

浜岡原子力発電所 震源を特定せず策定する地震動について (コメント回答)

2023年6月7日

基準地震動Ssの策定の全体像及び本資料における説明箇所

2022年4月15日第1041回審査会合及び 2023年2月24日第1117回審査会合コメント及び回答概要一覧

No.		回答概要	ページ
1	震源を特定せず策定する地震動の標準応答スペクトルに基づく地震動に関する補正申請において、断層モデルを用いた手法による地震動評価で用いる地下構造モデルとは異なる地下構造モデルが用いられているが、先行サイトの審査でもコメントしているとおりその理由の説明が必要であり、地下構造モデルの審査以降に相応な調査や検討、分析の追加が新たに行われてなければ地下構造モデルを新たに設定する妥当性が言えないこと、もし新たなデータや知見が得られたことにより新しく設定した地下構造モデルを用いるということであれば、これまで審査してきた断層モデルを用いた手法の地下構造モデルや地震動評価結果についても再度審査する必要が生じ、審査の長期化に繋がる部分もあることも踏まえて、標準応答スペクトルに基づく地震動の評価方針を説明すること。	標準応答スペクトルに基づく地震動の評価方針については、標準応 答スペクトルに基づく地震動の評価に用いる地下構造モデルについて、 補正申請から変更し、断層モデルを用いた手法による地震動評価の 統計的グリーン関数法で用いた地下構造モデル(SGFモデル)と同 じものを用いることとする。 また、先行サイトの審査を踏まえ、標準応答スペクトルに基づく地震 動の評価に用いる模擬地震動についても、補正申請から変更し、振 幅包絡線の経時変化をM7.0で設定して作成することとする。	第1117回 審査会合で 回答済
2	震源を特定せず策定する地震動でも、S波低速度層による地震動 の増幅を考慮した地震動評価を行うこと。その際には、どの程度の増 幅の考慮が必要かについても検討したうえで、反映方法を説明するこ と。	「標準応答スペクトルに基づく地震動」及び「2004年北海道留萌支 庁南部の地震の基盤地震動に基づく地震動」について、S波低速度 層による地震動の増幅を考慮することとし、「敷地ごとに震源を特定し て策定する地震動」の断層モデルを用いた手法で採用した増幅係数 を乗じる方法により、地震動の顕著な増幅を考慮する地震動評価を 行う。 考慮する増幅の程度に関し、増幅係数は、断層モデルを用いた手法 で採用したものを用い、S波低速度層の影響を受けるのは「増幅方 向」にあたる震源断層の一部と考えられるものの、震源断層を設定せ ず行う評価では「増幅方向」にあたる範囲を検討できないことを踏まえ、 震源断層から到来するすべての地震波が顕著に増幅すると仮定した 保守的な地震動評価を行う。	p.8,12,14, 15,80~87, 130,132
3	地域性を考慮する地震動について、何を重視して観測記録の収集 対象外とするのか、理由・考え方を整理して説明すること。	検討対象地震の震源域で事前に活断層の存在が指摘されていな かった主な要因に着目し、観測記録の収集対象外とする理由・考え 方を整理して説明する。	p.9,10,112, 128

第1117回 資料3

p.15 修正

目次

1 概要	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	•••••p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

1 概要 1 1 概要 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	••••p.133~
参考資料	•••••p.179~

No.2,3コメント回答

○「震源を特定せず策定する地震動」の策定に当たっては、「全国共通に考慮すべき地震動(標準応答スペクトル、2004年北海道 留萌支庁南部の地震の基盤地震動)」及び「地域性を考慮する地震動(2008年岩手・宮城内陸地震、2000年鳥取県西部 地震)」を検討する。

○震源を特定せず策定する地震動は、標準応答スペクトルと2004年北海道留萌支庁南部の地震の基盤地震動について、敷地の 一次元地下構造モデルを用いて評価した地震動(顕著な増幅を考慮しない)と地震動の顕著な増幅を考慮する地震動を考慮。

【標準応答スペクトルに基づく地震動】 (敷地の一次元地下構造モデルを用いて評価した地震動(顕著な増幅を考慮しない)) 標準応答スペクトルに基づく地震動は、標準応答スペクトルに適合させて作成した模擬地震動を、敷地の一次元地下構造モデル における地震基盤相当面に入力して、敷地の解放基盤表面における地震動を評価して設定。 (敷地の一次元地下構造モデルは、断層モデルを用いた手法による地震動評価における統計的グリーン関数法のために設定した一次元地下構造モデル(SGFモデル)を採用。 (加震基盤相当面は、敷地においてVs=2200m/s以上となるT.P.-3550m(Vs=2470m/s)に設定。

・詳細は、「2.1標準応答スペクトルに基づく地震動」参照。

○ 港町観測点の基盤相当面は、敷地において港町観測点の基盤のVs=938m/s以上となるT.P.-192m(Vs=960m/s)に設定。

<2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動の評価のイメージ>

・詳細は、「2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動」参照。

<1 概要> 全国共通に考慮すべき地震動 (顕著な増幅を考慮して評価した地震動)

【顕著な増幅を考慮して評価した地震動】 ○「標準応答スペクトルに基づく地震動」及び「2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動」について、S波低 速度層の影響により5号炉周辺の観測点のみで地震動の顕著な増幅が見られることを踏まえ、S波低速度層による地震動の増幅 を考慮することとし、「敷地ごとに震源を特定して策定する地震動」の断層モデルを用いた手法で採用した増幅係数を乗じる方法に より、地震動の顕著な増幅を考慮する地震動評価を実施。 ○ 増幅係数は、断層モデルを用いた手法で採用したもの</u>を用い、S波低速度層の影響を受けるのは「増幅方向」にあたる震源断層の 一部と考えられるものの、震源断層を設定せず行う評価では「増幅方向」にあたる範囲を検討できないことを踏まえ、<u>震源断層から到</u> 来するすべての地震波が顕著に増幅すると仮定した保守的な地震動評価を実施。具体的には、顕著な増幅を考慮しない解放 基盤表面における地震動の評価結果に増幅係数を乗じることにより、顕著な増幅を考慮した地震動を評価。

No.2コメント回答

<1 概要> 地域性を考慮する地震動 (2008年岩手・宮城内陸地震の震源域との地域性の比較検討結果)

第1117回 資料3 p.10 修正

No.3コメント回答

○ 上部に軟岩や火山岩、堆積層が厚く分布する地域で発生した地震とされる2008年岩手・宮城内陸地震の震源域と、浜岡原子力発電所の敷地及び敷 地周辺とについて、大局的な地体構造区分の違いを確認したうえで、地質分布、地形の特徴、活断層の分布、ひずみ集中帯、火山フロントとの位置関係 等を比較し、特徴が類似する場合には、観測記録の収集対象とする。

- 浜岡原子力発電所の敷地及び敷地周辺は、2008年岩手・宮城内陸地震の震源域で事前に活断層の存在が指摘されていなかった主な要因と考えられる 特徴のうち、<u>堆積岩類が厚く分布することは類似しているものの、火山フロントからは離れており、火山岩類は分布していないこと、第四紀火山噴出物も</u> 分布していないことに地域性の違いが認められる。
- また、大局的な地体構造区分が異なり、活断層の存在の把握に資する断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布していること、プ レートの沈み込みが直接影響する付加体地域の圧縮応力による逆断層及び褶曲構造が分布していること、ひずみ集中帯の指摘がない地域に位置すること とについても地域性の違いが認められる。
- ⇒ 主な要因の一部の特徴が類似するものの他の特徴は異なり、それ以外の項目の特徴はいずれも異なっていることから、2008年岩手・宮城内陸地震の震源 域と浜岡原子力発電所の敷地及び敷地周辺とは、地域性が異なると判断し、2008年岩手・宮城内陸地震は観測記録の収集対象外とした。

【比較検討結果の凡例】〇:類似性あり △:類似性低い~一部あり ×:類似性なし 【記載事項の凡例】赤字:類似点 青字:相違点 太字下線:収集対象外との評価で重視した特 後					
項目	比較検討結果	2008年岩手・宮城内陸地震の震源域	浜岡原子力発電所の敷地及び敷地周辺		
地体構造区分 (基盤地質分類) (Wallis et al.(2020))	×	南部北上帯(SK) (古生代~中生代の堆積岩を主体とし、古生代前期の低温高圧型変成岩 や花崗岩類を伴う。)	古第三紀~新第三紀の付加体(P-N) (西南日本弧外帯の外弧全体に発達する古第三紀~新第三紀の付加 体で、タービダイト起源の砂岩、泥岩を主体とする。)		
地震地体構造区分 (垣見・他(2003))	×	東北日本弧内帯(8C) (火山性内弧にあたり、脊梁山地・丘陵の火山帯とその間の盆地列からなり、 活断層の密度は中、地震活動は高、主な地震として、M7クラスの内陸地殻内 地震が複数報告されている。)	西南日本弧外帯(10B2) (外弧隆起帯の安定域にあたり、活断層の密度は極小、地震活動は低、 主な地震は2つほど報告されているが、敷地周辺ではM7クラスの内陸地 殻内地震の報告はない。)		
地質分布		 古第三紀〜新第三紀の火山岩類及び堆積岩類が厚く分布するとともに、 第四紀火山噴出物に覆われる。 大規模地すべりを含め、地すべり地形が密集している。 	 フィリピン海プレートの沈み込みにより付加体が発達し、古第三紀~第 四紀前期の堆積岩類が厚く分布するが、火山岩類は分布していない。 <u>また、第四紀火山噴出物も分布していない</u>。 大規模な地すべり地形は分布していない。 		
地形の特徴:第四系の分 布・地形面の発達状況	×	・ 断層変位基準となる第四紀の海成段丘面及び段丘堆積物は分布しない。	・ 断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布 している。		
活断層の分布	×	東北日本弧内帯の東西圧縮応力による逆断層及び褶曲構造が主に分布。 なお、震源域周辺には、活断層は示されていない。	 西南日本弧外帯は活断層の密度が少ない地域だが、敷地周辺は、 プレートの沈み込みが直接影響する付加体地域の圧縮応力による 逆断層及び褶曲構造が主に分布する。 		
ひずみ集中帯	×	・「東北脊梁山地ひずみ集中帯」に位置する。	・ <u>ひずみ集中帯の指摘はない</u> 。		
火山フロントとの位置関係 等	×	・ 火山フロントに近接しており、周囲には第四紀火山が分布し、多数のカルデ ラが認められる。	・ <u>火山フロントからは離れており</u> 、敷地周辺には第四紀火山はなくカルデ うも認められない。		

<1 概要> 地域性を考慮する地震動 (2000年鳥取県西部地震の震源域との地域性の比較検討結果)

○ 活断層の密度が少なく活動度が低いと考えられる地域で発生した地震とされる2000年鳥取県西部地震の震源域と、浜岡原子力発電所の敷地及び敷 地周辺とについて、大局的な地体構造区分の違いを確認したうえで、地質分布、地形の特徴、活断層の分布、ひずみ集中帯、火山フロントとの位置関係 等を比較し、特徴が類似する場合には、観測記録の収集対象とする。

- 浜岡原子力発電所の敷地及び敷地周辺は、2000年鳥取県西部地震の震源域で事前に活断層の存在が指摘されていなかった主な要因と考えられる、 <u>新層の密度が少なく活動度が低いことについて、プレートの沈み込みが直接影響する付加体地域の圧縮応力による逆断層及び褶曲構造が分布してい</u> <u>ることに地域性の違いが認められる。</u>
- また、大局的な地体構造区分が異なり、堆積岩が分布していること、断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布していること、ひず み集中帯の指摘がない地域に位置すること、火山フロントから離れていることについても地域性の違いが認められる。
- ⇒主な要因の特徴及びそれ以外の項目の特徴はいずれも異なっていることから、2000年鳥取県西部地震の震源域と浜岡原子力発電所の敷地及び敷地周 辺とは、地域性が異なると判断し、2000年鳥取県西部地震は観測記録の収集対象外とした。

【比較検討結果の凡例】〇:類似性あり △:類似性低い~一部あり ×:類似性なし 【記載事項の凡例】赤字:類似点 青字:相違点 太字下線:収集対象外との評価で重視した特徴					
項目	比較検討結果	2000年鳥取県西部地震の震源域	浜岡原子力発電所の敷地及び敷地周辺		
地体構造区分 (基盤地質分類) (Wallis et al.(2020))	×	飛騨-隠岐帯(HO) (西南日本弧内帯の日本海側に位置し、主に古生代~中生代の花崗岩、 片麻岩から構成される。)	古第三紀~新第三紀の付加体(P-N) (西南日本弧外帯の外弧全体に発達する古第三紀~新第三紀の付加 体で、タービダイト起源の砂岩、泥岩を主体とする。)		
地震地体構造区分 (垣見・他(2003))	×	中国山地・瀬戸内海(10C5) (北部は安定隆起域で火山が分布し、南部は沈降域にあたり、活断層の密 度は小だが、地震活動は中(高)、主な地震として、M7クラスの内陸地殻内 地震が複数報告されている。)	西南日本弧外帯(10B2) (外弧隆起帯の安定域にあたり、活断層の密度は極小、地震活動は低、 主な地震は2つほど報告されているが、敷地周辺ではM7クラスの内陸地 設内地震の報告はない。)		
地質分布	×	• 白亜紀から古第三紀の花崗岩を主体としており、新第三紀に貫入した安山 岩~玄武岩質の岩脈が頻繁に分布する。			
地形の特徴:第四系の分 布・地形面の発達状況	×	 明瞭な断層変位基準の少ない地域であるとされており、震源域周辺には断層変位基準となる第四紀の海成段丘面及び段丘堆積物は分布していない。 	・ 断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布 している。		
活断層の分布	×	 西南日本弧内帯の東西圧縮応力による横ずれ断層が主に分布している地域だが、震源域周辺は、活断層の密度は少なく活動度が低い。なお、震源域には褶曲構造は知られていない。 	 西南日本弧外帯は活断層の密度が少ない地域だが、敷地周辺は、 プレートの沈み込みが直接影響する付加体地域の圧縮応力による 褶曲構造及び逆断層が主に分布する。 		
ひずみ集中帯	×	• 「山陰地方のひずみ集中帯」に位置する。	・ <u>ひずみ集中帯の指摘はない</u> 。		
火山フロントとの位置関係 等	×	 火山フロントに近接しており、周囲には第四紀火山が分布する。 	・ <u>火山フロントからは離れており</u> 、敷地周辺には第四紀火山はなくカルデ うも認められない。		
・なお、2008年岩手・宮城内陸地震の震源域に見られるような大規模地すべり地形は2000年皇取県西部地震の震源域と敷地及び敷地近傍のいずれにも分布していないことを確認している。					

・なお、2008年岩手・宮城内陸地震の震源域に見られるような大規模地すべり地形は2000年鳥取県西部地震の震源域と敷地及び敷地近傍のいずれにも分布していないことを確認している。 ・詳細は、「3.2 2000年鳥取県西部地震」参照。

No.3コメント回答

<1 概要> 震源を特定せず策定する地震動 (評価結果(地震動の顕著な増幅を考慮しない))

○ 震源を特定せず策定する地震動(地震動の顕著な増幅を考慮しない)として、標準応答スペクトルに敷地の地盤物性に応じて解放基盤表面までの地震波の伝播特性を反映した地震動(水平成分:1034cm/s²、鉛直成分:615cm/s²)及び2004年北海道留萌支庁南部の地震の検討結果に<u>さらなる</u>保守性を考慮した地震動(水平成分:700cm/s²、鉛直成分:320cm/s²)を考慮する。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3 p.12 一部修正

<1 概要> 震源を特定せず策定する地震動 (評価結果(地震動の顕著な増幅を考慮))

○ 震源を特定せず策定する地震動(地震動の顕著な増幅を考慮)として、標準応答スペクトルに敷地の地盤物性に応じて解放基盤表面までの地震波の伝播特性を反 映した地震動(水平成分:1766cm/s²、鉛直成分:783cm/s²)及び2004年北海道留萌支庁南部の地震の検討結果にさらなる保守性を考慮した地震動(水平 成分:1400cm/s²、鉛直成分:440cm/s²)を考慮する。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<1 概要> **震源を特定せず策定する地震動** ((参考)応答スペクトルに基づく手法による基準地震動(地震動の顕著な増幅を考慮しない領域)(当初申請)との比較)

○震源を特定せず策定する地震動(標準応答スペクトルに基づく地震動及び2004年北海道留萌支庁南部の地震の基盤地震動に 基づく地震動)(地震動の顕著な増幅を考慮しない)について、応答スペクトルに基づく手法による基準地震動(地震動の顕著 な増幅を考慮しない領域)(Ss1-D)(当初申請)との比較は下図のとおり。

(地震動の顕著な増幅を考慮しない領域)(Ss1-D)(当初申請)との比較(応答スペクトル)>

○震源を特定せず策定する地震動(標準応答スペクトルに基づく地震動及び2004年北海道留萌支庁南部の地震の基盤地震動に 基づく地震動)(地震動の顕著な増幅を考慮)について、応答スペクトルに基づく手法による基準地震動(地震動の顕著な増幅 を考慮する領域)(Ss2-D)(当初申請)との比較は下図のとおり。

(地震動の顕著な増幅を考慮する領域)(Ss2-D)(当初申請)との比較(応答スペクトル)>

<1 概要> 震源を特定せず策定する地震動に係る当初申請からの変更点

【当初申請】

1 概要 1 1 概要 1 1 1 1 1 1 1 1 1 1 1 1 1 1	••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

<2.1標準応答スペクトルに基づく地震動> 標準応答スペクトルに基づく地震動の評価の概要

○「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」の別記2では、「全国共通に 考慮すべき地震動」の策定に当たり、震源近傍の多数の地震動記録に基づいて策定された地震基盤相当面(せん断波速 度Vs=2200m/s以上の地層をいう。)における標準的な応答スペクトル(以下、「標準応答スペクトル」という。)を用いるこ とが求められている。

○以降では、標準応答スペクトルに基づき、敷地の解放基盤表面における地震動を評価する。

<標準応答スペクトル> (実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈 別記2による)

p.6 再掲

<2.1 標準応答スペクトルに基づく地震動> 標準応答スペクトルに基づく地震動の評価の概要 (評価フロー)

<標準応答スペクトルに基づく地震動の評価の流れ>

第1117回 資料3 p.62 一部修正 <2.1 標準応答スペクトルに基づく地震動> 標準応答スペクトルに基づく地震動の評価の概要 (加藤・他(2004)による応答スペクトル)

第1117回 資料3 p.63 再掲

1 概要 1 1 概要 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

<2.1.1 地下構造モデル及び地震基盤相当面の設定> 地下構造モデル及び地震基盤相当面

- 第1117回 資料3 p.65 一部修正
- ○解放基盤表面までの地震波の伝播特性の反映は、敷地の一次元地下構造モデルを用い、Vs=2200m/s以上の地層の上面を地震 基盤相当面として標準応答スペクトルに適合させて作成した模擬地震動を入力し、敷地の解放基盤表面における地震動を評価する ことにより行う。
- ○<u>敷地の一次元地下構造モデル</u>は、地下構造調査により得られた詳細な地下構造データ等に基づき設定し、統計的グリーン関数法に よる敷地の観測記録の再現検討等を踏まえてその妥当性を確認した、断層モデルを用いた手法による地震動評価における統計的グ リーン関数法のために設定した一次元地下構造モデル(SGFモデル)を用いる。
- ○<u>地震基盤相当面</u>は、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」の別記2において、 「地震基盤からの地盤増幅率が小さく地震動としては地震基盤面と同等とみなすことができる地盤の解放面で、せん断波速度 Vs=2200m/s以上の地層」とされていることを踏まえ、<u>T.P.-3550m(Vs=2470m/s)に設定</u>する。

・統計的グリーン関数法による地震動評価に用いる一次元地下構造モデルの設定は、p.158及び第1041回審査会合資料2-2-2 p.109~参照。

解放基盤表面 屏	屈	標高	Vs	Vp	ρ	
(出力位置) ▽	眉	(m)	(m/s)	(m/s)	(g/cm ³)	QS,QP
	1	-14	740	2000	2.07	100f ^{0.7}
	2	-32	790	2030	2.08	100f ^{0.7}
	3	-62	830	2070	2.09	100f ^{0.7}
	4	-92	910	2140	2.11	100f ^{0.7}
	5	-192	960	2180	2.12	100f ^{0.7}
	6	-354	1100	2110	2.10	100f ^{0.7}
	7	-493	1230	2320	2.15	100f ^{0.7}
	8	-739	1420	2790	2.25	100f ^{0.7}
適合する模擬地震動	9	-1094	1590	3060	2.31	100f ^{0.7}
_ の人刀位置	10	-2050	2150	3990	2.46	100f ^{0.7}
	11	-3550	2470	4470	2.53	100f ^{0.7}

<一次元地下構造モデル>

1 概要 1 概要 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	••••p.133~
参考資料	•••••p.179~

○地震基盤相当面における標準応答スペクトルに適合する模擬地震動を作成する。

○模擬地震動は、一様乱数の位相を用いた方法で作成するものとし、振幅包絡線の経時変化については、Noda et al.(2002)の 方法に基づき、下図に示す形状とする。

○振幅包絡線の経時変化の設定に必要なパラメータのうち地震規模Mについて、審査ガイドにおいて「全国共通に考慮すべき地震動」の規模はMw6.5程度未満と記載されており、Mw6.5をKanamori(1977)及び武村(1990)に基づきMに換算するとM6.949になるが、審査ガイドでは「Mw6.5程度未満」と幅を持って示されていることから換算式から求められるMについて幅を持たせ、模擬地震動の特に強震部の継続時間が長めとなるよう保守的にM7.0とする。また、等価震源距離Xeqは、敷地近傍で発生する地震を想定し、継続時間が長めとなるよう10kmとする。

 $X_{eq} = 10.0$

最大加速度
(cm/s²)
 継続時間
(s)
 振幅
 紙線の経時

$$T_c$$
 T_d

 水平動
 600
 29.8
 3.7
 16.3
 29.8

 鉛直動
 400
 29.8
 3.7
 16.3
 29.8

<振幅包絡線の経時変化(Noda et al.(2002)の方法に基づく)>

<2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 地震基盤相当面における模擬地震動の作成 (作成した模擬地震動と日本電気協会(2015)による適合度の確認)

○作成した模擬地震動が、日本電気協会(2015)に示される以下の適合度の条件を満足していることを確認した。

・目標とする応答スペクトル値に対する模擬地震動の応答スペクトル値の比(応答スペクトル比)が全周期帯で0.85以上

・応答スペクトルの強度値の比(SI比)が1.0以上

第1117回 資料3 p.68 再掲

<2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 解放基盤表面における標準応答スペクトルに基づく地震動の評価結果

○作成した模擬地震動について、一次元地下構造モデル(SGFモデル)を用いて敷地の地盤物性に応じた解放基盤表面までの地震波の伝播特性を反映し、解放基盤表面における標準応答スペクトルに基づく地震動を評価した。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.69 一部修正

<2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 模擬地震動の作成の複数の方法による検討

(検討方針)

○ 標準応答スペクトルに適合する模擬地震動は、一様乱数の位相を用いた方法により作成する。ここでは、審査ガイドにおいて、模擬地震動の作成に関し複数の方法による 検討が求められていることを踏まえ、実観測記録の位相を用いた方法により模擬地震動を作成し、それを用いた解放基盤表面における地震動との比較により、位相の違い が地震基盤相当面から解放基盤表面までの伝播の特性に与える影響を検討し、一様乱数の位相を用いた方法による地震動を採用することの妥当性を確認する。

