安山岩の年代分析試料の薄片観察(K-13.6-11)

<u>単ニコル</u>

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-11)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は18.3±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-12)

第935回審査会合 机上配布資料1 P.5.2-1-16 再掲

<u>単ニコル</u>

<u>直交ニコル</u>

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-12)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は18.0±0.9Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-13)

第935回審査会合 机上配布資料1 P.5.2-1-17 再掲

<u>単ニコル</u>

<u>直交ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-13)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.3±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-1)

<u>直交ニコル</u>

1mm

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-1)の薄片顕微鏡写真

・斜長石を対象としたK-Ar年代値は22.4±1.2Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(I-9-3)

第935回審査会合 机上配布資料1 P.5.2-1-19 再掲

<u>単ニコル</u>

<u>直交ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(I-9-3)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は20.2±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-2)

直交ニコル

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-2)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.8±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(I-9-4)

第935回審査会合 机上配布資料1 P.5.2-1-21 再揭_____

<u>単ニコル</u>

<u>直交ニコル</u>

1mm

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(I-9-4)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は18.8±1.0Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

安山岩の年代分析試料の薄片観察(K-13.6-3)

<u>単ニコル</u>

<u>直交ニコル</u>

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-3)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.8±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.3-1-22

1mm

安山岩の年代分析試料の薄片観察(K-13.6-4)

第935回審査会合 机上配布資料1 P.5.2-1-23 再掲

直交ニコル

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-4)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は19.9±1.1Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.3-1-23

1mm

安山岩の年代分析試料の薄片観察(K-13.6-5)

第935回審査会合 机上配布資料1 P.5.2-1-24 再掲

直交ニコル

凡例 PI:斜長石 Cpx:単斜輝石 Opx:斜方輝石

K-Ar年代分析試料(K-13.6-5)の薄片顕微鏡写真

1mm

・斜長石を対象としたK-Ar年代値は14.6±0.4Maを示す。 ・薄片観察において斜長石の変質が顕著でないことを確認した。

5.3-1-24

1mm

(3)化学分析結果

敷地の安山岩に関する調査(化学分析)

■ 敷地の安山岩の化学組成を確認するため、大深度ボーリング及び岩盤調査坑から採取した敷地内の安山岩(均質)について、化学分析を実施した。

[生データ]															
対象物	試料No.	採取標高 (m)	(wt.%) SiO ₂	TiO ₂	AI_2O_3	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Total	FeO*/MgO	Na ₂ O+K ₂ O
安山岩	GC-1	-18.25	56.77	0.80	16.83	6.79	0.13	3.60	6.99	3.59	1.16	0.16	96.82	1.89	4.75
安山岩	I-9-1*	-27.65	60.15	0.72	16.39	5.49	0.07	1.82	5.93	3.81	1.37	0.16	95.91	3.02	5.18
安山岩	I-9-2 [*]	-156.50	57.61	0.88	15.43	6.59	0.13	3.62	7.15	3.90	1.17	0.17	96.65	1.82	5.07
安山岩	K-13.6-1	-197.88	58.05	0.77	16.86	6.15	0.15	4.12	7.01	3.68	1.13	0.16	98.08	1.49	4.81
安山岩	I-9-3	-199.90	56.61	0.78	16.06	6.73	0.12	4.70	6.60	3.41	0.82	0.16	95.99	1.43	4.23
安山岩	K-13.6-2	-205.93	56.90	0.73	17.98	6.14	0.12	3.64	7.48	3.66	1.03	0.15	97.83	1.69	4.69
安山岩	I-9-4	-258.80	57.49	0.80	15.99	6.54	0.10	4.04	6.78	3.70	1.18	0.16	96.78	1.62	4.88
安山岩	K-13.6-3	-279.23	58.56	0.77	16.11	6.14	0.08	3.57	6.35	3.85	1.26	0.16	96.85	1.72	5.11
安山岩	K-13.6-4	-504.38	58.20	0.95	16.41	6.56	0.12	3.96	6.74	3.83	1.24	0.18	98.19	1.66	5.07
安山岩	K-13.6-5	-719.08	55.37	0.69	16.74	6.63	0.11	4.46	5.98	3.75	1.51	0.14	95.38	1.49	5.26
安山岩	K-13.6-6 [*]	-942.58	58.75	0.61	17.51	4.09	0.13	2.37	5.13	3.99	1.99	0.15	94.72	1.73	5.98
安山岩	K-13.6-7*	-982.93	57.03	0.70	16.74	6.05	0.20	3.52	4.91	4.35	1.62	0.14	95.26	1.72	5.97
安山岩	K-13.6-8 [%]	-1039.93	53.95	0.74	15.50	6.84	0.13	4.29	6.26	3.72	1.28	0.15	92.86	1.59	5.00
安山岩	K-13.6-9*	-1072.88	53.90	0.68	17.02	6.82	0.14	4.47	5.89	3.88	0.95	0.16	93.91	1.53	4.83
[100%ノーマライズデータ]	1														
[100%ノーマライズデータ] 対象物		採取標高 (m)	(wt.%) SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K₂O	P ₂ O ₅	Total	FeO*/MgO	Na ₂ O+K ₂ O
[100%ノーマライズデータ] 対象物 安山岩	試料No. GC-1	採取標高 (m) -18.25	(wt.%) SiO ₂ 58.63	TiO ₂ 0.83	Al ₂ O ₃ 17.38	FeO [*] 7.01	MnO 0.13	MgO 3.72	CaO 7.22	Na₂O 3.71	K₂O 1.20	P ₂ O ₅ 0.17	Total 100.00	FeO*/MgO 1.89	Na ₂ O+K ₂ O 4.91
[100%ノーマライズデータ] 対象物 安山岩 安山岩	試料No. GC-1 I-9-1 [※]	採取標高 (m) -18.25 -27.65	(wt.%) SiO ₂ 58.63 62.72	TiO ₂ 0.83 0.75	Al ₂ O ₃ 17.38 17.09	FeO [*] 7.01 5.72	MnO 0.13 0.07	MgO 3.72 1.90	CaO 7.22 6.18	Na ₂ O <u>3.71</u> 3.97	K ₂ O 1.20 1.43	P ₂ O ₅ 0.17 0.17	Total 100.00 100.00	FeO [*] /MgO 1.89 3.02	Na ₂ O+K ₂ O 4.91 5.40
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 [※] I-9-2 [※]	採取標高 (m) -18.25 -27.65 -156.50	(wt.%) SiO ₂ 58.63 62.72 59.61	TiO ₂ 0.83 0.75 0.91	Al ₂ O ₃ 17.38 17.09 15.96	FeO [*] 7.01 5.72 6.82	MnO 0.13 0.07 0.13	MgO 3.72 1.90 3.75	CaO 7.22 6.18 7.40	Na ₂ O 3.71 3.97 4.04	K ₂ O 1.20 1.43 1.21	P ₂ O ₅ 0.17 0.17 0.18	Total 100.00 100.00 100.00	FeO [*] /MgO 1.89 3.02 1.82	Na ₂ O+K ₂ O 4.91 5.40 5.25
[100%ノーマライズデータ] 対象物 安山岩 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1	採取標高 (m) -18.25 -27.65 -156.50 -197.88	SiO2 58.63 62.72 59.61 59.19	TiO ₂ 0.83 0.75 0.91 0.79	Al ₂ O ₃ 17.38 17.09 15.96 17.19	FeO [*] 7.01 5.72 6.82 6.27	MnO 0.13 0.07 0.13 0.15	MgO 3.72 1.90 3.75 4.20	CaO 7.22 6.18 7.40 7.15	Na ₂ O 3.71 3.97 4.04 3.75	K ₂ O 1.20 1.43 1.21 1.15	P ₂ O ₅ 0.17 0.17 0.18 0.16	Total 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90
[100%ノーマライズデータ] 対象物 安山岩	試料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97	TiO ₂ 0.83 0.75 0.91 0.79 0.81	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73	FeO [*] 7.01 5.72 6.82 6.27 7.01	MnO 0.13 0.07 0.13 0.15 0.13	MgO 3.72 1.90 3.75 4.20 4.90	CaO 7.22 6.18 7.40 7.15 6.88	Na ₂ O 3.71 3.97 4.04 3.75 3.55	K ₂ O 1.20 1.43 1.21 1.15 0.85	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17	Total 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93	SiO2 58.63 62.72 59.61 59.19 58.97 58.16	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38	FeO* 7.01 5.72 6.82 6.27 7.01 6.28	MnO 0.13 0.07 0.13 0.15 0.13 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72	CaO 7.22 6.18 7.40 7.15 6.88 7.65	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2 I-9-4	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80	SiO2 58.63 62.72 59.61 59.19 58.97 58.16 59.40	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22	P ₂ O ₅ 0.17 0.18 0.16 0.17 0.15 0.17	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23	SiO2 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30	P ₂ O ₅ 0.17 0.18 0.16 0.17 0.15 0.17 0.17	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-3 K-13.6-4	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38	SiO2 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26	P ₂ O ₅ 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.18	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08	SiO2 58.63 62.72 59.61 59.19 58.16 59.40 60.46 59.27 58.05	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72	$\begin{array}{c} Al_2O_3 \\ 17.38 \\ 17.09 \\ 15.96 \\ 17.19 \\ 16.73 \\ 18.38 \\ 16.52 \\ 16.63 \\ 16.71 \\ 17.55 \end{array}$	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58	P ₂ O ₅ 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5 K-13.6-6 [※]	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58	SiO2 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71 17.55 18.49	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.14	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10	$\begin{array}{c} P_2O_5 \\ 0.17 \\ 0.18 \\ 0.16 \\ 0.17 \\ 0.15 \\ 0.17 \\ 0.15 \\ 0.17 \\ 0.18 \\ 0.15 \\ 0.16 \\ \end{array}$	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49 1.73	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31
[100%ノーマライズデータ] 対象物 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5 K-13.6-6 [※] K-13.6-7 [※]	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58 -982.93	SiO2 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02 59.87	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64 0.73	$\begin{array}{c} Al_2O_3 \\ 17.38 \\ 17.09 \\ 15.96 \\ 17.19 \\ 16.73 \\ 18.38 \\ 16.52 \\ 16.63 \\ 16.71 \\ 17.55 \\ 18.49 \\ 17.57 \end{array}$	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32 6.35	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14 0.21	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50 3.70	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42 5.15	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21 4.57	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10 1.70	$\begin{array}{c} P_2O_5 \\ \hline 0.17 \\ 0.18 \\ 0.16 \\ 0.17 \\ 0.15 \\ 0.17 \\ 0.15 \\ 0.17 \\ 0.18 \\ 0.15 \\ 0.16 \\ 0.15 \end{array}$	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.62 1.72 1.66 1.49 1.73 1.72	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31 6.27
[100%ノーマライズデータ] 対象物 安山岩 安山岩	武料No. GC-1 I-9-1 [※] I-9-2 [※] K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5 K-13.6-5 K-13.6-6 [※] K-13.6-7 [※] K-13.6-8 [※]	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58 -982.93 -1039.93	SiO2 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02 59.87 58.10	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64 0.73 0.80	$\begin{array}{c} Al_2O_3 \\ 17.38 \\ 17.09 \\ 15.96 \\ 17.19 \\ 16.73 \\ 18.38 \\ 16.52 \\ 16.63 \\ 16.71 \\ 17.55 \\ 18.49 \\ 17.57 \\ 16.69 \end{array}$	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32 6.35 7.37	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14 0.21 0.14	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50 3.70 4.62	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42 5.15 6.74	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21 4.57 4.01	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10 1.70 1.38	$\begin{array}{c} P_2O_5 \\ 0.17 \\ 0.18 \\ 0.16 \\ 0.17 \\ 0.15 \\ 0.17 \\ 0.15 \\ 0.17 \\ 0.18 \\ 0.15 \\ 0.16 \\ 0.15 \\ 0.16 \\ 0.16 \\ \end{array}$	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49 1.73 1.72 1.59	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31 6.27 5.38

紫字:第1073回審査会合以降の変更箇所

FeO^{*}:全鉄をFeOとして表示

※ 敷地の安山岩の形成年代等を明らかにするために実施したK-Ar年代分析において, 変質が顕著であること等から 分析結果の精度に影響があることを踏まえて, 形成年代の推定に用いていない試料(第597回審査会合で説明)

敷地の安山岩に関する調査(化学分析 文献との比較①

第935回審査会合 机上配布資料1 P.5.2-1-27 一部修正

■ 地質の形成環境について検討するため、前頁で示した敷地内の安山岩の化学組成と文献で示されている能登半島の火山岩の化学組成との比較検討を行った。

文献による能登半島の火山岩と敷地における安山岩(均質)の主要成分(ハーカー図)※

※ I-9-1のデータのプロット位置を適正化。

・敷地の安山岩(均質)の主要成分は、平井(2004MS)の能登半島の別所岳安山岩の主要成分の分布範囲に含まれる。

平井佐利(2004MS):能登半島志賀町・富来町の穴水累層安山岩類の岩石学:洪水安山岩の可能性,金沢大学自然科学研究科修士論文.

紫字:第1073回審査会合以降の変更箇所 5.3-1-27

敷地の安山岩に関する調査(化学分析 文献との比較②)

■ 敷地内の安山岩の化学組成と文献で示されている能登半島の火山岩の化学組成との比較について、周藤・小山内(2002)の区分により検討した結果について示す。

・敷地の安山岩(均質)は、周藤・小山内(2002)の区分によれば非アルカリ岩系に属し、平井(2004MS)の能登半島の別所岳安山岩の主要成分の分布範囲に含まれる。

平井佐利(2004MS):能登半島志賀町・富来町の穴水累層安山岩類の岩石学:洪水安山岩の可能性,金沢大学自然科学研究科修士論文. 周藤賢治・小山内康人(2002):岩石学概論・上 記載岩石学ー岩石学のための情報収集マニュアル,共立出版. 紫字:第1073回審査会合以降の変更箇所 **5.3-1-28**

第935回審査会合 机上配布資料1

P.5.2-1-28 一部修正

敷地の安山岩に関する調査(化学分析 文献との比較③)

第935回審査会合 机上配布資料1 P.5.2-1-29 一部修正

■ 敷地内の安山岩の化学組成と文献で示されている能登半島の火山岩の化学組成との比較について、Miyashiro(1974)とSato(1989)の区分により検討した結果について示す。

能登半島と敷地における火山岩の主要成分(FeO*/MgO図)※ ※ I-9-1のプロット位置を適正化。 分析値は、100%ノーマライズしたものを使用して作図した。

平井佐利(2004MS):能登半島志賀町・富来町の穴水累層安山岩類の岩石学:洪水安山岩の可能性, 金沢大学自然科学研究科修士論文. Miyashiro, A. (1974): Volcanic rock series in island arc and active continental margins. American Journal of Science, 274, 321-355. Sato, H. (1989): Study on genetic environment of high-magnesian andesites, Report for JSPS grant, General Study C, 1988, pp. 99.

補足資料5.3-2

変質鉱物に関する調査結果

(1) 試料採取位置

標高

EL 11.82m

EL -10.61m

EL -45.82m

EL-59.10m

EL -16.45m

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

f F-6.82-6孔 17.08m EL -1.97m S-8 H-5.5-27l. 19.33m EL -3.75m g S-7 岩盤調査坑No.7-1孔 0.30m EL -17.05m h S-1 i 岩盤調査坑No.16付近 (底盤面) EL -17.90m i S-4 E-11.1SE-6孔 1.50m EL 19.91m k S-5 R-8.1-1-3孔 22.24m EL -11.12m 1 S-7 H-5.64-2孔 9.53m EL 2.84m F-6.80-27l. m S-8 18.69m EL -5.83m K-2 H-0.9-407l. 19.65m EL -6.36m n K-14 H- -0.3-807l. о 31.65m EL -27.48m M−12.5"7L 55.55m EL -27.25m р K-10.8SW-1孔 49.80m EL -18.88m q E-6.2孔 137.45m EL -123.37m r 非破砕部 H-6.5' 孔 s 47.70m EL -24.19m t H-1.1-807l. 43.45m EL -36.01m u H---1.807l. 48.30m EL -44.66m H-1.1孔 v K-2 103.77m EL -96.99m M-2.27L w K-3 48.74m EL -31.45m

試料採取箇所

(XRD分析(粘土分濃集)試料)

深度

9.30m

31.70m

66.40m

81.90m

0.25m

採取位置 (左位置図)

а

b

с

d

е

S-2·S-6

S-4

非破砕部

S-1

E-8.5+5"7.

E-8.4' 孔

F-9.3-471.

H-6.5-27L

H-0.2-75孔

試料b.e

XRD分析 測定諸元

装置:Rigaku Ultima IV

Detector: D/teX Ultra

Divergence Slit: 0.5°

Step size: 0.01°

Target: $Cu(K\alpha)$

Voltage:40kV

岩盤調査坑 No.27孔

試料採取位置図

・各試料の回折チャート(定方位(粘土分濃集))は補足資料5.3-2(2) ・XRD分析(粘土分濃集)の試料調整方法については次頁

試料a, c, d, g~x

x

K-18

XRD分析 測定諸元 装置:Rigaku RINT2500V Target: Cu(Kα) Voltage: 40kV Detector: SC Divergence Slit: 0.5° Receiving Slit: 0.15mm Step size: 0.02°

試料f

116.75m

XRD分析 測定諸元 装置:島津製作所 XRD-6100 Target: Cu(K a) Voltage: 30kV Detector: SC Divergence Slit: 1.0° Receiving Slit: 0.30mm Step size: 0.02°

EL-108.04m

5.3-2-3

XRD分析(粘土分濃集)の試料調整方法

OXRD分析(粘土分濃集)の実施にあたっては、ボーリングコアから粘土状破砕部または非破砕部の粘土鉱物部分を採取し、水簸と遠心分離 によって細粒な粘土分を濃集している。作業手順を以下に示す。

<試料採取>

■鉱物分離によって粘土分を濃集した粉末試料について,試料調整をした後,各分析を実施した。
 ・XRD分析用試料(定方位,粘土分濃集):スライドガラス上にごく微量の脱イオン水とともに展開させ,1日程度風乾し作成。
 ・XRD分析用試料(定方位EG処理,粘土分濃集):エチレングリコール蒸気で充満したデシケータ内に定方位試料を1時間静置し作成。

粘土脈部分を採取し,水簸と遠心分離によって粒径 0.2~2.0µmの粘土分を濃集した。

粘土分を濃集した試料 5.3-2-5

粘土状破砕部から粘土分を採取し、水簸と遠心分離によって 粒径0.4~1.0µmの粘土分を濃集した。

粘土分を濃集した試料

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

粒径0.2~1.0µmの粘土分を濃集した。

粘土分を濃集した試料 5.3-2-7

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

第1049回審査会合 机上配布資料1 P.5.2-2-7 再掲

粘土分を濃集した試料 5.3-2-8

粒径0.2~2.0µmの粘土分を濃集した。

試料採取位置 一粘土鉱物, XRD分析(粘土分濃集)-

第1049回審査会合 机上配布資料1 P.5.2-2-9 再掲

粘土分を濃集した試料

粘土分を濃集した試料

各試料のEPMA分析結果は補足資料5.3-2(3)

試料採取箇所 (EPMA分析試料)						
	採取位	置(左位置図)	深度	標高		
А	S-4	E-11.1SE-2孔	1.65m	EL 19.72m		
В	0 1	K−10.3SW .	27.81m	EL -6.17m		
С	5-1	岩盤調査坑No.25切羽	(切羽面)	EL -17.60m		
D	<u> </u>	E-8.5-2孔	8.55m	EL 12.66m		
Е	5-2-5-0	F-8.5' 孔	8.50m	EL 12.63m		
F	S-8	F-6.75孔	26.85m	EL -15.76m		
н	S-7	H-5.7' 孔	14.35m	EL -3.26m		
I	S-2•S-6	K-6.2-2孔	30.94m	EL -19.45m		
J	J < S-1	H-6.5-2孔	70.70m	EL -49.50m		
к		H-6.6-1孔	57.25m	EL -37.95m		
L		M-12.5"孔	49.96m	EL -21.66m		
М	S-4	E-8.60孔	104.68m	EL -35.91m		
Ν	S-5	R-8.1-1-3孔	22.24m	EL -11.12m		
0	K-2	H-0.9-40孔	19.65m	EL -6.36m		
Р	IZ 14	H0.3-80孔	31.65m	EL -27.48m		
Q	N-14	H'1.3孔	125.58m	EL -121.91m		
R	非破砕部	H-6.5-2孔	81.80m	EL -59.02m		
S	S-4	E-8.50""孔	111.95m	EL -39.83m		
Т	S-7	H-5.4-1E孔	24.16m	EL 4.80m		
U	K-2	H-1.1孔	103.62m	EL -96.84m		
V	K-3	M−2.2孔	48.74m	EL -31.45m		
W	K-18	H-0.2-75孔	116.75m	EL -108.04m		
Х	S-5	R-8.1-1-2孔	23.46m	EL -12.38m		
Y	K-2	G-1.5-80孔	77.82m	EL -72.12m		
Z	K-18	H-0.2-60孔	84.35m	EL -68.32m		

全試料

EPMA分析 測定諸元
装置:Jeol JXA-8230
加速電圧:15kV
試料電流:30nA
ビーム径 : (定量)1 µ m, (マッピング)5 µ m
電子線照射時間:(定量)ピーク10s/BG5s, (マッピング)5ms
主成分組成計算方法:ZAF補正法

研磨片写真

右研磨片作成箇所

右ブロック採取箇所

ブロック写真

第1049回審査会合 机上配布資料1

右ブロック採取箇所

1cm

試料採取位置 一粘土鉱物, EPMA分析一

第1049回審査会合 机上配布資料1

ブロック写真

5cm 5.3-2-18

^{5.3-2-19}

第1049回審査会合 机上配布資料1

試料採取位置 一粘土鉱物, EPMA分析一

右ブロック採取箇所

<u>1cm</u> ブロック写真

試料採取位置図

	白色鉱物(オパールCT)確認箇所			
	試料採耳	反位置(左位置図)	深度	標高
i	非破砕部	岩盤調査坑No.30切羽	(切羽面)	EL -15.56m
ii	S-1	KR-13孔	2.47m	EL -16.75m
iii		H-6.4孔	112.95m	EL -68.78m
iv		F-4.9孔	136.57m	EL -125.44m
v	非破砕部	R-4.5孔	68.63m	EL -57.56m
vi		K-4.2孔	80.63m	EL -69.36m
vii		R-4.5孔	71.10m	EL -60.03m
viii	K-2	H−1.1孔	103.62m	EL -96.84m
ix	非破砕部	H-1.5-95孔	176.71m	EL -168.01m

各試料の回折チャートは補足資料5.3-2(5)

試料 ii 以外

XRD分析 測定諸元

装 置:理学電気製 MultiFlex Target:Cu(K α) Monochrometer:Graphite 清曲 Voltage:40KV Current:40mA Detector:SC Calculation Mode:cps Divergency Silt:1° Scattering Silt:1° Recieving Silt:0.3mm Scanning Speed:2° /min Scanning Mode:連続法 Sampling Range:0.02° Scanning Range:2~61°

試料 ii

5.3-2-24

白色鉱物(フィリプサイト)分析試料

試料採取位置図

	白色鉱物(フィリプサイト)確認箇所				
	試料採取位	:置(左位置図)	深度	標高	
Ι	S-2•S-6	E-5.7孔	170.73m	EL -158.08m	
п	非破砕部	J-10.8SW-1孔	86.18m	EL -62.11m	
ш	K-14	H'1.3孔	125.58m	EL -121.91m	
IV	非破砕部	H1.0孔	126.88m	EL -123.22m	

各試料の回折チャートは補足資料5.3-2(6)

全試料

XRD分析 測定諸元	
装 置:理学電気製 MultiFlex	Divergency Slit: 1*
Target: Cu(K ar)	Scattering Sit: 1*
Monochrometer: Graphite 清曲	Recieving Slit: 0.3mm
Voltage: 40KV	Scanning Speed:2" /min
Current: 40mA	Scanning Mode:連続法
Detector: SC	Sampling Range: 0.02*
Calculation Mode: cps	Scanning Range : 2~61*

試料採取位置 ー白色鉱物(フィリプサイト)ー

第1049回審査会合 机上配布資料1 P.5.2-2-25 再掲

(2) XRD分析(粘土分濃集)結果 (I/S混合層の構造判定,八面体シート構造判定)

渡辺(1986, 1981)によるI/S混合層の構造判定結果

第1049回審査会合 机上配布資料1 P.5.2-2-27 一部修正

○敷地の粘土鉱物(試料a~x)のXRD分析結果を渡辺(1981)にプロットした位置は、イライト混合率10~35%部分に該当する。 ○また、上記の結果に関して、断層間で比較した結果、断層間で相違はない。 ○なお、断層以外の非破砕部の粘土鉱物脈の分析結果についても、同様の結果であった。

試料採取箇所 (XRD分析(粘土分濃集)試料)			渡辺(1986, 1981)の図 へのプロット結果		
断層名		採取位置	標高	ライヒバイテ	イライト混合率
	e	岩盤調査坑 No.27孔	EL -16.45m	R=0	20%程度
S-1	h	岩盤調査坑No.7-1孔	EL -17.05m	R=0	20%程度
	i	岩盤調査坑No.16付近	EL -17.90m	R=0	10%程度
	а	E-8.5+5"孔	EL 11.82m	R=0	10%程度
S-2·S-6	b	E-8.4' 孔	EL -10.61m	R=0	35%程度
0.4	с	F-9.3-4孔	EL -45.82m	R=0	20%程度
5-4	j	E-11.1SE-6孔	EL 19.91m	R=0	15%程度
S-5	k	R-8.1-1-3孔	EL -11.12m	R=0	10%程度
0.7	g	H-5.5-2孔	EL -3.75m	R=0	15%程度
5-7	I	H-5.64-2孔	EL 2.84m	R=0	10%程度
	f	F-6.82-6孔	EL -1.97m	R=0	10%程度
5-8	m	F-6.80-2孔	EL -5.83m	R=0	15%程度
K O	n	H-0.9-40孔	EL -6.36m	R=0	20%程度
K-2	v	H-1.1孔	EL -96.99m	R=0	10%程度
K-3	w	M-2.2孔	EL -31.45m	R=0	10%程度
K-14	o	H0.3-80孔	EL -27.48m	R=0	15%程度
K-18	x	H-0.2-75孔	EL -108.04m	R=0	20%程度
	d	H-6.5-2孔	EL-59.10m	R=0	10%程度
	р	M-12.5"孔	EL -27.25m	R=0	10%程度
非破砕部の	q	K-10.8SW-1孔	EL -18.88m	R=0	10%程度
粘土鉱物脈	r	E-6.2孔	EL -123.37m	R=0	20%程度
(s	H-6.5' 孔	EL -24.19m	R=0	35%程度
	t	H-1.1-80孔	EL -36.01m	R=0	15%程度
	u	H1.80孔	EL -44.66m	R=0	10%程度

