補足説明資料5

東海低レベル放射性廃棄物埋設事業所

第二種廃棄物埋設事業許可申請

第二種廃棄物埋設施設の位置、構造及び 設備の基準に関する規則第十三条 (ピット処分又はトレンチ処分に係る廃棄 物埋設地)第1項第三号及び第四号

への適合性について

線量評価パラメータ

2023 年 <mark>1</mark>月 日本原子力発電株式会社

- 1 はじめに.....1
- 2 廃止措置の開始後の評価に用いる線量評価パラメータの分類.1
- 3 廃止措置の開始後の評価に用いる線量評価パラメータの設定13
 - 3.1 科学的に合理的な範囲で設定するパラメータの設定に関する基本的考え方......13

 - 3. 3 施設設計等から設定するパラメータの設定に関する基本的
 考え方......14
 - 3.4 生活様式等により設定するパラメータの設定に関する基本 的考え方......15
- 4 線量評価パラメータ根拠.....16
- 別紙 1 廃棄物埋設地内の充填砂/中間覆土の間隙率の設定根拠について
- 別紙2 廃棄物埋設地内の飽和度の設定根拠について
- 別紙3 通気層高さの設定根拠について
- 別紙4 通気層土壌及び帯水層土壌の間隙率の設定根拠について
- 別紙5 通気層土壌及び帯水層土壌の粒子密度の設定根拠について
- 別紙6 地下水流速の設定根拠について
- 別紙7 帯水層の厚さの設定根拠について
- 別紙8 海水交換水量の設定の考え方について
- 別紙 9 放射性核種 i の海産物 m への濃縮係数の設定根拠について

- 別紙10 海産物及び家庭菜園農産物の摂取量の設定について
- 別紙 11 放射性核種 iの外部被ばく線量換算係数の設定根拠について
- 別紙 12 海面及び漁網からの放射性核種 *i* の外部被ばく線量換算係数 の設定根拠について
- 別紙 13 掘削土壌の希釈係数の設定根拠について
- 別紙 14 居住地での居住時間のうち屋外の活動の割合について
- 別紙 15 農産物の根からの放射性核種の吸収割合の設定根拠について
- 添付資料1 収着分配係数
- 添付資料2 埋設する廃棄物の種類及び放射能量の設定
- <mark>添付資料 3</mark> 主要な放射性物質の選定用パラメータ設定
- 参考資料1 パラメータ設定の変更点について
- 参考資料2 評価パラメータの被ばく線量への影響の程度について

1 はじめに

本資料は、「東海低レベル放射性廃棄物埋設事業所 第二種廃棄物埋設事業 許可申請 第二種廃棄物埋設施設の位置、構造及び設備の基準に関する規則 第十三条(ピット処分又はトレンチ処分に係る廃棄物埋設地)第1項第三号 及び第四号への適合性について」に示す廃止措置の開始後の評価に用いる線 量評価パラメータについて取りまとめたものである。

2 廃止措置の開始後の評価に用いる線量評価パラメータの分類

廃止措置の開始後の評価<mark>に用いる線量評価</mark>パラメータは、処分システムに 基づき設定するパラメータと生活環境に基づき設定するパラメータに大別で きる。

処分システムとは、人工バリア(廃棄物埋設地の構築物であって,廃棄物 埋設地の外への放射性物質の漏出の防止及び低減のための機能を有するもの) 及び天然バリア(廃棄物埋設地の外に漏出した放射性物質の移動を抑制する 機能を有する岩盤等)の組み合わせにより、生活環境への影響を防止又は軽 減するための仕組みをいう。

生活環境とは、人間を含む生物が生息する領域(生物圏)の状況をいう。

処分システムに基づき設定するパラメータは、人工バリア及び天然バリア に期待する機能を評価において適切に反映するためのパラメータと廃棄物埋 設地の位置(生活環境までの距離)及び形状等のパラメータとなる。本パラ メータは、埋設した放射性廃棄物から漏出した放射性物質が生活環境まで移 動する経路のうち、廃棄物埋設地及び周辺の地質環境等の状態を踏まえて設 定するパラメータであり、その設定において、実測値等に基づいて科学的に 合理的な範囲を定めたうえで設定するもの、科学的に合理的な範囲の設定が 行えないことから、想定しうる最大の範囲を考慮して最も保守的となる値に

設定するもの、施設設計等の内容及び根拠となる文献等に基づき値を設定す るものに分類できる。

また、生活環境に基づき設定するパラメータは、廃止措置の開始後の敷地 周辺の生活環境を踏まえて設定するパラメータ及び人間の生活様式等により 設定するパラメータとなる。なお、将来の人間の生活様式等を予測すること は困難であるため、現世代の人間の生活様式に関する情報を基に、敷地及び その周辺の社会環境又はわが国で現在一般的とされる生活様式等を前提とす る。

生活環境に基づき設定するパラメータには,科学的に合理的な範囲の設定 が行えないことから,想定しうる最大の範囲を考慮して最も保守的となる値 に設定するものが含まれる。それらのパラメータの扱いについては,処分シ ステムに基づき設定するパラメータのうち,科学的に合理的な範囲の設定が 行えないことから,想定しうる最大の範囲を考慮して最も保守的となる値に 設定するものと同様の分類として扱う。

以上の考えを前提とし,廃止措置の開始後の評価で用いる評価パラメータ を第1表のとおり分類する。

最も可能性が高い自然事象シナリオ,最も厳しい自然事象シナリオ及び人 為事象シナリオで用いるパラメータについて,第1表で示す分類に従って整 理した結果を第2表及び第3表に示す。

なお、各シナリオの被ばく経路は、以下の通りとなる。

最も可能性が高い自然事象シナリオ

- 「海産物の摂取に伴う内部被ばく(以下「海産物摂取」という。)」
- ・ 「掘削土壌上での居住に伴う外部被ばく及び内部被ばく(以下「居住」 という。)」

 「居住者の家庭菜園により生産する農産物の摂取に伴う内部被ばく (以下「家庭菜園農産物摂取」という。)」

最も厳しい自然事象シナリオ

- · 「海産物摂取」
- 「居住」
- · 「家庭菜園農産物摂取」
- ・ 「漁業に伴う海面活動による外部被ばく(以下「海面活動」という。)」
- ・ 「漁業に伴う漁網整備による外部被ばく(以下「漁網整備」という。)」
- 「地下水を利用して生産される灌漑農産物の摂取に伴う内部被ばく (以下「灌漑農産物摂取」という。)」
- 「地下水を利用した灌漑農作業に伴う外部被ばく及び内部被ばく (以下「灌漑作業」という。)」
- ・「住宅の建設作業に伴う外部被ばく及び内部被ばく(以下「建設作業」 という。)」
- ・ 「井戸水の飲用に伴う内部被ばく(以下「井戸水飲用」という。)」

人為事象シナリオ

- 「廃棄物埋設地底面までを掘削する建設作業に伴う外部被ばく及び 内部被ばく(以下「建設作業(大規模掘削)」という。)」
- 「廃棄物埋設地底面までを掘削した混合土壌の上での居住に伴う外 部被ばく(以下「居住(大規模掘削)」という。)」
- 「廃棄物埋設地底面までを掘削した混合土壌の上での家庭菜園により生産される農産物の摂取に伴う内部被ばく(以下「家庭菜園農産物 摂取(大規模掘削)」という。)」
- 「廃棄物埋設地底面までの掘削作業による覆土の浸透水低減対策喪 失後の廃棄物埋設地から漏出する放射性物質が移動した海での海産

物の摂取に伴う内部被ばく(以下「海産物摂取(浸透水低減対策喪失)」 という。)」

第1表 評価パラメータの分類

分類 番号	大分類	中分類	内容
1)		科学的に合理的な範囲で 設定するパラメータ	天然バリア及び人工バリアの特性等に基づき設定するパラメ ータであり,実測等から適切と考えられる値を設定するもの (例:帯水層土壌の間隙率)
2	処分システムに 基づき設定する パラメータ	科学的に合理的な範囲が定 められないため,想定しうる 最大の範囲を考慮して最も 保守的となる値に設定する パラメータ	現在の知見では、本質的に科学的に合理的な範囲を定められ ないもの(例:廃棄物埋設地からの放射性物質の漏出開始時 期)
3		施設設計等から設定する パラメータ	施設設計等により一意に決定するもの(例:廃棄物埋設地の長 さ)及び文献等に基づき値を設定するもの(例:放射性核種 <i>i</i> の半減期)
4	生活環境に基づき 設定するパラメータ	生活様式等により設定する パラメータ	現在の廃棄物埋設施設周辺の生活環境に基づき値を設定する もの(例:海産物 m の年間摂取量) ただし、本質的に科学的に合理的な範囲が定められないもの を除く(例:灌漑農産物の根からの放射性核種の吸収割合)

No	パラマー 2 百日	分類番号*1			
NO.	ハフメータ項日	1	2	3	4
1	廃棄物埋設地平面積(m ²)			\bigcirc	
2	年間浸透水量 (m ³ / (m ² ・y))			\bigcirc	
3	廃棄物層深さ(m)			\bigcirc	
4	放射性核種 i の半減期 (y)			\bigcirc	
5	廃棄物受入れ時の放射性核種 <i>i</i> の総放射能量(Bq)			\bigcirc	
6	廃棄物埋設地内の充塡砂/中間覆土の体積割合 (-)			0	
7	廃棄物埋設地内の充塡砂/中間覆土の間隙率(-)	$\bigcirc^{\text{*2}}$			
8	廃棄物埋設地内の飽和度(%)	0			
9	廃棄物埋設地内の充填砂/中間覆土の粒子密度 (kg/m ³)	0			
10	廃棄物埋設地内の充填砂/中間覆土の放射性核種 <i>i</i> の収着分配係数(m ³ /kg)	○*³	○*³		
11	分子拡散係数 (m²/y)	$\bigcirc^{st 2}$			
12	通気層高さ (m)	$\bigcirc^{st 2}$			
13	通気層飽和度(%)	0			
14	通気層土壤における放射性核種 <i>i</i> の収着分配係数 (m ³ /kg)	○*³	○*³		
15	通気層土壌の間隙率(-)	0			
16	通気層土壌の粒子密度(kg/m ³)	0			
17	帯水層土壌の間隙率(-)	0			

第2表 評価パラメータの分類結果

No.	パラマー 2 百日		分類番号*1				
NO.	ハウメータ項日	1	2	3	4		
18	地下水流速(m/y)	0					
19	廃棄物埋設地の長さ(m)			\bigcirc			
20	廃棄物埋設地の幅 (m)			\bigcirc			
21	帯水層の厚さ (m)	0					
22	帯水層土壌の粒子密度(kg/m ³)	0					
0.0	帯水層土壌における放射性核種 i の収着分配係数	○ ※ 3	○ ※ 3				
23	(m^3 / kg)	0	0				
24	廃棄物埋設地下流端から海までの距離(m)			\bigcirc			
25	評価海域の海水交換水量 (m ³ /y)				\bigcirc		
26	放射性核種 <i>i の</i> 海産物 <i>m</i> への濃縮係数(m ³ /kg)				\bigcirc		
27	海産物 m の年間摂取量(kg/y)				\bigcirc		
28	評価海域における海産物 m の市場係数(-)				\bigcirc		
00	放射性核種 i の経口摂取内部被ばく線量換算係数	ζ					
29	(Sv∕Bq)						
20	廃棄物埋設地からの放射性物質の漏出開始時期						
30	(y)		0				
0.1	放射性核種 i の吸入内部被ばく線量換算係数				(
51	(Sv∕Bq)				\bigcirc		
20	放射性核種 i の外部被ばく線量換算係数				(
32	((Sv/h) / (Bq/kg))				\bigcirc		
<u>,</u> ,,	海面及び漁網からの放射性核種 i の外部被ばく線				\bigcirc		
33	量換算係数((Sv/h) / (Bq/kg))				\bigcirc		

NT	パラマータ百日		分類番号*1				
NO.	ハウメータ項日	1	2	3	4		
34	海域における漁業の年間実働時間 (h/y)				\bigcirc		
0.5	放射性物質の海水から漁網への移行比						
35	$((Bq/kg) / (Bq/m^3))$				0		
36	漁網整備の年間実働時間 (h/y)				\bigcirc		
37	廃棄物埋設地下流端から水田までの距離(m)			\bigcirc			
38	灌漑土壌への灌漑水量 (m ³ / (m ² ・y))				\bigcirc		
39	灌漑土壌の実効土壌深さ (m)				\bigcirc		
40	灌漑土壌の放射性核種 i の収着分配係数 (m ³ /kg)				\bigcirc		
41	灌漑土壌の間隙率(-)				\bigcirc		
42	灌漑土壌の粒子密度(kg/m ³)				\bigcirc		
43	水田面積 (m ²)				\bigcirc		
44	灌漑農産物の根からの放射性核種の吸収割合(-)		\bigcirc^{*4}				
4.5	土壌から灌漑農産物への放射性核種 i の移行係数				\bigcirc		
45	((Bq/kg-wet 農産物) / (Bq/kg-dry 土壤))				0		
46	灌漑農産物の年間摂取量 (kg/y)				\bigcirc		
47	灌漑農産物の市場係数(-)				\bigcirc		
48	灌漑作業時における放射性核種の遮蔽係数(-)		\bigcirc^{*4}				
49	年間の灌漑作業時間 (h/y)				\bigcirc		
50	灌漑作業時の空気中粉じん濃度(kg/m ³)				\bigcirc		
51	空気中粉じんの灌漑土壌からの粉じんの割合(-)		\bigcirc^{*4}				
52	灌漑作業者の呼吸量(m ³ /h)				\bigcirc		

N -	No. パラメータ項目 廃棄物埋設地下流端から建設作業場所までの距離	分類番号*1			
NO.		1	2	3	4
50	廃棄物埋設地下流端から建設作業場所までの距離		○ * 5		
55	(m)		0		
54	掘削土壌の希釈係数(-)				\bigcirc
55	作業時における放射性核種の遮蔽係数(-)		○*4		
56	年間作業時間 (h/y)				\bigcirc
57	作業時の空気中粉じん濃度(kg/m ³)				\bigcirc
50	空気中粉じんのうち掘削土壌からの粉じんの割合		○ ※ 4		
58	(-)		0		
59	作業者の呼吸量 (m ³ /h)				\bigcirc
60	掘削時期 (y)		\bigcirc^{*4}		
61	廃棄物埋設地下流端から居住地までの距離(m)		$\bigcirc \% 5$		
62	居住時における放射性核種の遮蔽係数(-)		$\bigcirc^{\ast 4}$		
63	年間居住時間 (h/y)				\bigcirc
64	居住時の空気中粉じん濃度(kg/m ³)				0
65	空気中粉じんのうち土壌からの粉じんの割合(-)		$\bigcirc^{\&4}$		
66	居住者の呼吸量 (m³/h)				\bigcirc
	土壌から家庭菜園農産物 k への放射性核種 i の移				
67	行係数				\bigcirc
	((Bq/kg-wet 農産物) / (Bq/kg-dry 土壤))				
60	家庭菜園農産物 k の根からの放射性核種の吸収割				(
08	合 (-)				\bigcirc
69	家庭菜園農産物 k の年間摂取量(kg/y)				0

NT	パラマータ頂日		分類番号*1			
No.	ハノメータ項日	1	2	3	4	
70	家庭菜園農産物 k の市場係数(-)				0	
71	井戸水への放射性核種を含む地下水の混合割合		\sim \times 4			
<mark>/1</mark>	(—)		\bigcirc			
<mark>72</mark>	廃棄物埋設地下流端から井戸までの距離(m)		<mark>○^{* 5}</mark>			
<mark>73</mark>	年間飲料水摂取量(m ³ /y)				\bigcirc	
<mark>74</mark>	年間飲料水中の井戸水からの飲料水の割合(-)		<mark>○^{∦4}</mark>			
<mark>75</mark>	西側トレンチ及び東側トレンチの平面積 (m²)			\bigcirc		
76	西側トレンチ及び東側トレンチ内の充塡砂/中間			\bigcirc		
<mark>70</mark>	覆土の体積割合 (-)			\bigcirc		
<mark>77</mark>	廃棄物層と周辺土壌の混合による希釈係数(-)			\bigcirc		
70	西側トレンチ及び東側トレンチの見かけ密度			\bigcirc		
10	(kg∕m ³))		
70					\bigcirc	
<mark>19</mark>	線量換算係数((Sv/h) / (Bq/kg))					
<mark>80</mark>	浸透水低減対策喪失時の浸透水量 (m ³ / (m ² ・y))				\bigcirc	

該当する分類に「〇」を記載

- ※1 第1表に示す分類
- ※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ
- ※3 核種ごとの分類を第3表に整理
- ※4 生活環境に基づき設定するパラメータであるが、本質的に科学的に 合理的な範囲が定められないため、分類②として整理
- ※5 埋設地からの距離によって決まるパラメータであるが、距離の設定

ができないことから保守的に0として設定したパラメータ

核種	<mark>分類番号</mark> ① ^{*1} (データ取得により設定)	<mark>分類番号</mark> ② ^{*1} (保守的に設定)
H-3		0
C-14		0
C 1 - 36		0
C a -41	0	
C o -60	0	
S r -90	0	
C s -137	0	
E u - 152	0	
E u - 154	0	
全 α	0	

第3表 収着分配係数のうち核種ごとの区分分類

該当する分類に「〇」を記載

※1 第1表に示す分類

3 廃止措置の開始後の評価に用いる線量評価パラメータの設定

評価パラメータを設定するうえでの基本的な考え方をパラメータの分類 (第1表参照)ごとに示す。

また、本考え方を基に評価パラメータを設定した結果を第4表~第16表に 示す。

3.1 科学的に合理的な範囲で設定するパラメータの設定に関する基本的考え 方

埋設した放射性廃棄物からの環境への影響を評価するうえでは,廃棄物埋設 地周辺の条件を利用することが最も科学的に合理的な範囲を設定できると考 えられることから,科学的に合理的な範囲の設定には,廃棄物埋設地周辺で実 施した実測結果等を基に設定することを基本とする。文献により科学的に合理 的な範囲が示される場合は,文献値を用いて科学的に合理的な範囲でパラメー タを設定する。

(1) 最も可能性が高い自然事象シナリオのパラメータの設定

設定した科学的に合理的な範囲の中から確からしい値を評価で使用する 設定値とする。

科学的に合理的な範囲で設定するパラメータは,被ばく線量が現実的な値 となるようにデータの不確かさを踏まえて,平均値等の現実的な(代表性の 高い)値に設定する。なお,廃棄物埋設地内の充填砂/中間覆土の間隙率, 分子拡散係数及び通気層高さについては,以下のように平均値等とは異なる 値の設定値とする。

廃棄物埋設地内の充填砂/中間覆土の間隙率は,実施工における土砂の締 固めが不十分な状態(力学的に安定性が低い状態)を想定し,定めた範囲の 最大値を用いて設定する。

分子拡散係数は,文献で示される地下水温度を基に,自由水中の分子拡散 係数の文献値を用いて設定することから,文献で示される地下水温度のうち 自由水中の分子拡散係数が小さくなる(線量評価において保守的となる)値 を設定する。

通気層高さは,線量評価において保守的となるように,地質環境等の状態 設定を踏まえて設定した地下水位と廃棄物埋設地底面の距離を動水勾配を 考慮して切り下げた値を設定する。

(2) 最も厳しい自然事象シナリオのパラメータの設定

最も可能性が高い自然事象シナリオのパラメータの設定値のうち,被ばく 線量への線量感度が大きいパラメータ又は設定値の不確かさが大きいパラ メータは,線量評価において保守的となる設定値に見直して設定する。

3.2 科学的に合理的な範囲が定められないことから、想定しうる最大の範囲 を考慮して最も保守的となる値に設定するパラメータの設定に関する基本的 考え方

評価パラメータを設定するうえで,将来の状態等は,科学的に合理的と判断 するための情報が不足しており,その範囲を設定することができないパラメー タであることから,評価を行ううえで想定しうる最大の範囲を考慮して最も保 守的となるパラメータを設定する。

3.3 施設設計等から設定するパラメータの設定に関する基本的考え方

廃棄物埋設施設の構造や位置によって決定される評価パラメータについて は、設計値を基にパラメータを設定する。

施設設計の前提ではあるが,廃棄物埋設施設の構造や位置によらない評価パ

ラメータ(放射性核種 i の半減期等)については、国際文献や研究機関の文献 に示される数値等の文献値を基にパラメータを設定する。

3. 4 生活様式等により設定するパラメータの設定に関する基本的考え方

生活環境等により設定するパラメータは、人間活動の不確かさを考慮して予 測することは困難であるため、現世代の人間の生活様式等に関する最新の情報 を基に、過去の情報による傾向や特異点の有無も考慮して敷地及びその周辺の 社会環境又はわが国で現在一般的とされる生活様式を前提とし、ICRP Publication 81、ICRP Publication 101、諸外国事例等の考え方を参考に 合理性、持続可能性及び均一性を持つ一般的な人間活動を想定して設定する。

生活環境等により設定するパラメータのうち,統計的情報や一般的な値とし て文献等から設定可能なパラメータで,一意に定まるパラメータについてはそ の値をパラメータとして設定し,範囲をもって示されているパラメータについ てはその平均値や中央値等の代表的な値から設定する。

地域の特異性があるパラメータについては,廃棄物埋設地周辺の条件を利用 することが最も確からしい生活様式等を想定できると考えられることから,優 先順位を施設周辺の情報,都道府県の情報,全国の情報又は海外を含めた情報 の順として値を設定する。

地域の特異性があるパラメータについては,評価海域の海水交換水量,海産物 m の年間摂取量,評価海域における海産物 m の市場係数,水田面積,灌漑 土壌への灌漑水量,灌漑農産物の年間摂取量,灌漑農産物の市場係数,年間の 灌漑作業時間,掘削土壌の希釈係数,年間居住時間,家庭菜園農産物 k の年間 摂取量,家庭菜園農産物 k の市場係数及び浸透水低減対策喪失時の浸透水量が 該当する。 4 線量評価パラメータ根拠

「東海低レベル放射性廃棄物埋設事業所 第二種廃棄物埋設事業許可申請 第二種廃棄物埋設施設の位置、構造及び設備の基準に関する規則第十三条 (ピット処分又はトレンチ処分に係る廃棄物埋設地)第1項第三号及び第四 号への適合性について」に示す廃止措置の開始後の評価に用いる線量評価パ ラメータ根拠の一覧を第17表に示す。また、線量評価パラメータ根拠の考 え方等の詳細を補足した資料である別紙の一覧を第18表に示す。

第4表 自然事象シナリオの被ばく経路「海産物摂取」の評価パラメータ設定

	<u>+</u>	
- 1	ΠĤ	
	IP.	

		設定		
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5	4×10^{3}	3
2	(m) 年間浸透水量 (m ³ /(m ² ・y))	0.001	0.003	3
3	廃棄物層深さ(m)	2.	9	3
		H - 3 : 1.	23×10^{1}	
		C - 14 : 5.	$70 imes 10^{3}$	
		$C \ 1 \ -36 \ : \ 3.$	01×10^{5}	
		C a -41 : 1.	02×10^{5}	
1	放射性核種 <i>i</i> の半減期 (y)	C o -60 : 5.	27×10^{0}	0
4		Sr -90 : 2.	88×10^{1}	\odot
		C s -137 : 3.	01×10^{1}	
		E u −152 : 1.	35×10^{1}	
		E u - 154 : 8.	59×10^{0}	
		全 <i>α</i> : 2.	41×10^{4}	
		H - 3 : 1.	4×10^{12}	
		C - 14 : 1.	2×10^{10}	
		$C \ 1 \ -36 \ : \ 1.$	8×10^{10}	
	廃棄物受入れ時の放	C a -41 : 3.	4×10^{9}	
5	射性核種 i の総放射能	$C \circ -60 : 1.$	$3 \times 10^{1 \ 1}$	3
Ũ	量 (Ba)	Sr -90 : 1.	7×10^{9}	
		C s -137 : 9.	1×10 ⁸	
		E u - 152 : 5.	5×10^{10}	
		E u - 154 : 2.	5×10^{9}	
		全 <i>α</i> : 1.	4×10 ⁸	
	廃棄物埋設地内の充			
6	塡砂/中間覆土の体	0.	61	3
	積割合(-)			

			設定値		
No.	パラメータ名称	最も可能性	が高い	最も厳しい	分類 ^{※1}
		自然事象シ	ナリオ	自然事象シナリオ	
7	廃棄物埋設地内の充 塡砂/中間覆土の間 隙率(-)		0.	50	①*2
8	廃棄物埋設地内の飽 和度(%)		17		
9	廃棄物埋設地内の充 塡砂/中間覆土の粒 子密度(kg/m ³)		2.	7×10 ³	1
10	廃棄物埋設地内の充 塡砂/中間覆土の放 射性核種 <i>i</i> の収着分配 係数(m ³ /kg)	H-3 : C-14 : C-14 : C -14 : C -14 : C -14 : C -14 : C -150 : C -136 : C -137 : C -	0 0 0.003 0.03 0.03 0.3 0.3 0.3 0.1	$H - 3 : 0$ $C - 14 : 0$ $C 1 - 36 : 0$ $C a - 41 : 0.0003$ $C o - 60 : 0.003$ $S r - 90 : 0.0003$ $C s - 137 : 0.03$ $E u - 152 : 0.03$ $E u - 154 : 0.03$ $\frac{2}{2} \alpha : 0.01$	3 (1)** ³ (2)** ³
11	分子拡散係数(m ² /y)		0.	055	1^{*2}
12	通気層高さ(m)		1.	0	①*2
13	通気層飽和度(%)		17		1
14	通気層土壤における 放射性核種 <i>i</i> の収着分 配係数(m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 0 0 0.003 0.03 0.03 0.3 0.3 0.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)3 (1) ^{** 3} (2) ^{** 3}

		設定値			
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}	
		自然事象シナリオ	自然事象シナリオ		
15	通気層土壌の間隙率 (_)	0.	41	1	
	通気層上撞の粒子溶				
16	選 Kg/m ³)	2.	2. 7×10^{3}		
17	帯水層土壌の間隙率 (-)	0.	0.41		
18	地下水流速(m/y)	49	42	1)	
19	廃棄物埋設地の長さ (m)	60		3	
20	廃棄物埋設地の幅(m)	90		3	
21	帯水層の厚さ(m)	1.8 1.6		1	
22	帯水層土壌の粒子密 度(kg/m ³)	2. 7×10^{3}		1)	
23	帯水層土壌における 放射性核種 <i>i</i> の収着分 配係数(m ³ /kg) 廃棄物埋設地下流端	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$H-3$:0 $C-14$:0 $C \ 1 \ -36$:0 $C \ a \ -41$:0.00003 $C \ o \ -60$:0.001 $S \ r \ -90$:0.00003 $C \ s \ -137$:0.001 $E \ u \ -152$:0.03 $E \ u \ -154$:0.03 $2 \ \alpha$:0.01	①* ³ ②* ³	
24	から海までの距離(m)	400		3	
25	評価海域の海水交換 水量 (m ³ /y)	4.	2×10^{8}	4	

		設定値			
No.	パラメータ名称	最も可能性が高	$\langle v \rangle$	最も厳しい	分類 ^{※1}
		自然事象シナリ	才	自然事象シナリオ	
		魚類			
		H - 3	: 1.0	0×10^{-3}	
		C - 14	: 2.0	0×10^{1}	
		$C \ 1 \ -36$: 6.	0×10^{-5}	
		C a -41	: 2.0	0×10^{-3}	
		C o -60	: 1.0	0×10^{0}	
		S r -90	: 2.	0×10^{-3}	
		C s -137	: 1.0	0×10^{-1}	
		E u −152	: 3.	0×10^{-1}	
		E u −154	: 3.	0×10^{-1}	
		全 α	: 5.0	0×10^{-2}	
		無脊椎動物			
		H - 3	: 1.	0×10^{-3}	
		C - 14	: 2.0	0×10^{1}	
		$C \ 1 \ -36$: 6.	0×10^{-5}	
	放射性核種 <i>i</i> の海産物	C a -41	: 5.0	0×10^{-3}	
26	mへの濃縮係数	C o -60	: 5.0	0×10^{0}	4
	(m^3 / kg)	S r -90	: 2.	0×10^{-3}	
		C s -137	: 3.	0×10^{-2}	
		E u -152	: 7.0	$0 imes 10^{0}$	
		E u -154	: 7.0	0×10^{0}	
		全 α	: 2.	0×10^{1}	
		藻類			
		H - 3	: 1.0	0×10^{-3}	
		C - 14	: 1.	0×10^{1}	
		C $1 - 36$: 5.	0×10^{-5}	
		C a -41	: 6.	0×10^{-3}	
		C o -60	: 1.0	0×10^{0}	
		S r -90	: 1.0	0×10^{-2}	
		C s -137	: 1.0	0×10^{-2}	
		E u -152	: 3.	0×10^{0}	
		E u -154	: 3.	0×10^{0}	
		全 α	: 2.	0×10^{0}	

		設定	定值	
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
	海産物 m の年間摂取	魚類 : 19		
27		無脊椎動物 : 4		4
		藻類 : 4		
		漁業従事者 : 1		
20	計画得域にわける得	農業従事者 : 0.	2	
20		建設業従事者 : 0.	2	(4)
	(-)	居住者 : 0.	2	
		H-3 : 4.	2×10^{-1}	
	放射性核種 <i>i</i> の経口摂 取内部被ばく線量換 算係数(Sv/Bq)	C - 14 : 5.	8×10^{-10}	
		$C \ 1 \ -36 \ : 9.$	3×10^{-10}	
		C a −41 : 1.	9×10^{-10}	
20		$C \circ -60 : 3.$	4×10^{-9}	
29		S r -90 : 3.	1×10^{-8}	(4)
		C s −137 : 1.	3×10^{-8}	
		E u - 152 : 1.4	4×10^{-9}	
		E u - 154 : 2.	0×10^{-9}	
		全α : 2.	5×10^{-7}	
	廃棄物埋設地からの			
30	放射性物質の漏出開	0	50	2
	始時期(y)			

※1 第1表に示す分類

※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ

※3 核種ごとの分類を第3表に整理

		設		
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5	. 4×10 ³	3
2	年間浸透水量 (m ³ / (m ² ・y))	0.001	0.003	3
3	廃棄物層深さ(m)	2	. 9	3
4	放射性核種 <i>i</i> の半減期 (y)	$\begin{array}{cccc} H-3 & : & 1 \\ C-14 & : & 5 \\ C & 1-36 & : & 3 \\ C & a-41 & : & 1 \\ C & o-60 & : & 5 \\ S & r-90 & : & 2 \\ C & s-137 & : & 3 \\ E & u-152 & : & 1 \\ E & u-154 & : & 8 \\ \widehat{\pm} & \alpha & : & 2 \end{array}$	$\begin{array}{c} 23 \times 10^{1} \\ .70 \times 10^{3} \\ .01 \times 10^{5} \\ .02 \times 10^{5} \\ .27 \times 10^{0} \\ .88 \times 10^{1} \\ .01 \times 10^{1} \\ .35 \times 10^{1} \\ .59 \times 10^{0} \\ .41 \times 10^{4} \end{array}$	3
5	廃棄物受入れ時の放射 性核種 <i>i</i> の総放射能量 (Bq)	$\begin{array}{cccc} H-3 & : & 1 \\ C-14 & : & 1 \\ C & 1-36 & : & 1 \\ C & a-41 & : & 3 \\ C & a-41 & : & 3 \\ C & o-60 & : & 1 \\ S & r-90 & : & 1 \\ C & s-137 & : & 9 \\ E & u-152 & : & 5 \\ E & u-154 & : & 2 \\ \pounds & \alpha & : & 1 \end{array}$	$. 4 \times 10^{1 2}$ $. 2 \times 10^{1 0}$ $. 8 \times 10^{1 0}$ $. 4 \times 10^{9}$ $. 3 \times 10^{1 1}$ $. 7 \times 10^{9}$ $. 1 \times 10^{8}$ $. 5 \times 10^{1 0}$ $. 5 \times 10^{9}$ $. 4 \times 10^{8}$	3
6	廃棄物埋設地内の充填 砂/中間覆土の体積割 合(-)	0	. 61	3
7	廃棄物埋設地内の充塡 砂/中間覆土の間隙率 (-)	0	. 50	① ^{* 2}

第5表 自然事象シナリオの被ばく経路「居住」の評価パラメータ設定値

			設定値			
No.	パラメータ名称	最も可能性が	高い	最も厳しい	分類 ^{※1}	
		自然事象シナ	リオ	自然事象シナリオ		
0	廃棄物埋設地内の飽和		17			
0	度(%)		17		Û	
	廃棄物埋設地内の充塡					
9	砂/中間覆土の粒子密		2.	$.7 \times 10^{3}$	1	
	度(kg/m ³)					
		H - 3 :	0	H - 3 : 0		
		C - 14 :	0	C - 14 : 0		
		C 1 - 36 : 0	0	C 1 - 36 : 0		
	廃棄物埋設地内の充塡	Ca-41 :	0.003	C a −41 : 0.0003		
10	砂/中間覆土の放射性	C o -60 :	0.03	C o −60 : 0.003	1^{3}	
10	核種 i の収着分配係数	Sr-90 :	0.003	Sr-90 : 0.0003	② ^{⋇ ₃}	
	(m^3 / kg)	C s - 137 :	0.3	C s −137 : 0.03		
		E u −152 :	0.3	E u −152 : 0.03		
		E u −154 :	0.3	E u −154 : 0.03		
		全α :	0.1	全 <i>α</i> : 0.01		
11	八乙廿廿〇〇 (m^2/m)		0	055	(1) ₩ 2	
11	∬丁加胶床数(Ⅲ/y)		0.	. 055		
12	通気層高さ(m)		1.	. 0	1^{*2}	
13	诵気層飽和度(%)		17			
		H - 3 :	0	H - 3 : 0		
		C - 14 :	0	C - 14 : 0		
		C 1 - 36 : 0	0	C 1 - 36 : 0		
	通気層土壌における放	C a -41 :	0.003	C a -41 : 0.00003		
14	射性核種 <i>i</i> の収着分配	$C \circ -60 : 0$	0.03	$C \circ -60 : 0.001$	$(1)^{\ast 3}$	
	係数 (m ³ /kg)	Sr-90 :	0.003	S r - 90 : 0.00003	(2)** 3	
		C s - 137 : 0	0.3	C s - 137 : 0.001		
		E u - 152 : 0	0.3	E u - 152 : 0.03		
		Eu-154 : 0	0.3	E u - 154 : 0.03		
		全α :	0.1	全 α : 0.01		
15	通気層土壌の間隙率 (-)		0.	. 41	1	
1.0	通気層土壌の粒子密度		0	7×10^3		
10	(kg/m^3)		2.	. (^ 10	(I)	

		設	設定値	
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
17	帯水層土壌の間隙率 (-)	0	. 41	1)
18	地下水流速(m/y)	49	42	1)
19	廃棄物埋設地の長さ (m)	60		3
20	廃棄物埋設地の幅 (m)	90	-	3
21	帯水層の厚さ(m)	1.8	1.6	1
22	帯水層土壌の粒子密度 (kg/m ³)	2	. 7×10 ³	1)
23	帯水層土壌における放 射性核種 <i>i</i> の収着分配 係数 (m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	① ^{* 3} ② ^{* 3}
30	廃棄物埋設地からの放 射性物質の漏出開始時 期(y)	0	50	2
31	放射性核種 <i>i</i> の吸入内 部被ばく線量換算係数 (Sv/Bq)	$H-3 : 4$ $C-14 : 2$ $C 1 - 36 : 7$ $C a - 41 : 9$ $C o - 60 : 1$ $S r - 90 : 3$ $C s - 137 : 4$ $E u - 152 : 4$ $E u - 154 : 5$ $\pounds \alpha : 5$	$.5 \times 10^{-11}$ $.0 \times 10^{-9}$ $.3 \times 10^{-9}$ $.5 \times 10^{-11}$ $.0 \times 10^{-8}$ $.8 \times 10^{-8}$ $.6 \times 10^{-9}$ $.2 \times 10^{-8}$ $.3 \times 10^{-8}$ $.0 \times 10^{-5}$	4

補 5-24

		設定値		
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
		H-3 : 2	$.7 \times 10^{-20}$	
		C - 14 : 7	$.6 \times 10^{-16}$	
		$C \ 1 \ -36$: 1	3×10^{-13}	
	妆钟烨技拜:	C a −41 : 6	$.6 \times 10^{-17}$	
20	成別 住候 催 1 の 2 ト 部 彼	$C \circ -60 : 7$	2×10^{-10}	
32	はく 禄 里 揆 异 休 叙 ((Su / h) / (Pa / lua))	Sr-90 : 1	$.7 \times 10^{-12}$	(4)
	((SV/II)/(DQ/Kg))	C s −137 : 1	5×10^{-10}	
		E u −152 : 3	2×10^{-10}	
		E u −154 : 3	$.6 \times 10^{-10}$	
		全 <i>α</i> : 1	$.7 \times 10^{-12}$	
54	掘削土壌の希釈係数 (-)	0.34		4
<u> </u>		0	50	<u> </u>
60	/ 加利·时·利(Y)	0	50	2
	廃棄物埋設地下流端か			
61	ら居住地までの距離	0		2^{*5}
	(m)			
62	居住時における放射性	1		$\textcircled{2}^{*4}$
02	核種の遮蔽係数(-)	1		2
63	年間居住時間 (h/y)	屋内 : 7,760		(4)
		屋外 : 1,000		
64	居住時の空気中粉じん	屋内 : 5	$\times 10^{-9}$	(4)
	濃度(kg/m ³)	屋外 : 1	$\times 10^{-8}$	
	空気中粉じんの土壌か			
65	らの粉じんの割合	1		2^{*4}
	(-)			
66	居住者の呼吸量	0	. 93	(4)
20	(m ³ /h)			

※1 第1表に示す分類

- ※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ
- ※3 核種ごとの分類を第3表に整理
- ※4 生活環境に基づき設定するパラメータであるが、本質的に科学的に 合理的な範囲が定められないため、分類②として整理
- ※5 埋設地からの距離によって決まるパラメータであるが,距離の設定 ができないことから保守的に0として設定したパラメータ

第6表 自然事象シナリオの被ばく経路「家庭菜園農産物摂取」の評価パラメー

		設定値		
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5	. 4×10 ³	3
2	年間浸透水量 (m ³ /(m ² ・y))	0.001	0.003	3
3	廃棄物層深さ(m)	2	. 9	3
4	放射性核種 <i>i</i> の半減期 (y)	H-3 : 1 $C-14 : 5$ $C 1 - 36 : 3$ $C a - 41 : 1$ $C o - 60 : 5$ $S r - 90 : 2$ $C s - 137 : 3$ $E u - 152 : 1$ $E u - 154 : 8$	$\begin{array}{c} . 23 \times 10^{1} \\ . 70 \times 10^{3} \\ . 01 \times 10^{5} \\ . 02 \times 10^{5} \\ . 27 \times 10^{0} \\ . 88 \times 10^{1} \\ . 01 \times 10^{1} \\ . 35 \times 10^{1} \\ . 59 \times 10^{0} \end{array}$	3
5	廃棄物受入れ時の放射 性核種 <i>i</i> の総放射能量 (Bq)	全 α : 2 H-3 : 1 C-14 : 1 C 1-36 : 1 C a -41 : 3 C o -60 : 1 S r -90 : 1 C s -137 : 9 E u -152 : 5 E u -154 : 2 全 α : 1	$ \begin{array}{r} .41 \times 10^{4} \\ .4 \times 10^{12} \\ .2 \times 10^{10} \\ .8 \times 10^{10} \\ .4 \times 10^{9} \\ .3 \times 10^{11} \\ .7 \times 10^{9} \\ .1 \times 10^{8} \\ .5 \times 10^{10} \\ .5 \times 10^{9} \\ .4 \times 10^{8} \end{array} $	3
6	廃乗物埋設地内の充填 砂/中間覆土の体積割 合(-)	0	. 61	3

タ設定値

			設定値			
No.	パラメータ名称	最も可能:	性が高い	最も厳しい	分類 ^{※1}	
		自然事象	シナリオ	自然事象シナリオ		
7	廃棄物埋設地内の充塡 砂/中間覆土の間隙率 (-)		C). 50	①*2	
8	廃棄物埋設地内の飽和 度(%)		17	7	1	
9	廃棄物埋設地内の充填 砂/中間覆土の粒子密 度(kg/m ³)		2	2. 7×10^{3}	1)	
10	廃棄物埋設地内の充塡 砂/中間覆土の放射性 核種 <i>i</i> の収着分配係数 (m ³ /kg)	H - 3 C - 14 C 1 - 36 C a - 41 C o - 60 S r - 90 C s - 137 E u - 152 E u - 154 $\stackrel{?}{=} \alpha$: 0 : 0 : 0 : 0.003 : 0.03 : 0.3 : 0.3 : 0.3 : 0.1 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	①* ³ ②* ³	
11	分子拡散係数(m ² /y)		С). 055	1^{*2}	
12	通気層高さ(m)		1	0	$(1)^{*2}$	
13	通気層飽和度(%)		17	7	1	
14	通気層土壌における放 射性核種 <i>i</i> の収着分配係 数(m ³ ∕kg)	H-3 C-14 C 1-36 C a -41 C o -60 S r -90 C s -137 E u -152 E u -154 $\hat{2} \alpha$: 0 : 0 : 0 : 0.003 : 0.03 : 0.03 : 0.3 : 0.3 : 0.3 : 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	① ^{** 3} ② ^{** 3}	

		設定	ぎ値 しんしょう しんしょ しんしょ	
No.	パラメータ名称	最も可能性が高い	最も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
15	通気層土壌の間隙率 (-)	0.	. 41	1)
16	通気層土壌の粒子密度 (kg/m ³)	2.	$.7 \times 10^{-3}$	(])
17	帯水層土壌の間隙率 (-)	0.	. 41	1)
18	地下水流速(m/y)	49	42	
19	廃棄物埋設地の長さ (m)	60		3
20	廃棄物埋設地の幅 (m)	90		3
21	帯水層の厚さ (m)	1.8	1.6	1
22	帯水層土壌の粒子密度 (kg/m ³)	2.	$.7 \times 10^{3}$	\bigcirc
23	帯水層土壤における放 射性核種 <i>i</i> の収着分配係 数(m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H-3 : 0 C-14 : 0 C 1-36 : 0 C a -41 : 0.00003 C o -60 : 0.001 S r -90 : 0.00003 C s -137 : 0.001 E u -152 : 0.03 E u -154 : 0.03 $ α α : 0.01 $	①* ³ ②* ³
29	放射性核種 <i>i</i> の経口摂取 内部被ばく線量換算係 数 (Sv∕Bq)	$H-3 : 4$ $C-14 : 5$ $C 1 - 36 : 9$ $C a - 41 : 1$ $C o - 60 : 3$ $S r - 90 : 3$ $C s - 137 : 1$ $E u - 152 : 1$ $E u - 154 : 2$ $\pounds \alpha : 2$	2×10^{-11} 8×10^{-10} 3×10^{-10} 9×10^{-10} 4×10^{-9} 1×10^{-8} 3×10^{-8} 4×10^{-9} 0×10^{-9} 5×10^{-7}	4

No.	パラメータ名称	最も可能性が高い	も厳しい	分類 ^{※1}
		自然事象シナリオ	自然事象シナリオ	
	廃棄物埋設地からの放			
30	射性物質の漏出開始時	0	50	2
	期 (y)			
F 4	掘削土壤の希釈係数		0.04	
54	(-)		0.34	(4)
60	掘削時期(y)	0	50	2^{*4}
	威救を軍当をする。			
61	廃果物理設地下価端/♪ ↓ 民住地までの距離()		0	2^{*5}
	ら店住地よくの距離(m)	TT 0	1.0×100	
	土壌から家庭菜園農産 物 <i>k</i> への放射性核種 <i>i</i> の 移行係数	H=3	1.0×10^{-1}	
		C - 14 :	7.0×10^{-1}	
		$C_{1} - 36$:	$5.0 \times 10^{\circ}$	
		Ca - 41:	3.5×10^{-1}	
67		$C \circ -60$:	8.0×10^{-2}	(4)
	((Ba/kg-wet 農産物)	S r -90 :	3.0×10^{-1}	
	((Eq, Lg, dry, 上库))	C s - 137 :	4.0×10^{-2}	
		E u - 152 :	2.0×10^{-3}	
		E u - 154 :	2.0×10^{-3}	
		<u>全α</u> :	2. 0×10^{-3}	
	家庭菜園農産物kの根か	葉菜 :	0.1	
68	らの放射性核種の吸収	非葉菜 :	0.1	4
	割合 (-)	果実 :	0.1	
	字応茲国典さ物ルの年間	葉菜 :	: 13	
69		非葉菜 :	54	4
)X:収里(Kg/y)	果実 :	15	
	家庭茲周豊産物トの古坦	葉菜 :	0.48	
70	豕 庭 木 図 辰 生 初 ん り 川 场 低 粉 (_)	非葉菜 :	0.27	4
		果実 :	. 1	

※1 第1表に示す分類

- ※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ
- ※3 核種ごとの分類を第3表に整理
- ※4 生活環境に基づき設定するパラメータであるが、本質的に科学的に 合理的な範囲が定められないため、分類②として整理
- ※5 埋設地からの距離によって決まるパラメータであるが,距離の設定 ができないことから保守的に0として設定したパラメータ

第7表 最も厳しい自然事象シナリオの被ばく経路「海面活動」の評価パラメー

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5. 4×10^{3}	3
2	年間浸透水量 (m ³ / (m ² ・y))	0.003	3
3	廃棄物層深さ(m)	2.9	3
4	放射性核種 <i>i</i> の半減期 (y)	$H = 3 \qquad : 1.23 \times 10^{1}$ $C = 14 \qquad : 5.70 \times 10^{3}$ $C = 1 - 36 \qquad : 3.01 \times 10^{5}$ $C = -41 \qquad : 1.02 \times 10^{5}$ $C = -60 \qquad : 5.27 \times 10^{0}$ $S = -90 \qquad : 2.88 \times 10^{1}$ $C = -137 \qquad : 3.01 \times 10^{1}$ $E = u = 152 \qquad : 1.35 \times 10^{1}$ $E = u = 154 \qquad : 8.59 \times 10^{0}$	()
5	廃棄物受入れ時の放射 性核種 <i>i</i> の総放射能量 (Bq)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
6	廃棄物埋設地内の充塡 砂/中間覆土の体積割 合(-)	0.61	3

タ設定値

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
7	廃棄物埋設地内の充塡 砂/中間覆土の間隙率 (-)	0.50	① ^{* 2}
8	廃棄物埋設地内の飽和 度(%)	17	1)
9	廃棄物埋設地内の充填 砂/中間覆土の粒子密 度(kg/m ³)	2. 7×10^{3}	1)
10	廃棄物埋設地内の充塡 砂/中間覆土の放射性 核種 <i>i</i> の収着分配係数 (m ³ /kg)	$H-3$: 0 $C-14$: 0 $C 1 - 36$: 0 $C a - 41$: 0.0003 $C o - 60$: 0.003 $S r - 90$: 0.0003 $C s - 137$: 0.03 $E u - 152$: 0.03 $E u - 154$: 0.03 $\Delta \alpha$: 0.01	① ^{** 3} ② ^{** 3}
11	分子拡散係数(m ² /y)	0.055	1^{*2}
12	通気層高さ (m)	1.0	$(1)^{*2}$
13	通気層飽和度(%)	17	1
14	通気層土壌における放 射性核種 <i>i</i> の収着分配 係数(m ³ /kg)	$H-3 : 0$ $C-14 : 0$ $C - 14 : 0$ $C 1 - 36 : 0$ $C a - 41 : 0.00003$ $C o - 60 : 0.001$ $S r - 90 : 0.00003$ $C s - 137 : 0.001$ $E u - 152 : 0.03$ $E u - 154 : 0.03$ $\pounds \alpha : 0.01$	① ^{*3} ② ^{*3}

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
15	通気層土壌の間隙率 (-)	0.41	1)
16	通気層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1
17	帯水層土壌の間隙率 (-)	0. 41	1
18	地下水流速(m/y)	42	1)
19	廃棄物埋設地の長さ (m)	60	3
20	廃棄物埋設地の幅 (m)	90	3
21	帯水層の厚さ(m)	1.6	1)
22	帯水層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1)
23	帯水層土壌における放 射性核種 <i>i</i> の収着分配 係数 (m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	① ^{*3} ② ^{*3}
24	廃棄物埋設地下流端か ら海までの距離(m)	400	3
25	評価海域の海水交換水 量(m ³ /y)	4. 2×10^{8}	4
30	廃棄物埋設地からの放 射性物質の漏出開始時 期(y)	50	2

No.	パラメータ名称	設定値	分類 ^{※1}
		最も厳しい	
		自然事象シナリオ	
33	海面及び漁網からの放 射性核種 <i>i</i> の外部被ば く線量換算係数 ((Sv/h)/(Bq/kg))	H-3 : $1.4 \times 10^{-1.9}$	4
		C - 14 : 3. 3×10^{-15}	
		C 1 -36 : 2. 2×10 ⁻¹³	
		C a -41 : 3.4×10 ⁻¹⁶	
		C o -60 : 6.8×10^{-10}	
		S r -90 : 2.4×10 ⁻¹²	
		C s -137 : 1.4 \times 10 ⁻¹⁰	
		E u -152 : 3. 3×10^{-10}	
		E u -154 : 3.6 $\times 10^{-10}$	
34	海域における漁業の年	2, 880	4
	間実働時間 (h/y)		

※1 第1表に示す分類

※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ

※3 核種ごとの分類を第3表に整理
第8表 最も厳しい自然事象シナリオの被ばく経路「漁網整備」の評価パラメー

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5. 4×10^{3}	3
2	年間浸透水量 (m ³ / (m ² ・y))	0.003	3
3	廃棄物層深さ(m)	2.9	3
4	放射性核種 <i>i</i> の半減期 (y)	$H-3 : 1.23 \times 10^{1}$ $C-14 : 5.70 \times 10^{3}$ $C 1 - 36 : 3.01 \times 10^{5}$ $C a - 41 : 1.02 \times 10^{5}$ $C o - 60 : 5.27 \times 10^{0}$ $S r - 90 : 2.88 \times 10^{1}$ $C s - 137 : 3.01 \times 10^{1}$ $E u - 152 : 1.35 \times 10^{1}$ $E u - 154 : 8.59 \times 10^{0}$ $\widehat{T} \alpha : 2.41 \times 10^{4}$	3
5	廃棄物受入れ時の放射 性核種 <i>i</i> の総放射能量 (Bq)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
6	廃棄物埋設地内の充塡 砂/中間覆土の体積割 合(-)	0.61	3

タ設定値

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
7	廃棄物埋設地内の充塡 砂/中間覆土の間隙率 (-)	0.50	① ^{*2}
8	廃棄物埋設地内の飽和 度(%)	17	1)
9	廃棄物埋設地内の充填 砂/中間覆土の粒子密 度(kg/m ³)	2. 7×10^{3}	1)
10	廃棄物埋設地内の充塡 砂/中間覆土の放射性 核種 <i>i</i> の収着分配係数 (m ³ /kg)	H-3 : 0 $C-14 : 0$ $C - 14 : 0$ $C 1 - 36 : 0$ $C a - 41 : 0.0003$ $C o - 60 : 0.003$ $S r - 90 : 0.0003$ $C s - 137 : 0.03$ $E u - 152 : 0.03$ $E u - 154 : 0.03$ $a a : 0.01$	①*3 ②*3
11	分子拡散係数(m ² /y)	0.055	1^{*2}
12	通気層高さ(m)	1.0	$(1)^{*2}$
13	通気層飽和度(%)	17	1
14	通気層土壌における放 射性核種 <i>i</i> の収着分配係 数(m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	① ^{*3} ② ^{*3}

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
15	通気層土壌の間隙率 (-)	0.41	1)
16	通気層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1)
17	帯水層土壌の間隙率 (-)	0. 41	1)
18	地下水流速(m/y)	42	1
19	廃棄物埋設地の長さ (m)	60	3
20	廃棄物埋設地の幅 (m)	90	3
21	帯水層の厚さ (m)	1.6	1)
22	帯水層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1)
23	帯水層土壌における放 射性核種 <i>i</i> の収着分配係 数(m ³ /kg)	$H-3 : 0$ $C-14 : 0$ $C - 14 : 0$ $C 1 - 36 : 0$ $C a - 41 : 0.00003$ $C o - 60 : 0.001$ $S r - 90 : 0.00003$ $C s - 137 : 0.001$ $E u - 152 : 0.03$ $E u - 154 : 0.03$ $\pounds \alpha : 0.01$	① ^{*3} ② ^{*3}
24	廃棄物埋設地下流端か ら海までの距離(m)	400	3
25	評価海域の海水交換水 量 (m ³ /y)	4. 2×10 ⁸	4
30	廃棄物埋設地からの放 射性物質の漏出開始時 期(y)	50	2

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
		H-3 : $1.4 \times 10^{-1.9}$	
		C - 14 : 3.3×10^{-15}	
		C 1 -36 : 2. 2×10 ⁻¹³	
	海面及び漁網からの放	C a -41 : $3.4 \times 10^{-1.6}$	
0.0	射性核種 iの外部被ばく	C o -60 : 6.8×10^{-10}	
33	線量換算係数	S r -90 : 2.4×10 ⁻¹²	4
	((Sv∕h) ∕ (Bq∕kg))	C s -137 : 1.4×10^{-10}	
		E u -152 : 3.3×10^{-10}	
		E u -154 : 3.6 $\times 10^{-10}$	
		2α : 7.3×10 ⁻¹²	
	放射性物質の海水から		
35	漁網への移行比	1	4
	((Bq∕kg)∕(Bq∕m ³))		
36	漁網整備の年間実働時	1 020	
	間 (h/y)	1, 920	(4)

※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ

※3 核種ごとの分類を第3表に整理

第9表 最も厳しい自然事象シナリオの被ばく経路「灌漑農産物摂取」の評価パ

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
1	廃棄物埋設地平面積	$E 4 \times 10^3$	
1	(m^2)	5.4 \ 10	(3)
2	年間浸透水量	0,003	3
	$(m^3 / (m^2 \cdot y))$	0.000	
3	廃棄物層深さ(m)	2.9	3
		H-3 : 1.23×10^{1}	
		C - 14 : 5. 70 × 10 ³	
		C 1 -36 : 3. 01 \times 10 ⁵	
	放射性核種 <i>i</i> の半減期 (y)	C a -41 : 1.02×10 ⁵	
4		C o -60 : 5.27 $\times 10^{\circ}$	
4		S r -90 : 2.88×10 ¹	(3)
		C s -137 : 3.01 \times 10 ¹	
		E u -152 : 1.35 \times 10 ¹	
		E u -154 : 8.59 $\times 10^{\circ}$	
		$ \pm \alpha $: 2.41×10 ⁴	
		H-3 : 1.4×10^{12}	
		$C - 14$: 1.2×10^{10}	
		C 1 -36 : 1.8×10 ¹⁰	
	成金崎至した吐の共自	C a -41 : 3.4×10 ⁹	
_	廃 東 物 文 八 れ 時 の 放 射	C o -60 : 1.3 × 10 ¹	
5		S r -90 : 1.7×10 ⁹	3
	(Bq)	C s -137 : 9.1×10 ⁸	
		E u -152 : 5.5 $\times 10^{10}$	
		E u -154 : 2.5 $\times 10^{9}$	
		$ \pm \alpha \qquad : 1.4 \times 10^8 $	
	廃棄物埋設地内の充塡		
6	砂/中間覆土の体積割	0.61	3
	合 (-)		

ラメータ設定値

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
7	廃棄物埋設地内の充塡 砂/中間覆土の間隙率 (-)	0.50	① ^{* 2}
8	廃棄物埋設地内の飽和 度(%)	17	1)
9	廃棄物埋設地内の充填 砂/中間覆土の粒子密 度(kg/m ³)	2. 7×10^{3}	1)
10	廃棄物埋設地内の充塡 砂/中間覆土の放射性 核種 <i>i</i> の収着分配係数 (m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	① ^{* 3} ② ^{* 3}
11	分子拡散係数(m²/y)	0.055	1^{*2}
12	通気層高さ(m)	1.0	1^{*2}
13	通気層飽和度(%)	17	1
14	通気層土壌における放 射性核種 <i>i</i> の収着分配 係数(m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	① ^{*3} ② ^{*3}

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
15	通気層土壌の間隙率	0.41	
15	(-)	0.41	
16	通気層土壌の粒子密度	2.7×10^{3}	
10	(kg∕m ³)	2. 7 ~ 10	Ú
17	帯水層土壌の間隙率	0 41	
11	(-)	0. 11	
18	地下水流速(m/y)	42	(1)
19	廃乗物埋設地の長さ	60	3
	(m)		
20	廃棄物埋設地の幅 (m)	90	3
21	帯水層の厚さ(m)	1.6	
0.0	帯水層土壌の粒子密度	0.5.4103	
22	(kg/m^3)	2. 7×10^{3}	
		H-3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
	二世水 届 十 協 に おけ る 故	C a -41 : 0.00003	
23	市小眉上場における放射性核種;の収差分配	$C \circ -60$: 0.001	1^{*3}
20	新江候催 i の吸信方配 係数 (m^3 / k_σ)	Sr -90 : 0.00003	2^{*3}
	「不刻 (III / Kg)	C s -137 : 0.001	
		E u - 152 : 0.03	
		E u - 154 : 0.03	
		全 α : 0.01	

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
		H-3 : 4.2×10^{-11}	
		C - 14 : 5.8×10 ⁻¹⁰	
		C 1 -36 : 9.3×10 ⁻¹⁰	
	 お射性核種 i の経口摂	C a -41 : 1.9×10^{-10}	
29	版内部被げく線量換算	C o -60 : 3.4×10^{-9}	(4)
20	係数 (Sv / Ba)	S r -90 : 3.1×10^{-8}	
		C s -137 : 1.3×10^{-8}	
		E u -152 : 1.4 $\times 10^{-9}$	
		E u -154 : 2.0 $\times 10^{-9}$	
	廃棄物埋設地からの放		
30	射性物質の漏出開始時	50	2
	期 (y)		
37	廃棄物埋設地下流端か	150	(3)
	ら水田までの距離(m)		
38	灌漑土壌への灌漑水量	2. 1	(4)
	$(m^3 / (m^2 \cdot y))$		
39	灌漑土壌の実効土壌深	0.15	(4)
	さ (m)		
		H-3 : 0	
		C - 14 : 0.002	
		$C \ 1 \ -36 \ : \ 0.\ 00025$	
	灌漑土壌の放射性核種	C a - 41 : 0.11	
40	iの収着分配係数	$C \circ -60 : 0.99$	(4)
	(m^3/kg)	Sr -90 : 0.15	
		C s - 137 : 0.27	
		E u - 152 : 0.65	
		E u - 154 : 0.65	
		<u>全α</u> :110	
41	灌漑土壌の間隙率(-)	0.54	4
42	灌漑土壌の粒子密度	2. 7×10^{3}	4
	(Kg∕m°)		
43	水田面積 (m ²)	7. 1×10^{3}	4

No.	パラメータ名称	設定値	
		最も厳しい	分類 ^{※1}
		自然事象シナリオ	
	灌漑農産物の根からの		
44	放射性核種の吸収割合	1	2^{*4}
	(-)		
		H -3 : 1.0 \times 10 ⁰	
		C - 14 : 7.0×10 ⁻¹	
	上協みと満進曲主協。	C 1 -36 : 5.0×10 ^o	
	土壌から灌漑農産物へ の放射性核種 <i>i</i> の移行 係数 ((Bq/kg-wet 農産物) / (Bq/kg-dry 土壌))	C a -41 : 3.5×10 ⁻¹	
4 5		C o -60 : 4.4 × 10 ⁻³	4
45		S r -90 : 1.9×10^{-1}	
		C s -137 : 7.2 $\times 10^{-2}$	
		E u -152 : 2.0 $\times 10^{-3}$	
		E u -154 : 2.0 $\times 10^{-3}$	
		2α : 1.9×10 ⁻⁵	
4.0	灌漑農産物の年間摂取		
40	量(kg/y)	00	(4)
47		農業従事者 : 1	
	灌漑農産物の市場係数	漁業従事者 : 0.1	
	(-)	建設業従事者 : 0.1	(4)
		居住者 : 0.1	

※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ

※3 核種ごとの分類を第3表に整理

第10表 最も厳しい自然事象シナリオの被ばく経路「灌漑作業」の評価パラメ

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5. 4×10^{3}	3
2	年間浸透水量 (m ³ /(m ² ・y))	0.003	3
3	廃棄物層深さ(m)	2.9	3
4	放射性核種 <i>i</i> の半減期 (y)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
5	廃棄物受入れ時の放射 性核種 <i>i</i> の総放射能量 (Bq)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
6	廃棄物埋設地内の充塡 砂/中間覆土の体積割 合(-)	0.61	3
7	廃棄物埋設地内の充塡 砂/中間覆土の間隙率 (-)	0.50	$(1)^{*2}$

ータ設定値

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
0	廃棄物埋設地内の飽和	17	
8	度(%)	17	(\mathbf{I})
	廃棄物埋設地内の充塡		
9	砂/中間覆土の粒子密	2. 7×10^{3}	\bigcirc
	度(kg/m ³)		
		H - 3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
	廃棄物埋設地内の充塡	C a -41 : 0.0003	
10	砂/中間覆土の放射性	$C \circ -60$: 0.003	①*3
	核種 <i>i</i> の収着分配係数	S r -90 : 0.0003	② ^{** 3}
	(m³∕kg)	C s -137 : 0.03	
		E u - 152 : 0.03	
		E u - 154 : 0.03	
		$ \pm \alpha \qquad : 0.01 $	
11	分子拡散係数(m ² /y)	0.055	$(1)^{*2}$
12	通気層高さ (m)	1.0	1^{*2}
13	通気層飽和度(%)	17	1)
		H-3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
		C a -41 : 0.00003	
14	一 通気増工場におりる放 品価は低:の回差へ可	$C \circ -60$: 0.001	①*3
14	別性核性 l の収有分配 低数 $(m^3/1m)$	S r -90 : 0.00003	2^{*3}
	侨级(III / Kg)	C s -137 : 0.001	
		E u - 152 : 0.03	
		E u - 154 : 0.03	
		全 <i>α</i> : 0.01	
15	通気層土壌の間隙率 (-)	0.41	1
16	通気層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1)

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
17	帯水層土壌の間隙率	0.41	
11	(-)	0. 11	Ū
18	地下水流速(m/y)	42	1
19	廃棄物埋設地の長さ (m)	60	3
20	(m) 廃棄物埋設地の幅(m)	90	(3)
21	帯水層の厚さ (m)	1.6	1
22	帯水層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1
23	帯水層土壌における放 射性核種 <i>i</i> の収着分配 係数(m ³ /kg) 廃棄物埋設地からの放 射性物質の漏出開始時	$H-3 : 0$ $C-14 : 0$ $C - 14 : 0$ $C 1 - 36 : 0$ $C a - 41 : 0.00003$ $C o - 60 : 0.001$ $S r - 90 : 0.00003$ $C s - 137 : 0.001$ $E u - 152 : 0.03$ $E u - 154 : 0.03$ $\frac{2}{2} \alpha : 0.01$	① ^{*3} ② ^{*3}
	期 (y)		
31	放射性核種 <i>i</i> の吸入内 部被ばく線量換算係数 (Sv/Bq)	$H = 3 \qquad : 4.5 \times 10^{-11}$ $C = 14 \qquad : 2.0 \times 10^{-9}$ $C = 1 = 36 \qquad : 7.3 \times 10^{-9}$ $C = -41 \qquad : 9.5 \times 10^{-11}$ $C = -60 \qquad : 1.0 \times 10^{-8}$ $S = r = 90 \qquad : 3.8 \times 10^{-8}$ $C = -137 \qquad : 4.6 \times 10^{-9}$ $E = u = 152 \qquad : 4.2 \times 10^{-8}$ $E = u = 154 \qquad : 5.3 \times 10^{-8}$ $E = u = 154 \qquad : 5.3 \times 10^{-8}$	4

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
		H-3 : 2.7×10^{-20}	
		C - 14 : 7.6 × 10 ⁻¹⁶	
		C 1 -36 : 1.3 \times 10 ⁻¹³	
	お射性技種:の外辺地	C a -41 : 6.6×10 ⁻¹⁷	
20	成別性核性 1 0.25 前彼	C o -60 : 7.2×10 ⁻¹⁰	
34	は、	S r -90 : 1.7×10 ⁻¹²	(4)
	((3v/II)/(Dq/Kg))	C s -137 : 1.5×10^{-10}	
		E u -152 : 3. 2×10^{-10}	
		E u -154 : 3.6 $\times 10^{-10}$	
		2α : 1.7×10 ⁻¹²	
37	廃棄物埋設地下流端か	150	3
57	ら水田までの距離 (m)	150	0
38	灌漑土壌への灌漑水量	9 1	
50	$(m^3 \swarrow (m^2 \cdot y))$	2.1	Ŧ
30	灌漑土壌の実効土壌深	0.15	
00	さ (m)		Ū
		H - 3 : 0	
		C - 14 : 0.002	
		C 1 -36 : 0.00025	
	灌漑土壌の放射性核種 <i>i</i> の収着分配係数 (m ³ /kg)	C a -41 : 0.11	
40		$C \circ -60$: 0.99	
10		S r -90 : 0.15	Ţ
		C s -137 : 0.27	
		E u -152 : 0.65	
		E u - 154 : 0.65	
		全 <i>α</i> : 110	
41	灌漑土壌の間隙率(-)	0.54	4
42	灌漑土壌の粒子密度	2. 7×10^{3}	(4)
	(kg∕m³)		
43	水田面積 (m ²)	7. 1×10^{3}	4
	灌漑作業時における放		
48	射性核種の遮蔽係数	1	2^{*4}
	(-)		

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
10	年間の灌漑作業時間	500	
49	(h∕y)	500	(4)
	灌漑作業時の空気中粉	1×10^{-6}	
50	じん濃度 (kg/m ³)		(4)
	空気中粉じんの灌漑土		
51	壌からの粉じんの割合	1	2^{*4}
	(-)		
52	灌漑作業者の呼吸量	1.0	
	(m ³ /h)	1.2	(4)

※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ

※3 核種ごとの分類を第3表に整理

第11表 最も厳しい自然事象シナリオの被ばく経路「建設作業」の評価パラメ

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5. 4×10^{3}	3
2	年間浸透水量 (m ³ /(m ² ・y))	0.003	3
3	廃棄物層深さ(m)	2.9	3
4	放射性核種 <i>i</i> の半減期 (y)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
5	廃棄物受入れ時の放射 性核種 <i>i</i> の総放射能量 (Bq)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
6	廃棄物埋設地内の充塡 砂/中間覆土の体積割 合(-)	0. 61	3
7	廃棄物埋設地内の充塡 砂/中間覆土の間隙率 (-)	0.50	$(1)^{*2}$

ータ設定値

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
8	廃棄物埋設地内の飽和	17	
0	度(%)	11	<u> </u>
	廃棄物埋設地内の充塡		
9	砂/中間覆土の粒子密	2. 7×10^{3}	1
	度(kg/m ³)		
		H - 3 : 0	
		C - 14 : 0	
		$C \ 1 \ -36 \ : \ 0$	
	廃棄物埋設地内の充塡	C a -41 : 0.0003	
10	砂/中間覆土の放射性	$C \circ -60 : 0.003$	1^{*3}
	核種 i の収着分配係数	S r -90 : 0.0003	2^{*3}
	(m ³ /kg)	C s -137 : 0.03	
		E u -152 : 0.03	
		E u - 154 : 0.03	
		2α : 0.01	
11	分子拡散係数(m ² /y)	0.055	1^{*2}
12	通気層高さ(m)	1.0	1^{*2}
13	通気層飽和度(%)	17	1
		H - 3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
	通気層十確における故	C a -41 : 0.00003	
14	出入信工袋における放 射性核種 i の収差分配	$C \circ -60$: 0.001	1^{3}
11	係数(m ³ / kg)	S r -90 : 0.00003	2^{*3}
		C s -137 : 0.001	
		E u - 152 : 0.03	
		E u - 154 : 0.03	
		$\pm \alpha$: 0.01	
15	通気層土壌の間隙率 (-)	0.41	1)
16	通気層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1)

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
17	帯水層土壌の間隙率 (-)	0. 41	1)
18	地下水流速(m/y)	42	1
19	廃棄物埋設地の長さ (m)	60	3
20	廃棄物埋設地の幅 (m)	90	3
21	帯水層の厚さ (m)	1.6	1)
22	帯水層土壌の粒子密度 (kg/m ³)	2. 7×10^{3}	1)
		H-3 : 0	
		C - 14 : 0	
	帯水層土壌における放 射性核種 <i>i</i> の収差分配	C 1 - 36 : 0	
		C a -41 : 0.00003	
23		$C \circ -60$: 0.001	1^{*3}
10	係数(m ³ /kg)	S r -90 : 0.00003	2^{*3}
	/// (m / 18)	C s -137 : 0.001	
		E u - 152 : 0.03	
		E u - 154 : 0.03	
		$\pm \alpha$: 0.01	
	廃棄物埋設地からの放	50	
30	射性物質の漏出開始時	50	(2)
	刘 (y)	$H-3$ $\cdot 4.5 \times 10^{-11}$	
		$C = 14$: 2 0×10^{-9}	
		$C = 1 - 36$: 7. 3×10^{-9}	
		C a -41 : 9.5×10 ⁻¹¹	
	放射性核種 i の吸入内	C o -60 : 1.0×10^{-8}	
31	部被はく線量換算係数	S r -90 : 3.8×10^{-8}	(4)
	(Sv∕Bq)	C s -137 : 4.6 $\times 10^{-9}$	
		E u -152 : 4.2 $\times 10^{-8}$	
		E u -154 : 5. 3×10^{-8}	
		2α : 5.0×10 ⁻⁵	

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
		H-3 : 2.7×10 ⁻²⁰	
		C - 14 : 7.6 × 10 ⁻¹⁶	
		C 1 -36 : 1. 3×10^{-13}	
	お射性核種;の外部被	C a -41 : 6.6×10 ⁻¹⁷	
32	成初 生候催 1 の 7 時 (依) げく 線 島 協 笛 低 粉	C o -60 : 7. 2×10 ⁻¹⁰	
52	((Sy / h) / (Ba / ka))	S r -90 : 1.7×10 ⁻¹²	Ŧ
	((3V/ II)/ (Dq/ Kg))	C s -137 : 1.5×10^{-10}	
		E u -152 : 3. 2×10^{-10}	
		E u -154 : 3.6 $\times 10^{-10}$	
		$\pm \alpha$: 1.7×10 ⁻¹²	
	廃棄物埋設地下流端か		
53	ら建設作業場所までの	0	2^{*5}
	距離 (m)		
54	掘削土壌の希釈係数 (-)	0.34	4
55	作業時における放射性 核種の遮蔽係数(-)	1	2^{*4}
56	年間作業時間(h/y)	500	(4)
F 7	作業時の空気中粉じん	1 × 10 ⁻⁶	
57	濃度 (kg/m ³)	1×10	4
	空気中粉じんのうち掘		
58	削土壌からの粉じんの	1	2^{*4}
	割合(-)		
50	作業者の呼吸量	1.9	
59	(m ³ /h)	1. 2	4
60	掘削時期 (y)	50	2^{*4}

- ※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ
- ※3 核種ごとの分類を第3表に整理
- ※4 生活環境に基づき設定するパラメータであるが、本質的に科学的に 合理的な範囲が定められないため、分類②として整理
- ※5 埋設地からの距離によって決まるパラメータであるが,距離の設定 ができないことから保守的に0として設定したパラメータ

第12表 最も厳しい自然事象シナリオの被ばく経路「井戸水飲用」の評価パラ

<mark>メータ設定値</mark>

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
1	廃棄物埋設地平面積 (m ²)	5. 4×10^{3}	3
2	年間浸透水量 (m ³ /(m ² ・y))	0.003	3
3	廃棄物層深さ(m)	2.9	3
4	放射性核種 <i>i</i> の半減期 (y)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
5	廃棄物受入れ時の放 射性核種 <i>i</i> の総放射能 量(Bq)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
6	廃棄物埋設地内の充 塡砂/中間覆土の体 積割合(-)	0.61	3
7	廃棄物埋設地内の充 塡砂/中間覆土の間 隙率(-)	0. 50	① ^{*2}

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
0	廃棄物埋設地内の飽	17	
0	和度(%)	17	(I)
	廃棄物埋設地内の充		
9	塡砂/中間覆土の粒	2. 7×10^{3}	(1)
	子密度(kg/m ³)		
		H - 3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
	廃棄物埋設地内の充	C a -41 : 0.0003	
1.0	塡砂/中間覆土の放	$C \circ -60$: 0.003	1^{*3}
10	射性核種 <i>i</i> の収着分配	S r -90 : 0.0003	2^{*3}
	係数(m ³ /kg)	C s -137 : 0.03	
		E u - 152 : 0.03	
		E u - 154 : 0.03	
		$ \pm \alpha : 0.01 $	
11	分子拡散係数(m ² /y)	0.055	1^{*2}
12	通気層高さ(m)	1.0	1^{*2}
13	通気層飽和度(%)	17	\bigcirc
		H-3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
	通気層土ケにおける	C a -41 : 0.00003	
1/	地 気 層 工 褒 に わ り る	$C \circ -60 : 0.001$	$(1)^{*3}$
11	$ m 係 物 (m3 / k \sigma) $	S r -90 : 0.00003	2^{*3}
		C s -137 : 0.001	
		E u -152 : 0.03	
		E u - 154 : 0.03	
		全 α : 0.01	
15	通気層土壌の間隙率 (-)	0. 41	
16	通気層土壌の粒子密 度 (kg/m ³)	2. 7×10^{3}	(])

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
17	帯水層土壌の間隙率 (-)	0.41	1)
18	地下水流速(m/y)	42	1
19	廃棄物埋設地の長さ (m)	60	3
20	廃棄物埋設地の幅 (m)	90	3
21	帯水層の厚さ (m)	1.6	1
22	帯水層土壌の粒子密 度(kg/m ³)	2. 7×10^{3}	1)
23	帯水層土壌における 放射性核種 <i>i</i> の収着分 配係数 (m ³ /kg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	① ^{*3} ② ^{*3}
29	放射性核種 <i>i</i> の経口摂 取内部被ばく線量換 算係数(Sv/Bq)	$H = 3 \qquad : \ 4.\ 2 \times 10^{-1} \ ^{1}$ $C = 14 \qquad : \ 5.\ 8 \times 10^{-1} \ ^{0}$ $C \ 1 = 36 \qquad : \ 9.\ 3 \times 10^{-1} \ ^{0}$ $C \ a = 41 \qquad : \ 1.\ 9 \times 10^{-1} \ ^{0}$ $C \ a = 41 \qquad : \ 1.\ 9 \times 10^{-1} \ ^{0}$ $C \ o = 60 \qquad : \ 3.\ 4 \times 10^{-9}$ $S \ r = 90 \qquad : \ 3.\ 1 \times 10^{-8}$ $C \ s = 137 \qquad : \ 1.\ 3 \times 10^{-8}$ $E \ u = 152 \qquad : \ 1.\ 4 \times 10^{-9}$ $E \ u = 154 \qquad : \ 2.\ 0 \times 10^{-9}$ $\pounds \ \alpha \qquad : \ 2.\ 5 \times 10^{-7}$	4
30	廃棄物埋設地からの 放射性物質の漏出開 始時期(y)	50	2

		設定値	
No.	パラメータ名称	最も厳しい	分類 ^{※1}
		自然事象シナリオ	
	井戸水への放射性核		
71	種を含む地下水の混	1	2^{*4}
	合割合 (-)		
	廃棄物埋設地下流端		
72	から井戸までの距離	0	2^{*5}
	(m)		
79	年間飲料水摂取量	0.6	
73	(m ³ /y)	0.8	4
	年間飲料水中の井戸		
74	水からの飲料水の割	1	2^{*4}
	合 (-)		

※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ

※3 核種ごとの分類を第3表に整理

※4 生活環境に基づき設定するパラメータであるが、本質的に科学的に 合理的な範囲が定められないため、分類②として整理

※5 埋設地からの距離によって決まるパラメータであるが,距離の設定 ができないことから保守的に0として設定したパラメータ

第13表 人為事象シナリオの被ばく経路「建設作業(大規模掘削)」の評価パラ

NT	N°二) 万万千	設定値	八 安元 ※ 1
NO.	ハノノーダ名称	人為事象シナリオ	刀與
3	廃棄物層深さ(m)	2.9	3
		H-3 : 1.23×10 ¹	
		C -14 : 5. 70 \times 10 ³	
		C 1 -36 : 3.01 \times 10 ⁵	
		C a -41 : 1.02×10 ⁵	
4	放射性核種 i の半減期	C o -60 : 5.27 × 10 [°]	3
4	(y)	S r -90 : 2.88×10 ¹	0
		C s -137 : 3.01×10^{1}	
		E u -152 : 1.35 \times 10 ¹	
		E u -154 : 8.59 $\times 10^{\circ}$	
		$ \pm \alpha $: 2. 41×10 ⁴	
		<mark>廃棄物の種類別の総</mark> 放射能量(金属類)	
		H-3 : 5.3×10^{11}	
		C - 14 : 8.6×10 ⁹	
		C 1 -36 : 1.8 \times 10 ¹⁰	
		C o -60 : 1.2×10 ¹	
		S r -90 : 1.5×10^{9}	
		C s -137 : 8.1 \times 10 ⁸	
		$\pm \alpha$: 7.1×10 ⁷	
	廃棄物受入れ時の放射	<mark>廃棄物の種類別の総</mark> 放射能量(コンクリート	
_		類)	0
5		H-3 : 8.2×10^{11}	3
	(Bd)	C - 14 : 2.8 × 10 ⁹	
		C 1 -36 : 4.5 \times 10 ⁸	
		C a -41 : 3.4×10 ⁹	
		C o -60 : 9.7 \times 10 ⁹	
		S r -90 : 1.2×10^8	
		C s -137 : 1.0×10^8	
		E u -152 : 5.5 \times 10 ¹⁰	
		E u -154 : 2.5 \times 10 ⁹	
		$\pm \alpha$: 6.4×10 ⁷	

メータ設定値

No So S	パラノ、カタサ		八兆1
NO.	ノメータ名称	人為事象シナリオ	万 魚
		H-3 : 4.5×10^{-11}	
		C - 14 : 2.0×10 ⁻⁹	
		C 1 -36 : 7.3 $\times 10^{-9}$	
放射性	核種 ; の吸入内	C a -41 : 9.5×10 ⁻¹¹	
31 31 部被ば	く線量換算係数	C o -60 : 1.0×10^{-8}	(4)
	Ba)	S r -90 : 3.8×10^{-8}	
		C s -137 : 4.6×10^{-9}	
		E u -152 : 4.2×10^{-8}	
		E u -154 : 5. 3×10^{-8}	
		H-3 : 2.7×10^{-20}	
		C - 14 : 7.6×10 ⁻¹⁶	
		C 1 -36 : 1. 3×10^{-13}	
放射性	放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h)/(Bq/kg))	C a -41 : 6.6×10 ⁻¹⁷	
32 ばく線		C o -60 : 7.2×10 ⁻¹⁰	(4)
		S r -90 : 1.7×10^{-12}	0
		C s -137 : 1.5×10^{-10}	
		E u -152 : 3.2×10^{-10}	
		E u -154 : 3.6 $\times 10^{-10}$	
		$ \pm \alpha \qquad : 1.7 \times 10^{-12} $	
55 55 核種の	における放射性 遮蔽係数(-)	1	2^{*4}
56 年間作	業時間(h/y)	500	4
57 作業時	の空気中粉じん	1×10^{-6}	(4)
濃度(kg/m ³))
空気中	粉じんのうち掘		
58 削土壌	からの粉じんの、	1	(2)** 4
一 刮谷(
59 [59] ¹¹ F茉石 (m ³ /	の呼吸重 ´h)	1.2	4
60 掘削時	期(y)	50	$(2)^{*4}$
			-

No	パラメータ名称	設定値	八粄※1
NO.		人為事象シナリオ	刀狽
<mark>75</mark>	西側トレンチ及び東側 トレンチの平面積 (m ²)	西側トレンチ : 2.3×10 ³ 東側トレンチ : 3.1×10 ³	3
<mark>76</mark>	西側トレンチ及び東側 トレンチ内の充塡砂/ 中間覆土の体積割合 (-)	西側トレンチ : 0.83 東側トレンチ : 0.45	3
<mark>77</mark>	廃棄物層と周辺土壌の 混合による希釈係数 (-)	西側トレンチ : 0.68 東側トレンチ : 0.63	3
<mark>78</mark>	西側トレンチ及び東側 トレンチの見かけ密度 (kg/m ³)	西側トレンチ : 2.3×10 ³ 東側トレンチ : 1.8×10 ³	3

第14表 人為事象シナリオの被ばく経路「居住(大規模掘削)」の評価パラメー

タ	設定値	
/		

Na	パラメータ名称	設定値	八拓※1
NO.		人為事象シナリオ	ノ邞
3	廃棄物層深さ(m)	2.9	3
		H-3 : 1.23×10 ¹	
		C - 14 : 5. 70 × 10 ³	
		C 1 -36 : 3. 01 \times 10 ⁵	
		C a -41 : 1.02×10 ⁵	
1	放射性核種 i の半減期	C o -60 : 5.27 $\times 10^{\circ}$	\bigcirc
4	(y)	S r -90 : 2.88×10 ¹	3
		C s -137 : 3.01×10^{1}	
		E u -152 : 1.35 \times 10 ¹	
		E u -154 : 8.59 $\times 10^{\circ}$	
		$\pm \alpha$: 2.41×10 ⁴	
		<mark>廃棄物の種類別の総</mark> 放射能量(金属類)	
	廃棄物受入れ時の放射 性核種 <i>i</i> の総放射能量 (Ba)	H-3 : 5.3×10^{11}	
		C - 14 : 8.6×10 ⁹	
		C 1 -36 : 1.8×10 ¹⁰	
		C o -60 : 1.2×10 ¹	
		S r -90 : 1.5 \times 10 ⁹	
		C s -137 : 8.1 \times 10 ⁸	
		$\pm \alpha$: 7.1×10 ⁷	
		<mark>廃棄物の種類別の総</mark> 放射能量(コンクリート	
5		類)	3
0		H-3 : 8.2×10^{11}	
		C - 14 : 2.8 × 10 ⁹	
		C 1 -36 : 4.5 \times 10 ⁸	
		C a -41 : 3.4×10 ⁹	
		C o -60 : 9.7 \times 10 ⁹	
		S r -90 : 1.2×10^8	
		C s -137 : 1.0×10^8	
		E u -152 : 5.5 \times 10 ¹⁰	
		E u -154 : 2.5 $\times 10^{9}$	
60	掘削時期 (y)	50	2^{*4}

Na	パラノ、カタサ	設定値	八拓※1
NO.	ハノメータ名称	人為事象シナリオ	7
62	居住時における放射性 核種の遮蔽係数(-)	1	② ^{**4}
63	年間居住時間 (h/y)	屋外 : 1,000	4
<mark>75</mark>	西側トレンチ及び東側 トレンチの平面積 (m ²)	西側トレンチ : 2.3×10 ³ 東側トレンチ : 3.1×10 ³	3
<mark>76</mark>	西側トレンチ及び東側 トレンチ内の充塡砂/ 中間覆土の体積割合 (-)	西側トレンチ : 0.83 東側トレンチ : 0.45	3
<mark>77</mark>	廃棄物層と周辺土壌の 混合による希釈係数 (-)	西側トレンチ : 0.68 東側トレンチ : 0.63	3
<mark>78</mark>	西側トレンチ及び東側 トレンチのみかけ密度 (kg/m ³)	西側トレンチ : 2.3×10 ³ 東側トレンチ : 1.8×10 ³	3
<mark>79</mark>	大規模掘削(居住)時の 放射性核種 <i>i</i> の外部被 ばく線量換算係数 ((Sv/h)/(Bq/kg))	$H-3 : 0$ $C-14 : 1.9 \times 10^{-17}$ $C 1 - 36 : 2.7 \times 10^{-14}$ $C a - 41 : 0$ $C o - 60 : 2.7 \times 10^{-10}$ $S r - 90 : 4.1 \times 10^{-13}$ $C s - 137 : 4.2 \times 10^{-11}$ $E u - 152 : 1.1 \times 10^{-10}$ $E u - 154 : 1.3 \times 10^{-10}$ $\widehat{a} \alpha : 2.6 \times 10^{-14}$	4

第15表 人為事象シナリオの被ばく経路「家庭菜園農産物摂取(大規模掘削)」

Na No DAtt		設定値	八 #云※1
NO.	ハノメータ名称	人為事象シナリオ	刀規
3	廃棄物層深さ(m)	2.9	3
		H-3 : 1.23×10^{1}	
		C - 14 : 5. 70 × 10 ³	
		C 1 -36 : 3. 01 \times 10 ⁵	
		C a -41 : 1.02×10 ⁵	
4	放射性核種 i の半減期	C o -60 : 5.27 $\times 10^{0}$	\bigcirc
4	(y)	S r -90 : 2.88×10 ¹	3
		C s -137 : 3. 01 $\times 10^{1}$	
		E u -152 : 1.35 \times 10 ¹	
		E u -154 : 8.59 $\times 10^{\circ}$	
		$ \pm \alpha $: 2. 41×10 ⁴	
		<mark>廃棄物の種類別の総</mark> 放射能量(金属類)	
		H-3 : 5.3×10 ¹¹	
	廃棄物受入れ時の放射	C - 14 : 8.6×10 ⁹	
		C 1 -36 : 1.8×10 ¹⁰	
		C o -60 : 1.2×10 ¹	
		S r -90 : 1.5×10 ⁹	
		C s -137 : 8.1×10 ⁸	
		2α : 7.1×10 ⁷	
		<mark>廃棄物の種類別の総</mark> 放射能量(コンクリート	
5	<u></u> 歴来初文八和時の放射 性核種 ; の終故射能量	類)	3
0		H-3 : 8. 2×10^{11}	0
		C - 14 : 2.8 × 10 ⁹	
		C 1 -36 : 4.5 \times 10 ⁸	
		C a -41 : 3.4×10 ⁹	
		C o -60 : 9.7×10 ⁹	
		S r -90 : 1.2×10 ⁸	
		C s -137 : 1.0×10^8	
		E u -152 : 5.5 $\times 10^{10}$	
		E u -154 : 2.5 $\times 10^{9}$	
		2α : 6.4×10 ⁷	

の評価パラメータ

NT	パラメータ名称		設定値	八 * 王 ※ 1
No.		人為	事象シナリオ	分類
		H-3	: 4. 2×10^{-11}	
		C - 14	: 5.8×10 ⁻¹⁰	
		$C \ 1 \ -36$: 9.3 × 10 ⁻¹⁰	
	七山地大任・の辺っ相	C a −41	: 1.9×10^{-10}	
0.0	成射性核種 <i>1</i> の栓口弦	C o -60	: 3. 4×10^{-9}	
29	取り部彼はく緑重換鼻	S r -90	: 3.1×10^{-8}	(4)
	係毅(Sv/Bq)	C s -137	: 1.3×10^{-8}	
		E u - 152	: 1.4×10^{-9}	
		E u -154	: 2.0×10^{-9}	
		全 α	: 2.5×10 ⁻⁷	
60	掘削時期 (y)		50	2^{*4}
		H-3	$\cdot 1.0 \times 10^{0}$	
		C = 14	$. 7.0 \times 10^{-1}$	
	土壌から家庭菜園農産 物 k への放射性核種 i の移行係数 ((Bq/kg-wet 農産物) / (Bq/kg-dry 土壌))	$C_{1} = 36$	$: 5.0 \times 10^{0}$	
		$C_1 = 30$ $C_2 = 41$	3.5×10^{-1}	
		Ca = 41	3.3×10^{-2}	
67		c = 0	$. 3.0 \times 10^{-1}$	4
		$C_{0} = 137$	$. 3.0 \times 10^{-2}$	
		C = 157	$. 4.0 \times 10^{-3}$	
		E u = 152	2.0×10^{-3}	
		E u −154	2.0×10^{-3}	
	安広支国典 立物 1の相	<u>主 (</u>	. 2. 0 \ 10	
69	多 成 米 図 長 座 初 K の 似 か こ の な 射 歴 技 毎 の 吸	朱米 北井芬	. 0. 1	
08	からの成別性核性の奴	· · · · · · · · · · · · · · · · · · ·	: 0.1	(4)
	収割合 (一)	禾夫	: 0.1	
60	家庭菜園農産物 k の年	果米	: 13	
69	間摂取量 (kg/y)	非 果 采	: 54	(4)
		朱美	: 15	
	家庭菜園農産物 k の市	業采	: 0.48	
70	場係数(一)	非葉采	: 0.27	(4)
		果実	: 1	
	四側トレンチ及び東側	西側トレンチ	: 2. 3×10^{3}	
<mark>75</mark>	トレンナの半面積	東側トレンチ	: 3.1×10^{3}	(3)
	(m^2)			