【実観測記録の位相を用いた模擬地震動の作成】

- 実観測記録の位相を用いた方法による模擬地震動の作成に用いる観測記録について、「震源を特定せず策定する地震動」は内陸地殻内地震の震源近傍の観測記録 に基づくとされており、標準応答スペクトルに係る検討においてMw6.5程度の地震の断層が収まる半径10km程度の範囲を震源近傍としていることを踏まえ、<u>敷地近傍(敷</u> 地から10km以内)で発生したMw6.5程度の内陸地殻内地震における敷地の観測記録が理想的と考え、内陸地殻内地震と考えられる震源深さ20km以浅で発生した地震規模がM6.0以上の敷地近傍の地震の観測記録を用いることを検討したが、<u>敷地近傍(敷地から10km以内)に、敷地の観測記録が得られているM6.0以上の内陸地殻内地震はない</u>。また、敷地から30km以内についても、敷地の観測記録が得られているM6.0以上の内陸地殻内地震はない。
- そこで、地震規模がM6.0より小さいM3.5以上の敷地近傍(敷地から10km以内)の地震の観測記録を用いることとし、敷地の観測記録が得られている2015年8月29日 静岡県中部の地震(M3.6、震央距離4.5km)及び2015年9月1日静岡県中部の地震(M4.3、震央距離4.4km)のうち、地震規模が大きいこと、また敷地から近く最 大加速度も大きいことを踏まえ、2015年9月1日静岡県中部の地震(M4.3、震央距離4.4km)の敷地の観測記録 を重視して本検討を行うこととした(標準応答スペクトルが地震基盤相当面で策定されていることを踏まえ、敷地の最深部のG.L.-1500m(Vs=1590m/s^{※1})の観測記 録を用いる)。なお、敷地から30km以内について、M3.5以上の地震として2007年6月1日静岡県西部の地震(M4.3、震央距離24.7km)において敷地の観測記録が 得られているが、本検討に用いる地震より地震規模が大きいものはない。

 ※1 G.L.-1500m(T.P.-1447m)におけるVsは、大深度ボーリング調査(大深度観測点と同じ場所で実施)のPS検層結果及びそれに基づき一次元地下構造モデルに設定した値(p.158参照)。
 ※2 各地震の諸元は、気象庁による。最大加速度は、大深度観測点(G.L.-1500m)の観測記録による。ただし、大深度観測点における観測開始前に発生した2007年6月1日静岡県西部の地震については、 鉛直アレイ観測点(G.L.-100m)における観測記録による。
 Copyright © Chubu Electric Power Co., Inc. All rights reserved. <2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 模擬地震動の作成の複数の方法による検討 (実観測記録の位相を用いた方法による模擬地震動の作成)

第1117回 資料3 p.72 再掲

 ○実観測記録の位相を用いた方法による模擬地震動の作成にあたり検討した、敷地近傍(敷地から10km以内)で発生した M3.5以上の内陸地殻内地震(震源深さ20km以浅)における敷地の観測記録は下図のとおり。
 ○前述のとおり、2015年8月29日静岡県中部の地震(M3.6、震央距離4.5km)及び2015年9月1日静岡県中部の地震 (M4.3、震央距離4.4km)のうち、地震規模が大きいこと、また敷地から近く最大加速度も大きいことを踏まえ、2015年9月 1日静岡県中部の地震の敷地の観測記録を用いて、実観測記録の位相を用いた方法により模擬地震動を作成し、一様乱 数の位相を用いた方法による地震動との比較を行い、位相の違いが地震基盤相当面から解放基盤表面までの伝播の特性 に与える影響を検討する。

<敷地の観測記録(大深度観測点G.L.-1500m)(加速度時刻歴波形)>

<2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 模擬地震動の作成の複数の方法による検討 (実観測記録の位相を用いた方法による模擬地震動の作成)

第1117回 資料3 p.73 再掲

<2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 模擬地震動の作成の複数の方法による検討 (実観測記録の位相を用いた方法による解放基盤表面における地震動)

○実観測記録の位相を用いた方法により作成した模擬地震動について、一次元地下構造モデル(SGFモデル)を用いて敷地の 地盤物性に応じた解放基盤表面までの地震波の伝播特性を反映し、解放基盤表面における標準応答スペクトルに基づく地震 動を評価した。

(上校:加速反时刻歴波形、下校:心合人ハクトル)>

第1117回 資料3 p.74 一部修正 <2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 模擬地震動の作成の複数の方法による検討 (模擬地震動の作成の複数の方法の比較(応答スペクトル))

第1117回 資料3 p.75 一部修正

○解放基盤表面における応答スペクトルは、一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法 による地震動で差異は認められない。

<解放基盤表面における標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)の評価結果の比較(応答スペクトル)>

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

・下線(____)は、一部修正箇所を示す。 34

<2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価> 模擬地震動の作成の複数の方法による検討 (模擬地震動の作成の複数の方法の比較(まとめ))

一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法による地震動とを比較した結果は下表のとおり。

<<比較結果のまとめ>		
比較項目	比較結果	
応答スペクトル	○解放基盤表面における応答スペクトルは、一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法による地震動で差異は認められない。	
時刻歴波形	 加速度時刻歴波形の振幅包絡形状は、両方法(一様乱数の位相を用いた方法と実観測記録の位相を用いた方法)による地震動とも地震基盤相当面と解放基盤表面とで傾向は大きく変わらない。 	

○ 模擬地震動の作成の複数の方法による検討として、地震規模がM6.0より小さいものの、敷地近傍(敷地から10km以内)で発生した内陸地 殻内地震における敷地の観測記録(2015年9月1日静岡県中部の地震(M4.3、震央距離4.4km))を用いて、実観測記録の位相を用 いた方法により模擬地震動を作成して解放基盤表面における地震動を評価し、一様乱数の位相を用いた方法による地震動との比較を行い、 位相の違いが地震基盤相当面から解放基盤表面までの伝播の特性に与える影響を検討した。

- ○その結果、一様乱数の位相を用いた方法による地震動に対し、実観測記録の位相を用いた方法による地震動を比較すると、解放基盤表面における応答スペクトルに差異は認められないこと、加速度時刻歴波形の振幅包絡形状は両方法による地震動とも地震基盤相当面と解放基盤 表面とで傾向は大きく変わらないこと、解放基盤表面における最大加速度に大きな差異は認めれられないことから、両方法の模擬地震動の作 成に用いる位相の違いが地震基盤相当面から解放基盤表面までの伝播の特性に与える影響はないと評価した。
- ○また、一様乱数の位相を用いた方法による地震動は、実観測記録の位相を用いた方法による地震動と比べて、解放基盤表面における加速度時刻歴波形の強震部の継続時間が長く、解放基盤表面における最大加速度がやや大きいことから、一様乱数の位相を用いた方法による地震動の方が保守性を有すると評価した。
- ○<u>以上の検討結果から、標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)として、一様乱数の位相を用いた方法に</u> よる地震動を採用する。

まとめ

第1117回 資料3 p.78 一部修正

(標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない))

○地震基盤相当面において設定された「標準応答スペクトル」に基づき、敷地の地盤物性に応じて解放基盤表面までの地震波の 伝播特性を反映した地震動を、「標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)」とする。

(上段:加速度時刻歴波形、下段:応答スペクトル)>

1 概要	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	•••••p.89~
3.1 2008年岩手·宮城内陸地震	••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

 「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」の別記2では、「全国共通に 考慮すべき地震動」の策定に当たり、2004年北海道留萌支庁南部の地震において、防災科学技術研究所が運用する全 国強震観測網の港町観測点における観測記録から推定した基盤地震動を用いることが求められている。
 ○以降では、2004年北海道留萌支庁南部の地震における防災科学技術研究所が運用する全国強震観測網の港町観測 点における観測記録から推定した基盤地震動について検討したうえで、敷地の解放基盤表面における地震動を評価する。

 【2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動】
 (敷地の一次元地下構造モデルを用いて評価した地震動(顕著な増幅を考慮しない))
 ②2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動は、港町観測点(K-NET HKD020)の基盤地震動を、敷 地の一次元地下構造モデルにおける港町観測点の基盤相当面に入力して、敷地の解放基盤表面における地震動を評価し、この 評価結果にさらなる保守性を考慮して設定。
 ③敷地の一次元地下構造モデルは、断層モデルを用いた手法による地震動評価における統計的グリーン関数法のために設定した一 次元地下構造モデル(SGFモデル)</u>を採用。

○ 港町観測点の基盤相当面は、敷地において港町観測点の基盤のVs=938m/s以上となるT.P.-192m(Vs=960m/s)に設定。

<2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動の評価のイメージ>

p.7 再掲

<2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動> 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動の評価の概要 ^{9.81 - 部修正} (評価フロー)

1 概要	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	•••••p.89~
3.1 2008年岩手·宮城内陸地震	••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

<2.2.1 2004年北海道留萌支庁南部の地震の観測記録> 地震の概要

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

○震源距離が30km以内の観測記録としては下表の5記録となる。

○震源近傍に位置するHKD020(港町)観測点において、最大加速度1127.2cm/s²が観測されており、司・翠川(1999)の 距離減衰式の+1σを上回る。

観測点		震源	AVS30	最大加速度(Gal)			
		正已 角度 (km)	(m/s)	水平(NS)	水平(EW)	鉛直(UD)	
	HKD020	港町	12.1	562.7	535.7	1127.2	368.4
K-NET (地表)	HKD024	達布	15.6	337.2	184. 9	274.0	73.5
	HKD021	留萌	18.1	302.0	57.5	44.6	20.0
KiK-net	RMIH05	小平西	12.5	218.1	340. 4 (57. 8)	236. 1 (36. 8)	66.2 (27.4)
(地衣)・地中)	RMIH04	小平東	22.8	543.3	83.0 (23.8)	81.8 (32.7)	36.5 (25.9)

<断層最短距離が30km以内の観測記録>

○K-NET観測点の観測記録のうち、HKD020(港町)の観測記録の応答スペクトルは、強震記録を用いて震源を事前に特定できない地震の地震動レベルを設定した加藤・他(2004)の応答スペクトルを大きく上回る。また、HKD024(達布)及びHKD021(留萌)の観測記録の応答スペクトルは、HKD020(港町)におけるEW成分の応答スペクトルに包絡される。

<2.2.1 2004年北海道留萌支庁南部の地震の観測記録> KiK-net観測記録(地表)

○KiK-net観測点であるRMIH05(小平西)及びRMIH04(小平東)の地表観測記録の応答スペクトルは、加藤・他 (2004)の応答スペクトルに包絡される。

- --- 加藤・他(2004)(Vs=0.7km/s)
- 加藤·他(2004)(Vs=2.2km/s)
- RMIH05(X=12.5km)_EW
- --- RMIH05(X=12.5km)_NS
- --- RMIH04(X=22.8km)_NS

- --- 加藤・他(2004)(Vp=2.0km/s)
- 加藤・他(2004)(Vp=4.2km/s)
- RMIH05(X=12.5km)_UD
- RMIH04(X=22.8km)_UD

<2.2.1 2004年北海道留萌支庁南部の地震の観測記録> KiK-net観測記録(地中)

○KiK-net観測点であるRMIH05(小平西)及びRMIH04(小平東)の地中観測記録を2倍にした応答スペクトルは、 加藤・他(2004)の応答スペクトルに包絡される。

1 概要	••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	····p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

 ○HKD020(港町)観測点の地質構造及び速度構造の把握を目的として、地震計設置地点の北西約5mの同一標高 位置にて、深さ300m(G.L.-300m)までのボーリング掘削をオールコア採取で実施している。
 ○G.L.-13m付近の深さまでの岩盤は亀裂が多く、岩盤が脆いことを示唆している。また、それ以深の岩盤層については、泥 岩・砂岩の互層が主体で、そのうちG.L.-30m付近、さらに、G.L.-41m以深に礫岩層が存在する構成となっている。

<HKD020(港町)におけるボーリングコア写真(左:深さ0m~24m、右:深さ24m~48m)> (佐藤・他(2013)による) 第1117回 資料3

p.89 再掲

- ○ボーリング孔を用いて、G.L.-150mまではダウンホール法とサスペンション法、G.L.-300mまではサスペンション法によるPS検層を 実施している。
- ○G.L.-50m付近までは、笹谷・他(2008)による微動アレイ探査に基づくS波速度構造とPS検層によるS波速度構造は十分に 対応していない。しかしながら、G.L.-58m以深の泥岩・砂岩互層が続く部分のS波速度構造については、大局的にサスペン ション法によるS波速度構造とほぼ対応している。
- ○PS検層によるS波速度構造から、基盤層をS波速度が938m/sとなるG.L.-41mに設定している。また、その深さのP波速度は 2215m/sであり、狐崎・他(1990)による既往の経験式においてS波速度が700m/s以上ではP波速度が2000m/sとなる観点 から見ても基盤層の深さは妥当としている。

○ダウンホール法によるPS検層結果のVsが500m/s以下の深さ6mまでのS波速度を、笹谷・他(2008)による位相速度を 説明できるように若干修正し、HKD020観測点の地盤モデルを作成している。

 ○HKD020(港町)観測点の地盤モデルによるSH波の理論増幅特性の卓越周期は、微動H/Vスペクトルの卓越周期と 周期0.02秒程度のごく短周期までよく対応している。
 ○K-NET地盤情報によるSH波の理論増幅特性は、微動H/Vスペクトルの卓越を説明できない。

○以上から、HKD020(港町)観測点の地盤モデルは、より妥当なモデルであると結論付けている。

第1117回 資料3

p.91 再掲

G.L.-6mまでの土質地盤の6点において、GPサンプリングにより試料採取し、0.2Hzの正弦波による繰り返し三軸試験によって地盤の剛性G及び減衰hのひずみγ依存性を取得している。
 ひずみレベルが10⁻⁴オーダーでG/G₀が0.6程度、すなわち初期の剛性に比べて約6割程度の剛性に低下している。
 G/G₀のひずみ依存性に関する既往の経験式との対応が良い。
 室内試験を実施した砂、礫混じり砂、礫、風化砂岩に対応するG.L.-6m程度までの地盤は、強震時に非線形性を生じやすい特性であるとしている。

<HKD020(港町)における表層地盤のG/G₀の <HKD020(港町)における表層地盤の減衰定数hの <2004年北海道留萌支庁南部の地震時の ひずみ依存性と既往の経験式の比較> ひずみ依存性と既往の経験式の比較> 地盤の最大せん断ひずみの (佐藤・他(2013)による) (佐藤・他(2013)による) 深さ分布の試算結果(線形解析)> (佐藤・他(2013)による))

第1117回 資料3

p.92 再掲

第1117回 資料3 p.93 再掲

<2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見> 表層地盤における強震時の非線形特性に関する検討

○G.L.-6mまでの層については、室内試験結果を用いてHardin-Drnevichモデル(HDモデル)により非線形特性(G/G₀~ γ、h~γ)を設定した。

<2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見> 基盤地震動評価結果(EW成分)

○等価線形解析により、地表観測記録(EW成分)からG.L.-41mの基盤地震動を評価している。 ○はぎとり結果の最大加速度は585cm/s²で、地表観測記録の1/2程度となっている。

○体積弾性率を一定と仮定した1次元波動論による線形解析により、地表観測記録(UD成分)からG.L.-41mの基盤地震動 を評価している。

○はぎとり結果の最大加速度は296cm/s²となっている。

○佐藤・他(2013)による基盤地震動評価は、用いた地盤モデルが既往の知見と整合的であるとともに、強震時の非線形性を踏ま えた評価であり、観測事実と整合的であることから、2004年北海道留萌支庁南部の地震の基盤地震動として震源を特定せず 策定する地震動に反映する。

1 概要	••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	•••••p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

(基盤地震動に関する追加検討)

- ○佐藤・他(2013)では、K-NET観測点のHKD020(港町)について、G.L.-6mまでの室内試験結果を考慮した非線形 解析を行い、G.L.-41mの基盤面における基盤地震動を評価している(G.L.-6m以深は線形解析を仮定し、減衰定数 は1%に設定)。
- ○上記の基盤地震動の評価結果について妥当性を確認するため、以下の追加検討を実施する。
 - ①佐藤・他(2013)の報告時点以降に得られた、G.L.-6mからG.L.-41mまでの室内試験結果を用い、G.L.-41mまでの 非線形性を考慮して基盤地震動(水平方向)を評価する。
 - ②不確かさを考慮した評価として、G.L.-6mまで非線形、G.L.-6m以深は減衰定数3%として基盤地震動(水平方 向)を評価する。
 - ③佐藤・他(2013)の報告時点以降に得られたPS検層の再測定結果から、地盤モデルを変更して基盤地震動(鉛直 方向)を評価する(解析方法は佐藤・他(2013)と同様)。
 - ④HKD020(港町)における地下水位の状況を踏まえ、G.L.-6mまではポアソン比一定、G.L.-6m以深は体積弾性率 一定として基盤地震動(鉛直方向)を評価する。

○追加検討結果を踏まえ、敷地の地盤物性に応じて解放基盤表面までの地震波の伝播特性を反映した解放基盤表面 における地震動を評価する。

<2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 評価方針

第1117回 資料3 p.98 一部修正

(基盤地震動に関する追加検討)

- ○佐藤・他(2013)による2004年北海道留萌支庁南部の地震の<u>港町観測点(K-NET_HKD020)</u>の基盤地震動について、下表に示す追加 検討(検討①~④)を実施する。
- ○追加検討結果を踏まえ、最大加速度が最も大きくなった結果(水平成分:609cm/s²(検討②)、鉛直成分:306cm/s²(検討③))を 用いて、敷地の地盤物性に応じた解放基盤表面までの地震波の伝播特性を反映して解放基盤表面における地震動を評価する。

\sum	佐藤・他(2013)			検討①	検討2		検討 3	検討④
	水平成分	鉛直成分		水平成分	水平成分		鉛直成分	鉛直成分
G.L. 0m ~ G.L6m	室内試験結果 を考慮した 等価線形解析	体積弾性率		室内試験結果を考慮し た等価線形解析	室内試験結果を考慮し た等価線形解析		表層部のPS検層を再実 施し、地盤モデルに反映	地下水位の状況を踏まえ ポアソン比一定とした線形 解析
G.L6m ~ G.L41m	減衰定数を 一律1%とした 線形解析				減衰定数を一律3%とし た線形解析		体積弾性率一定と仮定した線形解析	体積弾性率一定と仮定 した線形解析
最大	585 cm/s ²	_		561 cm/s ²	609 cm/s ²		-	_
加速度	_	296 cm/s ²		_	÷		306 cm/s ²	262 cm/s ²
	敷地の地盤物性の考慮 浜岡原子力発電所における 地盤物性の影響を考慮した 基盤地震動を評価							
					P192m			

<2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 検討①:G.L.-41mまで非線形性を考慮した基盤地震動評価 (追加試験の地震)

○G.L.-6mからG.L.-41mまでの5種類の地層における試料を対象に、室内試験を追加実施した。

く追加の室内試験の実施位置>

第1117回 資料3 p.99 再掲

<2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 検討①:G.L.-41mまで非線形性を考慮した基盤地震動評価 (非線形特性の設定)

○追加の室内試験結果により非線形特性を設定した。

く追加の室内試験による地盤の非線形特性>

第1117回 資料3 p.100 再掲 <2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 検討①:G.L.-41mまで非線形性を考慮した基盤地震動評価 (等価線形解析条件)

- ○地表観測記録を入力として、G.L.-41mまで非線形性を考慮した等価線形解析から、G.L.-41m(Vs=938m/s)における 基盤地震動を評価した。
 - 有効ひずみγ_{eff} = 0.65γ_{max}
 - ・収束判定(前のモデルとの差異)は1%以内
 - ・最大繰り返し計算回数は30回

第1117回 資料3 p.101 再掲

○G.L.-41mまで非線形性を考慮した基盤地震動の最大加速度は、561cm/s²となっており、佐藤・他(2013)による基盤 地震動(585cm/s²)と比較すると、やや小さく評価された。

<2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 検討①:G.L.-41mまで非線形性を考慮した基盤地震動評価 (等価線形解析による基盤地震動評価結果(応答スペクトル))

○G.L.-41mまで非線形性を考慮した基盤地震動の応答スペクトルは、佐藤・他(2013)による応答スペクトルとはほぼ同程度と なっている。

第1117回 資料3 p.103 再掲

<2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 検討①:G.L.-41mまで非線形性を考慮した基盤地震動評価 (等価線形解析による基盤地震動評価結果(収束物性値))

○収束物性値の深さ分布によると、G.L.-6m以深における減衰定数の収束物性値は、概ね5%程度となっている。

<収束物性値、最大加速度及び最大ひずみの深さ分布>

第1117回 資料3

p.104 再掲

○G.L.-41mまで非線形性を考慮した基盤地震動評価に用いた収束物性値による伝達関数は、佐藤・他(2013)の物性値による伝達関数と比較して、深部の減衰定数が1%から5%程度になったことにより、10Hzより高振動数側で小さくなっている。

<収束物性値による伝達関数とH/Vスペクトルの比較>

第1117回 資料3 p.105 再掲

検討①のまとめ

○2004年北海道留萌支庁南部の地震における港町観測点(K-NET_HKD020)の観測記録について、追加の室内試験 結果を用いて、G.L.-41mまで非線形性を考慮した基盤地震動を評価した。

○基盤地震動の最大加速度は561cm/s²となり、佐藤・他(2013)による基盤地震動(585cm/s²)と比較してやや小さく評価された。また、基盤地震動の応答スペクトルは、佐藤・他(2013)による応答スペクトルとほぼ同程度となっている。

第1117回 資料3 p.106 一部修正

○佐藤・他(2013)の地盤モデルに基づき、G.L.-6mまで非線形、G.L.-6m以深を減衰定数3%として基盤地震動を評価し、 佐藤・他(2013)の評価結果と比較する。

S波速度 Vs(m/s)	密度 <i>Q</i> (1000kg/m ³)	層厚 H(m)	減衰定数h (初期値)	非線形特性
200	1.9	0.5	0.02	砂
200	2.0	0.5	0.03	礫混じり砂
200	2.0	1	0.02	礫1
290	2.0	1	0.01	礫2
290	2.0	1	0.01	風化砂岩1
370	2.0	1	0.01	風化砂岩2
400	2.0	1	0.01	風化砂岩2
473	2.0	1	0.03	—
549	2.0	3	0.03	—
549	2.0	2	0.03	—
549	2.0	1	0.03	—
549	2.0	0.5	0.03	—
549	2.0	2.5	0.03	—
604	2.06	7	0.03	_
653	2.06	18	0.03	_
938	2.13	17	0.03	—

く等価線形解析に用いる地盤モデル>

減衰定数3%として評価

第1117回 資料3 p.107 再掲

○佐藤・他(2013)の地盤モデルに基づき、G.L.-6m以深を減衰定数3%とした基盤地震動の最大加速度は609cm/s²となり、 佐藤・他(2013)による基盤地震動(585cm/s²)と比較すると、やや大きく評価されている。また、応答スペクトルは、佐藤・ 他(2013)による応答スペクトルとほぼ同程度となっている。

第1117回 資料3

p.108 再掲

<2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 検討②:減衰定数の不確かさを考慮した基盤地震動評価 (等価線形解析による基盤地震動評価結果(伝達関数))

○収束物性値による伝達関数は、佐藤・他(2013)の物性値による伝達関数と同様に、本震時のH/Vスペクトルの特徴を よく再現しているものと考えられる。

<収束物性値による伝達関数とH/Vスペクトルの比較>

第1117回 資料3 p.109 再掲

検討②のまとめ

○2004年北海道留萌支庁南部の地震における港町観測点(K-NET_HKD020)の観測記録について、佐藤・他(2013)の地盤モデルに基づき、G.L.-6mまで非線形、G.L.-6m以深を減衰定数3%として基盤地震動を評価した。
 ○基盤地震動の最大加速度は609cm/s²となり、佐藤・他(2013)による基盤地震動(585cm/s²)と比較してやや大きく評価された。また、基盤地震動の応答スペクトルは、佐藤・他(2013)による応答スペクトルとほぼ同程度となっている。
 ○収束物性値による伝達関数は、佐藤・他(2013)の物性値による伝達関数と同様に、本震時のH/Vスペクトルの特徴をよく再現しているものと考えられる。

