島根原子力発電所第2号機 審査資料				
資料番号	NS2-添 3-015-10			
提出年月日	2022 年 11 月 2 日			

VI-3-別添 3-2-7 床ドレン逆止弁の強度計算書

2022年11月

中国電力株式会社

1. 棋	既要	1
2. –	-般事項	1
2.1	配置概要	1
2.2	構造計画	2
2.3	評価方針	3
2.4	適用規格・基準等 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.5	記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.6	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3. 責	平価部位	9
4.	固有周期 ·····	10
4.1	固有周期の計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
4.2	固有周期の計算条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4.3	固有周期の計算結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
5. 樟	構造強度評価	13
5.1	構造強度評価方法	13
5.2	荷重及び荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
5.3	許容応力	15
5.4	設計用地震力	18
5.5	計算方法	19
5.6	計算条件	<mark>26</mark>
6. 責	平価結果	<mark>32</mark>
6.1	構造強度評価結果	32
6.2	機能維持評価結果	33

1. 概要

本資料は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」に基づき、浸水防護施設のうち床ドレン逆止弁が津波によって生じる突き上げ津波荷重及び余 震を考慮した荷重に対し、主要な構造部材が構造健全性を有することを確認するもので ある。

- 2. 一般事項
- 2.1 配置概要

強度評価の対象施設となる床ドレン逆止弁の配置計画は, VI-3-別添 3-1「津波への 配慮が必要な施設の強度計算の基本方針」の「3. 構造強度設計」にて示す。

2.2 構造計画

床ドレン逆止弁は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方 針」の「3. 構造強度設計」にて示す構造計画を踏まえて、詳細な構造を決定する。 床ドレン逆止弁の構造計画を表 2-1 に示す。

計画の概要			
型式	主体構造	基礎・支持構造	「
80A 型 <mark>(ボルト取付</mark> <mark>式)</mark>		弁本体を基礎ボ	基礎ボルト(メカニカルアンカ) 弁本体
300A 型 <mark>(ボルト取付</mark> <mark>式)</mark>	弁座を含む弁 本体,弁体で あるフロート 及び弁 座ト フロート で構成す る。	ルトで基礎に据 え付ける。	基礎ボルト (ケミカルアンカ) 弁本体
<mark>80A 型</mark> (ねじ込み取 付式)		<mark>配管の取付部に</mark> 直接ねじ込み固 定とする。	弁本体 取付部 取信 フロート

表 2-1 構造計画

2.3 評価方針

床ドレン逆止弁の強度評価は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計 算の基本方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて、 構造強度評価及び機能維持評価により実施する。構造強度評価では、床ドレン逆止弁 の評価部位に作用する応力等が許容限界以下であることを「5.1 構造強度評価方法」 に示す方法により、「5.6 計算条件」に示す計算条件を用いて評価する。また、機能 維持評価を実施する評価部位については、評価部位に作用する圧力が許容限界以下で あることを「5.1 構造強度評価方法」に示す方法により、「5.6 計算条件」に示す計 算条件を用いて評価する。構造強度評価及び機能維持評価の確認結果を「6. 評価結 果」にて確認する。

床ドレン逆止弁の強度評価フローを図 2-1 に示す。床ドレン逆止弁の強度評価に おいては、その構造を踏まえ、突き上げ津波荷重及び余震荷重の作用方向及び伝達過 程を考慮し、評価部位を設定する。強度評価に用いる荷重及び荷重の組合せは、突き 上げ津波荷重と余震荷重の作用時(以下「重畳時」という。)を考慮し、評価される最 大荷重を設定する。余震荷重は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計 算の基本方針」に示す弾性設計用地震動Sdによる地震力とする。余震荷重の設定に あたっては、弾性設計用地震動Sdを入力して得られた設置床の最大応答加速度を考 慮して設計震度を設定する。

2.4 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・ 補-1984((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電 気協会)
- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下 「設計・建設規格」という。)
- ·機械工学便覧((社)日本機械学会)
- 2.5 記号の説明

床ドレン逆止弁の固有周期の計算に用いる記号及び構造強度評価に用いる記号を表 2-2及び表 2-3 に示す。

表 2-2	床ド	レン逆止弁の	固有周期の	計算に用い	いる記号
-------	----	--------	-------	-------	------

記号	記号の説明	単位
А	モデル化に用いるフロートガイドの有効断面積	mm^2
d m	モデル化に用いる弁本体の内径	mm
$D_{f\ m}$	モデル化に用いるフロートガイドの直径	mm
D _m	モデル化に用いる弁本体の外径	mm
Е	モデル化に用いるフロートガイドの縦弾性係数	MPa
f	床ドレン逆止弁の固有振動数	Hz
Т	床ドレン逆止弁の固有周期	S
I a	モデル化に用いるフロートガイド 1 本の断面二次モーメント	mm^4
I m	モデルの等価断面二次モーメント	mm^4
I m 1	モデル化に用いる弁本体の断面二次モーメント	mm^4
I m 2	モデル化に用いるフロートガイドの等価断面二次モーメント	mm^4
k	モデルのばね定数	N/m
ℓ_1	モデル化に用いる弁本体の長さ	mm
ℓ_2	モデル化に用いるフロートガイドの長さ	mm
m	モデル化に用いる弁の全質量	kg
n _f	フロートガイドの本数	本
уg	フロートガイドの図心GとX軸の距離	mm