N.	い ニュー カタサ	設定値	八 #云※1
NO.	ハフメータ名称	人為事象シナリオ	分類 ~ ~
	西側トレンチ及び東側		
76	トレンチ内の充塡砂/	西側トレンチ : 0.83	0
<mark>70</mark>	中間覆土の体積割合	東側トレンチ : 0.45	3
	(-)		
	廃棄物層と周辺土壌の	西側トレンチ ・0.69	
<mark>77</mark>	混合による希釈係数		3
	(-)	東側トレンク : 0.03	
	西側トレンチ及び東側	西側しいンチ ・9.9×10 ³	
<mark>78</mark>	トレンチの見かけ密度	四個トレング : 2.3×10 声側 しい ング : 1.0×10^3	3
	(kg∕m ³)	東側トレンナ : 1.8×10°	

第16表 人為事象シナリオの被ばく経路「海産物摂取(浸透水低減対策喪失後)」

No.	パラメータ名称	設定値	分類※1
1101		人為事象シナリオ	<i>73 / </i>
1	廃棄物埋設地平面積 (m^2)	5. 4×10^{3}	3
3	廃棄物層深さ(m)	2.9	3
4	放射性核種 <i>i</i> の半減期 (y)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
5	廃棄物受入れ時の放 射性核種 <i>i</i> の総放射能 量(Bq)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3
6	廃棄物埋設地内の充 塡砂/中間覆土の体 積割合(-)	0.61	3
7	廃棄物埋設地内の充 塡砂/中間覆土の間 隙率(-)	0.50	① ^{*2}
8	廃棄物埋設地内の飽 和度(%)	17	1

の評価パラメータ設定値

N	パラメータ名称	設定値	八 #云※1
No.		人為事象シナリオ	分類
	廃棄物埋設地内の充		
9	塡砂/中間覆土の粒	2. 7×10^{3}	\bigcirc
	子密度(kg/m ³)		
		H - 3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
	廃棄物埋設地内の充	C a -41 : 0.003	
10	塡砂/中間覆土の放	$C \circ -60$: 0.03	1^{*3}
	射性核種 <i>i</i> の収着分配	S r -90 : 0.003	2^{*3}
	係数(m ³ /kg)	C s -137 : 0.3	
		E u -152 : 0.3	
		E u - 154 : 0.3	
11	分子拡散係数(m ² /y)	0.055	1^{*2}
12	通気層高さ(m)	1.0	1^{*2}
13	通気層飽和度(%)	17	
		H-3 : 0	
		C - 14 : 0	
		C 1 - 36 : 0	
	通気層土撞における	C a -41 : 0.003	
14	地 気 層 工 壊 に わ け る	$C \circ -60 : 0.03$	1^{*3}
14		S r -90 : 0.003	2^{*3}
		C s -137 : 0.3	
		E u -152 : 0.3	
		E u - 154 : 0.3	
		全 α : 0.1	
15	通気層土壌の間隙率 (-)	0. 41	1)
16	通気層土壌の粒子密 度(kg/m ³)	2. 7×10^{3}	
17	帯水層土壌の間隙率 (-)	0. 41	1)

No	パラメータ名称	設定値	分類※1
110.		人為事象シナリオ	
18	地下水流速(m/y)	49	1)
19	廃棄物埋設地の長さ (m)	60	3
20	廃棄物埋設地の幅 (m)	90	3
21	帯水層の厚さ (m)	1.8	1
22	帯水層土壌の粒子密 度(kg/m ³)	2. 7×10^{3}	1)
23	帯水層土壌における 放射性核種 <i>i</i> の収着分 配係数(m ³ /kg)	H - 3 : 0 C - 14 : 0 C 1 - 36 : 0 C a - 41 : 0.003 C o - 60 : 0.3 S r - 90 : 0.003 C s - 137 : 0.3 E u - 152 : 0.3 E u - 154 : 0.3 $\Delta \alpha : 0.1$	① ^{*3} ② ^{*3}
24	廃棄物埋設地下流端 から海までの距離(m)	400	3
25	評価海域の海水交換 水量 (m ³ /y)	4. 2×10^{8}	4

No	white both		設定値	八 *云※1
No.	ハフメータ名称	人為	為事象シナリオ	分類
		魚類		
		H - 3	$: 1.0 \times 10^{-3}$	
		C - 14	: 2.0×10^{1}	
		$C \ 1 \ -36$: 6. 0×10^{-5}	
		C a -41	: 2.0×10^{-3}	
		C o -60	: 1.0×10^{0}	
		S r -90	$: 2.0 \times 10^{-3}$	
		C s -137	$: 1.0 \times 10^{-1}$	
		E u - 152	: 3.0×10^{-1}	
		E u - 154	: 3.0×10^{-1}	
		全α	: 5. 0×10^{-2}	
		無脊椎動物		
		H - 3	$: 1.0 \times 10^{-3}$	
		C - 14	: 2.0×10^{1}	
	放射性核種 <i>i</i> の海産物 <i>m</i> への濃縮係数 (m ³ /kg)	$C \ 1 \ -36$: 6. 0×10^{-5}	
		C a -41	: 5. 0×10^{-3}	
26		С о — 60	: 5.0 \times 10 ⁰	4
		S r -90	$: 2.0 \times 10^{-3}$	
		C s -137	: 3.0×10^{-2}	
		E u - 152	: 7.0 \times 10 ⁰	
		E u - 154	: 7.0 \times 10 ⁰	
		全α	: 2.0×10^{1}	
		藻類		
		H - 3	$: 1.0 \times 10^{-3}$	
		C - 14	: 1.0×10^{1}	
		$C \ 1 \ -36$: 5. 0×10^{-5}	
		C a -41	: 6. 0×10^{-3}	
		C o -60	$: 1.0 \times 10^{0}$	
		S r -90	$: 1.0 \times 10^{-2}$	
		C s -137	$: 1.0 \times 10^{-2}$	
		E u -152	: 3.0×10^{0}	
		E u - 154	: 3.0×10^{0}	
		全α	: 2. 0×10^{0}	
		魚類	: 19	
27		無脊椎動物	: 4	4
	量(kg/y)	藻類	: 4	

補 5-67

NT	パラメータ名称	設定値	八 #王 ※ 1
No.		人為事象シナリオ	分類
	評価海域における海		
28	産物 m の市場係数 (一)	居住者 : 0.2	(4)
		H-3 : $4.2 \times 10^{-1.1}$	
		C - 14 : 5.8 × 10 ⁻¹⁰	
	放射性核種 <i>i</i> の経口摂 取内部被ばく線量換 算係数 (Sv/Bq)	C 1 -36 : 9.3 \times 10 ⁻¹⁰	
		C a -41 : 1.9×10^{-10}	
20		C o -60 : 3.4×10^{-9}	
29		S r -90 : 3.1×10^{-8}	(4)
		C s -137 : 1.3×10^{-8}	
		E u -152 : 1.4 \times 10 ⁻⁹	
		E u -154 : 2.0 $\times 10^{-9}$	
		2α : 2.5×10 ⁻⁷	
	廃棄物埋設地からの		
30	放射性物質の漏出開	50	2
	始時期(y)		
	浸透水低減対策喪失		
<mark>80</mark>	時の浸透水量	1.4	4
	$(m^3 / (m^2 \cdot y))$		

※2 分類①のうち、平均値で設定せず保守的に設定したパラメータ

※3 核種ごとの分類を第3表に整理

以上

No.	パラメータ名称(単位)
1	廃棄物埋設地平面積 (m ²)
2	年間浸透水量 (m ³ / (m ² ・y))
3	廃棄物層深さ(m)
4	放射性核種 i の半減期 (y)
5	廃棄物受入れ時の放射性核種 i の総放射能量(Bq)
6	廃棄物埋設地内の充塡砂/中間覆土の体積割合(-)
7	廃棄物埋設地内の充塡砂/中間覆土の間隙率(-)
8	廃棄物埋設地内の飽和度(%)
9	廃棄物埋設地内の充填砂/中間覆土の粒子密度(kg/m ³)
10	廃棄物埋設地内の充塡砂/中間覆土の放射性核種 i の収着分配係数(m ³ /kg)
11	分子拡散係数 (m ² /y)
12	通気層高さ (m)
13	通気層飽和度(%)
14	通気層土壌における放射性核種 i の収着分配係数 (m ³ /kg)
15	通気層土壌の間隙率(-)
16	通気層土壌の粒子密度(kg/m ³)
17	帯水層土壌の間隙率(-)
18	地下水流速 (m/y)
19	廃棄物埋設地の長さ (m)
20	廃棄物埋設地の幅 (m)
21	帯水層の厚さ (m)
22	帯水層土壌の粒子密度(kg/m ³)
23	帯水層土壌における放射性核種 i の収着分配係数 (m ³ /kg)
24	廃棄物埋設地下流端から海までの距離(m)
25	評価海域の海水交換水量 (m ³ /y)
26	放射性核種 i の海産物 m への濃縮係数 (m^3 / kg)
27	海産物 m の年間摂取量 (kg/y)
28	評価海域における海産物 m の市場係数(-)
29	放射性核種 i の経口摂取内部被ばく線量換算係数 (Sv/Bq)
30	廃棄物埋設地からの放射性物質の漏出開始時期(y)
31	放射性核種 i の吸入内部被ばく線量換算係数 (Sv/Bq)
32	放射性核種 i の外部被ばく線量換算係数 ((Sv/h) / (Bq/kg))
33	海面及び漁網からの放射性核種 i の外部被ばく線量換算係数((Sv/h)/(Bq/kg))
34	海域における漁業の年間実働時間 (h/y)

第17表 線量評価パラメータ根拠
No.	パラメータ名称(単位)
35	放射性物質の海水から漁網への移行比((Bq/kg) / (Bq/m ³))
36	漁網整備の年間実働時間 (h/y)
37	廃棄物埋設地下流端から水田までの距離(m)
38	灌漑土壌への灌漑水量 (m ³ / (m ² ・y))
39	灌漑土壌の実効土壌深さ (m)
40	灌漑土壌の放射性核種 i の収着分配係数(m ³ /kg)
41	灌漑土壌の間隙率(-)
42	灌漑土壌の粒子密度(kg/m ³)
43	水田面積 (m ²)
44	灌漑農産物の根からの放射性核種の吸収割合 (-)
45	土壌から灌漑農産物への放射性核種iの移行係数
40	((Bq/kg-wet 農産物) / (Bq/kg-dry 土壤))
46	灌漑農産物の年間摂取量 (kg/y)
47	灌漑農産物の市場係数(-)
48	灌漑作業時における放射性核種の遮蔽係数(-)
49	年間の灌漑作業時間(h/y)
50	灌漑作業時の空気中粉じん濃度 (kg/m ³)
51	空気中粉じんの灌漑土壌からの粉じんの割合(-)
52	灌漑作業者の呼吸量 (m ³ /h)
53	廃棄物埋設地下流端から建設作業場所までの距離(m)
54	掘削土壌の希釈係数(-)
55	作業時における放射性核種の遮蔽係数(-)
56	年間作業時間 (h/y)
57	作業時の空気中粉じん濃度 (kg/m ³)
58	空気中粉じんのうち掘削土壌からの粉じんの割合(-)
59	作業者の呼吸量 (m ³ /h)
60	掘削時期(y)
61	廃棄物埋設地下流端から居住地までの距離(m)
62	居住時における放射性核種の遮蔽係数(-)
63	年間居住時間(h/y)
64	居住時の空気中粉じん濃度 (kg/m ³)
65	空気中粉じんの土壌からの粉じんの割合(-)
66	居住者の呼吸量 (m ³ /h)
67	土壌から家庭菜園農産物 k への放射性核種 i の移行係数
01	((Bq/kg-wet 農産物) / (Bq/kg-dry 土壤))

No.	パラメータ名称(単位)
68	家庭菜園農産物 k の根からの放射性核種の吸収割合(-)
69	家庭菜園農産物 k の年間摂取量(kg/y)
70	家庭菜園農産物 k の市場係数(-)
<mark>71</mark>	井戸水への放射性核種を含む地下水の混合割合(-)
<mark>72</mark>	廃棄物埋設地下流端から井戸までの距離(m)
<mark>73</mark>	<mark>年間飲料水摂取量(m³/y)</mark>
<mark>74</mark>	年間飲料水中の井戸水からの飲料水の割合(-)
<mark>75</mark>	西側トレンチ及び東側トレンチの平面積 (m ²)
<mark>76</mark>	西側トレンチ及び東側トレンチ内の充塡砂/中間覆土の体積割合(-)
<mark>77</mark>	廃棄物層と周辺土壌の混合による希釈係数(-)
<mark>78</mark>	西側トレンチ及び東側トレンチの見かけ密度(kg/m ³)
70	大規模掘削(居住)時の放射性核種 i の外部被ばく線量換算係数
<u>79</u>	((Sv∕h) ∕ (Bq∕kg))
<mark>80</mark>	浸透水低減対策喪失時の浸透水量 (m ³ / (m ² ・y))

パラメータ	名称			単位
No. 1		m²		
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	5. 4×10^{3}			
設定根拠	 ・廃棄物埋 で「区面の」 西町の」 西側側設 一座東地 一座東物 一座東 一座東 一座東 4 4 (1) (1)	設地平面積は、埋 た結果から設定した 面積=南北方向の =15.1 m×8.5 =128.35 m ² シチ全区画数:18 シチ全区画数:24 シチ全区画数=18 設地平面積=1 区 =128.3 =5,39 有効数字2桁となる た。	役トレンチの1区画 た。 区画長さ×東西方向 0 m 区画 区画 区画+24区画=42 町の面積×埋設トレ 35 m ² ×42区画 0.7 m ² 5ように四捨五入し	前の面積×区画数 前の区画長さ シンチ全区画数 した 5.4×10 ³ m ²
備考				
文献				

パラメータ		名称		単位
No. 2		$m^3 \swarrow (m^2 \cdot y)$		
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	最も可能性 最も厳しい	が高い自然事象: 自然事象 :	0. 001 0. 003	
設定根拠	・放棄等層側地たナで二葉物(二期のを部質二リは次物理とうなが、「「「「「」」では、な物理とので、「「」」では、なり、「「」」では、ないので、「」」では、ないので、「」」では、ないので、「」」では、ないの	度が比較的高い埋 地の外へ容易に漏 を低減するための し,放射性物質の初 水性覆土及び 優立なび でです。 なの状態設定及び 浸透流解析の結果。 は 0.001 m ³ /(m ² 3 m ³ /(m ² ・y) 透流解析の詳細にで 事業所 第二種廃 の位置、構造及び 処分又はトレンチタ 第四号への適合性の	設直後の段階が 出する状況に至 側部を低減による。 にまる。 大学の地理の構成でする。 大学のでは、「東洋 ののでは、「東洋 ののでは、「東洋 ののので」を参加 たっいて」を参加	ら放射性物質が廃 らないように雨水 土及び低透水性土 浸透水の低減対策, 水態設定を踏まえ たが高い自然事象シ りオ 再低レベル放射性廃 可申請第二種廃棄 引する規則第十三条 物理設地)第1項第 品。
備考				
文献				

パラメータ		単位		
No. 3		m		
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	2.9			
設定根拠	 ・埋まする) ・埋まする) ・埋すすながって、 ・埋すすながって、 ・すながって、 ・ しここない ・ ないののが値 ・ ないのののののののののの ・ ないのののののののののののののののののののののののののののののののののののの	廃棄物は,鉄箱に収 スチックシートにこ が,これらの容器等 の廃棄物に含いて、 の容乗物に合いて、 を想したす物に含まれる。 を想した、 を想した、 で、 たまがので、 たまがので、 で、 たまで、 の で、 たまで、 で、 たた、 で、 たまで、 で、 たた、 で、 たたで、 で、 たたで、 で、 たたで、 で、 たたで、 で、 たたで、 で、 で、 たたで、 で、 たたで、 で、 で、 たたで、 で、 で、 たたで、 で、 で、 たたで、 で、 で、 たたで、 で、 で、 たたで、 で、 の で、 たたで、 で、 の で、 の	Q納する金属及び= こん包するコンクリ 等の高さが異なるこ 物層深さ」という 意物層深も動質が地下 は、廃棄物層深さが想 の放射性核種を収 は 約 0.90 m,鉄箱 3 m)の3 m,鉄箱 3 m)の3 段積み, として算出し,有効 こ 2.9 m と設定した	 ンクリートガラ ートブロックが とから,埋設し っ)が異なる。 水を介して移動 :浅く(小さく) 着する媒体が少 記(小さい)方 は高さ約0.83 m のうち,最も高 つうち,最も高 つうち2桁となる つ
備考				
文献				

パラメータ		単位			
No. 4		У			
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象	
設定値		放射性核種 H-3 C-14 C1-36 Ca-41 Co-60 Sr-90 Cs-137 Eu-152 Eu-154 全 α	設定値 1.23×10^1 5.70×10^3 3.01×10^5 1.02×10^5 5.27×10^0 2.88×10^1 3.01×10^1 1.35×10^1 8.59×10^0 2.41×10^4		
設定根拠	 JAEA-Data/Code 2012-014⁽¹⁾の設定値の単位を年に統 -して引用した。半減期が日単位の核種については、365.2422 ⁽²⁾で除して単位を年とした。また、有効桁数3桁となるよう に四捨五入した。全αについては、Pu-239とAm-241のう ち、半減期が長いPu-239の数値で代表させた。 JAEA-Data/Code 2012-014⁽¹⁾に収録された核データは、 JAEAのJENDL委員会及び核データ評価研究グループ が発行した核図表 2010と関連している。データの公開に当た ってはJAEA内で専門家によるレビューが行われており、情 報の精度は高い状態であると考えられる。 				
備考					
文献	 (1) Masakazu NAMEKAWA, Tokio FUKAHORI eds. (2012): Tables of Nuclear Data (JENDL/TND-2012), JAEA -Data/Code 2012-014 (2) 日本原子力研究所 (2005): Nuclear Decay Data for Dosimetry Calculation Revised Data of ICRP Publication 38, LAER L 1347 				

パラメータ		名称			単位	
No. 5	廃棄物受入れ	れ時の放射性核種	核種 <i>i</i> の総放射能量		Bq	
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳し自然事象	、い そ	□人為事象	5
設定値	放射性 核種 H-3 C-14 C1-36 Ca-41 Co-60 Sr-90 Cs-137 Eu-152 Eu-154 全 α	総放射能量 1.4×10 ¹² 1.2×10 ¹⁰ 1.8×10 ¹⁰ 3.4×10 ⁹ 1.3×10 ¹¹ 1.7×10 ⁹ 9.1×10 ⁸ 5.5×10 ¹⁰ 2.5×10 ⁹ 1.4×10 ⁸	廃棄物の種類 金属類 5.3×10 ¹¹ 8.6×10 ⁹ 1.8×10 ¹⁰ 1.2×10 ¹¹ 1.5×10 ⁹ 8.1×10 ⁸ 7.1×10 ⁷	(引)の (コン) 8 2 4 3 9 1 1 1 5 2 6 6	<mark>総</mark> 放射能量 (クリート類 . 2×10^{11} . 8×10^{9} . 5×10^{8} . 4×10^{9} . 7×10^{9} . 2×10^{8} . 0×10^{8} . 5×10^{10} . 5×10^{9} . 4×10^{7}	
設定根拠	 詳細につい 量の設定」 	では添付資料 2 参照。	「埋設する廃す	棄物 の	種類及び放射	官臣
備考						
文献						

パラメータ		単位			
No. 6	廃棄物埋設	—			
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象	
設定値	0. 61				
設定根拠	 充体各割物金積ま(ton (シン 各金方)(1,11) ・ 充体 各割物金積ま(ton (シン 体属の)(1,11) ・ 定金コ廃ー < < <	中間覆土の体積割 を引いて算出した。 の体積割合について 算により求め、切り については、容器 した。 算電量に 10%の余 酸重量に 10%の余 酸重量に 10%の余 酸加工 (10%の余 酸加工 (10%の余 のの重量を 1.3 倍し した。 算能 (10%の余 のの重量を 1.3 倍し した。 算能 (10%の余 のの重量を 1.3 倍し した。 算能 (10%の余 のの重量に 10%の余 ののす (10%の余 ののす (10%の余 ののす (10%の余 ののす (10%の余 ののす (10%の余 ののす (10%の余 ののす (10%の余 ののす (10%の余 (10%)	$rac{1}{2}$ については、全体 には、埋設地に占め し上げて設定した。 (鉄箱)の重量を含む た重量から金属廃 業物の予定埋設重 裕を持たせた保守 ton (コンクリート び各廃棄物の密度 m^3 (コンクリート こ。 (kg/t) ÷7,800 t) ÷2,300 (kg/m ³) 層深さ h) =15,660 (m ³)	ふら各廃棄物の体積 なお、金属廃棄 めるものとして、 薬物/容器の体 値の値)、6、710 ブロック)、550 、7、800 kg/m ³ ブロック及びコ (kg/m ³) (m ³)	
·金属廃棄物/容器:					

	1,118 (m ³) ÷15,660 (m ³) =0.07139… ≒0.08 ・コンクリートブロック: 4,496 (m ³) ÷15,660 (m ³) =0.2871… ≒0.29 ・コンクリートガラ:
	239.1 (m ³) ÷15,660 (m ³) =0.01526… ≒0.02 •充填砂/中間覆土: 1- (0.08 +0.29 +0.02) =0.61
備考	
文献	

パラメータ		名称		単位
No. 7	廃棄物埋讀	—		
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	0. 50			
設定根拠	 充土間子試法 ・ 対以に ・ 対し、 <	中間覆土は, 土質分 入土を使用する計画 , 現地発生土及び購 試験方法(JIS (JIS A 1210) S A 1224))結果が 同隙比(一 間隙率(一)	う類が砂又は砂質土 面であるため、充填 構入土の候補土砂の A 1202)、突固めに 及び砂の最小密度・ から以下の通り算出 した。 設地内の充塡砂/中	 となる現地発生 (砂/中間覆土の) 物理試験(土粒 こよる土の締固め 最大密度試験方 した。 桁となるように ・桁覆土の間隙率
備考				
文献				

パラメータ	名称			単位
No. 8		%		
シナリオ 区分	■共通	 □最も可能性が 高い自然事象 	□最も厳しい自然事象	□人為事象
設定値	17			
設定根拠	 ・廃土そ生リ値埋てり物廃状雨出に詳に 棄との土ンを設環放質棄態天し保細つ 物なたとグ設し境射が物が以た守にい 埋るめ同に定たに性希埋保外飽的つて 	設地内の充填砂/「 現地発生土又は購了 の、充填砂/中間覆 の、たすの土質分類であ より採取した試料 した。 定廃棄物に含まれて 移動する移動させる 物質される地下水と直接 かけたいると考え の日に採取した試料 に切り下げた17% いては、「別紙2」 の 気気の り参照。	中間覆土は,土質分 人土を使用する計画 ととしての利用を考 る砂層(du層)の の物性値から算出 いる放射性物質が とした評価では,館 浸透水等が多くなる り非接することが えられることから, 料の物理試験結果の 17.4%を有効数字 を設定値とした。 客乗物埋設地内の館	類が砂又は砂質 「である。 「えていククレンプ した1100000000000000000000000000000000000
備考				
文献				

パラメータ		名利	沵			単位	
No. 9	廃棄物埋	物埋設地内の充塡砂/中間覆土の粒子密度			kg∕m³		
シナリオ 区分	■共通	□最も可能高い自然	性が 事象	□最も 自然	厳しい (事象	□人為事象	
設定値	2. 7×10^{3}						
	 ・ 充塡砂/中間覆土は、土質分類が砂又は砂質土となる現土又は購入土を使用する計画である。 過去に実施した現地発生土及び購入土の候補土砂の物語 結果(土粒子の密度試験方法(JISA1202))(9試料られた土粒子の密度は下表のとおりであった。 					となる現地発生 土砂の物理試験)(9 試料)で得	
		試料名	1	重別	土粒子 (g/c	密度 m ³)	
		現地発生土A	矽	質土	2.6	73	
		現地発生土B	砂	質土	2.68	39	
⇒n, ⊢→⊥⊡ ш,		現地発生土C	矽	質土	2.68	34	
設定根拠		現地発生土D	砂	質土	2.68	36	
		購入土候補A	矽	質土	2.63	38	
	ļ	購入土候補B	矽	質土	2.63	38	
	,	購入土候補C	珪石	砂4号	2.65	59	
	,	購入土候補D	珪码	砂5号	2.60	65	
	,	購入土候補E	珪码	砂6号	2.7	16	
	・ 物理試 が小さ g/cm ³ した 2	験の結果, 粒子 いことから, ! を有効数字2桁 .7×10 ³ kg/m ³	·密度に 物理 お ま よ お た 設 気	は2.64 g 、験結果の るように Eした。	;/cm ³ ~2 D算術平均 四捨五入し	.72 g/cm ³ と幅 匀値である 2.67 ,,kg/m ³ に換算	
備考							
文献							

パラメータ		名称					
No. 10	廃棄物 放	m³⁄k	g				
シナリオ 区分	□共通 □共通		可能性が 可能性が 自然事象	■最も厳しい 自然事象		■人為事	事象
	放射性核種 H-3 C-14 C1-36 Ca-41 Co-60 Sr-90 Cs-137 Eu-152 Eu-154 全 α		最も可能 高い自然 人為事	注性が 事象, 事象	最も加度	厳しい 注事象	
設定値			0 0 0 0.00 0.03 0.00 0.3 0.3 0.3 0.1)3 3)3	0 0 0 0. 0. 0. 0. 0. 0. 0. 0.	0003 003 0003 03 03 03 03 01	
設定根拠	 						
備考		_					
文献							

パラメータ	名称			単位
No. 11	分子拡散係数		m^2 / y	
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	0. 055			
設定根拠	 ・自本ころ ・目の ・目の ・目の ・目の ・ この 	の分子拡散係数に~ から,文献に示され。 の地下水温度は,地 いるため,自由水口 から設定した。 い方が分子拡散係数 とから,化学便覧 ⁽¹⁾ .751×10 ⁻⁹ m ² /s となるように四捨3 10 ⁻⁹ m ² /s×365 d 2195… m ² /y≒0.0	○いては、水の温度 れる関東地方の地下 下水ハンドブック 中の分子拡散係数に 数は小さくなり、網 ⁽²⁾ に示される 15℃ を m ² /y に単位換 互入した 0.055 m ² / (/y×86,400 s/d 55 m ² /y	によって設定で 「水温度から値を 「小では15~17℃ た、その地下水温 量評価上保守的 この自由水中の拡 算した値を有効 ✓yを設定値とし
備考				
文献	(1) 地下水ドブッ(2) 日本化	ハンドブック編集委 ク,建設産業調査会 学会編(1993):改	秦員会編 (1998): ♂ ₹ 訂 4 版 化学便覧	(訂)地下水ハン基礎編Ⅱ

パラメータ	名称			単位
No. 12	通気層高さ			m
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	1. 0			
設定根拠	・廃層層4設水最し廃上な通る高に詳参棄がとm定層もい棄端る気(い保細照物存しとをの可自物方と層収自守に。埋在てな踏厚能然埋向考高着然的つ			層ではないdu ⁱ ルにおが T. P. + 1 1 1 1 1 2.2 m,最も厳 か いら水位られる。 ではより こ 1 2.2 m,最も厳 か い た よ り に ち れ た り こ 1 : 帯 一 の 高 さ は 、 し 2 2 m,最も厳 か い し こ 2 m,最も厳 か し い た こ 1 : 帯 一 の 高 さ は 、 し こ 2 m, し の 高 さ は 、 し こ 2 m, し 、 数 一 の の 高 さ は 、 う こ 2 m, し 、 数 し の 高 さ は 、 う こ 2 m, し 、 数 の の 下 水 た り こ の の 、 し 、 の の 、 し 、 の の 、 し 、 の の 、 し し 、 の の 、 し 、 の の 、 し 、 し の の 、 し 、 し 、 の の 、 し 、 の の 、 、 、 つ い て し 、 こ の の 、 、 、 つ い て し 、 の の の し 、 こ の の 、 、 つ か し 、 つ の し 、 つ の の し 、 こ っ の の い て 」 を を し の の の の の 、 、 つ の の い て し す で の し っ の の の の の の し っ の の の の し っ の の の の し っ の つ の つ の つ の つ の つ の し つ つ の つ の つ の つ の の の の の の の の の の の の の
備考				
文献				

パラメータ	名称			単位
No. 13	通気層飽和度			%
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい 自然事象	□人為事象
設定値	17			
設定根拠	 ・ 通の地和館線 ・ 地和館線 ・ 定和量と度様の ・ の設 	和度は、地下水面辺 の範囲になると想知 近傍の飽和度は、ヨ %)となっており、 小さくなると考えり においては、飽和厚 、飽和度が小さいね ペラメータ No.8: 厚 定とした。	丘傍の飽和度から廃 される。 三管水により飽和度 廃棄物埋設地近傍 られる。 まは小さい方が保守 大態を反映し,廃棄 蓬棄物埋設地内の能	 垂物埋設地近傍 新本部本部では、 ものです。 からない状態(飽 新になるにつれて * 的な設定となる
備考				
文献				

パラメータ	名称					単位	
No. 14	通気層土壤における放射性核種 i の収着分配係数					m ³ /kg	
シナリオ 区分	□共通	■最も 高い	可能性が 自然事象	可能性が 自然事象 自然事		■人為事象	
	放射	放射性核種		最も可能性が 高い自然事象, 人為事象		しい F象	
	Н-3	3	0		0		
	С — 2	14	0		0		
	C 1 ·	-36	0		0		
設定値	C a	-41	0.0)03	0.00	0003	
	C o	-60	0.0)3	0.00	01	
	S r	-90	0.0)03	0.00	0003	
	C s	-137	0.3	. 3 0. 00)1	
	<u>E u - 152</u>		0.3	}	0.03		
	<u>E u −154</u>		0.3	3	0.03	0.03	
	<u></u>		0.]		0.01		
設定根拠	 						

備考	
文献	

パラメータ	名称			単位
No. 15	通気層土壌の間隙率			_
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	0. 41			
設定根拠	 ・ 通気層 ・ 通気層で 方びを ・ d u 石 ・ d u 石 ・ 0.464) した 0.41 ・ 詳細設定根 	壊の間隙率は,ボー あるdu層の試料の ISA1202),土の 湿潤密度試験方法 した。 物理試験結果の間 の算術平均値を有 1を設定値とした。 いては、「別紙4 通 拠について」参照。	 リング調査で採取 り物理試験結果(土 り含水比試験方法 (JISA 1225)) 隙比を間隙率に換算 効数字 2 桁となる 通気層土壌及び帯水 	a した通気層及び :粒子の密度試験 (JISA1203) (30 試料)から 算した値(0.368 らように四捨五入 、 層土壌の間隙率
備考				
文献				

パラメータ	名称			単位
No. 16	通気層土壌の粒子密度			kg∕m³
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	2. 7×10 ³			
設定根拠	 ・ 通考(4)1202)) パ ・ 物 と 1202)) パ ・ 物 と 1202)) パ ・ 物 と 1202)) パ ・ 治 度/し ・ 注 度の ・ 注 度の 	壊の粒子密度は、ホ ることから、ボーリ) の物理試験結果 から値を決定した。 の結果、粒子密度の こ小さいことから、 (cm ³ を有効数字2桁 た2.7×10 ³ kg/m いては、「別紙5 通 祝拠について」参照	ボーリング調査の編 リング調査で採取し (土粒子の密度試験) 「「「 の幅は 2. 68 g/cm 物理試験結果の算 子となるように四推 ³ と設定した。	i果からdu層と たdu層の試料 方法(JISA ³ ~2.69 g/cm ³ 術平均値である 五入し,kg/m ³ 、層土壌の粒子密
備考				
文献				

パラメータ	名称			単位
No. 17	帯水層土壌の間隙率			—
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	0. 41			
設定根拠	 帯水層土 帯水層で 方びたし、J 及びを注入の 値 u u a co ~0.464) した 0.41 詳細設定根 	壊の間隙率は,ボー あるdu層の試料の ISA1202),土の 湿潤密度試験方法 した。 物理試験結果の間 の算術平均値を有 1を設定値とした。 いては、「別紙4 通 拠について」参照。	 リング調査で採取 り物理試験結果(土 り含水比試験方法 (JISA 1225)) 隙比を間隙率に換算 効数字 2 桁となる 通気層土壌及び帯水 	a した通気層及び :粒子の密度試験 (JISA1203) (30 試料)から 算した値(0.368 らように四捨五入 K層土壌の間隙率
備考				
文献				

パラメータ	名称			単位
No. 18		地下水流速		m∕y
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	■人為事象
設定値	最も可能性 最も厳しレ゙	ごが高い自然事象, い自然事象	人為事象:49 :42	
設定根拠	・ 動水 し 動 水 d 性 結 最地に最一た詳 参水係 た 水 量 u を 果 も下四も流。細 照如の 層 有 の 可水捨厳速 に。	に,廃棄物埋設地設 用いて,ダルシー湾 は,地質環境等の制 動を考慮して算出し 透水係数は場所によ る地層と考えられる る地層と考えられる 術平均値3.23×10 性が高い自然事象 入して設定した。 い自然事象シナリ 保守的に有効数字2 いては,「別紙6 日	丘傍で行った揚水討 荒速を算出すること 大態設定を踏まえ, した。 よるばらつきが小さ ることから,透水係 ⁻² cm/sを用いた シナリオ及び人為 ン一流速を有効数学 オの地下水流速は 2桁となるように切 地下水流速の設定材	、験で得られた透 で地下水流速と 1,000 年後の降 く、一様の透水 、数は、揚水試験 。 事象シナリオの 2桁となるよう 算出したダルシ 19下げて設定し 表拠について」を
備考				
文献				

パラメータ	名称			単位
No. 19		廃棄物埋設地の長	長さ	m
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	60			
設定根拠	 ・ 埋設トレ 下水の流 ・ 埋設トレ から,廃: m)となる ・ 有効数字: 	ンチの1 区画の大き 向と同方向に該当て ンチは,地下水の 新 棄物埋設地の長さ が 2 桁となるよう が	きさは 15.1 m×8. する長さは 8.50 m 充向と同方向に 7 区 は 59.50 m(8.50 m こ四捨五入し, 60 m	50 mであり,地 である。 至画設置すること ×7 区画=59.50 nと設定した。
備考				
文献				

パラメータ	名称			単位
No. 20	廃棄物埋設地の幅			m
シナリオ 区分	■共通	□最も可能性が高い自然事象	□最も厳しい 自然事象	□人為事象
設定値	90			
設定根拠	 ・ 埋設トレ 下水の流 ・ 埋設トレ すること: 90.6 m) ・ 廃棄物埋 なるよう 	ンチの1 区画の大き 向と垂直方向に該当 ンチは,地下水の から,廃棄物埋設 となる。 設地平面積と整合 に切り下げ,90 m	きさは 15.1 m×8.1 当する長さは 15.1 充向に対して垂直力 也の幅は 90.6 m(1 をとる観点から,有 と設定した。	50 mであり,地 mである。 方向に6区画設置 5.1 m×6区画= 可効数字が2桁と
備考				
文献				

パラメータ		単位							
No. 21		m							
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	■人為事象					
設定値	最も可能性 最も厳しい	最も可能性が高い自然事象,人為事象:1.8 最も厳しい自然事象 :1.6							
設定根拠	 粘土層(T.P.+0) 帯水層の, の降水量 詳細につ 参照。 	A c 層)が T. P. +0 n を帯水層の基底部 厚さは,地質環境等 の変動を考慮して設 いては,「別紙 7 帯	m以深に分布して と設定した。 の状態設定を踏ま 定した。 特水層の厚さの設定	:いることから, ミえ, 1,000 年後 主根拠について」					
備考									
文献									

パラメータ		単位		
No. 22		kg∕m³		
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	2. 7×10^{3}			
設定根拠	 ・帯水層土: 試料(4) SA1203 ・物理常に 2.68 g/ に換細につ 度の設定 	 (壊の粒子密度は、ボ (試料)の物理試験結 (2))から値を決定しの結果、粒子密度の小さいことから、特 (cm³を有効数字2桁た2.7×10³ kg/m³ (たては、「別紙5 通根拠について」参照 	ーリング調査で採 果(土粒子の密度 た。 幅は 2.68 g/cm 物理試験結果の算 となるように四捨 と設定した。 気層土壌及び帯水。	取したdu層の 試験方法(JI) ³ ~2.69 g/cm ³ 術平均値である 活入し、kg/m ³ 『層土壌の粒子密
備考				
文献				

パラメータ	名称						単位	
No. 23	帯水層土壌における放射性核種 i の収着分配係数					ζ	m³⁄k	g
シナリオ 区分	□共通	■最も 高い	可能性が 自然事象	■最も 自然	_{厳しい} 事象		■人為事象	
	放射性	放射性核種		最も可能性が 高い自然事象, 人為事象		最も厳しい 自然事象		
	H-3		0		0			
	C-1	4	0		0			
	C 1 -	-36	0		0			
設定値	C a -	-41	0.0	03	0.	. 000	003	
	С о –	-60	0.3		0.	. 00]	1	
	S r -	-90	0.0	03	0.	. 000	003	
	C s -	-137	0.3	0.3 0.00		. 00]	1	
	E u - 152 $E u - 154$		0.3 0.0		. 03	03		
			0.3		0.	. 03		
	<u></u>		0.1		0.	. 01		
設定根拠	・帯u地試最はを値最影らい小なと保詳水ー周験も,,とも響つ値さお同守細層15辺の可移保し厳のきをい,じ的に土の結能行守たし可を11方C値につ	壌全帯果性媒的。い能考Ωにaと0いののα水をが体に(自性慮の丸-しとて(層基高と1)然をし1め41たしは、	-60, Sn (m)でしまして目の 象慮, 60, 00 のあた。 がいいた。 がいいた。 がいいた。 がいいた。 がいいた。 のでしては、 ののしては、 ののののでしまし、 ののののでしまし、 ののののでしまし、 ののののでしまし、 ののののでしまし、 ののののでしまし、 ののののでのでのでのでの。 ないののののでのでののののでのでのでの。 ないのののののののののののののののののののののののののののののののののののの	r -90, C 着 d u 分配層 シ ナ を に り 想な オ の 水 (り 想 な	s - 137, に な り しよ 配結平が り し が の と 着験に 数を値 り い て し 分 結 い て と う 係 果均 り い て と の と 着 数 に の と の と の と の と の と の と の と の と の と の	_ E にた 配 黒さ 設 注 の 3 r - 3 参照 - 3 参照 - 3 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 u−152, m 案配 数幾方 値統ちな の何に は計最る のつい ころのいて いかもよ 設てする えかり たい ないのう しょう ひょう ひょう ひょう しょう ひょう しょう ひょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し	里反 宦勾ひ 聿な卜う 宦は
備考								
文献								

パラメータ		単位		
No. 24	廃棄物	m		
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	400			
設定根拠	 廃棄物埋記 る東側の 切り下げ⁻ 	2地下流端 (東端) カ 敷地境界までの距離 て 400 m とした。	いら地下水流向方向 が約 420 m である]である海に面す
備考				
文献				

パラメータ		単位		
No. 25	Ē	m ³ /y		
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値	4. 2×10^{8}			
設定根拠	・廃東示(水れ物具にれに式 Z こり置をとさい中設と棄海し1980でに体よた求を XQZ こり置をとさい中設と物村た00次るすに海海るい ::::: , cm高だ1,出動はよ	世界には、 して、 した。 本学のの た の から の から た の から た の から た の から た の の た の た の の の た の た の の の の の の の の の の の の の	物質を含むすく 物海力所(1965 名対所(1965 名対所(1964) ⁽³⁾ , の の の 海海力所 で に を を た に た の た の た に た の た の た の た の た の た の た の た の た の た の た の た の た の た の 本 に う メ 一 夕 の の た の た の 本 に う メ 一 ク の の 本 に う メ 一 ク の の 本 に う メ 一 ク の の 本 に う メ 一 ク の の 本 に う メ 一 ク の の 本 に う メ 一 ク の の 本 に う メ 一 ク の の 示 、 後 本 つ ろ ち た の 本 に う メ 一 ク の の 示 、 後 本 つ ク の の 示 、 数 の の 研 、 の た の の の の 、 の の の の の の の の の の の の の	>> (1), 産(4) (1), 産(4) こ(1970) (1), 産(4) こ(1970) (1), 産(4) (1), 産(4) (1), (1) (1), 産(4) (1) (2), 産(4) (1) (2), 産(4) (1) (2), 産(4) (1) (2

	$\frac{Q}{X(r)} = \frac{(r \times z)}{0.75} \times \frac{1}{2}$ = ((200 cm×1×10 ⁵ cm) /0.75) × (1/2) =1.33×10 ⁷ cm ³ /sec = 4.2×10 ⁸ m ³ /y ・ 海水交換水量の近似式の適用性等については「別紙 8 海水交 換水量の設定の考え方について」参照。
備考	
文献	 (1)日本原子力研究所(1965):保健物理安全管理部の活動 No.8, JAERI 5015 (2)福田雅明(1980):沿岸海域の海洋拡散の研究,JAERI- M8730 (3)日本原子力研究所(1964):保健物理部の活動 No.7,JAE RI 5014 (4)水産庁東海区水産研究所・社団法人日本水産資源保護協会 (1970):茨城県東海村周辺の海洋調査 調査結果(中間報 告)

パラメータ			名称				単位		
No. 26	放射性	核種 <i>i</i> の	海産物 m	への濃縮	係数		m ^a	m³∕kg	
シナリオ 区分	■共通	□最も 高い	可能性が 自然事象		□最も厳しい自然事象		口人	、為事象	
設定値	放射性 核種 H-3 1 C-14 2 C 1 -36 6 C a -41 2 C o -60 1 S r -90 2 C s -137 1 E u -152 3 E u -154 3 全 α 5	魚 設定値 $.0 \times 10^{-3}$ 2.0×10^{-3} $.0 \times 10^{-3}$ $.0 \times 10^{-3}$ $.0 \times 10^{-3}$ $.0 \times 10^{-3}$ $.0 \times 10^{-1}$ 3.0×10^{-1} 5.0×10^{-1} 5.0×10^{-2}	類 (3) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1)	無存本 設定値 1.0×10 ⁻³ 2.0×10 ¹ 6.0×10 ⁻⁵ 5.0×10 ⁰ 2.0×10 ⁻³ 3.0×10 ⁻² 7.0×10 ⁰ 7.0×10 ⁰ 2.0×10 ¹	推動物 文献 ^{**1} (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1	訳 1. 1. 5. 6. 1. 1. 1. 3. 3. 2.	藻 b定値 0×10 ⁻³ 0×10 ¹ 0×10 ⁻³ 0×10 ⁻² 0×10 ⁻² 0×10 ⁻² 0×10 ⁰ 0×10 ⁰ 0×10 ⁻² 0×10 ⁰ 0×10 ⁰ 0×10 ⁰ 0×10 ⁰ 0×10 ⁰	漢 文献* ¹ (3) (3) (3) (3) (2) (2) (2) (2) (3) (3) (3) (3) (2)	
	 ・ 海産物の濃縮係数は、文献より下表の優先順位で数値を引用した。 ・ 全αについては、Pu-239 とAm-241 のうち値の大きな方を設定する。そのため、全αの値はAm-241 の数値で代表させた。 ・ 文献中の単位が (1/kg) であるので、本検討で用いる単位に変換するため単位換算した。 ・ 詳細については「別紙 9 放射性核種 <i>i</i> の海産物 <i>m</i> への濃縮係数の設定根拠について」奏昭 								
設疋恨拠			文献 文献(1) 文献(2) 文献(3)	優先 	E順位 1 2 3				
備考	※1:引用し	た文献を	示す。						

	(1) International Atomic Energy Agency (2001): Generic Models					
	for Use in Assessing the Impact of Discharges of					
	Radioactive Substances to the Environment, IAEA					
	Safety Reports Series No. 19					
	(2) International Atomic Energy Agency (1982): Generic Models					
	and Parameters for Assessing the Environmental Transfer					
又厭	of Radionuclides from Routine Releases, Exposures of					
	Critical Groups, IAEA Safety Series No.57					
	(3) International Atomic Energy Agency (2004) : Sediment					
	Distribution Coefficients and Concentration Factors for					
	Biota in the Marine Environment, IAEA TECHNICAL					
	REPORTS SERIES No. 422					

パラメータ		単位		
No. 27		kg∕y		
シナリオ 区分	■共通	 ■共通 □最も可能性が □最も厳しい 高い自然事象 自然事象 		
設定値		魚類 無脊椎動物 藻類	設定値 19 4 4	
設定根拠	 ・ 厚「た魚び下 58 = 50.2 解のに 2.7 類保 3 細の数, て査をい同労東 はか切 g 2 まのに 2.7 類保 3 細の数, て査をい同分東 はか切 9.2 g 離計定 g gは守 g に設の海い結与自じしてする、このです。 		ナる茨城県が含まれ 推動物,藻類の年間 、「貝類」、「いか・ かた値を整数値とな 定した。 .4 g/d+2.6 g/d 323 kg/y=19 kg/ か・たこ類」及び う小数点以下を切 g/d=8.7 g/d 55 kg/y=4 kg/y 直となるよう小数点 45 kg/y=4 kg/y 海産物及び家庭菜 が多くなる文献を 含めていることで保 まあるが、線量評価 定されないことか も厳しい自然事象 た。	んる地 地域 でです して

備考	
文献	(1)厚生労働省(2020):平成 30 年国民健康・栄養調査報告

パラメータ	名称					単位	単位	
No. 28	評価海域における海産物 m の市場係数			_				
シナリオ 区分	■共通	□最も 高い	可能性が 自然事象	□最も 自然 3	接しい 事象	□人為耳	事象	
設定値	漁業従 農業従 建設業 居住者	事者 事者 從事者	 淮 魚類, 魚類, 魚類, 魚類, 魚類, 	母産物の種類 無脊椎動物, 無脊椎動物, 無脊椎動物, 無脊椎動物,	藻 藻 類 藻 類 類 藻 類	設定値 1 0.2 0.2 0.2		
設定根拠	・経産の漁も茨茨(内 0. 評市おく評囲き能に口物割業の城城 0. 産 2 価場り,価にな性お摂の合従と県県 2)のを海に,保海よ影がい取摂を事し (2 産で水設域お本守域り響高て	に取示者て20のあ戸定にけ施的にあをい司よ量すは17海る市しおる設なおる与自じるの。保を(産。公たけ茨か設け程え然保被う(守部)物漁部。る坊ら定る度る耳守	ばち、的愛にの驚致、海域のと海変よ象側ばち、的定にの業地、海県のと海変よ象側く, にしよ取従方、産全影考産動うシの線放 ,たる扱事卸、物体響え物すなナ設量外、全。と量者????????????????????????????????????	 本 本 二 二<td>際染を一般平係及にあるにはるを放にされる地で成業した。 地成数の 水取評 本がないしまた おんしい かいい しょうしょう しょう しょう しょう しょう しょう しょう しょう ない しょう しょう しょう しょう しょう しょう しょう しょう しょう しょう</td><td>わた 肖 印;保可 百 み 面 施泉、目からな 肖 元年守合 市量海 設量こ然事 (100%) にという ひか城 か評と事 ひん いん しんしょう しん しんしょう ひんしょう しんしょう しんしょう しんしょう ひんしょう ひんしょう しんしょう しんしょ しんしょ</td><td>で摂っ お削灰と 方宮分 影果長り,取 す け以城し 卸しに 響にもリ海量 る る下県て 売て広 範大可才</td>	際染を一般平係及にあるにはるを放にされる地で成業した。 地成数の 水取評 本がないしまた おんしい かいい しょうしょう しょう しょう しょう しょう しょう しょう しょう ない しょう	わた 肖 印;保可 百 み 面 施泉、目からな 肖 元年守合 市量海 設量こ然事 (100%) にという ひか城 か評と事 ひん いん しんしょう しん しんしょう ひんしょう しんしょう しんしょう しんしょう ひんしょう ひんしょう しんしょう しんしょ しんしょ	で摂っ お削灰と 方宮分 影果長り,取 す け以城し 卸しに 響にもリ海量 る る下県て 売て広 範大可才	
備考								
文献	(1) 茨城県	(2017)	: 茨城の)	水産				

パラメータ	名称						位	
No. 29	放射性核種 i の経口摂取内部被ばく線量換算係数			攵	Sv⁄Bq			
シナリオ 区分	■共通	□最も 高い	可能性が 自然事象	□最も 自然	。厳しい 、事象	厳しい 三事象 □人為		事象
設定値	放射 ⁴ H- C- C1 Ca Co Sr Cs Eu Eu Eu	放射性核種 H-3 C-14 C1-36 Ca-41 Co-60 Sr-90 Cs-137 Eu-152 Eu-154 全 α		値 p = 1 1 p = 1 0 p = 1 0	考慮した 	子孫 - - - - - - - - - - - - - -	核種	
設定根拠	 ICRP 衆た。するCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Public 別 原考 Pる Eの子取の「「能係い P線行の」 安慮し I C P線の「「「「」」 安慮し I C P量核込量」よををは一換たの「」 教たに下の「教科書」」、考力、 2 算。	ation 72 ⁽¹⁾ 算 (2) (2) (2) (1) (1) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2	¹⁾ Table うちい, Table うちい, ではいうちつのれ r ではいい慮てててYの というではしははークの たいでする がいる (た) たいでの たいでで たいで たいで たいで たいで たいで たいで たいで たいで たい	A. 1. で示 人 (Adult) 核 (Adult) 核 (Y- 約 の (3) の 下 の 取 に 内 る 済 内 体 い 慮 体 を よ の の 取 に 内 る 済 の 取 に 内 る 済 内 体 い 慮 体 を る 済 の た の る 済 の で 内 体 る 済 の 取 に 内 る 済 の 取 に 内 る 済 の 取 に 内 る 済 の の 取 に 内 る 済 の の 取 に 内 る 済 の の 取 に 内 る 済 の の 取 に 内 る 済 の 取 に ろ う の の 取 の 下 ろ 。 の の の の 取 の 下 ろ 。 の の の の の の の の の の の の の の の の の の	この 90, ⁽¹⁾ にしていた。 しの 90, ⁽¹⁾ にしていた。 	て数 B 系 B ま 入 己 , す 0 次 <mark>泉</mark> な い値 a 一 は i れ ま 載 る と に 量 る よ が 前 同 Y 一 換 よ	一引 137m) きょかにち こ時90 係 に公し) 考 s 放にこ r 摂の 数 切
備考								
----	---							
文献	 International Commission on Radiological Protection (1995): Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients, ICRP Publication 72 原子力安全委員会 (2007): 低レベル放射性固体廃棄物の埋設 処分に係る放射能濃度上限値について,原子力安全委員会 International Commission on Radiological Protection (1989): Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 1, ICRP Publication 56 							

パラメータ		名称		単位
No. 30	廃棄	物埋設地からの放身 漏出開始時期	1性物質の	У
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	■人為事象
設定値	最も可能性 (覆土の完 最も厳しい (廃止措置	Eが高い自然事象 E了時点:覆土の完 自然事象,人為事 Eの開始時点:覆土	:0 了から0年後) 象:50 の完了から50年後	
設定根拠	・トのが最低点最お(開かる能考生し、くうない。	処分は、漏出低減機低減することから、。 性が高い自然事象ジネテを踏まえ、放射活動が見た。 たまででの移動が見た。 たまでの開始後に、 なるの たまで、 たまで、 たまで、 たまで、 たまで、 たまで、 たまで、 たまで、	機能により生活環境 埋設後は徐々に生 イナリオでは、トレ 対能量が最も多くな 開始されると想定し たでは、廃止措置の に漏出を開始させ 設定となることか 多動が開始されると	5への放射性物質 活環境への移動 シチ処分の漏出 る覆土の完了時 た。 開始後の評価に たう,廃止措置の き想定した。
備考				
文献				

パラメータ		名称		単位
No. 31	放射性核種 i の吸	Sv⁄Bq		
シナリオ 区分	■共通 □最も 高い	可能性が □最も○自然事象 自然	」厳しい 注事象	□人為事象
設定値	放射性核種 H-3 C-14 C1-36 Ca-41 Co-60 Sr-90 Cs-137 Eu-152 Eu-154 全 α	設定値 4.5×10^{-11} 2.0×10^{-9} 7.3×10^{-9} 9.5×10^{-11} 1.0×10^{-8} 3.8×10^{-8} 4.6×10^{-9} 4.2×10^{-8} 5.3×10^{-8} 5.0×10^{-5}	考慮した 	-子孫核種
設定根拠	 ICRP Public 衆の年齢別線量構 の吸収型が不明な 推奨値が示されて また,原安委報告 の寄与を考慮した。 ICRP Public 文献となるICF of daughter pro 射性核和の線量構 生成する子孫核 とから,取り込む Sr -90の線によ 取する可能性を考 線量換算係数を力 全αについては、の大きいPu-2 算出した線量換算 り上げ設定した。 	ation 72 ⁽¹⁾ Table 象算係数のうちの成人 な場合の推奨値が示え にない核種は最大の 告書 ⁽²⁾ に従い,子孫 値とした。 ation 72 ⁽¹⁾ で示され R P Publication 56 ducts」において,係 算係数については、 なの寄与を考慮して、 にれた後については、 の寄与を考慮して、 した。 して、S r -900 り u -239 とAm- 39 の値で代表させた。 算係数は保守的に有多	A. 2. で示したの様に、 A. 2. です 人 (Adult) その様に、 たいです。 かがした。 人 (Adult) その様に、 大いで、 人 (Adult) その様に、 大いで、 人 (Adult) その様に、 大いで、 人 (Adult) その様に、 大いで、 人 (Adult) その様に、 大いで、 人 (Adult) その様に、 大いで、 人 (Adult) その様に、 人 (Adult) その様に、 人 (Adult) その様に、 人 (Adult) その様に、 人 (Adult) その様に、 人 (Adult) その様に、 人 (Adult) そので、 人 (Adult) 子 (Adult) (Adult) (Adult) (Adult) (Adult) (Adult) (Adu	 している一般公の数値で、肺での数値で、肺です核種はその値、目した。 90, B a -137m) 算係数は、参考2.6 Biokinetics 込まれた際の放けの設定の数 う記載があるこのでする前にSr -90 と同時に摂係数にY-90の ち線量換算係数 たなるように切

備考	
文献	 (1) International Commission on Radiological Protection (1995): Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients, ICRP Publication 72 (2) 原子力安全委員会 (2007): 低レベル放射性固体廃棄物の埋設 処分に係る放射能濃度上限値について,原子力安全委員会 (3) International Commission on Radiological Protection (1989): Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 1, ICRP Publication 56

パラメータ		彳	3称				単	位
No. 32	放射性核種 i の外部被ばく線量換算係数				(5	Sv/h) /	(Bq∕kg)	
シナリオ 区分	■共通	□最も可能性が□最も□最も高い自然事象自然		:も厳しい 然事象)	口人	、為事象	
設定値	放 H C C C C C C S C E E E 全	射性核種 [-3] (-14] (-14] (-14] (-14] (-36] (-14] (-36] (-36] (-14] (-36] (-14] (-36]	設定(2.7×10 ⁻⁷ 7.6×10 ⁻⁷ 1.3×10 ⁻⁷ 6.6×10 ⁻⁷ 7.2×10 ⁻⁷ 1.7×10 ⁻⁷ 3.2×10 ⁻⁷ 3.6×10 ⁻⁷ 1.7×10 ⁻⁷	直 - 2 0 - 1 6 - 1 3 - 1 7 - 1 0 - 1 2 - 1 0 - 1 0 - 1 0 - 1 2 - 1 0 - 1 2	考慮し7 Y-9 Ba-	た子:: - - - - - - - 13 - - - - - - - - - - -	孫核種 7m	
設定根拠	Eu-154 3.6×10 ⁻¹⁰ - 全α 1.7×10 ⁻¹² - ・ 外部被ばく線量換算係数の算出は、点減衰核積分法コード AD-CGGP2R」 ⁽¹⁾ を使用して計算した。計算モデルル 地表からの被ばくを近似するため、直径200 m、厚さ1.5 m 円板状線源を想定し、その中央表面から距離1 mの地点を割 点とした。 ・ 地表の組成は土壤で代表することとし、周辺土壤である砂質 と同様の組成である砂質岩の組成とし、理科年表 ⁽²⁾ に示さ る砂質岩の組成を用いた。 ・ 核種別線量換算係数算出に用いる各核種の壊変当たりの放 光子については、放射性核種生成崩壊計算コード「ORIC N2」断面積ライブラリセット「ORLIBJ40」 ⁽³⁾ におけ 18 群別の制動X線を含む γ 線及びX線の放出エネルギー及 放出率を考慮して評価を行った。 ・ Ca-41の放出エネルギー及び放出率については、ICF Publication 107 ⁽⁴⁾ のデータを参照した。 ・ 算出した線量換算係数は保守的に有効数字2桁となるように り上げ設定した。					 ード「Q ード「Q ード「U ーデルは、 1.5 m の価 クに りRにギー エン エン の目 の目 に に に の に の の<		
備考		-						

	(1) Yukio SAKAMOTO and Shun-ichi TANAKA (1990) : QAD-CGGP2
	AND G33-GP2: REVISED VERSIONS OF QAD-CGGP AND G33-
	GP (CODES WITH THE CONVERSION FACTORS FROM EXPOSURE TO
	AMBIENT AND MAXIMUM DOSE EQUIVALENTS) , JAERI-M
	90-110
4 志 1	(2)国立天文台編(2015):理科年表
又瞅	(3) JAEA (2013) : JAEA-Date/Code 2012-032 JEND
	L-4.0に基づくORIGEN2用断面積ライブラリセット:
	ORLIBJ40
	(4) International Commission on Radiological Protection
	(2008) : Nuclear Decay Data for Dosimetric
	Calculations, ICRP Publication 107

パラメータ		彳	马称				単	位
No. 33	海面及び	バ漁網から	らの放射性	核種 i	の	()	Sv/h) /	(Ba∕kg)
	外	外部被ばく線量換算係数				(•		(Dq) 18)
シナリオ	□共通	□共通 □共通 □共通 □世最も可能性が □日数 □日数 □日数 □日数 □日数 □日数 □日数 □日数 □日数 □日数			き厳しい	()	口人	、為事象
		局い	目然爭象		然爭家			
	放	射性核種	設定	直	考慮し	た子	孫核種	
	Н	-3	1.4×10) ⁻¹⁹		_		
	С	-14	3.3×10)-15		—		
	С	1 - 36	2. 2×10^{-10}) ⁻¹³		_		
	С	a —41	3. 4×10^{-3}) ⁻¹⁶		_		
設定値	С	o - 60	6.8×10)-10				
	S	r -90	2.4×10	-12	Y	-90	07	
		s = 137	1.4×10	-10	Ва	-13	37m	
	E	u = 152 u = 154	3.3×10	-10		_		
		$\frac{\alpha}{\alpha}$	7.3×10)-12		_		
設定根拠	 ・ A A 海 1 を線は核光射リ含価 C Pu算り詳く部 D 面 m 評源 J 種子性セむを a bl bl 出上細線被 - 又の価の A 別に核ッッイー - i c bl i しげは量ば C は円点物 E 線 つ種ト うっ41 t た設 「換 	くG漁坂と質R量い生「線た (は線定別算線G網状しはI換て成O及。の1量し紙係量Pか線た水一算は崩Rび 出換た12数換2ら源。でMG,壊LX 出7算。の	算Rのを(代69数求計I線 エ4 係 海設係(1) 被想 表28 算め算Bの れの数 面定数 す(2) 出たコ J 放 ルデは 及根 ひし るに (2) に (2)	尊吏を ここ用水ド(こ ひ夕守 魚こ出用近そ とよりル「3)ネ 及を的 網つはし似の とるいギロにル び参に かいすいてす しかる〜Rにゃ が参れ かい	「「「「「」」」、《各一日」お「「」」、「」」、「」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、	核た,か にをの実 N 8 放 つ 2 性。種。 直ら 月用壊 刻 1 群出 い 権 桂	資産にいい変線断別率 て F 亥分計径距 いい変線断別率 て と 種法算2001 線。た率積制考 , る の	ーデ m 源 りかう動慮 I よ 外ド「Q」、 m の のらイXし C う 部 がっちょう に 被 しかうを評 P 切 ば
備考		21 11 200 2			-] > ////	0		

	(1) Yukio SAKAMOTO and Shun-ichi TANAKA (1990) : QAD-				
	CGGP2 AND G33-GP2: REVISED VERSIONS OF QAD-CGGP AND				
	G33 — GP (CODES WITH THE CONVERSION FACTORS FROM				
	EXPOSURE TO AMBIENT AND MAXIMUM DOSE EQUIVALENTS) , J				
	$A \in R I - M 90 - 110$				
	(2)小山謹二・奥村芳弘・古田公人・宮坂駿一(1977): 遮蔽材				
文献	量の群定数, JAERI-M 6928				
	(3) JAEA (2013) : JAEA-Date/Code 2012-032 JEND				
	L-4.0に基づくORIGEN2用断面積ライブラリセット:				
	ORLIBJ40				
	(4) International Commission on Radiological Protection				
	(2008) : Nuclear Decay Data for Dosimetric				
	Calculations, ICRP Publication 107				

パラメータ		名称			単位
No. 34	海坦	域における漁業の 年		h⁄y	
シナリオ 区分	□共通	□最も可能性が高い自然事象	■最も厳しい 自然事象	[□人為事象
設定値	2, 880				
設定根拠	 ・原子力安: 間実働作: 間に換算 120 (day ・漁業従事 個人であ 海域の海 	全委員会(1989) ⁽¹ 業日数 120 (day/y して設定した。 */year) ×24 (hot 者は最も厳しい自 ることから,線量な 面に接近するものと	⁾ に示されている海 year)を24 (hour, ur/day) =2,880 然事象シナリオに い厳しくなるよう作 として保守的に設定	域_da (h / お業し)	Eにおける年 ay)として時 〈y) ける評価対象 寺は常に評価 た。
備考					
文献	(1) 原子力等査にお年3月	安全委員会(1989) ける一般公衆の線量 29 日)	: 発電用軽水型原子 量評価について(一	炉加	施設の安全審 改訂 平成 13

パラメータ		名称			単位
No. 35	放射性物質	の海水から漁網への	の移行比	(Bq∕	∕kg) ∕ (Bq∕m³)
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳 自然事	しい 象	□人為事象
設定値	1				
設定根拠	 ・ 原子力安 網への移 設定した。 ・ 評価に用 た。 	全委員会(1989) ⁽¹ 行比である 1×10 ³ 。 いる単位に合わせる	⁾ に示されて ((Bq/g) / 5ために,単	 (Bq/ (Eq/ (Eq/) 	x射性物質から漁 ´cm ³))を用いて 低した値を設定し
備考					
文献	(1) 原子力 査にお 年3月	安全委員会(1989) ける一般公衆の線量 29 日)	: 発電用軽オ 量評価につい	×型原子 ヽて(-	・炉施設の安全審 ・部改訂 平成 13

パラメータ		単位		
No. 36		h∕y		
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい自然事象	□人為事象
設定値	1, 920			
設定根拠	 ・原子力安: 数 80 (da 定した。 80 (day) ・漁業従事 個人であ に接近す 	全委員会(1989) ⁽¹ y/year)を 24(hour イyear)×24(hour 者は最も厳しい自 ることから,線量な るとして保守的に言	⁾ に示されている出 our/day) として時 r/day) =1,920(I 然事象シナリオに: が厳しくなるよう作 没定した。	漁の年間実働日 間に換算して設 h/y) おける評価対象 業中は常に漁網
備考				
文献	(1)原子力を査にお年3月	安全委員会(1989) ける一般公衆の線量 29 日)	: 発電用軽水型原子 量評価について(一	炉施設の安全審 部改訂 平成 13

パラメータ		名称		単位
No. 37	廃棄物均	m		
シナリオ 区分	□共通	□最も可能性が高い自然事象	■最も厳しい自然事象	□人為事象
設定値	150			
設定根拠	 廃棄物理 水田に適 そのため 射性物質 廃すること 	設地より東側(海 した土壌ではない。 , 廃棄物埋設地より が移動した場合を 設地から西側の敷 から, 150 m に切り	 ()は、砂丘砂層(() 西側(陸側)に地 () 定する。 () 地境界までの最短距 () 下げて設定した。 	l u 層)であり, 下水を介して放 離は約 168 m で
備考				
文献				

パラメータ	名称			単位
No. 38	灌漑土壌への灌漑水量			$m^3 \swarrow (m^2 \cdot y)$
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	2.1			
設定根拠	 ・国土交通 年間当た る水田耕 単位面積 506(億) =0.2068 =2.1(n 	省 ⁽¹⁾ によると,オ り 506 億 m ³ であり 地面積は 2,446 千 当たりの灌漑水量を n ³ /year)÷2,446 68…(億 m ³ /(千 u ³ /(m ² ・y))	X田灌漑に利用され の、農業用水を利用 ha であることから を算出し設定した。	しる農業用水量は 目すると考えられ 5、以下のとおり
備考				
文献	(1) 国土交: 年版	通省 水管理・国土 日本の水資源の現れ	上保全局水資源部 兄	(2018):平成 30

パラメータ	名称			単位
No. 39	Ŷ	m		
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	0.15			
設定根拠	・ Regulato Recommend cm) に基	ry Guide 1.109 ⁽ ded Values for 0 づき, 設定した。	¹⁾ に示されている ther Parameters)	o (Table E-15. 耕作層厚さ(15
備考				
文献	(1) U.S. No of Annu Effluer 10 CFR 1.109	uclear regulatory ual Doses to Man f nts for the Purpos part 50, Append: Rev.1	Commission (197 from Routine Rele se of Evaluating ix I, U.S.NRC Re	7) :Calculation ases of Reactor Compliance with egulatory Guide

パラメータ	名称]	単位	
No. 40	灌溉土填	夏の放射性核種	i のI	仅着分配係数		m	³ ∕kg
シナリオ 区分	□共通	□最も可能性 高い自然事	Eが ■象	■最も厳しい 自然事象	()	□人為事象	
		放射性核種 設定値 文			献*1		
		H-3		0		(2)	
	(C-14		0.002		(2)	
	(C 1 - 36		0.00025		(3)	
	(Са-41		0.11		(1)	
設定値	(C o -60		0.99		(1)	
	;	S r -90		0.15		(1)	
	(C s -137		0.27		(1)	
]	E u - 152		0.65		(3)	
]	E u —154		0.65		(3)	
		Èα		110		(1)	
設定根拠	 I AEA-TRS No. 364⁽¹⁾で示される有機土の収着分配係数 を基本とし、数値がない場合は、IAEA-TECDOC- 401⁽²⁾及びORNL-5786⁽³⁾で示される値の最も大きい値を 引用した。 全αについては、Pu-239 とAm-241 のうち値の大きい方 を設定する。そのため、全αの値はAm-241の数値で代表さ 						
備考	※1:引用した文献を示す。						
文献	 (1) International Atomic Energy Agency (1994) : Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, I A E A TECHNICAL REPORTS SERIES No. 364 (2) International Atomic Energy Agency (1987) : Exemption of Radiation Sources and Practices from Regulatory Control-INTERIM REPORT, I A E A-T E C D O C-401 (3) C. F. Baes III, R. D. Sharp, A. L. Sjoreen, R. W. Shor (1984) : A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. OR N L-5786 						

パラメータ	名称			単位	
No. 41		灌漑土壌の間隙率			
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象	
設定値	0.54				
設定根拠	 ・農耕土壌 を避け, してい対象 ・土質式を用 四捨五入 た。 間隙率= 	として利用される= 保水力があり,通タ と考えられることだ となる。 法 ⁽¹⁾ に記載される いて間隙率に換算し した値(0.33~0.7 間隙比/(1+間隙	土壌としては、極端 気性や透水性を兼ね から、砂〜粘土が通 る砂〜粘土の間隙比 した値を有効数字2 5)の中間値(0.54 (注)・・・①	 な粘質及び砂質 <!--</td-->	
備考					
文献	(1) 土質工	学会編(1979):土	質試験法(第2回	改訂版)	

パラメータ	名称			単位
No. 42		kg∕m³		
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい自然事象	□人為事象
設定値	2. 7×10^{3}			
設定根拠	 ・ 農耕土 集 を で な が ((<	として利用される= 保水力があり,通 と考えられることだ となる。 法 ⁽¹⁾ に記載される ^(cm³) の中間値(2 四捨五入し,kg/m た。	土壌としては,極端 気性や透水性を兼ね から,砂〜粘土が通 5砂〜粘土の粒子密 2.65 g/cm ³)を有 ³ に単位換算した 2	端な粘質及び砂質 Q備えた土壌が適 通度に混合した土 定度(2.5 g/cm ³ 可効数字2桁とな 2.7×10 ³ kg/m ³
備考				
文献	(1) 土質工	学会編(1979):土	質試験法(第2回	改訂版)

パラメータ	名称			単位
No. 43		水田面積		
シナリオ 区分	□共通	□最も可能性が高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	7.1×10 ³			
設定根拠	 ・農林業セ 培)経営 の稲の作 たりの稲 設定した。 東海村の =220 ha =0.7051 =7,051 ≒7.1×1 	ンサス 2015 ⁽¹⁾ に 体数と作付(栽培) 付経営体数と,東海 の作付け面積を算け 。 稲の作付面積÷東語 ÷312 ha m ² 0 ³ m ²	,「販売目的の作物 面積」が整理され 毎村の稲の作付面積 出し,評価に用いる 海村の稲の作付経常	かの類別作付(栽 れており,東海村 気より1経営体当 小田面積として 営体数
備考				
文献	(1) 農林水	産省(2016):2015	年農林業センサス	

パラメータ	名称			単位
No. 44	灌漑農産物	の根からの放射性	核種の吸収割合	—
シナリオ 区分	□共通	□最も可能性が高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	1			
設定根拠	 有効土層 吸収割合 め,保守 	に分布した灌漑農園 については,科学的 的に全量が吸収され	崔物(米)の根から りに合理的な範囲が いると設定した。	の放射性物質の ぶ定められないた
備考				
文献				

パラマータ			単位			
No. 45	土壌から灌漑農産物への			(Bq∕k	kg-wet 農	} 産物)
NO. 45	放射性核種 <i>i</i> の移行係数			/ (Bq,	∕kg-dry	土壌)
シナリオ	口卡理	□最も可能性	が ■最も	厳しい		为重免
区分		高い自然事	象自然	事象		河 ず豕
		放射性核種	設定値	直	文献 ^{※1}	
		H-3	$1.0 \times 10^{\circ}$)	(3)	
		С-14	7.0×10 ⁻	- 1	(3)	
		C 1 - 36	5. $0 \times 10^{\circ}$)	(3)	
		C a -41	3. 5×10^{-1}	- 1	(3)	
設定値		С о -60	4.4×10^{-1}	- 3	(5)	
		S r -90	1.9×10^{-1}	- 1	(1)	
		C s -137	7. 2×10^{-1}	- 2	(1)	
		E u - 152	2. 0×10^{-1}	- 3	(2)	
		E u - 154	2. 0×10^{-1}	- 3	(2)	
		全α	1.9×10^{-1}	- 5	(1)	
設定根拠	 ・ 灌しい文る文量効全そ灌高通 ・ がい、 ・ 文量効全を灌高通 ・ そ ・ 通 	物の移行係数は だし,これているす えれている核 文献(1)は文献(5) がとないて,we がでたいて,we がの移ったり した。	, 文種の代記 t 切 A m 固 び 最 t に す て て 切 A m の 有 最 で で 何 の す 最 し の 産 上 の 数 の 有 最 で f で f m の 有 最 t し し か い い に る の ご ま f m の 有 最 t し し か い い に む い て t f f m の も 厳 し	~「「は」、「載く重役直代でいく。」(4)文人でし、一般のの量定の表あり(4)文の物る水変たきせた、「「「「「「」」)が、「「」」で、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	回義、後の弦響、後、一次で、後のな響、後、一次でない。 に、他値燥、14.9 方。 りをが重、9 、 で、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	直よ用さ8(守 定 可リークシステレイの一定 可しれの一定 す 能オリスたてを燥に る 性で用き。い,重有 。 が共
備考	※1:引用し	た文献を示す。				

	(1) International Atomic Energy Agency (1994) : Handbook of				
	Parameter Values for the Prediction of Radionuclide				
	Transfer in Temperate Environments, IAEA TECHNICAL				
	REPORTS SERIES No. 364				
	(2) International Atomic Energy Agency (2001): Generic Models				
	for Use in Assessing the Impact of Discharges of				
	Radioactive Substances to the Environment, IAEA				
	Safety Reports Series No.19				
	(3) International Atomic Energy Agency (2005) : Derivation				
	of Activity Concentration Values for Exclusion,				
文献	Exemption and Clearance, I A E A Safety Reports				
	Series No.44				
	(4) International Atomic Energy Agency (1982) : Generic Models				
	and Parameters for Assessing the Environmental Transfer				
	of Radionuclides from Routine Releases, Exposures of				
	Critical Groups, IAEA Safety Series No.57				
	(5) International Atomic Energy Agency (2010) : Handbook of				
	Parameter Values for the Prediction of Radionuclide				
	Transfer in Terrestrial and Freshwater Environments,				
	IAEA Technical Reports Series No.472				
	(6) 文部科学省:日本食品標準成分表 2015 年版				

パラメータ	名称			単位
No. 46	灌漑農産物の年間摂取量			kg⁄y
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	55			
設定根拠	 ・ 厚生 労働: 「関東Ⅱ」 314.8g⁻ ・ 本調理値。 ・ 文分 心した。。 ・ 314.8(g) ・ 支部率 14. 施 した。 ・ 赤方(kg) ・ 最 とげて保 	省 (2020) ⁽¹⁾ におば 」の「米・加工品」 である。 は, 平成 13 年からた は, 平成 13 年からた なる 有効数字 2 桁となる 省 ⁽²⁾ に示される課 9%を用いて以下の /day)×365 (day/ (-9… (g/year) :/year) い自然事象シナリ ,線量が厳しくなる 守的に設定した。	tる茨城県が含まれ の一人・一日当た のし、一日当た なのようにはない。 ないるため、精米時 ひょうに保守的に切 のまの水分率 ひとおり精米時の重 /year) × (1-0.60 オで用いる評価パ ちよう統計に基づい	 √る地域ブロック :りの摂取量は、 C,食品の重量は :の重量に換算し 1り上げて設定し 60%と精米時の (量への換算を実 0)÷(1−0.149) ラメータである かた計算値を切り
備考				
文献	 (1) 厚生労[/] (2) 文部科² 	働省(2020):平成 学省:日本食品標 [⊻]	30 年国民健康・栄 準成分表 2015 年版	義調査報告

パラメータ	名称			単位
No. 47	灌漑農産物の市場係数			—
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	 農業従事者 漁業従事者 建設業従事 居住者 	· : 1 · : 0. 1 · : 0. 1 · : 0. 1 · : 0. 1		
設定根拠	 ・ 農業従事者は、生産した灌漑農産物を全て自家消費すると低して、最も保守的となる設定とした。 ・ 農業従事者以外は、以下のとおり設定した。 ・ 農株水産省⁽¹⁾によれば、東海村の2015年の稲の作付面積は2 ha(=2,200,000 m²)である。 ・ 評価に用いる水田面積は、農林水産省⁽¹⁾に示される2015年 稲の作付面積を東海村の稲の作付経営体数で除した面積と た(7.1×10³ m²)。 ・ 東海村の水田面積と評価で用いる水田面積の比は、 評価で用いる水田面積・東海村の水田面積 =7.1×10³ m²÷2.2×10⁶ m² =3.23×10⁻³ となる。 ・ この結果より、評価で用いる水田面積と東海村の水田面積の は、1%未満となる。 ・ 評価で用いる水田で生産された灌漑農産物は、全て東海村で 費するとの最も保守的な想定を置き、市場係数を0.1と設定 た。 ・ 最も厳しい自然事象シナリオで用いる評価パラメータであ ことから、線量が厳しくなるよう、評価で用いる水田で生産 れた灌漑農産物は全て東海村で消費すると想定し保守的に 定した。 			
備考				
文献	(1) 農林水	産省(2016):2015	5 年農林業センサス	

パラメータ	名称			単位
No. 48	灌漑作業	_		
シナリオ 区分	□共通	□最も可能性が高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	1			
設定根拠	 灌漑をれな ・最もれなし ことから 設定値を 	業において、汚染ニ することができない いことから、保守的 い自然事象シナリ 、線量が厳しくなる 用いた。	上壌からの放射線に いため,科学的に合 内に1と設定した。 オで用いる評価バ るよう,遮蔽を考慮	⊂対する遮蔽の状 ↑理的な範囲が定 ラメータである 貧しない保守的な
備考				
文献				

パラメータ	名称			単位	
No. 49		h⁄y			
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象	
設定値	500				
設定根拠	 総務省統計局⁽¹⁾に示される,全国の農家人口,農地面積(田) 及び10 a 当たりの労働時間(米)を用いて、1 戸当たりの平均 年間労働時間を算出した結果を基に設定した。 田の年間作業時間を以下のとおり算出し、有効数字1桁となる ように保守的に切り上げて設定した。 農地面積(田)÷全国の農家数×10 ×10 a 当たりの労働時間(米) =2,458,000 (ha)÷1,412,000 (戸)×10 (10a/ha) ×25.6 (hour/10a) =445.64 (hour) \$500 (hour) 最も厳しい自然事象シナリオで用いる評価パラメータである ことから、線量が厳しくなるよう、統計に基づいた計算値を保 守的に切り上げて設定した。 				
備考					
文献	(1) 総務省;	統計局 : 日本の統	针 2016		

パラメータ	名称			単位
No. 50	灌漑作業時の空気中粉じん濃度			kg∕m³
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	1×10^{-6}			
設定根拠	 IAEA のパラメー Hamilton g/m³の kg/m³に 灌紙けるも リオよう, な設定値 	- T E C D O C - 4 - タとして提案さえ 等が提案した範囲 表大値である 1×1 設定した。 における空気中粉 のより低いと想定 いる評価パラメー 浸入者建設シナリン とした。	101 ⁽¹⁾ における侵入 れている,米国環境]である 1×10 ⁻³ 0 ⁻³ g∕m ³ を単位 じん濃度は,侵入者 されるが,最も厳し タであることから, オにおける値を用い	、者建設シナリオ 留保護庁や英国の g/m ³ ~1×10 ⁻⁴ 換算し1×10 ⁻⁶ 行建設シナリオに い自然事象シナ 線量が厳しくない ることで保守的
備考				
文献	(1) Interna Radiat Contro	ational Atomic En ion Sources an 1-INTERIM REPORT,	ergy Agency (1987 d Practices fr IAEA-TEC):Exemption of com Regulatory CDOC-401

パラメータ		名称		単位
No. 51	空気中粉じ	んの灌漑土壌から	の粉じんの割合	_
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	1			
設定根拠	 空気中の 割合を特定 定められ 供給され 	粉じんのうち灌漑 定することはでき; ないことから,空気 るものとして,保	土壌から発生した ないため,科学的に 気中の粉じんの全て 守的に1と設定した	粉じんの占める 合理的な範囲が ごが灌漑土壌から -。
備考				
文献				

パラメータ	名称			単位
No. 52	灌漑作業者の呼吸量			m³∕h
シナリオ 区分	□共通	 □最も可能性が 高い自然事象 	■最も厳しい自然事象	□人為事象
設定値	1.2			
設定根拠	 ICRP 均呼吸率 9.6 m³/ 屋外労働 えら m³/ 最もから 守的な設 	Publication 89 ⁽¹⁾ を1時間当たりの「 ⁷ 8h=1.2 m ³ /h 作業中の呼吸率は, が,文献に基づくさ 8h,成人女性で7. い自然事象シナリ ,線量が厳しくなる 定値とした。	⁾ で示される成人男 乎吸率に換算し設定 個人ごとにある程 :就業中の平均呼吸 9 m ³ /8hである。 オで用いる評価バ 5よう成人男性の呼	号性の就業中の平 官した。
備考				
文献	(1) Intern (2002) Use in R P P	ational Commissi):Basic Anatomic Radiological Pro ublication 89	on on Radiologi cal and Physiolo tection: Referen	cal Protection ogical Data for ce Values, I C

パラメータ		名称		単位
No. 53	廃棄物埋設	地下流端から建設作	F業場所までの距離	m
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	0			
設定根拠	 廃土に、廃所生し、 廃・廃・ 廃・ 廃・ (たいの) (設地から漏出した 削することによって ばく経路を考慮する の開始後の放射性 することは困難であ 減衰効果が少なく ,廃棄物埋設地下が	放射性物質を含む て、掘削土壌に含ま る。 物質の移動先にお あることから、移動 なる廃棄物埋設地 充端からの距離を 0	地下水と接する れる放射性物質 ける土地利用場 り遅延による放射 直近を掘削する mと設定した。
備考				
文献				

パラメータ		名称		単位	
No. 54	掘削土壌の希釈係数			—	
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象	
設定値	0.34				
設定根拠	 廃棄物埋設地から漏出した放射性核種を含む地下水と接した 土壌を掘削し、利用することを想定した。 掘削深度は、IAEA-TECDOC-401⁽¹⁾を参考に3mを 想定した。 放射性物質を含む地下水が流れる範囲には、地表面標高がT.P. +4 m程度の場所が存在することから、当該箇所にて掘削が行 われると想定し、掘削深度3mのうち地下水に接する土壌の高 さ(「パラメータNo.21:帯水層の厚さ」参照)を保守的に丸め 掘削深度に対する地下水に接する土壌の高さの割合が放射性 物質を含む地下水と接した、汚染土壌の割合であると想定し た。 地下水に接する土壌の高さは、最も可能性が高い自然事象シナ リオでは四捨五入して1.0m、最も厳しい自然事象シナリオに おいては保守的な設定になるよう切り上げ1.0mに設定した。 掘削は垂直に行われるとして、掘削土壌に占める汚染土壌の割 合を算出し、有効数字2桁となるように保守的に切り上げて設 定した。 1.0m÷3m=0.333≒0.34 詳細は「別紙13掘削土壌の希釈係数の設定根拠について」参 照。 				
備考					
文献	(1) Interna Radiat Contro	ational Atomic End ion Sources an 1-INTERIM REPORT,	ergy Agency (1987 d Practices fr IAEA-TEC):Exemption of com Regulatory CDOC-401	

パラメータ	名称			単位
No. 55	作業時	における放射性核和	重の遮蔽係数	—
シナリオ 区分	□共通	□最も可能性が高い自然事象	■最も厳しい 自然事象	■人為事象
設定値	1			
設定根拠	 ・ 建設作業 をおれる ・ 最もしていい ・ 最ものの ・ 最ものの ・ 最ものの ・ 最ものの ・ 最ものの ・ してい ・ しい <	において、汚染土物 ることはできないが ことから、保守的に い自然事象シナリ 、線量が厳しくなる 用いた。	裏からの放射線に蒸 とめ,科学的に合理 こ1と設定した。 オで用いる評価パ るよう,遮蔽を考慮	けする遮蔽の状況 目的な範囲が定め ラメータである 貧しない保守的な
備考				
文献				

パラメータ	名称			単位
No. 56	年間作業時間			h⁄y
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	■人為事象
設定値	500			
設定根拠	 建設作業 考慮した。 IAEA 500 h/y 一般時間 最とから 	において,汚染土 - T E C D O C – を設定した。 住宅を建設した場 は 480 h/y となる い自然事象シナリ ,線量が厳しくな	譲からの放射線によ 401 ⁽¹⁾ で提案され 合における作業時 っ オで用いる評価パ るよう保守的な設定	こる被ばく時間を っている値である 間から推定した ラメータである ご値とした。
備考				
文献	(1) Interna Radiat Contro	ational Atomic En ion Sources an 1-INTERIM REPORT,	ergy Agency (1987 d Practices fr IAEA-TEC):Exemption of com Regulatory CDOC-401

パラメータ	名称			単位
No. 57	作業時の空気中粉じん濃度			kg∕m³
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	■人為事象
設定値	1×10^{-6}			
設定根拠	 IAEA のパラメー Hamilton g/m³の子 kg/m³に 最も厳し ことから 	- T E C D O C - 4 ータとして提案さえ 等が提案した範囲 最大値である 1× 設定した。 い自然事象シナリ ,線量が厳しくな	101 ⁽¹⁾ における侵入 れている,米国環境 である 1×10 ⁻³ 10 ⁻³ g/m ³ を単位 オで用いる評価パ るよう,保守的な部	★者建設シナリオ 留保護庁や英国の g/m ³ ~1×10 ⁻⁴ 換算し 1×10 ⁻⁶ ラメータである 設定値とした。
備考				
文献	(1) Interna Radiat Contro	ational Atomic En ion Sources an 1-INTERIM REPORT,	ergy Agency (1987 d Practices fr IAEA-TEC):Exemption of com Regulatory DOC-401

パラメータ	名称			単位
No 58		空気中粉じんの	うち	
110.00	掘	削土壌からの粉じん	しの割合	_
シナリオ	□共通	□最も可能性が	■最も厳しい	■人為事象
区分		高い自然事象	自然事象	
設定値	1			
設定根拠	 空気中の 割合を特; 定められ; 供給され; 	粉じんのうち掘削 定することはでき; ないことから,空気 るものとして,保	土壌から発生した ないため,科学的に 気中の粉じんの全て 守的に1 と設定し7	粉じんの占める 合理的な範囲が が掘削土壌から こ。
備考				
文献				

パラメータ	名称			単位
No. 59	作業者の呼吸量			m³∕h
シナリオ 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	■人為事象
設定値	1.2			
設定根拠	 ICRP 均呼吸率 9.6 m³/ 屋外労働 えられる 9.6 m³/ 最も厳し ことかな設 	Publication 89 ⁽¹⁾ を1時間当たりの ^{(8h=1.2 m³/h 作業中の呼吸率は, が,文献に基づく。 8h,成人女性で7. い自然事象シナリ ,線量が厳しくなっ 定値とした。}	⁾ で示される成人男 呼吸率に換算し設定 個人ごとにある程 と就業中の平均呼吸 9 m ³ /8hである。 オで用いる評価パ るよう成人男性の吗	性の就業中の平 した。
備考				
文献	(1) Intern (2002) Use in R P Pt	ational Commiss:):Basic Anatomi Radiological Pro ublication 89	ion on Radiologi cal and Physiolog otection: Reference	cal Protection gical Data for ce Values, IC

パラメータ		名称		単位
No. 60		掘削時期		У
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい自然事象	■人為事象
設定値	最も可能性 (覆土の完 最も厳しい (廃止措置	Eが高い自然事象 E了時点:覆土の完 い自然事象,人為事 配開始時点:覆土	:0 了から0年後) 念:50 の完了から50年後	(ż)
設定根拠	 ・自然に設み ・引出し ・自約に ・ 人評 ・ 人評	シナリオは,廃棄執 被ばくを評価する らの放射性物質の シナリオは,廃棄執 ため,掘削される れんで的な条件 れると設定した。	加理設地から海まで きめ,掘削時期にで 輸出開始時期と同様 物理設地の直接掘削 時期は事業が廃止さ となるように廃止措	での移行経路の掘 かいては,廃棄物 様の設定とした。 川による被ばくを 新世の開始時点か
備考				
文献				
パラメータ		名称		単位
------------	--	---	---	---
No. 61	廃棄物埋護	m		
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	0			
設定根拠	 廃土に廃所性 廃壌よ止を物 たる た オ た <l< td=""><td>設地から漏出した 削することによって ばく経路を考慮する の開始後の放射性 することは困難です 減衰効果が少なく , 廃棄物埋設地下が</td><td>放射性物質を含む て、掘削土壌に含ま る。 物質が移動した先 あることから、移動 なる廃棄物埋設地 充端からの距離を(</td><td> 地下水と接する れる放射性物質 での土地利用場 加遅延による放射 直近を掘削する) mと設定した。 </td></l<>	設地から漏出した 削することによって ばく経路を考慮する の開始後の放射性 することは困難です 減衰効果が少なく , 廃棄物埋設地下が	放射性物質を含む て、掘削土壌に含ま る。 物質が移動した先 あることから、移動 なる廃棄物埋設地 充端からの距離を(地下水と接する れる放射性物質 での土地利用場 加遅延による放射 直近を掘削する) mと設定した。
備考				
文献				