第1117回 資料3 p.110 一部修正

- 第1117回 資料3 p.111 再掲
- ○佐藤・他(2013)における鉛直成分の基盤地震動の評価結果は、2013年10月の物理探査学会時点でのモデルに基づいて いたが、笹谷・他(2008)の位相速度を説明できないことから、佐藤・他(2013)の報告時点以降に、表層部分のPS検層を 再測定している。
- ○再設定結果によるG.L.-6mまでのP波速度は、佐藤・他(2013)の地盤モデルと異なるため、再測定結果を反映した地盤モデルにより、鉛直成分の基盤地震動を再評価した。

※再測定結果によるS波速度は、佐藤・他(2013)における地盤モデルとほぼ同様のため変更していない。

<2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価> 検討③:鉛直成分の基盤地震動評価の再評価 (基盤地震動評価結果)

○PS検層の再測定結果を反映した地盤モデルを用い、体積弾性率一定としてG.L.-41mの鉛直成分の基盤地震動を 評価した結果、その最大加速度は306cm/s²となり、佐藤・他(2013)による基盤地震動(296cm/s²)と比較すると、 やや大きく評価された。

第1117回 資料3 p.112 再掲

検討③のまとめ

○佐藤・他(2013)の<u>港町観測点(K-NET HKD020)</u>のP波速度モデルは、笹谷・他(2008)の位相速度を説明できない ことから、表層部分のPS検層を再測定し、再測定結果を反映した地盤モデルを設定した。

○上記地盤モデルを用い、体積弾性率一定としてG.L.-41mの鉛直成分の基盤地震動を評価した結果、最大加速度は 306cm/s²となり、佐藤・他(2013)による基盤地震動(296cm/s²)と比較すると、やや大きく評価された。

第1117回 資料3 p.113 一部修正

- ○佐藤・他(2013)及び追加検討③における鉛直成分の基盤地震動は、体積弾性率一定として評価しているが、地下水位の状況を踏まえ、G.L.-6mまでポアソン比一定、G.L.-6m以深を体積弾性率一定とした場合の鉛直成分の基盤地震動を評価した。
- ○体積弾性率一定とした場合と比較して、ポアソン比一定とした場合、S波速度の低下に伴ってP波速度も低下するため、 最大加速度は小さくなっている。

○その結果、最大加速度は262cm/s²となり、体積弾性率一定と仮定した結果(306cm/s²)は保守的な結果となっている。

 ○佐藤・他(2013)による2004年北海道留萌支庁南部の地震の港町観測点(K-NET_HKD020)の基盤地震動について行った追加検討 (検討①~④)の結果は下表のとおり。
 ○以降では、最大加速度が最も大きくなった結果(水平成分:609cm/s²(検討②)、鉛直成分:306cm/s²(検討③))を用いて、敷 地の地盤物性に応じた解放基盤表面までの地震波の伝播特性を反映して解放基盤表面における地震動を評価する。

$\sum_{i=1}^{n}$	佐藤・他	(2013)		検討①	検討2	検討3	検討④
	水平成分	鉛直成分		水平成分	水平成分	鉛直成分	鉛直成分
G.L. 0m ~ G.L6m	室内試験結果 を考慮した 等価線形解析			室内試験結果を考慮し た等価線形解析	室内試験結果を考慮し た等価線形解析	表層部のPS検層を再実 施し、地盤モデルに反映	地下水位の状況を踏まえ ポアソン比一定とした線形 解析
G.L6m ~ G.L41m	減衰定数を 一律1%とした 線形解析	線形解析			減衰定数を一律3%とし た線形解析	体積弾性率一定と仮定 した線形解析	体積弾性率一定と仮定 した線形解析
│ 最 大	_{浸大} 585 cm/s²			561 cm/s ²	609 cm/s ²	_	_
加速度	_	296 cm/s ²		—		306 cm/s ²	262 cm/s ²
	敷地の地盤物性の考慮 浜岡原子力発電所における 地盤物性の影響を考慮した 基盤地震動を評価 T.P Vs=960m/s (留萌のG.L41mの) 基盤層のVsと同等)			P14m P192m			

第1117回 資料3

p.115 一部修正

港町観測点 2004年北海道 地震の基盤地

○解放基盤表面までの地震波の伝播特性の反映は、敷地の一次元地下構造モデルを用い、2004年北海道留萌支庁南部の地震の港町観測点(K-NET_HKD020)の基盤面に相当する敷地の地層(基盤相当面)に、追加検討結果を踏まえた2004年北海道留萌支庁南部の地震の基盤地震動を入力し、敷地の解放基盤表面における地震動を評価することにより行う。
 ○敷地の一次元地下構造モデルは、地下構造調査により得られた詳細な地下構造データ等に基づき設定し、統計的グリーン関数法による敷地の観測記録の再現検討等を踏まえてその妥当性を確認した、断層モデルを用いた手法による地震動評価における統計的グリーン関数法のために設定した一次元地下構造モデル(SGFモデル)を用いる。
 ○満町観測点の基盤相当面は、港町観測点の佐藤・他(2013)にたり推定された基盤層(CL_41m)の)(s)(938m/s)を踏める

○ 港町観測点の基盤相当面は、港町観測点の佐藤・他(2013)により推定された基盤層(G.L.-41m)のVs(938m/s)を踏まえ、T.P.-192m(Vs=960m/s)に設定する。

・統計的グリーン関数法による地震動評価に用いる一次元地下構造モデルの設定は、p.158及び第1041回審査会合資料2-2-2 p.109~参照。

解放基盤表面 (出力位置)	層標高		Vs	Vp	ρ	Qs,Qp
V		(m)	(m/s)	(m/s)	(g/cm ³)	<i>,</i> 1
	1	-14	740	2000	2.07	100f ^{0.7}
の基盤相当面	2	-32	790	2030	2.08	100f ^{0.7}
留萌支庁南部の	3	-62	830	2070	2.09	100f ^{0.7}
宸劉の入刀位直) ▽	4	-92	910	2140	2.11	100f ^{0.7}
	5	-192	960	2180	2.12	100f ^{0.7}
	6	-354	1100	2110	2.10	100f ^{0.7}
	7	-493	1230	2320	2.15	100f ^{0.7}
	8	-739	1420	2790	2.25	100f ^{0.7}
	9	-1094	1590	3060	2.31	100f ^{0.7}
	10	-2050	2150	3990	2.46	100f ^{0.7}
	11	-3550	2470	4470	2.53	100f ^{0.7}

<一次元地下構造モデル>

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.116 一部修正

 ○2004年北海道留萌支庁南部の地震の港町観測点(K-NET_HKD020)における基盤地震動を検討した結果のうち最大 加速度が最も大きくなったケース(水平成分:609cm/s²(検討②)、鉛直成分:306cm/s²(検討③))に対し、一次 元地下構造モデル(SGFモデル)を用いて敷地の地盤物性に応じた解放基盤表面までの地震波の伝播特性を反映し、解 放基盤表面における地震動を評価した。
 ○評価結果は下図のとおりであり、水平成分:690cm/s²、鉛直成分:313cm/s²と評価された。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.117 一部修正

○ 前述のとおり、2004年北海道留萌支庁南部の地震の<u>港町観測点(K-NET_HKD020)</u>における基盤地震動を検討したケースのうち最大加速度が最も大きくなった ケース(水平成分:609cm/s²(検討②)、鉛直成分:306cm/s²(検討③))に対し、一次元地下構造モデル(SGFモデル)を用いて敷地の地盤物性に応 じた解放基盤表面までの地震波の伝播特性を反映し、解放基盤表面における地震動を評価した。

○ この評価結果(水平成分:690cm/s²、鉛直成分:313cm/s²)にさらなる保守性を考慮し、水平成分:700cm/s²、鉛直成分:320cm/s²の地震動を、「2004 年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮しない)」として採用する。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.118 一部修正

(2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮しない))

○ 佐藤・他(2013)による2004年北海道留萌支庁南部の地震の<u>港町観測点(K-NET_HKD020)</u>における基盤地震動に対し、追加検討を 実施したうえで、敷地の地盤物性に応じた解放基盤表面までの地震波の伝播特性を反映して解放基盤表面における地震動を評価し、この 評価結果(水平成分:690cm/s²、鉛直成分:313cm/s²)にさらなる保守性を考慮し、水平成分:700cm/s²、鉛直成分:320cm/s² の地震動を、「2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮しない)」とする。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3 p.119 一部修正

1 概要	••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

No.2コメント回答

※2 2009年駿河湾の地震(本震)の応答スペクトルにおいて5号炉周辺の顕著な増幅が見られた周期帯。

No.2コメント回答

○ 標準応答スペクトルに基づく地震動について、解放基盤表面における地震動(地震動の顕著な増幅を考慮しない)の評価結果に増幅係数を乗じて、解放 基盤表面における地震動(地震動の顕著な増幅を考慮)を評価した。

・解放基盤表面における標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)の評価は、一様乱数の位相を用いた方法による地震動を採用し、模擬地震動の作成の複数の方法による検討として実観測記録の位相を用いた方法による地震動との比較検討による確認を行っているが、念のため、この標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の評価についても、同様の比較検討による確認を実施(補足説明資料②(p.172~)参照)。

<2.3 地震動の顕著な増幅を考慮する地震動> 標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮) (まとめ)

No.2コメント回答

 ○標準応答スペクトルに基づく地震動について、解放基盤表面における地震動(地震動の顕著な増幅を考慮しない)の評価結果に 増幅係数を乗じて評価した解放基盤表面における地震動(地震動の顕著な増幅を考慮)を、「標準応答スペクトルに基づく地震 動(地震動の顕著な増幅を考慮)」とする。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<2.3 地震動の顕著な増幅を考慮する地震動> 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮) (敷地の地盤物性を考慮した解放基盤表面における地震動) No.22

No.2コメント回答

○2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動について、解放基盤表面における地震動(地震動の顕 著な増幅を考慮しない)の評価結果に増幅係数を乗じて、解放基盤表面における地震動(地震動の顕著な増幅を考慮) を評価した。

○評価結果は下図のとおりであり、水平成分:1393cm/s²、鉛直成分:432cm/s²と評価された。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<2.3 地震動の顕著な増幅を考慮する地震動>
2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮)
(2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮)の評価結果) No.23×

No.2コメント回答

○前述の解放基盤表面における地震動(地震動の顕著な増幅を考慮)の評価結果(水平成分:1393cm/s²、鉛直成分: 432cm/s²)にさらなる保守性を考慮し、水平成分:1400m/s²、鉛直成分:440cm/s²の地震動を、「2004年北海道留萌 支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮)」として採用する。

<2.3 地震動の顕著な増幅を考慮する地震動> 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮) (まとめ)

○2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動について、解放基盤表面における地震動(地震動の顕著な増幅 を考慮しない)の評価結果に増幅係数を乗じて解放基盤表面における地震動(地震動の顕著な増幅を考慮)を評価し、この評価 結果(水平成分:1393cm/s²、鉛直成分:432cm/s²)にさらなる保守性を考慮し、水平成分:1400m/s²、鉛直成分: 440cm/s²の地震動を、「2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動(地震動の顕著な増幅を考慮)」とする。

目次

1 概要	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	•••••p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

し地域性を考慮する地震動は、「事前に活断層の存在が指摘されていなかった地域において発生し、地表付近に一部の痕跡が確認された地震」、すなわち震源断層がほぼ地震発生層の厚さ全体に広がっているものの、地表地震断層としてその全容を表すまでには至っておらず、震源の規模が推定できない地震(Mw6.5程度以上)とされる地震について、活断層や地表地震断層の出現要因の可能性として、地域によって活断層の成熟度が異なること、上部に軟岩や火山岩、堆積層が厚く分布する場合や地質体の違い等の地域性があることが考えられることを踏まえ、上部に軟岩や火山岩、堆積層が厚く分布する地域で発生した地震とされる2008年岩・宮城内陸地震(Mw6.9)と、活断層の密度が少なく活動度が低いと考えられる地域で発生した地震とされる2000年鳥取県西部地震(Mw6.6)を検討対象とし、震源域の特徴を整理したうえで、震源域と浜岡原子力発電所の敷地及び敷地周辺について特徴を比較し、特徴が類似する場合には、観測記録の収集対象とする。

目次

1 概要	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	•••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	•••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	•••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

<3.1 2008年岩手・宮城内陸地震>2008年岩手・宮城内陸地震の概要

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<3.1 2008年岩手・宮城内陸地震>2008年岩手・宮城内陸地震の震源域周辺の地質

○「20万分の1日本シームレス地質図V2」(地質調査総合センター)(以下シームレス地質図という)によると、2008年岩手・宮城内陸地震の震源域周辺には、<u>古第三</u> 紀~新第三紀の火山岩類及び堆積岩類や、第四紀の火山岩類が分布する。また、震源域周辺は内陸部に位置しており海成段丘は分布していない。

第1117回 資料3

p.125 一部修正

<3.1 2008年岩手・宮城内陸地震>シームレス地質図の凡例

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

94

<3.1 2008年岩手・宮城内陸地震> 2008年岩手・宮城内陸地震の震源域周辺の活断層及びひずみ集中帯

○ 東北日本弧内帯の東西圧縮応力による逆断層及び褶曲構造が主に分布する。

○ 活断層データベース(地質調査総合センター)によると、岩手・宮城内陸地震の震央付近に活断層の記載はないが、その北方に北上低地西縁断層帯等が分布する。

○ 産業技術総合研究所(2009)によると、岩手・宮城内陸地震は、地質学的ひずみ集中帯と測地学的ひずみ集中帯の重なる「東北脊梁山地ひずみ集中帯」で発生している。

○ なお、岡田・他(2008)は、東北脊梁山地ひずみ集中帯ではこれまでも活発な地震活動が見られ、今回の地震の本震震源付近では1999年から2000年にかけて先駆的な地震活動がみ られたとしている(右下図参照)。

<3.1 2008年岩手・宮城内陸地震>2008年岩手・宮城内陸地震の震源域周辺の褶曲構造

○東北建設協会(2006)の地質図には、2008年岩手・宮城内陸地震の 震源域周辺において、主に南北走向の褶曲構造が複数示されている。

○ 鈴木・他(2008)は、地震前に撮影された大縮尺の航空写真の判読により、地震断層にほぼ対応する3~4km程度の区間に活断層変位地形が見出されたとしている。 また、枛木立地点におけるトレンチ調査の結果、約5千年前以降の複数回の活動が明らかになったとしている。

- 田力・他(2009)は、震源域には河成段丘の変化帯が存在し、この変化帯は岩手・宮城内陸地震の震源断層の活動に関連するとしている。また、震源断層付近で求められる垂直変位速度(0.5mm/yr)は、池田・他(2002)による北方の北上低地西縁断層帯の垂直変位速度にほぼ等しいとしている。
- 後藤・佐々木(2019)は、岩手・宮城内陸地震の震源域直上を横断する磐井川において、河成段丘面の対比・編年の再検討及び性状・比高を吟味の上、その比高分 布が、地震時の地殻変動の累積でよく説明できるとし、伏在断層が示唆される地質構造の地域における活動性の検討指標として有効であるとしている。
- 柳田・他(2020)は、岩手・宮城内陸地震の震源域は地表にブロードな変形をもたらしたとし、奥羽脊梁山地を横断する複数の河川に沿って河成段丘面の比高(TT 値)を整理し、幅広い変形帯(WT)や隆起量急変部(HL)が分布することを明らかにし、第三系の褶曲構造と併せ、これら地形・地質学的特徴は、WTを伴う伏 在断層の地表表現であるとしている。

第1117回 資料3

p.128 再掲

<3.1 2008年岩手・宮城内陸地震> 2008年岩手・宮城内陸地震の地表地震断層

- 遠田・他(2010)は、2008年岩手・宮城内陸地震の余震分布から推定される北北東 南南西トレンドの長さ約40kmの震源断層のうち、中央部の約 20kmが地震断層として断続的に地表に現れたとし、それらは西傾斜の震源断層(逆断層)の地表延長部にあたるとしている。
- また、遠田・他(2010)は、地震断層の一部は餅転 細倉構造帯に沿うように分布しているとし、このことから今回の地震は大局的には餅転 細倉構造帯 上で発生したと解釈できるとしている。

○ なお、堤・他(2010)も、地震断層が比較的連続性よく出現した奥州市餅転から一関市落合に至る区間について、地表地震断層を報告している。

Fig. 1. Locations of the surface ruptures (red squares) associated with the 2008 M_w =6.9 Iwate-Miyagi Nairiku earthquake on the distribution of observed aftershocks. Detail distribution of the ruptures in the broken-line box is displayed in Fig. 2.

<2008年岩手・宮城内陸地震の地表地震断層> (遠田・他(2010)に凡例における赤い四角、餅転 – 細倉構造線を加筆)

Fig. 17. Geologic map of the regions from southern Oshu City to western Ichinoseki City (Katayama and Umezawa, 1958) and locations of the surface ruptures associated with the 2008 Iwate-Miyagi Nairiku earthquake. Rivers and major roads are extracted from 1:25,000 topographical map "Hondera" published by Geographical Survey Institute.

<奥州市南部-一関市西部の地質図及び2008年岩手・宮城内陸地震の地表地震断層> (遠田・他(2010)に赤い線を加筆)

第1117回 資料3

p.129 再掲

<3.1 2008年岩手・宮城内陸地震>
2008年岩手・宮城内陸地震の震源域周辺の第四紀火山と後期新生代カルデラの分布

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.130 再掲

<3.1 2008年岩手・宮城内陸地震> 2008年岩手・宮城内陸地震の地すべりの分布

 ○ J-SHIS Map(防災科学技術研究所)によると、震源域付近の焼石岳南麓〜栗駒山東斜面の範囲に、大規模地すべりが密集している。
 ○ 井口・他(2010)は、2008年岩手・宮城内陸地震では地すべり地形を呈していた斜面が再滑動した事例がかなりあったとし、最大規模の荒砥沢地すべりについても、 過去に地すべり変動の履歴を持つ地すべり地形が再滑動したものであると指摘している。

^{5km}」 <2008年岩手・宮城内陸地震の震源域周辺の地すべり地形の分布> (J-SHIS Map(防災科学技術研究所)に縮尺、震央位置等を加筆)

図5 再判読した荒砥沢ダム周辺の地すべり地形分布図 と荒砥沢地すべりの変動範囲(赤線の範囲)

写真1 目撃地点から荒砥沢地すべりを望む.

<2008年岩手・宮城内陸地震において発生した荒砥沢地すべり> (井口・他(2010)による)

第1117回 資料3

p.131 再掲

<2008年岩手・宮城内陸地震の震源域の特徴>

- 震源域周辺には、<u>古第三紀〜新第三紀</u>の火山岩類及び堆積岩類や、第四紀の火山岩類が分布する。また、震源域周辺は内陸部に位置しており海 成段丘面及び段丘堆積物は分布していない。(地質調査総合センター)。
- ・本地震は、地質学的ひずみ集中帯と、測地学的ひずみ集中帯の重なる「東北脊梁山地ひずみ集中帯」で発生しており(産業技術総合研究所 (2009))、地震の断層面上の本震震源付近では、1999年から2000年にかけて先駆的な地震活動がみられた(岡田・他(2008))。
- ・ 震源域付近には大規模地すべりが密集している(防災科学技術研究所 J-SHIS Map、井口・他(2010))。
- 地震断層は、脊梁火山列分布域の海溝側肩部(火山フロント)に近接しており、脊梁山地には、12Ma以降に形成されたカルデラが南北に配列し、とりわけ栗駒火山周辺には、カルデラが密集している(布原・他(2008))。

【震源域の特徴まとめ】

▶ 震源域周辺は、古第三紀~新第三紀の火山岩及び堆積岩が厚く分布するとともに、ひずみ集中帯に位置し、第四紀火山噴出物に覆われ、大規模地すべり地形が多くみられる地域であり、また火山フロントに近接し、周囲には第四紀火山が分布し多数のカルデラが認められる地域である。

<2008年岩手・宮城内陸地震の震源域と浜岡原子力発電所の敷地及び敷地周辺との地域性の比較検討>

- 地体構造区分(基盤地質分類)
- 地震地体構造区分
- 地質分布
- 地形の特徴
- 活断層の分布
- ひずみ集中帯
- ・ 火山フロントとの位置関係等

第1117回 資料3

p.132 修正

<3.1 2008年岩手・宮城内陸地震> 地体構造区分(基盤地質分類)による比較検討(Wallis et al.(2020))

- ○Wallis et al.(2020)は、既往の研究成果を参照の上、日本列島の地体構造区分図(基盤地質分類)を作成し、各地体構造を網羅的に解説している。
- 2008年岩手・宮城内陸地震の震源域が位置する「南部北上帯(SK)」は、古生代~中生代の堆積岩を主体とし、古生代前期の低温高圧型変成岩や花崗岩類を伴うとされている。
- 一方、敷地及び敷地周辺は、「古第三紀-新第三紀の付加体(P-N)」にあたり、西南日本弧外帯の外弧全体に発達する付加体で、タービダイト起源の砂岩、泥岩を主体とするとされている。

第1117回 資料3

p.133 一部修正

<3.1 2008年岩手・宮城内陸地震> 地震地体構造区分による比較検討(垣見・他(2003))

○垣見・他(2003)は、既往の各種区分図を比較した上で最新のデータと知見に基づき地震地体構造区分図を作成している。

- 2008年岩手・宮城内陸地震の震源域の位置する「東北日本弧内帯(8C)」は、活断層の密度は中で、地震活動は高とされている。
 主な地震として、最近では2008年岩手・宮城内陸地震のほか、1896年陸羽、1914年秋田仙北地震など、M7クラスの内陸地殻内地震が複数報告されている。
- 一方、敷地及び敷地周辺の位置する「西南日本弧外帯(10B2)」は、活断層密度は極小で、地震活動も低い地域とされている。
 主な地震として、M7クラスの1331年紀伊、1789年阿波が挙げられているが、これらは敷地から100km以上離れている。
 なお、浜岡原子力発電所の敷地周辺は、10A2-3(駿河湾 遠州灘)にも該当しているが、内陸地殻内地震ではなくプレート間地震を主体とする構造区であることから、ここでは比較・検討の対象としていない。

第1117回 資料3 p.134 再掲

<3.1 2008年岩手・宮城内陸地震> 地質分布による比較検討

- シームレス地質図によると、2008年岩手・宮城内陸地震の震源域周辺には、<u>古第三紀〜新第三紀</u>の火山岩類及び堆積岩類が厚く分布するとともに、第 四紀火山噴出物に覆われる。
- 一方、敷地及び敷地周辺では、<u>古第三紀~第四紀前期</u>の堆積岩類が分布し、それを覆うように第四紀の段丘堆積物や完新統が分布するが、火山岩類 や第四紀火山噴出物は分布していない。なお、本地域では、フィリピン海プレートの沈み込みにより付加体が発達している。

<2008年岩手・宮城内陸地震の震源域周辺の地質図> (シームレス地質図に震央位置や縮尺等を加筆) (凡例はp.94参照)

<3.1 2008年岩手・宮城内陸地震> (補足)敷地周辺の地質図層序表、付加体地域の断層及び褶曲構造の概念図

<敷地周辺の地質層序表> (第493回審査会合、資料1、p.29より作図)

<付加体地域に形成される断層及び褶曲構造の概念図> (第413回審査会合、資料2、p.12より)

第1117回 資料3

p.136 再揭

<3.1 2008年岩手・宮城内陸地震> 地すべり地形(地質分布に関連)による比較検討

○J-SHIS Map(防災科学技術研究所)によると、2008年岩手・宮城内陸地震の震源域周辺には、大規模地すべりを含め、地すべり地形が密集している。 ○ 一方、同Mapでは、敷地及び敷地周辺には、大規模な地すべり地形は分布していない。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

(凡例はp.100参照)

第1117回 資料3 p.137 一部修正

<3.1 2008年岩手・宮城内陸地震> 地形の特徴:第四系の分布・地形面の発達状況による比較検討

○ 震源域周辺は内陸部に位置しており、断層変位基準となる第四紀の海成段丘面及び段丘堆積物は分布していない。なお、震源域周辺の第四紀の河成段丘面の比高と新第三系の褶曲構造から、伏在断層が示唆されるとする知見がある(田力・他(2009)、後藤・佐々木(2019)、柳田・他(2020))。
 ○ 一方、敷地及び敷地周辺には、断層変位基準となる第四紀の海成段丘面(主に後期更新世の牧ノ原面、笠名面、御前崎面)及び段丘堆積物が分布している。

<2008年岩手・宮城内陸地震震源域周辺の地質図> (シームレス地質図に震央位置や縮尺等を加筆) (凡例は<u>p.94</u>参照)

<敷地周辺の地形面区分図>
<3.1 2008年岩手・宮城内陸地震> 活断層の分布による比較検討

第1117回 資料3 p.139 一部修正

○ 東北日本弧内帯は東西圧縮応力による逆断層及び褶曲構造が主に分布する地域であり、2008年岩手・宮城内陸地震の震源域の北方や南方には、北上低地西縁断層帯等の、南北走向の逆断層が分布しているが、震源域周辺には活断層は示されていない(活断層データベース(地質調査総合センター))。
 ○ 一方、西南日本弧外帯は活断層の密度が少ない地域だが、敷地周辺は、プレートの沈み込みが直接影響する付加体地域の圧縮応力によるトラフ軸に平行な北東-南西方向の逆断層及び褶曲構造が主に分布している(活断層データベース(地質調査総合センター))を含む当社による調査及び活断層評価の結果)。

Copyright $\ensuremath{\mathbb{G}}$ Chubu Electric Power Co., Inc. All rights reserved.