記号	記号の説明	単位
C _{HSd}	余震による水平方向の設計震度	_
C v s d	余震による鉛直方向の設計震度	_
A 1	弁本体の断面積	mm^2
A ₂	重畳時に弁本体に作用する評価に用いる受圧面積	mm^2
A 3	フロートガイドの最小断面積	mm^2
A 4	重畳時にフロートガイドに作用する評価に用いる受圧面積	mm^2
A 5	基礎ボルトの断面積	mm^2
A 6	重畳時に基礎ボルトに作用する評価に用いる受圧面積	mm^2
<mark>A 7</mark>	<mark>配管の最小断面積</mark>	mm ²
A ₈	重畳時に取付部に作用する評価に用いる受圧面積	mm ²
C _d	抗力係数	—
D ₁	弁本体の外径	mm
D ₂	重畳時に弁本体に作用する評価に用いる受圧面の直径	mm
D ₃	フロートガイドの最小直径	mm
D 4	重畳時にフロートガイドに作用する評価に用いる受圧面の直径	mm
D 5	重畳時に基礎ボルトに作用する評価に用いる受圧面の直径	mm
D ₆	配管の外径	mm
D ₇	<mark>重畳時に取付部に作用する評価に用いる受圧面の直径</mark>	mm
d 1	弁本体の内径	mm
<mark>d</mark> 2	配管の内径(取付部の最小内径)	mm
D ₁	弁本体の外径	mm
D _P	基礎ボルトの水平間距離	mm
f t	設計・建設規格 SSB-3131(1)に定める値	MPa
f s	設計・建設規格 SSB-3131.1(2)に定める値	MPa
F _{H 1}	弁本体の最下端に加わる水平方向地震荷重	Ν
F _{H 2}	フロートガイドの最下端に加わる水平方向地震荷重	Ν
F _{V1}	弁本体に加わる鉛直方向地震荷重	Ν
F $_{\rm V~2}$	フロートガイドに加わる鉛直方向地震荷重	Ν
g	重力加速度	m/s^2
h	突き上げ津波荷重の算出に用いる水頭	m
Ι 1	弁本体の断面二次モーメント	mm^4
I 2	フロートガイドの断面二次モーメント	mm ⁴
Iз	配管の断面二次モーメント	mm ⁴

表 2-3 床ドレン逆止弁の構造強度評価に用いる記号(1/2)

記号	記号の説明	単位
L ₁	弁全体の長さ	mm
L ₂	フロートガイドの長さ	mm
L 3	取付部境界から弁下端までの長さ	mm
m 1	弁の全質量	kg
m ₂	フロートガイド1本当たりの質量	kg
M 1	弁本体に発生する曲げモーメント	N•mm
M 2	フロートガイドに発生する曲げモーメント	N•mm
<mark>М з</mark>	取付部境界の配管に発生する曲げモーメント	N•mm
n	基礎ボルトの本数	本
n f	フロートガイドの本数	<mark>本</mark>
D	固定荷重	Ν
P _t	突き上げ津波荷重	Ν
P w	フロートに発生する圧力	MPa
S	設計・建設規格 付録材料図表 Part5 表5に定める値	MPa
U	津波の最大流速(鉛直方向)	m/s
W d 1	弁本体自重	Ν
W _{d2}	フロートガイド自重	Ν
ρο	海水の密度	kg/m ³
σ H 1	弁本体に加わる曲げ応力	MPa
σ H 2	フロートガイドの最小断面積に加わる曲げ応力	MPa
<mark>σ_{Η3}</mark>	取付部境界の配管に加わる曲げ応力	MPa
$\sigma_{\rm V\ 1}$	弁本体に加わる圧縮応力 (重畳時)	MPa
σ v 2	フロートガイドの最小断面積に加わる圧縮応力(重畳時)	MPa
σ V 3	基礎ボルト1本当たりに加わる引張応力(重畳時)	MPa
σ ν 4	モーメントにより基礎ボルト1本当たりに加わる引張応力(重畳	MDo
	時)	MIa
σν5	配管の最小断面積に加わる引張応力(重畳時)	MPa
τ3	基礎ボルト1本当たりに加わるせん断応力	MPa
∫t ₀	引張力のみを受けるボルトの許容引張応力(f tを 1.5 倍した値)	MPa
<mark>f</mark> t s	引張力とせん断力を同時に受けるボルトの許容引張応力 <mark>(許容組</mark> <mark>合せ応力)</mark>	MPa
τ	ボルトに作用するせん断応力	MPa

表 2-3 床ドレン逆止弁の構造強度評価に用いる記号(2/2)

2.6 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-4 に示すとおりである。

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度		小数点以下第3位	切上げ	小数点以下第2位
温度	°C	—		整数位
質量	kg	_		整数位
長さ	mm	—	_	整数位*1
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*2
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*2
力	Ν	有効数字 5 桁目	四捨五入	有効数字4桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

