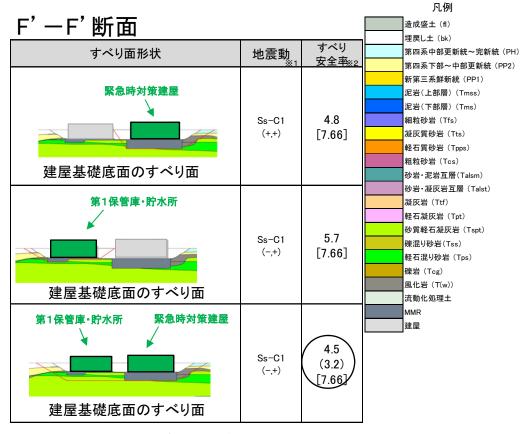
■基礎地盤のすべり評価(各断面における最小すべり安全率)

4.8.3 MOX燃料加工施設(すべり評価)

解析対象断面	解析対象施設	地震動※1	すべり 安全率 ^{※2}
F-F	燃料加工建屋	Ss-C1 (-, +)	4.4 (3.2) [7.70s]
F' —F'	緊急時対策建屋 第1保管庫·貯水所	Ss-C1 (-, +)	4.5 (3.2) [7.66s]
M'-M'	緊急時対策建屋	Ss-C1 (+, +)	3.7 (2.5) [7.67s]
N-N	第1保管庫・貯水所	Ss-C1 (-, +)	5.8 (4.2) [7.66s]
P-P	燃料加工建屋	Ss-C1 (-, +)	4.0 (2.9) [7.70s]
Q-Q	第2保管庫・貯水所	Ss-C1 (-, +)	6.6 (4.5) [7.66s]
R-R	第2保管庫・貯水所	Ss-A (+, +)	5.5 (3.8) [19.39s]

※1(+,+)位相反転なし (+,-)鉛直位相反転 (-,+)水平位相反転 (-,-)水平鉛直位相反転 ※2()は物性のばらつきを考慮したすべり安全率

[]は発生時刻(秒)


4.8.3 MOX燃料加工施設(すべり評価)

■各断面における安全率一覧(1/3)

F-F將面

すべり面形状	地震動	すべり 安全率 _{※2}
燃料加工建屋建屋基礎底面のすべり面	Ss-C1 (-,+)	4.5 [7.71]
燃料加工建屋 建屋基礎底面のすべり面	Ss-C1 (-,+)	6.0 [7.66]
燃料加工建屋 f-1断層を通るすべり面	Ss-C1 (-,+)	4.4 (3.2) [7.70]

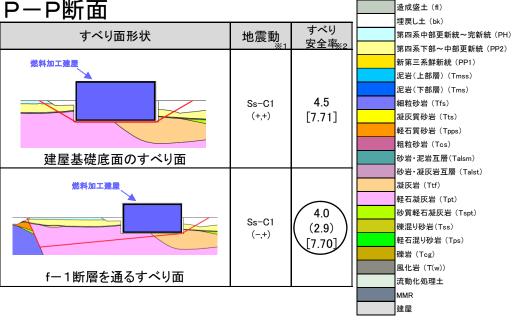
※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一,+)水平位相反転 (一,一)水平鉛直位相反転

- ※2 ()は物性のばらつきを考慮したすべり安全率
 - []は発生時刻(秒)
 - は各断面における最小すべり安全率

凡例

4.8.3 MOX燃料加工施設(すべり評価)

■各断面における安全率一覧(2/3)


M'-M'断面

すべり面形状	地震動	すべり 安全率 _{※2}
緊急時対策建屋 建屋基礎底面のすべり面	Ss-C1 (+,+)	3.7 (2.5) [7.67]

N一N断面

すべり面形状	地震動	すべり 安全率 _{※2}
第1保管庫・貯水所 建屋基礎底面のすべり面	Ss-C1 (-,+)	5.8 4.2 [7.66]

P一P断面

- ※1 (+,+)位相反転なし (+,-)鉛直位相反転 (一,+)水平位相反転 (一,一)水平鉛直位相反転
- ※2 ()は物性のばらつきを考慮したすべり安全率 []は発生時刻(秒)
 - は各断面における最小すべり安全率

R2.7.13 資料1-5 p128 再掲

凡例

砂質軽石凝灰岩(Tspt) 礫混り砂岩(Tss) 軽石混り砂岩 (Tps) 礫岩 (Tcg) 風化岩 (T(w)) 流動化処理土 MMR 建屋

第四系中部更新統~完新統(PH) 第四系下部~中部更新統(PP2) 新第三系鮮新統 (PP1) 泥岩(上部層) (Tmss) 泥岩(下部層)(Tms) 細粒砂岩(Tfs) 凝灰質砂岩(Tts) 軽石質砂岩(Tpps) 粗粒砂岩(Tcs) 砂岩・泥岩互層(Talsm) 砂岩·凝灰岩互層(Talst) 凝灰岩 (Ttf) 軽石凝灰岩 (Tpt)

造成盛土(fl) 埋戻し土 (bk)

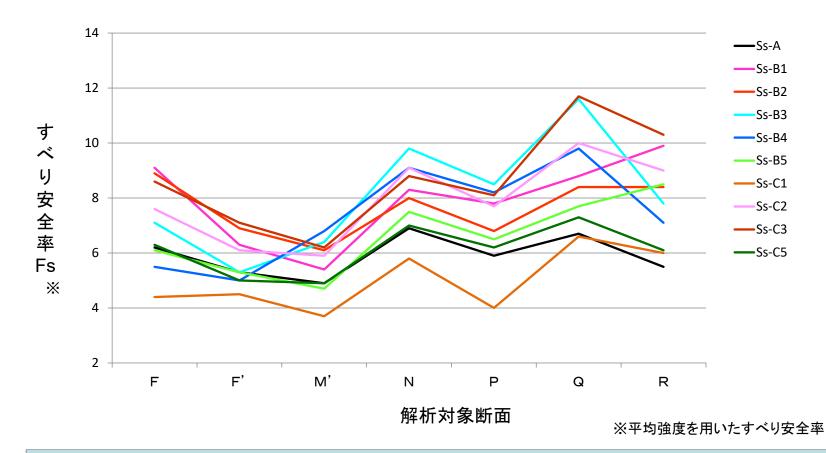
4.8.3 MOX燃料加工施設(すべり評価)

■各断面における安全率一覧(3/3)

の一の新面

~ ~ ~ ~ ~ ~ ~		
すべり面形状	地震動	すべり 安全率 _{※2}
第2保管庫·貯水所 建屋基礎底面のすべり面	Ss-C1 (-,+)	6.6 (4.5) [7.66]

R一R断面


すべり面形状	地震動	すべり 安全率 _{※2}
第2保管庫・貯水所 建屋基礎底面のすべり面	Ss-A (+,+)	5.5 (3.8) [19.39]

(一,+)水平位相反転 (一,一)水平鉛直位相反転

- ※1 (+,+)位相反転なし (+,-)鉛直位相反転 ※2 ()は物性のばらつきを考慮したすべり安全率 []は発生時刻(秒) ○ は各断面における最小すべり安全率
 - 基礎地盤のすべり安全率は、いずれも評価基準値1.5以上を十分に満足していることを確認した。

4.8.3 MOX燃料加工施設(すべり安全率の比較)

■最小すべり安全率

基準地震動Ssに対する安定性評価において、Ss-C1地震動は支配的な入力地震動である。MOX燃料 加工施設の評価では最小すべり安全率は3.7であり、評価基準値(1.5以上)に対して十分な安全裕度を 確保していることを確認した。

4. 地震力に対する基礎地盤の安定性評価 4.8 評価結果

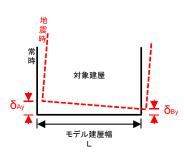
8.3 MOX燃料加工施設(支持力及び傾斜評価)

R2.7.13 資料1-5 p130 加除修正

■基礎の支持力評価

番号	解析対象施設	断面方向	地震動※1	接地圧 (MPa)※2	設置地盤	評価基準値 (MPa)
25	燃料加工建屋	NS	Ss-C1 (+, +)	2.2 [7.68]	東側	7.5
25	燃料加工建 度	EW	Ss-C1 (-, +)	2.6 [7.68]	東側	7.5
26	緊急時対策建屋	NS	Ss-A (+, -)	0.8 [36.13]	東側	7.5
20	茶忌吁刈束建崖	EW	Ss-C1 (-, +)	1.1 [7.66]	東側	7.5

番号	解析対象施設	断面方向	地震動※1	接地圧 (MPa) _{※2}	設置地盤	評価基準値 (MPa)
27	第1保管庫·貯水所	NS	Ss-A (+, +)	0.6 [19.61]	東側	7.5
21	另「休官庫·灯小別	EW	Ss-B5 (+, +)	1.3 [24.26]	東側	7.5
28	第2保管庫・貯水所	NS	Ss-A (+, +)	0.8 [36.25]	東側	7.5
28	弗∠沐官庫·灯水///	EW	Ss-C1 (+, +)	0.7 [7.70]	東側	7.5


※1(+,+)位相反転なし (+,-)鉛直位相反転 (-,+)水平位相反転 (-,-)水平鉛直位相反転 ※2[]は発生時刻(秒)

最大接地圧は燃料加工建屋における2.6MPaであり、他建屋においても接地圧に対して十分な支持力を有していることを確認した。

■基礎底面の傾斜評価

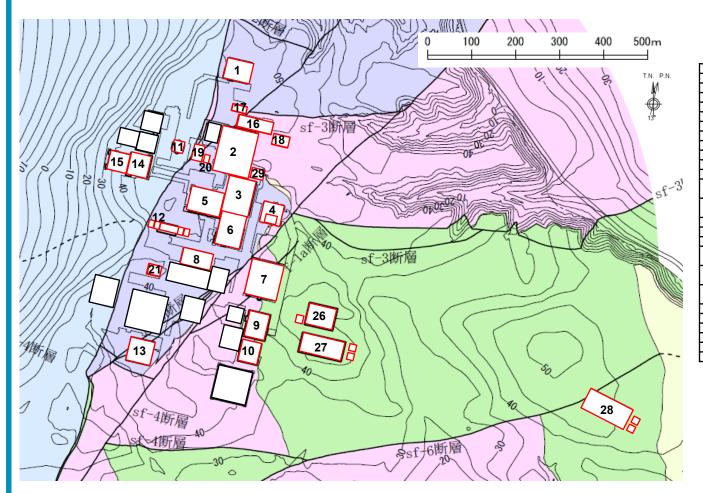
番号	解析対象施設	断面方向	地震動 ※1	モデル建屋幅 (cm)	最大相対変位量 (mm) ※2	傾斜
25	燃料加工建屋	NS	Ss-C1 (+, +)	8730	16.1 [7.71]	1/5,400
25	燃料加工建産	EW	Ss-C1 (+, +)	8830	18.4 [7.72]	1/4,800
26	緊急時対策建屋	NS	Ss-C1 (-, +)	5800	5.5 [7.68]	1/10,400
20	茶芯吋刈朿建崖	EW	Ss-C1 (_, +)	7400	6.6 [7.67]	1/11,100
27	第1保管庫・貯水所	NS	Ss-C5 (+, +)	5200	4.0 [10.64]	1/12,900
21	另「休官庫·灯小別	EW	Ss-C1 (_, +)	11300	6.5 [8.25]	1/17,400
28	第2保管庫・貯水所	NS	Ss-C5 (士, 一)	5200	3.0 [16.96]	1/17,200
28	第2 体旨件*灯小剂	EW	Ss-C1 (+, +)	11300	6.0 [7.87]	1/18,700

※1(+,+)位相反転なし (+,-)鉛直位相反転 (-.+)水平位相反転 (-.-)水平鉛直位相反転

※2[]は発生時刻(秒)

基礎底面の最大傾斜は燃料加工建屋における1/4.800であり、他建屋においても評価基準値の目安である1/2.000を十分に下回ることを確認した。

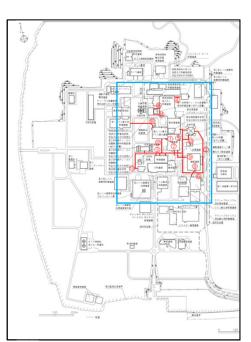
目次

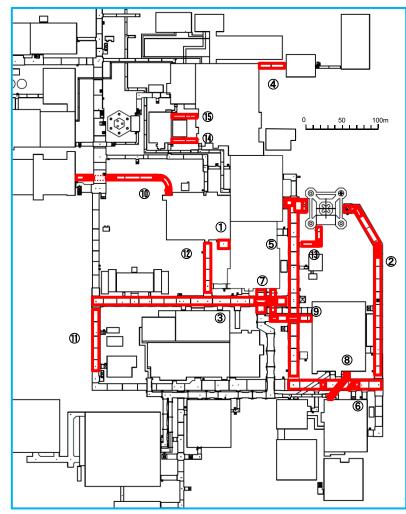

- 1. 評価方針
- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
 - 5.1 再処理施設
 - 5.2 廃棄物管理施設
 - 5.3 MOX燃料加工施設
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

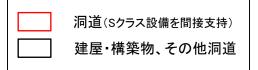
参考資料

R2.7.13 資料1-5 p132 再掲

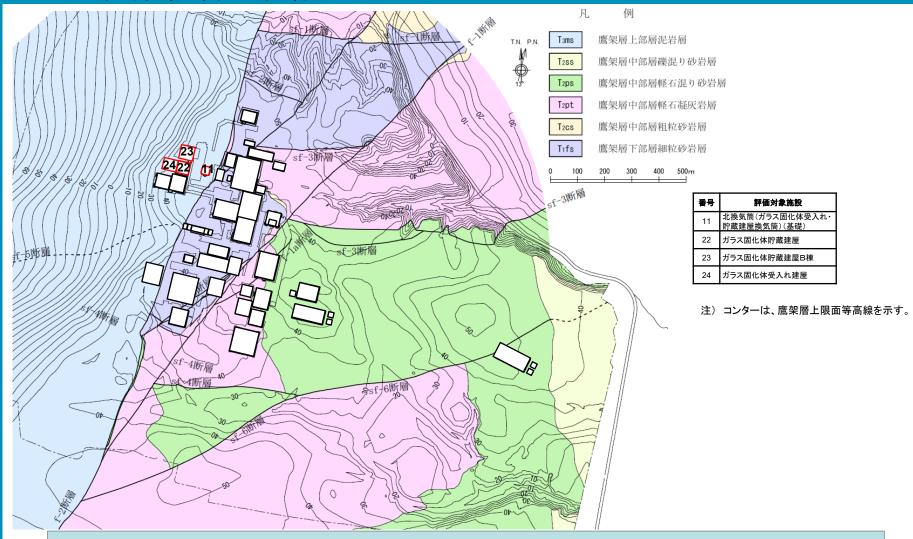
5.1 再処理施設


番号	評価対象施設
1	ハル・エンドピース貯蔵建屋
2	使用済燃料受入れ・貯蔵建屋
3	前処理建屋
4	主排気筒(基礎)及び主排気筒管理建屋
5	高レベル廃液ガラス固化建屋
6	分離建屋
7	精製建屋
8	制御建屋
9	ウラン・プルトニウム混合脱硝建屋
10	ウラン・プルトニウム混合酸化物貯蔵建屋
11	北換気筒(基礎)
12	非常用電源建屋
	(冷却塔及び燃料油貯蔵タンク含む)
13	チャンネルボックス・バーナブルポイズン
	処理建屋
14	第1ガラス固化体貯蔵建屋(東棟)
15	第1ガラス固化体貯蔵建屋(西棟)
16	使用済燃料輸送容器管理建屋
17	使用済燃料輸送容器管理建屋
	(トレーラ エリア)
18	使用済燃料の受入れ施設及び貯蔵施設用
	安全冷却水系冷却塔A(基礎)
19	使用済燃料の受入れ施設及び貯蔵施設用
	安全冷却水系冷却塔B(基礎)
20	第1非常用ディーゼル発電設備用重油タンク室
21	再処理設備本体用安全冷却水系冷却塔B(基礎)
26	緊急時対策建屋(重油貯槽含む)
27	第1保管庫・貯水所(第1軽油貯槽含む)
28	第2保管庫・貯水所(第2軽油貯槽含む)
29	再処理設備本体用安全冷却水系冷却塔A(基礎)


注) コンターは、鷹架層上限面等高線を示す。


評価対象施設については、岩盤に直接またはMMRを介して支持されていることから、周辺地盤の変状 (不等沈下、液状化、揺すり込み沈下)による影響を受けるおそれはない。

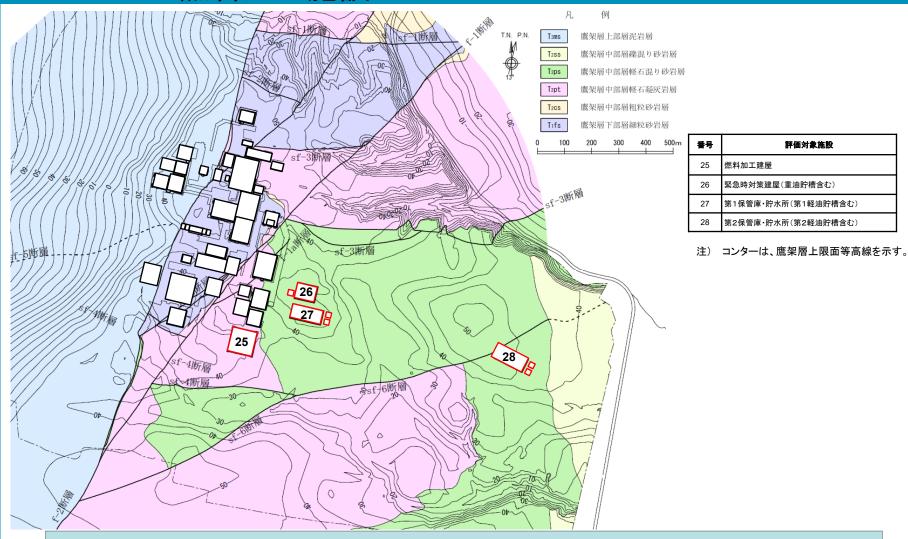
5.1 再処理施設



評価対象施設については、岩盤に直接またはMMRを介して支持されていることから、周辺地盤の変状(不等沈下、液状化、揺すり込み沈下)による影響を受けるおそれはない。

R2.7.13 資料1-5 p134 再掲

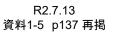
5.2 廃棄物管理施設



評価対象施設については、岩盤に直接またはMMRを介して支持されていることから、周辺地盤の変状 (不等沈下、液状化、揺すり込み沈下)による影響を受けるおそれはない。

R2.7.13 資料1-5 p135 再掲

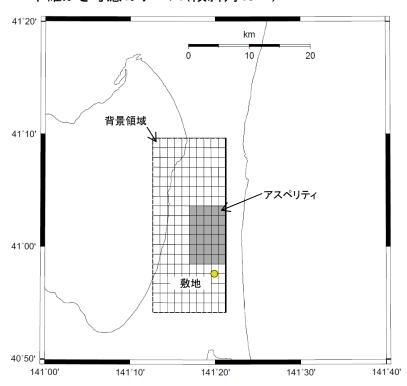
5.3 MOX燃料加工施設


評価対象施設については、岩盤に直接またはMMRを介して支持されていることから、周辺地盤の変状 (不等沈下、液状化、揺すり込み沈下)による影響を受けるおそれはない。

目次

- 1. 評価方針
- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
 - 6.1 再処理施設
 - 6.2 廃棄物管理施設
 - 6.3 MOX燃料加工施設
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

参考資料



6. 地殻変動による基礎地盤の変形の影響評価

- ・敷地近傍の断層(出戸西方断層)の活動に伴い生ずる地盤の傾斜について、食い違い弾性論に基づき評価する。
- ・基準地震動による傾斜と地殻変動による傾斜を考慮し、基礎底面の傾斜が評価基準値の目安である1/2,000を下回ることを確認する。
- ・評価に用いる断層パラメータは、地震動評価に基づき設定し、地殻変動量はOkada(1992)の手法により算出する。

■敷地及び断層位置図

不確かさ考慮のケース(傾斜角45°)

■断層パラメータ

		基本 ケース	傾斜角の不確かさ 考慮ケース
傾斜角 (°)		70	45
断層長さ (km)		28.7	28.7
断層幅 (km)		12.8	17.0
M ₀ (N·m)		7.51E+18	1.32E+19
剛性率 (Pa)		2.94E+10	2.94E+10
平均すべり量	アスペリティ	139.7	185.5
9 へり重 (cm)	背景領域	58.3	73.8

6. 地殻変動による基礎地盤の変形の影響評価

6.1 再処理施設

R2.7.13 資料1-5 p138 再掲

出戸西方断層に起因する地震動(Ss-A、Ss-B1~B5)による最大傾斜と地殻変動による最大傾斜を用いた評価結果を以下に示す。

基本ケース

	基本ケース			
番号	解析対象施設	①地震動による 最大傾斜	②地殻変動に よる最大傾斜	1)+2
1	ハル・エンドピース貯蔵建屋	1/11,700	1/27,600	1/8,200
2	使用済燃料受入れ・貯蔵建屋	1/17,600	1/28,400	1/10,800
3	前処理建屋	1/17,900	1/28,700	1/11,000
4	主排気筒(基礎)及び 主排気筒管理建屋	1/9,300	1/27,800	1/6,900
5	高レベル廃液ガラス固化建屋	1/9,700	1/29,700	1/7,300
6	分離建屋	1/9,400	1/29,200	1/7,100
7	精製建屋	1/8,400	1/28,700	1/6,400
8	制御建屋	1/11,900	1/30,400	1/8,500
9	ウラン・プルトニウム 混合脱硝建屋	1/8,800	1/29,500	1/6,700
10	ウラン・プルトニウム 混合酸化物貯蔵建屋	1/8,200	1/30,100	1/6,400
11	北換気筒(基礎)	1/8,800	1/29,600	1/6,700
12	非常用電源建屋	1/7,700	1/30,700	1/6,100
13	チャンネルボックス・ バーナブルポイズン処理建屋	1/10,300	1/32,600	1/7,800
14	第1ガラス固化体貯蔵建屋(東棟)	1/7,900	1/30,400	1/6,200
15	第1ガラス固化体貯蔵建屋(西棟)	1/7,100	1/30,400	1/5,700
16	使用済燃料輸送容器管理建屋	1/11,900	1/27,700	1/8,300
17	使用済燃料輸送容器管理建屋 (トレーラエリア)	1/17,800	1/28,000	1/10,800
26	緊急時対策建屋	1/13,200	1/26,900	1/8,800
27	第1保管庫・貯水所	1/15,000	1/27,200	1/9,600
28	第2保管庫・貯水所	1/21,700	1/16,000	1/9,200

傾斜角の不確かさ考慮ケース

番号	解析対象施設	①地震動による 最大傾斜	②地殻変動に よる最大傾斜	1)+2)
1	ハル・エンドピース貯蔵建屋	1/11,700	1/15,400	1/6,600
2	使用済燃料受入れ・貯蔵建屋	1/17,600	1/15,900	1/8,300
3	前処理建屋	1/17,900	1/16,200	1/8,500
4	主排気筒(基礎)及び 主排気筒管理建屋	1/9,300	1/16,400	1/5,900
5	高レベル廃液ガラス固化建屋	1/9,700	1/16,200	1/6,000
6	分離建屋	1/9,400	1/16,500	1/5,900
7	精製建屋	1/8,400	1/17,000	1/5,600
8	制御建屋	1/11,900	1/16,700	1/6,900
9	ウラン・プルトニウム 混合脱硝建屋	1/8,800	1/17,400	1/5,800
10	ウラン・プルトニウム 混合酸化物貯蔵建屋	1/8,200	1/17,600	1/5,500
11	北換気筒(基礎)	1/8,800	1/15,800	1/5,600
12	非常用電源建屋	1/7,700	1/16,300	1/5,200
13	チャンネルボックス・ バーナブルポイズン処理建屋	1/10,300	1/17,300	1/6,400
14	第1ガラス固化体貯蔵建屋(東棟)	1/7,900	1/15,800	1/5,200
15	第1ガラス固化体貯蔵建屋(西棟)	1/7,100	1/15,800	1/4,800
16	使用済燃料輸送容器管理建屋	1/11,900	1/15,700	1/6,700
17	使用済燃料輸送容器管理建屋 (トレーラエリア)	1/17,800	1/15,600	1/8,300
26	緊急時対策建屋	1/13,200	1/17,400	1/7,500
27	第1保管庫·貯水所	1/15,000	1/17,700	1/8,100
28	第2保管庫·貯水所	1/21,700	1/15,400	1/9,000

基礎底面の最大傾斜は第1ガラス固化体貯蔵建屋(西棟)における1/4,800であり、他建屋においても評価基準値の目安である1/2,000を十分に下回ることを確認した。

R2.7.13 資料1-5 p139 再掲

6.2 廃棄物管理施設

出戸西方断層に起因する地震動(Ss-A、Ss-B1~B5)による最大傾斜と地殻変動による最大傾斜を用いた評価結果を以下に示す。

基本ケース

番号	解析対象施設	①地震動による 最大傾斜	②地殻変動に よる最大傾斜	1)+2)
11	北換気筒(ガラス固化体受入れ・ 貯蔵建屋換気筒)(基礎)	1/8,800	1/29,600	1/6,700
22	ガラス固化体貯蔵建屋	1/7,900	1/30,000	1/6,200
23	ガラス固化体貯蔵建屋B棟	1/6,800	1/29,700	1/5,500
24	ガラス固化体受入れ建屋	1/6,300	1/30,200	1/5,200

傾斜角の不確かさ考慮ケース

番号	解析対象施設	①地震動による 最大傾斜	②地殻変動に よる最大傾斜	1)+2)
11	北換気筒(ガラス固化体受入れ・ 貯蔵建屋換気筒)(基礎)	1/8,800	1/15,800	1/5,600
22	ガラス固化体貯蔵建屋	1/7,900	1/15,600	1/5,200
23	ガラス固化体貯蔵建屋B棟	1/6,800	1/15,500	1/4,700
24	ガラス固化体受入れ建屋	1/6,300	1/15,600	1/4,400

基礎底面の最大傾斜はガラス固化体受入れ建屋における1/4,400であり、他建屋においても評価基準値の目安である1/2,000を十分に下回ることを確認した。

R2.7.13 資料1-5 p140 再掲

6.3 MOX燃料加工施設

出戸西方断層に起因する地震動(Ss-A、Ss-B1~B5)による最大傾斜と地殻変動による最大傾斜を用いた評価結果を以下に示す。

基本ケース

番号	解析対象施設	①地震動による 最大傾斜	②地殻変動に よる最大傾斜	1)+2
25	燃料加工建屋	1/7,200	1/31,100	1/5,800
26	緊急時対策建屋	1/13,200	1/26,900	1/8,800
27	第1保管庫·貯水所	1/15,000	1/27,200	1/9,600
28	第2保管庫・貯水所	1/21,700	1/16,000	1/9,200

傾斜角の不確かさ考慮ケース

番号	解析対象施設	①地震動による 最大傾斜	②地殻変動に よる最大傾斜	1)+2
25	燃料加工建屋	1/7,200	1/17,900	1/5,100
26	緊急時対策建屋	1/13,200	1/17,400	1/7,500
27	第1保管庫·貯水所	1/15,000	1/17,700	1/8,100
28	第2保管庫·貯水所	1/21,700	1/15,400	1/9,000

基礎底面の最大傾斜は燃料加工建屋における1/5,100であり、他建屋においても 評価基準値の目安である1/2,000を十分に下回ることを確認した。

目 次

- 1. 評価方針
- 2. 地質の概要
- 3. 解析評価用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
 - 7.1 再処理施設
 - 7.2 廃棄物管理施設
 - 7.3 MOX燃料加工施設
- 8. まとめ


参考資料

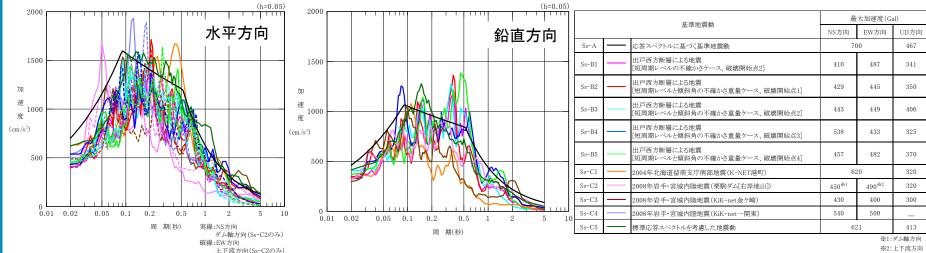
R2.7.13 資料1-5 p142 再掲

7. 一関東評価用地震動による影響評価

基礎地盤及び周辺斜面の安定性評価は、審査ガイドに基づき、水平方向と鉛直方向の地震動を同時に入力した評価が必要となるが、基準地震動Ss-C4は、水平方向の地震動のみであることから評価できない。

基準地震動Ss-C4(水平方向)による基礎地盤の安定性を確認するため、以下の方法を用いて評価を行う。

- ① 基礎地盤のすべり安定性評価において支配的な入力地震動であるSs-C1を用いて、その評価に影響を与える 周期帯を評価・分析することにより、Ss-C4によるすべり安定性を評価する。
- ② 基準地震動Ss-C4(水平方向) と一関東評価用地震動(鉛直方向) ※を同時に入力した基礎地盤の安定性評価を行う。
- ※第165回核燃料施設等の新規制基準適合性に係る審査会合(平成28年11月18日) 「資料 1(廃棄物管理施設の耐震重要施設 基礎地盤及び周辺斜面の安定性評価について(コメント回答))」より


·関東評価用地震動による影響評価(検討方法①)

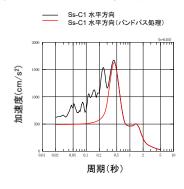
再処理施設

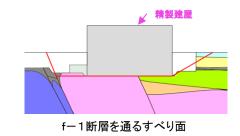
R2.7.13 資料1-5 p143 加除修正

Ss-C4については上下動を基準地震動として策定していない。ただし審査ガイドにおいて、水平・上下動 の同時入力がもとめられていることから、次頁の検討を実施した。

- Ss-A -Ss-B1 Ss-B2 Ss-B3 -Ss-B4 す -Ss-B5 べ -Ss-C1 IJ -Ss-C2 安 全 Ss-C3 率 Ss-C5 Fs ※ ※平均強度を用いたすべり安全率
- ▶ 基準地震動Ssに対する安定性評価において、 Ss-C1地震動は支配的な入力地震動である。
- ▶ 水平方向について、Ss-C1は、Ss-C4を含む他の 基準地震動と比較して、0.3~0.5秒の周期帯が 卓越する特徴を有している。
- ➤ 鉛直方向について、Ss-C1は概ね全周期帯で Ss-Aに包絡されている。Ss-B2及びSs-B5は、 0.3~0.5秒の周期帯でSs-Aを大きく超えているも のの、すべり安全率FsがSs-Aと同程度の値を示 す。

7. 1 再処理施設

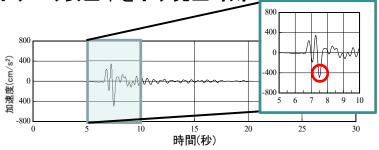

R2.7.13 資料1-5 p144 再掲



- ▶ 基礎地盤のすべり評価を、Ss-C1を用いた場合と、Ss-C1の3.3Hz以降バンドパス処理した場合とで比較検討を行う。
- ▶ 検討は、再処理施設の耐震重要施設等のうち、最小のすべり安全率を示す精製建屋を対象に実施する。

■検討に用いた地震動

■検討対象建屋及びすべり評価結果



検討地震動 ※1	すべり安全率※2
Ss-C1	3.8 (2.6) [7.72]
Ss-C1 (バンドパス処理)	3.8 (2.6) [7.71]

※1 位相反転なし(+,+)

※2()は物性のばらつきを考慮したすべり安全率 「]は発生時刻(秒)

■最小すべり安全率を示す発生時刻

基準地震動Ss-C1の7.5秒付近のパルス状の波が基礎地盤の安全率に最も影響が大きいと考えられる。最小すべり安全率を示す発生時刻と0.2s程度の乖離が認められるが、モデル下端からの伝播する時間である。

- ▶ 最小すべり安全率の発生時刻付近には、バンドパス処理後の時刻歴地震波形においてもパルス状の波が認められる。
- ▶ Ss-C1及びSs-C1(バンドパス処理)を用いた検討の結果、同等のすべり安全率が得られた。
- ▶ このことから、当社施設の基礎地盤のすべり安全率に影響を与える地震力は、0.3秒~0.5秒の周期帯であり、この周期帯においては、Ss-C1が他の基準地震動を上回っている。

以上の検討より、Ss-C4による基礎地盤のすべり評価は、Ss-C1の評価をもって十分な安全裕度を確保していると工学的に判断できる。

関東評価用地震動による影響評価(検討方法②)