<3.1 2008年岩手・宮城内陸地震> (補足)浜岡原子力発電所の敷地周辺の知見

- 牧ノ原台地及び御前崎台地等において、断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布している(杉山・他(2010)等)。
 敷地周辺に広く分布する新第三紀の堆積岩(相良層群、掛川層群)には、その層理面や凝灰岩層の分布から、北東-南西方向の褶曲構造が分布することが知られている (杉山·他(1988)等)。
- 敷地周辺の海域には、北東 南西走向の逆断層や背斜構造が分布することが知られている(活断層研究会編(1991)、東海沖海底活断層研究会編(1999)等)。
 敷地周辺は、これらの知見を踏まえて、断層や褶曲構造の存在が把握される。なお、当社は、これらの知見を踏まえて各種調査を行い、断層や褶曲構造の存在を把握している (前ページ「敷地周辺の活断層分布図」参照)。

<3.1 2008年岩手・宮城内陸地震> ひずみ集中帯による比較検討

○ 日本列島のひずみ集中帯として、「新潟ー神戸ひずみ集中帯」(Sagiya et al.(2000)等)、「日本海東縁ひずみ集中帯」(岡村(2002)等)、「東北脊梁山地ひずみ集中帯」(Miura et al. (2004)等)、「山陰地方のひずみ集中帯」(西村(2015)等)が指摘されている。
 ○ 2008年岩手・宮城内陸地震の震源域は「東北脊梁山地ひずみ集中帯」に位置しているが、敷地周辺はひずみ集中帯の指摘はない(敷地周辺の南海トラフ沿いの地域は、プレートの沈み込みが直接影響している地域であり、プレート間地震の発生によりひずみが解放される。)

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<3.1 2008年岩手・宮城内陸地震> 火山フロントとの位置関係等による比較検討

 ○ 2008年岩手・宮城内陸地震の震源域周辺は、火山フロント(星住・中野(2004))に近接し、第四紀火山も示されている(「日本の第四紀火山」(地質調査総合 センター))。また、同震源域周辺は多数のカルデラに囲まれている(布原・他(2008))。
 ○ 一方、敷地及び敷地周辺は火山フロントから離れており、敷地から半径50km以内に第四紀火山はなく、カルデラも認められない。

小田萌山 散布山 茂世路岳 アトサヌプリ Aランク(13火山) 択捉阿登佐岳 指印原 知床硫黄 Bランク(36火山) 大雪山 ベルタルベ山 十勝岳 火山地質図発行済み(2004年度末) 羊蹄山 恵庭岳 ルルイ岳 ニセコ 能能岳 有珠山 北海道駒ヶ岳 羅臼山 丸山 渡島大島 泊山 樽前山 慶唐 岩木山 俱多楽 雌阿寒戶 秋田焼山 恐山 秋田駒ヶ岳 西表島北北東海底火山 八甲田山 鳥海山 十和田 栗駒山南麓カルデ 2008年岩手·宮城内陸地震 肘折 八幡平 20km 🔺 : 第四紀火山 草津白根 < 栗駒山周辺の地質図とカルデラ構造> 妙高山 弥陀ヶ原(立山) 新潟焼山 く岩手・宮城内陸地震震源域周辺の第四紀火山> (布原・他(2008)に震央位置、縮尺を加筆) 吾妻山 安達太良山 アカンダナ山 (日本の第四紀火山(地質調査総合センター)に震央位置、縮尺、 浜岡原子力発電所 高原山 凡例等を加筆) 日光白根山 (地質の凡例はp.94参照) 赤城山 。 白山 阿武火山群 御嶽山 我間山 小笠原諸島 構兵 : 第四紀火 由布馬 尹豆東部火山群 西之島 更豆大島 海形海山 雲仙岳 利島 与德海山 新島 福江火山群 三宅島 噴火浅根 富士山 御蔵島 袖津倉 硫黄島 米丸·住吉池 八丈島 青ヶ島 北福徳堆 鶴見岳·伽藍岳 福徳岡ノ場 ベヨネース列岩(明神礁) 九重山 桜島 阿蘇山 須美寿島 開聞岳 伊豆鳥島 口之永良部島 南日吉海山 き田・山川 中之島 孀婦岩 日光海山 **取訪之瀬島** 薩摩硫黄島 20km **半径50km** 口之島 浜岡原子力発電所 橙色の太いラインが火山フロント。 <日本列島の活火山> <敷地周辺の第四紀火山> (日本の第四紀火山(地質調査総合センター)に発電所位置、縮尺、凡例等を加筆) (地質の凡例はp.94参照) (星住・中野(2004)に震源位置、発電所位置等を加筆)

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.140 一部修正

2008年岩手・宮城内陸地震の震源域との地域性の比較検討結果)

No.3コメント回答

○ 上部に軟岩や火山岩、堆積層が厚く分布する地域で発生した地震とされる2008年岩手・宮城内陸地震の震源域と、浜岡原子力発電所の敷地及び敷 地周辺とについて、大局的な地体構造区分の違いを確認したうえで、地質分布、地形の特徴、活断層の分布、ひずみ集中帯、火山フロントとの位置関係 等を比較し、特徴が類似する場合には、観測記録の収集対象とする。

- 浜岡原子力発電所の敷地及び敷地周辺は、2008年岩手・宮城内陸地震の震源域で事前に活断層の存在が指摘されていなかった主な要因と考えられる 特徴のうち、<u>堆積岩類が厚く分布することは類似しているものの、火山フロントからは離れており、火山岩類は分布していないこと、第四紀火山噴出物も</u> 分布していないことに地域性の違いが認められる。
- また、大局的な地体構造区分が異なり、活断層の存在の把握に資する断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布していること、プ レートの沈み込みが直接影響する付加体地域の圧縮応力による逆断層及び褶曲構造が分布していること、ひずみ集中帯の指摘がない地域に位置すること とについても地域性の違いが認められる。
- ⇒ 主な要因の一部の特徴が類似するものの他の特徴は異なり、それ以外の項目の特徴はいずれも異なっていることから、2008年岩手・宮城内陸地震の震源 域と浜岡原子力発電所の敷地及び敷地周辺とは、地域性が異なると判断し、2008年岩手・宮城内陸地震は観測記録の収集対象外とした。

	【比較検討結果の凡伯	列】〇:類似性あり △:類似性低い~一部あり ×:類似性なし 【記載事項の凡例】	赤字:類似点 青字:相違点 太字下線:収集対象外との評価で重視した特徴
項目	比較検討結果	2008年岩手・宮城内陸地震の震源域	浜岡原子力発電所の敷地及び敷地周辺
地体構造区分 (基盤地質分類) (Wallis et al.(2020))	×	南部北上帯(SK) (古生代~中生代の堆積岩を主体とし、古生代前期の低温高圧型変成岩 や花崗岩類を伴う。)	古第三紀~新第三紀の付加体(P-N) (西南日本弧外帯の外弧全体に発達する古第三紀~新第三紀の付加 体で、タービダイト起源の砂岩、泥岩を主体とする。)
地震地体構造区分 (垣見・他(2003))	×	東北日本弧内帯(8C) (火山性内弧にあたり、脊梁山地・丘陵の火山帯とその間の盆地列からなり、 活断層の密度は中、地震活動は高、主な地震として、M7クラスの内陸地殻内 地震が複数報告されている。)	西南日本弧外帯(10B2) (外弧隆起帯の安定域にあたり、活断層の密度は極小、地震活動は低、 主な地震は2つほど報告されているが、敷地周辺ではM7クラスの内陸地 殻内地震の報告はない。)
地質分布	Δ	 古第三紀〜新第三紀の火山岩類及び堆積岩類が厚く分布するとともに、 第四紀火山噴出物に覆われる。 大規模地すべりを含め、地すべり地形が密集している。 	 フィリピン海プレートの沈み込みにより付加体が発達し、古第三紀~第 四紀前期の堆積岩類が厚く分布するが、火山岩類は分布していない。 <u>また、第四紀火山噴出物も分布していない</u>。 大規模な地すべり地形は分布していない。
地形の特徴:第四系の分 布・地形面の発達状況	×	• 断層変位基準となる第四紀の海成段丘面及び段丘堆積物は分布しない。	・ 断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布 している。
活断層の分布	×	• 東北日本弧内帯の東西圧縮応力による逆断層及び褶曲構造が主に分布。 なお、震源域周辺には、活断層は示されていない。	 西南日本弧外帯は活断層の密度が少ない地域だが、敷地周辺は、 プレートの沈み込みが直接影響する付加体地域の圧縮応力による 逆断層及び褶曲構造が主に分布する。
ひずみ集中帯	×	・「東北脊梁山地ひずみ集中帯」に位置する。	 ひずみ集中帯の指摘はない。
火山フロントとの位置関係 等	×	 火山フロントに近接しており、周囲には第四紀火山が分布し、多数のカルデラが認められる。 	・ <u>火山フロントからは離れており</u> 、敷地周辺には第四紀火山はなくカルデ うも認められない。

目次

1 概要	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

<3.2 2000年鳥取県西部地震>2000年鳥取県西部地震の概要

<3.2 2000年鳥取県西部地震>2000年鳥取県西部地震の震源域周辺の地質

- シームレス地質図によると、2000年鳥取県西部地震の震源域周辺は、白亜紀から古第三紀の花崗岩を主体としており、<u>新第三紀</u>に貫入した安山岩~ 玄武岩質の岩脈が頻繁に分布している。
- 堤・他(2000)は、震源域周辺の中国地方山間部は、明瞭な断層変位基準の少ない地域であるとし、堤(2009)は、山地域は侵食・削剥速度が大きく、断 層変位地形の保存が悪い場合や、堆積地形面の発達が悪いことを指摘している。
- 下記のシームレス地質図でも、震源域周辺には断層変位基準としての段丘面を構成する第四系は分布していない。

第1117回 資料3

p.146 一部修正

<3.2 2000年鳥取県西部地震> 2000年鳥取県西部地震の震源域周辺の活断層

○ 岡田(2002)は、2000年鳥取県西部地震は活断層の存在が従来知られていなかった地域で発生したとし、震源域周辺の特徴として、以下を挙げている。 ・ 震源域周辺を含む山陰地方は、WNW-ESE方向の圧縮場のもとでENE-WSWとNNW-SSEの方向の横ズレ断層が卓越する。

• 活断層の発達過程でみると、初期の発達段階を示し、断層破砕帯幅も狭く、未成熟な状態とみなされる。

○なお、最新の活断層データベース(地質調査総合センター)では、震央付近に2つの活動セグメントが表示されている。

第1図 山陰地域の主な地震の発震機構解と活断層

主な活断層(①更毛断層,②郷村断層帯,③山田断層帯,④雨滝-釜戸断層帯,⑤吉岡断層,⑥鹿 野断層,⑦岩坪断層,⑧鳥取県西部地震域の断層位置,⑨鹿島断層,⑩山崎断層帯),内陸大地震 (M7.3以下)の発震機構解(上半球投影)は地震断層を伴った1927年以降のみ示す.Gutscher and Lallemand (1999)の北中国剪断帯 (North Chugoku Shear Zone), Itoh *et al.*(2002)の南部日本海断層帯 (Southern Japan Sea Fault Zone:SJSFZ)の位置を図示.

> <震源域周辺の主な地震と活断層> (岡田(2002)による)

20km

<震源域周辺の活断層、主な地震の震央分布、微小地震の震央分布> (活断層データベース(地質調査総合センター)に震央位置、縮尺を加筆)

第1117回 資料3

p.145 再掲

<3.2 2000年鳥取県西部地震> 2000年鳥取県西部地震の震源域の地表地震断層

- ○伏島・他(2001)は、震源域周辺の地表地震断層を調査し、以下のように報告している。
- ・ 地表面の断裂や構造物の破壊・変形が発見された地点は、本震中央の北西側約4km、南東側約2kmに及ぶ。
- これらの地点は、ほぼ北西 南東方向の、ほぼ平行する複数の直線に沿って並んでいる。
- ・ 地表断層長さ(地震断層の出現が確認された帯状地域の長さ)は約6kmであった。

第1回,調査地域の概要と調査経路。国土地理院発行20万分の1地勢図「松江および高柴」を使用. Fig. 1. Locality map of the study area.

第2回, 調査結果の概要, 国土地理院発行2万5千分の1地形図「井尻」を使用。 Fig. 2. Map showing the outline of the results of our investigation.

<3.2 2000年鳥取県西部地震> 2000年鳥取県西部地震の震源域のリニアメント

- 第1117回 資料3 p.148 再揭
- 井上・他(2002)では、鳥取県西部地震の震源域周辺で、左横ずれを示唆する短く断続するリニアメント群を判読し、これらが震源断層の方向と一致するとしている。また、リニアメント沿いで多くの断層露頭が確認されたとし、一部の断層は第四紀層を変位させているとしている。
- そして、これら断層は、横ずれ断層に伴うフラワー構造を呈しており、地下では収れんして震源断層となること、若い未成熟な断層であり、地表近くまで破壊が進行したものの地表 に明瞭な地震断層は出現しなかったとしている。
- 堤・他(2000)、堤(2009)も、鳥取県西部地震の震源域周辺において、震源断層の走向と一致する北西 南東方向の短いリニアメントが数多く分布するとしている。
- 青柳・他(2004)は、井上・他(2002)によるリニアメント分布と余震分布との対応関係について考察し、リニアメントは余震分布の形態に対応して走向を変え、特に南部の直線的な 震央分布と平行にリニアメント群が卓越することから、今回の震源断層は過去にも同様の活動を繰り返してきたと考えられるとしている。
- 松本・他(2020)も、2000年鳥取県西部地震の余震に対応する断層面の分布から、同地震の震源域は、北北西 南南東方向に約35kmに広がっているとしている。
- 垣見(2010)では、井上・他(2002)等によるリニアメント分布の特徴から、鳥取県西部地震の震央域では若い未成熟な断層が並列的に現れ、その一部が地震断層として地表ま で達したとされている。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<3.2 2000年鳥取県西部地震> 2000年鳥取県西部地震の震源域周辺のひずみ集中帯

 ○ 西村(2015)は、山陰地方(島根県東部から兵庫県にかけての日本海側)のひずみ速度の大きな領域をひずみ集中帯と指摘している。
 ○ 西村(2017)は、西南日本を対象に、2005年4月から2009年12月のGNSS及び海域のGPS-Aによる速度データを用い、プレート間固着による弾性変形を 除去した最大せん断ひずみ速度分布を示し(解析対象範囲は概ね東経138°より西側)、山陰地方は、活断層や火山のない場所でもひずみ速度が大き いとし、微小地震が活発であり、M6以上の大地震の多くが発生しているように見えるとしている。

<西南日本の最大せん断ひずみ速度分布(2005-2009)> (西村(2015)に2000年鳥取県西部地震の震源を加筆)

第3図 南海トラフから沈み込むフィリピン海ブレートと陸側プレート間の固着による弾性変形を除去後の最大せん断ひずみ速度分布.茶色の線は主要活断層分布(地震調査委員会, 2016).星印は、1923年~2016年のM6以上かつ深さ20km以浅の大地震,点は、1998年~ 2016年までのM2以上かつ深さ20km以浅の地震の震央を表す。

<西南日本の最大せん断ひずみ速度分布> (西村(2017)に2000年鳥取県西部地震の震源を加筆)

・下線(____)は、一部修正箇所を示す。
 119
 ・左図を追加。

第1117回 資料3

p.149 一部修正

<2000年鳥取県西部地震の震源域の特徴>

- ・ 鳥取県西部地震は、北西 南東走向の横ずれ(左横ずれ)断層による地震とされている(気象庁(2000))。
- ・ 震源域周辺を含む山陰地方は、WNW-ESE方向の圧縮場のもとでENE-WSWとNNW-SSEの方向の横ずれ断層が卓越する(岡田(2002))。
- ・ 活断層の発達過程でみると、初期の発達段階を示し、断層破砕帯幅も狭く、未成熟な状態とみなされる(岡田(2002)、垣見(2010))。
- 震源域周辺は、白亜紀から古第三紀の花崗岩を主体としており、新第三紀に貫入した安山岩〜玄武岩質の岩脈が頻繁に分布している(地質調査総合センター)。また、震源域周辺の中国地方山間部は、明瞭な断層変位基準の少ない地域である(堤・他(2000))。
- ・ 鳥取県西部地震後に実施された調査では、震源域周辺において約6kmの地表地震断層が推定され(伏島・他(2001))、変動地形学的調査では、 震源域周辺において、左横ずれを示唆する短く断続する推定活断層及びリニアメントが判読される(堤・他(2000)、井上・他(2002))。
- ・ 震源域周辺は、「山陰地方のひずみ集中帯」に位置している(西村(2015)等)。

【震源域の特徴まとめ】

▶ 震源域周辺は、白亜紀から古第三紀の花崗岩を主体としており、新第三紀に貫入した安山岩~玄武岩質の岩脈が頻繁に分布し、明瞭な断層 変位基準の少ないとされている地域である。また、東西圧縮応力による横ずれ断層が主に分布し、ひずみ集中帯に位置するが、活断層の発達過 程としては初期ないし未成熟な段階にある地域とされており、活断層の密度は少ない地域である。

<2000年鳥取県西部地震の震源域と浜岡原子力発電所の敷地及び敷地周辺との地域性の比較検討> ○ 大局的な地体構造の観点に加え、上記2000年鳥取県西部地震の震源域の特徴も踏まえ、以下の観点から比較検討を行う。

- 地体構造区分(基盤地質分類)
- 地震地体構造区分
- 地質分布
- ・ 地形の特徴
- ・ 活断層の分布
- ひずみ集中帯
- ・ 火山フロントとの位置関係等

<3.2 2000年鳥取県西部地震> 地体構造区分(基盤地質分類)による比較検討(Wallis et al.(2020))

○Wallis et al.(2020)は、既往の研究成果を参照の上、日本列島の地体構造区分図(基盤地質分類)を作成し、各地体構造を網羅的に解説している。

・2000年鳥取県西部地震の震源域が位置する「飛騨 – 隠岐帯(HO)」は、西南日本弧内帯の日本海側に位置し、主に古生代~中生代の花崗岩、片麻岩から構成されるとしている。

・一方、敷地及び敷地周辺は、「古第三紀-新第三紀の付加体(P-N)」にあたり、西南日本弧外帯の外弧全体に発達する付加体で、タービダイト起源の砂岩、泥岩を主体とするとされている。

FIGURE 1 Summary map of Japan showing the location of the main islands, cities, volcances, and numerous geological features mentioned in the text. The named volcances represent all those listed as rank A and a selected number of those listed as rank B by the Japan Meteorological Agency (Japan Meteorological Agency, 2005). The inner and outer zones of Southwest Japan refer to the inner and outer parts of the arc in Honshu, shikoku, and Kyushu with the boundary along the major long-lived tectonic boundary, the median tectonic line (MTL). ISTL, Itoigawa-Shizuka Tectonic Line: KTL, Kashiwazaki-Choshi Tectonic Line; MTL, Median Tectonic Line; TTL, Tanakura Tectonic Line

<日本列島の概要図> (Wallis et al.(2020)に右図の範囲を加筆)

<西日本の地体構造区分図> (Wallis et al.(2020)に震源位置及び発電所位置を加筆)

	2000年鳥取県西部地震の震源域	敷地及び敷地周辺
地体構造区分 (基盤地質分類)	飛騨-隠岐帯 (HO)	古第三紀~新第三紀の付加体 (P-N)
主な構成岩類	西南日本弧の日本海側に位置し、 主に古生代~中生代の花崗岩、片 麻岩から構成される	日本南西部の外弧全体に発達する古 第三紀〜新第三紀の付加体で、タービ ダイト起源の砂岩、泥岩を主体とする

第1117回 資料3

p.151 一部修正

<3.2 2000年鳥取県西部地震> 地震地体構造区分による比較検討(垣見・他(2003))

○垣見・他(2003)は、既往の各種区分図を比較した上で最新のデータと知見に基づき地震地体構造区分図を作成している。

- 2000年鳥取県西部地震の震源域が位置する「中国山地・瀬戸内海(10C5)」は、活断層の密度は小である一方、地震活動は中(高)とされている。
 主な地震として、最近では2000年鳥取県西部地震のほか、1857年安芸・伊予、1872年浜田、1905年安芸灘など、M7クラスの内陸地殻内地震が複数報告されている。
- 一方、敷地及び敷地周辺の位置する「西南日本弧外帯(10B2)」は、活断層密度は極小で、地震活動も低い地域とされている。
 主な地震として、M7クラスの1331年紀伊、1789年阿波が挙げられているが、これらは敷地から100km以上離れている。
 なお、浜岡原子力発電所の敷地周辺は、10A2-3(駿河湾 遠州灘)にも該当しているが、内陸地殻内地震ではなくプレート間地震を主体とする構造区であることから、ここでは比較・
 検討の対象としていない。

	2000年鳥取県西部地震の震源域	敷地及び敷地周辺
(1)構造区	10C5 中国山地・瀬戸内海	10B2 西南日本弧外帯
(2)地形 · 地質	北半部は安定隆起域、南半部は沈降 域、北部に火山	外弧隆起帯、安定域
(3)活断層の密 度、長さ、活動 度、断層型ほか	小、中(長)、B(A)、横・逆 北東(右)、北西(左)が卓越、東西(逆)は やや古い、南端は中央構造線	極小、短(中)、C、横・逆
(4)浅発大、中地 震活動	中(1885年以降は北部で高) 瀬戸内地域でやや深い、東西圧縮横ず れ断層型	低
主な地震	1857年安芸·伊予(M7 1/4±0.5) 1905年安芸灘(s)(M7 1/4) 1872年浜田(M7.1±0.2) 1686年安芸·伊予(M7~7.4) 880年出雲(M7.0) 1649年安芸·伊予(M7.0±1/4) 2000年鳥取県西部(M7.3)	1331年紀伊(M≧7.0) 1789年阿波(M7.0) 注)これら地震は敷地から100km以 上離れており、敷地周辺にはM7クラス の地震の報告はない。