渡辺(1986, 1981)によるI/S混合層の構造判定結果

第1049回審査会合 机上配布資料1 P.5.2-2-32 再掲

岩盤調査坑No.7-1孔 -X線回折チャート 定方位(粘土分濃集)

Sm(EG)

回折チャート (EG処理も合わせて表示)

EG処理スメクタイトのピーク回折角

第1049回審査会合 机上配布資料1

P.5.2-2-35 再掲

(1)5~8°	5.12°
②9 ~ 11°	10.06°
316~18°	15.82°
$\Delta 2\theta_1$ (2)–(1))	4.94°
$\Delta 2\theta_2$ (3–2)	5.76°

I/S混合層構造判定

渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)	
渡辺(1981)による イライト混合割合	イライトが20%程度混合	

岩盤調査坑No.16付近 -X線回折チャート 定方位(粘土分濃集)-^{第1049回審査会 机上配布資料1}

回折チャート (EG処理も合わせて表示) EG処理スメクタイトのピーク回折角

5.17°

10.36°

15.92°

5.19°

5.56°

I/S混合層(R=0)

イライトが10%程度混合

I/S混合層構造判定

(1)5~8°

(2)9~11°

(3)16~18°

 $\Delta 2 \theta_1$ (2-1)

 $\Delta 2\theta_2$ (3-2)

渡辺(1986)による

渡辺(1981)による

イライト混合割合

I/S混合層構造判定

E-8.5+5"孔 -X線回折チャート 定方位(粘土分濃集)-

第1049回審査会合 机上配布資料1 P.5.2-2-28 再掲

E-8.4'孔 -X線回折チャート 定方位(粘土分濃集)-

F-9.3-4孔 -X線回折チャート 定方位(粘土分濃集)-

第1049回審査会合 机上配布資料1 P.5.2-2-30 再掲

イライトが20%程度混合

		PI :科長石		
2500 2000	ER EF F Em Sm(EG) Sm(EG) P		EG処理スメクタイト	·のピーク回折角
ලී 1500-			①5~8°	5.14°
nsity			②9~11°	10.18°
	And Marken Marken Marken 1	when in	316~18°	15.98°
	And a start and a start and a start and a start	and the providence	$\Delta 2 \theta_1$ (2–1)	5.04°
500-	Anala Martin and		$\Delta 2\theta_2$ (3–2)	5.80°
	$\Delta 2 \theta_1$ $\Delta 2 \theta_2$ 15.98			<u>}</u>
0 514 5	10 10.18 15 20 25	30 35 40	I/S混合層	構造判定
	2θ/θ (°)		渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)
本試料は、水簸と遠心分離 によって、粒径0.2~2.0µmの 粘土分を濃集している。	▲ 水簸(無処理) 水簸(EG	処理)	渡辺(1981)による イライト混合割合	│ │ イライトが20%程

Sm:スメクタイト

5.24°

10.18°

15.78°

4.94°

5.60°

I/S混合層(R=0)

イライトが15%程度混合

R-8.1-1-3孔 -X線回折チャート 定方位(粘土分濃集)-

F-6.82-6孔 -X線回折チャート 定方位(粘土分濃集)-

第1049回審査会合 机上配布資料1 P.5.2-2-33 再掲

5.3-2-43

M-2.2孔 -X線回折チャート 定方位(粘土分濃集)-

H--0.3-80孔 -X線回折チャート 定方位(粘土分濃集)-

第1049回審査会合 机上配布資料1 P.5.2-2-51 再掲

H-6.5-2孔 -X線回折チャート 定方位(粘土分濃集)-

第1049回審査会合 机上配布資料1 P.5.2-2-31 再掲

Sm:スメクタイト	
PI :斜長石	

M-12.5"孔 -X線回折チャート 定方位(粘土分濃集)-

Sm(EG) Sm:スメクタイト PI:斜長石 Sm(EG) Sm(EG) Sm(EG) Sm Sm Sm P.P. Pl P 8000 7000 6000 Intensity (cps) 5000-4000-3000-2000-1000- $\Delta 2 \theta$ 0 25 30 35 0 10 20 40 5 15 15.86 5.18 10.32 20/0 (°) 水簸 (無処理) 水簸(EG処理) ~ 本試料は、水簸と遠心分離 によって, 粒径0.2~2.0µmの 粘土分を濃集している。

EG処理スメクタイトのピーク回折角

①5~8°	5.18°
②9 ~ 11°	10.32°
316~18°	15.86°
$\Delta 2\theta_1$ (2–1)	5.14°
$\Delta 2\theta_2$ (3–2)	5.54°

I/S混合層構造判定

渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)	
渡辺(1981)による イライト混合割合	イライトが10%程度混合	

5.3-2-49

E-6.2孔 -X線回折チャート 定方位(粘土分濃集)-

H-6.5'孔 -X線回折チャート 定方位(粘土分濃集)-

EG処理スメクタイトのピーク回折角

(1)5~8°	5.24°
②9 ~ 11°	10.06°
316~18°	16.02°
$\Delta 2\theta_1$ (2)–(1))	4.82°
$\Delta 2\theta_2$ (3–2)	5.96°

I/S混合層構造判定

渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)
渡辺(1981)による イライト混合割合	イライトが35%程度混合

5.3-2-53

八面体シート構造の検討

第1049回審査会合 机上配布資料1 P.5.2-2-52 再掲

〇粘土鉱物の八面体シート構造を検討するため,粘土分を濃集した試料でXRD分析(不定方位)を実施し,d(060)ピーク位置により八面体 シート構造を判定した。分析の結果,敷地の粘土鉱物は「2八面体型」の粘土鉱物と判断される。

> d<1.52で2八面体, d≧1.52で3八面体

とする。

【d(060)からの2八面体・3八面体の判定】

粘土鉱物学 (白水, 2010)	 ・d(060)から、b=6×d(060)によって得られた"b値"は、 層面方向の周期を示す値として用いることができる。 2八面体型鉱物のd(060)の値は、一般のAI質では1.49 ~1.50Åであるが、鉄を含む海緑石などでは1.52Å近 くまで大きくなる。 3八面体型は1.52Åよりも大で、Mg質は1.53~1.54Å、 鉄を多く含めば1.56Å程度になる。
粘土鉱物の判 定のしかた (三條, 1992)	 ・粘土鉱物の識別は、一般には単位構造の高さd(Å) をもとに粘土鉱物を確認する方法がとられ、大区分法 として、プリズム反射(6軸方向)の周期による区別法 が行われている。 プリズム反射(060)が1.52Å以下のものは、 dioctahedral(2八面体型)、1.53Å以上のものは、 trioctahedral(3八面体型)として分けている。

グループ		主要八面体 陽イオン	代表的鉱物種	(060)のd (Å)
スメクタイト	2八面体型	AI	モンモリロナイト	1.49~1.5
			ノントロナイト	1.51~1.52
	3八面体型	Mg, Fe	サポナイト	1.52~1.54
雲母	2八面体型	Al, Fe	イライト	1.48~1.50
		Fe ³⁺	海緑石	1.51
	3八面体型	Mg, Fe	黒雲母	1.54 ~ 1.56
緑泥石	3八面体型	Mg, Fe	クリノクロア	1.54
混合層鉱物	2八面体型	Al, Fe	イライト/スメクタイト混合層	1.50~1.51
	3八面体型	Mg, Fe	緑泥石/スメクタイト混合層	di:1.50
				tri:1.54

吉村(2001)を基に作成

【敷地の粘土鉱物の判定】

	試料採取位置	粒径	(060)のd (Å)	判定結果
	岩盤調査坑 No.27孔 (試料e, S-1)	<0.1 <i>µ</i> m	1.506	
		<0.4 µ m	1.507	
		<1 µ m	1.510	
		<5 <i>µ</i> m	1.508	
	E-8.4' 孔	<0.1 µ m	1.509	2八面冲空
		<0.4 µ m	1.504	
床度31./0m (試料b, S-2•S-6)	<1 µ m	1.510		
		<5 <i>µ</i> m	1.509	

・試料採取位置は, 補足資料5.3-2(1)P.5.3-2-3 ・各試料の回折チャートは, 次頁, 次々頁

岩盤調査坑 No.27孔 -X線回折チャート 不定方位-

E-8.4'孔_深度31.70m -X線回折チャート 不定方位-

(3) 粘土鉱物のEPMA分析(定量)結果

EPMA分析による化学組成の検討結果

第1049回審査会合 資料1 P.65 一部修正

O2八面体型の粘土鉱物の化学組成を示したSrodon et al. (1984)の三角ダイアグラムによると、敷地の粘土鉱物(試料A~Z)のEPMA分析値 から算出した化学組成は、いずれも「I/S混合層」に分類される。 Oまた、上記の結果に関して、断層間で比較した結果、断層間で相違はない。

Oなお、断層以外の非破砕部の粘土鉱物脈の分析結果についても、同様の結果であった。

		試料採取箇所 (EPMA分析試料)	
断層		採取位置	標高
	В	K−10.3SW .	EL -6.17m
	С	岩盤調査坑No.25切羽	EL -17.60m
S-1	J	H-6.5-2孔	EL -49.50m
	к	H-6.6-1孔	EL -37.95m
	L	M-12.5"孔	EL -21.66m
	D	E-8.5-2孔	EL 12.66m
S-2·S-6	Е	F-8.5' 孔	EL 12.63m
	I	K-6.2-2孔	EL -19.45m
	А	E-11.1SE-2孔	EL 19.72m
S-4	М	E-8.60孔	EL -35.91m
	S	E-8.50'"孔	EL -39.83m
0.5	Ν	R-8.1-1-3孔	EL -11.12m
5-5	Х	R-8.1-1-2孔	EL -12.38m
0.7	Н	H-5.7' 孔	EL -3.26m
3-7	Т	H-5.4-1E孔	EL 4.80m
S-8	F	F-6.75孔	EL -15.76m
	0	H-0.9-40孔	EL -6.36m
K-2	U	H-1.1孔	EL -96.84m
	Y	G-1.5-80孔	EL -72.12m
K-3	V	M-2.2孔	EL -31.45m
K 14	Ρ	H0.3-80孔	EL -27.48m
N ⁻¹⁴	Q	H'1.3孔	EL -121.91m
K 10	W	H-0.2-75孔	EL -108.04m
	Z	H-0.2-60孔	EL -68.32m
非破砕部の 粘土鉱物脈 (参考)	R	H-6.5-2孔	EL -59.02m

【EPMA分析による化学組成の検討結果(S-1~S-5)】

S-2•S-6

S-4

各試料の採取位置については、補足資料5.3-2(1)P.5.3-2-12。

【EPMA分析による化学組成の検討結果(S-7~K-18, 非破砕部)】

K-10.3SW孔_分析範囲A -EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-58 再掲

単ニコル

0.5mm

直交ニコル

0.5mm

分析位置(分析範囲A)

【EPMA分析結果】

1	~			
	2	3	4	5
%)]				
44.89	46.74	49.02	50.94	45.01
0.69	0.59	0.61	0.43	0.32
10.92	11.59	10.23	13.53	8.24
10.90	12.21	19.74	15.14	18.81
0.03	0.05	0.01	0.03	0.18
2.53	1.76	2.39	2.02	3.79
2.50	2.74	1.74	2.98	1.64
1.19	1.83	0.22	1.14	0.05
0.57	0.83	0.73	1.01	0.62
74.21	78.34	84.69	87.22	78.67
	%)] 44.89 0.69 10.92 10.90 0.03 2.53 2.50 1.19 0.57 74.21	%)] 44.89 46.74 0.69 0.59 10.92 11.59 10.90 12.21 0.03 0.05 2.53 1.76 2.50 2.74 1.19 1.83 0.57 0.83 74.21 78.34	%)] 44.89 46.74 49.02 0.69 0.59 0.61 10.92 11.59 10.23 10.90 12.21 19.74 0.03 0.05 0.01 2.53 1.76 2.39 2.50 2.74 1.74 1.19 1.83 0.22 0.57 0.83 0.73 74.21 78.34 84.69	%)] 44.89 46.74 49.02 50.94 0.69 0.59 0.61 0.43 10.92 11.59 10.23 13.53 10.90 12.21 19.74 15.14 0.03 0.05 0.01 0.03 2.53 1.76 2.39 2.02 2.50 2.74 1.74 2.98 1.19 1.83 0.22 1.14 0.57 0.83 0.73 1.01 74.21 78.34 84.69 87.22

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

_	位置	組成式
_	1	$(Ca_{0.23}Na_{0.19}K_{0.06})(Fe_{0.69}AI_{0.87}Mg_{0.32})(Si_{3.79}AI_{0.21}) O_{10}(OH)_{2}$
	2	$(Ca_{0.24}Na_{0.29}K_{0.09})(Fe_{0.74}AI_{0.87}Mg_{0.21})(Si_{3.77}AI_{0.23})O_{10}(OH)_2$
	3	$(Ca_{0.14}Na_{0.03}K_{0.07}Mg_{0.01})(Fe_{1.12}Al_{0.62}Mg_{0.26})(Si_{3.71}Al_{0.29}) \ O_{10}(OH)_2$
	4	$(Ca_{0.23}Na_{0.16}K_{0.09})(Fe_{0.83}AI_{0.86}Mg_{0.22})(Si_{3.70}AI_{0.30})\ O_{10}(OH)_2$
_	5	$(Ca_{0.14}Na_{0.01}K_{0.06}Mg_{0.10})(Fe_{1.16}AI_{0.48}Mg_{0.36})(Si_{3.69}AI_{0.31})\;\;O_{10}(OH)_2$
【文	献との対	
2八面 鉱物の (Srode	体型雲岳 D化学組 on et al.	母粘土鉱物及び関連 成 (1984)に一部加筆)
		45% 45% 45% 45% 45% 45% 45% 45% 45
C	1 ADON	

CELADONITE LEUCOPHYLLITE

5.3-2-60

K-10.3SW孔_分析範囲B -EPMA分析結果,化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-59 再掲

単ニコル

0.5mm

直交ニコル

0.5mm

分析位置(分析範囲B)

【EPMA分析結果】

分析位置	6	7	8	9	10
〔EPMA分析值	(%)]				
SiO ₂	50.19	50.61	45.91	48.25	48.47
TiO ₂	0.52	0.30	0.53	0.46	0.89
Al_2O_3	12.55	20.12	11.45	11.93	12.41
TFe ₂ O ₃	8.93	5.23	12.50	10.74	8.66
MnO	0.08	0.02	0.04	0.04	0.02
MgO	3.69	1.06	2.37	2.70	2.97
CaO	2.72	7.10	2.77	2.85	2.62
Na ₂ O	1.24	3.43	0.92	1.24	1.16
K₂O	2.14	0.43	0.54	1.26	0.40
total	82.06	88.29	77.02	79.47	77.60

カリウムを含むことを確認した。

\Box

位置	組成式	
6	$(Ca_{0.22}Na_{0.18}K_{0.21})(Fe_{0.51}AI_{0.95}Mg_{0.42})(Si_{3.82}AI_{0.18})\;\;O_{10}(OH)_2$	
7	$(Ca_{0.54}Na_{0.47}K_{0.04})(Fe_{0.28}AI_{1.24}Mg_{0.11})(Si_{3.57}AI_{0.43})O_{10}(OH)_2$	
8	$(Ca_{0.24}Na_{0.15}K_{0.06})(Fe_{0.77}AI_{0.85}Mg_{0.29})(Si_{3.75}AI_{0.25})\;\;O_{10}(OH)_2$	
9	$(Ca_{0.24}Na_{0.19}K_{0.13})(Fe_{0.64}AI_{0.91}Mg_{0.32})(Si_{3.80}AI_{0.20})\;\;O_{10}(OH)_2$	
10	$(Ca_{0.22}Na_{0.18}K_{0.04})(Fe_{0.52}AI_{1.01}Mg_{0.35})(Si_{3.85}AI_{0.15})\;\;O_{10}(OH)_2$	
\checkmark		
2八面体型雲 鉱物の化学約 (Srodon et a	県母粘土鉱物及び関連 組成 al. (1984)に一部加筆)	
	の	K-10.3SW孔) D分析値(敷地の粘土鉱物)
		「れの分析値も S <mark>混合層」</mark> に分類される。
CELAD		ITE
LEUCOPHI		5 3-2-61

岩盤調查坑No.25切羽 - EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-60 再掲

単ニコル

0.1mm

0.1mm

EPMA分析结	果】
---------	----

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	48.50	48.32	48.48	45.99	49.61
TiO ₂	0.07	0.05	0.07	0.86	0.35
Al_2O_3	2.96	2.75	2.99	10.76	12.03
TFe_2O_3	22.53	21.78	23.23	13.42	12.65
MnO	0.13	0.00	0.08	0.11	0.09
MgO	4.47	4.56	4.31	3.37	3.89
CaO	0.76	0.75	0.69	0.94	1.09
Na ₂ O	0.08	0.09	0.07	0.39	0.41
K₂O	1.64	1.80	1.95	0.88	1.61
total	81.14	80.10	81.87	76.72	81.73

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.07}\mathsf{Na}_{0.01}\mathsf{K}_{0.17}\mathsf{Mg}_{0.09})\,(\mathsf{Fe}_{1.37}\mathsf{AI}_{0.19}\mathsf{Mg}_{0.44})\,(\mathsf{Si}_{3.91}\mathsf{AI}_{0.09})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (Ca_{0.07}Na_{0.01}K_{0.19}Mg_{0.09})(Fe_{1.34}AI_{0.20}Mg_{0.46})(Si_{3.94}AI_{0.06}) O_{10}(OH)_2$
- $3 \qquad (\mathsf{Ca}_{0.06}\mathsf{Na}_{0.01}\mathsf{K}_{0.20}\mathsf{Mg}_{0.09})\,(\mathsf{Fe}_{1.40}\mathsf{AI}_{0.17}\mathsf{Mg}_{0.43})\,(\mathsf{Si}_{3.89}\mathsf{AI}_{0.11})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $4 \qquad (Ca_{0.08}Na_{0.06}K_{0.09}Mg_{0.03})(Fe_{0.83}AI_{0.80}Mg_{0.38})(Si_{3.76}AI_{0.24}) \ O_{10}(OH)_2$
- $5 \qquad (Ca_{0.09}Na_{0.06}K_{0.16}Mg_{0.05})(Fe_{0.73}AI_{0.88}Mg_{0.39})(Si_{3.80}AI_{0.20}) O_{10}(OH)_2$

 \bigtriangledown

H-6.5-2孔(深度70.70m)_分析範囲A - EPMA分析結果, 化学組成検討-

【EPMA分析結果】

単ニコル

分析位置 5 2 3 4 1 〔EPMA分析值(%)〕 47.95 50.25 50.28 53.08 49.51 SiO₂ TiO₂ 0.58 0.34 0.85 0.52 0.41 Al_2O_3 8.75 10.66 9.47 11.15 10.29 TFe₂O₃ 12.39 11.36 13.13 12.37 11.42 MnO 0.15 0.03 0.05 0.00 0.00 5.11 MgO 3.98 3.47 3.31 3.49 CaO 0.64 1.84 1.42 1.90 0.67 Na₂O 0.54 1.25 1.04 1.52 0.42 カリウムを含むことを確認した。 K₂O 1.71 1.63 1.61 2.37 2.28 76.69 80.82 81.15 86.41 80.10 total

1mm

直交ニコル

1mm

分析位置(拡大範囲A)

5.3-2-63

H-6.5-2孔(深度70.70m)_分析範囲B -EPMA分析結果, 化学組成検討-

単ニコル

1mm

1mm

【EPMA分析結果】

分析位置	6	7	8	9	10
〔EPMA分析值 (%	<u>ز(</u> ز				
SiO ₂	52.84	47.83	51.16	51.25	48.10
TiO ₂	0.53	0.53	0.69	0.22	0.24
Al ₂ O ₃	15.47	10.11	13.13	5.05	10.16
TFe ₂ O ₃	9.13	12.26	12.44	20.43	11.21
MnO	0.00	0.05	0.05	0.00	0.04
MgO	3.04	3.98	3.35	5.37	3.00
CaO	3.87	1.00	1.74	1.18	1.91
Na ₂ O	1.56	0.58	1.22	0.87	2.86
K₂O	0.64	0.96	1.37	1.40	0.68
total	87.07	77.29	85.14	85.77	78.21

【EPMA分析結果に基づく組成式】

CELADONITE

LEUCOPHYLLITE

位置	組成式
6	$(Ca_{0.29}Na_{0.21}K_{0.06})(Fe_{0.49}AI_{1.05}g_{0.32})(Si_{3.76}AI_{0.24})O_{10}(OH)_2$
7	$(Ca_{0.09}Na_{0.09}K_{0.10}Mg_{0.04})(Fe_{0.74}AI_{0.82}Mg_{0.44})(Si_{3.86}AI_{0.14})O_{10}(OH)_2$
8	$(Ca_{0.14}Na_{0.17}K_{0.13})(Fe_{0.69}AI_{0.90}Mg_{0.37})(Si_{3.76}AI_{0.24})O_{10}(OH)_2$
9	$(Ca_{0.10}Na_{0.13}K_{0.13}Mg_{0.08})(Fe_{1.16}Al_{0.32}Mg_{0.53})(Si_{3.87}Al_{0.13})\;O_{10}(OH)_2$
10	$(Ca_{0.16}Na_{0.45}K_{0.07})(Fe_{0.68}Al_{0.83}Mg_{0.36})(Si_{3.86}Al_{0.14})O_{10}(OH)_2$

MUSCOVITE 【文献との対応】 MOREASING 2八面体型雲母粘土鉱物及び関連 鉱物の化学組成 (Srodon et al. (1984)に一部加筆) Olocitesticored MICAS 3 TETRAHEORAL CHARGE ALLE STE ● 分析値(H-6.5-2孔(深度70.70m)) その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。 セラドナイト PYROPHYLLITE

INCREASING OCTRAHEDRAL CHARGE 八面体電荷

直交ニコル

分析位置(拡大範囲B)

5.3-2-64

単ニコル

1mm

直交ニコル

分析位置(分析範囲A)

1mm

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值(%	6)]				
SiO ₂	49.75	49.54	46.94	52.95	53.14
TiO ₂	0.47	0.63	0.68	0.59	0.50
Al ₂ O ₃	11.93	10.69	12.00	13.52	12.95
TFe ₂ O ₃	10.52	15.00	13.26	13.97	12.19
MnO	0.06	0.07	0.04	0.02	0.04
MgO	3.42	3.80	2.85	2.31	3.09
CaO	1.45	1.29	2.06	1.99	1.20
Na₂O	1.90	1.00	1.49	1.92	1.76
K₂O	1.34	1.24	1.03	0.99	0.89
total	80.83	83.24	80.35	88.26	85.76

カリウムを含むことを確認した。

 $\overline{}$

H-6.6-1孔_分析範囲B -EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

分析位置(分析範囲B)

1mm

【EPMA分析結果】

分析位置	6	7	8	9	10	
〔EPMA分析值(%	6)]					
SiO ₂	49.25	46.55	50.13	47.39	45.22	
TiO ₂	1.16	0.38	0.59	0.43	0.29	
Al ₂ O ₃	13.61	17.39	15.10	12.27	15.67	
TFe ₂ O ₃	9.16	5.92	7.92	9.80	5.69	
MnO	0.52	0.41	0.09	0.01	0.03	
MgO	2.14	1.89	2.27	3.09	2.23	
CaO	1.58	3.69	3.11	1.44	4.34	
Na ₂ O	1.70	3.05	1.91	1.07	1.79	
K₂O	0.94	0.62	0.94	1.09	0.60	カリウムを含む
total	80.04	79.89	82.06	76.58	75.85	

リウムを含むことを確認した。

 \frown

	位置	組成式
	6	$(Ca_{0.13}Na_{0.25}K_{0.09})(Fe_{0.53}Al_{1.05}Mg_{0.25})(Si_{3.81}Al_{0.19}) \ O_{10}(OH)_2$
	7	$(Ca_{0.31}Na_{0.46}K_{0.06})(Fe_{0.35}Al_{1.21}Mg_{0.22})(Si_{3.62}Al_{0.38}) O_{10}(OH)_2$
	8	(Ca _{0.25} Na _{0.28} K _{0.09})(Fe _{0.45} Al _{1.12} Mg _{0.25})(Si _{3.78} Al _{0.22}) O ₁₀ (OH) ₂
	9	$(Ca_{0.12}Na_{0.17}K_{0.11})(Fe_{0.60}Al_{1.00}Mg_{0.37})(Si_{3.83}Al_{0.17}) O_{10}(OH)_2$
	10	(Ca _{0.38} Na _{0.28} K _{0.06})(Fe _{0.35} Al _{1.19} Mg _{0.27})(Si _{3.68} Al _{0.32}) O ₁₀ (OH) ₂
-		
2八百 鉱物 (Sroo	面体型雲 の化学組 don et al	BHL土鉱物及び関連 (1984)(二一部加筆) (1984)(二一部(二))(二 (1984)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)