パラメータ	名称			単位
No. 62	居住時に	—		
シナリオ 区分	■共通	□最も可能性が高い自然事象	□最も厳しい自然事象	□人為事象
設定値	1			
設定根拠	 ・ 放射性物 屋外活動 れな設定 ・ 最もから 設定値を 	質を含む土壌を掘 時の遮蔽についてに め,保守的に遮蔽物 した。 い自然事象シナリ ,線量が厳しくなる 用いた。	削した土地に居住 は、科学的に合理的 かによる軽減を見込 オで用いる評価パ るよう、遮蔽を考慮	した際における つな範囲が定めら まない値である ラメータである 気しない保守的な
備考				
文献				

パラメータ	名称			単位
No. 63	年間居住時間			h∕y
シナリオ 区分	■共通	□最も可能性が高い自然事象	□最も厳しい自然事象	□人為事象
設定値	屋内:7,70 屋外:1,00	60 00		
設定根拠	 ・居年)のは(20%)のに、(20%)のは(20%)のは(20%)のに、(20%)のに、(20%)のに、(20%)のに、(20%)のに、(20%)のに、(20%)のい(20%)のい(20%)(20%)(20%)(20%)(20%)(20%)(20%)(20%)	の設定に当たってに 居続けることに に居続けることに に居続けると想住に 務に基づの居住に なった。 、屋外における居住 シレントにおける居住 イタ×0.1=876 h/ の居住て設定した。 イタ×0.1=876 h/ の居住て設定した。 イター1,000 h/y= いては「別紙14 「 について」参線量で はのうちしておいても居住にに についてもにてににて」 をしておいてして についてした。 りましておいての についての について」 をして について」 を に に た に の に した。 の に して い て に て に て に て に て に て に て に て に て に	は、会社や学校又に ないが、保守的に した。 時間のうち屋外(庭 7) ⁽¹⁾ 及びNHK 寺での屋外活動と考 主時間は以下の通り y = 1,000 h/y 屋外における居住 7,760 h/y 居住地での居住時間 が厳しくなるように 皆と同じ値を設定し してとにある程度 たきな影響を与える 能性が高い自然事 において同じ保守	 は買い物等により 1年間(8,760時 5年間の活動の割 が送られる時間を ひとした。 時間以外は屋内 うち屋外の活 うち屋外の活 このうち屋外の活 このうちをするの話 このうちをする このうちをする このうちをする このうちをする このうちをする このうちを こののの こののの このののの このののの このののの こののののの こののののの このののののの こののののののの こののののののの このののののののの こののののののののののの このののののののの こののののののののののの このののののののののののののののののののののののののののののののののののの
備考				
文献	(1)総務省;(2) NHK;告書	統計局(2017):平 放送文化研究所(2	成 28 年社会生活基 016): 2015 年国民	基本調查 是生活時間調查報

パラメータ	名称			単位
No. 64	居	住時の空気中粉じ	ん濃度	kg∕m³
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	屋内 : 5×1 屋外 : 1×1	10^{-9}		
設定根拠	 IAEA る屋内外 内5×10 m³及び時の えび時の えらは した。 	-TECDOC-401 での空気中粉じん液 ⁻⁶ g/m ³ をkg/m ³ 内5×10 ⁻⁹ kg/m ³ 空気中粉じん濃度に ものの、線量評価約 されないことから 厳しい自然事象シ	⁽¹⁾ で示される居住 農度である屋外 10 に単位換算し,屋 と設定した。 こついては,ある程 吉果に大きな影響を 最も可能性が高い ナリオにおいて同	 シナリオにおけ ⁻⁵ g/m³及び屋 外1×10⁻⁸ kg/ 建度変動すると考 注与えるような変 自然事象シナリ じ保守的な設定
備考				
文献	(1) Interna Radiat Contro	ational Atomic Ene ion Sources an 1-INTERIM REPORT,	ergy Agency (1987 d Practices fr IAEA-TEC):Exemption of com Regulatory DOC-401

パラメータ		名称		単位
No. 65	空気中粉	—		
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい自然事象	□人為事象
設定値	1			
設定根拠	 空気中の 割合を特 定められ 供給され 	粉じんのうち掘削 定することはできた ないことから,空気 るものとして,保守	土壌から発生した ないため、科学的に 気中の粉じんの全て 守的に1 と設定しず	粉じんの占める 合理的な範囲が が掘削土壌から た。
備考				
文献				

パラメータ		単位		
No. 66		居住者の呼吸量		m³∕h
シナリオ 区分	□共通	■最も可能性が 高い自然事象	■最も厳しい 自然事象	□人為事象
設定値	0. 93			
設定根拠	 ICRP 呼吸率を ように保・ 22.2 m³/ =0.925 ≒0.93 m 居住文人の すい 人の を り に保守 	Publication 89 ⁽¹⁾ 1 時間当たりの呼吸 守的に切り上げて語 /day÷24 hour/d m ³ /hour ³ /hour 呼吸量は個人ごと に基づくと1日の に基づくと1日の に基づくと1日の な変動は想定 ような変動は想定 象シナリオと最も 的な設定値とした。	⁾ で示される成人男 吸率に換算し,有效 設定した。 ay にある程度変動す 平均呼吸率は成人身 であり,線量評価約 されないことから, 厳しい自然事象シ	9性の1日の平均 動数字2桁となる うると考えられる 男性で22.2 m ³ / 古果に大きな影響 最も可能性が高 イナリオにおいて
備考				
文献	(1) Intern (2002) Use in R P P	ational Commissi):Basic Anatomi Radiological Pro ublication 89	ion on Radiologi cal and Physiolo otection: Referen	cal Protection ogical Data for ce Values, IC

パラメータ	名称							
No. 67	土壌から家庭菜園農産物 k への			への	(Bq,	⁄kg	g-wet 農	産物)
NO. 01	放射	性核種iの移行	「係数		/ (E	Bq∕	′kg−dry	土壤)
シナリオ	■北次	□最も可能性	が	□最も	厳しい)		4 古 色
区分	■共連	高い自然事	い自然事象自		事象		山人名	奇 爭家
	7	次射性核種		設定値	<u>`</u>	Ź	て献*1	
	I	$\frac{1-3}{2}$		$1.0 \times 10^{\circ}$	- 1		(2)	
		2 - 14		7.0×10)		(2)	
		2 - 1 - 30		3.0×10^{-10}	- 1		$\frac{(2)}{(2)}$	
設定値		$\frac{5 a}{1} = \frac{41}{5 a}$		3.3×10^{-10} 8.0 × 10 ⁻¹	- 2		(1)	
		5 r -90		3.0×10^{-10}	- 1		(1)	
	(C s -137		4.0×10 ⁻	- 2		(1)	
	Ι	E u -152		2.0×10 ⁻	- 3		(1)	
	I	E u —154		2. 0×10^{-1}	- 3		(1)	
	/	Èα	2. 0×10^{-3}			(1)		
設定根拠	 家をりし全をせ文Vegetable 家をすして、 な設た献 ge po数, ×値 文文文文 文文文文 文文文文 	農産物の移行存 た。ただし,こ 数値が示されて いては、Pu- る。そのため、)については es (葉菜)」、「Nu es (葉菜)」、「Nu es (葉菜)」、「Nu es (並べ)ので 単位が(dry we 重量割合)で 較している。 並献 (1) 1 (2) 2 (3) 3 (4) 4 (5) 文献	系れい -239 a , on-le (wet (1)	t,文献よ の文献よ の核種につ とAmー の値はA 定。 をafy Vege やがいも、 した。な で、 イオy we weight/ 優先	りりい 241 の 241 の table で dry we 順 の 大	そうしょう 41 と s バ rui ざ chi	憂ゝそ、らり、考拝 Fr t ち t ち ち ち ち ち ち ち ち ち ち ち ち ち ま t い しんしゅう しんしゅう しんしゅう しんしゅう しんしゅう しんしょう ちょうしんしょう しんしょう ちょう しんしょう しんしょう しんしょう しんしょう しんしょう しんしょう しんしょう ちょう しんしょう しんしょ しんしょ	でうぼ き代 「Leafy」(算 一 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	※1:引用した文献を示す。	
備考		
	(1) International Atomic Energy Agency (2001) : Generic Models	
	for Use in Assessing the Impact of Discharges of	
	Radioactive Substances to the Environment, Safety	
	(2) International Atomic Energy Agency (2005) Derivation	
	of Activity Concentration Values for Exclusion	
	Exemption and Clearance. Safety Reports Series No. 44	
	(3) International Atomic Energy Agency (1982) :Generic Models	
	and Parameters for Assessing the Environmental	
	Transfer of Radionuclides form Routine Releases,	
	Exposures of Critical Groups, IAEA Safety Series	
	No. 57	
	(4) International Atomic Energy Agency (1994) : Handbook of	
Parameter Values for the Prediction of Radion	Parameter Values for the Prediction of Radionuclide	
文献	Iransier in lemperate Environments, IECHNICAL REPORTS	
	(5) International Atomic Energy Agency (2010) · Handbook of	
	Parameter Values for the Prediction of Radionuclide	
Transfer in Terrestrial and Freshwater Envi Technical Reports Series No.472		

パラメータ	名称				
No. 68	家庭菜園農	産物 k の根からの	放射性核種の吸収害	旧合	_
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象]人為事象
設定値		葉菜 非葉菜 果実	設定値 0.1 0.1 0.1		
設定根拠	・廃いさ野㎝㎝農物のゅ果に産を葉のはいえ葉割果分域6詳収乗。に菜,を林と比う実農物対菜ば根るて菜合樹吸のc細割物こ応を果想水,較りに林の象にれ長。 0.のをに収深mに合埋うじ栽実定産タか」、つ水果とつい密 30.1 根 0.つのさまつの	認して、 認定には、 認定には、 認定には、 に、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で	ッ層であり農産物の 家庭菜園を行うには うえで、栽培が行れては、茨城県(うえで、栽培が行れては、茨城県(ついては、茨城県(うされる東海村で作 2014) ⁽⁴⁾ に示される 「なす」、「ピーマン」 でついてのデータがた こ示される東に「トマ」 でかてのう東海村で 「ぶどう」、「栗」、「 集委員会(1998) ⁽⁵⁾ 表樹の分布状況を保 いが、非葉菜と同様 編集委員会(1998) のが、非葉菜と同様 編集委員会(1998) 「 1 と設定する。 農産物の根からの	載1, 2022 一次2014 304 304 315 115 115 115 115 115 115 115 115 115	に要と(1) さ葉大象めけイ ちゅうに む よする 性はな考よよ れ園根と,さル ナ以さ% の と主域 極適作えりり 農野「た守た一 ス深れと 吸 養要は のな厚。30 産菜き。的農」 科でて考 収 水根約 吸

備考	
文献	 (1) NHK出版 (2001):別冊NHK趣味の園芸 手作り新鮮野菜 365日 こだわりの家庭菜園 (2) 茨城県 (2015):土壌・作物栄養診断マニュアル (3) 農林水産省:グラフと統計でみる農林水産業,茨城県東海村 (4) タキイ種苗(株) (2014):2014 年度 野菜と家庭菜園に関する 調査 (5) 根の事典編集委員会 (1998):根の事典

パラメータ	名称			単位
No. 69	家庭	菜園農産物 k の年	間摂取量	kg∕y
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値		葉菜 非葉菜 果実	設定値 13 54 15	
設定根拠	 ・農物比う生のれうと厚「葉以3非他ユる16.0g/ ・大クトット・ ・大クト・ ・大クト・	省 ⁽¹⁾ のデータに示 キイ種苗(株)(201 キイ種苗(株)(201 、葉菜は「ねぎ」、「 なず ばれいしょ」、「なず ばれいしょ」、「なず がのとする。また、 がで作付けさん。 「キウイフルーン 省(2020) ⁽³⁾ におけ 」から他の保守的に 「キウイフルーン 省(2020) ⁽³⁾ におけ これた した。 その他の最大 がいて なる5 d/y=12.0 、「トマト」、「ピー・ 数点以下を切り上げ オーン なる5 d/y=53.5 その他の生果」、「 計値を整数値となる する。 ては、「別紙 10	(a) (a) に示される家 (a) (a) に示される家 邦 菜は「トマト」 ド 、「ピーマン」を 水 については ⁽¹⁾ 楽 定 物の果てる 水 本樹の果てる な な 城県が含まれ な 支 な 城県が含まれ な た 整数値と ひ で する。 2015 kg/y = 13 k マン」、「きゅうり」 か の 行 等 的」の合計 ブ く d = 145.4 g の71 kg/y = 54 kg の71 kg/y = 54 kg の71 kg/y = 54 kg ん の71 kg/y = 54 kg	や は に な の 、 全庭の「で な で な 、 な 、 な 、 、 な 、 、 、 な 、 、 、 、 、 、 、 、 、 、 、 、 、

	量の設定について」参照。
	・ 家庭菜園農産物の摂取量は、対象となる農産物を東海村の特性
	を踏まえて幅広く設定しており、かつ、摂取量を算出するうえ
	では加工品を考慮することで摂取量が多くなるようにし、保守
	的に設定している。
	 家庭菜園農産物の摂取量については、世帯によってある程度変
	動すると考えられるが、保守的な設定値を採用していることか
	ら,線量評価結果に大きな影響を与えるような変動は想定され
	ないため、最も可能性が高い自然事象シナリオと最も厳しい自
	然事象シナリオにおいて同じ保守側の設定値とした。
備考	
	(1) 農林水産省: グラフと統計でみる農林水産業, 茨城県東海村
	(2) タキイ種苗(株) (2014): 2014 年度 野菜と家庭菜園に関する
	調査
	(3) 厚生労働省(2020): 平成 30 年国民健康・栄養調査報告
文献	

パラメータ	名称			単位
No. 70	家	庭菜園農産物 k のi	市場係数	_
シナリオ 区分	■共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	□人為事象
設定値		葉菜 非葉菜 果実	設定値 0.48 0.27 1	
設定根拠	・ 「「「「「」」」」」、「「「」」」、「「」」、「「」」、「「」」、「「」」、	「でに量を物すで海さトンて省さ庭葉ら版守収は類保農庭設定 でつを目をい生村れマ」は「加菜菜、(的種算す守産菜定産 すなし、時産でるトを家)の「で分間の物量」であり、「全庭の「で分間、「時産でる」、全庭の「で分間」の「「「「「」」で、「「「」」で、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「	「「「「「「「「「」」」」」」では、「「」」」」」でで、「「」」」」」」で、「」」」」」」」」」」	さの家いそう()種菜いさいたち、あれがとした供菜帯 さの家いそう()種菜いさいたち、あれがとした供菜帯 るで菜と農るデ株ね「よるめれイ るる。主考た る設る給園に そ年はら物 タ(2014)ぎなた守産一 物たれ年菜 性たにる足で した、たっ あんる間の 低 いしせ動

	するものと考えられるが、線量評価結果に大きな影響を与える						
	ような変動は想定されないことから最も可能性が高い自然事						
	象シナリオと最も厳しい自然事象シナリオにおいて同じ保守						
	側の	り設定値とした	••				
	区分	名称	₩ 穫時期	巾場係数			
	葉菜	ねぎ	9月中旬~2月末(5.7か月) ⁽³⁾	0.48			
		トマト	7月~8月末(2か月) ⁽³⁾	0.17			
		きゅうり	6月~8月中旬(2.7か月) ⁽³⁾	0.23			
	非葉	大根	6月~7月上旬,10月下旬~12 月上旬 (3か月) ⁽³⁾	0.25			
	菜	ばれいしょ	5月下旬~6月末,11月下旬~ 12月上旬(2か月) ⁽³⁾	0.17			
		なす	6月~10月中旬(4.7か月)(3)	0.39			
		ピーマン	6月~10月中旬(4.7か月)(3)	0.39			
	果実	なし,ぶどう, 栗, キウイフ ルーツ	収穫されたものを全て自家消 費(100%)するものとする。	1			
備考							
	(1) 鳥	豊林水産省 : グ	ラフと統計でみる農林水産業,	茨城県東海村			
	(2) ク	マキイ種苗(株)	(2014):2014 年度 野菜と家庭	産菜園に関する			
	言見	周査	· · · · · · · · · · · · · · · · · · ·				
大武	(3) N	NHK出版(201	19):NHK趣味の園芸 やさい	いの時間 藤田			
入而	Ť	習の新・野采つ	くり大全				

パラメータ		名称		<mark>単位</mark>
No. 71	井戸 <mark>7</mark>	<mark>水への放射性核種を</mark> 地下水の混合割合	·含む	-
<mark>シナリオ</mark> 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	<mark>□人為事象</mark>
<mark>設定値</mark>	1			
設定根拠	 放射性核種名 合理的な範囲 を設定した。 井戸水への加 囲で示され, 水に混合する も大きくなる 最も厳しい ことから,新 	を含む地下水が井戸 囲が定められないこ 放射性核種を含む地 この値が大きいこと る割合が大きいこと ることから、保守的 自然事象シナリオで 泉量が厳しくなるよ	水に混合する割 とから,保守的 日本の混合割合 放射性核種を含む を示し,被ばく約 な設定となる。 で用いる評価パラ う,保守的な設	合は,科学的に な設定となる1 は,0~1の範 や地下水が井戸 泉量の評価結果 ラメータである 定値を用いた。
<mark>備考</mark>				
文献				

パラメータ	名称		<mark>単位</mark>	
No. 72	廃棄物埋	設地下流端から井戸	<mark>^ヨまでの距離</mark>	m
<mark>シナリオ</mark> 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	<mark>□人為事象</mark>
<mark>設定値</mark>	0			
設定根拠	 ・ 井戸の設 戸を何処 とができ ・ この置の明 開 地直近に が最も大 	置については, 将来 に設置するかは科 ない。 , 廃棄物埋設地から 始後に廃棄物埋設地 条件において, 海ま 井戸を設置した場合 きくなることから,	 ・の人の行為に係る 学的な根拠に基づ 井戸までの距離に むから放射性物質の での移行経路の中 での「井戸水飲用」 0 mに設定した。 	o ものであり,井 いて予想するこ ついては,廃止)漏出(移動)が ¹ で,廃棄物埋設 の線量評価結果
<mark>備考</mark>				
文献				

パラメータ	名称 年間飲料水摂取量		<mark>単位</mark>	
No. 73			m ³ /y	
<mark>シナリオ</mark> 区分	□共通	□最も可能性が 高い自然事象	■最も厳しい 自然事象	<mark>□人為事象</mark>
<mark>設定値</mark>	0. 6			
設定根拠	 年間飲料: 定した。 なお,年水(飲料) ・飲料水の: も飲い すがおましい ホからの: あうメータ 	水摂取量は、IAE 間飲料水摂取量は、 水)の量を示すもの 摂取量はある程度変 大きな影響を与える 自然事象シナリオで 定している「パラメー 飲料水の割合」と合 から、結果として保 は文献から一般的な	A SRS No. 19 評価対象者が1年 である。 動すると考えられ ような変動は想点 「用いるパラメータ ータ No. 74: 年間館 わせて用いられる 守的な設定となる 値を採用した。	 に基づき設 に基づき設 に摂取する に に れない。最 されない。最 であるが、保 な料水中の井戸 パラメータで ように、本パ
<mark>備考</mark>				
文献	(1) Interna Models of Radi A Safe	ational Atomic En for Use in Assess oactive Substances ty Reports Series	ergy Agency (20 ing the Impact s to the Environ No.19	001):Generic of Discharges nment, IAE

パラメータ		名称		<mark>単位</mark>
No. 74	年[一	間飲料水中の井戸水; <mark>飲料水の割合</mark>	からの	-
<mark>シナリオ</mark> 区分	<mark>□共通</mark>	□最も可能性が 高い自然事象	■最も厳しい 自然事象	<mark>□人為事象</mark>
<mark>設定値</mark>	1			
	• 年間飲料	水中の井戸水からの	飲料水の割合は,	水道の普及状
	況などの 定められ	要素により変化する ないことから、 年間	ため、科学的に合	合理的な範囲が
	足のられ 摂取する	ないことがら,平間 ものとして,保守的	い村小120里で に1と設定した。	
	・ 最も厳し	い自然事象シナリオ	で用いる評価パ	ラメータである
	<mark>ことから</mark>	,線量が厳しくなる。	<mark>よう, 保守的な設</mark>	<mark>定値を用いた。</mark>
設定根拠				
<mark>備考</mark>				
文献				

パラメータ		名称		単位		
No. 75	西側トレ	シチ及び東側トレ	ンチの平面積	m²		
シナリオ 区分	□共通	□最も可能性が 高い自然事象	□最も厳しい自然事象	■人為事象		
設定値	西側トレンチ:2.3×10 ³ 東側トレンチ:3.1×10 ³					
設定根拠	 西側トレンチ及び東側トレンチの平面積は、1 区画の面積×区 画数で算出した結果から設定した。 1 区画の面積=南北方向の区画長さ×東西方向の区画長さ =15.1 m×8.50 m =128.35 m² 西側トレンチ全区画数:18 区画 東側トレンチ全区画数:24 区画 西側トレンチ平面積=128.35 m²×18 区画=2,310.3 m² 東側トレンチ平面積=128.35 m²×24 区画=3,080.4 m² 数値は、有効数字2桁となるように四捨五入して設定した。 西側トレンチ:2.3×10³ m² 東側トレンチ:3.1×10³ m² 					
備考						
文献						

パライータ	名称			単位		
N_{0} 76	西側トレンチ及び東側トレンチ内の					
NO. 10	充均	真砂/中間覆土の体	本積割合			
シナリオ	口井選	□最も可能性が	□最も厳しい	■↓幺甫伯		
区分	山共通	高い自然事象	自然事象	■八⁄□→豕		
設定値	西側トレンチ:0.83 東側トレンチ:0.45					
設定根拠	 ・各割ンめ廃いトを計定((属リ 体属・710()) ・を計定((属リ 体属・710()) ・かのがいたでに設属ン棄ト > ・のがいたでに設属ン棄ト > ・ののがいた。 ・ののがいた。 ・のののののののののののののののののののののののののののののののののののの	の体積割合について 算により求め、切り 属廃棄物/容器にて として、金属廃棄物 合として、金属廃棄物 合本のら各廃棄物 の金属廃棄物/容器 た。 しては、各廃棄物 しては、各廃棄物の 量に 10%の余裕を 棄物)、10、340 ton リートガラ)及び (1, 2, 300 kg/m ³ ラ)を使用した。 の/容器:)×1.3×1,000 (kg/t) (1, 33… =1,118 (m -トブロック: (1)×1,000 (kg/t) (1)×1,000 (kg/t) (Cは、埋設地に占め)上げて設定した。 ついては、容器(鈩 かの重量を1.3倍し した。また、充塡砂 つ体積割合を引いて 器については、鉄箱 の予定埋設重量の約 持たせた保守側の (コンクリートブロ S廃物の密度、7、 (コンクリートブロ (コンクリートブロ (コンクリートブロ (コンクリートブロ なg/t)÷7,800(kg/m ³) ÷2,300(kg/m ³) 積: 物層深さ) =6 670 (m ³)	oる廃棄物の体積 なお,西側トレ 箱)の重量を含 た重量から金属 /一中間でで、東側 前の重量から体積 01.1倍の値(予 値),6,710 ton コック),550 ton 800 kg/m ³ (金 ック及びコンク (g/m ³)		
	・東側トレン 東側トレ	イチの廃棄物層の体 ンチ平面積×廃棄	積: 物層深さ			

パラメータ	名称			単位			
No. 77	廃棄物層	廃棄物層と周辺土壌の混合による希釈係数		—			
シナリオ 区分	□共通	□最も可能性が高い自然事象	□最も厳しい自然事象	■人為事象			
設定値	西側トレン 東側トレン	西側トレンチ:0.68 東側トレンチ:0.63					
設定根拠	 ・廃段2. * 隙に覆えな設側数 西西 ・な設側数 個側= ・キ度(2) ・ 定て、 たい、 たい、 で、 (1) ・ (1)<	と覆土の体積割合に 上+最終覆土)と廃 (5+2.9) = 0.5370 合に,廃報物層の厚 ,重量自合を求め、 げた密度及び間 設 子密粒はたきい方が ることから、「パラ 子の見かけ密度」に となるように切り」 その希釈係数 本の体積割合×($(7\times2.4\times10^{3})$ (kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$ (kg/ $(537\times2.4\times10^{3})$ (kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$ (kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$ (kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$ (kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$)(kg/ $(537\times2.4\times10^{3})$)(kg/	こついては、覆土高 葉物層深さ 2.9 m (… $= 0.537$ と求ま わけ密度及び覆土 有効数字 2 桁とな する。 については、周辺 間隙率を使用する。 ³ 被ばく線量は大き メータ No. 78: 西側 こおいて算出した見 おいて算出した見 にで使用する。 「 m^3)) (m^3)) (m^3)) (m	jさ 2.5 m (最上 ji 2.5 m (最上 つ比から計算し, こる。 :の粒子密度と間 :るように保守的 土壌と同等と考 くなり保守的な トレンチ及び東 かけ密度) 見かけ密度) ※覆土の粒子密 3))) いけ密度) 泉水け密度) × 零土の粒子密			

	$= (0.537 \times 1.9 \times 10^3 \text{ (kg/m}^3))$				
	\div ((0.537×1.9×10 ³ (kg/m ³))				
	+ $(0.463 \times (1-0.50) \times 2.7 \times 10^3 (\text{kg/m}^3)))$				
	$=0.6201\cdots \doteq 0.63$				
備考					
文献					
備考					

パラメータ	名称			単位			
No. 78	西側トレンチ及び東側トレンチの見かけ密度		kg∕m³				
シナリオ 区分	□共通	□最も可能性が高い自然事象	□最も厳しい自然事象	■人為事象			
設定値	西側トレン 東側トレン	西側トレンチ:2.3×10 ³ 東側トレンチ:1.8×10 ³					
設定根拠	 ・廃計な側物リクたま棄 西西==各属西××==塡西×××、の一及。た物 削側西三.3案:側西廃.124歳 ・酸(14) ・酸(14	内の各要素の体積 その合計から算出し かけ密度は小さいプ 手(金は切り下げたれ 事合は切り下げたれ 事物の人中間覆土の で すの見かけ密度> ンクリートガラの しかけ密度> ンクリートガラの で りて 算 が チのの廃棄も で の 重量 た た チのの廃棄物層 (m ²) ×2.9 (m) の 重量 た ンチのの廃棄物層 (m ³) ×7.8 160 kg 間覆土: ンチチの廃棄物層 (m ³) ×7.8 160 kg 同で 生 た ンチののた城砂/ に (m ³) ×2.7 (m ³) ×7.8 160 kg	割合及び密度から こた。 割合及び密度から こた。 本でです。 ないては、 本ででで、 本ででで、 本ででで、 本ででで、 本ででで、 本ででで、 本ででで、 本ででで、 本ででで、 本ででで、 本ででで、 本で、 本	各要素の重量を 設定。 るとなるため,西 たシンチ(コンク クリートブロッ げた値を使用し な,全体から各廃 密度 間隙率) た(1-0.50)			

	・ 見かけ密度
	$= (8, 324, 160 \text{ (kg)} +7, 563, 780 \text{ (kg)}) \div 6, 670 \text{ (m}^3)$
	=2,382 (kg∕m³) ≒2,300 kg∕m³
	<東側トレンチのみかけ密度>
	• 東側トレンチの廃棄物層の体積
	= 東側トレンチの平面積×廃棄物層深さ
	$=3.1 \times 10^{3}$ (m ²) $\times 2.9$ (m) $=8,990$ (m ³)
	・ 各廃棄物の重量
	コンクリートブロック:
	東側トレンチ内のコンクリートブロックの体積割合
	×東側トレンチの廃棄物層の体積
	×廃棄物埋設地内のコンクリートブロックの粒子密度
	$=0.51 \times 8,990 \text{ (m}^3) \times 2.3 \times 10^3 \text{ (kg/m}^3)$
	=10,545,270 kg
	コンクリートガラ:
	東側トレンチ内のコンクリートガラの体積割合
	×東側トレンチの廃棄物層の体積
	×廃棄物埋設地内のコンクリートガラの粒子密度
	$=0.03 \times 8,990 \text{ (m}^3) \times 2.3 \times 10^3 \text{ (kg/m}^3)$
	=620,310 kg
	充填砂/中間覆土:
	東側トレンチ内の充塡砂/中間覆土の体積割合
	×東側トレンチの廃棄物層の体積
	×廃棄物埋設地内の充塡砂/中間覆土の粒子密度
	× (1-廃棄物埋設地内の充塡砂/中間覆土の間隙率)
	$=0.46 \times 8,990 \text{ (m}^3) \times 2.7 \times 10^3 \text{ (kg/m}^3) \times (1-0.50)$
	=5,582,790 kg
	 見かけ密度
	= (10, 545, 270 (kg) + 620, 310 (kg) + 5, 582, 790 (kg))
	$\div 8,990 \ (m^3)$
	$=1,863 \text{ (kg/m^3)} = 1,800 \text{ kg/m^3}$
備考	
文献	

パラマータ	名称					単位	
No. 79	大 放射性核	大規模掘削(居住)時の (Sv/h)/(Bq/kg 性核種 <i>i</i> の外部被ばく線量換算係数					′h) ∕ (Bq∕kg)
シナリオ 区分	□共通	□最もす 高いE	可能性が 自然事象	□最 自	も厳しい 然事象)	■人為事象
設定値		by射性核種 H-3 C-14 C 1-36 C a -41 C o -60 S r -90 C s -137 E u -152 E u -154	設定f 0 1.9×10 2.7×10 0 2.7×10 4.1×10 4.2×10 1.1×10 1.3×10	直 - 1 7 - 1 4 - 1 0 - 1 3 - 1 1 - 1 0 - 1 0	考慮した Y- Ba	と子孫杉 一 一 一 一 90 一137m 一	〔 五 1
設定根拠	Eu-152 1.1×10 ⁻¹⁰ - Eu-152 1.1×10 ⁻¹⁰ - Eu-154 1.3×10 ⁻¹⁰ - 全α 2.6×10 ⁻¹⁴ - * AD-CGGP2R」 ⁽¹⁾ を使用して計算した。計算モデルは、 地表からの被ばくを近似するため、直径200 m、厚さ1.5 mの 円板状線源を想定し、その中央表面から距離1 mの地点を評価 点とした。 ・ 地表の組成は土壌で代表することとし、周辺土壌である砂質土 と同様の組成である砂質岩の組成とし、理科年表 ⁽²⁾ に示される砂質岩の組成を用いた。 ・ 核種別線量換算係数算出に用いる各核種の壊変当たりの放出 光子については、放射性核種生成崩壊計算コード「ORIGE N2」断面積ライブラリセット「ORLIBJ40」 ⁽³⁾ における 18 群別の制動X線を含む γ線及びX線の放出エネルギー及び 放出率を考慮して評価を行った。 • Ca-41 の放出エネルギー及び放出率については、ICRP Publication 107 ⁽⁴⁾ のデータを参照した。 ・算出した線量換算係数は有効数字2桁となるように切り上げ、 1×10 ⁻²⁹ 以下の値は0として設定した。 ・詳細は「別紙11						
備考							

	(1) Yukio SAKAMOTO and Shun—ichi TANAKA (1990) : QAD—				
文献	CGGP2 AND G33-GP2: REVISED VERSIONS OF QAD-CGGP AND				
	G33 — GP (CODES WITH THE CONVERSION FACTORS FROM				
	EXPOSURE TO AMBIENT AND MAXIMUM DOSE EQUIVALENTS),				
	JAERI-M 90-110				
	(2) 国立天文台編(2015):理科年表				
	(3) JAEA (2013): JAEA-Date/Code 2012-032 JEND				
	L-4.0に基づくORIGEN2用断面積ライブラリセット:				
	ORLIBJ40				
	(4) International Commission on Radiological Protection				
	(2008) : Nuclear Decay Data for Dosimetric				
	Calculations, ICRP Publication 107				

パラメータ	名称			単位	
No. 80	浸透フ	水低減対策喪失時の浸	透水量	m³	$m/(m^2 \cdot y)$
シナリオ 区分	□共通	□最も可能性が 高い自然事象	□最も厳しい 自然事象	\mathcal{O}	■人為事象
設定値	1.4				
設定根拠	 浸透水佃 定を踏ま が全て浸 入して記 	私減対策が喪失した状 えた 1,000 年後の降 透すると仮定して, 定した。	態を想定し, 地 水量の変動を考 有効数字2桁と	也 昏 慮 な る	環境等の状態設 た年間降水量 らように四捨五
備考					
文献					

別紙 No.	別紙名称
1	廃棄物埋設地内の充塡砂/中間覆土の間隙率の設定根拠について
2	廃棄物埋設地内の飽和度の設定根拠について
3	通気層高さの設定根拠について
4	通気層土壌及び帯水層土壌の間隙率の設定根拠について
5	通気層土壌及び帯水層土壌の粒子密度の設定根拠について
6	地下水流速の設定根拠について
7	帯水層の厚さの設定根拠について
8	海水交換水量の設定の考え方について
9	放射性核種 i の海産物 m への濃縮係数の設定根拠について
10	海産物及び家庭菜園農産物の摂取量の設定について
11	放射性核種 i の外部被ばく線量換算係数の設定根拠について
12	海面及び漁網からの放射性核種 i の外部被ばく線量換算係数の設定根拠について
13	掘削土壌の希釈係数の設定根拠について
14	居住地での居住時間のうち屋外の活動の割合について
15	農産物の根からの放射性核種の吸収割合の設定根拠について

第18表 線量評価パラメータ根拠別紙一覧

以 上

廃棄物埋設地内の充塡砂/中間覆土の間隙率の設定根拠について

1 設定値

0.50

2 設定根拠

廃棄物埋設地内の充填砂/中間覆土は,土質分類が砂又は砂質土となる現 地発生土又は購入土を使用する計画であるため,実施工において使用する可 能性のある現地発生土及び購入土の候補土砂に対して実施した物理試験の結 果(9試料)から設定した。

土砂は締め固めることにより施設の力学的安定性が向上するが,実施工で はある施工管理目標値(最大乾燥密度の得られる最適含水比において締固め 度 90%以上などの指標)をもって締固めが行われることが一般的である。

しかし,間隙率の設定は,実施工における土砂の締固めが不十分な状態(最 も施設の力学的安定性の観点から脆弱となる状態)を想定し,最大値を切り 上げた値を設定値とした。

間隙率は,第1表に示す土砂の物理試験結果(土粒子の密度試験方法(J ISA1202),突固めによる土の締固め試験方法(JISA1210)及び砂の 最小密度・最大密度試験方法(JISA1224))に基づき,①式及び②式を 用いて算出した。

間隙率の算出に当たり,実施工において想定される間隙率を考慮するため, 間隙率の算出に用いる乾燥密度を,砂質土に対しては,施工管理目標値を締 固め度 90%以上として施工すると仮定し,締固め試験における最大乾燥密度

補5別1-1

の90%の乾燥密度を用い,砂(珪砂)に対しては,締固めが難しい狭隘部への充填を想定し,最小密度試験結果から得られた最小密度を用いた。

物理試験より算出した間隙率のうち最大値である 0.496 を有効数字 2 桁 となるように切り上げた 0.50 を設定値とした。

間隙比=土粒子密度/乾燥密度-1・・・① 間隙率=間隙比/(1+間隙比)・・・・②

	土粒子の 密度 _(g/cm³)	乾燥密度 ※1※2 (g/cm ³)	間隙比 (-)	間隙率 (-)	備考	
現地発生土 A (砂質土)	2.673	1.632	0.638	0.389	※1:締固め試験における最	
現地発生土 B (砂質土)	2.689	1.521	0.768	0.434	入 転 燥 密 度 の90% の 乾 燥 密度	
現地発生土 C (砂質土)	2.684	1.493	0.798	0.444		
現地発生土 D (砂質土)	2.686	1.486	0.808	0.447		
購入土候補 A (砂質土)	2.638	1.590	0.659	0.397		
購入土候補 B (砂質土)	2.638	1.454	0.814	0.449		
購入土候補 C (珪砂 4 号)	2.659	1.476	0.801	0.445	※2:最小密度試験における	
購入土候補 D (珪砂 5 号)	2.665	1.425	0.870	0.465	東小密度	
購入土候補 E (珪砂 6 号)	2.716	1.370	0.982	0.496		

第1表 土砂の物理試験結果

以 上

廃棄物埋設地内の飽和度の設定根拠について

1 設定値

17%

2 設定根拠

廃棄物埋設地内の充填砂/中間覆土は、土質分類が砂又は砂質土となる現 地発生土又は購入土を使用する計画である。

飽和度は、土壌中の間隙に含まれる水分の割合であるため、気象や土壌の 状態などの条件により変化する。具体的には、降水(融雪)時に浸透水が通 過する際は上昇し、晴天時は地表面近くで蒸発散により低下する。

廃棄物埋設地は地下水と直接に接することは無いため、不飽和状態が保た れていると考えられることから、飽和状態でない雨天以外の日にブロックサ ンプリングにより採取した表層近傍の試料の物理試験結果(24 試料)から算 出した飽和度を不飽和状態の飽和度とした。

ブロックサンプリングにより採取した試料は,廃棄物埋設地の近傍に存在 し,充填砂/中間覆土と同等の土質分類であるdu層の土砂を用いた。

第1表に示すブロックサンプリングにより採取したdu層の物理試験結果 (土粒子の密度試験方法(JISA1202),土の含水比試験方法(JISA 1203)及び土の湿潤密度試験方法(JISA1225))に基づき,①式を用い て算出した飽和度の平均値17.4%を有効数字2桁となるように切り下げた 17%を設定値とした。

補5別2-1

$$S_r = \frac{\omega \times \rho_s}{e \times \rho_W}$$
①
 $S_r : 飽和度 (%)$
 $\omega : 含水比 (%)$
 $\rho_s : 土粒子の密度 (g/cm3)$
 $e : 間隙比 (-)$
 $\rho_W : 水の密度 (g/cm3) \rightarrow 0.99997 (g/cm3)$

試料 番号	含水比(%)	土粒子の密度 (g/cm ³)	間隙比(-)	飽和度(%)
1	3.8		0.738	13.8
2	3.8	0 (01	0.748	13.6
3	3.7	2.081	0.751	13.2
4	4.1		0.801	13.7
5	5.6		0.774	19.3
6	5.1		0.755	18.1
7	5.7	2.074	0.795	19.2
8	5.9		0.792	19.9
9	5.1		0.713	19.1
10	5.8	2.677	0.789	19.7
11	5.5		0.794	18.5
12	6.3		0.776	21.7
13	4.0		0.730	14.7
14	4.6		0.700	17.6
15	5.0	2.083	0.706	19.0
16	4.6		0.751	16.4
17	4.3		0.706	16.2
18	4.1	9 667	0.663	16.5
19	4.1	2.667	0.652	16.8
20	4.9		0.658	19.9
21	3.9		0.708	14.7
22	3.7	9 670	0.701	14.1
23	4.8	2.670	0.645	19.9
24	5.5		0.661	22.2
	17.4			

第1表 ブロックサンプリングにより採取したdu層の物理試験結果

以 上

通気層高さの設定根拠について

1 設定値

1.0 m

- 2 設定根拠
- 2.1 設定内容

線量評価において,通気層の高さは低い方が廃棄物埋設地から漏出した放 射性核種が収着する土砂が減少すること及び移行距離が短くなることから保 守的な設定となる。線量評価の評価モデルイメージを第1図に示す。廃棄物 埋設地直下の地下水位は,別紙7「帯水層の厚さの設定根拠について」より, 最も可能性が高い自然事象シナリオにおいてはT.P.約+1.8 m,最も厳しい 自然事象シナリオにおいてはT.P.約+1.6 mとなる。

廃棄物埋設地は底面が T.P. +4 m となるように埋設トレンチを掘削する計 画であるため、廃棄物埋設地底面から地下水面までに存在する帯水層ではな いd u 層の厚さは、廃棄物埋設地直下では最も可能性が高い自然事象シナリ オにおいて約 2.2 m,最も厳しい自然事象シナリオにおいて約 2.4 m となる。

線量評価の評価モデルにおいて,このd u 層を通気層として設定する。

廃棄物埋設地全体では、動水勾配があることから地下水流向の上端方向の 地下水位は廃棄物埋設地直下の地下水位より高くなると考えられ、通気層高 さはより低くなると考えられることから、通気層の高さは、最も可能性が高 い自然事象シナリオと最も厳しい自然事象シナリオの両方において保守的に 1.0 mに切り下げて設定した。

補5別3-1

第1図 線量評価の評価モデルイメージ

以 上

通気層土壌及び帯水層土壌の間隙率の設定根拠について

1 設定値

通気層土壌の間隙率:0.41

帯水層土壌の間隙率:0.41

2 設定根拠

地質調査結果より、du層が通気層土壌及び帯水層土壌となることから通 気層土壌及び帯水層土壌の間隙率はdu層の物理試験結果(30試料)から値 を設定した。

なお,線量評価における通気層土壌及び帯水層土壌の間隙率の線量感度は 小さいことから,平均的な値を採用することで,線量評価上も影響はない。

間隙率は,第1図に示すボーリング調査で採取した試料に対して実施した 第1表に示すdu層の物理試験結果(土粒子の密度試験方法(JISA1202), 土の含水比試験方法(JISA1203)及び土の湿潤密度試験方法(JISA 1225))を,①式,②式及び③式を用いて算出した値の算術平均値を有効数字 2桁となるように四捨五入した0.41を設定値とした。

乾燥密度=湿潤密度/(1+含水比/100)・・・① 間隙比=土粒子の密度/乾燥密度-1・・・・② 間隙率=間隙比/(1+間隙比)・・・・・・③

補5別4-1

第1図 廃棄物埋設施設設置位置付近の調査位置図

試料番号	土粒子の密度 (g < om ³)	湿潤密度 (g (g m ³)	含水比	間隙比 (_)	間 隙 率
D - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	(g/ Cm) 2 691% ¹		(/0)	0 595	(-)
	2.031	1.04	13.7	0.595	0.373
uu		1. 92	19.7	0.663	0.313
		1. 52	10.0	0.645	0.393
		1.01	16.5	0.648	0.392
C = 4 = 3	2 682 2	1. 50	6.9	0.040	0.393
	2.002	1.60	7.3	0.750	0.422
uu		1.04	7.5 8 1	0.732	0.425
		1.70	8.4	0.717	0.418
		1.05	10 1	0.689	0.408
D - 4 - 3	2 684	1.75	5.7	0.003	0.400
	2.004	1.50	J. 7	0.753	0.442
uu		1.59	4.7	0.765	0.433
		1.59	4.2	0.750	0.431
		1.04	1.2 8.8	0.757	0.431
D - 3 - 2	2 601%1	2.03	10.8	0.737	0.431 0.271
	2.091	2.03	20.2	0.589	0.371
uu		1.91	20.3	0.092	0.409
		1.99	20.4	0.020	0.300
		1.99	20.3	0.630	0.307
C = 4 = 1	2 602	1.99	21. 3 15. 2	0.045	0.392
C = 4 = 1	2.002	1.95	10.7	0.585	0.308
— u u		1.00	10.7	0.049	0.394
		1.99	17.5	0.000	0.370
		1.94	22.0	0.683	0.400
	0.670*3	1.72	9.0	0.709	0.415
D - 5 - 1	2.079~3	1. (3	15.3	0.772	0.440
— a u		1.03	8.U	0.113	0.430
		1.61	12.0	0.864	0.464
		1.56	b. 1 7 o	0.822	0.451
			7.0	0.788	0.441
半均值					

第1表 ボーリング調査により採取したdu層の物理試験結果

※1 同ボーリング孔の試料D-3-1-duの土粒子の密度を使用

※2 同ボーリング孔の試料C-4-1-duの土粒子の密度を使用

※3 同ボーリング孔の試料D-5-2-duの土粒子の密度を使用

以上

通気層土壌及び帯水層土壌の粒子密度の設定根拠について

1 設定値

通気層土壌の粒子密度: 2.7×10³ kg/m³
 帯水層土壌の粒子密度: 2.7×10³ kg/m³

- 2 設定根拠
- 2.1 通気層土壌の粒子密度

廃棄物埋設地底面が T.P.+4 mとなるように埋設トレンチを掘削する計画 である。

通気層土壌については、「別紙7 帯水層の厚さの設定根拠について」のと おり、最も可能性が高い自然事象シナリオの地下水位の設定はT.P.+1.8 m であり、廃棄物埋設地底面から地下水面までには、帯水層ではないdu層(通 気層)が存在していることとなる。

このため、通気層土壌の粒子密度の設定については、第1図に示す廃棄物 埋設施設設置位置付近のボーリング孔で採取したdu層の試料(4 試料)の 物理試験結果(土粒子の密度試験方法(JIS A 1202))を基に設定する。

第1表に示すdu層の物理試験結果より土粒子密度の幅が非常に小さいことから、物理試験結果の算術平均値である2.68 g/cm³を有効数字2桁となるように四捨五入し、kg/m³に換算して設定した。

2.2 帯水層土壌の粒子密度

帯水層土壌については、「別紙7 帯水層の厚さの設定根拠について」のと

補5別5-1

おり、du層であるため、帯水層土壌の粒子密度の設定については、第1図 に示す廃棄物埋設施設設置位置付近のボーリング調査で採取したdu層の試 料(4試料)の物理試験結果(土粒子の密度試験方法(JISA 1202))を 基に設定する。

第1表に示すdu層の物理試験結果より,土粒子密度の幅が非常に小さい ことから,物理試験結果の算術平均値である2.68 g/cm³を有効数字2桁と なるように四捨五入し,kg/m³に換算して設定した。

第1図 廃棄物埋設施設設置位置付近の調査位置図

地層名	ボーリング孔			巡귵	土粒子密度
	No	孔口標高	試料 No.	休皮 CI — (m)	ho s
	NO.	T.P. (m)			(g/cm^3)
	C - 4 - 0	5.96	C-4-1-d u	4.00~5.00	2.682
1	D - 3 - 0	4.03	D-3-1-d u	2.00~2.90	2.691
uu	D - 4 - 0	8.29	D-4-3-d u	4.50~5.50	2.684
	D - 5 - 0	7.98	C-5-2-d u	4.40~4.87	2.679
	4				
	2.68				
		標準(扁差		0.01

第1表 du層の土粒子密度試験結果

以 上

地下水流速の設定根拠について

1 設定値

最も可能性が高い自然事象シナリオ,人為事象シナリオ:49 m/y
 最も厳しい自然事象シナリオ :42 m/y

- 2 設定根拠
- 2.1 設定内容

地下水流速は,廃棄物埋設地の上流側及び下流側の地下水位を基に計算し た動水勾配に,廃棄物埋設地近傍で行った揚水試験で得られた透水係数を用 いて,ダルシー流速を計算することで設定する。地質環境等の状態設定を踏 まえた将来の動水勾配の算出は,降水量と廃棄物埋設地直下の年平均地下水 位との相関を求め(別紙7「帯水層の厚さの設定根拠について」参照),年平 均地下水位と年間の動水勾配の相関(第1図参照)を求めることにより,将 来の降水量に応じた動水勾配を算出する。

2.1.1 最も可能性が高い自然事象シナリオの動水勾配の設定

地下水位観測孔の設置位置を第2図に示す。

年平均地下水位と年間の動水勾配の相関を求める。年平均地下水位は,廃 棄物埋設地直下の地下水位観測孔(第2図のD-4-1孔)で測定した年平均 地下水位(別紙7「帯水層の厚さの設定根拠について」参照)とする。年間の 動水勾配は,廃棄物埋設地の上流側となる地下水位観測孔(第2図のC-4-1孔)で測定した地下水位と廃棄物埋設地の下流側となる地下水位観測孔(第 2回のc-4孔)で測定した地下水位の水位差を,両地下水位観測孔の距離で除することで算出する。年平均地下水位と年間の動水勾配の相関を第1回に示す。

第1図 年平均地下水位と年間の動水勾配の関係

上述の方法により地下水位から求めた動水勾配は以下のとおり。 最も可能性の高い自然事象シナリオ

1,000 年後 (T.P.+1.83 m): 0.00323×1.83-0.00113=4.77×10⁻³

第2図 地下水位観測孔位置図

2.1.2 最も可能性が高い自然事象シナリオの透水係数の設定

地下水流速を算出するために用いる透水係数については,廃棄物埋設地近 傍で実施した揚水試験により求めた透水係数を用いた。

(1) 試験位置

揚水試験位置図を第3図に示す。

試験は,廃棄物埋設施設の近傍で実施しており,du層の透水係数は場 所によるばらつきが小さく,一様の透水性を有する地層と考えられること から,当該位置で得られた透水係数を代表値とした。

(2) 試験方法

試験は,JGS 1315「揚水試験方法」に準拠し,以下の手順に従い実施 した。

揚水孔・観測孔の平面配置図を第4図に,揚水孔・観測孔構造図を第5 図に,ストレーナ深度一覧を第1表に,揚水試験位置内の地質断面図を第 6図に示す。

a. 地下水流向の概略把握

3孔のボーリング掘削を先行して実施し,地下水面の傾斜方向を把握した上で,揚水試験の水位観測孔の配置を検討した。

b. 観測孔の設置

ボーリング掘削を行い,地質状況を確認した後,水位観測孔を設置し, 観測孔の位置及び標高の測量を行った。

c. 揚水試験

揚水孔から一定流量の揚水を行い, 揚水孔及び観測孔の水位がほぼ一 定となるまでの経過時間並びに揚水孔及び観測孔の水位の経時変化を測 定した。その後, その状態を数時間保持し, 揚水量並びに揚水孔及び観 測孔の水位を経時的に測定した。

第4図 揚水孔・観測孔の平面配置図

第5図 揚水孔·観測孔構造図

	掘削深度	ストレーナ		
化伯	(m)	上端深度 (m)	下端深度 (m)	
d u - N 4	5.00	2.54	4.87	
d u — W 8	5.00	2.54	4.87	
d u — P	7.75	2.42	5.45	
d u - W10	5.50	2.55	5.37	
d u — N 4'	5.50	2.55	5.37	
d u - W 4	5.50	2.55	5.37	
d u — N 3	5.50	2.55	5.37	
d u - N 2	5.50	2.55	5.37	
d u — W 5	5.50	2.55	5.37	
d u — W 6	5.50	2.55	5.37	
d u - W7	5.50	2.55	5.37	
d u - W8'	5.50	2.55	5.37	
d u — W 9	5.50	2.55	5.37	
d u — W 3	5.50	2.55	5.37	
d u - W 2	5.50	2.55	5.37	
d u - W1	5.50	2.55	5.37	
d u - N 1	5.50	2.55	5.37	

第1表 ストレーナ深度一覧

第6図 揚水試験位置内の地質断面図

(3) 解析方法

透水係数は以下の方法を用いて求めた。

- s-log (t/r²) プロットによる直線勾配法
- ·標準曲線法
- ・s-log(r)プロットによる直線勾配法
- (4) 試験結果

揚水試験結果一覧を第2表に示す。

得られた透水係数の孔によるばらつきは小さく,解析手法間の差異も小 さい。方向による透水係数の違いはほとんど認められない。

(5) 透水係数の設定値

d u 層の透水係数は場所によるばらつきが小さく,一様の透水性を有す る地層と考えられることから,透水係数は各解析方法の結果の算術平均値 である 3.23×10⁻² cm/s を可能性が高い自然事象シナリオの透水係数と する。

	s-log (t/r ²) プロットによる 直線勾配法		標準曲線法		s-log (r) プロットによる 直線勾配法	
孔名	透水係数 cm/s	方向ごとの算術平均値 透水係数 cm/s	透水係数 cm/s	 方向ごとの算術平均値 透水係数 cm/s 	透水 cm/	係数 /s
d u - W1	3.33×10^{-2}		3. 35×10^{-2}			
d u $-W2$	3.20×10^{-2}		3. 13×10^{-2}			
d u $-W3$	2.53 × 10 ⁻²	 東西方向 3.14×10 ⁻²	3. 24×10^{-2}			
d u - W4	3. 21×10^{-2}		3. 24×10^{-2}	東東大 白	東田七 句	
d u — W 5	3.34×10 ⁻²		3. 35×10^{-2}	<u>果四万</u> 同 3.31×10 ⁻²	● 果四万円 2 21 × 10 ⁻²	
d u $-W6$	3. 16×10^{-2}		3. 47×10^{-2}		3. 21 × 10	
d u $-W7$	2.95×10 ⁻²		3. 24×10^{-2}			3. 27×10^{-2}
d u - W8'	3.26×10 ⁻²		3. 24×10^{-2}			-4)
d u $-W9$	3.27×10^{-2}		3. 24×10^{-2}			
d u - W10	3. 11×10^{-2}		3. 61×10^{-2}			
d u — N 1	3.33×10^{-2}	南北古向	3. 28×10^{-2}	「「「「「「「」」」	南北七向	
d u - N 2	3.29×10^{-2}		3. 28×10^{-2}	● 10×10=2	□ 円-1L/フ 円 2 - 0.4 × 1.0 = 2	
d u — N 3	3.23×10^{-2}	3.09×10 -	3.35 \times 10 ⁻²	3. 38×10^{-2}	3. 24 × 10 -	
d u - N4'	2.49×10 ⁻²		3.61×10 ⁻²			
対数平均値	3.11×10^{-2}		3.33×10^{-2}		3. 22×10^{-2}	
	-1)		-2		-3	
①~④の 算術平均値 cm/s			3.23>	< 10 ⁻²		

第2表 揚水試験結果一覧

2.1.3 最も可能性が高い自然事象シナリオの地下水流速の設定

2.1.1及び2.1.2で算出した動水勾配及び透水係数を乗じることで、最も可能性が高い自然事象シナリオの地下水流速を以下のとおり算出する。

地下水流速=動水勾配×透水係数

 $=4.77 \times 10^{-3} \times 3.23 \times 10^{-2} = 48.5 \Rightarrow 49 \text{ m/y}$

算出した地下水流速を有効数字2桁となるように四捨五入して設定した。

2.1.4 最も厳しい自然事象シナリオの透水係数の設定

d u 層の透水係数は場所によるばらつきが小さく,一様の透水性を有する 地層と考えられることから,透水係数は2.1.2で示す各解析方法の結果 の算術平均値である 3.23×10⁻² cm∕s を透水係数とした。

2.1.5 最も厳しい自然事象シナリオの地下水流速の設定

2.1.1と同様の方法で算出した動水勾配と2.1.4の透水係数を乗 じることで,最も厳しい自然事象シナリオの地下水流速を以下のとおり算出 する。

地下水位から求めた動水勾配は以下のとおり。

1,000 年後 (T.P.+1.63 m): 0.00323×1.63-0.00113=4.12×10⁻³

地下水流速=動水勾配×透水係数

 $=4.12 \times 10^{-3} \times 3.23 \times 10^{-2} = 42.0 \Rightarrow 42 \text{ m/y}$

線量評価において地下水流速が遅い方が保守的な設定となることから,算 出した地下水流速を有効数字2桁となるように切り下げて設定した。

以 上

帯水層の厚さの設定根拠について

1 設定値

最も可能性が高い自然事象シナリオ, 人為事象シナリオ: 1.8 m 最も厳しい自然事象シナリオ : 1.6 m

2 設定根拠

帯水層の厚さは、地下水位と、帯水層の基底部の位置より設定する。地下 水位については、廃棄物埋設地近傍に設置した地下水位観測孔(第1図)に おいて測定した廃棄物埋設地直下の年平均地下水位と、年間降水量との相関 (第2図)から、地質環境等の状態設定を踏まえた降水量の値を用いて以下 のとおり算出した。

帯水層の厚さは、地下水位を基底部からの高さとして、最も可能性が高い 自然事象シナリオでは有効数字2桁となるように四捨五入し、最も厳しい自 然事象シナリオでは保守的に有効数字2桁となるように切り下げて設定した。

廃棄物埋設地直下の年平均地下水位と年間降水量との相関の算出に当たっては, D-4-1 孔の観測データ(2006 年 4 月~2020 年 2 月)のうち, 点検等によるデータ欠測を除く期間での相関関係を用いて算出した。

また,第3図に示す地質鉛直断面図より,粘土層(Ac層)がT.P.+0 m 以深に分布していることから,T.P.+0 mを帯水層の基底部と設定した。

最も可能性が高い自然事象シナリオ, 人為事象シナリオ

1,000 年後(降水量1,410 mm):0.000666×1,410+0.886275=1.83≒1.8 m

補5別7-1

最も厳しい自然事象シナリオ

1,000 年後(降水量1,110 mm): 0.000666×1,110+0.886275=1.63≒1.6 m

	凡 例 : 廃棄物埋設施設位置
•	:地下水位観測孔

第1図 地下水位観測<mark>孔位</mark>置図

第2図 年平均地下水位と年間降水量の相関

補5別7-3

海水交換水量の設定の考え方について

1 海水交換水量の近似式の適用性

海水交換水量の近似式は,一定の放出率Q (Bq/sec)により放出した物 質が,鉛直混合層の厚さZ,拡散速度v で半円形に拡散するモデル(第1 図)として交換水量を算出する式であり,旧日本原子力研究所が実施した埋 設事業許可申請時に,評価海域の海水交換水量の設定に用いたものである。

また、一定の放出率 Q, 鉛直混合層の厚さ Z, 半円形状の拡散速度 v が定義 できれば、河川からの放出、地下水からの放出による違いはなく、評価に適 用できる。更に、本申請における埋設予定地は旧原子力研究所の埋設施設に 隣接しており、地下水の放出の状況は同様と考えられることから本設定を用 いることが可能である。

第1図 半円拡散モデル

2 鉛直混合層の厚さと地下水の放出地点との整合性

海水の鉛直方向の濃度を測定した実験は,沿岸の沖合 350 mの実験結果で あり,沖合 350 mの地点で染料を放出し,放出地点から下流の地点における 海水の鉛直方向の濃度を測定し,その濃度がほぼ一様に分布すると思われる 厚さから2 m (200 cm) と設定している。

第2図の地質鉛直断面図から,海岸付近の帯水層の厚さは10 m程度(A c 層上面が T.P.約-10 m)と考えられるため,鉛直方向の流出地点は,最大で海水面から T.P.約-10 mの範囲と考えられる。

第2図 海岸付近の拡大した地質鉛直断面図(E-W断面)

流出地点の範囲は最大で 10 m 程度あるため河川の深さより深い可能性は あるものの,海岸の地下水位と海水面の高さは同一と考えられ,海水面付近 の河川と地下水の海への流入状況は同様と考えられる。また,旧日本原子力 研究所の試験結果⁽¹⁾から,放出地点となる海岸線付近の沿岸の拡散状況は, うねりの影響で流速が速いことから拡散の速度が沖合よりも速いと考えられ, 混合のメカニズムは河川からの放出の場合,地下水の場合で変わらないもの

補5別8-2

と考える。更に、海岸の付近は、海岸に近づくほど、海水の影響で淡水が帯 水層の上部に集まることが考えられる(流出地点付近の概念図を第3図に示 す。)。そのため、帯水層から海水中への放射性物質の移動の多くは、帯水層 の上部側で行われると推測しており、河川の深さとあまり変わらない状況で 海に放出されるものと考える。

よって,鉛直混合層の厚さ2 m (200 cm)の設定を用いることに不整合はない。

第3図 流出地点付近の概念図

3 参考文献

(1)日本原子力研究所(1963):保健物理部の活動 No.6、JAERI 5013以上

放射性核種 i の海産物 m への濃縮係数の設定根拠について

1 設定値

(単位:m³/kg)

放射性	魚類		無脊椎動物		藻類	
核種	設定値	文献 ^{※1}	設定値	文献 ^{※1}	設定値	文献 ^{※1}
H - 3	1.0×10^{-3}	(3)	1. 0×10^{-3}	(3)	1.0×10^{-3}	(3)
C-14	2. 0×10^{1}	(3)	2. 0×10^{1}	(3)	1. 0×10^{1}	(3)
C 1 - 36	6. 0×10^{-5}	(3)	6.0×10 ⁻⁵	(3)	5. 0×10^{-5}	(3)
C a -41	2. 0×10^{-3}	(3)	5. 0×10^{-3}	(3)	6. 0×10^{-3}	(3)
C o -60	1.0×10^{0}	(1)	5. 0×10^{0}	(1)	1.0×10^{0}	(2)
S r -90	2. 0×10^{-3}	(1)	2. 0×10^{-3}	(1)	1. 0×10^{-2}	(2)
C s -137	1.0×10^{-1}	(1)	3. 0×10^{-2}	(1)	1. 0×10^{-2}	(2)
E u -152	3. 0×10^{-1}	(1)	7.0 \times 10 ⁰	(1)	3. 0×10^{0}	(3)
E u - 154	3. 0×10^{-1}	(1)	7.0×10 ⁰	(1)	3. 0×10^{0}	(3)
全 α	5. 0×10^{-2}	(1)	2. 0×10^{1}	(1)	2.0×10 ⁰	(2)

※1:引用した文献を示す。

2 設定根拠

(1) 文献の優先順位の考え方

文献の優先順位の考え方としては,国際機関から出典されている文献, かつ,パラメータの設定条件に適切な記載がある文献を優先的に参考とす る(基本的にIAEAの安全評価レポート,技術レポート,TECDOC の順に参考とする。)。

そのため、IAEA SRS-19⁽¹⁾、IAEA SS No. 57⁽²⁾、IAE A TRS No. 422⁽³⁾の順に値を引用する。

(2) 設定内容

文献の優先順位の考え方に基づき, IAEA SRS-19⁽¹⁾を基本とし, IAEA SRS-19⁽¹⁾, IAEA SS No. 57⁽²⁾, IAEA TRS

補5別9-1

No. 422⁽³⁾の順に値を引用した。

なお, 全 α については, Pu - 239 とAm - 241 のうち値の大きな方を設 定する。そのため, 全 α の値はAm - 241 の数値で代表させた。

文献中の単位が(1/kg)であるので,本検討で用いる単位(m³/kg)に 単位換算した。

各文献における濃縮係数の記載値と設定した値を<mark>第1表~第3</mark>表に示す。

第1表 魚類における濃縮係数の文献記載値と設定値

(単位:m³/kg)

	ΙΑΕΑ	ΙΑΕΑ	ΙΑΕΑ	
魚類	S R S - 19 ⁽¹⁾	S S No. 57 ⁽²⁾	T R S No. 422 ⁽³⁾	設定値
	海産魚	魚	魚	
H - 3	—	—	1.0×10^{-3}	1.0×10^{-3}
C - 14	_	_	<u>2.0×10¹</u>	2. 0×10^{1}
C 1 - 36	_	_	6.0×10^{-5}	6. 0×10^{-5}
C a -41	_	_	2.0×10^{-3}	2. 0×10^{-3}
C o -60	<u>1.0×10°</u>	1.0×10^{-1}	7. 0×10^{-1}	1.0×10^{0}
S r -90	2.0×10^{-3}	1.0×10^{-3}	3. 0×10^{-3}	2. 0×10^{-3}
C s -137	1.0×10^{-1}	5. 0×10^{-2}	1.0×10^{-1}	1.0×10^{-1}
Е и —	3.0×10^{-1}	_	3.0×10^{-1}	3.0×10^{-1}
152, 154	5.0×10		5.0×10	5.0×10
全 α	5.0×10^{-2}	1.0×10^{-2}	_	5. 0×10^{-2}
Am - 241	5.0×10^{-2}	1.0×10^{-2}	_	_
P u −239	4. 0×10^{-2}	1.0×10^{-3}	—	—

第2表 無脊椎動物における濃縮係数の文献記載値と設定値

(単位:m³/kg)

	I A E A S R S -19 ⁽¹⁾	I A E A S S No. 57 ⁽²⁾		I A E A T R S No. 422 ⁽³⁾			
無脊椎動物	貝類, 甲殻類	甲殻類	軟体類	甲殻類	軟体類	頭足類	設定値
H-3	_	—	—	1.0×10^{-3}	1.0×10^{-3}	—	1.0×10^{-3}
C - 14	_	_	_	2.0×10 ¹	2.0×10 ¹	_	2. 0×10^{1}
C 1 - 36	-	-	—	<u>6.0×10⁻⁵</u>	5.0×10 ⁻⁵	—	6. 0×10^{-5}
C a -41	_	_	_	5.0×10 ⁻³	3. 0×10^{-3}	_	5. 0×10^{-3}
С о -60	5.0×10°	1.0×10^{0}	1.0×10^{0}	7.0×10 ⁰	2. 0×10^{1}	3. 0×10^{-1}	5. 0×10^{0}
S r -90	<u>2.0×10⁻³</u>	1.0×10^{-2}	1.0×10^{-2}	5.0×10 ⁻³	1.0×10^{-2}	2. 0×10^{-3}	2. 0×10^{-3}
C s -137	3.0×10^{-2}	3. 0×10^{-2}	1.0×10^{-2}	5. 0×10^{-2}	6. 0×10^{-2}	9.0×10 ⁻³	3. 0×10^{-2}
Е и — 152, 154	<u>7.0×10°</u>	—	—	4.0×10 ⁰	7.0×10 ⁰	_	7.0 \times 10 ⁰
全 α	2.0×10 ¹	2. 0×10^{-1}	2.0×10 ⁰	_	—	1.0×10 ⁻¹	2. 0×10^{1}
Am-241	$\underline{2.0 \times 10^{1}}$	2. 0×10^{-1}	2.0×10 ⁰	_	_	1.0×10^{-1}	_
P u −239	3.0×10 ⁰	1. 0×10^{-1}	1.0×10^{0}	_	_	5. 0×10^{-2}	—

第3表 藻類における濃縮係数の文献記載値と設定値

(単位:m³/kg)

	I A E A S R S -19 ⁽¹⁾	I A E A S S No. 57 ⁽²⁾	I A E A T R S No. 422 ⁽³⁾	設定値	
	_	Seaweed (海藻)	Macroalgae (大型藻類)		
H-3	—	_	1.0×10^{-3}	1. 0×10^{-3}	
C-14	—	—	<u>1.0×10¹</u>	1. 0×10^{1}	
C 1 - 36	_	_	5.0×10^{-5}	5. 0×10^{-5}	
C a -41	_	_	6.0×10^{-3}	6. 0×10^{-3}	
C o -60	—	<u>1.0×10°</u>	6. 0×10^{0}	1. 0×10^{0}	
S r -90	—	1.0×10^{-2}	1.0×10^{-2}	1. 0×10^{-2}	
C s -137	_	1.0×10^{-2}	5. 0×10^{-2}	1.0×10^{-2}	
Е и — 152, 154	_	_	<u>3.0×10°</u>	3. 0×10^{0}	
全 α	—	2.0×10^{0}	—	2. 0×10^{0}	
Am-241	_	2.0×10^{0}	_	_	
P u −239	_	1.0×10^{0}	—	—	

3 参考文献

(1) International Atomic Energy Agency (2001) : Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment, I A E A Safety Reports Series No.19

- (2) International Atomic Energy Agency (1982) : Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Exposures of Critical Groups, I A E A Safety Series No. 57
- (3) International Atomic Energy Agency (2001) : Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, I A E A TECHNICAL REPORTS SERIES No. 422

以 上

海産物及び家庭菜園農産物の摂取量の設定について

1 設定値

海産物 m の年間摂取量

魚類 : 19 kg/y

無脊椎動物:4 kg/y

藻類 : 4 kg/y

家庭菜園農産物 k の年間摂取量

葉菜	:13 kg⁄y
非葉菜	:54 kg∕y
果実	:15 kg⁄y

2 設定の考え方

海産物摂取,海産物摂取(浸透水低減対策喪失),家庭菜園農産物摂取及び 家庭菜園農産物摂取(大規模掘削)の評価では,海産物及び家庭菜園農産物 の年間摂取量を設定している。設定においては,海産物を「魚類」,「無脊椎 動物」,「藻類」に,家庭菜園農産物を「葉菜」,「非葉菜」,「果実」に分けて 設定する。家庭菜園農産物は,農林水産省⁽¹⁾のデータに示される東海村で 作付けされた農産物と,タキイ種苗(株)(2014)⁽²⁾に示される家庭菜園の 野菜の比較から,葉菜は「ねぎ」,非葉菜は「トマト」,「大根」,「きゅうり」, 「ばれいしょ」,「なす」,「ピーマン」を全て家庭菜園で生産するものとする。 また,果実については家庭菜園についてのデータがないため,保守的に農 林水産省⁽¹⁾のデータに示される東海村で作付けされた農産物の果樹である 「なし」,「ぶどう」,「栗」,「キウイフルーツ」を全て家庭菜園で生産するも のとする。

一般的な生活様式を想定しているため、厚生労働省⁽³⁾に示される食品群 別摂取量の平均値を設定に用いる。厚生労働省の調査は、11月前後の日曜日 及び祝祭日を除く任意の一日で実施されており、個別の品目を対象とした場 合に、旬や天候により年間摂取量として影響がでる可能性がある。今回の摂 取量の設定に用いた値は、海産物においては複数の文献を比較し摂取量が多 くなる文献を採用していること及び海産物以外の水産物も含めている。また、 家庭菜園農産物においては対象となる農産物を東海村の特性を踏まえて幅 広く設定していること及びその他の食物を含む大まかな分類で調査された 量であり加工品も含めているため、海産物及び家庭菜園農産物ともに十分に 保守的な設定となっており、影響はないと考える。第1表に設定方法を示す。

	項目	設定方法 ※
海産物	魚類	「魚介類」の値から、「貝類」、「いか・たこ類」及
		び「えび・かに類」の合計値を除いた値を切り上げ
		て保守側に設定した。
	無脊椎動物	「貝類」,「いか・たこ類」及び「えび・かに類」の
		合計値を切り上げて保守側に設定した。
	藻類	「藻類」の値を切り上げて保守側に設定した。
家庭菜園	葉菜	「その他の緑黄色野菜」の値を保守的に切り上げ
農産物		て設定した。
	非葉菜	「トマト」,「ピーマン」,「きゅうり」,「大根」,「そ
		の他の淡色野菜」、「じゃがいも・加工品」、加工品
		である「野菜ジュース」、「たくあん・その他の漬け
		物」の合計値を保守的に切り上げて設定した。
	果実	「その他の生果」、「種実類」、「ジャム」、「果汁・果
		汁飲料」の合計値を保守的に切り上げて設定した。

第1表 海産物及び農産物の摂取量の設定方法

※すべて整数値となるよう小数点以下を切り上げて設定した。

また,厚生労働省⁽³⁾は総数(全国)データでの整理と地域ブロックでの 整理が行われている。茨城県は地域ブロックの「関東Ⅱ」に分類されており, 総数(全国)データと地域ブロック(関東Ⅱ)のデータから設定した一日当 たりの摂取量の比較を第2表に示す。

総数(全国)データと地域ブロック(関東II)のデータの傾向等は似てい るが,摂取量については多少異なる。食品の摂取に関しては地域性があるた め,このような差が表れていると考えられ,評価パラメータの設定には,茨 城県が含まれる地域ブロック(関東II)の結果を使用する。また,最新デー タを使用する方がより地域特性を反映できると考えられるため,海産物及び 家庭菜園農産物の設定値は,平成 30 年度(2018 年度)の数値を用いてパラ メータを設定する。

(単位:g/日/人)

	海産物					
西暦	魚	類	無脊椎動物		藻類	
	全国	関東Ⅱ	全国	関東Ⅱ	全国	関東Ⅱ
2011	60.5	68.9	12.2	12.0	10.4	11.2
2012	58.8	61.4	11.2	10.1	9.9	10.5
2013	61.6	63.9	11.2	9.8	10.2	8.8
2014	58.0	58.4	11.3	11.8	9.6	9.0
2015	58.9	62.9	10.2	8.8	10.0	9.2
2016	56.8	57.8	8.8	8.0	10.9	11.4
2017	55.5	51.1	8.8	8.3	9.9	10.6
2018	56.4	50.2	8.7	8.7	8.5	9.3
			家庭菜園	園農産物	-	
西暦	葉	菜	非勇	秦菜	果実	
	全国	関東Ⅱ	全国	関東Ⅱ	全国	関東Ⅱ
2011	33.1	35.1	147.3	173.0	51.0	58.1
2012	33.8	34.3	150.2	169.5	50.7	44.6
2013	31.2	36.2	151.0	171.4	49.7	54.9
2014	33.8	36.4	154.6	176.2	49.3	55.4
2015	37.1	37.3	156.4	163.4	51.6	50.0
2016	34.0	34.0	148.7	162.0	46.6	48.4
2017	31.8	31.2	150.0	152.9	50.6	63.5
2018	33.7	33.1	143.0	145.4	44.5	38.9

<魚類>

魚類は、「魚介類」の値から、「貝類」、「いか・たこ類」及び「えび・か に類」の合計値を除いた値の小数点以下を保守的に切り上げて設定した。

58.9 g/d- (2.7 g/d+3.4 g/d+2.6 g/d) = 50.2 g/d

50.2 g/d×365 d/y=18.323 kg/y≒19 kg/y

<無脊椎動物>

無脊椎動物は、「貝類」、「いか・たこ類」及び「えび・かに類」の合計値 の小数点以下を保守的に切り上げて設定した。

2.7 g/d+3.4 g/d+2.6 g/d=8.7 g/d

8.7 g/d×365 d/y=3.1755 kg/y≒4 kg/y

補5別10-4

<藻類>

藻類は、「藻類」の値の小数点以下を保守的に切り上げて設定した。

9.3 g/d×365 d/y=3.3945 kg/y≒4 kg/y

<葉菜>

葉菜は,「その他の緑黄色野菜」の値の小数点以下を保守的に切り上げて 設定した。

33.1 g/d×365 d/y=12.0815 kg/y≒ 13 kg/y <非葉菜>

非葉菜は、「トマト」、「ピーマン」、「きゅうり」、「大根」、「その他の淡色 野菜」、「じゃがいも・加工品」、加工品である「野菜ジュース」、「たくあん・ その他の漬け物」の合計値の小数点以下を保守的に切り上げて設定した。

16.0 g/d+3.4 g/d+7.4 g/d+30.8 g/d+48.6 g/d

+20.8 g/d+13.3 g/d+5.1 g/d=145.4 g/d

145.4 g/d×365 d/y=53.071 kg/y \Rightarrow 54 kg/y

<果実>

果実は、「その他の生果」、「種実類」、「ジャム」、「果汁・果汁飲料」の合 計値の小数点以下を保守的に切り上げて設定した。

28.2 g/d+2.2 g/d+1.2 g/d+7.3 g/d=38.9 g/d

38.9 g/d×365 d/y=14.1985 kg/y≒15 kg/y

3 妥当性の確認

国民健康・栄養調査結果による摂取量の設定について,同様の調査で農林 水産省⁽⁴⁾による食料需給表及び総務省⁽⁵⁾による家計調査年報との比較によ り妥当性を確認する。

評価で使用する年間摂取量の分類は、海産物が「魚類」、「無脊椎動物」、「藻

類」,家庭菜園農産物が「葉菜」,「非葉菜」,「果実」であり,これらの分類に 合うように,それぞれの調査結果を整理した。第3表に2011年度~2018年 度の「国民健康・栄養調査」のうち地域ブロック別の値と2011年~2018年 の「食料需給表」及び「家計調査年報」の比較を示す。

第3表より年間摂取量が多くなる調査結果は魚類を除き「国民健康・栄養 調査」であることがわかる。なお,魚類については「食糧需給表」が最も多 くなるが,これは魚類と無脊椎動物を合算した値であり本結果を魚類の値と して使用することは適切ではないことから,次に大きい「国民健康・栄養調 査」の値を使用する。

そのため、同様の調査と比較した結果からみても、本調査結果を用いて摂 取量を設定することは妥当であると考える。

第3表 各調査結果の比較

(2011年度~2018年度又は2011年~2018年の結果)

(単位:kg/y/人)

該当年	海産物								
度又は	魚類			無脊椎動物			藻類		
該当年	1	2^{*1}	3^{*2}	1	2^{*1}	3^{*2}	1	2^{*1}	3^{*2}
2011	25.1	28.5	10.3	4.4	*3	2.8	4.1	0.9	0.6
2012	22.4	28.8	10.0	3.7		2.8	3.8	1.0	0.6
2013	23.3	27.4	10.1	3.6		2.7	3.2	1.0	0.6
2014	21.3	26.5	9.6	4.3		2.4	3.3	0.9	0.6
2015	23.0	25.7	9.5	3.2		2.3	3.4	0.9	0.6
2016	21.1	24.8	9.3	2.9		2.2	4.2	0.9	0.6
2017	18.6	24.4	8.8	3.0		2.0	3.9	0.9	0.6
2018	18.3	23.9	8.3	3.2		1.8	3.4	0.9	0.6
該当年		I	1	家庭	菜園農園		1	I	1
該当年 度又は		葉菜	1	家庭	菜園農產 非葉菜	童物		果実	I
該当年 度又は 該当年	(1)	葉菜 ② ^{*1}	3*2	家庭 ①	菜園農 非葉菜 ② ^{*1}	重物 ③* ²	(])	果実 ② ^{*1}	3 ^{*2}
該当年 度又は 該当年 2011	 1 1 1 2 8 	葉菜 ② ^{*1}	③ ^{** 2} 1. 7	家庭 ① 63.1	菜園農西 非葉菜 ② ^{*1}	董物 ③ ^{※ 2} 16. 7	① 21.2	果実 ② ^{*1}	③ ^{** 2} 4. 2
該当年 度又は 該当年 2011 2012	 (1) 12. 8 12. 5 	葉菜 ② ^{*1}	$\frac{3^{*2}}{1.7}$	家庭 ① 63.1 61.9	菜園農函 非葉菜 ② ^{*1}	董物 ③ ^{※2} 16.7 16.5	① 21.2 16.3	果実 ② ^{*1}	
該当年 度又は 該当年 2011 2012 2013	 (1) 12.8 12.5 13.2 	葉菜 ② ^{*1}	$ \underbrace{3^{*2}}_{1.7} \\ \underbrace{1.7}_{1.6} \\ 1.6 $	家庭 ① 63.1 61.9 62.6	菜園農 <u>酒</u> 非葉菜 ② ^{**1}	董物 ③ ^{※2} 16.7 16.5 17.1	① 21.2 16.3 20.1	果実 ② ^{*1}	
該当年 度又は 該当年 2011 2012 2013 2014	 (1) 12.8 12.5 13.2 13.3 	葉菜 ② ^{**1}	$ \underbrace{3^{2}}_{1.7} \\ 1.6 $	家庭 ① 63.1 61.9 62.6 64.3	菜園農 <u>通</u> 非葉菜 ② ^{*1}	董物 ③ ^{※2} 16.7 16.5 17.1 17.1	① 21.2 16.3 20.1 20.2	果実 ② ^{**1}	
該当年 度又は 該当年 2011 2012 2013 2014 2015	(1) 12.8 12.5 13.2 13.3 13.6	葉菜 ② ^{**1}	$ \underbrace{3^{3}}_{1.7}^{2} \\ 1.7 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 $	家庭 ① 63.1 61.9 62.6 64.3 59.7	菜園農函 非葉菜 ② ^{※1} ※4	董物 ③ ^{※2} 16.7 16.5 17.1 17.1 16.7	① 21.2 16.3 20.1 20.2 18.3	果実 ② ^{**1}	$ \underbrace{3}^{* 2} \\ 4.2 \\ 4.6 \\ 4.4 \\ 4.4 \\ 4.1 $
該当年 度又は 該当年 2011 2012 2013 2014 2015 2016	(1) 12.8 12.5 13.2 13.3 13.6 12.4	葉菜 ② ^{*1}	$ \underbrace{3}^{*2} \\ 1.7 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.5 $	家庭 ① 63.1 61.9 62.6 64.3 59.7 59.1	菜園農 非葉菜 ② ^{*1} ※4	董物 ③ ^{※2} 16.7 16.5 17.1 17.1 16.7 16.7 16.1	① 21.2 16.3 20.1 20.2 18.3 17.7	果実 ② ^{*1}	$ \underbrace{3}^{* 2} \\ 4.2 \\ 4.6 \\ 4.4 \\ 4.4 \\ 4.1 \\ 4.3 $
該当年 度又は 該当年 2011 2012 2013 2014 2015 2016 2017	(1) 12.8 12.5 13.2 13.3 13.6 12.4 11.4	葉菜 ② ^{**1}	$3^{2} \frac{1}{1.7}$ 1.6 1.6 1.6 1.6 1.5 1.6	家庭 ① 63.1 61.9 62.6 64.3 59.7 59.1 55.8	菜園農函 非葉菜 ② ^{※1} ※4	董物 ③ ^{※2} 16.7 16.5 17.1 17.1 16.7 16.1 16.8	 (1) 21. 2 16. 3 20. 1 20. 2 18. 3 17. 7 23. 2 	果実 ② ^{**1}	$ \underbrace{3}^{* 2} \\ 4.2 \\ 4.6 \\ 4.4 \\ 4.4 \\ 4.1 \\ 4.3 \\ 4.3 $
- ①:国民健康·栄養調査
- ②:食料需給表
- ③:家計調查年報
- ※1:調査により国民1人・1年当たりの供給純食料が示されるため,以下の項目から それぞれの摂取量を算出。
 - 魚類+無脊椎動物→「10.魚介類」
 - 藻類→「11.海藻類」
- ※2:調査により「①1世帯当たりの年間の購入数量」と「②二人以上の世帯の平均世 帯人員数」が示されるため、①÷②により算出。
 - それぞれの摂取量は以下の項目から算出。
 - 魚類→「170 まぐろ」,「172 あじ」,「173 いわし」,「174 かつお」,「175 かれ い」,「176 さけ」,「177 さば」,「178 さんま」,「180 たい」,「181 ぶ り」,「189 他の鮮魚」,「187 さしみ盛り合わせ」,「195~202 塩干魚介」, 「210 かつお節・削り節」の合計値
 - 無脊椎動物→「182 いか」,「183 たこ」,「185 えび」,「186 かに」,「190~194 貝類」の合計値
 - 藻類→「277 わかめ」,「278 こんぶ」,「295 こんぶ佃煮」の合計値
 - 葉菜→「243 ねぎ」の値
 - 非葉菜→「251 じゃがいも」,「253 だいこん」,「262 きゅうり」,「263 なす」, 「264 トマト」,「265 ピーマン」の合計値
 - 果実→「305 梨」,「306 ぶどう」,「316 キウイフルーツ」,「313 他の果物」の 合計値
- ※3:食料需給表では,魚類と無脊椎動物に分けることができないため,「魚介類」の 摂取量を記載
- ※4:食料需給表では、「野菜」、「いも」、「豆」の分類となっているが、野菜を葉菜と 非葉菜に分けることができないため対象外。また、果実も詳細に分けることがで きないため対象外
- 4 参考文献
- (1) 農林水産省: グラフと統計でみる農林水産業, 茨城県東海村
- (2) タキイ種苗(株) (2014): 2014 年度 野菜と家庭菜園に関する調査
- (3) 厚生労働省(2013~2020):国民健康・栄養調査報告
- (4) 農林水産省(2013~2020): 食料需給表
- (5) 総務省(2012~2019):家計調査年報

以上

放射性核種 i の外部被ばく線量換算係数の設定根拠について

1 設定値

	設定値(Sv/h) / (Bq/kg)	
放射性核種	居住	灌溉農作業,居住, 建設,建設	考慮した 子孫核種
	(大規模拙則)	(大規模掘削)	
H - 3	0	2. 7×10^{-20}	—
C - 14	1. 9×10^{-17}	7. 6×10^{-16}	—
$C \ 1 \ -36$	2. 7×10^{-14}	1. 3×10^{-1} ³	_
C a -41	0	6. 6×10^{-17}	—
C o -60	2. 7×10^{-10}	7. 2×10^{-10}	_
S r -90	4. 1×10^{-13}	1. 7×10^{-12}	Y-90
C s -137	4. 2×10^{-11}	1. 5×10^{-10}	B a −137m
E u -152	1. 1×10^{-10}	3. 2×10^{-10}	_
E u −154	1. 3×10^{-10}	3. 6×10^{-10}	—
全α	2. 6×10^{-14}	1. 7×10^{-12}	_

2 設定根拠

2.1.1 使用コード

実効線量率の評価は、点減衰核積分法コード「QAD-CGGP2R」⁽¹⁾を使用した。

外部被ばく線量換算係数の算出は、「QAD-CGGP2R」で求めたエネ ルギー群別の実効線量率から、放射性核種生成崩壊計算コード「ORIGE N2」断面積ライブラリセット「ORLIBJ40」⁽²⁾における18群別の制動

^{2.1} 前提条件

X線を含む γ 線及びX線の放出エネルギー及び放出率を考慮して評価を行った。また、Ca-41については「ORLIBJ40」に放出率の記載がないことから、ICRP Publication 107⁽³⁾の放出エネルギー及び放出率のデータを参照した。

なお,算出した線量換算係数は,有効数字2桁となるように切り上げ,1× 10⁻²⁹以下の値を0として設定した。

2.1.2 想定ケース

居住(大規模掘削)の外部被ばくは,線源の上に住居の根入れ深さ程度の 客土を施し,その上に居住者(評価対象)が滞在することを想定し,遮蔽体 として10 cm(根拠を「3 客土厚さの設定根拠」に示す。)の厚さの客土を 考慮した。

灌漑農作業,居住,建設及び建設(大規模掘削)の外部被ばくでは,線源 の上に評価対象が滞在することを想定し,空気の遮蔽のみを考慮した。

2.2 計算条件

2.2.1 評価点の高さ

実効線量の評価点は、JAEA Data/Code 2008-003⁽⁴⁾を参考に、地表 面から+1.0 mの高さとした。

2.2.2 線源の設定

(1) 線源のサイズ

JAEA Data/Code 2008-003⁽⁴⁾を参考に,地表からの被ばくを近似 するため,線源を半径100 m,厚さ1.5 mの円柱モデルとした。 (2)線源の組成

線源は,廃棄物との混合土壌又は廃棄物埋設地から漏出した放射性物質 が移動した土壌となる。廃棄物埋設地内の体積割合は,土壌が支配的であ ることから,線源の物質は土壌で代表することとし,計算に用いる線源の 組成は,周辺土壌である砂質土と同様の組成である砂質岩の組成とし,理 科年表⁽⁵⁾に示される砂質岩の組成を用いた。第1表に線源の組成を示す。

元素	組成 (wt%)
Н	1.785 $\times 10^{-1}$
С	1.360×10^{0}
О	5. 199×10^{1}
N a	3.698×10^{-1}
M g	7.215 \times 10 ⁻¹
A 1	2.533 \times 10 ⁰
S i	3.668×10^{1}
Р	1.740×10^{-2}
K	1.076×10^{0}
Са	3.919×10^{0}
T i	1.494×10^{-1}
M n	7.721 \times 10 ⁻³
F e	9.996 $\times 10^{-1}$

第1表 線源の組成

(3)線源の密度

廃止措置の開始後の人間活動における線源の状態を想定すること は困難であるため、線量評価上線源の密度は自己遮蔽効果により小 さいほど保守的な条件となることから、物理試験の結果から保守的 に最小密度を設定した。

廃棄物埋設地内の充填砂又は中間覆土は,土質分類が砂又は砂質 土となる現地発生土又は購入土を使用する計画であるため,過去に 実施した候補土砂(3試料)の物理試験(砂の最小密度・最大密度試 験方法(JISA1224))で得られた物性値(砂の最小密度試験に おける最小密度)の最小値1.3g/cm³(1.37g/cm³を有効数字2 桁となるように切り下げ)を線源密度として設定した。また,移動 先の土壌及び灌漑土壌についても同一の設定値とした。

	乾燥密度(g/cm ³)*	備考
珪砂 4 号	1.476	※:最小密度·最大
珪砂5号	1.425	密度試験における
珪砂 6 号	1.370	最小密度

第2表 砂の物理試験結果

2.2.3 遮蔽材の設定

(1) 空気の組成と密度

空気の組成はJAERI-M-6928⁽⁶⁾に示される空気の組成とした。空気の密度は、JAERI-M-6928⁽⁶⁾に示される1.2049×10⁻³g/cm³を設定した。第3表に空気の組成を示す。