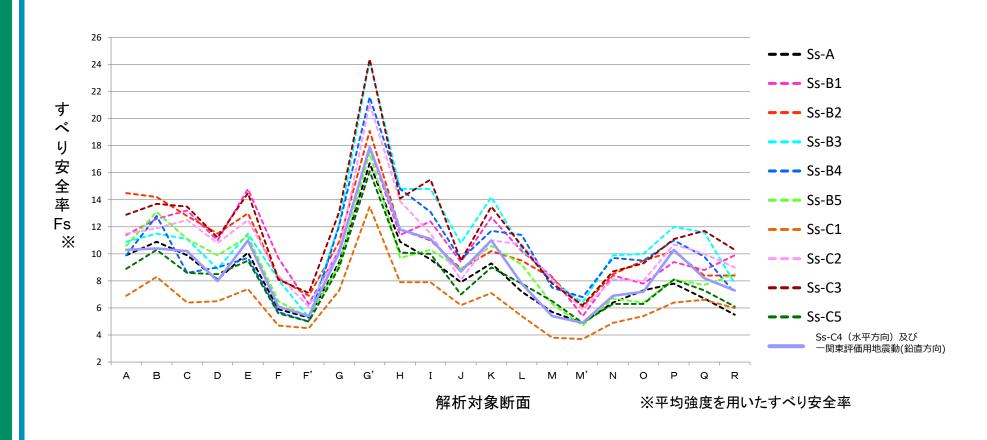
再処理施設

R2.7.13 資料1-5 p145 再掲

■基礎地盤のすべり評価

7717117117	Ss-C4							
解析対象断面	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)				
A-A	14.5	13.5	10.3	12.6				
A-A	[7.12]	[8.38]	[8.46]	[8.46]				
В-В	15.1	13.7	10.4	13.7				
В-В	[9.75]	[8.37]	[8.47]	[8.26]				
c-c	12.3	12.9	10.7	10.2				
0-0	[8.34]	[8.34]	[8.40]	[8.41]				
D-D	12.2	10.9	8.0	8.8				
	[9.70]	[8.32]	[8.40]	[8.40]				
E-E	12.8	14.1	11.6	11.0				
	[8.32]	[8.32]	[8.40]	[8.40]				
F-F	8.3	9.3	7.7	6.1				
· '	[8.32]	[9.69]	[8.40]	[8.40]				
F' −F'	6.9	7.5	5.4	5.4				
· ·	[7.07]	[8.32]	[8.41]	[8.41]				
G-G	11.6	13.1	11.3	10.1				
<u> </u>	[8.31]	[7.06]	[8.40]	[8.40]				
G' -G'	22.0	21.1	18.0	17.9				
u u	[7.64]	[6.37]	[8.41]	[8.41]				
н-н	12.7	13.8	13.0	11.8				
	[8.32]	[6.37]	[8.41]	[8.41]				
I—I	13.3	12.9	11.1	11.8				
• • •	[8.32]	[8.32]	[8.41]	[8.40]				
J—J	10.2	11.1	9.9	8.7				
	[7.06]	[8.32]	[8.40]	[8.39]				
к-к	13.8	12.8	11.0	11.8				
	[8.32]	[8.32]	[8.39]	[8.39]				
L-L	12.2	12.2	7.8	7.9				
	[8.32]	[8.32]	[8.40]	[8.41]				
м-м	9.0	9.6	6.6	5.4				
	[8.33]	[8.57]	[8.41]	[8.41]				
м' —м'	7.1	7.3	6.4	4.9				
	[8.32]	[7.07]	[8.18]	[8.40]				
N-N	10.0	10.9	8.1	6.9				
	[8.32]	[8.32]	[8.40]	[8.40]				
0-0	9.6	10.1	9.0	7.2				
	[8.32]	[6.37]	[8.41]	[8.41]				
P-P	11.6	11.4	10.3	10.3				
	[7.07]	[7.64]	[8.41]	[8.41]				
Q-Q	10.2	10.3	8.2	8.3				
	[7.64]	[7.07]	[8.41]	[8.41]				
R-R	9.0	9.0	7.3	7.4				
	[7.64]	[7.64]	[8.40]	[8.41]				

^{• (+,+)}位相反転なし (-,+)水平位相反転


^{•[]}は発生時刻(秒)

[・]すべり安全率は平均強度を用いた値

J N F L

7.1 再処理施設

■最小すべり安全率

再処理施設で最小すべり安全率を示すM'-M'断面におけるSs-C4(水平方向)と一関東評価用地震動(鉛直方向)によるすべり安全率は4.9であり、支配的な入力地震動であるSs-C1による評価よりも大きく、十分な安全裕度を確保していることを確認した。

7. 一関東評価用地震動による影響評価(検討方法②)

7.1 再処理施設

R2.7.13 資料1-5 p147 再掲

■基礎の支持力評価

		3 Jmn	評価	Ss-C4				
番号	解析対象施設		基準値		35	U-T		
ш-7	31 817 333 862		(MPa)	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)	
		NS	10.4	1.2	1.2	1.2	1.4	
1	ハル・エンドピース 貯蔵建屋 [*]	110	10.1	[7.18]	[10.19]	[11.01]	[7.39]	
'	貯蔵建屋"	EW	10.4	1.2	1.2	1.2	1.3	
				[7.66]	[10.18]	[11.01]	[7.39]	
	使用済燃料	NS	10.4	0.8	0.8	0.7	0.8	
2				[7.18]	[10.19]	[11.01]	[7.38]	
-	受入れ・貯蔵建屋***	EW	10.4	0.8	0.9	0.9	0.9	
\vdash				[7.19]	[10.20]	[6.43]	[7.41]	
		NS	10.4	1.1	1.0	1.2	1.1	
3	前処理建屋**			[10.20]	[7.68]	[7.41]	[7.30]	
-		EW	10.4	0.9	0.9	0.9	0.9	
				[7.14]	[3.62]	[8.53]	[7.18]	
	主排気筒(基礎)及び	NS	10.4	1.1	1.1	1.3	1.1	
4				[8.57]	[8.33]	[7.38]	[7.28]	
'	主排気筒管理建屋**	EW	10.4	0.7	0.7	0.7	0.7	
				[9.71]	[8.33]	[7.42]	[11.04]	
	高レベル廃液 ガラス固化建屋 ^{**} EW	NS	10.4	1.0	1.1	1.1	1.2	
5				[7.10]	[7.11]	[7.40]	[7.42]	
-		EW	10.4	1.2	1.2	1.2	1.2	
\vdash			[7.10]	[5.28]	[7.40]	[7.15]		
		NS	10.4	1.5	1.6	1.6	2.0	
6	分離建屋 ^{**}			[8.33]	[10.20]	[11.02]	[7.41]	
	771,12,2,12	EW	10.4	1.1	1.1	1.3	1.3	
\vdash				[6.43]	[6.42]	[7.43]	[7.43]	
		NS	7.5	1.1	1.1	1.2	1.1	
7	精製建屋**			[7.65]	[10.19]	[11.03]	[8.40]	
		EW	7.5	1.1	1.1	1.2	1.2	
				[8.34]	[10.21]	[11.04]	[7.42]	
	l _{NS}	10.4	0.5	0.5	0.5	0.5		
8	制御建屋**			[7.10]	[7.11]	[7.41]	[11.02]	
		EW	10.4	0.5	0.5	0.5	0.5	
\vdash				[7.10]	[6.54]	[7.12]	[11.07]	
	ウラン・プルトニウム	NS	7.5	0.7	0.7	0.7	0.7	
9	混合脱硝建屋**			[8.56]	[7.66]	[7.38]	[6.56]	
	准 台	EW	7.5	0.7	0.7	8.0	0.7	
\vdash				[10.20]	[7.35]	[7.40]	[7.30]	
	ウラン・プルトニウム	NS	7.5	1.0	0.9	0.9	1.0	
10				[7.33]	[8.56]	[6.56]	[7.37]	
	混合酸化物貯蔵建屋 [*]	EW	7.5	0.8	0.7	0.8	8.0	
	科雷雷西佐凯笙 ** 西		の学し告示	[10.17]	[5.64]	[7.37]	[8.38]	

			評価	Ss-C4			
番号	解析対象施設		基準値 (MPa)	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)
	JI.45 ← M / + T#*	NS	8.6	0.2 [7.37]	0.2 [9.72]	0.2 [7.14]	0.2 [9.20]
11	北換気筒(基礎) [*]	EW	8.6	0.3 [7.36]	0.3 [10.20]	0.3 [8.68]	0.4 [7.40]
	**	NS	10.4	0.6	0.6 [7.65]	0.6	0.6 [8.18]
12	非常用電源建屋 ^{**}	EW	10.4	0.6	0.6	0.6	0.6
	チャンネルボックス・ バーナブルポイズン	NS	10.4	0.9	0.9	0.9	1.0
13	ハーナブルボイスブ 処理建屋**	EW	10.4	0.9	0.9	0.9	0.9
	第1ガラス固化体	NS	8.6	0.9	0.9	0.9	1.0
14	貯蔵建屋(東棟)*	EW	8.6	0.7	0.7	0.7	0.7 [9.79]
	第1ガラス固化体	NS	8.6	0.9	0.9	1.0	0.9
15	貯蔵建屋(西棟)*	EW	8.6	0.7	0.7	0.7	0.7 [9.79]
	使用済燃料輸送	NS	10.4	0.4	0.4	0.5	0.4
16	容器管理建屋*	EW	10.4	0.6	0.6	0.6	0.6
17	使用済燃料 輸送容器管理建屋 (トレーラエリア)*	NS	10.4	0.4 [9.72]	0.4 [7.37]	0.4 [7.41]	0.4 [6.43]
	57 A 2+ 1 A 2+ = ***	NS	7.5	0.8 [7.36]	0.7 [9.70]	0.7 [7.16]	0.8 [7.39]
26	緊急時対策建屋***	EW	7.5	1.1 [10.18]	1.1 [7.66]	1.1 [7.38]	1.0 [9.27]
	第1保管庫·貯水所***	NS	7.5	0.5 [9.78]	0.5 [9.78]	0.5 [7.17]	0.5 [9.78]
27	弗 · 保官庫 • 貯水所	EW	7.5	1.2 [7.41]	1.2 [9.70]	1.2 [9.25]	1.2 [7.44]
	## - 10 ## - n+ 1c***	NS	7.5	0.7 [7.65]	0.7 [9.64]	0.7 [7.27]	0.7 [8.69]
28	第2保管庫・貯水所***	EW	7.5	0.6	0.6	0.6	0.6 [7.45]

^(+,+)位相反転なし (-,+)水平位相反転

耐震重要施設等の最大接地圧は、西側地盤では第1ガラス固化体貯蔵建屋(東棟)及び第1ガラス固化体貯蔵建屋(西棟)で1.0MPa、中央地盤では分離建屋(常設重大事故等対処施設を兼ねる施設)で2.0MPa、東側地盤では精製建屋(常設重大事故等対処施設を兼ねる施設)で1.2MPaであり、また、東側地盤にある常設重大事故等対処施設の最大接地圧は第1保管庫・貯水所で1.2MPaであり、他建屋においても接地圧に対して十分な支持力を有していることを確認した。

^{*} 耐震重要施設等 ** 耐震重要施設等と常設重大事故等対処施設を兼ねる施設 *** 常設重大事故等対処施設

7. 一関東評価用地震動による影響評価(検討方法②)

7. 1 再処理施設

R2.7.13 資料1-5 p148 再掲

■基礎の傾斜評価

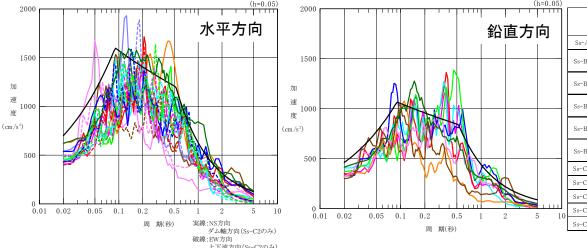
亚口	#7+C+1-42++-=n.			Ss-C4			
番号	解析対象施設		NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)	
		NO	1/17,400	1/17,000	1/11,400	1/14,400	
1	ハル・エンドピース	NS	[10.21]	[9.69]	[7.41]	[7.41]	
'	貯蔵建屋	FW.	1/16,700	1/15,000	1/14,200	1/14,300	
		EW	[8.36]	[8.35]	[8.44]	[8.43]	
		NC	1/57,500	1/56,700	1/53,300	1/42,000	
2	使用済燃料	NS	[8.71]	[8.31]	[8.51]	[7.51]	
	受入れ・貯蔵建屋	EW	1/26,200	1/32,700	1/31,500	1/23,200	
		LVV	[7.81]	[8.50]	[8.44]	[7.58]	
		NS NS	1/43,700	1/35,000	1/31,100	1/35,500	
3	前処理建屋	N3	[8.43]	[8.43]	[7.52]	[7.51]	
3	前処理建建	EW	1/26,800	1/26,500	1/23,400	1/26,300	
		LVV	[8.56]	[8.57]	[7.54]	[7.54]	
		NS	1/16,600	1/16,500	1/15,800	1/16,100	
4	主排気筒(基礎)及び	INS	[8.34]	[8.33]	[7.39]	[7.40]	
4	主排気筒管理建屋	l _{EW}	1/13,500	1/14,000	1/12,600	1/12,300	
			[8.34]	[6.40]	[11.03]	[11.03]	
	高レベル廃液	NS	1/13,900	1/13,400	1/11,900	1/10,900	
5		140	[8.35]	[8.35]	[7.42]	[7.42]	
3	ガラス固化建屋	EW	1/26,300	1/24,600	1/23,000	1/21,300	
		LVV	[6.59]	[6.59]	[7.49]	[7.61]	
		NS	1/26,100	1/23,100	1/22,100	1/21,100	
6	分離建屋	[6.41]	[10.22]	[7.52]	[9.51]		
Ů	力解廷庄	EW	1/14,400	1/13,600	1/10,800	1/10,300	
		-"	[6.43]	[6.43]	[7.44]	[7.45]	
		l _{NS}	1/16,600	1/14,100	1/15,100	1/15,200	
7	精製建屋	110	[6.73]	[6.73]	[11.05]	[7.76]	
,	有权 定定	l _{EW}	1/14,800	1/15,900	1/13,300	1/11,900	
			[6.75]	[8.36]	[8.45]	[8.45]	
		NS NS	1/13,800	1/13,300	1/12,000	1/12,100	
8	制御建屋		[6.73]	[6.73]	[6.47]	[6.47]	
	마가도그	l _{EW}	1/28,900	1/29,800	1/37,200	1/30,800	
			[8.69]	[8.68]	[11.10]	[8.74]	
	_	NS	1/16,000	1/15,700	1/14,900	1/16,000	
9	ウラン・プルトニウム		[6.39]	[7.66]	[8.41]	[8.40]	
	混合脱硝建屋	l _{EW}	1/10,500	1/11,100	1/7,500	1/7,500	
			[10.20]	[10.20]	[7.58]	[7.40]	
		l _{NS}	1/10,800	1/12,400	1/9,900	1/7,700	
10	ウラン・プルトニウム		[9.02]	[6.47]	[6.39]	[7.38]	
	混合酸化物貯蔵建屋	l _{EW}	1/15,700	1/13,500	1/12,100	1/12,100	
			[7.80]	[7.79]	[8.42]	[8.42]	

	47 # 1 # 10.		Ss-C4			
番号	解析対象施設		NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)
			1/11,500	1/11,000	1/8,900	1/9,500
	II. 177 (= 66 / ++ T++ \	NS	[7.02]	[8.46]	[8.04]	[7.53]
11	北換気筒(基礎)	F.W	1/12,600	1/10,700	1/14,700	1/11,200
		EW	[7.73]	[8.61]	[8.23]	[7.32]
		110	1/10,100	1/10,000	1/9,400	1/9,200
10	北帝田惠海神昌	NS	[5.29]	[5.29]	[6.32]	[6.32]
12	非常用電源建屋		1/21,700	1/20,700	1/15,900	1/17,900
		EW	[8.40]	[8.40]	[7.47]	[7.47]
		NO	1/14,500	1/15,200	1/13,000	1/13,400
13	チャンネルボックス・ バーナブルポイズン	NS	[6.51]	[6.60]	[7.52]	[11.04]
13	ハーナブルホイスブ 処理建屋	EW	1/17,900	1/20,500	1/16,400	1/18,100
	<u> </u>	EVV	[7.82]	[7.82]	[7.33]	[8.22]
		NS	1/12,500	1/11,200	1/11,700	1/10,500
14	第1ガラス固化体	IN S	[8.73]	[8.74]	[7.82]	[7.82]
14	貯蔵建屋(東棟)	F14/	1/25,600	1/29,700	1/25,600	1/23,300
		EW	[9.89]	[8.50]	[8.63]	[8.61]
		NS	1/12,600	1/12,000	1/9,900	1/9,200
15	第1ガラス固化体	INS	[7.87]	[8.74]	[8.51]	[8.52]
15	貯蔵建屋(西棟)	EW	1/25,600	1/29,700	1/25,600	1/23,300
		⊏VV	[9.89]	[8.50]	[8.63]	[8.61]
		NS	1/14,100	1/14,100	1/12,200	1/13,400
16	使用済燃料輸送 容器管理建屋		[7.67]	[7.67]	[8.41]	[7.28]
10		EW	1/40,800	1/33,800	1/34,000	1/32,900
		LVV	[8.47]	[8.47]	[8.56]	[7.55]
17	使用済燃料 輸送容器管理建屋 (トレーラエリア)	NS	1/22,800 [8.86]	1/25,200 [5.66]	1/19,700 [7.42]	1/19,700 [6.69]
		NS	1/19,200	1/19,300	1/17,200	1/16,200
26	緊急時対策建屋	N2	[8.34]	[7.10]	[8.20]	[8.20]
20	索忌 时刈束建 <u>庠</u>	EW	1/21,700	1/22,900	1/18,800	1/20,600
		EVV	[7.67]	[8.35]	[7.42]	[7.42]
		NS	1/19,400	1/16,700	1/18,400	1/20,000
27	第1保管庫・貯水所	INO	[7.80]	[7.80]	[7.28]	[9.44]
21	an I 体 E IP - NJ 小川	EW	1/36,500	1/33,200	1/28,700	1/25,700
		EVV	[9.09]	[9.10]	[8.96]	[8.95]
		NS	1/28,800	1/25,700	1/32,200	1/30,700
28	第2保管庫・貯水所	INO	[7.67]	[7.67]	[11.02]	[11.02]
20	光4体官库 灯水灯	EW	1/60,500	1/44,600	1/44,000	1/43,300
		Evv	[7.84]	[9.79]	[8.57]	[8.57]

^{・(+,+)}位相反転なし (-,+)水平位相反転

基礎底面に生じる最大傾斜はウラン・プルトニウム混合脱硝建屋における1/7,500であり、 他建屋においても評価基準値の目安である1/2,000を十分に下回ることを確認した。

^{•[]}は発生時刻(秒)


7. 一関東評価用地震動による影響評価(検討方法①)

7.2 廃棄物管理施設

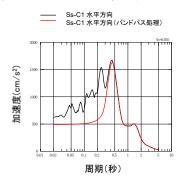
R2.7.13 資料1-5 p149 加除修正

Ss-C4については上下動を基準地震動として策定していない。ただし審査ガイドにおいて、水平・上下動の同時入力がもとめられていることから、次頁の検討を実施した。

		基進地震動	最	最大加速度(Gal)			
	至平凡质则		NS方向	EW方向	UD方向		
Ss-A	_	応答スペクトルに基づく基準地震動	70	00	467		
Ss-B1		出戸西方断層による地震 [短周期レベルの不確かさケース、破壊開始点2]	410	487	341		
Ss-B2		出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重量ケース、破壊開始点1]	429	445	350		
Ss-B3		出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重量ケース、破壊開始点2]	443	449	406		
Ss-B4		出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重量ケース、破壊開始点3]	538	433	325		
Ss-B5		出戸西方断層による地震 [短周期レベルと傾斜角の不確かさ重量ケース、破壊開始点4]	457	482	370		
Ss-C1		2004年北海道留萌支庁南部地震(K-NET港町)	65	20	320		
Ss-C2		2008年岩手・宮城内陸地震(栗駒ダム[右岸地山])	450 ^{**1}	490 ^{₩2}	320		
Ss-C3	-C3 2008年岩手・宮城内陸地震(KiK-net金ケ崎)		430	400	300		
Ss-C4	Ss-C4 2008年岩手·宮城内陸地震(KiK-net-関東) 540		540	500	_		
Ss-C5	Ss-C5 標準応答スペクトルを考慮した地震動 621				413		

※2:上下流方向

- 22 -Ss-A 20 -Ss-B1 18 —Ss-B2 Ss-B3 安 -Ss-B4 全 —Ss-B5 —Ss-C1 Ss-C2 —Ss-C3 —Ss-C5 С 解析対象断面 ※平均強度を用いたすべり安全率
- ▶ 基準地震動Ssに対する安定性評価において、 Ss-C1地震動は支配的な入力地震動である。
- ▶ 水平方向について、Ss-C1は、Ss-C4を含む他の 基準地震動と比較して、0.3~0.5秒の周期帯が 卓越する特徴を有している。
- ♪ 鉛直方向について、Ss-C1は概ね全周期帯で Ss-Aに包絡されている。Ss-B2及びSs-B5は、 0.3~0.5秒の周期帯でSs-Aを大きく超えているも のの、すべり安全率FsがSs-Aと同程度の値を示 す。

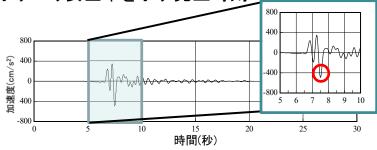

R2.7.13 資料1-5 p150 再掲

7.2 廃棄物管理施設

- ▶ 基礎地盤のすべり評価を、Ss-C1を用いた場合と、Ss-C1の3.3Hz以降バンドパス処理した場合とで比較検討を行う。
- ▶ 検討は、廃棄物管理施設の安全上重要な施設等のうち、最小のすべり安全率を示すガラス固化体受入れ建屋等を対象に実施する。

■検討に用いた地震動

■検討対象建屋及びすべり評価結果



検討地震動 ※1	すべり安全率※2
Ss-C1	6.7 (5.8) [7.72]
Ss-C1 (バンドパス処理)	7.2 (6.3) [7.76]

※1 位相反転(-,+)

※2()は物性のばらつきを考慮したすべり安全率 []は発生時刻(秒)

■最小すべり安全率を示す発生時刻

基準地震動Ss-C1の7.5秒付近のパルス状の波が基礎地盤の安全率に最も影響が大きいと考えられる。 最小すべり安全率を示す発生時刻と0.2s程度の乖離が認められるが、モデル下端からの伝播する時間である。

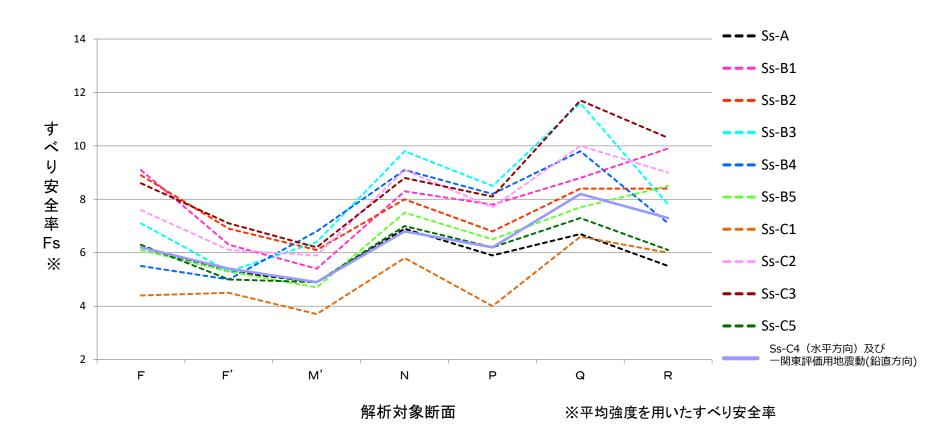
- ▶ 最小すべり安全率の発生時刻付近には、バンドパス処理後の時刻歴地震波形においてもパルス状の波が認められる。
- ▶ Ss-C1及びSs-C1(バンドパス処理)を用いた検討の結果、同等のすべり安全率が得られた。
- ▶ このことから、当社施設の基礎地盤のすべり安全率に影響を与える地震力は、0.3秒~0.5秒の周期帯であり、この周期帯においては、Ss-C1が他の基準地震動を上回っている。

以上の検討より、Ss-C4による基礎地盤のすべり評価は、Ss-C1の評価をもって十分な安全裕度を確保していると工学的に判断できる。

7.2 廃棄物管理施設

■基礎地盤のすべり評価

初北为各岭东	Ss-C4						
解析対象断面	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)			
A-A	14.5	13.5	10.3	12.6			
	[7.12]	[8.38]	[8.46]	[8.46]			
В-В	15.7	16.1	14.5	11.4			
	[8.38]	[7.12]	[8.26]	[8.46]			
c-c	16.2	17.1	14.3	12.0			
	[8.36]	[8.36]	[8.44]	[8.44]			
н-н	17.2	18.1	12.8	12.9			
	[8.37]	[8.37]	[8.44]	[8.44]			
I—I	11.9	12.7	9.3	9.4			
	[8.37]	[8.37]	[8.46]	[8.46]			


- (+,+)位相反転なし (-,+)水平位相反転
- •[]は発生時刻(秒)
- ・すべり安全率は平均強度を用いた値

最小すべり安全率はIーI断面における9.3であり、他断面においても評価基準値1.5以上を十分に満足していることを確認した。

7.2 廃棄物管理施設

■最小すべり安全率

廃棄物管理施設で最小すべり安全率を示すI-I断面における基準地震動Ss-C4(水平方向)と一関東評価用地震動(鉛直方向)によるすべり安全率は9.3であり、支配的な基準地震動であるSs-C1による評価よりも大きく、十分な安全裕度を確保していることを確認した。

7. 一関東評価用地震動による影響評価(検討方法②)

7.2 廃棄物管理施設

R2.7.13 資料1-5 p153 再掲

■基礎の支持力評価

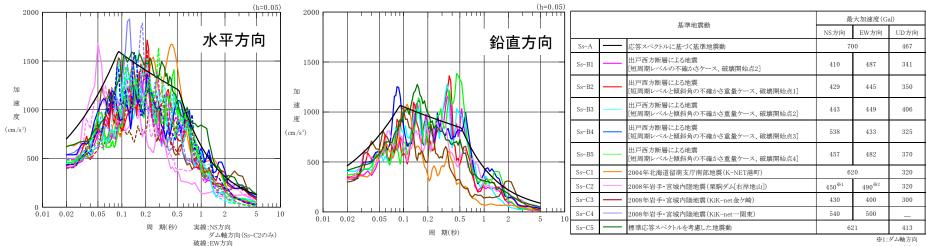
番号	解析対象施設		評価基準値(MPa)	Ss-C4			
钳写	胜机对象他設		計画基準順(MPa)	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)
11	北換気筒(ガラス固化体受入れ・	NS	8.6	0.2 [7.37]	0.2 [9.72]	0.2 [7.14]	0.2 [9.20]
11	貯蔵建屋換気筒)(基礎)	EW	8.6	0.3 [7.36]	0.3 [10.20]	0.3 [8.68]	0.4 [7.40]
00	22 ガラス固化体 貯蔵建屋	NS	8.6	0.7 [7.39]	0.7 [9.72]	0.8 [7.36]	0.8 [7.46]
22		EW	8.6	0.7 [5.72]	0.7 [6.44]	0.8 [7.59]	0.8 [7.47]
23	ガラス固化体	NS	8.6	0.8 [7.17]	0.7 [9.64]	0.8 [8.51]	0.8 [7.37]
23	貯蔵建屋B棟	EW	8.6	0.6 [7.17]	0.6 [7.37]	0.6 [8.68]	0.6 [9.79]
0.4	ガラス固化体	NS	8.6	0.7 [7.18]	0.7 [8.68]	0.7 [7.37]	0.8 [8.51]
24	受入れ建屋	EW	8.6	0.7 [7.85]	0.7 [7.14]	0.7 [11.07]	0.8 [8.48]

■基礎底面の傾斜評価

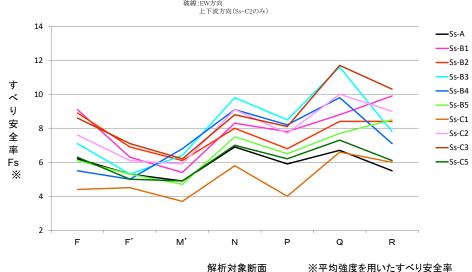
番号	ぬたせみ +たき1.			Ss	-C4		
金 万	解析対象施設		NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)	
		NS	1/11,500	1/11,000	1/8,900	1/9,500	
11	北換気筒(ガラス固化体受入れ・	INO	[7.02]	[8.45]	[8.04]	[7.53]	
''	貯蔵建屋換気筒)(基礎)	EW	1/12,600	1/10,700	1/14,700	1/11,200	
		EVV	[7.73]	[8.61]	[8.23]	[7.32]	
		NS	1/18,800	1/18,600	1/15,000	1/15,200	
22	ガラス固化体	ガラス固化体	INO	[7.40]	[8.63]	[7.36]	[7.93]
22	貯蔵建屋	EW	1/15,300	1/15,600	1/11,600	1/10,000	
			⊏VV	[7.72]	[6.62]	[7.48]	[7.48]
		NS	1/13,400	1/15,300	1/11,500	1/10,900	
23	ガラス固化体	ガラス固化体	INO	[7.75]	[9.01]	[8.50]	[8.49]
23	貯蔵建屋B棟	EW	1/10,800	1/11,000	1/7,300	1/6,600	
		⊏VV	[7.73]	[10.59]	[7.47]	[7.47]	
		NS	1/9,500	1/10,100	1/6,700	1/7,300	
24	ガラス固化体	INO	[6.48]	[8.42]	[7.50]	[7.50]	
24	受入れ建屋	EW	1/13,900	1/12,900	1/9,300	1/8,600	
		LVV	[8.68]	[8.67]	[8.50]	[8.50]	

- ・(+,+)位相反転なし (-,+)水平位相反転
- •[]は発生時刻(秒)

- ▶ 最大接地圧はガラス固化体貯蔵建屋、ガラス固化体貯蔵建屋B棟、及びガラス固化体受入れ建屋における0.8MPaであり、他建屋においても接地圧に対して十分な支持力を有していることを確認した。
- ▶ 基礎底面に生じる最大傾斜はガラス固化体貯蔵建屋B棟における1/6,600であり、他建屋においても評価基準値の目安である 1/2,000を十分に下回ることを確認した。


·関東評価用地震動による影響評価(検討方法①)

MOX燃料加工施設

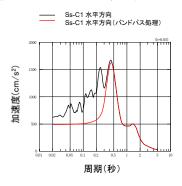

R2.7.13 資料1-5 p154 加除修正

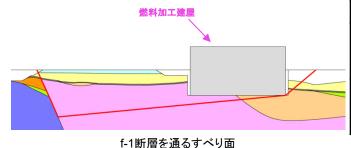
Ss-C4については上下動を基準地震動として策定していない。ただし審査ガイドにおいて、水平・上下動 の同時入力がもとめられていることから、次頁の検討を実施した。

※2: 上下流方向

- ▶ 基準地震動Ssに対する安定性評価において、 Ss-C1地震動は支配的な入力地震動である。
- ▶ 水平方向について、Ss-C1は、Ss-C4を含む他 の基準地震動と比較して、0.3~0.5秒の周期帯 が卓越する特徴を有している。
- ▶ 鉛直方向について、Ss-C1は概ね全周期帯で Ss-Aに包絡されている。Ss-B2及びSs-B5は、 0.3~0.5秒の周期帯でSs-Aを大きく超えているも のの、すべり安全率FsがSs-Aと同程度の値を示 す。

7.3 MOX燃料加工施設

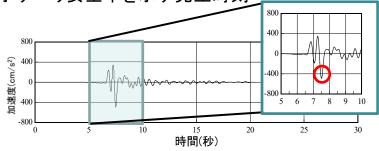

R2.7.13 資料1-5 p155 再掲



- ▶ 基礎地盤のすべり評価を、Ss-C1を用いた場合と、Ss-C1の3.3Hz以降バンドパス処理した場合とで比較検討を行う。
- ▶ 検討は、MOX燃料加工施設の耐震重要施設等のうち、最小のすべり安全率を示す燃料加工建屋を対象に実施する。

■検討に用いた地震動

■検討対象建屋及びすべり評価結果



検討地震動 ※1	すべり安全率※2
Ss-C1	4.0 (2.9) [7.70]
Ss-C1 (バンドパス処理)	3.9 (2.8) [7.71]

※1 位相反転(-,+)

※2()は物性のばらつきを考慮したすべり安全率 []は発生時刻(秒)

■最小すべり安全率を示す発生時刻

基準地震動Ss-C1の7.5秒付近のパルス状の波が基礎地盤の安全率に最も影響が大きいと考えられる。最小すべり安全率を示す発生時刻と0.2s程度の乖離が認められるが、モデル下端からの伝播する時間である。