単ニコル

直交ニコル

分析位置	(下は砕屑岩脈を加筆)

-1mm

【EPMA分析結果】						<u> </u>	砕屑岩脈	〔中の粘土	鉱物	>	
分析位置	1	2	3	4	5	6	7	8	9	10	
〔EPMA分析值(%	5)]										
SiO ₂	43.67	48.23	49.82	53.10	49.11	51.31	49.22	48.87	49.79	49.28	
TiO ₂	0.58	0.41	0.35	0.32	0.57	0.43	0.45	0.39	0.39	0.47	
Al ₂ O ₃	8.56	10.15	10.50	9.35	14.55	10.68	11.89	9.13	12.15	12.58	
TFe ₂ O ₃	14.05	14.05	14.47	15.86	11.38	15.05	11.98	15.74	12.90	12.93	
MnO	0.05	0.03	0.07	0.08	0.08	0.19	0.09	0.09	0.04	0.07	
MgO	3.52	3.71	3.69	4.53	2.31	4.09	3.69	3.64	3.47	2.94	
CaO	1.92	2.57	2.41	1.57	4.68	2.42	3.24	1.99	3.40	3.44	
Na ₂ O	1.03	0.94	0.93	0.56	2.00	0.71	1.24	0.60	1.30	1.47	
K₂O	2.35	3.23	3.07	3.40	1.45	0.34	0.94	1.49	2.50	1.49	カリワムを含むこと
total	75.72	83.31	85.31	88.76	86.12	85.22	82.74	81.93	85.94	84.66	確認した。

位置	組成式	位置	組成式
1	$(Ca_{0.18}Na_{0.17}K_{0.26})(Fe_{0.90}AI_{0.58}Mg_{0.45})(Si_{3.72}AI_{0.28})O_{10}(OH)_2$	6	$(Ca_{0.19}Na_{0.10}K_{0.03}Mg_{0.01})(Fe_{0.84}AI_{0.72}Mg_{0.44})(Si_{3.79}AI_{0.21}) O_{10}(OH)_2$
2	$(Ca_{0.21}Na_{0.14}K_{0.32})(Fe_{0.82}Al_{0.66}Mg_{0.43})(Si_{3.73}Al_{0.27})O_{10}(OH)_2$	7	$(Ca_{0.26}Na_{0.18}K_{0.09})(Fe_{0.69}AI_{0.81}Mg_{0.42})(Si_{3.75}AI_{0.25})O_{10}(OH)_2$
3	$(Ca_{0.19}Na_{0.14}K_{0.30})(Fe_{0.82}Al_{0.68}Mg_{0.41})(Si_{3.75}Al_{0.25})O_{10}(OH)_2$	8	$(Ca_{0.17}Na_{0.09}K_{0.15})(Fe_{0.92}AI_{0.64}Mg_{0.42})(Si_{3.80}AI_{0.20})O_{10}(OH)_2$
4	$(Ca_{0.12}Na_{0.08}K_{0.31})(Fe_{0.86}Al_{0.63}Mg_{0.49})(Si_{3.84}Al_{0.16})O_{10}(OH)_2$	9	$(Ca_{0.27}Na_{0.19}K_{0.24})(Fe_{0.72}AI_{0.77}Mg_{0.38})(Si_{3.70}AI_{0.30})O_{10}(OH)_2$
5	$(Ca_{0.37}Na_{0.29}K_{0.14})(Fe_{0.63}Al_{0.89}Mg_{0.25})(Si_{3.62}Al_{0.38})O_{10}(OH)_2$	10	$(Ca_{0.28}Na_{0.21}K_{0.14})(Fe_{0.73}AI_{0.81}Mg_{0.33})(Si_{3.70}AI_{0.30})O_{10}(OH)_2$

E-8.5-2孔_分析範囲A -EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-61 再掲

単ニコル

0.5mm

直交ニコル

0.5mm

分析位置(分析範囲A)

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	48.78	45.53	51.65	49.16	50.02
TiO ₂	0.40	0.57	0.48	0.28	0.34
Al_2O_3	15.42	16.80	16.14	16.15	15.57
TFe_2O_3	8.92	9.23	10.37	8.25	8.73
MnO	0.01	0.01	0.04	0.00	0.01
MgO	3.31	2.89	3.24	2.55	2.82
CaO	1.22	1.36	1.83	2.14	2.09
Na ₂ O	0.12	0.06	0.39	0.67	0.81
K₂O	0.35	0.29	0.34	0.25	0.38
total	78.53	76.74	84.48	79.46	80.76

カリウムを含むことを確認した。

 \square

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (Ca_{0.10}Na_{0.02}K_{0.03}Mg_{0.09})(Fe_{0.52}AI_{1.18}Mg_{0.30})(Si_{3.78}AI_{0.22}) O_{10}(OH)_2$
- $2 \qquad (\mathsf{Ca}_{0.12}\mathsf{Na}_{0.01}\mathsf{K}_{0.03}\mathsf{Mg}_{0.10})(\mathsf{Fe}_{0.55}\mathsf{AI}_{1.21}\mathsf{Mg}_{0.24}) \ (\mathsf{Si}_{3.63}\mathsf{AI}_{0.37}) \ \mathsf{O}_{10} \left(\mathsf{OH}\right)_2$
- $3 \qquad (\mathsf{Ca}_{0.14}\mathsf{Na}_{0.05}\mathsf{K}_{0.03}\mathsf{Mg}_{0.04})(\mathsf{Fe}_{0.57}\mathsf{AI}_{1.13}\mathsf{Mg}_{0.31}) \ (\mathsf{Si}_{3.75}\mathsf{AI}_{0.25}) \ \mathsf{O}_{10} \ (\mathsf{OH})_2$
- $4 \qquad (\text{Ca}_{0.18}\text{Na}_{0.10}\text{K}_{0.02})(\text{Fe}_{0.48}\text{Al}_{1.23}\text{Mg}_{0.29})(\text{Si}_{3.77}\text{Al}_{0.23}) \ \text{O}_{10}\left(\text{OH}\right)_2$
- 5 $(Ca_{0.17}Na_{0.12}K_{0.04})(Fe_{0.50}AI_{1.17}Mg_{0.32})(Si_{3.78}AI_{0.22}) O_{10}(OH)_2$

E-8.5-2孔_分析範囲B -EPMA分析結果,化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-62 再掲

単ニコル

0.5mm

直交ニコル

0.5mm

分析位置(分析範囲B)

【EPMA分析結果】

分析位置	6	7	8	9	10				
〔EPMA分析值 (%)〕									
SiO ₂	48.90	53.28	50.47	51.73	52.39				
TiO ₂	0.43	0.39	0.42	0.41	0.46				
Al ₂ O ₃	15.20	16.28	18.08	15.42	16.10				
TFe ₂ O ₃	9.66	9.61	8.89	9.22	9.82				
MnO	0.00	0.03	0.02	0.00	0.02				
MgO	3.25	3.72	3.39	3.59	3.54				
CaO	1.50	1.36	1.37	1.32	1.28				
Na₂O	0.40	0.21	0.10	0.13	0.24				
K₂O	0.31	0.30	0.28	0.31	0.34				
total	79.64	85.18	83.01	82.12	84.19				

カリウムを含むことを確認した。

\square

【EPMA分析結果に基づく組成式】

位置 組成式 6 $(Ca_{0,12}Na_{0,06}K_{0,03}Mg_{0,06})(Fe_{0,56}AI_{1,13}Mg_{0,31})(Si_{3,75}AI_{0,25})O_{10}(OH)_{2}$ (Ca_{0.10}Na_{0.03}K_{0.03}Mg_{0.08})(Fe_{0.52}Al_{1.17}Mg_{0.31})(Si_{3.80}Al_{0.20})O₁₀(OH)₂ 7 8 $(Ca_{0,11}Na_{0,01}K_{0,03}Mg_{0,11})(Fe_{0,49}AI_{1,25}Mg_{0,26})(Si_{3,69}AI_{0,31})O_{10}(OH)_{2}$ 9 $(Ca_{0,10}Na_{0,02}K_{0,03}Mg_{0,08})(Fe_{0,51}AI_{1,17}Mg_{0,32})(Si_{3,82}AI_{0,18})O_{10}(OH)_{2}$ (Ca_{0.10}Na_{0.03}K_{0.03}Mg_{0.08})(Fe_{0.53}Al_{1.16}Mg_{0.31})(Si_{3.79}Al_{0.21}) O₁₀(OH)₂ 10 $\overline{}$ 【文献との対応】 MUSCOVITE 2八面体型雲母粘土鉱物及び関連 INCREASING 鉱物の化学組成 (Srodon et al. (1984)に一部加筆) Olocitaticoral Micas 3 TETRAHEDRAL CHARGE ALLE . 分析値(E-8.5-2孔) その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。 セラドナイト PYROPHYLLITE CELADONITE INCREASING OCTRAHEDRAL CHARGE 八面体電荷 LEUCOPHYLLITE 5.3-2-69

F-8.5'孔 - EPMA分析結果, 化学組成検討-

単ニコル

0.1mm

直交ニコル

0.1mm

82.26

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

total

79.86

位置 組成式

 $1 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.13})\,(\mathsf{Fe}_{0.62}\mathsf{AI}_{1.14}\mathsf{Mg}_{0.23})\,(\mathsf{Si}_{3.61}\mathsf{AI}_{0.39})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$

83.39

85.66

79.15

- $2 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.11})(\mathsf{Fe}_{0.69}\mathsf{AI}_{1.08}\mathsf{Mg}_{0.23})\,(\mathsf{Si}_{3.67}\mathsf{AI}_{0.33})\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $3 \qquad (\mathsf{Ca}_{0.11}\mathsf{Na}_{0.04}\mathsf{K}_{0.04}\mathsf{Mg}_{0.11})(\mathsf{Fe}_{0.59}\mathsf{AI}_{1.18}\mathsf{Mg}_{0.23}) \ (\mathsf{Si}_{3.66}\mathsf{AI}_{0.34}) \ \mathsf{O}_{10} \ (\mathsf{OH})_2$
- $4 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.11})(\mathsf{Fe}_{0.62}\mathsf{AI}_{1.13}\mathsf{Mg}_{0.24})\;(\mathsf{Si}_{3.70}\mathsf{AI}_{0.30})\;\;\mathsf{O}_{10}\left(\mathsf{OH}\right)_2$
- $5 \qquad (\mathsf{Ca}_{0.11}\mathsf{Na}_{0.02}\mathsf{K}_{0.03}\mathsf{Mg}_{0.11})(\mathsf{Fe}_{0.70}\mathsf{AI}_{1.09}\mathsf{Mg}_{0.21})(\mathsf{Si}_{3.65}\mathsf{AI}_{0.35}) \ \mathsf{O}_{10}\left(\mathsf{OH}\right)_2$

分析位置

K-6.2-2孔 - EPMA分析結果, 化学組成検討-

1mm

1mm

単ニコル

【EPMA分析結果】

分析位置	3	4	5	6	7	8	9	
<u>〔EPMA分析值</u>	(%)]							
SiO ₂	53.80	54.59	49.03	52.09	53.08	49.02	50.04	
TiO ₂	0.64	0.66	0.89	1.06	1.01	1.39	1.32	
Al ₂ O ₃	13.08	15.53	12.56	13.87	13.36	16.03	15.90	
TFe ₂ O ₃	9.40	7.11	8.94	9.41	9.56	10.30	10.67	
MnO	0.10	0.00	0.05	0.07	0.06	0.07	0.07	
MgO	4.82	3.85	4.97	5.13	4.23	3.66	3.67	
CaO	1.01	3.01	1.56	0.96	1.25	0.99	1.01	
Na₂O	0.60	1.78	0.48	0.67	1.58	0.69	0.69	
<u>K</u> 20	1.24	1.38	1.17	0.73	1.16	0.78	0.69	カリウムを含むことを確認した。
total	84.69	87.91	79.66	83.98	85.29	82.93	84.06	

【EPMA分析結果に基づく組成式】

位置	組成式	位置	組成式
3	$(Ca_{0.08}Na_{0.08}K_{0.11}Mg_{0.04})(Fe_{0.51}AI_{1.01}Mg_{0.48})(Si_{3.89}AI_{0.11}) \hspace{0.1 in}O_{10}\left(OH\right)_2$	7	$(Ca_{0.10}Na_{0.22}K_{0.11})(Fe_{0.52}Al_{0.98}Mg_{0.46})(Si_{3.84}Al_{0.16})\;\;O_{10}(OH)_2$
4	$(Ca_{0.23}Na_{0.24}K_{0.12})(Fe_{0.37}AI_{1.10}Mg_{0.40})(Si_{3.82}AI_{0.18})\;\;O_{10}(OH)_2$	8	$(Ca_{0.08}Na_{0.10}K_{0.07}Mg_{0.04})(Fe_{0.58}AI_{1.05}Mg_{0.37})(Si_{3.65}AI_{0.35})\;\;O_{10}(OH)_2$
5	$(Ca_{0.13}Na_{0.07}K_{0.12}Mg_{0.04})(Fe_{0.52}AI_{0.94}Mg_{0.54})(Si_{3.80}AI_{0.20})O_{10}(OH)_2$	9	$(Ca_{0.08}Na_{0.10}K_{0.06}Mg_{0.04})(Fe_{0.59}AI_{1.05}Mg_{0.37})(Si_{3.67}AI_{0.33})\;\;O_{10}(OH)_2$
6	(Ca _{0.07} Na _{0.09} K _{0.07} Mg _{0.07})(Fe _{0.52} Al _{0.99} Mg _{0.49})(Si _{3.80} Al _{0.20})O ₁₀ (OH) ₂		

直交ニコル

分析位置

E-11.1SE-2孔_分析範囲A -EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-56 再掲

単ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	48.73	47.61	51.39	45.29	45.28
TiO ₂	0.60	0.17	0.28	0.29	0.28
Al ₂ O ₃	16.91	15.58	11.05	13.68	11.15
TFe_2O_3	9.60	10.24	11.76	11.32	9.58
MnO	0.02	0.04	0.04	0.04	0.08
MgO	2.88	3.80	4.71	2.60	4.72
CaO	2.14	1.01	1.80	1.93	1.14
Na ₂ O	0.90	0.14	0.08	0.35	0.11
K₂O	0.87	0.39	0.72	0.73	0.67
total	82.63	78.98	81.82	76.22	73.01

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.17}\mathsf{Na}_{0.13}\mathsf{K}_{0.08})\,(\mathsf{Fe}_{0.54}\mathsf{AI}_{1.13}\mathsf{Mg}_{0.32})\,(\mathsf{Si}_{3.64}\mathsf{AI}_{0.36})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (Ca_{0.08}Na_{0.02}K_{0.04}Mg_{0.16})(Fe_{0.60}AI_{1.12}Mg_{0.28})(Si_{3.69}AI_{0.31}) O_{10}(OH)_2$
- $3 \qquad (\mathsf{Ca}_{0.15}\mathsf{Na}_{0.01}\mathsf{K}_{0.07}\mathsf{Mg}_{0.07})(\mathsf{Fe}_{0.67}\mathsf{Al}_{0.87}\mathsf{Mg}_{0.46})~(\mathsf{Si}_{3.88}\mathsf{Al}_{0.12})~\mathsf{O}_{10}(\mathsf{OH})_2$
- $4 \qquad (Ca_{0.17}Na_{0.05}K_{0.08}Mg_{0.02})(Fe_{0.70}AI_{1.01}Mg_{0.29})(Si_{3.70}AI_{0.30}) O_{10}(OH)_{2}$
- $5 \qquad (\mathsf{Ca}_{0.10}\mathsf{Na}_{0.02}\mathsf{K}_{0.07}\mathsf{Mg}_{0.13})(\mathsf{Fe}_{0.61}\mathsf{AI}_{0.93}\mathsf{Mg}_{0.46})~(\mathsf{Si}_{3.82}\mathsf{AI}_{0.18})~\mathsf{O}_{10}\left(\mathsf{OH}\right)_2$

分析位置(分析範囲A)

直交ニコル

E-11.1SE-2孔_分析範囲B -EPMA分析結果,化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-57 再掲

単ニコル

直交ニコル

分析位置(分析範囲B)

【EPMA分析結果】

分析位置	6	7	8	9	10
EPMA分析值 (9	6)]				
SiO ₂	43.65	46.01	47.87	51.58	47.32
TiO ₂	0.21	0.25	0.44	0.33	0.26
Al ₂ O ₃	15.87	15.53	16.66	19.20	12.62
TFe_2O_3	10.20	7.57	7.89	6.22	12.07
MnO	0.04	0.01	0.01	0.01	0.02
MgO	1.79	2.09	3.89	2.39	3.63
CaO	1.68	1.62	2.03	2.97	1.51
Na ₂ O	0.53	0.94	0.35	1.48	0.36
K₂O	0.30	0.57	1.01	1.54	0.58
total	74.27	74.60	80.14	85.72	78.37

カリウムを含むことを確認した。

 \frown

【EPMA分析結果に基づく組成式】

位置 組成式

- $6 \qquad (\mathsf{Ca}_{0.15}\mathsf{Na}_{0.09}\mathsf{K}_{0.03}\mathsf{Mg}_{0.04})(\mathsf{Fe}_{0.64}\mathsf{AI}_{1.18}\mathsf{Mg}_{0.18})(\mathsf{Si}_{3.63}\mathsf{AI}_{0.37}) \ \mathsf{O}_{10}(\mathsf{OH})_2$
- 7 $(Ca_{0.14}Na_{0.15}K_{0.06})(Fe_{0.47}AI_{1.26}Mg_{0.25})(Si_{3.76}AI_{0.24})O_{10}(OH)_{2}$
- $8 \qquad (\mathsf{Ca}_{0.17}\mathsf{Na}_{0.05}\mathsf{K}_{0.10}\mathsf{Mg}_{0.07})(\mathsf{Fe}_{0.45}\mathsf{AI}_{1.17}\mathsf{Mg}_{0.38})\,(\mathsf{Si}_{3.66}\mathsf{AI}_{0.34})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- 9 $(Ca_{0.23}Na_{0.21}K_{0.14})(Fe_{0.33}AI_{1.31}Mg_{0.25})(Si_{3.69}AI_{0.31}) O_{10}(OH)_2$
- 10 $(Ca_{0.13}Na_{0.06}K_{0.06}Mg_{0.08})(Fe_{0.72}AI_{0.93}Mg_{0.35})(Si_{3.75}AI_{0.25}) O_{10}(OH)_{2}$

単ニコル

1mm

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
<u>〔EPMA分析值(</u>	(%)]				
SiO ₂	51.73	49.34	52.14	52.03	50.10
TiO ₂	0.57	0.53	0.54	0.64	0.54
Al_2O_3	15.44	17.80	16.89	15.03	14.44
TFe ₂ O ₃	10.37	8.53	9.33	10.88	10.82
MnO	0.12	0.19	0.12	0.08	0.08
MgO	2.95	2.24	2.78	2.99	3.06
CaO	3.20	4.86	4.01	3.17	2.37
Na ₂ O	0.90	1.49	1.36	1.30	0.94
K₂O	0.78	0.63	0.73	1.02	1.10
total	86.05	85.62	87.89	87.13	83.44

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

	位置	組成式	
	1	$(Ca_{0.25}Na_{0.13}K_{0.07})(Fe_{0.56}AI_{1.04}Mg_{0.32})(Si_{3.73}AI_{0.27})\;\;O_{10}(OH)_2$	
	2	$(Ca_{0.38}Na_{0.21}K_{0.06})(Fe_{0.47}AI_{1.12}Mg_{0.24})(Si_{3.59}AI_{0.41}) O_{10}(OH)_2$	
	3	$(Ca_{0.30}Na_{0.19}K_{0.07})(Fe_{0.50}AI_{1.09}Mg_{0.29})(Si_{3.68}AI_{0.32})\;\;O_{10}(OH)_2$	
	4	$(Ca_{0.24}Na_{0.18}K_{0.09})(Fe_{0.59}AI_{0.99}Mg_{0.32})(Si_{3.72}AI_{0.28}) \ O_{10}\left(OH\right)_2$	
	5	$(Ca_{0.19}Na_{0.14}K_{0.10})(Fe_{0.61}AI_{1.00}Mg_{0.34})(Si_{3.74}AI_{0.26}) \ O_{10}\left(OH\right)_2$	
2八面 鉱物の (Srodd	体型雲 分 体型 二 の et al. CELA CELA	日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	分析値(E-8.60孔) その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。
LE	UCOPH	YLLITE 八面体電荷	5 3-2-74

分析位置

5.3-2-74

E-8.50""孔_分析範囲 -EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-79 再掲

単ニコル

1mm

1mm

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5	6	7			
〔EPMA分析値 (%)〕										
SiO ₂	48.04	48.52	46.66	44.72	46.93	46.01	51.67			
TiO ₂	0.60	0.55	0.61	0.40	0.70	0.57	0.68			
Al ₂ O ₃	14.26	13.22	14.02	14.85	11.04	12.90	15.85			
TFe ₂ O ₃	7.89	10.81	8.17	8.64	15.05	9.29	8.38			
MnO	0.03	0.00	0.02	0.02	0.13	0.14	0.02			
MgO	3.41	3.71	3.18	1.69	2.64	2.39	3.27			
CaO	2.39	2.89	2.91	4.90	2.18	3.16	2.93			
Na₂O	0.68	0.72	1.36	1.93	0.88	1.24	1.14			
K₂Ō	0.41	0.48	0.58	0.32	0.57	0.63	0.27			
total	77.69	80.89	77.50	77.48	80.11	76.33	84.20			

カリウムを含むことを確認した。

位置 組成式 1 $(Ca_{0.20}Na_{0.10}K_{0.04})(Fe_{0.47}AI_{1.11}Mg_{0.40})(Si_{3.78}AI_{0.22}) O_{10}(OH)_2$ 2 $(Ca_{0.24}Na_{0.11}K_{0.05})(Fe_{0.63}AI_{0.93}Mg_{0.43})(Si_{3.73}AI_{0.27}) O_{10}(OH)_2$ 3 $(Ca_{0.25}Na_{0.21}K_{0.06})(Fe_{0.49}AI_{1.04}Mg_{0.38})(Si_{3.72}AI_{0.28}) O_{10}(OH)_2$

【EPMA分析結果に基づく組成式】

- $4 \qquad (\mathsf{Ca}_{0.42}\mathsf{Na}_{0.30}\mathsf{K}_{0.03})(\mathsf{Fe}_{0.53}\mathsf{AI}_{1.04}\mathsf{Mg}_{0.20})(\mathsf{Si}_{3.62}\mathsf{AI}_{0.38}) \ \mathsf{O}_{10}(\mathsf{OH})_2$
- $5 \qquad (\text{Ca}_{0.18}\text{Na}_{0.13}\text{K}_{0.06})(\text{Fe}_{0.90}\text{Al}_{0.74}\text{Mg}_{0.31})(\text{Si}_{3.71}\text{Al}_{0.29}) \ \text{O}_{10}(\text{OH})_2$
- $6 \qquad (Ca_{0.28}Na_{0.20}K_{0.07})(Fe_{0.57}AI_{0.99}Mg_{0.29})(Si_{3.75}AI_{0.25}) O_{10}(OH)_2$
- 7 $(Ca_{0.23}Na_{0.16}K_{0.02})(Fe_{0.46}AI_{1.12}Mg_{0.35})(Si_{3.76}AI_{0.24}) O_{10}(OH)_{2}$

分析位置

5.3-2-75

R-8.1-1-3孔 - EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	53.42	51.59	52.73	51.24	48.25
TiO2	0.56	0.50	0.75	0.68	0.67
Al ₂ O ₃	13.86	15.17	14.59	13.53	13.34
TFe_2O_3	10.42	9.49	12.76	10.83	10.46
MnO	0.01	0.04	0.05	0.01	0.00
MgO	4.03	3.28	3.94	3.57	3.37
CaO	1.82	2.62	2.09	2.03	1.79
Na₂O	0.28	0.92	0.73	0.44	0.35
K₂O	0.61	0.48	0.55	0.73	0.62
total	85.00	84.10	88.18	83.07	78.85

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

分析位置

R-8.1-1-2孔_分析範囲 -EPMA分析結果, 化学組成検討-

1mm

1mm

第1049回審査会合 机上配布資料1 P.5.2-2-84 再掲

単ニコル

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
[EPMA分析值 (9	%)]				
SiO ₂	48.27	49.61	47.40	48.57	47.59
TiO ₂	0.33	0.34	0.31	0.55	0.34
Al ₂ O ₃	13.77	18.25	18.28	14.67	15.38
TFe ₂ O ₃	8.60	7.64	6.66	10.76	12.52
MnO	0.00	0.02	0.00	0.00	0.01
MgO	3.65	3.00	2.18	3.79	3.42
CaO	1.86	4.69	2.71	1.94	1.85
Na ₂ O	0.17	0.61	0.89	0.40	0.20
K₂O	0.30	0.37	0.96	0.76	0.55
total	76.95	84.53	79.39	81.43	81.86

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式 1 $(Ca_{0.16}Na_{0.03}K_{0.03}Mg_{0.05})(Fe_{0.51}AI_{1.11}Mg_{0.38})(Si_{3.82}AI_{0.18})O_{10}(OH)_{2}$ 2 $(Ca_{0.37}Na_{0.09}K_{0.03})(Fe_{0.42}AI_{1.18}Mg_{0.33})(Si_{3.62}AI_{0.38})O_{10}(OH)_{2}$ (Ca_{0.22}Na_{0.13}K_{0.09})(Fe_{0.39}Al_{1.31}Mg_{0.25})(Si_{3.65}Al_{0.35})O₁₀(OH)₂ 3 4 $(Ca_{0.16}Na_{0.06}K_{0.07}Mg_{0.05})(Fe_{0.62}AI_{1.01}Mg_{0.38})(Si_{3.69}AI_{0.31})O_{10}(OH)_{2}$ 5 (Ca_{0.15}Na_{0.03}K_{0.05}Mg_{0.10})(Fe_{0.72}Al_{1.00}Mg_{0.29})(Si_{3.62}Al_{0.38}) O₁₀(OH)₂ $\overline{}$ MUSCOVITE 【文献との対応】 INCREASING 2八面体型雲母粘土鉱物及び関連 鉱物の化学組成 分析値(R-8.1-1-2孔) (Srodon et al. (1984)に一部加筆) Olociteshe Dig Micas その他の分析値(敷地の粘土鉱物) \bigcirc TETRAHEDRAL いずれの分析値も 「I/S混合層」に分類される。 CHARGE セラドナイト PYROPHYLLITE CELADONITE INCREASING OCTRAHEDRAL CHARGE LEUCOPHYLLITE 八酯体電荷 5.3-2-77