元素	組成 (wt%)
Н	1.0000×10^{-3}
С	$1.2554 imes 10^{-2}$
N	7.5470 \times 10 ¹
Ο	2. 3233×10^{1}

第3表 空気の組成

(2) 客土の組成と密度

客土は砂質岩とし,組成,密度は線源と同じ値を用いた。

2.3 計算モデル

線源と遮蔽材の計算モデルを第1図及び第2図に,線源のメッシュ分割数を第3図に示す。

第1図 計算モデル(居住(大規模掘削))

第2図 計算モデル(灌漑農作業,居住,建設,建設(大規模掘削))

			1.	5
			1.	4
r◄	100 50	15	1 0	
	0-1 m	$1 - 15 { m m}$	$15-50~{\rm m}$	$50 - 100 \mathrm{m}$
半径 r	100	140	140	50
	(1 cm)	(10 cm)	(25 cm)	(100 cm)
	$0-360^{\circ}$			
中心角 φ	180	120	60	36
	(2°)	(3°)	(6°)	(10°)
		0 - 1	.4 m	
	70		14	
高さ z	(2 cm)		(10 cm)	
	1.4 - 1.5 m			
	10)0	5	
	(0.1 cm)		(2 cm)	

第3図 線源のメッシュ分割数

2.4 ガンマ線エネルギースペクトル

放射能濃度は単位濃度(1 Bq/cm³)とし,ガンマ線エネルギース ペクトルは,「ORIGEN2」の光子ライブラリにおけるエネルギ ー群構造(18 群)⁽⁷⁾に集約して評価を行った。計算に用いた<mark>群ごと</mark> のガンマ線平均エネルギーを第4表に示す。

群 No.	<mark>平均</mark> エネルギ <mark>ー</mark> (MeV)
1	1.0000×10^{-2}
2	2.5000 × 10 ⁻²
3	3.7500 \times 10 ⁻²
4	5.7500 × 10 ⁻²
5	8.5000 × 10 ⁻²
6	1.2500×10^{-1}
7	2.2500 × 10 ⁻¹
8	3.7500 \times 10 ⁻¹
9	5.7500 \times 10 ⁻¹
10	8.5000 × 10 ⁻¹
11	1.2500 $ imes$ 10 $^{\rm 0}$
12	1.7500 $ imes$ 10 $^{ m o}$
13	2.2500 $ imes$ 10 $^{\rm o}$
14	2.7500 $ imes$ 10 $^{\rm o}$
15	3. 5000×10^{0}
16	5. 0000×10^{0}
17	7. 0000×10^{0}
18	9. 5000×10^{0}

第 4 表 ORIGEN2群構造のガンマ線<mark>平均</mark>エネルギ<mark>ー</mark>

3 客土厚さの設定根拠

客土の評価上の条件としては,保守的に住宅の基礎に必要な厚さ のみを考慮した。建築物の施工における根入れ深さについては,建 設省告示第 1347 号⁽⁸⁾により,べた基礎の場合 12 cm以上,布基礎 の場合 24 cm以上とされており,これを必要な客土厚さと考え保守 的に 10 cm とした。

4 参考文献

- (1) Yukio SAKAMOTO and Shun-ichi TANAKA (1990) : QAD-CGGP2 AND G33-GP2: REVISED VERSIONS OF QAD-CGGP AND G33-GP (CODES WITH THE CONVERSION FACTORS FROM EXPOSURE TO AMBIENT AND MAXIMUM DOSE EQUIVALENTS) , J A E R I M 90-110
- (2) 奥村 啓介, 杉野 和輝, 小嶋 健介, 神 智之, 岡本 力, 片倉 純
 (2013): JENDL-4.0に基づくORIGEN2用断面積
 ライブラリセット:ORLIBJ40, JAEA Data/Code 2012-032
- (3) International Commission on Radiological Protection (2008): Nuclear Decay Data for Dosimetric Calculations, I C R P Publication 107

補5別11-9

- (4) 佐々木利久・渡邊正敏・武田聖司・澤口拓磨・落合透・木村英雄
 (2008): 埋設処分における濃度上限値評価のための外部被ばく
 線量換算係数, JAEA Data/Code 2008-003
- (5) 国立天文台編(2021): 理科年表
- (6)小山謹二・奥村芳弘・古田公人・宮坂駿一(1977):遮蔽材量の群
 定数, JAERI-M-6928
- (7)OAK RIDGE NATIONAL LABORATORY: RSICC COMPUTER CODE COLLECTION O R I G E N 2.2, CCC-371
- (8) 建設省告示第 1347 号,建築物の基礎の構造方法及び構造計算の
 基準を定める件,平成 12 年 5 月 23 日

以 上

海面及び漁網からの放射性核種 iの

外部被ばく線量換算係数の設定根拠について

1 設定値

放射性核種	設定値	考慮した子孫核種
H-3	1.4×10^{-19}	_
C - 14	3. 3×10^{-15}	—
$C \ 1 \ -36$	2. 2×10^{-1} ³	—
C a -41	3. 4×10^{-16}	—
С о — 60	6. 8×10^{-10}	—
S r -90	2. 4×10^{-12}	Y-90
C s -137	1. 4×10^{-10}	B a −137m
E u - 152	3. 3×10^{-10}	_
E u - 154	3. 6×10^{-10}	_
全 <i>α</i>	7. 3×10^{-12}	_

- 2 設定根拠
- 2.1 前提条件
- 2.1.1 使用コード

実効線量率の評価は、点減衰核積分法コード「QAD-CGGP2R」⁽¹⁾ を使用した。

外部被ばく線量換算係数の算出は、「QAD-CGGP2R」で求めたエネ ルギー群別の実効線量率から、放射性核種生成崩壊計算コード「ORIGE N2」断面積ライブラリセット「ORLIBJ40」⁽²⁾における18群別の制動 X線を含む y線及びX線の放出エネルギー及び放出率を考慮して評価を行っ

補5別12-1

た。また、Ca-41については「ORLIBJ40」に放出率の記載がないこ とからICRP Publication 107⁽³⁾の放出エネルギー及び放出率のデータ を参照した。

なお,算出した線量換算係数は,保守的に有効数字2桁となるように切り 上げて設定した。

2.1.2 想定ケース

廃棄物埋設地から漏出した放射性物質を含む海水面付近での活動及び放射 性物質を含む海水が付着した漁網の整備における外部被ばくは,線源(海水 又は漁網)の上又は前面に漁業従事者(評価対象)が滞在することを想定し, 空気の遮蔽のみを考慮した。

- 2.2 計算条件
- 2.2.1 評価点の高さ

実効線量の評価点は、「発電用軽水型原子炉施設の安全審査における一般公 衆の被ばく線量評価について」(以下「安全審査指針」という。)⁽⁴⁾を参考に、 線源から+1.0 mの高さとした。

- 2.2.2 線源の設定
- (1) 線源のサイズ

安全審査指針を参考に,線源を半径100 m,厚さ1 mの円柱モデルとした。

(2)線源の組成

線源は、放射性物質を含む海水又は放射性物質を含む海水が付着した漁

補5別12-2

網である。海水中の水以外の構成成分(3~4%)についてはその量・組成 が変動することと、安全審査指針の漁網シナリオで水を想定した評価を実 施しているため、線源の物質は水で代表することとし、計算に用いる線源 の組成はJAERI-M 6928⁽⁵⁾による水の組成を用いた。第1表に線源 の組成を示す。

第1表 線源の組成

元素	組成 (wt%)
Н	1.1190×10^{1}
Ο	8.8810 \times 10 ¹

(3)線源の密度

安全審査指針を参考に水の密度である 1.0 g/cm³を線源密度として設 定した。

- 2.2.3 遮蔽材の設定
- (1) 空気の組成と密度

空気の組成はJAERI-M 6928⁽⁵⁾に示される空気の組成とした。空 気の密度は、JAERI-M 6928⁽⁵⁾に示される1.2049×10⁻³ g/cm³を 設定した。第2表に空気の組成を示す。

元素	組成 (wt%)
Н	1.0000×10^{-3}
С	1.2554×10^{-2}
Ν	7.5470 \times 10 ¹
О	2.3233×10^{1}

第2表 空気の組成

2.3 計算モデル

線源と遮蔽材の計算モデルを第1図に、線源のメッシュ分割数を 第2図に示す。

第1図 計算モデル

	0-1 m	1-10 m	10 - 100 m
半径 r	100	90	180
	(1 cm)	(10 cm)	(50 cm)
	$0-360^{\circ}$		
中心角 φ	180		
	(2°)		
高さ z	$0 - 0.9 \mathrm{m}$		
	180		
	(0.5 cm)		
	0.9 - 1.0 m		
	100		
		(0.1 cm)	

第2図 線源のメッシュ分割数

2.4 ガンマ線エネルギースペクトル

放射能濃度は単位濃度(1 Bq/cm³)とし、ガンマ線エネルギースペクトルは、「ORIGEN2」の光子ライブラリにおけるエネルギー群構造(18 群)⁽⁶⁾に集約して評価を行った。計算に用いた<mark>群ごとの</mark>ガンマ線平均エネルギーを第3表に示す。

我 No	<mark>平均</mark> エネルギ <mark>ー</mark>
石丰 NO.	(MeV)
1	1.0000×10^{-2}
2	2.5000 × 10 ⁻²
3	3.7500 \times 10 ⁻²
4	5.7500 × 10 ⁻²
5	8.5000 × 10 ⁻²
6	1.2500×10^{-1}
7	2.2500 × 10 ⁻¹
8	3.7500 \times 10 ⁻¹
9	5.7500 × 10 ⁻¹
10	8.5000 × 10 ⁻¹
11	1.2500 \times 10 ⁰
12	1.7500 \times 10 ⁰
13	2.2500 \times 10 ⁰
14	2.7500 \times 10 [°]
15	3. 5000×10^{0}
16	5.0000 \times 10 ⁰
17	7.0000×10^{0}
18	9. 5000×10^{0}

第3表 ORIGEN2群構造のガンマ線<mark>平均</mark>エネルギ<mark>ー</mark>

3 参考文献

- (1) Yukio SAKAMOTO and Shun-ichi TANAKA (1990) : QAD-CGGP2 AND G33-GP2: REVISED VERSIONS OF QAD-CGGP AND G33-GP (CODES WITH THE CONVERSION FACTORS FROM EXPOSURE TO AMBIENT AND MAXIMUM DOSE EQUIVALENTS) , J A E R I M 90-110
- (2) 奥村 啓介, 杉野 和輝, 小嶋 健介, 神 智之, 岡本 力, 片倉 純
 ー(2013): JENDL-4.0に基づくORIGEN2用断面積
 ライブラリセット:ORLIBJ40, JAEA Data/Code 2012-032
- (3) International Commission on Radiological Protection (2008): Nuclear Decay Data for Dosimetric Calculations, I C R P Publication 107
- (4) 平成元年3月27日原子力安全委員会了承:発電用軽水型原子炉 施設の安全審査における一般公衆の被ばく線量評価について,一 部改訂,平成13年3月29日
- (5)小山謹二・奥村芳弘・古田公人・宮坂駿一(1977): 遮蔽材量の群
 定数, JAERI-M 6928
- (6) OAK RIDGE NATIONAL LABORATORY : RSICC COMPUTER CODE COLLECTION O R I G E N 2. 2, CCC-371

以 上

掘削土壌の希釈係数の設定根拠について

1 設定値

0.34

2 設定根拠

廃棄物埋設地から漏出した放射性物質が海まで移動する過程で, 放射性物質の移行媒体である地下水と接した土壌を掘削し,地下水 と接していない土壌と混合された掘削混合土の上での土地利用に伴 う被ばくを想定する。

掘削深度は、 I A E A - T E C D O C - 401⁽¹⁾を参考に 3 m の 掘 削が行われると想定する。

廃棄物埋設地周辺には、標高が4 m程度と低くなっている場所も 存在する。その場所において掘削が行われると考え、地表面標高を一 律4mと仮定して、別紙7「帯水層の厚さの設定根拠について」にて 算出している帯水層の厚さより放射性物質を含む地下水と接する土 壌の割合は掘削深度3 mのうち、最も可能性が高い自然事象シナリ オにおいては帯水層の厚さ1.8 mより、1.8 m-(4 m-3 m)=0.8 m から最大 0.8 m、最も厳しい自然事象シナリオにおいては帯水層の厚 さ1.6 mより、1.6 m-(4 m-3 m)=0.6 mから最大 0.6 mとなる。 最も可能性が高い自然事象シナリオの値においては四捨五入し 1.0 mを用いて、最も厳しい自然事象シナリオの値については保守的な設 定となるよう、1.0 mに切り上げて設定する。

補5別13-1

垂直に3 m 掘削される全土壌に占める放射性物質を含む地下水と 接した土壌の割合より、次式のとおり算出し、有効数字 2 桁となる ように切り上げて設定した。

なお,廃棄物埋設地周辺の標高が4m程度の場所は限定的であり, 大部分は標高8m程度であることから,十分保守的な設定となって いる。

放射性物質を含む地下水と接した土壌の高さ÷掘削高さ =1.0 m÷3 m=0.333≒0.34

3 参考文献

(1) International Atomic Energy Agency (1987): Exemption of Radiation Sources and Practices from Regulatory Control-INTERIM REPORT, I A E A-T E C D O C -401

以 上

居住地での居住時間のうち屋外の活動の割合について

1 社会生活基本調査 (1)

本調査は調査票A及びBによって調査が行われ,調査票Bでは,生活時間 に関する調査として,個人属性及び世帯属性別に,曜日,行動の種類(主行 動,主行動・同時行動)別の総平均時間,行動者平均時間及び行動者率を整 理している。

本結果を用いて、居住時間のうち、屋外で過ごす時間を設定する。

詳細行動分類が第1表のとおり分類されており、このうち、居住地におい て屋外で過ごす時間に該当する行動に「○」を示す。

該当する行動としては、「213 園芸」、「215 衣類等の手入れ」、「217 建築・ 修繕」、「218 乗り物の手入れ」、「21C その他の家事」、「227 子供(乳幼 児以外)と遊ぶ」、「535 趣味としての園芸」及び「536 ペットの世話」と なる。

選定した項目の総平均時間(該当する種類に行動しなかった人を含む全員の平均時間)で示すと,第2表のとおり,合計で33分となる。

1日(24時間:1,440分)の居住時間のうち,屋外で活動する時間の割合は2.3%となる。

行動の種類	内容等	該当
1 有償労働	収入を目的とする仕事(物の生	
	産及びサービスの提供)	
11 主な仕事関連	本業及びそれに関連する行動	
111 主な仕事	自宅に持ち帰って行った仕事も	
	含む	
112 主な仕事中の移	運転業務者(タクシー、トラッ	
動	ク,ピザの宅配等)の移動も含む	
12 副業関連	副業及びそれに関連する行動	
121 副業	自宅に持ち帰って行った仕事も	
	含む	
122 副業中の移動	運転業務者(タクシー、トラッ	
	ク,ピザの宅配等)の移動も含む	
13 通勤	通勤に関連する行動	
131 通勤	仕事場へ/からの移動(途中で	
	寄り道をした場合は寄り道先か	
	ら仕事場(仕事場から寄り道先)	
	までを通勤とする)	
14 その他の仕事関連	仕事中(仕事と仕事の間)の休憩	
	及び求職活動	
141 仕事中の休憩	仕事の合間の休憩でほかに何も	
	していない状態	
142 求職活動	求人広告を読む, 就職試験, ハロ	
	ーワークで仕事を探す等	
2 無償労働	収入を目的としない仕事(物の	
	生産及びサービスの提供)	
21 家事	本人又は家族のための物の生産	
	及びサービスの提供	
211 食事の管理	料理、食器洗い等	
212 菓子作り	趣味として行っている場合は除	
213 園芸	趣味として行っている場合は除	\bigcirc
214 住まいの手入	目宅の部屋の掃除, 買ってきた	
れ・整理	物の整理等	
215 衣類等の手入れ	衣類の洗濯, アイロンがけ, 靴磨 き等	0
216 衣類等の作製	洋服を作る、編み物等 ※趣味	
	として行っている場合は除く	
217 建築・修繕	壁紙の張替え、おもちゃの修理	
	等 ※趣味として行っている場	\bigcirc
	合は除く	

第1表 詳細行動分類一覧と屋外居住行動の選定

補5別14-2

行動の種類	内容等	該当
218 乗り物の手入れ	自分で行う洗車,車のタイヤ交 換等	\bigcirc
219 世帯管理	家計簿の記入等	
21D 子供(乳幼児以	就学後から高校生以下の子供の	
外)の介護・看護	介護・看護	
21E 家族(子供以外)	高校生以上の家族の介護・看護	
の介護・看護		
21F 子供(乳幼児以	就学後から高校生以下の子供の	
外)の身の回りの世	世話	
話		
21G 家族(子供以外)	高校生以上の家族の世話	
の身の回りの世話		
21C その他の家事	自家消費のための家畜の世話,	\bigcirc
	家の手伝い等	\bigcirc
22 育児	親や兄姉が行う子供又は弟妹の	
	世話や教育に関する行動	
221 乳幼児の介護・	就学前の子供の介護・看護	
看護		
222 乳幼児の身体の	就学前の子供に食事をさせる,	
世話と監督	遊んでいるのを見守る等	
223 乳幼児と遊ぶ	就学前の子供と遊ぶ,本を読ん	
	で聞かせる等	
224 子供の付き添い	高校生以下の子供の授業参観,	
等	習い事に付き添う等	
225 子供(乳幼児以	就学後から高校生以下の子供の	
外)の教育	勉強を見る等	
226 子供の送迎移動	高校生以下の子供の送り迎え,	
	保育園へ運れて行く等	
227 子供(乳幼児以	就学後から高校生以下の子供と	\bigcirc
外)と遊ぶ	遊ぶ等	0
23 買い物・サービスの利	買い物及び外部から家事などの	
用	サービスを受けるための行動	
231 買い物	通信販売やインターネットを利	
	用した商品の汪文等も含む	
232 公的サービスの	住民票の交付を受ける,運転免	
利用	計の更新等	
233 商業的サービス の利用	クリーニンク店、銀行の利用等	
24 家事関連に伴う移動	家事・育児及び買い物・サービス	
	の利用に関連した移動	
241 家事関連に伴う	実家の母の介護に行く、小学生	
移動	の子供の授業参観のために学校	
	~行く、買い物に行く等	

補5別14-3

	行動の種類	内容等	該当
	25 ボランティア活動関連	無償(交通費など実費程度の支	
		払いは有償とはみなさない)で、	
		家族以外の者又は団体に奉仕す	
		ること及びそれに関連する行動	
	251 ボランティア活	家族以外の世帯への手助けも含	
	動	む	
	252 ボランティア活	ボランティア活動を行うため公	
	動に伴う移動	民館に行く、高齢者施設の慰問	
		に行く等	
3 学	業,学習・自己啓発・訓練	学校で行う学業や自由時間に行	
		う学業、学習・自己啓発・訓練	
	31 学業	小学校, 中学校, 高校, 大学等で	
		の学校教育に関連する学業等	
	311 学校での授業・	授業の科目ではないクラブ活動	
	その他学校での行動	を除く	
	312 学校の宿題	学校の授業の予習・復習も含む	
	313 家庭教師による	予備校等の宿題も含む	
	勉強, 学習塾·予備校		
	での勉強等		
	314 学校での学習	授業等の合間の休憩でほかに何	
	(学業)中の休憩	もしていない状態	
	315 通学	小学校,中学校,高校,大学等へ	
		/からの移動,学習塾等へ/か	
		らの移動	
	32 学習・自己啓発・訓練	学業以外の学習・自己啓発・訓練	
	(学業以外)		
	321 学習・自己啓発・	仕事中の研修は除く	
	訓練(学業以外)		
4 個	人的ケア	生理的に必要な活動、身体のケ	
		ア及び食事に関する行動	
	41 睡眠関連	睡眠と病臥に関する行動	
	411 睡眠	眠る前後に布団やベッドにいる	
		状態も含む	
	412 うたたね	うとうとしている状態	
	413 療養	風邪のための療養等	
	42 身体的ケア	自分でまたは他の人にしてもら	
		う自分自身の身体のケアに関す	
		る行動	
	421 受診	病気での治療,健康診断等	
	422 入浴(自分自身	シャワー, 銭湯, サウナ等も含む	
	や家族等が行うも		
	の)		
	423 身の回りの用事	洗顔, トイレ等	

補5別14-4

	行動の種類	内容等	該当
	(自分自身や家族等 が行うもの)		
	424 身の回りの用事	理容院での散髪、エステ等	
	(個人サービスの利		
	用)		
	425 療養のための世	傷の手当て, 血圧の測定等	
	話(自分自身や家族		
	等が行うもの)		
	43 食事	飲食に関する行動	
	431 朝食	午前4時以降午前11時前に開始	
		する食事	
	432 昼食	午前11時以降午後4時前に開始	
		する食事	
	433 夕食	午後4時以降午後12時前に開始	
		する食事	
	434 夜食	午前0時以降午前4時前に開始	
		する食事	
	435 軽飲食	おやつを食べる, コーヒーブレ	
		イク等	
5 自	由時間	1~4 及び6以外の各人が自由に	
		使える時間における行動	
	51 社会参加・宗教活動	社会参加活動及び礼拝・読経に 関する行動	
	511 社会参加活動	選挙の投票,政治活動に参加等	
	512 礼拝·読経	神社・寺院での参拝,朝のおつと	
		め、墓参り等	
	52 交際	人との交流、付き合いを目的と	
		した行動	
	521 冠婚葬祭	結婚披露宴に出席、法事等	
	522 人と会って行う	知人と会話、送別会に出席等	
	交際・付き合い		
	523 家族とのコミュ	母とおしゃべり, 夫と電話, 妻に	
	ニケーション	メール,母に手紙を書く等	
	524 電話による交	友人との電話 ※家族との電	
	際・付き合い	話,仕事での電話等を除く	
	525 電子メール等に	メールのチェック,インターネ	
	よる交際・付き合い	ットでチャットをする等	
	526 手紙等による交	ファックスも含む	
	際・付き合い		
	53 教養・趣味・娯楽	教養,趣味及び娯楽に関する行	
		動	
	531 教養・娯楽	映画館で映画を見る,遊園地で	
		乗り物に乗る等	

補5別14-5

	行動の種類	内容等	該当
	532 創作	歌を歌う,子供をビデオに撮る,	
		小説を書く等	
	533 趣味としての菓	アップルパイを焼く, プリンを	
	子作り	作る等	
	534 成果物を得る趣	ぶどう狩り,きのこ狩り,栗拾い	
	味・娯楽	等	
	535 趣味としての園	ガーデニング等	\bigcirc
	芸		0
	536 ペットの世話	餌をやる、グルーミング等	\bigcirc
	537 犬の散歩等	犬を散歩させる, 犬をフリスビ	
		ーで遊ばせる等 ※犬以外のペ	
		ットも含む	
	538 趣味としての衣	パッチワークをする等	
	類等の作製		
	539 趣味	記念切手を集める、模型製作等	
	53D コンピュータの	コンピュータの組立・修理,趣味	
	使用	としてコンピュータを使った情	
		報検索等	
	53A ゲーム	テレビゲーム,将棋等 ※人形	
		やおもちゃで遊ぶ場合も含む	
	53B ドライブ	趣味での車の運転,ツーリング	
		等	
	53C 他に分類されな	旅行や行楽(内容が分からない	
-	い趣味・娯楽	場合)等	
	54 スポーツ	体を動かすことを目的に運動す	
-		ること	
	541 エアロビクス系	体操,散歩等	
	スポーツ		
	542 球技	サッカー,ゴルフ等	
	543 ウォーター系ス	ウインドサーフィン,ダイビン	
	ポーツ	グ等	
	544 成果物を得るス	釣り,狩猟(いのししを捕る)等	
	ボーツ		
	545 他に分類されな	スポーツに関連した行動(体操	
	いスポーツ	が始まるのを待った、スポーツ	
-		器具の組立・修理等)も含む	
	55 マスメティア利用	他に分類されないマスメティア	
		を利用した行 <u>期</u> 空販のままないかく	
	551 読書	個題の読書等は除く 日期、開期、日期、新期の期に収	
	552 新聞・雑誌	日刊,週刊,月刊,李刊の刊行物	
	FE0 ~	寺を記む、) 一 で む い つ い つ い つ い つ い つ い つ い つ い つ い つ い	
	553 アレビ	アレビから録画したビデオ・D	
		VDを見る場合は除く	

補5別14-6

		行動の種類	内容等	該当
		554 ビデオ・DVD	テレビから録画したビデオ・D	
			VDを見る場合も含む	
		555 ラジオ	ラジオで音楽, ニュース, 時事解	
			説等を聞く	
		556 CD・音声ファ	音楽CDを聞く等	
		イル		
	56 亿	*養・くつろぎ	何もしない、物思いにふける、リ	
			ラックスする,休養する等	
		561 休養・くつろぎ	ぼんやりしていた等でほかに何	
			もしていない状態	
6 そ	の他		他に分類されない移動、社会生	
			活基本調査に関する行動及びい	
			ずれの分類区分にも分類されな	
			い行動	
	61 利	多動	いずれの項目にも含まれない移	
			動	
		611 家事的趣味に伴	家庭菜園へ行く、ペットの診察	
		う移動	を受けに獣医師のところへ行く	
			等	
		612 その他の移動	釣りに行く、ピアノ教室へ行く、	
			出張先への移動,食事をしに行	
			く等	
	62 副	間査・その他	社会生活基本調査に関する行動	
			及びいずれの分類区分にも分類	
			されない行動	
		621 社会生活基本調	調査票の記入、調査員に連絡す	
		査に関連する行動	る,子供が調査票に記入するの	
			を手伝う等	
		622 他に分類されな	いずれの小分類にも含まれない	
		い行動	行動(移動を除く)	
7 無	償労働	動(国際比較)	国際的にみて無償労働と捉える	
			行動分類をまとめたもの ※趣	
			味的な家事も含む	

行動分類	総平均時間 (分)
213 園芸	8
215 衣類等の手入れ	17
217 建築・修繕	1
218 乗り物の手入れ	0
210 その他の家事	5
227 子供(乳幼児以外)と遊ぶ	0
535 趣味としての園芸	1
536 ペットの世話	1
合計時間	33

第2表 選定行動の総平均時間

2 国民生活時間調査⁽²⁾

本調査は調査票に48 時間の行動を15 分間隔で記録することで調査を行っており、全員平均時間量(該当の行動をしなかった人も含めた調査相手全体が、その行動に費やした時間量の平均)の結果を利用する。

調査ではあらかじめ行動分類を第3表の通り分類しており、この分類の中で、居住地での居住時間のうち、屋外で活動する項目を同表に選別した。

選別した結果は「炊事・掃除・洗濯」,「家庭雑事」,「スポーツ」及び「趣 味・娯楽・教養」である。

選別した行動分類の月曜日から日曜日及び週(週全体での整理)の全員平 均時間量は第4表の通りとなる。

土曜及び日曜は他の曜日に比べて屋外で活動する割合が多いが,週全体と しては 10%となっていること及び行動分類のすべてが屋外での活動ではな いことから,居住地での居住時間のうち,屋外で活動する割合は 10%である。

第3表 行動分類と屋外活動の選別結果

大分類	中分類	小分類	具体例	判断
必需行	睡眠	睡眠	30 分以上連続した睡眠,仮眠,昼寝	
到	食事	食事	朝食,昼食,夕食,夜食,給食	
	身のま わりの 用事	身のまわ りの用事	洗顔,トイレ,入浴,着替え,化粧, 散髪	
	療養・静 養	療養・静 養	医者に行く,治療を受ける,入院, 療養中	
拘束行 動	仕事関	仕事	何らかの収入を得る行動,準備・片 付け,移動なども含む	
	連	仕事のつ きあい	上司・同僚・部下との仕事上のつき あい,送別会	
	学来	授業・学 内の活動	授業,朝礼,掃除,学校行事,部活 動,クラブ活動	
	一 千未	学校外の 学習	自宅や学習塾での学習,宿題	
		炊事・掃 除・洗濯	食事の支度・後片付け,掃除,洗濯・ アイロンがけ	0
	家事	買い物	食料品・衣料品・生活用品などの買 い物	
		子どもの 世話	子どもの相手,勉強をみる,送り迎 え	
		家庭雑事	整理・片付け,銀行・役所に行く, 子ども以外の家族の世話・介護・看 病	0
	通勤	通勤	自宅と職場(田畑などを含む)の往 復	
	通学	通学	自宅と学校の往復	
	社 会 参 加	社会参加	PTA,地域の行事・会合への参加, 冠婚葬祭,ボランティア活動	
自由行 動	会話・交 際	会話・交 際	家族・友人・知人・親戚とのつきあ い,おしゃべり,電話,電子メール, 家族,友人,知人とのインターネッ トでのやり取り	
		スポーツ	体操,運動,各種スポーツ,ボール 遊び	0
	レ ジ ャ 一活動	行楽 ・散 策	行楽地・繁華街へ行く,街をぶらぶ ら歩く,散歩,釣り	
	100	趣味・娯 楽・教養	趣味・けいこごと・習いごと, 観賞, 観戦, 遊び, ゲーム	0

補5別14-10

大分類	中分類	小分類	具体例	判断	
		趣味・娯 楽・教養 のインタ ーネット	趣味・娯楽・あそびとしてインター ネットを使う*		
マスディ	マスメ ディア	テレビ	BS, CS, CATV, ワンセグの 視聴を含める		
	接触	ラジオ	らじる★らじる, radiko(ラジコ) からの聴取も含む		
		新聞	朝刊・夕刊・業界紙・広報紙を読む(チラシ・電子版も含む)		
		雑誌・マ ンガ・本	週刊誌・月刊誌・マンガ・本・カタ ログなどを読む(カタログ・電子版 も含む)		
		CD・テ ープ	 CD・デジタルオーディオプレイヤ ー・テープ・パソコンなどラジオ以 外で音楽を聞く 		
		ビデオ・ HDD・ DVD	ビデオ・HDD・DVDを見る(録 画したテレビ番組の再生視聴・ネッ トで配信されたテレビ番組の視聴も 含む)		
	休息	休息	休憩,おやつ,お茶,特に何もして いない状態		
その他	その他・	その他	上記のどれにもあてはまらない行動		
	个明	个明	不明	無記入	

※ 仕事や学業上の利用はそれぞれ「仕事」「学業」に分類。メールは「会話・

交際」に分類。

行動	全員平均時間量 (分)								
分類	月曜	火曜	水曜	木曜	金曜	平日	土曜	日曜	週
炊事・ 掃除・ 洗濯	74	75	72	72	70	73	73	77	73
家庭 雑事	33	32	30	29	32	31	36	37	33
スポ ーツ	9	10	11	9	10	10	14	16	11
趣味・ 娯楽・ 教養	25	20	22	22	24	23	34	44	27
合計	141	137	135	132	136	137	157	174	144
1 日の 割合	9.8%	9.6%	9.4%	9.2%	9.5%	9.6%	11.0%	12.1%	10.0%

第4表 行動分類の全員平均時間量

3 調査結果まとめ

「社会生活基本調査」及び「国民生活時間調査」より居住地での居住時間のうち屋外の活動の割合を10%と設定する。

4 参考文献

- (1) 総務省統計局(2017): 平成 28 年社会生活基本調査結果
- (2) NHK放送文化研究所(2016):2015年国民生活時間調查報告書

以 上

農産物の根からの放射性核種の吸収割合の設定根拠について

1 設定値

葉菜 : 0.1

非葉菜:0.1

果実 : 0.1

2 設定根拠

農林水産省⁽¹⁾のデータに示される東海村で作付けされた農産物と,タキイ 種苗(株)(2014)⁽²⁾に示される家庭菜園の野菜の比較から,葉菜は「ねぎ」, 非葉菜は「トマト」,「大根」,「きゅうり」,「ばれいしょ」,「なす」,「ピーマ ン」を対象とした。また,果実については家庭菜園に関するデータがないた め,保守的に農林水産省⁽¹⁾のデータに示される東海村で作付けされた農産物 の果樹である「なし」,「ぶどう」,「栗」,「キウイフルーツ」を対象とした。

廃棄物埋設地周辺は砂丘砂層であり農産物の栽培には適さない。こうした 環境において家庭菜園を行うには,必要な作土厚さに応じて,客土を行った うえで,栽培が行われると考えられる。

野菜を栽培する際の菜園づくりの準備において,NHK出版(2001)⁽³⁾で は土壌確認や畑を耕す際の厚さを 30 cm以上と示している。また,加えて作 物に応じた畝の高さを設けることが示されており,少なくとも 30 cmの栽培 に適した良質の客土を施すことが考えられる。

根の事典編集委員会(1998)⁽⁴⁾によると,葉菜と非葉菜の農産物の根の分 布状況は第1表のとおりとなる。

分類	科目	農産物	根の分布状況
葉菜	그リ科	ねぎ	浅根性の農産物で大部分の根は 20 cm
			までの土層に分布するとされている。
非葉菜	ナス科	トマト, ば	深さ30 cm程度までの作土での根長密
		れいしょ,	度の変異は比較的小さく、これより以
		なす、ピー	深では,根長密度は急激に低下する。
		マン	根長密度と土層内分布のデータから,
			0 cm~10 cm に比べて 30 cm~40 cm の
			根長密度は5分の1となる。
	アブラナ	だいこん	主流の青首タイプのだいこんで地面か
	科		ら約 20 cm~約 30 cm の深度となる。
	ウリ科	きゅうり	浅層に細根が多く,約30 cmまでにほ
			とんどの根が分布する。

第1表 農産物の根の分布状況

根の分布状況を整理した結果,約30 cm 程度の深さまでに根が分布することから,農産物の根は30 cm の客土中に分布することとなる。ただし,非葉菜のナス科やウリ科の農産物では一部30 cm を超える根があることから,以下のとおり根からの吸収割合を設定する。

根の事典編集委員会(1998)⁽⁴⁾によると,根長密度と土層内分布において, ばれいしょとともに記載されるコムギ,テンサイ,トウモロコシについては, 全根域に対する土壌表層(0 cm~20 cm)での根の分布割合は約50%である とされている。ばれいしょは,深さ30 cm程度までの作土での根長密度の変 異は比較的小さく,これより下の心土では深くなるに伴って根長密度は急激 に低下するとされていることから,全根域に対する土壌表層での根の分布割

補5別15-2

合は 50%より大きくなると考えられるが,保守的に約 50 %であるとする。 ばれいしょの 30 cm 以深の根長密度は表層に比べて 5 分の 1 となることか ら,30 cm 以深の根の分布割合は約 10%であると考えられ,根からの吸収割 合を 0.1 と設定する。

葉菜の根は 30 cm を超えないが,非葉菜と同様に根からの吸収割合を 0.1 と設定する。

果樹の栽培においては,茨城県(2015)⁽⁵⁾に果樹園土壌の有効土壌厚さを 60 cmとしており,果樹を植える際には,栽培に適した良質の客土を 60 cm は施すことが考えられる。

根の事典編集委員会(1998)⁽⁴⁾によると養水分吸収の主役となる細根の 70%~80%以上が分布する主要根域の深さは30 cm~40 cm,根の90%以上 が分布する根域は約60 cmまでとある。したがって,果樹の根の吸収割合に ついては,葉菜,非葉菜と同様に0.1 と設定する。

なお、客土については養分と水分が多く含まれ根の成長に適しているが、 客土より深い土壌は、整地の段階で締め固められており、かつ金属やコンク リートが混入しているため、土粒子の間隙を生長する根にとっては機械的な 抵抗となり、根の成長が妨げられると考えられる。このため、農産物の根は、 大部分が客土中に分布すると考えられる。

3 参考文献

- (1) 農林水産省: グラフと統計でみる農林水産業, 茨城県東海村
- (2) タキイ種苗(株) (2014): 2014 年度 野菜と家庭菜園に関する調査
- (3) NHK出版(2001):別冊NHK趣味の園芸 手作り新鮮野菜365日 こだわりの家庭菜園
- (4) 根の事典編集委員会(1998): 根の事典
- (5) 茨城県(2015):土壌・作物栄養診断マニュアル

以 上
添付資料1

収着分配係数

目	次	

1	はじめ	りに		. 1
2	前提卶	条件		. 1
	2. 1	1	廃棄物の仕様	. 1
	2. 2	2	収着分配係数設定において対象とする影響事象	. 1
	2. 3	3	分配係数の試験条件	. 3
	2. 4	4	固相条件	. 4
	2. 5	5	液相条件	. 5
	2.6	6	放射性水溶液の調整	12
	2. 7	7	分配係数取得試験の初期濃度	12
	2.8	8	分配係数取得試験結果	14
3	収着分	う 配	係数設定の考え方	16
	3.	1	媒体ごとの試験結果採用の考え方	16
	3.2	2	分配係数設定方法	17
	3. 3	3	分配係数取得試験を実施していない評価対象核種の設定	22
4	収着分	分配	係数設定值	23
	4. 2	1	最も可能性が高い自然事象シナリオの設定値	23
	4. 2	2	最も厳しい自然事象シナリオの設定値	23
5	参考文	と献		28

1 はじめに

本資料は「東海低レベル放射性廃棄物埋設事業所 第二種廃棄物埋設事業 許可申請 第二種廃棄物埋設施設の位置、構造及び設備の基準に関する規則

(以下「第二種埋設許可基準規則」という。)第十三条(ピット処分又はトレ ンチ処分に係る廃棄物埋設地)第1項第三号及び第四号への適合性について」 のうち線量評価パラメータ(収着分配係数)を補足説明するものである。各 シナリオで用いる線量評価パラメータのうち,収着性に関するパラメータの 収着分配係数は,影響事象分析の評価を踏まえ,想定される廃棄物埋設地の 環境条件で取得した試験データから設定する。

設定した収着分配係数は,第二種埋設許可基準規則第十三条第1項第四号 に求められる線量基準の要求事項に適合していることを確認するために行う 線量評価に用いる線量評価パラメータである。

- 2 前提条件
- 2.1 廃棄物の仕様

埋設する廃棄物は,東海発電所から発生する固体状の廃棄物であって,放 射化又は放射性物質によって汚染された金属類及びコンクリート類である。

収着分配係数の設定において<mark>は</mark>,埋設トレンチ内では,浸透水がコンクリ ート類の廃棄物との接触によって浸透水の水質が変化することから,その影 響を考慮する。

2.2 収着分配係数設定において対象とする影響事象

影響事象分析(補足説明資料3「東海低レベル放射性廃棄物埋設事業所 第 二種廃棄物埋設事業許可申請 第二種廃棄物埋設施設の位置、構造及び設備 の基準に関する規則第十三条(ピット処分又はトレンチ処分に係る廃棄物埋 設地)第1項第三号及び第四号への適合性について 廃棄物埋設地の状態設

補5添1-1

定(影響事象分析) 3 検討結果」を参照)から,熱,水理,力学及び化 学の観点によって廃棄物埋設地に生ずる物理的・化学的現象のうち収着性に 関する影響事象分析の結果を第1表に示す。収着分配係数の設定においては, 廃棄物と浸透水の反応と津波の影響事象を対象とする。

第1表 収着性への影響事象分析の結果

項目	影響事象	影響評価結果		
T (熱)		考慮する影響事象はない。		
H (水理)		考慮する影響事象はない。		
M (力学)		考慮する影響事象はない。		
	C1 コンクリート廃棄物の <mark>溶脱(</mark> 廃棄物と浸透水の反 応 <mark>)</mark>	雨水等の浸透水が, コンクリー ト類の廃棄物との接触によって カルシウム成分が溶脱し, 浸透 水のpHが変化することで, 収 着性に影響を与える可能性があ る。		
	C2 廃棄物層の金属腐食 (廃棄物と浸透水の反応)	<mark>影響事象として考慮しない。</mark>		
C(化学)	<mark>C4 バリア材料中での</mark> コロ イド生成	<mark>影</mark> 響事象として考慮しない。		
	C5 バリア材料中の <mark>(錯体形成含む)</mark>	<mark>影</mark> 響事象として考慮しない。		
	<mark>C6 バリア材料中の</mark> 微生 <mark>物</mark>	<mark>影</mark> 響事象として考慮しない。		
	<mark>C7</mark> 津波	海水が廃棄物埋設地周辺に流入 することで,一時的ではある が,帯水層及び通気層の水質の 変化によって収着性に影響する 可能性がある。		

補5添1-2

2.3 分配係数の試験条件

試験方法の基本的考え方は「収着分配係数の測定方法 - 浅地中処分のバリ ア材を対象としたバッチ法の基本的手順:2002」⁽¹⁾(以下「学会標準」とい う。)に規定された測定方法に準じた。試験対象の核種は,廃止措置の開始後 の評価の対象核種に選定されている 10 核種のうち,文献値から設定したH -3 及びC1-36,不確実な要素があることから保守的に設定したC-14, 化学的類似性から設定したCa-41 を除いたCo-60,Sr-85,Cs-137, Eu-152(Eu-154も同じ),Am-241とし,測定している。なお,Sr -85を測定しているのは,Sr-90の直接測定が困難なためである。また, 全 a については,核種選定において相対重要度が 1%を超える核種はないた め,最も相対重要度が大きいAm-241の試験結果を用いて設定した。試験 条件を第2表に示す。

項目	条件
試験方法	バッチ試験
固相	廃棄物埋設地付近の帯水層土壌 (d u 層)
液相	 ・現地地下水 ・人工海水 ・水酸化カルシウム溶液
核種	Co-60, Sr-85, Cs-137, Eu-152, Am-241
試験雰囲気	現地地下水,人工海水:大気雰囲気 水酸化カルシウム溶液:脱炭酸雰囲気(調整,サンプリング 時) :大気雰囲気(振とう,撹拌時)
試験温度	25℃(振とう, 撹拌時)
固液比	10 m1/g(固相 5 g, 液相 50 m1)
浸せき期間	7 日間
振とう方法	機械振とう(円振とう)

第2表 分配係数取得試験の試験条件

2.4 固相条件

固相は、通気層及び帯水層であるdu層の土壌とした。ボーリング調査に おいて掘削されたボーリングコア試料から、土壌試料を採取した。

土壌試料を採取したボーリングコアは、埋設環境を考慮して廃棄物埋設地 から海までの地下水の移行経路で想定されるS-1, S-2, F-4-0及びH -4-0を対象とした。ボーリング孔の位置図を第1図に示す。

採取した土壌試料は、風乾処理を施した後に粉砕し、2 mmのふるいでふる い分けを行い、通過分を固相試料として用いた。固相の分析結果を第3表に 示す。

	S-1	S-2	F - 4 - 0	H-4-0
対象層	d u	d u	d u	d u
含水率(%)	6.01	7.93	0.34	0.18
粒径状況 (2 mm以下の比率)(%)	99. 1	100.0	80.6	85.6
рН (-)	6.16	8.23	4.41	9.31
酸化還元電位 (mV) [※]	0.143	0. 197	0. 171	0.15
電気伝導率(mS/cm)	0.027	0.071	0.013	<0.001

第3表 固相の分析結果

※:酸化還元電位は、飽和カロメル電極を用いた測定値を示す。

2.5 液相条件

試験対象とする液相は、廃棄物埋設地の周辺の地盤における地下水の水質 の影響を考慮して「現地地下水」及び雨水等の浸透水がコンクリート廃棄物 との接触によってカルシウム成分が溶脱し,間隙水のpHが変化することで、 収着性に影響を与えることを考慮して「水酸化カルシウム溶液」とした。ま た、津波によって一時的に海水の影響を受けることを確認するため「人工海 水」を対象に加えた。

実験水作成時の液相の成分分析結果を第4表に示す。

		現地地下水	人工海水	水酸化C a
рН (-)		8.01	8.01	12.46
酸化還元電位	(mV) ^{※1}	153	161	-90
電気伝導率(1	nS/cm)	0.4	56.6	7.4
水温 (℃)		24.3	22.5	21.2
	C 1	16	23,000	—
	N a	19	11,000	—
	Са	44	400	390 ^{× 2}
	Мg	5.5	1,200	—
	K	7.7	740	—
イオン濃度 (mg/1)	SO ₄	17	2,700	—
	HCO ₃	170	56	—
	S r	—	14	—
	F	< 0. 01	1.0	—
	B r	_	76	_
	В	—	5.0	—

第4表 液相の成分分析結果

※1:酸化還元電位は、飽和カロメル電極を用いた測定値を示す。

※2:水酸化カルシウム溶液は現地地下水を用いて調製しているため,

C a イオン濃度のみ測定し,その他のイオンは現地地下水のデータで 代表した。

(1) 現地地下水

可能な限り廃棄物埋設地近傍の地下水環境を模擬するために,廃棄物埋 設地内に設置している地下水採水ボーリング孔であるD-4-0から採水を 行った。

採取した地下水は、0.45 μ mフィルタを用いてろ過を行ったものを実験水 として用いた。D-4-0の設置箇所を第2図に示す。

第2図 地下水採水ボーリング孔位置図

廃棄物埋設地から海岸線までの地下水の水質について,測定を行った。 測定項目は電気伝導率,pH,溶存酸素(DO),酸化還元電位及び溶存イ オン(Mg,Ca,Na,K,SO₄,HCO₃,C1)である。

測定結果のヘキサダイアグラムを第3図に,トリリニアダイアグラムを第 4図に示す。内陸側の測定箇所(C-4, D-4, E-4, F-4)では,カル シウムイオン(Ca²⁺)及び重炭酸イオン(HCO₃⁻)が多い重炭酸カル シウム型を示しており,日本の一般的な循環性地下水に分類される。

海岸線付近の測定箇所(H-4)では,塩素イオン(C1⁻)及びナトリ ウムイオン(Na⁺)が多い非重炭酸ナトリウム型で,電気伝導率も高い値 になっており,地下水への海水の影響が確認された。

以上から、内陸側の地下水は循環性地下水であり、同類の水質であるこ

とから,現地地下水については,D-4-0から採水を行った地下水で代表できる。

第3図 地下水水質測定結果(ヘキサダイアグラム)

水質分類

Ι	非重炭酸カルシウム型	温泉水、鉱泉水及び化石塩水等
П	重炭酸カルシウム型	日本の循環性地下水の大半が属する
Ш	重炭酸ナトリウム型	停滞的な環境にある地下水 地表から比較的深い位置にある地下水
IV	非重炭酸ナトリウム型	海水及び海水が混入した地下水、温泉水等
V	中間型	幾つかのタイプの水が混合した河川水,伏 流水及び循環性地下水等

第4図 地下水水質測定結果(トリリニアダイアグラム)

(2) 人工海水

液相は人工海水を実験水として用い,海水中の成分が分配係数に与える 影響を確認した。

人工海水を用いて分配係数を主とする固相は,海岸線に最も近接した位 置で掘削されたH-4-0(第1図参照)から採取した固相とした。人工海 水は,潤滑油-さび止め性能試験方法(JISK 2510)⁽²⁾を参考に,第 5 表の組成のものを調製した。なお,調製した人工海水の性状を確認する ことを目的に,現地地下水と同様の項目について成分分析を行った(第 5 表参照)。

第5表 人工海水の組成

(g/1)

塩類	濃度
塩化ナトリウム (NaCl)	24.54
塩化マグネシウム (MgCl ₂ ・6H ₂ O)	11.10
硫酸ナトリウム(Na2SO4)	4.09
塩化カルシウム (CaCl ₂)	1.16
塩化カリウム (KC1)	0.69
炭酸水素ナトリウム (NaHCO ₃)	0.20
臭化カリウム(KBr)	0.10
ほう酸 (H ₃ BO ₃)	0.03
塩化ストロンチウム (SrCl ₂ ・6H ₂ O)	0.04
ふっ化ナトリウム (N a F)	0.003

(3) 水酸化カルシウム溶液

廃棄物埋設地への埋設対象物にはコンクリート廃棄物が含まれるため, コンクリート廃棄物からの溶出成分であるカルシウム成分が分配係数に与 える影響を確認する必要がある。そのため,コンクリート溶出成分を模擬 した水酸化カルシウム溶液にて試験を実施する。なお、極端なカルシウム 成分の影響を確認するために、試験に用いる溶液は飽和水酸化カルシウム 溶液とした。

水酸化カルシウム溶液は、現地地下水に水酸化カルシウムを加えて 0.023 mol/1としたものを実験水とした。調製した水酸化カルシウム溶液 は炭酸カルシウムの沈殿を避けるために速やかに使用し、保管は行わず、 補充時には必要量を改めて調製した。

なお,水酸化カルシウム溶液を用いる際は,空気中の二酸化炭素との反応による炭酸カルシウムの沈殿を防止するために,調整時やサンプリング時は脱炭酸雰囲気のグローブボックス内で操作を行った。ただし,反応容器を密閉して実施する振とう,撹拌時は大気下で行った。

2.6 放射性水溶液の調整

測定に使用する放射性水溶液は,放射性原液を所定の条件(放射能濃度等) になるように水で希釈・調整して用いた。

2.7 分配係数取得試験の初期濃度

試験対象とする液相である「現地地下水」,「人工海水」,「水酸化カルシウ ム溶液」の核種ごとの初期濃度を第6表に,元素濃度を第7表に示す。

第6表 核種ごとの初期濃度

(D		-	1 \
(Ra	/	m	1)
VDY.	/	ш.	L/

	n 数			初期濃度		
		C o -60	S r -85	C s -137	E u - 152	Am - 241
	1	4.8×10 ²	3. 9×10^{2}	3. 1×10^{2}	5.1×10 ¹	8.6×10 ⁰
現地地下水	2	4.9 × 10 ²	3. 9×10^{2}	3. 1×10^{2}	5. 0×10^{1}	8.6×10 ⁰
	3	4.9 × 10 ²	3. 9×10^{2}	3. 1×10^{2}	5. 0×10^{1}	8.3×10 ⁰
	1	4.7 × 10 ²	3.8×10 ²	3. 2×10^{2}	5.1×10 ¹	8.7×10 ⁰
人工海水	2	5. 0×10^{2}	3.8×10 ²	3. 2×10^{2}	5.1×10 ¹	8.6×10 ⁰
	3	4.8×10 ²	3.8×10 ²	3. 2×10^{2}	5. 2×10^{1}	8.9×10 ⁰
	1	5. 2×10^{1}	3. 5×10^{2}	3. 3×10^{2}	5. 2×10^{1}	8.6×10 ⁰
水酸化Ca	2	5.3 × 10 ¹	3. 3×10^{2}	3. 3×10^{2}	5.3 × 10 ¹	9. 0×10^{0}
	3	5.3 × 10 ¹	3. 1×10^{2}	3. 4×10^{2}	5.1×10 ¹	8.4×10 ⁰

第7表 元素濃度

(mo1/1)

	Со	S r	C s	Εu	Am
現地地下水	2.2×10^{-8}				
人工海水	2. 2×10^{-3}	7.3 × 10 ⁻⁹	7. 0×10^{-8}	9. 0×10^{-1}	2.8×10 ⁻¹⁰
水酸化Ca	2. 4×10^{-9}				

2.8 分配係数取得試験結果

液相ごとの試験結果を第8表~第10表に示す。

なお、測定に当たっては、固相を入れないブランク試験として、同じ試験 条件で振とう・撹拌を行い、容器壁面への放射性核種の吸着について確認を 行った。ブランク試験で放射能濃度の低下が生じた場合は、容器への核種の 吸着及び沈殿が生じた可能性があるため、初期濃度を決定するに当たり、試 験終了後に使用した容器を酸で洗浄するなどして、容器壁面への放射性核種 の吸着を考慮した。

ブランク試験の結果, Co-60 については水酸化カルシウム溶液で, Eu-152, Am-241 についてはほぼ全ての溶液で,液相中の放射能濃度の 低下が確認され,反応容器への吸着等の可能性があった。

Co-60に関しては、反応容器への核種の吸着を確認するため、反応容器 の酸洗浄を実施した。その結果、固液混合試料ではほとんど核種の回収がで きなかったことから、ブランク試験と比較して核種の吸着はほとんど生じて いないと判断し、固液混合試料の反応前後における液相の放射能濃度から分 配係数を算出した。

Eu-152, Am-241 に関しては, 試験における大部分の固液混合試料の 反応後濃度が検出限界以下であり, 沈殿及び容器吸着の確認が困難なため, 固液を分離し固相への収着放射能量の直接測定を行った。その結果, 添加し たEu-152 又はAm-241 のほとんどが固相に収着していることを確認し たため, 沈殿及び容器への吸着の影響は小さいと判断し, 反応終了時におけ る固液混合試料の液相の濃度を検出限界値として分配係数を算出した。

固相		证		分配係数(m ³ /kg)			
ボーリ ング	地 層	相	C o -60	S r -85	C s -137	E u - 152	Am - 241
S - 2		水	4. 0×10^{-2}	3.8×10 ⁻³	2.9×10^{-1}	$1.5 \times 10^{0\%}$	4. 0×10^{-1}
S - 2	d u	酸 化	4.5 $\times 10^{-2}$	4. 0×10^{-3}	1.6×10^{0}	$1.5 \times 10^{0\%}$	4. 0×10^{-1}
S - 2		Са	4. 2×10^{-2}	4. 0×10^{-3}	3.5 $\times 10^{-1}$	$1.5 \times 10^{0\%}$	4. 0×10^{-1}
試験結果	の幾何	可平均	4.2×10^{-2}	3.9×10^{-3}	5. 4×10^{-1}	$1.5 \times 10^{\circ}$	4. 0×10^{-1}
試験結果	の算術	奇平均	4. 2×10^{-2}	3.9×10^{-3}	7.3×10^{-1}	$1.5 \times 10^{\circ}$	4. 0×10^{-1}

第8表 分配係数取得試験結果(液相:水酸化Ca溶液)

※:試験結果における反応後の放射能濃度が、検出限界以下となっていること から、分配係数を検出限界値から算出した。

固相		游		分酉	∂係数(m³/k	(g)	
ボーリ ング	地 層	相	C o -60	S r -85	C s -137	E u -152	Am - 241
S-1			3.6×10^{-1}	8.4×10 ⁻³	6. 1×10^{-1}	$1.4 \times 10^{0\%}$	4.0×10^{-1}
S-1			4.6×10^{-1}	7.7 $\times 10^{-3}$	6. 1×10^{-1}	$1.4 \times 10^{0\%}$	$4.0 \times 10^{-1\%}$
S-1			4. 1×10^{-1}	8.1×10 ⁻³	6.7×10 ⁻¹	$1.4 \times 10^{0\%}$	4. 0×10^{-1}
S-2			3. 1×10^{-1}	7.8×10^{-3}	6.6×10 ⁻¹	3. 1×10^{-1}	7.6×10^{-2}
S-2		TH	2.9×10 ⁻¹	7.9×10^{-3}	6.9×10^{-1}	3.4×10^{-1}	6.7 $\times 10^{-2}$
S-2	4	現地	2.6×10 ⁻¹	7.8×10^{-3}	6.7×10 ⁻¹	3. 1×10^{-1}	7.0×10^{-2}
F-4-0	au	型下	2.6×10 ⁻¹	8.4×10 ⁻³	4. 4×10^{-1}	$1.4 \times 10^{0\%}$	4. 0×10^{-1}
F-4-0		水	3.9×10^{-1}	8.5×10 ⁻³	4.3 $\times 10^{-1}$	$1.4 \times 10^{0\%}$	4. 0×10^{-1}
F-4-0			4. 5×10^{-1}	8.4×10 ⁻³	3. 7×10^{-1}	$1.4 \times 10^{0\%}$	4.0×10^{-1}
H-4-0			6.6×10 ⁻¹	8.3×10 ⁻³	4. 4×10^{-1}	$1.4 \times 10^{0\%}$	4. 0×10^{-1}
H-4-0			5. 0×10^{-1}	8.2×10 ⁻³	4. 4×10^{-1}	$1.4 \times 10^{0\%}$	4. 0×10^{-1}
H-4-0			4.9×10^{-1}	8.3 $\times 10^{-3}$	4.5×10 ⁻¹	$1.4 \times 10^{0\%}$	4. 0×10^{-1}
試験結果の幾何平均		3. 9×10^{-1}	8. 1×10^{-3}	5. 3×10^{-1}	9. 7×10^{-1}	2. 6×10^{-1}	
試験結果の	算術平	沟	4. 0×10^{-1}	8. 1×10^{-3}	5. 4×10^{-1}	1. $1 \times 10^{\circ}$	3.2×10^{-1}

第9表 分配係数取得試験結果(液相:現地地下水)

※:試験結果における反応後の放射能濃度が、検出限界以下となっていること

から、分配係数を検出限界値から算出した。

固相			分配係数 (m ³ /kg)				
ボーリ ング	地 層	液相	C o -60	S r -85	C s -137	E u - 152	Am - 241
F-4-0		Y	1.9×10^{-2}	3.8×10^{-4}	1.0×10^{-2}	$1.4 \times 10^{0\%}$	4. 0×10^{-1}
F-4-0	d u	江海	2. 0×10^{-2}	4. 1×10^{-4}	1.0×10^{-2}	1.4×10^{0}	4. 0×10^{-1}
F-4-0		水	2. 1×10^{-2}	3.9×10^{-4}	9.5 $\times 10^{-3}$	1.3×10^{0}	4. 0×10^{-1}
試験結果の)幾何平	钩	2. 0×10^{-2}	3.9×10^{-4}	1.0×10^{-2}	1.3×10^{0}	4.0×10^{-1}
試験結果の	算術平	均	2.0×10^{-2}	3.9×10^{-4}	1.0×10^{-2}	1.4×10^{0}	4.0×10^{-1}

第10表 分配係数取得試験結果(液相:人工海水)

※:試験結果における反応後の放射能濃度が、検出限界以下となっていること から、分配係数を検出限界値から算出した。

- 3 収着分配係数設定の考え方
- 3.1 媒体ごとの試験結果採用の考え方

媒体ごとの分配係数の設定に関する考え方は以下のとおり。

(1) 埋設地内土砂

埋設地内土砂は,鉄箱内充填砂,廃棄物間の充填砂,廃棄物と矢板間の 充填砂,中間覆土が対象となる。埋設地内土砂の収着分配係数は,現地地 下水,水酸化カルシウム溶液を使用した試験結果から設定した。

廃棄物にはコンクリート廃棄物が含まれるため,一部の領域は現地地下 水よりもpHが高くなる可能性があるため,埋設地内土砂の分配係数の設 定に当たっては,水酸化カルシウム溶液を使用した試験結果についても考 慮して設定した。

(2) 带水層土壤

帯水層土壌の収着分配係数は、現地地下水を使用した試験結果から設定した。

また、津波によって一時的に海水の影響を受ける可能性も考えられるた

め,最も厳しい自然事象シナリオの設定においては,人工海水を利用した 試験結果を用いる。

なお,廃棄物にはコンクリート廃棄物が含まれるが,浸透水が帯水層に 到達すれば,上流からの地下水によって十分に希釈されるため,pHの変 動の可能性は極めて小さい。そのため,水酸化カルシウム溶液を使用した 試験結果については考慮しない。

(3) 通気層土壤

通気層土壌の収着分配係数は、現地地下水、水酸化カルシウム溶液を使用した試験結果から設定した。

廃棄物にはコンクリート廃棄物が含まれるため,一部の領域は現地地下 水よりもpHが高くなる可能性があるため,水酸化カルシウム溶液を使用 した試験結果についても考慮して設定した。

また,津波によって一時的に海水の影響を受ける可能性も考えられるた め,最も厳しい自然事象シナリオの設定においては,人工海水を利用した 試験結果を用いる。

3. 2 分配係数設定方法

Co, Sr, Cs, Eu, 2α (Am) については, 試験結果を液相ごと に算術平均又は幾何平均し, さらにこれらの値を保守的に有効数字 2 桁で切 り下げた値を設定した。 2α については, 核種選定において相対重要度が 1% を超える核種はないため, 最も相対重要度が大きいAm-241の試験結果を 用いて設定している。

埋設地内土砂は現地地下水及び水酸化カルシウム溶液の試験結果から,最 も小さい値を1桁目が1か3になるように小さい方に丸めた値を設定した。 帯水層土壌は、現地地下水による試験結果から、値を1桁目が1か3になる ように小さい方に丸めた値を設定した。通気層土壌は,現地地下水及び水酸 化カルシウム溶液の試験結果から,最も小さい値を1桁目が1か3になるよ うに小さい方に丸めた値を設定した。

試験結果を液相ごとに幾何平均又は算術平均した結果を第 11 表のとおり 整理した。値を小さく設定したほうが保守的となるため,幾何平均の値を用 いる(算術平均より幾何平均の方が小さくなるため)。

第11表 液相の平均値

 (m^3 / kg)

液相多	条件	С о —60	S r -85	C s -137	E u —152	Am-241
水酸化C a 溶液	幾何平均	4. 2×10^{-2}	3.9×10 ⁻³	5. 4×10^{-1}	1.5×10^{0}	4. 0×10^{-1}
	算術平均	4. 2×10^{-2}	3.9×10^{-3}	7. 3×10^{-1}	1.5×10^{0}	4. 0×10^{-1}
現地地下水	幾何平均	3. 9×10^{-1}	8. 1×10^{-3}	5. 3×10^{-1}	9.7×10 ⁻¹	2.6×10 ⁻¹
	算術平均	4. 0×10^{-1}	8. 1×10^{-3}	5. 4×10^{-1}	1.1×10^{0}	3. 2×10^{-1}
人工海水	幾何平均	2. 0×10^{-2}	3.9×10 ⁻⁴	1.0×10^{-2}	1.3×10^{0}	4. 0×10^{-1}
	算術平均	2. 0×10^{-2}	3.9×10^{-4}	1.0×10^{-2}	1.4×10^{0}	4. 0×10^{-1}

埋設地内土砂は,第12表のとおり,水酸化カルシウム溶液及び現地地下水の試験結果のうち,最も小さい値を設定した。

第12表 埋設地内土砂の試験結果の採用値

1 9	2 /1	>
(m `	′ / k	(g)

液相条件	С о —60	S r -85	C s -137	E u -152	Am-241
水酸化C a 溶液	4. 2×10^{-2}	3. 9×10^{-3}	5. 4×10^{-1}	1.5×10^{0}	4. 0×10^{-1}
現地地下水	3. 9×10^{-1}	8.1×10 ⁻³	5. 3×10^{-1}	9. 7×10^{-1}	2. 6×10^{-1}
採用値	4. 2×10^{-2}	3. 9×10^{-3}	5. 3×10^{-1}	9. 7×10^{-1}	2. 6×10^{-1}

最も可能性が高い自然事象における帯水層土壌については,現地地下水の 試験結果の幾何平均値を設定した。最も厳しい自然事象シナリオの設定にお いては,第13表のとおり人工海水の試験結果を加えて設定した。

第13表 帯水層土壌の試験結果の採用値(最も厳しい自然事象)

(m³∕kg)

液相条件	C o -60	S r -85	C s -137	E u -152	Am-241
現地地下水	3. 9×10^{-1}	8. 1×10^{-3}	5. 3×10^{-1}	9. 7×10^{-1}	2. 6×10^{-1}
人工海水	2. 0×10^{-2}	3. 9×10^{-4}	1.0×10^{-2}	1.3×10^{0}	4. 0×10^{-1}
採用値	2. 0×10^{-2}	3. 9×10^{-4}	1.0×10^{-2}	9. 7×10^{-1}	2. 6×10^{-1}

通気層土壌は,第14表のとおり,現地地下水及び水酸化カルシウム溶液の 試験結果のうち,最も小さい値を設定した。最も厳しい自然事象シナリオの 設定においては,第15表のとおり人工海水の試験結果を加えて設定した。

第14表 通気層土壌の試験結果の採用値(最も可能性が高い自然事象)

 (m^3 / kg)

液相条件	С о —60	S r -85	C s -137	E u -152	Am-241
水酸化C a 溶液	4. 2×10^{-2}	3.9×10 ⁻³	5. 4×10^{-1}	1.5×10^{0}	4. 0×10^{-1}
現地地下水	3.9×10 ⁻¹	8. 1×10^{-3}	5. 3×10^{-1}	9.7×10 ⁻¹	2. 6×10^{-1}
採用値	4. 2×10^{-2}	3.9×10^{-3}	5. 3×10^{-1}	9.7×10 ⁻¹	2. 6×10^{-1}

第15表 通気層土壌の試験結果の採用値(最も厳しい自然事象)

 (m^3/kg)

液相条件	C o -60	S r -85	C s -137	E u -152	Am-241
水酸化C a 溶液	4. 2×10^{-2}	3. 9×10^{-3}	5. 4×10^{-1}	1.5×10^{0}	4. 0×10^{-1}
現地地下水	3.9×10^{-1}	8. 1×10^{-3}	5. 3×10^{-1}	9.7×10 ⁻¹	2. 6×10^{-1}
人工海水	2. 0×10^{-2}	3.9×10 ⁻⁴	1.0×10^{-2}	1.3×10^{0}	4. 0×10^{-1}
採用値	2. 0×10^{-2}	3.9×10^{-4}	1.0×10^{-2}	9.7×10 ⁻¹	2.6×10 ⁻¹

試験結果の採用値は最も可能性が高い自然事象及び最も厳しい自然事象で, 第16表及び第17表のとおりとなる。最も可能性が高い自然事象における評 価に使用する分配係数は、1桁目が1か3になるように小さい方に丸めた値 として、第18表及び第19表のとおり設定した。最も厳しい自然事象におけ る評価に使用する分配係数は、試験結果の採用値を10分の1倍し、1桁目が 1か3になるように小さい方に丸めた値として、第19表のとおり設定した。

第16表 各媒体における分配係数の試験結果の採用値

(最も可能性が高い自然事象)

(m³∕kg)

媒体	С о —60	S r -85	C s -137	E u -152	Am-241
埋設地内土砂	4. 2×10^{-2}	3.9×10 ⁻³	5. 3×10^{-1}	9. 7×10^{-1}	2. 6×10^{-1}
帯水層土壌	3.9×10^{-1}	8.1×10 ⁻³	5. 3×10^{-1}	9. 7×10^{-1}	2.6×10 ⁻¹
通気層土壌	4. 2×10^{-2}	3.9×10^{-3}	5. 3×10^{-1}	9.7×10 ⁻¹	2. 6×10^{-1}

					(m³⁄kg)
媒体	C o -60	S r —85	C s —137	E u —152	Am-241
埋設地内土砂	3. 0×10^{-3}	3.0×10^{-4}	3. 0×10^{-2}	3.0×10^{-2}	1.0×10^{-2}
帯水層土壌	1.0×10^{-3}	3. 0×10^{-5}	1.0×10^{-3}	3.0×10^{-2}	1.0×10^{-2}
通気層土壌	1.0×10^{-3}	3.0×10^{-5}	1.0×10^{-3}	3.0×10^{-2}	1.0×10^{-2}

 $(m^3 / k\sigma)$

第19表 評価に使用する収着分配係数設定値(最も厳しい自然事象)

媒体 C o -60 Sr ---85 C s ---137 E u - 152Am-241 埋設地内土砂 3.0×10^{-2} 1.0×10^{-1} 3.0×10^{-3} 3.0×10^{-1} 3.0×10^{-1} 帯水層土壌 3.0×10^{-1} 3.0×10^{-3} 3.0×10^{-1} 3.0×10^{-1} 1.0×10^{-1} 通気層土壤 3.0×10^{-2} 3.0×10^{-3} 3.0×10^{-1} 3.0×10^{-1} 1.0×10^{-1}

第18表 評価に使用する収着分配係数設定値(最も可能性が高い自然事象)

(m³∕kg)	
---------	--

媒体	С о —60	S r -85	C s -137	E u 152	Am-241
埋設地内土砂	4. 2×10^{-2}	3. 9×10^{-3}	5. 3×10^{-1}	9. 7×10^{-1}	2. 6×10^{-1}
帯水層土壌	2. 0×10^{-2}	3. 9×10^{-4}	1.0×10^{-2}	9. 7×10^{-1}	2. 6×10^{-1}
通気層土壌	2. 0×10^{-2}	3.9×10^{-4}	1.0×10^{-2}	9. 7×10^{-1}	2. 6×10^{-1}

(最も厳しい自然事象)

第17表 各媒体における分配係数の試験結果の採用値

(m³∕kg)

3.3 分配係数取得試験を実施していない評価対象核種の設定

安全評価の評価対象核種で,分配係数取得試験の対象としていない核種は, H-3, C-14, C1-36, Ca-41となる。これらの核種については,以下 のとおり設定する。

(1) H - 3

文献値としては、IAEA-TECDOC-401⁽³⁾では分配係数は 0, IAEA-TECDOC-1616⁽⁴⁾では 1.0×10^{-4} (m³/kg) と記載され ている。H-3 は、水を構成する主要元素であり、一般的に吸着は期待で きないと考えられるため、収着分配係数を 0 と設定する。

(2) C - 14

C-14は、有機形態、無機形態などの化学形態によって媒体への吸着能 は大きく変化する。廃棄物からの放出時のC-14の化学形態については未 確認であることなど、不確実な要素があるため、保守的に収着分配係数を 0と設定する。

(3) C 1 -36

C1-36は、地下水等においては単独で陰イオンであることが多く、吸着性は低いことが知られている。日本原子力研究所による分配係数試験 (JAERI-M 93-113)⁽⁵⁾では、固相が砂の条件で分配係数が0と記載されている。したがって、収着分配係数を0と設定する。

(4) C a -41

C a -41 は,化学的に類似(アルカリ土類金属)のS r -85 で取得した 分配係数を使用する。

- 4 収着分配係数設定値
- 4.1 最も可能性が高い自然事象シナリオの設定値

前項までの整理を踏まえて安全評価における最も可能性が高い自然事象シ ナリオに使用する収着分配係数を第20表のとおり設定する。

第20表 評価に使用する収着分配係数(最も可能性が高い自然事象)

 (m^3/kg)

放射性核種	埋設地内土砂	帯水層土壌	通気層土壤
H-3	0	0	0
С - 14	0	0	0
C 1 - 36	0	0	0
C a -41	3.0×10^{-3}	3.0×10^{-3}	3.0×10^{-3}
С о - 60	3.0×10^{-2}	3.0×10^{-1}	3.0×10^{-2}
S r -90	3.0×10^{-3}	3.0×10^{-3}	3.0×10^{-3}
C s -137	3.0×10^{-1}	3.0×10^{-1}	3.0×10^{-1}
E u -152	3.0×10^{-1}	3.0×10^{-1}	3.0×10^{-1}
E u -154	3.0×10^{-1}	3.0×10^{-1}	3.0×10^{-1}
全 α	1.0×10^{-1}	1.0×10^{-1}	1.0×10^{-1}

4.2 最も厳しい自然事象シナリオの設定値

前項までの整理を踏まえて安全評価における最も厳しい自然事象シナリオ に使用する収着分配係数は,第21表のとおり設定する。最も厳しい自然事象 シナリオの収着分配係数の設定については,分配係数取得試験の結果から設 定する放射性核種は,統計的なばらつきを考慮して,第17表の各媒体におけ る分配係数の試験結果の採用値を10分の1倍し,1桁目が1か3になるよう に小さい方に丸めた値としている。

第21表 評価に使用する収着分配係数(最も厳しい自然事象)

	2 /	′ı ∖
(m '	' /	k o l
(m	/	118/

放射性核種	埋設地内土砂	帯水層土壌	通気層土壌
H-3	0	0	0
C-14	0	0	0
C 1 - 36	0	0	0
C a -41	3. 0×10^{-4}	3.0×10^{-5}	3.0×10^{-5}
C o -60	3. 0×10^{-3}	1.0×10^{-3}	1.0×10^{-3}
S r -90	3. 0×10^{-4}	3.0×10^{-5}	3.0×10^{-5}
C s -137	3. 0×10^{-2}	1.0×10^{-3}	1.0×10^{-3}
E u -152	3.0×10^{-2}	3.0×10^{-2}	3.0×10^{-2}
E u -154	3. 0×10^{-2}	3.0×10^{-2}	3.0×10^{-2}
全 α	1.0×10^{-2}	1.0×10^{-2}	1.0×10^{-2}

統計的なばらつきは、分配係数取得試験の結果から95%信頼区間の下限値 を有効数字2桁で四捨五入して求め、最も可能性が高い自然事象シナリオに おける設定値の10分の1倍と比較することで、設定の妥当性を確認した。 95%信頼区間の下限値を求める際の平均と標準偏差は、幾何平均を四捨五入 した値と幾何標準偏差を用いた。分配係数取得試験における95%信頼区間の 下限値を第22表に、最も可能性が高い自然事象シナリオにおける採用値の 10分の1倍と95%信頼区間の下限値を第23表に示す。最も厳しい自然事象 シナリオの設定と試験結果の比較を第5図、第6図、第7図に示す。いずれ の最も厳しい自然事象シナリオの設定値も、95%信頼区間の下限値及び試験 結果を下回る設定値であり、統計的なばらつきを考慮しても、保守的な設定 である。

第22表 分配係数取得試験の95%信頼区間の下限値

 (m^3 / kg)

項目		分配係数					
		C o -60	S r -85	C s -137	E u -152	A m-241	
水酸化 Ca 溶液	試験結果の幾 何平均	4. 23×10^{-2}	3.95×10^{-3}	5. 38×10^{-1}	$1.51 \times 10^{\circ}$	4.00×10 ⁻¹	
	標準偏差 (幾何)	1.05×10^{0}	$1.03 \times 10^{\circ}$	2. $12 \times 10^{\circ}$	$1.00 \times 10^{\circ}$	1.00×10^{0}	
	95%信頼区間 の下限値	3.85 $\times 10^{-2}$	3.75 $\times 10^{-3}$	1.19×10^{-1}	1.51×10^{0}	4.00×10 ⁻¹	
現地地下水	試験結果の幾 何平均	3.88 $\times 10^{-1}$	8. 13×10^{-3}	5. 27×10^{-1}	9.67 $\times 10^{-1}$	2.60×10 ⁻¹	
	標準偏差 (幾何)	1.32×10^{0}	1.03×10^{0}	1.24×10^{0}	1.91×10^{0}	2. $12 \times 10^{\circ}$	
	95%信頼区間 の下限値	2. 23×10^{-1}	7.62 $\times 10^{-3}$	3. 41×10^{-1}	2.66 $\times 10^{-1}$	5. 77 $\times 10^{-2}$	
人工海水	試験結果の幾 何平均	1.98×10^{-2}	3.92×10^{-4}	1.01×10^{-2}	1.35×10^{0}	4. 04×10^{-1}	
	標準偏差 (幾何)	$1.04 \times 10^{\circ}$	1.03×10^{0}	$1.04 \times 10^{\circ}$	$1.04 \times 10^{\circ}$	$1.00 \times 10^{\circ}$	
	95%信頼区間 の下限値	1.83×10^{-2}	3. 70 \times 10 ⁻⁴	9.26 $\times 10^{-3}$	1.24×10^{0}	4. 04×10^{-1}	

第23表 最も厳しい自然事象の設定値と95%信頼区間の下限値

(m³∕kg)

項日	分配係数					
		C o -60	S r -85	C s -137	E u -152	Am-241
埋内 帯土 通・ 一 一 一 一 一 一 一 通・ 一 一 一 一 一 一 一 一 通・ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	最も厳しい 自然事象の 設定値	3.0×10^{-3}	3.0×10^{-4}	3.0×10^{-2}	3.0×10^{-2}	1.0×10^{-2}
	95%信頼区 間の下限値	3.85 \times 10 ⁻²	3.75 \times 10 ⁻³	1.19×10^{-1}	1.51×10^{0}	4. 00×10^{-1}
帯水層 土壌	最も厳しい 自然事象の 設定値	1.0×10^{-3}	3.0×10^{-5}	1.0×10^{-3}	3.0×10^{-2}	1.0×10^{-2}
	95%信頼区 間の下限値	1.83×10^{-2}	3. 70×10 ⁻⁴	9. 26×10^{-3}	2. 66×10^{-2}	5. 77 $\times 10^{-2}$
通気層 土壤	最も厳しい 自然事象の 設定値	1.0×10^{-3}	3.0×10^{-5}	1.0×10^{-3}	3. 0×10^{-2}	1.0×10^{-2}
	95%信頼区 間の下限値	1.83×10^{-2}	3. 70 \times 10 ⁻⁴	9. 26×10^{-3}	2. 66×10^{-2}	5. 77 $\times 10^{-2}$

第5図 埋設地内土砂の最も厳しい自然事象シナリオの設定と試験結果の比較

第6図 帯水層土壌の最も厳しい自然事象シナリオの設定と試験結果の比較

第7図 通気層土壌の最も厳しい自然事象シナリオの設定と試験結果の比較

5 参考文献

- (1) 一般社団法人 日本原子力学会(2002):日本原子力学会標準 収着分配
 係数の測定方法-浅地中処分のバリア材を対象としたバッチ法の基本手順:2002
- (2) 潤滑油-さび止め性能試験方法(JISK 2510) (1998)
- (3) International Atomic Energy Agency (1987): Exemption of Radiation Sources and Practices from Regulatory Control-INTERIM REPORT, I A E A - T E C D O C - 401
- (4) International Atomic Energy Agency(2009): Quantification of Radionuclide Transfer in Terrestrial and Freshwater Enviornments for Radiological Assessments, IAEA-TECDOC-1616
- (5)加藤正平・梁瀬芳晃(1993):海岸土壌及びコンクリート粉に対するコン クリート廃棄物中放射性核種の分配係数, JAERI-M 93-113

以上

添付資料2

埋設する廃棄物の種類

及び放射能量の設定

1	はじめに	1
2	廃棄物の種類及び数量	1
	 2.1 廃棄物の種類 	1
	 2 廃棄物の数量 	2
3	最大放射能濃度及び総放射能量の設定フロー	2
4	廃棄物に含まれていると推定される放射性物質の抽出(150 核種)	5
5	主要な放射性物質の選定に用いる放射能量の設定	14
	5.1 廃棄物の放射能濃度及び放射能量の設定の考え方	44
	5.2 放射化放射性物質の放射能濃度の設定	46
	5.3 汚染放射性物質の放射能濃度の設定	51
	5. 4 放射性物質の種類ごとの放射能濃度の設定	55
	5.5 主要な放射性物質の選定に用いる放射能量	73
6	主要な放射性物質の選定	78
	6.1 主要な放射性物質の選定対象 '	78
	 6.2 主要な放射性物質の選定 	34
7	主要な放射性物質ごとの総放射能量の設定	93
8	主要な放射性物質ごとの最大放射能濃度	98
9	埋設する放射性廃棄物に含まれるウランの放射能濃度	98

目 次

参考資料1:C1-36放射能濃度の設定方法見直しについて

参考資料 2:主要な放射性物質の機器ごとの放射能量の設定までの計算過程に

ついて

1 はじめに

「核燃料物質又は核燃料物質によつて汚染された物の第二種廃棄物埋設の 事業に関する規則」第二条第1項第一号では、申請書に記載する事項の一つ として、「第二種廃棄物埋設を行う放射性廃棄物の種類及び数量、当該放射性 廃棄物に含まれる放射性物質の種類ごとの最大放射能濃度、総放射能量及び 区画別放射能量(廃棄物埋設地を物理的に区画する場合において区画ごとの 放射性物質に含まれる放射能量をいう。以下同じ。)並びに当該放射性廃棄物 が有する廃棄物埋設地の外への放射性物質の漏出を防止し、又は低減する性 能(廃棄物埋設地の外への放射性物質の漏出に関する評価を行うために必要 な場合に限る。)を記載すること。」と規定されている。また、「第二種廃棄物 埋設施設の位置、構造及び設備の基準に関する規則」第十三条第1項第三号 及び第四号、「第二種廃棄物埋設施設の位置、構造及び設備の基準に関する規 則の解釈」第13条への適合性を確認するための評価パラメータとして、総 放射能量を設定する必要がある。

本資料では、埋設対象とする廃棄物(以下「廃棄物」という。)の種類及び 数量,放射性物質の種類ごとの最大放射能濃度及び総放射能量について説明 する。

2 廃棄物の種類及び数量

2.1 廃棄物の種類

廃棄物は,東海発電所から発生する固体状の廃棄物であって,中性子線の 作用によって放射化されたもの(以下「放射化放射性物質」という。),原子 炉冷却材等で汚染されたもの(以下「汚染放射性物質」という。)又はその両 方を含むものである。東海発電所における汚染移行経路としては,気体が循 環する原子炉冷却系(以下「ガス系」という。)と廃液が循環する廃液系があ

補5添2-1

る。

廃棄物の種類は、これらの汚染形態に応じて分類された金属類及びコンク リート類がある。

2.2 廃棄物の数量

廃棄物の数量は全体で最大16,000 t であり、金属類が約6,100 t、コンク リート類が約9,900 t である。

(1) 金属類

金属類は、機器や配管等の解体撤去等に伴って発生する廃棄物であり、 鉄箱に収納して埋設する。このうち、放射化放射性物質は約600 t であり、 汚染放射性物質は約5,500 t である。

(2) コンクリート類

コンクリート類は、生体遮へい体等の建屋の解体に伴って発生する約 9,400 tの鉄筋コンクリートのブロック(以下「コンクリートブロック」 という。)と、コンクリートのはつり等に伴い発生する約500 tのコンクリ ートの破片等(以下「コンクリートガラ」という。)がある。

コンクリートブロックは全て放射化放射性物質であり,形状に応じた適切な大きさに分割し,プラスチックシートにこん包して埋設する。コンク リートガラは,ボーリングコアなどの放射化放射性物質が約100 t,汚染 放射性物質は約400 t であり,鉄箱に収納して埋設する。

3 最大放射能濃度及び総放射能量の設定フロー

主要な放射性物質の種類ごとの最大放射能濃度及び総放射能量の設定フローを第1図に示す。

主要な放射性物質の種類ごとの最大放射能濃度及び総放射能量は、設定フ

補5添2-2

ローに示すとおり,放射性物質の放射能量を設定し,主要な放射性物質を選 定したうえで,選定された主要な放射性物質の最大放射能濃度及び総放射能 量を再度設定する。

第1図 廃棄物の主要な放射性物質の最大放射能濃度

及び総放射能量の設定フロー

放射性物質の種類は,原子炉内外で生成する半減期30日以上のものから, 生成する量が極めて少ないと考えられるものを除いた150種類を考慮する。 設定フローにおける「放射性物質の放射能量の設定」は,主要な放射性物質 の選定に用いる放射能量となる。また,「主要な放射性物質の最大放射能濃度 及び総放射能量の設定」は,申請書に記載する放射能濃度及び放射能量を決 定するものである。

放射性物質について,公衆の受ける線量への寄与の大きい主要な放射性物 質の選定を行うため,放射能量の設定を行う。主要な放射性物質を選定する ための核種選定フローを第2図に示す。

選定された主要な放射性物質を対象に,廃棄物に含まれる放射性物質の種

第2図 主要な放射性物質を選定する核種選定フロー

補5添2-4
4 廃棄物に含まれていると推定される放射性物質の抽出(150 核種)

廃棄物に含まれていると推定される放射性物質の抽出を行う際には、その出 発点として原子炉内で生成する半減期 30 日以上の放射性物質を「ORIGE N-2」附属ライブラリ(DECAY.LIB)より抽出する。「ORIGEN-2」コー ドは、核燃料サイクルの施設設計・評価、廃止措置の計画にも広く利用されて いるコードであり、使用済燃料及びその再処理により生成される放射性廃棄物 の評価に関して十分な精度をもつため、「ORIGEN-2」コードの附属ライ ブラリにより半減期30日以上の核種を抽出する。また、「JAEA-Data/Code 2012-014 Table of Nuclear Data (JENDL/TND-2012)」の半減期についても 確認し、半減期30日以上の核種を抽出する。「ORIGEN-2」コードの附属 ライブラリにより半減期30日以上の核種は177核種となった。また、「ORI GEN-2」コードの附属ライブラリによる半減期では抽出されなかったもの の,「JAEA-Data/Code 2012-014 Table of Nuclear Data(JENDL/TND-2012)」の半減期 30 日以上で抽出された核種が 17 核種であった。よって、抽出 された核種は194核種となった。抽出結果を第1表に示す。この194核種の中 には、生成するとしてもその量が少ないもの等が含まれており、生成の可能性 等の確認を行うことで、考慮する必要のない核種として44核種を除外する。44 核種の確認結果を第2表に示す。以上により,廃棄物に含まれていると推定さ れる放射性物質を150核種とし、その整理結果を第3表に示す。

第1表 「ORIGEN-2」附属ライブラリより抽出した核種

放射性物質 の種類	ORI	G E N - 2	2	J A E A−Data∕Code		
	\/、 \/+ ++=	単位	半減期	<u> </u>	単位	半減期
	十八列	₩ 2	>30 日	十八月	₩ 3	>30 日
H - 1	0	安定	_	0	安定	—
H-2	0	安定	—	0	安定	—
H-3	3. 90×10^{8}	S	0	1.23×10^{1}	Y	0
H - 4	1.00×10^{-3}	S	—	—	_	_

補5添2-5

长船桥桥	OR I	G E N - 2	2	JAEA	−Data⁄(Code
成別性物員の種類	不学品	単位	半減期	不凭电	単位	半減期
の理知	十個刑	₩ 2	>30 日	十八月	※ 3	>30 日
Не—3	0	安定	_	0	安定	—
Не-4	0	安定	_	0	安定	—
H e -6	8.08×10 ⁻¹	S	—	8. 07×10^{2}	MS	—
L i -6	0	安定	_	0	安定	_
L i -7	0	安定	_	0	安定	_
L i -8	8. 42×10^{-1}	S	_	8. 40×10^{2}	MS	_
Ве-8	2.00×10 ⁻⁶	S	_	6.70×10 ⁻¹⁷	S	_
Ве-9	0	安定	_	0	安定	_
Ве-10	5.05×10 ¹³	S	0	1. 51×10^{6}	Y	0
Ве—11	1.36×10^{1}	S	_	1. 38×10^{1}	S	_
В-10	0	安定	_	0	安定	—
В-11	0	安定	_	0	安定	—
B-12	2. 03×10^{-2}	S	_	2. 02×10^{1}	MS	_
C-12	0	安定	_	0	安定	_
С-13	0	安定	_	0	安定	_
C-14	1.81×10 ¹¹	S	0	5. 70×10^{3}	Y	0
C-15	2. 45×10^{0}	s	_	2. 45×10^{0}	S	_
N-13	5.98×10 ²	S	_	9.97 \times 10 ⁰	М	_
N-14	0	安定	_	0	安定	_
N-15	0	安定	_	0	安定	_
N-16	7. 12×10^{0}	S	_	7. 13×10^{0}	S	_
O-16	0	安定	_	0	安定	—
O-17	0	安定	_	0	安定	_
O-18	0	安定	_	0	安定	_
O-19	2.90 \times 10 ¹	S	_	2. 69×10^{1}	S	_
F-19	0	安定	_	0	安定	—
F-20	1.14×10^{1}	S	_	1. 12×10^{1}	S	—
N e -20	0	安定	_	0	安定	_
N e -21	0	安定	_	0	安定	—
N e -22	0	安定	_	0	安定	_
N e -23	3. 72×10^{1}	S	_	3. 72×10^{1}	S	_
N a -22	8.21×10 ⁷	S	0	2. 60×10^{0}	Y	0
N a -23	0	安定	_	0	安定	_
N a -24	5. 40×10 ⁴	S	_	1. 50 \times 10 ¹	Н	_
N a -24m	1.99×10^{-2}	S	_	2. 02×10^{1}	MS	_
N a -25	5.96×10 ¹	S	_	5. 91×10 ¹	S	_
Mg - 24	0	安定	_	0	安定	_
Mg - 25	0	安定	_	0	安定	_
Mg - 26	0	安定	_	0	安定	_
Mg -27	5.68×10 ²	S	_	9. 46×10^{0}	М	-
M g -28	7.53 \times 10 ⁴	S	_	2. 09×10^{1}	Н	_
A 1 - 27	0	安定	_	0	安定	_

