【VI-1-5-2-1 制御室の居住性に関する説明書】(207/379)

	発電炉(東	海第二	()	再	F 処理施設	備考
	大気中への放出量評価条件(炊					
項 目 格納容器内 p H 制御の効果	考慮しない	選定理由 格納容器内pH制 御設備は,重大事 故等対処設備と位 置付けていないた め,保守的に設定	審査ガイドの記載 4.3(1)a. 原子炉格納容器へ の放出割合の設定に際し、ヨ ウ素の性状を適切に考慮す る。			
よう素の形態		R. G. 1. 195*1に基 づき設定	4.3(1)a. 原子炉格納容器へ の放出割合の設定に際し、ョ ウ素類の性状を適切に考慮す る。			
格納容器から原 子炉建屋への離 えい率(名) ス、エアロゾル 及び有機よう 素)	1Pd以下: 0.9Pdで0.5%/日 1Pd超過: 2Pdで1.3%/日	MAAP解析にて 格納容器開格 精密関係 格納容器に 格納 等設定上格 が変化 格 が 変と 力に で 化 格 を と 計	4.3(1)e. 原子炉格納容器灘 えい率は、4.1(2)a. で遷だし た事故シーンスの事故地板			
格納容器から原 子炉建墜への灘 えい率 無機よ う素)	1. 5h 後~19. 5h 後: 1. 3 %/日 上記以外の時間: 0. 5 %/日	格納容器の設計漏 えい式等に基づき設 定(格納容器の正力 が 0.99dを超するる 期間 13 %/日の 満えい率を設定)	解析結果を基に設定する。			
格納容器内での 除去効果 (エア ロゾル)	MAAP解析に基づく (沈 着、サブレッション・ブール でのスクラビング及びドライ ウェルスプレイ)	MAAPのFP挙	4.3(3)c. 原子炉格納容器ス プレイの作動については、 4.1(2)a、で速じた事故シー ケンスの事故進展解析条件を 基に設定する。 4.3(3)d. 原子炉格納容器内 の自然改着率については、実 験か多い6件られた適切なモデ ルを基に設定する。			
格納容器内での 除去効果 (有機 よう素)		保守的に設定	_			
格納容器内での 除去効果 (無機	日杰化者率: 9×10~(1/s) (格納容器内の最大存在量か ら 1/200 まで)	CSE実験及び Standard Review Plan 6.5.2*2に基 づき設定	4.3(3)d. 原子炉格納容器内 の自然沈着率については、実 験等から得られた適切なモデ ルを基に設定する。			
よう素)		Standard Review Plan 6.5.5*3に基 づき設定	_			

【VI-1-5-2-1 制御室の居住性に関する説明書】(208/379)

	発電炉(別	東海第二		再処理施設	備考
表 4-2 項 目	1 大気中への放出量評価条件 評 価 条 件	(炉心の著しい損傷が 選 定 理 由	発生した場合) (3/4) 審査ガイドの記載		
格納容器から原 子炉建度への灘 えい割合	希ガス類 : 4.3×10 ⁻³ CsI類 : 6.2×10 ⁻⁵ CsOH類 : 3.1×10 ⁻⁵ Sb類 : 6.7×10 ⁻⁶	MAAP解析結果 及びNURG-1465** の知見に基づき設 定	-		
原子炉建屋から 大気への漏えい 率 (非常用ガス 処理系及が非常 用ガス再循環系 の起動前)	無限大/日(地上放出) (格納容器から原子炉建屋へ 漏えいした放射性物質は、即	保守的に設定	-		
原子炉建屋から 大気への放出率 (非常用ガス処 理系及び非常用 ガス事領 起動後)	1回/日(排気筒放出)	設計値に基づき設定 (非常用ガス処理系のファン容量)	4.3(3)a. 非常用ガス処理系 (BWR) 又はアニュラス空		
非常用ガス処理 系及び非常用ガ ス再循環系の起 動時間	West To St. A. C. o Deliver	起動操作時間 (115 分) +負圧達成時間 (5分) (起動に 件い原子炉建屋は 負圧になるが。保 時的に負圧達成時間として5分を想 定)	気浄化設備 (PWR) の作動 については、4.1(2)a.で遷定 した事故シーケンスの事故進 展解析条件を基に設定する。		
非常用ガス処理 系及び非常用ガ ス再循環系のフ ィルタ除去効率	考慮しない	保守的に設定	4.3(3)b. ヨウ素類及びエア ロゾルのフィルタ効率は、使 用条件での設計値を基に設定 する。なお、フィルタ効率の 設定に際し、ヨウ素類の性状 を適切に考慮する。		
ブローアウトバ ネルの開門状態	開状態	原子炉建屋の急激 な圧力上昇等によ るブローアウトパ ネルの開放がない ため	-		

【VI-1-5-2-1 制御室の居住性に関する説明書】(209/379)

5	発電炉(タ	東海第二))	再処理施設	備考
	気中への放出量評価条件				
項目	評価条件 ガス類:9.5×10 ⁻¹	遷定理由	審査ガイドの記載		
格納容器圧力透 がし装置への放 出割合 B a	s I 類 : 1.1×10 ⁻⁴ s O H類: 4.0×10 ⁻⁷ b類: 9.0×10 ⁻⁸ e O 2類: 9.0×10 ⁻⁸ r O 類: 3.6×10 ⁻⁸ o O 2類: 4.5×10 ⁻⁹ e O 2類: 9.0×10 ⁻¹⁰ e O 2類: 9.0×10 ⁻¹⁰	MAAP解析結果 及びNUREG-1465*4 の知見に基づき設 定	-		
校协会职工力准 希方	ガス:1				
がし装置への放無料	機よう素:50 機よう素:100 アロゾル:1000	設計値に基づき設定	-		
			3. (解釈) 第74条 (原子炉制		
事故の評価期間	7 日間	評価する観点から	輝室) 1 b) ④判断基準は,運転員 の実効線量が7日間で 100mSv を超えないこと。		
Reac *2:Star Clea	sequences of Design Basic ctors" ndard Review Plan 6.5.2, anup System", March 200	, "Containment Spray	as a Fission Product		
*2:Star Cles *3:Sta	ctors" ndard Review Plan 6.5.2,	, "Containment Spray 07 5, "Pressure Suppres:	as a Fission Product		
*2: Star Cles *3: Sta	ctors" ndard Review Plan 6.5.2, anup System", March 200 andard Review Plan 6.5.8 duct Cleanup System",)	, "Containment Spray 07 5, "Pressure Suppres: March 2007	as a Fission Product		
*2:Star Cles *3: Sta	ctors" ndard Review Plan 6.5.2, anup System", March 200 andard Review Plan 6.5.8 duct Cleanup System", 1 EG-1465 "Accident Source	, "Containment Spray 07 5, "Pressure Suppres: March 2007	as a Fission Product		
*2: Star Cles *3: Str Proc *4: NURE	ctors" ndard Review Plan 6.5.2, anup System", March 200 andard Review Plan 6.5.8 duct Cleanup System", 1 EG-1465 "Accident Source	, "Containment Spray 07 5, "Pressure Suppres: March 2007	as a Fission Product		
Reac *2:Star Cles *3:Sta Proc *4:NUR 1998	ctors" ndard Review Plan 6.5.2, anup System , March 200 andard Review Plan 6.5.1 duct Cleanup System , 1 EG-1465 "Accident Sourd 5	, "Containment Spray 07 5, "Pressure Suppress March 2007 ce Terms for Light-Wa	as a Fission Product		
Reac *2:Star Cles *3:Sta Proc *4:NUR 1998	ctors" ndard Review Plan 6.5.2, anup System", March 200 andard Review Plan 6.5.1 duct Cleanup System", 1 EG-1465 "Accident Soure 5 D放出量評価結果(事故後	, "Containment Spray 07 5, "Pressure Suppres: March 2007 ce Terms for Light-¥a † 7 日間積算) (炉心の	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants", 著しい損傷が発生した場合) (単位:Bq)		
Reac *2:Star Clei *3:Sta Proc *4:NIE 1998 表 4-22 大気中への	ctors" ndard Review Plan 6.5.2, anup System , March 200 andard Review Plan 6.5.1 duct Cleanup System , 1 EG-1465 "Accident Sourd 5	, "Containment Spray 07 5, "Pressure Suppress March 2007 ce Terms for Light-Wa	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants** 著しい損傷が発生した場合) (単位:Bq) 合 計		
Reac *2:Star Cles *3:Star Proc *4:N服 1998 表 4-22 大気中への 核種グループ 希ガス類	ctors" dard Review Plan 6.5.2, anup System", March 200 anup System", March 200 duct Cleanup System", 1 E6-1465 "Accident Soure 5 SX出量評価結果 (事故後 原子炉矮屋から 大気中へ放出 約3.6×10 ¹⁶	。 "Containment Spray 07 5。 "Pressure Suppress March 2007 ce Terms for Light-¥a 花7 日間積算)(炉心の 特納容器圧力逃が 装置を経由した放け 約8.9×10 ¹⁴	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants" 著しい損傷が発生した場合) (単位:Bq) 日 合 計 約9.0×10 ¹⁸		
Reac **2: Star Cles **3: Star Proc **4: N限 **1998 を 4-22 大気中への な様 グループ 希ガス 順 よう素類	ctors" ndard Review Plan 6, 5.2, anup System", March 200 andard Review Plan 6, 5.1 duct Cleanup System", 1 E6-1465 "Accident Source 5 が出量評価結果 (事故後 原子が建産から 大気中へ放出 約3,6×10 ³⁶ 約2,8×10 ³⁵	。 "Containment Spray 75。 "Pressure Suppress March 2007 ce Terms for Light-平a そ7日間積算)(炉心の 格納容器圧力逸がし 装置を移由した放け 約8,9×10 ¹⁴ 約7.3×10 ¹⁵	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants" (単位:Bq) 台 計 約9.0×10 ¹⁸ 約1.0×10 ¹⁶		
Reac *2:Star Cles *3:Star Proc *4:N限 1995	ctors" ndard Review Plan 6, 5, 2, anup System", March 200 andard Review Plan 6, 5, 0 duct Cleanup System", 1 E6-1465 "Accident Source 5 D放出量評価結果 (事故後 原子炉壊腫から 大気中へ放出 約3,6×10 ¹⁸ 約2,8×10 ¹⁵ 約3,8×10 ¹²	, "Containment Spray 07 5, "Pressure Suppress March 2007 ce Terms for Light-#a ₹ 7 日間積算) (炉心の 格納容器圧力迷が 装置を経由した放 約8.9×10 ¹⁴ 約7.3×10 ¹⁵ 約5.0×10 ⁸	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants" (単位:Bq)		
Reac *2:Star Cles *3:Star Proc *4:N班 *4:N班 *4-22 大気中への	ctors" ndard Review Plan 6.5.2, anup System", March 202 andard Review Plan 6.5.2, anup System", March 202 bib 165.1465 "Accident Soure 5 が出量評価結果 (事故後 原子呼遠配から 大気中へ放出 約3.8×10 ³³ 約3.8×10 ³³ 約3.8×10 ³³ 約4.5×10 ³²	, "Containment Spray 07 5, "Pressure Suppress March 2007	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants** 著しい損傷が発生した場合) (単位:Bq) 台 計 約9.0×10 ¹⁸ 約1.0×10 ¹⁶ 約3.8×10 ¹³ 約4.5×10 ¹²		
Reac *2:Star Cles *3:Star Proc *4:N限 1995	ctors" ndard Review Plan 6, 5, 2, anup System", March 200 andard Review Plan 6, 5, 0 duct Cleanup System", 1 E6-1465 "Accident Source 5 D放出量評価結果 (事故後 原子炉壊腫から 大気中へ放出 約3,6×10 ¹⁸ 約2,8×10 ¹⁵ 約3,8×10 ¹²	, "Containment Spray 07 5, "Pressure Suppress March 2007 ce Terms for Light-#a ₹ 7 日間積算) (炉心の 格納容器圧力迷が 装置を経由した放 約8.9×10 ¹⁴ 約7.3×10 ¹⁵ 約5.0×10 ⁸	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants" (単位:Bq)		
Reac *2: Star Cles *3: Star Cles *3: Star Proce *4: NN版 1995 を 4-22 大気中への 技種グループ 希ガス類 よう素類 C *5 O 日類 S b 類	ctors" ndard Review Plan 6.5.2, anup System", March 202 andard Review Plan 6.5.2, anup System", March 202 bib 165.1465 "Accident Soure 5 が出量評価結果 (事故後 原子呼遠配から 大気中へ放出 約3.8×10 ³³ 約3.8×10 ³³ 約3.8×10 ³³ 約4.5×10 ³²	, "Containment Spray 07 5, "Pressure Suppress March 2007	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants** 著しい損傷が発生した場合) (単位:Bq) 台 計 約9.0×10 ¹⁸ 約1.0×10 ¹⁶ 約3.8×10 ¹³ 約4.5×10 ¹²		
Reac *2:Star Cles *3:Star Proc *4:N班 1998 表 4-22 大気中への 技種グループ 希ガス類 よう素類 CsOH類 Sb類 TeO ₂ 類	ctors" dard Review Plan 6.5.2, anup System", March 200 andard Review Plan 6.5.1 duct Cleanup System", 1 EG-1465 "Accident Soure 5 放出量評価結果(事故後 大気中へ放出 対3.8×10 ³⁶ 約2.8×10 ³⁶ 約3.8×10 ³⁶ 約4.5×10 ³² 約4.5×10 ³²	, "Containment Spray 07 5, "Pressure Suppress March 2007 ce Terms for Light-平a	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants", 著しい損傷が発生した場合) (単位:Bq) 占 合 計 約9.0×10 ¹⁸ 約9.0×10 ¹⁸ 約1.0×10 ¹⁸ 約3.8×10 ¹³ 約4.5×10 ¹² 約3.7×10 ¹³		
Reac *2: Star Clee *3: Sta Proc *4: NUH 1995 表4-22 大気中への 核種グループ 希ガス類 よう素類 CsOH類 Sb類 TeO2類 SrO類	ctors" dard Review Plan 6. 5. 2. anup System", March 200 andard Review Plan 6. 5. 1. doct Cleanup System", 1 EG-1465 "Accident Source 5	, "Containment Spray 07 5, "Pressure Suppress March 2007 ce Terms for Light-平a	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants", (単位:Bq)		
Reac *2:Star Cles *3:Star Pro *4:N班 1995 表 4-22 大気中への	ctors" ndard Review Plan 6, 5.2, anup System", March 200 andard Review Plan 6, 5.4 duct Cleanup System", 1 E6-1465 "Accident Source 5 D放出量評価結果 (事故後 原子呼遠脈から 大気中へ放出 約3.6×10 ³² 約3.8×10 ³² 約3.8×10 ³² 約3.8×10 ³² 約3.7×10 ³² 約3.7×10 ³³ 約2.0×10 ³³	7 (**Containment Spray 07** 5, **Pressure Suppress of the Spray of	as a Fission Product sion Pool as a Fission ter Nuclear Power Plants", (単位:Bq) (単位:Bq) 6 計 約9.0×10 ¹⁸ 約1.0×10 ¹⁸ 約3.8×10 ¹³ 約4.5×10 ¹² 約3.7×10 ¹³ 約2.0×10 ¹³ 約2.0×10 ¹³		

【VI-1-5-2-1 制御室の居住性に関する説明書】(210/379)