H-5.7'孔 - EPMA分析結果, 化学組成検討-

【EPMA分析結果】

【EPMA分析結果に基づく組成式】

組成式

単ニコル

分析位置	3	4	6	7	8	9	10	11
〔EPMA分析值	(%)]							
SiO ₂	53.54	46.71	44.79	46.09	47.42	47.79	48.88	47.52
TiO ₂	0.30	0.37	0.63	0.45	0.64	0.66	0.73	0.68
Al ₂ O ₃	16.62	11.72	8.55	9.12	12.89	8.21	11.92	9.40
TFe_2O_3	6.81	6.00	11.48	7.99	8.07	9.57	11.71	12.85
MnO	0.15	0.18	0.07	0.37	0.07	0.19	0.06	0.08
MgO	2.85	3.30	3.61	3.90	3.17	4.46	3.13	4.27
CaO	4.51	2.78	1.55	2.13	2.38	2.69	2.13	1.47
Na ₂ O	2.64	1.74	0.47	0.77	1.32	0.49	0.54	0.21
K₂O	1.01	0.57	1.27	0.86	0.85	0.71	0.87	1.20
total	88.43	73.37	72.41	71.68	76.82	74.77	79.99	77.68

(Ca_{0.33}Na_{0.35}K_{0.09}) (Fe_{0.51}Al_{1.05}Mg_{0.29}) (Si_{3.70}Al_{0.30}) O₁₀ (OH)₂

(Ca_{0.25}Na_{0.28}K_{0.06}) (Fe_{0.54}Al_{0.98}Mg_{0.41}) (Si_{3.85}Al_{0.15}) O₁₀ (OH)₂

(Ca_{0.14}Na_{0.08}K_{0.14}Mg_{0.12})(Fe_{1.05}Al_{0.61}Mg_{0.33})(Si_{3.77}Al_{0.23})O₁₀(OH)₂

(Ca_{0.19}Na_{0.13}K_{0.09}Mg_{0.02})(Fe_{0.74}Al_{0.79}Mg_{0.47})(Si_{3.89}Al_{0.11}) O₁₀(OH)₂

カリウムを含むことを確認した。

 $(Ca_{0.20}Na_{0.20}K_{0.09})(Fe_{0.69}AI_{0.93}Mg_{0.37})(Si_{3.74}AI_{0.26})O_{10}(OH)_{2}$

(Ca_{0.23}Na_{0.08}K_{0.07}Mg_{0.04})(Fe_{0.85}Al_{0.66}Mg_{0.50})(Si_{3.87}Al_{0.13})O₁₀(OH)₂

 $(Ca_{0.17}Na_{0.08}K_{0.08}Mg_{0.09})(Fe_{0.97}AI_{0.77}Mg_{0.26})(Si_{3.70}AI_{0.30}) O_{10}(OH)_{2}$

 $(Ca_{0,12}Na_{0,03}K_{0,12}Mg_{0,18})(Fe_{1,10}AI_{0,59}Mg_{0,32})(Si_{3,72}AI_{0,28}) O_{10}(OH)_{2}$

0.5mm

位置

3

4

6

7

直交ニコル	
-------	--

分析位置

位置

8

9

10

11

組成式

H-5.4-1E孔 -EPMA分析結果, 化学組成検討-

単ニコル

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5				
EPMA分析値 (%)〕									
SiO ₂	45.71	46.19	45.64	47.94	47.90				
TiO ₂	0.74	1.17	0.68	0.73	0.80				
Al_2O_3	11.19	10.99	10.16	10.39	11.31				
TFe_2O_3	11.45	15.34	13.79	16.99	12.99				
MnO	0.07	0.00	0.02	0.04	0.02				
MgO	3.01	2.71	3.32	2.57	3.28				
CaO	2.34	1.80	1.98	1.66	1.80				
Na ₂ O	0.66	0.42	0.31	0.38	0.51				
K₂O	0.59	0.56	0.64	0.48	0.64				
total	75.76	79.18	76.54	81.18	79.26				

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- 1 $(Ca_{0.21}Na_{0.11}K_{0.06})(Fe_{0.71}AI_{0.86}Mg_{0.37})(Si_{3.77}AI_{0.23})O_{10}(OH)_{2}$
- $2 \qquad (Ca_{0.15}Na_{0.07}K_{0.06})(Fe_{0.92}AI_{0.73}Mg_{0.32})(Si_{3.69}AI_{0.31}) O_{10}(OH)_2$
- $3 \qquad (\mathsf{Ca}_{0.17}\mathsf{Na}_{0.05}\mathsf{K}_{0.07})(\mathsf{Fe}_{0.85}\mathsf{AI}_{0.74}\mathsf{Mg}_{0.40})(\mathsf{Si}_{3.76}\mathsf{AI}_{0.24}) \ \mathsf{O}_{10}(\mathsf{OH})_2$
- $4 \qquad (\mathsf{Ca}_{0.14}\mathsf{Na}_{0.06}\mathsf{K}_{0.05})\,(\mathsf{Fe}_{1.00}\mathsf{AI}_{0.70}\mathsf{Mg}_{0.30})\,(\mathsf{Si}_{3.74}\mathsf{AI}_{0.26})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $5 \qquad (\mathsf{Ca}_{0.15}\mathsf{Na}_{0.08}\mathsf{K}_{0.06})\,(\mathsf{Fe}_{0.77}\mathsf{AI}_{0.83}\mathsf{Mg}_{0.39})\,(\mathsf{Si}_{3.78}\mathsf{AI}_{0.22})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$

カリウムを含むことを確認した。

単ニコル

【EPMA分析結果】

分析位置	1	2	4	6	7	8	9
[EPMA分析值 (9	%)]						
SiO ₂	44.41	45.39	47.02	44.90	46.12	50.01	43.01
TiO ₂	0.55	0.61	0.37	0.49	0.46	0.46	0.52
Al ₂ O ₃	13.73	14.13	12.46	9.17	10.91	13.23	8.77
TFe ₂ O ₃	11.51	8.53	11.53	13.73	13.06	10.29	16.74
MnO	0.06	0.04	0.02	0.03	0.02	0.06	0.00
MgO	2.23	2.87	1.83	3.78	2.25	2.01	2.18
CaO	3.38	2.70	2.80	1.30	2.64	3.19	1.79
Na ₂ O	0.87	0.56	0.92	0.26	0.69	1.86	0.47
K₂Ō	0.45	0.22	0.41	0.45	0.49	0.55	0.56
total	77.19	75.04	77.35	74.11	76.64	81.66	74.03
$\overline{}$							

【EPMA分析結果に基づく組成式】

位置	組成式	位置	組成式
1	$(Ca_{0.30}Na_{0.14}K_{0.05})(Fe_{0.71}AI_{0.94}Mg_{0.27})(Si_{3.62}AI_{0.38})\;\;O_{10}(OH)_2$	7	$(Ca_{0.23}Na_{0.11}K_{0.05})(Fe_{0.81}AI_{0.84}Mg_{0.28})(Si_{3.78}AI_{0.22})O_{10}(OH)_2$
2	$(Ca_{0.24}Na_{0.09}K_{0.02})(Fe_{0.53}AI_{1.09}Mg_{0.35})(Si_{3.72}AI_{0.28})\;\;O_{10}(OH)_2$	8	$(Ca_{0.26}Na_{0.28}K_{0.05})(Fe_{0.59}AI_{1.00}Mg_{0.23})(Si_{3.81}AI_{0.19})\;\;O_{10}(OH)_2$
4	$(Ca_{0.24}Na_{0.14}K_{0.04})(Fe_{0.70}AI_{0.97}Mg_{0.22})(Si_{3.79}AI_{0.21})O_{10}(OH)_2$	9	$(Ca_{0.17}Na_{0.08}K_{0.06})(Fe_{1.09}AI_{0.61}Mg_{0.28})(Si_{3.72}AI_{0.28})O_{10}(OH)_2$
6	(Ca _{0.12} Na _{0.04} K _{0.05} Mg _{0.07}) (Fe _{0.88} Al _{0.72} Mg _{0.40}) (Si _{3.80} Al _{0.20}) O ₁₀ (OH) ₂		

直交ニコル

1mm

1mm

H-0.9-40孔 - EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

1mm

分析位置

【EPMA分析結果】

分析位置	1	2	3	4	5
[EPMA分析值 (%)]				
SiO ₂	48.68	53.28	48.15	52.61	51.37
TiO2	0.71	0.76	0.40	0.56	0.63
Al ₂ O ₃	11.07	13.58	12.38	10.92	13.02
TFe ₂ O ₃	11.00	12.15	11.85	13.98	11.89
MnO	0.01	0.01	0.03	0.00	0.02
MgO	4.13	3.60	3.13	3.82	3.42
CaO	0.51	0.64	0.70	0.49	0.49
Na ₂ O	1.10	1.93	1.47	1.60	1.82
K₂O	0.88	0.82	0.77	1.13	0.84
total	78.09	86.76	78.88	85.12	83.49

カリウムを含むことを確認した。

$(Ca_{0.04}Na_{0.17}K_{0.09}Mg_{0.04})(Fe_{0.66}Al_{0.89}Mg_{0.45})(Si_{3.86}Al_{0.14})\;\;O_{10}(OH)_2$	
$(Ca_{0.05}Na_{0.27}K_{0.07})(Fe_{0.65}AI_{0.95}Mg_{0.38})(Si_{3.81}AI_{0.19})O_{10}(OH)_2$	
$(Ca_{0.06}Na_{0.22}K_{0.08}Mg_{0.02})(Fe_{0.70}AI_{0.95}Mg_{0.35})~(Si_{3.80}AI_{0.20})~O_{10}\left(OH\right)_2$	
$(Ca_{0.04}Na_{0.23}K_{0.11}Mg_{0.01})(Fe_{0.77}AI_{0.81}Mg_{0.41})(Si_{3.87}AI_{0.13}) \hspace{0.1 cm}O_{10}(OH)_2$	
$(Ca_{0.04}Na_{0.26}K_{0.08})(Fe_{0.66}AI_{0.96}Mg_{0.38})(Si_{3.82}AI_{0.18})\;\;O_{10}(OH)_2$	
ADX (1984)(二一部加筆) (1984)(二一部加筆) (10%) (10	分析値(H-0.9-40孔) その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/S混合層」に分類される。
	(Ca _{0.05} Na _{0.27} K _{0.07}) (Fe _{0.65} Al _{0.95} Mg _{0.38}) (Si _{3.81} Al _{0.18}) O ₁₀ (OH) ₂ (Ca _{0.06} Na _{0.22} K _{0.08} Mg _{0.02}) (Fe _{0.77} Al _{0.95} Mg _{0.35}) (Si _{3.80} Al _{0.20}) O ₁₀ (OH) ₂ (Ca _{0.04} Na _{0.23} K _{0.11} Mg _{0.01}) (Fe _{0.77} Al _{0.81} Mg _{0.41}) (Si _{3.87} Al _{0.13}) O ₁₀ (OH) ₂ (Ca _{0.04} Na _{0.26} K _{0.08}) (Fe _{0.66} Al _{0.96} Mg _{0.38}) (Si _{3.82} Al _{0.18}) O ₁₀ (OH) ₂ (Ca _{0.04} Na _{0.26} K _{0.08}) (Fe _{0.66} Al _{0.96} Mg _{0.38}) (Si _{3.82} Al _{0.18}) O ₁₀ (OH) ₂ (Ca _{0.04} Na _{0.26} K _{0.08}) (Fe _{0.66} Al _{0.96} Mg _{0.38}) (Si _{3.82} Al _{0.18}) O ₁₀ (OH) ₂ Abc] abc]

H-1.1孔_分析範囲 -EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-81 再掲

単ニコル

1mm

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5
[EPMA分析值(9	%)]				
SiO ₂	48.45	52.09	55.55	51.49	50.13
TiO ₂	0.13	0.44	0.26	0.32	0.31
Al ₂ O ₃	10.17	8.36	9.64	8.08	8.30
TFe ₂ O ₃	12.17	13.72	13.73	13.65	12.13
MnO	0.07	0.05	0.02	0.05	0.03
MgO	2.80	3.25	3.80	4.42	3.23
CaO	0.53	0.75	0.64	0.38	0.45
Na ₂ O	1.26	1.62	2.07	1.42	1.49
K₂O	4.24	3.62	3.71	3.97	4.65
total	79.82	83.91	89.41	83.77	80.73

カリウムを含むことを確認した。

 \square

【EPMA分析結果に基づく組成式】

分析位置

G-1.5-80孔_分析範囲 - EPMA分析結果, 化学組成検討-

単ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5					
[EPMA分析值	[EPMA分析値 (%)]									
SiO ₂	51.32	52.73	51.99	48.74	48.88					
TiO ₂	0.43	0.47	0.31	0.96	0.36					
Al_2O_3	13.08	10.45	12.16	10.75	12.30					
TFe_2O_3	12.24	16.53	7.12	9.28	7.13					
MnO	0.05	0.12	0.01	0.05	0.01					
MgO	3.88	4.38	4.59	3.88	4.25					
CaO	2.35	0.68	1.29	0.76	1.43					
Na ₂ O	2.31	1.91	2.39	2.07	2.34					
K₂O	1.21	1.35	2.82	2.88	2.21					
total	86.87	88.62	82.69	79.36	78.89					

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.18}\mathsf{Na}_{0.33}\mathsf{K}_{0.11})(\mathsf{Fe}_{0.67}\mathsf{Al}_{0.84}\mathsf{Mg}_{0.42})\,(\mathsf{Si}_{3.72}\mathsf{Al}_{0.28})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (Ca_{0.05}Na_{0.27}K_{0.12}Mg_{0.03})(Fe_{0.89}AI_{0.67}Mg_{0.44})(Si_{3.78}AI_{0.22})O_{10}(OH)_2$
- $3 \qquad (Ca_{0,10}Na_{0.35}K_{0.27})(Fe_{0.40}AI_{0.99}Mg_{0.51})(Si_{3.91}AI_{0.09}) O_{10}(OH)_{2}$
- $4 \qquad (\mathsf{Ca}_{0.06}\mathsf{Na}_{0.32}\mathsf{K}_{0.29})(\mathsf{Fe}_{0.55}\mathsf{Al}_{0.86}\mathsf{Mg}_{0.46})(\mathsf{Si}_{3.86}\mathsf{Al}_{0.14}) \ \mathsf{O}_{10}(\mathsf{OH})_2$
- $5 \qquad (\mathsf{Ca}_{0.12}\mathsf{Na}_{0.36}\mathsf{K}_{0.22})(\mathsf{Fe}_{0.42}\mathsf{AI}_{0.99}\mathsf{Mg}_{0.50}) \ (\mathsf{Si}_{3.85}\mathsf{AI}_{0.15}) \ \mathsf{O}_{10} (\mathsf{OH})_2$

直交ニコル

M-2.2孔_分析範囲 - EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.3-2-82 再掲

単ニコル

1mm

直交ニコル

1mm

【EPMA分析結果】

分析位置	1	2	3	4	5				
<u>〔EPMA分析值(%</u>	〔EPMA分析値 (%)〕								
SiO ₂	47.69	50.21	48.49	49.78	49.91				
TiO ₂	0.22	0.14	0.06	0.13	0.06				
Al ₂ O ₃	2.89	2.23	4.71	2.09	1.61				
TFe ₂ O ₃	19.73	22.22	19.17	22.32	22.18				
MnO	0.61	0.83	0.48	0.66	0.85				
MgO	5.42	6.33	4.11	6.01	6.00				
CaO	0.68	0.43	0.74	0.52	0.69				
Na ₂ O	1.86	1.11	1.71	1.10	1.23				
K₂O	1.10	0.98	1.63	0.98	0.96				
total	80.19	84.48	81.10	83.59	83.47				

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

-	山山同	組成式	
	1	$(Ca_{0.06}Na_{0.29}K_{0.11}Mg_{0.04})(Fe_{1.21}AI_{0.17}Mg_{0.62})(Si_{3.89}AI_{0.11})\;\;O_{10}(OH)_2$	
	2	$(Ca_{0.04}Na_{0.17}K_{0.10}Mg_{0.12})(Fe_{1.30}AI_{0.09}Mg_{0.61})(Si_{3.89}AI_{0.11})O_{10}(OH)_2$	
	3	$(Ca_{0.06}Na_{0.27}K_{0.17})(Fe_{1.16}AI_{0.34}Mg_{0.49})(Si_{3.89}AI_{0.11})\;\;O_{10}(OH)_2$	
	4	$(Ca_{0.04}Na_{0.17}K_{0.10}Mg_{0.11})(Fe_{1.32}AI_{0.09}Mg_{0.59})(Si_{3.90}AI_{0.10})\;\;O_{10}(OH)_2$	
_	5	$(Ca_{0.06}Na_{0.19}K_{0.10}Mg_{0.09})(Fe_{1.31}Al_{0.07}Mg_{0.62})(Si_{3.92}Al_{0.08}) \ O_{10}\left(OH\right)_2$	
_			
			「LI(M 2.211) D他の分析値(敷地の粘土鉱物) いずれの分析値も 「L/S混合層」に分類される。

分析位置

H--0.3-80孔 -EPMA分析結果, 化学組成検討-

単ニコル

1mm

直交ニコル

1mm

【EPMA分析結果】

分析位置	1	2	3	4	5
〔EPMA分析值	(%)]				
SiO ₂	46.71	49.39	48.95	44.23	52.32
TiO ₂	0.55	0.38	0.45	0.49	0.94
Al ₂ O ₃	10.61	11.65	10.60	9.86	13.66
TFe ₂ O ₃	14.17	14.62	15.29	16.03	10.29
MnO	0.17	0.20	0.20	0.32	0.06
MgO	2.17	1.86	2.39	1.95	3.48
CaO	2.43	0.95	1.18	0.76	1.11
Na₂O	1.20	2.54	3.01	1.24	2.78
K₂O	0.97	1.52	1.05	1.29	1.56
total	78.97	83.11	83.12	76.18	86.20

カリウムを含むことを確認した。

位置	組成式
1	$(Ca_{0.21}Na_{0.19}K_{0.10})(Fe_{0.86}AI_{0.76}Mg_{0.26})(Si_{3.76}AI_{0.24})\;\;O_{10}(OH)_2$
2	$(Ca_{0.08}Na_{0.38}K_{0.15})(Fe_{0.84}AI_{0.83}Mg_{0.21})(Si_{3.78}AI_{0.22})\;O_{10}(OH)_2$
3	$(Ca_{0.10}Na_{0.45}K_{0.10})(Fe_{0.88}AI_{0.72}Mg_{0.27})(Si_{3.76}AI_{0.24})\;\;O_{10}(OH)_2$
4	$(Ca_{0.07}Na_{0.20}K_{0.14})(Fe_{1.01}AI_{0.70}Mg_{0.24})(Si_{3.72}AI_{0.28})~O_{10}(OH)_2$
5	(Ca _{0.09} Na _{0.39} K _{0.14})(Fe _{0.56} Al _{0.95} Mg _{0.38})(Si _{3.79} Al _{0.21}) O ₁₀ (OH) ₂
5	$(Ca_{0.09}Na_{0.39}K_{0.14})(Fe_{0.56}AI_{0.95}Mg_{0.38})(Si_{3.79}AI_{0.21})O_{10}(OH)_{2}$

H'--1.3孔_分析範囲A -EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-76 再掲

単ニコル

1mm

直交ニコル

1mm

分析位置(分析範囲A)

【EPMA分析結果】	
------------	--

分析位置	1	2	3	4	5
<u>〔EPMA分析值(</u>	%)]				
SiO ₂	46.10	46.27	46.37	45.50	48.11
TiO ₂	0.49	1.83	0.70	0.41	0.56
Al ₂ O ₃	8.99	10.53	10.30	13.78	11.37
TFe ₂ O ₃	11.97	9.56	9.81	6.28	8.60
MnO	0.03	0.04	0.07	0.01	0.02
MgO	5.19	3.66	4.73	3.78	5.05
CaO	1.58	1.47	1.30	3.06	1.98
Na ₂ O	1.28	1.69	1.38	1.74	1.40
K₂O	1.93	1.82	1.78	1.18	1.94
total	77.57	76.85	76.43	75.74	79.02

カリウムを含むことを確認した。

 $\overline{}$

【EPMA分析結果に基づく組成式】

位置 組成式

- $1 \qquad (\mathsf{Ca}_{0.14}\mathsf{Na}_{0.20}\mathsf{K}_{0.20}\mathsf{Mg}_{0.02})(\mathsf{Fe}_{0.74}\mathsf{AI}_{0.64}\mathsf{Mg}_{0.62})\,(\mathsf{Si}_{3.78}\mathsf{AI}_{0.22})\,\,\mathsf{O}_{10}\,(\mathsf{OH})_2$
- $2 \qquad (Ca_{0.13}Na_{0.27}K_{0.19})(Fe_{0.59}AI_{0.80}Mg_{0.45})(Si_{3.78}AI_{0.22}) O_{10}(OH)_{2}$
- $3 \qquad (\mathsf{Ca}_{0.11}\mathsf{Na}_{0.22}\mathsf{K}_{0.19})(\mathsf{Fe}_{0.61}\mathsf{AI}_{0.80}\mathsf{Mg}_{0.58})\,(\mathsf{Si}_{3.81}\mathsf{AI}_{0.19})\;\;\mathsf{O}_{10}\,(\mathsf{OH})_2$
- 4 $(Ca_{0.27}Na_{0.28}K_{0.12})(Fe_{0.39}AI_{1.05}Mg_{0.46})(Si_{3.72}AI_{0.28})O_{10}(OH)_2$
- 5 $(Ca_{0.17}Na_{0.21}K_{0.20})(Fe_{0.51}AI_{0.86}Mg_{0.59})(Si_{3.80}AI_{0.20})O_{10}(OH)_{2}$

H'--1.3孔_分析範囲B -EPMA分析結果, 化学組成検討-

第1049回審査会合 机上配布資料1 P.5.2-2-77 再掲

【EPMA分析結果】

分析位置	6	7	8	9	10
〔EPMA分析值 (%)〕					
SiO ₂	49.45	48.25	50.10	45.30	49.85
TiO ₂	0.50	0.77	0.50	0.56	0.60
Al ₂ O ₃	12.44	10.17	14.82	15.40	12.35
TFe ₂ O ₃	8.92	9.52	6.76	5.11	7.33
MnO	0.03	0.05	0.02	0.00	0.02
MgO	4.90	5.72	3.92	3.22	5.73
CaO	2.07	0.82	2.72	4.32	1.51
Na₂O	1.54	1.18	2.08	2.11	1.65
<u>K,0</u>	2.37	2.46	1.24	1.32	1.76
total	82.21	78.95	82.17	77.35	80.79

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

単ニコル

1mm

直交ニコル

1mm

分析位置(分析範囲B)

H-0.2-75孔_分析範囲 -EPMA分析結果, 化学組成検討-

1mm

1mm

第1049回審査会合 机上配布資料1 P.5.2-2-83 再掲

単ニコル

直交ニコル

【EPMA分析結果】

分析位置	1	2	3	4	5					
〔EPMA分析值 (%)〕										
SiO ₂	49.72	44.96	45.46	49.28	47.53					
TiO ₂	0.07	0.23	0.28	0.25	0.11					
Al ₂ O ₃	12.64	6.96	6.51	6.86	5.72					
TFe_2O_3	8.65	14.32	15.38	16.57	23.56					
MnO	0.01	0.23	0.00	0.00	0.12					
MgO	4.01	5.28	3.72	4.82	2.68					
CaO	4.66	0.61	1.00	0.71	0.23					
Na ₂ O	2.33	1.25	2.11	1.47	2.45					
K₂O	0.95	1.48	1.12	1.19	0.99					
total	83.04	75.31	75.59	81.14	83.40					

カリウムを含むことを確認した。

 $\overline{}$

【EPMA分析結果に基づく組成式】

分析位置

H-0.2-60孔_分析範囲 - EPMA分析結果, 化学組成検討-

単ニコル

1mm

【EPMA分析結果】

分析位置	1	2	3	4	5						
〔EPMA分析值 (%)〕											
SiO ₂	46.71	48.88	47.87	49.99	50.43						
TiO ₂	0.21	0.10	0.59	0.54	0.30						
Al_2O_3	3.16	2.36	4.59	6.79	3.92						
TFe_2O_3	19.45	22.24	18.75	15.31	19.79						
MnO	0.01	0.04	0.03	0.00	0.00						
MgO	4.56	4.71	4.17	3.82	4.57						
CaO	0.22	0.41	0.47	1.67	0.32						
Na ₂ O	1.76	2.27	1.77	1.84	1.63						
K₂O	1.13	1.53	2.19	1.81	1.32						
total	77.20	82.54	80.43	81.77	82.27						

カリウムを含むことを確認した。

【EPMA分析結果に基づく組成式】

位置 組成式

- 1 $(Ca_{0.02}Na_{0.29}K_{0.12}Mg_{0.05})(Fe_{1.23}AI_{0.24}Mg_{0.53})(Si_{3.93}AI_{0.07}) O_{10}(OH)_{2}$
- 2 $(Ca_{0.04}Na_{0.35}K_{0.16}Mg_{0.02})(Fe_{1.34}AI_{0.12}Mg_{0.54})(Si_{3.90}AI_{0.10})O_{10}(OH)_{2}$
- $(Ca_{0.04}Na_{0.28}K_{0.23})(Fe_{1.14}AI_{0.32}Mg_{0.50})(Si_{3.88}AI_{0.12})O_{10}(OH)_{2}$ 3
- $(Ca_{0.14}Na_{0.28}K_{0.18})(Fe_{0.90}AI_{0.54}Mg_{0.45})(Si_{3.91}AI_{0.09}) O_{10}(OH)_{2}$ 4
- (Ca_{0.03}Na_{0.25}K_{0.13}Mg_{0.02})(Fe_{1.17}Al_{0.32}Mg_{0.51})(Si_{3.96}Al_{0.04})O₁₀(OH)₂ 5

直交ニコル

1mm

H-6.5-2孔(深度81.90m) - EPMA分析結果, 化学組成検討-

単ニコル

2mm

直交ニコル

.