表 2-4 表示する数値の丸め方

注記*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数 位までの値とする。

3. 評価部位

床ドレン逆止弁の評価部位は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」の「4.2 許容限界」にて示している評価部位を踏まえて、突き上げ津波荷重の作用方向及び伝達過程を考慮して設定する。

重畳時に床ドレン逆止弁下流からの突き上げ津波荷重及び鉛直方向の余震荷重が負荷 される場合は、弁本体及びフロートガイドに圧縮力が作用する。基礎ボルト取付式の場 合、基礎ボルトには引張力が作用し、ねじ込み取付式の場合、取付部には引張力が作用 する。また、床ドレン逆止弁下流からの突き上げ津波荷重によりフロートが弁座に密着 し閉弁状態となる際にフロートに圧縮力が作用する。一方、水平方向の余震荷重が負荷 される場合は、弁本体及びフロートガイドには曲げモーメントが作用する。基礎ボルト 取付式の場合、取付部には曲げモーメントが作用する。

このことから,強度評価においては,構造強度評価による評価部位として,弁本体, フロートガイド,基礎ボルト及び取付部を選定し,機能維持評価による評価部位として フロートを選定する。床ドレン逆止弁の評価部位について,表 2-1 の構造概略図に示 す。

- 4. 固有周期
- 4.1 固有周期の計算方法

床ドレン逆止弁の固有周期の計算方法を以下に示す。

- (1) 計算モデル
 - a. 一方の端を固定端,他方の端を自由端とした図 4-1 に示す1 質点系振動モ デルとする。
 - b. 質量の不均一性を考慮して,自由端に弁の全質量が集中したモデルとする。
 - c. モデル化は、円筒状の弁本体及び円柱状のフロートガイドの異なる 2 つの 断面をもつ梁の組合せとして設定する。

図 4-1 床ドレン逆止弁のモデル化の概略

(2) 固有周期の計算

水平方向の固有周期Tを以下の式より算出する。なお,鉛直方向の固有周期については,床ドレン逆止弁の構造上,水平方向よりも鉛直方向の方が剛性が高いため, 水平方向の固有周期のみを確認する。

$$T = \frac{1}{f}$$
$$f = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k}{m}}$$
$$k = \frac{3 \cdot E \cdot I_{m}}{\left(\ell_{1} + \ell_{2}\right)^{3}} \times 10^{3}$$

モデルの等価断面二次モーメントImの算出過程を以下に示す。

a. モデル化に用いる弁本体の断面二次モーメント モデル化に用いる弁本体の断面二次モーメント I m1は,以下の式より算出する。

$$I_{m 1} = \left(D_m^4 - d_m^4\right) \cdot \frac{\pi}{64}$$

b. モデル化に用いるフロートガイドの等価断面二次モーメント

平行軸の定理から、フロートガイドの図心GとX軸の距離ygを用いて、モデル化に用いるフロートガイドの等価断面二次モーメントIm2は、以下の式より算出する。フロートガイドの断面を図4-2に示す。

$$I_{a} = D_{fm}^{4} \cdot \frac{\pi}{64}$$
$$I_{m2} = 2 \cdot I_{a} + (n_{f} - 2) \cdot \left(I_{a} + (y g)^{2} \cdot A \right)$$

図 4-2 フロートガイドの断面(4本の例)

c. モデルの等価断面二次モーメント モデルの等価断面二次モーメント I mは,以下の式より算出する。

$$I_{m} = \frac{\left(\ell_{1} + \ell_{2}\right)^{3} \cdot I_{m1} \cdot I_{m2}}{I_{m1} \cdot \ell_{2}^{3} + I_{m2} \cdot \left(\ell_{1}^{3} + 3\ell_{1} \cdot \ell_{2}^{2} + 3\ell_{1}^{2} \cdot \ell_{2}\right)}$$

4.2 固有周期の計算条件

床ドレン逆止弁の 80A 型<mark>(ボルト取付式),</mark>300A 型(ボルト取付式)及び 80A 型(ね じ込み取付式)</mark>における固有周期の計算条件を表 4-1,表 4-2 及び表 4-3 に示す。

-				1
	モデル化に用いろ	モデル化に用いろ	モデル化に用いろ	モデル化に用いる
フロートガイドの	年の全質量	全本体の外径	金本体の内径	フロートガイドの
材質	」) が 上 貞 重 m		上 上 上 上	直径
竹具	(kg)	(mm)	(mm)	D f m
	(Kg)	(mm)	(mm)	(mm)
SUS316L	5	72	38	7

表 4-1 80A 型(ボルト取付式)の固有周期の計算条件

, ,	フロートガイドと	エゴルルに用いて	モデル化に用いる	モデル化に用いる	フローレポノド
	図心GとX軸の	モナル化に用いる	フロートガイドの	フロートガイドの	ノロートルイト
	距離	开本体の長さ	長さ	縦弾性係数*	の本数
	уg		Q2	Е	n _f
	(mm)	(mm)	(mm)	(MPa)	(本)
	30	37	102	1.94×10^{5}	4

注記*:「5.3 許容応力」における温度条件での縦弾性係数Eを用いる。

表 4-2 300A 型(ボルト取付式)の固有周期の計算条件

	モデル化に用いる	モデル化に用いる	モデル化に用いる	モデル化に用いる
フロートガイドの ++555	弁の全質量	弁本体の外径	弁本体の内径	直径
	m (kg)	D _m (mm)	d m (mm)	D f m
				(mm)
SUS316L	35	182	90	10