第1117回 資料3

p.152 再掲

<3.2 2000年鳥取県西部地震> 地質分布による比較検討

- シームレス地質図によると、2000年鳥取県西部地震の震源域周辺は、白亜紀から古第三紀の花崗岩を主体としており、<u>新第三紀</u>に貫入した安山岩〜玄武岩 質の岩脈が頻繁に分布している。
- 一方、敷地及び敷地周辺では、<u>古第三紀~第四紀前期</u>の堆積岩類が分布し、それを覆うように第四紀の段丘堆積物や完新統が分布するが、火山岩類や第四紀火山噴 出物は分布していない。なお、本地域では、フィリピン海プレートの沈み込みにより付加体が発達している。

・なお、2008年岩手・宮城内陸地震の震源域に見られるような大規模地すべり地形は2000年鳥取県西部地震の震源域と 敷地及び敷地近傍のいずれにも分布していないことを確認している。

<2000年鳥取県西部地震の震源域周辺の地質図> (シームレス地質図に震央位置や縮尺等を加筆) (凡例はp.94参照)

<3.2 2000年鳥取県西部地震> 地形の特徴:第四系の分布・地形面の発達状況による比較検討

- 震源域周辺の中国地方山間部は、明瞭な断層変位基準の少ない地域であるとされており、震源域周辺には断層変位基準となる第四紀の海成段丘面及び段丘堆積 物は分布していない。
- 一方、敷地及び敷地周辺には、断層変位基準となる第四紀の海成段丘面(主に後期更新世の牧ノ原面、笠名面、御前崎面)及び段丘堆積物が分布している。

(シームレス地質図に震央位置や縮尺等を加筆)(凡例は2.94参照)

<敷地周辺の地形面区分図>

第1117回 資料3

p.154 一部修正

<3.2 2000年鳥取県西部地震> 活断層の分布による比較検討

○ 西南日本弧内帯の山陰地方は東西圧縮応力による横ずれ断層が主に分布する地域だが、2000年鳥取県西部地震の震源域周辺は、活断層の発達過程としては初期 ないし未成熟な段階にある地域とされており、活断層の密度は少ない(活断層データベース(地質調査総合センター)。

○ 一方、西南日本弧外帯は活断層の密度が少ない地域だが、敷地周辺は、プレートの沈み込みが直接影響する付加体地域の圧縮応力によるトラフ軸に平行な北東-南 西方向の逆断層及び褶曲構造が主に分布している(活断層データベース(地質調査総合センター)を含む当社による調査及び活断層評価の結果)。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<3.2 2000年鳥取県西部地震> ひずみ集中帯による比較検討

○ 日本列島のひずみ集中帯として、「新潟ー神戸ひずみ集中帯」(Sagiya et al.(2000)等)、「日本海東縁ひずみ集中帯」(岡村(2002)等)、「東北脊梁山地ひずみ集中帯」(Miura et al. (2004)等)、「山陰地方のひずみ集中帯」(西村(2015)等)が指摘されている。
 ○ 2000年鳥取県西部地震の震源域は「山陰地方のひずみ集中帯」に位置しているが、敷地周辺はひずみ集中帯の指摘はない(敷地周辺の南海トラフ沿いの地域は、プレートの沈み込みが直接影響している地域であり、プレート間地震の発生によりひずみが解放される。)

<3.2 2000年鳥取県西部地震> 火山フロントとの位置関係等による比較検討

- 2000年鳥取県西部地震の震源域周辺は、火山フロント(星住・中野(2004))に近接しており、第四紀火山も大山ほかいくつか示されている(「日本の 第四紀火山」(地質調査総合センター))。
- ○一方、敷地及び敷地周辺は火山フロントから離れており、第四紀の火山活動は知られておらず、カルデラも認められない。

第1117回 資料3

p.156 一部修正

<3.2 2000年鳥取県西部地震> 2000年鳥取県西部地震の震源域との地域性の比較検討結果

No.3コメント回答

p.10 再掲

○ 活断層の密度が少なく活動度が低いと考えられる地域で発生した地震とされる2000年鳥取県西部地震の震源域と、浜岡原子力発電所の敷地及び敷地周辺とについて、大局的な地体構造区分の違いを確認したうえで、地質分布、地形の特徴、活断層の分布、ひずみ集中帯、火山フロントとの位置関係等を比較し、特徴が類似する場合には、観測記録の収集対象とする。

- 浜岡原子力発電所の敷地及び敷地周辺は、2000年鳥取県西部地震の震源域で事前に活断層の存在が指摘されていなかった主な要因と考えられる、 **断層の密度が少なく活動度が低いことについて、プレートの沈み込みが直接影響する付加体地域の圧縮応力による逆断層及び褶曲構造が分布してい** <u>ることに地域性の違いが認められる。</u>
- また、大局的な地体構造区分が異なり、堆積岩が分布していること、断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布していること、ひず み集中帯の指摘がない地域に位置すること、火山フロントから離れていることについても地域性の違いが認められる。
- ⇒主な要因の特徴及びそれ以外の項目の特徴はいずれも異なっていることから、2000年鳥取県西部地震の震源域と浜岡原子力発電所の敷地及び敷地周 辺とは、地域性が異なると判断し、2000年鳥取県西部地震は観測記録の収集対象外とした。

	【比較検討結果の凡体	例】〇:類似性あり△:類似性低い~一部あり×:類似性なし 【記載事項の凡例】	】赤字:類似点 青字:相違点 太字下線:収集対象外との評価で重視した特徴
項目	比較検討結果	2000年鳥取県西部地震の震源域	浜岡原子力発電所の敷地及び敷地周辺
地体構造区分 (基盤地質分類) (Wallis et al.(2020))	×	飛騨-隠岐帯(HO) (西南日本弧内帯の日本海側に位置し、主に古生代~中生代の花崗岩、 片麻岩から構成される。)	古第三紀~新第三紀の付加体(P-N) (西南日本弧外帯の外弧全体に発達する古第三紀~新第三紀の付加 体で、タービダイト起源の砂岩、泥岩を主体とする。)
地震地体構造区分 (垣見・他(2003))	×	中国山地・瀬戸内海(10C5) (北部は安定隆起域で火山が分布し、南部は沈降域にあたり、活断層の密 度は小だが、地震活動は中(高)、主な地震として、M7クラスの内陸地殻内 地震が複数報告されている。)	西南日本弧外帯(10B2) (外弧隆起帯の安定域にあたり、活断層の密度は極小、地震活動は低、 主な地震は2つほど報告されているが、敷地周辺ではM7クラスの内陸地 殻内地震の報告はない。)
地質分布	×	• 白亜紀から古第三紀の花崗岩を主体としており、新第三紀に貫入した安山 岩~玄武岩質の岩脈が頻繁に分布する。	
地形の特徴:第四系の分 布・地形面の発達状況	×	 明瞭な断層変位基準の少ない地域であるとされており、震源域周辺には断層変位基準となる第四紀の海成段丘面及び段丘堆積物は分布していない。 	• 断層変位基準となる第四紀の海成段丘面及び段丘堆積物が分布 している。
活断層の分布	×	 西南日本弧内帯の東西圧縮応力による横ずれ断層が主に分布している地域だが、震源域周辺は、活断層の密度は少なく活動度が低い。なお、震源域には褶曲構造は知られていない。 	 西南日本弧外帯は活断層の密度が少ない地域だが、敷地周辺は、 プレートの沈み込みが直接影響する付加体地域の圧縮応力による <u>褶曲構造及び逆断層</u>が主に分布する。
ひずみ集中帯	×	• 「山陰地方のひずみ集中帯」に位置する。	・ <u>ひずみ集中帯の指摘はない</u> 。
火山フロントとの位置関係 等	×	 火山フロントに近接しており、周囲には第四紀火山が分布する。 	・ <u>火山フロントからは離れており</u> 、敷地周辺には第四紀火山はなくカルデ うも認められない。
火山フロントとの位置関係 等		・ 火山フロントに近接しており、周囲には第四紀火山が分布する。	

・なお、2008年岩手・宮城内陸地震の震源域に見られるような大規模地すべり地形は2000年鳥取県西部地震の震源域と敷地及び敷地近傍のいずれにも分布していないことを確認している。

目次

1 概要	•••••p.4~
 2 全国共通に考慮すべき地震動 2.1 標準応答スペクトルに基づく地震動 2.1.1 地下構造モデル及び地震基盤相当面の設定 2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価 2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動 2.2.1 2004年北海道留萌支庁南部の地震の観測記録 2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見 2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価 2.3 地震動の顕著な増幅を考慮する地震動 	····p.17~ ····p.22~ ····p.24~ ····p.37~ ····p.42~ ····p.48~ ····p.56~ ····p.80~
 3 地域性を考慮する地震動 3.1 2008年岩手・宮城内陸地震 3.2 2000年鳥取県西部地震 	·····p.89~ ·····p.91~ ·····p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
参考資料	•••••p.179~

No.2コメント回答

- ○敷地における「震源を特定せず策定する地震動」は、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の 解釈」の別記2の記載及び「基準地震動及び耐震設計方針に係る審査ガイド」を踏まえて、震源と活断層を関連付けることが困難な過去の 内陸地殻内の地震について得られた震源近傍における観測記録を基に、各種の不確かさを考慮して敷地の地盤物性に応じた応答スペクトル を設定して策定する。
- ○「震源を特定せず策定する地震動」の策定に当たっては、「全国共通に考慮すべき地震動」及び「地域性を考慮する地震動」を検討する。

<全国共通に考慮すべき地震動>

- ○「<u>標準応答スペクトルに基づく地震動」</u>として、地震基盤相当面において設定された「標準応答スペクトル」に基づき、敷地の地盤物性に応じて解放基盤表面までの地震波の伝播特性を反映した地震動を考慮する。
- ○「2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動」として、「2004年北海道留萌支庁南部の地震のK-NET HKD020 (港町)観測点の観測記録」に基づき、敷地の地盤物性に応じて解放基盤表面までの地震波の伝播特性を反映した地震動を考慮する。 ○これらの解放基盤表面までの地震波の伝播特性の反映は、敷地の一次元地下構造モデルを用いて行う。また、地震動の顕著な増幅を考慮 する地震動評価も行う。

<地域性を考慮する地震動>

○2008年岩手・宮城内陸地震及び2000年鳥取県西部地震の震源域と浜岡原子力発電所の敷地及び敷地周辺について特徴を整理し比較した結果、地域差が認められることから、2008年岩手・宮城内陸地震及び2000年鳥取県西部地震の観測記録は収集対象外とする。

<4 震源を特定せず策定する地震動の策定> まとめ(地震動の顕著な増幅を考慮しない)

○ 震源を特定せず策定する地震動(地震動の顕著な増幅を考慮しない)として、標準応答スペクトルに敷地の地盤物性に応じて解放基盤表面までの地震波の伝播特性を反映した地震動(水平成分:1034cm/s²、鉛直成分:615cm/s²)及び2004年北海道留萌支庁南部の地震の検討結果にさらなる保守性を考慮した地震動 (水平成分:700cm/s²、鉛直成分:320cm/s²)を考慮する。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.162 一部修正

<4 震源を特定せず策定する地震動の策定> まとめ(地震動の顕著な増幅を考慮)

○ 震源を特定せず策定する地震動(地震動の顕著な増幅を考慮)として、標準応答スペクトルに敷地の地盤物性に応じて解放基盤表面までの地震波の伝播特性を反映した地震動(水平成分:1766cm/s²、鉛直成分:783cm/s²)及び2004年北海道留萌支庁南部の地震の検討結果にさらなる保守性を考慮した地震動(水平成分:1400cm/s²、鉛直成分:440cm/s²)を考慮する。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

No.2コメント回答

目次

1 概要	•••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	•••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113~
4 震源を特定せず策定する地震動の策定	•••••p.129~
補足説明資料	•••••p.133~
①敷地における地盤増幅特性と地震動評価への反映方法	•••••p.134~
②標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の模擬地震動の	•••••p.172~
作成の複数の方法による検討	-

参考資料 ·····p.179~

敷地における地盤増幅特性と地震動評価への反映方法

 敷地における地盤増幅特性と地震動評価への反映方法については、第1041回審査会合において、敷地ごとに震源を特定して策定 する地震動のまとめ資料を作成してご説明する際、敷地における地盤増幅特性の分析結果及びそれを踏まえた地震動評価の方針、 並びに敷地ごとに震源を特定して策定する地震動の評価における敷地の地盤増幅特性の地震動評価への反映方法についてもまと め資料を作成してご説明した(第1041回審査会合資料2-2-2参照)。

 ここでは、敷地の地盤増幅特性の地震動評価への反映方法の全体像を示しつつ、震源を特定せず策定する地震動の評価における 敷地の地盤増幅特性の地震動評価への反映方法についてご説明するため、以下について順にご説明する。
 • 敷地における地盤増幅特性のの反映方法についてご説明するため、以下について順にご説明する。
 • 敷地における地盤増幅特性の地震動評価への反映方法(第1041回審査会合資料2-2-2 p.19~参照)
 • 敷地における地盤増幅特性の地震動評価への反映方法(第1041回審査会合資料2-2-2 p.90~参照)
 • 敷地における地盤増幅特性を踏まえた地震動評価の方針(概要)(第1041回審査会合資料2-2-2 p.100~参照)
 • 敷地における地盤増幅特性を踏まえた地震動評価への反映方法(概要)(第1041回審査会合資料2-2-2 p.100~参照)
 • 敷地ごとに震源を特定して策定する地震動の評価への反映方法(概要)(第1041回審査会合資料2-2-2 p.100~参照)
 • 震源を特定して策定する地震動の評価への反映方法(概要)(第1041回審査会合資料2-2-2 p.100~参照)
 • 震源を特定して策定する地震動の評価への反映方法
 • 敷地ごとに震源を特定して策定する地震動の評価への反映方法
 • 敷地ごとに震源を特定して策定する地震動の評価への反映方法(概要)(第1041回審査会合資料2-2-2 p.100~参照)
 • 震源を特定して策定する地震動の評価への反映方法
 • 震源を特定して策定する地震動の評価への反映方法
 • 震源を特定して策定する地震動の評価への反映方法

 • 震源を特定して策定する地震動の評価への反映方法
 • 震源を特定して策定する地震動の評価への反映方法
 • 震源を特定して策定する地震動の評価への反映方法
 • 震源を特定して策定する地震動の評価への反映方法

第1117回 資料3

p.20 一部修正

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性を踏まえた地震動評価の方針(概要) (敷地ごとに震源を特定して策定する地震動及び震源を特定せず策定する地震動)

【敷地における地盤増幅特性の地震動評価への反映方法】

<解放基盤表面の設定(第1041回審査会合資料2-2-2 p.92~参照)>

○敷地の地下構造調査結果等に基づき、標高-14mを解放基盤表面に設定する。

<地震動評価への反映方法(第1041回審査会合資料2-2-2 p.100~参照)>

- ○敷地における地震動の増幅特性を踏まえ、「地震動の顕著な増幅を考慮しない地震動評価」と「地震動の顕著な増幅を考慮する地震動評価」を実施する こととし、観測点毎の地震動の顕著な増幅の有無(地震観測記録の分析)に基づき、S波低速度層の分布及び解析に基づく影響範囲(地下構造調査 結果の分析)も踏まえて、「地震動の顕著な増幅を考慮しない領域」(1~4号炉周辺)と「地震動の顕著な増幅を考慮する領域」(5号炉周辺)と を設定する^{※1}。
- ○「地震動の顕著な増幅を考慮しない地震動評価」は、平行成層地盤と見なして地盤増幅特性を保守的に考慮する。
- ○「地震動の顕著な増幅を考慮する地震動評価」は、S波低速度層による三次元的な地下構造の影響を踏まえて地盤増幅特性を保守的に考慮する。

<敷地ごとに震源を特定して策定する地震動における地震動評価への反映方法(次ページ~及び第1041回審査会合資料2-2-2 p.109~参照)>

- ○「地震動の顕著な増幅を考慮しない地震動評価」は、断層モデルを用いた手法では、一次元地下構造モデルを設定し、統計的グリーン関数法と波数積分法によるハイブリッド合成法により地震動評価を行う。
- ○「地震動の顕著な増幅を考慮する地震動評価」では、敷地固有の地盤増幅特性を詳細に考慮できる断層モデルを用いた手法を重視し、震源断層のうち 「増幅方向」にあたる範囲に応じ、2009年駿河湾の地震(本震)の観測記録の再現検討により検証した増幅係数を乗じる方法^{※2}を用いて、地震動の顕 著な増幅を反映して地震動評価を行う。

<震源を特定せず策定する地震動における地震動評価への反映方法(p.164~参照)>

- ○「地震動の顕著な増幅を考慮しない地震動評価」は、「標準応答スペクトルに基づく地震動」及び「2004年北海道留萌支庁南部の地震の基盤地震動に基づく 地震動」の評価において、断層モデルを用いた手法の統計的グリーン関数法のために設定した一次元地下構造モデル(SGFモデル)※3を用いて、敷地の解放基盤 表面における地震動の評価を行う。
- ○「地震動の顕著な増幅を考慮する地震動評価」は、断層モデルを用いた手法で採用した増幅係数を乗じる方法を用いることとし、増幅係数は断層モデルを 用いた手法で採用したものを用い、震源断層を設定せずに行う評価であることを踏まえ、震源断層から到来するすべての地震波が顕著に増幅すると仮定して 地震動評価を行う。
- ※1 「地震動の顕著な増幅を考慮しない地震動評価」は、敷地全体(「地震動の顕著な増幅を考慮しない領域」及び「地震動の顕著な増幅を考慮する領域」)を対象とし、「地震動の顕著な増幅を考慮する地震動評価」は、2009年駿 河湾の地震の地震波到来方向付近(N30E~N70E)で地震動の顕著な増幅が見られる「地震動の顕著な増幅を考慮する領域」(5号炉周辺)を対象とする。

※3 SGFモデルは、Q値が保守的に設定されていることにより(すべての層でQ=100f^{0.7}を設定)、地震観測記録を用いて推定した地下構造モデルより振幅が大きく評価される保守的な一次元地下構造モデルであることを確認している(第 1041回審査会合資料2-2-3 補足説明資料①-10参照)。

・地震動の顕著な増幅を考慮する地震動評価を行うよう記載を修正。

第1117回 資料3

p.42 修正

^{※2} 断層モデルを用いた手法による地震動評価は、2009年駿河湾の地震(本震)の観測記録の再現検討により検証した「地震動の顕著な増幅が見られる地震波到来方向(N30E~N70E)」に位置する強震動生成域(アスペリティ) の各小断層からの地震動(グリーン関数)に増幅係数を乗じる方法を用いて、地震動の顕著な増幅を反映して地震動評価を行う。

<補足説明資料① 敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析結果(概要)

(地震観測記録の分析結果)

※3 浅部三次元地下構造モデルの底面に相当するA層下面(深さ700m程度。第1041回審査会合資料2-2-3 補足 説明資料①-11参照)への入射角について、各断面の地震クラスター毎にレイトレーシングを行い評価。

○ 地震観測記録の分析結果から、5号炉周辺の増幅要因は、5号炉周辺から2009年駿河湾の地震の地震波到来方向にかけて局所的に分布する、 浅部地盤のS波速度が低下した不均質構造であると考えられる。

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析結果(概要)

(地下構造調査結果及び解析検討結果)

・敷地における地盤増幅特性の分析結果の詳細は、第1041回審査会合資料2-2-2 p.19~参照。

解析検討

○局所的に分布するS波低速度層を含む三次元地下構造モデルを用いた解析検討により、地震観測記録の特徴と整合する結果が得られることを確認。
 ○増幅メカニズムは、S波低速度層による波面の屈曲により地震波が干渉して増幅するフォーカシング現象と分析。

第1117回 資料3

p.22 再掲

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析 (敷地における地震観測)

○浜岡原子力発電所では、各号炉周辺における鉛直アレイ観測、敷地全体を対象とした多点連続地震観測及び 海底試掘トンネルにおける連続地震観測を行っている。また、大深度観測点における鉛直アレイ観測も行っている。

第1117回 資料3

p.23 再掲

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析

(各号炉周辺における鉛直アレイ観測(3~5号炉の観測点における地震波到来方向毎の地盤増幅特性))

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3 p.24 再掲

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析

第1117回 資料3 p.25 再掲

(敷地全体を対象とした多点連続地震観測(敷地全体における地震波到来方向毎の地盤増幅特性の分析))

- 振幅比が大きい地震のグループが確認された観測点として5号炉周辺(No.9~No.13)を、いずれの地震のグループにおいても振幅比が1程度で あった観測点として1~4号炉周辺(No.3~No.8, No.34)をそれぞれグルーピングし、概ね敷地の中央に位置するNo.7観測点を基準にして、地 震波到来方向毎に各地震の振幅比を算出。
- ⇒5号炉周辺では、2009年駿河湾の地震を含むN30E~N70Eの地震波到来方向の地震では振幅比が大きいが、その他の地震波到来方向の 地震では振幅比が1程度である。

⇒1~4号炉周辺では、2009年駿河湾の地震の地震波到来方向を含め、いずれの地震波到来方向の地震も振幅比は1程度である。

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析 (敷地全体を対象とした多点連続地震観測(震央位置との関係の分析))

○ 敷地全体を対象とした多点連続地震観測記録の震央位置との関係の分析結果によると、「増幅方向」の地震波でも、増幅の程度は一様では なく、地震波の入射角が鉛直に近づく敷地近傍の地震ほど顕著な増幅は見られない傾向がある。

(N30E~N70E方向+敷地直下の地震)

※1 概ね敷地の中央に位置するNo.7観測点(<u>p.141</u>参照)を基準として算出。観測分析期間は、2009年9月20日 ~2013年8月4日。

※2 No.9~No.13観測点の記録を使用(p.141参照)。

- ※3 本検討では、敷地から15km程度に位置する地震は敷地近傍の地震に分類して整理した。
- (4 浅部三次元地下構造モデルの底面に相当するA層下面(深さ700m程度。第1041回審査会合資料2-2-3 補足 説明資料①-11参照)への入射角について、各断面の地震クラスター毎にレイトレーシングを行い評価。

・敷地全体を対象とした多点連続地震観測の詳細は、第1041回審査会合資料2-2-2 p.34~参照。

第1117回 資料3

p.26 一部修正

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析

第1117回 資料3 p.27 再掲

(敷地近傍の地下構造(浅部)(S波低速度層の分布(立体図)))

 ・教地近傍の複数の速度構造調査結果によると、S波低速度層は5号炉周辺より東側に分布し、1,2号炉周辺及び 3,4号炉周辺や海側には分布していない。

 この調査結果に基づき敷地近傍の地質・地質構造を参考に推定したS波低速度層の分布図によると、S波低速度層は 5号炉から2009年駿河湾の地震の到来方向である北東方向にかけて、深さ数百mの浅部に局所的に分布している。

 S波低速度層の分布の信頼性について、S波低速度層を確認した速度構造調査結果(オフセットVSP探査に基づく初 動トモグラフィ解析結果)に関し、チェッカーボードテスト及びスパイクテストにより信頼性を確認した(第1041回審査会合 資料2-2-2 p.65~参照)。

<平面分布図>

・敷地近傍の地下構造(浅部)の詳細は、第1041回審査会合資料2-2-2 p.59~参照。

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析 (敷地近傍の地下構造(浅部)(敷地近傍の浅部三次元地下構造モデルの作成))