【EPMA分析結果】

分析位置	1	2	3	4	5
[EPMA分析值 (%)]				
SiO ₂	48.89	49.72	53.54	51.67	49.30
TiO ₂	0.46	0.28	0.44	0.47	0.45
Al ₂ O ₃	11.72	13.54	17.19	15.47	13.22
TFe ₂ O ₃	11.16	10.93	8.67	9.92	11.44
MnO	0.03	0.02	0.02	0.03	0.01
MgO	5.00	3.43	3.93	3.87	4.33
CaO	0.70	1.53	0.77	0.83	0.71
Na ₂ O	0.21	0.55	0.30	0.38	0.28
K₂O	0.69	0.73	0.79	0.62	0.63
total	78.85	80.74	85.65	83.26	80.38

カリウムを含むことを確認した。

	位置	組成式	
	1	$(Ca_{0.06}Na_{0.03}K_{0.07}Mg_{0.14})(Fe_{0.66}AI_{0.90}Mg_{0.44})(Si_{3.82}AI_{0.18})\;\;O_{10}(OH)_2$	
	2	$(Ca_{0.13}Na_{0.08}K_{0.07}Mg_{0.04})(Fe_{0.63}Al_{1.02}Mg_{0.35})(Si_{3.80}Al_{0.20})O_{10}(OH)_2$	
	3	$(Ca_{0.06}Na_{0.04}K_{0.07}Mg_{0.10})(Fe_{0.46}AI_{1.22}Mg_{0.31})(Si_{3.79}AI_{0.21}) \hspace{0.1 in}O_{10}(OH)_2$	
	4	$(Ca_{0.07}Na_{0.05}K_{0.06}Mg_{0.09})(Fe_{0.55}AI_{1.12}Mg_{0.33})(Si_{3.79}AI_{0.21})O_{10}(OH)_2$	
	5	$(Ca_{0.06}Na_{0.04}K_{0.06}Mg_{0.13})(Fe_{0.66}Al_{0.97}Mg_{0.37})(Si_{3.78}Al_{0.22})\;\;O_{10}(OH)_2$	
$ \prec $	_		
【又離 2八面(鉱物の ⁾ (Srodo	がとの対 本型雲母 n et al.(応】 #粘土鉱物及び関連 1984)に一部加筆)	分析値(H-6.5-2孔(深度81.90m)) その他の分析値(敷地の粘土鉱物) いずれの分析値も 「I/ S混合層」 に分類される。
	CELA		DPHYLLITE
LE	UCOPH		5 3-2-90

三角ダイアグラム検討に用いる分析値の確認結果

第1049回審査会合 机上配布資料1 P.5.2-2-85 一部修正

〇三角ダイアグラム検討に用いる分析値は、分析値への二次的な変質や不純物等の影響を確認している。
 〇分析に用いた全EPMA分析試料は、薄片観察や元素マッピング結果により、粘土鉱物への二次的な変質等の影響がないことを確認した。
 〇また、三角ダイアグラム検討に用いる全EPMA分析値(169点)について、文献に基づき設定した基準を用いて、定量分析値への不純物等の影響を確認した(右下図)。全ての分析値が、三角ダイアグラム検討に用いる基準「Totalの値70~90%かつFe₂O₃の割合25%未満」を満たしている(基準の設定根拠は次頁)。

【粘土鉱物への二次的な変質等の影響確認】

【基準に基づく定量分析値の確認】

基準による分析値の確認結果(今回の検討に用いた全分析値)

いずれの分析値も三角ダイアグラム検討に用いる基準 「Totalの値70~90%かつFe₂O₃の割合25%未満」を満たしている。

三角ダイアグラム検討に用いる分析値の基準

○三角ダイアグラム検討に用いる分析値の基準は、日本粘土学会編(2009)に記載の2八面体型スメクタイトの化学組成を参考に設定した。
 ○敷地の粘土鉱物のEPMA分析値のTotalの値が100%とならない要因としては、粘土鉱物に含まれるH₂Oの存在が考えられる。
 ○日本粘土学会編(2009)に記載の2八面体型スメクタイトの化学組成分析結果を参考に、Feの割合を最大で概ね25%、H₂Oを除いたTotalの値を70~90%と評価し、三角ダイアグラム検討に用いる基準を「Totalの値70~90%かつFe₂O₃の割合25%未満」と設定した。

日本粘	生学	会編	(2009)											$\square >$	三角ダイアグラム検討 に用いる基準
				2.8.1	2 八面体	型スメク	タイト	の化学框	し成と化り	構造式						
	1	2	3	9	10	C1	C2	W1	W2	4	5	6	7	8		
SiO_2	53.98	51.14	50.72	55.80	59.30	61.77	62.23	64.80	-62.00	47.38	53.12	51.66	39.92	42.40		
Al ₂ O ₃	15.97	19.76	18.12	28.60	36.11	19.85	21.03	24.54	23.42	21.27	0.36	8.13	5.37	5.60		
Fe ₂ O ₃	0.95	0.85	2.41	0.41	0.50	1.95	1.75	1.27	3.74	10.66	29.69	14.08	29.46	32.53		Fe(Fe,O,)の割合は,最大で
FeO	0.19		1.02	52			0.48	0.56	0.32			0.51	0.28			概ね25%とする。
MgO	4.47	3.22	4.29	2.03	0.10	5.56	5.70	1.60	0.93	0.42	2,49	4.21	0.93	0.32		
CaO	2.30	1.62	0.80	2.23	0.02	1.89	0.00	0.00	0.68	0.78	1.51	0.15	2.46			
Na ₂ O	0.13	0.04	3.00	0.09	3.98	0.07	0.65	0.40	0.72	0.12		1.21				
K_2O	0.12	0.11	0.62	0.48	0.11	0.09	0.00	0.60	2.63	0.08	0.30	0.71		5.14		
H_2O^+	9.12	7.99	6.87	9.70		7.72	7.38	6.71	5.21	9.08		6.74	7.00			H.Oを除いたTotalの割合け
H_2O^-	13.06	14.81	11.90	•						9.60	$12.5^{\#}$	10.13	14.38	14.03#		$\Pi_2 \cup \mathcal{E}$ ($\Pi_1 \cup \Pi_2 \cup \mathcal{E}$) $\Pi_2 \cup \mathcal{E}$ ($\Pi_2 \cup \mathcal{E}$) ($\Pi_2 \cup \mathcal{E}$) $\Pi_2 \cup \mathcal{E}$ ($\Pi_2 \cup \mathcal{E}$) (
Total(%) ^a	100.62	99.75	99.90	99.60	100.12 ^b	99.14	99.22	100.48	99.65	99.39	100.05	98.40	99.88	100.02		/0~90%程度とする。
SI	4.00	3.88	3.85	3.65	3.48	3.91	3.86	3.96	3.92	3.56	4.00	3.97	3.50	3.46	I	
Al	0.00	0.12	0.15	0.35	0.52	0.09	0.14	0.04	0.08	0.44	0.00	0.03	0.50	0.38	1	
Σ	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00**	8	
AI	1.48	1.64	1.46	1.85	1.98	1.38	1.39	1.72	1.66	1.45	0.03	0.74	0.03	0.14		
Fe ³⁺	0.05	0.05	0.13	0.02	0.02	0.09	0.08	0.06	0.18	0.60	1.70	0.81	2.02	1.84		
Fe^{2+}		÷.	0.06				0.02	0.03	0.02	12		0.03				
Mg	0.52	0.36	0.45	0.20	0.01	0.54	0.55	0.15	0.09	0.05	0.27	0.48		0.02	Ì	
Σ	2.05	2.05	2.10	2.07	2.01	2.01	2.04	1.96	1.95	2.10	2.00	2.08	2.05	2.00	i	
Ca/2	0.39	0.20	0.03	0.31	-					0.13	0.12	0.01	0.35		į	
Na	0.02	0.02	0.42	0.01	0.50					0.02		0.18	0.02			
K			0.02	0.04						0.01	0.03	0.07		0.56		
LL.C.	0.37	0.33	0.36	0.34	0.50	0.60	0.59	0.34	0.34	0.19	0.27	0.27	0.35	0.56		
 r. Kerr et Ross ar Alietti Oyawoy Eggletco Austra Aoki et Kerr et Besson Heystel Weir ar Ctl and C2- Calif., 	t al. (19 nd Hen and Al ye and 1 on (197 alia. t al. (19 t al. (19) t	050): m dricks (ietti (1) Hirst (1 7): iror 974) iro 950): n (1983):): beid ≻Kelly Grim a)	nortmo (1945): n (964): i n-rich n n-rich n nontro ellite; l (1962) nd Ku	rillonito montra ron-ric nontrac montra te; alte mite; p nydroth : beide lbicki (e; altered norillonite rillonite; h montmo rillonite; norillonite; ration of octassium hermally i llite; Gou 1961) Ch	to hyolit e; nests Lower orilloni altered basalt, satura altered age clay eto typ	tic and penetr Miocen te; hydd I heden Manit ted for rock, C , Black e mont	andesit rating a be bento rotherm bergite, nent at o, Wasi analysi 'astle N Jack N morilloo	ic tuff, shale, anite ma aal vein Siluria the nor hington, s, Garfi fountain fine, Be nites, (G	Santa I Montm arl, Ger in gran n limes theaste , U.S.A eld, Wa n, Ivanj ridell, C 21: Che	Rita, Ne orillon, mano, l ite, Rop tone, G rn Pacif shingto pah, cal colo., U. to, Ariz	w Mex Fance, ltaly, op, nort iralang fic. m, U.S if., U.S S.A. s., U.S.	., U.S., thern N , Canb A. ,A.	A. igeria. erra, Otay,	日本 モン [:]	*粘土学会編(2009)に記載の2八面体型スメクタイトのうち モリロナイト(montmorillonite)の値を参考とした。
W1 and W W2: 7	[2: Afte Iala, He	r Grim ras, M	and K endoza	ulbicki , Arger	(1961) V itina.	Vyomin	g type	montm	orilloni	tes, W1	: Hojur	, Guni	na, Jaj	oan;	日本	粘土学会編(2009)に一部加筆
【(参考)粘土鉱物のAl,O,とFe,O,の含有量についての検討】

OI/S混合層を構成する2八面体型スメクタイトは、日本粘土学会編(2009)によれば、主にモンモリロナイト、鉄質モンモリロナイト、バイデライト、ノントロナイトに分類され、Fe₂O3の含有量が大きいほ どAl,O,の含有量が小さい傾向が認められる(左下表)。

○敷地のI/S混合層における Al₂O₃, Fe₂O₃の含有量は、上記の2八面体型スメクタイトにおける含有量の幅に含まれる。このうちH-0.2-60孔、岩盤調査坑No.25切羽、M-2.2孔のI/S混合層は、Al₂O₃ の含有量が小さくFe₂O₂の含有量が大きい特徴をもつ(右下図)。

○また,敷地のI/S混合層におけるAl,O., Fe,O.の含有量は,複数の集団には分かれないものの,漸移的な分布を示す(右下図)。これについて,以下の通り考察した。

・文献調査(吉村, 2001; Deer et al., 2013 など)によれば、変質作用により生成される粘土鉱物について、場所によりその化学組成が異なる原因は、主に (A温度, 18)母岩や母材の性質、 ©反応 する溶液の性質、の違いによるものと考えられる。

・・・④温度については、I/S混合層が敷地周辺にも広く認められ、敷地周辺一帯が同じような環境下で変質を被ったと考えられることや(補足資料5.3-2(12))、敷地が少なくとも曹長石化するような高 ・温の熱水の影響は受けていないことから(補足資料5.3-2(9))、これらは同程度の温度環境で生成したと考えられる。

・・B母岩や母材の性質については、試料採取位置の母岩が共通して別所岳安山岩類からなり、敷地の安山岩の既往の分析結果に基づけば大きな組成のばらつきは認められないことから(補足) 資料5.3-1(3))、母岩や母材の性質に大きなばらつきはないと考えられる。

・以上のことを踏まえると、敷地のI/S混合層におけるAl,O,, Fe,O,の含有量が漸移的な分布を示すことは、 ©反応する溶液の性質※1にばらつきがあったことを反映している可能性が考えられる。

	1	2	3	:9	10	Cl	C2	W1	W_2	4	5	6	7	- 8
SiO ₂	53.98	51.14	50.72	55.80	59.30	61.77	62.23	64.80.	-62.00	47.38	53.12	51.66	39.92	42.40
Al ₂ O ₃	15.97	19.76	18.12	28.60	36.11	19.85	21.03	24.54	23.42	21.27	0.36	8.13	5.37	5.60
Fe ₂ O ₃	0.95	0.85	2.41	0.41	0.50	1.95	1.75	1.27	3.74	10.66	29.69	14.08	29.46	32.53
FeO	0.19		1.02		-		0.48	0.56	0.32			0.51	0.28	
MgO	4.47	3.22	4.29	2.03	0.10	5.56	5.70	1.60	0.93	0.42	2.49	4.21	0.93	0.32
CaO	2.30	1.62	0.80	2.23	0.02	1.89	0.00	0.00	0.68	0.78	1.51	0.15	2.46	
Na ₂ O	0.13	0.04	3.00	0.09	3.98	0.07	0.65	0.40	0.72	0.12		1.21		
K_2O	0.12	0.11	0.62	0.48	0.11	0.09	0.00	0.60	2.63	0.08	0.30	0.71		5.14
H_2O^+	9.12	7.99	6.87	9.70		7.72	7.38	6.71	5.21	9.08		6.74	7.00	
H_2O^-	13.06	14.81	11.90							9.60	$12.5^{\#}$	10.13	14.38	14.03*
otal(%)*	100.62	99.75	99.90	99.60	$100.12^{\rm b}$	99.14	99.22	100.48	99.65	99.39	100.05	98.40	99.88	100.02
Si	4.00	3.88	3.85	3.65	3.48	3.91	3.86	3.96	3.92	3.56	4.00	3.97	3.50	3.46
AI	0.00	0.12	0.15	0.35	0.52	0.09	0.14	0.04	0.08	0.44	0.00	0.03	0.50	0.38
Σ	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00**
AI	1.48	1.64	1.46	1.85	1.98	1.38	1.39	1.72	1.66	1.45	0.03	0.74	0.03	0.14
Fe ³⁺	0.05	0.05	0.13	0.02	0.02	0.09	0.08	0.06	0.18	0.60	1.70	0.81	2.02	1.84
Fe^{2+}			0.06	1	-		0.02	0.03	0.02			0.03		
Mg	0.52	0.36	0.45	0.20	0.01	0.54	0.55	0.15	0.09	0.05	0.27	0.48		0.02
Σ	2.05	2.05	2.10	2.07	2.01	2.01	2.04	1.96	1.95	2.10	2.00	2.08	2.05	2.00
Ca/2	0.39	0.20	0.03	0.31	10					0.13	0.12	0.01	0.35	
Na	0.02	0.02	0.42	0.01	0.50					0.02		0.18	0.02	
К	-	-	0.02	0.04	+					0.01	0.03	0.07		0.56
LL.C.	0.37	0.33	0.36	0.34	0.50	0.60	0.59	0.34	0.34	0.19	0.27	0.27	0.35	0.56

C1 and C2: After Grim and Kulbicki (1961) Cheto type montmorillonites, (C1: Cheto, Ariz., U.S.A.; C2: Otay,

Calif., U.S.A.)

W2: Tala, Heras, Mendoza, Argentina.

W1 and W2: After Grim and Kulbicki (1961) Wyoming type montmorillonites, W1: Hojun, Gunma, Japan; 一部加筆

(4) 粘土鉱物のCEC分析, XAFS分析結果

CEC分析結果

【岩盤調查坑No.24~25付近】

Oカリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(ml)	24.81
質量(g)	0.3062

	Fe	Mn	Mg	Ca	Na	к
測定結果 (mg/L)	0.04	<0.01	62.9	70.9	2.63	13.5

	Mg	Ca	Na	К	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	41.9	28.7	0.9	2.8	74.3 (cmol/kg)
重量比 (wt.%)	0.51	0.57	0.02	0.11	

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol, kg ⁻¹)
1:1	カオリナイト(~0)	2~15
1:1	アンティゴライト(~0)	
2:1	パイロフィライト(~0)	-
2:1	タルク(~0)	<1
2:1	モンモリロナイト(-0.2~-0.6)	80~150
2:1	バイデライト(-0.2~-0.6)	-
2:1	ノントロナイト(-0.2~-0.6)	
2:1	サポナイト(-0.2~-0.6)	-
2:1	ヘクトライト(-0.2~ -0.6)	-
2:1	2八面体パーミキュライト(-0.6~-0.9)	10~150
2:1	3八面体パーミキュライト(-0.6~-0.9)	100~200
2:1	イライト(-0.6~-0.9)	10~40

代表的な層状ケイ酸塩鉱物の陽イオン交換容量

日本粘土学会編(2009)を編纂

<湿式分析結果>

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.69	0.11	84%

【岩盤調査坑No.27孔】

Oカリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(m	容積(ml) 24.85		24.85				
質量(g) 0.1507							
	Fe)	Mn	Mg	Ca	Na	К
測定結果 (mg/L)	0.0	3	<0.01	31.1	33.5	0.81	5.24

	Mg	Ca	Na	К	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	42.2	27.6	0.6	2.2	72.5 (cmol/kg)
重量比 (wt.%)	0.51	0.55	0.01	0.09	

代表的な層状ケイ酸塩鉱物の陽イオン交換容量

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol, kg ⁻¹)
1:1	カオリナイト(~0)	2~15
1:1	アンティゴライト(~0)	-
2:1	パイロフィライト(~0)	-
2:1	タルク(~0)	<1
2:1	モンモリロナイト(-0.2~-0.6)	80~150
2:1	バイデライト(-0.2~-0.6)	-
2:1	ノントロナイト(-0.2~-0.6)	
2:1	サポナイト(-0.2~-0.6)	-
2:1	ヘクトライト(-0.2~ -0.6)	-
2:1	2八面体パーミキュライト(-0.6~-0.9)	10~150
2:1	3八面体バーミキュライト(-0.6~-0.9)	100~200
2:1	イライト(-0.6~-0.9)	10~40

日本粘土学会編(2009)を編纂

<EDS分析結果(参考)>

\sum	Fe	Mn	Mg	Ca	Na	к
重量比 (wt.%)	11.88	0.10	3.48	0.84	0.11	0.64

<湿式分析結果>

カリウム全量 定量結果 (wt.%)	0.50

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.50	0.09	82%

【E-8.5+5"孔】

Oカリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(ml)	24.98
質量(g)	0.3015

\sum	Fe	Mn	Mg	Ca	Na	К
測定結果 (mg/L)	0.02	0.01	45.1	110	4.59	9.52

	Mg	Ca	Na	к	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	30.7	45.5	1.7	2.0	79.9 (cmol/kg)
重量比 (wt.%)	0.37	0.91	0.04	0.08	

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol, kg ⁻¹)
1:1	カオリナイト(~0)	2~15
1:1	アンティゴライト(~0)	-
2:1	パイロフィライト(~0)	-
2:1	タルク(~0)	<1
2:1	モンモリロナイト(-0.2~-0.6)	80~150
2:1	バイデライト(-0.2~-0.6)	-
2:1	ノントロナイト(-0.2~-0.6)	
2:1	サポナイト(-0.2~-0.6)	-
2:1	ヘクトライト(-0.2~ -0.6)	
2:1	2八面体パーミキュライト(-0.6~-0.9)	10~150
2:1	3八面体パーミキュライト(-0.6~-0.9)	100~200
2:1	イライト(-0.6~ -0.9)	10~40

代表的な層状ケイ酸塩鉱物の陽イオン交換容量

日本粘土学会編(2009)を編纂

<湿式分析結果>

	1
カリウム全量	
定量結果	0.42
$(u \neq \emptyset)$	
(VVL.70)	

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.42	0.08	81%

【H-1.3-88孔】

Oカリウム全量の定量結果に比べて、交換性カリウムは十分に小さい。

<CEC分析結果>

容積(ml)	24.65
質量(g)	0.0509

\sum	Fe	Mn	Mg	Ca	Na	к
測定結果 (mg/L)	<0.01	0.01	7.52	2.77	8.30	4.10

	Mg	Ca	Na	к	CEC 陽イオン交換容量
陽イオン量 (cmol/kg)	30.0	6.7	17.5	5.1	59.2 (cmol/kg)
重量比 (wt.%)	0.36	0.13	0.40	0.20	

タイプ	鉱物種名(過剰電荷量の範囲*)	陽イオン交換容量 (CEC, cmol_kg ⁻¹)
1:1	カオリナイト(~0)	2~15
1:1	アンティゴライト(~0)	-
2:1	パイロフィライト(~0)	-
2:1	タルク(~0)	<1
2:1	モンモリロナイト(-0.2~-0.6)	80~150
2:1	バイデライト(-0.2~-0.6)	-
2:1	ノントロナイト(-0.2~-0.6)	
2:1	サポナイト(-0.2~-0.6)	-
2:1	ヘクトライト(-0.2~ -0.6)	
2:1	2八面体パーミキュライト(-0.6~-0.9)	10~150
2:1	3八面体バーミキュライト(-0.6~-0.9)	100~200
2:1	イライト(-0.6~-0.9)	10~40

代表的な層状ケイ酸塩鉱物の陽イオン交換容量

日本粘土学会編(2009)を編纂

<湿式分析結果>

カリウム全量 定量結果 (wt.%)	0.75

①カリウム全量(wt.%) 湿式化学分析	②交換性カリウム(wt.%) CEC分析	試料中のカリウム全量のうち 非交換性カリウムの割合 (①-②)/①
0.75	0.20	74%

- ーXAFS(ザフス:X線吸収微細構造 X-ray Absorption Fine Structure)とは (雨宮(2008)より抜粋)ー
 - ・XAFS分光法は、試料によるX線の吸収強度をX線エネルギーの関数として測定するものである。
 - ・XAFSは内殻電子の励起を対象とする。内殻準位は元素によってほぼ固有のエネルギーを有するため、それぞれの元素の内殻電子 がちょうど真空準位まで励起されるようなX線のエネルギーにおいて、X線吸収スペクトルは急激な立ち上がりを示す(吸収端)。
 - ・XAFSは吸収端後(高エネルギー側)に現れるピークや周期的な波打ち構造のことを指しており、これらを解析することによって、以下のような情報を得ることができる。
 - 1)吸収端に対応する原子(吸収原子)の周辺にどのような原子が,いくつ,どの方向に,どのくらいの原子間距離で存在しているか。 2)吸収原子と周辺の原子との原子間距離が,どの程度の分布を持っているか。

3)吸収原子の付近の電子状態がどのようになっているか。

<u>■分析内容</u>

- ・場所: 高エネルギー加速器研究機構(KEK)(つくば市)
- ·分析装置:BL-9A
- ·分析試料:①イライト標準試料(Imt-2)
 - ②敷地の粘土鉱物(試料e, 岩盤調査坑No.27孔)
 - ③カリウム置換したスメクタイト標準試料(Wyoming)
 - ④硝酸カリウム溶液

・分析のポイント;カリウム原子周りの分子構造(カリウム原子周りの水和の有無, H₂Oの配位状況)

(5) XRD分析結果,薄片観察結果(白色鉱物(オパールCT))

白色鉱物(オパールCT)のXRD分析

O敷地で認められた白色鉱物(試料 i ∼ix)について, XRD分析を実施した結果, クリストバライトとトリディマイトのピークが見られるため, これらの白色鉱物はオパールCTである。

白色鉱物(オパールCT)確認箇所					
試料採取位置			深度	標高	
i	非破砕部	岩盤調査坑No.30切羽	(切羽面)	EL -15.56m	
ii	S-1	KR-13孔	2.47m	EL -16.75m	
iii	非破砕部	H-6.4孔	112.95m	EL -68.78m	
iv		F-4.9孔	136.57m	EL -125.44m	
v		R-4.5孔	68.63m	EL -57.56m	
vi		K-4.2孔	80.63m	EL -69.36m	
vii		R-4.5孔	71.10m	EL -60.03m	
viii	K-2	H-1.1孔	103.62m	EL -96.84m	
ix	非破砕部	H-1.5-95孔	176.71m	EL -168.01m	

5.3-2-101

岩盤調査坑No.30切羽 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-94 再掲

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

KR-13孔 -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

5.3-2-104

H-6.4孔 -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

回折チャート

F-4.9孔 -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

5.3-2-107

(EG処理も合わせて表示)

5.3-2-108

R-4.5孔(深度68.63m) -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-101 再掲

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

K-4.2孔 -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

5.3-2-112

第1049回審査会合 机上配布資料1 P.5.2-2-105 再掲

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

H-1.1孔 -X線回折チャート 不定方位-

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

回折チャート

回折チャート (EG処理も合わせて表示) 第1049回審査会合 机上配布資料1 ____P.5.2-2-108 再掲

H-1.5-95孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-109 再掲

Oクリストバライトとトリディマイトのピークが見られるため、この白色鉱物脈には、オパールCTが含まれる。

回折チャート

回折チャート (EG処理も合わせて表示)