- ▶ 最小すべり安全率の発生時刻付近には、バンドパス処理後の時刻歴地震波形においてもパルス状の波が認められる。
- ▶ Ss-C1及びSs-C1(バンドパス処理)を用いた検討の結果、同等のすべり安全率が得られた。
- ▶ このことから、当社施設の基礎地盤のすべり安全率に影響を与える地震力は、0.3秒~0.5秒の周期帯であり、この周期帯においては、Ss-C1が他の基準地震動を上回っている。

以上の検討より、SsーC4による基礎地盤のすべり評価は、SsーC1の評価をもって十分な安全裕度を確保していると工学的に判断できる。

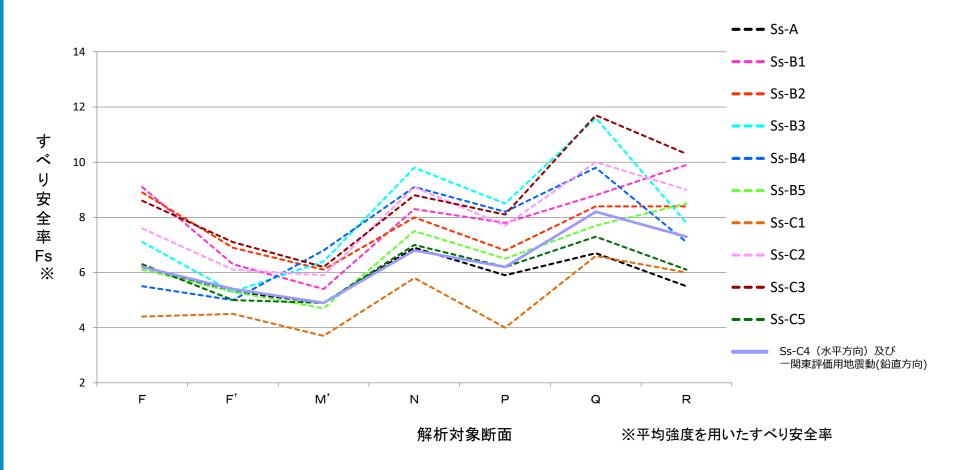
7.3 MOX燃料加工施設

■基礎地盤のすべり評価

初七马鱼吐工		Ss-	-C4	
解析対象断面 	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)
F-F	9.3	9.2	6.2	6.4
F - F	[8.31]	[8.31]	[8.40]	[8.40]
F' -F'	6.9	7.5	5.4	5.4
F -F	[7.07]	[8.32]	[8.41]	[8.41]
M' -M'	7.1	7.3	6.4	4.9
IVI —IVI	[8.32]	[7.07]	[8.18]	[8.40]
NI NI	9.0	9.8	6.8	7.3
N-N	[7.07]	[7.64]	[8.41]	[8.41]
D D	9.2	9.6	6.2	6.5
P-P	[9.68]	[8.31]	[8.41]	[8.41]
0-0	10.2	10.3	8.2	8.3
Q-Q	[7.64]	[7.07]	[8.41]	[8.41]
R-R	9.0	9.0	7.3	7.4
K-R	[7.64]	[7.64]	[8.40]	[8.41]

^{・(+,+)}位相反転なし (-,+)水平位相反転

最小すべり安全率はM'-M'断面における4.9であり、他断面においても評価基準値1.5以上を十分に満足していることを確認した。


^{・[]}は発生時刻(秒)

[・]すべり安全率は平均強度を用いた値

7.3 MOX燃料加工施設

■最小すべり安全率

MOX燃料加工施設で最小すべり安全率を示すM'-M'断面におけるSs-C4(水平方向)と一関東評価用地震動(鉛直方向)によるすべり安全率は4.9であり、支配的な入力地震動であるSs-C1による評価よりも大きく、十分な安全裕度を確保していることを確認した。

7. 一関東評価用地震動による影響評価(検討方法②)

7.3 MOX燃料加工施設

R2.7.13 資料1-5 p158 再掲

■基礎の支持力評価

番号	解析対象施設		評価基準値	Ss-C4			
留写	件们 刈 家 心 設		(MPa)	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)
	燃料加工建屋	NS	7.5	1.8	1.8	1.9	1.8
25				[10.19]	[7.66]	[7.42]	[7.41]
25		EW	7.5	2.0	2.0	2.1	2.1
		EVV		[10.19]	[7.66]	[8.40]	[8.19]
		NS	7.5	0.8	0.7	0.7	0.8
26	緊急時対策建屋			[7.36]	[9.70]	[7.16]	[7.39]
20		EW	7.5	1.1	1.1	1.1	1.0
				[10.18]	[7.66]	[7.38]	[9.27]
	第1保管庫·貯水所	NS	7.5	0.5	0.5	0.5	0.5
27				[9.78]	[9.78]	[7.17]	[9.78]
21		EW	7.5	1.2	1.2	1.2	1.2
				[7.41]	[9.70]	[9.25]	[7.44]
28	第2保管庫・貯水所	NS	7.5	0.7	0.7	0.7	0.7
				[7.65]	[9.64]	[7.27]	[8.69]
		EW	7.5	0.6	0.6	0.6	0.6
				[7.64]	[8.51]	[9.20]	[7.45]

■基礎底面の傾斜評価

番号	解析対象施設	Ss-C4				
留写	胜们 对 多 他 改		NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)
	燃料加工建屋	NS	1/13,700	1/14,200	1/9,500	1/9,900
25			[8.37]	[8.37]	[8.44]	[8.44]
20		EW	1/14,500	1/14,700	1/9,700	1/8,600
		EW	[8.61]	[8.61]	[8.44]	[8.45]
	緊急時対策建屋	NS	1/19,200	1/19,300	1/17,200	1/16,200
26			[8.34]	[7.10]	[8.20]	[8.20]
20		EW	1/21,700	1/22,900	1/18,800	1/20,600
			[7.67]	[8.35]	[7.42]	[7.42]
	第1保管庫-貯水所	NS	1/19,400	1/16,700	1/18,400	1/20,000
27			[7.80]	[7.80]	[7.28]	[9.44]
"		EW	1/36,500	1/33,200	1/28,700	1/25,700
			[9.09]	[9.10]	[8.96]	[8.95]
28	第2保管庫・貯水所	NS	1/28,800	1/25,700	1/32,200	1/30,700
			[7.67]	[7.67]	[11.02]	[11.02]
20		EW	1/60,500	1/44,600	1/44,000	1/43,300
			[7.84]	[9.79]	[8.57]	[8.57]

- ・(+,+)位相反転なし (-,+)水平位相反転
- ・[]は発生時刻(秒)

- ▶ 最大接地圧は燃料加工建屋における2.1MPaであり、他建屋においても接地圧に対して十分な支持力を有していることを確認した。
- ➤ 基礎底面に生じる最大傾斜は燃料加工建屋における1/8,600であり、他建屋においても評価基準値の目安である1/2,000を十分に 下回ることを確認した。

7.4 影響評価 まとめ

再処理施設、廃棄物管理施設、MOX燃料加工施設の一関東評価用地震動による影響評価結果

- ① 基礎地盤の安定性評価において、支配的なSs-C1地震動を用いて、その評価に影響を与える周期帯を評価・分析した結果、
 - ▶ 基礎地盤のすべり安全率に影響を与える地震力は、0.3秒~0.5秒の周期帯であり、この周期帯においては、Ss-C1が他の基準地震動を上回っている。
 - ➤ Ss-C4による基礎地盤のすべり評価は、Ss-C1の評価をもって十分な安全裕度を確保していると工学的に判断できる。
- ② 基準地震動Ss-C4(水平方向)と一関東評価用地震動(鉛直方向)を同時に入力した結果、
 - ▶ 基礎地盤のすべり安全率は、いずれも評価基準値1.5以上を十分に満足していることを確認した。
 - ▶基礎地盤は、接地圧に対して十分な支持力を有していることを確認した。
 - ▶ 基礎底面に生じる傾斜は、評価基準値の目安である1/2,000を十分に下回ることを確認した。

水平方向の地震動のみ定義されている基準地震動Ss-C4による基礎地盤の安定性を確認した。

目次

- 1. 評価方針
- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

参考資料

R2.7.13 資料1-5 p161 加除修正

■ 再処理施設及びMOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設、廃棄物管理施設の安全上重要な施設等を支持する地盤に「将来活動する可能性のある断層等」は認められない。

8. まとめ

- 再処理施設及びMOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設、廃棄物管理施設の安全上重要な施設等が設置される地盤は、基準地震動(Ss-A、Ss-B1~B5、Ss-C1~C3、Ss-C5)による地震力に対して、基礎地盤のすべり、基礎の支持力、基礎底面の傾斜(地殻変動含む)について、いずれも評価基準値を満足することを確認した。また、Ss-C4(水平方向)及び一関東評価用地震動(鉛直方向)による地震力に対して、十分な安全裕度を確保していると判断した。
- 再処理施設及びMOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設、廃棄物管理施設の安全上重要な施設等については、岩盤に直接またはMMRを介して支持されていることから、周辺地盤の変状(不等沈下、液状化、揺すり込み沈下)による影響を受けるおそれはないことを確認した。

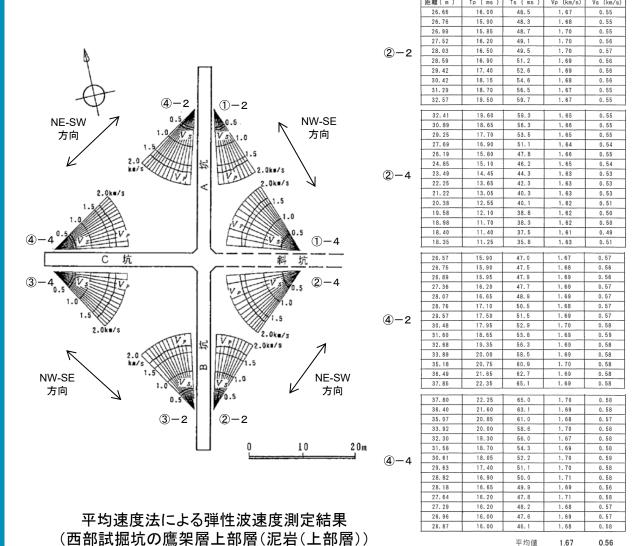
再処理施設及びMOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設、廃棄物管理施設の安全上重要な施設等の基礎地盤は、基準地震動による地震力に対して十分な安定性を有しており、耐震重要施設等、常設重大事故等対処施設及び安全上重要な施設等の安全機能が重大な影響を受けることがないことを確認した。

目次

- 1. 評価方針
- 2. 地質の概要
- 3. 解析用物性值
- 4. 地震力に対する基礎地盤の安定性評価
- 5. 周辺地盤の変状による施設への影響評価
- 6. 地殻変動による基礎地盤の変形の影響評価
- 7. 一関東評価用地震動による影響評価
- 8. まとめ

参考資料

参考資料



- ➤ 物性値の設定根拠
- ▶ 地震力に対する安定性評価
- ▶ 地殻変動による基礎地盤の変形の影響評価
- > 一関東評価用地震動

鷹架層の異方性について(西部試掘坑内弾性波速度測定)

R2.7.13 資料1-5 p164 再掲

NE-SW方向

2.68E-02

1.6

変動係数(%)

2.43E-02

NW-SE方向	<u> </u>					
上野 10 10 10 10 10 10 10 1		NW-SF	方向			
1 - 2 1 - 2				Ts (ms)	Vp (km/s)	Vs (km/s)
1 - 2 26.96						
① → 2 27.08						
1 - 2 1 - 2						
1 - 2						
17.55	1-2					
30.33 18.75 54.7 1.62 0.58 31.33 19.35 57.1 1.62 0.55 32.26 19.80 58.3 1.63 0.55 32.26 19.80 58.3 1.63 0.55 33.70 18.55 55.9 1.66 0.55 28.99 17.60 52.9 1.65 0.55 27.59 16.75 50.3 1.65 0.55 24.75 15.00 44.6 1.65 0.55 24.75 15.00 44.6 1.65 0.55 22.20 13.60 40.5 1.64 0.55 21.29 13.00 38.8 1.64 0.55 21.29 13.00 38.8 1.64 0.55 22.129 13.00 38.8 1.64 0.55 19.45 12.00 37.3 1.62 0.52 19.90 11.60 35.7 1.64 0.53 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.61 0.52 18.28 11.65 35.8 1.61 0.52 24.23 14.30 44.8 1.69 0.54 27.15 16.05 48.5 1.69 0.57 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 28.75 17.05 50.6 1.69 0.57 33.49 12.40 51.8 1.70 0.57 30.48 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 33.74 20.05 59.6 1.69 0.67 34.79 20.50 60.1 1.70 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 31.33 18.60 53.8 1.68 0.57 24.99 16.65 48.5 1.71 0.58 33.77 1.70 0.58 34.88 20.40 69.7 1.71 0.58 35.89 17.20 50.7 1.68 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.7 1.71 0.58 38.89 17.20 50.7 1.68 0.57 27.95 16.40 48.7 1.70 0.58 28.98 17.20 50.7 1.68 0.57 27.59 16.35 48.3 1.69 0.57 27.95 16.40 48.7 1.70 0.55 27.95 16.40 48.7 1.70 0.55 27.95 16.40 48.7 1.70 0.55 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.30 48.7 1.70 0.56	• -	28.57	17.55	51.5	1.63	0.55
31.33 19.35 57.1 1.62 0.55 32.26 19.60 58.3 1.63 0.55 32.26 19.50 58.7 1.65 0.55 30.70 18.55 55.9 1.66 0.55 28.99 17.60 52.9 1.66 0.55 27.59 16.75 50.3 1.65 0.55 27.59 16.75 50.3 1.65 0.55 24.175 15.00 44.6 1.65 0.55 22.19 15.60 44.6 1.65 0.55 22.19 13.60 40.5 1.63 0.55 21.29 13.00 38.8 1.64 0.55 20.19 12.45 38.2 1.62 0.56 19.45 12.00 37.3 1.62 0.52 19.00 11.60 35.7 1.64 0.53 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.61 0.52 27.47 16.20 44.8 1.69 0.54 27.15 16.05 48.5 1.69 0.56 27.47 16.20 49.0 1.70 0.56 28.07 16.60 49.2 1.69 0.67 28.75 17.05 60.6 1.69 0.67 31.43 18.60 55.6 1.69 0.67 32.59 19.30 67.5 1.69 0.67 33.74 20.05 59.6 1.69 0.67 33.74 20.05 59.6 1.69 0.67 34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.57 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.05 64.3 1.70 0.58 37.84 22.05 64.3 1.70 0.58 37.84 22.05 64.3 1.70 0.58 37.84 22.05 64.3 1.70 0.58 37.84 22.06 60.8 1.69 0.57 33.78 22.07 19.5 50.0 1.70 0.58 35.19 20.80 60.8 1.69 0.57 33.78 22.00 60.8 1.69 0.58 31.33 18.60 53.8 1.68 0.59 32.32 19.15 56.0 1.69 0.58 33.73 1.00 52.9 1.71 0.58 28.98 17.20 50.77 1.88 0.57 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.75 16.60 48.5 1.71 0.58 28.98 17.20 50.77 1.88 0.57 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.75 16.00 48.4 1.69 0.57 27.75 16.00 48.7 1.71 0.58 28.98 17.20 50.77 1.88 0.57 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.75 16.60 48.7 1.71 0.58 28.98 17.20 50.77 1.88 0.57 27.95 16.40 48.7 1.70 0.56 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.59 16.30 48.7 1.70 0.56		29.38	18.15	52.7	1.62	0.56
32.26 19.80 58.3 1.63 0.55 32.26 19.50 58.7 1.65 0.55 30.70 18.55 55.9 1.65 0.55 28.99 17.60 52.9 1.65 0.55 28.99 17.60 52.9 1.66 0.55 26.19 15.80 47.4 1.66 0.55 24.75 15.00 44.6 1.65 0.55 22.349 14.35 43.5 1.64 0.54 22.20 13.60 40.5 1.63 0.55 21.29 13.00 38.8 1.64 0.55 20.19 12.45 36.2 1.62 0.56 18.52 11.50 35.8 1.61 0.52 19.00 11.60 35.7 1.64 0.53 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.61 0.52 24.73 14.30 44.8 1.69 0.56 27.47 16.20 49.0 1.70 0.56 28.75 17.05 50.6 1.69 0.57 30.46 17.95 53.7 1.70 0.57 30.46 17.95 53.7 1.70 0.57 33.74 20.05 59.8 1.69 0.57 33.74 20.05 59.8 1.69 0.57 33.74 20.05 59.8 1.69 0.57 33.74 20.05 59.8 1.69 0.57 33.784 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 31.33 18.60 52.9 1.71 0.58 31.33 18.60 52.9 1.71 0.58 32.99 19.15 58.0 1.71 0.58 31.33 18.60 55.8 1.69 0.58 32.32 19.15 58.0 1.71 0.58 33.77 1.70 0.58 34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.57 34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.57 34.79 20.50 60.1 1.70 0.58 36.21 21.30 62.2 1.70 0.58 37.84 22.40 65.4 1.69 0.57 28.99 17.20 50.7 1.68 0.59 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.58 28.99 17.20 50.7 1.69 0.57 28.49 16.65 48.5 1.71 0.58 28.99 17.20 50.7 1.69 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.56 27.41 16.20 48.4 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.759 16.30 48.7 1.70 0.56 27.41 16.20 48.4 1.69 0.57 27.59 16.30 48.7 1.70 0.56		30.33	18.75	54.7	1.62	0.55
32.28 19.50 58.7 1.65 0.55 30.70 18.55 55.9 1.65 0.55 28.99 17.60 52.9 1.65 0.55 27.59 16.75 50.3 1.65 0.55 27.59 16.75 50.3 1.66 0.55 24.75 15.00 44.8 1.65 0.55 23.49 14.35 43.5 1.64 0.54 22.20 13.60 40.5 1.63 0.55 21.29 13.00 38.8 1.64 0.55 20.19 12.45 38.2 1.62 0.56 19.45 37.3 1.62 0.52 18.29 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.61 0.52 18.28 11.65 35.8 1.67 0.51 24.23 14.30 44.8 1.69 0.54 27.15 16.05 48.5 1.69 0.57 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 30.48 17.95 53.7 1.70 0.57 30.48 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 33.74 20.05 59.8 1.68 0.67 34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.58 37.84 22.40 65.4 1.69 0.58		31.33	19.35	57.1	1.62	0.55
30.70 18.55 55.9 1.65 0.55 28.99 17.60 52.9 1.65 0.55 28.199 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 29.19 12.47 1.60 1.63 0.55 21.29 13.00 38.8 1.64 0.55 20.19 12.45 36.2 1.62 0.56 19.45 12.00 37.3 1.62 0.52 19.45 12.00 37.3 1.62 0.52 18.52 11.50 35.8 1.61 0.52 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.67 0.51 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 30.46 17.95 53.7 1.70 0.57 30.46 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 33.74 20.05 59.8 1.68 0.67 34.79 20.50 60.1 1.70 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 31.33 18.60 53.8 1.68 0.58 37.84 22.40 65.4 1.69 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.69 0.58 31.33 18.60 53.8 1.69 0.58 32.32 19.15 58.0 1.71 0.58 33.77 1.70 0.58 34.88 20.40 59.7 1.71 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.69 0.57 27.59 16.30 48.5 1.71 0.659 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.30 48.4 1.69 0.57 27.59 16.30 48.5 1.71 0.659 27.95 16.40 48.7 1.70 0.567 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.59 16.30 48.5 1.71 0.58 28.49 16.66 48.5 1.71 0.68 28.98 17.20 50.7 1.68 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.60 0.57 27.59 16.40 48.7 1.70 0.56		32.26	19.80	58.3	1.63	0.55
30.70 18.55 55.9 1.65 0.55 28.99 17.60 52.9 1.65 0.55 28.199 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 28.19 15.80 47.4 1.66 0.55 29.19 12.47 1.60 1.63 0.55 21.29 13.00 38.8 1.64 0.55 20.19 12.45 36.2 1.62 0.56 19.45 12.00 37.3 1.62 0.52 19.45 12.00 37.3 1.62 0.52 18.52 11.50 35.8 1.61 0.52 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.67 0.51 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 30.46 17.95 53.7 1.70 0.57 30.46 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 33.74 20.05 59.8 1.68 0.67 34.79 20.50 60.1 1.70 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 31.33 18.60 53.8 1.68 0.58 37.84 22.40 65.4 1.69 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.69 0.58 31.33 18.60 53.8 1.69 0.58 32.32 19.15 58.0 1.71 0.58 33.77 1.70 0.58 34.88 20.40 59.7 1.71 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.69 0.57 27.59 16.30 48.5 1.71 0.659 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.30 48.4 1.69 0.57 27.59 16.30 48.5 1.71 0.659 27.95 16.40 48.7 1.70 0.567 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.59 16.30 48.5 1.71 0.58 28.49 16.66 48.5 1.71 0.68 28.98 17.20 50.7 1.68 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.59 16.30 48.8 1.60 0.57 27.59 16.40 48.7 1.70 0.56		20.00	10 50	E0 7	1 05	0.55
28.99 17.60 52.9 1.66 0.55 27.59 16.75 50.3 1.66 0.55 26.19 15.80 47.4 1.66 0.55 24.75 15.00 44.6 1.65 0.55 24.75 15.00 44.6 1.65 0.55 22.179 13.00 38.8 1.64 0.55 22.20 13.60 40.5 1.63 0.55 20.19 12.45 36.2 1.62 0.56 19.45 12.00 37.3 1.62 0.52 19.00 11.50 35.8 1.61 0.52 11.50 35.8 1.61 0.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.57 0.51 18.28 11.65 35.8 1.57 0.51 24.23 14.30 44.8 1.69 0.54 27.47 16.20 49.0 1.70 0.56 28.07 18.60 49.2 1.69 0.57 28.75 17.05 50.6 1.69 0.57 30.46 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 31.43 18.60 55.6 1.69 0.57 33.74 20.05 59.6 1.68 0.57 34.79 20.50 60.1 1.70 0.58 37.84 22.40 85.4 1.69 0.58 37.84 22.40 85.4 1.69 0.58 37.54 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 37.54 22.05 64.3 1.70 0.58 37.54 22.05 64.3 1.70 0.58 37.54 22.05 64.3 1.70 0.58 37.54 22.05 64.3 1.70 0.58 31.33 18.60 53.8 1.69 0.57 32.32 19.15 58.0 1.71 0.58 31.33 18.60 53.8 1.69 0.57 27.95 16.40 48.7 1.71 0.58 31.33 18.60 55.7 1.71 0.58 31.33 18.60 55.7 1.71 0.58 32.29 17.45 56.0 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.95 16.40 48.7 1.71 0.58 28.98 17.20 50.7 1.88 0.57 27.95 16.40 48.7 1.71 0.58 28.98 17.20 48.7 1.71 0.58 27.95 16.40 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.75 16.05 48.5 1.71 0.58						
① → 4 27.59						
① - 4 26. 19						
① - 4 24.75						
① - 4 23.49						
3 - 2 22.20						
21.29 13.00 38.8 1.64 0.55 20.19 12.45 36.2 1.62 0.56 19.45 12.00 37.3 1.62 0.52 19.00 11.60 35.7 1.64 0.53 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.61 0.52 24.23 14.30 44.8 1.69 0.56 24.23 14.30 44.8 1.69 0.55 27.15 16.05 48.5 1.69 0.57 28.07 16.60 49.2 1.69 0.57 28.07 16.60 49.2 1.69 0.57 30.46 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 33.74 20.05 59.8 1.69 0.57 33.74 20.05 59.8 1.69 0.57 34.79 20.50 60.1 1.70 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 37.54 22.05 64.3 1.70 0.58 38.21 21.30 62.2 1.70 0.58 38.21 21.30 62.2 1.70 0.58 39.23 19.15 58.0 1.71 0.58 39.32 19.15 58.0 1.71 0.58 39.33 77 19.75 58.0 1.71 0.58 39.32 19.15 58.0 1.71 0.58 39.48 17.20 60.7 1.68 0.57 28.49 16.60 48.5 1.71 0.58 28.98 17.20 60.7 1.68 0.57 27.59 16.30 48.3 1.69 0.57 27.59 16.30 48.4 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.30 48.4 1.69 0.57 27.59 16.30 48.8 1.69 0.57 27.99 16.30 48.8 1.69 0.57 27.99 16.30 48.8 1.69 0.57 27.99 16.30 48.8 1.69 0.57	1 - 4			THE REAL PROPERTY OF THE PARTY		
20.19 12.45 36.2 1.62 0.56 19.45 12.00 37.3 1.62 0.52 19.00 11.80 35.7 1.64 0.53 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.57 0.51 26.55 15.90 47.3 1.67 0.56 24.23 14.30 44.8 1.69 0.54 27.15 16.05 48.5 1.69 0.56 27.47 16.20 49.0 1.70 0.56 28.07 16.60 49.2 1.69 0.57 28.75 17.05 50.6 1.69 0.57 30.46 17.95 53.7 1.70 0.57 30.48 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.67 33.74 20.05 59.6 1.68 0.67 34.79 20.50 60.1 1.70 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.54 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 36.21 21.30 62.2 1.70 0.58 36.21 21.30 62.2 1.70 0.58 36.21 21.30 62.2 1.70 0.58 37.54 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 36.21 21.30 62.2 1.70 0.58 36.21 21.30 62.2 1.70 0.58 37.54 22.05 64.3 1.70 0.58 38.88 20.40 59.7 1.71 0.58 31.33 18.60 53.8 1.69 0.58 31.33 18.60 53.8 1.69 0.58 31.33 18.60 53.8 1.69 0.58 32.32 19.15 56.0 1.69 0.58 31.33 18.60 63.8 1.69 0.58 31.33 18.60 63.8 1.69 0.58 32.32 19.15 56.0 1.71 0.58 32.32 19.15 56.0 1.69 0.58 31.33 18.60 63.8 1.69 0.57 28.98 17.20 50.7 1.88 0.57 28.98 17.20 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.1 1.69 0.57 27.759 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57 27.59 16.40 48.7 1.70 0.57 27.59 16.30 48.7 1.70 0.57	_					
19. 45 12.00 37.3 1.62 0.52 19.00 11.60 35.7 1.64 0.53 18.52 11.50 35.8 1.61 0.52 18.28 11.65 35.8 1.67 0.51 18.28 11.65 35.8 1.67 0.51 26.55 15.90 47.3 1.67 0.56 24.23 14.30 44.8 1.69 0.54 27.15 16.05 48.5 1.69 0.56 27.47 16.20 49.0 1.70 0.56 28.77 17.05 50.6 1.69 0.57 28.75 17.05 50.6 1.69 0.57 29.52 17.40 51.8 1.70 0.57 30.46 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 33.74 20.05 59.6 1.68 0.57 33.74 20.05 59.6 1.68 0.57 33.74 20.05 59.6 1.68 0.57 33.74 20.05 59.6 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.54 22.05 64.3 1.70 0.58 38.21 21.30 62.2 1.70 0.58 38.21 21.30 62.2 1.70 0.58 38.21 21.30 62.2 1.70 0.58 38.21 21.30 62.2 1.70 0.58 38.21 21.30 62.2 1.70 0.58 38.21 21.30 62.2 1.70 0.58 39.48 20.40 59.7 1.71 0.58 30.21 21.30 62.2 1.70 0.58 31.33 18.60 53.8 1.68 0.59 32.32 19.15 56.0 1.69 0.58 31.33 18.60 53.8 1.68 0.55 32.32 19.15 56.0 1.69 0.58 31.33 18.60 53.8 1.68 0.55 28.89 17.20 50.7 1.68 0.57 29.62 17.45 51.5 1.70 0.58 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.40 48.7 1.70 0.57 27.59 16.40 48.7 1.70 0.57 27.59 16.40 48.7 1.70 0.57 27.59 16.40 48.7 1.70 0.56 PYDIGE ####################################						
19.00 11.80 35.7 1.64 0.53 18.52 11.50 35.8 1.61 0.52 18.28 11.85 35.8 1.57 0.51 26.55 15.90 47.3 1.67 0.56 24.23 14.30 44.8 1.69 0.54 27.15 16.05 48.5 1.69 0.54 27.47 16.20 49.0 1.70 0.56 28.07 16.80 49.2 1.69 0.57 28.75 17.05 50.6 1.69 0.57 28.75 17.05 50.6 1.69 0.57 30.46 17.95 53.7 1.70 0.67 31.43 18.60 55.8 1.69 0.57 33.74 20.05 59.6 1.69 0.57 34.79 20.50 60.1 1.70 0.58 37.84 22.40 65.4 1.69 0.57 36.21 21.30 62.2 1.70 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 38.78 22.40 65.4 1.69 0.58 38.21 21.30 62.2 1.70 0.58 38.21 21.30 62.2 1.70 0.58 38.22 19.15 58.0 1.71 0.58 39.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 28.98 17.20 50.7 1.68 0.57 28.49 16.55 48.5 1.71 0.58 29.62 17.45 51.5 1.70 0.58 28.98 17.20 50.7 1.68 0.57 27.59 16.30 48.7 1.71 0.58 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.59 16.35 48.3 1.69 0.57 27.759 16.35 48.3 1.69 0.57 27.759 16.35 48.3 1.69 0.57 27.759 16.35 48.3 1.69 0.57 27.759 16.30 47.8 1.69 0.57 27.759 16.40 48.7 1.70 0.56 NW-SE方向						
18. 52 11. 50 35. 8 1. 61 0. 52 18. 28 11. 65 35. 8 1. 57 0. 51 28. 55 15. 90 47. 3 1. 67 0. 56 24. 23 14. 30 44. 8 1. 69 0. 54 27. 15 18. 05 48. 5 1. 69 0. 56 27. 47 18. 20 49. 0 1. 70 0. 56 28. 07 16. 60 49. 2 1. 69 0. 57 28. 75 17. 05 50. 6 1. 69 0. 57 29. 52 17. 40 51. 8 1. 70 0. 57 30. 48 17. 95 53. 7 1. 70 0. 57 31. 43 18. 60 55. 6 1. 69 0. 67 33. 74 20. 05 59. 6 1. 69 0. 67 34. 79 20. 50 60. 1 1. 70 0. 58 37. 84 22. 40 65. 4 1. 69 0. 58 37. 84 22. 40 65. 4 1. 69 0. 58 37. 84 22. 40 65. 4 1. 69 0. 58 38. 21 21. 30 82. 2 1. 70 0. 58 38. 21 21. 30 82. 2 1. 70 0. 58 34. 88 20. 40 59. 7 1. 71 0. 58 34. 88 20. 40 59. 7 1. 71 0. 58 34. 88 20. 40 59. 7 1. 71 0. 58 31. 33 18. 60 53. 8 1. 69 0. 58 31. 33 18. 60 53. 8 1. 69 0. 58 32. 32 19. 15 56. 0 1. 69 0. 58 33. 37 19. 75 58. 0 1. 71 0. 58 31. 33 18. 60 53. 8 1. 68 0. 55 32. 49 16. 65 48. 5 1. 71 0. 58 28. 98 17. 20 50. 7 1. 68 0. 57 27. 59 16. 30 48. 7 1. 70 0. 57 27. 59 16. 35 48. 3 1. 69 0. 57 27. 59 16. 35 48. 3 1. 69 0. 57 27. 29 16. 40 48. 7 1. 70 0. 57 27. 59 16. 30 48. 4 1. 69 0. 57 27. 59 16. 30 48. 1. 69 0. 57 27. 59 16. 30 48. 1. 69 0. 57 27. 29 16. 40 47. 8 1. 69 0. 57 27. 29 16. 40 47. 8 1. 69 0. 57 27. 29 16. 40 47. 8 1. 69 0. 57 27. 29 16. 40 47. 8 1. 69 0. 57 27. 29 16. 40 47. 8 1. 69 0. 57						
18.28						
3 - 2 26.55						
3-2 24. 23		10.20	11.00	00.0	1.07	0.01
3 - 2 3 - 2		26.55	15.90	47.3	1.67	0.56
3 - 2 27. 47		24.23	14.30	44.8	1.69	0.54
3 - 2 3 - 2						
3 - 2 28.75						
3 - 2 29.52						
30.46 17.95 53.7 1.70 0.57 31.43 18.60 55.6 1.69 0.57 32.59 19.30 57.5 1.69 0.57 33.74 20.05 59.6 1.68 0.57 34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 36.21 21.30 62.2 1.70 0.58 34.88 20.40 59.7 1.71 0.58 34.88 20.40 59.7 1.71 0.58 32.32 19.15 58.0 1.71 0.58 31.33 18.60 53.8 1.69 0.58 31.33 18.60 53.8 1.69 0.58 31.33 18.60 53.8 1.68 0.59 28.98 17.20 50.7 1.68 0.57 28.98 17.20 48.7 1.70 0.58 28.98 17.20 48.7 1.70 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57	_					
31. 43	3 – 2					
32.59 19.30 57.5 1.69 0.57 33.74 20.05 59.6 1.68 0.57 34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.59 37.84 22.40 65.4 1.69 0.58 37.84 22.40 65.4 1.69 0.58 36.21 21.30 62.2 1.70 0.58 36.21 21.30 62.2 1.70 0.58 33.77 19.75 58.0 1.71 0.58 33.77 19.75 58.0 1.71 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 28.98 17.20 50.7 1.68 0.57 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57						
33.74 20.05 59.6 1.68 0.57 34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.58 37.84 22.40 85.4 1.69 0.58 37.54 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 34.88 20.40 59.7 1.71 0.58 33.37 19.75 58.0 1.69 0.58 31.33 18.60 53.8 1.69 0.58 31.33 18.60 53.8 1.68 0.59 32.92 17.45 51.5 1.70 0.58 28.98 17.20 50.7 1.88 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57						
34.79 20.50 60.1 1.70 0.58 35.19 20.80 60.8 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 34.88 20.40 59.7 1.71 0.58 33.77 19.75 58.0 1.71 0.58 32.32 19.15 56.0 1.69 0.58 31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 29.62 17.45 51.5 1.70 0.58 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57						
35.19 20.80 60.8 1.69 0.58 37.84 22.40 65.4 1.69 0.58 37.84 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 34.88 20.40 59.7 1.71 0.58 33.77 19.75 58.0 1.71 0.58 32.32 19.15 56.0 1.69 0.58 31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 28.98 17.20 50.7 1.68 0.57 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57						
37.84 22.40 65.4 1.69 0.58 37.54 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 34.88 20.40 59.7 1.71 0.58 33.77 19.75 58.0 1.71 0.58 32.32 19.15 58.0 1.71 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 52.8 1.68 0.58 29.62 17.45 51.5 1.70 0.58 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57						
37.54 22.05 64.3 1.70 0.58 36.21 21.30 62.2 1.70 0.58 34.88 20.40 59.7 1.71 0.58 33.77 19.75 58.0 1.71 0.58 32.32 19.15 56.0 1.69 0.58 31.33 18.60 53.8 1.68 0.58 31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 28.62 17.45 51.5 1.70 0.58 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57						
36.21 21.30 62.2 1.70 0.58 34.88 20.40 59.7 1.71 0.58 33.77 19.75 58.0 1.71 0.58 32.32 19.15 58.0 1.69 0.58 31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 28.98 17.20 50.7 1.88 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57		37.04	22.40	65. 4	1.09	0.56
34.88 20.40 59.7 1.71 0.58 33.77 19.75 58.0 1.71 0.58 32.32 19.15 55.0 1.69 0.58 31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 29.62 17.45 51.5 1.70 0.58 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57		37.54	22.05	64.3	1.70	0.58
33.77 19.75 58.0 1.71 0.58 32.32 19.15 56.0 1.69 0.58 31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 29.62 17.45 51.5 1.70 0.58 28.89 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.89 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57 27.29 16.40 47.8 1.60 0.57 27.79 16.40 47.8 1.60 0.57		36.21	21.30	62.2	1.70	0.58
32.32 19.15 56.0 1.69 0.58 31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57 27.29 16.40 47.8 1.69 0.57						
31.33 18.60 53.8 1.68 0.58 30.61 17.90 52.9 1.71 0.58 29.62 17.45 51.5 1.70 0.58 28.98 17.20 50.7 1.68 0.57 28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.66 0.57 27.29 16.40 47.8 1.66 0.57 ———————————————————————————————————						
3 — 4 30.61						
29. 62 17. 45 51. 5 1. 70 0. 58 28. 98 17. 20 50. 7 1. 68 0. 57 28. 49 16. 65 48. 5 1. 71 0. 59 27. 95 16. 40 48. 7 1. 70 0. 57 27. 59 16. 35 48. 3 1. 69 0. 57 27. 41 16. 20 48. 4 1. 69 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 28. 47. 48 48. 4 1. 69 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 28. 48 48. 4 1. 69 0. 57 29. 56 48 48. 4 1. 69 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 47. 8 1. 66 0. 57 20. 75 40 48. 4 1. 69 0. 57 20. 75 40 4						
28. 98 17. 20 50. 7 1. 68 0. 57 28. 49 18. 65 48. 5 1. 71 0. 59 27. 95 16. 40 48. 7 1. 70 0. 57 27. 59 16. 35 48. 3 1. 69 0. 57 27. 41 18. 20 48. 4 1. 69 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 平均値 1.67 0.56 NW-SE方向	(3)-4					
28.49 16.65 48.5 1.71 0.59 27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 18.20 48.4 1.69 0.57 27.29 16.40 47.8 1.66 0.57 平均値 1.67 0.56 NW-SE方向 標準偏差 3.29E-02 1.75E-02			Annie de la companya del companya de la companya de la companya del companya de la companya de l			
27.95 16.40 48.7 1.70 0.57 27.59 16.35 48.3 1.69 0.57 27.41 16.20 48.4 1.69 0.57 27.29 16.40 47.8 1.66 0.57 平均値 1.67 0.56 NW-SE方向						
27. 59 16. 35 48. 3 1. 69 0. 57 27. 41 16. 20 48. 4 1. 69 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 平均値 NW-SE方向 標準偏差 3.29E-02 1.75E-02						
27. 41 16. 20 48. 4 1. 69 0. 57 27. 29 16. 40 47. 8 1. 66 0. 57 平均値 1.67 0.56 NW-SE方向 the production of the produ						
27.29 16.40 47.8 1.66 0.57 平均値 1.67 0.56 NW-SE方向 標準偏差 3.29E-02 1.75E-02						
平均値 1.67 0.56 NW-SE方向 標準偏差 3.29E-02 1.75E-02						
NW-SE方向 標準偏差 3.29E-02 1.75E-02		21.29	16.40			
変動係数(%) 2.0 3.1		NW-S	SE万回			
				変動係数(%)	2.0	3.1