発電炉(東海第二) 素4-23 大気蔵教育条条件(卵心の青しい関係が発生した場合)					-	再処理施設			備考
項 目 実効放出 継続時間	評価条件	保守的に最も短 い実効放出継続 時間を設定	** ** ** ** ** ** ** ** ** ** ** ** **						
放出源及び 放出源高さ 放出源高さ	子炉建屋漏えい(地上が) 地上:0 m 常用ガス処理系排気筒か の放出 地上:95 m 納容器圧力逃がし装置か の放出 地上:57 m	様 排気筒放出は有 効高器圧力感が出出 は原子炉建屋時 は原子上放出を は原子上が上放	3.(4)b. 放出販高さは、 1.1(2)a. で選定した事故シーケン スに応じて放出口からの放出を収 がする。4.1(2)a. で選定した事故 シーケンスのジースター上解析請 発を基に放出エネルギーを考慮し でもよい。						
中 東京 たの 大気紅散評価地 点及び評価前離 格 もの 中 もの もの もの もの もの もの もの もの もの もの	子卯建屋編会しい 中央制御室中心 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	放出源から評価 点までの距離 は、保守的な評価となるように 水平距離として かか	-						
表 4-24 相対濃度	を及び相対線量の評	価結果(炉心の著	しい損傷が発生した場合)	表 4-46 制	御宝の	早仕性に 径 2	ス油/げく到	通におけ	
放出位置		中央制御室中心	建屋入口	· ·	-			**	
	χ/Q (s/m³)	8.3×10 ⁻⁴	8. 2×10 ⁻⁴		時の相対	対濃度及びす	目対線量の	評価結果	
原子炉建屋		8. 3×10 ⁻⁴ 2. 9×10 ⁻¹⁸	8. 2×10 ⁻⁴ 2. 9×10 ⁻¹⁸			大気中への	目対線重の 相対濃度x/Q	評価結果 相対線量D/Q	
非常用ガス処理系	(s/m³) D/Q (Gy/Bq) \$\frac{\pi/Q}{\pi/Q} \text{(s/m³)}			る 品 不 争 似	放出点				
	(s/m³) D/Q (Gy/βq) χ/Q (s/m³) D/Q (Gy/βq)	2.9×10^{-18} 3.0×10^{-6} 8.8×10^{-20}	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁶ 9. 0×10 ⁻²⁰			大気中への 放射性物質の実効放出	相対濃度 χ / Q	相対線量D/Q	
非常用ガス処理系	(s/m²) D/Q (Gy/Bq) \$\times /Q \text{ (s/m²)} D/Q (Gy/Bq) \$\times /Q (Gy/Bq) \$\times /Q	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁶ 8. 8×10 ⁻²⁰ 3. 7×10 ⁻⁴	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁴ 9. 0×10 ⁻²⁰ 3. 7×10 ⁻⁴	評価点	放出点主排気筒	大気中への 放射性物質の実効放出 継続時間 1時間	相対濃度 x/Q (s/m³) 9.9×10 ⁻⁷	相対線量 <i>D</i> / <i>Q</i> (Gy/Bq) 4.7×10 ⁻²⁰	
非常用ガス処理系排気筒格納容器圧力逃が	(s/m^2) D/Q (Gy/Bq) χ/Q (s/m^3) D/Q (gy/Bq) χ/Q (s/m^3) χ/Q χ/Q χ/Q χ/Q χ/Q χ/Q χ/Q χ/Q χ/Q	2.9×10^{-18} 3.0×10^{-6} 8.8×10^{-20}	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁶ 9. 0×10 ⁻²⁰	評価点中央制御室	放出点主排気筒	大気中への 放射性物質の実効放出 継続時間	相対濃度 _X / Q (s/m³)	相対線量 <i>D/Q</i> (Gy/Bq)	
非常用ガス処理系排気筒格納容器圧力逃が	(s/m²) D/Q (Gy/Bq) x/Q (s/m²) D/Q (6y/Bq) x/Q (6y/Bq) Z/Q (6y/Bq) x/Q (s/m²) D/Q	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁶ 8. 8×10 ⁻²⁰ 3. 7×10 ⁻⁴	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁴ 9. 0×10 ⁻²⁰ 3. 7×10 ⁻⁴	評価点 中央制御室 使用済燃料の受入れが 及び貯蔵施設の制御 表 4-47 制 る地震を要	放出点 主排気筒 を を を を を を を を を を を を を を と し と し と し	大気中への 放射性物質の実効放出 継続時間 1時間	相対濃度 z/Q (s/m³) 9.9×10 ⁻⁷ 9.3×10 ⁻⁷ 3被ばく評言される重	相対線量D/Q (Gy/Bq) 4.7×10 ⁻²⁰ 4.9×10 ⁻²⁰ 4.9×10 ⁻²⁰ 大事故の	
非常用ガス処理系排気筒格納容器圧力逃が	(s/m²) D/Q (Gy/Bq) x/Q (s/m²) D/Q (6y/Bq) x/Q (6y/Bq) Z/Q (6y/Bq) x/Q (s/m²) D/Q	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁶ 8. 8×10 ⁻²⁰ 3. 7×10 ⁻⁴	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁴ 9. 0×10 ⁻²⁰ 3. 7×10 ⁻⁴	評価点 中央制御室 使用済燃料の受入れが 及び貯蔵施設の制御 表 4-47 制 る地震を要	放出点 主排気筒 を を を を を を を を を を を を を を と し と し と し	大気中への 放射性物質の実効放出 継続時間 1時間 1時間 居住性に係る て発生が想気	相対濃度 z/Q (s/m³) 9.9×10 ⁻⁷ 9.3×10 ⁻⁷ 3被ばく評言される重	相対線量D/Q (Gy/Bq) 4.7×10 ⁻²⁰ 4.9×10 ⁻²⁰ 4.9×10 ⁻²⁰ 大事故の	
非常用ガス処理系排気筒格納容器圧力逃が	(s/m²) D/Q (Gy/Bq) x/Q (s/m²) D/Q (6y/Bq) x/Q (6y/Bq) Z/Q (6y/Bq) x/Q (s/m²) D/Q	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁶ 8. 8×10 ⁻²⁰ 3. 7×10 ⁻⁴	2. 9×10 ⁻¹⁸ 3. 0×10 ⁻⁴ 9. 0×10 ⁻²⁰ 3. 7×10 ⁻⁴	評価点 中央制御室 使用済燃料の受入れが 及び貯蔵施設の制御 表 4-47 制 る地震を要 同時発生即	放出点 主排気筒 御室の 因とし 手の相対	大気中への 放射性物質の実効放出 継続時間 1時間 1時間 1時間 居住性 に係る て発生が想気 、濃度及び相 大気中への 放射性物質の実効放出	相対機度 x/Q (s/m³) 9.9×10 ⁻⁷ 9.3×10 ⁻⁷ 3被ばく評 される重 対線量の記 相対機度 x/Q	相対線量D/Q (Gy/Bq) 4.7×10 ⁻²⁰ 4.9×10 ⁻²⁰ 4.9×10 ⁻²⁰ 大事故の 評価結果	

【VI-1-5-2-1 制御室の居住性に関する説明書】(211/379)

	発電	弧炉 (東海第	第二)			再処理施設	備考
∌	4-25 運転員	交替考慮条件	‡(炉心の著し	い損傷が発生	こした場合)			居住性評価において
				の滞在時間				は,運転員の交代は考
		1直		~21:45				慮しない
		2直	21:30	~8:15				//EX 0 04 1
	1月目	2月目 3	日目 4日日	5月目	6日目	7 目目		
A班*	1 直							
B班		1	直 1直		2直	2 直		
C班	2直			1直	1直			
D班	\vdash		直			1直		
E班*	: 被ばくの平	1直	2直		女! でいる	SE (A ESE)		
(Esc.			日勤勤務の班					
	1-144-27	- II HOUTTIE	1 2000 00	(10)(0)		. ,		
イベン	∇7 Aug	S. Att Hr vo A.			₩ 64 nte BB	1 - 62 - 1		
経過時間		心損傷発生			▽格納容器 19			
時 刻	8:00		21:		3:00	8:00		
	. –			_		E班		
1.7		Δ	T/I					
1 (Ι	A	班			Ent		
1 į		A	班 [C班	上班		
		A	班 [C班	E.M.		
	Ť.		[医体围轴颈检查 (3		LUL		
21	表 4-26 直接ガン	/マ線及びスカイ:	シャインガンマ線S ボツ森領軍前原族	(-)	室内作業時)			
21	表 4-26 直接ガン	/マ線及びスカイ:	シャインガンマ線S ボツ森領軍前原族	(-)	室内作業時)			
# 10.00 X X X X X X X X X X X X X X X X X X	表 4-26 直接ガン C間 R 21 15 h 24 h 22.5 24.25 b 27.15 b 4 4 c 22.5 2.25 b 27.15 b 4 c 22.5	/マ線及びスカイミ DB BB D	シャインガンマ線8 ガン線理事務施 の選 日本 5 カ 72 h 55.5 h - 72 h 55.5 h - 72 m 55.5 h	(一) 新	室内作業時) CE B 1320 h 133.5 s 1320 h 133.15 h 147 d 17	E 175		
# 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	表 4-26 直接ガン C版 Em 20 15 5 20 12 5 20 75 1 12 12 12 12 12 12 12 12 12 12 12 12 12 1	/ マ線及びスカイ:	シャインガンマ線型 ボン海球等等別域 第 72 8.55 8.55 8.55 8.55 8.55 8.55 8.55 8.5	6 CN EM 96 h 109.75 h 120.2 t 101 3.3×10 11 1.5×10 101 3.3×10 11 1.5×10 101 1.6×10 101 3.6×10 3.6×	室内作業時)	# 134 A 34 5 10 A 34 10 A 34 A 34 10 A 34		
2 i	表 4-26 直接力) CE	クマ線及びスカイ: DE	シャインガンで観音 ガンの間を関すた (2) 日本 (3) 15.5 h 3 72 h 3 17 h 3 18	C S E E E E E E E E E	室内作業時)	# 108 1 3 8 5 10 1 5 1 5 5 1 10 1 5 5		
2 (s s s s s s s s s s s s s s s s s s	表 4-26 直接が2 CB FB 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7 S	クマ線及びスカイ: DE	プレインガンマ線 ボン・線理を対象を (28 nm 12 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	C S E E E E E E E E E	室内作業時) (2	# 12		
2	表 4-26 直接力) CE	クマ線及びスカイ: DE READ 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5	プレインガンマ線 ボン・線理を対象を (28 nm 12 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	C S E E E E E E E E E	室内作業時) (2	# 12		
2 2 2 2 2 2 2 2 2 2	## 4-26 (## // 25 25 25 25 25 25 25 2	クマ線及びスカイ:	ポート カンガン (株) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大	C S S S S S S S S S	室内作業時) (2	# 12		
2 (s s s s s s s s s s s s s s s s s s	表 4-26 直接 / / / / / / / / / / / / / / / / / /	一	### A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(C) S S S S S S S S S S S S S S S S S S S	家内作業時)	# 128 # 28 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2		
2 (and a an	表 4-26 直接が (本) 25 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	「	52-0 (40 (40 (40 (40 (40 (40 (40 (40 (40 (4	(C) S S S S S S S S S	家内作業時)	# 10		
2 (表 4-26 直接ガン CE	「	### A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(C) E E E E E E E E E	家内作業時)	# UE		
# 100 A 100	## 4-26 @## // ** ******************************		### 1	(C)	家内作業時)	# UE		
# 10 mm	# 4-26	「		C S S S	室内作業時)			
2 10 10 10 10 10 10 10 1	# 4-26 ## 22		サインガンで最終 カーマの変形を対象を対象 カーマの変形を対象 カーマの変形を対象を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーマの変形を カーを カーマの変形を カーマの変形を カーを カーマの変形を カ	C S S S	定内作業時)			
2	# 4-26 ## 22	V-V##\$CUXDA1	### 1997 1997	(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	定内作業時)	## 102		
2 (## 4-26 @## 5/20 Fig. Fig. Fig. Fig. Fig. Fig.		### 1997 1997	(-) C	室内作業時)	## 108 8 # # # # # # # # # # # # # # # # #		
2 (## 4-26 @## 5/20 \$2		### 1997 1997	(-) C	定内作業時)	## 108 8 # # # # # # # # # # # # # # # # #		
2 (# 4-26	Wight Wigh	### A 1	(-) C	定内作業時)			
2 (## 4-26 @## 5/20 \$2	Wight Wigh	### A 1	(-) C	定内作業時)			

【VI-1-5-2-1 制御室の居住性に関する説明書】(212/379)

発電炉 (東海第二)		再処理施設	備考
表 4-27 地表面への沈着速度の条件(炉心の著しい損傷が発生した場合) 項目 評価条件 連定理由 審査ガイドでの記載 線量標度評価指針** を参考に、湿性沈着を 考慮して軟性沈着速度	表 4-48 制御室の る放射性ヨ	t	
## ## ## ## ## ## ## ## ## ## ## ## ##	核 種	地表沈着換算係数 (S v / (B q ・ s / m²))	
有機とう妻の乾性沈着 速度はNRP-R322*3よ り設定	I -129	2. 6×10 ⁻¹⁷	
注記 *1:発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(原子力安全委員会)	I -131	3.8×10 ⁻¹⁶	
*2:米国 NUREG/CR-4551 Vol.2 "Evaluation of Severe Accident Risks:Quantification of Major Input Parameters", February 1994	I -132	2. 2×10 ⁻¹⁵	
*3:英国 NRPB-R322-Atomosphere Dispersion Modelling Liaison Committee Annual	I -133	6. 0×10 ⁻¹⁶	
Report	I -134	2. 5×10 ⁻¹⁵	
	I -135	1.5×10 ⁻¹⁵	

【VI-1-5-2-1 制御室の居住性に関する説明書】(213/379)

発電炉(東海第二)		備考	
	表 4-49 制御室	の居住性に係る被ばく評価におり	<i>†</i>
		アロゾルの地表沈着換算係数	
	核 種	地表沈着換算係数	
		(S v/ (B q · s/m²))	
	S r -90	2. 8×10 ⁻¹⁹	
	Y-90	5. 3×10 ⁻¹⁸	
	R u -106	0.0×10°	
	R h −106	2. 1×10 ⁻¹⁶	
	C s -134	1.5×10 ⁻¹⁵	
	C s -137	2.9×10 ⁻¹⁹	
	B a −137m	5. 9×10 ⁻¹⁶	
	C e -144	2. 0×10 ⁻¹⁷	
	P r −144	3.8×10 ⁻¹⁷	
	S b −125	4. 3×10 ⁻¹⁶	
	Pm-147	3. 4×10 ⁻²⁰	
	E u -154	1. 2×10 ⁻¹⁵	
	P u −238	8. 4×10 ⁻¹⁹	
	P u −239	3. 7×10 ⁻¹⁹	
	P u −240	8. 0×10 ⁻¹⁹	
	P u -241	1.9×10 ⁻²¹	
	P u −242	6. 7×10 ⁻¹⁹	
	Am-241	2.8×10 ⁻¹⁷	
	Am-242	1.6×10 ⁻¹⁷	
	Am-243	5. 4×10 ⁻¹⁷	
	C m -242	9. 6×10 ⁻¹⁹	
	C m -243	1.3×10 ⁻¹⁶	
	Cm-244	8.8×10 ⁻¹⁹	

【VI-1-5-2-1 制御室の居住性に関する説明書】(214/379)

発電炉(東海第二)			再処理			備考
		る臨界事	事故時の主 西審査ガイ	る被ばく評価 件の居住性評 、		
	評価条件	中央制御室	用条件 使用済燃料の受入 れ施設及び貯蔵施 設の制御室	選定理由	居住性評価審査ガイドで の記載	
	事故時における外気取り込み	考慮	する。	気中へ放出された放 射性物質は,外気と の連絡口及び外気と の連絡口以外の経路	4. 2 (2) e. 原子炉制 御室/緊急時制御室/緊急 時対策所の建屋の表面空気 中から,次の二つの経路で 放射性物質が外気から取り 込まれることを仮定する。 一原子炉制御室/緊急時制御室/緊急時制御室/緊急時別の非 常用機気空調設備によって 室内に取り入れること (外 気取入) 二原子炉制御室/緊急時 制御室/緊急時 制御室/緊急時 制御室/緊急時 制御室/緊急時 人の取入)	
	平常運転時 の運転モー ドの運転継 続時間	7	日間	より厳しい結果となるように、事故時の 運転モードは考慮せず、平常運転時の運 転モードが7日間継 続するものとする。	4.2(2) e.原子炉制 御室/緊急時制御室/緊急 時対策所内への外気取入に よる放射性物質の取り込み については、非常用換気空 調設備の設計及び運転条件 に従って計算する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(215/379)

発電炉(東海第二)			再処理		· · · · · · · · · · · · · · · · · · ·	備考
				系る被ばく評価		
	(-401)		■政時の∃ 近審査ガイ	全件の居住性評 そ		
		使月	用条件			
	評価条件	中央制御室	使用済燃料の受 入れ施設及び貯 蔵施設の制御室	選定理由	居住性評価審査ガイドで の記載	
	平常運転時 における外絡 気との連絡気 世備の高性 能粒子フィ ルタを経由 する外気 入量	5,100m ³ /h	5,000m ³ /h	設計上期待できる値 を設定する。	4.2 (2) e. 原子炉制 御室/緊急時制御室/緊急 時対策所内への外気取入に よる放射性物質の取り込み については、非常用機気空 調設備の設計及び運転条件 に従って計算する。	
	パウンダリ体積	18, 720m ³	2, 640 m ³	室内及び空調機器の 体積をパウンダリ体 積として設定する。	4.2 (2) e. 原子炉制 御室/緊急時制御室/緊急 時対策所内に取り込まれる 放射性物質の空気流入量 は,空気流入率及び原子炉 制御室/緊急時制御室/緊 急時対策所パウンダリ体積 (容積)を用いて計算する。	
	換気設備の 高性能粒子 フィルタの 除去効率	99	9. 9%	設計上期待できる値を設定する。	4.2(1) a. ヨウ素類及 びエアロゾルのフィルタ効 率は、使用条件での設計値 を基に設定する。なお、フィ ルタ効率の設定に際し、ヨ ウ素類の性状を適切に考慮 する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(216/379)