- 敷地近傍の浅部地盤を対象として実施した地下構造調査の結果に基づき、S波低速度層を含む敷地近傍の浅部三次元地下構造モデルを作成し、 三次元有限差分法により、3~5号炉位置の地盤増幅特性に係る解析検討を行い、地震観測記録の特徴との関係について検討する。
- 低速度層、小低速度層[※]、母岩(相良層)から成る浅部三次元地下構造モデル(チューニングモデル)は、基本的に地下構造調査結果に基づき 設定し、小低速度層は地震観測記録の特徴を説明できるよう、その形状をチューニングして低速度層の内部に設定する。
- ※ オフセットVSP探査結果(フルウェーブ解析)によると、低速度層の内部が濃淡のある不均質な速度構造の集合体であることを踏まえ、低速度層の内部には更に速度が低い構造(小低速度層)を モデル化する。

・敷地近傍の浅部三次元地下構造モデルの作成及び解析検討は、第1041回審査会合資料2-2-2 p.69~参照。

第1117回 資料3

p.29 再掲

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析

「ストビインクリアクトビュニューローロー・「エマノノノー/」 (敷地近傍の地下構造(浅部)(浅部三次元地下構造モデルを用いた解析検討結果(地震観測記録の特徴との比較)))

○周波数特性、経時特性、地震波到来方向毎の増幅特性について、浅部三次元地下構造モデルを用いた解析結果は地震観測記録の特徴と概ね 整合しており、5 号炉周辺の増幅要因として、当該モデルは妥当であることを確認した。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3 p.30 一部修正

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析

(5号炉周辺の地震波の増幅メカニズム(浅部三次元地下構造モデルを用いた三次元有限差分法による解析結果(スナップショット)の分析))

○三次元有限差分法による解析結果の時間断面毎のスナップショットによると、下方から伝播する平行な波面が低速度層・ 小低速度層を通過すると、下に凹形状に屈曲していき、それとともに一部の振幅が大きくなっている。

第1117回 資料3

p.31 再掲

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析 (5号炉周辺の地震波の増幅メカニズムの考察)

○下方から伝播する地震波は、低速度層、小低速度層それぞれの境界部で屈折するとともに、それぞれの層内の伝播速度が 異なることにより、その波面が凹形状に屈曲する。この波面の凹形状の屈曲により地震波が干渉して増幅するフォーカシング 現象が5号炉周辺の地震動の増幅メカニズムと分析した。

・敷地近傍の浅部三次元地下構造モデルの作成及び解析検討は、第1041回審査会合資料2-2-2 p.69~参照。

第1117回 資料3 p.32 再掲

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析

(敷地近傍の地下構造(浅部)(浅部三次元地下構造モデルを用いた入射角、入射方向に関する解析検討の結果))

第1117回 資料3 p.33 再掲

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性の分析結果(概要) (4号炉周辺等の地盤増幅特性と5号炉周辺等の地盤増幅特性)

敷地における地盤増幅特性

・敷地における地盤増幅特性の分析結果の詳細は、第1041回審査会合資料2-2-2 p.19~参照。

・敷地における地盤増幅特性の分析結果の詳細は、第1041回審査会合資料2-2-2 p.19~参照。

【敷地における地盤増幅特性】

地震観測記録及び地下構造調査結果に基づき、2009年駿河湾の地震における5号炉周辺の増幅要因や敷地における地震動の増 幅特性を分析。

<5号炉周辺の増幅要因の分析>

○ 5 号炉周辺の増幅要因は、5 号炉から2009年駿河湾の地震の地震波到来方向である北東方向にかけて<u>局所的に分布する深</u> <u>さ数百mの浅部地盤のS波低速度層</u>であり、その増幅メカニズムは、S波低速度層による波面の屈曲により地震波が干渉して増幅 するフォーカシング現象と分析。

<敷地における地震動の増幅特性>

- ○敷地における地震動の増幅特性は、

 ○敷地における地震動の増幅特性は、

 Signature
 - ・5 号炉周辺の観測点において、地震動の顕著な増幅は、①特定の到来方向(N30E~N70E)の地震波のみに、②短周期の 特定の周期帯(フーリエスペクトルの周期0.2~0.5秒)では見られるが、その他の地震波到来方向では見られない。「増幅方向」 でも地震波の入射角が鉛直に近づく敷地近傍の地震ほど顕著な増幅は見られない傾向がある。
 - ・1~4号炉周辺の観測点において、地震動の顕著な増幅は、いずれの地震波到来方向でも見られない。

・敷地における地盤増幅特性を踏まえた地震動評価の方針の詳細は、第1041回審査会合資料2-2-2 p.100~参照。

【敷地における地震動の増幅特性(p.137~及び第1041回審査会合資料2-2-2 p.19~参照)】

○地震観測記録及び地下構造調査結果に基づき、敷地における地震動の増幅特性を分析。

○ 5 号炉周辺の観測点において、地震動の顕著な増幅は、①特定の到来方向(N30E~N70E)の地震波のみに、②短周期の特定の周期帯 (フーリエスペクトルの周期0.2~0.5秒)では見られるが、その他の地震波到来方向では見られない。

○1~4号炉周辺の観測点において、地震動の顕著な増幅は、いずれの地震波到来方向でも見られない。

【敷地における地震動評価】

- 敷地における地震動の増幅特性を踏まえ、「地震動の顕著な増幅を考慮しない地震動評価」と「地震動の顕著な増幅を考慮する地震動評価」を 実施することとし、観測点毎の地震動の顕著な増幅の有無(地震観測記録の分析)に基づき、S波低速度層の分布及び影響範囲(地下構造 調査結果の分析)も踏まえて、「地震動の顕著な増幅を考慮しない領域」(1~4号炉周辺)と「地震動の顕著な増幅を考慮する領域」(5 号炉周辺)とを設定する(次ページ及び第1041回審査会合資料2-2-2 p.100~参照)。
- ○「地震動の顕著な増幅を考慮しない地震動評価」は、敷地全体(「地震動の顕著な増幅を考慮しない領域」及び「地震動の顕著な増幅を考慮 する領域」)を対象とする。
- ○「地震動の顕著な増幅を考慮する地震動評価」は、2009年駿河湾の地震の地震波到来方向付近(N30E~N70E)で地震動の顕著な増幅が 見られる「地震動の顕著な増幅を考慮する領域」(5号炉周辺)を対象とする。

・ 浜岡原子力発電所 地震動の顕著な増幅を考慮しない領域(1~4号炉周辺)	地震動の顕著な増幅を考慮する領域(5号炉周辺)
地震動の顕著な増幅を考	慮しない地震動評価
	地震動の顕著な増幅を考慮する地震動評価 (地震動の顕著な増幅が見られる地震波到来方向付近 (N30E~N70E)に震源断層が位置する地震)

第1117回 資料3

p.37 一部修正

※2「地震動の顕著な増幅を考慮しない領域と地震動の顕著な増幅を考慮する領域との境界」は、主に地震動の顕著な増幅が見られない観測点に基づき設定することとし、当該境界により設定される地震動の顕著な増幅 を考慮する領域が、地震動の顕著な増幅が見られる観測点及びS波低速度層の分布・影響範囲を包絡することを確認。 <補定説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性を踏まえた地震動評価の方針(概要) (地震動の顕著な増幅が見られない領域の地震動評価への反映方法の基本方針)

第1117回 資料3 p.39 再揭

・敷地における地盤増幅特性を踏まえた地震動評価の方針の詳細は、第1041回審査会合資料2-2-2 p.100~参照。

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 敷地における地盤増幅特性を踏まえた地震動評価の方針(概要) (地震動の顕著な増幅が見られる領域の地震動評価への反映方法の基本方針) 第1117回 資料3 p.40 再掲

・敷地における地盤増幅特性を踏まえた地震動評価の方針の詳細は、第1041回審査会合資料2-2-2 p.100~参照。

- 敷地の地下構造調査結果等に基づき、<u>標高-14mを解放基盤表面に設定</u>する。
- ○「地震動の顕著な増幅を考慮しない地震動評価」は、平行成層地盤と見なして地震動評価を行う。断層モデルを用いた手法では、一次元地下構造モデ ルを設定し、統計的グリーン関数法と波数積分法によるハイブリッド合成法により地震動評価を行う。
- ○「地震動の顕著な増幅を考慮する地震動評価」は、地震観測記録の分析の結果、地震動の顕著な増幅は、特定の到来方向(N30E~N70E、「増幅 方向」)の地震波のみに、短周期の特定の周期帯(フーリエスペクトルの周期0.2~0.5秒)で見られることを踏まえ、この敷地固有の地盤増幅特性を詳細 に考慮できる断層モデルを用いた手法を重視し、2009年駿河湾の地震(本震)の観測記録の再現検討により検証した増幅係数を乗じる方法 (「増幅 方向」に位置する強震動生成域(アスペリティ)の各小断層からの地震動(グリーン関数)に増幅係数を乗じる方法)を用いて、地震動の顕著な増幅を 反映して地震動評価を行う。応答ペクトルに基づく手法は、断層モデルを用いた手法による地震動評価結果を用いて応答スペクトルに与える影響を求めて 反映して地震動評価を行う。

磁力其般主	्तन	国	標高	Vs	Vp	ρ	SGF法 ^{※1}	波数積	分法 ^{※2}	
所以を登衣山		眉	(m)	(m/s)	(m/s)	(g/cm ³)	Qs,Qp	Qs	Qp	
用統↑	·	1	-14	740	2000	2.07	100f ^{0.7}	74	148	↑
い計		2	-32	790	2030	2.08	100f ^{0.7}	79	158	
る的		3	-62	830	2070	2.09	100f ^{0.7}	83	166	
モリー		4	-92	910	2140	2.11	100f ^{0.7}	91	182	
構		5	-192	960	2180	2.12	100f ^{0.7}	96	192	
置ン		6	-354	1100	2110	2.10	100f ^{0.7}	110	220	巾 波
(员		7	-493	1230	2320	2.15	100f ^{0.7}	123	246	る積
震法		8	-739	1420	2790	2.25	100f ^{0.7}	142	284	地分
- 基で		9	-1094	1590	3060	2.31	100f ^{0.7}	159	318	構で
监 以		10	-2050	2150	3990	2.46	100f ^{0.7}	215	430	造
浅	∕_▽_	11	-3550	2470	4470	2.53	100f ^{0.7}	247	494	
地震基盤	留面	12	-5050	2720	4830	2.58	-	272	544	
		13	-8240	2880	5130	2.62	-	288	576	
		14	-11400	3060	5450	2.66	-	306	612	
		15	-14600	3540	6300	2.76	-	354	708	
		16	-17800	3990	7100	2.85	-	399	798	
		17	-23100	4390	7810	2.91	-	439	878]↓
		N*7.4								π)

<断層モデルを用いた手法による地震動評価で用いる一次元地下構造モデル>

・解放基盤表面の設定は、第1041回審査会合資料2-2-2 p.92~参照。

・断層モデルを用いた手法による地震動評価に用いる一次元地下構造モデルの設定は、次ページ及び第1041回審査会合資料2-2-2 p.109~参照。

・敷地ごとに震源を特定して策定する地震動の地震動の顕著な増幅を考慮する地震動評価は、第1041回審査会合資料2-2-2 p.116~参照。

<検討用地震の震源モデルと地震動の増幅を考慮する領域(例)>

第1117回 資料3

p.43 一部修正

<補足説明資料① 敷地における地盤増幅特性と地震動評価への反映方法> 第1117回 資料3 p.44 再掲 敷地ごとに震源を特定して策定する地震動の評価への反映方法 (断層モデルを用いた手法による地震動評価で用いる一次元地下構造モデルの設定(設定方針及び設定結果))

○断層モデルを用いた手法(統計的グリーン関数法(短周期領域)と波数積分法(長周期領域)によるハイブリッド合成法)による地震動評価に用いる一次元地下構造モデルは、地下構造調査により得られた詳細な地下構造データ等に基づき設定し、敷地の観測記録の再現検討等を踏まえてその妥当性を確認している^{※1}。

<速度構造>

- ・T.P.-14m~T.P.-2050mでは、S波速度及びP波速度の両方が得られる浅部及び大深度ボーリング調査のPS検層結果(ダウンホール法)に基づき、S波速度及びP波 速度を設定する。
- ・T.P.-2050m以深について、P波速度は屈折法地震探査結果(海陸統合)に基づき設定し、S波速度は、T.P.-5050m以浅では各調査結果に基づき算定したVp Vs 関係式(Vs=0.68Vp-580(m/s))を、T.P.-5050m以深ではObana et al.(2004)によるVp-Vs関係式(Vp/Vs=1.78)を用いて、P波速度から推定する。
 <密度>
- ・各調査結果との対応が良いGardner et al.(1974)のVp-ρ関係式(p=0.31Vp^{0.25}(g/cm³))を用いて、P波速度から推定する。
- <Q值>
- ・統計的グリーン関数法(短周期の地震動評価):100f^{0.7%2}、波数積分法(長周期の地震動評価):Qs=Vs/10、Qp=2Qs^{※3}

※1 一次元地下構造モデルの設定の詳細は、第1041回審査会合資料2-2-2 p.109~参照。 ※2 中央防災会議(2001a)、 ※3 原子力安全基盤機構(2007)、新色・山中(2013)。

般故其般丰而	屈	標高	Vs	Vp	ρ	SGF法 ^{※4}	波数積	分法※5	
	/百	(m)	(m/s)	(m/s)	(g/cm ³)	Qs,Qp	Qs	Qp	
用統个	1	-14	740	2000	2.07	100f ^{0.7}	74	148	$ \uparrow $
い計	2	-32	790	2030	2.08	100f ^{0.7}	79	158	
る的	3	-62	830	2070	2.09	100f ^{0.7}	83	166	
下リー	4	-92	910	2140	2.11	100f ^{0.7}	91	182	
構	5	-192	960	2180	2.12	100f ^{0.7}	96	192	日波
造ン	6	-354	1100	2110	2.10	100f ^{0.7}	110	220	い数
1 地数	7	-493	1230	2320	2.15	100f ^{0.7}	123	246	る積
震法	8	-739	1420	2790	2.25	100f ^{0.7}	142	284	地分
	9	-1094	1590	3060	2.31	100f ^{0.7}	159	318	構で
	10	-2050	2150	3990	2.46	100f ^{0.7}	215	430	造
浅 ↓ ▽	11	-3550	2470	4470	2.53	100f ^{0.7}	247	494	Â
地震基盤面	12	-5050	2720	4830	2.58	-	272	544	
	13	-8240	2880	5130	2.62	-	288	576	
	14	-11400	3060	5450	2.66	-	306	612	
	15	-14600	3540	6300	2.76	-	354	708	
	16	-17800	3990	7100	2.85	-	399	798	
	17	-23100	4390	7810	2.91	-	439	878	$ \downarrow$

※4 統計的グリーン関数法(短周期の地震動評価)、※5 波数積分法(長周期の地震動評価)

第1117回 資料3 <補足説明資料① 敷地における地盤増幅特性と地震動評価への反映方法> p.46 再掲 敷地ごとに震源を特定して策定する地震動の評価への反映方法 (敷地ごとに震源を特定して策定する地震動の断層モデルを用いた手法による地震動評価への地震動の顕著な増幅の反映方法(概要))

- ○前述のとおり、検討用地震の地震動評価(地震動の顕著な増幅を考慮)は、地震観測記録に基づき確認された地震動の顕著な増幅の特性を的確に反映するため、
- 震源断層を小断層に分割し、小断層毎に敷地に到来する地震動を詳細に考慮できる断層モデルを用いた手法を重視する。 ○ 断層モデルを用いた手法では、地震動の顕著な増幅は、「増幅方向」に位置する強震動生成域(アスペリティ)の各小断層からの地震動(グリーン関数)に増幅係数 (第1041回審査会合資料2-2-2 p.120参照)を乗じることで、短周期の地震動評価に一般的に用いられる統計的グリーン関数法により、地震動の顕著な増幅の特性 を反映した地震動評価を行う。このようにグリーン関数(震源特性s(f)×伝播特性p(f)×地盤増幅特性g(f))に増幅係数を乗じる方法は、一次元地下構造モデルによる 地盤増幅特性(q(f))を補正して、S波低速度層による三次元的な地下構造の影響を考慮することに相当する(q(f)′=q(f)×増幅係数)。
- グリーン関数に乗じる増幅係数については、増幅の程度が最も大きい2009年駿河湾の地震(本震)を参考に、その再現検討を踏まえて設定し、グリーン関数に増幅係数を乗じる強震動生成域(アスペリティ)の小断層については、「増幅方向」を踏まえ保守的に設定する。
- 2009年駿河湾の地震(本震)の観測記録の再現検討では、増幅係数の合理性も含め、本反映方法(強震動生成域(アスペリティ)の各小断層のグリーン関数に 増幅係数を乗じる方法)による地震動評価結果(波形合成結果)と地震動の顕著な増幅が見られた観測点(5号炉)の観測記録との比較により検証を行う。

<補定説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 震源を特定せず策定する地震動の評価への反映方法 (増幅係数)

 ○ 増幅を考慮する周期帯は、2009年駿河湾の地震(本震)で5号炉周辺の顕著な増幅が見られた周期帯0.2~0.5秒を参考としてより広帯域に設定する。
 ○ 増幅を考慮する程度は、2009年駿河湾の地震(本震)におけるはぎとり波の加速度フーリエスペクトル比(5G1/3G1, 5RB/3G1)及び周期別SI値比 (周期0.02~0.5秒)を参考として設定する。
 ○ 2000年駿河湾の地震(本票)は増幅の程度が見たませ、信頼性の高い記録が得られた地震である。

○ 2009年駿河湾の地震(本震)は増幅の程度が最も大きく、信頼性の高い記録が得られた地震である。

<2009年駿河湾の地震(本震)における周期別SI値比*1> (周期0.02~0.5秒*2)

	NS	EW	UD
4G1/3G1	0.93	1.08	0.72
5G1/3G1	2.40	1.97	1.42
5RB/3G1	2.47	2.50	1.38

※1 構造物の応答に関連する指標であり、下記により 定義される。

周期別SI値 = $\int_{T_1}^{T_2} S_v(T,h) dT$ ここで、Sv:擬似速度応答スペクトル T:周期 h:減衰定数(5%とする)

※2 2009年駿河湾の地震(本震)の応答スペクトルに おいて5号炉周辺の顕著な増幅が見られた周期帯。

<u> </u>	「木女人/		
周期(s)	水平動	周期(s)	鉛直動
0.02	1	0.02	1
0.1	1	0.1	1
0.125	2.6	0.125	1.8
0.5	2.6	0.4	1.8
0.6	1	0.5	1
10	1	10	1

ノガリーン思粉に手じて増幅区粉へ

<補足説明資料① 敷地における地盤増幅特性と地震動評価への反映方法> 敷地ごとに震源を特定して策定する地震動の評価への反映方法

(敷地ごとに震源を特定して策定する地震動の応答スペクトルに基づく地震動評価への地震動の顕著な増幅の反映方法(方針))

【応答スペクトルに基づく手法の概要】

- 応答スペクトルに基づく手法は、地震規模や震源距離といった巨視的パラメータにより震源断層全体の地震動を評価する手法である。
- 応答スペクトルに基づく手法では、検討用地震と震源特性、伝播経路特性、地盤増幅特性が同様と見なせる地震の観測記録が得られている場合、その観 測記録を用いて、検討用地震と同様の震源特性、伝播経路特性、地盤増幅特性を反映した地震動評価を行うことができる。
- ○その際、三次元的な地下構造の影響により地震動の顕著な増幅が見られるサイトでは、震源断層面の広がりや地震波到来方向の違いによって地盤増幅特 性が異なることから、各検討用地震に応じた敷地固有の地盤増幅特性(地震動の顕著な増幅特性)を適切に反映するためには、各検討用地震と震源断 層面の広がりや地震波到来方向が同様と見なせる観測記録を用いる必要がある。

【浜岡原子力発電所の観測記録】

○ 浜岡原子力発電所の検討用地震には、内陸地殻内地震、プレート間地震、海洋プレート内地震の3つの地震タイプがあり、敷地への影響が最も大きい地 震タイプはプレート間地震である。敷地における観測地震に関し、3つの地震タイプの各検討用地震と震源断層面の広がりや地震波の到来方向が同様と見 なせ、各検討用地震に応じた敷地固有の地盤増幅特性が適切に反映された観測記録は得られていない。

内陸地殻内地震(御前崎海脚西部の断層帯による地震)

海洋プレート内地震(敷地直下の想定スラブ内地震) Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<補足説明資料① 敷地における地盤増幅特性と地震動評価への反映方法> 敷地ごとに震源を特定して策定する地震動の評価への反映方法

(敷地ごとに震源を特定して策定する地震動の応答スペクトルに基づく地震動評価への地震動の顕著な増幅の反映方法(概要・増幅係数(応答スペクトル比)の算出方法))

 応答スペクトルに基づく地震動評価は、3つの地震タイプ(内陸地殻内地震、プレート間地震、海洋プレート内地震)の各検討用地震と震源断層面の広がりや地震波の 到来方向が同様と見なせ、各検討用地震に応じた敷地固有の地盤増幅特性が適切に反映された観測記録が得られていないことを踏まえ、地震タイプ共通の地震動の顕著な増 幅の反映方法として、『各検討用地震に応じた敷地固有の地盤増幅特性が適切に反映された断層モデルを用いた手法による地震動評価結果を用いて応答スペクトルに与 える影響(地震動の顕著な増幅を考慮する地震動評価結果/地震動の顕著な増幅を考慮しない地震動評価結果)を求めて反映する方法』により応答スペクトルに基 づく地震動評価を行うこととし、各検討地震に応じた敷地固有の地盤増幅特性が震源断層全体の地震動の応答スペクトルに与える影響を反映する。
 具体的には、検討用地震の震源モデル毎に、上記の影響を求めるため、地震動の顕著な増幅を考慮する場合と考慮しない場合について、断層モデルを用いた手法による 地震動評価を行い、これらの結果による増幅係数(応答スペクトル比:「地震動の顕著な増幅を考慮する場合の平均応答スペクトル(各破壊開始点の平均)」/「地 震動の顕著な増幅を考慮しない場合の平均応答スペクトル(各破壊開始点の平均)」*)を水平動・鉛直動それぞれで算出し、応答スペクトルに基づく地震動評価結果 (地震動の顕著な増幅を考慮しない)に乗じる。

(応答スペクトル比)は各破壊開始点の平均、水平動についてはNS方向とEW方向の平均を用いる。

第1117回 資料3

p.48 再掲

 「地震動の顕著な増幅を考慮しない地震動評価」は、「標準応答スペクトルに基づく地震動」及び「2004年北海道留萌支庁南部の 地震の基盤地震動に基づく地震動」の評価において、断層モデルを用いた手法の統計的グリーン関数法のために設定した一次元地下 構造モデル(SGFモデル)*を用いて、敷地の解放基盤表面における地震動の評価を行う。
 「地震動の顕著な増幅を考慮する地震動評価」は、断層モデルを用いた手法で採用した増幅係数を乗じる方法を用いることとし、 増幅係数は断層モデルを用いた手法で採用したものを用い、震源断層を設定せずに行う評価であることを踏まえ、震源断層から 到来するすべての地震波が顕著に増幅すると仮定して地震動評価を行う。

※ SGFモデルは、Q値が保守的に設定されていることにより(すべての層でQ=100f^{0.7}を設定)、地震観測記録を用いて推定した地下構造モデルより振幅が大きく評価される保守的な一次元地下構造 モデルであることを確認している(第1041回審査会合資料2-2-3 補足説明資料①-10参照)。

(実用発電用原子炉及びその附属 施設の位置、構造及び設備の基準に 関する規則の解釈別記2による)