補5添2-6

长时外历	OR I	G E N - 2	2	J A E A−Data∕Code		
成別性物員の種類	元 25 年 日	単位	半減期	水产相	単位	半減期
の理知	十個别	₩ 2	>30 日	十個别	₩ 3	>30 日
A 1 - 28	$1.34 imes 10^{2}$	S	_	2. 24×10^{0}	М	_
A 1 - 29	3. 91 \times 10 2	S	—	6.56 $\times 10^{0}$	М	—
A 1 - 30	3. 69×10^{0}	S	_	3. 60×10^{0}	S	_
S i -28	0	安定	_	0	安定	_
S i -29	0	安定	_	0	安定	—
S i -30	0	安定	_	0	安定	_
S i -31	9. 44×10 ³	S	_	1. 57 \times 10 2	М	_
S i -32	6. 50×10^{2}	У	0	1. 53 \times 10 2	Y	0
P-31	0	安定	_	0	安定	_
P-32	1. 43×10^{1}	d	_	1. 43×10^{1}	D	_
P-33	2. 50 \times 10 ¹	d	_	2. 53×10^{1}	D	_
P - 34	1.24×10^{1}	S	_	1.24×10^{1}	S	—
S-32	0	安定	_	0	安定	_
S - 33	0	安定	_	0	安定	_
S - 34	0	安定	_	0	安定	—
S - 35	8.80 \times 10 ¹	d	0	8.75×10 ¹	D	0
S - 36	0	安定	_	0	安定	_
S - 37	5.06 \times 10 ⁰	m	_	5. 05×10^{0}	М	—
S - 250	0	安定	_	—	—	—
C 1 - 35	0	安定	_	0	安定	_
C 1 - 36	9.50×10 ¹²	s	0	3. 01×10^{5}	Y	0
C 1 - 37	0	安定	_	0	安定	_
C 1 - 38	2. 23×10^{3}	S	_	3. 72×10^{1}	М	—
C 1 - 38 m	7.16×10 ⁻¹	S	_	7. 15×10^{2}	MS	_
A r -36	0	安定	—	0	安定	—
A r -37	3. 03×10^{6}	S	0	3. 50×10^{1}	D	0
A r -38	0	安定	—	0	安定	—
A r -39	2. 69×10^{2}	У	0	2. 69×10^{2}	Y	0
A r -40	0	安定	—	0	安定	—
A r -41	6.58 \times 10 ³	S	_	1. 10×10^{2}	М	—
A r -42	3. 30×10^{1}	у	0	3. 29×10^{1}	Y	0
K-39	0	安定	—	0	安定	—
K-40	4.04 \times 10 ¹⁶	s	0	1. 28×10^{9}	Y	0
K-41	0	安定	_	0	安定	—
K-42	4. 45×10^{4}	s		1.24×10^{1}	Н	_
K-43	8. 14×10^{4}	s	_	2. 23×10^{1}	Н	—
K-44	2. 20×10^{1}	m	_	2. 21×10^{1}	М	—
C a -40	0	安定	_	0	安定	—
C a -41	8.10×10 ¹	ky	0	1.02 \times 10 ⁵	Y	0
C a -42	0	安定	_	0	安定	
C a -43	0	安定	—	0	安定	—
C a -44	0	安定	_	0	安定	

補5添2-7

长船桥桥	OR I	G E N - 2	2	JAEA-Data/Code		
加利性初員の種類	水产相	単位	半減期	卡尔里	単位	半減期
の理知	十個刑	₩ 2	>30 日	十個别	₩ 3	>30 日
C a -45	1. 41×10^{7}	S	0	1.63×10^{2}	D	0
C a -46	0	安定	_	0	安定	—
C a -47	3. 92×10^{5}	S	—	4. 54×10^{0}	D	—
C a -48	0	安定	\odot^{*1}	6.00×10 ^{1 8}	Y	0
C a -49	8.80×10 ⁰	m	_	8. 72×10^{0}	М	_
S c -45	0	安定	_	0	安定	_
S c -46	7.24 \times 10 ⁶	s	0	8. 38×10^{1}	D	0
S c -46m	1.87×10^{1}	s	_	1.88 $\times10^{1}$	S	—
S c -47	2.90 \times 10 ⁵	S	_	3. 35×10^{0}	D	_
S c -48	1.58 $\times10^{5}$	s	_	4. 37×10^{1}	Н	—
S c -49	5.75×10 ¹	m	_	5. 72×10^{1}	М	_
S c -50	1.03×10^{2}	S	_	1.03×10^{2}	S	_
T i -46	0	安定	_	0	安定	_
T i -47	0	安定	_	0	安定	_
T i -48	0	安定	_	0	安定	—
T i -49	0	安定	_	0	安定	—
T i -50	0	安定	_	0	安定	_
T i -51	3. 46×10^{2}	S	_	5. 76 \times 10 ⁰	М	—
V - 49	2.85 \times 10 ⁷	S	0	3. 30×10^{2}	D	0
V - 50	4.00 \times 10 ¹⁶	у	0	1. 40×10^{17}	Y	0
V-51	0	安定	_	0	安定	—
V-52	2. 25×10^{2}	S	_	3. 74×10^{0}	М	_
V-53	9.66×10 ¹	S	_	1.61×10^{0}	М	—
V - 54	5. 50×10 ¹	S	_	4.98 \times 10 ¹	S	_
C r -50	0	安定	◎*1	1.80×10^{17}	Y	0
C r -51	2. 39×10^{6}	S	_	2. 77 \times 10 ¹	D	
C r -52	0	安定	_	0	安定	_
C r -53	0	安定	_	0	安定	_
C r -54	0	安定	_	0	安定	_
C r -55	2. 13×10^{2}	s	_	3. 50×10^{0}	М	_
Mn - 54	2. 70 \times 10 ⁷	S	0	3. 12×10^{2}	D	0
M n -55	0	安定	—	0	安定	—
Mn - 56	9. 28×10^{3}	S	_	2.58 \times 10 ⁰	Н	—
Mn - 57	9.66 \times 10 ¹	S	_	8. 54 \times 10 ¹	S	—
M n -58	6. 53×10^{1}	S	_	3. 00×10^{0}	S	—
F e -54	0	安定	—	0	安定	—
F e -55	2.60 \times 10 ⁰	У	0	2.74 \times 10 ⁰	Y	0
F e - 56	0	安定	_	0	安定	—
F e -57	0	安定	_	0	安定	
F e -58	0	安定	_	0	安定	
F e -59	4.50×10 ¹	d	0	4. 45×10^{1}	D	0
C o -58	6. 12×10 ⁶	S	0	7.09 \times 10 ¹	D	0

補5添2-8

长船桥桥	OR I	G E N - 2	2	J A E A−Data∕Code		
成別性物員の種類	水产用	単位	半減期	水产相	単位	半減期
の理知	十個州	※ 2	>30 日	十個别	Ж З	>30 日
C o -58m	3. 29×10^{4}	S	_	9. 04×10^{0}	Н	_
С о — 59	0	安定	_	0	安定	—
C o -60	1.66×10^{8}	S	0	1.93×10^{3}	D	0
C o -60 m	6. 28×10^{2}	S	_	1. 05×10^{1}	М	—
C o -61	5.94×10 ³	S	_	1.65×10^{0}	Н	_
C o -62	9.00×10 ¹	S	_	1.50×10^{0}	М	_
С о -72	1.23×10^{-1}	S	_	9. 00×10^{1}	MS	_
С о -73	1.16×10^{-1}	s	_	4. 10×10^{1}	MS	—
С о -74	1.08×10^{-1}	S	_	_	_	_
С о -75	8. 02×10^{-2}	S	_	—	_	_
N i -58	0	安定	_	0	安定	_
N i -59	8.00×10 ¹	ky	0	7.60×10 ⁴	Y	0
N i -60	0	安定	_	0	安定	—
N i -61	0	安定	_	0	安定	_
N i -62	0	安定	_	0	安定	_
N i -63	9. 20×10^{1}	у	0	1.00×10^{2}	Y	0
N i -64	0	安定	_	0	安定	_
N i -65	9. 07×10^{3}	S	_	2. 52 \times 10 ⁰	Н	_
N i -66	1.97×10^{5}	S	_	5. 46×10^{1}	Н	_
N i -72	2. 42×10^{0}	S	_	1.57×10^{0}	S	—
N i -73	3.94×10^{-1}	S	_	8. 40×10^{-1}	S	—
N i -74	6. 48×10^{-1}	S	_	6.80 × 10 ⁻¹	S	—
N i -75	1.80×10^{-1}	S	_	3. 44×10^{2}	MS	_
N i -76	2.68×10 ⁻¹	S	_	2. 38×10^{2}	MS	—
N i -77	1.03×10^{-1}	S	_	1.28×10^{2}	MS	—
N i -78	1.38×10^{-1}	S	_	1. 10×10^{2}	MS	_
C u -62	5.84×10 ²	S	_	9.67 \times 10 ⁰	М	—
C u -63	0	安定	_	0	安定	_
C u -64	4. 57 \times 10 4	S	_	1.27×10^{1}	Н	_
C u -65	0	安定	_	0	安定	_
C u -66	3. 06×10^{2}	s	_	5. 12×10^{0}	М	_
C u -67	2. 23×10^{5}	S	_	6. 18×10 ¹	Н	_
C u -72	6.00×10 ⁰	S	—	6.63 \times 10 ⁰	S	—
C u -73	3.95 \times 10 ⁰	S	_	4. 20×10^{0}	S	—
C u -74	5.73×10 ⁻¹	S	_	1.63×10^{0}	S	—
C u -75	7.67 \times 10 ⁻¹	S	—	1.22×10^{0}	S	—
C u -76	2. 21×10^{-1}	s	_	6. 41×10^{-1}	S	—
C u -77	2.95×10 ⁻¹	S	_	4.69×10 ⁻¹	S	—
C u -78	1.21×10^{-1}	s	_	3. 42×10^{2}	MS	
C u -79	1.47×10^{-1}	S	_	1.88×10^{2}	MS	
C u -80	9. 11×10^{-2}	S	_	_	_	_
C u -81	7.45×10^{-2}	S	_	_	_	_

補5添2-9

齿针肿肠质	OR I	GEN-	2	JAEA-Data/Code		
の種類	半減期	単位 ※2	半減期 >30 日	半減期	単位 ※3	半減期 >30 日
Z n -63	3. 85×10^{1}	m	_	3. 85×10^{1}	М	_
Z n -64	0	安定	_	0	安定	_
Z n -65	2. 11×10^{7}	S	0	2. 44×10^{2}	D	0
Z n -66	0	安定	_	0	安定	_
Z n -67	0	安定	-	0	安定	—
Z n -68	0	安定	-	0	安定	—
Z n -69	3. 42×10^{3}	S	—	5.64×10 ¹	М	_
Z n -69m	4.95 \times 10 ⁴	S	—	1.38×10^{1}	Н	—
Z n -70	0	安定	—	0	安定	—
Z n -71	2. 40×10^{0}	m	—	2. 45×10^{0}	М	—
Z n -71m	3. 92×10^{0}	h	—	3.96 \times 10 ⁰	Н	—
Z n -72	1.67 $ imes$ 10 5	S	—	4.65 \times 10 ¹	Н	—
Z n -73	2. 35×10^{1}	S	—	2. 35×10^{1}	S	—
Z n -74	9. 50×10^{1}	S	—	9. 56 \times 10 ¹	S	—
Z n -75	9.00 \times 10 ⁰	S	—	1.02×10^{1}	S	—
Z n - 76	5. 40×10^{0}	S	—	5. 70×10^{0}	S	—
Z n -77	1. 40×10^{0}	S	—	2.08 \times 10 ⁰	S	—
Z n - 78	2. 43×10^{0}	S	—	1. 47×10^{0}	S	—
Z n -79	3.82×10 ⁻¹	S	—	9.95×10 ⁻¹	S	—
Z n -80	7. 11×10^{-1}	S	—	5. 45×10^{-1}	S	—
Z n -81	1.29×10^{-1}	S	—	2.90×10 ⁻¹	S	—
Z n -82	1.35×10^{-1}	S	—	—	—	—
Z n -83	8. 39×10^{-2}	S	—	—	—	—
G a -69	0	安定	—	0	安定	—
G a -70	1. 27×10^{3}	S	—	2. 11×10^{1}	М	—
G a -71	0	安定	—	0	安定	—
G a -72	5. 08×10^{4}	S	—	1.41×10^{1}	Н	—
G a -72m	3. 97 \times 10 ⁻²	S	—	3.97 \times 10 ¹	MS	—
G a -73	1. 76×10^{4}	S	—	4.86 $\times 10^{0}$	Н	—
G a -74	4.86 \times 10 ²	S	—	8. 12×10^{0}	М	—
G a -75	1. 14×10^{2}	S	—	1. 26×10^{2}	S	—
G a - 76	2. 71×10^{1}	S	_	3. 26×10^{1}	S	_
G a -77	1. 30×10^{1}	s	_	1.32×10^{1}	S	_
G a - 78	4. 90 \times 10 °	s	_	5.09 \times 10 ⁰	S	_
G a -79	2.86 \times 10 ⁰	s	_	2.85 \times 10 ⁰	S	_
G a -80	1. 70 \times 10 0	s	_	1. 70 \times 10 ⁰	S	_
G a -81	7.05×10 ⁻¹	s	—	1.22×10^{0}	S	—
G a -82	1.54×10^{-1}	S		5.99×10 ⁻¹	S	—
G a -83	1. 48×10^{-1}	S		3. 10×10^{-1}	S	—
G a -84	9.89×10 ⁻²	s		8. 50×10 ¹	MS	_
G a -85	9. 20×10^{-2}	S			—	—
G e -70	0	安定	l	0	安定	

補5添2-10

长船桥桥	ORI	G E N - 2	2	JAEA	−Data⁄(Code
加利性初員の種類	水学相	単位	半減期	水 注 相	単位	半減期
の理知	十個别	₩ 2	>30 日	十八月	₩3	>30 日
G e -71	1. 18×10^{1}	d	_	1. 14×10^{1}	D	_
G e -71m	2. 19×10^{-2}	S	_	2. 04×10^{1}	MS	—
G e -72	0	安定	—	0	安定	—
G e -73	0	安定	_	0	安定	—
G e -73m	5. 30×10^{-1}	S	_	4.99 $\times 10^{-1}$	S	_
G e -74	0	安定	—	0	安定	—
G e -75	4. 97 \times 10 ³	S	—	8. 28×10^{1}	М	—
G e -75m	4.89×10 ¹	S	_	4. 77 \times 10 ¹	S	_
G e -76	0	安定	—	0	安定	—
G e -77	4. 07×10^{4}	S	_	1.13×10^{1}	Н	—
G e -77m	5. 43×10 ¹	S	_	5. 29×10^{1}	S	—
G e -78	5. 22×10^{3}	S	_	8.80×10 ¹	М	_
G e -79	4. 30×10 ¹	S	_	1.90×10^{1}	S	_
G e -80	2. 40×10^{1}	S	_	2.95 \times 10 ¹	S	_
G e -81	1.01×10^{1}	S	_	7.60 \times 10 ⁰	S	_
G e -82	4.60×10 ⁰	S	_	4.55 \times 10 ⁰	S	_
G e -83	1.90×10^{0}	S	_	1.85 \times 10 ⁰	S	—
G e -84	1.20×10^{0}	S	_	9. 47×10^{-1}	S	_
G e -85	2. 34×10^{-1}	S	_	5. 35×10^{2}	MS	_
G e -86	2. 59 × 10 ⁻¹	S	_	_	_	—
G e -87	1.26×10^{-1}	S	_	—	_	_
G e -88	1.43×10^{-1}	S	_	_	_	_
A s -75	0	安定	_	0	安定	—
A s -76	9. 48×10^{4}	S	_	2. 62×10^{1}	Н	_
A s -77	1. 40×10^{5}	S	—	3. 88×10^{1}	Н	—
A s -78	5. 44×10^{3}	S	—	9.07 \times 10 ¹	М	—
A s -79	5. 40×10^{2}	S	—	9. 01×10^{0}	М	—
A s -80	1.65 $ imes$ 10 1	S	_	1. 52×10^{1}	S	—
A s -81	3. 20×10^{1}	S	—	3. 33×10^{1}	S	—
A s -82	2. 10×10^{1}	S	_	1.91×10^{1}	S	—
A s -82m	1. 30×10^{1}	S	_	1. 36×10^{1}	S	_
A s -83	1. 35×10^{1}	S	—	1. 34×10^{1}	S	—
A s -84	5.80 \times 10 ⁰	S	_	4. 50 \times 10 ⁰	S	_
A s -85	2. 03×10^{0}	S	_	2. 03×10^{0}	S	_
A s -86	9.00×10 ⁻¹	S	_	9. 45×10^{-1}	S	_
A s -87	3. 00×10^{-1}	S	_	4. 80×10^{-1}	S	_
A s -88	1. 30×10^{-1}	S	_	_	_	_
A s -89	1.29×10^{-1}	S	_	_	_	_
A s -90	9. 01×10 ⁻²	S	—	—		—
S e -74	0	安定	—	0	安定	_
S e -75	1.04×10^{7}	S	0	1.20×10^{2}	D	0
S e -76	0	安定	-	0	安定	—

補5添2-11

齿针肿肠斑	OR I	G E N -	2	JAEA	—Data∕(Code
の種類	半減期	単位 ※2	半減期 >30日	半減期	単位 ※3	半減期 >30日
S e -77	0	安定	_	0	安定	_
S e -77m	1. 75×10^{1}	S	_	1.74×10^{1}	S	_
S e -78	0	安定	_	0	安定	_
S e -79	2. 05×10^{12}	s	0	3.27×10^{5}	Y	0
S e -79m	2. 33×10^{2}	S	_	3.92×10^{0}	М	_
S e -80	0	安定	_	0	安定	_
S e -81	1.11×10^{3}	S	_	1.85×10^{1}	М	_
S e -81m	3. 44×10^{3}	S	_	5. 73×10^{1}	М	_
S e -82	0	安定	$\bigcirc^{\mbox{\ensuremath{\mathbb{X}}}1}$	8.30×10 ¹⁹	Y	0
S e -83	1. 35×10^{3}	S	_	2.23 \times 10 ¹	М	—
S e -83m	7.00 \times 10 ¹	S	_	7.01×10 ¹	S	_
S e -84	1.98×10^{2}	S	_	3. 10×10^{0}	М	_
S e -85	3. 90 \times 10 ¹	S	_	3. 17×10^{1}	S	_
S e -85m	1.90×10^{1}	S	_	—	_	_
S e -86	1.66 \times 10 ¹	S	_	1.53×10^{1}	S	_
S e -87	5.60 \times 10 ⁰	S	_	5. 29×10^{0}	S	_
S e -88	1. 50 \times 10 0	S	_	1.53×10^{0}	S	_
S e -89	4. 10×10^{-1}	S	_	4. 10×10^{-1}	S	_
S e -90	5.55 $\times 10^{-1}$	S	_	—	—	_
S e -91	1.85×10^{-1}	S	_	2.70×10 ⁻¹	S	_
S e -92	2. 48×10^{-1}	S	_	—	—	_
S e -93	1.07×10^{-1}	S	—	—	—	—
В r — 79	0	安定	_	0	安定	_
B r −79m	4.86 \times 10 ⁰	S	_	4.86 $\times 10^{0}$	S	_
B r -80	1. 04×10^{3}	S	_	1. 77 \times 10 ¹	М	—
B r -80m	1. 59 \times 10 4	S		4. 42×10^{0}	Н	—
B r -81	0	安定		0	安定	—
B r -82	1. 27×10^{5}	S		3. 53 \times 10 ¹	Н	—
B r -82m	3. 68×10^{2}	S	_	6. 13×10^{0}	М	—
B r -83	8.60×10 ³	S	_	2. 40×10^{0}	Н	—
B r -84	1. 91 \times 10 ³	S	_	3. 18×10^{1}	М	—
B r -84m	3. 60×10^{2}	S	_	6.00 \times 10 ⁰	М	—
B r -85	1. 72×10^{2}	s	_	2.90 \times 10 ⁰	М	
B r -86	5. 50 \times 10 ¹	s	_	5. 50 \times 10 ¹	S	
B r -86m	4. 50 \times 10 °	S		_	_	
B r -87	5. 58 \times 10 1	s	_	5. 56 \times 10 ¹	S	
B r -88	1.63×10^{1}	S		1. 65×10^{1}	S	
B r -89	4. 50 \times 10 °	S		4. 40×10^{0}	S	-
B r -90	1.60 \times 10 ⁰	S		1.92×10^{0}	S	
B r -91	6.00×10 ⁻¹	S		5. 41×10^{-1}	S	-
B r -92	3. 00×10^{-1}	S		3.43×10^{-1}	S	_
Br - 93	2 01 × 10 ⁻¹	S		1.02×10^{2}	MS	

補5添2-12

ORIGEN-2JAEA-Data/Code 放射性物質 単位 単位 半減期 半減期 半減期 の種類 半減期 ₩2 ЖЗ >30 日 >30 日 1.11×10^{-1} В r -94 7.00 \times 10¹ _ MS _ S В r -95 1. 17×10^{-1} S 8.38×10⁻² В r -96 s K r −78 $\bigcirc \% 1$ 2. 00×10^{2} ¹ 0 安定 Y \bigcirc K r -79 3. 49×10^{1} h _ 3. 50×10^{1} Н _ K r -79m 5. 50 \times 10¹ 5.00 \times 10¹ S S _ ____ K r -80 安定 安定 0 _ 0 K r -81 6. 62×10^{12} \bigcirc 2.29 \times 10⁵ Y \bigcirc S K r -81m 1.33×10^{1} 1.31×10^{1} S s _ ___ 安定 K r -82 0 安定 _ 0 ___ K r -83 0 安定 0 安定 $1.83 \times 10^{\,0}$ K r -83m 6.59×10³ Н S _ K r -84 0 安定 ___ 0 安定 ____ 3.38×10⁸ 1.08×10^{1} K r -85 0 Y 0 S 1.61×10^{4} 4. $48 \times 10^{\circ}$ K r -85m _ Н S 安定 K r -86 0 ___ 0 安定 ____ 4. 58 \times 10³ 7.63 $\times10^{1}$ K r -87 М S K r -88 1.02×10^{4} s _ 2.84 $\times 10^{\circ}$ Н _ 1.90 \times 10² K r -89 3. $15 \times 10^{\circ}$ М S K r -90 3. 23×10^{1} 3. 23×10^{1} S _ S _ 8.70 \times 10⁰ 8.57 $\times 10^{\circ}$ K r -91 S S K r -92 1.84×10^{0} $1.84 \times 10^{\,0}$ S S _ _ $1.27 \times 10^{\,0}$ 1.29×10^{0} S K r -93 S 2. 10×10^{-1} 2.00×10⁻¹ K r -94 S S 5. 00×10^{-1} 7.80×10⁻¹ S K r -95 ___ ____ S 4. 40×10^{-1} K r -96 _ 8.00 \times 10¹ MS _ S K r -97 1. 49×10^{-1} 6. 30×10^{1} MS S ___ _ K r -98 2. 24×10^{-1} 4.60×10¹ ___ MS ____ S R b −85 安定 0 安定 0 ____ R b - 86 1.61×10^{6} _ 1.86×10^{1} D ____ s 6. 11×10^{1} 1.02×10^{0} R b −86m ___ M ___ S R b −87 1. 48×10^{18} \bigcirc 4.81 \times 10¹⁰ Y Ο S R b −88 1.07 \times 10³ 1.78 \times 10¹ ___ М ____ S R b −89 9. 12×10^{2} _ 1. 52×10^{1} М ___ S R b −90 1. 53 \times 10² 1. 58 \times 10² S s _ _ 2.58×10² R b -90m 2. 58×10^{2} S \mathbf{S} R b −91 5.82 \times 10¹ ___ S ____ 5.84 \times 10¹ S R b −92 4. 48×10^{0} 4.49 $\times 10^{0}$ S \mathbf{S} R b −93 5.80 $\times 10^{0}$ 5.84 $\times 10^{\,0}$ S s _ _ 2.69 \times 10⁰ R b −94 2.70 \times 10⁰ S S 3. 60×10^{-1} R b −95 3. 78×10^{2} MS S R b −96 2.07 \times 10⁻¹ 2. 01×10^{2} MS S

補5添2-13

长中小小小	ORI	G E N - 2	2	JAEA	—Data∕(Code
の種類	半減期	単位 ※2	半減期 >30 日	半減期	単位 ※3	半減期 >30 日
R b -97	1.70×10^{-1}	S	_	1. 70×10^{2}	MS	—
R b -98	1. 40×10^{-1}	S	_	1.14×10^{2}	MS	_
R b -99	7.60×10 ⁻²	S	_	5. 03×10^{1}	MS	_
R b -100	1.01×10^{-1}	s	_	5. 10×10 ¹	MS	_
R b -101	1.13×10^{-1}	S	_	3.20×10^{-2}	S	_
S r -84	0	安定	_	0	安定	_
S r -85	5.60 \times 10 ⁶	S	0	6.48×10 ¹	D	0
S r -85m	7.00 \times 10 ¹	m	_	6. 76×10^{1}	М	—
S r -86	0	安定	_	0	安定	—
S r -87	0	安定	_	0	安定	—
S r -87m	1.01×10^{4}	S	_	2.82 \times 10 ⁰	Н	—
S r -88	0	安定	_	0	安定	—
S r -89	4. 36×10^{6}	S	0	5. 05×10^{1}	D	0
S r -90	9.19×10 ⁸	S	0	2.88 $\times10^{1}$	Y	0
S r -91	3. 42×10^{4}	S	_	9.63 \times 10 ⁰	Н	—
S r -92	9.76×10 ³	S	_	2. 71×10^{0}	Н	—
S r -93	4. 50 \times 10 2	S	_	7. 42×10^{0}	М	_
S r -94	7. 56 \times 10 ¹	S	_	7.53 $\times10^{1}$	S	—
S r -95	2. 60×10^{1}	S	_	2. 39×10^{1}	S	_
S r -96	4. 00×10^{0}	S	_	1.07×10^{0}	S	_
S r -97	2. 00×10^{-1}	S	_	4. 26×10^{2}	MS	—
S r -98	8.50 × 10 ⁻¹	S	_	6.53×10 ⁻¹	S	_
S r -99	5.60×10 ⁻¹	S	_	2.69×10 ⁻¹	S	—
S r -100	1.05×10^{0}	S	_	2. 02×10^{2}	MS	—
S r -101	2.52×10 ⁻¹	S	_	1.18×10^{2}	MS	—
S r -102	4. 15×10^{-1}	S	_	6.90 \times 10 ¹	MS	—
S r -103	1.39×10^{-1}	S	_	—	—	—
S r -104	1.93×10^{-1}	S	_	—	—	—
Y-89	0	安定	_	0	安定	—
Y-89m	1. 61×10^{1}	S	—	1.57×10^{1}	S	—
Y-90	2. 30×10^{5}	S	_	6. 40×10^{1}	Н	—
Y-90m	1.12×10^{4}	S	—	3. 19×10^{0}	Н	—
Y-91	5.06 \times 10 ⁶	S	0	5.85 \times 10 ¹	D	0
Y-91m	2. 98 \times 10 ³	S	_	4.97 \times 10 ¹	М	—
Y-92	1. 27×10^{4}	S	—	3. 54×10^{0}	Н	—
Y - 93	3. 64×10^{4}	S	—	1.02×10^{1}	Н	—
Y-94	1. 15×10^{3}	S	_	1.87×10^{1}	М	—
Y-95	6. 30×10^{2}	S	_	1.03×10^{1}	М	_
Y-96	1.38×10^{2}	S	_	5. 34×10^{0}	S	_
Y - 97	1.11×10^{0}	S	—	3. 75×10^{0}	S	—
Y-98	3.00×10^{-1}	S	_	5. 48×10^{-1}	S	—
V - 99	8.00×10^{-1}	S		1.48×10^{0}	S	_

補5添2-14

十年年十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	OR I	G E N - 2	2	JAEA-Data/Code		
成別性物質	14. 公共 廿日	単位	半減期	水产用	単位	半減期
の理知	十侧别	₩ 2	>30 日	十個州	₩ 3	>30 日
Y-100	7.56×10 ⁻¹	S	—	7. 35×10^{2}	MS	_
Y-101	9.76×10 ⁻¹	S	_	4. 50 × 10 ⁻¹	S	_
Y-102	2. 73×10^{-1}	S	_	3. 60×10^{-1}	S	_
Y-103	3. 66×10^{-1}	S	_	2. 30×10^{-1}	S	_
Y-104	1.44×10^{-1}	S	_	1.80×10^{2}	MS	_
Y-105	1.74×10^{-1}	S	_	_	_	_
Y-106	9. 29×10^{-2}	S	_	_	_	_
Y-107	1.05×10^{-1}	S	_	_	_	_
Z r -89	2.82 \times 10 ⁵	S	_	7.84 \times 10 ¹	Н	_
Z r -90	0	安定	_	0	安定	_
Z r -90m	8. 30×10^{-1}	S	_	8.09×10 ²	MS	_
Z r -91	0	安定	_	0	安定	_
Z r -92	0	安定	_	0	安定	_
Z r -93	4.83×10 ¹³	S	0	1.53×10^{6}	Y	0
Z r -94	0	安定	_	0	安定	_
Z r -95	5.53×10 ⁶	S	0	6. 40×10 ¹	D	0
Z r -96	0	安定	\odot^{*1}	3.90×10^{19}	Y	0
Z r -97	6. 08×10 ⁴	S	_	1.67×10^{1}	Н	_
Z r -98	3. 10×10 ¹	S	_	3. 07×10^{1}	S	_
Z r -99	2. 40×10^{0}	S	_	2. 10×10^{0}	S	_
Z r -100	7. 10×10^{0}	S	_	7. 10×10^{0}	S	_
Z r -101	3. 30×10^{0}	S	_	2. 30×10^{0}	S	_
Z r -102	2.86 \times 10 ¹	S	_	2.90 \times 10 ⁰	S	_
Z r -103	1. 77 \times 10 °	S	_	1.30×10^{0}	S	_
Z r -104	3. 78×10^{0}	S	_	1.20×10^{0}	S	_
Z r -105	5. 59 \times 10 ⁻¹	S	_	6.00×10 ⁻¹	S	_
Z r -106	9.80×10 ⁻¹	S	_	—	_	_
Z r -107	2. 49×10^{-1}	S	—	—	—	_
Z r -108	4. 08×10^{-1}	S	—	_	—	_
Z r -109	1. 39×10^{-1}	S	—	—	—	—
N b -91	1. 00 \times 10 ⁴	у	0	6.80 \times 10 ²	Y	0
N b -92	1. 02×10^{1}	d	\bigcirc^{*1}	3. 47×10^{7}	Y	0
N b -93	0	安定	_	0	安定	_
N b -93m	4. 29×10^{8}	s	0	1.61×10^{1}	Y	0
N b -94	6. 41×10 ¹	S	0	2.03 \times 10 ⁴	Y	0
N b -94m	3. 76×10^{2}	s	—	6. 26×10^{0}	М	—
N b -95	3. 04×10^{6}	s	0	3. 50×10^{1}	D	0
N b -95m	3. 12×10^{5}	s	—	3.61×10 ⁰	D	—
N b -96	8. 41×10 ⁴	s	—	2. 34×10^{1}	Н	—
N b -97	4. 33×10 ³	s	—	7.21×10 ¹	М	—
N b -97 m	6.00×10 ¹	s	—	5. 27×10^{1}	S	—
N b −98	2.80 \times 10 ⁰	S	—	2.86 $\times 10^{0}$	S	-

補5添2-15

北白山小小小	OR I	G E N - 2	2	JAEA	-Data/	Code
成別性物員の種類	小 25 年B	単位	半減期	水产相	単位	半減期
の推測	十個别	₩ 2	>30 日	十個州	₩ 3	>30 日
N b -98m	3. 09×10^{3}	S	_	5. 13×10^{1}	М	—
N b -99	1.43×10^{1}	S	_	1. 50 \times 10 ¹	S	_
N b -99m	1. 56 \times 10 2	S	_	2. 60×10^{0}	М	—
N b -100	2. 40×10^{0}	s	_	1. 50 \times 10 ⁰	S	_
N b -100m	2. 41×10^{0}	S	_	2.99 \times 10 ⁰	S	—
N b -101	7.00 \times 10 ⁰	S	_	7. 10×10^{0}	S	—
N b -102	3. 00×10^{0}	S	_	1. 30×10^{0}	S	—
N b -103	1.57 \times 10 1	S	—	1. 50 \times 10 ⁰	S	—
N b -104	1.00×10^{0}	S	_	4.80 \times 10 ⁰	S	_
N b -105	1.80×10^{0}	S	_	2.95 \times 10 ⁰	S	_
N b -106	5. 35×10^{-1}	S	_	9. 30×10^{-1}	S	_
N b -107	6.69×10 ⁻¹	S	_	3. 00×10^{-1}	S	—
N b -108	2. 22×10^{-1}	S	_	1.93×10^{-1}	S	_
N b -109	2.86×10 ⁻¹	S	_	1.90×10^{-1}	S	_
N b -110	1.26×10^{-1}	s	_	1.70×10^{-1}	S	_
N b -111	1.56×10^{-1}	s	_	—	_	_
N b -112	8. 51×10^{-2}	S	_	—	—	—
M o -92	0	安定	_	0	安定	_
M o -93	1. 10 \times 10 ¹ ¹	S	0	4. 00×10^{3}	Y	0
M o -93m	2. 47×10^{4}	S	—	6.85 $\times 10^{0}$	Н	—
M o -94	0	安定	_	0	安定	_
M o -95	0	安定	—	0	安定	—
M o -96	0	安定	—	0	安定	—
M o -97	0	安定	—	0	安定	—
M o -98	0	安定	—	0	安定	—
M o -99	2. 38×10^{5}	S	_	6. 59 \times 10 ¹	Н	_
M o -100	0	安定	\bigcirc^{*1}	1. 20×10^{19}	Y	0
M o -101	8. 77 \times 10 ²	S	_	1. 46×10^{1}	М	_
M o -102	6.66×10 ²	S	—	1.13×10^{1}	М	—
M o -103	6. 00×10^{1}	S	_	6.75 \times 10 ¹	S	_
M o -104	9. 60×10^{1}	S	_	6.00 × 10 ¹	S	_
M o -105	5. 40×10^{1}	S	_	3. 56 \times 10 ¹	S	_
M o -106	9.00 \times 10 ⁰	S	_	8.73 \times 10 ⁰	S	_
M o -107	6. 39×10^{0}	S	_	3. 50×10^{0}	S	_
M o -108	1. 50 \times 10 0	S	—	1.09×10^{0}	S	—
M o -109	1.03 \times 10 ⁰	S	_	5. 30×10^{-1}	S	_
M o -110	1.89 \times 10 ⁰	S	_	3. 00×10^{-1}	S	_
M o -111	3. 92×10^{-1}	S	_	_	_	_
M o -112	6.89 × 10 ⁻¹	S				
M o -113	1.97×10^{-1}	s	_	-		_
M o -114	3. 22×10^{-1}	S	—			—
M o -115	1.16×10^{-1}	S	-	-		-

補5添2-16

七日日本	OR I	G E N -	2	JAEA	−Data∕(Code
成別性物員の種類	小 25 HB	単位	半減期	水产相	単位	半減期
の推測	十個别	₩ 2	>30 日	十個别	₩ 3	>30 日
Тс-97	2.60 \times 10 ⁰	My	0	2.60 \times 10 ⁶	Y	0
T c -97 m	9. 00×10^{1}	d	0	9. 01×10^{1}	D	0
Тс-98	1. 33 \times 10 ¹ ⁴	S	0	4. 20×10^{6}	Y	0
Тс-99	6. 72×10^{12}	S	0	2. 11×10^{5}	Y	0
T c -99m	2. 17×10^{4}	S	_	6. 02×10^{0}	Н	_
T c -100	1. 58 \times 10 ¹	S	_	1.55 \times 10 ¹	S	_
Т с —101	8. 52 \times 10 2	S	_	1. 42×10^{1}	М	—
Т с —102	5. 28×10^{0}	S	_	5. 28×10^{0}	S	—
T c -102m	2. 61×10^{2}	S	_	—	—	—
Т с —103	5. 00×10^{1}	S	—	5. 42×10^{1}	S	—
Т с —104	1.09 \times 10 ³	S	_	1.83×10^{1}	М	—
Т с —105	4.80 \times 10 ²	S	—	7.60 \times 10 ⁰	М	—
Т с —106	3. 70×10^{1}	S	—	3. 56 \times 10 ¹	S	—
Т с —107	2. 90 \times 10 ¹	S	_	2. 12×10^{1}	S	—
T c -108	5. 20×10^{0}	S	_	5. 17×10^{0}	S	_
T c -109	5. 10×10^{1}	S	_	8.60×10 ⁻¹	S	—
T c -110	8.30 × 10 ⁻¹	S	_	9. 20×10^{-1}	S	_
Т с —111	1.34×10^{0}	S	_	2. 90 \times 10 ²	MS	_
T c -112	3. 55×10^{-1}	S	_	2.80×10 ⁻¹	S	_
Т с —113	4. 58 × 10 ⁻¹	S	_	1. 70 \times 10 2	MS	—
Т с —114	1.73×10^{-1}	S	_	1. 50 \times 10 2	MS	_
Тс-115	2. 23×10^{-1}	S	_	—	—	—
Тс—116	1.06×10^{-1}	S	—	—	—	—
Т с —117	1.35×10^{-1}	S	—	—	—	—
Тс-118	7.72×10 ⁻²	S	_	_	—	_
R u -96	0	安定	_	0	安定	_
R u -97	2. 51×10^{5}	S	_	2.90 \times 10 ⁰	D	_
R u -98	0	安定	_	0	安定	_
R u -99	0	安定		0	安定	_
R u - 100	0	安定	_	0	安定	_
R u - 101	0	安定	_	0	安定	—
R u - 102	0	安定	_	0	安定	—
R u - 103	3. 39×10 ⁶	S	0	3.93×10^{1}	D	0
R u - 104	0	安定	_	0	安定	—
R u - 105	$1.60 imes 10^{4}$	S		4. 44×10^{0}	Н	—
R u - 106	3. 18×10 ⁷	S	0	3. 72×10^{2}	D	0
R u - 107	2. 52×10^{2}	S		3. 75×10^{0}	М	—
R u - 108	2. 70×10^{2}	S		4. 55×10^{0}	М	—
R u - 109	3. 50×10^{1}	S		3. 45×10 ¹	S	—
R u 110	$1.60 imes 10^{1}$	S		1.16×10 ¹	S	—
R u 111	1.54×10^{1}	S		2. 12×10^{0}	S	—
R u 112	7.00 × 10 ⁻¹	S	-	1.75 \times 10 ⁰	S	-

補5添2-17

北中的际	OR I	G E N -	2	JAEA	−Data∕(Code
成別性物員の種類	小 25 HB	単位	半減期	长谷苦	単位	半減期
の性親	干阀别	₩ 2	>30 日	干颅别	₩ 3	>30 日
R u 113	2. 77×10^{0}	S	—	9. 00×10^{-1}	S	_
R u 114	5. 05×10^{0}	S	—	5. 30×10^{-1}	S	—
R u 115	7.29 $\times 10^{-1}$	S	—	7.40×10 ⁻¹	S	—
R u 116	1. 41×10^{0}	S	—	-	_	—
R u 117	3. 09×10^{-1}	S	—	—	_	_
R u 118	6. 16×10^{-1}	S	—	—	_	_
R u 119	1.77×10^{-1}	S	—	—	—	—
R u - 120	2.93×10 ⁻¹	S	—	—	—	—
R h −102	2.90 \times 10 ⁰	У	\bigcirc	2.07 \times 10 ²	D	0
R h - 103	0	安定	—	0	安定	—
R h - 103 m	3. 37 \times 10 ³	S	—	5. 61×10^{1}	М	—
R h - 104	4. 23×10^{1}	S	—	4.23×10 ¹	S	—
R h -104m	2. 60×10^{2}	S	—	4. 34×10^{0}	М	—
R h −105	1. 27×10^{5}	S	—	3. 54×10^{1}	Н	—
R h - 105 m	4. 50 \times 10 ¹	S	—	4.00 \times 10 ¹	S	—
R h −106	2. 99 \times 10 ¹	S	—	3. 01×10^{1}	S	—
R h - 106 m	7.92 \times 10 ³	S	—	1.31×10^{2}	М	_
R h −107	1. 30×10^{3}	S	—	2. 17×10^{1}	М	—
R h −108	1.68 \times 10 1	S	—	1.68×10^{1}	S	—
R h - 108 m	3. 54×10^{2}	S	—	—	_	—
R h −109	9. 00×10^{1}	S	—	8.00 \times 10 ¹	S	—
R h - 109 m	5. 00×10^{1}	S	—	—	_	—
R h - 110	2. 90 \times 10 ¹	S	—	2.85 \times 10 ¹	S	—
R h -110m	3. 00×10^{0}	S	—	—	—	—
R h -111	6. 30×10^{1}	S	—	1.10×10^{1}	S	—
R h −112	4. 70×10^{0}	S	—	2. 10×10^{0}	S	—
R h 113	9.00×10 ⁻¹	S	—	2.80 \times 10 ⁰	S	—
R h 114	1. 70×10^{0}	S	_	1.85 \times 10 ⁰	S	—
R h 115	6. 02×10^{0}	S	_	9.90×10 ⁻¹	S	_
R h 116	8. 33×10^{-1}	S	_	6.80×10 ⁻¹	S	—
R h 117	1.08 \times 10 ⁰	s	_	4. 40×10^{-1}	S	_
R h 118	2.95×10 ⁻¹	S	_	2. 66×10^{2}	MS	—
R h 119	4. 48×10^{-1}	S	_	_	—	—
R h - 120	1.62×10^{-1}	S	_	_	—	—
R h - 121	2. 21×10^{-1}	S	_	_		_
R h - 122	1.05×10^{-1}	s	_	_	_	_
R h - 123	1.34×10^{-1}	s	_	_	_	_
P d -102	0	安定		0	安定	—
P d - 103	1. 47×10^{6}	S		1. 70 \times 10 ¹	D	—
P d -104	0	安定		0	安定	—
P d -105	0	安定	_	0	安定	—
P d −106	0	安定	_	0	安定	—

補5添2-18

齿针肿肠质	OR I	GEN-	2	JAEA	—Data∕(Code
成別住初員の種類	小 25 5 年日	単位	半減期	小 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	単位	半減期
の加重決測	十個州	₩ 2	>30 日	十個刑	₩ 3	>30 日
P d -107	2. 05×10^{14}	S	0	6. 50×10^{6}	Y	0
P d -107m	2. 13×10^{1}	S	_	2. 13×10^{1}	S	_
P d - 108	0	安定	_	0	安定	_
P d - 109	4.85 \times 10 ⁴	S	_	1.37×10^{1}	Н	_
P d -109m	2. 81×10^{2}	S	_	4. 69×10^{0}	М	—
P d 110	0	安定	_	0	安定	_
P d 111	1. 32×10^{3}	S	—	2. 34×10^{1}	М	_
P d111m	$1.98 imes 10^{4}$	S	_	5. 50 \times 10 °	Н	—
P d 112	7.24 \times 10 ⁴	S	—	2. 10×10^{1}	Н	_
P d 113	9.00 \times 10 ¹	S	—	9.30×10 ¹	S	_
P d 114	1.44×10^{2}	S	—	2. 42×10^{0}	М	_
P d 115	3. 80×10^{1}	S	_	2. 50 \times 10 ¹	S	_
P d −116	1. 40×10^{1}	S	_	1.18×10^{1}	S	_
P d −117	5. 00×10^{0}	S	_	4. 30×10^{0}	S	_
P d 118	3. 10×10^{0}	S	_	1.90×10^{0}	S	_
P d	1. 71×10^{0}	S	_	9. 20×10^{-1}	S	_
P d - 120	4. 27×10^{0}	S	_	5. 00×10^{-1}	S	_
P d - 121	6. 22×10^{-1}	S	_	_	_	_
P d −122	1.27×10^{0}	S	_	_	_	_
P d - 123	3. 10×10^{-1}	S	_	_	_	_
P d −124	5.60 $\times 10^{-1}$	S	_	_	_	_
P d - 125	1.83×10^{-1}	S	_	_	_	_
P d −126	2.87 \times 10 ⁻¹	S	_	_	_	_
A g -106	8.50 \times 10 ⁰	d	_	2. 40×10^{1}	М	_
A g -107	0	安定	_	0	安定	—
A g -108	1. 42×10^{2}	S	—	2. 38×10^{0}	М	—
Ag-108m	4. 01×10^{9}	S	0	4. 38×10^{2}	Y	0
Ag -109	0	安定	—	0	安定	—
A g -109m	3. 96 \times 10 ¹	S		3. 96 \times 10 ¹	S	—
Ag -110	2. 46×10^{1}	S	—	2. 46×10^{1}	S	—
Ag-110m	2. 16×10^{7}	S	0	2. 50 \times 10 ²	D	0
A g -111	6. 44×10^{5}	S	_	7.45 \times 10 ⁰	D	—
Ag-111m	6. 50×10^{1}	S	—	6.48×10 ¹	S	—
A g -112	1. 13×10^{4}	S		3. 13×10^{0}	Н	_
Ag -113	1.91×10^{4}	S		5. 37×10^{0}	Н	—
Ag-113m	6. 60×10^{1}	S		6.87 \times 10 ¹	S	_
A g -114	4. 52×10^{0}	S	_	4. 60×10^{0}	S	_
A g -115	1. 20×10^{3}	s	_	2. 00×10^{1}	М	_
Ag-115m	1. 70 \times 10 ¹	S		1.80×10 ¹	S	
Ag -116	1.61×10^{2}	S		2. 68×10^{0}	М	_
Ag-116m	1. 04×10^{1}	S		8.60×10 ⁰	S	_
A g -117	7. 32×10^{1}	S	_	7. 28×10^{1}	S	

補5添2-19

长舟外州杨府	ORI	G E N - 2	2	JAEA	−Data⁄0	Code
の種類	半減期	単位 ※2	半減期 >30 日	半減期	単位 ※3	半減期 >30 日
Ag-117m	5. 30×10^{0}	S	_	5. 34×10^{0}	S	_
A g -118	3. 70×10^{0}	S	_	3. 76 \times 10 ⁰	S	_
Ag-118m	2.80 \times 10 ⁰	S	_	2.00 \times 10 ⁰	S	_
A g -119	6.00×10 ⁰	S	_	2. 10×10^{0}	S	_
A g -120	1.17×10^{0}	S	_	1.23×10^{0}	S	_
A g -121	3. 00×10^{0}	S	_	7.80×10 ⁻¹	S	_
A g -122	1.00×10^{-1}	S	_	5. 29×10^{-1}	S	_
A g -123	8.63×10 ⁻¹	S	—	2.96 \times 10 ²	S	—
A g -124	2.69×10 ⁻¹	S	_	1.72×10 ⁻¹	S	_
A g -125	3.82×10 ⁻¹	S	—	1.66×10^{-1}	S	—
A g -126	1.56×10^{-1}	S	—	$1.07 imes 10^{2}$	MS	—
A g -127	2.05×10 ⁻¹	S	—	1.09×10^{2}	MS	—
A g -128	1.02×10^{-1}	S	—	5.80 \times 10 ¹	MS	—
C d -106	0	安定	—	0	安定	—
C d -107	2. 34×10^{4}	S	—	6. 50×10^{0}	Н	—
C d -108	0	安定	—	0	安定	—
C d -109	4.01 \times 10 ⁷	S	0	4.61 \times 10 ²	D	0
C d -110	0	安定	—	0	安定	—
C d -111	0	安定	_	0	安定	_
C d -111m	2.92 \times 10 ³	S	_	4.85 $\times10^{1}$	М	_
C d -112	0	安定	_	0	安定	_
C d -113	0	安定	\bigcirc^{*1}	8.04×10 ^{1 5}	Y	0
C d113m	4.60×10 ⁸	S	0	1. 41×10^{1}	Y	0
C d 114	0	安定	_	0	安定	_
C d 115	1.93 $ imes$ 10 5	S	_	5. 35×10^{1}	Н	_
C d 115 m	3.85 \times 10 ⁶	S	0	4. 46×10^{1}	D	0
C d 116	0	安定	\bigcirc^{*1}	2.90×10 ¹⁹	Y	0
C d -117	9. 36×10 ³	S	_	2. 49×10^{0}	Н	_
C d -117m	1.22×10^{4}	S	—	3. 36×10^{0}	Н	—
C d 118	3. 02×10^{3}	S	_	5. 03×10^{1}	М	_
C d 119	5.64×10 ²	S	—	2. 69×10^{0}	М	—
C d	1.92×10^{2}	S	—	2. 20×10^{0}	М	—
C d -120	5.08×10 ¹	S	—	5. 08×10 ¹	S	—
C d -121	1.28×10^{1}	S	—	1. 35×10^{1}	S	—
C d -122	5. 50 \times 10 $^{\circ}$	S	—	5. 24×10^{0}	S	—
C d -123	8. 40×10^{0}	S	—	2. 10×10^{0}	S	—
C d -124	1.72×10^{1}	S	—	1.25×10^{0}	S	—
C d -125	1.62×10^{0}	S		6. 50×10^{-1}	S	
C d -126	3. 77×10^{0}	S	—	5. 15×10^{-1}	S	—
C d -127	6.59×10 ⁻¹	S	—	4. 30×10^{-1}	S	—
C d - 128	1.29×10^{0}	S	—	3. 40×10^{-1}	S	—
C d -129	3. 38×10^{-1}	S	_	2.70×10 ⁻¹	S	_

補5添2-20

长船桥桥	OR I	G E N -	2	JAEA	−Data⁄(Code
成別性物員の種類	水学相	単位	半減期	不产用	単位	半減期
の理知	十個刑	₩ 2	>30 日	十個别	₩3	>30 日
C d -130	5. 24×10^{-1}	S	_	1. 62×10^{2}	MS	_
C d -131	1. 19×10^{-1}	S	_	6.80×10 ¹	MS	—
C d -132	1. 45×10^{-1}	s	—	9. 70×10^{1}	MS	—
I n 113	0	安定	_	0	安定	_
I n 113 m	5. 97 \times 10 ³	S	_	9.95 \times 10 ¹	М	_
I n 114	7. 19×10^{1}	s	—	1.20×10^{0}	М	—
I n 114 m	4. 28×10^{6}	s	0	4.95 \times 10 ¹	D	0
I n 115	1. 58 \times 10 ² ²	S	0	4. 41×10^{14}	Y	0
I n 115 m	1.55 \times 10 ⁴	S	_	4. 49×10^{0}	Н	_
I n 116	1. 41×10^{1}	s	_	1. 41×10^{1}	S	—
I n 116 m	3. 25×10^{3}	s	_	5. 44×10 ¹	М	—
I n 117	2. 64×10^{3}	S	_	4. 32×10^{1}	М	_
I n 117 m	6. 98×10 ³	S	_	1. 16×10^{2}	М	_
I n 118	5.00×10 ⁰	S	_	5. 00×10^{0}	S	
I n 118 m	2. 67×10^{2}	S	_	4. 45×10^{0}	М	—
I n 119	1.50×10^{2}	S	_	2. 40×10^{0}	М	—
I n 119 m	1.08 \times 10 ³	S	_	1.80×10^{1}	М	—
I n - 120	4. 44×10^{1}	S	_	3.08×10^{0}	S	—
I n - 120 m	3. 08×10^{0}	S	_	4. 62×10^{1}	S	—
I n - 121	2.80 \times 10 ¹	S	_	2. 31×10^{1}	S	_
I n - 121 m	1.98×10^{2}	S	_	3. 88×10^{0}	М	_
I n 122	1.00×10^{1}	S	_	1.50×10^{0}	S	
I n - 122 m	1.50×10^{0}	S	_	1.03×10^{1}	S	—
I n 123	5. 97 \times 10 0	S	_	6. 17×10^{0}	S	_
I n - 123 m	4.80×10 ¹	S	_	4. 74×10^{1}	S	_
I n 124	3. 20×10^{0}	S	_	3. 12×10^{0}	S	_
I n 125	2. 33×10^{0}	S	_	2. 36×10^{0}	S	_
I n 125 m	1. 20×10^{1}	S	_	1.22×10^{1}	S	_
I n - 126	1.53×10^{0}	S	_	1.53×10^{0}	S	—
I n - 127	2.00 \times 10 ⁰	S	_	1.09×10^{0}	S	_
I n - 127 m	3. 64×10^{0}	S	_	3. 67×10^{0}	S	_
I n 128	3. 70 \times 10 ⁰	S	_	8. 40×10^{-1}	S	_
I n - 129	8.00×10 ⁻¹	s	—	6. 10×10^{-1}	S	—
I n - 130	5. 30×10^{-1}	S	_	2.90×10 ⁻¹	S	—
I n - 131	3. 00×10^{-1}	s	—	2.80×10 ⁻¹	S	—
I n - 132	1.20×10^{-1}	S	_	2.07×10 ⁻¹	S	—
I n - 133	1.14×10^{-1}	S	—	1.65 $ imes$ 10 2	MS	—
I n - 134	7.75 \times 10 ⁻²	S	—	1. 40×10^{2}	MS	—
S n -112	0	安定	_	0	安定	_
S n 113	9.95 \times 10 ⁶	S	0	1.15×10^{2}	D	0
S n - 113m	2. 00×10^{1}	m	—	2. 14×10^{1}	М	—
S n -114	0	安定	_	0	安定	_

補5添2-21

齿针肿肠质	OR I	GEN-	2	J A E A - Data/Code		
の種類	半減期	単位 ※2	半減期 >30日	半減期	単位 ※3	半減期 >30 日
S n 115	0	安定	_	0	安定	_
S n 116	0	安定	—	0	安定	_
S n 117	0	安定	_	0	安定	_
S n 117 m	1.21×10^{6}	s	—	1.36×10^{1}	D	_
S n 118	0	安定	—	0	安定	—
S n 119	0	安定	—	0	安定	—
S n 119 m	2. 12×10^{7}	S	0	2.93 \times 10 ²	D	0
S n - 120	0	安定	_	0	安定	_
S n -121	9.65 \times 10 ⁴	S	—	2. 70×10^{1}	Н	_
S n - 121 m	1.58×10^{9}	S	0	4. 39×10 ¹	Y	0
S n - 122	0	安定	_	0	安定	_
S n - 123	1.12×10^{7}	S	0	1.29×10^{2}	D	0
S n - 123 m	2. 41×10^{3}	s	_	4. 01×10^{1}	М	_
S n - 124	0	安定	—	0	安定	_
S n - 125	8. 33×10^{5}	s	_	9. 64×10^{0}	D	_
S n - 125 m	5. 71×10 ²	S	—	9. 52×10^{0}	М	_
S n - 126	3. 16×10^{12}	S	0	1.98×10^{5}	Y	0
S n - 127	7.56 \times 10 ³	S	—	2. 10×10^{0}	Н	_
S n - 127 m	2. 48×10^{2}	S	—	4. 13×10^{0}	М	_
S n - 128	3. 54×10^{3}	S	—	5. 91×10^{1}	М	—
S n - 129	4. 50 \times 10 2	S	—	2.23 \times 10 ⁰	М	_
S n - 129 m	1. 50 \times 10 2	S	_	6.90×10^{0}	М	_
S n - 130	2. 23×10^{2}	S	—	3. 72×10^{0}	М	—
S n -131	6. 30×10 ¹	S	—	5. 60×10^{1}	S	_
S n - 132	4. 00×10^{1}	S	_	3.97×10^{1}	S	_
S n -133	1. 47×10^{0}	S	—	1.45×10^{0}	S	—
S n - 134	8.45×10 ⁻¹	S	—	1.05×10^{0}	S	_
S n - 135	2.91×10 ⁻¹	S	_	5. 30×10^{2}	MS	_
S n - 136	4. 13×10^{-1}	S	—	2. 50 \times 10 ²	MS	_
S b -121	0	安定	_	0	安定	_
S b -122	2. 33×10^{5}	S	_	2. 72×10^{0}	D	_
S b -122m	2. 52 \times 10 ²	S	—	5. 30×10^{-1}	MS	_
S b -123	0	安定	_	0	安定	_
S b -124	5. 20×10^{6}	S	0	6. 02×10^{1}	D	0
S b -124m	9. 30×10^{1}	S	—	9. 30×10^{1}	S	_
S b -125	8. 74×10^{7}	S	0	2.76 $\times 10^{0}$	Y	0
S b -126	1.07 \times 10 ⁶	S	—	1.24×10^{1}	D	—
S b -126m	1.14×10 ³	S		1.92×10^{1}	М	_
S b -127	3.33×10^{5}	S	_	3.85×10^{0}	D	_
S b -128	3. 24×10^{4}	S	_	9. 01×10^{0}	Н	_
S b -128m	6. 24×10^{2}	S	_	_	_	_
S b - 129	1.56×10^{4}	S	_	4.40×10^{0}	Н	_

補5添2-22

北中的际	OR I	GEN-	2	J A E A−Data∕Code		
成別性物質	长行告告	単位	半減期	水产用	単位	半減期
の理知	十個别	₩2	>30 日	十個别	₩3	>30 日
S b -130	2. 40×10^{3}	S	—	3. 95×10^{1}	М	—
S b -130m	3. 78×10^{2}	S	—	6. 30×10^{0}	М	—
S b -131	1. 38×10^{3}	S	—	2. 30×10^{1}	М	_
S b -132	1.68×10^{2}	S	_	2. 79×10^{0}	М	_
S b -132m	2. 52×10^{2}	S	_	-	—	_
S b -133	1.44×10^{2}	S	_	2. 50×10^{0}	М	_
S b -134	1.10×10^{1}	S	_	7.80×10 ⁻¹	S	_
S b -134m	1.07 \times 10 ¹	S	_	-	—	_
S b -135	1. 70×10^{0}	S	_	1.68×10^{0}	S	_
S b -136	2. 31×10^{-1}	S	_	9. 23×10^{-1}	S	_
S b -137	2.84×10 ⁻¹	S	_	_	_	_
S b -138	1.30×10^{-1}	S	_	_	_	_
S b -139	1.72×10^{-1}	S	_	_	_	_
T e -120	0	安定	_	0	安定	_
T e -121	1. 47×10^{6}	S	_	1.92×10^{1}	D	_
T e -121 m	1.33×10^{7}	S	0	1.54×10^{2}	D	0
T e -122	0	安定	_	0	安定	_
T e -123	3. 16×10^{20}	S	0	9. $20 \times 10^{1.6}$	Y	0
T e -123m	1.03×10^{7}	S	0	1.19×10^{2}	D	0
T e -124	0	安定		0	安定	_
T e -125	0	安定	_	0	安定	_
T e -125m	5.01×10 ⁶	S	0	5. 74×10^{1}	D	0
T e -126	0	安定	_	0	安定	_
T e -127	3. 37×10^{4}	S	_	9. 35×10^{0}	Н	_
T e -127 m	9. 42×10 ⁶	S	0	1.09×10^{2}	D	0
T e -128	0	安定	◎*1	7.70×10 ²⁴	Y	0
T e -129	4. 18×10 ³	s	_	6.96×10 ¹	М	_
T e -129m	2.90 \times 10 ⁶	S	0	3. 36×10^{1}	D	0
T e -130	0	安定	\bigcirc^{*1}	2. 70×10^{2} ¹	Y	0
T e -131	1. 50 \times 10 3	S	_	2. 50 \times 10 ¹	М	_
T e -131m	1.08 \times 10 ⁵	S	—	3. 33×10^{1}	Н	—
T e -132	2.82 \times 10 ⁵	S	—	3. 20×10^{0}	D	_
T e -133	7. 47×10^{2}	S	_	1.25×10^{1}	М	_
T e -133m	3. 32×10^{3}	S	—	5. 54×10^{1}	М	—
T e -134	2. 51×10^{3}	S	—	4. 18×10^{1}	М	_
T e -135	1.92×10^{1}	S	—	1.90×10^{1}	S	_
T e -136	2. 10×10^{1}	S	—	1. 76×10^{1}	S	—
T e -137	3. 50×10^{0}	S	—	2. 49×10^{0}	S	—
T e -138	1.64×10^{0}	S	_	1. 40×10^{0}	S	_
T e -139	4.24×10^{-1}	S	_	_	_	_
T e -140	7.52×10^{-1}	S	_	_	_	_
T e -141	2. 36×10^{-1}	S		_		

補5添2-23

长卧卧枥厨	ORI	GEN-	2	J A E A−Data∕Code		
成別性初員	水产相	単位	半減期	水产相	単位	半減期
の加重知	十個别	₩ 2	>30 日	十個别	₩ 3	>30 日
T e -142	4.91 × 10 ⁻¹	S	_	—	—	—
I -125	5. 97 \times 10 1	d	0	5.94 \times 10 ¹	D	0
I -126	1. 13×10^{6}	S	_	1. 29×10^{1}	D	—
I -127	0	安定	_	0	安定	—
I -128	1.50 \times 10 ³	S	_	2. 50 \times 10 ¹	М	—
I -129	4. 95 \times 10 ^{1 4}	S	0	1.57 \times 10 ⁷	Y	0
I -130	4. 45×10^{4}	S	_	1.24×10^{1}	Н	—
I -130m	5. 40×10^{2}	s		8.84×10 ⁰	М	—
I -131	6.95 \times 10 ⁵	S	_	8.03 \times 10 ⁰	D	—
I -132	8.28×10 ³	S	—	2. 30×10^{0}	Н	—
I -133	7.49 \times 10 ⁴	S	—	2.08 × 10 ¹	Н	—
I -133m	9.00 \times 10 ⁰	S	—	9.00 \times 10 ⁰	S	—
I -134	3. 16×10^{3}	S	—	5. 25×10^{1}	М	—
I -134m	2. 22×10^{2}	S	—	3. 52×10^{0}	М	—
I -135	2. 38×10^{4}	S	—	6.58 $\times 10^{0}$	Н	—
I -136	8. 30×10^{1}	S	_	8.34×10 ¹	S	—
I —136m	4.60 \times 10 ¹	S	—	4.69 \times 10 ¹	S	—
I -137	2. 46×10^{1}	S	—	2. 45×10^{1}	S	—
I -138	6. 40×10^{0}	S	—	6. 41×10^{0}	S	—
I -139	2. 40×10^{0}	S	_	2. 28×10^{0}	S	—
I -140	8.60×10 ⁻¹	S	—	8.60 × 10 ⁻¹	S	—
I -141	4.00×10 ⁻¹	S	_	4. 30×10^{-1}	S	—
I -142	1.96×10^{-1}	S		2.00×10 ⁻¹	S	_
I -143	3. 28×10^{-1}	S	—	_	—	—
I -144	1.33×10^{-1}	s		_	_	_
I -145	1.87×10^{-1}	S	_	_	_	—
X e -124	0	安定	_	0	安定	—
X e -125	1. 70×10^{1}	h	_	1.69×10^{1}	Н	—
X e -125m	5. 70×10^{1}	S	_	5. 69×10^{1}	S	_
X e -126	0	安定	—	0	安定	—
X e -127	3. 15×10^{6}	S	0	3. 64×10^{1}	D	0
X e -127 m	7.00 \times 10 ¹	S	—	6.92 \times 10 ¹	S	—
X e -128	0	安定	—	0	安定	—
X e -129	0	安定	—	0	安定	—
X e -129m	6.91 \times 10 ⁵	S	—	8.88 $\times 10^{0}$	D	—
X e -130	0	安定	—	0	安定	—
X e -131	0	安定	_	0	安定	—
X e -131m	1.03×10^{6}	S	_	1.18×10^{1}	D	—
X e -132	0	安定	—	0	安定	—
X e -133	4.53 \times 10 ⁵	S	-	5. 24×10^{0}	D	—
X e -133m	1.89×10^{5}	S		2. 19×10^{0}	D	—
X e -134	0	安定	—	0	安定	—

補5添2-24

长船桥桥	ORI	G E N - 2	2	JAEA	−Data⁄(Code
加利性初員の種類	水汽车	単位	半減期	卡尔里	単位	半減期
の理知	十個别	₩ 2	>30 日	十個别	₩ 3	>30 日
X e -134m	2.90×10 ⁻¹	S	_	2.90 \times 10 ²	MS	_
X e -135	3. 27×10^{4}	S	_	9.14×10 ⁰	Н	—
X e -135m	9. 17×10^{2}	S	—	1.53×10^{1}	М	—
X e -136	0	安定	$\odot^{\#1}$	9. 30×10 ^{1 9}	Y	0
X e -137	2. 30×10^{2}	S	_	3. 82×10^{0}	М	_
X e -138	8. 50 \times 10 2	S	—	1. 41×10^{1}	М	—
X e -139	3. 95×10^{1}	S	—	3. 97×10^{1}	S	—
X e -140	1. 36×10^{1}	S	_	1. 36×10^{1}	S	—
X e -141	1. 72×10^{0}	S	_	1. 73×10^{0}	S	_
X e -142	1.22×10^{0}	S	_	1.22×10^{0}	S	—
X e -143	3. 00×10^{-1}	S	_	3. 00×10^{-1}	S	—
X e -144	1.00×10^{0}	S	_	3. 88×10^{2}	MS	_
X e -145	9.00×10 ⁻¹	S	_	1.88×10^{2}	MS	_
X e -146	9. 37×10^{-1}	S	_	1. 46×10^{2}	MS	_
X e -147	2. 64×10^{-1}	S	_	1.00×10^{2}	MS	_
C s -131	9.70×10 ⁰	d	_	9.69 \times 10 ⁰	D	_
C s -132	5. 59 \times 10 ⁵	S	—	6. 48×10^{0}	D	—
C s -133	0	安定	_	0	安定	_
C s -134	6. 51×10 ⁷	S	0	2.07 \times 10 ⁰	Y	0
C s -134m	1.04×10^{4}	S	_	2.91 \times 10 ⁰	Н	—
C s -135	7. 26×10^{13}	S	0	2. 30×10^{6}	Y	0
C s -135m	5. 30×10^{1}	m	_	5. 30×10^{1}	М	—
C s -136	1.13×10^{6}	S	—	1.32×10^{1}	D	—
C s -137	9. 47×10^{8}	S	0	3. 01×10^{1}	Y	0
C s -138	1.93×10^{3}	S	—	3. 34×10^{1}	М	—
C s -138m	1. 74×10^{2}	S	—	2.91 \times 10 ⁰	М	—
C s -139	5. 64×10^{2}	S	—	9. 27×10^{0}	М	—
C s -140	6. 38×10^{1}	S	—	6. 37×10^{1}	S	—
C s -141	2. 50 \times 10 ¹	S	—	2. 48×10^{1}	S	—
C s -142	1.70 \times 10 ⁰	S	—	1.68×10^{0}	S	—
C s -143	1. 70 \times 10 0	S	_	1.79 \times 10 ⁰	S	_
C s -144	1.02×10^{0}	S	_	9.94 \times 10 ⁻¹	S	_
C s -145	5.60×10 ⁻¹	S	_	5.87 $\times 10^{-1}$	S	
C s -146	1.90×10^{-1}	S	_	3.21×10^{-1}	S	_
C s -147	5. 58 $\times 10^{-1}$	S	_	2. 35×10^{-1}	S	_
C s -148	2. 02×10^{-1}	S	_	1. 46×10^{2}	MS	_
C s -149	2.78×10 ⁻¹	S	_	_	_	_
C s -150	1.24×10^{-1}	S	_	_	_	_
B a -130	0	安定	—	0	安定	
Ва—131	1.02×10^{6}	S	—	1.15×10^{1}	D	
B a -131m	1. 50 \times 10 1	m	—	1. 46×10^{1}	М	
B a −132	0	安定	—	0	安定	—

補5添2-25

北中的府	ORIO	G E N - 2	2	J A E A−Data∕Code		
成別性物質		単位	半減期	小小牛田	単位	半減期
の性親	干顽别	₩2	>30 日	干侧别	₩3	>30 日
B a -133	3. 39×10^{8}	S	0	1. 05×10^{1}	Y	0
B a -133m	1. 40×10^{5}	S	_	3.89 \times 10 ¹	Н	_
B a -134	0	安定	_	0	安定	_
B a -135	0	安定	_	0	安定	_
B a -135m	1.03×10^{5}	S	_	2.87 \times 10 ¹	Н	_
B a -136	0	安定	_	0	安定	_
B a -136m	3. 08×10^{-1}	S	_	3. 08×10^{-1}	S	_
B a -137	0	安定	_	0	安定	_
B a −137m	1.53×10^{2}	S	_	2. 55×10^{0}	М	_
В а —138	0	安定	_	0	安定	_
B a -139	4. 96 \times 10 ³	S	_	8. 31×10 ¹	М	_
B a -140	1.11×10^{6}	S	_	1.28×10^{1}	D	_
B a -141	1.10×10^{3}	S	_	1.83×10^{1}	М	_
B a -142	6. 42×10^{2}	S	—	1.06×10^{1}	М	_
B a -143	1. 36×10^{1}	S	_	1. 45×10^{1}	S	_
B a -144	1.10×10^{1}	s	_	1.15×10^{1}	S	_
B a -145	6. 20×10^{0}	s	_	4. 31×10^{0}	S	_
B a -146	2.20 \times 10 ⁰	s	_	2. 22×10^{0}	S	_
B a -147	2.23×10^{0}	S	_	8.93×10^{-1}	S	_
B a -148	5.90 \times 10 ⁰	s	_	6. 12×10^{-1}	S	_
B a -149	9. 18×10^{-1}	S	_	3. 44×10^{-1}	S	_
B a -150	1.80×10^{0}	s	_	3.00×10^{-1}	S	_
B a -151	4.37 \times 10 ⁻¹	s		_		_
B a -152	7.55 \times 10 ⁻¹	S	_	_	_	_
L a -137	1.89×10^{12}	S	0	6.00×10^{4}	Y	0
L a -138	4.26×10^{18}	S	0	1.02×10^{11}	Y	0
L a -139	0	安定	_	0	安定	_
L a -140	1.45×10^{5}	S	_	1.68×10^{0}	D	_
L a -141	1.42×10^{4}	S	_	3.92×10^{0}	Н	_
L a -142	5.56 \times 10 ³	s	_	9. 11×10 ¹	М	_
L a -143	8.40×10 ²	S	_	1.42×10^{1}	М	_
L a -144	4.00 \times 10 ¹	s	_	4.08×10^{1}	S	_
L a -145	2.90 \times 10 ¹	s	_	2. 48×10^{1}	S	_
L a -146	8. 30×10^{0}	s	_	6. 27×10^{0}	S	_
L a -147	1.00×10^{1}	S	_	4.02×10^{0}	S	_
L a -148	1.30×10^{0}	S	_	1.26×10^{0}	S	_
L a -149	2.86 \times 10 ⁰	s	_	1.05×10^{0}	S	_
L a -150	6. 49×10^{-1}	S	_	5. 10×10^{-1}	S	_
L a -151	9.54×10 ⁻¹	S	_	_	_	_
L a -152	3.09×10^{-1}	S	_	_		_
L a -153	4. 37×10^{-1}	S	_	_	_	_
L a -154	1. 75×10^{-1}	S	—	—	—	—

補5添2-26

长舟州册匠	OR I	G E N -	2	JAEA	−Data∕	Code
成別性物員		単位	半減期	11、分子 廿日	単位	半減期
の理知	十侧别	※ 2	>30 日	十個别	※ 3	>30 日
L a -155	2. 22×10^{-1}	s	_	_	_	_
C e -136	0	安定	—	0	安定	_
C e -137	3. 24×10^{4}	S	—	9.00 \times 10 ⁰	Н	_
C e -137m	1.24×10^{5}	S	_	3. 44×10^{1}	Н	_
C e -138	0	安定	—	0	安定	_
C e -139	1. 19×10^{7}	S	0	1.38×10^{2}	D	0
C e -139m	5. 62×10^{1}	S	—	5. 48×10^{1}	S	—
C e -140	0	安定	—	0	安定	—
C e -141	2.81 \times 10 ⁶	S	0	3. 25×10^{1}	D	0
C e -142	3. 31×10^{18}	S	0	5.00 \times 10 ¹⁶	Y	0
C e -143	1. 19×10^{5}	S	—	3. 30×10^{1}	Н	_
C e -144	2. 46×10^{7}	S	0	2.85 \times 10 ²	D	0
C e -145	1.80×10^{2}	S	—	3. 01×10^{0}	М	_
C e -146	8. 52 \times 10 2	S	_	1.35×10^{1}	М	_
C e -147	7.00 \times 10 ¹	S	—	5. 64×10^{1}	S	_
C e -148	4. 30×10 ¹	S	_	5.60 \times 10 ¹	S	_
C e -149	1.00×10^{0}	s	_	5. 30×10^{0}	S	_
C e -150	1.00×10^{0}	s	—	4. 00×10^{0}	S	_
C e -151	1.00×10^{0}	S	—	1.76 \times 10 ⁰	S	_
C e -152	1. 40×10^{1}	S	_	1.40×10^{0}	S	_
C e -153	1. 73×10^{0}	S	_	_	_	_
C e -154	3. 59 \times 10 ⁰	S	—	-	—	_
C e -155	7.13×10 ⁻¹	S	—	—	_	_
C e -156	1. 16×10^{0}	S	—	—	—	—
C e -157	3. 62×10^{-1}	S	—	—	_	—
Р r —139	4. 40×10^{0}	h	_	4. 41×10^{0}	Н	_
P r −140	3. 39×10^{0}	m	—	3. 39×10^{0}	М	—
Р r —141	0	安定	_	0	安定	_
P r −142	6.89 \times 10 ⁴	S	—	1.91×10^{1}	Н	_
P r −142m	8. 76 \times 10 2	s	—	1. 46×10^{1}	М	
Pr-143	1. 17×10^{6}	S	—	1. 36×10^{1}	D	_
Pr-144	1.04×10^{3}	S	—	1. 73×10^{1}	М	_
P r −144m	4. 32×10^{2}	s	—	7.20 \times 10 ⁰	М	
P r −145	2. 15×10^{4}	s	—	5. 98×10^{0}	Н	
P r −146	1. 45×10^{3}	S	—	2. 42×10^{1}	М	_
P r −147	7. 20×10^{2}	s	_	1.34×10^{1}	М	
Р r —148	1. 38×10^{2}	s	—	2. 29×10^{0}	М	
Р r —149	1. 38×10^{2}	s	—	2. 26×10^{0}	М	
P r −150	1.24×10^{1}	S	—	6.19×10 ⁰	S	
P r -151	4. 00×10^{0}	S		1.89×10 ¹	S	-
P r −152	8. 32×10 ⁰	S	—	3. 63×10^{0}	S	
P r −153	7.74 \times 10 ⁰	S	-	4. 28×10^{0}	S	-

補5添2-27

北白山小小小	OR I	GEN-	2	JAEA	−Data∕	Code
成別性物質		単位	半減期	지 수수 무미	単位	半減期
の性親	干颅别	₩2	>30 日	干阀别	₩ 3	>30 日
P r −154	1.31×10^{0}	S	_	2. 30×10^{0}	S	_
P r −155	1.89 \times 10 ⁰	S	—	—	—	—
P r −156	5. 10×10^{-1}	S	—	—	_	—
P r −157	6.78×10 ⁻¹	S	—	—	_	_
P r −158	2.63×10 ⁻¹	S	_	—	_	_
P r −159	3. 14×10^{-1}	S	—	—	—	—
N d -141	2. 50 \times 10 °	h	_	2. 49×10^{0}	Н	_
N d 142	0	安定	_	0	安定	
N d 143	0	安定	_	0	安定	—
N d 144	6. 62×10^{22}	S	0	2. 29 × 10 15	Y	0
N d 145	0	安定	_	0	安定	—
N d 146	0	安定	—	0	安定	—
N d -147	9. 56 \times 10 ⁵	S	—	1. 10×10^{1}	D	—
N d 148	0	安定	—	0	安定	—
N d -149	6. 23×10^{3}	S	—	1.73 \times 10 ⁰	Н	—
N d -150	0	安定	\bigcirc^{*1}	1. 10×10^{19}	Y	0
N d -151	7. 44×10^{2}	S	—	1.24×10^{1}	М	_
N d -152	6. 90 \times 10 2	S	—	1.14×10^{1}	М	—
N d -153	6. 75×10^{1}	S	—	3. 16×10^{1}	S	—
N d -154	4. 00×10^{1}	S	—	2. 59 \times 10 ¹	S	—
N d -155	2. 61×10^{1}	S	_	8.90×10^{0}	S	_
N d -156	5.85×10 ¹	S	—	5. 49×10^{0}	S	—
N d -157	4. 15×10^{0}	S	—	—	—	—
N d -158	7.89 \times 10 ⁰	S	—	—	—	—
N d -159	1. 41×10^{0}	S	—	_	—	—
N d -160	2. 12×10^{0}	S	_	_	_	—
N d -161	5. 56 $\times 10^{-1}$	S	_	_	_	_
Pm-145	5. 59×10 ⁸	S	0	1. 77 \times 10 ¹	Y	0
Pm-146	5. 50 \times 10 ⁰	у	0	5. 53 $\times 10^{0}$	Y	0
Pm-147	8.28×10 ⁷	s	0	2. 62×10^{0}	Y	0
Pm-148	4. 64×10^{5}	s	_	5. 37×10^{0}	D	
Pm-148m	3. 57×10^{6}	S	0	4.13×10 ¹	D	0
Pm-149	1.91×10^{5}	S	_	5. 31×10 ¹	Н	_
Pm-150	9.65×10 ³	S	_	2.68 \times 10 ⁰	Н	_
Pm-151	1.02×10^{5}	S	—	2.84 \times 10 ¹	Н	_
P m - 152	2. 46×10^{2}	S	_	4. 12×10^{0}	М	_
Pm-152m	4. 50×10^{2}	S	—	7.52 \times 10 ⁰	М	—
Pm-153	3.24×10^{2}	S	—	5. 25×10^{0}	М	—
Pm-154	1.68×10^{2}	S	_	2.68×10 ⁰	М	
Pm-154m	1.08×10^{2}	S		_	—	
P m - 155	3. 66×10^{1}	S		4. 15×10^{1}	S	
Pm-156	1.31×10^{1}	S	-	2. 67×10^{1}	S	-

補5添2-28

七日日本	OR I	G E N -	2	JAEA	−Data∕	Code
成別性物員の種類	<u> </u>	単位	半減期	水产用	単位	半減期
の理知	十個别	₩ 2	>30 日	十個刑	Ж З	>30 日
Pm-157	6.80×10 ¹	S	—	1.06×10^{1}	S	—
Pm-158	3. 80×10^{0}	S	—	4.80 \times 10 ⁰	S	—
Pm-159	4. 23×10^{0}	S	—	1. 47×10^{0}	S	—
Pm-160	9.96×10 ⁻¹	S	—	—	_	_
Pm-161	1.19×10^{0}	S	—	—	_	_
P m - 162	4. 00×10^{-1}	S	—	—	_	_
Sm-144	0	安定	—	0	安定	_
Sm-145	2.94 \times 10 ⁷	S	0	3. 40×10^{2}	D	0
Sm-146	7.00 \times 10 ¹	My	0	1.03×10^{8}	Y	0
Sm-147	3. 38×10^{18}	S	0	1.06×10^{11}	Y	0
Sm-148	2. 53 \times 10 ² ³	S	0	7.00×10 ¹⁵	Y	0
Sm-149	3. 15×10^{23}	S	0	2.00×10 ^{1 5}	Y	0
Sm-150	0	安定	—	0	安定	—
Sm-151	2.84 $\times 10^{9}$	S	0	9.00 \times 10 ¹	Y	0
Sm-152	0	安定	—	0	安定	—
Sm-153	1.68 $\times10^{5}$	S	—	4.63 \times 10 ¹	Н	_
Sm-154	0	安定	—	0	安定	—
Sm-155	1. 33×10^{3}	S	—	2. 23×10^{1}	М	—
Sm-156	3. 38×10^{4}	S	—	9. 40×10^{0}	Н	—
Sm-157	4. 80×10^{2}	S	—	4.82×10 ²	S	_
Sm-158	2. 64×10^{3}	S	—	5. 30×10^{0}	М	_
S m - 159	1. 62×10^{2}	S	_	1.14×10^{1}	S	
S m - 160	3. 49×10^{2}	S	_	9.60 \times 10 ⁰	S	_
Sm-161	1.29×10^{1}	S	_	4.80 \times 10 ⁰	S	_
S m - 162	1.96×10^{1}	S	-	2. 40×10^{0}	S	_
S m - 163	2. 56 \times 10 °	S	_	—	—	_
Sm-164	4. 25×10^{0}	S	_	_	—	_
S m - 165	9. 27×10^{-1}	S	-	_	—	_
E u 149	9. 31×10 ¹	d	0	9.31×10 ¹	D	0
E u - 150	3. 60×10^{1}	У	0	3. 69×10^{1}	Y	0
E u - 151	0	安定	_	0	安定	_
E u - 152	4. 29×10^{8}	S	0	1.35×10^{1}	Y	0
E u -152m	3. 36×10^{4}	S	—	9.31×10 ⁰	Н	_
E u - 153	0	安定	_	0	安定	—
E u - 154	2. 71×10^{8}	S	0	8.59×10 [°]	Y	0
E u - 155	1.57×10^{8}	S	0	4. 75×10^{0}	Y	0
E u - 156	1.31×10^{6}	S	—	1.52×10^{1}	D	—
E u - 157	5. 47×10^{4}	S	—	1.52×10^{1}	Н	—
E u - 158	2. 75×10^{3}	S		4.59×10 ¹	М	—
E u - 159	1.09×10^{3}	S		1.81×10 ¹	М	—
E u - 160	5. 10×10 ¹	S	-	3.80×10^{1}	S	_
E u - 161	4. 21×10^{1}	S	_	2. 60×10^{1}	S	_

補5添2-29

北方自己的历史	O R I G E N - 2		J A E A−Data∕Code			
の種類	半減期	単位 ※2	半減期 >30日	半減期	単位 ※3	半減期 >30 日
E u - 162	2. 70×10^{2}	S	—	1.06×10^{1}	S	_
E u - 163	1. 48×10^{1}	S	_	_	_	_
E u - 164	2. 17×10^{0}	S	_	_	_	_
E u - 165	2. 55×10^{0}	S	—	_	_	_
G d - 152	3. 41×10 ² ¹	S	0	1.08×10^{14}	Y	0
G d - 153	2. 09×10^{7}	S	0	2. 40×10^{2}	D	0
G d - 154	0	安定	_	0	安定	_
G d - 155	0	安定	_	0	安定	_
G d -155m	3. 10×10^{-2}	S	_	3. 20×10^{1}	MS	_
G d - 156	0	安定	_	0	安定	_
G d - 157	0	安定	_	0	安定	_
G d - 158	0	安定	_	0	安定	_
G d - 159	6. 70×10 ⁴	S	_	1.85×10^{1}	Н	_
G d - 160	0	安定	_	0	安定	_
G d - 161	2. 22×10^{2}	S	_	3. 66×10^{0}	М	_
G d - 162	6. 00 × 10 ²	S		8. 40×10^{0}	М	_
G d - 163	9. 28×10 ¹	S	_	6.80×10 ¹	S	_
G d 164	1. 30×10^{3}	S	_	4. 50 \times 10 ¹	S	_
G d - 165	1.00×10^{2}	S	_	1.03×10^{1}	S	_
T b -157	4.73×10 ⁹	S	0	7. 10×10^{1}	Y	0
T b -159	0	安定	_	0	安定	_
T b -160	6.25×10 ⁶	S	0	7.23 \times 10 ¹	D	0
T b -161	5. 98×10 ⁵	S	_	6.91×10 ⁰	D	_
T b - 162	4. 48×10^{2}	S	_	7.60 \times 10 ⁰	М	—
T b -162m	8.03×10 ³	S	_	_	_	_
T b - 163	1. 17×10^{3}	S	_	1.95×10^{1}	М	_
T b -163m	7.00 \times 10 ⁰	m	_	_	_	_
T b -164	1.80×10^{2}	S	_	3. 00×10^{0}	М	_
T b - 165	3. 28×10^{1}	S	_	2. 11×10^{0}	М	_
Dy-156	0	安定	_	0	安定	—
Dy-157	2.92 \times 10 ⁴	S	_	8.14×10 [°]	Н	—
D y -158	0	安定	—	0	安定	_
Dy -159	1. 44×10^{2}	d	\bigcirc	1.44×10^{2}	D	0
D y -160	0	安定	_	0	安定	_
Dy-161	0	安定	—	0	安定	_
D y -162	0	安定	—	0	安定	_
D y -163	0	安定	—	0	安定	—
D y -164	0	安定	_	0	安定	
D y -165	8.46×10 ³	S	_	2. 33×10^{0}	Н	_
D y -165m	7.54 \times 10 ¹	S		1.26×10^{0}	М	_
D y -166	2.93 \times 10 ⁵	S		8.16×10 ¹	Н	_
H o - 163	3. 30×10^{1}	у	0	4.57 \times 10 ³	Y	0

长时外历	ORI	G E N —	2	JAEA	−Data∕(Code
加利性初員の種類	水学相	単位	半減期	卡尔里	単位	半減期
の理知	十個别	₩ 2	>30 日	十個别	₩ 3	>30 日
H o -165	0	安定	_	0	安定	—
H o -166	9.65 \times 10 ⁴	S	_	2. 68×10^{1}	Н	_
H o -166m	3. 79 \times 10 ¹ ⁰	S	0	1. 20×10^{3}	Y	0
E r -162	0	安定	_	0	安定	—
E r -163	7. 50 \times 10 ¹	m	_	7. 50 \times 10 ¹	М	_
E r -164	0	安定	_	0	安定	_
E r -165	1.03×10^{1}	h	_	1.04×10^{1}	Н	—
E r -166	0	安定	_	0	安定	—
E r -167	0	安定	_	0	安定	_
E r -167m	2. 30×10^{0}	s	_	2. 27×10^{0}	S	—
E r -168	0	安定	_	0	安定	—
E r -169	9. 40×10^{0}	d	_	9. 39×10^{0}	D	_
E r -170	0	安定	_	0	安定	_
E r -171	2. 71×10^{4}	S	_	7.52 \times 10 ⁰	Н	_
E r -172	4. 90 \times 10 ¹	h	_	4.93×10^{1}	Н	_
T m - 169	0	安定	_	0	安定	_
T m - 170	1.11×10 ⁷	S	0	1.29×10^{2}	D	0
Tm-170m	4. 10×10^{-6}	S	_	—	_	_
Tm-171	6.06×10 ⁷	S	0	1.92×10^{0}	Y	0
T m - 172	6. 36×10^{1}	h	_	6. 36×10^{1}	Н	—
T m - 173	8.24×10 ⁰	h	_	8.24×10 ⁰	Н	_
Y b -168	0	安定	_	0	安定	_
Y b −169	2. 77 \times 10 ⁶	S	0	3. 20×10^{1}	D	0
Y b −170	0	安定	_	0	安定	_
Y b −171	0	安定	_	0	安定	—
Y b −172	0	安定	—	0	安定	—
Y b −173	0	安定	—	0	安定	—
Y b −174	0	安定	—	0	安定	—
Y b −175	3. 62×10^{5}	S	—	4. 19×10^{0}	D	—
Y b −175m	6. 70 × 10 ⁻²	S	_	6.82 \times 10 ¹	MS	—
Y b −176	0	安定	_	0	安定	—
Y b −177	1.90×10^{0}	h	—	1.91×10^{0}	Н	—
L u - 175	0	安定	_	0	安定	—
L u -176	3. 00×10^{1}	Gy	0	3. 76 \times 10 ¹⁰	Y	0
L u -176m	3. 69×10^{0}	h	—	3. 66×10^{0}	Н	—
L u -177	5.80 \times 10 ⁵	S	_	6.65 \times 10 ⁰	D	—
L u -177m	1. 55 \times 10 2	d	0	1.60 \times 10 ²	D	0
H f -174	0	安定	\bigcirc^{*1}	2.00×10 ^{1 5}	Y	0
H f -175	7.00 \times 10 ¹	d	0	7.00 \times 10 ¹	D	0
H f -176	0	安定		0	安定	
H f -177	0	安定	_	0	安定	
H f −178	0	安定		0	安定	