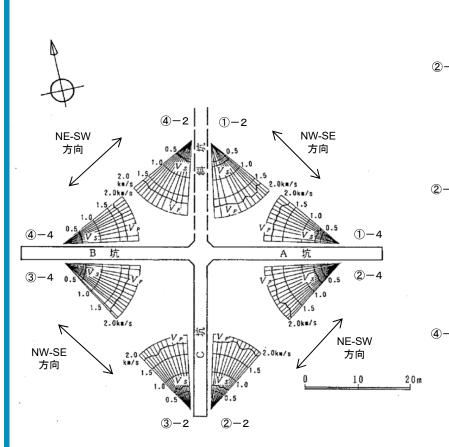
平均値

標準偏差

変動係数(%)

全体

1.67


3.00E-02 2.11E-02

0.56

鷹架層の異方性について(東部試掘坑内弾性波速度測定)

R2.7.13 資料1-5 p165 再掲

平均速度法による弾性波速度測定結果 (東部試掘坑の鷹架層中部層 (軽石凝灰岩、砂質軽石凝灰岩、凝灰岩))

	NE-S\	∥ 方向			
	距離(m)	Тр	Ts	Vp(km/s)	Vs(km/s)
	27.61	15.4	42.5	1.79	0.65
	27.82	15.5	42.8	1.80	0.65
	28.13	15.5	43.3	1.82	0.65
	28.64	15.6	44.1	1.84	0.65
	29.21	15.5	44.3	1.89	0.66
2	29.89	15.8	46.7	1.89	0.64
	30.77	17.0	47.3	1.81	0.65
	31.66	17.5	47.3	1.81	0.67
	32.75	17.3	48.9	1.89	0.67
	33.85	17.8	51.3	1.90	0.66
	35.05	18.5	52.3	1.89	0.67
	36.35	19.4	52.7	1.87	0.69
	37.53	19.6	52.9	1.91	0.71
	24.78	13.8	36.4	1.80	0.68
	24.89	13.8	36.6	1.80	0.68
	25.17	14.0	36.5	1.80	0.69
	25.65	14.3	37.7	1.79	0.68
4	26.25	14.5	37.5	1.81	0.70
+	26.99	15.0	40.3	1.80	0.67
	27.85	15.0	40.4	1.86	0.69
	28.80	15.5	43.6	1.86	0.66
	29.87	16.0	44.6	1.87	0.67
	31.05	17.5	45.7	1.77	0.68
	32.29	18.0	47.5	1.79	0.68
	33.60	19.0	48.7	1.77	0.69
	35.04	19.0	50.8	1.84	0.69
	36.46	19.3	52.8	1.89	0.69
	37.79	19.9	53.2	1.90	0.71
	33.66	19.7	62.3	1.71	0.54
	32.19	19.4	59.6	1.66	0.54
	30.80	18.6	58.1	1.66	0.53
	29.37	17.3	55.4	1.70	0.53
2	28.11	16.5	53.0	1.70	0.53
	26.91	16.0	51.8	1.68	0.52
	25.78	15.4	48.6	1.67	0.53
	24.82	15.0	46.8	1.66	0.53
	23.95	14.4	45.2	1.66	0.53
	23.21	14.0	43.0	1.66	0.54
	22.67	13.4	40.5	1.69	0.56
	22.25	13.1	39.7	1.70	0.56
	22.06	13.1	38.7	1.69	0.57
	33.63	19.7	62.3	1.71	0.54
	32.20	19.4	59.6	1.66	0.54
	31.02	18.1	58.5	1.71	0.53
	29.80	17.5	56.2	1.70	0.53
	28.67	16.6	55.1	1.73	0.52
4	27.79	16.4	54.5	1.69	0.51
	26.88	15.9	51.7	1.69	0.52
	26.08	15.4	50.2	1.69	0.52
	25.49	15.0	49.0	1.70	0.52
	24.90	14.6	48.8	1.71	0.51
	24.63	14.5	48.3	1.70	0.51
			平均値	1.77	0.61
	NE-SV	V方向 🛭		8.31E-02	7.38E-02
			動係数(%)	4.7	12.1

NW-SE方向 距離(m) Vp(km/s) Vs(km/s) 12.1 32.6 1.73 0.64 21.05 12.5 33.4 1.69 0.63 13.0 34.1 0.63 22.78 13.0 36.2 1.76 0.63 37.1 0.64 0.63 14.5 39.2 14.5 0.63 41.0 0.63 0.65 18.0 48.1 0.62 1.69 0.62 19.1 51.8 1.71 0.63 19.1 52.0 1.72 0.63 18.5 51.6 1.70 0.61 16.9 48.8 1.79 0.62 161 44 8 1.81 0.65 0.63 15.0 14.9 41.1 1.77 0.64 25.67 14.0 40.1 0.64 25.12 14.0 1.79 0.64 0.65 0.64 0.62 0.62 19.8 55.3 1.79 0.64 19.3 52.6 1.77 0.65 0.68 18.5 0.65 17.5 0.62 0.63 17.0 48.2 0.64 46.3 0.66 16.0 0.66 44.3 0.64 28.17 15.6 44.7 0.63 14.1 44.3 1.73 0.55 14.5 45.4 1.69 0.54 12.7 38.8 1.72 0.56 14.6 45.2 1.73 0.56 1.70 0.56 0.57 16.4 17.0 49.2 1.68 0.58 29.62 1 68 0.60 0.60

		十月旭	1.75	0.02
Γ	NW-SE方向	標準偏差	4.91E-02	3.00E-02
		変動係数(%)	2.8	4.8
		平均値	1.76	0.62
	全体	標準偏差	6.91E-02	5.67E-02
		変動係数(%)	3.9	9.2

52.6

1.70

1.77

1.74

0.61

0.62

0.61

0.64

0.64

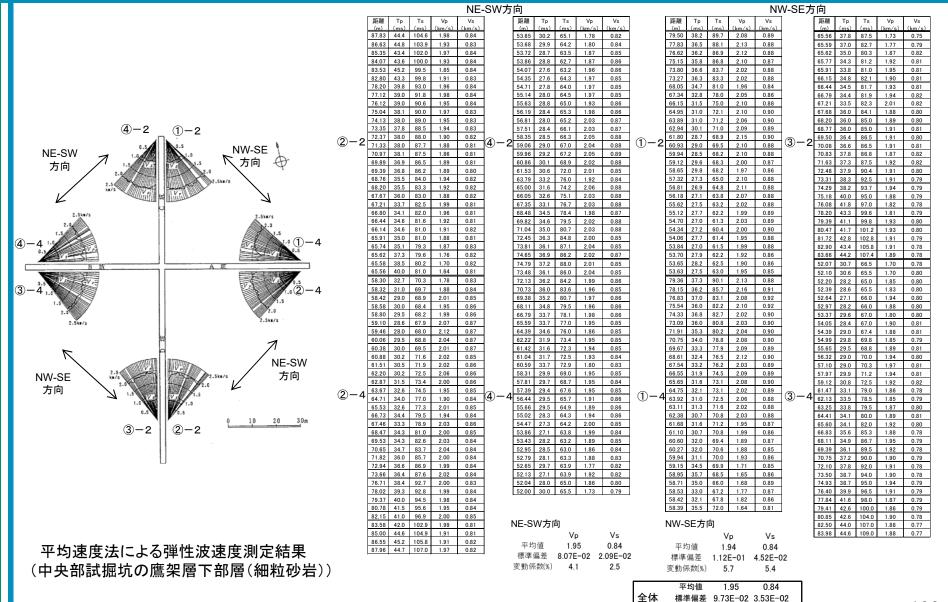
32.08

19.0

33.39 19.6 53.9

33.67 19.8 55.2

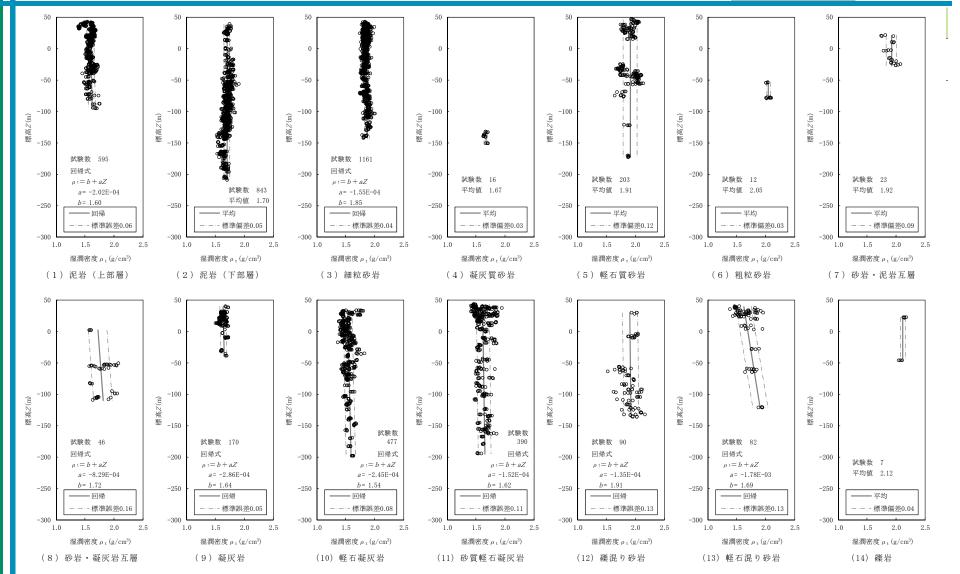
20.0


21.6 58.7

鷹架層の異方性について(中央部試掘坑内弾性波速度測定)

R2.7.13 資料1-5 p166 再掲

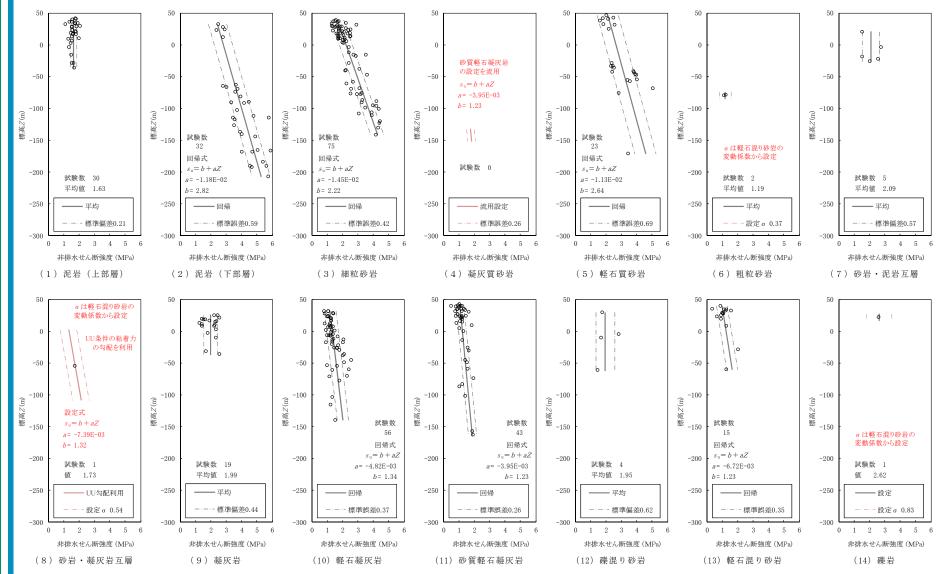
変動係数(%)



試験項目	基準
湿潤密度試験	土質工学会編 「土質試験法」、JGS 2132(こ準拠
三軸圧縮試験	土質工学会編 「土質試験法」、JGS 2532(こ準拠
PS検層	土質工学会編「岩の調査と試験」、JGS 1122 に準拠
超音波速度測定	物理探鉱技術協会編 「岩石試料の速度測定要綱」、JGS 1220 に準拠
繰返し三軸試験	JGS 0542(こ準拠
岩盤の平板載荷試験	JGS 3521 に準拠

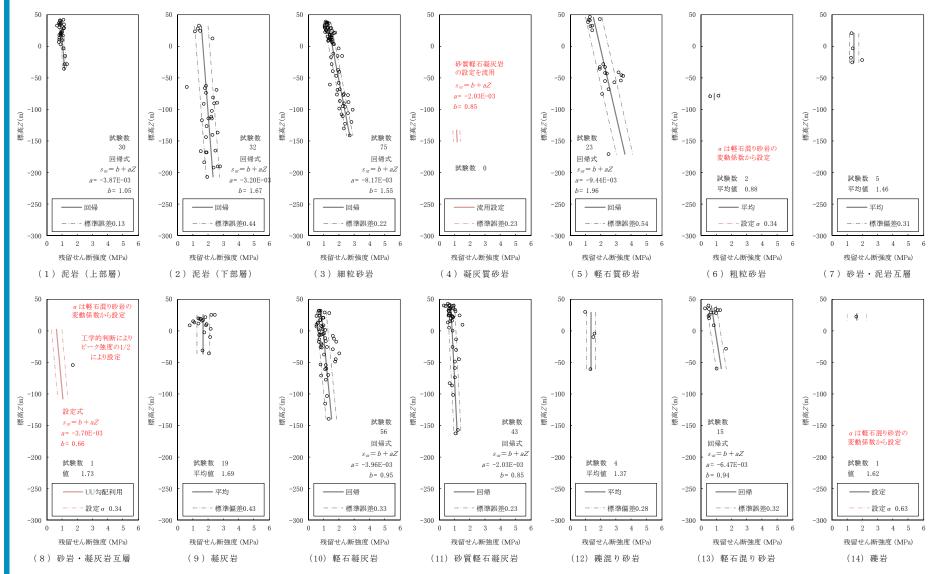
物理特性(鷹架層) 湿潤密度

R2.7.13 資料1-5 p168 再掲



強度特性(鷹架層) 非排水せん断強度(ピーク)

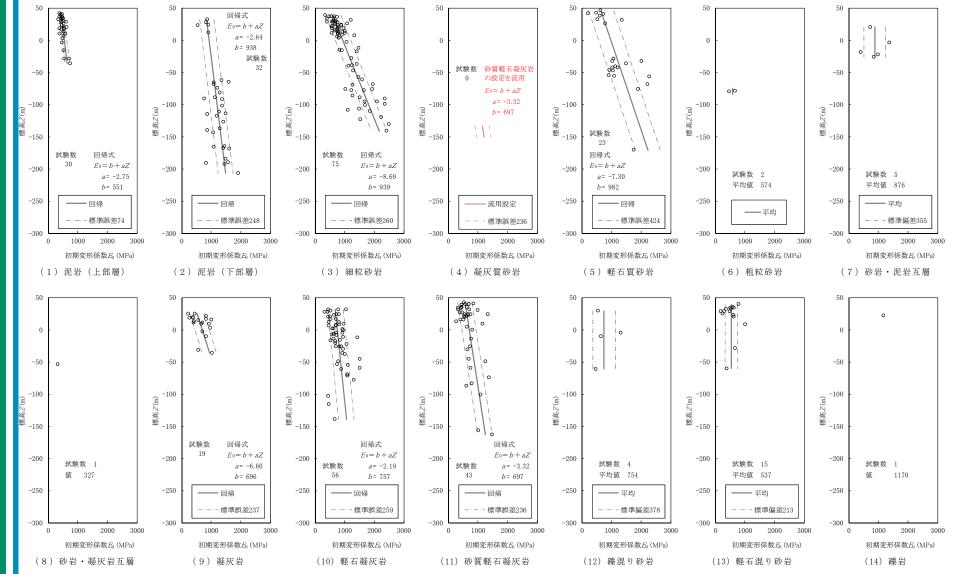
R2.7.13 資料1-5 p169 再掲


注)試験数の少ない粗粒砂岩,砂岩・凝灰岩互層,礫岩は,試験数が多い岩種の変動係数の最大値(軽石混り砂岩0.315)と 各岩種の試験値の平均値を乗じてσを設定した。

赤色:他岩種流用またはUU条件で設定した物性値

強度特性(鷹架層) 非排水せん断強度(残留)

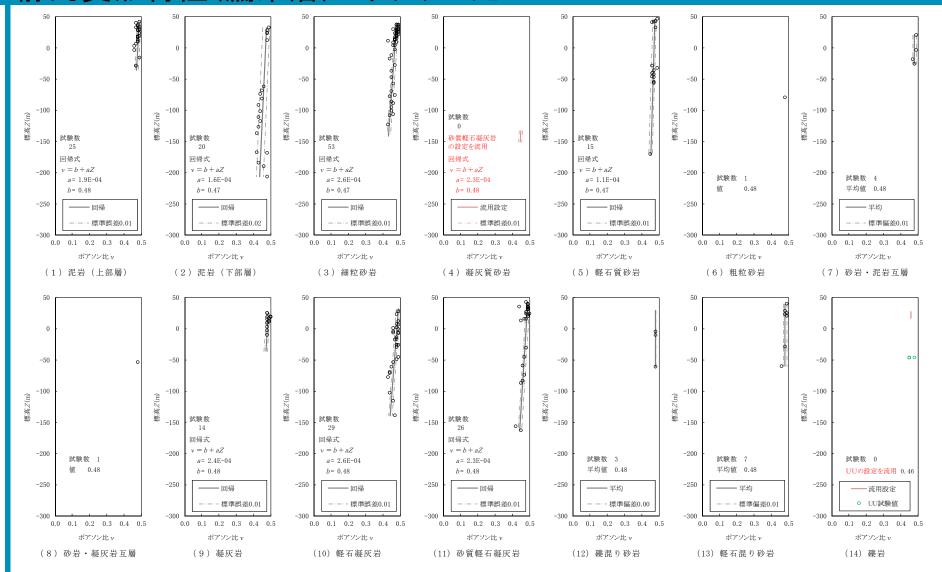
R2.7.13 資料1-5 p170 再掲


注) 試験数の少ない粗粒砂岩,砂岩・凝灰岩互層,礫岩は,試験数が多い岩種の変動係数の最大値(軽石混り砂岩0.390)と 各岩種の試験値の平均値を乗じてσを設定した。

赤色:他岩種流用またはUU条件で設定した物性値

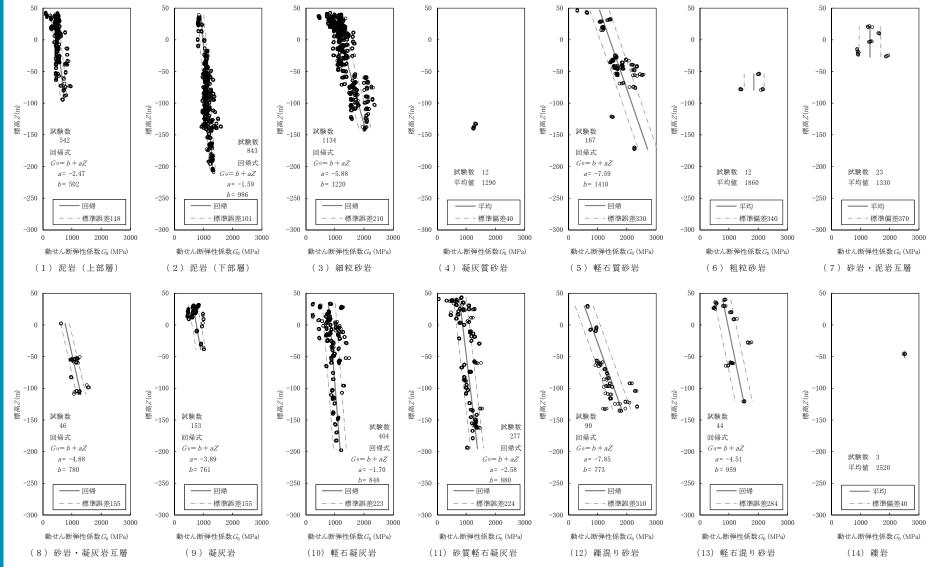
静的変形特性(鷹架層) 初期変形係数

R2.7.13 資料1-5 p171 再掲



静的変形特性(鷹架層) ポアソン比

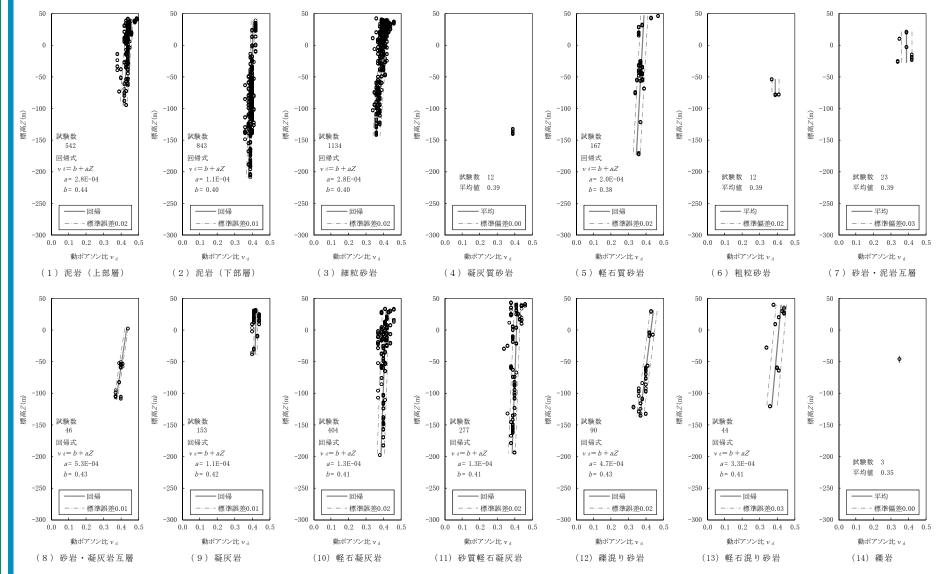
R2.7.13 資料1-5 p172 再掲



赤色:他岩種流用またはUU条件で設定した物性値

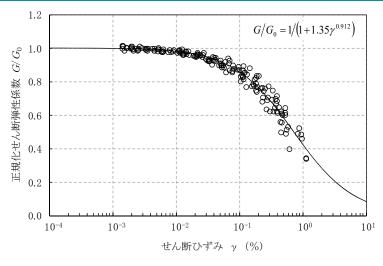
動的変形特性(鷹架層) 動せん断弾性係数

R2.7.13 資料1-5 p173 再掲

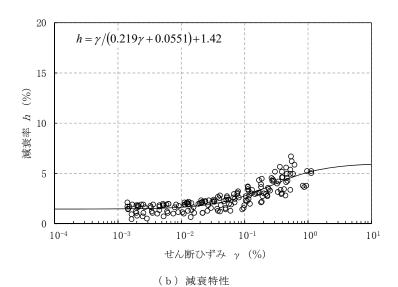


動的変形特性(鷹架層) 動ポアソン比

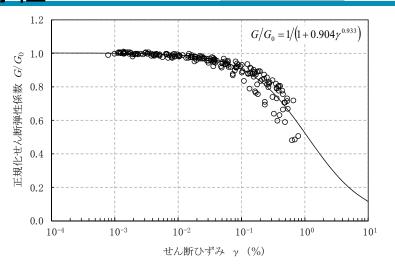
R2.7.13 資料1-5 p174 再掲

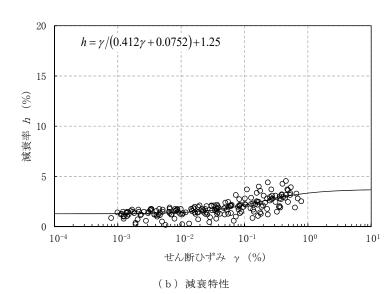


赤色: 他岩種流用またはUU条件で設定した物性値


動的変形特性(鷹架層) ひずみ依存性

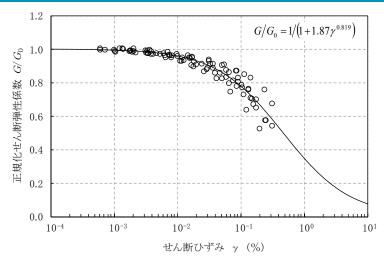
R2.7.13 資料1-5 p175 再掲



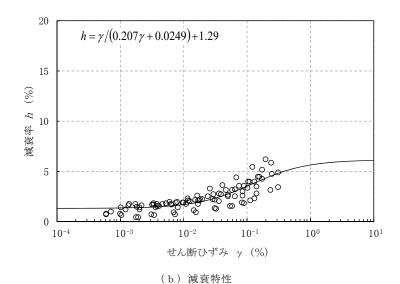

(a) 動的変形特性

(1) 泥岩(上部層)

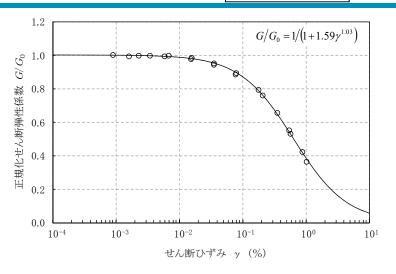
(a) 動的変形特性

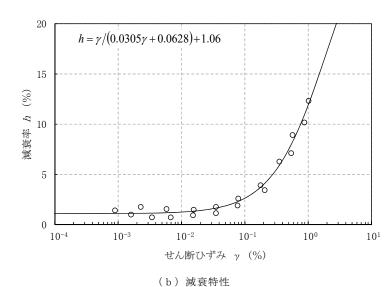


(2) 泥岩(下部層)


動的変形特性(鷹架層)

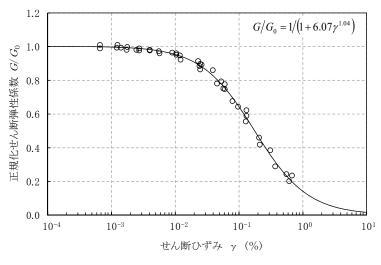
R2.7.13 資料1-5 p176 再掲



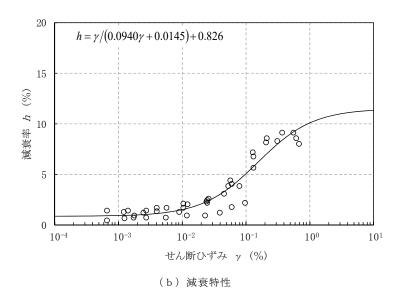

(a) 動的変形特性

(3) 細粒砂岩

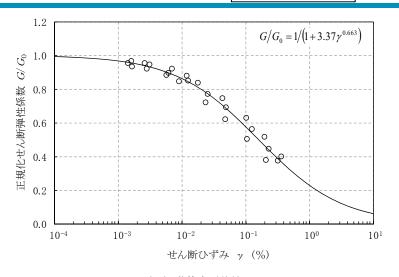
(a) 動的変形特性

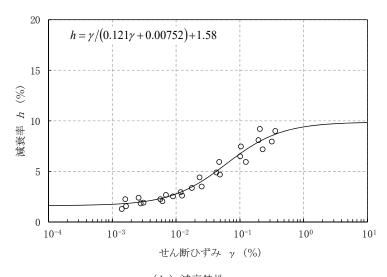

(1) 吸入行压

(4) 凝灰質砂岩


動的変形特性(鷹架層)