発電炉(東海第二)			再処理		· · · · · · · · · · · · · · · · · · ·	備考
	-	る臨界事		る被ばく評価 中の居住性評		
	評価条件	中央制御室	用条件 使用済燃料の受 入れ施設及び貯 蔵施設の制御室	遷定理由	居住性評価審査ガイドで の記載	
	換気設備の ヨウ素フィ ルタによる 除去効率	考慮し	ない。	るようにヨウ素の形 態は有機ヨウ素とし,	4.2 (1) a. ヨウ素類 及びエアロゾルのフィルタ 効率は、使用条件での設計 値を基に設定する。なお、 フィルタ効率の設定に際 し、ヨウ素類の性状を適切 に考慮する。	
	高性能粒子フィルタを経由せずに流入する放射性物質を含む空気の流入量	パウンダリ体 積の換気率換 算で 0.03 回/h		居住性評価手法内規 の「別添資料 原子力 発電所の中央制御室 の空気流入率測定試 験手法」に準拠し実施 した試験結果(0.0232 回/h)から、より厳 しい結果となるよう に設定する。	4.2(1)b. 既設の場合 では、空気流入率は、空気流 入率測定試験結果を基に設 定する。	
	制御室の遮蔽		1 mの リート	より厳しい結果とな るように建屋内の区 画及び構築物を考慮 せず設定する。	4. 2 (3) a. 原子炉制 御室/緊急時制御室/緊急 時対策所内にいる運転員又 は対策要員に対しては,原 子炉制御室/緊急時制御室 /緊急時対策所の建屋によ って放射線が速へいされる 低減効果を考慮する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(217/379)

	1031-1-12	- /口 ユ ユ・・		刃音』(211/) 田佐凯	,	供耂
発電炉(東海第二)		(里施設	~ - LL, % 1 E-	備考
	表 4-50(4/8) 制御室の居住性に係る被ばく評価					
	におけ	る臨界事	事故時の言			
	価審査ガイドとの関係					
	使用条件					
			使用済燃料の受		居住性評価審査ガイドで	
	評価条件	中央制御室	入れ施設及び貯	選定理由	の記載	
			蔵施設の制御室			
				再処理施設の位置,		
				構造及び設備の基準		
				に関する規則の解釈 の第44条(制御		
	被ばく評価	臨界による核外	分裂の発生から7		居住性評価審査ガイドに記	
	期間					
				の実効線量が7日間 で100mSv を超え		
				ないこと。」に基づ		
				き設定する。		
	室内にとど			同一の実施組織要員		
	まる実施組織要員の滞	7	日間		居住性評価審査ガイドに記 載なし	
	在期間			ప .		
					4.2(3)c.原子炉制御	
	マスクによ			より厳しい結果とな	室/緊急時制御室/緊急時 対策所内でマスク着用を考	
	る除染係数	考慮し	しない。	るようにマスク着用 粛オス その場合け マスク		
				は考慮しない。	着用を考慮しない場合の評	
					価結果も提出を求める。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(218/379)

発電炉(東海第二)	, ,	,— .—		里施設	`	備考
	表 4-50(5/8) 制御室の居住性に係る被ばく評価 における臨界事故時の主要な評価条件の居住性評 価審査ガイドとの関係					
	評価条件	中央制御室	用条件 使用済燃料の受 入れ施設及び貯 蔵施設の制御室	選定理由	居住性評価審査ガイドで の記載	
	全核分裂数	1.6	×10 ¹⁸	臨界事故対策の有効 性評価と同じとす る。	4.1 (2) 原子炉制御室の居住性に保る被ばく評価では、格納容器破損防止対策の有効性評価を動きが変更する格納容器破損を一ドのうち、原子炉制御室の運転員又は対策要員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス (この場合、格納容器はしくなる事故収束に成功した事故シーケンス (この場合、格納容器はしている。 (1) (1) (1) (2) (2) (3) (4) (4) (5) (5) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	

【VI-1-5-2-1 制御室の居住性に関する説明書】(219/379)

発電炉 (東海第二)				里施設		備考
		る臨界事	制御室の事故時の言	の居住性に依	系る被ばく評価 条件の居住性評	
	評価条件	中央制御室	用条件 使用済燃料の受 入れ施設及び貯 蔵施設の制御室	選定理由	居住性評価審査ガイドで の記載	
	臨界事故の 主排気で 介した放射 中への質の放 出開始時間	福界事故の を		臨界事故の対策とし て,廃ガス処理設備 から1時間にわたた め、の放性にわれるため、の放性に発力にない。 の間間ではない。 の間間ではない。 の間間ではない。 時間ではない。 時間ではいるとしてはいる。 ははじめて臨界のを放出に発力にはいる。 ないら1時間後を放出 開始時間とする。	4.1(2)原子炉制御室 の居住性に係る被ばく評価 では、格納容器破損防止対 策の有効性評価 (**2)で想定 する格納容器破損モードの うち、原子炉制御室の運転 員又は対策要員の被ばくの 観点から結果が最も厳しく	
	臨界事故の 主排気を 介した大放射 性物質の財 出終了時間			で放出されていくモ ードになることが考	なる事故収束に成功した事故シーケンス(この場合、格納容器破損防止対策が有効に働くため、格納容器は健全である)のソースターム解析を基に、大気中への放射性物質放出量及び原子炉施設内の放射性物質存在量分布を設定する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(220/379)

発電炉(東海第二)	103151	74 1414	再処理			備考
几 电》(八四分)		る臨界事	制御室の 事故時の自 番番査ガイ	vm · J		
			山田 ユハイ 条件			
	評価条件	中央制御室	使用済燃料の受 入れ施設及び貯 蔵施設の制御室	遷定理由	居住性評価審査ガイドで の記載	
	臨界事故の 主排気筒を 介した大放射 中への質の放 性物質 出率	の を 気 麦4-11から 麦4-20参照 放		射性物質の放出量を	4. 1 (2) 原子炉制御室 の居住性に係る被ばく評価 では、格納容器破損防止対 策の有効性評価破損を担定 する格納容器が制御室の被ばした うち、原子炉制御室の被ばし うち、原子炉制御室の被ばし して して して して して して して して して して して して して	
	臨界事故の線源			るように臨界事故の	4.3 (5) a.原子炉建 屋内の放射性物質は、自由 空間容積に均一に分布する ものとして、事故後7日間 の積算線源強度を計算す る。	
	,				1	

【VI-1-5-2-1 制御室の居住性に関する説明書】(221/379)

発電炉(東海第二)	再処理施設 備考									
		50(8/8) る臨界事	VIII 3							
		使用	月条件							
	評価条件	中央制御室	使用済燃料の受 入れ施設及び貯 蔵施設の制御室	選定理由	居住性評価審査ガイドで の記載					
	臨界すらを 発生すらを 器れれた を 経り を 経り を り を り り を り り り り り り り り り		1 mの 7 リート	リートの建屋外壁に	4.3 (5) a. 原子炉建 屋内の放射性物質からのス カイシャインガンマ線及び 直接ガンマ線による外部被 ばく線量は、積算線源強 度、施設の位置、遮へい構 造及び地形条件から計算す る。					
	臨界事故が 発生する機 器内の線を場合を する場合な 臨界事する 産 発生す 産 発生する を 場合 を を り の の の の の の の の の の の の の の の の の	5機 核分 原と 厚さ1mのコンクリートおよび 最低限見込める厚さの連蔽壁 なの 5建		建屋外壁及び建屋外 壁からセル壁間に最 低限見込める厚さの 遮截壁に線源が全面 囲まれていることと する。	同上					
	呼吸率	3. 33×10 ⁻	-4 m³/s	「発電用軽水型原子 炉施設の安全評価に 関する審査指針」に 基づき,成人の活動 時の呼吸率とする。	-					

【VI-1-5-2-1 制御室の居住性に関する説明書】(222/379)

発電炉(東海第二)			再処理	推設 理施設		備考
	表 4-51(1/9) 制御室の居住性に係 における地震を要因として発生が想象 事故の同時発生時の主要な評価条件の 審査ガイドとの関係				思定される重大	
	評価条件	中央制御室	使用済燃料の 受入れ施設及 び貯蔵施設の 制御室	選定理由	居住性評価審査ガイドで の記載	
	事故時における外気取り込み	考日	恵する。	主持気筒を介した大気中へ放出された放射性物質は、外気との連絡ロ及び外気との連絡ロ以外の経路から室内へ流入することを想定する。	4.2 (2) e. 原子炉制 御室/緊急時制御室/緊急 時対策所の建屋の表面空気 中から、次の二つの経路で 放射性物質が外気から取り 込まれることを仮定する。 一原子炉制御室/緊急時 制御室/緊急時対策所の非 常用換気空調設備によって 室内に取り入れること(外 気取入) 二原子炉制御室/緊急時 制御室/緊急時 制御室/緊急時 制御室/緊急時 制御室/緊急時 利力をこと(空気流 入)	
	可搬型送風機 の運転継続時 間		7 日間	連続運転を想定する。実際には、地 廣発生による全失 がら強気の表までの換気を表すで が換気を表するが、放射 性物質の放出関始が 時間は変もため評価 結果への影響はない。	4.2 (2) e.原子炉制 御室/緊急時制御室/緊急 時対策所内への外気取入に よる放射性物質の取り込み については、非常用換気空 調設備の設計及び運転条件 に従って計算する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(223/379)

発電炉(東海第二)	- 144 le l. — - 2		再処理		/	備考
儿 电水 (水14水)	表 4-5	(2/9)			係る被ばく評価	C. HIA
	における	る地震を				
	事故の同	司時発生				
		名	い かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょ かんしょう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ	ドとの関係	Ŕ	
		使用				
	評価条件	中央制御室	使用済燃料の 受入れ施設及 び貯蔵施設の 制御室	選定理由	居住性評価審査ガイドでの記 載	
	可搬型送風機の外気取入量	経由せずに流	の流入量」とし	下記「高性能粒子 フィルタを経由せ ずに流入する放射 性物質を含む空気 の流入量」参照。	4.2(2) e.原子炉制御室 「緊急時制御室」「緊急時対策 所内への外気取入による放射 性物質の取り込みについて は、非常用機気空調設備の設 計及び運転条件に従って計算 する。	
	バウンダリ体積	18, 729. 7 m ³	2, 644. 2m ³	室内及び空調機器 の体積をバウンダ リ体積として設定する。	4.2(2)e.原子炉制御室 /緊急時制御室/緊急時対策 所内に取り込まれる放射性物 質の空気流入量は,空気流入 率及び原子炉制御室/緊急時 制御室/緊急時対策所バウン ダリ体積(容積)を用いて計 算する。	
	換気設備の高 性能粒子フィ ルタの除去効 率	フィー表慮しない。		可搬型送風機は高 性能粒子フィルタ を持たない。	4.2(1) a.ヨウ素類及 びエアロゾルのフィルタ効率 は、使用条件での設計値を基 に設定する。なお、フィルタ 効率の設定に際し、ヨウ素類 の性状を適切に考慮する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(224/379)

発電炉(東海第二)			再処理	備考		
<u> </u>	表 4-51	(3/9)			係る被ばく評価	NIII A
	における	る地震を				
	事故の同	司時発生				
		匒				
			条件	1 2 1 1947		
	評価条件	中央制御室	使用済燃料の 受入れ施設及 び貯蔵施設の 制御室	選定理由	居住性評価審査ガイドでの記 載	
	換気設備のヨ ウ素フィルタ による除去効 率		より厳しい結果と なるようにヨウ素 の形態は有機ヨウ 素とし、フィルタ による除去を考慮 しない。	4.2(1) a.ヨウ素類及 びエアロゾルのフィルタ効率 は、使用条件での設計値を基 に設定する。なお、フィルタ 効率の設定に際し、ヨウ素類 の性状を適切に考慮する。		
	高性能粒子フ イルタを経由 せずに流入す る放射性物質 を含む空気の 流入量	5,200 m ³ /h	2,600m ³ /h	可搬型送風機型送風機 ルタンと ルタンと を が のの のの のの のの のの のの のの のの のの のの のの の のの のの の	4. 2 (1) b. 既設の場合では、空気流入率は、空気流入率は、空気流入する 入率測定試験結果を基に設定する。	
	制御室の遮蔽	厚さ1mの コンクリート		より厳しい結果と なるように建屋内 の区画及び構築物 を考慮せず設定す る。	4.2 (3) a.原子炉制御 室/緊急時制御室/緊急時対 策所内にいる運転員又は対策 要員に対しては、原子炉制御 室/緊急時制御室/緊急時対 策所の建屋によって放射線が 遮へいされる低減効果を考慮 する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(225/379)

発電炉 (東海第二)			再処理			備考
	表 4-51 における	る地震を				
	事故の同					
	評価条件		日 上 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ドとの関係	居住性評価審査ガイドでの記載	
	被ばく評価期間	被ばく評価期 地震発生による全交流動力電 源の喪失から7日間		再処理施設の位 置、構造及び設備 の基準に関する規 則の解釈の第44 条 (制御室)の 「④ 判断基準 は、実施組織要員 の実効線量が7日 間で100mSvを 超えないこと。」 に基づき設定す る。	居住性評価審査ガイドに記載なし	
	る実施組織要			同一の実施組織要 員が室内に評価期 間中とどまること とする。		
	マスクによる 除染係数 考慮しない。		より厳しい結果と なるようにマスク 着用は考慮しな い。			

【VI-1-5-2-1 制御室の居住性に関する説明書】(226/379)

発電炉(東海第二)			再処理			備考
	表 4-51 における 事故の同	る地震を				
	評価条件	中央制御室	使用済燃料の 受入れ施設及 び貯蔵施設の 制御室	選定理由	居住性評価審査ガイドでの記 載	
	冷却機能の表 を を を を を を を を を を を を を を を を を を を	喪 発 る 介 表 4 — 30 から 表 4 — 33 参照 質 時		冷却機能の喪失から機器に内蔵する 溶液が沸騰に至る ことで主排気中への 放射性物質の放出 が開始するものと し設定する。	ち,原子炉制御室の運転員又 は対策要員の被ばくの観点か ら結果が最も厳しくなる事故 収束に成功した事故シーケン ス(この場合,格納容器被損	

【VI-1-5-2-1 制御室の居住性に関する説明書】(227/379)

発電炉 (東海第二)			再処理	里施設		備考
	における	る地震を 司時発生	要因とし 時の主要 番査ガイ 日条件 使用済燃料の 受入れ施設及	して発生が想	系る被ばく評価 思定される重大 中の居住性評価	
	冷却機能の変発る介へ 大きの変形を表現したが 大きのでは 大きのでは 大きのでは 大きのでは 大きなが 大きなが 大きなが は は は は は は は は は は は は は は は は は は は	表 4一	び貯蔵施設の 制御室 30から 33参照	冷却機能の喪失から 機器に内蔵する溶液 が沸騰に至ることで 主排気筒を介した大 気中への放射性物され、 対策である冷却コイ ルへの通水が開始するまで主排気筒を介 した大気中への放射 性物質の放出が継続 するものとし設定す る。	4.1(2)原子炉制御室の居住性に係る被ばく評価では、格納容器破損防止対策の有効性評価(#2)で想定する格納容器破損 モードのうち、原子炉制御室の運転異なば対策要員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス(この場	
	放射線分解にる場発生するる場所における中、変化を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を		34 から 38 参照	水素掃気機能の喪失 から機器内の水素濃 度が未然防止濃度に 到達した後に庭ちに 着火及び水素爆発に 至ることで主排気で を介して大気中へ 対性物質が放出する ものとし設定する。	会、格納容器被損防止対策 合、格納容器被損防止対策 が有効に働くため、格納容 器は健全である)のソース ターム解析を基に、大気中 への放射性物質放出量及び 原子炉施設内の放射性物質 存在量分布を設定する。	

【VI-1-5-2-1 制御室の居住性に関する説明書】(228/379)

発電炉(東海第二)			再処理			備考
	表 4-51 における 事故の同	が地震を				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	番査ガイ			
	評価条件	使用 中央制御室	条件 使用済燃料の 受入れ施設及 び貯蔵施設の 制御室	選定理由	居住性評価審査ガイドでの記載	
	放射線分解に より発生する 水素による主 発気気を介し た大大気のの 放射性物質の 放出終了時間	より発生する 水素による爆 発における主 接気筒を介し た大気中への 放射性物質の		放射線分解により発生 する水素による爆発に よる主排気筒を介した 大気中への放射性物質 の放出は瞬時に行われ るものとし設定する。	4.1(2)原子炉制御室 の居住性に係る被ばく評 価では、格納容器破損防 止対策の有効性評価(#2) で想定する格納容器破損	
	冷却機能の喪 発 を を を を を を を を を を を を を を を を を を		30 から 33 参照	主排気筒を介した大気か中への放射性物質の応見による蒸発範囲を介した大気か要による蒸発範囲を分した大気が動産を介した大気が動産を介した大気が高い、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、大力が変が、かりが、大力が変が、大力が変が、大力が変が、大力が変が、からないかが、からないかが、からないかが、からないかが、からないかが、かりが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかがかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないかが、からないからないかりが、からないかりが、からないかりが、からないかりが、からないかりが、からないからないからないからないからないからないからないからないからないからない	の放射性物質の放 部は、冷却機能の喪 による蒸発範固時の 性気筒を介した大気 の放射性物質の放 を、主排気筒を介 と大気中への放射性 質の放出終了した大気 の放射性物質の放 をである を、の放射性物質の放 をである に成功した事故が最 を、た気中への放射性 質の放出終了した大気 の放射性物質の放 脂始時間の差である 非気筒を介した大気 の放射性物質の放 脂始時間の差である 非気筒を介した大気 の放射性物質の放 脂始時間の差である 非気筒を介した大気 の放射性物質の放 脂始時間の差である 非気筒を介した大気 の放射性物質の放 脂維時間の差である 非気筒を介した大気 の放射性物質の放 能表で、大気中への放射性物質 原子炉施設内の放射性物質 質存在量分布を設定する。	