層	標高 (m)	Vs (m/s)	Vp (m/s)	ρ (g/cm ³)	Qs,Qp
1	-14	740	2000	2.07	100f ^{0.7}
2	-32	790	2030	2.08	100f ^{0.7}
3	-62	830	2070	2.09	100f ^{0.7}
4	-92	910	2140	2.11	100f ^{0.7}
5	-192	960	2180	2.12	100f ^{0.7}
6	-354	1100	2110	2.10	100f ^{0.7}
7	-493	1230	2320	2.15	100f ^{0.7}
8	-739	1420	2790	2.25	100f ^{0.7}
9	-1094	1590	3060	2.31	100f ^{0.7}
10	-2050	2150	3990	2.46	100f ^{0.7}
11	-3550	2470	4470	2.53	100f ^{0.7}

第1117回 資料3

p.58 修正

<一次元地下構造モデル(断層モデルを用いた手法の 統計的グリーン関数法のために設定した一次元地下構造モデル)> (断層モデルを用いた手法で 採用した増幅係数と同じ)

・解放基盤表面の設定は、第1041回審査会合資料2-2-2 p.92~参照。

・断層モデルを用いた手法による地震動評価に用いる一次元地下構造モデルの設定は、p.158及び第1041回審査会合資料2-2-2 p.109~参照。

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 震源を特定せず策定する地震動の評価への反映方法 (地震動の顕著な増幅を考慮する地震動評価について)

○ S波低速度層の影響により特定の地震波到来方向(N30E~N70E)の地震における5号炉周辺の観測点のみで見られる地震動の顕著な増幅に関しては、「震源を特定せず策定する地震動の評価」と「敷地における地盤増幅特性(地震観測記録及び地下構造調査結果に基づく分析結果)」との関係の検討結果を踏まえ、「標準応答スペクトルに基づく地震動」及び「2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動」について、「敷地ごとに震源を特定して策定する地震動」の断層モデルを用いた手法で採用した増幅係数を乗じる方法で、地震動の顕著な増幅を考慮する地震動評価を行う(下記及び次ページ以降参照)。

【地震動の顕著な増幅を考慮する地震動評価(S波低速度層の影響による地震動の顕著な増幅の検討)】

震源を特定せず策定する地震動の評価

○「震源を特定せず策定する地震動」は、震源断層を設定せず、震源と活断層を関連付けることが困難な過去の内陸地殻内の地震について得られた震源近傍における観 測記録を基に評価を行う。

敷地における地盤増幅特性(地震観測記録及び地下構造調査結果に基づく分析結果)

○ 地震観測記録及び地下構造調査結果に基づき、2009年駿河湾の地震における5号炉周辺の増幅要因や敷地における地震動の増幅特性を分析。

<5号炉周辺の増幅要因の分析>

○ 5 号炉周辺の増幅要因は、5 号炉から2009年駿河湾の地震の地震波到来方向である北東方向にかけて局所的に分布する深さ数百mの浅部地盤のS波低速度 層であり、その増幅メカニズムは、S波低速度層による波面の屈曲により地震波が干渉して増幅するフォーカシング現象と分析。

<敷地における地震動の増幅特性>

○ 敷地における地震動の増幅特性は、 S波低速度層による影響の有無によって地震動の増幅特性が異なることにより、以下のとおり、特定の地震波到来方向(N30E ~N70E、「増幅方向」)付近のみ地震動の顕著な増幅が見られる観測点と、地震動の顕著な増幅が見られない観測点とに分かれる。

Copyright © Chubu Electric Power Co., Inc. All rights reserved. ・地震動の顕著な増幅を考慮する地震動評価を行うよう記載を修正。165

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.52 一部修正

 前述のとおり、多点連続地震観測記録を用いた敷地全体における地震波到来方向毎の地盤増幅特性の分析の結果、地震動の 顕著な増幅は、5号炉周辺観測点における特定の地震波到来方向(N30E~N70E、「増幅方向」)の地震のみに見られる。
 ここでは、「震源を特定せず策定する地震動」の対象とする震源近傍の観測記録に関する分析として、上記多点連続地震観測 記録の分析結果のうち地震動の顕著な増幅が見られた5号炉周辺観測点を対象に、<u>敷地近傍(敷地から10km以内)の地震</u>の観測記録を確認。

○<u>敷地近傍(敷地から10km以内)の地震における多点連続地震観測記録の分析結果によると、「増幅方向」も含め、振幅比</u> は1.5~2倍程度以内であり、敷地近傍の地震の観測記録では地震動の顕著な増幅は見られない。

<補足説明資料① 敷地における地盤増幅特性と地震動評価への反映方法> 第1117回 資料3 p.54 一部修正 震源を特定せず策定する地震動の評価への反映方法 (敷地全体を対象とした多点連続地震観測(敷地近傍の地震に関する追加分析))

○ 前述のとおり、敷地全体を対象とした多点連続地震観測記録の震央位置との関係の分析結果によると、「増幅方向」の地震波でも、増幅の程度は一様 ではなく、地震波の入射角が鉛直に近づく敷地近傍の地震ほど顕著な増幅は見られない傾向がある。

○ ここでは、「震源を特定せず策定する地震動」の対象とする震源近傍の観測記録について、標準応答スペクトルに係る検討においてMw6.5程度の地震の 断層が収まる半径10km程度の範囲を震源近傍としていることを踏まえて、上記多点連続地震観測記録の分析結果について、5号炉周辺観測点におけ る観測記録のうち敷地近傍(敷地から10km以内)の地震の観測記録を確認。

○ 敷地近傍(敷地から10km以内)の地震における多点連続観測記録の震央位置との関係の分析結果によると、「増幅方向」も含め、振幅比は1.5~ 2倍程度以内であり、敷地近傍の地震の観測記録では地震動の顕著な増幅は見られない。

X1 Х2

Ж3

・地震動の顕著な増幅を考慮する地震動評価を行うよう記載を修正。また、記載と整合するよう図を修正。

<補足説明資料①敷地における地盤増幅特性と地震動評価への反映方法> 震源を特定せず策定する地震動の評価への反映方法 (地震動の顕著な増幅を考慮する地震動評価について)

【顕著な増幅を考慮して評価した地震動】 ○「標準応答スペクトルに基づく地震動」及び「2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動」について、S波低速度層の影響により5号炉周辺の観測点のみで地震動の顕著な増幅が見られることを踏まえ、S波低速度層による地震動の増幅を考慮することとし、「敷地ごとに震源を特定して策定する地震動」の断層モデルを用いた手法で採用した増幅係数を乗じる方法により、地震動の顕著な増幅を考慮する地震動評価を実施。 ○ 増幅係数は、断層モデルを用いた手法で採用したもの</u>を用い、S波低速度層の影響を受けるのは「増幅方向」にあたる震源断層の一部と考えられるものの、震源断層を設定せず行う評価では「増幅方向」にあたる範囲を検討できないことを踏まえ、<u>震源断層から到来するすべての地震波が顕著に増幅すると仮定した保守的な地震動評価を実施</u>。 ■ 本式の本式の地震動の評価結果に増幅係数を乗じることにより、顕著な増幅を考慮した地震動を評価。

p.8 再掲

補足説明資料②

標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の模擬地震動の作成の複数の方法による検討

<補足説明資料②標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の模擬地震動の作成の複数の方法による検討> 概要

○ 解放基盤表面における標準応答スペクトルに基づく地震動の顕著な増幅を考慮)は、解放基盤表面における標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)の評価結果に増幅係数を乗じることにより評価した(p.83参照)。
 ○ 解放基盤表面における標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)の評価は、一様乱数の位相を用いた方法による地震

動を採用し、模擬地震動の作成の複数の方法による検討として実観測記録の位相を用いた方法による地震動との比較検討による確認を行っているが、こ こでは、念のため、標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の評価についても、同様の比較検討による確認を実施する。

<補足説明資料②標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の模擬地震動の作成の複数の方法による検討> 実観測記録の位相を用いた方法による地震動

○標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の実観測記録の位相を用いた方法による地震動について、解 放基盤表面における標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮しない)の実観測記録の位相を用いた方法 による地震動(p.32参照)に増幅係数を乗じて、解放基盤表面における地震動(地震動の顕著な増幅を考慮)を評価した。

<補足説明資料②標準応答スペクトルに基づく地震動の顕著な増幅を考慮)の模擬地震動の作成の複数の方法による検討> 模擬地震動の作成の複数の方法の比較(応答スペクトル)

○解放基盤表面における応答スペクトルは、一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法 による地震動で差異は認められない。

<解放基盤表面における標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の評価結果の比較(応答スペクトル)>

<補足説明資料②標準応答スペクトルに基づく地震動の顕著な増幅を考慮)の模擬地震動の作成の複数の方法による検討> 模擬地震動の作成の複数の方法の比較(加速度時刻歴波形)

- 加速度時刻歴波形の振幅包絡形状は、両方法(一様乱数の位相を用いた方法と実観測記録の位相を用いた方法)による地震動とも地震基盤相当面 と解放基盤表面とで傾向は大きく変わらない。
- ○解放基盤表面における加速度時刻歴波形の強震部の継続時間は、Noda et al.(2002)の方法による振幅包絡線の主要動部の継続時間をもとに比べると、 実観測記録の位相を用いた方法による地震動の方が短く、一様乱数の位相を用いた方法による地震動の方が長い。
- ○解放基盤表面における最大加速度は、一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法による地震動で大きな差異は認められない。また、大きな差異は認められない中では、一様乱数の位相を用いた方法による地震動の方がやや大きい。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<補足説明資料②標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)の模擬地震動の作成の複数の方法による検討> 模擬地震動の作成の複数の方法の比較(まとめ)

) 一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法による地震動とを比較した結果は下表のとおり。

	く比較結果のまとめ>
比較項目	比較結果
応答スペクトル	○解放基盤表面における応答スペクトルは、一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法による地震動で差異は認められない。
時刻歷波形	 加速度時刻歴波形の振幅包絡形状は、両方法(一様乱数の位相を用いた方法と実観測記録の位相を用いた方法)による地震動とも地震基盤相当面と解放基盤表面とで傾向は大きく変わらない。 解放基盤表面における加速度時刻歴波形の強震部の継続時間は、一様乱数の位相を用いた方法による地震動の方が長い。 解放基盤表面における最大加速度は、一様乱数の位相を用いた方法による地震動と実観測記録の位相を用いた方法による地震動で大きな差異は認められない。また、大きな差異は認められない中では、一様乱数の位相を用いた方法による地震動の方がやや大きい。

- 模擬地震動の作成の複数の方法による検討として、地震規模がM6.0より小さいものの、敷地近傍(敷地から10km以内)で発生した内陸地 殻内地震における敷地の観測記録(2015年9月1日静岡県中部の地震(M4.3、震央距離4.4km))を用いて、実観測記録の位相を用 いた方法により模擬地震動を作成して解放基盤表面における地震動を評価し、一様乱数の位相を用いた方法による地震動との比較を行い、 位相の違いが地震基盤相当面から解放基盤表面までの伝播の特性に与える影響を検討した。
- ○その結果、一様乱数の位相を用いた方法による地震動に対し、実観測記録の位相を用いた方法による地震動を比較すると、解放基盤表面における応答スペクトルに差異は認められないこと、加速度時刻歴波形の振幅包絡形状は両方法による地震動とも地震基盤相当面と解放基盤 表面とで傾向は大きく変わらないこと、解放基盤表面における最大加速度に大きな差異は認めれられないことから、両方法の模擬地震動の作 成に用いる位相の違いが地震基盤相当面から解放基盤表面までの伝播の特性に与える影響はないと評価した。
- ○また、一様乱数の位相を用いた方法による地震動は、実観測記録の位相を用いた方法による地震動と比べて、解放基盤表面における加速度時刻歴波形の強震部の継続時間が長く、解放基盤表面における最大加速度がやや大きいことから、一様乱数の位相を用いた方法による地震動の方が保守性を有すると評価した。
- ○以上の検討結果から、標準応答スペクトルに基づく地震動(地震動の顕著な増幅を考慮)として、一様乱数の位相を用いた方法による地 震動を採用する。

目次

1 概要 1 概要 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	••••p.4~
2 全国共通に考慮すべき地震動	
2.1 標準応答スペクトルに基づく地震動	•••••p.17~
2.1.1 地下構造モデル及び地震基盤相当面の設定	•••••p.22~
2.1.2 解放基盤表面における標準応答スペクトルに基づく地震動の評価	•••••p.24~
2.2 2004年北海道留萌支庁南部の地震の基盤地震動に基づく地震動	••••p.37~
2.2.1 2004年北海道留萌支庁南部の地震の観測記録	•••••p.42~
2.2.2 佐藤・他(2013)による基盤地震動の推定に関する知見	•••••p.48~
2.2.3 敷地の地盤物性を考慮した解放基盤表面における地震動の評価	••••p.56~
2.3 地震動の顕著な増幅を考慮する地震動	••••p.80~
3 地域性を考慮する地震動	••••p.89~
3.1 2008年岩手·宮城内陸地震	••••p.91~
3.2 2000年鳥取県西部地震	•••••p.113-
4 震源を特定せず策定する地震動の策定	•••••p.129-
補足説明資料	••••p.133-
参考資料	•••••p.179-
補正申請(2021年12月)における標準応答スペクトルに基づく地震動	

補正申請(2021年12月)における標準応答スペクトルに基づく地震動

<参考資料補正申請(2021年12月)における標準応答スペクトルに基づく地震動> 第1117回 資料3 標準応答スペクトルに係る補正申請(2021年12月)からの変更について p.165 再掲 (概要)

 ○ 標準応答スペクトルに基づく地震動の評価に用いる地下構造モデルについて、補正申請(2021年12月)では、<u>敷地の地震観測記録に基づき最適化して</u> 設定した地下構造モデル(最適化モデル)
 を用いたが、第1041回審査会合コメント及び先行サイトの審査を踏まえ、断層モデルを用いた手法による地震動 評価で用いた地下構造モデル(SGFモデル)と同じもの

○ また、標準応答スペクトルに基づく地震動の評価に用いる模擬地震動について、補正申請(2021年12月)では、**振幅包絡線の経時変化をM6.9で設定し** <u>て作成</u>していたが、先行サイトの審査を踏まえ、振幅包絡線の経時変化をM7.0で設定して作成</u>することに変更。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

<参考資料補正申請(2021年12月)における標準応答スペクトルに基づく地震動> 第1117回 資料3 p.166 再掲 標準応答スペクトルに係る補正申請(2021年12月)からの変更について (地下構造モデルと断層モデルを用いた手法による地震動評価と標準応答スペクトルに基づく地震動の評価の違い)

- 断層モデルを用いた手法による地震動評価では、震源断層モデルと地下構造モデルに基づき、地震動評価を行っている(統計的グリーン関数法)。 断層モデルを用いた手法による地震動評価で用いる地下構造モデル(SGFモデル)は、地下構造調査結果に基づくとともに、内閣府(2012)による南海トラフ地震の断層モ デルを用いた手法の知見を重視し、内閣府(2012)の震源断層モデルとセットとの考えから、内閣府(2012)と同じく地震基盤以深の減衰Q値を全層一律に設定している。
- 標準応答スペクトルに基づく地震動の評価では、震源モデルを用いない地震観測記録に基づく評価であることを踏まえ、内閣府(2012)の震源断層モデルとセットとして断層 モデルを用いた手法用に設定した地下構造モデルではなく、敷地の鉛直アレイ観測で蓄積した記録を重視して、<u>敷地の地震観測記録に基づき最適化して設定した地下構</u> 造モデル(最適化モデル)を用いた(2021年12月補正申請)。
- ⇒ 第1041回審査会合コメント及び先行サイトの審査を踏まえ、標準応答スペクトルに基づく地震動の評価に用いる地下構造モデルについて、<u>断層モデルを用いた手法による地震動評価で用いた地下構造モデル(SGFモデル)と同じもの</u>を用いることに変更。

<参考資料補正申請(2021年12月)における標準応答スペクトルに基づく地震動> 標準応答スペクトルに係る補正申請(2021年12月)からの変更について (模擬地震動の振幅包絡線の経時変化)

- ○標準応答スペクトルに基づく地震動の評価に用いる模擬地震動について、補正申請(2021年12月)では、M6.9で振幅包絡線の 経時変化を設定した。
- ⇒先行サイトの審査を踏まえ、審査ガイドにおいて「全国共通に考慮すべき地震動」の規模はMw6.5程度未満と記載されており、 Mw6.5をKanamori(1977)及び武村(1990)に基づきMに換算するとM6.949になるが、審査ガイドでは「Mw6.5程度未満」と幅を持っ て示されていることから換算式から求められるMについて幅を持たせ、模擬地震動の特に強震部の継続時間が長めとなるよう保守的に M7.0で振幅包絡線の経時変化を設定することに変更。

	NA	Xeq	振幅包	絡線の経時	変化(s)	主要動継続時間	継続時間
	IVI	(km)	Т _b	T _c	Τ _d	(s)	(s)
補正申請(2021年12月)	6.9	10	3.3	15.1	28.0	11.8	28.0
今回	7.0	10	3.7	16.3	29.8	12.6	29.8

<補正申請(2021年12月)と変更後の振幅包絡線の経時変化(Noda et al.(2002)の方法に基づく)の比較>

<参考資料補正申請(2021年12月)における標準応答スペクトルに基づく地震動> 標準応答スペクトルに基づく地震動の評価の概要

○「標準応答スペクトルに基づく地震動」は、地震基盤相当面において設定された「標準応答スペクトル」に基づき、敷地の地盤物性 に応じた解放基盤表面までの地震波の伝播特性を反映して評価する。

○解放基盤表面までの地震波の伝播特性の反映は、敷地の一次元地下構造モデルを用い、Vs=2200m/s以上の地層の上面を地 震基盤相当面として標準応答スペクトルに適合させて作成した模擬地震動を入力し、敷地の解放基盤表面における地震動を評 価することにより行う。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.168 一部修正

○解放基盤表面までの地震波の伝播特性の反映は、敷地の地震観測記録に基づき最適化して設定した地下構造モデル(最適化モデル)*1を用いて考慮する。
 ○地震基盤相当面は、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」の別記2において、「地震基盤からの地盤増幅率が小さく地震動としては地震基盤面と同等とみなすことができる地盤の解放面で、せん断波速度Vs=2200m/s以上の地層」とされていることを踏まえ、T.P.-3550m(Vs=2470m/s)に設定する。

※1 1~7層(T.P.-14m~T.P.-2050m)は、地下構造調査結果及び既往文献等を踏まえ、大深度観測点における鉛直アレイ地震観測(T.P.-1447m以浅)により得られた記録の伝達関数を対象とした逆解析に基づき設定。8,9層(T.P.-2050m以深)は、敷地の地震観測によって記録が得られていないことから、地下構造調査結果及び既往文献等に基づき設定(第1041回審査会合資料2-2-3 補足説明資料①-10参照)。

解放基盤表面		標高	Vs	ρ	Qs	% 2		標高	Vp	ρ	Qp) %2
(出力位置) ▽	旧	(m)	(m/s)	(g/cm ³)	Qo	n	旧	(m)	(m/s)	(g/cm ³)	Qo	n
	1	-14	773	2.06	7.69	1	1	-14	1961	2.06	2.28	1
	2	-48	831	2.09	7.69	1	2	-24	2239	2.09	2.28	1
	3	-145	978	2.12	7.69	1	3	-145	2197	2.12	2.28	1
	4	-354	1045	2.09	7.69	1	4	-405	2203	2.09	10.20	1
	5	-493	1201	2.09	22.73	1	5	-621	2525	2.23	10.20	1
地震基盤相当面	6	-739	1486	2.27	22.73	1	6	-884	3037	2.27	10.20	1
適合する模擬地震動	7	-1094	1759	2.31	22.73	1	7	-1154	3440	2.31	10.20	1
の人力位置 /	8	-2050	2150	2.46	100	0.7	8	-2050	3990	2.46	100	0.7
	9	-3550	2470	2.53	100	0.7	9	-3550	4470	2.53	100	0.7

<一次元地下構造モデル※1>

₩2 Q(f)=Qo×fⁿ

第1117回 資料3 p.170 再掲

<大深度観測点の各地震計設置深さとPS検層結果との関係>

第1117回 資料3 p.171 再掲

○大深度観測点におけるPS検層結果等に基づき、初期モデルと探索範囲を設定。 ○観測地震における伝達関数(G.L.-1500m以浅)の逆解析により、地盤モデルを推定。

			初期モデル			探索	範囲				最適化結果	Ę						
深さ GL-(m)	層厚 (m)	密度 (g/cm³)	S波速度 (m/s)	S波 (m 下限	速度 /s)	h 下限	0 - 158	~ 际限	x ⊢R≣	S波速度 (m/s)	h0	а		深さ GL-(m)	層月 (m)			
0 2	10	1.88	240	120	480	1.14		1.1928		187				0	10			
10	5	1.88	380	190	760	0	1	0	1	296	1.000	0. 484		10	5			
15	5	1.88	540	270	1080	8				420				15	5			
20 ● 30	12	2.07	720	360	1440					560				20 ● 30	11			
32 <u>67</u>	69	2.06	720	360	1440					773				31	46			
101	97	2. 09	830	415	1660	0 0	1	0	1	831	0.065	1.000		100	121			
• 200	209	2. 12	900	450	1800	0 8.				978								 200 458
546	139	2.09	1100	550	2200				1045				 436 550 674 	216				
 550 792 	246	2.09	1230	615	2460					1201				 800 937 	263			
 800 1147 	355	2.27	1420	710	2840	0	1	0	1	1486	0.022 1.000		1207	270				
• 1500	353	2. 31	1590	795	3180					1759				• 1500	293			
	-	2. 31	1590	795	3180					1759				• 1500	-			
● :地震 ▼ : 解)	計 放基	盤表面	i			((水	₽₫	勆)			<推3	定した地産	●:地編 ▼:解 8モデ	計加を			

		初期モデル			探索	範囲				最適化結果	Į	
深さ 居厚 L-(m) (m)	密度 (g/cm ³)	P波速度 (m/s)	P波速度 (m/s)		h 下限	0	下限		P波速度 (m/s)	h0	a	
0			L PRR		I PRR		L P PR	THK				
2 10	1.88	571	571	571					571			
5	1.88	982	982	982	0	1	0	1	982	1.000	0. 447	
15 5	1.88	1541	1541	1541					1541			
20 30 11	2.07	1991	1991	1991					1991			
31 67 46	2.06	1961	1961	1961					1961	0. 219	1.000	
77	2.09	2239	2239	2239	0	1	0	1	2239			
198 200 260	2. 12	2197	2197	2197					2197			
458 550 216	2.09	2203	2203	2203					2203			
674 800 263	2. 23	2525	2525	2525					2525			
937 270	2.27	3037	3037	3037	0	1	0	1	3037	0. 049	1.000	
1207 293	2.31	3440	3440	3440					3440			
1500 -	2.31	3440	3440	3440					3440			

第1117回 資料3 p.173 再掲

○観測地震におけるS波部(水平平均)の伝達関数の観 測値と理論値の差が最小となるよう、地盤モデル(Vs, Qs)を推定。 ○観測地震におけるP波部(鉛直成分)の伝達関数の観 測値と理論値の差が最小となるよう、地盤モデル(Vp, Qp)を推定。