第1049回審査会合 資料1 P.73 再掲

OXRD分析においてオパールCTが認められた試料vii及びviiiの薄片観察の結果, 白色鉱物からなる鉱物脈中には, 吉村 (2001)でオパールCTの特徴として示される, 針状結晶の放射状集合の小球が認められる。

(6) XRD分析結果, 薄片観察結果(白色鉱物(フィリプサイト))

白色鉱物(フィリプサイト)のXRD分析

O敷地で認められた白色鉱物(試料 I ~ IV)について, XRD分析を実施した結果, これらの白色鉱物はフィリプサイトである。

白色鉱物(フィリプサイト)確認箇所							
試料採取位置			深度	標高			
Ι	S-2•S-6	E-5.7孔	170.73m	EL -158.08m			
п	非破砕部	J-10.8SW-1孔	86.18m	EL -62.11m			
Ш	K-14	H'1.3孔	125.58m	EL -121.91m			
IV	非破砕部	H1.0孔	126.88m	EL -123.22m			

E-5.7孔 -X線回折チャート 不定方位-

E-5.7孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-2-113 再掲

J-10.8SW-1孔 -X線回折チャート 不定方位-

〇フィリプサイトのピークが認められる。

5.3-2-124

J-10.8SW-1孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-2-115 再掲

H'--1.3孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-117 再掲

H--1.0孔 -X線回折チャート 不定方位-

Oフィリプサイトのピークが認められる。

回折チャート
H--1.0孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-2-119 再掲

Oフィリプサイトのピークが認められる。

白色鉱物(フィリプサイト)の薄片観察

OXRD分析においてフィリプサイトが認められた試料皿の薄片観察の結果, 白色鉱物からなる鉱物脈中には, Sheppard and Fitzpatrick(1989) のフィリプサイトで見られるような三角形の先端部を伴う柱状結晶が認められる。 Oまた, Adisaputra and Kusnida(2010), 松原(2002)でフィリプサイトの特徴として示される, 十字状の形態をなす双晶も認められる。

第1049回審査会合 資料1 P.75 再掲

(7) 変質鉱物の生成環境の検討結果

5.2.1(1-2)変質鉱物の後期更新世以降の生成可能性の評価 - 変質鉱物の確認標高・生成温度-

〇敷地において,深部も含めて確認された変質鉱物の確認標高と生成温度について整理した結果を以下に示す(敷地深部の調査結果は<u>補足資料5.3-2</u>(13))。 〇また,変質鉱物の生成温度の根拠とした生成温度に関する文献調査結果の代表例を次頁に示す^{※1}。

■敷地で確認された変質鉱物の確認標高及び生成温度

※1:その他の調査結果については、補足資料5.3-2(7)P.5.3-2-134, 135

	確認標高		確認位置	生成温度(文献)	赤字は最低値
変貝弧初石	平均標高	全確認位置	(記載頁)	地下深部での生成温度に関する知見	熱水による生成温度に関する知見
I/S混合層	–28.65m	【41箇所】 +19.91m, +19.72m, +12.66m, +12.63m, +11.82m, +4.80m, +2.84m, -1.97m, -3.26m, -3.75m, -5.83m, -6.17m, -6.36m, -10.61m, -11.12m, -15.76m, -16.45m, -17.05m, -17.60m, -17.90m, -18.88m, -19.45m, -21.66m, -24.19m, -27.25m, -27.48m, -31.45m, -35.91m, -36.01m, -37.95m, -39.83m, -44.66m, -45.82m, -49.50m, -59.02m, -59.10m, -96.84m, -96.99m, -108.04m, -121.91m, -123.37m	<u>補足資料5.3-2</u> (1) P.5.3-2-3, 12	<u>50</u> ~約160℃(吉村,2001) <u>50</u> ~ <u>80</u> ℃以上(Meunier et al.,2010) <u>60</u> ~ <u>90</u> ℃以上(Velde and Iijima.,1988)	約120~220℃(吉村,2001) 約110~250℃(井上,2003)
オパールCT	-54.98m	【10箇所】 -15.56m, -16.75m, -57.56m, -60.03m, -68.78m, -69.36m, -96.84m, -125.44m*, -168.01m*, -201.20m*	<u>補足資料5.3-2</u> (1) P.5.3-2-22, <u>補足資料5.3-2</u> (13) P.5.3-2-191	<u>50</u> ℃付近~約110℃(吉村,2001) <u>44</u> ~約80℃(日本粘土学会編,2009) <u>45</u> ℃以上(太田ほか,2007) <u>50</u> ~ <u>70</u> ℃以上(Bjørlykke,2015)	
フィリプサイト	-116.33m	【4箇所】 -62.11m, -121.91m, -123.22m, -158.08m	<u>補足資料5.3-2(</u> 1) P.5.3-2-26		<u>50</u> ~ <u>86</u> ℃ (飯島,1986)
石英	-645.60m	【7箇所】 -125.44m*, -168.01m*, -201.20m*, -422.50m, -507.10m, -698.80m, -954.00m	<u>補足資料5.3-2(</u> 13) P.5.3-2-191	<u>80</u> ℃以上(吉村,2001)	約 <mark>80</mark> ℃以上 (井上,2003)
硬石膏	-866.27m	【3箇所】 -698.80m, -945.90 ^{※2} m, -954.00m	補足資料5.3−2 (13) P.5.3−2−191		約140°C以上 (井上,2003)

紫字:第1073回審査会合以降の変更箇所

*オパールCTと石英が確認された位置 生成温度のうち,下線は,文 ※2:試料採取位置(補足資料5.3-2(13)P.5.3-2-193)の標高に修正 それ以外は図からの読取値

生成温度のうち,下線は,文献に数値の記載があるもの, それ以外は図からの読取値

5体調された赤癬な物の体剤 博克 ひびと より 使

地下深部での変質鉱物の生成温度に関する知見 吉村(2001)

熱水による変質鉱物の生成温度に関する知見

<u>井上(2003)</u>

I/S混合層,オパールCTの生成温度・期間に関する文献

第1049回審査会合 資料1 P.119 一部修正

OI/S混合層は、地下深部で生成した場合は50℃以上、熱水によって生成した場合は110℃以上で生成することが示されている。また、スメクタイトのイライト化の変質速度に関する知見では、低温ほど生成期間が長く、温度50℃では百万年が経過してもイライト化が進行しないとされている。 OオパールCTは、地温約50℃以上の地下深部で生成することが示されている。また、反応速度論的な検討によると、低温ほど生成期間は長く、地下深部の50℃で生成 する場合には、数十万年の期間を要することが示されている。

■I/S混合層の生成温度・期間に関する知見

吉村(2001)	<地下深部での生成> ・I/S混合層における積層の仕方,I層とS層の含有率,規則度及び出現温度との関係を表で示している。 ・この表によると、ライヒバイテR=0のI/S混合層の出現温度は、「長期(5~300百万年),50~60℃」である。 <熱水による生成> ・熱水変質作用によるI/S混合層の生成温度は約120~220℃である。	スメクター 敷地のI/Si イライ
井上(2003)	<熱水による生成> ・スメクタイトのイライト化は熱水変質作用のように比較的短時間で反応が完了する場合には温度の効果が 最も重要な反応促進因子である。 ・I/S混合層は熱水変質作用により、約110℃以上で生成する。	
Velde et al. (1988)	<地下深部での生成> ・スメクタイトからRO(イライト/スメクタイト不規則混合層)への変換温度は60~90℃である。	100%
Meunier et al. (2010)	<地下深部での生成> ・多くの研究データから100%純粋なスメクタイトのイライト化の反応の開始点は温度50~80℃である。	
原子力発電環境整備 機構(2014)	<熱水による生成> ・地層処分における熱環境の検討において、Karnland et al. (2000)による時間経過に伴うスメクタイトのイラ イト化に関する図を示している(右上図)。 ・この図によると、温度90℃では数十万年で10%程度のイライト化が進行するものの、温度50℃ではイライト 化に至らない。	200

■オパールCTの生成温度・期間に関する知見

吉村(2001)	・オパールAは非晶質のシリカ物質であるが、続成変質を受けるとオパールCTが生成する。 ・両者の境界は埋没温度が50℃付近である。
太田ほか(2007)	・報告地域におけるシリカ鉱物の変化は埋没続成作用により生じたものと見なし、オパールAからオパール CTへ変化する温度を45℃と仮定して侵食量を推定している。
日本粘土学会編 (2009)	・シリカ鉱物の帯状分布を整理しており、オパールCTがみられる鉱物帯の境界温度は44℃である。
Kano(1983)	 ・北海道の基礎試錐「浜勇知」から得られたデータを基に反応速度論的な考察を行い、オパールCTのd(101) 及び温度,生成期間の関係性を示している(右下図)。 ・この図によると、d(101)が4.11ÅであるオパールCTが50℃で生成する場合には、数十万年の期間を要する。
Bjørlykke(2015)	・非晶質シリカ(オパールA)は, 通常, 50~70℃で溶解しオパールCTに変化する。

(原子力発電環境整備機構(2014)に一部加筆)

フィリプサイトの生成温度・期間及び生成環境に関する文献

第1049回審査会合 資料1 P.120 一部修正

Oフィリプサイトは、地温約50℃以上の地下深部もしくは熱水によって生成されることが示されている。また、熱水変質・接触変成でフィリプサイトと同様な温度環境で生成する斜プチロル沸石について、低温ほど生成期間は長く、約50℃で生成する場合には、およそ100万年の時間を要するとされている。

■フィリプサイトの生成温度・期間に関する知見(関連する沸石類も含む)

中田・千木良(1996)	・火山ガラスからフィリプサイトを合成した結果, フィリプサイトは100~125℃で多く生成する(Hawkins et al., 1978)。
佐々木ほか(1982)	・斜プチロル沸石は, 初期圧密から後期圧密段階初期, 地温57℃以上の条件下で火山ガラスを交代して, 生成する(青柳, 1978)。 ・斜プチロル沸石が47℃で生成し始めるには, およそ100万年の時間を要する(鹿野, 1978)。
佐々木(1991)	 ・海成層中の沸石は、埋没続成下における最高地層温度に強く支配されて生成するが、有効被熱時間が転換温度に対して重要な働きをしている。沸石の転換温度は、 有効被熱時間が長くなるにしたがって低くなる。

■フィリプサイトの生成環境に関する知見(飯島, 1986)

フィリプサイト PHI=philipsite, CHA=chabazite, NAT=natrolite, <u>CLI=clinoptilolite</u>, MOR= mordenite, ERI=erionite, GON=gonnardite, GIS=gismondine, FAU=faujasite, ANA=analcime, FER=ferrierite, THO=thomsonite, HEU=heulandite, STI=stilbite, MES=mesolite, SCO=scolecite, LAU=laumonite, YUG=yugawaralite, EPI=epistilbite, WAI=wairakite, HAR=harmotome, K-F=K feldspar, ALB=albite.

沸石の種類と生成環境 (飯島(1986)に加筆)

	フィリプサイトの生成環境 (左図の番号に対応)	志賀	サイト(別所岳安山岩類)の特徴
N.	①深海底	×	深海底のフィリプサイトの母材である玄武岩質 ガラスは, 別所岳安山岩類中には含まれない。
	②アルカリ土壌	×	敷地には, 半乾燥~乾燥地帯のアルカリ土壌 は分布しない。
	③アルカリ塩湖	×	敷地には、アルカリ塩湖堆積物は分布しない。
	④天水の浸透	×	本作用の主な母材である玄武岩質ガラスは, 別所岳安山岩類中には含まれない。
	⑤熱水変質·接触変成	0	安山岩中には,50℃以上の温度環境下によっ て生成したと考えられる変質鉱物(I/S混合層, オパールCT)が認められる。

(8)約12~13万年前以降の敷地の地温分布

約12~13万年前以降の敷地の地温分布

 ○温度検層及び文献調査により、約12~13万年前以降の敷地の地温分布を推定した。
 ○敷地の地温分布に関して、大深度ボーリング(D-8.6孔)による温度検層を実施した結果、敷地の地温勾配は約3℃/100mで一定であった(下図)。これは、 吉村(2001)で示される一般的な地温勾配(3℃/100m)とほぼ同じで、大山(2014)で示される非火山地域(地温勾配 2~3℃/100m)に相当する。
 ○敷地周辺の地温分布に関して、藤・板倉(1994)や産業技術総合研究所(2005)によると、敷地から約17km離れている和倉には泉温91.4℃の温泉が示されているものの、敷地付近では、泉温50℃を超える高温の温泉は示されていない(次頁)。また、藤・板倉(1994)で比較的温度が高く、敷地に近い①、⑨ 地点について、温泉所有者が実施したボーリング掘削時の地温データを確認した結果、いずれも敷地の地温勾配と同程度である(次々頁)。
 ○さらに、能登半島の火成活動に関する文献調査を実施した結果、能登半島に第四紀火山は認められないことから、約12~13万年前以降、敷地には火成活動の影響が及んでおらず、敷地の地温分布も一定であったと判断した(<u>補足資料5.3-2</u>(8)P.5.3-2-140)。
 ○以上より、敷地及び敷地周辺は、地熱地帯ではなく、約12~13万年前以降の敷地の地温分布は、現在の敷地の地温分布と同程度であると評価した。

【敷地の地温分布】

温度検層結果 大深度ボーリング(D-8.6孔)

【文献調査(敷地周辺の地温分布)】

敷地周辺の主要温泉分布図 藤・板倉(1994)に一部加筆

能登半島の温泉分布図 産業技術総合研究所(2005)に一部加筆

【敷地周辺の地温分布(敷地と①地点, ⑨地点の地温勾配の対比)】

温度検層結果(温泉所有者のデータに基づく)

地占夕		深度	泪曲
地点石	掘削長	温度検層範囲	冲 皮
1	1003m	550m~1003m	39.5°C∼56.1°C
9	1101m	700m~1101m	37.9°C∼52.9°C

【文献調査(能登半島の火成活動)】

能登半島の火山岩類の地質概略図 (日本地質学会(2006)に一部加筆)

日本地質学会(2006)によると, 能登半島で最後に火 成活動が認められたのは黒崎火山岩類形成時の9Ma である(上図□)。

(9) 斜長石の曹長石化検討

斜長石の曹長石化検討

OEPMA分析により,敷地のEL12.66m~EL-945.90mまでの間の斜長石を対象として,曹長石化の検討を行った結果,いずれの斜長石も概ね曹灰長石~亜灰長石 を示し,曹長石化は認められない。

Oよって、敷地は、少なくとも斜長石が曹長石化するような高温の熱水の影響を受けていないと考えられる[※]。

※敷地内で認められるI/S混合層や石英等の変質鉱物は,曹長石化する温度よりも低い温度でも生成することから(補足資料5.3-2(7)P.5.3-2-133), 曹長石化が認められない程度の温度環境下であっても,敷地の変質鉱物は生成し得る。

斜長石の曹長石化検討 一破砕部中の斜長石一

第1049回審査会合 資料1 P.89 再掲

OE-8.5-2孔の深度8.55m付近(EL12.66m付近)で認められるS-2・S-6の破砕部中に含まれる斜長石を対象としてEPMA分析を実施した。 OEPMA分析(定量)の分析点は、固結した破砕部に含まれる斜長石粒子から65点、粘土状破砕部に含まれる斜長石粒子から14点を選定した。

薄片写真

0.1

0.1

0.1

8.5

4.4

0.9

8.7

2,0

1.6

2.5

EPMAマッピング(COMPO像)

白丸は 定量分析位置

RaCons Breal 29.00 0.0 18.74 0.0 0.0

...

0.0

0.0

0.1

0.2

0.4

0.7

1.3

2.3

3.9

7.0

17.1

\$7.0

17.43

15.23

14.38

13.72

12,46

11.21

3.35

8.79

7.44

5.18

4.33

1.62

2.42

1.16

-0.11

EPMAマッピング^(Na) 5.3-2-143

EPMAマッピング(AI)

斜長石の曹長石化検討 一破砕部近傍の安山岩の斜長石一

OL-6' 孔で認められるS-2・S-6(深度13.82m)の破砕部近傍の深度23.50m(EL-11.97m)の安山岩中に含まれる斜長石を対象としてEPMA分析を実施した。 OEPMA分析(定量)の分析点は、安山岩に含まれる斜長石粒子から5点を選定した。

薄片写真

EPMAマッピング(Na)

定量分析位置

18.74

17.49 16.23 14.98

13.72

12.46

9.95

8.70

7.44

6.18 20.6 4.93 13.5 3.67 25.7 2.42 9.0 1.16 16.5 -0.10 0 0.0

0.0

0.0

0.0

0.1

0.9

1.2

EPMAマッピング(AI)

EPMAマッピング(Ca)

斜長石の曹長石化検討 一白色変質部付近の斜長石一

O大深度ボーリング(K-13.6孔)の深部では、白色変質部が認められ、XRD分析の結果、石英や硬石膏が主に確認される。これらの白色変質部は敷地において比較 的変質の強い箇所と考えられることから、変質部付近(EL-422.5m, EL-507.1m, EL-945.9m付近)の安山岩中に含まれる斜長石を対象としてEPMA分析を実施した。 O EPMA分析(定量)の分析点は、安山岩に含まれる斜長石粒子から各薄片5点以上を選定した。

XRD分析結果

			検	出鉱	物		
	石英	クリストバライト	スメクタイト	斜長石	クリノタイロライト	方解石	硬石膏
K−13.6孔_457.7m付近 白色鉱物	Ø	+	±	+	±		
K−13.6孔_542.3m付近 白色鉱物	Ø	±	±			±	
K−13.6孔_981.1m付近 白色鉱物	±						0
	0	多量	(>5	.000c	ps)		

+:微量(250~500cps) ±:きわめて微量(<250cps) 標準石英最強回折線強度 (3回繰り返し測定, 平均53,376cps)

• 定量分析位置

(10) 粘土鉱物のK-Ar年代分析結果

(10)-1 K-Ar年代分析結果, 信頼性確認(I/S混合層)

O粘土鉱物(I/S混合層)のK-Ar年代値は15~10Maを示す※。

※K-Ar年代分析の信頼性確認内容は次頁以降

対象物	試料No.	試料採取箇所		測定物 (粒径)	カリウム含有量 (wt. %)	放射性起源 ⁴⁰ Ar (10 ^{−8} cc STP/g)	K−Ar年代 (Ma)	非放射性起源 ⁴⁰ Ar ^(%)
	1	岩盤調査坑 No.15~16付近	EL-17.90m	I/S混合層 (0.2−0.4 <i>μ</i> m)	0.652 ± 0.013	26.1±4.0	10.3±1.6	90.4
S−1 粘土状破砕部	2	岩盤調査坑 No.16~17付近	EL-17.90m	I/S混合層 (0.2−0.4 <i>μ</i> m)	0.382 ± 0.008	16.2±3.0	10.9±2.0	91.8
	3	岩盤調査坑 No.24~25付近	EL-17.70m	I/S混合層 (0.2−0.4 <i>μ</i> m)	0.689±0.014	30.8±7.5	11.5±2.8	93.6
	4-1			I/S混合層 (<5.0 μ m)	0.512 ± 0.010	21.7±4.6	10.9±2.3	93.1
	4-2	- 岩盤調査坑 №.27孔		I/S混合層 (<1.0 μ m)	0.504 ± 0.010	19.2±5.2	9.8±2.6	94.5
	4-3		EL-16.45m	I/S混合層 (<0.4 μ m)	0.489±0.010	20.2±5.8	10.6±3.1	94.8
	4-4			I/S混合層 (<0.1 μ m)	0.407 ± 0.009	16.3±6.5	10.3±4.1	96.2
	5	E−8.5+5"孔_深度9.3m	EL11.82m	I/S混合層 (0.2−1.0μm)	0.420 ± 0.008	23.3±6.3	14.3±3.9	94.5
	6	E−8.6+5' 孔_深度8.9m	EL12.24m	I/S混合層 (0.2−1.0 <i>μ</i> m)	0.337 ± 0.007	17.7±2.9	13.5±2.2	91.1
	7	F-8.5"孔_深度8.80m	EL12.33m	I/S混合層 (0.2−1.0 <i>μ</i> m)	0.375 ± 0.008	21.1±2.0	14.5±1.4	84.7
S-2•S-6 粘土状破砕部	8-1	- E−8.4' 孔_深度31.70m	EL-10.61m	I/S混合層 (<5.0 μ m)	0.638 ± 0.013	29.1±6.2	11.7±2.5	93.0
	8-2			I/S混合層 (<1.0 μ m)	0.909±0.018	42.1±12.8	11.9±3.6	95.0
	8-3			I/S混合層 (<0.4 μ m)	0.935±0.019	41.4±14.2	11.4±3.9	95.6
	8-4			I/S混合層 (<0.1 μ m)	0.887±0.018	47.5±14.9	13.7±4.3	95.2
S−4 粘土状破砕部	9	E-11.1SE-6孔_深度1.50m	EL 31.17m	I/S混合層 (0.2−2.0 <i>μ</i> m)	0.400 ± 0.008	21.1±1.5	13.5±1.0	80.5
S−5 粘土状破砕部	10	R−8.1−1−3孔_深度22.24m	EL-11.12m	I/S混合層 (0.2−1.0 <i>μ</i> m)	0.295 ± 0.006	11.8±1.8	10.3±1.6	90.5
S−7 粘土状破砕部	11	H−5.64−2孔_深度9.53m	EL 2.84m	I/S混合層 (0.2−2.0 <i>μ</i> m)	0.359±0.007	20.1±2.3	14.4±1.7	87.1
S−8 粘土状破砕部	12	F−6.80−2孔_深度18.69m	EL-5.83m	I/S混合層 (0.2−2.0 <i>μ</i> m)	0.672±0.013	39.0±2.2	14.9±0.9	76.0
K−2 粘土状破砕部	13	H−0.9−40孔_深度19.65m	EL-6.36m	I/S混合層 (0.2−1.0 <i>μ</i> m)	0.754±0.015	34.1±2.7	11.6±0.9	82.0
K−14 粘土状破砕部	14	H0.3-80孔_深度31.65m	EL-27.48m	I/S混合層 (0.2−2.0 <i>μ</i> m)	1.871±0.037	84.6±9.0	11.6±1.3	85.6
<u>柏工1000件印</u> K−18 粘土状破砕部	15	H-0.2-75孔_深度116.75m	EL-108.04m	I/S混合層 (0.2−1.0 µ m)	1.501 ± 0.030	65.9±8.4	11.3±1.5	87.5
非破砕部の	16	H−6.5−2孔_深度81.90m	EL-59.10m	I/S混合層 (0.2−2.0 <i>μ</i> m)	0.538±0.011	22.6±3.3	10.8±1.6	89.8
粘土鉱物脈	17	K−10.8SW−1孔_深度49.80m	EL-18.88m	I/S混合層 (0.2−2.0 μ m)	0.511±0.010	20.9±1.8	10.5±0.9	83.3

粘土鉱物のK-Ar年代分析の信頼性確認

第1049回審杳会合 机上配布資料1 P.5.2-2-123 再掲

〇敷地の粘土鉱物のK-Ar年代値は、15~10Maを示す。

- O第597回審査会合では、不純物による影響の観点から測定物の特定を行い、粘土鉱物のK-Ar年代分析の信頼性を確認した。
- 〇第788回審査会合では、更なる信頼性確認として、カリウムの長期間保持の観点から、測定物の詳細な結晶構造を確認し、試料中に含まれるカリウムの固定状態を検討した。
- O以上の結果より、K-Ar年代分析の測定物はI/S混合層であり、その年代値(15~10Ma)はI/S混合層の生成年代を示す。さらに、この年代値は、カリウムの長期的な保持の観点からも信頼性が確認されている。

O粘土鉱物の生成年代を明らかにするために, S−1及びS−2・S−6の最新面付近の粘土鉱物を対象として, K−Ar年代分析 を実施した。

○粘土鉱物を対象としたK-Ar年代分析では、非放射性起源⁴⁰Arの値が大きくなるため、測定誤差への配慮が必要となる。 そこで、複数箇所(全8箇所)で試料を採取し、分析を行った。

OS-1及びS-2・S-6の最新面付近の粘土中に含まれる粘土鉱物(スメクタイト)のK-Ar年代値は, 15~10Maを示す。 Oいずれの試料の年代分析結果にも, 大きなばらつきは認められない。

STP:標準状態(0℃, 1気圧), Ma:100万年前

対象物	試料No.	. 試料採取箇所		測定物 (粒径)	カリウム含有量 (wt. %)	放射性起源 ⁴⁰ Ar (10 ⁻⁸ cc STP/g)	K−Ar年代 (Ma)	非放射性起源 ⁴⁰ Ar (%)	備考
	1	岩盤調査坑 No.15~16付近	EL-17.90m	スメクタイト (0.2-0.4μm)	0.652 ± 0.013	26.1±4.0	10.3 ± 1.6	90.4	
	2	岩盤調査坑 No.16~17付近	EL-17.90m	スメクタイト (0.2-0.4μm)	0.382 ± 0.008	16.2±3.0	10.9±2.0	91.8	
	3	岩盤調査坑 No.24~25付近	EL-17.70m	スメクタイト (0.2-0.4 μ m)	0.689±0.014	30.8±7.5	11.5±2.8	93.6	
S−1 最新面付近の	4-1			スメクタイト (<5 μ m)	0.512 ± 0.010	21.7±4.6	10.9±2.3	93.1	
柏工	4-2	出般調本は Na 073	EL-16.45m	スメクタイト (<1 μ m)	0.504±0.010	19.2±5.2	9.8±2.6	94.5	
	4–3	石 盗詞 且 JL NO.2 / TL		スメクタイト (<0.4 μ m)	0.489±0.010	20.2±5.8	10.6±3.1	94.8	
	4-4			スメクタイト (<0.1 μ m)	0.407±0.009	16.3±6.5	10.3±4.1	96.2	
	5	E−8.5+5"孔 深度9.3m	EL11.82m	スメクタイト (0.2−1 <i>μ</i> m)	0.420 ± 0.008	23.3±6.3	14.3±3.9	94.5	
	6	E−8.6+5' 孔 深度8.9m	EL12.24m	スメクタイト (0.2−1 <i>μ</i> m)	0.337±0.007	17.7±2.9	13.5±2.2	91.1	
S-2·S-6	7	F−8.5"孔 深度8.80m	EL12.33m	スメクタイト (0.2−1 <i>μ</i> m)	0.375±0.008	21.1±2.0	14.5±1.4	84.7	
最新面付近の 粘土	8-1		EL-10.61m	スメクタイト (<5 μ m)	0.638±0.013	29.1±6.2	11.7±2.5	93.0	
	8-2	E-8.4' 孔		スメクタイト (<1 μ m)	0.909±0.018	42.1±12.8	11.9±3.6	95.0	
	8-3	深度31.70m		スメクタイト (<0.4 μ m)	0.935±0.019	41.4±14.2	11.4±3.9	95.6	
	8-4			スメクタイト (<0.1 μ m)	0.887±0.018	47.5±14.9	13.7±4.3	95.2	