補5添2-31

长船桥桥	OR I	G E N - 2	2	JAEA	−Data⁄(Code
成別性物員の種類	水产品	単位	半減期	不产用	単位	半減期
の理知	十個刑	₩ 2	>30 日	十個别	₩ 3	>30 日
H f -178m	4.00 \times 10 ⁰	S	_	4. 00×10^{0}	S	_
H f -179	0	安定	_	0	安定	—
H f -179m	1.86×10^{1}	S	_	1.87×10^{1}	S	—
H f -180	0	安定	_	0	安定	_
H f -180m	5. 50 \times 10 °	h	_	5. 50 \times 10 °	Н	_
H f -181	3. 66×10^{6}	S	0	4. 24×10^{1}	D	0
H f -182	9.00×10 ⁰	My	0	8.90 \times 10 ⁶	Y	0
T a -180	1.60×10^{13}	у	0	8.15×10 ⁰	Н	—
T a -181	0	安定	_	0	安定	_
T a -182	9.94×10 ⁶	S	0	1.14×10^{2}	D	0
T a -182m	1.65×10^{1}	m	_	2.83 \times 10 ²	MS	_
T a -183	5. 10×10 [°]	d	_	5. 10×10^{0}	D	_
W-180	0	安定	_	0	安定	_
W-181	1. 05×10^{7}	S	0	1.21×10^{2}	D	0
W-182	0	安定	—	0	安定	—
W-183	0	安定	—	0	安定	—
W-183m	5. 20×10^{0}	S	_	5. 20×10^{0}	S	—
W-184	0	安定	—	0	安定	—
W-185	7.51×10 ¹	d	0	7. 51 \times 10 ¹	D	0
W-185m	1.67×10^{0}	m	_	1.67×10^{0}	М	_
W-186	0	安定	_	0	安定	_
W-187	8.60×10 ⁴	S	_	2. 37×10^{1}	Н	
W-188	6.00×10 ⁶	S	0	6. 98 \times 10 ¹	D	0
W-189	1.15×10^{1}	m	_	1.07×10^{1}	М	_
R e	0	安定	_	0	安定	_
R e	9.06×10 ¹	h	_	3. 72×10^{0}	D	_
R e	5.00×10 ¹	Gy	0	4. 35×10^{10}	Y	0
R e	6.11×10 ⁴	S	_	1. 70×10^{1}	Н	_
R e -188m	1.87×10^{1}	m	_	1.86 \times 10 ¹	М	_
R e - 189	2. 43×10^{1}	h	_	2. 43×10^{1}	Н	—
O s -184	0	安定	_	0	安定	—
O s -185	9. 40×10^{1}	d	0	9. 36×10^{1}	D	0
O s -186	0	安定	$\bigcirc^{\times 1}$	2.00×10 ¹⁵	Y	0
O s -187	0	安定	—	0	安定	—
O s -188	0	安定	_	0	安定	—
O s -189	0	安定	_	0	安定	—
O s -190	0	安定	—	0	安定	—
O s -190m	9.90 \times 10 ⁰	m	_	9.90 \times 10 ⁰	М	_
O s -191	1.33×10^{6}	S	_	1.54×10^{1}	D	_
O s -191m	1.30×10^{1}	h	_	1.31×10^{1}	Н	
O s -192	0	安定	_	0	安定	—
O s -193	3. 10×10^{1}	h	_	3. 01×10^{1}	Н	_

補5添2-32

长时外历	OR I	G E N - 2	2	JAEA	−Data⁄(Code
成別性物員の種類	水产用	単位	半減期	水产相	単位	半減期
の理知	十個州	₩ 2	>30 日	十個别	Ж З	>30 日
O s -194	6.00 \times 10 ⁰	у	0	6.00 \times 10 ⁰	Y	0
I r -191	0	安定	—	0	安定	—
I r -192	6. 40×10^{6}	S	0	7. 38×10^{1}	D	0
I r -192m	2. 41×10^{2}	у	0	1. 45×10^{0}	М	—
I r -193	0	安定	_	0	安定	—
I r -194	6.89 \times 10 ⁴	S	_	1.93×10^{1}	Н	—
I r -194m	3. 20×10^{-2}	S	$\bigcirc^{\%1}$	1. 71×10^{2}	D	0
P t −190	6. 00×10^{2}	Gy	0	6. 50 \times 10 ^{1 1}	Y	0
P t -191	3. 00×10^{0}	d	_	2.80 \times 10 ⁰	D	—
P t -192	0	安定	_	0	安定	—
P t -193	5. 00×10^{2}	у	0	5. 00×10^{1}	Y	0
P t −193m	4. 30×10^{0}	d	_	4. 33×10^{0}	D	_
P t -194	0	安定	_	0	安定	_
P t -195	0	安定	_	0	安定	_
P t -195m	2. 71×10^{5}	S	_	4. 01×10^{0}	D	—
P t −196	0	安定	_	0	安定	—
P t −197	1.80×10^{1}	h	_	1.99×10^{1}	Н	_
P t −197m	8.00 \times 10 ¹	m	_	9. 54×10^{1}	М	_
P t −198	0	安定	_	0	安定	—
P t -199	3. 00×10^{1}	m	_	3. 08×10^{1}	М	—
P t -199m	1.41×10^{1}	S	_	1.36×10^{1}	S	—
A u -197	0	安定	_	0	安定	_
A u -198	2.70 \times 10 ⁰	d	_	2. 70×10^{0}	D	—
A u -199	2. 71×10^{5}	S	_	3. 14×10^{0}	D	_
A u -200	4.84×10 ¹	m	_	4.84 \times 10 ¹	М	_
Н д - 196	0	安定	_	0	安定	_
Hg-197	6. 50×10 ¹	h	_	6. 41×10 ¹	Н	_
Hg-197m	2. 40×10^{1}	h	_	2. 38×10^{1}	Н	—
Hg-198	0	安定	_	0	安定	—
Н д - 199	0	安定	_	0	安定	_
Hg-199m	4. 30×10^{1}	m	_	4. 27×10^{1}	М	_
H g -200	0	安定	_	0	安定	_
H g -201	0	安定	_	0	安定	_
H g -202	0	安定	_	0	安定	
H g -203	4.03×10 ⁶	S	0	4. 66×10^{1}	D	0
H g -204	0	安定	_	0	安定	_
H g -205	5. 50 \times 10 °	m	_	5. 14×10^{0}	М	_
T 1 - 203	0	安定	_	0	安定	_
T 1 - 204	3.80 \times 10 ⁰	у	0	3. 78×10^{0}	Y	0
T 1 - 205	0	安定	—	0	安定	—
T 1 - 206	4. 19×10^{0}	m	—	4. 20×10^{0}	М	—
T 1 - 207	2.86 \times 10 ²	S	_	4. 77 \times 10 ⁰	М	_

補5添2-33

七日十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	OR I	$G \in N - I$	2	J A E A	−Data⁄0	Code
の種類	半減期	単位 ※2	半減期 >30日	半減期	単位 ※3	半減期 >30 日
T 1 - 208	1.84×10^{2}	S	_	3.05×10^{0}	М	_
T 1 - 209	1.32×10^{2}	s	_	2.20 \times 10 ⁰	М	
P b −204	1.40×10^{17}	y	0	1.40×10^{17}	Y	0
P b −205	3.00×10^{1}	My	0	1.73×10^{7}	Y	0
P b −206	0	安定	_	0	安定	_
P b −207	0	安定	_	0	安定	_
P b −208	0	安定	_	0	安定	_
P b -209	3. 30×10^{0}	h	_	3.25×10^{0}	Н	_
P b −210	7.04 \times 10 ⁸	S	0	2. 22×10^{1}	Y	0
P b −211	2. 17×10^{3}	S	_	3.61×10^{1}	М	_
P b −212	3.83×10^{4}	S	_	1.06×10^{1}	Н	_
P b −214	1.61×10^{3}	S	_	2.68 \times 10 ¹	М	_
B i -208	3. 68×10^{2}	ky	0	3. 68×10^{5}	Y	0
B i -209	0	安定	\odot^{*1}	1.90×10^{19}	Y	0
B i -210	4. 33×10^{5}	S	_	5. 01×10^{0}	D	_
B i -210m	3. 00×10^{0}	My	0	3.04×10^{6}	Y	0
B i -211	1.28×10^{2}	S	_	2. 14×10^{0}	М	_
B i -212	3. 63×10^{3}	S	_	6.06×10^{1}	М	_
B i -213	2. 74×10^{3}	S	_	4.56 \times 10 ¹	М	—
B i -214	1. 19×10 ³	S	_	1.99×10^{1}	М	_
P o -210	1.20×10^{7}	S	0	1.38×10^{2}	D	0
Ро-211	5. 60×10^{-1}	S	_	5. 16×10^{-1}	S	_
P o -211m	2. 50 \times 10 ¹	S	_	2. 52 × 10 ¹	S	_
P o -212	3. 00×10^{-7}	S	_	2.99×10^{-1}	US	_
Ро—213	4. 20×10^{-6}	S	_	4. 20×10^{0}	US	_
Р о —214	1.64×10^{-4}	S	_	1.64×10^{2}	US	_
Ро—215	1. 78 \times 10 ⁻³	S	_	1. 78×10^{0}	MS	_
Р о —216	1.50×10^{-1}	S	_	1. 45×10^{-1}	S	_
Р о —218	1.83×10^{2}	S	_	3. 10×10^{0}	М	_
A t -217	3.23×10^{-2}	S	_	3.23×10^{1}	MS	_
R n - 218	3. 50 \times 10 ⁻²	S	_	3. 50×10^{1}	MS	_
R n -219	3. 96 \times 10 0	S	_	3.96 \times 10 ⁰	S	_
R n - 220	5.56×10 ¹	S	_	5. 56 \times 10 ¹	S	_
R n - 222	3. 30×10^{5}	S	_	3. 82×10^{0}	D	_
F r -221	2. 88×10^{2}	S	_	4.90×10^{0}	М	_
F r -223	1. 31×10 ³	S	_	2. 20×10^{1}	М	_
R a -222	3.80×10 ¹	S	_	3. 62×10^{1}	S	_
R a -223	9.88×10 ⁵	S	_	1.14×10^{1}	D	_
R a -224	3. 16×10^{5}	S	_	3.66×10 ⁰	D	_
R a -225	1.28×10^{6}	S	_	1. 49×10^{1}	D	_
R a -226	5. 05×10^{10}	S	0	1. 60×10^{3}	Y	0
R a -228	6. 70×10^{0}	у	0	5. 75×10^{0}	Y	0

補5添2-34

齿针肿肠质	O R I G E N - 2		JAEA-Data/Code			
の種類	半減期	単位 ※2	半減期 >30日	半減期	单位 ※3	半減期 >30 日
A c -225	8.64×10 ⁵	S	_	1.00×10^{1}	D	_
A c -227	6.87×10 ⁸	s	0	2. 18×10^{1}	Y	0
A c -228	2. 21×10^{4}	s	_	6. 15×10^{0}	Н	_
Th-226	3. 10×10^{1}	m	_	3. 06×10^{1}	М	_
T h -227	1.62 $ imes$ 10 6	s	_	1.87×10^{1}	D	—
T h - 228	6. 04×10^{7}	S	0	1.91×10^{0}	Y	0
Th-229	2. 32×10^{11}	S	0	7. 34×10^{3}	Y	0
Th-230	2. 43×10^{12}	S	0	7.54 \times 10 ⁴	Y	0
Th-231	9. 19×10^{4}	S	—	2. 55×10^{1}	Н	—
Th-232	4. 43×10^{17}	S	0	1.41×10^{10}	Y	0
Th-233	2. 21×10^{1}	m	_	2. 23×10^{1}	М	_
Th-234	2. 08×10^{6}	S	_	2. 41×10^{1}	D	_
P a −231	1.03×10^{12}	S	0	3.28×10^{4}	Y	0
P a −232	1.13×10 ⁵	S	_	1.32×10^{0}	D	_
P a -233	2. 33×10^{6}	S	_	2. 70×10^{1}	D	—
P a -234	2. 41×10^{4}	S	_	6. 70×10^{0}	Н	_
P a -234m	7. 02×10^{1}	S	_	1.16×10^{0}	М	—
P a −235	2. 41×10^{1}	m	_	2. 41×10^{1}	М	_
U-230	2. 08×10^{1}	d	_	2. 08×10^{1}	D	_
U-231	3. 63×10^{5}	s	_	4. 20×10^{0}	D	_
U-232	2. 27×10^{9}	S	0	6.89×10 ¹	Y	0
U-233	5. 00×10^{12}	s	0	1. 59 \times 10 ⁵	Y	0
U - 234	7.72 \times 10 ¹²	s	0	2. 46×10^{5}	Y	0
U - 235	2. 22×10^{16}	S	0	7.04 \times 10 ⁸	Y	0
U-236	7. 39 \times 10 ¹ ⁴	s	0	2. 34×10^{7}	Y	0
U - 237	5.83 $ imes$ 10 5	S	_	6. 75×10^{0}	D	_
U - 238	1. 41×10^{17}	s	0	4.47×10 ⁹	Y	0
U-239	1. 41×10^{3}	S	_	2. 35×10^{1}	М	_
U - 240	5. 08×10^{4}	S	_	1.41×10^{1}	Н	—
U - 241	1.00 \times 10 ⁰	S	—	—	—	—
N p -235	3. 42×10^{7}	S	0	3.96 \times 10 ²	D	0
N p -236	3. 63×10^{12}	S	0	1.54×10^{5}	Y	0
N p -236m	8. 10×10^{4}	S	—	—	—	—
N p -237	6. 75×10^{13}	S	0	2. 14×10^{6}	Y	0
N p −238	1.83 $ imes$ 10 5	S	_	2. 12×10^{0}	D	—
N p −239	2. 04×10^{5}	S	—	2. 36×10^{0}	D	—
N p -240	3. 90 \times 10 ³	S	_	6.19×10 ¹	М	—
N p -240m	4. 44×10^{2}	S	_		_	_
N p -241	1.60×10^{1}	m		1.39×10^{1}	М	_
P u −236	9. 00×10^{7}	S	0	2.86 \times 10 ⁰	Y	0
P u -237	4.56×10 ¹	d	0	4. 52×10^{1}	D	0
P u - 238	2. 77×10^{9}	S	\bigcirc	8. 77×10^{1}	Y	\bigcirc

補5添2-35

七日日本	OR I	G E N -	2	JAEA	−Data∕(Code
成別性物質	17. 沙井 廿日	単位	半減期	いた かま 日 日	単位	半減期
の推測	十個别	₩ 2	>30 日	十個别	₩ 3	>30 日
P u −239	7.59 \times 10 ¹¹	S	0	2. 41×10^{4}	Y	0
P u −240	2. 06×10^{11}	S	0	6. 56 \times 10 ³	Y	0
P u −241	4. 54 \times 10 ⁸	S	0	1. 43×10^{1}	Y	0
P u −242	1.22×10^{13}	S	0	3. 74×10^{5}	Y	0
P u −243	1. 78×10^{4}	S	_	4.96 \times 10 ⁰	Н	_
P u −244	2. 61×10^{15}	S	0	8.11×10 ⁷	Y	0
P u −245	1.06 \times 10 ¹	h	—	1. 05×10^{1}	Н	_
P u −246	1.09 \times 10 ¹	d	_	1.08×10^{1}	D	—
Am-239	4. 28×10^{4}	S	_	1. 19×10^{1}	Н	_
Am-240	1.83 $ imes$ 10 5	S	_	5.08 \times 10 ¹	Н	—
Am-241	1. 36×10^{10}	S	0	4. 33×10^{2}	Y	0
Am-242	5. 77 \times 10 4	S	_	1.60×10^{1}	Н	—
Am-242m	4.80 \times 10 ⁹	S	0	1. 41×10^{2}	Y	0
Am-243	2. 33×10^{11}	S	0	7. 37×10^{3}	Y	0
Am-244	1.01×10^{1}	h	_	1.01×10^{1}	Н	_
Am-244m	2. 60×10^{1}	m	_	2. 60×10^{1}	М	—
Am-245	2.07 \times 10 ⁰	h	_	2.05 \times 10 ⁰	Н	—
Am-246	2. 50 \times 10 ¹	m	_	3. 90 \times 10 ¹	М	—
Cm-241	3. 60×10^{1}	d	0	3. 28×10^{1}	D	0
C m - 242	1. 41×10^{7}	S	0	1.63×10^{2}	D	0
Cm-243	8.99 \times 10 ⁸	S	0	2.91×10 ¹	Y	0
C m - 244	5. 72×10^{8}	S	0	1.81×10^{1}	Y	0
C m - 245	2.68×10 ^{1 1}	S	0	8. 50 \times 10 ³	Y	0
C m - 246	1. 49×10^{11}	S	0	4. 76 \times 10 ³	Y	0
C m - 247	4. 92 \times 10 ¹ ⁴	S	0	1.56 \times 10 ⁷	Y	0
C m - 248	1.07 \times 10 ¹³	s	0	3. 48×10^{5}	Y	0
C m - 249	3. 85×10^{3}	S		6. 42×10^{1}	М	_
C m - 250	1. 74×10^{1}	ky	0	9. 70 \times 10 ³	Y	0
C m - 251	1.00 \times 10 ⁰	s		1.68×10^{1}	М	
B k -249	2. 77 \times 10 ⁷	s	0	3. 20×10^{2}	D	0
B k - 250	1. 16×10^{4}	s	_	3. 21×10^{0}	Н	_
B k - 251	5. 70×10 ¹	m	_	5. 56 \times 10 ¹	М	—
C f -249	1.11×10 ¹⁰	S	0	3. 51×10^{2}	Y	0
C f -250	4.13×10 ⁸	S	0	1.31×10^{1}	Y	0
C f -251	2.83 \times 10 ¹⁰	S	0	8.98×10 ²	Y	0
C f -252	8. 33×10 ⁷	S	0	2.65 \times 10 ⁰	Y	0
C f -253	1.54×10^{6}	S	_	1. 78×10^{1}	D	—
C f -254	6.05×10 ¹	d	0	6.05×10 ¹	D	0
C f -255	1. 50 \times 10 °	h		8.50×10 ¹	М	—
E s -253	2. 05×10^{1}	d	_	2. 05×10^{1}	D	—
E s -254	2. 76×10^{2}	d	0	2. 76×10^{2}	D	0
E s -254m	3.93×10^{1}	h	-	3. 93×10^{1}	Н	-

補5添2-36

长卧卧枥厨	O R I G E N - 2			J A E A−Data∕Code		
の新知り	七 月 王	単位	半減期	米 津期	単位	半減期
の加里浜	十個旁	₩ 2	>30 日	十八列	※ 3	>30 日
E s - 255	3.90×10^{1}	d	0	3.98×10^{1}	D	0

- ※1「◎」は、「ORIGEN-2」コードの附属ライブラリによる半減期では抽出されなかったものの、「JAEA-Data/Code 2012-014 Table of Nuclear Data (JENDL/TND-2012)」の半減期 30 日以上で抽出された核種 (17 種類)
- ※2「ORIGEN-2」の単位表記 s:秒,m:分,h:時,d:日,y:年, ky:千年,My:100万年,Gy:10億年
- ※3「JAEA-Data/Code」の単位表記 S:秒,US:マイクロ秒,MS:ミ
 リ秒,M:分,H:時,D:日,Y:年

	核種	確認結果
1	N a -22	生成量が少ない※1
2	A r −37	希ガス核種*2
3	A r -39	希ガス核種*2
4	A r -42	希ガス核種 ^{**2}
5	Са-48	生成されない**3
6	V - 49	生成量が少ない※1
7	V - 50	生成量が少ない※4
8	C r -50	生成されない**3
9	S e -82	生成されない**3
10	K r -78	生成されない**3
11	K r -81	希ガス核種*2
12	K r -85	希ガス核種*2
13	Z r -96	生成されない**3
14	N b -91	生成量が少ない※1
15	N b -92	生成量が少ない**10
16	Mo -100	生成されない**3
17	Тс-97	生成量が少ない※6
18	Т с —97m	生成量が少ない※7
19	C d -113	生成されない**3
20	C d -116	生成されない**3
21	T e −123	生成量が少ない*4
22	T e −128	生成されない**3
23	T e −130	生成されない**3
24	I - 125	希ガス親核種(X e -125)の娘核種 ^{※2}
25	X e -127	希ガス核種*2
26	X e -136	生成されない**3
27	C e -142	生成量が少ない*5
28	Pm−146	生成量が少ない*7
29	Sm-149	生成量が少ない*5
30	N d -150	生成されない ^{※3}
31	E u -149	生成量が少ない*7
32	E u -150	生成量が少ない ^{**8}

第2表 44核種の生成可能性等の確認結果

補5添2-38

	核種	確認結果
33	H f −174	生成されない**3
34	O s -185	生成量が少ない※6
35	O s -186	生成されない**3
36	I r -194m	生成量が少ない**11
37	В і — 209	生成されない**3
38	N p -235	生成量が少ない ^{※9}
39	P u −237	生成量が少ない**9
40	Cm - 241	生成量が少ない**9
41	B k −249	生成量が少ない**9
42	C f -254	生成量が少ない**9
43	E s -254	生成量が少ない**9
44	E s -255	生成量が少ない**9

- ※1 原子核反応で生成するが、高エネルギー中性子による反応であり、親核 種の核分裂中性子に対する反応断面積が1mb以下である。
- ※2 希ガス核種であり、廃棄物中に有意に残留することはない。
- ※3「ORIGEN-2」附属ライブラリでは安定核種であり、生成されない。
- ※4 天然放射性核種であり、天然における同位体存在比が1%以下である。
- ※5 同位体存在比の高い同一元素があり、相対的に生成量は少ない。
- ※6 (n, γ) 反応で生成するが,親核種の同位体存在比が少ない。
- ※7 核分裂により生成されるが、その収率がCs-137(6.2%)と比較して 10 桁以上低い。
- ※8 同一元素から生成されるEu-152は、(n, γ)反応で生成し、熱中性 子に対する反応断面積が 10³オーダーで生成量が多く、相対的にEu-150の生成量は少ない。
- ※9 ウランの多重中性子捕獲及び崩壊により生成されるが、通常生成される Pu-239、Pu-240、Pu-241、Pu-242、Am-241、Am-242、 Am-242m、Cm-242、Cm-243、Cm-244、それらのα崩壊核種で

補5添2-39

あるU-235, U-236, U-238, Np-237, Pu-238, Pu-239, P u-240 及びこれらの核種の崩壊により生成する核種には含まれていな いため, その生成量は超ウラン核種の中で少ない。

- ※10 Mo-92の(n, p)反応で生成するが、共鳴領域中性子に対する反応断面積及び核分裂中性子に対する反応断面積が比較的小さいため、生成量が少ない。
- ※11 半減期が1年未満の核種であるため、生成量が少ない。

	放射性物質の種類
1	H-3
2	B e -10
3	C-14
4	S i -32
5	S - 35
6	C 1 - 36
7	K-40
8	C a -41
9	C a -45
10	S c - 46
11	M n - 54
12	F e -55
13	F e -59
14	С о — 58
15	C o -60
16	N i -59
17	N i -63
18	Z n -65
19	S e -75
20	S e -79
21	R b - 87
22	S r -85
23	S r -89
24	S r -90

第3表 廃棄物に含まれていると推定される放射性物質(150核種)
	放射性物質の種類
25	Y-91
26	Z r -93
27	Z r -95
28	N b -93m
29	N b -94
30	N b -95
31	Мо-93
32	Тс-98
33	Тс-99
34	R u - 103
35	R u - 106
36	R h −102
37	P d −107
38	A g -108m
39	Ag-110m
40	C d -109
41	C d -113m
42	C d -115m
43	I n - 114m
44	I n 115
45	S n 113
46	S n - 119m
47	S n -121m
48	S n - 123
49	S n - 126
50	S b -124
51	S b -125
52	T e -121m
53	T e −123m
54	T e -125m
55	T e -127m
56	T e -129m
57	I -129
58	C s -134
59	C s -135
60	C s -137
61	B a -133
62	L a -137

補5添2-41

	放射性物質の種類			
63	L a -138			
64	Се—139			
65	Се-141			
66	Се—144			
67	N d 144			
68	Pm-145			
69	Pm-147			
70	P m−148m			
71	Sm-145			
72	Sm-146			
73	Sm - 147			
74	Sm-148			
75	Sm-151			
76	E u - 152			
77	E u - 154			
78	E u - 155			
79	G d - 152			
80	G d −153			
81	T b -157			
82	T b -160			
83	D y -159			
84	Но—163			
85	Но—166m			
86	T m - 170			
87	T m - 171			
88	Y b −169			
89	L u - 176			
90	L u - 177m			
91	H f −175			
92	H f -181			
93	H f -182			
94	Та—180			
95	Та—182			
96	W-181			
97	W-185			
98	W-188			
99	R e -187			
100	O s -194			

	放射性物質の種類
101	I r -192
102	I r -192m
103	P t -190
104	P t −193
105	Н g - 203
106	T 1 - 204
107	P b −204
108	P b −205
109	P b −210
110	В і — 208
111	В і —210m
112	Р о —210
113	R a -226
114	R a -228
115	A c -227
116	T h - 228
117	T h - 229
118	T h - 230
119	T h - 232
120	P a -231
121	U-232
122	U-233
123	U-234
124	U - 235
125	U - 236
126	U-238
127	N p -236
128	N p -237
129	P u −236
130	P u −238
131	P u −239
132	P u - 240
133	P u −241
134	P u - 242
135	P u - 244
136	Am-241
137	A m - 242m
138	Am - 243

補5添2-43

	放射性物質の種類
139	Cm - 242
140	Cm - 243
141	Cm - 244
142	C m - 245
143	Cm - 246
144	Cm - 247
145	C m - 248
146	C m - 250
147	C f -249
148	C f -250
149	C f -251
150	C f -252

5 主要な放射性物質の選定に用いる放射能量の設定

5.1 廃棄物の放射能濃度及び放射能量の設定の考え方

廃棄物には,廃棄物の種類として金属類及びコンクリート類があり,汚染の形態により放射化放射性物質と汚染放射性物質に分けられる。一部の放射 化放射性物質については,表面の汚染を考慮して汚染放射性物質の寄与を追 加している。放射能濃度の設定方法の分類を第4表に示す。

廃棄物の種類	汚染形態の分類	物量(t)
公尾粒	放射化放射性物質	約 600
並周知	汚染放射性物質	約 5,500
コンクリート海	放射化放射性物質	約 9,500
コンクリート独	汚染放射性物質	約 400

第4表 汚染形態の分類及び物量

放射性物質の種類ごとの放射能量の設定フローを第3図に示す。東海発電 所の廃止措置に伴い発生する廃棄物は,「東海発電所廃止措置計画認可申請

書」(令和3年3月31日認可,以下「廃止措置計画書」という。)において, 残存放射性物質を評価している。

この残存放射性物質の評価を用いて,原子炉停止からの期間を考慮して原 子炉停止 20 年後に減衰補正し,機器ごとに放射性物質の全ての放射能濃度 (以下「全放射能濃度」という。)を設定している。

廃棄物には,廃止措置計画書の中でL3と区分した機器に加えて,廃止措 置中に新たに設置する解体工事用機器及び原子炉の運転中に発生した廃棄物 が含まれる。

廃止措置中に新たに設置する解体工事用機器の放射能濃度は、事業規則に 定められている放射性物質の濃度上限値を超えない値として、解体対象機器 の大部分がガス系金属汚染であることを踏まえて、汚染放射性物質のガス系 金属の組成に基づいて算定している。

運転中に発生した廃棄物の放射能濃度は,廃棄物発生時に測定した容器の 外部表面線量から算定されたCo-60の放射能量又は外部表面線量が測定 下限以下のものは実廃棄物のサンプルから取得したCo-60の分析データ を用いて設定した放射能濃度から,発生年度ごとに設定している。

機器ごとの放射性物質の種類ごとの放射能濃度に,廃棄物情報の機器ごと の重量を乗じて,機器ごとの放射性物質の種類ごとの放射能量を算定し,金 属類とコンクリート類に分類して,放射性物質の種類ごとに積算すること で,放射能量を設定している。

第3図 廃棄物の放射能量の設定フロー

5.2 放射化放射性物質の放射能濃度の設定

廃止措置計画書における放射化放射性物質の放射能濃度の設定フローを第 4 図に示す。放射化計算に必要な中性子フルエンス率分布は、計算により評 価している。標準的中性子スペクトルで作成された群定数ライブラリ「VI TAMIN-C」と一次元Sn輸送計算コード「ANISN」を用いて多次 元Sn輸送計算用縮約群定数を求め、この群定数を用いて、二次元Sn輸送 計算コード「DOT3.5」によって中性子フルエンス率分布を求める。また、 中性子ストリーミングの影響が大きい箇所(ダクトエンクロージャ領域)の 評価には、精度を向上させるため三次元Sn輸送計算コード「TORT」を

使用している。

なお,計算結果は原子炉運転中の金属箔による測定結果と比較し,妥当性 を確認している。中性子フルエンス率測定位置を第5図に示す。

また,生体遮へい体コンクリート中の中性子フルエンス率計算に影響の大 きい水素の存在量を把握するため,一次生体遮へい体の水分量を分析し,中 性子フルエンス率計算に用いている。

放射化放射性物質の放射能濃度の計算には,放射性核種生成崩壊計算コード「ORIGEN-2」を使用している。当該コードのデータベースとなる放射化断面積については,東海発電所原子炉の中性子スペクトルを用いて1群への縮約を行っている。

当該コードの入カデータである中性子照射履歴は、原子炉の運転履歴から 設定した。この運転履歴は、実運転履歴に基づき試運転から最終停止までを 実際の稼働実績で区分し、計算にはそれら各期間の平均熱出力を用いている。 また、同じく入力データとなる構成材は、金属(ステンレス鋼、炭素鋼、ア ルミニウム材)、コンクリートである。これらの構成材中に存在し、重要な放 射性物質を生成する親元素の存在量を、分析値と文献を基に設定している。 放射化放射性物質の放射能濃度の計算に用いた構成材の元素組成の設定値を 第5表に示す。

なお,放射化放射性物質の放射能濃度の計算結果と原子炉内の黒鉛,炭素 鋼照射用試験片及び生体遮へい体コンクリートの放射能分析による測定結果 を比較し,炭素鋼,生体遮へい体コンクリートについては,計算結果が測定 結果より低くなる傾向があるため,それぞれの計算結果が測定結果を上回る ように保守的に設定している。

第4図 放射化放射性物質の放射能濃度の設定フロー

第5図 中性子フルエンス率測定位置(ダクトエンクロージャ領域)

元素	ステンレス鋼 (wt%)	炭素鋼 (wt%)	炭素鋼(鉄 筋)(wt%)	コンクリート (wt%)	アルミニウム (wt%)
Н	_	_	_	8.3×10^{-1}	_
Li	6.0×10^{-6}	5.0×10^{-6}	4.0×10^{-6}	2.0×10^{-3}	1.0×10^{-5}
Ве	1.0×10^{-5}	1.0×10^{-5}	1.0×10^{-5}	9.0×10 ⁻⁵	3.0×10^{-7}
В	6.1 \times 10 ⁻⁴	1.0×10^{-3}	1.0×10^{-3}	2.7×10 ⁻³	1.0×10^{-3} *2
С	6. 1×10^{-2}	9.1 \times 10 ⁻²	1.5×10^{-1}	2.9×10^{-1}	9.0×10 ⁻⁵
Ν	2.7×10 ⁻¹	5.7 $\times 10^{-3}$	4.2×10^{-3}	3.5×10^{-2}	5.0 $\times 10^{-4}$
Ο	_	1.8×10^{-3}	2.0×10^{-3}	4.7 $\times 10^{1}$	2.0×10^{-3} *2
F	_	_	_	3.4×10^{-2}	_
N a	9.7×10 ⁻⁴ ^{**1}	2.0×10^{-5}	2.0×10 ⁻⁵	1.4×10^{0}	$2.0 \times 10^{-5 \times 2}$
Мg	4.9×10^{-4}	6.0×10^{-4}	5.0 $\times 10^{-4}$	7.5×10^{-1}	2.9×10^{-3}
A 1	8.6×10 ⁻²	2.6×10^{-2}	5. 0×10^{-3}	5. $3 \times 10^{\circ}$	9.6×10 ¹
S i	7.0×10^{-1}	2.7×10^{-1}	2.2×10^{-1}	3.0×10^{1}	8.3 $\times 10^{-2}$
Р	4. 3×10^{-2}	6.5×10^{-3}	1.1×10^{-2}	2.9×10^{-2}	4.3×10^{-5}
S	8.9×10^{-3}	2.4×10^{-2}	1.6×10^{-2}	2.0×10^{-1}	3.1×10^{-4}
C 1	3.0×10^{-3}	1.0×10^{-3}	1.5×10^{-3}	6. 0×10^{-3}	1.0×10^{-3}
Κ	1.0×10^{-4}	4.9×10^{-6}	9.0×10 ⁻⁷	$1.7 \times 10^{\circ}$	1.2×10^{-6}
Са	1.5×10^{-4}	2.8×10^{-6}	3.0×10^{-5}	8.3×10 ⁰	1.6×10^{-5}
S c	1.0×10^{-5}	1.7×10^{-6}	1.0×10^{-7}	9.3 $\times 10^{-4}$	7.4×10^{-6}
Ті	5.3×10^{-1}	6.1 $\times 10^{-4}$	4.6×10^{-4}	2.2×10^{-1}	7.2×10^{-3}
V	4.6×10^{-2} %1	4.0×10^{-4}	5.0 $\times 10^{-4}$	1.5×10^{-2}	5.0×10^{-4} **2
Сr	1.8×10^{1}	1.3×10^{-1}	4.5 $\times 10^{-2}$	2.8×10^{-3}	1.2×10^{-3}
Mn	1.4×10^{0}	1.4×10^{0}	4.9×10^{-1}	4. 4×10^{-2}	3.8×10^{-3}
Fе	7.1×10^{1}	9.7×10 ¹	9.8×10 ¹	$2.2 \times 10^{\circ}$	2.8×10^{-1}
Со	1.8×10^{-1}	1.4×10^{-2}	1.4×10^{-2}	8.0×10^{-4}	9.2 $\times 10^{-5}$
N i	1.0×10^{1}	1.6×10^{-1}	7.1×10^{-2}	1.2×10^{-3}	3.2×10^{-3}
Сu	3.3×10^{-1}	2.0×10^{-1}	1.9×10^{-1}	2. 0×10^{-3}	3.4×10^{-3}
Zn	2.2×10^{-3}	1.6×10^{-3}	6.0×10 ⁻³	9.3 $\times 10^{-3}$	3.7×10^{-3}
Ga	1.3×10^{-2} %1	1.2×10^{-3}	1.8×10^{-3}	8.4 $\times 10^{-4}$	1.0×10^{-6}
Ge	—	_	—	1.7×10^{-4}	—
A s	1.9×10^{-2} *1	2.2×10^{-2}	2.6×10 ⁻²	5. 4×10^{-4}	2.6×10^{-2} *2
S e	8.0×10^{-4}	1.0×10^{-5}	1.0×10^{-5}	6.0×10 ⁻⁶	$1.0 \times 10^{-5 \times 2}$
Вr	$2.0 \times 10^{-4 \times 10^{-4}}$	1.5×10^{-3}	1.5×10^{-3}	5. 0×10^{-5}	1.5×10^{-3} *2
R b	$1.0 \times 10^{-3 \times 1}$	1.0×10^{-5}	1.0×10^{-5}	4. 0×10^{-3}	$1.0 \times 10^{-5 \times 2}$
S r	$2.0 \times 10^{-5 \times 1}$	1.0×10^{-5}	1.0×10^{-5}	3.1×10^{-2}	$1.0 \times 10^{-5 \times 2}$
Y	5.0×10^{-4} %1	2.0×10^{-5}	2. 0×10^{-5}	2. 3×10^{-3}	$2.0 \times 10^{-5 \times 2}$
Zr	2.0×10^{-3}	5.7 $\times 10^{-3}$	1.0×10^{-4}	5. 3×10^{-3}	1.2×10^{-3}
N b	2.8×10^{-2}	1.6×10^{-5}	2.0×10^{-4}	6.2×10^{-4}	8.2×10^{-6}
Мо	1.9×10^{-1}	4. 5×10^{-2}	1.0×10^{-2}	1.0×10^{-4}	4.0×10^{-5}
Ρd	—	—	—	2.0×10^{-4}	—
Ag	1.4×10^{-3}	2.0×10^{-4}	1.0×10^{-5}	2. 0×10^{-5}	2.0×10^{-6}
Cd			—	1.0×10^{-5}	
Ιn				7.0×10^{-5}	—
S n	—	_	—	3.2×10^{-4}	—
S b	$1.2 \times 10^{-3 \times 1}$	3.2×10^{-3}	6.7 $\times 10^{-3}$	2.7 $\times 10^{-4}$	6. 7×10^{-3} **2

第5表 構成材の元素組成の設定値

一志	ステンレス鋼	炭素鋼	炭素鋼(鉄	コンクリート	アルミニウム
九示	(wt%)	(wt%)	筋) (wt%)	(wt%)	(wt%)
Те	—	—	—	9. 2×10^{-2}	—
Ι	_	—	—	5.0 $\times 10^{-4}$	_
C s	3.0×10^{-6}	1.0×10^{-6}	1.0×10^{-6}	2. 4×10^{-4}	1.0×10^{-7}
Ва	4. 0×10^{-6}	2. 0×10^{-6}	1.6×10^{-5}	4. 2×10^{-2}	8.0×10 ⁻⁷
La	2. $0 \times 10^{-5 \times 1}$	5.0 $\times 10^{-6}$	5. 0×10^{-6}	1.9×10^{-3}	5. 0×10^{-6} *2
Се	5. 0×10^{-6}	2.0×10^{-6}	2. 0×10^{-6}	3.0×10^{-3}	5.0 $\times 10^{-5}$
Ρr	—	—	—	8.0×10 ⁻⁴	—
N d	_	—	—	2. 2×10^{-3}	—
Sm	7.0 $\times 10^{-6}$	2.0×10 ⁻⁶	2. 0×10^{-6}	2.5 $\times 10^{-4}$	4. 0×10^{-6}
Εu	2.0×10^{-6}	1.0×10^{-6}	1.0×10^{-6}	6. 0×10^{-5}	1.0×10^{-7}
Gd	—	—	—	6. 2×10^{-4}	—
Τb	2. 0×10^{-6}	1.0×10^{-6}	1.0×10^{-6}	4. 0×10^{-5}	2.0×10^{-6}
Dу	1.0×10^{-4} *1	—	—	2.5 $\times 10^{-4}$	_
Но	2.0×10^{-6}	1.0×10^{-6}	1.0×10^{-6}	5. 0×10^{-5}	2.1×10 ⁻⁶
Εr	—	—	—	3.2×10^{-4}	—
Τm	—	—	—	5. 0×10^{-5}	—
Υb	$2.0 \times 10^{-4 \times 1}$	2.0×10^{-6}	2. 0×10^{-6}	3.6×10^{-4}	2.0×10^{-6} *2
Lu	$8.0 \times 10^{-5 \times 10^{-5}}$	2.0×10^{-6}	2. 0×10^{-6}	3. 4×10^{-5}	2.0×10^{-6} *2
Ηf	$2.0 \times 10^{-4 \times 1}$	2.0×10^{-6}	2. 0×10^{-6}	3.0×10^{-4}	2.0×10^{-6} *2
Та	2.2×10^{-4}	3.0×10^{-6}	3.0×10^{-6}	8.0×10 ⁻⁵	2.0×10^{-6}
W	4. 0×10^{-2}	1.5×10^{-3}	9.6 $\times 10^{-4}$	7.8×10^{-4}	2.0×10 ⁻⁵
Ιr	—	—	—	2. 0×10^{-7}	—
Ρt	_	—	—	4. 2×10^{-3}	—
Au	—	—	—	4. 0×10^{-7}	—
Нg	—	—	—	2. 0×10^{-5}	—
T 1	_	—	—	3.0×10^{-5}	_
Ρb	6.7×10 ^{-3 \times10}	1.1×10^{-3}	1.1×10^{-3}	2.0×10^{-3}	$1.1 \times 10^{-3 \times 2}$
Вi		—	—	3.0×10^{-5}	_
Τh	$1.0 \times 10^{-4 \times 1}$	1.0×10^{-6}	1.0×10^{-6}	3.5×10^{-4}	1.0×10^{-6} *2
U	1.0×10^{-6}	2.0×10^{-6}	1.0×10^{-6}	1.1×10^{-4}	3.2×10^{-4}

- 注) 以下のデータ以外は,分析値を示す。
- % 1 US. Nuclear Regulatory Commission (1984) : Long-lived Activation Products in Reactor Materials, NUREG/CR-3474
- ※2 本表の「炭素鋼(鉄筋)」の値に設定
- 5.3 汚染放射性物質の放射能濃度の設定
- (1) 廃止措置計画書における設定

汚染放射性物質の組成は、汚染移行経路や汚染形態によって汚染パター

ンに分けて評価を行っている。東海発電所内の汚染移行経路としては,ガ ス系と廃液系の2種類があり,廃棄物の種類は金属類,コンクリート類に 分類している。汚染放射性物質の放射能濃度の設定フローを第6図に示す。

核種組成は、汚染に寄与する4種類の汚染源(「燃料」、「燃料構成材」、 「炭素鋼」、「黒鉛」)から、第6表に示す4通りの汚染パターンごとに汚染 源の寄与率を考慮して設定している。汚染源の寄与率は、各汚染源におい てサンプル測定によって信頼性の高いデータを取得できる放射性物質の中 から代表的な放射性物質の存在比率と、各汚染源の放射化計算結果(計算 には放射化放射性物質濃度の評価と同様に「ORIGEN-2」コードを使 用)の組成比から設定している。汚染源ごとの代表の放射性物質を第7表 に示す。なお、廃液系の金属類とコンクリート類については、核種組成が 同一の結果となることから、一つの汚染パターンにまとめている。

各汚染機器の表面汚染密度の設定は,汚染パターン別に,供用期間中の 使用状況,系統,汚染管理記録等から表面汚染のレベルが同等とみなされ る系統機器ごとにサンプルを採取し,代表核種(Co-60,Cs-137)を 測定することで設定している。また,各建屋でのエリアごとの表面汚染密 度を設定するため,汚染履歴調査から得られた汚染パターンとスミヤ測定 結果を参考に,汚染頻度の高い代表箇所でコアボーリング等を行い,表面 汚染密度及び汚染浸透深さを測定している。なお,コアボーリング等がで きない箇所は,類似箇所の表面汚染密度等の測定結果等を参考に設定して いる。

汚染放射性物質の放射能濃度は、表面汚染密度の設定における全ての放射性物質の合計から、汚染部位の表面積及び重量に基づいて設定している。

第6図 汚染放射性物質の放射能濃度の設定フロー

廃棄物の種類	汚染移行経路	汚染パターン	
金属類	ガス系	ガス系金属	
	廃液系	廃液系金属	
コンクリート類	ガス系	ガス系コンクリート	
	廃液系	廃液系コンクリート	

第6表 汚染放射性物質の汚染パターン

汚染源	代表の放射性物質
燃料	C s -137
燃料構成材	C o -60, N i -63
炭素鋼	C o -60, N i -63
黒鉛	С — 14

第7表 汚染源ごとの代表の放射性物質

(2) 新たに設置する解体工事用機器

東海発電所の廃止措置中に新たに設置する解体工事用機器には,熱交換 器の解体設備などがあり,まだ設置されていない炉内構造物の取出し装置 なども含めて想定している。これらの機器の放射能濃度は,一部ではL3 区分を超えるものも発生することが想定されるため,機器の設計重量の半 分を廃棄物として想定している。

放射能濃度の設定は,事業規則に定められている放射性物質の濃度上限 を用いて設定した。

事業規則で濃度上限値が定められているのは、Co-60, Sr-90, Cs-137の3種類の放射性物質であり、濃度上限値は事業規則と比較し て保守的に低い方の旧政令「核原料物質、核燃料物質及び原子炉の規制に 関する法律施行令」で定められていた値を使用した。それぞれの濃度上限 値からガス系金属の汚染組成によって算定される全放射能濃度のうちで、 最も低いものはSr-90から算定した全放射能濃度であり、44 Bq/g と なる(第7図参照)。

この値から裕度をとって、10分の1にした濃度4.4 Bq/gを,廃止措置 中に新たに設置する解体工事用機器の全放射能濃度として設定している。

第7図 濃度上限値に基づく全放射能濃度

(3) 原子炉の運転中に発生した廃棄物

運転中に発生した廃棄物の放射能濃度は,廃棄物発生時に測定した容器 の外部表面線量から算定されたCo-60の放射能量から,発生年度ごとに 150 種類の放射性物質の放射能濃度を,ガス系金属及びガス系コンクリー トのそれぞれの組成から算定し,原子炉停止 20 年後までの放射性物質の 種類ごとの減衰を考慮した放射能濃度を設定している。また,外部表面線 量が測定下限以下のものについては,廃棄物のサンプルから測定した Co-60の分析データを用いて設定した放射能濃度から,同様の方法を用 いて設定している。

5.4 放射性物質の種類ごとの放射能濃度の設定

廃棄物となる機器ごとに設定した全放射能濃度から,廃止措置計画書にお いて評価した放射化及び汚染の放射性物質の組成比を用いて,放射性物質の 種類ごとの放射能濃度を設定する。放射化については「炭素鋼」,「ステンレ ス鋼」,「アルミニウム」,「コンクリート」で分類された材質ごとの組成比(原

子炉停止20年後)を使用し,汚染については「ガス系金属」,「ガス系コンク リート」,「廃液系金属及びコンクリート」で分類された組成比(原子炉停止 20年後)を使用している。ただし,運転中に発生した廃棄物は,「ガス系金 属」,「ガス系コンクリート」で分類された組成比(原子炉停止直後)を用い て,廃棄物の発生から原子炉停止20年後までの期間を放射性物質ごとで減 衰評価している。放射化放射性物質の組成比を第8表に,汚染放射性物質の 組成比を第9表及び第10表に示す。

なお、汚染放射性物質におけるC1-36は、これまで取得した最新の分析 データを基に設定する。C1-36は減速材に使用される黒鉛中の不純物塩素 が放射化することで発生し、原子炉の運転中に原子炉冷却材によって移行す る。これまでに収集した原子炉冷却材等による汚染の分析データから評価し たC1-36の汚染放射性物質の放射能量は、汚染放射性物質の組成比から評 価した結果と比較して1桁以上高くなるため、他の放射性物質と比較してよ り多く移行すると考えられる。評価においては,主要な放射性物質の選定に おけるC1-36の重要度を考慮した。具体的には、C1-36が最重要核種とな った場合において、C1-36 の放射能量が過度に保守的な設定になることに よって、主要な放射性物質の選定で他の放射性物質の相対重要度を下げるこ とで、選定される放射性物質の種類が少なくなるといった非保守的な選定と ならないように考慮した。分析データを基に設定する方法としては、放射化 により生成する放射性物質の種類として代表的なCo-60との比から、幾何 平均値(0.38)を用いて評価する。第8図に原子炉停止時点における C1-36とCo-60の分析データの相関を示す。C1-36とCo-60はい ずれも炉内構造物の放射化により生成する放射性物質が,原子炉冷却材等に より系統内の機器に移行し、付着することで汚染放射性物質となる。分析デ ータはばらつきが確認できるが、これはC1-36の付着挙動の温度依存性が

Co-60 と比較して大きいためであると考えられる。しかし、全体的には C1-36 とCo-60 の汚染の相関はあると考えられる。

また,分析データを基に設定する方法としては,汚染分類ごとに分析値の 算術平均を用いて設定することも考えられる。しかし,本項における評価の 目的が主要な放射性物質の選定であることから,C1-36の放射能量が最重 要核種となった場合において,他の放射性物質の相対重要度を下げることで, 選定される放射性物質の種類が少なくなるといった非保守的な選定とならな いように、C1-36の放射能量が低い設定となる評価方法を選択した。

汚染放射性物質におけるH-3 は、金属類においては、これまでに収集した原子炉冷却材等による汚染の分析データから評価した放射能量が、組成比から評価した結果と比較して1桁以上高いため、分析値の算術平均値を用いて設定する。設定に用いたH-3の分析値の算術平均値を第11表に示す。

放射性物質の 炭素鋼 ステンレス鋼 アルミニウム コンクリート 種類 6. 7×10^{-4} 6. 7×10^{-1} 9. 1×10^{-1} 7. 2×10^{-3} H-31 7.3 $\times 10^{-10}$ 6. 2×10^{-10} 3. 2×10^{-11} 2. 3×10^{-8} 2 B e −10 2.9 \times 10⁻³ 1. 4×10^{-3} 5. 0×10^{-3} 5. 9×10^{-3} 3 C −14 1.6×10⁻¹⁸ 6.6 $\times 10^{-14}$ 4. 5×10^{-13} 9. 4×10^{-14} 4 S i −32 S - 359. 4×10^{-24} 4.8×10⁻²¹ 5 0 0 3. 4×10^{-5} 7.8 $\times 10^{-6}$ 7. 1×10^{-5} $C \ 1 \ -36$ 1. 6×10^{-3} 6 4. 2×10^{-5} 3. 7×10^{-12} 5.8 × 10⁻¹² 2. 3×10^{-9} 7 K - 403. 7×10^{-3} 3. 7×10^{-9} 1.6×10^{-8} 1. 0×10^{-6} C a −41 8 1.8×10^{-13} 9 C a −45 0 0 0 2. 4×10^{-21} 10S c −46 0 0 0 1.6×10^{-8} 3. 1×10^{-10} 9. 4×10^{-10} 2. 3×10^{-9} Mn - 54 11 3. 0×10^{-2} 7. 4×10^{-2} 1.2×10^{-2} F e -55 5. 3×10^{-1} 12 ${\rm F~e}-59$ 0 0 0 0 13C o - 58 0 0 14 0 0 3. 4×10^{-1} 1. 1×10^{-2} C o -603. 3×10^{-1} 1.1×10^{-1} 151. 1×10^{-3} 9.9 \times 10⁻⁶ N i -59 1. 1×10^{-3} 5. 7×10^{-3} 16 1. 1×10^{-3} N i −63 1.3×10^{-1} 6. 3×10^{-1} 1. 2×10^{-1} 177. 1×10^{-12} 7.6×10⁻¹³ 7.9 \times 10⁻¹⁰ 1. 4×10^{-11} Z n -65 18 19 S = -750 0 0 0 3. 6×10^{-9} 7. 2×10^{-10} S e -792. 1×10^{-8} 2. 0×10^{-7} 20 9. 2×10^{-11} 7. 2×10^{-10} 5.6×10⁻⁷ 3. 0×10^{-6} R b −87 2122S r -850 0 0 0 S r -89 230 0 0 0 3. 3×10^{-7} 2.5 \times 10⁻³ 6. 0×10^{-6} S r -90 3. 0×10^{-8} 2425Y - 910 0 0 0 1.9×10^{-8} 5. 3×10^{-10} 3. 2×10^{-7} 6. 0×10^{-9} Z r -93 2627Z r -95 0 0 0 0 4. 7×10^{-9} 1.5×10⁻⁸ 2. 5 × 10⁻⁷ N b −93m 4. 1×10^{-10} 28 1. 1×10^{-7} 1. 4×10^{-5} 2. 7×10^{-6} 1. 3×10^{-6} 29 N b −94 N b −95 0 30 0 0 0 1.5×10⁻⁵ 4.8×10⁻⁸ 5. 0×10^{-6} 6. 6×10^{-7} M o -93 319. 5×10^{-18} 3. 1×10^{-18} 32 Тс-98 0 0 3. 5×10^{-7} 1.2×10^{-7} 8.6×10⁻⁷ 3. 1×10^{-9} 33 Тс-99 R u −103 0 0 34 0 0 7.8×10⁻¹⁰ 1.9×10⁻¹² 2. 2×10^{-13} 3. 5×10^{-13} 35 R u −106

第8表 放射化放射性物質の組成比(原子炉停止20年後)

	放射性物質の 種類	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
36	R h - 102	6. 2×10^{-16}	2. 2×10^{-17}	0	2. 3×10^{-12}
37	P d −107	4. 5×10^{-13}	2.8×10 ⁻¹³	1. 0×10^{-9}	1.9×10^{-10}
38	Ag-108m	4. 4×10^{-5}	2. 4×10^{-5}	2. 2×10^{-5}	1.5×10 ⁻⁶
39	Ag-110m	4.8×10 ⁻¹²	2.6×10 ⁻¹²	0	9.8×10 ⁻¹⁴
40	C d -109	7. 4×10^{-1}	4. 0×10^{-1}	0	5.6×10 ⁻¹²
41	C d -113m	4. 1×10^{-1}	1. 2×10^{-1}	2. 3×10^{-7}	5. 0×10^{-10}
42	C d -115m	0	0	0	0
43	I n — 114m	0	0	0	0
44	I n 115	2. 4×10^{-22}	4. 6×10^{-23}	1.6×10 ⁻¹⁸	1.2×10^{-11}
45	S n 113	0	0	0	0
46	S n -119m	9.8×10 ⁻¹⁷	0	1. 5×10^{-23}	0
47	S n -121m	6. 1×10^{-13}	2.9×10 ⁻¹³	2. 4×10^{-9}	3. 3×10^{-8}
48	S n - 123	0	0	0	0
49	S n - 126	4. 2×10^{-12}	1. 1×10^{-12}	2. 4×10^{-8}	5.6×10 ⁻¹¹
50	S b −124	0	0	0	0
51	S b -125	8. 3×10^{-9}	2.8×10 ⁻¹⁰	4.8×10 ⁻⁷	8. 1×10^{-8}
52	T e -121m	0	0	0	0
53	T e -123m	0	0	0	0
54	T e -125 m	2. 0×10^{-9}	6. 7 × 10 ⁻¹¹	1. 2×10^{-7}	2. 0×10^{-8}
55	T e −127m	0	1.0×10^{-22}	0	3. 2×10^{-19}
56	T e -129m	0	0	0	0
57	I -129	2. 2×10^{-13}	5. 5 × 10 ⁻¹⁴	1. 4×10^{-9}	1. 4×10^{-8}
58	C s -134	2. 4×10^{-7}	5. 7×10^{-8}	1. 2×10^{-6}	1. 7×10^{-5}
59	C s -135	1. 4×10^{-1}	2. 4×10^{-12}	8.5×10 ⁻⁸	2. 0×10^{-10}
60	C s -137	4. 0×10^{-7}	6.8×10 ⁻⁸	2. 7×10^{-3}	6. 4×10^{-6}
61	Ва—133	1.5×10 ⁻⁸	2. 3×10^{-9}	2.9×10 ⁻⁷	9.8×10 ⁻⁵
62	L a -137	3. 5×10^{-1}	6.8×10 ⁻¹²	4. 3×10^{-8}	1. 5×10^{-8}
63	L a -138	3. 1×10^{-14}	9.8×10 ⁻¹⁵	1.9×10 ⁻¹⁰	9. 4×10^{-10}
64	C e -139	0	0	0	0
65	C e -141	0	0	0	0
66	C e -144	2. 2×10^{-14}	4. 3×10^{-15}	1.6×10 ⁻¹⁰	4. 5 × 10 ^{-1 3}
67	N d 144	1. 1×10^{-20}	1.3×10^{-21}	7.7×10 ⁻¹⁷	1.8×10 ⁻¹¹
68	Pm-145	1. 7 × 10^{-7}	4.8× 10^{-8}	1. 7 × 10^{-5}	6. 6×10^{-6}
69	Pm-147	2. 4×10^{-9}	5.0×10^{-10}	1.6×10^{-5}	3.5×10^{-6}
70	Pm-148m	0	0	0	0
71	Sm - 145	2. 0×10^{-13}	5. 4×10^{-14}	1.7×10^{-11}	7. 4×10^{-12}
72	Sm-146	8.9×10^{-17}	2. 4×10^{-17}	7.9×10^{-15}	2. 5×10^{-15}

補5添2-59

	放射性物質の 種類	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
73	Sm-147	2. 5×10^{-12}	6.8×10 ⁻¹³	3. 0×10^{-8}	2. 5×10^{-8}
74	Sm-148	2.5×10 ⁻¹⁷	6.9×10 ⁻¹⁸	3. 0×10^{-13}	2. 5 × 10 ^{-1 3}
75	Sm-151	2. 0×10^{-5}	5.5 × 10 ⁻⁶	1. 3×10^{-3}	5. 1×10^{-4}
76	E u - 152	1. 4×10^{-3}	2. 1×10^{-4}	1.3×10^{-2}	6. 1×10^{-2}
77	E u - 154	1. 4×10^{-4}	2. 2×10^{-5}	6.8×10 ⁻⁴	2. 7×10^{-3}
78	E u - 155	3. 1×10^{-6}	5.9 × 10 ⁻⁷	9. 2×10^{-5}	3. 6×10^{-5}
79	G d - 152	4. 7×10^{-16}	7.3 × 10 ⁻¹⁷	3. 5×10^{-15}	7.9×10 ⁻¹³
80	G d - 153	1. 6×10^{-1} ³	2. 4×10^{-14}	0	1. 3×10^{-12}
81	T b -157	0	1. 4×10^{-7}	0	1. 3×10^{-6}
82	T b - 160	0	0	0	0
83	Dy-159	0	0	0	0
84	Н о — 163	0	0	0	3. 5×10^{-6}
85	Но—166m	1.9×10 ⁻⁷	7.0×10 ⁻⁸	2. 0×10^{-5}	2.9 × 10 ⁻⁶
86	Tm - 170	0	0	0	0
87	Tm - 171	3. 2×10^{-14}	2. 5 × 10 ⁻¹³	2. 6×10^{-12}	1. 6×10^{-7}
88	Y b −169	0	0	0	0
89	L u - 176	9. 4×10^{-13}	2. 9×10^{-12}	8.0×10 ⁻⁹	1.8×10 ⁻⁹
90	L u -177m	2. 1×10^{-15}	4. 3×10^{-17}	3. 3×10^{-12}	9. 5 × 10 ⁻¹⁶
91	H f −175	0	0	0	0
92	H f -181	0	0	0	0
93	H f −182	2. 3×10^{-16}	1.8×10 ⁻¹⁵	8. 2×10^{-17}	4. 7×10^{-17}
94	T a -180	1.6×10 ⁻¹⁷	9. 0×10^{-17}	6. 7 × 10 ⁻¹⁴	3. 5×10^{-14}
95	T a -182	0	1.6×10 ⁻¹⁵	0	0
96	W-181	0	0	0	0
97	W - 185	4. 3×10^{-24}	0	0	0
98	W - 188	0	0	0	0
99	R e -187	2.9×10 ⁻¹¹	6. 3×10^{-1}	2. 0×10^{-1}	4. 9×10^{-12}
100	O s -194	0	0	0	2. 4×10^{-24}
101	I r -192	0	2. 7×10^{-17}	0	3.8×10 ⁻⁶
102	I r -192m	0	2. 7×10^{-17}	0	3.8×10 ⁻⁶
103	P t −190	0	0	0	5. 0×10^{-1}
104	P t -193	0	2. 4×10^{-24}	0	1.7×10^{-5}
105	H g -203	0	0	0	0
106	T 1 - 204	2.0×10^{-14}	9.8×10 ⁻¹⁵	2. 4×10^{-12}	2. 4×10^{-6}
107	P b −204	6. 9×10^{-17}	3.4×10^{-17}	4. 3×10^{-13}	1.1×10^{-14}
108	P b −205	1.9×10^{-11}	9. 5×10^{-12}	9.8 $\times 10^{-10}$	1.2×10^{-11}
109	P b −210	3. 2×10^{-16}	5. 9×10^{-16}	4. 6×10^{-10}	2. 1×10^{-12}

補5添2-60

	放射性物質の 種類	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
110	В і — 208	1.8×10^{-19}	9. 5×10^{-20}	0	9.9×10 ⁻¹⁴
111	B i −210m	5. 0×10^{-18}	2.5×10 ⁻¹⁸	0	3. 0×10^{-12}
112	P o −210	2. 3×10^{-17}	6.5×10 ⁻¹⁶	4.6×10 ⁻¹⁰	1.8×10 ⁻¹²
113	R a −226	1. 4×10^{-15}	1.6×10 ⁻¹⁵	1. 2×10^{-9}	5. 7×10^{-12}
114	R a −228	4. 1×10^{-1}	3. 2×10^{-10}	2. 5 × 10 ⁻⁷	1. 1×10^{-6}
115	A c -227	1.9×10^{-12}	1. 5×10^{-1}	6. 3×10^{-9}	2. 1×10^{-10}
116	T h −228	4. 9×10^{-1}	3.8×10 ⁻¹⁰	2. 5 × 10 ⁻⁷	1. 1×10^{-6}
117	T h −229	1. 2×10^{-1}	9.6×10 ⁻¹¹	6. 5 × 10 ⁻¹⁰	1. 3×10^{-9}
118	Th-230	1. 3×10^{-13}	1. 1×10^{-1} ³	1. 1×10^{-7}	5. 1×10^{-10}
119	T h - 232	4. 1×10^{-1}	3. 2×10^{-10}	2.5 × 10 ⁻⁷	1. 1×10^{-6}
120	P a −231	2.8×10 ⁻¹²	2. 2×10^{-1}	1.2×10^{-8}	3. 3×10^{-10}
121	U - 232	8. 3×10^{-12}	6. 5 × 10 ⁻¹¹	1.8×10^{-10}	3. 1×10^{-12}
122	U - 233	3. 6×10^{-9}	2.8×10 ⁻⁸	1.9×10^{-7}	3. 7×10^{-7}
123	U - 234	2. 5×10^{-10}	3. 1×10^{-1}	2. 4×10^{-4}	1. 1×10^{-6}
124	U - 235	1.1×10^{-11}	4. 2×10^{-13}	1. 1×10^{-5}	5. 0×10^{-8}
125	U - 236	1. 4×10^{-12}	5. 5 × 10 ⁻¹⁴	1. 1×10^{-8}	2. 2×10^{-1}
126	U - 238	2. 5×10^{-10}	9. 7×10^{-12}	2. 4×10^{-4}	1. 1×10^{-6}
127	N p -236	0	0	0	0
128	N p -237	2. 7×10^{-1} ³	1. 1×10^{-14}	2. 1×10^{-9}	4. 0×10^{-12}
129	P u −236	7.6×10 ⁻¹⁸	3. 0×10^{-19}	4.9×10 ⁻¹⁶	4. 0×10^{-19}
130	P u −238	3.8×10^{-11}	1.5×10 ⁻¹²	1.9×10^{-9}	1. 5×10^{-12}
131	P u −239	7. 4×10^{-8}	2.9 × 10 ⁻⁹	6. 2×10^{-4}	1. 1×10^{-6}
132	P u −240	4. 4×10^{-9}	1. 7 × 10 ⁻¹⁰	3. 0×10^{-7}	2. 1×10^{-10}
133	P u −241	9. 3×10^{-9}	3.6×10 ⁻¹⁰	5. 1×10^{-9}	1. 6×10^{-12}
134	P u −242	5. 4×10^{-15}	2. 1×10^{-16}	1.0×10^{-20}	1.0×10^{-24}
135	P u −244	0	0	0	0
136	Am-241	8. 2×10^{-10}	3. 2×10^{-1}	4.5 × 10 ⁻¹⁰	1. 3×10^{-13}
137	Am - 242m	1. 6×10^{-12}	6. 3×10^{-14}	0	0
138	Am - 243	3. 5×10^{-16}	1. 4×10^{-17}	0	0
139	C m - 242	1. 3×10^{-12}	5. 2×10^{-14}	4. 2×10^{-14}	4. 3×10^{-18}
140	C m - 243	2.9×10 ⁻¹⁶	4. 5 × 10 ⁻¹⁸	0	0
141	C m - 244	7.6×10 ⁻²⁰	2. 9×10^{-21}	0	0
142	Cm - 245	0	0	0	0
143	Cm - 246	0	0	0	0
144	Cm - 247	0	0	0	0
145	C m - 248	0	0	0	0
146	C m - 250	0	0	0	0

	放射性物質の 種類	炭素鋼	ステンレス鋼	アルミニウム	コンクリート
147	C f -249	0	0	0	0
148	C f -250	0	0	0	0
149	C f -251	0	0	0	0
150	C f -252	0	0	0	0

	放射性物質 の種類	ガス系金属	ガス系コンクリート	廃液系金属及び コンクリート
1	H-3	8.5×10 ⁻²	4. 5×10^{-2}	1.6×10^{-3}
2	Ве—10	3.0×10^{-5}	1. 6×10^{-5}	1.9×10^{-7}
3	C - 14	1. 7×10^{-1}	8.9×10^{-2}	1.1×10^{-3}
4	S i -32	1.8×10^{-10}	9. 3×10^{-1}	1. 1×10^{-12}
5	S - 35	1. 6×10^{-2}	8. 3×10^{-22}	1.0×10^{-23}
6	$C \ 1 \ -36$	6. 0×10^{-4}	3. 2×10^{-4}	3.8 $\times 10^{-6}$
7	K - 40	7.6×10 ⁻⁹	4. 0×10^{-9}	4.8×10 ⁻¹¹
8	C a -41	1. 1×10^{-3}	5.8×10 ⁻⁴	7.0 \times 10 ⁻⁶
9	C a -45	8. 1×10^{-15}	4. 3×10^{-15}	5. 2×10^{-17}
10	S c -46	3. 8×10^{-23}	2. 0×10^{-23}	2. 5×10^{-25}
11	Mn - 54	1.0×10^{-8}	5. 4×10^{-9}	6. 5×10^{-1}
12	F e -55	6. 8×10^{-2}	3. 6×10^{-2}	4. 3×10^{-4}
13	F e -59	0	0	0
14	C o -58	0	0	0
15	C o -60	1. 7×10^{-1}	8. 9×10^{-2}	1.1×10^{-3}
16	N i -59	2. 2×10^{-3}	1.1×10^{-3}	1. 4×10^{-5}
17	N i −63	3. 4×10^{-1}	1.8×10^{-1}	2. 1×10^{-3}
18	Z n -65	4. 4×10^{-9}	2. 3×10^{-9}	2.8×10 ⁻¹¹
19	S e -75	2. 4×10^{-19}	1.3×10^{-19}	1.5×10^{-21}
20	S e -79	4. 7×10^{-7}	1.5×10^{-6}	2. 6×10^{-6}
21	R b −87	3. 7×10^{-1}	9. 1×10^{-1}	1. 4×10^{-10}
22	S r -85	0	0	0
23	S r -89	0	0	0
24	S r -90	4. 2×10^{-2}	1.7×10^{-1}	2.8×10 ⁻¹
25	Y - 91	0	0	0
26	Z r -93	1.9×10^{-2}	1.0×10^{-2}	1.4×10^{-4}
27	Z r -95	4.8× 10^{-35}	1.9×10^{-34}	1.9×10^{-34}
28	N b -93m	1.5×10^{-2}	7.8×10^{-3}	1.0×10^{-4}
29	N b -94	1.5×10^{-4}	7. 8×10^{-5}	9. 4×10^{-7}
30	N b -95	1.1×10^{-34}	4. 3×10^{-34}	4. 2×10^{-34}
31	Мо—93	6. 7×10^{-4}	3.5×10^{-4}	4. 3×10^{-6}
32	Тс-98	8. 7 × 10^{-13}	8.7×10 ⁻¹³	1.2×10^{-12}
33	Тс-99	2. 3×10^{-5}	5. 7×10^{-5}	9. 3×10^{-5}
34	R u - 103	0	0	0
35	R u −106	2.9×10^{-7}	1.2×10^{-6}	1.8×10^{-6}
36	R h −102	2.0 $\times 10^{-10}$	8. 0×10^{-10}	1. 9×10^{-9}

第9表 汚染放射性物質の組成比(原子炉停止20年後)

補5添2-63

	放射性物質 の種類	ガス系金属	ガス系コンクリート	廃液系金属及び コンクリート
37	P d −107	8. 2×10^{-8}	3.3×10^{-7}	7. 1×10^{-7}
38	Ag-108m	2.8×10 ⁻⁶	1.5×10^{-6}	1.8×10^{-8}
39	A g -110m	8.5×10 ⁻¹³	2.9×10^{-12}	6. 6×10^{-12}
40	C d -109	3. 3×10^{-8}	1.7×10^{-8}	2. 1×10^{-10}
41	C d -113m	1.3×10^{-5}	5. 2×10^{-5}	9.6 $\times 10^{-5}$
42	C d -115m	0	0	0
43	I n -114m	0	0	0
44	I n 115	6. 6×10^{-17}	$1.4 \times 10^{-1.6}$	$1.9 \times 10^{-1.6}$
45	S n 113	0	0	0
46	S n -119m	3. 2×10^{-1} ³	5. 6×10^{-1} ³	5. 5×10^{-1} ³
47	S n -121m	3. 3×10^{-7}	5. 6×10^{-7}	8.9 × 10 ⁻⁷
48	S n -123	1.9×10^{-20}	7.8 \times 10 ⁻²⁰	8.8 \times 10 ⁻²⁰
49	S n - 126	6. 4×10^{-7}	2. 6×10^{-6}	4. 9×10^{-6}
50	S b −124	0	0	0
51	S b −125	6. 4×10^{-5}	2. 6×10^{-4}	4. 0×10^{-4}
52	T e −121m	0	0	0
53	T e −123m	2. 4×10^{-19}	1.3×10^{-19}	1.6×10^{-21}
54	T e −125m	1.6×10 ⁻⁵	6. 3×10^{-5}	9.8 × 10 ⁻⁵
55	T e −127m	5.8×10 ⁻²³	2. 3×10^{-22}	2. 7×10^{-2} ²
56	T e −129m	0	0	0
57	I -129	2.8×10 ⁻⁸	1.2×10^{-7}	2. 2×10^{-7}
58	C s -134	2. 7×10^{-5}	1.1×10^{-4}	2. 3×10^{-4}
59	C s -135	7. 7×10^{-7}	3. 1×10^{-6}	5. 6×10^{-6}
60	C s -137	5. 7×10^{-2}	2. 3×10^{-1}	4. 0×10^{-1}
61	Ва—133	7.7×10 ⁻⁵	4. 1×10^{-5}	4. 9×10^{-7}
62	L a -137	3. 7×10^{-8}	2. 0×10^{-8}	2. 4×10^{-10}
63	L a -138	5. 2×10^{-15}	3. 2×10^{-15}	9. 1×10^{-16}
64	C e -139	2. 6×10^{-19}	1.4×10^{-19}	1. 7×10^{-2}
65	C e -141	0	0	0
66	C e -144	1.3×10^{-8}	5. 4×10^{-8}	5.8 × 10 ⁻⁸
67	N d -144	1. 4×10^{-15}	5. 7×10^{-15}	1.1×10^{-14}
68	P m−145	1.2×10^{-5}	6. 2×10^{-6}	7.5 \times 10 ⁻⁸
69	Pm - 147	1.0×10^{-3}	4. 1×10^{-3}	5. 6×10^{-3}
70	Pm-148m	0	0	0
71	Sm-145	1.3×10^{-11}	7.0×10^{-12}	8. 5×10^{-14}
72	Sm-146	8. 1×10^{-14}	8.8×10 ⁻¹⁴	1. 5×10^{-1} ³
73	Sm-147	9.6×10 ⁻¹²	3. 6×10^{-1}	6. 0×10^{-1}

	放射性物質 の種類	ガス系金属	ガス系コンクリート	廃液系金属及び コンクリート
74	Sm-148	4. 2×10^{-17}	6. 3×10^{-17}	$1.1 \times 10^{-1.6}$
75	Sm-151	6. 3×10^{-4}	2.5 \times 10 ⁻³	3. 4×10^{-3}
76	E u - 152	2. 0×10^{-4}	1.3×10^{-4}	5. 2×10^{-5}
77	E u -154	5. 1×10^{-4}	1.2×10^{-3}	2. 6×10^{-3}
78	E u - 155	1.8×10^{-4}	5. 4×10^{-4}	8.6×10 ⁻⁴
79	G d −152	6. 0×10^{-17}	3. 7×10^{-17}	1.2×10^{-17}
80	G d −153	1. 7×10^{-14}	1.8×10^{-14}	2. 2×10^{-14}
81	T b −157	1. 1×10^{-6}	6. 0×10^{-7}	7. 2×10^{-9}
82	T b −160	3.8×10 ⁻³⁵	1.5×10^{-34}	3. 4×10^{-34}
83	D y −159	0	0	0
84	Но—163	0	0	0
85	Но—166m	7. 1×10^{-6}	3. 7×10^{-6}	4. 9×10^{-8}
86	Tm - 170	5. 0×10^{-25}	2. 0×10^{-24}	0
87	Tm-171	2. 0×10^{-10}	1.0×10^{-10}	1.3×10^{-12}
88	Y b −169	0	0	0
89	L u -176	1. 6×10^{-1} ³	8.6×10 ⁻¹⁴	1.0×10^{-15}
90	L u -177m	4. 5×10^{-20}	2. 4×10^{-20}	2. 9×10^{-2} ²
91	H f −175	0	0	0
92	H f −181	0	0	0
93	H f −182	3.8×10^{-10}	2. 0×10^{-10}	2. 4×10^{-12}
94	T a -180	4. 6×10^{-18}	2. 4×10^{-18}	2.9 × 10 ⁻²⁰
95	T a −182	3.8×10 ⁻¹⁰	2. 0×10^{-10}	2. 4×10^{-12}
96	W - 181	0	0	0
97	W - 185	7. 4×10^{-24}	3.9×10^{-24}	4. 7×10^{-26}
98	W - 188	0	0	0
99	R e −187	8.8×10 ⁻¹²	4. 6×10^{-12}	5. 6×10^{-14}
100	O s -194	4.8×10 ⁻¹⁶	2.5 × 10 ⁻¹⁶	3. 0×10^{-18}
101	I r -192	1. 6×10^{-7}	8.7×10 ⁻⁸	1. 1×10^{-9}
102	I r -192m	1. 6×10^{-7}	8. 7×10^{-8}	1.0×10^{-9}
103	P t −190	0	0	0
104	P t −193	1. 3×10^{-9}	7.1 × 10 ⁻¹⁰	8. 6×10^{-12}
105	Н g -203	0	0	0
106	T 1 - 204	9. 2×10^{-14}	4.8×10 ⁻¹⁴	5.8 × 10 ⁻¹⁶
107	P b −204	$1.1 \times 10^{-1.7}$	6. 0×10^{-18}	7. 2×10^{-20}
108	P b −205	9. 7×10^{-12}	5. 1×10^{-12}	6. 2×10^{-14}
109	P b −210	8.1 $\times 10^{-12}$	3. 3×10^{-1}	4. 6×10^{-1}
110	B i −208	1.5×10^{-12}	7.9×10^{-13}	9.5 \times 10 ⁻¹⁵

	放射性物質 の種類	ガス系金属	ガス系コンクリート	廃液系金属及び コンクリート
111	B i −210m	4. 2×10^{-12}	2.2×10^{-12}	2. 7×10^{-14}
112	Р о —210	7.6×10 ⁻¹²	3. 1×10^{-1}	4. 3×10^{-1}
113	R a -226	3.8×10^{-11}	1.6×10^{-10}	2. 0×10^{-10}
114	R a -228	7. 0×10^{-12}	3. 7×10^{-12}	4. 6×10^{-14}
115	A c -227	1.0×10^{-10}	4. 1×10^{-10}	9. 0×10^{-1}
116	T h −228	1.1×10^{-8}	4. 0×10^{-8}	1. 1×10^{-7}
117	T h −229	8. 4×10^{-12}	5.8 × 10 ⁻¹²	3. 5×10^{-12}
118	T h −230	7.3 $\times 10^{-9}$	3. 0×10^{-8}	3. 3×10^{-8}
119	T h −232	7. 1×10^{-12}	3. 7×10^{-12}	4. 7×10^{-14}
120	P a −231	2. 3×10^{-10}	9. 2×10^{-10}	1.9×10^{-9}
121	U - 232	1.0×10^{-8}	3.9 × 10 ⁻⁸	1. 1×10^{-7}
122	U - 233	2.9 × 10 ⁻⁹	2. 0×10^{-9}	1.0×10^{-9}
123	U - 234	3. 4×10^{-5}	1.4×10^{-4}	1.3×10^{-4}
124	U - 235	1.1×10^{-7}	4. 6×10^{-7}	3. 6×10^{-7}
125	U - 236	2. 6×10^{-7}	1.0×10^{-6}	1. 7×10^{-6}
126	U - 238	3. 5×10^{-6}	1.4×10^{-5}	1. 5×10^{-5}
127	N p -236	5. 0×10^{-14}	2. 0×10^{-1} ³	4. 4×10^{-1} ³
128	N p −237	1.0×10^{-7}	4. 1×10^{-7}	8. 2×10^{-7}
129	P u −236	3. 6×10^{-1}	1.5×10^{-10}	3. 5×10^{-10}
130	P u −238	3. 3×10^{-4}	1.3×10^{-3}	3. 9×10^{-3}
131	P u −239	9. 0×10^{-4}	3. 7×10^{-3}	5. 2×10^{-3}
132	P u −240	8. 1×10^{-4}	3. 3×10^{-3}	6. 7×10^{-3}
133	P u −241	2. 9×10^{-2}	1.2×10^{-1}	2. 6×10^{-1}
134	P u −242	3. 9×10^{-7}	1.6×10^{-6}	4. 6×10^{-6}
135	P u −244	6.8×10 ⁻¹⁵	2. 1×10^{-14}	7.7×10 ⁻¹⁴
136	Am - 241	1. 7×10^{-3}	7.0 \times 10 ⁻³	1. 6×10^{-2}
137	$\mathrm{Am}-242\mathrm{m}$	8.8×10 ⁻⁶	3. 5×10^{-5}	1. 1×10^{-4}
138	Am - 243	9. 1×10^{-7}	3. 4×10^{-6}	1.2×10^{-5}
139	Cm - 242	7. 3×10^{-6}	2. 9×10^{-5}	8.8 $\times 10^{-5}$
140	Cm - 243	5. 7×10^{-7}	2. 2×10^{-6}	7.9 $\times 10^{-6}$
141	Cm - 244	1.5×10 ⁻⁵	4. 2×10^{-5}	1.6×10^{-4}
142	C m - 245	5.6×10 ⁻¹⁰	1.3×10^{-9}	5. 2×10^{-9}
143	Cm - 246	5. 9×10^{-10}	6. 0×10^{-10}	1.6×10^{-9}
144	Cm - 247	1.3×10^{-15}	8. 2×10^{-16}	8. 3×10^{-16}
145	C m - 248	9. 5×10^{-15}	5. 2×10^{-15}	1. 1×10^{-15}
146	C m - 250	2.6×10^{-22}	1. 4×10^{-22}	7. 0×10^{-24}
147	C f -249	4. 0×10^{-14}	2. 1×10^{-14}	2. 3×10^{-15}

	放射性物質 の種類	ガス系金属	ガス系コンクリート	廃液系金属及び コンクリート
148	C f -250	1.8×10^{-13}	9. 7×10^{-14}	6. 2×10^{-15}
149	C f -251	1.8×10^{-15}	9. 4×10^{-16}	4.8 × 10 ⁻¹⁷
150	C f -252	8. 1×10^{-15}	4. 3×10^{-15}	9. 4×10^{-17}

	放射性物質の種類	ガス系金属	ガス系コンクリート
1	H-3	6. 7×10^{-4}	6. 0×10^{-4}
2	В е —10	7.6×10 ⁻⁸	6. 7×10^{-8}
3	С — 14	4. 3×10^{-4}	3.9×10^{-4}
4	S i -32	4. 6×10^{-1} ³	4. 1×10^{-1} ³
5	S - 35	3.8×10 ⁻⁴	3. 4×10^{-4}
6	$C \ 1 \ -36$	1.5×10^{-6}	1. 4×10^{-6}
7	K-40	1.9×10^{-11}	1. 7×10^{-1}
8	C a -41	2.8×10 ⁻⁶	2. 5×10^{-6}
9	C a -45	5. 5×10^{-4}	4. 9×10^{-4}
10	S c -46	2. 2×10^{-4}	1.9×10^{-4}
11	M n - 54	2.8×10 ⁻⁴	2. 5×10^{-4}
12	F e -55	3. 6×10^{-2}	3. 2×10^{-2}
13	F e -59	1.5×10^{-3}	1.3×10^{-3}
14	С о — 58	1. 7×10^{-4}	1.5×10^{-4}
15	C o -60	6. 0×10^{-3}	5. 3×10^{-3}
16	N i -59	5. 6×10^{-6}	4. 9×10^{-6}
17	N i -63	1.0×10^{-3}	8.9×10 ⁻⁴
18	Z n -65	1.2×10^{-2}	1.0×10^{-2}
19	S e -75	2. 1×10^{-6}	1.9×10^{-6}
20	S e -79	1.2×10^{-9}	6. 6×10^{-9}
21	R b −87	9. 4×10^{-14}	3. 9×10^{-1} ³
22	S r -85	2. 3×10^{-7}	2. 0×10^{-7}
23	S r -89	1.8×10^{-3}	1.2×10^{-2}
24	S r -90	1. 7×10^{-4}	1.2×10^{-3}
25	Y-91	2. 2×10^{-3}	1.5×10^{-2}
26	Z r -93	5. 0×10^{-5}	4. 4×10^{-5}
27	Z r -95	8. 0×10^{-1}	7. 3×10^{-1}
28	N b -93m	2. 3×10^{-5}	2. 0×10^{-5}
29	N b -94	3. 8×10^{-7}	3. 3×10^{-7}
30	N b -95	1.3×10^{-1}	1.3×10^{-1}
31	M o -93	1. 7×10^{-6}	1.5×10^{-6}
32	Тс-98	2. 2×10^{-15}	3. 7×10^{-15}
33	Тс-99	5.8×10 ⁻⁸	2. 5×10^{-7}
34	R u - 103	2. 4×10^{-3}	1. 7×10^{-2}
35	R u - 106	6. 9×10^{-4}	4. 7×10^{-3}
36	R h - 102	6. 0×10^{-11}	4. 1×10^{-10}

第10表 汚染放射性物質の組成比(原子炉停止直後)

補5添2-68

	放射性物質の種類	ガス系金属	ガス系コンクリート
37	P d −107	2. 1×10^{-10}	1.4×10^{-9}
38	A g -108m	7.5×10^{-9}	6.6×10^{-9}
39	A g -110m	1.4×10^{-6}	7.9×10^{-6}
40	C d - 109	4. 6×10^{-6}	4. 1×10^{-6}
41	C d - 113m	8. 4×10^{-8}	5.8 \times 10 ⁻⁷
42	C d - 115m	1.3×10^{-5}	2.6×10 ⁻⁵
43	I n - 114m	5. 9×10^{-8}	5.8 $\times 10^{-8}$
44	I n 115	1.7×10^{-19}	6. 0×10^{-19}
45	S n 113	1.7×10^{-7}	1.5×10^{-7}
46	S n - 119m	7.8 $\times 10^{-7}$	2. 3×10^{-6}
47	S n - 121m	1.1×10^{-9}	3.2×10^{-9}
48	S n - 123	5. 3×10^{-6}	3. 6×10^{-5}
49	S n - 126	1.6×10^{-9}	1.1×10^{-8}
50	S b - 124	3. 3×10^{-5}	3. 1×10^{-5}
51	S b - 125	2. 4×10^{-5}	1.6×10^{-4}
52	T e -121m	0	0
53	T e -123m	1.3×10^{-7}	1.2×10^{-7}
54	T e -125m	5. 2×10^{-6}	3. 5×10^{-5}
55	T e −127m	2. 0×10^{-5}	1.4×10^{-4}
56	T e -129m	7.7 $\times 10^{-5}$	5. 2×10^{-4}
57	I -129	7. 2×10^{-1}	4.9 \times 10 ⁻¹⁰
58	C s -134	5. 7×10^{-5}	3.8×10^{-4}
59	C s -135	2. 0×10^{-9}	1.4×10^{-8}
60	C s -137	2. 3×10^{-4}	1.6×10^{-3}
61	Ва-133	7. 2×10^{-7}	6. 4×10^{-7}
62	L a -137	9. 5×10^{-1}	8. 4×10^{-1}
63	L a -138	1.3×10^{-17}	1. 4×10^{-17}
64	C e -139	4. 6×10^{-8}	4. 1×10^{-8}
65	C e -141	2. 9×10^{-3}	2. 0×10^{-2}
66	C e -144	1.9×10^{-3}	1.3×10^{-2}
67	N d 144	2.9×10 ⁻¹⁸	2. 0×10^{-17}
68	Pm-145	6. 1×10^{-8}	5. 4×10^{-8}
69	Pm-147	5. 0×10^{-4}	3. 4×10^{-3}
70	P m−148m	1.5×10^{-5}	1. 0×10^{-4}
71	Sm-145	1.0×10^{-7}	8.9×10^{-8}
72	Sm-146	2. 0×10^{-16}	3. 5×10^{-16}
73	Sm - 147	1.2×10^{-14}	6.8×10^{-14}

	放射性物質の種類	ガス系金属	ガス系コンクリート
74	Sm-148	1.1×10^{-19}	2. 7×10^{-19}
75	Sm-151	1.9×10^{-6}	1.3×10^{-5}
76	E u - 152	1.4×10^{-6}	1.6×10^{-6}
77	E u - 154	6. 6×10^{-6}	2. 6×10^{-5}
78	E u - 155	7. 4×10^{-6}	3.8×10^{-5}
79	G d - 152	1.2×10^{-19}	1.2×10^{-19}
80	G d - 153	5. 6×10^{-8}	9.8 $\times 10^{-8}$
81	T b - 157	3. 2×10^{-9}	2.8 × 10 ⁻⁹
82	T b - 160	4. 6×10^{-6}	5.6 $\times 10^{-6}$
83	Dy -159	2. 2×10^{-8}	2. 0×10^{-8}
84	Н о — 163	0	0
85	Но <i>—</i> 166m	1.8×10^{-8}	1.6×10^{-8}
86	Tm - 170	1.1×10^{-7}	9.8 × 10 ⁻⁸
87	Tm-171	7. 0×10^{-10}	6. 2×10^{-10}
88	Y b −169	9.8 × 10 ⁻⁹	8. 7×10^{-9}
89	L u - 176	4. 2×10^{-16}	3. 7×10^{-16}
90	L u -177m	8. 3×10^{-9}	7. 4×10^{-9}
91	H f −175	4. 1×10^{-7}	3. 7×10^{-7}
92	H f -181	1. 3×10^{-3}	1. 1×10^{-3}
93	H f −182	9. 7×10^{-1} ³	8.6×10 ⁻¹³
94	T a -180	1.2×10^{-20}	1.0×10^{-20}
95	T a -182	2. 0×10^{-4}	1.8×10^{-4}
96	W-181	1.5×10^{-7}	1.3×10^{-7}
97	W - 185	1. 5×10^{-5}	1. 3×10^{-5}
98	W-188	1. 7×10^{-8}	1. 5×10^{-8}
99	R e -187	2. 3×10^{-14}	2. 0×10^{-14}
100	O s -194	1.2×10^{-17}	1.1×10^{-17}
101	I r -192	1.0×10^{-8}	9. 1×10^{-9}
102	I r — 192m	4. 5×10^{-10}	4. 0×10^{-10}
103	P t −190	0	0
104	P t −193	3. 5×10^{-12}	3. 1×10^{-12}
105	Н g — 203	5. 3×10^{-14}	4. 7×10^{-14}
106	T 1 - 204	9. 0×10^{-15}	8. 0×10^{-15}
107	P b −204	2.9×10^{-20}	2. 6×10^{-20}
108	P b −205	2. 5×10^{-14}	2. 2×10^{-14}
109	P b −210	2. 3×10^{-16}	1. 6×10^{-15}
110	B i -208	3.8×10 ⁻¹⁵	3. 4×10^{-15}