# 【VI-1-5-2-1 制御室の居住性に関する説明書】(229/379)

発電炉(東海第二)				里施設		備考	
	表 4-51 における 事故の同	る地震を 司時発生					
	評価条件	中央制御室	用条件 使用済燃料の受 入れ施設及び貯 蔵施設の制御室	遷定理由	居住性評価審査ガイドでの記載		
	放射線分解により発生する場所を介している。 水素によ気気筒を介した対性を変われる。 を介しの放出率		- 34 から - 38 参照	主排気筒を介した大気放中への放射性物質の放射性物質の放射性物質の放射性物質の放射性物質の放射により発生する本非気筒を介した大気放力と大気放力と大気放力と大気放射性を主持気筋射性と主中への放射性を対した大気が動力を対した大気が動力を対した大気が動力を対した大気が動力を対した大気が動力を対した大気が動力を対した大気が動力を対した大気が動力を対した大気が動力を対した大気が動力を対した大気がある気が動力を対している。	4.1 (2) 原子炉制御 室の居住性に係る被ばく 評価では、格納容器破損 防止対策の有効性評器破損 防止対策の有効性評器破損 を一ドのうち、原子 炉制御室の運転員又は点から結果が最したなる事故収束に成くな事。 を結果が成したが、 も続い、 も続い、 も続い、 をおい、 をおい、 をおい、 をおい、 をおい、 をおい、 をおい、 をお		
	地震を要員と して発生が想 定される重大 事故の同時発 生における線 源		積線源	より厳しい結果となる ように地震を要員とし て発生が想定される重 大事故の同時発生の発 生する建屋の制御室か ら最も近い壁の内側に 一点で接している体積 線源とする。	自由空間容積に均一に分 布するものとして,事故 後7日間の積算線源強度		

# 【VI-1-5-2-1 制御室の居住性に関する説明書】(230/379)

発電炉 (東海第二)			再処理	里施設		備考
	表 4-51 における 事故の同	ら地震を				
	評価条件中央制御室	中央制御室	使用済燃料の 受入れ施設及 び貯蔵施設の 制御室	選定理由	居住性評価審査ガイドでの記載	
	地し定事生活の発生の変化を表現して、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のでは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学の	厚さ1 mの:	コンクリート	ートの建屋外壁に全面 囲まれていることとす る。	4.3 (5) a.原子炉 建屋内の放射性物質から のスカイシャインガンマ 線及び直接ガンマ線によ る外部被ばく線量は、積 算線源強度、施設の位 置、遮へい構造及び地形 条件から計算する。	
	呼吸率	3. 33×10 ⁻	4 m ³ /s	「発電用軽水型原子炉 施設の安全評価に関す る審査指針」に基づ き,成人の活動時の呼 吸率とする。	-	

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(231/379)

	前脚主の居住住に関する成功音』(231/ 379) 再加畑#添加	/
発電炉(東海第二)	再処理施設	備考
表 4-28 グランドシャイン前昇低用網膜後度 (第六作業時) ボンマ暦単級教徒 (単: ia [*] )		
(28) AB (CF EF OF NE		
2 0.02 3.8×10* 2.7×10* 2.7×10* 1.8×10* 1.2×10* 1.4×10* 1.4×10* 1.1×10* 0.1×10* 0.1×10* 0.1×10* 0.7×10* 1.4×10* 1.4×10* 1.4×10* 1.1×10* 0.1×10* 1.1×10* 0.1×10* 1.1×10* 0.1×10* 1.1×10* 0.1×10* 0.1×10* 1.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10* 0.1×10*		
3 0.00 2.0×10* [1.9×10* 0.3×10* 0.0×10* [7.0×10* 0.1×10* 0.0×10* 0.4×10* 0.2×10* 0.4×10* 0.4×10* 0.3×10* 0.4×10* 0.3×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×10* 0.4×1		
6 0.07 (7.0%) 6.8×10' 6.4×10' 4.1×10' 4.6×10' 3.2×10' 3.7×10' 2.6×10' 3.1×10' 2.2×10' 2.4×10' 1.8×10' 2.2×10' 1.6×10' 7 0.075 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10' 3.0×10'		
9 6.16 1.0710° 1.1710° 1.2710° 7.6710° 8.6710° 4.0710° 4.0710° 4.0710° 4.0710° 4.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710° 5.0710°		
0.0   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1.72   1		
H 60 CTOP 4 CTOP 4 CTOP 3 TOP 4 TOP 4 TOP 3 TOP 3 TOP 3 TOP 3 TOP 4 TOP		
22 1.5 2.3×10* 9.4×10* 8.4×10* 5.3×10* 5.8×10* 3.9×10* 3.5×10* 2.5×10* 2.5×10* 2.0×10* 2.0×10* 1.6×10*		
A   24   A   A   A   A   A   A   A   A   A		
27 5.5 1.2508 1.2508 2.4508 1.4508 1.5508 1.5508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.2508 1.		
B 54 (4502) 34015 (4602) 34015 (4603) 34015 (4603) 46015 (4603) 46015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (3603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015 (4603) 34015		
34 7.0 448.00 449.10 5 51.910 449.00 5 51.910 449.00 5 51.910 449.00 5 51.90 7 50.910 5 51.90 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910 7 50.910		
38   6.0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8 × 0   4.8		
8 11.6 1.11 1.11 1.11 1.11 1.11 1.11 1.1		
S N.V SV		
表 4-29 中央制御室換気系設備等条件 (炉心の著しい損傷が発生した場合)		
項目 評価条件 遷定理由 審査ガイドでの記載 全交流電力電源喪失を 4.3(3)f. 原子炉制御室の非常用		
中大制弾主作品 田境毎系の記動 東名な生から 2時間 考慮し、代替電源から 換気空調設備の作動については、		
時間 の電源供給開始時間か 非常用電源の作動状態を基に設定 ら保守的に設定 する。		
妻 4-30 直接ガンマ線及びスカイシャインガンマ線評価用線振復(入流域時)		
## AR CR RE 100 SE NE 100		
(Mr) (開催 14 h 24.5 h 38 h 48.5 h 62 h 72.5 h 86 h 98.5 h 110 h 120.5 h 134 h 144.5 h 158 h		
2 0.00 10.007 4.0007 1.0007 1.0007 4.0007 1.0007 4.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007 1.		
8 0.07 8.0×10.0 1.7×10.0 1.4×10.0 8.8×10.0 2.8×10.0 1.4×10.0 2.7×10.0 4.1×10.0 2.4×10.0 2.4×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.8×10.0 2.0×10.0 2.0×1		
7 0.00 0.00 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
0   42   4   4   4   5   1   4   5   4   4   5   4   4   5   4   4		
14 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000		
T		
20   1.0   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000   20.000		
32 1.00 1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.00		
28 3.5 1 (1919 1 (447) 2 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919 1 (1919		
28 4.5 7.6919 1.7219 1.7219 1.7219 1.4419 1.7419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.7419 1.7419 1.7419 1.7419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.4419 1.		
0		
36 8.0 8.010 ³ 1.3×10 ³ 8.3×10 ³ 8.0×10 ³ 1.3×10 ³ 1.3×10 ³ 1.3×10 ³ 1.3×10 ³ 1.0×10 ³ 1.3×10 ³ 1.0×10 ³ 1.3×10 ³ 1.0×10 ³ 1.3×10 ³ 1.0×10 ³		
38 120 1203 2103 1003 17503 2503 1003 1003 1003 1003 1003 1003 1003 1		
62 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(232/379)

発電炉(東海第二)	再処理施設	備考
### ### ### ### ### ### ### ### ### ##	117个子工用的	VIII ·· J
### 4-02 各部の7日間の中央前側窓の居住性(近心の著しい損傷が発生した場合)に係ら続ばく好価結果の内限(マスク専用あり) ### 2018年10日		
大学の一般の自分を表現しません。		
### A MANUAL TO THE PROPERTY OF THE PROPERTY		
######################################		
### (A 1975)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1.0 (2015)   1		

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(233/379)

# 4-33 各版の7日間の中央制御室の程性(伊心の著しい機体が発生した接合)に係る被式と評価は乗かり数(マスク電用なし)
### ### ##############################
AGE    August   Communication
AGE    August   Communication
Manual Residence   Manual Resi
Manual   M
### ### #### #########################
### Appen ### Ap
Color
Section   Column
Section   Column
大学の一般の大力を使用して、上記的機能としません。
20.7年   2017年   1.5121年
DE
↑  ▼
章 章 4.422 (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.52) (4.5
東西の高数 東西に基準にも取り上がりが対対機関とよる関係と まないが よりいが カルバラ
\(\lambda{\text{def}}\) \(\lam
表 4-52 中央制御室(デムの乗しい損傷が発生した場合)の運転員に及ぼす実施機量の内叡(マスク資用あり) 表 4-52 中央制御室における評価結果の内訳
被 ばく 経 総 A原 B原 C原 D原 B原 (mSv)
びスカイシャインガンで搬による他ばく 7.8×10
建屋からの放大気中へ放出室内に外気か
(外部株式く) 5.3×10° 2.3×10° 5.1×10° 5.2×10° 5.2×10° 事象 射線による被された放射性 5.取り込まれ 合計
家内に外気から取り
かけ曲等 (Jana Listing and Cart Listing an
NY作業時 以上の機能はく) 4.0×10 ⁻¹ 8.0×10 ⁻¹ 7.7×10 ⁻¹ 1.2×10 ⁻² 2.9×10 ⁻²
Phff集時 はまた比較性物質 による樹立く 40×10 ¹ 8,0×10 ² 7,7×10 ² 1,2×10 ² 2,9×10 ² 12×10 ² 1
(中部地域) (中部地域) (中部地域) (40×10 ³ 8,0×10 ³ 7,7×10 ³ 1,2×10 ⁵ 2,9×10 ⁵ 分井 6,6×10 ³ 8,0×10 ³ 1,3×10 ⁵
(中部地域
### (Paper Note of the Paper
### (PARMAN CAN CAN CAN CAN CAN CAN CAN CAN CAN C
(中部地域) (中部域)
Phi   Ph
### (1-2 min

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(234/379)

発電炉 (東海第二)							備考							
	表 4-35 中央制	制御室(炉心の著し	い損傷が発生した	:場合) の運転員に別		沢(マスク着用なし)		3	使用済燃料の				施設の	
被ばく			A雅	BR	実効線量 (mSv/7日間) C班	D班	E班	制	制御室における評価結果の内訳(mSv)					
	建屋内放射性物質から びスカイシャインガン		7.8×10 ⁻¹	6.3×10 ⁻²	6.0×10 ⁻¹	9.4×10 ⁻²	2.3×10 ⁻¹	11,11	- , , - , - , - , - , - , - , - , -	(1)	(2)	(3)		11
	大気中へ放出された ばく	放射性物質による被	9.6×10 ⁻¹	3. 0×10 ⁻³	1.4×10 ⁻¹	4.6×10 ⁻³	1.1×10 ⁻²		3		大気中へ放出	室内に外気	32	
	窓内に外部から取り	(外部被ばく)	5.3×10°	2.3×10 ⁻⁵	6.1×10°	3.7×10 ⁻³	5.2×10 °		事象	射線による被 ばく	された放射性 物質による被	ら取り込まれた放射性物質	た 合計	
室內作業時	込まれた放射性物質 による被ばく	(内部被ばく)	1.0×10 ³	8. 0×10 ⁻¹	7.7×10 ⁻¹	1.2×10°	2.9×10 °			10. (	物質による被 ばく	による彼はく	3	
	大気中へ放出され地割	合計	1.0×10 ³	8. 0×10 ⁻¹	6.8×10 °	1.3×10°	8.1×10 °	①煎処理建屋」	of the model.	1.3×10 ⁻³	$9.1 \times 10^{-7}$	8.4×10 ⁻⁴	3×10 ⁻³	
	性物質による被ばく	大国 に (の 質 し ) た (大学)	4.7×10°	4.7×10°	4.8×10°	3.8×10°	4.5×10°	溶解槽におけ		1.07.10	0.17.10	0.4710	0/10	
	小 建屋内放射性物質から びスカイシャインガン	計	1.0×10 ³	5. 5×10 °	2.7×10 1	5. 2×10 °	1.3×10 ¹	②前処理建屋	酸洗浄槽における臨界事故	1.3×10 ⁻³	$9.1 \times 10^{-7}$	8.4×10 ⁻⁴	$3 \times 10^{-3}$	
	びスカイシャインガン	/マ線による被ばく (外部被ばく)	2.6×10 ⁻¹ 5.6×10 ⁻³	9. 2×10 ⁻² 2. 6×10 ⁻³	5. 5×10 ⁻¹	1. 9×10 ⁻¹ 5. 1×10 ⁻³	4. 3×10 ⁻¹ 1. 0×10 ⁻²	界 ③前処理建屋	The second secon					1
	大気中へ放出された 放射性物質による被	(内部被ばく)	6.3×10 ⁻²	8. 3×10 ⁻²	2.8×10 ⁻¹	1.5×10 ⁻¹	3, 2×10 ⁻¹	事 ハル洗浄槽に	おける臨界事故	1.3×10 ⁻³	9. $1 \times 10^{-7}$	8.4×10 ⁻⁴	3×10 ⁻³	
入退城時	i#<	6 H	6.8×10 ⁻²	8. 5×10 ⁻²	3. 0×10 ⁻¹	1.6×10 ⁻¹	3. 3×10 ⁻¹	故争精製建屋		5, 9×10 ⁻⁶	7.5×10 ⁻⁷	8, 7×10 ⁻⁴	9×10 ⁻⁴	1
	大気中へ放出され地数 性物質による被ばく	を面に沈着した放射	8.0×10°	2.4×10 ⁻¹	2.6×10 ¹	2.4×10 ¹	2.5×10 ¹		/処理槽における臨界事故	0.5710	1.0~10	0.17.10	3/10	1
	小	21	8.3×10°	2.4×10 ¹	2.7×10 ¹	2.4×10 ¹	2.6×10 ¹	⑤精製建屋 第7一時貯料	処理槽における臨界事故	5.9×10 ⁻⁶	$7.5 \times 10^{-7}$	8.7×10 ⁻⁴	9×10 ⁻⁴	
	合 計		1.0×10 ³	3.0×10 ⁻¹	5.4×10 ⁻¹	2.9×10 ¹	3.9×10 ¹	地震を要因として					+	1
						-		発生が想定される	重大事故の同時発生	$4.7 \times 10^{-7}$	$8.9 \times 10^{-10}$	$8.9 \times 10^{-4}$	9×10 ⁻⁴	
								表 4-54( 内の固	1/2) 有毒刀 定源(有毒化 ²	ス濃度評 学物質を				
								11,5	施設	有毒化学物質	保有量	濃度率1	物質換算	
								建屋	設備		[m³]	[mo1/L]	[kg]	
								前処理建屋	第1回収酸受槽 等	硝酸 ^{※2}	295	3. 5	6,600	
								分離建屋	第1回収硝酸受槽 等	硝酸※2	822	3.8	200, 000	
								精製建屋	第2回収酸10N貯槽 等	硝酸 ^{※2}	789	3. 6	180, 000	
								ウラン・ブルトニ ウム混合脱硝建屋	第1廃ガス洗浄塔 等	硝酸 ^{※2}	27	2.7	4,700	
								高レベル廃液ガラ ス固化建屋	低レベル無塩廃液第1受槽 等	硝酸 ^{※2}	525	1. 2	41,000	
								低レベル廃液処理 建屋	廃ガス洗浄塔 等	硝酸※2	8. 5	12	6, 400	
								分析建屋	分析廃液第1受槽 等	硝酸※2	27	6.8	11,000	
								出入管理建屋	酸供給槽	硝酸※2	0.15	0. 20	1. 9	
									硝酸受入れ貯槽	硝酸※2	41.7	13.6	36, 000	
								試薬建屋	硝酸ヒドロキシルアミン受 入れ貯槽	硝酸 ^{泰2}	18	0. 20	230	
								ウラン脱硝建屋	第1廃ガス洗浄塔 等	硝酸 ^{※2}	149	0.75	7,000	
								低レベル廃棄物処	中和装置硝酸槽	硝酸 ^{※2}	0.6	3.0	110	
								理建屋	硝酸計量槽	硝酸※2	0.09	13.6	77	
								使用済燃料受入 れ・貯蔵建屋	硝酸槽	硝酸 ^{※2}	0.11	13. 6	94	
									模擬廃液受入槽A	硝酸 ^{※2}			820	
								模擬廃液貯蔵庫	模擬廃液受入槽B	硝酸※2			820	
									pH調整用高濃度酸貯槽	明酸 ^{※2}	0, 05	2	6.3	
								燃料加工建屋						
									pH調整用低濃度酸貯槽	硝酸※2	0.05	0. 2	0.63	1

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(235/379)