不純物による影響の観点による信頼性確認

○下記の①~③の手法により、不純物による影響の観点から測定物(スメクタイト)の特定を行い、粘土鉱物のK-Ar年代分析の信頼性を確認した。

○複数箇所で採取した試料の年代分析結果に大きなばらつきは認められず,不純物による影響も認められないことから,粘土鉱物のK-Ar年代値は妥当であると判断した。

試料No.	倌	信頼性確認手法※目的		結果	記載頁
	1	粒径別XRD分析	・測定物(スメクタイト)以外の不純物 による影響の有無の確認	・本試料によるK-Ar年代値はスメクタイトの形成年代を示し、不純物の影響は及んでいない。	<u>補足資料5.3-2</u> (10)-1 P.5.3-2-152~153
4-1∼4 8-1~4	2	TEM観察	・測定物(スメクタイト)の特定 ・測定物(スメクタイト)が結晶構造を 保持しているか否かの確認	 ・K-Ar年代分析試料を対象に実施したXRD分析で認められた鉱物 等が, TEM観察においても確認できた。 ・スメクタイトは普遍的に認められ, ほぼ自形結晶からなり, 顕著な 摩耗, 破壊は認められない。 	<u>補足資料5.3-2</u> (10)-1 P.5.3-2-154
	3	EDS分析	 ・測定物(スメクタイト)の特定 ・試料に含まれていたスメクタイトと セピオライトについて、カリウム(K) の存否の確認 	 ・K-Ar年代分析試料を対象に実施したXRD分析で認められた鉱物等が、EDS分析においても確認できた。 ・スメクタイトにはKが含まれ、セピオライトにはKが含まれていないことから、本試料を対象に実施したK-Ar年代分析により得られた年代値は、スメクタイトの形成年代を示し、セピオライトの影響は及んでいない。 	<u>補足資料5.3-2</u> (10)-1 P.5.3-2-155~160

※:第597回審査会合資料2-1, P.220における信頼性確認手法「①XRD分析」による不純物の影響検討については、XRD分析(定方位) を実施しXRD分析(不定方位)を実施していなかったことから,信頼性確認一覧から除外した。

○分析試料に含まれる測定物(スメクタイト)以外の不純物の影響の有無を確認するために、分析試料を粒径別に分離し、 XRD分析を実施した。試料は、超低温サーキュレータにより凍結粉砕し、水簸法と高速遠心分離により粒径分別を行った。 O分析の結果,得られた年代値には粒径による影響は認められないことから,K-Ar年代値には不純物の影響は及んでいな いと判断した。

試料No.	粒径 (μm)	カリウム含有量 (wt. %)	放射性起源 ⁴⁰ Ar (10 ⁻⁸ cc STP/g)	K−Ar年代 (Ma)	非放射性起源 ⁴⁰ Ar (%)
4-1	<5	0.512 ± 0.010	21.7±4.6	10.9±2.3	93.1
4-2	<1	0.504±0.010	19.2±5.2	9.8±2.6	94.5
4-3	<0.4	0.489±0.010	20.2±5.8	10.6±3.1	94.8
4-4	<0.1	0.407±0.009	16.3±6.5	10.3±4.1	96.2

【試料No.4-1~4の分析結果】

・すべての試料に、スメクタイトが確認される。 ・試料No.4-1及びNo.4-2(粗粒な試料)には斜長石が含 まれ、細粒な試料ほどスメクタイトの強度が大きくなるが、 得られた年代値には粒径による影響は認められない。 ・以上のことから、K-Ar年代値はスメクタイトの形成年代 を示し、不純物の影響は及んでいないと判断できる。

K-Ar年代分析結果

試料No.	粒径 (μm)	カリウム含有量 (wt. %)	放射性起源 ⁴⁰ Ar (10 ⁻⁸ cc STP/g)	K−Ar年代 (Ma)	非放射性起源 ⁴⁰ Ar ^(%)
8-1	<5	0.638±0.013	29.1±6.2	11.7±2.5	93.0
8-2	<1	0.909±0.018	42.1±12.8	11.9±3.6	95.0
8-3	<0.4	0.935±0.019	41.4±14.2	11.4±3.9	95.6
8-4	<0.1	0.887±0.018	47.5±14.9	13.7±4.3	95.2

K-Ar年代分析結果

・すべての試料に、スメクタイトが確認される。
・試料No.8-1及びNo.8-2(粗粒な試料)には斜長石が 含まれ、細粒な試料ほどスメクタイト及びセピオライトの強度が大きくなる。試料No.8-4(細粒な試料)の 年代値がやや古いものの、誤差の範囲内であり、得られた年代値には粒径による影響は認められない。
・以上のことから、K-Ar年代値はスメクタイトの形成 年代を示し、不純物の影響※は及んでいないと判断 できる。

※セピオライトの影響については、補足資料5.3-2(10)-1 P.5.3-2-155

②TEM観察

OK-Ar年代分析に用いた試料のTEM観察(使用装置:JEM-2100F)を実施し,測定物(スメクタイト)の特定を行った。 Oまた,K-Ar年代分析の測定物(スメクタイト)の結晶構造を保持しているかについても確認した。

OTEM観察の結果, 試料No.4はスメクタイトが主体, 試料No.8はスメクタイトとセピオライトが主体であり, ごくまれに斜長石が認められた。K-Ar 年代分析試料を対象に実施したXRD分析で認められた鉱物等が, TEM観察においても確認できた。

○スメクタイトは普遍的に認められ、ほぼ自形結晶からなり、顕著な摩耗、破壊は認められない。よって、本試料を対象に実施したK-Ar年代分析により得られた年代値は、破壊を受けていないスメクタイトの形成年代を示していると判断できる。

試料No.4−1	試料No.4−2	試料No.4−3	武料No.4-4	
·厚さの薄い平板状粒子の 集合体 スメクタイト	回折像 回折像 ・厚さの薄い平板状粒子の 集合体 スメクタイト	00 mm 100 mm 100 mm	回折像 ・厚さの薄い平板状粒子の 集合体 スメクタイト	
新長石	500 m 回折像は同心円状に並ばない 新長石	=÷炒111_0_0		
回折像 回折像 「厚さの薄い平板状粒子の 集合体 スメクタイト	● ●	500 nm 回折像 500 nm ・厚さの薄い平板状粒子の 集合体 スメクタイト	100 mm 回折像 100 mm ·厚さの薄い平板状粒子の 集合体 スメクタイト	
回折像	回折像	回折像	回折像	
・細長い棒状の粒子	・細長い棒状の粒子		・細長い棒状の粒子	

③EDS分析

OK-Ar年代分析に用いた試料のEDS分析(使用装置:JED-2300T ドライSD100GV検出器)を実施し,測定物(スメクタイト)の特定を行った。 Oまた,K-Ar年代分析の年代値の測定物がスメクタイトであることを確認するために,試料に含まれていたスメクタイトとセピオライトについて,カリウム(K)の 存否を確認した。

OK-Ar年代分析試料を対象に実施したXRD分析で認められた鉱物等が、EDS分析においても確認できた(詳細な分析結果は次頁以降に示す)。 OスメクタイトにはKが含まれ、セピオライトにはKが含まれていない(試料No.8-4)ことから、本試料を対象に実施したK-Ar年代分析により得られた年代値は、 スメクタイトの形成年代を示し、セピオライトの影響は及んでいないと判断できる。

第1049回審査会合 机上配布資料1 P.5.2-2-130 再掲

【試料No.4-2の分析結果】 STEM像 Si 0* Na Mg AI *:酸化物として存在してい る固体中の酸素の量 Κ Ca Ti Fe Mn 36000 Wt % Elem 32000 Na₂O 0.14 28000 -MgO 5.76 24000 - Al_2O_3 6.95 Counts 20000 SiO₂ 67.79 16000 0.00 P_2O_5 12000 K₂O 0.78 8000 CaO 1.18 4000 TiO₂ 0.28 0 MnO 0.13

試料の固定にカーボン支持膜を張っ た銅製グリッドメッシュを用いているた め, Cu, Cの測定値は取り除いた。

EDS分析結果

5.00

keV

6.00

4.00

0.00

1.00 2.00

3.00

8.00

9.00

10.00

 Fe_2O_3

Total

16.99

100.00

7.00

第1049回審査会合 机上配布資料1 P.5.2-2-131 再掲

K₂O

CaO

TiO₂

MnO

 Fe_2O_3

Total

2.67

2.37

0.26

0.57

19.85

100.00

【試料No.4-4の分析結果】

EDS分析結果

5.00

keV

6.00

7.00

8.00

9.00

10.00

4.00

1800

1200

600 ·

0 -

0.00

1.00

2.00

3.00

5.3-2-157

試料の固定にカーボン支持膜を張っ

た銅製グリッドメッシュを用いているた

め, Cu, Cの測定値は取り除いた。

第1049回審査会合 机上配布資料1 P.5.2-2-133 再掲

【試料No.8-1の分析結果②】 Si STEM像 0* Na Mg AI *:酸化物として存在してい る固体中の酸素の量 Ti Fe Κ Ca Mn Wt % Elem 100000-Na₂O 1.97 MgO 1.96 80000- Al_2O_3 3.10 Counts SiO₂ 85.63 60000-0.43 P_2O_5 40000-K₂O 0.48 CaO 0.71 20000-

TiO₂

MnO

 Fe_2O_3

Total

0.21

0.62

4.89

100.00

試料の固定にカーボン支持膜を張っ た銅製グリッドメッシュを用いているた め, Cu, Cの測定値は取り除いた。

EDS分析結果

5.00

keV

6.00

7.00

8.00

9.00

10.00

4.00

1.00

2.00

3.00

0.00

カリウムの長期間保持の観点による信頼性確認

第1049回審査会合 机上配布資料1 P.5.2-2-135 再掲

○カリウムの長期間保持の観点によるK-Ar年代の信頼性確認として、下記④~⑦を実施した。
 ○下記の④により、K-Ar年代の測定物がI/S混合層であることを確認した。
 ○また、下記の⑤~⑥によると、K-Ar年代の測定物にはイライトのようにカリウムが固定される構造が含まれ、このカリウムは長期間保持されたと考えられることから、この試料のK-Ar年代値には地質学的意義がある。
 ○さらに、下記の⑦によって、測定物がI/S混合層であることを確認したことから、信頼性が確認された。

試料No.	No.4−4(岩盤調査坑 No.27孔) No.5 (E−8.5+5"孔) No.8−3 (E−8.4' 孔)	No.3(岩盤調査坑 No.24~25付近) No.4−3(岩盤調査坑 No.27孔) No.5(E−8.5+5"孔)	No.4−3(岩盤調査坑 No.27孔)	No.4−3(岩盤調査坑 No.27孔)	
分析名	④XRD分析(粘土分濃集)	⑤CEC分析	⑥XAFS分析	⑦HRTEM観察	
分析の 目的	 ・第597回審査会合においては、測定物をスメクタイトと特定している 一方で、試料中にはカリウムが存在するとしていた。 ⇒<u>測定物(粘土鉱物)の詳細な結晶構造を確認することによって測定物がI/S混合層である可能性を検討する。</u> 	 ・K-Ar年代値が信頼性を有するには、試料中に固定されたカリウムが含まれている必要がある。 ⇒粘土鉱物中の交換性カリウムと 固定されたカリウムの量を分析する。 	 ・K-Ar年代値が信頼性を有するには、試料中に固定されたカリウムが含まれている必要がある。 ⇒粘土鉱物中に含まれるカリウム 原子周りの分子構造から、イライト と似た構造の存在を確認する。 	・スメクタイトとイライトでは、単位層 の間隔が異なる。 <u>⇒粘土鉱物の積層構造(単位層の</u> <u>間隔)を観察することによって、イ</u> <u>ライト構造の存在を確認する。</u>	
結果概要	・K-Ar年代分析の測定物(粘土鉱 物)は, I/S混合層である。	・交換性のカリウム含有量を定量した結果,カリウム全含有量に比べて十分に小さく,固定されたカリウムが十分に含まれていると判断される。(宇波ほか,2019a,b)	 K-Ar年代の測定物のXAFS分析の結果、カリウム原子周りの構造を表すEXAFS関数及び構造関数がイライト標準試料の関数と類似する。(宇波ほか、2019a、b) 	・一連の積層構造中にスメクタイト の単位層とイライトの単位層が確 認されることから, K-Ar年代分析 の測定物はI/S混合層である。	
		・K-Ar年代の測定物にはイライトのよまれ、このカリウムは長期間保持されのK-Ar年代値には地質学的意義が	(東京大学小暮研究室ほかによる 観察)		
記載頁	No.4-4⇒ 補足資料5.3-2 (2)P.5.3-2-30 No.5⇒ <u>補足資料5.3-2</u> (2)P.5.3-2-33 No.8-3⇒ <u>補足資料5.3-2</u> (2)P.5.3-2-34	No.3⇒ <u>補足資料5.3-2</u> (4)P.5.3-2-95 No.4-3⇒ <u>補足資料5.3-2</u> (4)P.5.3-2-96 No.5⇒ <u>補足資料5.3-2</u> (4)P.5.3-2-97	No.4−3⇒P.5−37(試料e)	No.4−3⇒P.5−38(試料e)	

宇波謙介・福士圭介・高橋嘉夫・板谷徹丸・丹羽正和(2019a):能登半島西岸域の中新世安山岩中に認められる変質鉱物中のカリウムの存在状態とK-Ar年代の意義,2019年度 地球化学会年会,3P19. 宇波謙介・福士圭介・高橋嘉夫・丹羽正和(2019b):能登半島西岸域の中新世安山岩中に認められる粘土鉱物中のカリウムの存在状態,第63回粘土科学討論会,P11.

(10)-2 K-Ar年代分析結果及びその生成環境に関する考察(セラドナイト)

K-Ar年代分析結果及びその生成環境に関する考察(セラドナイト)

セラドナイトに関する調査結果

O敷地近傍(F-1'孔)で確認された緑灰色の粘土鉱物について,敷地の変質鉱物の生成環境に関する評価との関係を確認するため,以下の分析・調査を行った。 OXRD分析の結果,緑灰色の粘土鉱物はセラドナイトであることを確認した(下図)。 O文献調査の結果, Odin et al.(1988)は,酸素同位体温度計から求められたセラドナイトの生成温度は6~84℃としている。 OK-Ar年代分析の結果.緑灰色の粘土鉱物(セラドナイト)のK-Ar年代値は11.8±0.4Maを示す(下表)。

I/S混合層に関する調査結果

○文献調査の結果, I/S混合層の生成温度は約50℃以上である(補足資料5.3-2(7) P.5.3-2-132)。

○ K-Ar年代分析の結果, I/S混合層のK-Ar年代値は15~10Maを示す(**補足資料5.3-2**(10)-1 P.5.3-2-148)。

上記を踏まえた考察

O上記の調査の結果, セラドナイトとI/S混合層はいずれも50℃以上で生成し, K-Ar年代値もほぼ同じ値を示すことから, 敷地近傍のセラドナイトとI/S混合層はほぼ 同様な温度環境で生成したと判断した。

(11) U-Pb年代分析結果(オパールCT)
第1049回審査会合 資料1 P.118 再揭

OオパールCTのU-Pb年代値は、11.7±1.1Maを示す※。

※:分析位置が、1地点に限られていることから参考値とする。

〇岩盤調査坑No.30切羽のオパールCTを用いたU-Pb年代の同位体比測定データを以下に示す。

U-Pb年代分析 一測定データー

後方散乱電子像 (全35測定点)

Notes F		232	204-04-0206-04-	. 0/	238 U ²⁰⁶ Dh	. 0/	207 pt /206 pt	. 0/	²⁵⁰ (²³⁴ UO)
測定点	U(ppm)	in/ ou	PD/ PD	±%	0/ PD	±%	PD/ PD	±%	/ * (* 00)
OCT-1_1	1.7	n.d.	0.020	122	376	11	0.2618	20	0.000077
OCT-1_2	0.2	n.d.	0.036	72	162	26	0.5662	5	0.000057
OCT-1_3	1.0	n.d.	0.021	103	369	24	0.2718	30	0.000059
OCT-1_4	0.2	0.00024	0.021	148	327	17	0.3496	11	0.000074
OCT-2_1	0.3	n.d.	0.053	49	19	10	0.8027	7	0.000063
OCT-2_2	1.3	0.00012	0.029	34	271	16	0.4259	8	0.000049
OCT-2_3	0.6	0.00016	0.023	77	276	10	0.3754	6	0.000059
OCT-2_4	1.3	0.00005	0.023	28	388	18	0.3353	20	0.000051
OCT-3.1 🔆	1.4	0.00152	0.058	27	14	27	0.9153	9	0.000066
OCT-4_1	3.6	n.d.	0.017	116	419	10	0.2666	22	0.000046
OCT-4_2	2.2	n.d.	0.006	76	468	12	0.1653	16	0.000057
OCT-4_3	1.6	n.d.	0.014	247	410	15	0.2506	33	0.000038
OCT-4_4	1.0	n.d.	0.026	124	466	19	0.3105	27	0.000055
OCT-4_5	2.0	n.d.	0.007	139	481	12	0.1408	34	0.000068
OCT-4_6	1.6	n.d.	0.008	227	374	15	0.1792	38	0.000053
OCT-4_7	1.3	n.d.	0.016	93	317	17	0.2602	33	0.000039
OCT-4_8	1.0	n.d.	0.002	68	483	22	0.1291	23	0.000078
OCT-4_9	0.6	0.00005	0.016	117	332	22	0.2183	25	0.000062
OCT-4_10	0.8	n.d.	0.011	85	333	9	0.2182	35	0.000054
OCT-4_11	0.6	n.d.	0.013	3	438	13	0.2452	28	0.000045
OCT-4.12 🔆	1.2	0.00123	0.031	45	13	54	0.8322	42	0.000084
OCT-4_13	1.2	0.00002	0.024	64	231	11	0.4130	13	0.000067
OCT-4_14	0.7	n.d.	0.014	84	325	12	0.2833	33	0.000068
OCT-4_15	0.7	n.d.	0.012	41	477	26	0.2707	22	0.000054
OCT-4_16	0.3	n.d.	0.018	39	229	19	0.3192	21	0.000038
OCT-4_17	0.4	n.d.	0.025	72	298	18	0.3915	33	0.000075
OCT-4_18	0.6	n.d.	0.026	38	243	28	0.4455	29	0.000044
OCT-4_19	0.4	n.d.	0.032	49	279	14	0.4913	19	0.000076
OCT-4_20	0.5	n.d.	0.025	73	404	30	0.3143	31	0.000043
OCT-4_21	0.4	n.d.	0.022	98	383	33	0.3624	26	0.000040
OCT-5_1	3.5	0.00004	0.015	83	415	21	0.2605	28	0.000065
OCT-5_2	7.1	0.00016	0.013	80	574	13	0.1879	13	0.000038
OCT-5_3	2.5	0.00033	0.017	21	506	13	0.2786	11	0.000054
OCT-5_4	1.1	0.00018	0.008	2	442	29	0.1800	19	0.000054
OCT-5_5	1.3	n.d.	0.018	77	445	18	0.2428	23	0.000070

測定データ

n.d. :検出不可。 誤差は1*σ*

※全35測定点のうち, OCT-3_1は, 測定点に一次イオンが不安定になったこと, OCT-4_12は, inclusionを含む分析データの 可能性があることから, 年代計算の根拠データから除外した。

(12) 敷地周辺の変質に関する調査結果

敷地周辺で確認される変質鉱物 -別所岳安山岩類における変質状況-

○敷地周辺の赤住,福浦灯台,巌門,生神東部及び福浦断層で認められる粘土鉱物を対象として,粘土鉱物のXRD分析による結晶構造判定を行った結果,これらの敷地周辺で確認される粘土鉱物は,敷地と同程度のイライト混合率をもつⅠ/S混合層であると判定した(次頁)。
 ○よって,敷地で確認される変質鉱物(Ⅰ/S混合層)が,敷地内に限って分布するものではなく,敷地周辺の別所岳安山岩類中にも広く分布することから,敷地周辺一帯は同じような環境下で変質を被ったと判断した。

※局所的な変質状況に関する調査結果は, 補足資料5.3-2(12)

紫字:第1073回審査会合以降に追加・変更した箇所

【粘土鉱物の結晶構造判定】

〇赤住, 福浦灯台, 巌門, 生神東部及び福浦断層で確認された粘土鉱物[※]のX線回折チャートを用いて粘土鉱物の構造判定を行った。これらの回折チャートでは, Watanabe(1988)によるI/S混合層の理論的なピーク回折角のシフトと同様なシフトが認められ, 渡辺(1986, 1981)のI/S混合層構造判定図によるとイライト混合率 5~15%程度となることから, これらの粘土鉱物は, 敷地と同程度のイライト混合率をもつI/S混合層であると判定した。

【赤住】

〇敷地の南方約1kmに位置する赤住の海岸部では、露岩した別所岳安山岩類中に脈状の白色の変質部が確認される。

X線回折チャート(定方位)

【福浦灯台】

〇敷地から約2km北方に位置する福浦灯台の海岸部では、露岩した別所岳安山岩類中に白色の変質部が確認される。

X線回折チャート(定方位)

【巌門】

〇敷地から約4km北方に位置する巌門の海岸部では、露岩した別所岳安山岩類中に脈状の白色の変質部が確認される。

2*θ* (deg) X線回折チャート(定方位)

【生神東部】

〇敷地の北方約7kmに位置する生神東部の別所岳安山岩類露岩部では、変質が認められる。

X線回折チャート(定方位)

【福浦断層(FK-1孔)】

O敷地の北方約2kmで実施したFK-1孔の深度52.5m付近で認められる福浦断層では、断層ガウジ中に粘土鉱物が認められる。

【福浦断層(OS-2孔)】

〇敷地の東方約1kmで実施したOS-2孔の深度94.6m付近で認められる福浦断層では、断層ガウジ中に粘土鉱物が認められる。

X線回折チャート(定方位)

【福浦断層(OS-3'孔)】

〇敷地の東方約1kmで実施したOS-3'孔の深度28.3m付近で認められる福浦断層では、断層ガウジ中に粘土鉱物が認められる。

分析試料

X線回折チャート(定方位)

敷地周辺で確認される変質鉱物 -新第三紀堆積岩における変質状況-

○敷地周辺一帯が同じような環境下で変質を被ったと判断したことについて,敷地周辺の別所岳安山岩類に加え,その周辺の新第三紀堆積岩の変質状況を調査した。
○敷地周辺の新第三紀堆積岩(黒瀬谷階の縄又互層,谷出礫岩層,山戸田泥岩層)中の粘土鉱物を対象として,XRD分析による結晶構造判定を行った結果,これらの敷地周辺で確認される粘土鉱物は,敷地と同程度のイライト混合率をもつⅠ/S混合層であると判定した(次頁)。

紫字:第1073回審査会合以降に追加・変更した箇所

<粘土鉱物の結晶構造判定結果>

粘土鉱物の結晶構造判定

○鬼屋,田尻滝及び横田で確認された粘土鉱物※のX線回折チャートを用いて粘土鉱物の構造判定を行った。これらの回折チャートでは、Watanabe(1988)によるI/S 混合層の理論的なピーク回折角のシフトと同様なシフトが認められ、渡辺(1986, 1981)のI/S混合層構造判定図によるとイライト混合率10~15%程度となることから、これらの粘土鉱物は、敷地と同程度のイライト混合率をもつI/S混合層であると判定した。

鬼屋(縄又互層)

〇敷地の北方約25kmに位置する鬼屋の縄又互層露岩部で試料(砂岩)を採取し、XRD分析を実施した。

田尻滝(谷出礫岩層)

〇敷地の北東方約15kmに位置する田尻滝の谷出礫岩層露岩部で試料(砂岩)を採取し、XRD分析を実施した。

横田(山戸田泥岩層)

〇敷地の北東方約13kmに位置する横田の山戸田泥岩層露岩部で試料(泥岩)を採取し、XRD分析を実施した。

敷地周辺で確認される変質鉱物 -局所的な変質状況-

〇敷地周辺の別所岳安山岩類中の局所的な変質状況に関する調査結果を以下に示す。

・敷地周辺の鉱山(富来鉱山や沢口鉱山)では,石英等が認められている(次頁)。

・敷地東方の強変質部(大坪川ダム右岸付近)では、網目状の熱水脈が認められ、石英等の変質鉱物を確認した(次々頁)。

Oなお、これらの変質帯は、地表踏査により分布が局所的であることを確認している。

<敷地周辺の別所岳安山岩類中で確認される局所的な変質>

【富来鉱山, 沢口鉱山】

〇敷地周辺の鉱山に関する文献調査の結果,敷地の約7km北方には富来鉱山が,敷地の約4km東方には沢口鉱山が分布する。 〇富来鉱山は、別所岳安山岩類中に浅熱水性含金石英脈を伴う鉱床であり、石英等が確認されている。 〇沢口鉱山は、別所岳安山岩類の境界に富鉱部を持つ銅鉱山とされる。また、XRD分析の結果、鉱山周辺で石英等を確認した。