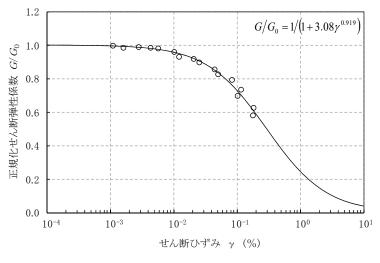
R2.7.13 資料1-5 p177 再掲



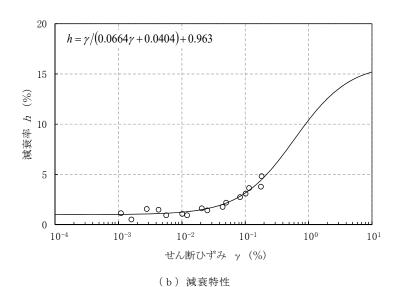

(a) 動的変形特性

(5) 軽石質砂岩

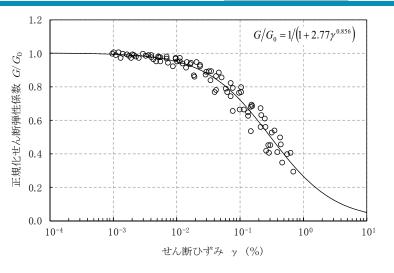
(a) 動的変形特性

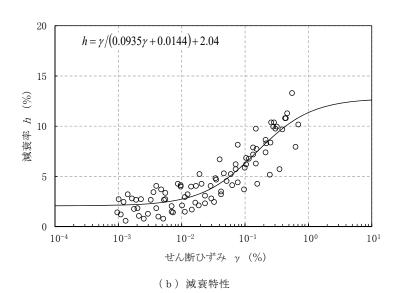

(b)減衰特性

(6) 粗粒砂岩


動的変形特性(鷹架層)

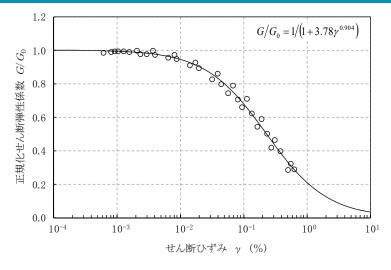
R2.7.13 資料1-5 p178 再掲



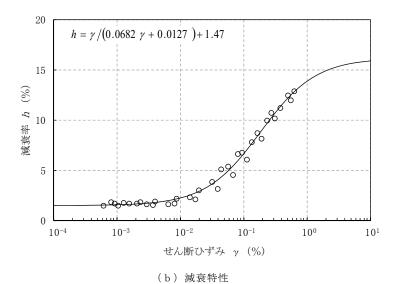

(a) 動的変形特性

(7) 砂岩・泥岩互層

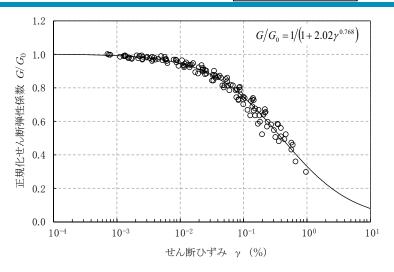
(a) 動的変形特性

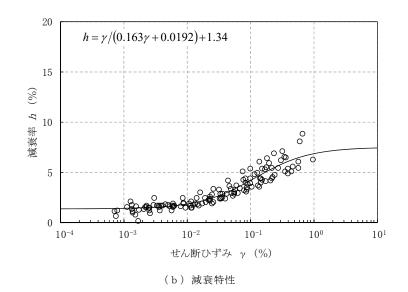


(8) 砂岩•凝灰岩互層


動的変形特性(鷹架層)

R2.7.13 資料1-5 p179 再掲



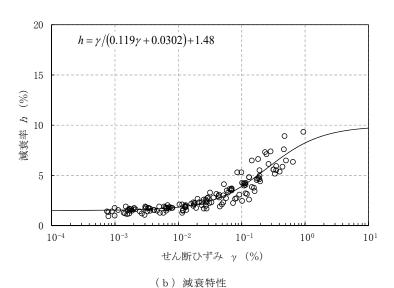


(9) 凝灰岩

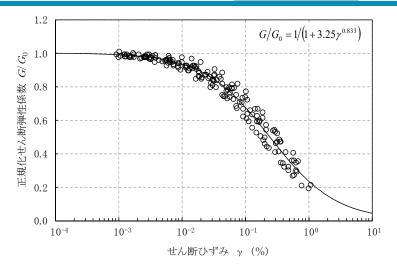
(a) 動的変形特性



(10) 軽石凝灰岩


動的変形特性(鷹架層)

R2.7.13 資料1-5 p180 再掲

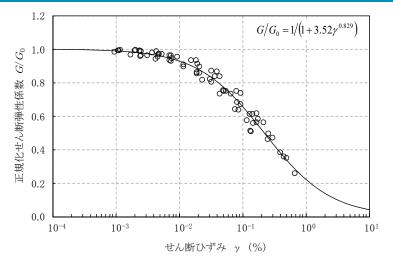



(a) 動的変形特性

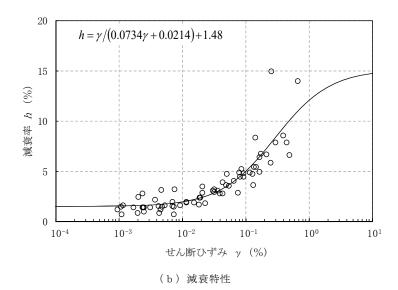
(11) 砂質軽石凝灰岩

(a) 動的変形特性

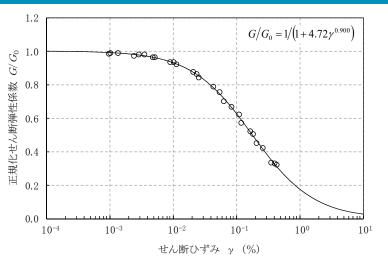
(5) 1932 [1]

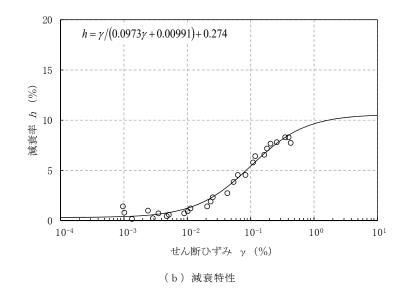

(12) 礫混り砂岩

参考資料 物性値の設定根拠


動的変形特性(鷹架層)

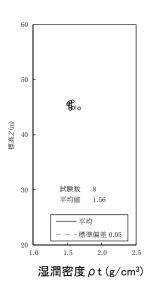
R2.7.13 資料1-5 p181 再掲

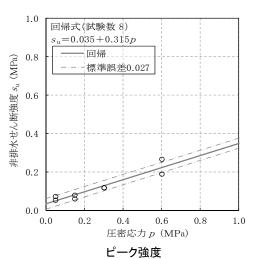


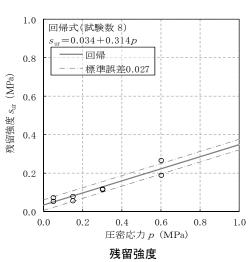

(a) 動的変形特性

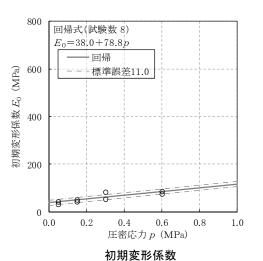
(13) 軽石混り砂岩

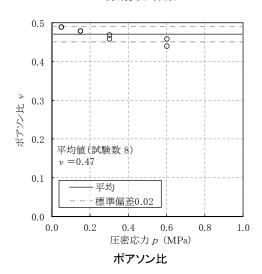
(a) 動的変形特性

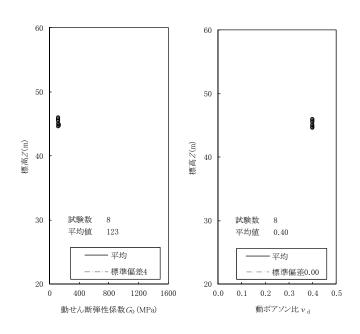


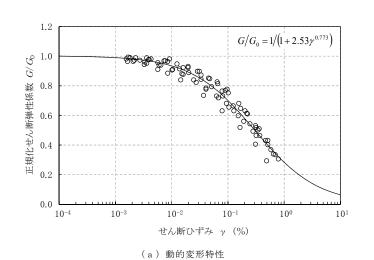

(14) 礫岩

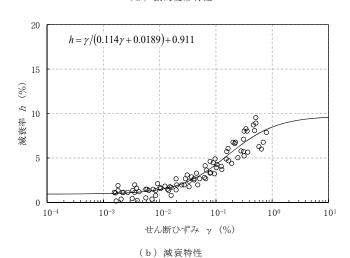

物理特性•強度特性•静的変形特性(風化岩)


R2.7.13 資料1-5 p182 再掲

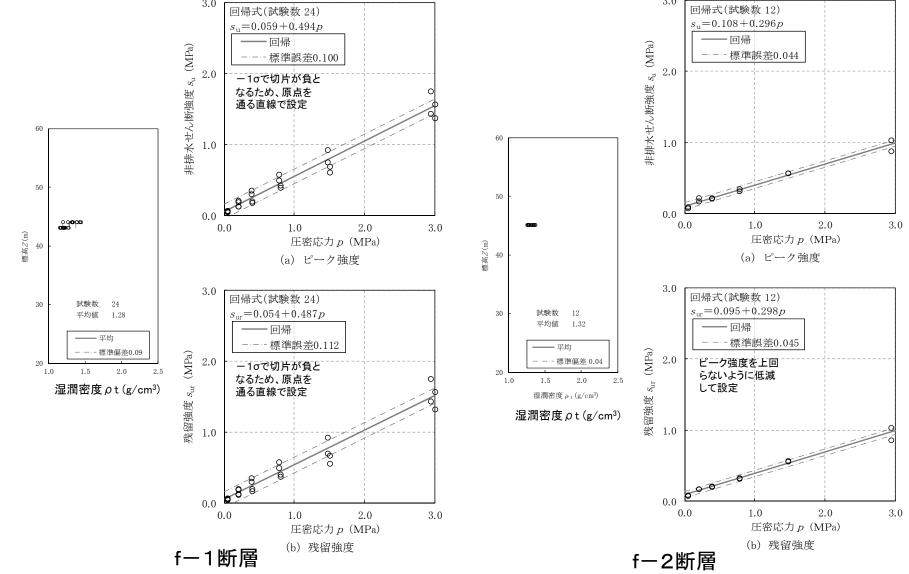







風化岩(T(w))

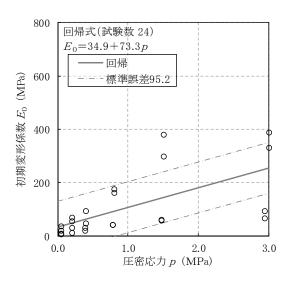
R2.7.13 資料1-5 p183 再掲

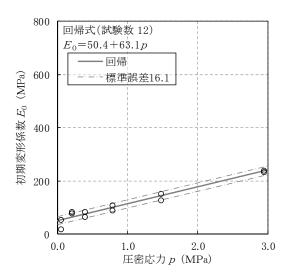


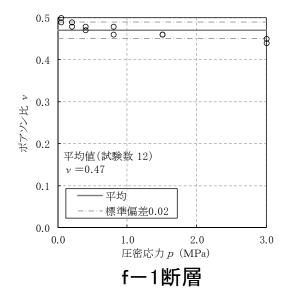
風化岩(T(w))

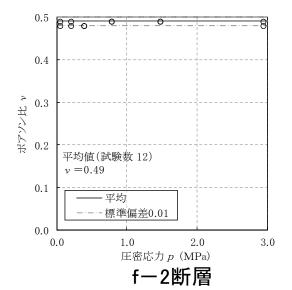
物理特性•強度特性(断層)

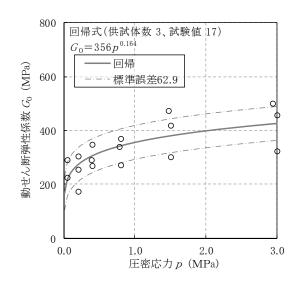
R2.7.13 資料1-5 p184 再掲

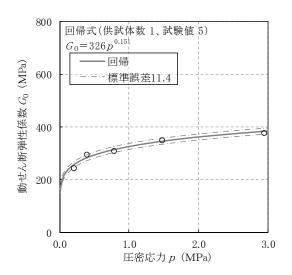


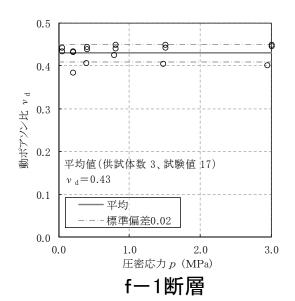


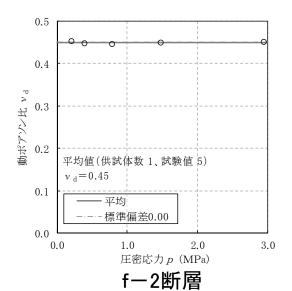

静的変形特性(断層)

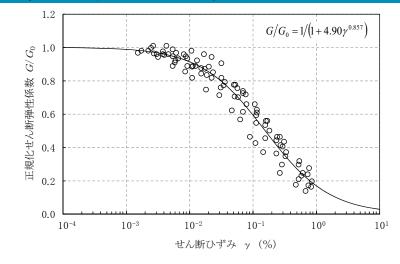

R2.7.13 資料1-5 p185 再掲





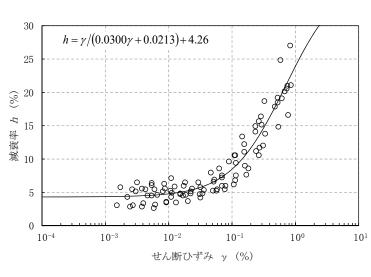

動的変形特性(断層)

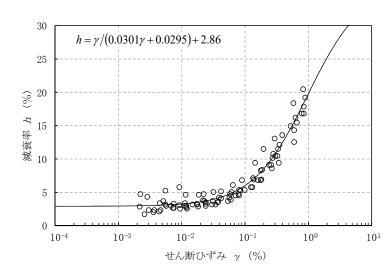

R2.7.13 資料1-5 p186 再掲



参考資料 物性値の設定根拠

動的変形特性(断層)


R2.7.13 資料1-5 p187 再掲

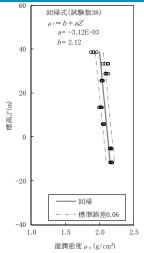


(a) 動的変形特性

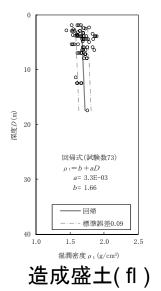
(a) 動的変形特性

(b)減衰特性

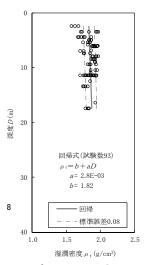
(b) 減衰特性

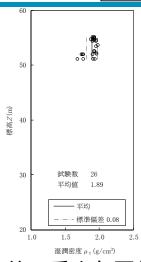

f-1断層

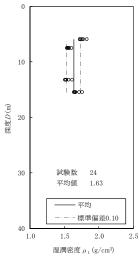
f-2断層


物理特性(表層)

R2.7.13 資料1-5 p188 再掲

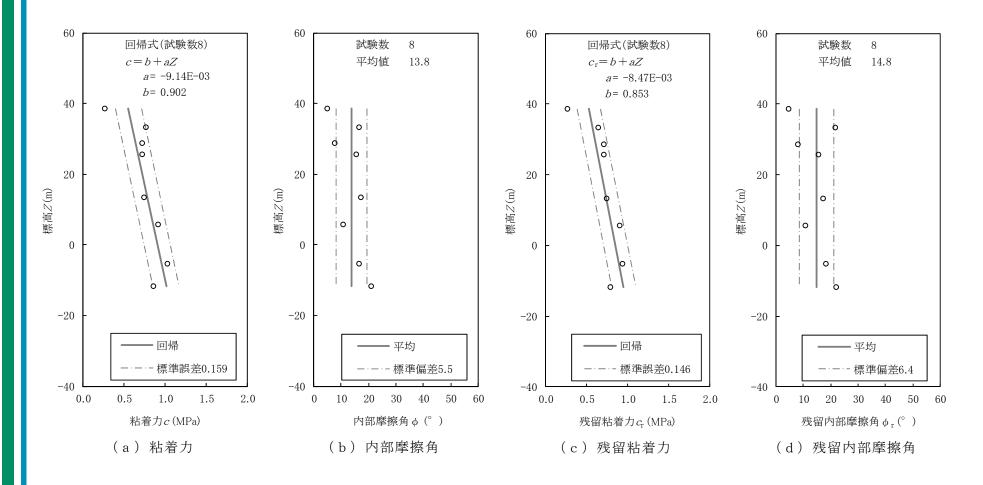



新第三系鮮新統 (PP1)


第四系下部~ 中部更新統(PP2)

埋戻し土(bk)

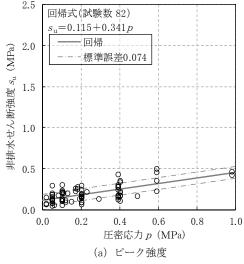
第四系中部更新統 ~完新統(PH)

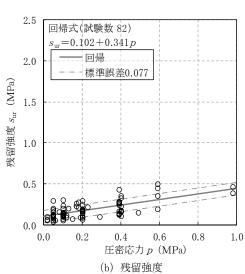


流動化処理土(A)

強度特性(表層)

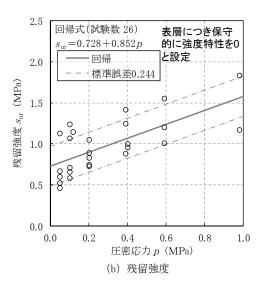
R2.7.13 資料1-5 p189 再掲

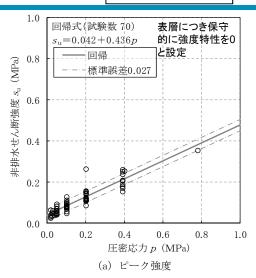

新第三系鮮新統(PP1)

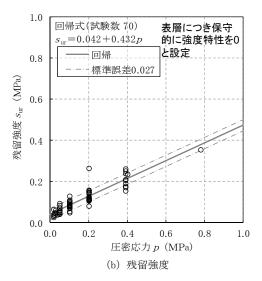

参考資料 物性値の設定根拠

強度特性(表層)

R2.7.13 資料1-5 p190 再掲

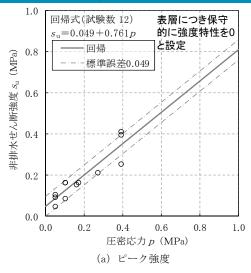


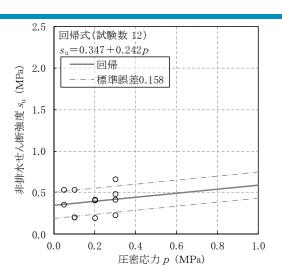

第四系下部~

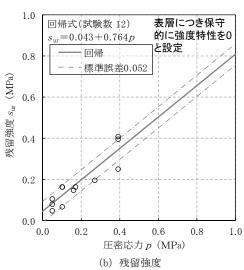

中部更新統(PP2)

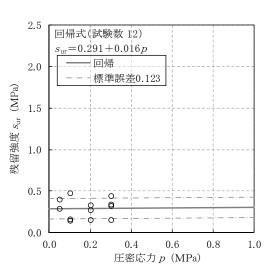
回帰式(試験数 26) 表層につき保守 的に強度特性を0 $s_{11} = 0.766 + 0.826 p$ と設定 2.0 非排水せん断強度 su (MPa) 標準誤差0.242 0.0 0.5 0.0 0.4 0.6 0.8 0.0 0.2 1.0 圧密応力p (MPa) (a) ピーク強度

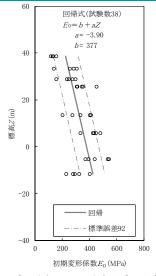
第四系中部更新統 ~完新統(PH)



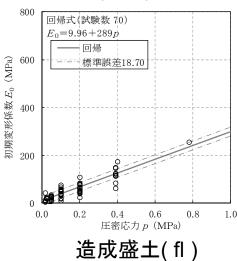

造成盛土(fl)

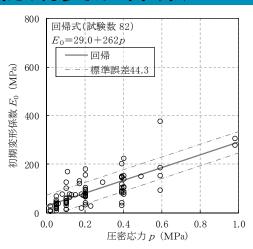

強度特性(表層)

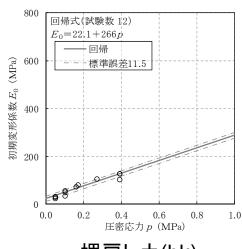

R2.7.13 資料1-5 p191 再掲


埋戻し土(bk)

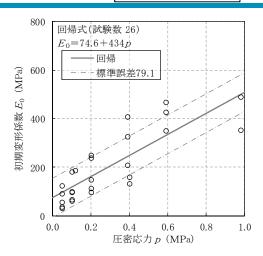
流動化処理土(A)

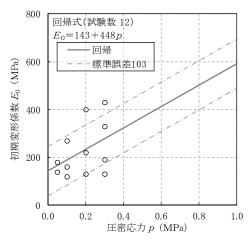

静的变形特性(表層) 初期変形係数


R2.7.13 資料1-5 p192 再掲



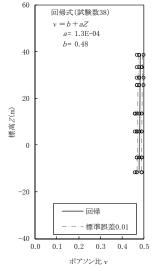
新第三系鮮新統 (PP1)



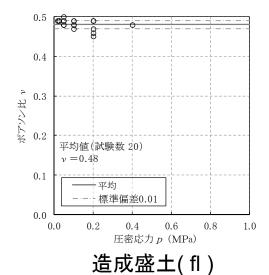

第四系下部~ 中部更新統(PP2)

埋戻し土(bk)

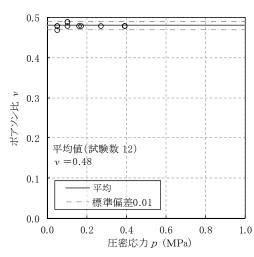
第四系中部更新統 ~完新統(PH)


流動化処理土(A)

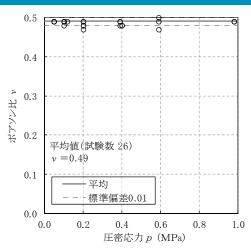
参考資料 物性値の設定根拠


静的変形特性(表層) ポアソン比

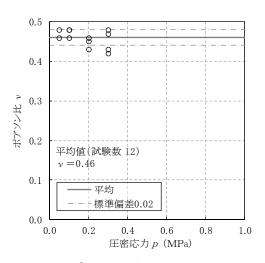
R2.7.13 資料1-5 p193 再掲



新第三系鮮新統 (PP1)

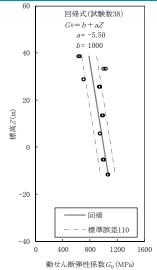


0.5 0.4 0.4 0.2 平均値(試験数 66) v = 0.49 0.1 平均 一標準偏差0.01 0.0 0.0 0.2 0.4 0.6 0.8 1.0 E密応力 p (MPa)

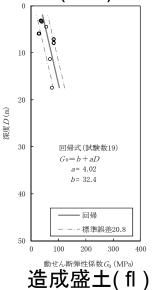

第四系下部~ 中部更新統(PP2)

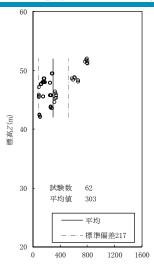
埋戻し土(bk)

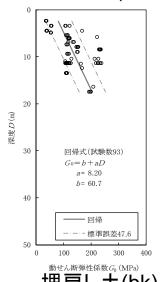
第四系中部更新統 ~完新統(PH)



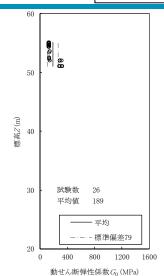
流動化処理土(A)

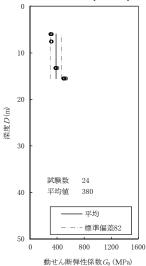

動的変形特性(表層)動せん断弾性係数


R2.7.13 資料1-5 p194 再掲



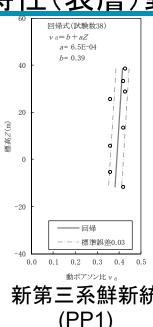
新第三系鮮新統 (PP1)



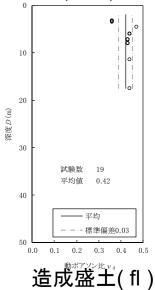

動世心断弾性係数*G*。(MPa) 第四系下部~ 中部更新統(PP2)

動せん断弾性係数 G。(MPa) 埋戻し土(bk)

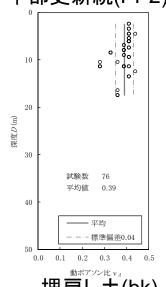
第四系中部更新統 ~完新統(PH)



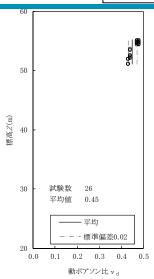
流動化処理土(A)


変形特性(表層)動ポアソン比

R2.7.13 資料1-5 p195 再掲



新第三系鮮新統 (PP1)

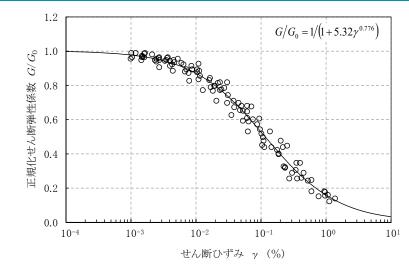


9 試験数 平均値 平均 標準偏差0.06 0.2 0.3 0.4 0.5


第四系下部~ 中部更新統(PP2)

埋戻し土(bk)

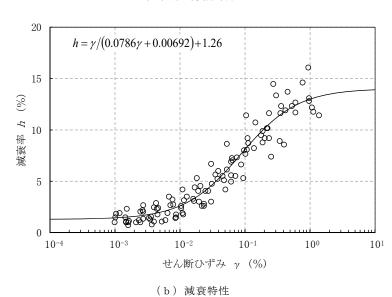
第四系中部更新統 ~完新統(PH)

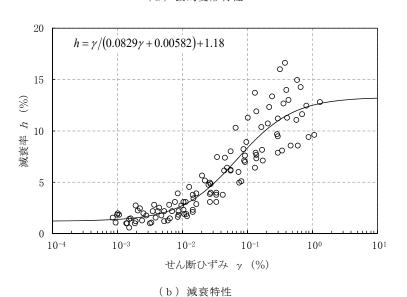

流動化処理土(A)

参考資料 物性値の設定根拠

動的変形特性(表層)

R2.7.13 資料1-5 p196 再掲

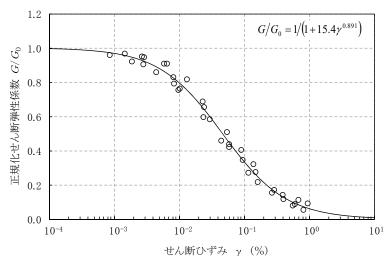




1.2 G/G₀ = 1/(1+5.91 $\gamma^{0.758}$) 数 0.8 世 0.6 中 0.2 0.0 10-4 10-3 10-2 10-1 10⁰ 10¹ 世ん断ひずみ γ (%)

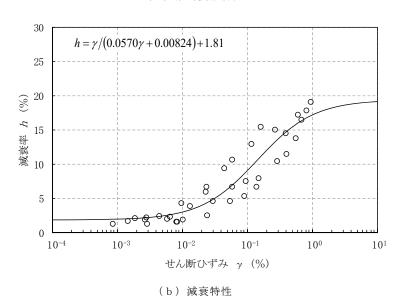
(a) 動的変形特性

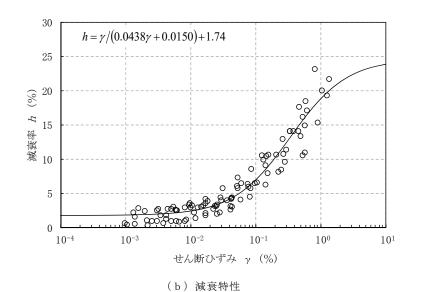
(a) 動的変形特性


新第三系鮮新統(PP1)

第四系下部~中部更新統(PP2)

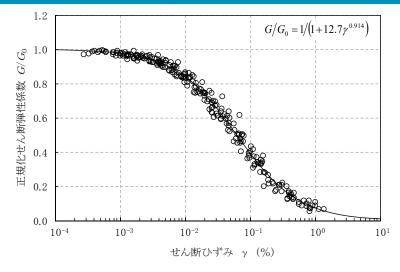
動的変形特性(表層)


R2.7.13 資料1-5 p197 再掲



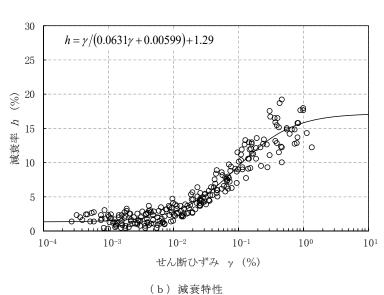
(a) 動的変形特性

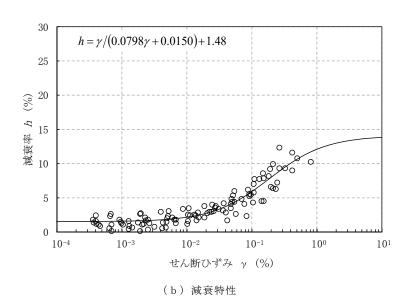
(a) 動的変形特性


第四系中部更新統~完新統(PH)

造成盛土(fl)

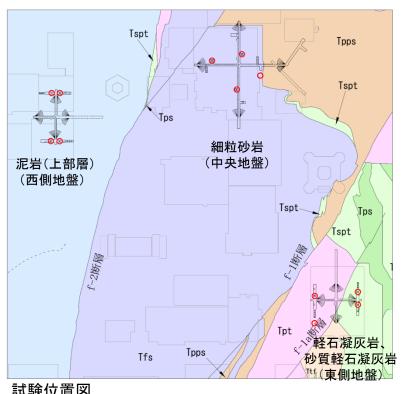
動的変形特性(表層)


R2.7.13 資料1-5 p198 再掲

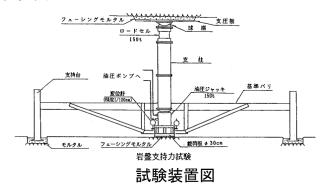


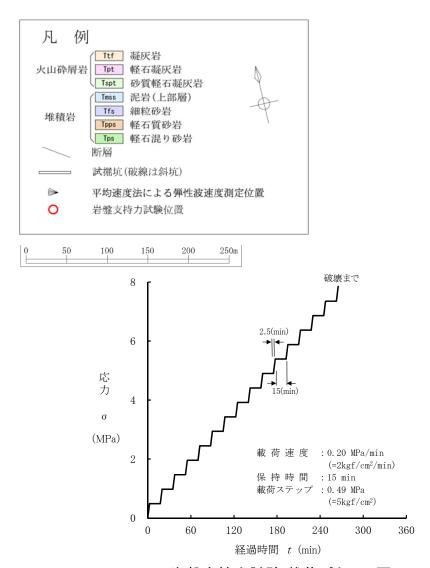
(a) 動的変形特性

(a) 動的変形特性

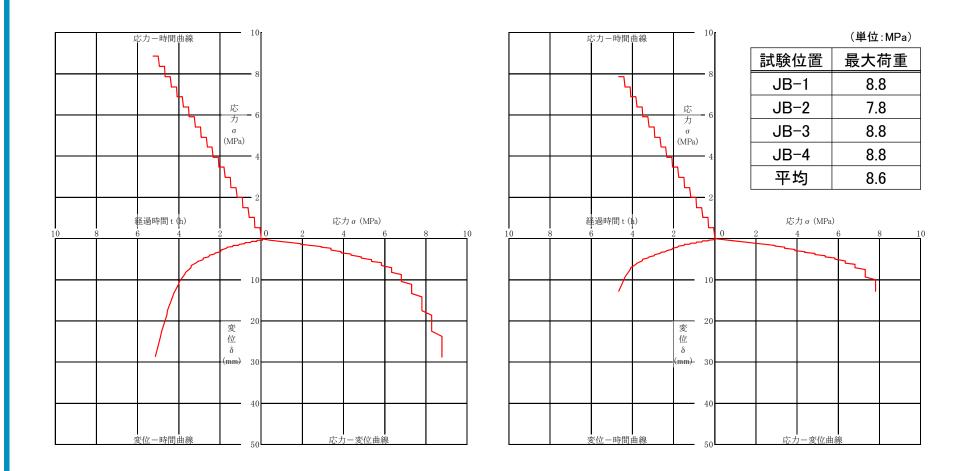

埋戻し土(bk)

流動化処理土(A)


岩盤支持力試験結果(試験位置・試験装置・載荷パターン)