フロートガイドと 図心Gと X 軸の距	モデル化に用いる	モデル化に用いる フロートガイドの	モデル化に用いる フロートガイドの	フロートガイド
离性	弁本体の長さ 01	長さ	縦弾性係数*	の本数 n _f
уg	(mm)	ℓ_2	E	(木)
(mm)	(IIIII)	(mm)	(MPa)	(4)
70.1	27	215	1.94×10^{5}	6

注記*:「5.3 許容応力」における温度条件での縦弾性係数Eを用いる。

<u></u>	4 0 0011 主(44	0起94月309	面有周易少日并不	11
	エデル化に用いる	エデル化に用いる	エデル化に用いる	モデル化に用いる
フロートガイドの	立の今年	カオ休の外径	金木体の肉体	フロートガイドの
	井の主員里	开本体の外径 D	开本体仍内在	直径
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$D_{\rm m}$		D f m
	(Kg)	(mm)	(mm)	(mm)
SUS304	2.19	72	38	7

表 4-3 80A 型(ねじ込み取付式)の固有周期の計算条件

フロートガイドと 図心C ト V 軸の	モデル化に用いる	モデル化に用いる	モデル化に用いる	フロートガイド
国心ほど不知の距離	弁本体の長さ	長さ	縦弾性係数*	の本数
y g	U 1 (mm)		E	们 _f (本)
(mm)		(mm)	(MPa)	
30	20	110	1.94×10^{5}	4

注記*:「5.3 許容応力」における温度条件での縦弾性係数Eを用いる。

4.3 固有周期の計算結果

固有周期の計算結果を表 4-4に示す。計算の結果,固有周期は 0.05s 以下であり, 剛構造であることを確認した。

型式	固有周期 (s)
80A型 <mark>(ボルト取付式)</mark>	0.002
300A型 <mark>(ボルト取付式)</mark>	0.006
<mark>80A型(ねじ込み取付式)</mark>	<mark>0. 002</mark>

表 4-4 固有周期の計算結果

5. 構造強度評価

5.1 構造強度評価方法

床ドレン逆止弁の構造強度評価は、VI-3-別添 3-1「津波への配慮が必要な施設の強 度計算の基本方針」の「5. 強度評価方法」にて設定している方法を用いて、強度評 価を実施する。

床ドレン逆止弁の強度評価は、「3. 評価部位」に示す評価部位に対し、「5.2 荷重 及び荷重の組合せ」及び「5.3 許容応力」に示す荷重及び荷重の組合せ並びに許容限

RO

界を踏まえ、「5.5 計算方法」に示す方法を用いて評価を行う。

5.2 荷重及び荷重の組合せ

強度評価に用いる荷重の組合せは、VI-3-別添 3-1「津波への配慮が必要な施設の強 度計算の基本方針」の「4.1 荷重及び荷重の組合せ」にて示している荷重及び荷重の 組合せを用いる。

- 5.2.1 荷重の設定
 - (1) 固定荷重(D)
 常時作用する荷重として、弁本体の自重W_d₁及びフロートガイドの自重W_d₂
 を以下の式より算出する。

 $W_{d 1} = m_1 \cdot g$

 $W_{d 2} = m_2 \cdot g$

(2) 突き上げ津波荷重(P_t)
 突き上げ津波荷重は,基準津波による水位及び流速を考慮する。
 突き上げ津波荷重は以下の式より算出する。

$$P_{t} = \rho_{0} \cdot g \cdot h + \frac{1}{2} \cdot C_{d} \cdot \rho_{0} \cdot U^{2}$$

(3) 余震荷重(Sd)

余震荷重は, VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」 に示すとおり,弾性設計用地震動Sdに伴う地震力とする。

余震による地震荷重 F_{H1}, F_{H2}, F_{V1}, F_{V2}を以下の式より算出する。

 $F_{H1} = m_{1} \cdot C_{HSd} \cdot g$ $F_{H2} = m_{2} \cdot C_{HSd} \cdot g$ $F_{V1} = m_{1} \cdot C_{VSd} \cdot g$ $F_{V2} = m_{2} \cdot C_{VSd} \cdot g$

5.2.2 荷重の組合せ

床ドレン逆止弁の強度計算にて考慮する荷重の組合せを表 5-1 に示す。

表 5-1 床ドレン逆止弁の強度評価にて考慮する荷重の組合せ

施設区分	機器名称	荷重の組合せ
浸水防護施設	中ドレン溢止金	$D \perp D \perp C J^{*1}$
(浸水防止設備)	本下レン 逆正开	$D + r_t + S u$

注記 *1: Dは固定荷重, P t は突き上げ津波荷重, S d は余震荷重を示す。

*2:固定荷重(D)及び余震荷重(Sd)の組合せ荷重が,強度評価上,津波突き 上げ荷重(P_t)を緩和する方向に作用する場合,保守的にこれらを組み合わ せない。

5.3 許容応力

床ドレン逆止弁の許容限界は、VI-3-別添 3-1「津波への配慮が必要な施設の強度計算の基本方針」の「4.2 許容限界」にて設定している許容限界を踏まえ、「3. 評価部位」にて設定している評価部位ごとに、機能損傷モードを考慮し、弁本体、フロートガイド,基礎ボルト及び取付部については、JSMEに準じた供用状態Cの許容応力を用いる。