○鉛直動の地盤モデルは、最適化解析をより安定化させるために、まずP波区間(鉛直成分)の観測伝達関数を用いた逆解析により P波速度を推定して固定したうえで、S波区間(鉛直成分)の観測伝達関数を用いた逆解析により減衰の値を推定している。

gg P 波速度 (m/s) 88 500 88 860 88 1350 07 1990	P波 (ଲ) 250 430 675 995	速度 (s) 上限 1000 1720 2700	h(下限 0) 上限 1	<i>c</i> 下限 0	₹ 上限 1	P 波速度 (m/s) 571 982	h0	а	深さ GL-(m) 0 2	層厚 (m) 10	密度 (g/cm ³) 1.88	P波速度 (m/s)	P波i (m/ 下限	速度 ís) 上限	h 下限) 上限	<i>a</i> 下限	上限	P波速度 (m/s)	h0	а			
(m/s) 88 500 88 860 88 1350 07 1990	下限 250 430 675 995	上限 1000 1720 2700	<u>下限</u> 0	<u>上限</u> 1	<u>下限</u> 0	<u>上限</u> 1	(m/s) 571 982	1.000		GL-(m) 0 2	(m) 10	(g/cm ³)	(m/s)	下限	上限	下限	上限	下限	上限	(m/s)					
88 500 88 860 88 1350 07 1990	250 430 675 995	1000 1720 2700	0	1	0	1	571 982	1.000		2	10	1.88	571												
88 860 88 1350 07 1990	430 675 995	1720 2700	0	1	0	1	982	1 000		10		100.000	5/1	571	571					571					
88 1350 07 1990	675 995	2700						1.000	0.501	10	5	1.88	982	982	982	0	1	0	1	982	1.000	0. 447			
07 1990	995						1541			15	5	1.88	1541	1541	1541					1541					
		3980					1991			• 30	11	2.07	1991	1991	1991					1991					
06 1960	980	3920					1961	0. 128	1.000	1.000	1.000	1.000	× 67	46	2.06	1961	1961	1961	0			,	1961	0.210	1 000
09 2060	1030	4120	0	1	0	1	2239						100	121	2.09	2239	2239	2239	U	'	0	'	2239	0.219	1.000
12 2170	1085	4340					2197						• 200	260	2. 12	2197	2197	2197					2197		
09 2080	1040	4160					2203						• 550	216	2.09	2203	2203	2203					2203		
23 2660	1330	5320					2525				 800 027 	263	2. 23	2525	2525	2525					2525				
27 2880	1440	5760	0	1	0	1	3037	0. 078	0.603	1207	270	2. 27	3037	3037	3037	0	1	0	1	3037	0. 049	1.000			
31 3070	1535	6140					3440			1207	293	2.31	3440	3440	3440					3440					
31 3070	1535	6140					3440			• 1500	-	2.31	3440	3440	3440					3440					
	2060 2170 2080 2660 2880 3070 3070	2060 1030 2170 1085 2080 1040 2660 1330 2880 1440 3070 1535 3070 1535	2060 1030 4120 2170 1085 4340 2080 1040 4160 2660 1330 5320 2880 1440 5760 3070 1535 6140 3070 1535 6140	2060 1030 4120 2170 1085 4340 2080 1040 4160 2660 1330 5320 2880 1440 5760 0 3070 1535 6140 3070 1535 6140	2060 1030 4120 2170 1085 4340 2080 1040 4160 2660 1330 5320 2880 1440 5760 0 1 3070 1535 6140 1 3070 1535 6140 1	2060 1030 4120 2170 1085 4340 2080 1040 4160 2660 1330 5320 2880 1440 5760 0 1 0 3070 1535 6140 1 0	2060 1030 4120 2170 1085 4340 2080 1040 4160 2660 1330 5320 2880 1440 5760 0 1 0 1 3070 1535 6140 1 0 1 3070 1535 6140 1 0 1	2060 1030 4120 2239 2170 1085 4340 2197 2080 1040 4160 2203 2660 1330 5320 2525 2880 1440 5760 0 1 0 1 3070 1535 6140 3440 3440	2060 1030 4120 2239 2170 1085 4340 2197 2080 1040 4160 2203 2660 1330 5320 2525 2880 1440 5760 0 1 0 1 3037 3070 1535 6140 3440 3440 3440	2060 1030 4120 2239 2170 1085 4340 2197 2080 1040 4160 2197 2660 1330 5320 2525 2880 1440 5760 0 1 0 1 3070 1535 6140 1 0 1 3040 3070 1535 6140 1 0 1 3440	2060 1030 4120 2239 198 2170 1085 4340 2197 198 2080 1040 4160 2197 2203 2660 1330 5320 2525 674 2880 1440 5760 0 1 0 1 3037 0.078 0.603 3070 1535 6140 1 0 3440 3440 1500 1500 1 1 3440 3440 1 160 1 160 160 160	2060 1030 4120 2239 2170 1085 4340 2197 108 4340 2197 2197 2000 1040 4160 2197 2197 2000 1040 4160 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 458 2000 2000 458 2000 458 2000 458 2000 458 2000 458 2000 2000 458 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	2060 1030 4120 2239 2197 1085 4340 2197 2080 1040 4160 2197 2197 2080 1040 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160	2060 1030 4120 2239 2170 1085 4340 2197 2170 1085 4340 2197 2197 200 260 2.12 2197 2080 1040 4160 2197 2239 2203 2525 216 2.09 2239 2660 1330 5320 2525 2525 2525 260 2.12 2525 2880 1440 5760 0 1 0 1 3037 0.078 0.603 203 252 252 203 252 3070 1535 6140 1 0 1 3440 3440 3440 100 1 3440 3070 1535 6140 1 0 1 3440 3440 100 1 3440 3070 1535 6140 1 0 1 3440 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1	2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 2303 203 203 <td< td=""><td>2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 230 3037</td><td>2060 1030 4120 4120 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 <</td><td>2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239</td><td>2060 1030 4120 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 230 3037<td>2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239</td><td>2060 1030 4120 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 <td< td=""><td>2060 1030 4120 - - 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2170 1085 340 - - 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 10100 10100 10100 1010</td></td<></td></td></td<>	2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 230 3037	2060 1030 4120 4120 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 <	2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239	2060 1030 4120 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 230 3037 <td>2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239</td> <td>2060 1030 4120 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 <td< td=""><td>2060 1030 4120 - - 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2170 1085 340 - - 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 10100 10100 10100 1010</td></td<></td>	2060 1030 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239	2060 1030 4120 4120 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 <td< td=""><td>2060 1030 4120 - - 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2170 1085 340 - - 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 10100 10100 10100 1010</td></td<>	2060 1030 4120 - - 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2170 1085 340 - - 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 10100 10100 10100 1010			

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1117回 資料3

p.174 一部修正

第1117回 資料3

p.175 再掲

○地震基盤相当面における標準応答スペクトルに適合する模擬地震動を作成する。
 ○模擬地震動は、一様乱数の位相を用いた方法で作成するものとし、振幅包絡線の経時変化については、Noda et al.(2002)の方法に基づき、下図に示す形状とする。
 ○振幅包絡線の経時変化の設定に必要なパラメータについて、地震規模Mは6.9、等価震源距離Xeqは10kmとする。

	最大加速度	継続時間	振幅を	恩絡線の経時到	变化(s)
	(cm/s ²)	(s)	T _b	T _c	T _d
水平動	600	28.0	3.3	15.1	28.0
鉛直動	400	28.0	3.3	15.1	28.0

<振幅包絡線の経時変化(Noda et al.(2002)の方法に基づく)>

第1117回 資料3

p.176 再掲

<参考資料補正申請(2021年12月)における標準応答スペクトルに基づく地震動> 地震基盤相当面における模擬地震動の作成 (作成した模擬地震動と日本電気協会(2015)による適合度の確認)

○作成した模擬地震動が、日本電気協会(2015)に示される以下の適合度の条件を満足していることを確認した。

・目標とする応答スペクトル値に対する模擬地震動の応答スペクトル値の比(応答スペクトル比)が全周期帯で0.85以上

・応答スペクトルの強度値の比(SI比)が1.0以上

第1117回 資料3 p.177 再掲

<参考資料補正申請(2021年12月)における標準応答スペクトルに基づく地震動> 解放基盤表面における標準応答スペクトルに基づく地震動の評価結果

○作成した模擬地震動について、一次元地下構造モデル(最適化モデル)を用いて敷地の地盤物性に応じた解放基盤表面までの地震波の伝播特性を反映し、解放基盤表面における標準応答スペクトルに基づく地震動を評価した。

<解放基盤表面における標準応答スペクトルに基づく地震動の評価結果(上図:加速度時刻歴波形、下図:応答スペクトル)>

第1117回 資料3

p.178 再掲

参考文献(1)

[和文]

- ・青柳恭平, 阿部信太郎, 宮腰勝義, 井上大榮, 津村紀子(2004)「2000年鳥取県西部地震の余震分布と地形・地質との関係 内陸地震のアスペリティ予測に向けて 」『電力中央研究所報告』研究報告: N04009, 平成16年11月。
- 浅野公之, 岩田知孝(2010)「経験的グリーン関数法による2009年8月11日駿河湾の地震(M_{JMA}6.5)の震源モデルの推定と強震動シミュレーション」『北海道大学地球物理 学研究報告』No.73, pp.137-147。
- ・荒井晃作(2008)『海洋地質図遠州灘海底地質図 20万分の1』産業技術総合研究所地質調査総合センター。
- ・井口隆,大八木規夫,内山庄一郎,清水文健(2010)「2008年岩手・宮城内陸地震で起きた地すべり災害の地形地質的背景」『防災科学技術研究所,主要災害調査』第43 号,2010年3月。
- ・池田安隆, 今泉俊文, 東郷正美, 平川一臣, 宮内崇裕, 佐藤比呂志編(2002)「第四紀逆断層アトラス」『東京大学出版会』。
- ・井上大榮,宮腰勝義,上田圭一,宮脇明子,松浦一樹(2002)「2000年鳥取県西部地震震源域の活断層調査」『地震 第2輯』第54巻, pp.557-573。
- ・入倉孝次郎,香川敬生,関口春子(1997)「経験的グリーン関数を用いた強震動予測方法の改良」『日本地震学会講演予稿集 1997年度秋季大会』No.2, B25。
- ・岡田篤正(2002)「山陰地方の活断層の諸特徴」『活断層研究』No.22, pp.17-32。
- ・岡田知己,海野徳仁,長谷川昭(2008)「2008年岩手・宮城内陸地震--震源域の地下構造からみたマグマ・地殻流体との関係」『科学』78, pp.978-984。
- ・岡村行信,湯浅真人,倉本真一(1999)『海洋地質図駿河湾海底地質図 20万分の1』地質調査所。
- ・岡村行信(2002)「新第三紀以降のひずみ集中帯」『日本海東縁の活断層と地震テクトニクス』東京大学出版会,pp.111-121。
- ・海上保安庁水路部(1980)『沿岸の海の基本図(5万分の1)駿河湾南西部』海上保安庁。
- ・垣見俊弘,松田時彦,相田勇,衣笠善博(2003)「日本列島と周辺海域の地震地体構造区分」『地震 第2輯』第55巻, pp.389-406。
- ・垣見俊弘(2010)「活断層の成熟度について」『活断層研究』32号, pp.73-77。
- ・活断層研究会編(1991)『[新編] 日本の活断層分布図と資料』東京大学出版会。
- ・加藤研一,武村雅之,八代和彦(1998)「強震記録から評価した短周期震源スペクトルの地域性」『地震 第2輯』第51巻, pp.123-138。
- ・加藤研一, 宮腰勝義, 武村雅之, 井上大榮, 上田圭一, 壇一男(2004)「震源を事前に特定できない内陸地殻内地震による地震動レベル 地質学的調査による地震の分類と 強震観測記録に基づく上限レベルの検討 」『日本地震工学会論文集』第4巻, 第4号, pp.46-86。
- ・ 釜江克宏,入倉孝次郎,福知保長(1990)「地域的な震源スケーリング則を用いた大地震(M7級)のための設計用地震動予測」『日本建築学会構造系論文集』第416号, pp.79-89。
- ・ 釜江克宏(1996)「1946年南海地震のシミュレーション」『日本建築学会第24回地盤震動シンポジウム』日本建築学会, pp.81-90。
- ・ 釜江克宏, 入倉孝次郎(1997)「1995年兵庫県南部地震の断層モデルと震源近傍における強震動シミュレーション」『日本建築学会構造系論文集』第500号, pp.29-36。
- ・川辺秀憲,上林宏敏,釜江克宏(2009)「2009年駿河湾の地震(Mj6.5)の震源のモデル化」『日本地震学会講演予稿集2009年度秋季大会』A11-09, p.7。
- 気象庁(2000)「特集 2.平成12年(2000年)鳥取県西部地震」『平成12年10月地震・火山月報(防災編)』。
- ・気象庁(2005)「平成16年12月の地震活動及び火山活動について」『報道発表資料』平成17年1月11日。

- ・気象庁(2008)「特集.「平成20年(2008年)岩手・宮城内陸地震」について」『平成20年6月地震・火山月報(防災編)』。
- ・気象庁『地震月報(カタログ編)』(https://www.data.jma.go.jp/svd/eqev/data/mech/index.html)。
- ・気象庁『震度データベース』(http://www.data.jma.go.jp/svd/eqdb/data/shindo/index.php)。
- ・狐崎長琅,後藤典俊,小林芳正,井川猛,堀家正則,斉藤徳美,黒田徹,山根一修,奥住宏一(1990)「地震動予測のための深層地盤P・S波速度の推定」『自然災害科学』 Vol.9, No.3, pp.1-17。
- ・倉橋奨,入倉孝次郎,宮腰研(2009)「近地強震記録を用いた2009年駿河湾を震源とする地震の震源モデルの構築と強震動シミュレーション」『日本地震工学会・大会 2009 梗概集』pp.216-217。
- ・原子力安全基盤機構(2007)『平成18年度 原子力施設等の耐震性評価技術に関する試験及び調査 地震動に関する支配要因調査に係る報告書』平成19年7月。
- ・小出良幸(2012)「島弧 海溝系における付加体の地質学的位置づけと構成について」『札幌学院大学人文学会紀要』第92号, pp.1-23。
- ・後藤憲央,佐々木俊法(2019)「河成段丘面の比高分布から推定される伏在断層の活動性 2008年岩手・宮城内陸地震震源域直上の磐井川を例に 」『第四紀研究』 58(5), pp.315-331。
- ・国土地理院『2万5千分の1地形図』『5万分の1地形図』。
- ・笹谷努,前田宜浩,高井伸雄,重藤迪子,堀田淳,関克郎,野本真吾(2008)「Mj6.1内陸地殻内地震によって大加速度を観測したK-NET(HKD020)地点でのS波速度構 造の推定」『物理探査学会第119回学術講演会講演論文集』pp.25-27。
- ・佐藤浩章, 芝良昭, 東貞成, 功刀卓, 前田宜浩, 藤原広行(2013)「物理探査・室内試験に基づく2004年留萌支庁南部の地震によるK-NET港町観測点(HKD020)の基盤地震動とサイト特性評価」『電力中央研究所報告』研究報告: N13007, 平成25年12月。
- 佐藤比呂志,加藤直子,阿部進(2008)「2008年岩手・宮城内陸地震の地質学的背景」『日本地質学会ホームページ』 (http://www.geosociety.jp/hazard/content0031.html)。
- ・産業技術総合研究所(2009)「地質学的歪みと測地学的歪みの集中域と地震との関係」『地震予知連絡会会報』第81巻, p.98。
- ・地震調査委員会(2005)『2004年12月の地震活動の評価』平成17年1月12日。
- ・司宏俊, 翠川三郎(1999)「断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式」『日本建築学会構造系論文集』第523号, pp.63-70。
- ・震源を特定せず策定する地震動に関する検討チーム(2019)『全国共通に考慮すべき「震源を特定せず策定する地震動」に関する検討報告書』令和元年8月7日。
- ・杉山雄一,寒川旭,下川浩一,水野清秀(1988)『地域地質研究報告 5万分の1地質図幅 御前崎地域の地質』地質調査所。
- 杉山雄一,水野清秀,狩野謙一,村松武,松田時彦,石塚治,及川輝樹,高田亮,荒井晃作,岡村行信,実松健造,高橋正明,尾山洋一,駒澤正夫(2010)『20万分の1地 質図幅「静岡及び御前崎」(第2版)』産業技術総合研究所地質調査総合センター。
- ・鈴木康弘,渡辺満久,中田高,小岩直人,杉戸信彦,熊原康博,廣内大助,澤祥,中村優太,丸島直史,島崎邦彦(2008)「2008年岩手・宮城内陸地震に関わる活断層とその意義―関市厳美町付近の調査速報―」『活断層研究』29, pp.25-34。
- ・鈴木亘,青井真,関口春子(2009)「近地強震記録による2009年8月11日駿河湾の地震の震源過程」『日本地震学会講演予稿集 2009年度秋季大会』A11-06, p.5。
- ・武村雅之(1990)「日本列島およびその周辺地域に起こる浅発地震のマグニチュードと地震モーメントの関係」『地震 第2輯』第43巻, pp.257-265。

参考文献(3)

- ・田力正好,池田安隆,野原壯(2009)「河成段丘の高度分布から推定された,岩手・宮城内陸地震の震源断層」『地震 第2輯』第62巻, pp.1-11。
- ・ 壇一男, 渡辺基史, 佐藤俊明, 石井透(2001)「断層の非一様すべり破壊モデルから算定される短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデ ル化」『日本建築学会構造系論文集』第66巻, 第545号, pp.51-62, 2001年7月。
- ・地域地盤環境研究所(2010)『平成21年8月11日駿河湾の地震時に浜岡原子力発電所で観測された地震動の分析業務報告書』平成22年3月。
- ・地質調査総合センター『活断層データベース』(https://gbank.gsj.jp/activefault/search)。
- ・地質調査総合センター『日本の第四紀火山』(https://gbank.gsj.jp/volcano/Quat_Vol/IndexMap/volcano_js.html)。
- ・地質調査総合センター『地質図Navi,20万分の1日本シームレス地質図V2』(https://gbank.gsj.jp/geonavi/)。
- ・中央防災会議(2001a)「東海地震に関する専門調査会(第8回)説明資料」平成13年9月21日。
- ・堤浩之, 隈元崇, 奥村晃史, 中田高(2000)「鳥取県西部地震震源域の活断層」『月刊地球/号外』31, pp.81-86。
- •堤浩之(2009)「2000年鳥取県西部地震」『科学』79, pp.210-212。
- ・堤浩之, 杉戸信彦, 越谷信, 石山達也, 今泉俊文, 丸島直史, 廣内大助(2010)「岩手県奥州市・一関市に出現した2008年岩手・宮城内陸地震の地震断層」『地学雑誌』 119巻, 5号, pp. 826-840。
- ・東海沖海底活断層研究会編(1999)『東海沖の海底活断層』東京大学出版会。
- ・東北建設協会(2006)「建設技術者のための東北地方の地質」建設技術者のための東北地方の地質編集委員会。
- ・遠田晋次, 丸山正, 吉見雅行, 金田平太郎, 粟田泰夫, 吉岡敏和, 安藤亮輔(2010)「2008年岩手・宮城内陸地震に伴う地表地震断層―震源過程および活断層評価への 示唆―」『地震 第2輯』第62巻, pp.153-178。
- ・徳山英一, 本座栄一, 木村政昭, 倉本真一, 芦寿一郎, 岡村行信, 荒戸裕之, 伊藤康人, 徐垣, 日野亮太, 野原壯, 阿部寛信, 坂井眞一, 向山建二郎(2001)『日本周辺 海域の中新世最末期以降の地質構造発達史』海洋調査技術。
- ・内閣府(2012)『南海トラフの巨大地震モデル検討会中間とりまとめ』南海トラフの巨大地震モデル検討会,平成23年12月27日。『南海トラフの巨大地震による震度分布・津波 高について(第一次報告)』南海トラフの巨大地震モデル検討会,平成24年3月31日。『南海トラフの巨大地震モデル検討会(第二次報告)強震断層モデル編 – 強震断層 モデルと震度分布について – 』南海トラフの巨大地震モデル検討会,平成24年8月29日。
- ・新色隆二,山中浩明(2013)「表層地盤の3次元的影響を考慮した2003年宮城県北部地震の震源域における地震動のシミュレーション」『物理探査』第66巻,第3号, pp.139-152。
- ・西村卓也(2015)「山陰地方のひずみ集中帯」『第一回鳥取県地震防災調査研究委員会被害想定部会2015年3月14日,鳥取県庁』。
- ・西村卓也(2017)「GNSSデータから見出される日本列島のひずみ集中帯と活断層及び内陸地震」『活断層研究』46号, pp.33-39。
- •日本電気協会(2015)『原子力発電所耐震設計技術指針 JEAG4601-2015』。
- ・ 布原啓史, 吉田武義, 山田亮一(2008)「地理情報システムを用いた地震災害とカルデラ構造との関連の検討」『日本地質学会ホームページ』 (http://www.geosociety.jp/hazard/content0035.html#wrap)。
- ・伏島祐一郎, 吉岡敏和, 水野清秀, 宍倉正展, 井村隆介, 小松原琢, 佐々木俊法(2001)「2000年鳥取県西部地震の地震断層調査」『活断層・古地震研究報告』No.1, pp.1-26。

参考文献(4)

- •防災科学技術研究所『J-SHIS Map』(http://www.j-shis.bosai.go.jp/map/)。
- ・防災科学技術研究所『F-net 地震のメカニズム情報』(http://www.fnet.bosai.go.jp/event/joho.php?LANG=ja)。
- •防災科学技術研究所『K-NET,KiK-net』(https://www.doi.org/10.17598/NIED.0004)。
- ・星住英夫,中野俊(2004)「火山地質図-火山の履歴調査-」『産総研の火山研究の最前線火山噴火と恵み』。
- ・松本聡, 飯尾能久, 酒井慎一, 加藤愛太郎, 0.1満点地震観測グループ(2020)「超多点稠密地震観測による断層帯発達過程の解明に向けて-2000 年鳥取県西部地震域 への適用-」『地学雑誌』129(4), pp.511-527。
- ・柳田誠,青柳恭平,下釜耕太,岡崎和彦,佐々木俊法(2020)「2008年岩手・宮城内陸地震の震源域における活構造評価」『地学雑誌』129巻,1号,pp.89-122。

[英文]

- GARDNER, G. H. F., L. W. GARDNER, and A. R. GREGORY(1974), "FORMATION VELOCITY AND DENSITY THE DIAGNOSTIC BASICS FOR STRATIGRAPHIC TRAPS", GEOPHYSICS, Vol.39, No.6, pp.770-780.
- Hisada, Y.(1994), "An Efficient Method for Computing Green's Functons for a Layered Half-Space with Sources and Receivers at Close Depths", Bulletin of the Seismological Society of America, Vol.84, No.5, pp.1456-1472.
- Kanamori, H.(1977), "The Energy Release in Great Earthquakes", JOUNAL OF GEOPHYSICAL RESEARCH, VOL.82, No.20, pp.2981-2987.
- Miura, S., T. Sato, A. Hasegawa, Y. Suwa, K. Tachibana, and S. Yui(2004), "Strain concentration zone along the volcanic front derived by GPS observations in NE Japan arc", Earth Planets Space, Vol.56, pp.1347-1355.
- Noda, S., K. Yashiro, K. Takahashi, M. Takemura, S. Ohno, M. Tohdo, and T. Watanabe(2002), "RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES", The OECD-NEA Workshop on the Relations between Seismological Data and Seismic Engineering Analyses, Oct.16-18, Istanbul.
- Obana, K., S. Kodaira, and Y. Kaneda(2004), "Microseismicity around rupture area of the 1944 Tonankai earthquake from ocean bottom seismograph observations", Earth and Planetary Science Letters 222, pp.561-572.
- Papageorgiou, A. S.(1988), "On two characteristic frequencies of acceleration spectra", Bulletin of the Seismological Society of America, Vol.78, No.2, pp.509–529.
- Sagiya, T., S. Miyazaki, and T. Tada(2000), "Continuous GPS Array and Present-day Crustal Deformation of Japan", PAGEOPH, Vol. 157, pp. 2303-2322.
- Wallis, S. R., K. Yamaoka, H. Mori, A. Ishiwatari, K. Miyazaki, amd H. Ueda(2020), "The basement geology of Japan from A to Z", Island Arc., Vol.29, Issue1, pp.1-31.