■富来鉱山に関する知見

-KNg

日本金山誌編纂委 員会編(1994)	<富来(広地)鉱山> ・富来鉱山(広地)付近の地質は新第三紀中新世の穴水累層に属する輝石安山岩溶岩および火山砕屑岩よりなり、鉱床は輝石安山岩を母岩とする浅熱水性含金銀石英脈である。 <<u>く富来(生神)鉱山></u> ・鉱床は輝石安山岩および火山砕屑岩を母岩とする浅熱水性含金石英脈で、ほぼ2kmX2kmの範囲に複数の脈がある。鉱石鉱物は自然金のほか黄鉄鉱を主とし、脈石鉱物は石英を主とし乳白色を呈する。
濱田ほか(2018)	< <a> < <・母岩である穴水累層の輝石安山岩は熱水変質を受けており、ほとんどが暗青灰色から明青緑色である。斑晶である輝石および斜長石は緑泥石、雲母類、白チタン石などに変質しているか、交代されている。母岩中に石英の細脈が見られその周辺に黄鉄鉱や黄銅鉱が産出する。これらの硫化鉱物および変質鉱物は鉱床形成に伴う熱水作用によって生じたと考えられる。
Hamada et al. (2019)	< <u><富来(生神)鉱山></u> ・富来鉱山は,能登半島と日本海の形成に関連した重要な鉱床の一つである。 ・石英脈の表面に生成した氷長石の状況から,複数回の熱水イベントが示唆される。 ・鉱床中に認められたイライト-スメクタイト混合層の年代によると富来鉱山の形成年代は前期中新世である。

■沢口鉱山に関する知見

地質調査所編	・酸化銅鉱と2次硫化銅鉱からなる特殊な沈殿性のものである。
(1956)	・富鉱部は泥岩層と基盤をなす集塊岩(穴水累層)との境界付近に多い。

■沢口鉱山周辺で確認される変質鉱物(XRD分析)

沢口鉱山 坑口跡

```
坑口跡周辺のズリから
採取した白色鉱物
```


+

 \pm

X線回折チャートは、補足資料5.3-2(12)P.5.3-2-186~189

5.3-2-184

沢口鉱山 白色鉱物 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-140 再掲

5.3-2-185

大坪川ダム北道路法面 白色変質部 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-141 再掲

回折チャート

大坪川ダム北道路法面 白色変質部 -X線回折チャート 定方位 EG処理- ^{第1049回審査会会 机上配布資料1} P5.2-2-142 再掲

大坪川ダム南道路法面 白色変質部 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-143 再掲

回折チャート

(13) 敷地深部の変質に関する調査結果

敷地深部で認められる変質鉱物

○大深度ボーリング(K-13.6孔)の変質部を対象にXRD分析を実施した結果,主な鉱物として石英及び硬石膏が確認された(次頁,次々頁)。
○大深度ボーリングを含むボーリングで確認されたオパールCT及び石英について,深度ごとに回折チャートを整理した結果,標高約-200m以浅ではオパールCTが確認され,標高約-100m以深では石英が認められた(右下図)。

<オパールCTから石英への深度変化>

5.3-2-191

分析試料

第1049回審査会合 机上配布資料1

P.5.2-2-146 再掲

733.5 733.7 733.9 734.1 734.3 734.5 (m)

第1049回審査会合 机上配布資料1 P.5.2-2-147 再掲

🔵 試料採取位置

分析試料

大深度ボーリング(K-13.6孔) - XRD分析結果-

紫字:第1073回審査会合以降の変更箇所

		石英	クリストバライト	トリディマイト	スメクタイト	斜長石	クリノタイロライト	方解石	硬石膏	
	K−13.6孔_236.4m付近_白色鉱物	Ø	Δ	+	±	±				
	K−13.6孔_457.7m付近_白色鉱物	Ø	+		Ħ	+	±			
	K−13.6孔_542.3m付近_白色鉱物	Ø	±		Ħ			ŧ		
	K−13.6孔_734.0m付近_白色鉱物	Ø	±		Ħ				+	◎:多量(>5,000cps) 〇:中量(2,500~5,000cps)
)深度に修正	K−13.6孔_981.1 [※] m付近_白色鉱物	±							Ø	△:少量(500~2,500cps) +:微量(250~500cps) ±:きわめて微量(<250cps)
	K−13.6孔_989.2m付近_白色鉱物	0				±			0	標準石央最強回新線強度 (3回繰り返し測定,平均53,376cps)

※試料採取位置(前頁)の深度に修正

その他の白色鉱物のX線回折チャートは、次頁以降

5.3-2-194

K-13.6孔_深度236.4m 白色鉱物 −X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-148 再掲

第1049回審査会合 机上配布資料1 P.5.2-2-149 再掲

K-13.6孔_深度457.7m 白色鉱物 −X線回折チャート 不定方位 – 🗋

第1049回審査会合 机上配布資料1 P.5.2-2-150 再掲

5.3-2-197

第1049回審査会合 机上配布資料1 P.5.2-2-151 再掲

(EG処理も合わせて表示)

K-13.6孔_深度542.3m 白色鉱物 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-152 再掲

5.3-2-199

第1049回審査会合 机上配布資料1 P.5.2-2-153 再掲

第1049回審査会合 机上配布資料1 K-13.6孔_深度734.0m 白色鉱物 -X線回折チャート 不定方位-

P.5.2-2-154 再掲

K-13.6孔_深度734.0m 白色鉱物 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-2-155 再掲

回折チャート (EG処理も合わせて表示) K-13.6孔_深度981.1m 白色鉱物 -X線回折チャート 不定方位--[↓]

第1049回審査会合 机上配布資料1 P.5.2-2-156 再掲

回折チャート

K-13.6孔_深度989.2m 白色鉱物 −X線回折チャート 不定方位 – 🏼

第1049回審査会合 机上配布資料1 P.5.2-2-157 再掲

(14) 変質鉱物と第四系との関係に関する調査結果

(14)-1割れ目に認められる白色脈と第四系との関係

参照頁

補足資料5.3-2(14)-1

P.5.3-2-208~211

補足資料5.3-2(14)-1

P.5.3-2-212, 213

補足資料5.3-2(14)-1

P.5.3-2-214, 215

検出鉱物

끔

単

5.3-2-207 XRD回折チャートは補足資料5.3-2(14)-2

【割れ目に認められる白色脈と第四系の関係(No.2トレンチ 東面 1/2)】

No.2トレンチ東面 全体スケッチ※

凡例

※このスケッチは、拡大範囲①スケッチと作成時期が異なるため、礫の分布や岩盤上面・割れ目等の形状が一部異なる。

拡大範囲① 写真

【割れ目に認められる白色脈と第四系の関係(No.2トレンチ 東面 2/2)】

拡大範囲② 写真

拡大範囲② 写真(岩盤上面等を加筆)

拡大範囲③ 写真

拡大範囲③ 写真(岩盤上面等を加筆)

【割れ目に認められる白色脈と第四系の関係(No.2トレンチ 南面 1/2)】

No.2トレンチ南面 全体スケッチ※ ※このスケッチは、拡大範囲①スケッチと作成時期が異なるため、礫の分布や岩盤上面・割れ目等の形状が一部異なる。

拡大範囲① 写真

【割れ目に認められる白色脈と第四系の関係(No.2トレンチ 南面 2/2)】

拡大範囲② 写真

拡大範囲② 写真(岩盤上面等を加筆)

第1049回審査会合 資料1 P.112 再掲

【割れ目に認められる白色脈と第四系の関係(35m盤法面 1/2)】

※このスケッチは、拡大範囲①スケッチと作成時期が異なるため、礫の分布や岩盤上面・割れ目等の形状が一部異なる。

拡大範囲① 写真

【割れ目に認められる白色脈と第四系の関係(35m盤法面 2/2)】

拡大範囲② 写真

拡大範囲② 写真(岩盤上面等を加筆)

【割れ目に認められる白色脈と第四系の関係(大坪川ダム右岸トレンチ 1/2)】

・変質した安山岩(角礫質)中に、局所的に安山岩(均質)が分布する。この安山岩(均質)の割れ目に挟在して、褐白~褐色を呈する幅1~2cm程度の白色脈が分布する。
 ・白色脈には、高角~鉛直方向に分布するものが多く、副次的に水平方向のものも伴う。また、幅6~8cmの水平方向の脈が例外的に一条分布する。
 ・高角~鉛直方向に分布する白色脈の上端は、岩盤と砂層(層理部)の境界で凹状に削剥されており、砂層(層理部)中へは延長しない(次頁拡大範囲②)。

【割れ目に認められる白色脈と第四系の関係(大坪川ダム右岸トレンチ 2/2)】

拡大範囲① 写真

拡大範囲② 写真

拡大範囲① 写真(岩盤上面等を加筆)

拡大範囲② 写真(岩盤上面等を加筆)

(14)-2 X線回折分析結果

試料採取位置

🔵 試料採取位置

<u>駐車場南側法面 粘土状破砕部</u>

分析試料 (駐車場南側法面_上)

分析試料 (駐車場南側法面_下) <u>No.2トレンチ東面 白色脈</u>

<u>No.2トレンチ南面 白色脈</u>

<u>35m盤法面 白色脈</u>

白色脈

(XRD試料採取箇所)

分析試料

(No.2トレンチ東面)

分析試料 (35m盤法面)

大坪川ダム右岸トレンチ 白色脈

 4 5 4 7 8 8 10 1 3

 分析試料

 (大坪川ダム右岸トレンチ)

5.3-2-217

<u>N-14孔 深度30.97m付近 粘土状破砕部</u>

M-12.5"孔 深度50.00m付近 粘土状破砕部

固結した破砕部 粘土状破砕部 固結した破砕部

分析試料 (N−14孔)

分析試料 (M−12.5"孔)

第1049回審査会合 机上配布資料1 P.5.2-2-162 再掲

第1049回審査会合 机上配布資料1 P.5.2-2-163 再掲

第1049回審査会合 机上配布資料1 P.5.2-2-164 再掲

M-12.5"孔 粘土状破砕部 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-2-165 再掲

回折チャート

M-12.5"孔 粘土状破砕部 -X線回折チャート 定方位 EG処理-^{第1049回審査会 机上配布資料1}

(EG処理も合わせて表示)

第1049回審査会合 机上配布資料1 P.5.2-2-172 再掲

回折チャート (EG処理も合わせて表示) 大坪川ダム右岸トレンチ 白色脈 -X線回折チャート 不定方位-^{第1049回審査会 机上配布資料1}

Qtz:石英 Crs : クリストバライト Kln:カオリナイト Gbs:ギブサイト Ha7:7Å型ハロイサイト Ha10:10型ハロイサイト

第1049回審査会合 机上配布資料1 P.5.2-2-174 再掲

(15) 破砕部中の鉱物脈

拡大写真(M-12.5孔 63.5~63.7m)

・ボーリングコア観察の結果、破砕部中に鉱物脈を確認した。鉱物脈は固結した破砕部中に 認められ、それらに変位、変形は認められない。

【L-12.2孔 X線回折チャート 不定方位】

〇鉱物脈でXRD分析を実施した結果,主な粘土鉱物としてスメクタイトが認められる。

【L-12.2孔 X線回折チャート 定方位 EG処理】

拡大写真(N-14孔 31.0~31.2m)

【N-13'孔 X線回折チャート 不定方位】

〇鉱物脈でXRD分析を実施した結果,主な粘土鉱物としてスメクタイトが認められる。

【N-13'孔 X線回折チャート 定方位 EG処理】

【破砕部中に認められた鉱物脈(S-2·S-6)】

(m)

11.8

(m)

12.4

11.6

3-2

右拡大範囲

12.2

11.5

12.1

`③−2 S−2・S−6写真(E−8.6孔) 11.7

12.3

1

11.3

11.9

11.4

12.0

11.2

11.8

拡大写真(E-8.6孔 12.0~12.2m)

第1049回審査会合 資料1 P.133 再掲

第1049回審査会合 資料1 P.134 再掲

【E-8.6孔 X線回折チャート 定方位 EG処理】

拡大写真(H-6.4孔 94.5~94.7m)

拡大写真(H-5.7孔 13.1~13.3m)

S-7写真(H-5.7孔)

拡大写真(H-6.5孔 46.2~46.4m)

K-2写真(H-0.9-75孔)

回折チャート

5.3-2-249

第1049回審査会合 資料1 P.140 再掲

【G-1.9-27孔 X線回折チャート 定方位 EG処理】

回折チャート

第1049回審査会合 資料1

【H-1.1孔(白色の鉱物脈) X線回折チャート 定方位 EG処理】

(EG処理も合わせて表示)

5.3-2-253

【H-1.1孔(オリーブ色の鉱物脈) X線回折チャート 定方位(粘土分濃集)】

〇オリーブ色の鉱物脈でXRD分析(粘土分濃集)による結晶構造判定を実施した結果,粘土鉱物(スメクタイト)はI/S混合層であると判定した。

5.3-2-254

K-5写真(G-1.5-35孔)

拡大写真(G-1.5-35孔 40.1~40.3m)

本コアには一部,グラウト影響(白色~灰色)が認められる。

第1049回審査会合 資料1

イライト混合割合

5.3-2-258

5.3-2-259

拡大写真(H--3.0-55孔 78.1~78.3m)

(16) 破砕部と変質鉱物の形成プロセス

破砕部と変質鉱物の形成プロセス –概要–

〇敷地における破砕部及び変質鉱物の形成プロセスについて,薄片観察等の観察事実を踏まえて整理した模式図を以下に示す。

〇現在の固結した破砕部に対応する破砕部は,安山岩形成時に正断層センスの断層活動によって形成され,現在の粘土状破砕部に対応する破砕部は, その後の逆断層センスの断層活動によって形成された。

○変質鉱物は、少なくとも12~13万年前以前に生成した。なお、薄片観察により、Ⅰ/S混合層とその他の変質鉱物の新旧関係として、Ⅰ/S混合層生成後のオ パールCT生成、フィリプサイト生成、砕屑岩脈形成を確認した。

○変質鉱物を確認した位置について,次頁に位置図と表で示す。

○また,断層活動と鉱物脈法による活動性評価に用いた変質鉱物等(I/S混合層,砕屑岩脈)との関係について, 補足資料5.3-2(16) P. 5.3-2-264, 265に模式図で示す。

■破砕部と変質鉱物の形成プロセス(模式図)

第1049回審査会合 資料1 P.488 一部修正

【変質鉱物の確認位置】

紫字:第1073回審査会合以降の追加・変更箇所

鉱物脈法による評価を実施した位置及び変質鉱物の確認位置

5.3-2-263

破砕部と変質鉱物の形成プロセス 一断層活動とI/S混合層の関係-

〇断層活動(最新面)とI/S混合層に関する形成プロセスの模式図を以下に示す。 〇最新活動後に, I/S混合層が生成し,最新面が不連続になった。

・断層活動により最新ゾーン及び最新面が形成された。

・最新活動後に変質を被り,割れ目や岩片等の縁辺部,破砕部に I/S混合層が生成し,最新面が不連続になった。 破砕部と変質鉱物の形成プロセス 一断層活動と砕屑岩脈の関係-

〇断層活動(最新面)と砕屑岩脈に関する形成プロセスの模式図を以下に示す。 〇最新活動後に、I/S混合層が生成し、さらにその後最新面及び最新ゾーン全体を横断して砕屑岩脈が形成した。

解釈	
最新面が形成さ	
目や岩片等の縁 成した。	
 最新ゾーン全体 。	

模式図凡例 最新ゾーン 変質部(1/S混合層) 砕解岩脈 岩片·鉱物片

割れ目

模式図(断層活動) 模式図(I/S混合層の生成) 模式図(砕屑岩脈の形成) 最新ゾーン ↓ 最新面 最新ゾーン ↓ 最新面 最新ゾーン ↓ 最新面 横断する事例 D 0 0 o 0 0 0 0 0 0 0 C 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ō 0 0 0 0 0 0 0 0 0 0 U 0 С 0 0 0

・断層活動により最新ゾーン及び最新面が形成された。

 最新活動後に変質を被り、割れ目や岩片等の縁辺部、破砕部 にI/S混合層が生成した。

全体を横断して砕屑岩脈が形成した。

5.3-2-265

補足資料5.3-3

鉱物脈法に関する調査結果(鉱物組成,運動方向等)

(1) X線回折分析結果

試料採取位置

試料採取位置

試料採取位置図

断層	試料採取位置			
	採取位置(左位置図)	深度	標高	
S-1	a H-6.5-2孔	70.70m	EL -49.50m	
	b H-6.6-1孔	57.25m	EL -37.95m	
	c H-6.7孔	35.10m	EL -19.01m	
	d K−10.3SW7L	27.81m	EL -6.17m	
	e M-12.5"孔	49.96m	EL -21.66m	
S-2•S-6	f K-6.2-2孔	30.94m	EL -19.45m	
	g F-8.5' 孔	8.50m	EL 12.63m	
	h E-8.5-2孔	8.55m	EL 12.66m	
	i E-8.50""孔	111.95m	EL -39.83m	
S-4	j E-8.60孔	104.68m	EL -35.91m	
	k E-11.1SE-2孔	1.65m	EL 19.72m	
S-5	v R-8.1-1-2孔	23.46m	EL -12.38m	
	I R-8.1-1-3孔	22.24m	EL -11.12m	
S-7	m H-5.4-1E孔	24.16m	EL 4.80m	
	n H-5.7' 孔	14.35m	EL -3.26m	
S-8	o F-6.75孔	26.85m	EL -15.76m	
K-2	p H-1.1-87孔	84.30m	EL-77.40m	
	q H-1.1孔	103.62m	EL -96.84m	
	w G-1.5-80孔	77.82m	EL -72.12m	
K-3	r M-2.2孔	48.74m	EL -31.45m	
K-14	s H0.3-80孔	31.65m	EL -27.48m	
	t H'1.3孔	125.58m	EL -121.91m	
K-18	× H-0.2-60孔	84.35m	EL -68.32m	
	u H−0.2−75 7 L	116.75m	EL -108.04m	

XRD分析 測定諸元

装置:理学電気製 MultiFlex	Divergence Slit:1°
Target:Cu(K α)	Scattering Slit:1°
Monochrometer:Graphite 湾曲	Receiving Slit:0.3mm
Voltage:40kV	Scanning Sped:2° $/min$
Current:40mA	Scanning Mode:連続法
Detector:SC	Sampling Range:0.02°
Calculation Mode:cps	Scanning Range:2~61°

粘土状破砕部 S-1 H-6.5-2孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-4 再掲

回折チャート

第1049回審査会合 机上配布資料1 P.5.2-12-5 再掲

粘土状破砕部 S-1 H-6.6-1孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-6 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-7 再掲

粘土状破砕部 S-1 H-6.7孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-8 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-9 再掲

粘土状破砕部 S-1 K-10.3SW孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-10 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-11 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-12 再掲

回折チャート

第1049回審査会合 机上配布資料1 P.5.2-12-13 再掲

(EG処理も合わせて表示)

粘土状破砕部 S-2・S-6 K-6.2-2孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-14 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-15 再掲

粘土状破砕部 S-2•S-6 F-8.5'孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-16 再掲

粘土状破砕部 S-2・S-6 F-8.5'孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-17 再掲

粘土状破砕部 S-2•S-6 E-8.5-2孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-18 再掲

粘土状破砕部 S-2•S-6 E-8.5-2孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-19 再掲

粘土状破砕部 S-4 E-8.50" 孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-20 再掲

回折チャート

第1049回審査会合 机上配布資料1 P.5.2-12-21 再掲

粘土状破砕部 S-4 E-8.60孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-22 再掲

回折チャート

第1049回審査会合 机上配布資料1 P.5.2-12-23 再掲

粘土状破砕部 S-4 E-11.1SE-2孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-24 再掲

(EG処理も合わせて表示)

粘土状破砕部 S-5 R-8.1-1-2孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-26 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-27 再掲

粘土状破砕部 S-5 R-8.1-1-3孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 ______P.5.2-12-28 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-29 再掲

粘土状破砕部 S-7 H-5.4-1E孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-30 再掲

第1049回審査会合 机上配布資料1 P.5.2-12-31 再掲

粘土状破砕部 S-7 H-5.7'孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-32 再掲

粘土状破砕部 S-7 H-5.7'孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-33 再掲

粘土状破砕部 S-8 F-6.75孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-34 再掲

粘土状破砕部 S-8 F-6.75孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-35 再掲

粘土状破砕部 K-2 H-1.1-87孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-36 再掲

回折チャート

粘土状破砕部 K-2 H-1.1-87孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-37 再掲

粘土状破砕部 K-2 H-1.1孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-38 再掲

回折チャート

粘土状破砕部 K-2 H-1.1孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-39 再掲

粘土状破砕部(白色部) K-2 H-1.1孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-40 再掲

回折チャート

第1049回審査会合 机上配布資料1 P.5.2-12-41 再掲

第1073回審査会合 資料2 P.75 再掲

砂状破砕部 K-2 G-1.5-80孔 -X線回折チャート 不定方位-

回折チャート
砂状破砕部 K-2 G-1.5-80孔 -X線回折チャート 定方位 EG処理-

第1073回審査会合 資料2 P.76 再掲

固結した破砕部 K-3 M-2.2孔 −X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-42 再掲

固結した破砕部 K-3 M-2.2孔 −X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-43 再掲

粘土状破砕部 K-14 H--0.3-80孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-44 再掲

回折チャート

粘土状破砕部 K-14 H--0.3-80孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-45 再掲

粘土状破砕部 K-14 H'--1.3孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-46 再掲

回折チャート

第1049回審査会合 机上配布資料1 P.5.2-12-47 再掲

粘土状破砕部 K-18 H-0.2-60孔 -X線回折チャート 不定方位-

2500 Crs:クリストバライト PI :斜長石 Sm:スメクタイト PI Crs Pl 2250 2000 PI 1750 1500 強度(CPS) 1250 PI 1000 PI 750 PI 500 PI Sm PI Sm PIPI 250 PI 0 30 40 50 10 20 60 2θ (deg)

回折チャート

粘土状破砕部 K-18 H-0.2-60孔 -X線回折チャート 定方位 EG処理-

第1073回審査会合 資料2 P.134 再掲

粘土状破砕部 K-18 H-0.2-75孔 -X線回折チャート 不定方位-

第1049回審査会合 机上配布資料1 P.5.2-12-48 再掲

粘土状破砕部 K-18 H-0.2-75孔 -X線回折チャート 定方位 EG処理-

第1049回審査会合 机上配布資料1 P.5.2-12-49 再掲

(2) 条線観察結果

(2)-1 S-1の条線観察結果

<u>S-1の条線観察結果</u>

試料名	走向/傾斜 (走向は真北)	条線の レイク ^{※1}	変位センス (条線観察)							
ボーリングH-6.5-2孔 [深度70.70m]	上盤側	N58° W/74° NE	66°R	(不明)						
ボーリングH-6.6-1孔 [深度57.20m]	下盤側	N66° W/80° NE	71° R	(不明)						
ボーリングM-12.5"孔 [深度50.00m]	上盤側	N51° W/79° NE	65° R	(不明)						

※1 上盤側で確認したレイクは下盤側に換算して示す。

条線観察結果 ボーリングH-6.5-2孔[深度70.70m](上盤側)

観察面写真

詳細観察写真

条線観察結果 ボーリングH-6.6-1孔[深度57.20m](下盤側)

観察面写真

観察面拡大写真

έ細観察範囲

詳細観察写真

・条線のレイクは71°R,変位センスは不明

条線観察結果 ボーリングM-12.5"孔[深度50.00m](上盤側)

・ 条線のレイクは65[°] R(下盤側換算), 変位センスは不明 5 5

(2)-2 S-2·S-6の条線観察結果

S-2-S-6の条線観察結果

試料名		走向/傾斜 (走向は真北)	条線の レイク ^{※1}	変位センス	
ボーリングK-6.1孔 [深度31.50m]	下盤側	N5° E/52° NW	100° R	(不明)	
ボーリングE-8.5-1孔 [深度8.33m]	下盤側	N5° E/51° NW	140°R	左横ずれ逆断層	
ボーリングE-8.5-2孔 [深度8.55m]	上盤側	N8° E/51° NW	105°R 160°R	<pre>(不明)</pre> (不明)	
※1 上盤側で確認したレイ	クは下盤側に	換算して示す。	•		
					 ○ 鉛直ホーリングれ ○ 斜めボーリング孔 □ → 表土はぎ ■ トレンチ
					 岩盤調査坑 試験坑, 斜坑

赤字:条線観察箇所

0 50 100m -----____

位置図

0

条線観察結果 ボーリングK-6.1孔[深度31.50m](下盤側)

第1049回審査会合 机上配布資料1 P.5.2-12-58 再掲

観察面写真

詳細観察写真

・条線のレイクは100°R,変位センスは不明

条線観察結果 ボーリングE-8.5-1孔[深度8.33m](下盤側)

第1049回審査会合 机上配布資料1 P.5.2-12-59 再掲

・条線のレイクは140°R,変位センスは左横ずれ逆断層センス

観察面拡大写真

詳細観察写真

5.3-3-63

観察面写真

条線観察結果 ボーリングE-8.5-2孔[深度8.55m](上盤側)

第1049回審査会合 机上配布資料1 P.5.2-12-60 再掲

観察面写真

観察面拡大写真

・条線のレイクは105°R(下盤側換算),160°R(下盤側換算),それぞれ変位センスは不明

詳細観察写真

5.3-3-64

(2)-3 S-4の条線観察結果

S-4の条線観察結果

試料名		走向/傾斜 (走向は真北)	条線のレイク	変位センス
ボーリングE-8.50'孔 [深度113.10m]	下盤側	N38° E/54° NW	131°R	(不明)
ボーリングE-8.60孔 [深度104.68m]	下盤側	N40° E/58° NW	126°R	左横ずれ逆断層

位置図