フロートについては、水圧試験により確認した圧力を許容値として用いる。水圧試 験では、床ドレン逆止弁の閉状態に対して、静水圧 0.30MPa をフロートに負荷し、有 意な変形及び著しい漏えいがないことを確認した。

床ドレン逆止弁の弁本体,フロートガイド,基礎ボルト及び取付部の許容限界を表 5-2 に,許容応力評価条件を表 5-3 に,許容応力算出結果を表 5-4 にそれぞれ示 す。また,フロートの許容限界を表 5-5 に示す。

			<mark>,</mark> <u> </u>			21
	許容限界*1			許容限界*2		
供用状態	(ボルト以外)				(ボルト)	
(許容応力状態)	一次応力			一次応力		
	圧縮 <mark>/引張</mark>	曲げ	組合せ*3	引 張	せん断	組合せ*4
C (Ⅲ _A S) * ⁵	1.2 • S	1.2 • S	1.2 • S	1.5 • f t	1.5 • f s	∫t s

表 5-2 弁本体,フロートガイド<mark>,</mark>基礎ボルト<mark>及び取付部</mark>の許容限界

注記 *1: 圧縮/引張及び曲げは、JEAG4601・補-1984を準用し、「管」の許容
 限界のうちクラス2、3配管に対する許容限界に準じて設定する。

 *2:引張及びせん断は、JEAG4601・補-1984を準用し、「その他の支持 構造物」の許容限界を適用する。組合せは、JSME S NC1-2005/2007

RO

による。

- *3: 圧縮/引張応力と曲げ応力の組合せである。
- *4: せん断応力と引張応力の組合せ応力

せん断応力と引張応力を同時に受けるボルトの許容引張応力 ft sは, 次のいず れか小さい方の値

 $\mathbf{f}_{\mathrm{t}} = 1.4 \cdot \mathbf{f}_{\mathrm{t}} = -1.6 \cdot \tau$

 $\mathbf{f}_{t s} = \mathbf{f}_{t o}$

*5:地震後の再使用性や津波による溢水の繰返し作用を想定し,当該構造物全体の変形力に対して浸水防護機能として十分な余裕を有するよう,設備を構成 する材料が弾性域内に収まることを基本とする。

刑二	莎 (本 动 / 去	林 彩山	温度条件	S	S _y	S _u	F
至八	計加可した	11 17	(°C)	(MPa)	(MPa)	(MPa)	(MPa)
	弁本体	SUS316L	40	111		—	_
80A 空 (ボルト町	フロート	SUS216I	40	111		_	
	ガイド	303310L	40	111			_
们式)	基礎ボルト	SUS316 <mark>L</mark>	40		<mark>175</mark>	<mark>480</mark>	<mark>175</mark>
	弁本体	SUS316L	40	111			
300A 型 (ボルト取 <mark>付式)</mark>	フロート	SUSSICI	40	111			
	ガイド	202210L	40	111	_		_
	基礎ボルト	SUS316 <mark>L</mark>	40	_	<mark>175</mark>	<mark>480</mark>	<mark>175</mark>
	<mark>弁本体</mark>	<mark>SUS303*</mark>	<mark>40</mark>	<mark>129</mark>		—	-
80A 空	フロート		40	120			
取付式)	<mark>ガイド</mark>	<mark>505304</mark>	<mark>40</mark>	129			
	<mark>取付部</mark>	SUS304TP	<mark>40</mark>	<mark>129</mark>	—	—	—

表 5-3 弁本体,フロートガイド,基礎ボルト及び取付部の許容応力評価条件

注記 * : SUS304 相当

12 0	4 开个件,		イート <mark>、</mark> 在		I X U X I	(*1) 1 (v <mark> (1</mark>	いノノチロル	
				許容限界	۲ ۲		許容限界	
			(ボルト以外)			(ボルト)		
供用状態				一次応え	5		一次応力	
(許容応力	型式	評価部位	压縮 <mark>/</mark>	曲げ	組合せ	引 張	せん断	組合せ
小 忠 /			<mark>り坂</mark> 1 9 4 6	1.2 · S	1.2 • S	1.5 • f _t	1.5 • f _s	<mark>f</mark> ts
			(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
	80A 型	弁本体	133	133	133	—	_	
	(ボル	フロート	199	199	199			
<mark>۱</mark>	<mark>ト取付</mark>	ガイド	133	100	155			
	式)	基礎ボルト	_	—	_	<mark>105</mark>	<mark>80</mark>	<mark>105</mark>
	300A 型	弁本体	133	133	133	—	—	—
С	(ボル	フロート	133	133	133	_		_
$(\amalg_A S)$	<mark>ト取付</mark>	ガイド	100	100	155			
	<mark>式)</mark>	基礎ボルト	-	—	_	<mark>105</mark>	<mark>80</mark>	<mark>105</mark>
	<mark>80A 型</mark>	<mark>弁本体</mark>	<mark>154</mark>	<mark>154</mark>	<mark>154</mark>		—	—
	<mark>(ねじ</mark>	フロート	154	154	154			
	<mark>込み取</mark>	<mark>ガイド</mark>		101	101			
	付式)	<mark>取付部</mark>	<mark>154</mark>	<mark>154</mark>	<mark>154</mark>		—	—