補5添2-70

	放射性物質の種類	ガス系金属	ガス系コンクリート
111	B i −210m	1.1×10^{-14}	9. 7×10^{-15}
112	Ро—210	2. 4×10^{-9}	2. 2×10^{-9}
113	R a -226	3. 7×10^{-15}	2.6×10 ⁻¹⁴
114	R a -228	1.7×10^{-14}	1.5×10^{-14}
115	A c -227	2. 2×10^{-14}	1.4×10^{-13}
116	T h −228	1.3×10^{-11}	7.8 $\times 10^{-1}$
117	Th-229	7. 7×10^{-15}	8. 7×10^{-15}
118	T h −230	3.2×10^{-12}	2. 2×10^{-1}
119	T h −232	1.8×10^{-14}	1.6×10^{-14}
120	P a −231	4. 6×10^{-13}	3. 1×10^{-12}
121	U - 232	3.2×10^{-11}	2. 0×10^{-10}
122	U - 233	7. 2×10^{-12}	8.6×10 ⁻¹²
123	U - 234	8.6×10 ⁻⁸	5.9 \times 10 ⁻⁷
124	U - 235	2.9×10^{-10}	2. 0×10^{-9}
125	U - 236	6. 6×10^{-10}	4. 5×10^{-9}
126	U - 238	9. 1×10^{-9}	6. 2×10^{-8}
127	N p - 236	1.3×10^{-16}	8. 7×10^{-16}
128	N p -237	2. 4×10^{-10}	1.6×10^{-9}
129	P u −236	1.2×10^{-11}	8. 1×10^{-1}
130	P u −238	8. 3×10^{-7}	5. 6×10^{-6}
131	P u −239	2. 3×10^{-6}	1.6×10^{-5}
132	P u −240	2. 1×10^{-6}	1. 4×10^{-5}
133	P u −241	1.9×10^{-4}	1.3×10^{-3}
134	P u −242	1.0×10^{-9}	6.8 × 10 ⁻⁹
135	P u −244	1. 7×10^{-17}	9. 2×10^{-17}
136	Am - 241	5. 2×10^{-7}	3. 5×10^{-6}
137	$\mathrm{Am}-242\mathrm{m}$	2. 5×10^{-8}	1. 7×10^{-7}
138	Am - 243	2. 3×10^{-9}	1. 5×10^{-8}
139	Cm - 242	2. 9×10^{-5}	2. 0×10^{-4}
140	C m - 243	2. 4×10^{-9}	1.6×10 ⁻⁸
141	Cm - 244	8. 2×10^{-8}	3. 9×10^{-7}
142	C m - 245	1. 4×10^{-12}	5. 7×10^{-12}
143	Cm - 246	1. 5×10^{-12}	2. 6×10^{-12}
144	Cm - 247	3.3×10^{-18}	3. 5×10^{-18}
145	Cm - 248	2. 4×10^{-17}	2. 2×10^{-17}
146	C m - 250	6. 2×10^{-25}	5. 5×10^{-25}
147	C f -249	3.6×10^{-17}	3. 2×10^{-17}

	放射性物質の種類	ガス系金属	ガス系コンクリート
148	C f -250	1.3×10^{-15}	1.2×10^{-15}
149	C f -251	4. 6×10^{-18}	4. 1×10^{-18}
150	C f -252	4. 1×10^{-15}	3. 7×10^{-15}

第8図 C1-36とCo-60の分析データ(原子炉停止時点)

廃棄物の性状		原子炉停止時 (Bq∕t)	原子炉停止 20 年後 (Bq/t)
金属類	ガス系	2. 2×10^{8}	7.5 \times 10 ⁷
	廃液系	5.9 $\times 10^{5}$	2. 0×10^{5}

第11表 H-3の分析値の算術平均値(金属類)

5.5 主要な放射性物質の選定に用いる放射能量

廃棄物の放射性物質の種類ごとの放射能濃度から,機器ごとの重量を用い て放射性物質の種類ごとの放射能量を算定し,これを主要な放射性物質の選 定に用いる。廃棄物で金属類とコンクリート類の2種類に分けた放射性物質 の放射能量を第12表に示す。

	放射性物質の種類	金属類(Bq)	コンクリート類 (Bq)
1	H-3	4. 3×10^{11}	6.7×10 ¹
2	В е —10	3. 3×10^{5}	6. 2×10 ³
3	C-14	2. 3×10^{9}	2.2×10^{9}
4	S i -32	2. 1×10^{0}	8. 0×10^{-2}
5	S - 35	1. 7×10^{-11}	3.6×10^{-9}
6	$C \ 1 \ -36$	9.8×10 ⁹	2. 2×10^{8}
7	K - 40	8.7×10 ¹	3. 2×10^{7}
8	C a -41	1. 2×10^{7}	2.8 \times 10 9
9	C a -45	8.8×10 ⁻⁵	1. 3×10^{-1}
10	S c -46	4. 1×10^{-13}	1.8×10^{-9}
11	M n -54	4. 7×10^{3}	2. 3×10^{2}
12	F e -55	1. 5×10^{11}	8.6×10 ⁹
13	F e -59	1.8×10 ⁻³⁸	1. $6 \times 10^{-6.9}$
14	C o -58	7.9 \times 10 ⁻²³	7. 1×10^{-4} ³
15	C o -60	9. 7×10^{10}	8.1×10 ⁹
16	N i -59	3. 5×10^{8}	7.8 \times 10 ⁶
17	N i -63	3. 9×10^{10}	8. 7×10^{8}
18	Z n -65	5. 0×10^{1}	1. 0×10^{1}
19	S e -75	2. 5×10^{-9}	1. 7×10^{-1}
20	S e -79	6. 7×10^{3}	1.2×10^{3}
21	R b −87	5. 2×10^{2}	2. 2×10^{6}
22	S r -85	2. $6 \times 10^{-2.8}$	4. 4×10^{-50}
23	S r -89	4. 6×10^{-33}	1.0×10^{-59}
24	S r -90	4. 9×10^{8}	6. 1×10^{7}
25	Y-91	1. $3 \times 10^{-2.7}$	1.0×10^{-50}
26	Z r -93	2. 1×10^{8}	3. 7×10^{6}
27	Z r -95	3.8×10^{-22}	3.0×10^{-26}

第12表 主要な放射性物質の選定に用いる放射能量

	放射性物質の種類	金属類(Bq)	コンクリート類 (Bq)
28	N b −93m	1.6×10^{8}	3. 1×10^{6}
29	N b -94	1. 7×10^{6}	9.9×10 ⁵
30	N b -95	1.2×10^{-24}	6. $7 \times 10^{-2.6}$
31	М о —93	1.2×10^{7}	1.6×10^{5}
32	Т с -98	9. 7×10^{-3}	3.4×10^{-4}
33	Тс-99	3. 6×10^{5}	2. 5×10^{4}
34	R u - 103	3.6×10^{-44}	2. 6×10^{-78}
35	R u - 106	3. 3×10^{3}	2.0×10^{2}
36	R h −102	2. 3×10^{0}	1.9×10^{0}
37	P d −107	9.9×10 ²	2.8×10^{2}
38	A g -108m	1. 3×10^{7}	1. 1×10^{6}
39	A g -110m	1. 4×10^{0}	7. 3×10^{-2}
40	C d -109	3. 7×10^{2}	6. 4×10 [°]
41	C d -113m	1. 5×10^{5}	1.5×10^{4}
42	C d -115m	1.8×10^{-40}	4. 0×10^{-7}
43	I n - 114m	2. 4×10^{-38}	2. 3×10^{-6}
44	I n 115	7.6×10 ⁻⁷	9. 2×10^{0}
45	S n 113	4. 5×10^{-15}	5. 9×10^{-28}
46	S n -119m	4. 4×10^{-3}	8. 7×10^{-5}
47	S n −121m	3. 7×10^{3}	2. 4×10^{4}
48	S n -123	2. 2×10^{-10}	1. 2×10^{-1}
49	S n - 126	7.7 \times 10 ³	1.1×10^{3}
50	S b -124	1. $7 \times 10^{-2.8}$	8. 2×10^{-5} ²
51	S b -125	7. 3×10^{5}	1. 1×10^{5}
52	T e −121m	0	0
53	T e -123m	2. 6×10^{-9}	1. 7×10^{-1}
54	T e -125m	1.8 \times 10 ⁵	2. 5×10^{4}
55	T e −127m	7. 3×10^{-13}	2. 4×10^{-7}
56	T e -129m	3. 7×10^{-54}	5. 8×10^{-94}
57	I -129	3. 4×10^{2}	1.0×10^{4}
58	C s -134	3.8 \times 10 ⁵	1.3×10^{7}
59	C s -135	9. 3×10 ³	1.4×10^{3}
60	C s -137	6. 7×10 ⁸	8. 3×10 ⁷
61	B a -133	8. 4×10^{5}	7. 3×10^{7}
62	L a -137	4. 6×10^{2}	1.2×10^{4}
63	L a -138	1.8×10^{-1}	7.0×10^{2}
64	C e -139	2.8×10 ⁻⁹	1.8×10^{-11}
65	C e -141	1.5×10^{-54}	$1.1 \times 10^{-9.5}$

補5添2-74

	放射性物質の種類	金属類 (Bq)	コンクリート類 (Bq)
66	C e -144	1.5×10^{2}	8.9×10 [°]
67	N d -144	1. 7×10^{-5}	1.4×10 ¹
68	Pm-145	1.9×10^{5}	4.9×10^{6}
69	Pm-147	1.2×10^{7}	3.3×10^{6}
70	P m−148m	6. 6×10^{-44}	$2.2 \times 10^{-7.6}$
71	Sm-145	2. 1×10^{-1}	5.5 \times 10 ⁰
72	Sm-146	9. 5×10^{-4}	1.9×10^{-3}
73	Sm-147	2.8 \times 10 ¹	1.9×10^{4}
74	Sm-148	2.8×10 ⁻⁴	1.9×10^{-1}
75	Sm-151	1. 4×10^{7}	3.8×10^8
76	E u -152	4. 0×10^{8}	4. 6×10^{10}
77	E u - 154	4. 5×10^{7}	2. 0×10^{9}
78	E u - 155	3. 0×10^{6}	2. 7×10^{7}
79	G d -152	1.3×10^{-4}	5. 9×10^{-1}
80	G d −153	4. 5×10^{-2}	9.9 \times 10 ⁻¹
81	T b -157	1. 2×10^{4}	9. 3×10^{5}
82	T b -160	8. 0×10^{-24}	2.8×10 ⁻²⁶
83	D y -159	1.9×10^{-12}	6. 4×10^{-23}
84	Н о — 163	0	2.6 \times 10 ⁶
85	Но—166m	1. 5×10^{5}	2. 1×10^{6}
86	T m - 170	1.9×10 ⁻¹³	2. 7×10^{-16}
87	Tm-171	2. 1×10^{0}	1.2×10^{5}
88	Y b −169	5.8 $\times 10^{-61}$	1. 4×10^{-103}
89	L u - 176	7. 3×10^{0}	1.3×10^{3}
90	L u -177m	3. 5×10^{-3}	7. 1×10^{-4}
91	H f −175	8. $5 \times 10^{-2.6}$	4. 5×10^{-4} 6
92	H f -181	1.0×10^{-40}	2. 9×10^{-7} ³
93	H f -182	4. 2×10^{0}	7. 2×10^{-2}
94	T a -180	6. 4×10^{-5}	2. 6×10^{-2}
95	T a -182	4. 0×10^{0}	2. 6×10^{-2}
96	W-181	2. 9×10^{-14}	$1.5 \times 10^{-2.6}$
97	W-185	1.3×10^{-12}	5. 2×10^{-16}
98	W-188	2.8 × 10 ⁻²⁷	1.3×10^{-47}
99	R e -187	8. 3×10^{0}	3. 7×10^{0}
100	O s -194	5. 2×10^{-6}	4. 5×10^{-8}
101	I r -192	1.8×10^{3}	2.9×10^{6}
102	I r -192m	1.8×10^{3}	2.9×10^{6}
103	P t -190	0	3. 7×10^{1}

	放射性物質の種類	金属類 (Ba)	コンクリート類 (Ba)
104	P t -193	1.5×10^{1}	$\frac{1.3 \times 10^7}{1.3 \times 10^7}$
105	Hg - 203	6.8×10^{-47}	$1.3 \times 10^{-7.6}$
106	$T_1 = 204$	8.7×10^{-3}	1.8×10^{6}
107	P b - 204	4.0×10^{-4}	7.8×10^{-3}
108	P b - 205	$6.5 \times 10^{\circ}$	$9.0 \times 10^{\circ}$
109	P b - 210	5.0×10^{-1}	$1.6 \times 10^{\circ}$
110	$\frac{1}{1} = \frac{1}{208}$	1.7×10^{-2}	7.4×10^{-2}
111	B i -210m	4.7×10^{-2}	2.3×10^{0}
112	P o -210	5.0×10^{-1}	1.4×10^{0}
113	R a -226	1.5×10^{0}	4.2×10^{0}
114	R a -228	2.3×10^{2}	8.5×10^{5}
115	A c -227	7.3×10^{0}	1.6×10^{2}
116	T h -228	3. 6×10 ²	8.5×10^{5}
117	T h −229	4.2×10^{0}	9. 4×10^{2}
118	Th-230	1.8×10^{2}	3.8×10^{2}
119	T h −232	2. 3×10^{2}	8.5×10 ⁵
120	P a −231	1.4×10 ¹	2.5×10^{2}
121	U - 232	1.3×10^{2}	1.8×10^{1}
122	U - 233	1.2×10^{3}	2.8×10^{5}
123	U - 234	6. 0×10^{5}	8.6×10 ⁵
124	U - 235	1.1×10^{4}	3.8×10 ⁴
125	U - 236	3. 0×10^{3}	4.3×10^{2}
126	U - 238	2. 5×10^{5}	8. 2×10 ⁵
127	N p -236	6. 0×10^{-4}	8.4×10^{-5}
128	N p -237	1.2×10^{3}	1.6×10^{2}
129	P u −236	4. 2×10^{-1}	2. 9×10^{-2}
130	P u −238	4. 1×10^{6}	4. 9×10^{5}
131	P u −239	1. 1×10^{7}	2. 2×10^{6}
132	P u −240	9.8×10 ⁶	1.4×10^{6}
133	P u −241	3. 5×10^{8}	3. 5 \times 10 7
134	P u −242	4. 9×10^{3}	6.8 \times 10 ²
135	P u −244	8. 4×10^{-5}	9. 5×10^{-6}
136	Am-241	2. 1×10^{7}	3. 3×10 ⁶
137	Am-242m	1.1×10^{5}	1.5×10 ⁴
138	Am - 243	1.1×10^{4}	1.5×10^{-3}
139	Cm - 242	8.7×10 ⁴	5. 9×10^{3}
140	C m - 243	7.1×10 ³	8.5×10 ²
141	Cm - 244	1.8×10^{5}	1. 5×10^{4}
	放射性物質の種類	金属類 (Bq)	コンクリート類 (Bq)
-----	-----------	-----------------------	-----------------------
142	C m - 245	6. 7×10^{0}	6. 0×10^{-1}
143	C m - 246	6. 7×10^{0}	2. 5×10^{-1}
144	C m - 247	1. 4×10^{-5}	3. 2×10^{-7}
145	C m - 248	1.0×10^{-4}	1.9×10^{-6}
146	C m - 250	2.9×10 ⁻¹²	4.8×10 ⁻¹⁴
147	C f -249	4. 3×10^{-4}	4. 5×10^{-6}
148	C f -250	2. 0×10^{-3}	2. 4×10^{-5}
149	C f -251	2. 0×10^{-5}	3. 4×10^{-7}
150	C f -252	8. 7×10^{-5}	6. 0×10^{-7}

6 主要な放射性物質の選定

6.1 主要な放射性物質の選定対象

「工場等において用いた資材その他の物に含まれる放射性物質の放射能濃 度が放射線による障害の防止のための措置を必要としないものであることの 確認等に関する規則」又は「IAEA SAFETY GUIDE Application of the Concepts of Exclusion, Exemption and Clearance」などに示される放射線 による障害の防止のための措置を必要としない放射能濃度基準(以下「CL 濃度基準」という。)には被ばく線量への寄与が無視できる放射性物質の濃度 が示されており、被ばく線量の評価における被ばく経路に相違はあるが、こ れと比較して十分小さい放射性物質は、被ばく線量への寄与が小さいと考え られる。低レベル放射性廃棄物の中でも極めて放射能濃度の低い廃棄物は、 CL濃度基準より濃度が十分に低い放射性物質が多く存在する。主要な放射 性物質の選定に用いる放射能量を基に、金属類とコンクリート類に分類して 算定した放射性物質の放射能濃度が,十分に低い濃度としてCL濃度基準の 1万分の1以上となる放射性物質を選定対象として抽出し、主要な放射性物 質を線量評価によって選定する。廃棄物である機器及び配管、生体遮へい体 など(以下「機器」という。)の放射能濃度の最大は、放射性物質の全ての放 射能濃度(以下「全放射能濃度」という。)が放射化金属で2.2×10³ Bq/g であり、金属類及びコンクリート類の平均(全放射能濃度で、金属類が 1.2×10^2 Bq/g, コンクリート類が 7.6×10¹ Bq/g) から 2 桁以内であり, 機器ごとの放射能濃度のばらつきを考慮しても、CL濃度基準に対する影響 は1%以下(2桁未満)となるように、保守的に4桁下である「放射能濃度が CL濃度基準の1万分の1以上」を主要な放射性物質の選定対象として抽出 している。

金属類とコンクリート類に分類して算定した放射性物質の放射能濃度が,

補5添2-78

CL濃度基準の1万分の1以上となる放射性物質を,主要な放射性物質の選 定対象として抽出した結果を第13表に示す。

選定対象とする放射性物質の種類は、以下の37種類である。

H-3, Be-10, C-14, C1-36, K-40, Ca-41, Fe-55,

Co-60, Ni-59, Ni-63, Sr-90, Zr-93, Nb-93m,

N b -94, M o -93, A g -108m, C d -113m, S b -125, I -129,

C s -134, C s -137, B a -133, S m -147, E u -152, E u -154,

Eu-155, Ho-163, Ho-166m, Ir-192, Ir-192m, T1-204,

Pu-238, Pu-239, Pu-240, Pu-241, Am-241, Am-242m

放射能濃度(D)(Bq/g) 濃度比 (D/C) 選 CL 濃度基 放射性物質 定 準 (C) コンクリー コンクリー の種類 金属類 金属類 結 (Bq∕g) ト類 ト類 ₩1 果 H - 37. 1×10^{1} 6. 9×10^{1} 100 7.1 \times 10⁻¹ 6. 9×10^{-1} Ο 1 5. 4×10^{-5} B e −10^{* 2} 6.3 $\times 10^{-7}$ 6.3 $\times 10^{-5}$ 0 0.01 5.4×10⁻³ 2 3. 7×10^{-1} 2. 2×10^{-1} 3. 7×10^{-1} 2. 2×10^{-1} \bigcirc 3 C - 141 3. 4×10^{-10} S i −32^{*2} 8. 2×10^{-12} 0.01 4 3. 4×10^{-8} 8.2 $\times 10^{-10}$ _ 3. 7×10^{-19} 2.8×10⁻²¹ 2.8×10⁻²³ 3.7×10⁻²¹ S - 35_ 5 100 6 $C \ 1 \ -36$ $1.6 \times 10^{\circ}$ 2. 3×10^{-2} 1.6×10^{0} 2. 3×10^{-2} \bigcirc 1 1. 4×10^{-8} 3. 2×10^{-3} 3. 2×10^{-4} 7 K - 4010 1.4×10^{-9} Ο 2. 0×10^{-3} 2.8×10⁻¹ 8 C a -41 100 2.0×10⁻⁵ 2.8×10⁻³ Ο 1.3×10^{-11} C a -45 1. 4×10^{-14} 1.4×10⁻¹⁶ 1. 3×10^{-13} 100 _ 9 6.7×10⁻²³ 1.8×10^{-19} 10 S c - 46 0.1 6.7 × 10⁻²² 1.8×10⁻¹⁸ _ 7.8×10⁻⁶ 2.3×10⁻⁷ 7.8×10⁻⁷ 2.3 $\times 10^{-8}$ 0.1 11 Mn - 542. 4×10^{-2} F e - 55 2. 4×10^{1} 8.7 $\times 10^{-1}$ 1000 8.7×10⁻⁴ \bigcirc 123. 0×10^{-48} 1.6×10^{-79} F e -59 3.0×10⁻⁴⁸ 1.6×10^{-79} _ 13 1 1. 3×10^{-32} 7.2×10⁻⁵³ 7.2×10⁻⁵³ 1.3×10^{-32} C o - 58 1 _ 148. $2 \times 10^{\circ}$ 15 <u>Co</u> - 60 1. 6×10^{1} 8. 2×10^{-1} 0.1 1. 6×10^{2} \bigcirc 16N i -59 5. 7×10^{-2} 7.9 $\times 10^{-4}$ 100 5.7 $\times 10^{-4}$ 7.9×10⁻⁶ \bigcirc 8.9×10⁻² 8.9×10⁻⁴ N i −63 6. $5 \times 10^{\circ}$ 100 6. 5×10^{-2} Ο 17 1.1×10^{-9} 8. 2×10^{-9} 8. 2×10^{-8} 1.1×10^{-8} Z n - 65 18 0.1 4. 1×10^{-19} 1. 7×10^{-21} 1.7×10^{-21} <u>Se</u> - 75 4.1 × 10⁻¹⁹ 19 1 1. 1×10^{-6} 1.2×10^{-7} S e -79 20 0.1 1.1×10^{-5} 1.2×10^{-6} 8.6×10⁻⁸ 2. 2×10^{-4} 8.6×10⁻⁹ 2. 2×10^{-5} — 21 R b −87 104. 3×10^{-38} 4. 5×10^{-60} S r -85 4. 3×10^{-38} 4.5 $\times 10^{-60}$ ____ 22 1 7.6×10⁻⁴³ 1.1×10^{-69} 1000 7.6×10⁻⁴⁶ 1.1×10⁻⁷² ____ 23S r -89 8.1×10⁻² 6. 2×10^{-3} 8.1×10⁻² 6. 2×10^{-3} \bigcirc 24 $\rm S~r-90$ 1 2. 1×10^{-37} Y - 91 1.1×10^{-60} 100 2.1×10⁻³⁹ 1.1×10⁻⁶² _ 25 3. 5×10^{-2} Z r - 93 3.8 $\times 10^{-4}$ 10 3.5 \times 10⁻³ 3.8×10⁻⁵ \bigcirc 26 6. 2×10^{-32} 3. 1×10^{-36} 6. 2×10^{-32} $3.1 \times 10^{-3.6}$ Z r -95 27 1 2. 7×10^{-2} 3. 2×10^{-4} N b −93m 102.7 $\times 10^{-3}$ 3. 2×10^{-5} \bigcirc 28 2.7×10⁻⁴ 1.0×10^{-4} 2.7×10⁻³ 1.0×10^{-3} 29 N b - 940.1 \bigcirc 1.9×10^{-34} 6.8 $\times 10^{-36}$ 1.9×10^{-34} 6.8×10⁻³⁶ 30 N b −95 1 _ М о **—**93 1.9×10^{-3} 0 1.7×10⁻⁵ 10 1.9×10^{-4} 1.7×10⁻⁶ 31 1. 6×10^{-12} T c −98^{*2} 3.5×10^{-14} 3.5×10⁻¹² 0.01 1.6×10⁻¹⁰ 32 5.9×10⁻⁵ Т с — 99 2.6×10⁻⁶ 5.9 $\times 10^{-5}$ 2.6×10⁻⁶ 33 1 2.7×10⁻⁸⁸ 5.9×10⁻⁵⁴ 5.9×10⁻⁵⁴ 2.7 × 10⁻⁸⁸ 34R u - 103 1 _ R u −106 5. 4×10^{-7} 2.0×10⁻⁸ 5.4 $\times 10^{-6}$ 2.0×10⁻⁷ _ 350.1 1.9×10^{-10} 3.8×10⁻¹⁰ 3.8×10⁻⁹ 1.9×10^{-9} R h −102 0.1 _ 36 1.6×10^{-7} P d −107 2.9×10⁻⁸ 1000 1.6×10⁻¹⁰ 2.9×10⁻¹¹ 37 1.1×10^{-4} 2. 1×10^{-3} Ο 38 Ag -108m 0.1 2.1 \times 10⁻² 1. 1×10^{-3} <u>Ag</u>-110m 2. 2×10^{-10} 7.5 $\times 10^{-12}$ 7.5 $\times 10^{-11}$ 39 0.1 2. 2×10^{-9} _ 6.1 $\times 10^{-8}$ 6. 6×10^{-10} 6. 6×10^{-10} 6.1 × 10⁻⁸ C d - 109 40 1 2.5 $\times 10^{-5}$ 1.5×10⁻⁶ 2.5×10⁻⁴ C d −113m 1.5×10^{-5} Ο 41 0.1 3.0×10^{-50} 4.1×10⁻⁸¹ 100 3. 0×10^{-52} 4. 1×10^{-83} 42 C d - 115m— 2.3×10⁻⁷⁶ 43 I n - 114m 3. 9×10^{-48} 10 3.9×10^{-49} 2. 3×10^{-77} ____ I n -115^{*2} 1. 2×10^{-16} 9.4×10⁻¹⁰ 1.2×10^{-14} 9. 4×10^{-8} _ 0.01 44 6. 0×10^{-38} 7.3 $\times 10^{-25}$ 7.3×10⁻²⁵ 6.0 $\times 10^{-38}$ _ 45 S n - 113 1 7.3×10⁻¹³ 7.3 × 10⁻¹⁶ 8.9×10⁻¹⁵ 1000 8.9×10⁻¹⁸ 46 S n - 119m 6. 1×10^{-7} 2.5 $\times 10^{-6}$ 47 S n - 121m 6. 1×10^{-7} 2.5 $\times 10^{-6}$ _ 1 3. 7×10^{-2} 1.2×10^{-2} 1.3×10⁻²¹ 4. 2×10^{-24} S n - 123 300 _ 48 1.3×10^{-5} ___

主要な放射性物質の選定対象の抽出結果 第13表

0.1

 1.1×10^{-6}

1.1×10⁻⁷

49

S n −126

1. 3×10^{-6}

		放射能濃度(D) (Bq∕g)	CL 濃度基	濃度比	(D∕C)	選
ţ	放射性物質			準 (C)			定
	の種類	金属類	コンクリー	(Bq∕g)	金属類	コンクリー	結
			ト類	₩ 1		ト類	果
50	S b -124	2. 7×10^{-38}	8.4 $\times 10^{-62}$	1	2.7 × 10 ⁻³⁸	8.4 $\times 10^{-62}$	—
51	S b - 125	1.2×10^{-4}	1. 1×10^{-5}	0.1	1.2×10^{-3}	1.1×10^{-4}	0
52	T e −121m ^{* 2}	0	0	0.01	0	0	_
53	T e -123m	4. 3×10^{-19}	1.7×10 ⁻²¹	1	4. 3×10^{-19}	1.7×10 ⁻²¹	
54	T e -125m	2.9 $\times 10^{-5}$	2.6×10 ⁻⁶	1000	2.9 × 10 ⁻⁸	2.6 $\times 10^{-9}$	_
55	T e −127m	1.2×10^{-22}	2.5×10 ⁻¹⁷	10	1.2×10^{-23}	2. 5×10^{-18}	_
56	T e -129m	6. 0×10^{-64}	5.9×10 ⁻¹⁰⁴	10	6.0 $\times 10^{-65}$	5.9×10 ⁻¹⁰⁵	—
57	I -129	5.6 $\times 10^{-8}$	1.1×10^{-6}	0.01	5.6×10 ⁻⁶	1.1×10^{-4}	0
58	C s - 134	6. 3×10^{-5}	1.3×10^{-3}	0.1	6. 3×10^{-4}	1.3×10^{-2}	0
59	C s - 135	1.5×10^{-6}	1. 4×10^{-7}	100	1.5×10^{-8}	1.4×10^{-9}	_
60	C s - 137	1.1×10^{-1}	8.5 $\times 10^{-3}$	0.1	1.1×10^{0}	8.5×10 ⁻²	0
61	B a - 133	1.4×10^{-4}	7.4 $\times 10^{-3}$	0.1	1.4×10^{-3}	7.4 $\times 10^{-2}$	0
62	L a - 137	7.5 $\times 10^{-8}$	1.2×10^{-6}	1000	7.5 $\times 10^{-11}$	1.2×10^{-9}	_
63	L a - 138 ^{* 2}	2.9×10^{-11}	7.1×10^{-8}	0.01	2.9×10^{-9}	7.1×10^{-6}	_
64	Се — 139	$4.6 \times 10^{-1.9}$	$1.9 \times 10^{-2.1}$	1	$4.6 \times 10^{-1.9}$	$1.9 \times 10^{-2.1}$	_
65	C e - 141	$2.4 \times 10^{-6.4}$	$1.0 \times 10^{-1.05}$	100	$2.4 \times 10^{-6.6}$	$1.0 \times 10^{-1.07}$	_
66	C e - 144	2.5×10^{-8}	9 1×10^{-10}	10	2.5×10^{-9}	9 1×10^{-11}	_
67	$N d - 144^{*2}$	$2.7 \times 10^{-1.5}$	1.4×10^{-9}	0.01	$2.0 \times 10^{-1.3}$	1.4×10^{-7}	_
68	Pm = 145	3.2×10^{-5}	5.0×10^{-4}	10	3.2×10^{-6}	5.0×10^{-5}	_
69	Pm = 147	1.9×10^{-3}	3.4×10^{-4}	1000	1.9×10^{-6}	3.4×10^{-7}	_
70	Pm = 148m	$1.5 \times 10^{-5.3}$	$2.2 \times 10^{-8.6}$	3	$3.6 \times 10^{-5.4}$	$7.3 \times 10^{-8.7}$	_
70	$Sm = 145\%^2$	1.1×10 $3.5 \times 10^{-1.1}$	5.6×10^{-10}	0.01	3.6×10^{-9}	5.6×10^{-8}	
79	$S m = 146^{2}$	$3.5 \times 10^{-1.3}$	$1.0 \times 10^{-1.3}$	0.01	1.6×10^{-11}	$1.0 \times 10^{-1.1}$	
72	$S m = 147 \times 2$	1.0×10^{-9}	1.9×10^{-6}	0.01	1.0×10 4.5×10^{-7}	1.9×10^{-4}	\cap
74	$Sm = 147^{m}$	4.5×10^{-14}	1.9×10^{-11}	0.01	4.5×10^{-12}	1.9×10^{-9}	0
75	$S_{\rm m} = 140^{\rm m}$	4.3×10^{-3}	1.9×10 2.0×10^{-2}	1000	4.0×10^{-6}	1.9×10 2.0 × 10 ⁻⁵	_
70	Sm-151	2.3×10^{-2}	3.9×10^{-0}	1000	2.3×10^{-1}	3.9×10^{-1}	\bigcirc
70	E u - 152	0.3×10^{-3}	4.0×10^{-1}	0.1	0.3×10^{-2}	4.0×10^{-10}	0
70	E u - 154	1.4×10	2.0×10 2.7×10^{-3}	0.1	1.4×10	2.0×10 2.7 × 10 ⁻³	0
70	E u = 155	4.0×10^{-14}	2.7×10^{-11}	1	$4.0 \times 10^{-1.2}$	2.7×10^{-9}	0
79	$G d = 152^{-5}$	2.2×10 7.2 × 10 ^{-1.2}	0.0×10	0.01	2.2×10 7.2 × 10 ⁻¹³	6.0×10	
80	G d = 153	7.3×10^{-6}	1.0×10^{-5}	10	7.3×10^{-8}	1.0×10^{-7}	
81	1 b - 157	$2.0 \times 10^{-3.3}$	$9.5 \times 10^{-3.6}$	100	$2.0 \times 10^{-3.3}$	$9.5 \times 10^{-3.6}$	
82	1 b - 160	1.3×10	2.9×10	1	1.3×10	2.9×10	
83	$Dy = 159^{3/2}$	3.1×10	0.0×10^{-4}	0.01	3.1×10	0.0×10^{-2}	_
84	$H = 163^{+2}$	0	2.7×10^{-4}	0.01	0 $0 = 4$	2.7×10^{-3}	0
85	H o - 166m	$2.5 \times 10^{-2.3}$	$2.2 \times 10^{-2.6}$	0.1	$2.5 \times 10^{-2.5}$	$2.2 \times 10^{-2.8}$	0
86	1 m - 170	$3.2 \times 10^{-1.0}$	2.8×10^{-5}	100	$3.2 \times 10^{-1.3}$	2.8×10^{-20}	_
87	1 m - 171	$3.5 \times 10^{-7.1}$	1.2×10^{-3}	1000	$3.5 \times 10^{-7.2}$	1. 2×10 °	_
88	Y b - 169	9.4×10^{-9}	1.4×10^{-113}	10	9.4×10^{-7}	1.4×10^{-114}	_
89	L u - 176* 2	$1.2 \times 10^{-1.3}$	$1.4 \times 10^{-1.4}$	0.01	1.2×10^{-1}	$1.4 \times 10^{-1.2}$	
90	L u - 177m* 2	$5.8 \times 10^{-3.5}$	7.2×10^{-14}	0.01	$5.8 \times 10^{-3.3}$	7.2×10^{-12}	_
91	H f - 175* 2	$1.4 \times 10^{-5.0}$	$4.6 \times 10^{-3.6}$	0.01	$1.4 \times 10^{-5.0}$	$4.6 \times 10^{-3.4}$	
92	H t - 181	1.7×10^{-50}	$2.9 \times 10^{-6.5}$		1.7×10^{-50}	$2.9 \times 10^{-6.5}$	
93	H f - 182* ²	6.8×10^{-10}	7.4×10^{-12}	0.01	6.8×10^{-8}	7.4×10^{-10}	
94	T a - 180 ^{** 2}	1.0×10^{-14}	2.7×10^{-12}	0.01	1.0×10^{-12}	2. 7×10^{-10}	_
95	T`a — 182	6.6×10^{-10}	2.7×10^{-12}	0.1	6.6×10^{-9}	2. 7×10^{-11}	_
96	W-181	4.8×10^{-24}	$1.5 \times 10^{-3.6}$	10	$4.8 \times 10^{-2.5}$	1.5×10^{-37}	_
97	W-185	$2.1 \times 10^{-2.2}$	$5.3 \times 10^{-2.6}$	1000	$2.1 \times 10^{-2.5}$	5.3×10^{-29}	
98	W-188	4. 7×10^{-37}	1.3×10^{-57}	10	4.7×10^{-38}	1.3×10^{-58}	<u> </u>
99	R e - 187 ^{* 2}	1.4×10^{-9}	3.7×10^{-10}	0.01	1.4×10^{-7}	3.7×10^{-8}	
100	$O_{s} = 194^{\times 2}$	8.5×10^{-16}	4.6×10^{-18}	0.01	8.5×10^{-14}	4.6×10^{-16}	I —

補5添2-81

		放射能濃度(D) (Bq∕g)	CL 濃度基	濃度比	(D∕C)	選
t	放射性物質			準 (C)			定
	の種類	金属類	コンクリー	(Bq∕g)	金属類	コンクリー	結
			ト類	* 1		下類	果
101	I r -192	3. 0×10^{-7}	2.9 × 10 ⁻⁴	1	3. 0×10^{-7}	2.9 × 10 ⁻⁴	\bigcirc
102	I r −192m ^{*2}	3. 0×10^{-7}	2.9 × 10 ⁻⁴	0.01	3. 0×10^{-5}	2.9 × 10 ⁻²	0
103	P t −190 ^{%2}	0	3.8 $\times 10^{-9}$	0.01	0	3.8 $\times 10^{-7}$	_
104	P t −193	2. 4×10^{-9}	1.3×10^{-3}	100	2. 4×10^{-11}	1.3×10^{-5}	
105	H g −203	1. $1 \times 10^{-5.6}$	1.3×10^{-86}	10	1.1×10^{-57}	1.3×10^{-87}	—
106	T 1 - 204	1. 4×10^{-12}	1.8×10^{-4}	1	1.4×10^{-12}	1.8×10^{-4}	0
107	P b −204 ^{*2}	6.5 $\times 10^{-14}$	8.0×10 ⁻¹³	0.01	6.5 $\times 10^{-12}$	8. 0×10^{-1}	_
108	P b −205 ^{* 2}	1.1 \times 10 ⁻⁹	9. 2×10^{-10}	0.01	1.1×10^{-7}	9. 2×10^{-8}	_
109	P b −210	8. 2×10^{-1}	1.6×10^{-10}	1	8. 2×10^{-11}	1.6×10^{-10}	—
110	B i −208 ^{* 2}	2. 7×10^{-12}	7.5 \times 10 ⁻¹²	0.01	2.7×10 ⁻¹⁰	7.5 \times 10 ⁻¹⁰	—
111	B i −210m ^{* 2}	7.7×10 ⁻¹²	2.3 \times 10 ⁻¹⁰	0.01	7.7 \times 10 ⁻¹⁰	2.3 $\times 10^{-8}$	_
112	P o −210	8. 1×10^{-11}	1.4×10^{-10}	1	8.1×10 ⁻¹¹	1.4×10^{-10}	_
113	R a -226	2. 5×10^{-10}	4.3 $\times 10^{-10}$	1	2.5 $\times 10^{-10}$	4. 3×10^{-10}	
114	$R_{a} - 228$	3.8×10^{-8}	8.6×10^{-5}	1	3.8×10^{-8}	8.6×10^{-5}	_
115	A c -227	1.2×10^{-9}	1.6×10^{-8}	1	1.2×10^{-9}	1.6×10^{-8}	_
116	T h - 228	5.9×10^{-8}	8.6×10^{-5}	1	5.9×10^{-8}	8.6×10^{-5}	
117	T h = 220 T h = 229	6.8×10^{-10}	9.6×10^{-8}	0 1	6.8×10^{-9}	9.6×10^{-7}	
118	T h = 230	3.0×10^{-8}	3.0×10^{-8}	1	3.0×10^{-8}	3.0×10^{-8}	
110	T h = 230	3.8×10^{-8}	8.7×10^{-5}	1	3.8×10^{-8}	8.7×10^{-5}	
120	$P_{0} = 231$	3.0×10^{-9}	2.5×10^{-8}	1	2.4×10^{-9}	2.5×10^{-8}	
120	F a 231	2.4×10 2.1 × 10 ⁻⁸	2.3×10^{-9}	0 1	2.4×10 2.1 × 10 ⁻⁷	2.3×10^{-8}	
121	U = 232	2.1×10	1.8×10^{-5}	0.1	2.1×10	1.8×10^{-5}	
122	U = 233	2.0×10^{-5}	2.8×10^{-5}	1	2.0×10^{-5}	2.8×10^{-5}	
123	U = 234	9.8×10^{-6}	8.8×10^{-6}	1	9.8×10^{-6}	8.8×10	
124	U = 235	1.8×10^{-7}	3.8×10^{-8}	1	1.8×10^{-8}	3.8×10^{-9}	
125	U = 236	5.0×10^{-5}	4.4×10^{-5}	10	5.0×10^{-5}	4.4×10^{-5}	
126	U = 238	$4.2 \times 10^{-1.4}$	$8.4 \times 10^{-1.5}$	1	$4.2 \times 10^{-1.2}$	$8.4 \times 10^{-1.3}$	
127	N p - 236* 2	9.9×10^{-14}	8.6×10^{-10}	0.01	9.9×10^{-12}	8.6×10^{-10}	
128	N p - 237	2.0×10^{-1}	1.7×10^{-5}	1	2.0×10^{-1}	1.7×10^{-6}	_
129	P u - 236	7.0×10^{-11}	2.9×10^{-12}	1	7.0×10^{-11}	$2.9 \times 10^{-1.2}$	_
130	P u −238	6. 7×10^{-4}	5.0×10^{-3}	0.1	6.7×10^{-3}	5.0×10^{-4}	0
131	P u −239	1.8×10^{-3}	2.3×10^{-4}	0.1	1.8×10^{-2}	2.3×10^{-3}	0
132	P u −240	1.6×10^{-3}	1.4×10^{-4}	0.1	1.6×10^{-2}	1.4×10^{-3}	0
133	P u −241	5. 7×10^{-2}	3.6×10^{-3}	10	5.7×10^{-3}	3.6×10^{-4}	0
134	P u −242	8.0×10^{-7}	6.9×10^{-8}	0.1	8.0×10^{-6}	6.9×10^{-7}	
135	P u −244	1.4×10^{-14}	9.7×10 ⁻¹⁶	0.1	1.4×10^{-13}	9. $7 \times 10^{-1.5}$	
136	Am-241	3.5×10^{-3}	3.4×10^{-4}	0.1	3.5×10^{-2}	3.4×10^{-3}	Ō
137	$\mathrm{Am}-242\mathrm{m}$	1.8×10^{-5}	1.5×10^{-6}	0.1	1.8×10^{-4}	1.5×10^{-5}	0
138	Am - 243	1.9×10^{-6}	1.5×10^{-7}	0.1	1.9×10^{-5}	1.5×10^{-6}	—
139	Cm - 242	1.4×10^{-5}	6. 1×10^{-7}	10	1.4×10^{-6}	6. 1×10^{-8}	
140	Cm - 243	1.2×10^{-6}	8. 7×10^{-8}	1	1.2×10^{-6}	8.7×10 ⁻⁸	—
141	Cm - 244	3. 0×10^{-5}	1.5×10^{-6}	1	3.0×10^{-5}	1.5×10^{-6}	_
142	Cm-245	1. 1×10^{-9}	6.1×10 ⁻¹¹	0.1	1.1×10^{-8}	6. 1×10^{-10}	
143	C m - 246	1. 1×10^{-9}	2.6×10 ⁻¹¹	0.1	1.1×10^{-8}	2.6×10 ⁻¹⁰	
144	Cm-247	2. 3×10^{-15}	3.2×10^{-17}	0.1	2. 3×10^{-14}	3. 2×10^{-16}	
145	Cm - 248	1.7×10^{-14}	$1.9 \times 10^{-1.6}$	0.1	$1.7 \times 10^{-1.3}$	$1.9 \times 10^{-1.5}$	
146	$Cm - 250^{2}$	4. 7 × 10 ^{-22}	4.9×10^{-24}	0.01	4.7 $\times 10^{-20}$	4.9×10^{-22}	_
147	C f -249	7.0×10^{-14}	$4.6 \times 10^{-1.6}$	0.1	7.0×10^{-13}	4.6×10^{-15}	_
148	C f -250	3.3×10^{-13}	2. 4×10^{-15}	1	3.3×10^{-13}	2. 4×10^{-15}	_
149	C f -251	3. 2×10^{-15}	3.5×10 ⁻¹⁷	0.1	3. 2×10^{-14}	3. 5×10^{-16}	_
150	C f -252	1. 4×10^{-14}	6.1×10 ⁻¹⁷	1	1. 4×10^{-14}	6. 1×10^{-17}	_
全	放射能濃度	1.2×10^{2}	7.6×10^{1}				•

- ※1:「工場等において用いた資材その他の物に含まれる放射性物質の放射能濃度が放射線による障害の防止のための措置を必要としないものであることの確認等に関する規則」,「IAEA SAFETY GUIDE No.RS-G-1.7:
 Application of the Concepts of Exclusion, Exemption and Clearance (2004)」及び「IAEA: Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance, Safety Reports Series No.44 (2005)」から設定。
- ※2:文献にCL濃度基準の設定がない放射性物質については、CL濃度基準 が最も低い値である I-129 の 0.01 Bq/gを用いて設定。
 - 表中の は、「放射能濃度が C L 濃度基準の 1 万分の 1 以上」に該当す るものを示している。

6.2 主要な放射性物質の選定

廃棄物の主要な放射性物質は、「評価対象個人」の線量に基づき選定する。 線量評価に当たっては、被ばく経路の重畳を考慮する。

放射性物質の選定を行う線量評価シナリオは,廃止措置の開始後の評価に おけるシナリオとし,シナリオ及び線量評価モデルは「第二種廃棄物埋設施 設の位置、構造及び設備の基準に関する規則第十三条(ピット処分又はトレ ンチ処分に係る廃棄物埋設地)第1項第三号及び第四号への適合性について」 に示すものを用いる。

また,線量評価パラメータについては,補足説明資料 5「第二種廃棄物埋 設施設の位置、構造及び設備の基準に関する規則第十三条(ピット処分又は トレンチ処分に係る廃棄物埋設地)第1項第三号及び第四号への適合性につ いて 線量評価パラメータ」に示すものを使用する。

ただし,線量評価パラメータのうち,選定対象の放射性物質の放射能量に ついては,第12表に示す主要な放射性物質の選定に用いる放射能量を,放射 性物質又は元素ごとに設定する線量評価パラメータについては,添付資料3

「主要な放射性物質の選定用パラメータ設定」に示すものを使用する。

廃止措置の開始後の評価に係る線量評価において,複数の移行経路からの 被ばくの重ね合わせを考慮した評価対象個人の線量を評価し,その合計線量 に基づいて,金属類及びコンクリート類でそれぞれの主要な放射性物質の選 定を行う。

主要な放射性物質は、「放射性廃棄物に含まれる放射性物質の種類について (内規)経済産業省」(平成24・03・22原院第1号)を参考として、被ばく 線量評価上、影響をもたらすことが予想される放射性物質とする。選定の方 法としては、廃棄物埋設地及びその周辺で想定される公衆被ばくに関する全 てのシナリオとして、最も可能性が高い自然事象シナリオ、最も厳しい自然

補5添2-84

事象シナリオ,人為事象シナリオにおいて,それぞれの廃止措置の開始後の 線量評価を行う。シナリオごとに,最大の線量値を持つ放射性物質の線量の 最大値と比較して,当該放射性物質の線量の最大値が1%以上であるものを 選定する。また,事業規則の「トレンチ処分」において放射能濃度の制限が 定められている放射性物質を主要な放射性物質として選定する。

上記に基づき計算した,主要な放射性物質の選定過程でのシナリオごとの 相対重要度を第14表,第15表及び第16表に示す。

长的小牛		金属	類			コンクリ	ート類	
成別性物質の 種類	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2
H - 3	5. 00×10^{1}	1. 44×10^{-4}	7.93×10 ⁻²		5. 00×10^{1}	3. 32×10^{-4}	1.83×10^{-1}	0
В е — 10	1. 00×10^{4}	9.99×10 ⁻¹²	5. 51×10^{-9}	—	1.00 \times 10 ⁴	2. 38×10^{-13}	1.31×10^{-10}	—
C - 14	1. 51×10^{3}	4.77 $\times 10^{-5}$	2.63×10 ⁻²		1. 50 \times 10 ³	6. 52×10^{-5}	3. 60×10^{-2}	
C 1 - 36	5. 56 \times 10 2	1.81×10^{-3}	1.00 \times 10 ⁰	O	5. 16×10^{2}	5.79×10 ⁻⁵	3. 20×10^{-2}	
K-40	3. 48×10^{3}	3. 76×10^{-11}	2.08×10 ⁻⁸	—	3. 22×10^{3}	1.96×10^{-5}	1. 08×10^{-2}	
C a -41	8. 24×10^{3}	2.23×10 ⁻⁸	1.23×10^{-5}	—	7.83 \times 10 ³	7.41×10 ⁻⁶	4. 09×10^{-3}	\bigtriangleup
F e -55	0	0	0	—	0	0	0	_
C o -60	0	0	0	—	0	0	0	—
N i -59	1. 00×10^{4}	9. 29×10^{-9}	5. 13×10^{-6}	—	1.00×10^{4}	2.70×10 ⁻¹⁰	1. 49×10^{-7}	—
N i -63	1. 37×10^{3}	3. 62×10^{-14}	2. 00×10^{-11}	—	1. 38×10^{3}	9. 17×10^{-16}	5.06×10 ⁻¹³	—
S r -90	2. 01×10^{2}	6. 49×10^{-9}	3. 58 \times 10 ⁻⁶	—	2. 02×10^{2}	9.96×10 ⁻¹⁰	5.50 \times 10 ⁻⁷	—
Z r -93	1. 00×10^{4}	5.05×10 ⁻¹²	2.79×10 ⁻⁹	—	1.00×10^{4}	1. 06×10^{-13}	5.84 \times 10 ⁻¹¹	—
N b −93m	0	0	0	—	0	0	0	—
N b -94	1. 00×10^{4}	5. 50 \times 10 ⁻⁷	3.03×10^{-4}	—	1.00×10^{4}	4. 12×10^{-7}	2.28×10 ⁻⁴	—
M o -93	2. 79×10^{3}	1.10×10^{-7}	6.09×10 ⁻⁵	—	2.95 \times 10 ³	2. 06×10^{-9}	1.13×10^{-6}	—
Ag-108m	2. 61×10^{3}	1.09×10^{-8}	6. 02×10^{-6}	—	2. 63×10^{3}	1. 15×10^{-9}	6.35 \times 10 ⁻⁷	_
C d -113m	0	0	0	—	0	0	0	—
S b -125	0	0	0	—	0	0	0	—
I -129	1. 08×10^{3}	4.09×10 ⁻¹¹	2. 26×10^{-8}	—	9.86 \times 10 ²	1.71×10 ⁻⁹	9. 43×10^{-7}	_
C s -134	0	0	0	—	0	0	0	—
C s -137	0	0	0	—	0	0	0	_
Ва—133	5. 00×10^{1}	1. 16×10^{-8}	6. 38×10^{-6}		5. 00×10^{1}	1. 32×10^{-6}	7. 30×10^{-4}	
Sm-147	1. 00×10^{4}	1. 11×10^{-14}	6. 15×10^{-12}	_	1. 00×10^{4}	9. 59×10^{-12}	5. 29×10^{-9}	_

第14表 最も可能性が高い自然事象シナリオ相対重要度

北中小小		金属類			コンクリート類			
成別性物質の 種類	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2
E u - 152	0	0	0	—	0	0	0	_
E u - 154	0	0	0	—	0	0	0	—
E u — 155	0	0	0	—	0	0	0	—
H o - 163	0	0	0	—	1. 00 \times 10 ⁴	2.86×10 ⁻¹⁴	1.58×10^{-11}	—
H o -166m	7. 05×10^{3}	1.28×10^{-10}	7.05 \times 10 ⁻⁸	—	7. 10×10^{3}	2.23×10 ⁻⁹	1.23×10^{-6}	—
I r -192	0	0	0	—	0	0	0	—
I r -192m	2. 47×10^{3}	1. 45×10^{-15}	8.00×10 ⁻¹³	—	2. 50 \times 10 ³	2.77×10 ⁻¹²	1.53×10^{-9}	—
T 1 - 204	0	0	0	—	0	0	0	—
P u −238	2. 58×10^{3}	5. 10×10^{-20}	2.81×10 ⁻¹⁷	—	2. 60×10^{3}	7.46×10 ⁻²¹	4. 12×10^{-18}	—
P u −239	1.00 \times 10 ⁴	2.55×10 ⁻¹⁰	1. 41×10^{-7}	—	1.00 \times 10 ⁴	6. 13×10^{-11}	3. 38×10^{-8}	—
P u −240	1.00×10 ⁴	1.05×10^{-10}	5.79 \times 10 ⁻⁸	—	1.00 \times 10 ⁴	1.80×10^{-11}	9.95 \times 10 ⁻⁹	—
P u −241	0	0	0	—	0	0	0	—
$\overline{Am-241}$	4. 36×10^{3}	7. 77×10^{-1} ³	4. 29×10^{-10}	_	4. 40×10^{3}	1. 26×10^{-1} ³	6. 97×10^{-11}	_
Am - 242m	2. 48×10^{3}	9.09×10 ⁻²⁰	5.02×10^{-17}	_	2. 51×10^{3}	1.33×10^{-20}	7.35×10^{-18}	_

*1:(相対重要度) = (各核種の最大線量値)÷(最重要核種の最大線量値)

*2: 選定結果の各凡例の意味は以下のとおり。

◎:相対重要度1(最重要核種),○:相対重要度0.1以上

□:相対重要度 0.01 以上, △:相対重要度 0.001 以上

一:相対重要度 0.001 未満

おおやまたの		金属	類			コンクリ	ート類	
成射性物質の 種類	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2
H - 3	6. 24×10^{1}	4. 14×10^{-1}	7. 32×10^{-2}		6. 32×10^{1}	9.95 \times 10 ⁻¹	1.76×10 ⁻¹	0
B e −10	1. 00 \times 10 ⁴	1.28×10^{-6}	2. 27×10^{-7}	—	1. 00 \times 10 ⁴	3. 67×10^{-8}	6. 48×10^{-9}	—
C-14	1.89×10^{2}	3. 16×10^{-1}	5. 58 \times 10 ⁻²		1.69×10^{2}	4. 50 × 10 ⁻¹	7.96×10 ⁻²	
C 1 - 36	1.09×10^{2}	5.66 \times 10 ⁰	1.00×10^{0}	O	1.00×10^{2}	1.92×10^{-1}	3. 39×10^{-2}	
K-40	3. 74×10^{2}	5. 44×10^{-7}	9.62×10 ⁻⁸	—	3. 27×10^{2}	2.82×10 ⁻¹	4.98×10 ⁻²	
C a -41	5. 92×10^{2}	3. 37×10^{-4}	5.95 \times 10 ⁻⁵	—	5. 08×10^{2}	1. 16×10^{-1}	2. 05×10^{-2}	
F e -55	0	0	0	—	0	0	0	—
C o -60	1.24×10^{2}	1.34×10^{-10}	2. 37×10^{-11}	—	1. 25×10^{2}	1. 26×10^{-11}	2. 23×10^{-12}	—
N i -59	5. 97×10 ³	2. 31×10^{-4}	4. 08×10^{-5}	_	5. 15×10 ³	7.64 $\times 10^{-6}$	1.35×10^{-6}	_
N i -63	5. 32×10^{2}	6. 32×10^{-5}	1.12×10^{-5}	_	5. 38×10^{2}	1.86 $\times 10^{-6}$	3. 28×10^{-7}	—
S r -90	1.28×10^{2}	2. 13×10^{-2}	3. 77×10^{-3}	\bigtriangleup	1. 30×10^{2}	3. 69×10^{-3}	6. 51×10^{-4}	—
Z r -93	1.00×10^{4}	1.72×10^{-4}	3. 04×10^{-5}	_	1.00×10^{4}	4. 46×10^{-6}	7.88×10 ⁻⁷	—
N b -93m	2. 59 \times 10 ²	1.01×10^{-13}	1. 79 × 10 ⁻¹⁴	_	2. 62×10^{2}	2. 26×10^{-15}	3.99×10 ⁻¹⁶	_
N b -94	7. 22×10^{3}	1. 76 \times 10 ⁻³	3. 12×10^{-4}	—	6.68×10 ³	1. 56 \times 10 ⁻³	2.76×10 ⁻⁴	—
M o -93	4. 62×10^{2}	3. 11×10^{-3}	5. 50 × 10 ⁻⁴	_	4. 07×10^{2}	6. 19×10^{-5}	1. 10×10^{-5}	_
A g -108m	1. 42×10^{3}	3.98×10^{-3}	7.04 \times 10 ⁻⁴	—	1. 46×10^{3}	4. 79 \times 10 ⁻⁴	8. 47×10^{-5}	—
C d -113m	2. 20×10^{2}	5.66×10 ⁻¹²	1.00×10^{-12}	—	5. 36×10^{2}	1. 10×10^{-12}	1.95×10^{-13}	—
S b - 125	0	0	0	_	0	0	0	—
I -129	1. 36×10^{2}	1.42×10^{-5}	2. 51×10^{-6}	_	1.23×10^{2}	6. 25×10^{-4}	1.10×10^{-4}	_
C s -134	0	0	0	_	0	0	0	_
C s -137	4. 21×10^{2}	5. 70 × 10 ⁻¹⁰	1.01×10^{-10}	_	4. 25×10^{2}	8. 20×10^{-1}	1. 45×10^{-11}	—
B a −133	6.88×10 ¹	1.09×10^{-5}	1.93×10^{-6}	—	6.96 \times 10 ¹	1. 41×10^{-3}	2. 50 × 10 ⁻⁴	—
Sm-147	1.00×10^{4}	5. 33×10^{-9}	9. 43×10^{-10}	_	1.00×10^{4}	5. 51 \times 10 ⁻⁶	9. 74×10^{-7}	_

第15表 最も厳しい自然事象シナリオ相対重要度

おみみかの		金属類			コンクリート類			
成射性物質の 種類	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2
E u - 152	0	0	0	—	0	0	0	_
E u - 154	0	0	0	—	0	0	0	—
E u - 155	0	0	0	—	0	0	0	_
H o - 163	0	0	0	—	5. 44×10^{3}	2.92×10 ⁻⁸	5. 16×10^{-9}	_
H o -166m	2. 81×10^{3}	1.28×10^{-5}	2. 26×10^{-6}	—	2.89 \times 10 ³	2. 53 $\times 10^{-4}$	4. 47×10^{-5}	—
I r -192	0	0	0	—	0	0	0	_
I r -192m	8.98×10 ²	1.75 \times 10 ⁻⁹	3. 09×10^{-10}	—	9. 12×10^{2}	3. 79×10^{-6}	6.70×10 ⁻⁷	_
T 1 - 204	0	0	0	_	0	0	0	_
P u −238	9. 68×10^{2}	9.75×10 ⁻⁹	1. 72×10^{-9}	—	9. 76×10^{2}	1.70×10 ⁻⁹	3. 01×10^{-10}	_
P u −239	1. 00 \times 10 ⁴	1.55×10 ⁻³	2. 74×10^{-4}	—	1. 00×10^{4}	4. 61×10^{-4}	8. 15×10^{-5}	_
P u −240	8.85×10 ³	6. 48×10^{-4}	1.15×10^{-4}	_	9. 35×10^{3}	1.37×10^{-4}	2. 42×10^{-5}	_
P u −241	4. 08×10^{2}	9.09×10 ⁻²⁰	1. 61×10^{-20}	—	4. 10×10^{2}	8.83×10 ⁻²¹	1.56×10 ⁻²¹	_
Am-241	1. 66×10^{3}	1.89×10^{-4}	3. 33×10^{-5}	—	1. 69×10^{3}	3. 47×10^{-5}	6. 14×10^{-6}	_
Am - 242m	8.66×10 ²	1. 40×10^{-8}	2. 47×10^{-9}	—	8. 74×10^{2}	2. 46×10^{-9}	4. 35×10^{-10}	—

*1:(相対重要度) = (各核種の最大線量値)÷(最重要核種の最大線量値)

*2: 選定結果の各凡例の意味は以下のとおり。

◎:相対重要度1(最重要核種),○:相対重要度0.1以上

□:相対重要度 0.01 以上, △:相対重要度 0.001 以上

一:相対重要度 0.001 未満

おみを		金属	類			コンクリ	ート類	
成射性物質の 種類	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2
H-3	5. 00×10^{1}	1.68×10^{-1}	1. 10×10^{-2}		5. 00×10^{1}	2. 38×10^{-1}	1.55×10 ⁻²	
В е — 10	3. 82×10^{3}	6.63 $\times 10^{-7}$	4. 32×10^{-8}	—	3. 73×10^{3}	1.13×10^{-8}	7.37 \times 10 ⁻¹⁰	_
C - 14	8. 60×10^{1}	1.95×10^{-1}	1.27×10^{-2}		8. 52×10^{1}	1.80×10^{-1}	1. 17×10^{-2}	
C 1 - 36	5. 00×10^{1}	7.12 \times 10 ⁰	4.65×10 ⁻¹	\bigcirc	5. 00×10^{1}	1. 45×10^{-1}	9. 45×10^{-3}	\bigtriangleup
K-40	1. 08×10^{2}	8. 01×10^{-8}	5. 23×10^{-9}	_	1. 07×10^{2}	2. 70 × 10 ⁻²	1. 76×10^{-3}	\bigtriangleup
C a -41	5. 00×10^{1}	1.24×10^{-4}	8.13×10 ⁻⁶	_	5.00 \times 10 ¹	2.63×10 ⁻²	1. 72×10^{-3}	\bigtriangleup
F e -55	5. 00×10^{1}	2. 49×10^{-8}	1.62×10 ⁻⁹	—	5. 00×10^{1}	1.29×10^{-9}	8. 43×10^{-11}	—
C o -60	5. 00×10^{1}	1.60 \times 10 ⁰	1.04×10^{-1}	\bigcirc	5. 00×10^{1}	1.21×10^{-1}	7.88×10 ⁻³	\bigtriangleup
N i -59	5. 00×10^{1}	1.93×10^{-4}	1. 26×10^{-5}	—	5. 00×10^{1}	3. 90×10^{-6}	2.55×10 ⁻⁷	—
N i -63	5. 00×10^{1}	3. 23×10^{-2}	2. 11×10^{-3}	\bigtriangleup	5. 00×10^{1}	6. 52×10^{-4}	4. 25×10^{-5}	—
S r -90	5. 00×10^{1}	2. 16×10^{-1}	1. 41×10^{-2}		5. 00×10^{1}	2. 44×10^{-2}	1. 59 \times 10 ⁻³	\bigtriangleup
Z r -93	5. 00×10^{1}	6. 04×10^{-5}	3.94 \times 10 ⁻⁶	—	5. 00×10^{1}	9.63×10 ⁻⁷	6.29×10 ⁻⁸	—
N b −93m	5. 00×10^{1}	3. 48×10^{-6}	2. 27×10^{-7}	—	5. 00×10^{1}	6. 11×10^{-8}	3.99 \times 10 ⁻⁹	—
N b -94	5. 00×10^{1}	1.26×10^{-2}	8. 21×10^{-4}	—	5. 00×10^{1}	6.63×10 ⁻³	4.33×10 ⁻⁴	—
M o -93	5. 00×10^{1}	1. 19×10^{-3}	7.76×10 ⁻⁵	—	5. 00×10^{1}	1. 43×10^{-5}	9.36×10 ⁻⁷	—
A g -108m	5. 00×10^{1}	7.85 \times 10 ⁻²	5. 13×10^{-3}	\bigtriangleup	5. 00×10^{1}	6. 02×10^{-3}	3.93×10^{-4}	—
C d -113m	5. 00×10^{1}	2. 31×10^{-5}	1. 50×10^{-6}	—	5. 00×10^{1}	2. 09×10^{-6}	1. 36×10^{-7}	—
S b - 125	5. 00×10^{1}	3. 71×10^{-9}	2. 42×10^{-10}	—	5. 00×10^{1}	5. 06×10^{-10}	3. 30×10^{-11}	—
I -129	7. 02×10^{1}	1. 42×10^{-7}	9. 30×10^{-9}	—	6.98 \times 10 ¹	3. 90×10^{-6}	2.55×10 ⁻⁷	—
C s -134	5. 00×10^{1}	1. 36×10^{-10}	8.88×10 ⁻¹²	—	5. 00×10^{1}	4. 22×10^{-9}	2.75×10 ⁻¹⁰	—
C s -137	5. 00×10^{1}	4. 05×10^{-1}	2. 64×10^{-2}		5. 00×10^{1}	4. 54×10^{-2}	2.96×10 ⁻³	\bigtriangleup
B a −133	5. 00×10^{1}	3. 54×10^{-5}	2. 31×10^{-6}		5. 00×10^{1}	2. 79 \times 10 ⁻³	1.82×10^{-4}	
Sm-147	5. 00×10^{1}	7.03×10^{-9}	4.59×10 ⁻¹⁰	_	5. 00×10^{1}	4. 32×10^{-6}	2.82×10 ⁻⁷	_

第16表 人為事象シナリオ相対重要度

おおおやまでの		金属類				コンクリ	ート類	
成別性物質の 種類	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2	最大線量時の 時間 [y]	最大線量 [µSv/y]	相対重要度*1	選定結果*2
E u - 152	5. 00×10^{1}	1.47×10^{-1}	9. 61×10^{-3}	\bigtriangleup	5. 00×10^{1}	1.53×10^{1}	1.00×10^{0}	O
E u - 154	5. 00×10^{1}	4. 51 × 10 ^{-3}	2.94×10 ⁻⁴	—	5. 00×10^{1}	1.81×10^{-1}	1. 18×10^{-2}	
E u - 155	5. 00×10^{1}	8.02×10 ⁻⁸	5. 24×10^{-9}	—	5. 00×10^{1}	6.53 $\times 10^{-7}$	4. 27×10^{-8}	—
H o - 163	0	0	0	—	5. 00×10^{1}	1.04×10^{-8}	6.78×10 ⁻¹⁰	—
H o -166m	5. 00×10^{1}	1.02×10^{-3}	6.63×10 ⁻⁵	—	5. 00×10^{1}	1.29×10^{-2}	8. 41×10^{-4}	—
I r -192	5. 00×10^{1}	2.56×10 ⁻⁸⁰	1.67×10 ⁻⁸¹	—	5. 00×10^{1}	3. 73 \times 10 ⁻⁷⁷	2. 44×10^{-78}	—
I r -192m	5. 00×10^{1}	4.03 $\times 10^{-6}$	2.63×10 ⁻⁷	—	5. 00×10^{1}	5.88 $\times 10^{-3}$	3.84 \times 10 ⁻⁴	—
T 1 - 204	5. 00×10^{1}	3. 41×10^{-16}	2.22×10^{-17}	—	5. 00×10^{1}	6.38 × 10 ⁻⁸	4. 16×10^{-9}	—
P u −238	5. 00×10^{1}	3. 35×10^{-3}	2. 19×10^{-4}	—	5. 00×10^{1}	3.63×10 ⁻⁴	2. 37×10^{-5}	—
P u −239	5. 00×10^{1}	1.44×10^{-2}	9.37×10 ⁻⁴	—	5. 00×10^{1}	2.60×10 ⁻³	1.70×10 ⁻⁴	—
P u −240	5. 00×10^{1}	1.27×10^{-2}	8.32×10 ⁻⁴	—	5. 00×10^{1}	1.65×10^{-3}	1.08×10^{-4}	—
P u −241	5. 00×10^{1}	7. 30×10^{-4}	4. 76×10^{-5}		5. 00×10^{1}	6. 61×10^{-5}	4. 31×10^{-6}	_
Am - 241	5. 11×10^{1}	3.23×10^{-2}	2. 11×10^{-3}	\triangle	5. 00×10^{1}	4. 02×10^{-3}	2.63×10 ⁻⁴	_
Am-242m	5.00×10^{1}	8.49×10^{-5}	5.54×10^{-6}	_	5.00×10^{1}	1.05×10^{-5}	6.84×10^{-7}	_

*1:(相対重要度) = (各核種の最大線量値)÷(最重要核種の最大線量値)

*2: 選定結果の各凡例の意味は以下のとおり。

◎:相対重要度1(最重要核種),○:相対重要度0.1以上

□:相対重要度 0.01 以上, △:相対重要度 0.001 以上

一:相対重要度 0.001 未満

シナリオごとの相対重要度評価においては金属類及びコンクリート類で 第17表の放射性物質が相対重要度1%以上となった。

シナリオ	金属類	コンクリート類
最も可能性が高 い自然事象	H-3, C-14, C 1-36	H-3, C-14, C 1-36, K-40
最も厳しい自然 事象	H-3, C-14, C 1-36	H-3, C-14, C 1-36, K-40, C a -41
人為事象	H-3, C-14, C 1 - 36, C o - 60, S r - 90, C s - 137	H = 3, C = 14, E u = 152, E u = 154

第17表 シナリオごとの相対重要度1%以上の放射性物質の種類

コンクリート類において、K-40が相対重要度で1%以上となるが、コン クリート類の廃棄物中に含まれるK-40の濃度は、放射化放射能評価におい て 3.2×10^{-3} (Bq/g) と評価しており、不純物元素として含まれるK元素の 天然存在比率から推定されるK-40の濃度と比較して二桁程度低い。このた め、実際に廃棄物に含まれるK-40 は、天然起源由来のものが大部分を占め ることから主要な放射性物質の対象からは除外する。

α線を放出する放射性物質(以下「全α」という。)は、いずれも相対重要 度で1%未満であるが、ウランの放射性物質の濃度及び放射能量の管理が必 要であると考えるため、「全α」として主要な放射性物質として追加する。

したがって,廃棄物の主要な放射性物質の種類を,第18表のとおり選定した。

廃棄物種類主要な放射性物質の種類金属類H-3, C-14, C1-36, Co-60, Sr-90,
Cs-137, 全 α コンクリート類H-3, C-14, C1-36, Ca-41, Co-60, Sr-90,
Cs-137, Eu-152, Eu-154, 全 α

第18表 主要な放射性物質の種類

7 主要な放射性物質ごとの総放射能量の設定

廃棄物の主要な放射性物質ごとの放射能量の設定は,主要な放射性物質の 選定に用いる放射能量を用いて設定する。このとき, α 線放出核種の合計で ある全 α は, Po-210 より原子量が多い放射性物質のうち主に β 線放出核 種であるPu-241 と主に γ 線放出核種であるAm-242mを除いた合計を用 いて設定する。なお,汚染放射性物質のうちH-3, C-14, C1-36, Sr-90,全 α の5種類については,廃棄物の外部からの直接の放射能濃度 の測定が難しいことから,将来の廃棄確認の際には分析データを基に評価す ることが考えられる。このため,現時点までに収集された放射能濃度の分析 データを用いて保守的に設定する。

設定方法は、C-14については、放射化により生成する放射性物質として 代表的なCo-60 との比から算術平均値を用いて設定し、Sr-90 及び全 α については核分裂によって直接生成する放射性物質として代表的なCs -137の比から算術平均値を用いて設定する。

H-3 については,廃棄物の汚染の性状に応じて一定濃度の範囲になる特徴があることから「ガス系金属」,「ガス系コンクリート」,「廃液系」に分類し,分析値の算術平均値を用いて設定する。

C1-36については、分析データから「ガス系金属」の汚染において、「低 レベル放射性固体廃棄物の埋設処分に係る放射能濃度上限値について」(原 子力安全委員会)に示されたトレンチ処分の区分値充足性の評価の値 1×10⁸ Bq/tの10分の1を超えるものが一部ある。これらの機器は、除染 により濃度を低減して埋設するため、代表的な機器であるSRU伝熱管の分 析値の算術平均から、除染試験の結果を踏まえて設定する。「ガス系コンクリ ート」、「廃液系」は、「ガス系金属」と比較して低く、一定濃度の範囲にある ことから分析値の算術平均値を用いて設定する。

設定値は原子炉停止からの期間を考慮して原子炉停止 20 年後に減衰補正 した算術平均値を用いるが,運転中に発生した廃棄物は「均質・均一固化体 及び充填固化体の廃棄のための確認方法について(一部改正) JNES-S Sレポート」(2008年4月)に示される値を用いて,原子炉停止 20 年後まで 発生年度ごとに減衰補正している。C-14, Sr-90,全 α の設定値を第 19 表及び第 21 表, H-3 の設定値を第 20 表及び第 22 表, C1-36 の設定値 を第 23 表に示す。

主要な放射性物質の選定に用いる放射能量及び分析データに基づき設定し た各放射性物質の放射能量に対してC1-36を除いては,廃棄確認における 分析・測定の精度など,今後の評価における放射能量の変動を踏まえて 1.2 倍し(全 α についてはビルドアップを考慮して更に 1.2 倍としている),有 効数字 2 桁となるように切り上げた値を廃棄物の放射性物質の種類ごとの放 射能量として設定する。

C1-36はガス系金属が大部分を占めており,分析データに基づき設定した値から,除染によって低減を行うため,一定の放射能濃度を上限として管理することが可能であることから,裕度は見込まない。

主要な放射性物質の総放射能量を第24表に示す。なお、金属類及びコンク リート類は、埋設トレンチの1区画ごとで分けて埋設する計画である。廃棄 物の埋設の順序は廃止措置における解体作業に依存するものであるため、金 属類及びコンクリート類を,西側トレンチ及び東側トレンチで分類するもの ではないが,管理期間終了後の被ばく線量評価においては,保守的に区画内 の全ての廃棄物を金属類又はコンクリート類で定置した場合を想定して,金 属類とコンクリート類に分類した放射能量を使用するため,主要な放射性物 質を分けて設定した廃棄物の種類別の総放射能量を第25表に示す。

	,	
代表放射性物質の種類との比	原子炉停止時	原子炉停止 20 年後
C −14 ∕ C o −60	2. 6×10^{-1}	3. 6×10^{0}
S r −90∕C s −137	1.9 \times 10 ⁰	1.9×10^{0}
全α(金属)/C s -137	4. 6×10^{-2}	7. 3×10^{-2}
全α(コンクリート)/C s -137	5.8×10 ⁻¹	9. 3×10^{-1}

第19表 C-14, Sr-90, 全αの設定値

第20表 H-3の設定値

	廃棄物の性状	原子炉停止時 (Bq/t)	原子炉停止 20 年後 (Bq/t)
ガス系	金属類	2. 2×10^{8}	7.5 \times 10 ⁷
	コンクリート類	3. 3×10^{6}	1.1×10^{6}
廃液系	金属類/コンクリート類	5. 9×10^{5}	2. 0×10^{5}

代表放射性物質の種類との比	原子炉停止時
$C - 14 \neq C o - 60$	3. 0×10^{-1}
S r −90∕C s −137	2. $1 \times 10^{\circ}$
全α/C s -137	8. 2×10^{-2}

第 21 表 C-14, Sr-90, 全 α の設定値(運転中に発生した廃棄物)

第22表 H-3の設定値(運転中に発生した廃棄物)

廃	棄物の性状	原子炉停止時 (Bq/t)
ボッズ	金属類	0.0×108
ルス余	コンクリート類	2.2×10^{-5}

第23表 C1-36の設定値

	廃棄物の性状	原子炉停止時 (Bq/t)	原子炉停止 20 年後 (Bq∕t)
ガス系	金属類	3. 0×10^{6}	3. 0×10^{6}
	コンクリート類	1. 0×10^{6}	1.0×10^{6}
廃液系	金属類/コンクリート類	1.0×10^{6}	1.0×10^{6}

放射性物質の種類	総放射能量 (Bq)
H-3	1.4×10^{12}
С — 14	1.2×10^{10}
C 1 - 36	1.8×10^{10}
C a -41	3. 4×10^{9}
С о — 60	1.3×10^{11}
S r -90	1.7×10^{9}
C s -137	9.1×10 ⁸
E u - 152	5. 5×10^{10}
E u - 154	2. 5×10^{9}
全 α	1.4×10^{8}

第24表 主要な放射性物質の総放射能量

第25表 主要な放射性物質の廃棄物の種類別の総放射能量

放射性物質の種類	金属類の 総放射能量(Bq) [※]	コンクリート類の 総放射能量(Bq)
H - 3	5. 3×10 ¹¹	8. 2×10^{1}
C-14	8.6×10 ⁹	2.8×10 ⁹
$C \ 1 \ -36$	1.8 \times 10 ¹⁰	4.5 \times 10 ⁸
C a -41	_	3. 4×10^{9}
С о -60	1. 2×10^{11}	9. 7×10^{9}
S r -90	1.5×10^{9}	1.2×10^{8}
C s -137	8.1×10 ⁸	1.0×10^{8}
E u - 152	_	5. 5 \times 10 ¹⁰
E u -154	_	2. 5×10^{9}
全 α	7.1×10 ⁷	6. 4×10^{7}

※:「-」は主要な放射性物質に選定されないため、設定なし。

8 主要な放射性物質ごとの最大放射能濃度

主要な放射性物質の最大放射能濃度は,廃棄確認における外部非破壊測定 の精度など,今後の評価における放射能量の変動を踏まえて,機器ごとの最 大の放射能濃度を 10 倍にして設定する。ただし,C1-36 については,放 射能濃度が高いものは,ガス系金属の汚染放射性物質であり,除染により放 射能濃度の低減を図ったうえで,埋設する計画であるため,一部の機器に極 端に高い放射能濃度が含まれるものではない。このため,「低レベル放射性固 体廃棄物の埋設処分に係る放射能濃度上限値について」(原子力安全委員会) に示されたトレンチ処分の区分値充足性の評価の値を参考として,最大放射 能濃度を 1×10⁸ Bq/t と設定する。主要な放射性物質の最大放射能濃度を 第 26 表に示す。

放射性物質の種類	最大放射能濃度 (Bq/t)
H-3	3.0×10^{9}
C-14	5. 0×10^{7}
C 1 - 36	1.0×10^{8}
C a -41	2. 0×10^{7}
C o -60	8.0×10 ⁹
S r -90	1.0×10^{7}
C s -137	7.0×10^{6}
E u -152	3.0×10^{8}
E u -154	9. 0×10^{6}
全 α	4. 0×10^{6}

第26表 主要な放射性物質の最大放射能濃度

9 埋設する放射性廃棄物に含まれるウランの放射能濃度

埋設する放射性廃棄物に含まれるU-234, U-235 及びU-238 の総放射

補5添2-98

能量は,金属類が 8.7×10⁻¹ MBq, コンクリート類が 1.8×10^o MBq であり, 人工バリア, 土砂及び容器を含まない当該廃棄物の重量は,放射能濃度算定 において保守的となるように有効数字二桁に切り下げた値で金属類は 6,100 t, コンクリート類は 9,800 t である。当該廃棄物の重量のみでそれぞ れを除した数値は,金属類が 1.5×10⁻⁴, コンクリート類が 1.8×10⁻⁴ と なり,いずれも1を超えない。

廃棄物埋設地に埋設する廃棄物の放射能濃度の分布はおおむね均一(放射 能濃度の最大は,平均から2桁以内)であるものを,金属類及びコンクリー ト類で埋設トレンチの区画を分けて埋設するため,区画ごとの放射能濃度も おおむね均一となる。なお、U-234、U-235及びU-238を含む全αの最 大放射能濃度は4 MBq/t(機器ごとの最大の放射能濃度を10倍にして設定 しており、主要な放射性物質はAm-241等)であることから、埋設する放 射性廃棄物に含まれるU-234、U-235及びU-238の放射能濃度は 10 MBq/tを十分に下回るものである。U-234、U-235及びU-238の放 射能量及び平均放射能濃度を第27表に示す。

放射性物質	放	射能量	平均放射能濃度			
の種類	金属類 (MBq)	コンクリート類 (MBq)	金属類 (MBq/t)	コンクリート類 (MBq/t)		
U - 234	6. 0×10^{-1}	8. 6×10^{-1}	9.8×10 ⁻⁵	8.8×10 ⁻⁵		
U - 235	1. 1×10^{-2}	3. 8×10^{-2}	1.8×10^{-6}	3. 8×10^{-6}		
U - 238	2. 5×10^{-1}	8. 2×10^{-1}	4. 2×10^{-5}	8. 4×10^{-5}		
合計	8.7×10 ⁻¹	1.8×10^{-0}	1.5×10 ⁻⁴	1.8×10^{-4}		

第27表 U-234, U-235及びU-238の放射能量及び平均放射能濃度

以上

C1-36 放射能濃度の

設定方法見直しについて

1 現行申請における設定

廃止措置計画書における原子炉冷却材等の汚染組成の評価において,放射 化された黒鉛からの放射性物質の移行は,代表的な放射性物質としてC-14 を選定し,分析データを基に放射化計算の組成を用いて評価している。

C1-36については, 黒鉛に存在する不純物塩素が放射化されて生成され る放射性物質であるが, 配管や機器から得られた分析データから, これまで 想定してきた汚染組成の評価より多く原子炉冷却系に移行していることが, 知見として得られている。このため, 過去に得られている分析データ 44 点 を用いて, 汚染放射性物質の中において, Co-60 濃度(代表的な放射化生 成核種)との比から, 保守的に算術平均値 14 を用いて評価している(第1図 参照)。

第1図 C1-36とCo-60の分析データ(2011年度まで)

2 設定方法の見直し

廃棄物の汚染評価に,一律にCo-60濃度比の算術平均値を用いた放射能量では総放射能量の設定が過剰に保守的なものなるため,汚染系統分類ごとにC1-36の分析データの算術平均を用いて設定する。

具体的には,現在までに得られている分析データ 78 点の結果からガス系 金属については,濃度が高いものは,除染によって濃度を低減して埋設する こととし,物量が多く特にC1-36の汚染濃度が高いSRU伝熱管などの分 析値の算術平均から,除染試験の結果を踏まえて除染係数 10 を考慮し, 3 Bq/gと設定する。

補5添2参1-2

「ガス系コンクリート」、「廃液系金属及びコンクリート」の放射能濃度は、 「ガス系金属」と比較して低く、一定濃度の範囲にあることから分析値の算 術平均値から切り上げて1 Bq/gと設定する(第1表及び第2図参照)。

算術平均值 設定値 汚染系統分類 分析点数 (Bq∕g) (Bq∕g) 3* ガス系金属 1432 ガス系コンクリート 8 0.21 1 廃液系金属及びコンクリート 130.31 1

第1表 C1-36分析データに基づく放射能濃度の算術平均値

※:除染試験結果を踏まえて除染係数10を考慮して設定

第2図 C1-36とCo-60の分析データ(2019年度まで)

3 放射能量の変更

C1-36の放射能濃度の設定方法の見直しにより放射能量の設定を第2表のとおり変更する。今回の変更はC1-36の放射能濃度の評価方法のみを見直したものであり、物量に変更はない。

お財産の番粕	放射能量(変更前)	放射能量(変更後)			
放射性物員の 種類	(Bq)	(Bq)			
C 1 - 36	4. 6×10^{10}	1.8 \times 10 ¹⁰			

第2表 C1-36の放射能量(変更前後)

以 上

主要な放射性物質の機器ごとの放射能量の

設定までの計算過程について

1 はじめに

本資料は,主要な放射性物質に選定された放射性物質について,機器ごとの全放射能濃度の設定から総放射能量の設定までの計算過程の例を示すものである。

代表的な機器を対象として,放射化放射性物質と汚染放射性物質で総放射 能量の設定までの計算過程が異なるため,それぞれ代表的な機器として放射 化放射性物質からはコンクリート類の生体遮へい体コンクリートを,汚染放 射性物質からは金属類の熱交換器(Steam Raising Unit)(以下「SRU」と いう。)の伝熱管を例示する。総放射能量の設定までの計算過程においては, 主要な放射性物質として選定された核種について説明する。

2 機器ごとの情報

主な機器ごとの情報を第1表に示す。機器ごとの情報は,総放射能量の設 定に必要な項目として,廃棄物種類,機器名称,材質,重量,汚染形態の分 類,全放射能濃度及び全放射能量を整理した。機器名称による種類は500項 目以上に分類され,機器ごとの全放射能量は,10⁴ Bqオーダーから10¹¹ Bq オーダーまでのものがある。最も高い全放射能量に対して,相対的に0.1 % 以上超えるような機器を対象とするため,機器ごとの全放射能量が 10⁸ Bq を超える機器を対象として整理した。また,機器名称と全放射能濃度が同じ ものは合計して整理している。例えばSRUの伝熱管は,各機器で4基分あ るが,これを合計して示している。

第1表 主な機器ごとの情報

皮弃枷括粘		地 兕 々 尓	材質	舌 畳 (+)	汚洗形能の公粧	全放	b射能濃度(Bq	/g)	全放射能量(Bq)		
	E初性類	版	11 月	里里(い	内架形態の万類	放射化	表面汚染	合計	放射化	表面汚染	合計
		シールドクーリング ダクト(地下部)	炭素鋼	14	放射化	1. 7×10^{3}	0	1.7×10 ³	2. 3×10^{10}	0	2. 3×10^{10}
		下部シールド	炭素鋼	31	放射化	2. 1×10^{3}	0	2. 1×10^{3}	6. 6×10^{10}	0	6.6×10 ¹⁰
		外側保温材(アルミ)	アルミニウム	4	放射化	2. 3×10^{2}	0	2. 3×10^{2}	8.9×10 ⁸	0	8.9×10 ⁸
		チャージマシン ボトムドーム	炭素鋼	12	放射化+ ガス系汚染	1. 1×10^{1}	9. 1×10^{-2}	1.2×10^{1}	1. 4×10^{8}	1.1×10^{6}	1. 4×10^{8}
		チャージマシン ターレット	炭素鋼	78	放射化+ ガス系汚染	4. 5×10^{0}	1.9×10^{-1}	4. 7×10^{0}	3. 5×10^{8}	1.5×10^{7}	3. 7×10^{8}
		チャージマシン センターベッセル	炭素鋼	24	放射化+ ガス系汚染	4. 5×10^{0}	2. 3×10^{-2}	4. 6×10^{0}	1. 1×10^{8}	5. 5×10^{5}	1.1×10^{8}
		コールドガスダクト①	炭素鋼	5	放射化+ ガス系汚染	3. 3×10 ¹	1.2×10^{0}	3. 4×10 ¹	1.6×10^{8}	5.9×10 ⁶	1.7×10 ⁸
		コールドガスダクト (ベンド部)①	炭素鋼	16	放射化+ ガス系汚染	7. 0×10^{0}	8. 1×10^{-1}	7.8×10 ⁰	1.1×10 ⁸	1.3×10^{7}	1.3×10^{8}
		コールドガスダクト②	炭素鋼	3	放射化+ ガス系汚染	5. 0×10^{2}	1.2×10^{0}	5. 0×10^{2}	1.5×10 ⁹	3. 4×10^{6}	1.5×10 ⁹
	廃止措置計画書	コールドガスダクト (ベンド部)②	炭素鋼	13	放射化+ ガス系汚染	3. 1×10^{2}	8. 1×10^{-1}	3. 1×10^{2}	4. 0×10^{9}	1.0×10^{7}	4. 0×10^{9}
金属	の中でL3と 区分された機器	ホットガスダクト①	炭素鋼	5	放射化+ ガス系汚染	6. 9×10 ²	1.5×10 ⁰	6. 9×10^{2}	3. 3×10^{9}	7. 2×10^{6}	3. 3×10^{9}
	ж 1	ホットガスダクト (ベンド部)①	炭素鋼	22	放射化+ ガス系汚染	5. 5×10^{2}	1.3×10^{0}	5. 5×10^{2}	1. 2×10^{10}	2.7×10 ⁷	1. 2×10^{10}
		SRU/伝熱管/ティア7	炭素鋼	218	ガス系汚染	0	1.3×10^{0}	1. 3×10^{0}	0	2.8×10 ⁸	2.8×10 ⁸
		SRU/伝熱管/ティア6	炭素鋼	326	ガス系汚染	0	1.4×10^{0}	1. 4×10^{0}	0	4.5×10 ⁸	4. 5×10^{8}
		SRU/伝熱管/ティア5	炭素鋼	405	ガス系汚染	0	2.5 \times 10 ⁰	2. 5×10^{0}	0	1. 0×10^{9}	1.0×10^{9}
		SRU/伝熱管/ティア4	炭素鋼	235	ガス系汚染	0	2. 4×10^{0}	2. 4×10^{0}	0	5. 7×10^{8}	5. 7×10^{8}
		SRU/伝熱管/ティア3	炭素鋼	306	ガス系汚染	0	1.5×10^{0}	1.5×10^{0}	0	4. 5×10^{8}	4. 5×10^{8}
		SRU/伝熱管/ティア2	炭素鋼	182	ガス系汚染	0	1.9×10^{0}	1.9×10^{0}	0	3. 4×10^{8}	3.4×10^{8}
		ホットガスダクト②	炭素鋼	29	放射化+ ガス系汚染	7. 0×10^{1}	1.5 \times 10 ⁰	7.1×10 ¹	2. 0×10^{9}	4. 3×10^{7}	2. 0×10^{9}
		シールドクーリング ダクト	炭素鋼	11	放射化	7. 1×10^{2}	0	7. 1×10^{2}	7.5×10 ⁹	0	7.5×10 ⁹
		ホットガスダクト③	炭素鋼	17	放射化+ ガス系汚染	2. 0×10^{1}	1.5×10 ⁰	2. 1×10^{1}	3. 3×10^{8}	2. 5×10^{7}	3. 5×10^{8}
		エキスパンジョン ベローズ No.4 ①	炭素鋼	32	放射化+ ガス系汚染	6. 2×10^{0}	6. 6×10^{-2}	6. 3×10^{0}	2. 0×10^{8}	2. 1×10^{6}	2. 0×10^{8}
		エキスパンジョン ベローズ No.4 ②	ステンレス鋼	3	放射化+ ガス系汚染	7. 6×10^{1}	3. 1×10^{-1}	7. 6×10^{1}	2. 3×10^{8}	9.7×10 ⁵	2. 3×10^{8}