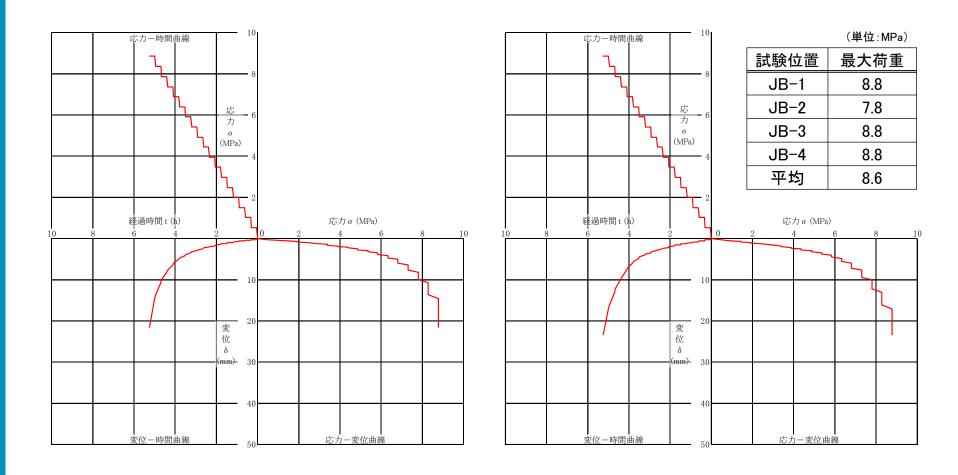

R2.7.13 資料1-5 p199 再掲

試験位置図



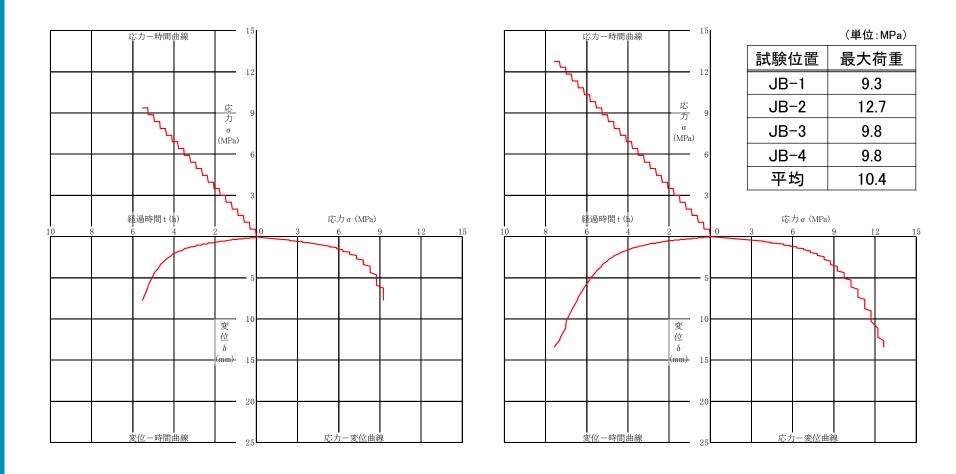
岩盤支持力試験 載荷パターン図

R2.7.13 資料1-5 p200 再掲



岩盤支持力試験結果図 泥岩(上部層) JB-1 岩盤支持力試験結果図 泥岩(上部層) JB-2

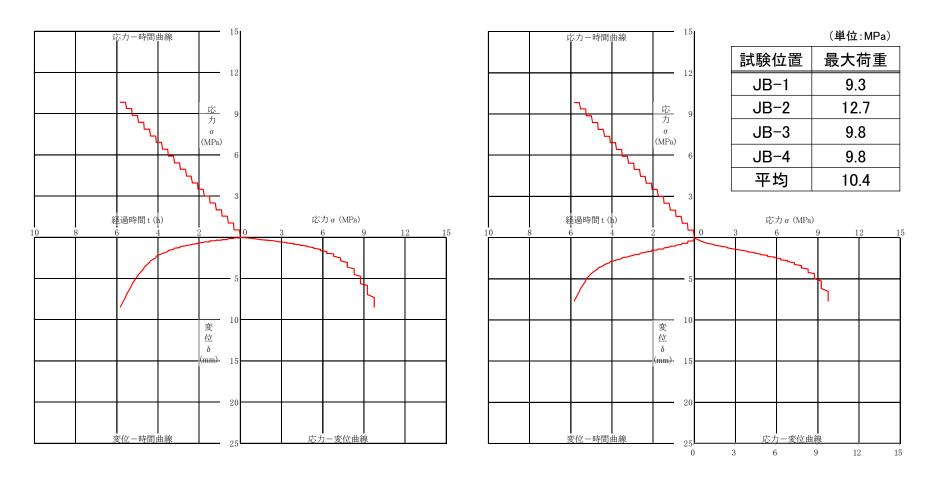
R2.7.13 資料1-5 p201 再掲



岩盤支持力試験結果図 泥岩(上部層) JB-3 岩盤支持力試験結果図 泥岩(上部層) JB-4

岩盤支持力試験結果(細粒砂岩 (中央地盤))

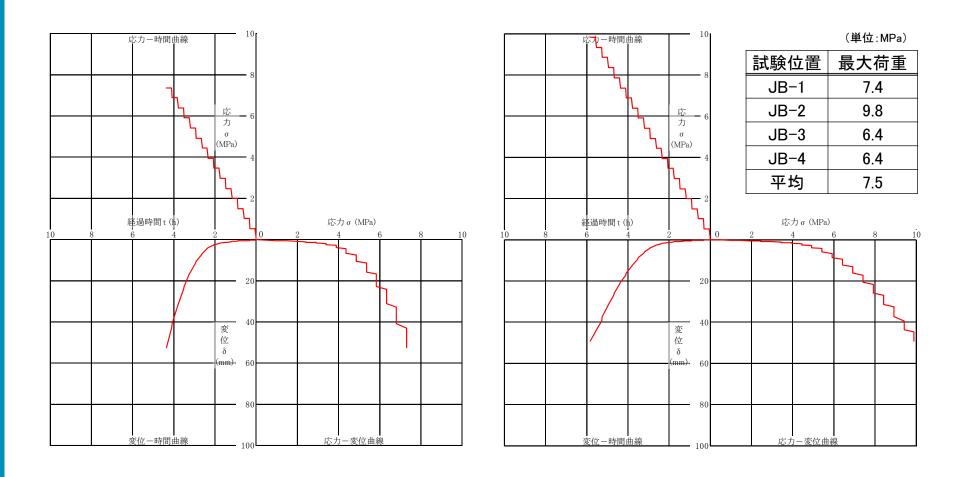
R2.7.13 資料1-5 p202 再掲


岩盤支持力試験結果図 細粒砂岩 JB-1

岩盤支持力試験結果図 細粒砂岩 JB-2

岩盤支持力試験結果(細粒砂岩 (中央地盤))

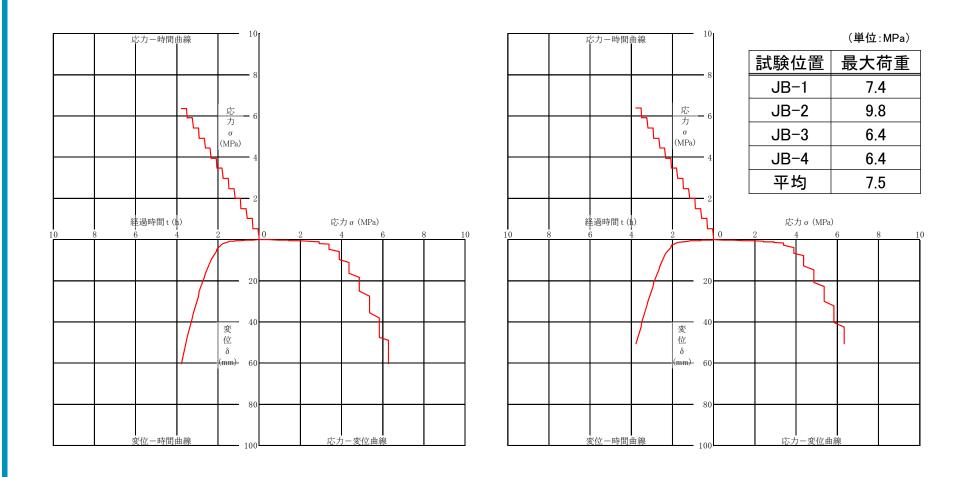
R2.7.13 資料1-5 p203 再掲


岩盤支持力試験結果図 細粒砂岩 JB-3

岩盤支持力試験結果図 細粒砂岩 JB-4

岩盤支持力試験結果(軽石凝灰岩 (東側地盤))

R2.7.13 資料1-5 p204 再掲

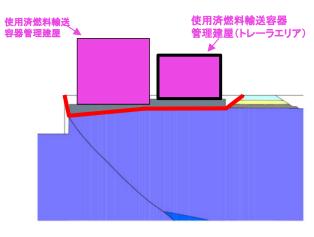

岩盤支持力試験結果図 軽石凝灰岩 JB-1 岩盤支持力試験結果図 軽石凝灰岩 JB-2

参考資料 物性値の設定根拠

岩盤支持力試験結果(砂質軽石凝灰岩 (東側地盤))

R2.7.13 資料1-5 p205 再掲

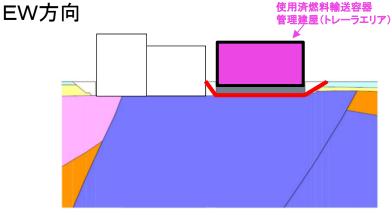
岩盤支持力試験結果図砂質軽石凝灰岩 JB-3


岩盤支持力試験結果図砂質軽石凝灰岩 JB-4

簡便法(すべり面法)による評価

■使用済燃料輸送容器管理建屋(トレーラエリア)における直交断面の安全率比較 NS方向とEW方向を解析断面として選定し、簡便法(すべり面法)を用いた評価対象断面の絞込みを行う。

NS方向(D-D断面)



【評価条件】

建屋から基礎底面に作用する地震力 KH=0.6 Kv=0.3

基礎地盤に作用する地震力 KH=0.2 Kv=0.1

※原子力発電所耐震設計技術指針JEAG4601-2008(日本電気協会)より

評価断面	安全率
NS方向 (D-D断面)	13.4
EW方向	15.6

簡便法(すべり面法)を用いた検討の結果、NS方向・EW方向とも同程度の安全率を示す。

解析対象断面 一覧表(再処理施設)

R2.7.13 資料1-5 p207 再掲

											解析	対象	断面									
番号	施設名称			1	NS方向]					731 171			EW:	方向						NS _※ 方向	EW _※ 方向
		Α	В	С	D	Е	F	F'	G	G'	Н	ı	J	K	L	М	M'	N	0	Р	Q	R
1	ハル・エンドピース貯蔵建屋				0				0													
2	使用済燃料受入れ・貯蔵建屋				0	0					0	0										
	前処理建屋					0							0									
4	主排気筒(基礎)及び主排気筒管理建屋						0							0								
	高レベル廃液ガラス固化建屋				0									0								
	分離建屋					0								0	0							
	精製建屋						0									0						
	制御建屋				0											0						
	ウラン・プルトニウム混合脱硝建屋						0											0				
10	ウラン・プルトニウム混合酸化物貯蔵建屋						0												0			
	北換気筒(基礎)			0								0										
12	非常用電源建屋(冷却塔及び燃料油貯蔵タンク含む)			0											0							
13	チャンネルボックス・バーナブルポイズン処理建屋			0																0		
14	第1ガラス固化体貯蔵建屋(東棟)		0										0									
15	第1ガラス固化体貯蔵建屋(西棟)	0											0									
	使用済燃料輸送容器管理建屋				0	0				0												
17	使用済燃料輸送容器管理建屋(トレーラェリア)				0																	
26	緊急時対策建屋							0									0					
27	第1保管庫·貯水所							0										0				
28	第2保管庫・貯水所																				0	0
	ガラス固化体貯蔵建屋〔廃〕		0									0										
	ガラス固化体貯蔵建屋B棟〔廃〕		0								0											
	ガラス固化体受入れ建屋〔廃〕	0										0										
	燃料加工建屋[MOX]						0													0		
	使用済燃料受入れ・貯蔵管理建屋[再]										0											
	分析建屋〔再〕				0																	
	出入管理建屋〔再〕					0										0						
L	第2低レベル廃棄物貯蔵建屋〔再〕	0	0														<u> </u>	0				
	低レベル廃棄物処理建屋〔再〕			0														0	0			
	低レベル廃液処理建屋〔再〕				0													0				
	ウラン脱硝建屋〔再〕																<u> </u>	0				
	ウラン酸化物貯蔵建屋〔再〕																		0			
	耐震重要施設等 耐震重要施設等と常設重大事故 常設重大	事故等	対処施	設		その	他建屋	(モデル	/化考点	重)	[廃]	廃棄物	勿管理	施設		[MOX] MOX	燃料	加工施	設		

※ P.N.から14度東へ回転した位置に対する南北直交断面

等対処施設を兼ねる施設

解析対象断面 一覧表(廃棄物管理施設)

R2.7.13 資料1-5 p208 再掲

			解相		断面		
番号	施設名称		NS方向	fi EV		V方向	
		Α	В	С	Н	I	
11	北換気筒(ガラス固化体受入れ・貯蔵建屋換気筒)(基礎)			0		0	
22	ガラス固化体貯蔵建屋		0			0	
23	ガラス固化体貯蔵建屋B棟		0		0		
24	ガラス固化体受入れ建屋	0			0		
	使用済燃料受入れ・貯蔵建屋〔再〕				0	0	
	非常用電源建屋(冷却塔及び燃料油貯蔵タンク含む)[再]			0			
	チャンネルボックス・バーナブルポイズン処理建屋〔再〕			0			
	第1ガラス固化体貯蔵建屋(西棟)〔再〕	0					
	第1ガラス固化体貯蔵建屋(東棟)〔再〕		0				
	使用済燃料受入れ・貯蔵管理建屋〔再〕				0		
	第2低レベル廃棄物貯蔵建屋〔再〕	0	0				
	低レベル廃棄物処理建屋〔再〕			0			

安全上重要な施設等		その他建屋(モデル化考慮)	[再]	再処理施設
-----------	--	---------------	-----	-------

参考資料 地震力に対する安定性評価 解析対象断面 一覧表(MOX燃料加工施設)

R2.7.13 資料1-5 p209 再掲

				解析対象断面								
番号	施設名称		NS;	方向	EW 方向	NS [※] 方向	EW [※] 方向					
		F	F'	M'	N	P	Q	R				
25	燃料加工建屋	0				0						
26	緊急時対策建屋		0	0								
27	第1保管庫・貯水所		0		0							
28	第2保管庫・貯水所						0	0				
	主排気筒(基礎)及び主排気筒管理建屋[再]	0										
	精製建屋〔再〕	0										
	ウラン・プルトニウム混合脱硝建屋〔再〕	0			0							
	ウラン・プルトニウム混合酸化物貯蔵建屋〔再〕	0										
	チャンネルボックス・バーナブルポイズン処理建屋〔再〕					0						
	第2低レベル廃棄物貯蔵建屋〔再〕				0							
	低レベル廃棄物処理建屋〔再〕				0							
_	低レベル廃液処理建屋〔再〕				0							
	ウラン脱硝建屋[再]	·			0							

耐震重要施設等と常設重大事故	常設重大事故等対処施設	その他建屋(モデル化考慮)	[再]] 再処理施設
 等対処施設を兼ねる施設				

[※] P.N.から14度東へ回転した位置に対する南北直交断面

参考資料 地震力に対する安定性評価 有限要素モデルの物性値

R2.7.13 資料1-5 p210 再掲

解析対象施設

■番号1 ハル・エンドピース貯蔵建屋

規模:48.5m(NS)×53.5m(EW)、総重量:約1,090,000kN

NS方向 固有周期 水平:0.179秒 鉛直:0.056秒

			. U. 17 J 17 y	山區 . 0.00007.		
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポ [°] アソン比 ν i
1	73.15	2.907				
2	68.80	2.988	1	6.348E+05	2.222E+05	0.429
3	63.60	0.000	2	9.351E+05	3.273E+05	0.429
4	60.30	2.836	3	9.351E+05	3.273E+05	0.429
(5)	56.80	6.008	4	1.238E+06	4.334E+05	0.429
6	47.80	8.521	5	2.255E+06	7.894E+05	0.429
(7)	40.80	7.314	6	2.404E+06	8.413E+05	0.429
8	34.80	4.734	7	2.769E+06	9.693E+05	0.429
9	33.80	3.688	8	4.224E+06	1.479E+06	0.429
10	30.80	3.695	9	2.357E+07	1.010E+07	0.167

EW方向 固有周期 水平:0.148秒 鉛直:0.056秒

	. — ·					
棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	73.15	2.907				
2	68.80	2.988	1	1.418E+06	5.142E+05	0.379
3	63.60	0.000	2	1.898E+06	6.882E+05	0.379
4)	60.30	2.836	3	1.898E+06	6.882E+05	0.379
(5)	56.80	6.008	4	1.717E+06	6.229E+05	0.379
6	47.80	8.521	5	3.371E+06	1.222E+06	0.379
(7)	40.80	7.314	6	3.567E+06	1.294E+06	0.379
8	34.80	4.734	7	3.886E+06	1.409E+06	0.379
9	33.80	3.688	8	5.095E+06	1.848E+06	0.379
10	30.80	3.695	9	2.357E+07	1.010E+07	0.167

■番号2 使用済燃料受入れ・貯蔵建屋

規模:114.6(NS)×82.3m(EW)、総重量:約3,300,000kN

NS方向 固有周期 水平:0.169秒 鉛直:0.041秒

INOJ	יין ניין	11円円別 小	一.0.103作列	_	12	
棒要素	標高	質量密度	ソリッド	弾性係数	せん断 弾性係数	ポアソン比
番号	EL(m)	ρ i(t/m ³)	要素番号	Ei(kN/m²)	Gi(kN/m²)	$ u_{\rm i}$
1	75.90	1.819		: :	· · · ·	
2	73.00	1.146	1	2.644E+05	9.014E+04	0.467
3	71.00	0.000	2	5.293E+05	1.804E+05	0.467
4)	67.40	2.374	3	5.293E+05	1.804E+05	0.467
5	64.80	0.316	4	6.047E+05	2.062E+05	0.467
6	63.80	1.779	5	6.047E+05	2.062E+05	0.467
(7)	61.30	0.000	6	6.219E+05	2.120E+05	0.467
8	55.30	6.692	7	6.219E+05	2.120E+05	0.467
9	51.00	1.188	8	1.840E+06	6.273E+05	0.467
(10)	46.80	7.927	9	1.852E+06	6.313E+05	0.467
(1)	43.50	1.562	10	1.969E+06	6.711E+05	0.467
(12)	40.50	5.319	11	1.971E+06	6.719E+05	0.467
13	38.00	3.501	12	2.357E+07	1.010E+07	0.167

EW方向 固有周期 水平:0.156秒 鉛直:0.042秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	75.90	1.819				
2	73.00	0.843	1	3.825E+05	1.311E+05	0.459
3	71.00	0.304	2	4.978E+05	1.706E+05	0.459
4	67.40	1.897	3	5.274E+05	1.807E+05	0.459
5	64.80	0.793	4	7.733E+05	2.650E+05	0.459
6	63.80	0.948	5	7.942E+05	2.722E+05	0.459
(7)	61.30	0.830	6	8.510E+05	2.917E+05	0.459
8	55.30	6.692	7	8.313E+05	2.849E+05	0.459
9	51.00	1.188	8	2.013E+06	6.898E+05	0.459
10	46.80	7.927	9	1.995E+06	6.838E+05	0.459
(1)	43.50	1.562	10	2.072E+06	7.102E+05	0.459
12	40.50	5.319	11	2.080E+06	7.128E+05	0.459
13	38.00	3.501	12	2.357E+07	1.010E+07	0.167

有限要素モデルの物性値

R2.7.13 資料1-5 p211 再掲

解析対象施設

■番号3 前処理建屋

規模:85.7m(NS)×69.2m(EW)、総重量:約2,950,000kN

NS方向 固有周期 水平:0.203秒 鉛直:0.088秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν∶
1	88.80	3.002				
2	80.04	2.869	1	8.142E+05	3.058E+05	0.331
3	74.09	5.514	2	1.006E+06	3.779E+05	0.331
<u>4</u>	68.99	4.451	3	2.289E+06	8.598E+05	0.331
(5)	62.19	5.635	4	2.369E+06	8.898E+05	0.331
6	55.39	5.200	5	2.964E+06	1.113E+06	0.331
(7)	50.80	5.147	6	3.108E+06	1.167E+06	0.331
(8)	44.00	6.490	7	2.951E+06	1.108E+06	0.331
9	37.20	4.061	8	3.275E+06	1.230E+06	0.331
(10)	36.20	3.964	9	3.275E+06	1.230E+06	0.331
11)	33.20	3.671	10	2.357E+07	1.010E+07	0.167

EW方「	句	固有周期	水平:0.241	抄 鉛直:0.08	38秒	
棒要素 番号	標高 EL(m)	質量密度 <i>p</i> i(t/m³)	ソリッド要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ᢧ;
1	88.80	3.002				
2	80.04	2.869	1	6.071E+05	2.182E+05	0.391
3	74.09	5.514	2	7.509E+05	2.698E+05	0.391
4)	68.99	4.451	3	1.467E+06	5.273E+05	0.391
5	62.19	5.635	4	1.676E+06	6.023E+05	0.391
6	55.39	5.200	5	2.014E+06	7.236E+05	0.391
(7)	50.80	5.147	6	2.049E+06	7.362E+05	0.391
8	44.00	6.490	7	2.241E+06	8.052E+05	0.391
9	37.20	4.061	8	2.784E+06	1.000E+06	0.391
10	36.20	3.964	9	2.784E+06	1.000E+06	0.391
1	33.20	3.671	10	2.357E+07	1.010E+07	0.167

■番号4 主排気筒(基礎)及び主排気筒管理建屋

•主排気筒(基礎)

規模:54.0m(NS)×54.0m(EW)、総重量:約573,000kN (主排気筒基礎をモデル化し、主排気筒[重量:約12,100kN]と主排気筒基礎の重量を考慮。)

•主排気筒管理建屋

規模:12.5m(NS)×25.5m(EW)、総重量:約12,900kN

NS方向 固有周期 水平:0.059秒 鉛直:0.021秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν;
1	59.40	2.042				
(<u>2</u>)	55.30	2.087	1	3.974E+05	1.408E+05	0.411
_			2	1.057E+06	3.745E+05	0.411
3	53.00	0.000				

EW方向 固有周期 水平:0.041秒 鉛直:0.021秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	59.40	2.042				
2	55.30	2.087	1	7.536E+05	2.934E+05	0.284
3	53.00	0.000	2	1.689E+06	6.578E+05	0.284

参考資料 地震力に対する安定性評価 有限要素モデルの物性値

R2.7.13 資料1-5 p212 再掲

解析対象施設

■番号5 高レベル廃液ガラス固化建屋

規模:59.0m(NS)×84.3m(EW)、総重量:約2,330,000kN

NIC卡向

NOU	HJ	回有 向 期 ノ	八平:0.1/9秒	鉛直:0.0/I	1 5	
棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	84.79	0.052				
2	81.39	0.073	1	5.510E+04	2.018E+04	0.365
3	75.60	0.067	2	5.510E+04	2.018E+04	0.365
(4)	69.80	6.265	3	5.510E+04	2.018E+04	0.365
5	62.80	5.420	4	1.475E+06	5.403E+05	0.365
6	55.39	6.358	5	1.865E+06	6.828E+05	0.365
(7)	49.10	5.891	6	2.152E+06	7.880E+05	0.365
(8)	44.00	4.344	7	2.784E+06	1.020E+06	0.365
9	40.80	5.919	8	3.349E+06	1.227E+06	0.365
(10)	33.80	5.270	9	3.672E+06	1.345E+06	0.365
11)	33.03	3.987	10	3.889E+06	1.424E+06	0.365
12	30.03	4.130	11	2.357E+07	1.010E+07	0.167

EW方向 固有周期 水平:0.177秒 鉛直:0.071秒

		U 101331 11	1 .0.1779	уц <u>ш</u> . 0.07 17	-	
棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν;
1	84.79	0.052				
2	81.39	0.073	1	3.992E+04	1.443E+04	0.383
3	75.60	0.067	2	7.928E+04	2.867E+04	0.383
4	69.80	6.265	3	7.928E+04	2.867E+04	0.383
5	62.80	5.420	4	1.251E+06	4.523E+05	0.383
6	55.39	6.358	5	1.541E+06	5.571E+05	0.383
(7)	49.10	5.891	6	1.996E+06	7.219E+05	0.383
8	44.00	4.344	7	2.301E+06	8.320E+05	0.383
9	40.80	5.919	8	3.041E+06	1.100E+06	0.383
10	33.80	5.270	9	3.594E+06	1.300E+06	0.383
1	33.03	3.987	10	6.713E+06	2.427E+06	0.383
			11	2.357E+07	1.010E+07	0.167
12	30.03	4.130				

■番号6 分離建屋

規模:88.6m(NS)×65.3m(EW)、総重量:約2,760,000kN

NS方向

固有周期 水平:0.171秒 鉛直:0.077秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ¡
1	85.89	0.459				
2	82.19	2.484	1	1.175E+05	4.440E+04	0.323
3	74.09	5.277	2	7.506E+05	2.836E+05	0.323
4	67.29	5.441	3	1.623E+06	6.132E+05	0.323
(5)	62.19	5.419	4	2.406E+06	9.092E+05	0.323
6	55.39	6.016	5	2.959E+06	1.118E+06	0.323
7	50.29	6.344	6	3.237E+06	1.223E+06	0.323
8	43.49	5.664	7	3.582E+06	1.353E+06	0.323
9	38.39	3.831	8	3.841E+06	1.451E+06	0.323
10	37.39	3.902	9	5.541E+06	2.094E+06	0.323
11)	34.39	3.834	10	2.357E+07	1.010E+07	0.167

EW方向

固有周期 水平:0.216秒 鉛直:0.077秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	85.89	0.459				
2	82.19	2.484	1	1.103E+05	3.936E+04	0.401
3	74.09	5.277	2	4.631E+05	1.653E+05	0.401
<u>(4)</u>	67.29	5.441	3	9.146E+05	3.265E+05	0.401
(5)	62.19	5.419	4	1.698E+06	6.062E+05	0.401
6	55.39	6.016	5	1.957E+06	6.985E+05	0.401
(7)	50.29	6.344	6	2.178E+06	7.774E+05	0.401
8	43.49	5.664	7	2.588E+06	9.238E+05	0.401
9	38.39	3.831	8	2.542E+06	9.075E+05	0.401
10	37.39	3.902	9	3.724E+06	1.329E+06	0.401
10	34.39	3.834	10	2.357E+07	1.010E+07	0.167

参考資料 地震力に対する安定性評価 有限要素モデルの物性値

R2.7.13 資料1-5 p213 再掲

解析対象施設

■番号7 精製建屋

規模:91.7m(NS)×76.7m(EW)、総重量:約2,900,000kN

NS方向

固有周期 水平·0.162秒 鉛直·0.071秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν;
1	79.20	1.451				
2	73.70	5.136	1	4.670E+05	1.733E+05	0.347
3	65.50	4.980	2	2.009E+06	7.454E+05	0.347
4	60.40	4.113	3	2.306E+06	8.557E+05	0.347
5	53.60	4.923	4	2.522E+06	9.359E+05	0.347
6	48.50	4.083	5	2.660E+06	9.871E+05	0.347
7	43.40	4.594	6	2.581E+06	9.578E+05	0.347
8	38.30	3.402	7	2.903E+06	1.077E+06	0.347
9	37.30	4.453	8	3.541E+06	1.314E+06	0.347
10	33.80	4.874	9	2.357E+07	1.010E+07	0.167

EW方向

固有周期 水平:0.188秒 鉛直:0.071秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド要素 番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ホ°アソン比 ν :
1	79.20	1.451				
2	73.70	5.136	1	7.993E+05	2.865E+05	0.395
3	65.50	4.980	2	1.639E+06	5.876E+05	0.395
4	60.40	4.113	3	1.634E+06	5.856E+05	0.395
(5)	53.60	4.923	4	1.727E+06	6.191E+05	0.395
6	48.50	4.083	5	1.925E+06	6.900E+05	0.395
7	43.40	4.594	6	2.149E+06	7.705E+05	0.395
8	38.30	3.402	7	2.306E+06	8.265E+05	0.395
9	37.30	4.453	8	3.327E+06	1.193E+06	0.395
10	33.80	4.874	9	2.357E+07	1.010E+07	0.167

■番号8 制御建屋

規模:41.9m(NS)×71.4m(EW)、総重量:約713,000kN

NS方向

固有周期 水平:0.183秒 鉛直:0.061秒

140771	,		7]\ .0.1001	9 町世.0.0	U112	
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	72.65	1.385				
2	66.25	4.841	1	8.091E+05	2.858E+05	0.416
3	61.25	1.063	2	8.340E+05	2.945E+05	0.416
4	54.75	4.606	3	8.634E+05	3.049E+05	0.416
(5)	47.65	4.470	4	9.585E+05	3.385E+05	0.416
6	40.05	5.473	5	1.372E+06	4.845E+05	0.416
7	38.05	2.448	6	2.357E+07	1.010E+07	0.167

EW方向

固有周期 水平:0.142秒 鉛直:0.061秒

- * * * * * * * * * * * * * * * * * * *	•		7](.0.1424	9 站 匝 . 0.00	7172	
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポプソン比 ν ;
1	72.65	1.385				
2	66.25	4.451	1	4.398E+05	1.622E+05	0.356
3	61.25	1.843	2	1.656E+06	6.104E+05	0.356
4	54.75	4.217	3	1.634E+06	6.023E+05	0.356
(5)	47.65	4.470	4	1.638E+06	6.038E+05	0.356
6	40.05	5.473	5	1.603E+06	5.909E+05	0.356
7	38.05	2.448	6	2.357E+07	1.010E+07	0.167

有限要素モデルの物性値

R2.7.13 資料1-5 p214 再掲

解析対象施設

■番号9 ウラン・プルトニウム混合脱硝建屋

規模:71.6m(NS)×57.5m(EW)、総重量:約1,120,000kN

NS方向 固有周期 水平:0.142秒 鉛直:0.059秒

		1 12 (E) (A) (1)	1	<u>эц ре</u> . 0.000		
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポ [°] アソン比 ν _'
1	70.80	3.603				
2	62.80	3.479	1	9.901E+05	3.618E+05	0.368
3	55.30	4.984	2	1.026E+06	3.749E+05	0.368
4	47.30	5.359	3	1.908E+06	6.971E+05	0.368
(5)	39.80	5.851	4	2.008E+06	7.339E+05	0.368
6	36.30	4.390	5	2.357E+07	1.010E+07	0.167

<u>EW方</u> [白	固有周期 2	水平:0.134秒	鉛直:0.059秒		
棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν∶
1	70.80	3.603				
2	62.80	3.479	1	1.215E+06	4.579E+05	0.326
3	55.30	4.984	2	1.361E+06	5.132E+05	0.326
4	47.30	5.359	3	2.104E+06	7.933E+05	0.326
(5)	39.80	5.851	4	2.406E+06	9.069E+05	0.326
6	36.30	4.390	5	2.357E+07	1.010E+07	0.167

■番号10 ウラン・プルトニウム混合酸化物貯蔵建屋

規模:54.9m(NS)×51.5m(EW)、総重量:約865,000kN

NS方向 固有周期 水平:0.124秒 鉛直:0.050秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	69.30	0.671				
(2)	63.30	5.041	1	3.025E+05	1.104E+05	0.371
3	55.30	5.125	2	1.852E+06	6.757E+05	0.371
(4)	50.30	2.792	3	2.332E+06	8.509E+05	0.371
5	46.80	5.079	4	2.347E+06	8.562E+05	0.371
6	41.80	2.933	5	2.612E+06	9.530E+05	0.371
(7)	38.30	3.202	6	2.854E+06	1.041E+06	0.371
8	37.50	3.324	7	2.854E+06	1.041E+06	0.371
9	35.00	3.059	8	2.357E+07	1.010E+07	0.167

EW方向 固有周期 水平:0.118秒 鉛直:0.	.050秒
---------------------------	-------

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	69.30	0.671				
2	63.30	5.041	1	7.458E+05	2.777E+05	0.343
3	55.30	5.125	2	2.048E+06	7.627E+05	0.343
4)	50.30	2.792	3	2.872E+06	1.069E+06	0.343
(5)	46.80	5.079	4	2.821E+06	1.050E+06	0.343
6	41.80	2.933	5	3.079E+06	1.146E+06	0.343
(7)	38.30	3.202	6	2.880E+06	1.072E+06	0.343
8	37.50	3.324	7	2.943E+06	1.096E+06	0.343
9	35.00	3.059	8	2.357E+07	1.010E+07	0.167

■番号11 北換気筒(基礎)

規模:35.0m(NS)×30.3m(EW)、総重量:約77,400kN (北換気筒(基礎)をモデル化し、北換気筒[総重量:約4,700kN]と北換気筒基礎の重量を考慮。)

有限要素モデルの物性値

R2.7.13 資料1-5 p215 再掲

解析対象施設

- ■番号12 非常用電源建屋(冷却塔及び燃料油貯蔵タンク含む)
 - •非常用電源建屋

規模:24.8m(NS)×48.8m(EW)、総重量:約246,000kN

NS方向 固有周期 水平:0.078秒 鉛直:0.035秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν;
1	68.80	1.662				
2	63.80	5.007	1	2.039E+06	8.280E+05	0.231
3	55.30	4.788	2	2.588E+06	1.051E+06	0.231
4)	50.00	6.248	3	3.603E+06	1.463E+06	0.231
5	47.50	3.040	4	2.357E+07	1.010E+07	0.167