表 5-4 弁本体,フロートガイド,基礎ボルト及び取付部の許容応力算出結果

表 5-5 フロートの許容限界

評価部位	水圧試験の圧力(MPa)
フロート	0.3

5.4 設計用地震力

評価に用いる設計用地震力を表 5-6 に示す。

弾性設計用地震動Sdによる地震力は、VI-2-1-7「設計用床応答スペクトルの作成 方針」に基づき設定する。

山寺山	据付場所及び	余震による設計震度*2	
地震動 床面咼さ*1 (m)		水平方向C _H	鉛直方向 C v
弾性設計用地震動	取水槽 EL 1.1	1 91*3	0.00*3
S d	<mark>タービン建物 EL 2.0</mark>	1.31	0.99

表 5-6 設計用地震力

注記 *1:基準床レベルを示す。

*2: 耐震計算に用いる設計震度は,床ドレン逆止弁が設置されている各基準床レベルのうち,最大となる設計震度を設定した。

*3:設計用震度Ⅱ(弾性設計用地震動Sd)を上回る設計震度

5.5 計算方法

- (1) 弁本体
 - a. 圧縮

鉛直応答加速度による余震荷重及び突き上げ津波荷重により,弁本体に加わる圧縮応力σv1を以下の式より算出する。また,突き上げ津波荷重が弁本体に 作用する評価に用いる受圧面積A2は,弁本体のうち波圧を受ける面積が最も 広い箇所を適用し,突き上げ津波荷重が弁本体に作用する評価に用いる受圧面 の直径D2から求める。弁本体の断面積A1は,図5-1に示すとおり,弁本体 のうち最も肉厚が薄い断面を適用する。ただし,弁本体自重Wd1と弁本体に加 わる鉛直下向きの地震荷重Fv1は圧縮応力σv1を緩和する方向に作用するた め考慮しない。

$$\sigma_{V_1} = \frac{W_{d_1} + F_{V_1} + P_t \cdot A_2}{A_1}$$

b. 曲げ

弁全体の最下端に集中荷重が負荷された片持ち梁として,水平応答加速度に より,弁本体に加わる曲げ応力σ_{H1}を以下の式より算出する。弁全体の長さL 1, 弁本体の外径D1及び内径d1について図 5-1に示す。

$$M_{1} = F_{H1} \cdot L_{1}$$

$$I_{1} = \left(D_{1}^{4} - d_{1}^{4}\right) \cdot \frac{\pi}{64}$$

$$\sigma_{H1} = \frac{M_{1} \cdot \left(\frac{D_{1}}{2}\right)}{I_{1}}$$

a. 圧縮

鉛直応答加速度による余震荷重及び突き上げ津波荷重により,フロートガイ ドの最小断面積に加わる圧縮応力σv2を以下の式より算出する。また,突き上 げ津波荷重がフロートガイドに作用する評価に用いる受圧面積A₄は,突き上 げ津波荷重がフロートガイドに作用する評価に用いる受圧面の直径D₄から求 める。フロートガイドの最小断面積A₃は,図5-2に示すとおり,フロートガ イドのうち最も肉厚が薄い断面を適用する。ただし,フロートガイド自重W_{d2} とフロートガイドに加わる鉛直下向きの地震荷重Fv2は圧縮応力σv2を緩和 する方向に作用するため考慮しない。

$$\sigma_{V2} = \frac{W_{d2} + F_{V2} + P_{t} \cdot A_{4}}{A_{3}}$$

図 5-2 フロートガイドの構造強度評価に用いる断面積 (300A型(ボルト取付式)の例)

b. 曲げ

フロートガイドの最下端に集中荷重が負荷された片持ち梁として、水平応答 加速度により、フロートガイドに加わる曲げ応力 σ_{H2}を以下の式より算出する。 フロートガイドの長さL₂、フロートガイドの最小直径D₃について図 5-2 に 示す。

$$M_{2} = F_{H2} \cdot L_{2}$$

$$I_{2} = D_{3}^{4} \cdot \frac{\pi}{64}$$

$$\sigma_{H2} = \frac{M_{2} \cdot \left(\frac{D_{3}}{2}\right)}{I_{2}}$$

- (3) 基礎ボルト
 - a. 引張

鉛直応答加速度による余震荷重及び突き上げ津波荷重により,基礎ボルト 1 本当たりに加わる引張応力 σ_{V3} を以下の式より算出する。また,突き上げ津波 荷重が基礎ボルトに作用する評価に用いる受圧面積A₆は,図 5-3 に示すとお り,突き上げ津波荷重が基礎ボルトに作用する評価に用いる受圧面の直径D₅ から求める。ただし,弁本体自重W_{d1}と弁本体に加わる鉛直下向きの地震荷重 F_{V1}は圧縮応力 σ_{V3} を緩和する方向に作用するため考慮しない。