※1: 「設備」欄に「等」と記載されている場合は、有毒化学物質の平均濃度(建居保有液量と建居保有液量と建居保有液量と対点を示す。なお3、平均濃度の硝酸に比べて分圧が大きいものの、平均濃度であると想定した硝酸の量に比べてその保有量は小さく、漏えいが発生した場合でも観度的に関することで建面結(漏えいした化学物質が形成する液だまりの面積)が小さくなり、作業環境中への移行量としては平均濃度による評価結果に包含される。※2: 消費整件による評価結構とに包含される。※方と: 消費を依頼 (消費とじては平均濃度による評価結果に包含される。※方と: 消費を依頼 (消費とじては平均濃度による評価結果に包含される。※方と: 消費を依頼 (消費とじては平均濃度による評価結果に包含される。※方と: 消費を作用を持て、消費・プレトニウム、機械関係を含む)に含まれる硝酸を指す。 表 4 - 54(2/2) 有毒ガス濃度評価対象となる敷地内の固定源(有毒化学物質を保有する施設)に含まれる硝酸を指す。  表 4 - 54(2/2) 有毒ガス濃度評価対象となる敷地内の固定源(有毒化学物質を保有する施設)  「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・	発電炉(東海第二)		再処	理施設				備考
の平均濃度 (建屋保有液量と建屋保有物質量から算出)を示す。なお、平均濃度を超える硝酸については、平均濃度の硝酸に大ベステントをいものの、平均濃度であると想定した硝酸の量に比べてその保有量は小さく、漏えいが発生した場合でも限定的な区域に留まることで堰面積 (漏えいした化学物質が形成する域まりの面積)が小さくなり、作業環境中への移行量としては平均濃度による評価結果に包含される。※2: 硝酸溶液 (硝酸ヒドラジン、硝酸 アルトニウム、硝酸ウラニル、硝酸ウラニル、硝酸ウラニル、硝酸ガントー・ウム、核擬醛液を含む)に含まれる硝酸を指す。 表 4 - 5 4 (2/2) 有毒ガス濃度評価対象となる敷地内の固定源(有毒化学物質を保有する施設)    本度		※1:「設備」	欄に「等」と記載	战されている	場合は.	有毒化	/学物質	
す。なお、平均濃度を超える硝酸については、平均濃度の硝酸に比べて分圧が大きいものの、平均濃度であると想定した 硝酸の量に比べて分圧が大きいの面積)が小さくなり、作業環境中 への移行量としては平均濃度による評価結果に包含される。 ※2:硝酸溶液(硝酸ヒドラジン、硝酸ヒドロキンルアミン、硝酸 ガドリニウム、硝酸ウラニル、硝酸ウラナス、硝酸とブルトニウム、 模擬廃液を含む)に含まれる硝酸を指す。 表 4-54(2/2) 有毒ガス濃度評価対象となる敷地 内の固定源(有毒化学物質を保有する施設)  「								
酸に比べて分圧が大きいものの、平均濃度であると想定した 硝酸の量に比べてその保有量は小さく、湯えいが発生した場 合でも限定的な区域に留まることで堰面積(漏えいした化学 物質が形成する液だまりの面積)が小さくなり、作業環境中 への移行量としては平均濃度による評価結果に包含される。 ※2:硝酸溶液(硝酸とドラング・硝酸とドロキシルアミン、硝酸 ガドリニウム、硝酸クラコス、硝酸プルトニウム、 機擬廃液を含む)に含まれる硝酸を指す。 表 4-54(2/2) 有毒ガス濃度評価対象となる敷地 内の固定源(有毒化学物質を保有する施設)  ※2  ※2  ※2  ※2  ※4  ※4  ※5  ※4  ※5  ※5  ※6  ※6  ※6  ※6  ※6  ※6  ※6  ※6								
研修の量に比べてその保有量は小さく、漏えいが発生した場合でも限定的な区域に留まることで堰面積(漏えいした化学物質が形成する放注まりの面積)が小さくなり、作業環境中への移行量としては平均濃度による評価結果に包含される。 ※2: 硝酸溶液(銷酸とドラジン、硝酸とドロキシルアミン、硝酸ガリー、 硝酸ウラナス、硝酸プルトニウム、 硝酸ウラナス、硝酸ウラナス、硝酸プルトニウム、 複擬廃液を含む)に含まれる硝酸を指す。 表 4-54(2/2) 有毒ガス濃度評価対象となる敷地内の固定源(有毒化学物質を保有する施設)								
合でも限定的な区域に留まることで堰面積(漏えいした化学物質が形成する液だまりの面積)が小さくなり,作業環境中への移行量としては平均濃度による評価結果に包含される。 ※22:硝酸溶液 (硝酸ヒドラジン、硝酸ヒドロキシルアミン、硝酸 ガドリニウム、硝酸ウラニル、硝酸ウラナス、硝酸ブルトニウム、 棲極廃液を含む)に含まれる硝酸を指す。 表 4-54(2/2) 有毒ガス濃度評価対象となる敷地 内の固定源(有毒化学物質を保有する施設)								
物質が形成する液だまりの面積)が小さくなり、作業環境中への移行量としては平均濃度による評価結果に包含される。 ※2:硝酸溶液(硝酸皮 ドラシン、硝酸と ドロキシルアミン、硝酸 ガドリニウム、硝酸ウラース、硝酸ウラース、硝酸ブルトニウム、模擬廃液を含む)に含まれる硝酸を指す。  表 4 - 54 (2/2) 有毒ガス濃度評価対象となる敷地 内の固定源(有毒化学物質を保有する施設)    施設								
※2:硝酸溶液(硝酸ヒドラジン、硝酸ヒドロキシルアミン、硝酸ガリニウム、硝酸ウラニル、硝酸ウラナス、硝酸プルトニウム、模擬廃液を含む)に含まれる硝酸を指す。  表 4-54(2/2) 有毒ガス濃度評価対象となる敷地内の固定源(有毒化学物質を保有する施設)								
ガドリニウム、硝酸ウラニル、硝酸ウラナス、硝酸プルトニウム、 模擬廃液を含む)に含まれる硝酸を指す。  表 4 - 54 (2/2) 有毒ガス濃度評価対象となる敷地  内の固定源(有毒化学物質を保有する施設)    施設   指電化学物質を保有する施設   操育量   機育量   機育量   機度   機育量   機育量   機度   機育量   機度   機育量   機能   機能   機能   機能   機能   機能   機能   機		**						
模擬廃液を含む)に含まれる硝酸を指す。     表 4 — 54 (2/2) 有毒ガス濃度評価対象となる敷地 内の固定源(有毒化学物質を保有する施設)     施設								
表 4-54(2/2) 有毒ガス濃度評価対象となる敷地 内の固定源(有毒化学物質を保有する施設)    施設		ガドリニウム	,,硝酸ウラニル,	ニウム,				
内の固定源(有毒化学物質を保有する施設)   施設   機育量   機育量   機育量   (%5   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%		<b>│</b>	莫擬廃液を含む)は					
内の固定源(有毒化学物質を保有する施設)   施設   機質   機質   機質   機質   機質   機質   (%5   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]   [%6]								
内の固定源(有毒化学物質を保有する施設)   施設   機質   機模   機模   機模   機模   機模   機能   機能   機能		表 4-54(	2/2) 有毒ガ	る敷地				
接限   設備   有毒化学物質   保有量   濃度   物質練算   [kg]		, , ,				-		
速度     設備     [m²]     [1%]     [kg]       高レベル廃液ガラ     NO供給槽     一酸化窒素     1.5     100     13       ウラン脱剤速屋     液化NOx受権B     液体二酸化窒素     4.7     100     6800       ウラン脱剤速屋     気化装置出口セパレータA     NOxガス     0.006     100     0.048       NOx気化装置出口セパレータB     NOxガス     0.006     100     0.048       NOx気化装置出口サージポット     NOxガス     0.2     100     1.3       バッファタンク     NOxガス     0.5     100     2.9       ボッファ槽     NOxガス     1     50     2.5       ガラス固化技術開発速屋     アンモニア水貯槽     アンモニア 大貯槽     アンモニア 大貯槽     アンモニア 大野槽       第2一般排水処理     メタノール 2989     50     1370			施設	****	保有量	濃度	物質換算	
ス関化速屋     NO供給槽     一般化室素     1.5     100     13       液化NOx受槽A     液体二酸化窒素     4.7     100     6800       液化NOx受槽B     液体二酸化窒素     4.7     100     6800       液化NOx受槽C     液体二酸化窒素     4.7     100     6800       気化装置出口セパレータA     NOxガス     0.006     100     0.048       NOx気化装置出口セパレータB     NOxガス     0.006     100     0.048       NOx気化装置出口セパレータB     NOxガス     0.2     100     1.3       NOx用バッファタンク     NOxガス     0.5     100     2.9       バッファ槽     NOxガス     1     50     2.5       ガラス関化技術開発     アンモニア水貯槽     アンモニア     13     25     2920       第2一般排水処理     メタノール貯留タンク     メタノール貯留タンク     メタノール貯留タンク     スタノール貯留タンク     1370		建屋	設備	有毒化学物質	[m ³ ]	[%]	[kg]	
液化NOx受情B     液体二酸化窒素     4.7     100     6800       液化NOx受情C     液体二酸化窒素     4.7     100     6800       気化装置出口セパレータA     NOxガス     0.006     100     0.048       気化装置出口サージポット     NOxガス     0.006     100     0.048       NOx角パッファタンクト     NOxガス     0.5     100     2.9       パッファ槽     NOxガス     1     50     2.5       ガラス固化技術開発を歴史     アンモニア水貯槽     アンモニア     13     25     2920       第2一般排水処理     メタノール貯留タンク     メタノールト     2 989     50     1370			NO供給槽	一酸化窒素	1.5	100	13	
液化NOx受椿C     液体二酸化窒素     4.7     100     6800       気化装置出口セパレータA     NOxガス     0.006     100     0.048       気化装置出口セパレータB     NOxガス     0.006     100     0.048       NOx気化装置出口サージポット     NOxガス     0.2     100     1.3       NOx用バッファタンク     NOxガス     0.5     100     2.9       バッファ椿     NOxガス     1     50     2.5       ガラス固化技術開発     アンモニア水貯椿     アンモニア     13     25     2920       第2一般排水処理     メタノール貯留タンク     メタノールト・ロット     2 989     50     1370			液化NOx受槽A	液体二酸化窒素	4.7	100	6800	
気化装置出口セパレータA     N0xガス     0.006     100     0.048       気化装置出口セパレータB     N0xガス     0.006     100     0.048       N0x気化装置出口サージボット     N0xガス     0.2     100     1.3       N0x用パッファタンク     N0xガス     0.5     100     2.9       パッファ槽     N0xガス     1     50     2.5       ガラス固化技術開発を     アンモニア水貯槽     アンモニア     13     25     2920       第2一般排水処理     メタノール貯御タンク     メタノール     2 989     50     1370			液化NOx受槽B	液体二酸化窒素	4.7	100	6800	
ウラン脱硝速屋     気化装置出口セパレータB     N0xガス     0.006     100     0.048       N0x気化装置出口サージボット     N0xガス     0.2     100     1.3       N0x用パッファタンク     N0xガス     0.5     100     2.9       パッファ槽     N0xガス     1     50     2.5       ガラス固化技術開発を     アンモニア水貯槽     アンモニア     13     25     2920       第2一般排水処理     メタノール貯留タンク     メタノール 2989     50     1370				液体二酸化窒素	4.7	100	6800	
NOx気化装置出口サージボット     NOxガス     0.2     100     1.3       NOx用バッファタンク バッファ椿     NOxガス     0.5     100     2.9       バッファ椿     NOxガス     1     50     2.5       ガラス固化技術開発を雇用     アンモニア水貯槽     アンモニア     13     25     2920       第2一般排水処理     メタノール貯留タンク     メタノール     2 989     50     1370								
ト NOxガス 0.2 100 1.3 NOxガス 0.5 100 2.9 NOxガス 0.5 100 2.9 バッファ槽 NOxガス 1 50 2.5 ガラス固化技術開発建屋 アンモニア水貯槽 アンモニア 13 25 2920 第2一般排水処理 メタノール貯留タンク メタノール 2 989 50 1370		ウラン脱硝建屋		NOxガス	0.006	100	0. 048	
パッファ槽     N0xガス     1     50     2.5       ガラス固化技術開発建屋     アンモニア水貯槽     アンモニア     13     25     2920       第2一般排水処理     メタノール貯留タンク     メタノール 2989     50     1370			NOx気化装置出口サージボット	NOxガス	0. 2	100	1.3	
ガラス固化技術開発     アンモニア水貯槽     アンモニア 13     25     2920       第2一般排水処理     メタノール貯留タンク     メタノール 2 989     50     1370								
発達屋     アンモニア水貯槽     アンモニア     13     25     2920       第 2 一般排水処理     メタノール貯留タンク     メタノール 2 989     50     1370		Marine Pro Co. A. Alexandro	バッファ槽	NOxガス	1	50	2. 5	
メタノール貯留タンク   メタノール   2 989   50   1370			アンモニア水貯槽	アンモニア	13	25	2920	
		第2一般排水処理 建屋	メタノール貯留タンク	メタノール	2. 989	50	1370	

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(236/379)

発電炉(東海第二)		Ī	<b></b>	設			備	考		
		表 4-55 有毒ガス濃度評価対象となる敷地内の								
	固	定源(反応り	こより発	生する	有毒	ガス)				
		施設	化学物質及び構		濃度	物質換算	有毒			
	建屋	設備 表 4-57 参照	成部材	[m³] 表 4-57 参照	[%]	[kg]	ガス			
	朝飯を採有する建屋	3℃ 4 — 57 ⊗ 州(	州版 炭素鋼等 ^{※1}	30C 4 − 51 ⊗ M	_	_	混触 NOx ^{※2}			
		次亜塩素酸ソーダ貯槽	次亜塩素酸ナトリウム	3	12	430				
		硫酸貯槽		4	98	7210				
	ユーティリティ建屋	硫酸希釈槽	硫酸	0.5	10	54	塩素※3			
	1 加座	硫酸計量槽		0.3	98	540				
		凝集剤貯槽	ポリ塩化アルミ ニウム	3	10	360				
		次亜塩素酸ソーダ貯槽	次亜塩素酸ナト	3	12	430				
	一般排水処理	中和槽次亜塩素酸ソー ダ貯槽	リウム	0.3	12	43	塩素※3			
	建屋	硫酸希釈槽	硫酸	1	10	110	<b>温</b> 来			
		凝集剤貯槽	ポリ塩化アルミ ニウム	1.8	10	210				
		次亜塩素酸ソーダサー ビスタンク	次亜塩素酸ナト	0. 44	12	63				
	第2一般排水	膜洗浄タンク A	リウム	0.456	12	66				
	処理建屋	膜洗浄タンク B		0. 456	12	66	塩素※3			
		硫酸サービスタンク	硫酸	0. 167	10	18				
		PAC サービスタンク	ポリ塩化アルミ ニウム	0. 44	10	52				
	る。 ※2:硝酸 ※3:次亜	と反応性のある と炭素鋼等との 塩素酸ナトリウ 、)との反応によ	反応により ムと酸性溶	発生する 溶(硫酸	· 窒素 e t, ポ	酸化物を	指す。			

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(237/379)