補5添2参2-2

成查伽话粒		<u> 地里夕新</u> ++ 危	十十万斤	壬 昌 (4)	汚沈形能の八粨	全放射能濃度(Bq/g)		全放射能量(Bq)			
	· ////////////////////////////////////			里里(ひ	の栄形態の分類	放射化	表面汚染	合計	放射化	表面汚染	合計
	廃止措置計画	ホットガスバルブ	炭素鋼	60	放射化+ ガス系汚染	6.2×10 ⁰	6. 7×10^{-2}	6. 3×10^{0}	3. 7×10^{8}	4. 0×10^{6}	3.8×10 ⁸
	書の中でL3 と区分された	コールドガスダクト③	炭素鋼	10	放射化+ ガス系汚染	1.9×10^{1}	1. 2×10^{0}	2. 0×10^{1}	1.8×10 ⁸	1.1×10 ⁷	1.9×10^{8}
金属	/矮石 ※1	燃料装荷および観測用スタ ンドパイプ	炭素鋼	75	放射化	2. 1×10^{3}	0	2. 1×10^{3}	1.6×10 ¹¹	0	1.6×10^{11}
	運転中に発生したもの*2			110	ガス系汚染	0	2.9 × 10 ⁰	2. 9×10^{0}	0	3. 2×10^{8}	3. 2×10^{8}
	廃止措置中に新たに設置する解体工事用機器			1,300	ガス系汚染	0	4. 4×10^{0}	4. 4×10^{0}	0	5. 7×10^{9}	5. 7×10^{9}
	廃止措置計画書 の中でL3と 区分された機器 ^{*3}	生体遮へい体 コンクリート①	コンクリート	1,013	放射化	3. 3×10^{2}	0	3. 3×10^{2}	3. 3×10^{11}	0	3. 3×10^{11}
コンクリート		生体遮へい体 コンクリート②	コンクリート	1, 151	放射化	1.7×10^{2}	0	1. 7×10^{2}	2. 0×10^{11}	0	2. 0×10^{11}
		生体遮へい体 コンクリート③	コンクリート	1,177	放射化	8. 0×10 ¹	0	8. 0×10^{1}	9. 4×10^{10}	0	9. 4×10^{10}
		生体遮へい体 コンクリート④	コンクリート	1, 187	放射化	3. 7×10^{1}	0	3. 7×10^{1}	4. 4×10^{10}	0	4. 4×10^{10}
(ブロック)		生体遮へい体 コンクリート⑤	コンクリート	1, 231	放射化	1.7×10 ¹	0	1. 7×10^{1}	2. 1×10^{10}	0	2. 1×10^{10}
		生体遮へい体 コンクリート⑥	コンクリート	1,260	放射化	8.0×10 ⁰	0	8. 0×10^{0}	1. 0×10^{10}	0	1.0×10 ¹⁰
		生体遮へい体 コンクリート⑦	コンクリート	1,982	放射化	3.7 \times 10 ⁰	0	3. 7×10^{0}	7.3×10 ⁹	0	7. 3×10^{9}
		生体遮へい体 ブロック ^{※4}	コンクリート	470	放射化	7.8×10 ¹	0	7.8×10 ¹	3. 7×10^{10}	0	3. 7×10^{10}
コンクリート (ガラ)	運転中に発生し	 たもの ^{※2}	コンクリート	208	ガス系汚染	0	7. 2×10^{-1}	7. 2×10^{-1}	0	1.5×10^{8}	1.5×10^{8}

※1 解体撤去工事に伴い発生する(した)もの(熱交換器,その他機器・配管等)

- ※2 運転中に発生したものは、発生年度ごとの対象物量から、表面線量率等から設定されたСо-60の放射能量により放射性物質の種類ごとに減衰を考慮して、発生年度ごとに全放 射能濃度を算定しているが、ここでは参考として全体の平均の全放射能濃度を示している。
- ※3 生体遮へい体のうち,約1%がコンクリートガラとなると想定している。
- ※4 ブロック切断時における 3cm 分の裕度を考慮し,生体遮へい体の平均放射能濃度でコンクリート物量を想定として含めている。

- 3 放射化放射性物質の機器ごとの放射能量の設定
- (1)機器ごとの放射能濃度の設定

「生体遮へい体コンクリート」の材質は「コンクリート」であることか ら、主要な放射性物質ごとの放射能濃度の計算に用いる核種組成比(原子 炉停止20年後)は、「東海低レベル放射性廃棄物埋設事業所 第二種廃棄物 埋設事業許可申請 第二種廃棄物埋設施設の位置、構造及び設備の基準に関 する規則第十三条(ピット処分又はトレンチ処分に係る廃棄物埋設地)第 1項第三号又は第四号への適合性について線量評価パラメータ(以下「補 足説明資料5」という。)添付資料2「埋設する廃棄物の種類及び放射能量 の設定」に示す「第8表放射化放射性物質の組成比(原子炉停止20年後)」 の「コンクリート」の値を用いる。第1表の「生体遮へい体コンクリート」 の全放射能濃度と放射性物質ごとの核種組成比(原子炉停止20年後)から 「生体遮へい体コンクリート」の放射能濃度を設定している。

(2)機器ごとの放射能量の設定

主要な放射性物質ごとの放射能量の設定の流れは、「(1)機器ごとの放 射能濃度の設定」で算定した「生体遮へい体コンクリート」の放射能濃度 から第1表で示した重量を用いて算定し、C1-36を除いては、廃棄確認 における分析・測定の精度など、今後の評価における放射能量の変動を踏 まえて1.2倍した値(全 α についてはビルドアップを考慮してさらに1.2 倍としている)を「生体遮へい体コンクリート」の放射能量として設定し ている。第1図に放射化放射性物質の放射能量の設定フローを示す。

(例:コンクリート類の生体遮へい体コンクリート)

- 4 汚染放射性物質の機器ごとの放射能量の設定
- (1)機器ごとの放射能濃度の設定

金属類で廃止措置計画書の中でL3と区分された機器のうち,主な対象 物である「SRU/伝熱管/ティア5」を例として,放射能濃度の設定過 程を示す。

全放射能濃度の設定にあたっては,まず表面汚染密度(Bq/cm²)の設定 を行っている。SRUの表面汚染密度は,Co-60の分析値と核種組成比 を用いて設定している。次に汚染部位表面積及び汚染部位重量を,機器の 設計図面などから設定している。複雑な形状であるSRUの伝熱管を例と すると,設計図面におけるSRU一基分の伝熱面積(伝熱管の表面積)と 伝熱管部分の設計重量を用いている。なお,SRUの伝熱管は,全放射能 濃度の設定は除染試験の結果を踏まえて除染係数 10 を考慮して設定して いる。

補5添2参2-5

「SRU/伝熱管/ティア5」は「ガス系金属」に分類されることから 放射能濃度の計算に用いる核種組成比(原子炉停止20年後)は,「補足説 明資料5添付資料2「埋設する廃棄物の種類及び放射能量の設定」」に示す

「第9表 汚染放射性物質の組成比(原子炉停止20年後)」の「ガス系金属」の値を用いる。第1表の「SRU/伝熱管/ティア5」の全放射能濃度と放射性物質ごとの核種組成比(原子炉停止20年後)から「SRU/伝熱管/ティア5」のCo-60とCs-137の放射能濃度を設定している。

金属類の主要な放射性物質のうちH-3, C-14, C1-36, Sr-90, 全 α の 5 種類については, 現時点までに収集された放射能濃度の分析デ ータを用いて保守的に設定する。

設定方法は、C-14については、放射化により生成する放射性物質とし て代表的なCo-60 との比から算術平均値を用いて設定し、Sr-90 及 び全 α については核分裂によって直接生成する放射性物質として代表的 なCs-137 の比から算術平均値を用いて設定する(「補足説明資料 5 添 付資料 2 第 19 表 C-14, Sr-90, 全 α の設定値」参照)。

H-3 については,廃棄物の汚染の性状に応じて一定濃度の範囲になる 特徴があることから「ガス系金属」,「ガス系コンクリート」,「廃液系」に 分類し,分析値の算術平均値を用いて設定する(「補足説明資料5 添付資 料2 第20表 H-3の設定値」参照)。

C1-36 については、分析データから「ガス系金属」の汚染において、 「低レベル放射性固体廃棄物の埋設処分に係る放射能濃度上限値について」 (原子力安全委員会)に示されたトレンチ処分の区分値充足性の評価の値 1×10⁸ Bq/tの10分の1を超えるものが一部ある。これらの機器は、除

染により濃度を低減して埋設するため、代表的な機器であるSRU伝熱管の分析値の算術平均から,除染試験の結果を踏まえて設定する。「ガス系コ

補5添2参2-6
ンクリート」,「廃液系」は,「ガス系金属」と比較して低く,一定濃度の範囲にあることから分析値の算術平均値を用いて設定する(「補足説明資料5 添付資料2 第23表 C1-36の設定値」参照)。

(2)機器ごとの放射能量の設定

主要な放射性物質ごとの放射能量の設定の流れは、「(1)機器ごとの放 射能濃度の設定」で算定した「SRU/伝熱管/ティア5」の放射能濃度 から第1表で示した重量を用いて算定し、C1-36を除いては、廃棄確認 における分析・測定の精度など、今後の評価における放射能量の変動を踏 まえて1.2倍した値(全 α についてはビルドアップを考慮してさらに1.2 倍としている)を「SRU/伝熱管/ティア5」の放射能量として設定し ている。第2図に汚染放射性物質の放射能量の設定フローを示す。

第2図 汚染放射性物質の放射能量の設定フロー

(例:金属類のSRUの伝熱管)

5 主要な放射性物質の総放射能量の設定

「3 放射化放射性物質の機器ごとの放射能量の設定」及び「4 汚染放 射性物質の機器ごとの放射能量の設定」で示した例のように,機器ごとに放 射性物質ごとの放射能量を計算し,全ての機器の放射能量を足し合わせ,有 効数字2桁となるように切り上げた値を,主要な放射性物質の総放射能量と して設定している。

以 上

参考資料1

パラメータ設定の変更点について

1	はじめに	1
2	線量評価パラメータの変更点	1
3	参考文献 3	0

1 はじめに

本資料は、「東海低レベル放射性廃棄物埋設事業所 第二種廃棄物 埋設事業許可申請 第二種廃棄物埋設施設の位置、構造及び設備の 基準に関する規則第十三条(ピット処分又はトレンチ処分に係る廃 棄物埋設地)第1項第三号及び第四号への適合性について 線量評 価パラメータ」で示す線量評価パラメータの設定値(以下「現在の設 定値」という。)の過去の設定値からの変更点を示すものである。

2 線量評価パラメータの変更点

線量評価パラメータの過去の設定値は,東海低レベル放射性廃棄 物埋設事業所 廃棄物埋設施設の設計変更を実施する以前の設定値 と比較する。

具体的には,2019 年 7 月 25 日開催の核燃料施設等の新規制基準 適合性に係るヒアリングに提出した資料である「東海低レベル放射 性廃棄物埋設事業所 第二種廃棄物埋設事業許可申請 第二種廃棄 物埋設施設の位置,構造及び設備の基準に関する規則第九条(異常 時の放射線障害の防止等)への適合性について」を用いる。

なお,過去の説明資料作成段階から現在の説明資料作成までの間 に,第二種埋設許可基準規則及び第二種埋設許可基準解釈の改正に より,シナリオ区分が変更となっており,かつ,シナリオで要求され る内容が明確になっている。そのため,過去の説明資料の際に対象 とした被ばく経路が変更となっているものもあるが,その点につい ては本資料では記載しない。

本資料では,線量評価パラメータの設定値<mark>が過去から</mark>変更<u>となっ</u> ている点に着目して整理を実施する。

補5参1-1

なお,過去の説明資料の作成段階では,基本シナリオ,変動シナリ オ並びに基本シナリオ及び変動シナリオ以外の自然現象及び人為事 象に係るシナリオの3区分となっていたが,現在は最も可能性が高 い自然事象シナリオ,最も厳しい自然事象シナリオ及び人為事象シ ナリオに区分されている。

現在の説明資料と過去の説明資料を比較し,変更点を整理した結 果を第1表に示す。

第	1	表	線量評	価パ	ラ	メ	ータ	設定	値	の比	較結	果
---	---	---	-----	----	---	---	----	----	---	----	----	---

N		現在の	D設定値		過去0	の設定値	
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
1	廃棄物埋設地平 二時(2)	自然(高)	5,400	廃棄物埋設地平 	基本	<u>6,600</u>	・廃す
		自然(厳)	自然(高)と同様		変動	基本と同様	一個を
		人為(居)	自然(高)と同様		人為		-
		人為(建)					-
2	年間浸透水量	自然(高)	0.001	年間浸透水量	基本	0.6	・廃棄
	$(m^3 / (m^2 \cdot y))$	自然(厳)	0.003	$(m^3 / (m^2 \cdot y))$	変動	1.0	- 元语 変更
		人為(居)		-	人為		-
		人為(建)		-			-
3	廃棄物層深さ	自然(高)	2.9	廃棄物層深さ	基本	2.8	・従来
	(m)	自然(厳)	自然(高)と同様	(m)	変動	基本と同様	- + 中 いた
		人為 (居)	自然(高)と同様	-	人為		ブル
		人為(建)		-			厚さ
4	放射性核種 <i>i</i> の半 減期 (y)	自然(高)	$ \begin{array}{ c c c c c c c } \hline H & -3 & 1.23 \times 10^{1} \\ \hline C & -14 & 5.70 \times 10^{3} \\ \hline C & 1 & -36 & 3.01 \times 10^{5} \\ \hline C & a & -41 & 1.02 \times 10^{5} \\ \hline C & o & -60 & 5.27 \times 10^{0} \\ \hline S & r & -90 & 2.88 \times 10^{1} \\ \hline C & s & -137 & 3.01 \times 10^{1} \\ \hline E & u & -152 & 1.35 \times 10^{1} \\ \hline E & u & -154 & 8.59 \times 10^{0} \\ \hline & \pounds & \alpha & 2.41 \times 10^{4} \\ \hline \end{array} $	放射性核種 <i>i</i> の半 減期 (y)	<u>基本</u>	$ \begin{array}{ c c c c c c c c } \hline H-3 & 1.23 \times 10^1 \\ \hline C-14 & 5.70 \times 10^3 \\ \hline C&1-36 & 3.01 \times 10^5 \\ \hline C&a-41 & 1.02 \times 10^5 \\ \hline C&o-60 & 5.27 \times 10^0 \\ \hline \underline{N&i-63} & \underline{1.00 \times 10^2} \\ \hline S&r-90 & 2.88 \times 10^1 \\ \hline C&s-137 & 3.01 \times 10^1 \\ \hline E&u-152 & 1.35 \times 10^1 \\ \hline E&u-154 & 8.59 \times 10^0 \\ \hline \underline{\pounds \alpha} & 2.41 \times 10^4 \\ \end{array} $	•評イ Ni
		自然(厳)	自然(高)と同様		変動	基本と同様	_
		人為 (居)	自然(高)と同様		人為		
		人為 (建)					

変更理由

棄物埋設地の設計変更に伴い設定 を変更した。

棄物埋設地の設計変更に伴い,二次 浸透流解析結果を用いた設定値に 更した。

来は「フレキシブルコンテナ3段分 中間覆土の厚さ2段分」で設定して たが,廃棄物収納容器からフレキシ ルコンテナを廃止した。 のため,「鉄箱3段分+中間覆土の さ2段分」による設定に変更した。

価 対 象 核 種 の 見 直 し を 反 映 し, i - 63 を 削除 した。

No		現在の	の設定値			過去。	の設定値		
NO.	パラメータ名称	区分*1	設	定値	パラメータ名称	区分*2		没定值	
5	廃棄物受入れ時		総放射能量		廃棄物受入れ時		総放射能量		・放身
	の放射性核種 <i>i</i> の		H-3	1. 4×10^{12}	の放射性核種iの		H-3	1. 4×10^{12}	変更
	総放射能量		C - 14	1. 2×10^{10}	総放射能量		C - 14	1. 2×10^{10}	10
	(Bq)		$C \ 1 \ -36$	1.8×10^{10}	(Bq)		$C \ 1 \ -36$	4.6×10^{10}	
			C a - 41	3. 4×10^{9}			C a -41	3. 4×10^{9}	Ϊ
			C o - 60	1. 3×10^{1}			C o - 60	1.3×10^{11}	
			S r -90	1. 7×10^{9}			<u>Ni-63</u>	<u>6.6×10¹⁰</u>	
			C s -137	9. 1×10^{8}			S r -90	1.7×10^{9}	
			E u - 152	5.5×10^{10}			<u>C s - 137</u>	9. 1×10^{8}	
			<u>E u - 154</u>	2. 5×10^{9}			E u - 152	5.6×10^{10}	
			<u>全 α</u>	1.4×10^{8}			<u>E u - 154</u>	2.5×10^{9}	
							<u>全α</u>	1.4×10^{8}	
		自然(高)				基本			
									(2) (
									7

射能量の設定方法を以下のとおり 更した。 $C \ 1 \ -36$ C1-36 の放射能濃度の評価方 法を実態に即した評価に見直した。 変更前の設定方法 Co-60 濃度比(14倍)で 設定。 変更後の設定方法 汚染形態ごとに3種類(ガス 系金属,ガス系コンクリート, 廃液系)に分類し、それぞれの 推定濃度を分析値の平均を踏 まえて以下のとおり設定。 汚染濃度の高い「ガス系金 属」については, 除染を行うた め,分析値の算術平均に除染係 数(10 分の 1)を考慮して, 3 Bq/gに設定。 汚染濃度の低い「ガス系コン クリート」及び「廃液系」につ いては,分析値の算術平均を保 守的に切り上げて1 Bq/gに設 定。 C a - 41, N i - 63, E u - 152及 びEu-154 評価対象核種の見直しを反映 し, N i - 63 を削除した。 ・廃棄物の種類別の総放射能量 (金属類)において,評価対象 核種の見直しを反映し, Ca-41, Eu-152 及びEu-154 を削除した。 廃棄物の種類別の総放射能量 (金属類)において, Eu-152 及びEu-154を削除したこと を反映し,総放射能量を変更し た。

補5参1-4

NT		現在の	つ設定値			過去0	り設定値		
NO.	パラメータ名称	区分*1		設定値	パラメータ名称	区分*2	設	定值	
5	廃棄物受入れ時		自然(高)	と同様	廃棄物受入れ時		総放射能量		(前
	の放射性核種iの				の放射性核種iの		H-3	1. 4×10^{12}	
	総放射能量				総放射能量		C - 14	1. 2×10^{10}	
	(Bq)				(Bq)		$C \ 1 \ -36$	4.6×10^{10}	
	(前頁からの続				(前頁からの続		C a - 41	3. 4×10^{9}	
	き)				き)		C o - 60	1.3×10^{11}	
							<u>N i -63</u>	6.6×10^{10}	
							S r -90	1. 7×10^{9}	
							C s - 137	9.1×10 ⁸	
							E u - 152	5.6×10^{10}	
							E u - 154	2. 5×10^{9}	
							全 α	1. 4×10^{8}	
							南側埋設トレ	ンチ	
							H - 3	5. 30×10^{11}	
							C - 14	8.60 \times 10 ⁹	
							$C \ 1 \ -36$	4.50×10^{10}	
							C a -41	1.50×10^{7}	
						1. at	C o - 60	1.20×10^{11}	
		自然(厳)				変動	<u>N i - 63</u>	<u>6.50×10¹⁰</u>	
							S r -90	1.50 \times 10 ⁹	
							C s -137	8.10 × 10 ⁸	
							E u - 152	4.80×10^{8}	
							E u - 154	5.40×10^{7}	
							<u></u>	7. 10×10^{-7}	
							北側埋設トレ	ンチ	
							H-3	8.20×10^{11}	
							C - 14	2.80×10^{9}	
							$C \ 1 \ -36$	1.50×10^{9}	
							Ca - 41	3.40×10^{-9}	
							$C \circ -60$	9. 70×10^{-9}	
							$N_1 - 63$	1.50×10^{3}	
							$\frac{S r - 90}{107}$	$1.20 \times 10^{\circ}$	
							C s - 137	$1.00 \times 10^{\circ}$	
							E u - 152	5.50×10^{-50}	
							E u - 154	2.50×10^{3}	
							<u></u> 至 α	0.40×10'	
1		1	1						

頁からの続き)

N.		現在の	の設定値		過去0	D設定值	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
5	廃棄物受入れ時		総放射能量	廃棄物受入れ時		/	(前
	の放射性核種iの		H -3 1. 4 \times 10 ¹ ²	の放射性核種iの			
	総放射能量		C -14 1. 2 × 10 ¹ 0	総放射能量			
	(Bq)		C 1 -36 <u>1.8 \times 10¹⁰</u>	(Bq)			
	 (前頁からの続 		C a -41 3. 4×10^{9}	 (前頁からの続 			
	き)		C o -60 1. 3×10^{11}	き)			
			S r -90 1.7×10 ⁹				
			C s -137 9. 1×10^{8}				
			<u>E u - 152</u> <u>5.5 \times 10¹⁰</u>				
			E u - 154 2.5×10 ⁹				
			2α 1.4×10 ⁸				
			廃棄物の種類別の総放射能量				
			(金禹類)				
			H - 3 5. 3 × 10 ⁻¹				
			C - 14 8.6×10 ⁵				
			$\begin{array}{c c} C & 1 - 36 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$				
			C = -41 $-$		1 74		
		八為(店)	$c_0 = 60$ 1.2×10 S r = 90 1.5×10 ⁹		<u>入 </u>		
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
			E u - 152 -				
			E u - 154 -				
			2α 7.1×10 ⁷				
			<mark>廃棄物の種類別の総</mark> 放射能量				
			(コンクリート類)				
			H -3 8. 2 \times 10 ¹				
			C -14 2.8 \times 10 ⁹				
			C 1 -36 <u>4.5 \times 10⁸</u>				
			C a -41 3. 4×10^{9}				
			C o -60 9.7 $\times 10^{9}$				
			S r -90 1. 2×10 ⁸				
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
			$\begin{array}{ c c c c c c c c } E u - 154 & 2.5 \times 10^{9} \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline \end{array}$			/	
			<u>Ξα</u> 6.4×10 ⁺	4			_
		人為(建)	人為(居)と同様				

「頁からの続き)

Ne		現在0	D設定値		過去の	設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分**2	設定値	
6	廃棄物埋設地内 の <u>充塡砂/中間</u> <u>覆土</u> の体積割合 (-)	<u>自然(高)</u>	<u>0. 61</u>	廃 棄 物 埋 設 地 内 の <u>媒体 j</u> の体積割 合 (-)	<u>基本</u>	金属/鉄箱: 0.06コンクリートブロック: 0.25コンクリートガラ: 0.03充填砂/中間覆土: 0.66	・廃 物 値 ・ ま
		自然(厳)	自然(高)と同様		変動	基本と同様	充力
		人為(居)	自然(高)と同様		人為		
		人為(建)					
7	廃棄物埋設地内 の <u>充塡砂/中間</u> <u>覆土</u> の間隙率 (-)	自然(高)	<u>0. 50</u>	廃棄物埋設地内 の <u>媒体j</u> の間隙率 (-)	基本	金属/鉄箱 : 0.0 コンクリートブロック:0.0 コンクリートガラ : 0.0 充填砂/中間覆土 : 0.41	・線: から い、
		<u>自然(厳)</u>	自然(高)と同様		<u>変動</u>	金属/鉄箱: 0.0コンクリートブロック:0.0コンクリートガラこ0充填砂/中間覆土: 0.67	・採) 土(を)
		人為(居)	自然(高)と同様		<u>人為</u>		• 評 1
		人為(建)					
8	廃棄物埋設地内 の的和度(%)	自然(高)	<u>17</u>	廃棄物埋設地内 の韵和度(%)	<u>基本</u>	<u>17.4</u>	・線
		自然(厳)	自然(高)と同様		変動	<u>6.0</u>	カ・ レ、
		人為(居)	自然(高)と同様		人為		し7
		人為(建)					
9	廃棄物埋設地内 の <u>充塡砂/中間</u> <u>覆土</u> の粒子密度 (kg/m ³)	自然(高)	<u>2,700</u>	廃棄物埋設地内 の <u>媒体j</u> の粒子密 度(kg/m ³)	基本	金属/鉄箱: 7,800コンクリートブロック: 2,300コンクリートガラ: 2,300充填砂/中間覆土: 2,680	 ・線: か: い:
		自然(厳)	自然(高)と同様		変動	金属/鉄箱 : 7,800 コンクリートブロック: 2,300 コンクリートガラ : 2,300 充填砂/中間覆土 : 2,500	・ 評 í / 「
		人為(居)	自然(高)と同様		<u>人為</u>		
		人為(建)					

変更理由

棄物埋設地の設計変更に伴う廃棄 埋設地の体積の変更を反映し,設定 を変更した。 た,評価において,収着性を見込む 填砂/中間覆土のみを対象に変更 た。

さが大きいパラメータに該当しな ことからパラメータを一つに統一 た。 用候補である現地発生土及び購入 の候補土砂の物理試験結果(9 試料) 用いた設定に変更した。 価において,収着性を見込む充塡砂 中間覆土のみを対象に変更した。

量感度が大きい又は設定値の不確 さが大きいパラメータに該当しな ことからパラメータを一つに統一 た。

量感度が大きい又は設定値の不確 さが大きいパラメータに該当しな ことからパラメータを一つに統一 た。 価において,収着性を見込む充塡砂

中間覆土のみを対象に変更した。

N		現在の)設定値		過去の)設定値	
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
10	廃棄物埋設地内 の <u>充填砂/中間</u> <u>覆土</u> の放射性核 種 <i>i</i> の収着分配係 数(m ³ /kg)	<u>自然(高)</u>	$\begin{array}{c cccc} H-3 & 0 & & \\ \hline C-14 & 0 & & \\ \hline C & 1-36 & 0 & & \\ \hline C & a-41 & 0.003 & & \\ \hline C & o-60 & 0.03 & & \\ \hline S & r-90 & 0.003 & & \\ \hline S & r-90 & 0.003 & & \\ \hline C & s-137 & 0.3 & & \\ \hline E & u-152 & 0.3 & & \\ \hline E & u-154 & 0.3 & & \\ \hline \Delta & \alpha & 0.1 & & \\ \end{array}$	廃棄物埋設地内 の <u>媒体 j</u> の放射性 核種 <i>i</i> の収着分配 係数 (m ³ /kg)	<u>基本</u>	充填砂及び中間覆土 $H-3$ 0 $C-14$ 0.001 $C 1 - 36$ 0 $C a - 41$ 0.0003 $C o - 60$ 0.01 $N i - 63$ 0.01 $S r - 90$ 0.0003 $C s - 137$ 0.01 $E u - 152$ 0.3 $E u - 154$ 0.3 $\pounds \alpha$ 0.1	・ 化大時確あ更評N廃いSEの験評ー学きの認るし価i 棄計ru設結価
		<u>自然(厳)</u>	$\begin{array}{c cccc} H-3 & 0 & & \\ \hline C-14 & \underline{0} & & \\ \hline C & 1-36 & 0 & & \\ \hline C & a-41 & \underline{0.0003} & & \\ \hline C & o-60 & \underline{0.003} & & \\ \hline S & r-90 & \underline{0.0003} & & \\ \hline S & r-90 & \underline{0.0003} & & \\ \hline C & s-137 & \underline{0.03} & & \\ \hline E & u-152 & \underline{0.03} & & \\ \hline E & u-154 & \underline{0.03} & & \\ \hline \Delta & \alpha & 0.01 & & \\ \end{array}$		<u>変動</u>	充填砂及び中間覆土 $H-3$ 0 $C-14$ 0.0001 $C 1 - 36$ 0 $C a - 41$ 0.00003 $C o - 60$ 0.001 $N i - 63$ 0.001 $S r - 90$ 0.00003 $C s - 137$ 0.001 $E u - 152$ 0.03 $E u - 154$ 0.03 $\pounds \alpha$ 0.01	・
		人為(居)	自然(高)と同様		人為		
		人為(建)					

変更理由

14は,有機形態,無機形態などの 形態によって媒体への吸着能は く変化するが,廃棄物からの放出 C-14 の化学形態については未 であることなど不確実な要素が っため,保守的に分配係数を0に変 た。 西対象核種の見直しを反映し, -63を削除した。 物埋設地内では浚渫土を用いな 画となったことから、Co-60, -90 (C a -41), C s -137, -152, E u -154 及び全α(Am) 定において,人工海水を用いた試 果を除いた設定に変更した。 iにおいて、収着性を見込む充填砂 間覆土のみを対象に変更した。 厳しい自然事象シナリオの設定 ,最も可能性が高い自然事象シナ の設定値の見直しを踏まえ,統計 :ばらつきを考慮した設定値(最も 性が高い自然事象シナリオの設 の10分の1)を変更した。

Ne		現在の	り設定値		過去。	の設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
11	分子拡散係数 (m ² ∕y)	<u>自然(高)</u>	<u>0.055</u>	<u>廃棄物埋設地内</u> の分子拡散係数 (m ² /y)	基本	<u>0.063</u>	・線 か い
		<u>自然(厳)</u>	自然(高)と同様	<u>帯水層の</u> 分子拡 散係数 (m ² ∕y)	<u>変動</u>	0.055	し ・ ま 通
		人為(居)	自然(高)と同様	-	<u>人為</u>		行 5 5
		人為(建)					
12	通気層高さ(m)	<u>自然(高)</u>	<u>1.0</u>		<u>基本</u>		・廃 に る
		<u>自然(厳)</u>	自然(高)と同様		<u>変動</u>		にこ
		人為(居)	自然(高)と同様		人為		
		人為(建)					
13	通気層飽和度 (%)	<u>自然(高)</u>	<u>17</u>		<u>基本</u>		• No.
		<u>自然(厳)</u>	自然(高)と同様		<u>変動</u>		
		人為(居)	自然(高)と同様		<u>人為</u>		
		人為(建)					

量感度が大きい又は設定値の不確 さが大きいパラメータに該当しな ことからパラメータを一つに統一 た。

た,廃棄物埋設地内,帯水層内及び 気層の分子拡散係数については,移 媒体である水の設定であることか 共通のパラメータとした。

棄物埋設地底面から地下水面まで は帯水層ではないd u層が存在す ことから,このd u層を評価モデル おける通気層として設定した。

.12と同様。

Ne		現在の	設定値		過去0)設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
14	通気層土壌にお ける放射性核種 <i>i</i> の収着分配係数 (m ³ /kg)	<u>自然(高)</u>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>基本</u>		• No.
		<u>自然(厳)</u>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>変動</u>		
		人為 (居)	自然(高)と同様		人為		-
		人為(建)		\langle			
15	通気層土壌の間 ^{階索 (一)}	自然(高)	0.41		<u>基本</u>		• No.
		自然(厳)	自然(高)と同様		<u>変動</u>		
		人為(居)	自然(高)と同様		人為		
		人為(建)					
16	通気層土壤の粒 子密度 (kg / m ³)	自然(高)	<u>2,700</u>		<u>基本</u>		• No.
	л ти /ҳ <mark>(кg/ш/)</mark>	自然(厳)	自然(高)と同様		<u>変動</u>		
		人為(居)	自然(高)と同様		人為		-
		人為 (建)					

変更理由 .12と同様。 .12と同様。 .12と同様。

N		現在の	の設定値		過去。	の設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
17	帯水層土壌の間 隙率 (-)	自然(高)	0.41	帯水層土壌の間 隙率 (-)	<u>基本</u>	0.41	・ 線 か
		自然(厳)	自然(高)と同様		<u>変動</u>	0.47	い。 い
		人為(居)	自然(高)と同様		人為		した 設知
		人為(建)					用い
18	地下水流速	自然(高)	<u>49</u>	地下水流速(ダル	基本	<u>51</u>	• 1,0
	(m / y)	自然(厳)	42	$\underbrace{\underline{v}-流速)}_{(m,\sqrt{n})}$	<u>変動</u>	71	踏
		人為(居)	自然(高)と同様	(m/y)	人為		数
		人為(建)					- 法(
19	廃棄物埋設地の	自然(高)	<u>60</u>	廃棄物埋設地の	基本	<u>75</u>	• 廃
	長さ (m)	自然(厳)	自然(高)と同様	長さ (m)	変動	基本と同様	
		人為(居)	自然(高)と同様		人為		
		人為(建)					_
20	廃棄物埋設地の	自然(高)	90	廃棄物埋設地の	基本	88	・廃
	幅 (m)	自然(厳)	自然(高)と同様	」「幅 (m)	変動	基本と同様	
		人為(居)	自然(高)と同様		人為		
		人為(建)					-
21	帯水層の厚さ	自然(高)	1.8	帯水層の厚さ	<u>基本</u>	2	• 1, (
	(m)	自然(厳)	1.6	(m)	<u>変動</u>	2	踏
		人為(居)	自然(高)と同様		<u>人為</u>		
		人為 (建)					
22	帯水層土壌の粒 子密度	自然(高)	2,700	帯水層土壌の粒 子密度	基本	<u>2,680</u>	 ・線: か
	(kg/m°)	自然(厳)	自然(高)と同様	(kg/m°)	<u>変動</u>	<u>2,670</u>	いした
		人為(居)	自然(高)と同様		人為		一・代:た。
		人為(建)		-			2.7

変更理由

量感度が大きい又は設定値の不確 さが大きいパラメータに該当しな ことからパラメータを一つに統一 た。 定値は,代表的な値として平均値を

いることとした。

000 年後の地質環境等の状態設定を まえた,動水勾配とd u 層の透水係 を乗じて地下水流速を設定する方 に変更した。

棄物埋設地の設計変更に伴い設定 を見直した。

棄物埋設地の設計変更に伴い設定 を見直した。

000年後の地質環境等の状態設定を まえた設定に変更した。

量感度が大きい又は設定値の不確 さが大きいパラメータに該当しな ことからパラメータを一つに統一 た。 表的な値としてdu層から採取し 4 試料の平均値を採用し,有効数字 桁となるように四捨五入して 7×10³ kg/m³に設定した。

N.		現在の	設定値		過去の)設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
23	帯水層土壌にお ける放射性核種 <i>i</i> の収着分配係数 (m ³ ∕ kg)	<u>自然(高)</u>	H-30C-14 $\underline{0}$ C 1-360C a-410.003C o-600.3S r -900.003C s -1370.3E u -1520.3E u -1540.3 $\underline{2} \alpha$ 0.1	帯水層土壌にお ける放射性核種 <i>i</i> の収着分配係数 (m ³ ∕ kg)	<u>基本</u>	H-30C-14 0.001 C 1-360C a -41 0.003 C o -60 0.3 N i -63 0.1 S r -90 0.003 C s -137 0.3 E u -152 0.3 E u -154 0.3 $\pm \alpha$ 0.1	・ C 化 大 時 確 あ 更 評 N 評/C
		<u>自然(厳)</u>	H-30C-14 $\underline{0}$ C 1-360C a -41 $\underline{0.00003}$ C o -60 $\underline{0.001}$ S r -90 $\underline{0.00003}$ C s -137 $\underline{0.001}$ E u -152 0.03 E u -154 0.03 $\underline{2} \alpha$ 0.01		<u>変動</u>	$\begin{array}{c cccc} H-3 & 0 \\ \hline C-14 & \underline{0.0001} \\ \hline C & 1-36 & 0 \\ \hline C & a-41 & \underline{0.0003} \\ \hline C & a-41 & \underline{0.0003} \\ \hline C & o-60 & \underline{0.03} \\ \hline N & i-63 & \underline{0.01} \\ \hline S & r-90 & \underline{0.0003} \\ \hline C & s-137 & \underline{0.03} \\ \hline E & u-152 & \underline{0.03} \\ \hline E & u-154 & \underline{0.03} \\ \hline \pm & \alpha & 0.01 \\ \hline \end{array}$	
		人為(居)	自然(高)と同様		人為		-
		人為(建)					
24	廃 棄 物 埋 設 地 下 流 端 か ら 海 ま で の距離(m)	<u>自然(高)</u> <u>自然(厳)</u> 人為(居) 人為(建)	400自然(高)と同様自然(高)と同様	廃 棄 物 埋 設 地 下 流 端 か ら 海 ま で の 距 離 (m)	<u>基本</u> 変動 人為	400 基本と同様	- · 変勇 - -
25	評価海域の海水 交換水量 (m ³ /y)	自然(高) 自然(厳) 人為(居)	4.2×10 ⁸ 自然(高)と同様 自然(高)と同様	評価海域の海水 交換水量 (m ³ /y)	<u>基本</u> 変動 人為	4.2×10 ⁸ 基本と同様	・変す - -
		八局(建)					

変更理由

-14は,有機形態,無機形態などの 学形態によって媒体への吸着能は きく変化するが,廃棄物からの放出 のC-14 の化学形態については未 認であることなど不確実な要素が るため,保守的に分配係数を0に変 した。 価対象核種の見直しを反映し、 -63を削除した。 西において, 収着性を見込む充填砂 中間覆土のみを対象に変更した。 o - 60, S r - 90 (C a - 41), -137, Eu-152, Eu-154及 全α(Am)の最も厳しい自然事象 ナリオの設定値は, 津波による影響 可能性を考慮し,人工海水を用いた 配係数取得試験の結果を考慮した。 えて、統計的なばらつきを考慮した 定値(人工海水を用いた分配係数取 試験の結果を踏まえた設定値の 10 の1)とした。 更なし。 更なし。

NT		現在の)設定値		過去の	設定値		
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2		没定值	
26	放射性核種 <i>i</i> の海		魚類	放射性核種 <i>i</i> の海		魚類		• 評
	産物 m への濃縮		H -3 1. 0×10^{-3}	産物 m への濃縮		H - 3	1.0×10^{-3}	N
	係数(m ³ /kg)		C -14 2. 0×10^{1}	係数 (m³/kg)		C - 14	2. 0×10^{1}	
			C 1 -36 6. 0×10^{-5}			$C \ 1 \ -36$	6. 0×10^{-5}	
			C a -41 2. 0×10^{-3}			C a -41	2. 0×10^{-3}	
			C o -60 1. 0 × 10 ⁰			C o - 60	1. 0×10^{0}	
			S r -90 2. 0×10^{-3}			<u>N</u> i - 63	1.0×10^{0}	
			C s -137 1. 0×10^{-1}			S r -90	2. 0×10^{-3}	
			E u -152 3. 0×10^{-1}			C s -137	1. 0×10^{-1}	
			E u -154 3. 0×10^{-1}			E u - 152	3. 0×10^{-1}	
			2α 5. 0×10 ⁻²			E u - 154	3. 0×10^{-1}	
						全 α	5. 0×10^{-2}	
			無脊椎動物			無脊椎動物		_
			H -3 1. 0×10^{-3}			H - 3	1. 0×10^{-3}	
			C - 14 2. 0 × 10 ¹			C - 14	2. 0×10^{1}	
			C 1 -36 6. 0×10^{-5}			$C \ 1 \ -36$	6. 0×10^{-5}	_
			C a -41 5. 0×10^{-3}			C a -41	5. 0×10^{-3}	
			C o -60 5. 0 \times 10 ⁰			C o - 60	5. 0×10^{0}	
		自然(高)	S r -90 2. 0×10^{-3}		基本	<u>N i - 63</u>	2.0×10^{0}	
			C s -137 3. 0×10^{-2}			S r -90	2. 0×10^{-3}	
			E u -152 7. 0 \times 10 ⁰			C s -137	3. 0×10^{-2}	-
			$E u - 154 7.0 \times 10^{0}$			E u - 152	7. 0×10^{0}	-
			2.0×10^{1}			E u - 154	7. 0×10^{0}	-
						<u></u>	2. 0×10^{1}	
			藻類			藻類		л I
			$H - 3$ 1.0×10^{-3}			H-3	1.0×10^{-3}	
			C - 14 1. 0×10 ¹			C - 14	1. 0×10 ¹	
			$C \ 1 - 36 \ 5.0 \times 10^{-3}$			$C \ 1 \ -36$	5.0×10^{-5}	
			$\begin{array}{c c} C & a & -41 \\ \hline \\ $			C a -41	6.0×10^{-3}	
			$C \circ -60$ $1.0 \times 10^{\circ}$			$C \circ -60$	$1.0 \times 10^{\circ}$	-
			$\frac{S r - 90}{1.0 \times 10^{-2}}$			<u>N i - 63</u>	5.0×10^{-1}	4
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $			S r - 90	1.0×10^{-2}	4
			$E u - 152 3.0 \times 10^{\circ}$			C s - 137	1.0×10^{-2}	4
			$E u = 154 \qquad 3.0 \times 10^{\circ}$			E u - 152	$3.0 \times 10^{\circ}$	4
						<u>E u -154</u>	$3.0 \times 10^{\circ}$	-
						<u> </u>	2.0×10^{6}	

変更理由	
価 対 象 核 種 の 見 直 し i - 63 を削除した。	を反映し,

N.		現在0)設定値	過去の設定値			
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
26	放射性核種 <i>i</i> の海 産物 <i>m</i> への濃縮 係数 (m ³ / kg)	自然(厳)	自然(高)と同様	放射性核種 <i>i</i> の海 産物 <i>m</i> への濃縮 係数 (m ³ / kg)	変動	基本と同様	(前頁
	(前頁からの続き)	人為(居)	自然(高)と同様	(前頁からの続き)	人為		
		人為(建)		-			
27	海産物 m の年間 摂取量 (kg/y)	自然(高)	魚類 19 無脊椎動物 4 藻類 4	海産物 m の年間 摂取量 (kg/y)	基本	魚類 22 無脊椎動物 5 藻類 4	 ・廃棄 する 栄養
		自然(厳)	自然(高)と同様		<u>変動</u>	基本と同様	た設 を用
		人為(居)	自然(高)と同様	-	人為		・また 年の - 更し
		人為(建)					
28	評価海域におけ る海産物 m の市 場係数 (一)	<u>自然(高)</u>	 魚類・無脊椎動物・藻類 居住者 0.2 	評価海域におけ る海産物 m の市 場係数 (一)	基本	漁業従事者魚類1無脊椎動物1藻類1居住者1魚類0.2無脊椎動物0.2藻類0.2	・ 変 更 -
		自然(厳)	魚類・無脊椎動物・藻類漁業従事者1農業従事者0.2建設業従事者0.2居住者0.2		<u>変動</u>	基本と同様	
		人為(居)	自然(高)と同様		<u>人為</u>		
		人為 (建)					

頁からの続き)

棄物埋設地周辺の生活様式を反映 るために,平成24年の「国民健康・ 養調査」の「全国の摂取量」を用い 設定から,「地域ブロックの摂取量」 用いて設定する方針に変更した。 と,値の設定に用いる文献を平成30 の「国民健康・栄養調査」⁽¹⁾に変 した。

更なし。

N		現在の)設定値	過去の設定値			
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
29	放射性核種 <i>i</i> の経 □ 摂 取 内 部 被 ば く 線 量 換 算 係 数 (Sv ∕ Bq)	自然(高)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	放射性核種 <i>i</i> の経 □ 摂 取 内 部 被 ば く 線 量 換 算 係 数 (Sv ∕ Bq)	基本	$\begin{array}{c ccccc} H-3 & 4.2 \times 10^{-1} \\ \hline C-14 & 5.8 \times 10^{-1} \\ \hline C & -14 & 5.8 \times 10^{-1} \\ \hline C & 1-36 & 9.3 \times 10^{-1} \\ \hline C & a-41 & 1.9 \times 10^{-1} \\ \hline C & a-41 & 1.9 \times 10^{-1} \\ \hline C & a-60 & 3.4 \times 10^{-9} \\ \hline N & i-63 & 1.5 \times 10^{-1} \\ \hline S & r-90 & 3.1 \times 10^{-8} \\ \hline S & r-90 & 3.1 \times 10^{-8} \\ \hline E & u-152 & 1.4 \times 10^{-9} \\ \hline E & u-154 & 2.0 \times 10^{-9} \\ \hline \pm \alpha & 2.5 \times 10^{-7} \\ \hline \end{array}$	・評 伯 N i
		自然(厳)	自然(高)と同様		変動	基本と同様	
		人為(居)	自然(高)と同様		人為		1
		人為 (建)					
30	廃棄物埋設地か	自然(高)	<u>0</u>				・評価
	らの放射性物質	自然(厳)	50				価バ
		人為(居)	自然(厳)と同様				更し
		人為(建)					
31	放射性核種 <i>i</i> の吸 入内部 被ばく線 量換算係数 (Sv/Bq)	<u>自然(高)</u>	$\begin{array}{c cccc} H-3 & 4.5 \times 10^{-1} \\ \hline C-14 & 2.0 \times 10^{-9} \\ \hline C & 1-36 & 7.3 \times 10^{-9} \\ \hline C & a-41 & 9.5 \times 10^{-1} \\ \hline C & o-60 & 1.0 \times 10^{-8} \\ \hline S & r-90 & 3.8 \times 10^{-8} \\ \hline C & s-137 & 4.6 \times 10^{-9} \\ \hline E & u-152 & 4.2 \times 10^{-8} \\ \hline E & u-154 & 5.3 \times 10^{-8} \\ \hline \Delta & 5.0 \times 10^{-5} \\ \end{array}$	放射性核種 <i>i</i> の吸 入内部 被ばく線 量換算係数 (Sv/Bq)	基本	$\begin{array}{c cccc} H-3 & 4.5 \times 10^{-1} \\ \hline C-14 & 2.0 \times 10^{-9} \\ \hline C & 1-36 & 7.3 \times 10^{-9} \\ \hline C & a-41 & 9.5 \times 10^{-1} \\ \hline C & o-60 & 1.0 \times 10^{-8} \\ \hline N & i-63 & 4.8 \times 10^{-1} \\ \hline S & r-90 & 3.8 \times 10^{-8} \\ \hline C & s-137 & 4.6 \times 10^{-9} \\ \hline E & u-152 & 4.2 \times 10^{-8} \\ \hline E & u-154 & 5.3 \times 10^{-8} \\ \hline \pm \alpha & 5.0 \times 10^{-5} \\ \end{array}$	・ 評 伯 N i
		自然(厳)	自然(高)と同様		変動	基本と同様	-
		人為(居)]	人為		
		人為 (建)	自然(高)と同様				

	変更理由	
価対象核 i - 63 を肖	種の見直しを反映し, 削除した。	
価の前提タ パラメータ した。	条件としていたが線量i タして明示することに変	平安
価 対 象 核 i — 63 を肖	種の見直しを反映し, 削除した。	

Na		現在の	の設定値		過去の	の設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分 ^{※2}	設定値	
32	放射性核種 i の外 部 被 ば く 線 量 換 算係数 ((Sv ∕ h) ∕ (Bq ∕ kg))	自然(高)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	放射性核種 <i>i</i> の外部被ばく線量換算係数 ((Sv/h) / (Bq /kg))	基本	海岸活動 H-3 0 C-14 0 C 1-36 4.6×10 ⁻¹⁴ C a -41 0 C o -60 7.3×10 ⁻¹⁰ N i -63 0 S r -90 2.2×10 ⁻¹⁸ C s -137 1.7×10 ⁻¹⁰ E u -152 3.3×10 ⁻¹⁰ E u -154 3.6×10 ⁻¹⁰ É a 3.5×10 ⁻¹² 建設 H-3 H-3 1.1×10 ⁻²⁰ C -14 7.7×10 ⁻¹⁶ C 1 - 36 1.3×10 ⁻¹⁷ C a -41 2.6×10 ⁻¹⁷ C o -60 7.2×10 ⁻¹⁰ N i -63 1.3×10 ⁻¹⁷ S r -90 1.7×10 ⁻¹² C s -137 1.5×10 ⁻¹⁰ E u -152 3.3×10 ⁻¹⁰ E u -154 3.7×10 ⁻¹² B Ê H-3 M -3 0 C -14 4.2×10 ⁻²⁰ C 1 - 36 1.3×10 ⁻¹¹⁰ E u -154 3.7×10 ⁻¹² B Ê H-3 M -3 0 C -14 4.2×10 ⁻²⁰ C a -41 <	・ ・ ・ ・ 被算活的に本定る評 N

変更理由

ばく経路ごとに外部被ばく線量換 係数を設定する方法から,陸上での 動又は海上での活動に分けて,保守 となる評価モデルを設定する方法 変更した。

項目では陸上での活動について設 し,居住,灌漑作業,建設が該当す

価対象核種の見直しを反映し, i-63を削除した。

N.		現在の	の設定値		過去0	D設定值	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分 ^{※2}	設定値	
32	放射性核種 <i>i</i> の外 部 被 ば く 線 量 換 質 係 粒	<u>自然(厳)</u>	自然(高)と同様	放射性核種 <i>i</i> の外 部 被 ば く 線 量 換 質 係 粉	<u>変動</u>	基本と同様	(前頁
	并 际 致 ((Sv ∕ h) ∕ (Bq /kg))	人為 (居)		异诉效 ((Sv/h)/(Bq /kg))	<u>人為</u>		_
	(前頁からの続き)	人為(建)	自然(高)と同様] (前頁からの続き)			-
33	海面及び漁網か らの <u>放射性核種</u> <u>の外部被ばく</u> 線 量換算係数 ((Sv/h)/(Bq /kg))	自然(高)		<u>海面からの線量</u> 換算係数 ((Sv/h)/(Bq /kg)) <u>漁網からの線量</u> 換算係数 ((Sv/h)/(Bq /kg))	<u>基本</u>	海面 H-3 1. 4×10 ⁻¹⁹ C-14 3. 3×10 ⁻¹⁵ C 1-36 2. 2×10 ⁻¹³ C a -41 3. 4×10 ⁻¹⁶ C o -60 6. 8×10 ⁻¹⁰ N i -63 7. 1×10 ⁻¹⁷ S r -90 2. 4×10 ⁻¹² C s -137 1. 4×10 ⁻¹⁰ E u -152 3. 3×10 ⁻¹⁰ E u -154 3. 6×10 ⁻¹⁰ E u -154 3. 6×10 ⁻¹⁰ $\pm \alpha$ 7. 3×10 ⁻¹² \underline{A} ## H-3 1. 9×10 ⁻²² C -14 1. 6×10 ⁻¹⁷ C 1 -36 1. 1×10 ⁻¹² \underline{A} ## H-3 1. 9×10 ⁻²² C -14 1. 6×10 ⁻¹⁷ C 1 -36 1. 1×10 ⁻¹⁴ N i -63 3. 4×10 ⁻¹⁹ S r -90 1. 1×10 ⁻¹⁴ C s -137 6. 5×10 ⁻¹³ E u -152 1. 5×10 ⁻¹² E α 3. 5×10 ⁻¹⁴	・・・・被算活的に本定評Nば係動と変項し価i

頁からの続き)

ばく経路ごとに外部被ばく線量換 系数を設定する方法から,陸上での 動又は海上での活動に分けて,保守 となる評価モデルを設定する方法 変更した。 頁目では海上での活動について設

し, 海面活動, 漁網整備が該当する。 価 対 象 核 種 の 見 直 し を 反 映 し, i - 63 を削除した。

Na		現在0	D設定値	過去の設定値			
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
33	海面及び漁網か らの <u>放射性核種</u> <i>i</i> <u>の外部被ばく</u> 線 量換算係数 ((Sv/h)/(Bq /kg)) (前頁からの続 き)	<u>自然(厳)</u>	$\begin{array}{c cccc} H-3 & 1.4 \times 10^{-1} & 9 \\ \hline C-14 & 3.3 \times 10^{-1} & 5 \\ \hline C & 1-36 & 2.2 \times 10^{-1} & 3 \\ \hline C & a-41 & 3.4 \times 10^{-1} & 6 \\ \hline C & o-60 & 6.8 \times 10^{-1} & 0 \\ \hline S & r-90 & 2.4 \times 10^{-1} & 2 \\ \hline C & s-137 & 1.4 \times 10^{-1} & 0 \\ \hline E & u-152 & 3.3 \times 10^{-1} & 0 \\ \hline E & u-154 & 3.6 \times 10^{-1} & 0 \\ \hline \pm & \alpha & 7.3 \times 10^{-1} & 2 \\ \end{array}$	<u>海面からの線量</u> <u>換算係数</u> ((Sv/h)/(Bq /kg)) <u>漁網からの線量</u> <u>換算係数</u> ((Sv/h)/(Bq /kg)) (前頁からの続 き)	<u>変動</u>	基本と同様	(前頁
		人為 (居)			<u>人為</u>		
		人為(建)					
34	海域における漁業の年間実働時	自然(高)		海域における漁 業の年間実働時	基本	2,880	・変見
	〒(h/y)	自然(厳)	2,880	間(h/y)	変動	基本と同様	
		人為 (居)			<u>人為</u>		
		人為 (建)					
35	<u>放射性物質の海</u> 水から漁網への	自然(高)		<u>海水から漁網へ</u> の放射性核種の	基本	1	・変見
	移行比 ((Bq/kg)/(Bq	自然(厳)	1	移行比 ((Bq/kg)/(Bq	<u>変動</u>	基本と同様	_
	/m ³))	人為(居)		/m ³))	<u>人為</u>		
		人為(建)					
36	漁網整備の年間 実 <mark>働時</mark> 間	自然(高)		漁網整備の年間 実働作業時間	<u>基本</u>	1,920	・変す
	(h/y)	自然(厳)	1,920	(h⁄y)	<u>変動</u>	基本と同様	
		人為(居)			人為		
		人為(建)					

	変更理由
〔からの続	き)
更なし。	
更なし。	
更なし。	

N		現在の	の設定値		過去0		
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
37	廃 棄 物 埋 設 地 下 流 端 か ら 水 田 ま	自然(高)					• 過: 地
	での距離 (m)	自然(厳)	<u>150</u>				設: 様 (
		人為(居)					流之地
		人為(建)					場 た。
38	灌 漑 土 壌 へ の 灌 漑 水 量	自然(高)					• No.
	$(m^3 \swarrow (m^2 \cdot y))$	自然(厳)	2.1				
		<u>人為(居)</u>					
		人為(建)					
39	灌 漑 土 壌 の 実 効 土 壌 深 さ (m)	自然(高)			1 /		• No.
		<u>自然(厳)0.15</u>					
		人為(居)					
		人為(建)					
40	灌漑土壌の放射 性核種 <i>i</i> の収着分	自然(高)			/		• No.
	配係数 (m ³ ∕kg)	<u>自然(厳)</u>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
		<u>人為(居)</u> 					
		人為(建)					

去の地下水位観測結果及び三次元 下水流動解析の結果より,廃棄物埋 地周辺の地下水は海に向かって一 に流れると考えられるが,地下水の れの不確実性を踏まえ,廃棄物埋設 より西側に放射性物質が移動した 合を想定して被ばく経路を追加し

.37と同様。

.37と同様。

.37と同様。

Ne		現在の	の設定値		過去0	の設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
41	灌漑土壌の間隙	自然(高)			1 /		• No.
	率(一)	自然(厳)	0.54				
		人為(居)					
		人為(建)					
42	灌漑土壌の粒子	自然(高)			/		• No.
	密度(kg/m ³)	自然(厳)	2,700				
		人為(居)					
		人為(建)					
43	水田面積(m ²)	自然(高)					• No.
		自然(厳)	7,100				
		人為(居)					
		人為(建)					
44	灌漑農産物の根	自然(高)			1 /		• No.
	からの放射性核種の吸収割合	自然(厳)	1				
	(-)	人為(居)					
		人為(建)					
45	土壌から灌漑農	自然(高)		/	/	/	• No.
	産物への放射性		H-3 1.0×10 ⁰				
	核種iの移行係数		<u>C - 14</u> <u>7.0 × 10⁻¹</u>				
	((Bq/kg-wet 震 産物)/(Pa/ka-		$\begin{array}{c c} C & 1 & -36 \\ \hline C & 1 & -36 \\ \hline \end{array} \qquad 5.0 \times 10^{\circ} \\ \hline \end{array}$				
	/星初)/(Dq/ kg ⁻ drv + 壤))		$\frac{C a - 41}{C a - 60} = \frac{3.5 \times 10^{-1}}{4.4 \times 10^{-3}}$				
		自然(厳)	$\frac{C}{S} \frac{C}{r} \frac{C}$				
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
			<u>E u - 152</u> 2. 0×10^{-3}				
			$\frac{E u - 154}{2.0 \times 10^{-3}}$				
			<u>± u</u> <u>1.9×10</u>	- /			
		人為(居)		-			
		人為(建)			/		

			変	更理日	ŧ		
37	r	同	様。				
37	لح	同	様。				
37	2	同	様。				
37	<u>ک</u>	同	様。				
37	と	同	様。				

N		設定値		過去0)設定値	亦再四山	
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	変更埋田
46	灌漑農産物の年	自然(高)					・No.37と同様。
	間摂取量	自然(厳)	55				
	(Kg/y)	人為(居)					
		人為(建)					
47	灌漑農産物の市	自然(高)			/	/	・No.37と同様。
	場係数(一)	自然(厳)	農業従事者 1 漁業従事者 0.1 建設業従事者 0.1 居住者 0.1				
		<u>人為(居)</u> 人為(建)					
48	灌漑作業時にお	自然(高)			/		・No.37と同様。
	ける放射性核種の遮蔽係数(一)	自然(厳)	<u>1</u>				
		人為 (居)					
		人為 (建)					
49	年間の灌漑作業	自然(高)					・No.37と同様。
	時間 (h/y)	自然(厳)	500				
		人為(居)					
		人為(建)					
50	灌漑作業時の空	<u>自然(高)</u>			/		・No.37と同様。
	気中粉じん濃度 (kg/m ³)	自然(厳)	1×10^{-6}				
	()	人為 (居)					
		人為 (建)					
51	空気中粉じんの	自然(高)					・No.37と同様。
	濯 溉 土 壌 か ら の 粉 じ ん の 割 合	自然(厳)	<u>1</u>				
	(-)	人為 (居)					
		人為 (建)					

N		現在の	D設定値		過去0	D設定値	
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
52	灌 漑 作 業 者 の 呼 吸 量 (m ³ / h)	自然(高)					• No.
		自然(厳)	<u>1.2</u>				
		人為(居)					
		人為(建)					
53	廃棄物埋設地下 流端から建設作 業場所までの距	<u>自然(高)</u>					 第二 単調 事象
	離 (m)	自然(厳)	<u>0</u>				を直それ
		人為(居)					ろ履然事地な
		人為(建)					を チ が 加 し
54	掘削土壌の希釈 係数(-)	自然(高)	0.34				• No.
		自然(厳)	自然(高)と同様				
		人為(居)					
		人為 (建)					
55	作業時における 放射性核種の遮	<u>自然(高)</u>		作業時における 放射性核種の遮	<u>基本</u>	1	・変す
	蔽係数 (一)	自然(厳)	1	蔽係数 (-)	変動	基本と同様	
		人為 (居)			人為		
		人為(建)	自然(厳)と同様				
56	年間作業時間 (h/y)	自然(高)		年間作業時間 (h/y)	基本	500	・変更
		自然(厳)	500		<u>変動</u>	基本と同様	
		人為 (居)			人為		
		人為 (建)	自然(厳)と同様				

37と同様。

二種埋設許可基準規則及び第二種 設許可基準解釈の改正に伴い,自然 象シナリオにおいて,廃棄物埋設地 直接掘削する行為を含めないこと, れらの行為は人為事象シナリオで 慮することが明確になったため,自 事象シナリオにおいて,廃棄物埋設 から漏出した放射性物質が地下水 介して移動した先での土地利用に う人間活動による被ばく経路を追 した。

53と同様。

更なし。

更なし。

Г 	NO.					通五。	ノ以足恒	
		パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
	57	作業時の空気中	自然(高)		作業時の空気中	基本	5×10^{-7}	\cdot I A
		初じん張及 (kg/m ³)	自然(厳)	1×10^{-6}	(kg / m ³)	変動	1×10^{-6}	タる
			人為(居)			人為		値に
			人為(建)	自然(厳)と同様				
	58	空気中粉じんの	自然(高)		空気中粉じんの	基本	1	・変す
		うら掘削工場からの粉じんの割	自然(厳)	1	うら掘削工壌からの粉じんの割	変動	基本と同様	
		合 (-)	人為 (居)		合 (-)	人為		
			人為 (建)	自然(厳)と同様				
	59	作業者の呼吸量	自然(高)		作業者の呼吸量	<u>基本</u>	<u>1.7</u>	• I (
		(m°/h)	自然(厳)	<u>1.2</u>	(m° / h)	変動	基本と同様	(1
			人為(居)			人為		3)
			人為 (建)	自然(厳)と同様				
i	60	掘削時期 (y)	自然(高)	<u>0</u>		/		・評イ
			自然(厳)	50				一一一更し
			人為(居)	自然(厳)と同様				
			人為(建)	自然(厳)と同様				
1	61	廃棄物埋設地下	自然(高)	<u>0</u>	/	/		・第二
		流端から居住地 までの距離(m)	自然(厳)	自然(高)と同様				生前
			人為(居)					を 正 それ
			人為(建)					く属雪カクドし

変更理由

A E A - T E C D O C - 401⁽²⁾にお る侵入者建設シナリオのパラメー として提案されている範囲の最大 に変更した。

更なし。

C R P Publication 89⁽³⁾で示さ る成人男性の Sedentary worker light exercise 2/3, sitting 1/ の呼吸量を用いた設定に変更した。

価の前提条件としていたが線量評 パラメータして明示することに変 した。

二種埋設許可基準規則及び第二種 設許可基準解釈の改正に伴い,自然 象シナリオにおいて,廃棄物埋設地 直接掘削する行為を含めないこと, れらの行為は人為事象シナリオで 慮することが明確になったため,自 事象シナリオにおいて,廃棄物埋設 から漏出した放射性物質が地下水 介して移動した先での土地利用に う人間活動による被ばく経路を追 した。

Ne		現在0	の設定値		過去の	の設定値	
NO.	パラメータ名称	区分**1	設定値	パラメータ名称	区分*2	設定値	
62	居住時における 放射性核種の遮	自然(高)	1	居住時における 放射性核種の遮	基本	0.2	・1 年 」
	蔽係数 (一)	自然(厳)	自然(高)と同様	蔽係数(一)	変動	基本と同様	蔽伯
		人為 (居)	自然(高)と同様		人為		の合う
		人為(建)					<i>У</i> ,
63	年間居住時間 (h/y)	自然(高)	<u>屋内:7,760</u> <u>屋外:1,000</u>	年間居住時間 (h∕y)	基本	<u>8,760</u>	・No. 価は
		自然(厳)	自然(高)と同様		<u>変動</u>	基本と同様	る ・ I A
		人為(居)	屋外:1,000		人為		さ ズ 活動
		人為(建)					す。
64	居住時の空気中粉じん濃度	<u>自然(高)</u>	<u>屋内:5×10⁻⁹</u> 屋外:1×10 ⁻⁸				・居住
	(kg/m°)	<u>自然(厳)</u>	自然(高)と同様				
		人為(居)					
		人為(建)					
65	空気中粉じんの	自然(高)	1				• No.
	うら土壌からの 粉じんの割合	自然(厳)	自然(高)と同様				
	(-)	人為 (居)					
		人為(建)					
66	居住者の呼吸量	自然(高)	0.93		/		• No.
	(m ³ / h)	自然(厳)	自然(高)と同様				
		人為(居)					
		人為(建)					

変更理由

年間すべてを居住地で過ごすものと ,そのうち,屋外で過ごす時間を遮 係数として設定していたが,その他 被ばく経路と遮蔽係数の考え方に わせ,遮蔽体の有無を示すパラメー とした。

 .62の変更に合わせて,被ばく評 に使用する居住地の屋外で活動す
 時間を設定した。
 A E A - T E C D O C - 401⁽²⁾で示 れる1年間の2割が居住地の屋外で
 動する時間から,国内の生活時間等 調査結果を基に,1割を屋外で活動
 る条件に変更した。

住時における内部被ばく(放射性物 を含む粉じん吸入による内部被ば)を考慮することに変更した。

.64と同様。

.64と同様。

N		り設定値	過去の設定値				
No.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
67	土 壌 から <u>家庭菜</u> <u>園</u> 農産物 k への 放射性核種 i の移 行係数 ((Bq/kg-wet 農 産物)/(Bq/kg- dry 土壌))	<u>自然(高)</u>	$ \begin{array}{ c c c c c c c } \hline H-3 & 1.0 \times 10^{0} \\ \hline C-14 & 7.0 \times 10^{-1} \\ \hline C & 1-36 & 5.0 \times 10^{0} \\ \hline C & a-41 & 3.5 \times 10^{-1} \\ \hline C & o-60 & 8.0 \times 10^{-2} \\ \hline S & r-90 & 3.0 \times 10^{-1} \\ \hline C & s-137 & 4.0 \times 10^{-2} \\ \hline E & u-152 & 2.0 \times 10^{-3} \\ \hline E & u-154 & 2.0 \times 10^{-3} \\ \hline \pm & \alpha & 2.0 \times 10^{-3} \\ \hline \end{array} $	土壌から農産物 k への放射性核種 i の移行係数 ((Bq/kg-wet 農 産物)/(Bq/kg- dry 土壌))	<u>基本</u>	$\begin{array}{c cccc} H-3 & 1.0 \times 10^{0} \\ \hline C-14 & 7.0 \times 10^{-1} \\ \hline C & 1-36 & 5.0 \times 10^{0} \\ \hline C & a-41 & 3.5 \times 10^{-1} \\ \hline C & o-60 & 8.0 \times 10^{-2} \\ \hline N & i-63 & 3.0 \times 10^{-1} \\ \hline S & r-90 & 3.0 \times 10^{-1} \\ \hline C & s-137 & 4.0 \times 10^{-2} \\ \hline E & u-152 & 2.0 \times 10^{-3} \\ \hline E & u-154 & 2.0 \times 10^{-3} \\ \hline \pm \alpha & 2.0 \times 10^{-3} \end{array}$	•評 N
		自然(厳)	自然(高)と同様		変動	基本と同様	-
		人為(居)	自然(高)と同様		人為		-
		人為(建)					-
68	家 庭 菜 園 の 農 産 物 k の 根 か ら の 放 射 性 核 種 の 吸 収割合 (-)	<u>自然(高)</u>	葉菜0.1非葉菜0.1果実0.1	家庭菜園の農産 物 <i>k</i> の根からの 放射性核種の吸 収割合(-)	基本	葉菜0.1非葉菜0.1果実0.1	・変〕
		自然(厳)	自然(高)と同様		変動	基本と同様	
		人為(居)	自然(高)と同様		人為		-
		人為(建)					
69	<u>家庭菜園</u> 農産物 k の年間摂取量 (kg/y)	<u>自然(高)</u>	葉菜 13 非葉菜 54 果実 15	農産物 k の年間 摂取量 (kg∕y)	基本	葉菜 24 非葉菜 118 果実 40	・廃 す え た 記
		<u>自然(厳)</u>	自然(高)と同様		<u>変動</u>	基本と同様	を ・ 加ジ
		人為 (居)	自然(高)と同様		人為		をた で !
		人為(建)					いまた ・また 年(更)

変更理由 価対象核種の見直しを反映し, i-63を削除した。 更なし。 棄物埋設地周辺の生活様式を反映 るために、平成24年の「国民健康・ 養調査」の「全国の摂取量」を用い 設定から,「地域ブロックの摂取量」 用いて設定する方針に変更した。 えて,廃棄物埋設地周辺の生活様式 反映するために, 東海村の家庭菜園 生産される農産物を設定する方針 変更した。 た,<mark>値の設定に用いる文献</mark>を平成 30 の「国民健康・栄養調査」⁽¹⁾に変 した。

補5参1-25

Na		現在の	設定値		過去の)設定値	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分 ^{※2}	設定値	
70	家庭菜園農産物 k の市場係数 (-)	<u>自然(高)</u>	葉菜 0.48 非葉菜 0.27 果実 1	家庭菜園 <u>の</u> 農産 物 <i>k</i> の市場係数 (-)	<u>基本</u>	葉菜 0.1 非葉菜 0.1 果実 0.1	・家 () () () () ()
		<u>自然(厳)</u>	自然(高)と同様		<u>変動</u>	基本と同様	は, 友ジ ト
		人為 (居)	自然(高)と同様		<u>人為</u>		。 設 ・果
		人為 (建)					仮 ら
<mark>71</mark>	井戸水への放射 性核種を含む地	<mark>自然(高)</mark>		井戸水への放射 性核種を含む地	<u>基本</u>		・変〕
		<mark>自然(厳)</mark>	1		<u>変動</u>	1	
		<mark>人為(居)</mark>			<mark>人為</mark>		
		<mark>人為(建)</mark>					
<mark>72</mark>	廃棄物埋設地下流端から井戸ま	<mark>自然(高)</mark>		廃棄物埋設地下流端から井戸ま	基本		・変〕
	<mark>での距離(m)</mark>	自然(厳)	0	<mark>での距離(m)</mark>	<u>変動</u>	0	
		<mark>人為(居)</mark>			<mark>人為</mark>		
		<mark>人為(建)</mark>					
<mark>73</mark>	年間飲料水摂取 量(m ³ /y)	<u>自然(高)</u>		年間飲料水摂取 量(m ³ /y)	<u>基本</u>		・変〕
		自然(厳)	0.6		<mark>変動</mark>	0.6	
		<mark>人為(居)</mark>			<mark>人為</mark>		
		<mark>人為(建)</mark>					

庭菜園で農産物を生産する場合は, な時期にのみ収穫が行われる。一方 年間を通じた摂取量を得るために 購入により入手することとなり、 射性物質を含まない農産物を外部 り入手することとなる点を反映し 定値を変更した。 実類は旬な時期にのみ摂取すると 定し,摂取量のすべてを家庭菜園か 入手するとして設定した。 更なし。 更なし。 更なし。

N		現在の	設定値		過去0	の設定値	亦再四古	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	後史 埋田	
<mark>74</mark>	<u>年間飲料水中</u> の 井戸水からの飲	<u>自然(高)</u>		<u>年間飲料水量中</u> の井戸水からの	基本		•変更なし。	
	料水の割合(-)	<mark>自然(厳)</mark>	1	飲料水の割合 (一)	<mark>変動</mark>	1		
		<mark>人為(居)</mark>			<mark>人為</mark>			
		<mark>人為(建)</mark>						
<mark>75</mark>	<u>西側トレンチ及</u> び東側トレンチ	<u>自然(高)</u>		<u>廃棄物埋設地平</u> <u>面積</u> (m ²)	<u>基本</u>		・廃棄物埋設地の設計変更に伴い設定 値を変更した。	
	<u>の平面積</u> (m ²)	<u>自然(厳)</u>			<u>変動</u>	南側埋設トレンチ:3,000 北側埋設トレンチ:3,600		
		人為 (居)	<u>西側トレンチ:2,300</u> 東 <u>側ト</u> レンチ:3,100		人為			
		人為(建)	人為(居)と同様					
<mark>76</mark>	西側トレンチ及び東側トレンチ	<u>自然(高)</u>					・No. 77 算出に用いる体積割合を算出す るために線量評価パラメータを追加	
	内の充填砂/中間覆土の体積割 合(-)	<u>自然(厳)</u>						
		人為 (居)	<u>西側トレンチ:0.83</u> <u>東側トレンチ:0.45</u>					
		人為(建)	人為(居)と同様					
<mark>77</mark>	廃棄物層と周辺 土壌の混合によ	<u>自然(高)</u>		廃棄物層と周辺 土壌の混合によ	基本	0.15	・廃棄物埋設地の設計変更に伴い設定 値を変更した。	
	る 布 秋 係 数 (-)	<u>自然(厳)</u>		る 希 釈 係 数 (—)	<u>変動</u>	南側埋設トレンチ:0.69 北側埋設トレンチ:0.66		
		人為(居)	<u>西側トレンチ:0.68</u> <u>東側トレンチ:0.63</u>		<u>人為</u>			
		人為(建)	人為(居)と同様					

N		現在の	の設定値		過去の	の設定値	
NO	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
<mark>78</mark>	西側トレンチ及 び東側トレンチ	自然(高)		<u>廃棄物層のみか</u> <u>け密度</u>	基本	2,000	 廃棄 値を
	<u>の見かけ密度</u> (kg/m ³)	自然(厳)		(kg/m ³)	変動	<u>南側埋設トレンチ:1,600</u> 北側埋設トレンチ:1,400	
		人為(居)	<u>西側トレンチ:2,300</u> 東側トレンチ:1,800		<u>人為</u>		-
		人為(建)	人為(居)と同様				-
79	<u>大規模掘削(居</u> <u>住)時の</u> 放射性核 種 <i>i</i> の外部被ばく 線量換算係数 ((Sv/h)/(Bq /kg))	_ <u>自然(高)</u>		放射性核種 <i>i</i> の外 部 被 ば く 線 量 換 算係数 ((Sv/h)/(Bq /kg))	<u>基本</u>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	 ・廃をてしいですが、 ・ <
		自然(厳)			変動	基本と同様	
		人為(居)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u>人為</u>		-
		人為 (建)					

棄物埋設地の設計変更に伴い設定 を変更した。

棄物が混合された土壌の上に客土
 施して住居を建設する想定におい
 客土厚さを建設工事の実績を考慮
 て保守的な 10 cm に変更した。
 価対象核種の見直しを反映し,
 i - 63 を削除した。

N.		現在0	D設定值		過去0	D設定值	
NO.	パラメータ名称	区分*1	設定値	パラメータ名称	区分*2	設定値	
<mark>80</mark>	浸透水低減対策	自然(高)					・人為
	喪失時の浸透水 量	自然(厳)					接 抜 した
	$(\mathbf{m}^{3} \neq (\mathbf{m}^{2} \cdot \mathbf{y}))$	人為(居)	<u>1.4</u>				
		人為 (建)					

※1 自然(高):最も可能性の高い自然事象シナリオ,自然(厳):最も厳しい自然事象シナリオ,人為(居):人為事象シナリオ(居住者),人為(建):人為事象シナ

リオ(建設業従事者)

※2 基本:基本シナリオ,変動:変動シナリオ,人為:左記以外の自然現象及び人為事象シナリオ

変更理由

為事象シナリオにおいて,跡地の直 掘削により,浸透水低減対策が喪失 た際の被ばく経路を追加した。

3 参考文献

- (1) 厚生労働省(2020): 平成 30 年国民健康·栄養調査報告
- (2) International Atomic Energy Agency (1987): Exemption of Radiation Sources and Practices from Regulatory Control-INTERIM REPORT, I A E A - T E C D O C - 401
- (3) International Commission on Radiological Protection (2002): Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values, ICRP Publication 89

以上

評価パラメータの被ばく線量への

影響の程度について

1		は	:じめに
2		評	価パラメータの影響の程度の確認方法1
3		被	だばく線量への影響の程度9
4		廃	上措置の開始後の評価パラメータの設定の考え方9
(1)	「廃棄物埋設地内の充塡砂/中間覆土の放射性核種 i の
			収着分配係数」 10
(2)	「通気層高さ」10
(3)	「通気層土壤における放射性核種 i の収着分配係数」 10
(4)	「地下水流速」 11
(5)	「帯水層の厚さ」11
5		参	:考文献
1 はじめに

本資料は,廃止措置の開始後の評価の自然事象シナリオの評価に 用いる評価パラメータ(以下「廃止措置の開始後の評価パラメータ」 という。)のうち,評価パラメータの分類①:科学的に合理的な範囲 で設定するパラメータの被ばく線量への影響の程度を示すものであ る。

2 評価パラメータの影響の程度の確認方法

廃止措置の開始後の評価パラメータのうち,分類①の評価パラメ ータを第1表に示す。

第1表に示す評価パラメータを対象に,評価パラメータを設定す る際に考慮した科学的に合理的な範囲の最大値又は最小値に変更し た際の被ばく線量への影響の程度を確認する。

ただし,廃止措置の開始後の評価パラメータの設定値は,設定の 段階で保守的に設定していることから,影響の程度を確認すること ができない評価パラメータがあるため,それらの評価パラメータに ついては,文献等を用いて設定値を変更した上で評価を行う。

廃止措置の開始後の評価パラメータの設定値を見直す評価パラメ ータは、「廃棄物埋設地内の充填砂/中間覆土の間隙率」、「廃棄物埋 設地内の充填砂/中間覆土の放射性核種 *i* の収着分配係数のうち、 H-3、C-14、C1-36の設定値」、「通気層高さ」、「通気層土壤に おける放射性核種 *i* の収着分配係数のうち、H-3、C-14、C1-36の設定値」、「通気層土壤の粒子密度」、「帯水層土壤の粒子密度」 及び「帯水層土壌における放射性核種 *i* の収着分配係数のうち、H-3、C-14、C1-36の設定値」である。

影響の程度を確認する上で基本とする評価パラメータの設定値 (以下「基本とする設定値」という。)及び科学的に合理的な範囲の 最大値又は最小値の設定値を第2表に示す。

基本とする設定値を用いて評価した結果を基本となる評価結果と し,評価パラメータごとの科学的に合理的な範囲の最大値又は最小 値に設定値を変更した際の評価結果と比較することで,評価パラメ ータの被ばく線量への影響の程度を確認する。

評価対象とする被ばく経路は,可能性が高い自然事象シナリオの 対象となる「海産物の摂取に伴う内部被ばく(以下「海産物摂取」と いう。)」,「掘削土壤上での居住に伴う外部被ばく及び内部被ばく(以 下「居住」という。)」及び「居住者の家庭菜園により生産する農産物 の摂取に伴う内部被ばく(以下「家庭菜園」という。)」とする。

No.	パラメータ名称
1	廃棄物埋設地内の充塡砂/中間覆土の間隙率
2	廃棄物埋設地内の飽和度
3	廃棄物埋設地内の充填砂/中間覆土の粒子密度
4	廃棄物埋設地内の充填砂/中間覆土の放射性核種 i の収着分
	配係数
5	分子拡散係数
6	通気層高さ
7	通気層飽和度
8	通気層土壤における放射性核種 iの収着分配係数
9	通気層土壌の間隙率
10	通気層土壌の粒子密度
11	帯水層土壌の間隙率
12	地下水流速
13	帯水層の厚さ
14	帯水層土壌の粒子密度
15	帯水層土壤における放射性核種iの収着分配係数

第1表 分類①の評価パラメーター覧

Na	パラインクタサ	基本とする	科学的に合理的な範囲		乳空の老さ士
NO.	ハワメータ名称	設定値	最大値	最小值	
1	廃棄物埋設地内の 充塡砂/中間覆土 の間隙率(-)	0.44	0.50	0.38	科学的に合理的な範囲は,現 地発生土及び購入土の候補土 砂の物理試験結果の最大値と 最小値とし,基本とする設定 値は,科学的に合理的な範囲 の中間値を用いて設定した。
2	廃棄物埋設地内の 飽和度(%)	17	23	13	科学的に合理的な範囲は,廃 棄物埋設地近傍のdu層のブ ロックサンプリングにより得 られた物性値から算出した飽 和度の最大値と最小値とし, 基本とする設定値は,廃止措 置の開始後の評価パラメータ の設定値と同様に,科学的に 合理的な範囲の平均値を用い て設定した。
3	廃 棄物 埋 設 地 内 の 充 塡 砂 / 中間 覆 土 の 粒子密度 (kg/m ³)	2.7 \times 10 ³	2.8 × 10 ³	2. 6×10^{3}	科学的に合理的な範囲は,現 地発生土及び購入土の候補土 砂の物理試験結果の最大値と 最小値とし,基本とする設定 値は,廃止措置の開始後の評 価パラメータの設定値と同様 に,科学的に合理的な範囲の 平均値を用いて設定した。

第2表 基本とする設定値及び最大値又は最小値の設定値(1/5)

No	パラメータ名称		基本とする 科学的に合		里的な範囲	乳ウの老ら十	
NO.			設定値	最大値	最小值	設定の与え方	
	廃地砂土核着 棄内/の種分加 すの中放 i 配 (m ³ /kg)	Н	0.0001	0.001	0.00001	科学的に合理的な範囲の最大 — 値又は最小値は、基本とする	
		С	0.002	0.02	0.0002	設定値の 10 倍又は 10 分の 1	
		C 1	0.0005	0.005	0.00005	に設定した。 H, C, C1は以下のとおり	
		Са	0.003	0.03	0.0003	文献値を基本とする設定値と	
4		Со	0.03	0.3	0.003	開始後の評価パラメータの設	
		Sr	0.003	0.03	0.0003	定値を基本とする設定値とし た。 H及びC1はIAEA-TE	
		C s	0.3	3.0	0.03		
		Еu	0.3	3.0	0.03	A E A - T E C D O C - 401	
		全 α	0.1	1.0	0.01	(2)で示される値を基本とする設定値とした。	
5	分子拡散係数 (m ² ∕y)		0.055	0.072	0.041	科学的に合理的な範囲は,化 学便覧 ⁽³⁾ に示される 25℃又 は 5℃の自由水中の拡散係数 を最大値又は最小値とし,基 本とする設定値は,廃止措置 の開始後の評価パラメータの 設定値と同様に,化学便覧 ⁽³⁾ に示される 15℃の自由水中 の拡散係数を用いて設定し た。	

第2表 基本とする設定値及び最大値又は最小値の設定値(2/5)

No SEJ DAT		基本とする	科学的に合理的な範囲		乳空の老文士	
NO.		白小小	設定値	最大値	最小值	取 足 の 考 え 万
6	通気層高さ(1	m)	2.2	2.4	1. 7	科学的に合理的な範囲は, 1,000 年後の地質環境等の状 態設定を踏まえた地下水位の 設定値と廃棄物埋設地底面ま での距離の差の最大値及び最 小値とし,基本とする設定値 は,1,000 年後の地質環境等 の状態設定を踏まえた最も可 能性が高い自然事象シナリオ の寒冷化ケースの地下水位と 廃棄物埋設地底面までの距離 の差を用いて設定した。
7	通気層飽和度	(%)	17	23	13	廃棄物埋設地内の飽和度と同 様の設定とした。
	通気層土壌 における放 射性核種 <i>i</i>	Н	0.0001	0.001	0.00001	廃棄物埋設地内の充填砂/中
		С	0.002	0.02	0.0002	間覆土の放射性核種 <i>i</i> の収着
		C 1	0.0005	0.005	0.00005	分配係数と同様の考えで設定
8		Са	0.003	0.03	0.0003	した。
		Со	0.03	0.3	0.003	
	係数	S r	0.003	0.03	0.0003	
	(m^3 / kg)	C s	0.3	3.0	0.03	
		Еu	0.3	3.0	0.03	
		全 <i>α</i>	0.1	1.0	0.01	

第2表 基本とする設定値及び最大値又は最小値の設定値(3/5)

N	10 三月,月月廿	基本とする	科学的に合理的な範囲		乳豆の老さ士
NO.	ハリメータ名称	設定値	最大値	最小值	
9	通気層土壌の間隙 率 (-)	0.41	0.47	0.36	科学的に合理的な範囲は, d u層の物理試験結果の最大値 と最小値とし,基本とする設 定値は,廃止措置の開始後の 評価パラメータの設定値と同 様に,科学的に合理的な範囲 の平均値を用いて設定した。
10	通気層土壌の粒子 密度(kg/m ³)	2.65 \times 10 ³	2.7 × 10 ³	2. 6×10^{3}	科学的に合理的な範囲は, d u層の物理試験結果の最大値 と最小値とし,基本とする設 定値は,科学的に合理的な範 囲の中間値を用いて設定し た。
11	帯水層土壌の間隙 率(-)	0.41	0.47	0.36	通気層土壌の間隙率と同様の 考えで設定した。
12	地下水流速(m/y)	49	64	42	科学的に合理的な範囲は, 1,000 年後の地質環境等の状態設定を踏まえた地下水流速 の最大値と最小値とした。 基本とする設定値は,廃止措置の開始後の評価パラメータ の設定値と同様に,1,000 年 後の地質環境等の状態設定を 踏まえた最も可能性が高い自 然事象シナリオの寒冷化ケー スの地下水流速を用いて設定 した。

第2表 基本とする設定値及び最大値又は最小値の設定値(4/5)

Na	パラノ、カタサ	基本とする	科学的に合理	乳中の老ら士	
NO.	ハノメータ名称	設定値	最大値	最小值	取足の考え方
13	帯水層の厚さ(m)	1.8	2.3	1.6	科学的に合理的な範囲は, 1,000 年後の地質環境等の状 態設定を踏まえた地下水位の 最大値又は最小値とし,基本 とする設定値は,廃止措置の 開始後の評価パラメータの設 定値と同様に,1,000 年後の 地質環境の状態設定を踏まえ た最も可能性が高い自然事象 シナリオの寒冷化ケースの地 下水位を用いて設定した。 なお,帯水層の基底部は T.P.
14	帯水層土壌の粒子 密度(kg/m ³)	2.65×10 ³	2.7 × 10 3	2.6 × 10 3	通気層土壌の粒子密度と同様 の考えで設定した。
	Н	0.0001	0.001	0.00001	廃棄物埋設地内の充塡砂/中
	The contract of the contract o	0.002	0.02	0.0002	間覆土の放射性核種 <i>i</i> の収着
	帯水噌土壌 における放 射性核種 の収差公配 C 1 C a	0.0005	0.005	0.00005	分配係数と同様の考えで設定
		0.003	0.03	0.0003	した。
15		0.3	3.0	0.03	
	係数 S r	0.003	0.03	0.0003	
	$\binom{\nu}{m^3}$ kg C s	0.3	3.0	0.03	
	E u	0.3	3.0	0.03	
	全 α	0.1	1.0	0.01	

第2表 基本とする設定値及び最大値又は最小値の設定値(5/5)

3 被ばく線量への影響の程度

対象となる被ばく経路に対して,評価パラメータの被ばく線量へ の影響の程度を確認した結果を第1図(「海産物摂取」の基本とする 評価結果からの変化割合),第2図(「居住」の基本とする評価結果 からの変化割合)及び第3図(「家庭菜園」の基本とする評価結果か らの変化割合)に示す。

第1図より「海産物摂取」における被ばく線量への影響が大きい 評価パラメータ(変化割合が20%を超える評価パラメータ)として は,「廃棄物埋設地内の充塡砂/中間覆土の放射性核種iの収着分配 係数」,「通気層高さ」及び「通気層土壤における放射性核種iの収着 分配係数」が挙げられる。

第2図より「居住」における被ばく線量への影響が大きい評価パ ラメータ(変化割合が20%を超える評価パラメータ)としては,「廃 棄物埋設地内の充填砂/中間覆土の放射性核種 *i*の収着分配係数」, 「通気層土壤における放射性核種 *i*の収着分配係数」,「地下水流速」 及び「帯水層の厚さ」が挙げられる。

また,第3図より「家庭菜園」における被ばく線量への影響が大きい評価パラメータ(変化割合が20%を超える評価パラメータ)としては,「廃棄物埋設地内の充填砂/中間覆土の放射性核種iの収着分配係数」,「通気層土壌における放射性核種iの収着分配係数」,「地下水流速」及び「帯水層の厚さ」が挙げられる。

4 廃止措置の開始後の評価パラメータの設定の考え方

廃止措置の開始後の評価では,被ばく線量への影響の程度が大き い評価パラメータ又は設定値の不確かさが大きい評価パラメータは,

最も可能性が高い自然事象シナリオに用いる評価パラメータ設定値 を最も厳しい自然事象シナリオで変更して評価を行う。

ただし,最も可能性が高い自然事象シナリオに用いる評価パラメ ータの設定の段階で被ばく線量が大きくなるように設定した評価パ ラメータについては,最も厳しい自然事象シナリオにおいても同様 の設定とする。

抽出された被ばく線量への影響の程度が大きい評価パラメータに 対する廃止措置の開始後の評価での設定の考え方を以下に示す。

(1)「廃棄物埋設地内の充填砂/中間覆土の放射性核種 i の収着分配
係数」

最も可能性が高い自然事象シナリオにおいては,H-3,C-14, C1-36の設定値を「0」と設定し,その他の放射性核種について は、収着分配係数取得試験結果等を用いて設定する。

最も厳しい自然事象シナリオにおいては,被ばく線量が大きく なるように条件を変更して設定する。

(2)「通気層高さ」

最も可能性が高い自然事象シナリオにおいては,科学的に合理 的な範囲の最小値を切り下げて設定する。本設定により,最も保 守的な設定となることから,最も厳しい自然事象シナリオは,最 も可能性が高い自然事象シナリオと同様の設定を用いる。

(3)「通気層土壌における放射性核種 i の収着分配係数」

最も可能性が高い自然事象シナリオにおいては, H-3, C-14,

C1-36の設定値を「0」と設定し、その他の放射性核種については、収着分配係数取得試験結果等を用いて設定する。

最も厳しい自然事象シナリオにおいては,被ばく線量が大きく なるように条件を変更して設定する。

(4)「地下水流速」

「地下水流速」は「帯水層の厚さ」と相互に関係のある評価パラ メータであり、これらは、廃棄物埋設地から漏出した放射性物質 の地下水での希釈量に関係する。

そのため,最も厳しい自然事象シナリオでは,希釈量が少なく なるように(地下水流速が小さくなるように),1,000年後の地質 環境等の状態設定として寒冷化ケースの最も厳しい設定に変更し て条件を設定する。

(5)「帯水層の厚さ」

「(4)「地下水流速」」で記載のとおり,地下水での希釈量に関係する。

そのため、最も厳しい自然事象シナリオでは、希釈量が少なく なるように(地下水流速が小さくなるように)、1,000年後の地質 環境等の状態設定として寒冷化ケースの最も厳しい設定に変更し て条件を設定する。

第1図 「海産物摂取」の基本とする評価結果からの変化割合

第2図 「居住」の基本とする評価結果からの変化割合

第3図 「家庭菜園」の基本とする評価結果からの変化割合

5 参考文献

- (1) International Atomic Energy Agency(2009) : Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, IAEA-TE C D O C - 1616
- (2) International Atomic Energy Agency (1987): Exemption of Radiation Sources and Practices from Regulatory Control-INTERIM REPORT, I A E A - T E C D O C - 401
- (3) 日本化学会編(1993): 改訂 4 版 化学便覧 基礎編Ⅱ

以上