$$\sigma_{V3} = \frac{F_{V1} + P_t \cdot A_6 + W_{d1}}{A_5 \cdot n}$$

図 5-3 基礎ボルトに作用する評価に用いる受圧面積(300A型(ボルト取付式)の例)

b. モーメントによる引張応力

水平応答加速度により対角線上の基礎ボルトを2本支持したと仮定し,弁全体の最下端に集中荷重が作用した場合において,水平方向地震荷重によるモーメントにより基礎ボルト1本当たりに加わる引張応力σv4を以下の式より算出する。図5-4にモーメントによる引張応力の作用イメージを示す。

$$\sigma_{V4} = \frac{F_{H1} \cdot L_{1}}{D_{P} \cdot A_{5}}$$

図 5-4 モーメントによる引張応力の作用イメージ

c. せん断

水平応答加速度により基礎ボルト 1 本当たりに加わるせん断応力 τ 3 を以下 の式より算出する。

$$\tau_{3} = \frac{F_{H1}}{A_{5} \cdot n}$$

(4) フロート 波圧によりフロートに発生する圧力Pwは以下の式より算出する。

$$P_{W} = P_{t}$$

- (5) 取付部
 - <mark>a. 引張</mark>

鉛直応答加速度による余震荷重及び突き上げ津波荷重により,配管の最小断面 積に加わる引張応力σ_{v5}を以下の式より算出する。また,突き上げ津波荷重が取 付部に作用する評価に用いる受圧面積A₈は,配管内径d₂から求める。配管の最 小断面積A₇は,ねじ山がかみ合うことにより荷重は分散されるが,図5-5に示 すとおり,保守的に最小断面積となる配管谷径d₂,配管外径D₆を計算に用いる。 ただし,弁本体自重W_{d1}と弁本体に加わる鉛直下向きの地震荷重F_{v1}は圧縮 応力σ_{v5}を緩和する方向に作用するため考慮しない。

b. 曲げ

弁全体の最下端に集中荷重が負荷された片持ち梁として,水平応答加速度により,取付部境界の配管に加わる曲げ応力σH3を以下の式より算出する。取付部境界から弁下端までの長さL3について図 5-6に示す。

5.6 計算条件

床ドレン逆止弁の構造強度評価に用いる計算条件を表 5-7<mark>,</mark>表 5-8 <mark>及び表 5-9</mark>に 示す。

	弁の全質量	弁全体の長さ	弁本体の外径
弁本体の材質	m 1	L ₁	D ₁
	(kg)	(mm)	(mm)
SUS316L	5	139	72

表 5-7 80A 型(ボルト取付式)の構造強度評価に用いる計算条件(1/2)

弁本体の内径
d 1
(mm)
38

	フロートガイドの	フロートガイドの	フロートガイドの
フロートガイドの	1本当たりの質量	長さ	最小直径
材質	m ₂	L ₂	D ₃
	(kg)	(mm)	(mm)
SUS316L	0.05	102	6.6

フロートガイ	ドの本数
n f	
(本)	
4	

	基礎ボルトの	基礎ボルトの木数	基礎ボルトの
基礎ボルトの材質	断面積	本碇ホルトの本数	水平間距離
	A 5	$(\frac{1}{k})$	D _P
	(mm^2)	(44)	(mm)
SUS316 <mark>L</mark>	113.1	2	260

重畳時に弁本体に作	重畳時にフロートガイ	重畳時に基礎ボルト		
用する評価に用いる	ドに作用する評価に用	に作用する評価に用	重力加速度	
受圧面の直径	いる受圧面の直径	いる受圧面の直径		
D ₂	D ₄	D 5	g	
(mm)	(mm)	(mm)	(m/s^2)	
72	7	77	9.80665	

表 5-7 80A 型(ボルト取付式)の構造強度評価に用いる計算条件(2/2)

海水の密度 ρο (kg/m ³)	突き上げ津波荷重の 算出に用いる水頭 h (m)	抗力係数 C _d (一)	津波の最大流速* U (m/s)
1030	10.2	2.01	1.0

注記 *: 取水槽における鉛直方向の津波の最大流速を示す。

表 5-8 300A 型 (ボルト取付式) の構造強度評価に用いる計算条件 (1/2)			
	弁の全質量	弁全体の長さ	弁本体の外径
弁本体の材質	m 1	L ₁	D ₁
	(kg)	(mm)	(mm)
SUS316L	35	242	182

弁本体の内径	
d 1	
(mm)	
90	

	フロートガイドの	フロートガイドの	フロートガイドの
フロートガイドの	1本当たりの質量	長さ	最小直径
材質	m ₂	L ₂	D ₃
	(kg)	(mm)	(mm)
SUS316L	0.15	215	8.4

フロートガイ	ドの本数
n f	
(本)	
6	

基礎ボルトの材質	基礎ボルトの	甘ひはずれしのすお	基礎ボルトの
	断面積	産碇小ルトの本 剱	水平間距離
	A 5	n (+-)	D _P
	(mm^2)	(本)	(mm)
SUS316 <mark>L</mark>	314.2	8	400