再処理施設	 備考		<u></u>	加押協				(東海第二)	発電炉(東海第二
T事化学物質   最大輸送量   濃度   物質換算   内容   輸送先   (%3)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)   (%4)	 	) ~ 4\ D [. ~	•					(米西尔—)	光电炉 (米博尔-
有毒化学物質   原大輸送盤   演皮   物質機算   荷姿   輸送先   「原*]   「月、 日、		なる敷地内の	』対象と	<b>漫                                    </b>	ガス湯	う 有毒	表 4-56		
「株式				可動源					
(%) (%) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg		46.3% #-	atte ide	物質換算	濃度	最大輸送量	-tt11 - 114 - 115		
液体二酸化窒素     0.82     100     1,200     専用容器     ウラン配硝建屋       アンモニア     3.0     25     670     タンクローリ     ガラス層化技術開発建屋       メタノール     1.97     50     900     タンクローリ     第2一般技術展現建屋       表 4 — 57     有毒ガス防護判断基準値     設定根拠       有糖ガス防護判断基準値     設定根拠       支別の施設     10LH値 ⁹² 二酸化窒素     100ppm     1DLH値 ⁹² アンモニア     300ppm     1DLH値 ⁹² メタノール     2200ppm     文献等に基づき設定       塩素     10ppm     1DLH値 ⁹³ メリール     2200ppm     文献等に基づき設定       塩素     10ppm     1DLH値 ⁹³ メ1:液体二酸化窒素、NOx ガス及び混触 NOx については、主たる     空素酸化物である二酸化窒素、一酸化窒素、一酸化窒素・正酸化窒素のうち、有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし、その有毒ガス防護判断基準値を採用する。		輸送先	何安	[kg]	[%]	[m ³ ]	有毒化字物質		
ボタノール     3.0     25     670     タンクローリ     ガラス関化技術開発建屋       ボタノール     1.97     50     900     タンクローリ     第2一般排水処理建屋       表 4 — 57     有毒ガス				6, 200			112765		
表 4-57 有毒ガス防護判断基準値				-					
表 4-57 有毒ガス防護判断基準値									
有毒ガス   有毒ガス防護判断基準値   設定根拠   一般化窒素 ⁸¹   20ppm   IDLH値 ⁸²   一酸化窒素   100ppm   IDLH値 ⁸²   一酸化窒素   100ppm   IDLH値 ⁸²   アンモニア   300ppm   文献等に基づき設定   塩素   10ppm   IDLH値 ⁸²   ※1:液体二酸化窒素, NOx ガス及び混触 NOx については, 主たる   空素酸化物である二酸化窒素, 一酸化窒素, 亜酸化窒素のうち, 有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし, その有毒ガス防護判断基準値を採用する。		第2一般排水処理建屋	9290-9	900	50	1.97	メタノール		
有毒ガス   有毒ガス防護判断基準値   設定根拠   一般化窒素 ^{※1}   20ppm   IDLH値 ^{※2}   一酸化窒素   100pm   IDLH値 ^{※2}   一酸化窒素   100pm   IDLH値 ^{※2}   フンモニア   300ppm   文献等に基づき設定   塩素   10ppm   IDLH値 ^{※2}   ※1:液体二酸化窒素,NOx ガス及び混触 NOx については,主たる   窒素酸化物である二酸化窒素,一酸化窒素,更酸化窒素のうち,有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし,その有毒ガス防護判断基準値を採用する。		Ha Neta III.		→ .a F	=				
「中華		基準値	<b>i護判</b> 断。	量ガス	有毒	₹ 4 — 57			
二酸化窒素**1     20ppm     IDLH値*2       一般化窒素     100ppm     IDLH値*2       アンモニア     300ppm     IDLH値*2       メタノール     2200ppm     文献等に基づき設定       塩素     10ppm     IDLH値*2       ※1:液体二酸化窒素, NOx ガス及び混触 NOx については, 主たる窒素酸化物である二酸化窒素, 一酸化窒素, 亜酸化窒素のうち, 有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし, その有毒ガス防護判断基準値を採用する。			準値	/ス防護判断	有毒力	ガス	有毒		
一酸化窒素     100ppm     IDLH値*2       アンモニア     300ppm     IDLH値*2       メタノール     2200ppm     文献等に基づき設定       塩素     10ppm     IDLH値*2       ※1:液体二酸化窒素, Nox ガス及び混触 Nox については、主たる窒素酸化物である二酸化窒素, 一酸化窒素, 亜酸化窒素のうち, 有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし、その有毒ガス防護判断基準値を採用する。				25ppm					
アンモニア       300ppm       IDLH値*2         メタノール       2200ppm       文献等に基づき設定         塩素       10ppm       IDLH値*2         ※1:液体二酸化窒素, NOx ガス及び混触 NOx については, 主たる       室素酸化物である二酸化窒素, 一酸化窒素, 亜酸化窒素のうち, 有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし, その有毒ガス防護判断基準値を採用する。				20ppm					
メタノール     2200ppm     文献等に基づき設定       塩素     10ppm     IDLH値**2       ※1:液体二酸化窒素, NOx ガス及び混触 NOx については、主たる窒素酸化物である二酸化窒素, 一酸化窒素, 亜酸化窒素のうち, 有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし、その有毒ガス防護判断基準値を採用する。		_							
塩素   10ppm   IDLH値*2   ※1:液体二酸化窒素,NOx ガス及び混触 NOx については、主たる 窒素酸化物である二酸化窒素,一酸化窒素,亜酸化窒素のうち,有毒ガス防護判断基準値が最も低い二酸化窒素を代表物 質とし、その有毒ガス防護判断基準値を採用する。					<del> </del>				
※1:液体二酸化窒素,NOxガス及び混触NOxについては、主たる 窒素酸化物である二酸化窒素,一酸化窒素,亜酸化窒素のう ち,有毒ガス防護判断基準値が最も低い二酸化窒素を代表物 質とし、その有毒ガス防護判断基準値を採用する。					+				
窒素酸化物である二酸化窒素, 一酸化窒素, 亜酸化窒素のうち, 有毒ガス防護判断基準値が最も低い二酸化窒素を代表物質とし, その有毒ガス防護判断基準値を採用する。			価力 NOv. ファン		NO. 4				
ち、有毒ガス防護判断基準値が最も低い二酸化窒素を代表物 質とし、その有毒ガス防護判断基準値を採用する。									
質とし、その有毒ガス防護判断基準値を採用する。									
NIOSH (US National Institute for Occupational Safety									
and Health(米国国立労働安全衛生研究所))で定められて									
いる急性の毒性限度(人間が30分間ばく露された場合,そ									
の物質が生命及び健康に対して危険な影響を即時に与える、									
又は避難能力を妨げるばく露レベルの濃度限度値)をいう。									

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(238/379)

発電炉 (東海第二)			再処理施設		備考
	表 4-	-58 有毒フ	ガス防護判断	T基準値設定の考え方	
			(硝酸)		
		文献		記載内容	
	(ICSC:01	物質安全性カード 183 2016年11月) 露の影響	取すると、腐食性を を引き起こすことが することがある。高 き起こすことがある。 (注) 肺水腫の症状(	は,2~3 時間経過するまで現われない 呆たないと悪化する。したがって,安静	
	GHS モデ	*NSDS		単回ばく露):区分1(呼吸器)	
		基準値	25ppm		
	IDLH	致死データ	30分のLC50値(ラット	) :138ppm [Gray et al. 1954]	
	(1994)	人体のデータ		経口ばく露の致死量から作業者の呼吸 に基づく。 [Gekkan 1980]	
	IDLH値が			YES	
		に対する影響があるか		NO NO	
		設定根拠として,中相 データを用いているか	_		
		農度があるか		-	
	有毒ガス	防護判断基準値の設定	方法	IDLH値とする	
	-				
	硝酸の有額	毒ガス防護判断基準値	を25ppmとする。		

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(239/379)

発電炉(東海第二)			再処理施設		備考
	表 4-	-59 有毒	ガス防護判断	f基準値設定の考え方	
			(二酸化窒	素)	
		文献		記載内容	
				び気道に対して、腐食性を示す。高濃度	
				どが腫れ、窒息することがある。ガスや	
				肺水腫を引き起こすことがある。 (注)	
	国際 ル 巻 4	物質安全性カード		るかに超えてばく露すると, 死を引き起 れらの影響は, 遅れて現われることがあ	
		の員女生性ガート 30 2013年10月)		というの影響は、遅れく現われることがあ 要は、無症状期間後に現れる場合がある。	
		露の影響	医学的な経過観察が		
	7110.7911 ok \	eu · · A· · · ·		必要でのる。 農度で、肺水腫を起こすことがある。肺	
				時間経過するまで現われない場合が多	
			く,安静を保たない	と悪化する。したがって、安静と経過観	
			察が不可欠である		
	GHS モデ	/LSDS	特定標的臟器・全身	毒性(単回ばく露):区分1(呼吸器),	
	OID C/		区分3 (麻酔作用)		
		基準値	20ppm		
	IDLH	致死データ		ト): 138ppm [Gray et al. 1954] 等	
	(1994)	人体のデータ	IDLH値20ppmはヒトー に基づく。 [Patty	への急性吸入毒性(軽度の刺激)データ	
			に基づく。[Patty	1903]	
	IDLH値がお	あるか		YES	
	中枢神経	こ対する影響があるか	3	YES	
	IDLH値の記	投定根拠として, 中村	区神経に対する影響を	YES	
	考慮したう	データを用いているか	).	631	
	最大許容潔	農度があるか		-	
	有毒ガス	方護判断基準値の設定	IDLH値とする		
	二酸化窒素	餐(液体二酸化窒素,	NOxガス及び混触NOx)	の有毒ガス防護判断基準値を20ppmとす	
	る。				

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(240/379)

発電炉(東海第二)			再処理施設		備考
	表 4-	-60 有毒フ		f基準値設定の考え方	
			(一酸化窒	素)	
		文献		記載内容	
		7質安全性カード 1311 2015年6月) 露の影響	高濃度のガスを吸入 ある。	すると, 肺への障害を引き起こすことが	
	GHS	モデルSDS	特定標的臟器毒性()	単回ばく露):区分1(血液系)	
		基準値	100ppm		
	IDLH	致死データ	4時間のLC₅の値 (ラッ) 等	+):854ppm [Ivanov and Szubaev 1979]	
	(1994)	人体のデータ		への急性毒性データに基づく (100~ く露)。 [Sax 1975]	
	IDLH値があ	るか		YES	
	中枢神経に	対する影響があるか		NO	
		t定根拠として、中框 ータを用いているか	区神経に対する影響を _		
	最大許容潔	度があるか		-	
	有毒ガス防護判断基準値の設定		方法	IDLH値とする	
	一酸化窒素	その有毒ガス防護判断	基準値を100ppmとする	٥	

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(241/379)

発電炉(東海第二)			再処理施設	艾	備考
	表 4-	-61 有毒	ガス防護判隊	f基準値設定の考え方	
			(アンモニ	ア)	
		文献		記載内容	
	(ICSC:04	物質安全性カード 414 2013年10月) 露の影響	る。本物質は眼,皮り く露すると,のどが肌	(化すると、凍傷を引き起こすことがあ 費及び気道に対して、腐食性を示す。ば 重れ、窒息することがある。吸入すると、 響が現われてから肺水腫を引き起こす	
	GHS モデ	#NSDS	特定標的臟器毒性( 器) 吸入あるいは経皮ば 覚低下といった直接 ばく露は血中アンモ 症)から、非特異的」	単回ばく露):区分1(中枢神経系,呼吸 く露による神経学的な影響は,通常,視 接触によるものに限定されるが,重度の ニア濃度の有意な上昇(高アンモニア血 脳障害,意識消失,筋力低下,深部腱反 合があるとの報告がある。	
		基準値	300ppm		
		致死データ	4時間のLC50値(ラッ 1969] 等	ト): 2000ppm [Deichmann and Gerarde	
	IDLH (1994)	人体のデータ	<ul> <li>IDLH値300ppmは [Henderson and</li> <li>最大短時間ばく あると報告され</li> <li>500ppmに30分間</li> </ul>	ヒトへの急性吸入毒性データに基づく。 Haggard 1943, Silverman et al. 1946] 露許容値は0.5~1時間で300~500ppmで ている。[Henderson and Haggard 1943] ばく露した7人の被験者において、呼吸 等度から重度の刺激が報告されている。 al. 1946]	
	IDLH値が	<b>ホ</b> スか		YES	
		に対する影響があるか	à	NO (中枢神経への影響は直接接触又は 重度のぱく露に限定されるためNOと した)	
	IDLH値の設定根拠として, 中枢神経に対する			_	
		データを用いているか	3		
		濃度があるか 防護判断基準値の設定	z-t-3+	Thi tilk look Z	
	有毒ガス	の護刊所生华他の設力	E.万依 ■	IDLH値とする	
	アンモニ	アの有毒ガス防護判断	が基準値を300ppmとする	j.	

# 【VI-1-5-2-1 制御室の居住性に関する説明書】(242/379)

発電炉(東海第二)			再処理施設	元 文	備考
	表 4-	-62 有毒ス	ガス 防護判断	所基準値設定の考え方	
			(メタノー		
		/		記載内容	
		2404	本物質は,眼,皮膚)	及び気道を刺激する。中枢神経系に影響	
	国際化学	物質安全性カード	を与えることがある。	。意識喪失を生じることがある。ばく露	
	(ICSC:00	957 2018年5月)	すると,失明及び死	を引き起こすことがある。これらの影響	
	短期ばく	露の影響	は、遅れて現われるこ	ことがある。医学的な経過観察が必要で	
			ある。		
	GHS モデ	*/VSDS	特定標的臟器・全身	毒性(単回ばく露) : 区分1(中枢神経	
			系, 視覚器, 全身毒	性)	
		基準値	6000ppm		
	IDLH	致死データ		ト): 64000ppm [NPIRI 1974] 等	
	(1994)			めへの急性毒性データに基づく。	
		人体のデータ	[Izmerov et al. 190		
			IDLNieは中枢性程に	対する影響を考慮していない。	
		文献		記載内容	
	日本産業征	新生学会	最大許容濃度記載な	L	
			・ メタノールガスに	こ繰り返しばく露して生じる慢性中毒症	
			状は、結膜炎、頭痛、眩暈、不眠、胃腸障害、視力障害		
	産業中毒	更覧 (1992年7月)	等である。気中濃度が200ppm以下であれば、産業現場に		
			おける中毒はほとんど起こらない。		
			<ul> <li>動物の中枢神経への吸入毒性情報として、8時間×8800 ppmが最小影響濃度(軽い麻酔作用)としている。</li> </ul>		
	有害性評価	而書	記載なし	2 (*EV 'WARTIP/II) 2 0 CV '-5'.	
				英国 (ICI) , ドイツ, イタリアでは許	
		の提案理由	容濃度は慢性毒性に	係る200ppmの数値をあげている。	
	(1963年)				
	化学物質: 価シート	安全性(ハザード)評	記載なし		
	IDLH値が	あるか		YES	
	中枢神経	こ対する影響があるか		YES	
			図神経に対する影響を	NO	
		データを用いているか	•		
		<b>農度があるか</b>	LA	NO	
	有毒ガス	坊護判断基準値の設定	万法	文献等に基づき設定する	

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(243/379)

発電炉 (東海第二)	再処理施設	備考
	メタノールの有毒ガス防護判断基準値を2200ppmとする。 (根拠) ヒトの吸入毒性情報としては、産業中毒便覧において8時間×8800ppmが最小の影響濃度(軽い麻酔作用)とされていることから、IDLHの算出方法**に従い得られる2200ppmが中枢神経影響を考慮したIDLH相当値になると考えられる。 この値は動物への急性毒性データに基づくIDLH値(6000ppm)よりも小さく、ヒトへの中枢神経影響を考慮したものとして妥当であると考える。	
	※1:IDLHの算出方法については、「Derivation of Immediately Dangerous to Life or Health (IDLH) Values (NIOSH: 米国国立労働安全衛生研究所)」に詳細が記載されており、以下の式で求めることとしている。また、各係数の算出方法についても記載されている。 IDLH Value=P0D+UF(不確実係数)メ時間換算係数 =8800ppm÷10×2.5=2200ppm ・POD:動物対験やヒトの疫学調査などから得られた用量/反応評価の結果において、毒性反応曲線の基準となる出発点の値(8800ppm)・UF(不確実係数):動物試験やその他の情報に基づいて設定する不確実係数(10、下表参照)・時間換算係数:30分の毒性値に換算する際に用いる係数で、濃度とばく露時間の関係式(濃度の3乗×時間=一定)から算出(480分/30分)*(1/3) ≒2.5)  麦 動物の最小影響濃度(LOAEL)を用いた場合のIDLH算出事例  Table A-3. Acute toxicity data and 30-minute -equivalent non-lethal concentration values for chlorine  ***********************************	

# 【VI-1-5-2-1 制御室の居住性に関する説明書】(244/379)

発電炉 (東海第二)			再処理施設	L Ç	備考
	表 4-	-63 有毒カ			
		文献	(塩素)	記載内容	
	国際化学物質安全性カード (ICSC:0126 2009年3月) 短期ばく露の影響 す。この液体が急速に ある。吸入すると,喘 入すると,肺炎を引き 気道に腐食の影響が現			皮膚および気道に対して、腐食性を示	
				こ気化すると、凍傷を引き起こすことが	
				TERIXIDAで引き起こすことかめる。吸 き起こすことがある。吸入すると、眼や	
				現われてから排水腫を引き起こすこと	
				と、死を引き起こすことがある。	
	GHS モデ			単回ばく露):区分1(呼吸器)	
	IDLH	基準値 致死データ	10ppm 20公のIC (ラット	) : 357ppm [Back et al. 1972]	
	(1994)			<ul><li>の急性吸入毒性データに基づく。</li></ul>	
	人体のデータ [Freitag 1941; IL0				
	IDLH値があるか 中枢神経に対する影響があるか IDLH値の設定根拠として、中枢神経に対する影響を 考慮したデータを用いているか 最大許容濃度があるか 有毒ガス防護判断基準値の設定方法			YES	
				NO	
				-	
				-	
				IDLH値とする	
	塩素の有	毒ガス防護判断基準値	[を10ppmとする。		

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(245/379)