EW方向 固有周期 水平:0.103秒 鉛直:0.035秒

<u> </u>						
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	68.80	1.662				
2	63.80	5.007	1	6.052E+05	2.121E+05	0.426
3	55.30	4.788	2	9.788E+05	3.431E+05	0.426
4)	50.00	6.248	3	1.963E+06	6.879E+05	0.426
5	47.50	3.040	4	2.357E+07	1.010E+07	0.167

•冷却塔

規模:30.0m(NS)×9.0m(EW)、総重量:約24,900kN NS方向

解析対象断面なし

EW方向 固有周期 水平:0.118秒 鉛直:0.036秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポプソン比 ν ;
1	61.20	1.397				
2	55.30	4.328	1	8.188E+04	2.847E+04	0.438
3	52.30	3.671	2	2.194E+07	9.400E+06	0.167

・燃料油貯蔵タンク

規模:29.4m(NS)×10.0m(EW)、総重量:約44,100kN NS方向

解析対象断面なし

EW方向 固有周期 水平:0.053秒 鉛直:0.015秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポプソン比 ν ;
1	53.80	5.921				
2	47.68	7.540	1	1.819E+06	6.260E+05	0.453
3	46.18	1.835	2	2.194E+07	9.400E+06	0.167

有限要素モデルの物性値

R2.7.13 資料1-5 p216 再掲

解析対象施設

■番号13 チャンネルボックス・バーナブルポイズン処理建屋

規模:61.0m(NS)×60.9m(EW)、総重量:約1,300,000kN

NS方向

固有周期 水平:0.120秒 鉛直:0.054秒

			(.0.1204)	э <u>н ре</u> . 0.00 г		
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ホ [°] アソン比 <i>v</i> ;
1	80.30	1.693				
2	71.60	5.136	1	8.986E+05	3.387E+05	0.326
3	63.30	6.182	2	1.880E+06	7.085E+05	0.326
4	55.30	8.710	3	2.308E+06	8.701E+05	0.326
(5)	48.30	6.305	4	3.269E+06	1.232E+06	0.326
6	47.53	3.875	5	3.529E+06	1.330E+06	0.326
7	45.03	3.765	6	2.357E+07	1.010E+07	0.167

EW方向 固有周期 水平:0.137秒 鉛直:0.054秒

棒要素 番号	標高 EL(m)	質量密度 <i>p</i> i(t/m³)	ソリッド要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	80.30	1.693				
2	71.60	5.136	1	3.214E+05	1.160E+05	0.385
3	63.30	6.182	2	1.325E+06	4.782E+05	0.385
4)	55.30	8.710	3	1.865E+06	6.733E+05	0.385
(5)	48.30	6.305	4	2.717E+06	9.808E+05	0.385
6	47.53	3.875	5	2.802E+06	1.011E+06	0.385
			6	2.357E+07	1.010E+07	0.167
7	45.03	3.765				

■番号14 第1ガラス固化体貯蔵建屋(東棟) 及び 番号15 第1ガラス固化体貯蔵建屋(西棟) 規模:47.0m(NS)×106.8m(EW)、総重量:約1,880,000kN

NS方向

固有周期 水平:0.371秒 鉛直:0.052秒

	<u> </u>	1 12 151 101	1 .0.0717	到		
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポ [°] アソン比 ν ;
1	93.70	0.588				
2	87.50	0.509	1	2.852E+04	9.573E+03	0.489
3	81.30	0.440	2	3.793E+04	1.273E+04	0.489
4)	75.10	0.508	3	4.748E+04	1.594E+04	0.489
(5)	68.90	3.173	4	5.458E+04	1.832E+04	0.489
6	61.50	1.946	5	1.630E+05	5.473E+04	0.489
(7)	55.30	10.787	6	1.659E+05	5.569E+04	0.489
8	47.20	8.368	7	6.306E+05	2.117E+05	0.489
9	38.20	7.981	8	6.052E+05	2.032E+05	0.489
10	35.20	3.888	9	2.357E+07	1.010E+07	0.167

EW方向

固有周期 水平:0.187秒 鉛直:0.051秒

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν _i
1	93.70	0.588				
2	87.50	0.509	1	1.600E+04	5.488E+03	0.457
3	81.30	0.440	2	3.089E+05	1.060E+05	0.457
4	75.10	0.508	3	3.089E+05	1.060E+05	0.457
(5)	68.90	3.173	4	4.771E+05	1.637E+05	0.457
6	61.50	1.946	5	1.012E+06	3.471E+05	0.457
(7)	55.30	10.787	6	1.283E+06	4.403E+05	0.457
8	47.20	8.368	7	3.254E+06	1.117E+06	0.457
9	38.20	7.981	8	3.293E+06	1.130E+06	0.457
10	35.20	3.888	9	2.357E+07	1.010E+07	0.167

参考資料 地震力に対する安定性評価 有限要素モデルの物性値

R2.7.13 資料1-5 p217 再掲

解析対象施設

■番号16 使用済燃料輸送容器管理建屋

規模:31.0m(NS)×95.9m(EW)、総重量:約606,000kN

NS方向

固有周期 水平:0.239秒 鉛直:0.061秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ル;
1	81.00	0.381				: :
2	75.00	0.326	1	1.216E+04	4.166E+03	0.460
3	70.20	0.902	2	1.622E+04	5.555E+03	0.460
4)	65.20	3.825	3	4.460E+04	1.528E+04	0.460
(5)	61.60	5.019	4	3.563E+06	1.221E+06	0.460
6	53.00	7.835	5	4.044E+06	1.385E+06	0.460
7	51.00	2.478	6	2.357E+07	1.010E+07	0.167

EW方向

固有周期 水平:0.237秒 鉛直:0.062秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν;
1	81.00	0.381				
2	75.00	0.326	1	1.255E+04	4.290E+03	0.462
3	70.20	0.902	2	1.573E+04	5.378E+03	0.462
4)	65.20	3.825	3	3.764E+04	1.287E+04	0.462
(5)	61.60	5.019	4	1.970E+06	6.737E+05	0.462
6	53.00	7.835	5	1.891E+06	6.466E+05	0.462
7	51.00	2.478	6	2.357E+07	1.010E+07	0.167

■番号17 使用済燃料輸送容器管理建屋(トレーラエリア)

規模:27.0m(NS)×38.0m(EW)、総重量:約125,000kN

NS方向

固有周期 水平:0.107秒 鉛直:0.031秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν _;
1	73.15	2.388				
2	63.90	2.863	1	4.877E+05	1.692E+05	0.441
3	55.30	4.079	2	9.184E+05	3.185E+05	0.441
4	53.30	3.097	3	2.194E+07	9.400E+06	0.167

FW方向

固有周期 水平:0.084秒 鉛直:0.031秒

	· · J		7(1:0:001) 超區:0:001)				
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;	
1	73.15	2.388					
2	63.90	2.863	1	1.021E+06	3.651E+05	0.399	
3	55.30	4.079	2	1.188E+06	4.247E+05	0.399	
4	53.30	3.097	3	2.194E+07	9.400E+06	0.167	

参考資料 地震力に対する安定性評価 有限要素モデルの物性値

R2.7.13 資料1-5 p218 再掲

解析対象施設

■番号22 ガラス固化体貯蔵建屋

規模:47.0m(NS)×46.0m(EW)、総重量:約691,000kN

NS方向 固有周期 水平·0.298秒 鉛直·0.054秒

INOV	ויין	凹作问册 小	、一. U.Z 30作り	<u> </u>	יבו	
棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポプソン比 ν ;
1	93.70	0.273				
2	87.50	0.239	1	1.693E+04	5.717E+03	0.481
3	81.30	0.221	2	2.571E+04	8.681E+03	0.481
(4)	75.10	0.267	3	3.198E+04	1.080E+04	0.481
(5)	68.90	2.897	4	3.386E+04	1.143E+04	0.481
6	60.80	2.066	5	1.750E+05	5.907E+04	0.481
(7)	55.30	7.794	6	1.933E+05	6.528E+04	0.481
8	47.20	8.392	7	8.250E+05	2.786E+05	0.481
9	38.20	7.364	8	7.897E+05	2.666E+05	0.481
10	35.70	3.056	9	2.357E+07	1.010E+07	0.167

EW方向	固有周期	水平:0.196秒	鉛直:0.054秒
L V V / J C J	E 17 17 17 17 17 17 17 17 17 17 17 17 17	711 1 . 0. 100 12	Ju E . 0.00 1 1/2

棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	93.70	0.273				
2	87.50	0.239	1	7.466E+03	2.570E+03	0.453
3	81.30	0.221	2	1.307E+05	4.497E+04	0.453
4)	75.10	0.267	3	1.307E+05	4.497E+04	0.453
(5)	68.90	2.897	4	1.493E+05	5.140E+04	0.453
6	60.80	2.066	5	6.813E+05	2.345E+05	0.453
7	55.30	7.794	6	7.249E+05	2.495E+05	0.453
8	47.20	8.392	7	2.491E+06	8.574E+05	0.453
9	38.20	7.364	8	2.431E+06	8.367E+05	0.453
10	35.70	3.056	9	2.357E+07	1.010E+07	0.167

■番号23 ガラス固化体貯蔵建屋B棟

規模:47.0m(NS)×34.1m(EW)、総重量:約529,000kN

NS方向 田右田期 水平·0.405孙 公古·0.042孙

140731	ק ר.	可用问别 水	平:0.405秒	鉛但:0.043₹	ツ	
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	93.70	0.188				
2	87.50	0.131	1	4.636E+03	1.551E+03	0.494
3	81.30	0.115	2	4.636E+03	1.551E+03	0.494
4	75.10	0.118	3	6.953E+03	2.326E+03	0.494
(5)	68.90	2.931	4	6.953E+03	2.326E+03	0.494
6	60.80	2.413	5	4.037E+05	1.351E+05	0.494
(7)	55.30	8.769	6	3.982E+05	1.332E+05	0.494
8	47.20	8.415	7	1.646E+06	5.509E+05	0.494
9	38.20	7.483	8	1.721E+06	5.759E+05	0.494
10	35.70	3.149	9	2.357E+07	1.010E+07	0.167

EW方向 固有周期 水平:0.236秒 鉛直:0.043秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	93.70	0.188				
2	87.50	0.131	1	1.533E+04	5.178E+03	0.480
3	81.30	0.115	2	1.916E+04	6.473E+03	0.480
(4)	75.10	0.118	3	2.108E+04	7.120E+03	0.480
(5)	68.90	2.931	4	2.108E+04	7.120E+03	0.480
6	60.80	2.413	5	8.177E+05	2.762E+05	0.480
(7)	55.30	8.769	6	8.633E+05	2.916E+05	0.480
8	47.20	8.415	7	2.014E+06	6.803E+05	0.480
9	38.20	7.483	8	2.303E+06	7.778E+05	0.480
10	35.70	3.149	9	2.357E+07	1.010E+07	0.167

参考資料 地震力に対する安定性評価 有限要素モデルの物性値

R2.7.13 資料1-5 p219 再掲

解析対象施設

■番号24 ガラス固化体受入れ建屋

規模:47.0m(NS)×52.0m(EW)、総重量:約678,000kN

NS方向 固有周期 水平:0.182秒 鉛直:0.063秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 <i>v</i> ;
1	77.70	2.967				
2	66.30	2.694	1	7.417E+05	2.651E+05	0.399
3	60.80	2.118	2	1.017E+06	3.636E+05	0.399
4	55.30	6.426	3	9.598E+05	3.431E+05	0.399
(5)	47.20	5.371	4	1.769E+06	6.322E+05	0.399
6	38.20	5.650	5	1.738E+06	6.213E+05	0.399
7	35.70	3.057	6	2.357E+07	1.010E+07	0.167

		Jump a really	AN
FW方向	问有周期	水平:0.159秒	鉛直:0.063秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 <i>レ</i> ;
1	77.70	2.967				
2	66.30	3.231	1	1.026E+06	3.785E+05	0.355
3	60.80	1.465	2	1.358E+06	5.011E+05	0.355
4)	55.30	6.541	3	8.313E+05	3.067E+05	0.355
(5)	47.20	5.371	4	2.528E+06	9.326E+05	0.355
6	38.20	5.650	5	2.619E+06	9.664E+05	0.355
7	35.70	3.057	6	2.357E+07	1.010E+07	0.167

■番号25 燃料加工建屋

規模:87.3m(NS)×88.3m(EW)、総重量:約4,640,000kN

NS方向 固有周期 水平:0.165秒 鉛直:0.066秒

	•			20000		
棒要素 番号	標高 EL(m)	質量密度 ρi(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν∶
1	76.30	3.447				
(2)	69.00	5.044	1	7.059E+05	2.559E+05	0.379
3	61.60	7.661	2	1.592E+06	5.773E+05	0.379
4	55.60	8.199	3	2.501E+06	9.069E+05	0.379
(5)	49.10	9.008	4	3.424E+06	1.241E+06	0.379
6	42.60	9.674	5	3.921E+06	1.422E+06	0.379
(7)	35.00	7.278	6	4.507E+06	1.634E+06	0.379
8	34.23	5.487	7	1.566E+07	5.676E+06	0.379
9	31.53	5.538	8	3.571E+07	1.530E+07	0.167

EW方向 固有周期 水平:0.159秒 鉛直:0.066秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 N;
1	76.30	3.447		· · ·		
2	69.00	5.044	1	1.525E+06	5.579E+05	0.367
3	61.60	7.661	2	1.961E+06	7.173E+05	0.367
4)	55.60	8.199	3	2.668E+06	9.760E+05	0.367
(5)	49.10	9.008	4	3.241E+06	1.185E+06	0.367
6	42.60	9.674	5	4.011E+06	1.467E+06	0.367
(7)	35.00	7.278	6	4.840E+06	1.770E+06	0.367
8	34.23	5.487	7	1.961E+07	7.172E+06	0.367
9	31.53	5.538	8	3.571E+07	1.530E+07	0.167

参考資料 地震力に対する安定性評価

有限要素モデルの物性値

R2.7.13 資料1-5 p220 再掲

解析対象施設

■番号26 緊急時対策建屋

規模:58.0m(NS)×74.0m(EW)、総重量:約1,140,000kN

NS方向 固有周期 水平:0.094秒 鉛直:0.041秒

	_					
棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	71.60	2.343		: :		
2	63.80	5.328	1		4.628E+05	0.375
(3)	55.50	7.937	2	1.868E+06	6.793E+05	0.375
(4)	47.20	8.333	3	2.196E+06	7.985E+05	0.375
5	43.70	4.714	4	2.380E+07	1.020E+07	0.167

EW方向	田右田邯	ત્રમ આ ∙∪ ∪∪ડ£/∖	外 店 ⋅0.041秒
	迫有周期	水平:0.093秒	鉛直:0.041秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	71.60	2.954				
2	63.80	5.328	1	2.134E+06	7.705E+05	0.385
3	55.50	7.937	2	1.721E+06	6.212E+05	0.385
(4)	47.20	8.333	3	2.232E+06	8.056E+05	0.385
5	43.70	4.714	4	2.380E+07	1.020E+07	0.167

■番号27 第1保管庫・貯水所

規模:52.0m(NS)×113.0m(EW)、総重量:約1,300,000kN

NS方向 固有周期 水平:0.075秒 鉛直:0.029秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m3)	ソリッド要素番号	弾性係数 Ei(kN/m2)	せん断 弾性係数 Gi(kN/m2)	ポプソン比 ν i
1	69.75	0.398				
2	62.95	2.781	1	1.625E+05	5.819E+04	0.396
3	55.15	6.888	2	7.251E+05	2.597E+05	0.396
(4)	47.65	8.747	3	4.647E+06	1.664E+06	0.396
(5)	44.65	3.673	4	2.380E+07	1.020E+07	0.167

EW方向 固有周期 水平:0.071秒 鉛直:0.029秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m3)	ソリッド 要素番号	弾性係数 Ei(kN/m2)	せん断 弾性係数 Gi(kN/m2)	ポアソン比 νi
1	69.75	0.398				
(2)	62.95	2.781	1	1.113E+05	3.998E+04	0.392
(3)	55.15	6.888	2	1.030E+06	3.699E+05	0.392
4)	47.65	8.747	3	3.156E+06	1.133E+06	0.392
l			4	2.380E+07	1.020E+07	0.167
5	44.65	3.673				

■番号28 第2保管庫・貯水所

番号27 第1保管庫・貯水所と同じ(標高を除く)

参考資料 地震力に対する安定性評価

有限要素モデルの物性値

R2.7.13 資料1-5 p221 再掲

モデル化を考慮している小規模施設

■番号19 使用済燃料の受入れ施設及び貯蔵施設用安全 冷却水系冷却塔B(基礎)

規模:40.7m(NS)×29.4m(EW)、総重量:約218,000kN

EW方向 固有周期 水平:0.106秒 鉛直:0.049秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	61.75	1.278				
2	55.30	5.139	1	1.201E+05	4.566E+04	0.315
(3)	48.70	5.105	2	1.744E+06	6.632E+05	0.315
4)	42.60	4.440	3	2.273E+06	8.641E+05	0.315
5	40.60	2.616	4	2.357E+07	1.010E+07	0.167

NS方向:解析対象断面なし

■番号21 再処理設備本体用安全冷却水系冷却塔B(基礎) 規模:28.0m(NS)×39.0m(EW)、総重量:約57,300kN

NS方向 固有周期 水平:0.100秒 鉛直:0.039秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν;
1	62.97	1.282				
(2)	55.30	2.366	1	1.210E+05	4.333E+04	0.397
			2	2.194E+07	9.400E+06	0.167
3	53.80	1.704				

EW方向:解析対象断面なし

■番号20 第1非常用ディーゼル発電設備用重油タンク室 規模:22.4m(NS)×18.6m(EW)、総重量:約77,900kN

EW方向 固有周期 水平:0.048秒 鉛直:0.021秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポプソン比 ν ;
1	55.30	8.615				
2	47.70	8.605	1	3.969E+06	1.488E+06	0.333
3	46.20	1.838	2	2.357E+07	1.010E+07	0.167

NS方向:解析対象断面なし

■番号29 再処理設備本体用安全冷却水系冷却塔A(基礎) 規模:28.0m(NS)×39.0m(EW)、総重量:約57,300kN

EW方向 固有周期 水平:0.096秒 鉛直:0.039秒

棒要素 番号	標高 EL(m)	質量密度 ρ i(t/m³)	ソリッド 要素番号	弾性係数 Ei(kN/m²)	せん断 弾性係数 Gi(kN/m²)	ポアソン比 ν ;
1	62.97	1.282				
2	55.30	2.366	1	1.281E+05	4.612E+04	0.389
3	53.80	1.704	2	2.194E+07	9.400E+06	0.167

NS方向:解析対象断面なし

その他の小規模施設の規模及び総重量

R2.7.13 資料1-5 p222 再掲

その他の小規模施設

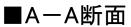
■番号18 使用済燃料の受入れ施設及び貯蔵施設用安全冷却水系冷却塔A(基礎)

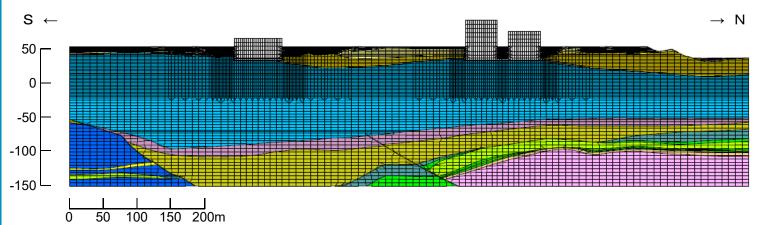
規模:29.4m(NS)×38.7m(EW)、総重量:約89,500kN

■番号26 重油貯槽

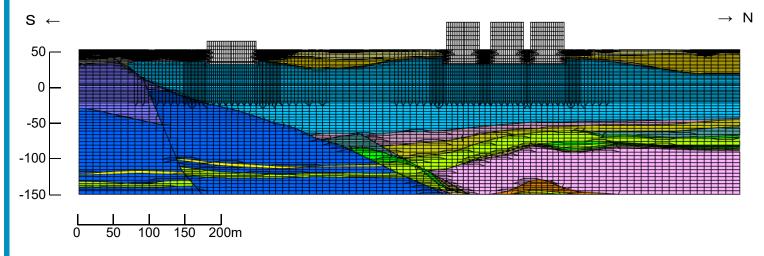
規模: 18.0m(NS) × 19.0m(EW)、総重量: 約57,400kN

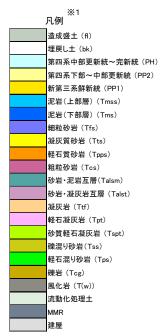
■番号27 第1軽油貯槽


規模: 19.0m(NS)×18.0m(EW)×2、総重量:約115,600kN

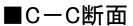

■番号28 第2軽油貯槽

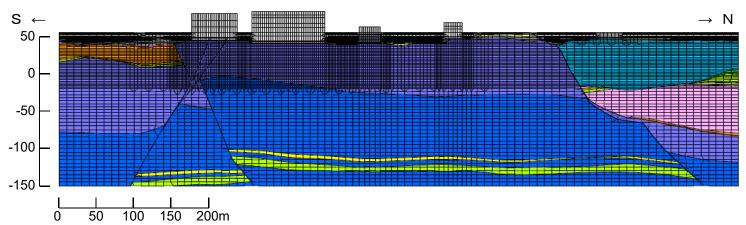
規模:19.0m(NS)×18.0m(EW)×2、総重量:約115,600kN


R2.7.13 資料1-5 p223 再掲



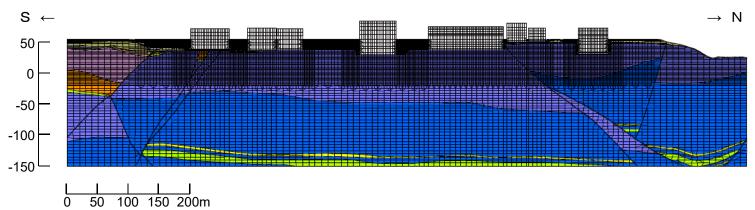
■B一B断面



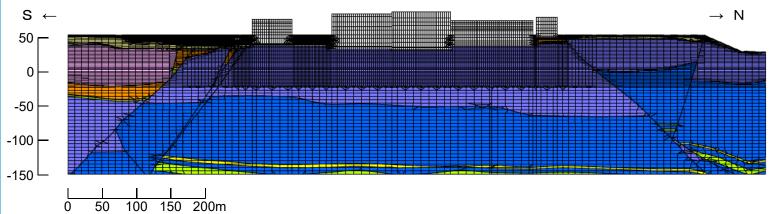


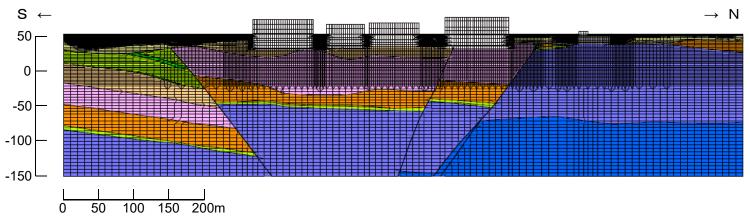
※1 解析用地盤分類に基づく表示

R2.7.13 資料1-5 p224 再掲



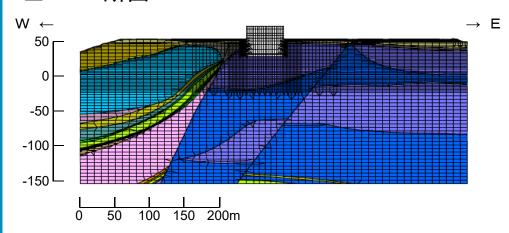
凡例 造成盛土(fl) 埋戻し土 (bk) 第四系中部更新統~完新統(PH) 第四系下部~中部更新統(PP2) 新第三系鮮新統 (PP1) 泥岩(上部層) (Tmss) 泥岩(下部層)(Tms) 細粒砂岩(Tfs) 凝灰質砂岩(Tts) 軽石質砂岩(Tpps) 粗粒砂岩(Tcs) 砂岩·泥岩互層(Talsm) 砂岩·凝灰岩互層(Talst) 凝灰岩(Ttf) 軽石凝灰岩(Tpt) 砂質軽石凝灰岩(Tspt) 礫混り砂岩(Tss) 軽石混り砂岩(Tps) 礫岩(Tcg) 風化岩 (T(w)) 流動化処理土 MMR 建屋 ※1 解析用地盤分類に基づく表示

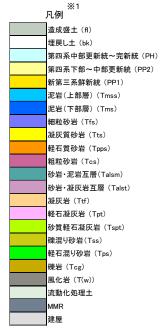

■D一D断面


R2.7.13 資料1-5 p225 再掲



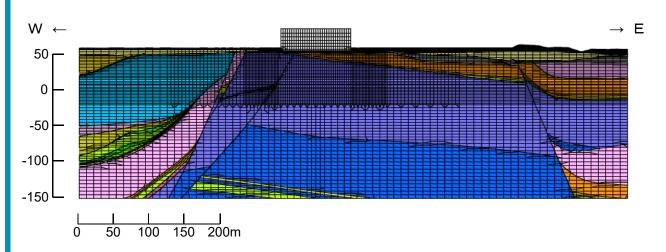
■F一F断面


R2.7.13 資料1-5 p226 再掲

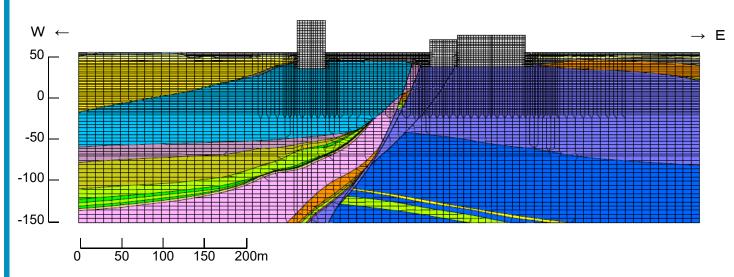


■F'-F'断面

■G一G断面

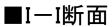


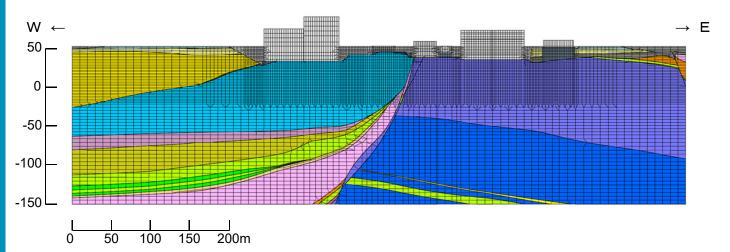
※1 解析用地盤分類に基づく表示


R2.7.13 資料1-5 p227 再掲

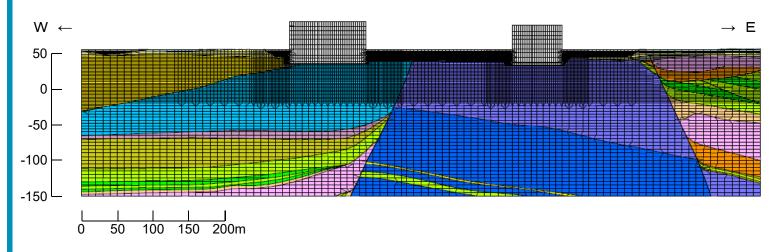
■G'-G'断面

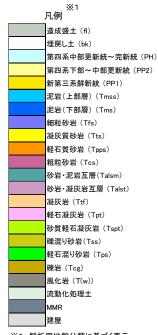
■H一H断面



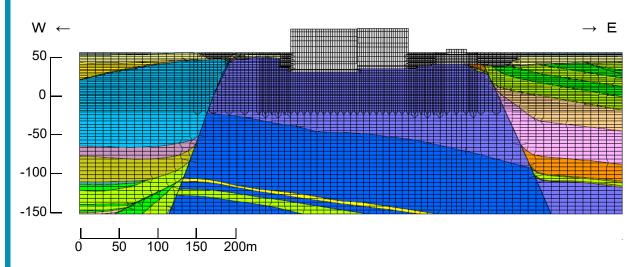


※1 解析用地盤分類に基づく表示

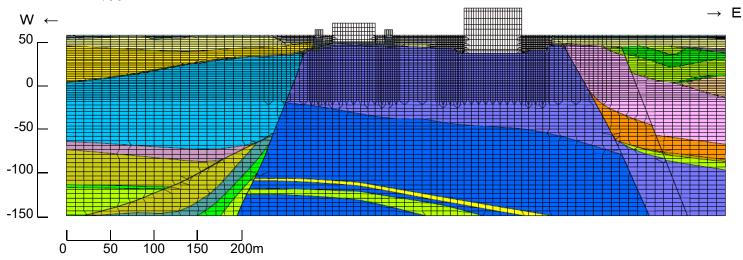

R2.7.13 資料1-5 p228 再掲



■J一J断面

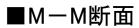


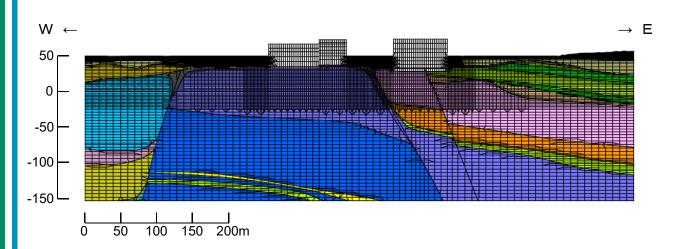
※1 解析用地盤分類に基づく表示


R2.7.13 資料1-5 p229 再掲

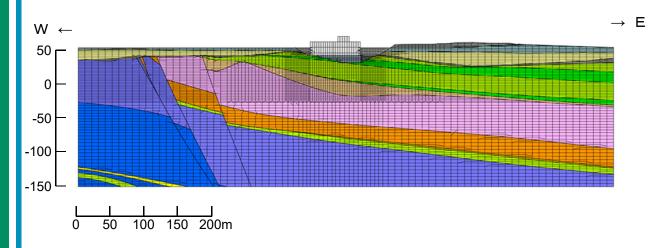
■K一K断面

■L一L断面

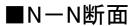


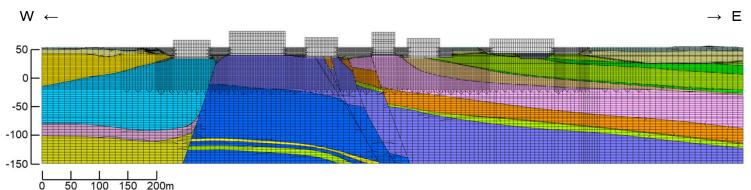


※1 解析用地盤分類に基づく表示

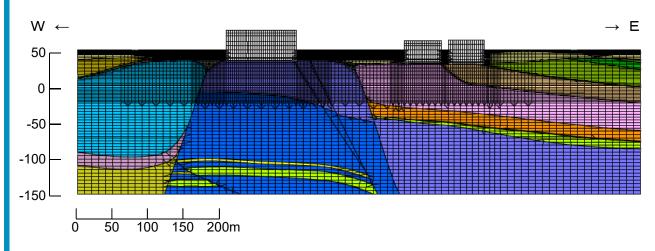

R2.7.13 資料1-5 p230 再掲

■M'-M'断面

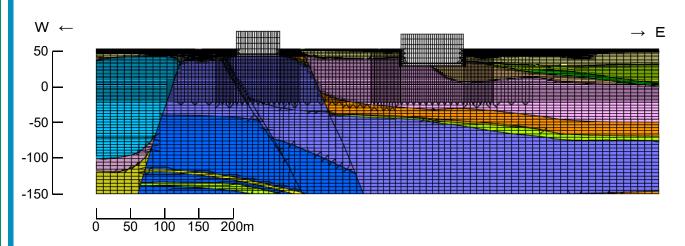

凡例 ^{※1}

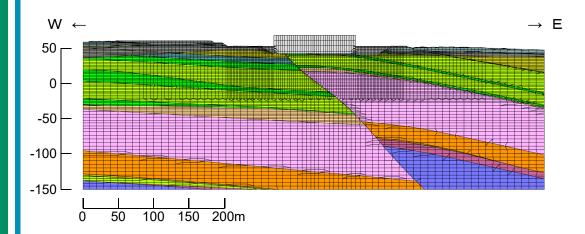


※1 解析用地盤分類に基づく表示

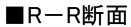

R2.7.13 資料1-5 p231 再掲

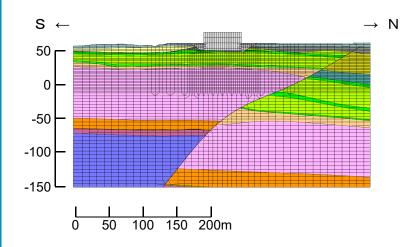
■O一O断面


凡例 ^{※1}


R2.7.13 資料1-5 p232 再掲

■Q一Q断面


凡例 ^{※1}



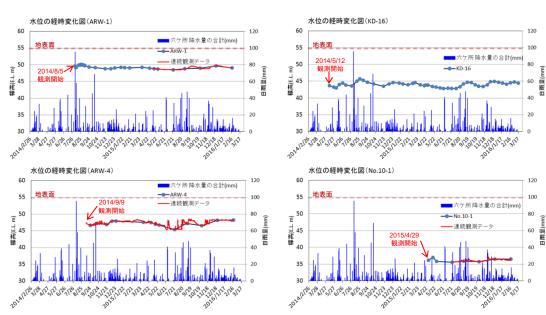
※1 解析用地盤分類に基づく表示

R2.7.13 資料1-5 p233 再掲

凡例 ^{※1}

※1 解析用地盤分類に基づく表示

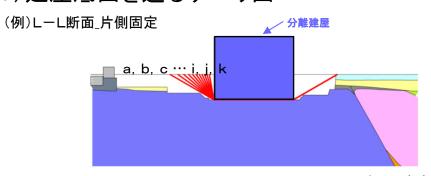
地下水位観測結果

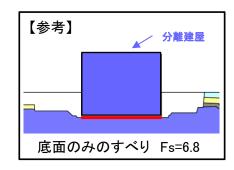

R2.7.13 資料1-5 p234 再掲

■地下水位観測孔位置

500 1000 m 地下水位観測孔(データ提示) ● 地下水位観測孔

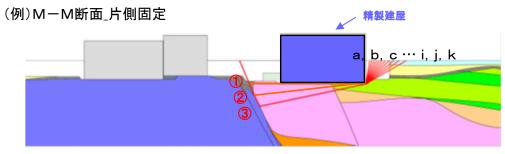
■地下水位データ

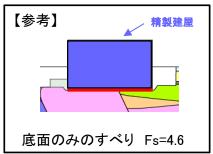

※日降水量は、地域気象観測システム[気象庁: 六ヶ所観測所]による。


敷地内において、地下水位観測を実施しており、地下水位は地表面(EL+55m)以下であることを確認している。 なお、建屋底面にサブドレンを設置し恒常的に地下水位を低下させている。