14 74 唐評価に田いる計算条件 (1/2) 1-11-

衣 5 - 6 500A 至 (ハルド取内式) の構造強度計価に用いる計算未件 (2/2)			
重畳時に弁本体に作	重畳時にフロートガイ	重畳時に基礎ボルト	
用する評価に用いる	ドに作用する評価に用	に作用する評価に用	重力加速度
受圧面の直径	いる受圧面の直径	いる受圧面の直径	
D ₂	D 4	D 5	g
(mm)	(mm)	(mm)	(m/s^2)
182	10	285	9.80665

海水の密度 _{Po} (kg/m ³)	突き上げ津波荷重の 算出に用いる水頭 h (m)	抗力係数 C _d (一)	津波の最大流速* U (m/s)
1030	10.2	2.01	1.0

注記 *: 取水槽における鉛直方向の津波の最大流速を示す。

<mark>表 5-9 80A 型</mark>	(ねじ込み取付式)の	溝造強度評価に用いる	<mark>計算条件(1/2)</mark>
	弁の全質量	弁全体の長さ	弁本体の外径
弁本体の材質	m 1	L ₁	D ₁
	(kg)	(mm)	(mm)
SUS303	2.19	130	72

弁本体の内径	
d 1	
(mm)	
38	

	フロートガイドの	フロートガイドの	フロートガイドの
フロートガイドの	1本当たりの質量	長さ	最小直径
材質	m ₂	L $_2$	D ₃
	(kg)	(mm)	(mm)
SUS304	0.05	110	6.6

		取付部境界		
	配管の最小断面積	から弁下端までの	配管の外径	
配管の材質		長さ		
	A 7	L ₃	D ₆	
	(mm^2)	(mm)	(mm)	
SUS304TP	1.014×10^{3}	99	89.1	

配管の内径(取付部			
の最小内径)			
d ₂			
(mm)			
81.5			

表 5-9 80A 型	(ねじ込み取付式)の権	溝造強度評価に用いる	計算条件(2/2)
重畳時に弁本体に作	重畳時にフロートガイ	重畳時に	
用する評価に用いる	ドに作用する評価に用	取付部に作用する	重力加速度
受圧面の直径	いる受圧面の直径	評価に用いる受圧面	重刀加速度
		の直径	a
D ₂	D ₄	D ₇	$\left(\frac{1}{2}\right)$
(mm)	(mm)	(mm)	(m/S ²)
72	7	78.1	9.80665

海水の密度 _{Po} (kg/m ³)	突き上げ津波荷重の 算出に用いる水頭 h (m)	抗力係数 C _d (-)	津波の最大流速* U (m/s)
1030	10.2	2.01	1.0

注記 *: 取水槽における鉛直方向の津波の最大流速を示す。

6. 評価結果

6.1 構造強度評価結果

弁本体,フロートガイド,基礎ボルト及び取付部の構造強度評価結果を表 6−1 に示 す。発生応力が許容応力以下であることから構造部材が構造健全性を有することを確 認した。

表 6-1 弁本体,フロートガイド,基礎ボルト及び取付部の

構造強度評価結果(1/2)

(単位:MPa)

型式	評価部位	評価応力	発生応力	許容応力
		圧 縮	1	133
	弁本体	曲げ	1	133
		組合せ*1	1	133
80A 空		圧 縮	1	133
	フロートガイド	曲げ	3	133
X)		組合せ*1	3	133
	基礎ボルト	引 張*2	4	<mark>105</mark>
		せん断	1	<mark>80</mark>
300A 型 <mark>(ボルト取付</mark> <mark>式)</mark>	弁本体	圧 縮	1	133
		曲げ	1	133
		組合せ*1	1	133
	フロートガイド	圧 縮	1	133
		曲げ	8	133
		組合せ*1	8	133
	基礎ボルト	引 張*2	4	<mark>105</mark>
		せん断	1	<mark>80</mark>

注記 *1: 圧縮<mark>/引張</mark> (σ_V) +曲げ (σ_H) は, $\sigma_V + \sigma_H \leq 1.2$ S で評価

*2: 基礎ボルトの引張応力は, σ_{V3}+σ_{V4}の和

表 6-1 弁本体,フロートガイド,基礎ボルト及び取付部の

構造強度評価結果(2/2)

(単位:MPa)

型式	評価部位	評価応力	発生応力	許容応力
		圧 縮	1	154
	弁本体	曲げ	1	154
		組合せ*1	1	154
80A 型		圧 縮	1	154
(ねじ込み取付	フロートガイド	曲げ	3	154
式)		組合せ*1	3	154
		引 張	1	154
	取付部	曲げ	1	154
		組合せ*1	1	154

注記 *1: 圧縮<mark>/引張</mark> (σ_V) +曲げ (σ_H) は、 $\sigma_V + \sigma_H \leq 1.2$ S で評価

6.2 機能維持評価結果

フロートの機能維持評価結果を表 6-2 に示す。発生応力が、有意な変形及び著しい漏えいが ないことを確認した水圧試験圧力以下であることから、評価部位であるフロートの機能維持を 確認した。

表 6-2 フロートの機能維持評価結果

亚研究	発生圧力		水圧試験の圧力	
F+1Ⅲ 百01 <u>0</u> 、	(MPa)		(MPa)	
フロート	圧縮	0.11	0.30	