発電炉 (東海第二)		備考						
	表 4-64 中央	表 4-64 中央制御室の外気取入口と敷地内の固						
		定源との位置関係						
	放出点	有毒ガス	着目方位**1	距離	高度差			
		硝酸						
	主排気筒※2	NOxガス 一酸化窒素 混触NOx	NE	100 m	125 m ^{@3}			
		硝酸	SSW	80 m	0 m ³⁶⁴			
	低レベル廃液処理建屋	混触NOx	SW	90 m	0 m ³⁶⁴			
		10/10/10/10	SSW	10 m	0 m ³⁶⁴			
		硝酸	SW	10 m	0 m ³⁶⁴			
	分析建屋	混触NOx	WSW	10 m	0 m ³⁶⁴			
			W	30 m	0 m ³⁶⁴			
			Е	10 m	0 m ^{₩4}			
			ESE	10 m	0 m ³⁶⁴			
	山 1 株型井 日	硝酸	SE	10 m	0 m ³⁶⁴			
	出入管理建屋	混触NOx	SSE	10 m	0 m ^{₩4}			
			S	10 m	0 m ³⁶⁴			
			SSW	10 m	0 m ⁱ⁸⁶³			
	試薬建屋	硝酸 混触NOx	ENE	130 m	0 m ^{#4}			
	カニン競技連長	硝酸 液体二酸化窒素	SE	130 m	0 m ^{#4}			
	ウラン脱硝建屋	NOxガス 混触NOx	SSE	100 m	0 m ^{®4}			
	低レベル廃棄物処理建屋	硝酸	SW	140 m	0 m ³⁶⁴			
	以アンル熊栗初州理歴	混触NOx	WSW	140 m	0 m ³⁶⁴			
	使用済燃料受入れ・貯蔵建	硝酸	N	240 m	0 m ³⁶⁴			
	屋	混触NOx	NNE	230 m	0 m ³⁶⁴			
	模擬廃液貯蔵庫	硝酸 混触NOx	N	190 m	0 m ^{i6:4}			
	燃料加工建屋	硝酸	SSE	260 m	0 m ³⁶⁴			
	##T/加工和/生	混触NOx	S	250 m	0 m ^{₩4}			
	ガラス固化技術開発建屋	アンモニア	S	750 m	0 m ^{₩4}			
	ユーティリティ建屋	塩素	NNW	410 m	0 m ³⁶⁴			
	一般排水処理建屋	塩素	NNE	490 m	0 m ³⁶⁴			
	TAR DE LA CASA DE CASA		NE	500 m	0 m ^{‰4}			
	第2一般排水処理建屋	メタノール 塩素	NNE	490 m	0 m ^{₩4}			

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(246/379)

※1:評価点と放出点とを結んだ直線が含まれる風上側の方位を示す。 ※2:前処理建屋、分離建屋、精製建屋、ウラン・プルトニウム混合脱硝建屋、高レベル廃液ガラス固化建屋に内包する敷地内の固定源からの有毒ガスは、主排気筒から大気に放出されることを想定する。 ※3:主排気筒からの放出の有効高さは設計基準事故時を想定する。 ※4:各建屋に内包する敷地内の固定源からの有毒ガスは、評価点に最も近い建屋外壁からの地上放出を想定する。

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(247/379)

発電炉 (東海第二)	再処理施設 備考							
	表 4-65 「	中央制御室						
		動源と						
	放出点	有毒ガス						
	放田州	有母がへ	着目方位 ^{※1} ENE	距離 150 m	高度差 0 m ^{※2}			
			E	200 m	0 m ^{38/2}			
			ESE	200 m	0 m ^{30/2}			
			SE	210 m	0 m ^{36/2}			
			SSE	270 m	0 m ⁱ⁰ⁱ²			
	硝酸の輸送ルート	硝酸	S	490 m	0 m ^{38/2}			
			SSW	490 m	0 m ³⁶²			
			SW	520 m	0 m ^{₩2}			
			WSW	490 m	0 m ³⁶²			
			W	500 m	0 m ³⁶²			
			WNW	540 m	0 m ³⁸²			
			SE	90 m	0 m ³⁶²			
			SSE	70 m	0 m ³⁶²			
	液体二酸化窒素の輸送ルート アンモニアの輸送ル		S	60 m	0 m ^{36/2}			
		素	SSW	60 m	0 m ^{36/2}			
			SW	70 m	0 m ^{i@t2}			
			WSW	90 m	0 m ^{36/2}			
		アンモニア	S	720 m	0 m ³⁶²			
			SSW	720 m	0 m ^{#2}			
			NNE	470 m	0 m ³⁶²			
			NE ENE	290 m	0 m**2			
			ENE E	220 m 200 m	0 m ²			
	メタノールの輸送ル	メタノール	ESE	200 m	0 m ³⁶²			
	-1	797-10	SE	210 m	0 m ^{#2}			
			SSE	270 m	0 m ^{36/2}			
			S	490 m	0 m ^{36/2}			
			SSW	490 m	0 m ^{30/2}			
	L	  出点とを結ね						
	す。		·					
	※2:敷地内の可動源からの有毒ガスは,評価点から敷地内の可動							
	源の輸送ルートを見込む方位ごとに、外気取入口に最も近い輸送ルートの位置からの地上放出を想定する。							

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(248/379)

発電炉 (東海第二)		再処理	<b>建施設</b>			備考	
	表 4-66 使月						
	-> 1143 Per == -> / / /	の制御室の外気取入口と敷地内の固定源との位置関係					
	Hatte E						
	放出点	有毒ガス	着目方位*1	距離	高度差		
	主排気筒*2	硝酸 NOxガス 一酸化窒素 混触NOx	SE	100 m	140 m ³⁶³		
	低し、ごの療法加加時長	硝酸	S	330 m	0 m ^{⊕4}		
	低レベル廃液処理建屋	混触NOx	SSW	330 m	0 m ^{®4}		
	分析建屋	硝酸	S	260 m	0 m ⁸⁶⁻⁴		
	24 FT MECE	混触NOx	SSW	260 m	0 m ^{#4}		
	出入管理建屋	硝酸 混触NOx	S	250 m	O m ³⁶⁻⁴		
	試薬速屋	硝酸	SE	210 m	O m ³⁶⁶⁴		
	PORALE	混触NOx	SSE	200 m	0 m ^{®4}		
	ウラン脱硝速屋	硝酸 液体二酸化窒素 NOxガス 混触NOx	S	350 m	O m ⁴⁶⁻⁴		
		硝酸	SSW	360 m	0 m ⁱ⁰ⁱ⁻⁴		
	低レベル廃棄物処理建屋	混触NOx	SW	380 m	0 m ³⁶⁴		
	使用済燃料受入れ・貯蔵建屋	硝酸 混触NOx	_ #5	0 m	0 m ⁸⁶⁴		
	模擬廃液貯蔵庫	硝酸 混触NOx	SW	50 m	0 m ⁸⁶⁴		
	燃料加工建屋	硝酸 混触NOx	S	500 m	O m ^{36/4}		
	ガラス固化技術開発建屋	アンモニア	S	1000 m	0 m ³⁶⁻⁴		
	ユーティリティ建屋	塩素	NW	200 m	0 m ^{⊕4}		
	一一ノイソノイ和座	生术	NNW	220 m	0 m ⁸⁶⁻⁴		
	一般排水処理建屋	塩素	NE	280 m	0 m ³⁶⁴		
	The second secon		ENE	300 m	0 m ^{∞4}		
	第2一般排水処理建屋	メタノール 塩素	NE	270 m	O m ^{36.4}		
	- ※1:評価点と放出。 す。	点とを結んだ	直線が含まれ	1る風上側の	の方位を示		

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(249/379)

発電炉 (東海第二)		再処理施設							
	※2:前処理建屋,	分離建屋.	混						
	合脱硝建屋,		The state of the s						
	の固定源か								
	ことを想定		~ ~						
	※3:主排気筒から								
		る。							
	※4:各建屋に内包					点			
	に最も近い	建屋外壁から	らの地上放出	出を想定する	· > •				
	※5:使用済燃料の	の受入れ施設	と及び貯蔵旅	E設の制御室	は使用済燃	料			
	受入れ・貯	蔵建屋内にも	あることから	ら着目方位を	考慮しない	<b>\</b>			
	表 4-67 使								
			-						
	の制御室の外	ト気取入□	コと敷地に	内の可動液	原との位	置			
			関係						
	放出点	有毒ガス							
			SE	200 m	0 m ^{36:2}				
			SSE	220 m	0 m ^{36/2}				
			S	580 m	0 m ³⁶²				
	硝酸の輸送ルート	硝酸	SSW	740 m	0 m ⁻⁰⁵²				
				SW	610 m	0 m ³⁶²			
			WSW	560 m	0 m ³⁶²				
			W	540 m	0 m ³⁶²				
	液体二酸化窒素の輸		S	310 m	0 m ³⁶²				
	送ルート	素	SSW	310 m	0 m ^{366,2}				
	アンモニアの輸送ル	アンモニア	S	970 m	0 m ^{36/2}				
	- F		SSW NE	970 m	0 m ³⁶²				
			NE ENE	300 m 260 m	0 m ³⁶²				
			ENE E	240 m	0 m ⁻⁰ 2				
	メタノールの輸送ル		ESE	240 m 240 m	0 m ³⁰²				
	ート	メタノール	SE	240 m 250 m	0 m				
			SSE	320 m	0 m ³⁶²				
			S	580 m	0 m ^{39/2}				
		,	SSW	740 m	0 m ^{38/2}				
	が1・計画点と放出点とを相心に直縁が音よれる風上関い方位をか す。								
※2:敷地内の可動源からの有毒ガスは,評価点から敷地内の可動									
	· ·								
源の輸送ルートを見込む方位ごとに、外気取入口に最も近い 輸送ルートの位置からの地上放出を想定する。									
		ツル直かり(	ノ地上放出な	と心止りる。					

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(250/379)

発電炉 (東海第二)		再処理	施設		備考		
	表 4-68 安全						
		係るパラ	ラメータ				
	パラメータ	パラメータ 設定値 備考					
	堰面積[m²]	表4-72のと	延床面積又は5 mm り設定	厚さの表面積よ			
	大気圧[Pa]	1. 01325×1	「化学便覧 基礎 (日本化学会)よ				
	硝酸の分圧[Pa]	表4-73のと	おり 各建屋の平均濃度	より算出			
	硝酸の分子量[kg/kmol]	6. 301×10	「化学便覧 基礎 (日本化学会)よ				
	水の分子量[kg/kmol]	1.802×10	「化学便覧 基礎 (日本化学会)よ				
	ガス定数[J/kmol・K]	8.314×10	「化学便覧 基礎 (日本化学会)よ				
	温度[K]	3.0315×1	02 温度の実測値に基・	づき設定			
	風速[m/s]	7×10 ⁻¹	風速の実測値に基	づき設定			
	堰直径[m]	1×10°	<ul><li>堰直径が小さいほくなるため,通常の</li><li>1mに設定</li></ul>				
	空気の動粘性係数[m²/s]	1.58×10	「化学便覧 基礎 (日本化学会)よ				
	水の空気中における拡散係 数[m²/s]	2. 22×10	「化学便覧 基礎 (日本化学会)よ 互拡散係数)				
	表 4-69 安全	上重要な	構築物における	硝酸の堰			
		面	積				
	建屋	延床面積[m²]	5 mm厚さの表面積 [m²]	堰面積 ^{※1} [m²]			
	前処理建屋	5. 40×10 ⁴	5.90×10 ⁴	5. 40×10 ⁴			
	分離建屋	3.99×10 ⁴	1. 64×10 ⁵	3.99×10 ⁴			
	精製建屋	5. 85×10 ⁴	1.58×10 ⁵	5. 85×10 ⁴			
	ウラン・ブルトニウム混 合脱硝建屋	1.08×10 ⁴	5. 41×10³	5. 41×10³			
	高レベル廃液ガラス固化 建屋	3.06×10 ⁴	1.05×10 ⁵	3.06×10 ⁴			
		に時点で停止す	E床面積に達するか, することを踏まえ, 小さいほうの面積を	延床面積と5			

# 【VI-1-5-2-1 制御室の居住性に関する説明書】(251/379)

発電炉 (東海第二)	明明主の日日日に日	備考				
7 =	表4-70 安全	2				
	建屋	1/2(/)	度及び分月 液量[㎡]	平均濃度[mol/L]	分圧[Pa]	
	前処理建屋		2. 95×10 ²	3.54×10°	2. 23×10°	
	分離建屋		8. $22 \times 10^2$	3.85×10°	2.66×10°	
	精製建屋		$7.89 \times 10^{2}$	3.63×10°	2.34×10°	
	ウラン・ブルトニウム混合脱砕	有建屋	$2.71 \times 10^{1}$	2.73×10°	1.36×10°	
	高レベル廃液ガラス固化建屋		$5.25 \times 10^{2}$	1.24×10°	5. 19×10 ⁻¹	
	表4-71 安全 の蒸		要な構築に係るパラ		屋の硝酸	
	パラメータ	1	投定値	備考		
	堰面積[m²]	表4-	75のとおり	延床面積又は5 mm/ り設定	厚さの表面積よ	
	大気圧[Pa]	1. 0	1325×10 ⁵	「化学便覧 基礎線 (日本化学会)より		
	硝酸の分圧[Pa]		76のとおり	各建屋の平均濃度よ	り算出	
	硝酸の分子量 [kg/kmo1]	6.	$301 \times 10^{2}$	「化学便覧 基礎線 (日本化学会)より		
	水の分子量[kg/kmol]	1.8	802×10 ¹	「化学便覧 基礎線 (日本化学会)より		
	ガス定数[J/kmol・K]	8.3	314×10 ¹	「化学便覧 基礎線 (日本化学会)より		
	温度[K]		315×10 ² 015×10 ² )	温度の実測値に基づ () 内は模擬廃液貯す		
	風速[m/s] 1×10 ⁻²		×10 ⁻²	風速の実測値に基づ	き設定	
	堰直径[m]		1×10°	堰直径が小さいほ。 くなるため、通常の 1mに設定		
		1.	58×10 ⁻⁵	「化学便覧 基礎和 (日本化学会)より		
	空気の動粘性係数[m²/s]		65×10 ⁻⁶ )	()内は模擬廃液貯 粘性係数を示す		
	水の空気中における拡散係 数[m²/s]	2.	22×10 ⁻⁵	「化学便覧 基礎線 (日本化学会)より 互拡散係数)		

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(252/379)

発電炉(東海第二)		再処理旅	<b>正</b> 設		備考
	表4-72 安全上重	ける			
	<b>建屋</b>	1			
	低レベル廃液処理建屋	延床面積[m²] 7.80×10 ³	5 mm厚さの表面積[m²] 1.50×10³	堰面積 ^{※1} [m ² ] 1.50×10 ³	1
	分析建屋	1.47×104	$4.00 \times 10^{2}$	4. 00×10 ²	1
	出入管理建屋	$9.20 \times 10^{3}$	$3.00 \times 10^{1}$	3.00×10 ¹	]
	試薬建屋	$8.37 \times 10^{2}$	$1.19 \times 10^4$	$8.37 \times 10^{2}$	]
	ウラン脱硝建屋	$7.50 \times 10^{3}$	$1.28 \times 10^{3}$	$1.28 \times 10^{3}$	
	低レベル廃棄物処理建屋	$3.80 \times 10^{4}$	_ <del>*</del> 2	_#2	
	使用済燃料受入れ・貯蔵建屋	$2.82 \times 10^4$	_#2	_#2	
	模擬廃液貯蔵庫	$1.37 \times 10^{2}$	$2.60 \times 10^{3}$	$1.37 \times 10^{2}$	]
	燃料加工建屋	_#3	$2.00 \times 10^{1}$	2.00×10 ¹	
	※1:硝酸ガスの比重は2	2.2と空気よ	り重いことから	,換気設備	が停
	止した状態では地	下階の液だ	まりから硝酸が	気化したと	して
	も地下階に留まる。	このため.	地上階にある液	だまりから	蒸発
	した硝酸ガスの全				
	上階で漏えいした				
	さの表面積に達し				
	と5mm厚さの表面を				
	※2:硝酸を保有する貯槽				
	設定する敷地内の	固定源がなり	ハことから,「-	・」と記載し	た。
	※3:設計段階のため「-	-」と記載し	<i>、</i> た。		
	表4-73 安全上重	重要な構築	薬物以外の建	屋の硝酸	俊の
	平均	硝酸濃度	を ひかり とうしょう こうしょう こうしょ こうしょ ひんしょ ひんしょ ひんしょ しょう しょう しょう しょう しょう しょう しょう しょう しょう し		
	建屋	液量[m³]	平均濃度[mol/L]	分圧[Pa]	
	低レベル廃液処理建屋	$7.50 \times 10^{0}$	1.36×10 ¹	$3.08 \times 10^{2}$	
	分析建屋	2.00×10°	1.36×10 ¹	$3.08 \times 10^{2}$	
	出入管理建屋	1. 50×10 ⁻¹	2. 00×10 ⁻¹	2.50×10 ⁻¹	
	対薬建屋	5. 97 × 10 ¹	9.56×10°	5. 04×10 ⁻¹	
	ウラン脱硝建屋 低レベル廃棄物処理建屋	6.39×10°	5. 70×10 ⁻¹ _#1	3. 26×10 ⁻¹ _₩1	
	使用済燃料受入れ・貯蔵建屋	_#I	_#I	_#1	
	模擬魔液貯蔵庫	1.30×10 ¹	2,00×10°	1. 47×10 ^{1⊕2}	
	燃料加工建屋	1. 00×10 ⁻¹	1. 10×10°	4. 71×10 ⁻¹	
	※1:硝酸を保有する貯料	・ 曹は地下陸の	りみに設置されて	対象	<b>急</b> 上
	なる敷地内の固定				
	※2:保管している硝酸/				れて
	いる40°C, 30wt%に			III/IIE C/1.C/	
	V 70 ±0 C, 50W L/0(C	-4017/07/11	- 凸 印製 レ /こ。		

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(253/379)