R2.7.13 資料1-5 p235 再掲

基礎地盤を通るすべり面の設定 1)建屋底面を通るすべり面





すべり安全率 一覧

а	b	С	d	е	f	g	h	i	j	k
5.4	5.7	6.0	6.2	6.4	6.6	6.7	6.8	6.8	6.9	6.9

2)断層を通るすべり面

すべり安全率 一覧

	а	b	С	d	е	f	g	h	i	j	k
1	4.1	4.1	4.1	4.1	4.1	4.0	4.0	3.9	3.9	3.9	3.8
2	4.7	4.7	4.8	4.7	4.7	4.7	4.6	4.6	4.5	4.4	4.3
3	7.1	7.0	7.0	6.9	6.8	6.7	6.6	6.4	6.3	6.2	6.0

R2.7.13 資料1-5 p236 再掲

■再処理施設の基礎地盤のすべり評価

:最小すべり安全率

				<u> </u>					
解析対象断面			-A		Ss-B1	Ss-B2	Ss-B3	Ss-B4	Ss-B5
	(+,+)	(+,-)	(-,+)	(-,-)	(+,+)	(+,+)	(+,+)	(+,+)	(+,+)
A-A	10.3	9.9	10.6	10.5	11.4	14.5	10.9	9.9	10.6
	[18.91]	[18.91]	[28.19]	[28.19]	[7.02]	[9.77]	[8.15]	[12.37]	[9.42]
в-в	11.2	11.4	11.0	10.9	12.6	14.2	11.5	12.8	13.1
	[27.89]	[27.89]	[28.19]	[28.19]	[7.02]	[9.77]	[8.15]	[13.49]	[13.58]
c-c	10.1	10.1	10.1	9.9	13.2	12.8	11.1	8.6	11,1
<u> </u>	[19.39]	[19.39]	[27.82]	[27.82]	[6.97]	[10.25]	[8.11]	[12.32]	[9.37]
D-D	9.3	9.1	8.1	8.3	11.0	11.5	8.9	9.0	9.9
	[27.82]	[27.82]	[27.60]	[27.60]	[6.96]	[8.86]	[8.09]	[12.31]	[15.25]
E-E	10.1	10.1	10.7	10.1	14.8	13.0	11.5	9.7	11.3
	[19.38]	[19.38]	[19.38]	[19.38]	[6.96]	[10.24]	[8.09]	[12.31]	[9.36]
F-F	5.9	6.1	6.0	6.0	9.7	8.2	8.1	5.7	6.5
	[19.38]	[19.37]	[27.81]	[27.81]	[5.88]	[6.38]	[13.52]	[12.31]	[9.35]
F' —F'	5.5	5.4	5.4	5.3	6.3	6.9	5.3	5.0	5.3
	[18.84]	[18.84]	[28.12]	[28.12]	[6.96]	[8.87]	[8.09]	[15.89]	[9.37]
G-G	9.6	9.4	10.3	10.2	10.3	10.9	12.2	12.1	9.2
3	[19.37]	[19.37]	[18.84]	[18.84]	[5.61]	[11.11]	[17.33]	[18.62]	[11.80]
G' −G'	16.7	16.7	16.9	16.8	17.8	19.1	24.3	21.6	17.5
4 4	[19.39]	[19.39]	[19.39]	[19.39]	[5.62]	[8.69]	[9.81]	[12.69]	[11.81]
н-н	11.0	10.9	11.7	11.6	11.4	11.8	14.8	14.8	9.7
** **	[19.38]	[19.38]	[22.28]	[22.29]	[5.63]	[11.12]	[17.34]	[18.62]	[11.81]
I—I	10.1	9.8	9.6	9.8	12.4	11.0	14.8	13.1	10.3
	[19.38]	[19.38]	[19.38]	[19.38]	[5.62]	[8.69]	[17.34]	[15.23]	[11.81]
J—J	8.4	8.6	7.9	8.1	9.4	8.9	10.8	9.6	8.9
- 0	[19.37]	[19.37]	[27.62]	[18.43]	[5.62]	[8.69]	[17.32]	[15.24]	[11.81]
к-к	10.1	10.2	9.3	9.4	12.7	10.2	14.2	11.7	10.6
	[59.05]	[59.04]	[19.38]	[19.37]	[5.62]	[8.69]	[17.34]	[15.25]	[11.82]
L-L	7.8	7.3	7.2	7.7	10.2	9.5	10.4	11.4	9.2
	[19.38]	[19.39]	[19.39]	[19.38]	[6.77]	[8.71]	[9.80]	[19.16]	[12.93]
$M\!-\!M$	6.5	6.6	5.8	5.7	8.3	8.2	8.0	7.5	6.3
	[27.61]	[28.12]	[27.82]	[27.83]	[7.67]	[8.70]	[15.98]	[14.83]	[11.81]
M' -M'	5.1	5.1	4.9	4.9	5.4	6.1	6.4	6.8	4.7
	[28.12]	[28.12]	[27.81]	[27.81]	[5.62]	[11.11]	[17.34]	[14.85]	[11.81]
N-N	7.1	7.0	6.4	6.5	8.4	8.5	9.9	9.7	6.7
., .,	[28.12]	[27.82]	[27.82]	[27.82]	[5.62]	[8.69]	[17.34]	[14.82]	[11.81]
0-0	7.6	7.5	7.3	7.3	7.8	9.5	10.0	9.5	6.4
	[28.12]	[28.12]	[27.81]	[27.81]	[5.62]	[8.69]	[15.95]	[18.62]	[11.81]
P-P	9.0	7.8	7.9	9.0	9.4	10.2	12.0	11.0	8.1
	[19.39]	[19.39]	[19.39]	[27.81]	[5.62]	[8.70]	[7.10]	[12.70]	[11.82]
Q-Q	7.1	6.9	6.7	6.8	8.8	8.4	11.6	9.8	7.7
	[19.39]	[19.39]	[19.39]	[19.39]	[5.62]	[8.70]	[6.99]	[12.69]	[11.82]
R-R	5.5	5.8	6.5	6.1	9.9	8.4	7.8	7.1	8.5
11 11	[19.39]	[19.39]	[19.39]	[19.39]	[6.97]	[10.23]	[8.08]	[12.32]	[9.32]

[]は発生時刻(秒)

R2.7.13 資料1-5 p237 加除修正

■再処理施設の基礎地盤のすべり評価

:最

:最小すべり安全率

一口に 2.10 の 全体 2.10 の 1.10 回												18(1°) 1)SIF				
AT I A NOT	Ss	-C1		Ss	-C2			Ss-	-C3			Ss-	-C5			
解析対象断面	(+,+)	(-,+)	NS(+,+)×1	NS(-,+) <u></u> × 1	EW(+,+)%2	EW(-,+)×2	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)	(+,+)	(+,-)	(-,+)	(-,-)		
Α Α	8.6	6.9	18.0	19.9	11.5	14.0	16.8	16.3	12.9	13.7	9.9	10.4	9.1	8.9		
A-A	[7.78]	[7.77]	[15.03]	[14.24]	[14.61]	[14.61]	[11.04]	[8.90]	[11.01]	[9.98]	[10.54]	[10.54]	[15.85]	[15.86]		
в-в	10.6	8.3	20.3	20.0	11.9	17.3	16.6	15.4	14.2	13.7	11.7	11.7	10.5	10.3		
	[7.57]	[7.77]	[15.03]	[14.24]	[14.61]	[13.93]	[11.06]	[8.83]	[11.04]	[8.23]	[10.54]	[10.54]	[15.85]	[15.85]		
c-c	6.4	6.9	19.6	19.1	12.8	12.5	16.0	16.4	13.5	14.0	9.0	8.9	86	8.7		
	[7.67]	[7.67]	[14.97]	[14.97]	[14.57]	[14.57]	[7.95]	[7.95]	[8.17]	[8.17]	[10.49]	[10.49]	[10.49]	[10.49]		
$D \! - \! D$	7.2 [7.71]	6.5 [7.71]	14.4 [14.99]	16.9 [14.18]	10.8 [14.55]	12.4 [14.55]	12.9 [10.99]	14.5 [7.94]	11.2 [7.95]	11.4 [8.16]	8.7 [10.48]	9.0 [10.48]	8.5 [15.79]	8.5 [15.79]		
	7.4	7.7	21.4	21.4	13.5	12.5	16.3	17.6	14.5	15.7	10.40]	10.40]	9.6	9.5		
E-E	[7.66]	[7.66]	[14.19]	[14.97]	[14.55]	[14.55]	[8.77]	[8.77]	[8.16]	[8.16]	[10.47]	[10.48]	[10.48]	[10.47]		
F-F	4.7	5.4	10.8	10.6	10.6	8.4	10.8	9.2	8.1	8.8	6.7	6.7	5.6	5.7		
F-F	[7.66]	[7.66]	[14.18]	[14.98]	[14.55]	[14.55]	[7.94]	[10.96]	[9.91]	[7.92]	[15.78]	[15.78]	[10.47]	[10.47]		
F' -F'	4.7	4.5	11.9	11.8	6.1	6.6	8.1	8.8	.6	7.1	5.1	5.0	5.2	5.4		
r -r	[7.67]	[7.66]	[14.98]	[16.27]	[14.55]	[14.55]	[8.03]	[8.77]	[10.97]	[8.17]	[10.48]	[10.48]	[10.48]	[10.48]		
G-G	7.3	7.7	16.9	18.1	12.5	10.3	14.5	15.5	13.1	14.5	9.5	9.5	9.0	9.1		
_ u u	[7.65]	[7.65]	[14.18]	[14.97]	[14.55]	[14.55]	[7.93]	[10.96]	[9.91]	[10.98]	[15.78]	[15.78]	[10.47]	[10.47]		
G' -G'	13.5	13.6	29.8	31.0	21.1	21.2	24.4	24.6	26.5	26.6	16.8	16.7	16.1	16.4		
	[7.66]	[7.66]	[14.20]	[14.20]	[14.57]	[14.57]	[7.95]	[8.03]	[8.17]	[7.89]	[10.48]	[10.48]	[10.48]	[10.48]		
н-н	7.9 [7.66]	8.5	20.3	21.3	14.9	13.9	14.1	16.2	15.2	17.8	11.5	11.4	10.1	10.2		
	8.3	[7.66] 7.9	[16.28] 21.9	[14.99] 20.7	[14.56] 11.5	[14.55] 12.3	[8.77] 16.6	[8.77] 16.2	[8.16] 16.0	[8.16] 15.5	[10.48] 10.0	[10.48] 10.1	[10.48] 10.2	[10.48] 10.1		
I—I	[7.66]	[7.66]	[14.19]	[14.19]	[14.56]	[14.56]	[8.77]	[8.77]	[8.16]	[9.92]	[10.48]	[10.48]	[10.48]	[10.48]		
	6.2	6.6	14.0	14.4	8.1	10.1	10.8	13.0	9.5	10.1	7.9	8.1	7.2	7.0		
J-J	[7.65]	[7.78]	[14.51]	[14.95]	[14.56]	[14.55]	[8.77]	[7.94]	[10.99]	[9.28]	[10.47]	[10.47]	[10.47]	[10.47]		
к-к	7.8	7.1	21.2	19.5	11.0	11.7	16.5	15.6	14.6	13.5	9.0	9.1	9.4	9.3		
K-K	[7.65]	[7.66]	[14.98]	[14.18]	[14.55]	[14.55]	[10.93]	[7.94]	[9.91]	[9.91]	[10.47]	[10.47]	[15.79]	[15.78]		
L-L	5.4	5.8	12.4	12.8	10.7	10.7	11.7	12.4	10.6	10.8	8.1	8.0	7.8	8.0		
	[7.71]	[7.71]	[14.99]	[14.98]	[14.86]	[14.86]	[10.97]	[10.97]	[7.92]	[7.92]	[10.48]	[10.48]	[10.48]	[10.48]		
м-м	3.8	4.8	10.9	11.6	10.4	8.1	11.4	9.7	7.8	8.3	6.6	6.5	6.9	6.7		
	[7.72]	[7.72]	[14.19]	[14.99]	[14.86]	[14.86]	[8.84]	[10.98]	[8.17]	[7.93]	[15.79]	[15.79]	[10.48]	[10.48]		
м' –м'	3.7 [7.67]	4.8	9.8	8.9	9.2	5.9	7.1	8.1	6.2	7.5	5.3	5.5	4.9	4.9		
	4.9	[7.67] 5.6	[14.19] 14.0	[14.98] 17.5	[13.88] 11.5	[14.56] 8.1	[8.77] 12.4	[8.03] 13.1	[8.16] 8.7	[10.85] 10.1	[4.22] 7.0	[15.79] 7.5	[10.48] 6.5	[10.48] 6.3		
N-N	[7.67]	[7.67]	[14.18]	[14.96]	[14.55]	[14.56]	[8.78]	[10.96]	8.7 [8.17]	[8.16]	[10.48]	[10.48]	[10.48]	[10.48]		
	5.4	6.7	14.3	16.9	11.2	8.0	10.6	11.5	9.3	11.6	7.4	7.4	6.4	6.3		
0-0	[7.66]	[7.66]	[16.27]	[14.98]	[14.55]	[14.55]	[8.77]	[8.04]	[8.16]	[10.98]	[4.22]	[4.22]	[10.47]	[10.47]		
	6.4	6.7	18.8	18.7	11.9	10.7	11.1	11.5	12.0	12.2	8.4	8.7	8.4	8.1		
P-P	[7.66]	[7.66]	[16.16]	[16.29]	[14.57]	[14.56]	[8.78]	[8.78]	[8.17]	[8.17]	[10.48]	[10.48]	[10.48]	[10.48]		
Q-Q	6.8	6.6	13.7	14.9	10.0	10.0	11.7	11.9	12.0	12.0	7.3	7.3	7.4	7.5		
<u> </u>	[7.66]	[7.66]	[14.97]	[14.97]	[14.57]	[14.57]	[8.04]	[8.04]	[7.89]	[7.89]	[10.49]	[10.49]	[10.49]	[10.49]		
R-R	6.0	6.1	14.0	11.7	9.0	10.0	10.8	10.8	10.3	10.9	6.7	6.7	6.1	6.5		
'` '`	[7.67]	[7.66]	[14.19]	[14.97]	[14.56]	[14.57]	[8.78]	[8.18]	[9.93]	[7.89]	[10.48]	[10.48]	[10.48]	[10.48]		

※1:ダム軸方向※2:上下流方向[]は発生時刻(秒)

R2.7.13 資料1-5 p238 加除修正

■廃棄物管理施設の基礎地盤のすべり評価

:最小すべり安全率

		Ss	-A		Ss-B1	Ss-B2	Ss-B3	Ss-B4	Ss-B5
断面	(+,+)	(+,-)	(-,+)	(-,-)	(+,+)	(+,+)	(+,+)	(+,+)	(+,+)
Α Α	10.3	9.9	10.6	10.5	11.4	14.5	10.9	9.9	10.6
A-A	[18.91]	[18.91]	[28.19]	[28.19]	[7.02]	[9.77]	[8.15]	[12.37]	[9.42]
0	11.7	11.5	11.9	11.7	15.1	15.9	14.2	9.6	10.4
B-B	[28.18]	[28.18]	[27.88]	[27.88]	[5.95]	[6.62]	[13.59]	[12.37]	[9.41]
с-с	14.0	13.2	13.2	12.9	20.5	19.0	15.3	11.9	16.1
	[19.42]	[19.42]	[59.09]	[27.84]	[7.00]	[6.43]	[8.14]	[12.32]	[9.36]
н-н	12.5	12.8	12.7	12.4	16.3	13.6	16.7	16.5	13.3
п-п	[27.85]	[27.85]	[27.85]	[27.85]	[5.66]	[8.73]	[15.99]	[18.67]	[11.86]
ī_ī	9.6	9.7	10.0	9.8	10.9	11.7	13.0	12.8	8.4
I—I	[28.18]	[28.18]	[28.18]	[28.18]	[5.68]	[11.17]	[7.16]	[15.29]	[11.87]

断面	Ss-C1			Ss-C2				Ss-C3				Ss-C5			
断曲	(+,+)	(-,+)	NS(+,+)×1	NS(-,+)×1	EW(+,+)※2	EW(-,+) 2	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)	(+,+)	(+,-)	(-,+)	(-,-)	
	8.6	6.9	18.0	19.9	11.5	14.0	16.8	16.3	12.9	13.7	9.9	10.4	9.1	8.9	
A-A	[7.78]	[7.77]	[15.03]	[14.24]	[14.61]	[14.61]	[11.04]	[8.90]	[11.01]	[9.98]	[10.54]	[10.54]	[15.85]	[15.86]	
ВВ	9.1	11.3	24.0	21.7	16.8	12.9	19.8	18.8	14.4	16.3	10.9	11.0	11.3	11.5	
В-В	[7.76]	[7.56]	[14.24]	[15.03]	[14.61]	[14.61]	[7.74]	[11.02]	[9.97]	[11.03]	[15.85]	[15.85]	[10.53]	[10.53]	
с-с	7.7	9.5	26.6	27.4	21.1	17.1	21.3	23.3	20.1	20.6	11.7	12.1	11.0	11.1	
U-0	[7.70]	[7.70]	[15.00]	[14.99]	[14.60]	[14.60]	[7.98]	[10.97]	[8.20]	[7.92]	[10.52]	[10.51]	[10.51]	[10.51]	
н-н	9.5	7.8	28.1	25.9	17.7	16.1	22.0	21.8	16.9	17.0	13.0	13.1	12.9	13.1	
"-"	[7.71]	[7.77]	[15.01]	[15.02]	[14.60]	[14.59]	[8.88]	[10.98]	[8.20]	[8.20]	[15.83]	[10.52]	[10.52]	[10.52]	
, ,	6.8	6.7	20.4	19.8	12.3	13.2	14.8	15.0	12.2	13.0	10.2	10.1	9.6	9.7	
I—I	[7.72]	[7.72]	[16.33]	[15.04]	[14.61]	[14.60]	[8.82]	[8.82]	[8.22]	[8.22]	[15.84]	[10.53]	[10.53]	[10.53]	

※1:ダム軸方向※2:上下流方向[]は発生時刻(秒)

廃棄物管理施設の基礎地盤のすべり安全率は、いずれも評価基準値1.5以上を十分に満足していることを確認した。

R2.7.13 資料1-5 p239 加除修正

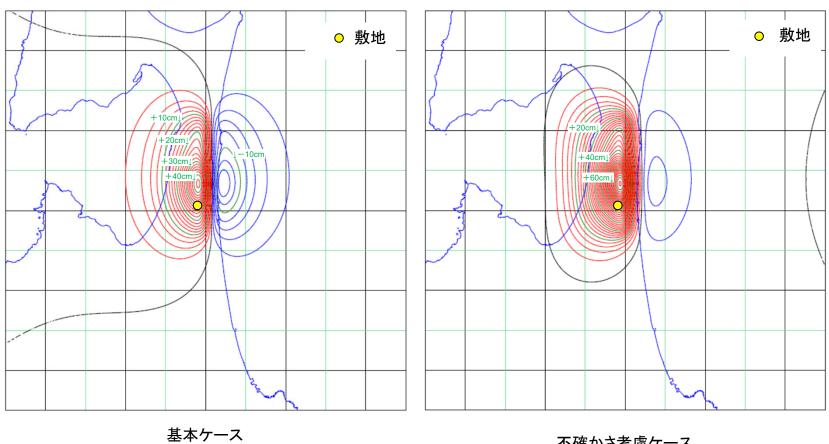
■燃料加工施設の基礎地盤のすべり評価

:最小すべり安全率

断面		Ss	-A		Ss-B1	Ss-B2	Ss-B3	Ss-B4	Ss-B5
断曲	(+,+)	(+,-)	(-,+)	(-,-)	(+,+)	(+,+)	(+,+)	(+,+)	(+,+)
F-F	6.2	6.2	6.3	6.3	9.1	8.9	7.1	5.5	6.1
F-F	[27.81]	[27.81]	[27.81]	[27.81]	[5.87]	[8.86]	[8.08]	[12.30]	[9.34]
F' —F'	5.5	5.4	5.4	5.3	6.3	6.9	5.3	5.0	5.3
F -F	[18.84]	[18.84]	[28.12]	[28.12]	[6.96]	[8.87]	[8.09]	[15.89]	[9.37]
M' -M'	5.1	5.1	4.9	4.9	5.4	6.1	6.4	6.8	4.7
M -M	[28.12]	[28.12]	[27.81]	[27.81]	[5.62]	[11.11]	[17.34]	[14.85]	[11.81]
N. N.	7.0	7.0	7.2	6.9	8.3	8.0	9.8	9.1	7.5
N-N	[27.81]	[27.81]	[19.38]	[19.38]	[5.61]	[8.69]	[9.80]	[15.21]	[11.80]
P-P	5.9	5.9	6.1	6.1	7.8	6.8	8.5	8.2	6.5
P-P	[27.82]	[27.82]	[27.60]	[27.60]	[6.77]	[8.69]	[17.34]	[14.86]	[11.80]
0.0	7.1	6.9	6.7	6.8	8.8	8.4	11.6	9.8	7.7
Q-Q	[19.39]	[19.39]	[19.39]	[19.39]	[5.62]	[8.70]	[6.99]	[12.69]	[11.82]
D.D.	5.5	5.8	6.5	6.1	9.9	8.4	7.8	7.1	8.5
R-R	[19.39]	[19.39]	[19.39]	[19.39]	[6.97]	[10.23]	[8.08]	[12.32]	[9.32]

断面	Ss-	-C1		Ss-	-C2			Ss-	-C3			Ss-	-C5	
的田	(+,+)	(-,+)	NS(+,+)×1	NS(-,+) <u></u> 1	EW(+,+)×2	EW(-,+) ※ 2	NS(+,+)	NS(-,+)	EW(+,+)	EW(-,+)	(+,+)	(+,-)	(-,+)	(-,-)
	4.6	4.4	12.8	13.3	7.6	7.9	10.5	10.2	8.6	8.7	6.3	6.4	6.4	6.4
F-F	[7.70]	[7.70]	[14.97]	[14.97]	[14.54]	[14.53]	[10.97]	[10.97]	[9.90]	[8.15]	[15.77]	[15.78]	[15.78]	[15.78]
F' —F'	4.7	4.5	11.9	11.8	6.1	6.6	8.1	8.8	7.6	7.1	5.1	5.0	5.2	5.4
F -F	[7.67]	[7.66]	[14.98]	[16.27]	[14.55]	[14.55]	[8.03]	[8.77]	[10.97]	[8.17]	[10.48]	[10.48]	[10.48]	[10.48]
M' -M'	3.7	4.8	9.8	8.9	9.2	5.9	7.1	8.1	6.2	7.5	5.3	5.5	4.9	4.9
M -M	[7.67]	[7.67]	[14.19]	[14.98]	[13.88]	[14.56]	[8.77]	[8.03]	[8.16]	[10.85]	[4.22]	[15.79]	[10.48]	[10.48]
N-N	6.1	5.8	14.5	13.0	9.1	9.9	11.2	11.2	9.8	8.8	7.0	7.0	7.3	7.3
N-N	[7.66]	[7.66]	[14.19]	[14.19]	[14.56]	[14.56]	[8.03]	[8.77]	[8.16]	[8.16]	[10.48]	[10.48]	[10.48]	[4.21]
P-P	4.2	4.0	12.4	14.5	7.7	7.8	9.2	10.4	8.1	8.2	6.5	6.5	6.2	6.2
P-P	[7.70]	[7.70]	[14.97]	[14.18]	[14.53]	[14.54]	[10.98]	[10.98]	[7.94]	[9.91]	[16.32]	[16.32]	[15.77]	[15.77]
Q-Q	6.8	6.6	13.7	14.9	10.0	10.0	11.7	11.9	12.0	12.0	7.3	7.3	7.4	7.5
Q-Q	[7.66]	[7.66]	[14.97]	[14.97]	[14.57]	[14.57]	[8.04]	[8.04]	[7.89]	[7.89]	[10.49]	[10.49]	[10.49]	[10.49]
R-R	6.0	6.1	14.0	11.7	9.0	10.0	10.8	10.8	10.3	10.9	6.7	6.7	6.1	6.5
K-K	[7.67]	[7.66]	[14.19]	[14.97]	[14.56]	[14.57]	[8.78]	[8.18]	[9.93]	[7.89]	[10.48]	[10.48]	[10.48]	[10.48]

※1:ダム軸方向※2:上下流方向【]は発生時刻(秒)

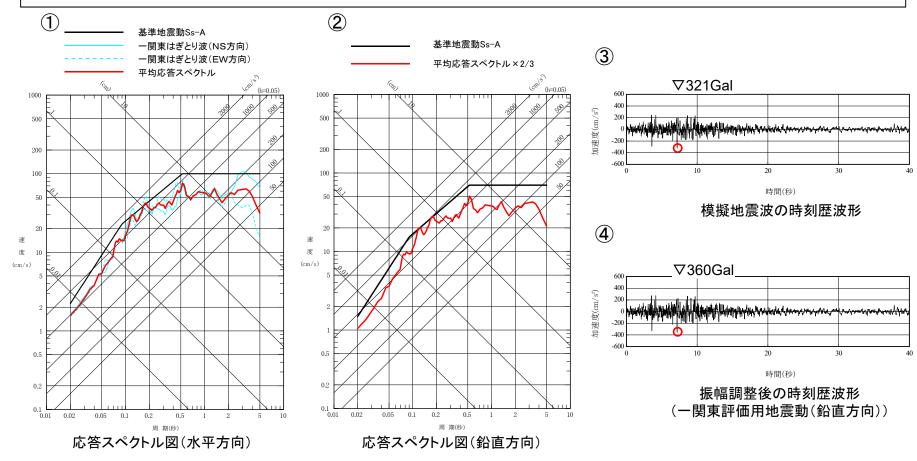

基礎地盤のすべり安全率は、いずれも評価基準値1.5以上を十分に満足していることを確認した。

地殻変動による基礎地盤の変形の影響評価

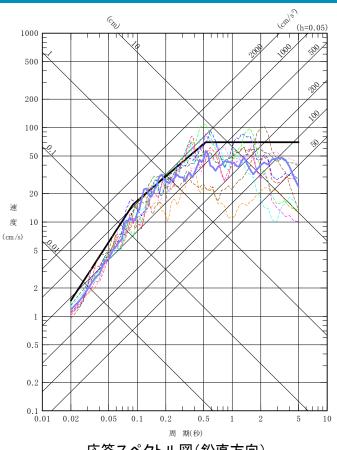
R2.7.13 資料1-5 p240 再掲

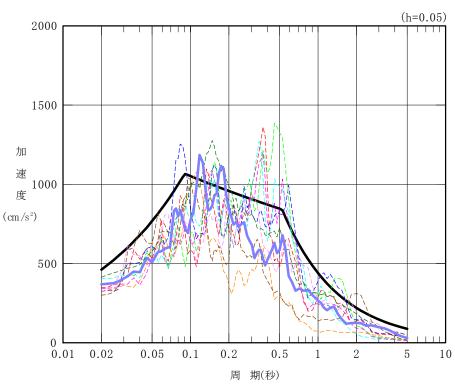
■鉛直変位分布図(平面)

不確かさ考慮ケース


※コンター間隔2cm

(赤:隆起側,青:沈降側,黒:0cm)


ー関東評価用地震動の設定方法


- ① NS方向及びEW方向のはぎとり解析により算定した基盤地震動の応答スペクトルを平均し、平均応答スペクトルを作成。
- ② 水平方向に対する鉛直方向の地震動の比2/3を考慮し、平均応答スペクトルを2/3倍した応答スペクトルを作成。
- ③ 一関観測点における岩手・宮城内陸地震の鉛直方向地中記録の位相を用いて、設定した応答スペクトルに適合するよう作成。
- ④ 基準地震動Ss-C4の最大加速度はNS方向540Gal及びEW方向500Galであり、これらの2/3がそれぞれ360Gal及び333Galであることから、作成した模擬地震波(321Gal)に保守性を考慮し、360Galに振幅調整を行った地震動を、一関東評価用地震動(鉛直方向)とする。

基準地震動Ssと一関東評価用地震動の比較

応答スペクトル図(鉛直方向)

応答スペクトル図(鉛直方向)

■基準地震動Ss-A 応答スペクトルに基づく基準地震動 ・・・・・・・基準地震動Ss-B1 出戸西方断層による地震[短周期レベルの不確かさケース、破壊開始点2] ・・・・・・・・基準地震動Ss-B2 出戸西方断層による地震[短周期レベルと傾斜角の不確かさを重畳させたケース、破壊開始点1] 基準地震動Ss-B3 出戸西方断層による地震[短周期レベルと傾斜角の不確かさを重畳させたケース、破壊開始点2] *********基準地震動Ss-B4 出戸西方断層による地震[短周期レベルと傾斜角の不確かさを重畳させたケース、破壊開始点3] ********基準地震動Ss-B5 出戸西方断層による地震[短周期レベルと傾斜角の不確かさを重畳させたケース、破壊開始点4] ******基準地震動Ss-C1 2004年北海道留萌支庁南部地震(K-NET港町) ・・・・・・・基準地震動Ss-C2 2008年岩手・宮城内陸地震(栗駒ダム[右岸地山]) --------基準地震動Ss-C3 2008年岩手・宮城内陸地震(KiK-net金ヶ崎) ******・・・基準地震動Ss-C5 標準応答スペクトルを考慮した地震動 一関東評価用地震動

参考文献

- (1)原子力発電所耐震設計技術指針JEAG4601-2008, 一般社団法人 日本電気協会 原子力規格委員会, 2008.
- (2)原子力発電所耐震設計技術指針JEAG4601-1987, 一般社団法人 日本電気協会 原子力規格委員会, 1987.
- (3)原子力発電所の基礎地盤及び周辺斜面の安定性評価技術く技術資料>, 土木学会 原子力土木委員会, 2009.
- (4)コンクリート標準示方書 設計編 2007年制定, 土木学会, 2007.
- (5)コンクリート標準示方書 昭和55年版, 土木学会, 1980.
- (6) 地盤調査の方法と解説、公益社団法人 地盤工学会, 2004.
- (7)土質試験法(第2回改訂版), 社団法人 土質工学会, 1979.
- (8) 岩の調査と試験, 社団法人 土質工学会, 1989.
- (9)岩石試料の速度測定要綱,物理探鉱技術協会,1962.
- (10)地盤材料試験の方法と解説、社団法人 地盤工学会, 2009.
- (11)桑原 拓一郎(2007):青森県上北平野に分布する白ベタテフラ(WP)のジルコン・フィッション・トラック年代、第四紀研究、110、5、p.271-289.
- (12) Matsu' ura, T., Furusawa, A., Shimogama, K., Goto, N., and Komatsubara, J.(2014): Late Quaternary tephrostratigraphy and cryptotephrostratigraphy of deep-sea sequences (Chikyu C9001C cores) as tools for marine terrace chronology in NE Japan, *Quaternary Geochronology*, 23, p.63-79.
- (13) Okada, Y. (1992):Internal deformation due to shear and tensile faults in a half-space, *Bulletin of the Seismological Society of America*, vol.82-2, p.1018-1040.
- (14) 気象庁: 地域気象観測システム[六ヶ所観測所](2014年2月~2016年3月)