表4-74 ウラン脱硝建屋の液体二酸化窒素の放出 率(に係るパラメータ	発電炉 (東海第二)		再処理施設				
パラメータ   設定額		表4-74 ウラ					
一般化重素の分子量   4.601×10 ¹   601×10 ²   601×10 ²							
(Re/Remo1] 4.601×10 ¹ 会)より (日本化学 会)より (日本化学 会)より (日本化学 会)より (国産(A) また) (日本化学 会)より (国産(A) また) (日本化学 会)より (国産(A) また) (日本化学 会)より (国産(A) ため 日本化学 会)より (国産(A) ため 日本化 日本化学 会)より (国産(A) ため 日本化		パラメータ	設定値	備考			
本の分子量(kg/kmol)   1.802×10 ⁴			4. 601×1	$0^1$			
大久田   大大田   大大田   大田		水の分子量[kg/kmol]	1. 802×1	01			
(係数(a*/s) 2.2×10* 会) より (資素/水の相互拡影係数) 質量農皮均配 (1.36×10*kg) を終下階の空間		温度[K]	3.0315×1	102 温度の実測値に基づき設定			
容量(1,17×10 ¹ m ¹ ) で割った値 (地上階の二 機化業業農度は 0 kg/m ² であるとする) 並散経路の断面積(m ² ) 3,505×10 ² 地下階と地上階間の吹き抜け部の断面積の 総和   表4 - 75 高レベル廃液ガラス固化建屋の一酸化室 素の気体流出率に係るパラメータ パラメータ 設定値 備考 「石油コンピナートの防災アセスメント指針」では 不明の場合の5とすると記載されているが、厳しい評価結果を与えるように1とした 設出孔面積[m ² ] 3,7×10 ⁻⁴ 設出孔面積[m ² ] 7,8×10 ⁴ 存部日エカトロコンピナートの防災アセスメント指針」では 本明の場合の5とすると記載されているが、厳しい評価結果を与えるように1とした 財権に接続している最大の配管値を持つ配管(φ 21.7) が破断した場合の流出孔面積 存部日エカトロコンピナールの防災アセスメント指針」より 気体のモル重量 [kg/mo1] 1,01325×10 ⁴ 気体のモル重量 [kg/mo1] 「化学便覧 基礎編 改訂5版」(日本化学会)より 気体の圧縮係数 1 (連想気体の場合を仮定) 気体のほんが高さないであるとする。 では受している。 「石油コンピナートの防災アセスメント指針」より (連想気体の場合を仮定) 気体が変援[/mo1・K] 8,314×10 ² 「化学便覧 基礎編 改訂5版」(日本化学会)より			t散 2.22×10	) ^{-b}			
表4-75 高レベル廃液ガラス固化建屋の一酸化室素の気体流出率に係るパラメータ  パラメータ 設定値 偏考 「石油コンビナートの防災アセスメント指針」では 不明の場合の5とすると記載されているが、厳しい評価結果を与えるように1とした			-2. 33×1	0° 容量 (1.17×10 ⁴ m³) で割った値 (地上階の二			
素の気体流出率に係るパラメータ    パラメータ   設定値   備考   「石油コンピナートの防災アセスメント指針」では		拡散経路の断面積[m²]	3.505×1	02			
「石油コンビナートの防災アセスメント指針」では 不明の場合0.5とすると記載されているが、厳しい評価結果を与えるように1とした  貯槽に接続している最大の配管径を持つ配管(φ 21.7)が破断した場合の流出孔面積  容器内圧力[Pa] 7.8×10 ⁵ 設計上の通常運転圧力  大気圧[Pa] 1.01325×10 ⁵ 「化学便覧 基礎編 改訂 5 版」(日本化学会)より  気体のモル重量 [kg/mo1] 「化学便覧 基礎編 改訂 5 版」(日本化学会)より  気体の圧縮係数 1 「石油コンビナートの防災アセスメント指針」より (理想気体の場合を仮定)  気体定数[J/mo1・K] 8.314×10 ⁶ 「化学便覧 基礎編 改訂 5 版」(日本化学会)より		素の含	気体流出	率に係るパラメータ			
流出孔面積[m2]     3.7×10 ⁻⁴ 21.7) が破断した場合の流出孔面積       容器内圧力[Pa]     7.8×10 ⁵ 大気圧[Pa]     1.01325×10 ⁵ 気体のモル重量 [kg/mo1]     3.001×10 ⁻² 「化学便覧 基礎編 改訂 5 版」(日本化学会)より       気体の圧縮係数     1       「石油コンビナートの防災アセスメント指針」より (理想気体の場合を仮定)       気体定数[J/mo1・K]     8.314×10 ⁰ 「化学便覧 基礎編 改訂 5 版」(日本化学会)より			1 :	「石油コンピナートの防災アセスメント指針」では 不明の場合0.5とすると記載されているが,厳しい評			
大気圧[Pa]     1.01325×10 ⁵ 「化学便覧 基礎編 改訂 5 版」(日本化学会)より       気体のモル重量 [kg/mol]     3.001×10 ⁻² 「化学便覧 基礎編 改訂 5 版」(日本化学会)より       気体の圧縮係数     1     「石油コンビナートの防災アセスメント指針」より (理想気体の場合を仮定)       気体定数[J/mol・K]     8.314×10 ⁰ 「化学便覧 基礎編 改訂 5 版」(日本化学会)より		流出孔面積[m2] 3.7×10 ⁻⁴ 貯		The state of the s			
気体のモル重量 [kg/mo1]     3.001×10 ⁻² 「化学便覧 基礎編 改訂 5 版」(日本化学会)より       気体の圧縮係数     1     「石油コンピナートの防災アセスメント指針」より (理想気体の場合を仮定)       気体定数[J/mo1・K]     8.314×10 ⁰ 「化学便覧 基礎編 改訂 5 版」(日本化学会)より		容器内圧力[Pa]	7.8×10 ⁵	設計上の通常運転圧力			
[kg/mol]     3.001×10°²     「化学便覧 基礎編 改訂5版」(日本化学会)より       気体の圧縮係数     1     「石油コンピナートの防災アセスメント指針」より(理想気体の場合を仮定)       気体定数[J/mol・K]     8.314×10°     「化学便覧 基礎編 改訂5版」(日本化学会)より			1.01325×10 ⁵	「化学便覧 基礎編 改訂5版」(日本化学会)より			
気体の圧縮係数 1 (理想気体の場合を仮定) 気体定数[J/mol・K] 8.314×10° 「化学便覧 基礎編 改訂 5 版」(日本化学会) より			3.001×10 ⁻²	「化学便覧 基礎編 改訂5版」(日本化学会)より			
		気体の圧縮係数	1				
容器内温度[K] 3.1315×10 ² 貯槽の運転温度		気体定数[J/mol・K]	$8.314 \times 10^{0}$	「化学便覧 基礎編 改訂5版」(日本化学会)より			
気体の比熱比 1.425 「流体の熱物性値集」(日本機械学会)より		気体の比熱比	1. 425	「流体の熱物性値集」(日本機械学会)より			

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(254/379)

発電炉 (東海第二)	加斯士"	再処	備考	
	表4-76 ガラ	ス固化技		
	蒸	発率に依		
	パラメータ			
	<b>堰面積[m²]</b>	2.60×10 ³	漏えいした液の広がりが、延床面積に塗するか、 5mm厚さの表面積に達した時点で停止すること を踏まえ、延床面積と5mm厚さの表面積を比較 し、小さいほうの面積を設定	
	大気圧[Pa]	1. 01325×10 ⁵	「化学便覧 基礎編 改訂5版」(日本化学会) より	
	アンモニアの分圧[Pa]	7.53×10 ⁴	「Perry's Chemical Engineers' Handbook SEVENTH EDITION」 (McGraw Hill) に纏められて いる約32.2℃ (華氏90度) における濃度ごとの分 圧のデータから、25wt%を内挿して得られる分圧	
	アンモニアの分子量 [kg/kmol]	1. 703×10 ¹	「化学便覧 基礎編 改訂5版」(日本化学会) より	
	水の分子量[kg/kmol]	1.802×101	「化学便覧 基礎編 改訂5版」(日本化学会) より	
	ガス定数[J/kmol・K]	8. 314×10 ³	「化学便覧 基礎編 改訂5版」(日本化学会) より	
	温度[K]	$3.0315 \times 10^{2}$	温度の実測値に基づき設定	
	風速[m/s]	1×10 ⁻²	風速の実測値に基づき設定	
	堰直径[m]	1×10°	堰直径が小さいほど蒸発率が大きくなるため,通 常の廊下幅より短い1mに設定	
	空気の動粘性係数 [m²/s]	1.58×10 ⁻⁵	「化学便覧 基礎編 改訂5版」(日本化学会) より	
	水の空気中における拡散 係数[m²/s]	2. 22×10 ⁻⁵	「化学便覧 基礎編 改訂5版」(日本化学会) より(窒素/水の相互拡散係数)	

## 【VI-1-5-2-1 制御室の居住性に関する説明書】(255/379)

発電炉(東海第二)		備考				
	表4-77 第2-	· ·				
	新	発率に係るパラメータ				
	パラメータ	設定値	備考			
	堰面積[m²]	5.98×10 ²	漏えいした液の広がりが、延床面積に達する か、5mm厚さの表面積に達した時点で停止する ことを踏まえ、延床面積と5mm厚さの表面積を 比較し、小さいほうの面積を設定			
	大気圧[Pa]	1.01325×10 ⁵	「化学便覧 基礎編 改訂5版」(日本化学会) より			
	メタノールの分圧[Pa]	1.58×10 ⁴	「Perry's Chemical Engineers' Handbook SEVENTH EDITION」 (McGraw Hill) に纏められ ている39.9℃における濃度ごとの分圧のデー タから、50wt%を内挿して得られる分圧			
	メタノールの分子量 [kg/kmol]	$3.204 \times 10^{1}$	「化学便覧 基礎編 改訂5版」(日本化学会) より			
	水の分子量[kg/kmol]	$1.802 \times 10^{1}$	「化学便覧 基礎編 改訂5版」(日本化学会) より			
	ガス定数[J/kmol・K]	8.314×10 ³	「化学便覧 基礎編 改訂5版」(日本化学会) より			
	温度[K]	$3.1015 \times 10^{2}$	温度の実測値に基づき設定			
	風速[m/s]	1×10 ⁻²	風速の実測値に基づき設定			
	堰直径[m]	$1\times10^{0}$	堰直径が小さいほど蒸発率が大きくなるため, 通常の廊下幅より短い1mに設定			
	空気の動粘性係数 [m²/s]	1.65×10 ⁻⁵	「化学便覧 基礎編 改訂5版」(日本化学会) より			
	水の空気中における拡 散係数[m²/s]	2. 22×10 ⁻⁶	「化学便覧 基礎編 改訂5版」(日本化学会) より (窒素/水の相互拡散係数)			
	表4-78 各建		NOxの生成率に係るパラメ ータ			
	パラメータ	設定	值 備考			
	炭素鋼(鉄)密度[kg/m3]	7. 86>	「流体の熱物性値集」(日本機械学会) より			
	硝酸と炭素鋼との接触面積	[m ² ] 表 4-82	のとおり			
	腐食速度[mm/h]	表 4-83	のとおり			
	二酸化窒素の分子量 [g/mo1]	4. 601	×10 ¹ 「化学便覧 基礎編 改訂 5 版」(日 本化学会)より			
	炭素鋼(鉄)の原子量 [g/mol]	5. 5845	×10 ¹ 「化学便覧 基礎編 改訂 5 版」(日 本化学会)より			

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(256/379)

発電炉(東海第二)	再処理	施設	備考
	表4-79 各建屋における	硝酸と炭素鋼との接触面	
	種		
	建屋	接触面積[m²]	
	前処理建屋※1	5. 40×10 ²	
	分離建屋※1	$3.99 \times 10^{2}$	
	精製建屋*1	5.85×10 ²	
	ウラン・プルトニウム混合脱硝建屋 ^{※1}	5. 41×10 ¹	
	高レベル廃液ガラス固化建屋*1	$3.06 \times 10^{2}$	
	低レベル廃液処理建屋 ^{※2}	2. 1×10°	
	分析建屋※2	9. 4×10°	
	出入管理建屋 ^{※2}	1.8×10°	
	試薬建屋※2	9. 1×10°	
	ウラン脱硝建屋 ^{※2}	1. 0×10°	
	低レベル廃棄物処理建屋 ^{※3}	_	
	使用済燃料受入れ・貯蔵建屋#3	_	
	模擬廃液貯蔵庫 ^{※2}	5. 6×10°	
	燃料加工建屋等4	1.8×10°	
	定源の近傍にある硝酸と反応 部材のうち、塗装されていた 積を硝酸と炭素鋼との接触面 ※3:硝酸を保有する貯槽は地下階	設置された敷地内の固定源から の接触面積を考慮し、敷地内の固 なして窒素酸化物を生成する構成 ない部分の面積を調査し、当該面 面積として設定した。 のみに設置されており、接触面 原がないことから、「一」と記載	

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(257/379)

発電炉 (東海第二)		再処	理施設		備考
	表4-80 安全	上重要	な構築物におり	ナる腐食速度	
	建屋		硝酸濃度 ^{※1} [mol/L]	腐食速度[mm/h]	
	前処理建屋		6.0×10° (32wt%)	8. 69×10 ⁻¹	
	分雕建屋		6.0×10° (32wt%)	8. 69×10 ⁻¹	
	精製建屋		4.0×10° (22wt%)	2. 95×10 ⁻¹	
	ウラン・ブルトニウム混合肌	脱硝建屋	5.0×10° (27wt%)	3.85×10 ⁻¹	
	高レベル廃液ガラス固化建原	量	2.0×10° (12wt%)	1. 69×10 ⁻¹	
	低レベル廃液処理建屋		1.36×101 (62wt%)	1. 00×10 ⁻³	
	分析建屋		1.36×101 (62wt%)	1. 00×10 ⁻³	
	出入管理建屋		2. 0×10 ⁻¹ (12wt%)	2. 50×10 ⁻³	
	試薬建屋		1.36×10 ¹ (62wt%)	1. 00×10 ⁻³	
	ウラン脱硝建屋		7.0×10° (36wt%)	4. 96×10 ⁻²	
	模擬廃液貯蔵庫		2.0×10° (12wt%)	1. 69×10 ⁻¹	
	燃料加工建屋		2.0×10° (12wt%)	1. 69×10 ⁻¹	
	表4-81 各建原 パラメータ 塩素の生成量[mol] 表	<b>量の塩素</b> 設定値 4-110のとお	備	考 ぶ混和による有毒ガスの	
	放出の継続時間[h]	1	力とした建屋外への放出 の化学物質との接触及で 慮で設定	出において律速となる他 が混合に要する時間を考	
	塩素分子量[g/mo1]	7. 0892×10 ¹	「化学便覧 基礎編 改 より	訂 5 版」(日本化学会)	

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(258/379)

VI- 1 - 5 - Z -	1 刚仰至少		- · · · · ·	· · · ·		
発電炉(東海第二)		·	再処理施設	ι ζ		備考
	表4-82	各建屋で	保有する名	各化学物質	の保有量※1	
	建屋	次亜塩素酸ナト	硫酸n ₂ [mol]	ポリ塩化アルミ	塩素の生成量n	
	ユーティリテ	リウムn ₁ [mol]		ニウムn ₃ [mol]	[mol]	
	ィ建屋	5. 80×10 ³	7.96×10 ⁴	1. 44×10 ³	4.70×10 ³	
	一般廃水処理	6. 38×10 ³	1.09×10 ³	8. 62×10 ²	3.25×10 ³	
	第2一般廃水					
	処理建屋	2. 62×10 ³	$1.82 \times 10^{2}$	2. 10×10 ²	7. 10×10 ²	
		ティリティ建屋				
		ポリ塩化アルコ				
					て塩素が生成す つ 2 倍以下であ	
					塩素が生成す	
		たがって、塩素	素の生成量を具	以下のとおり記		
		n =	$\frac{5}{2}n_3 + \frac{1}{2}(n_1 - n_2)$	$-\frac{5}{2}n_3$		
	─				こついては、次	
					ニウムの保有量	
					ミニウムが全量	
					を酸ナトリウム して塩素が生成	
		したがって、「				
	, 30	0,20	$n = \frac{5}{2}n_3 + r$		, H131 0 120	
			$n = \frac{1}{2}n_3 + r$	$l_2$		

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(259/379)

	- 1 前御主の店住住に			備考		
発電炉(東海第二)	The second second	再処理施設				
	表4-83 敷地	表4-83 敷地内の可動源の硝酸の蒸発率に係るパ				
		ラメー	-タ			
	パラメータ	設定値	備考			
	堰面積[m²]	1. 46×10 ³	最大輸送量7.3m³と厚さ5mmより算出			
	大気圧[Pa]	1.01325×10 ⁵	「化学便覧 基礎編 改訂5版」(日本化 学会)より			
	硝酸の分圧[Pa]	7.6×10 ²	硝酸濃度より算出			
	硝酸の分子量 [kg/kmol]	6. 301×10 ¹	「化学便覧 基礎編 改訂5版」(日本化 学会)より			
	水の分子量[kg/kmol]	1.802×10 ¹	「化学便覧 基礎編 改訂5版」(日本化 学会)より			
	ガス定数[J/kmol・K]	8.314×10 ³	「化学便覧 基礎編 改訂5版」(日本化 学会)より			
	温度[K]	3. 1015×10 ²	八戸特別地域気象観測所の日最高気温の 観測記録			
	風速[m/s]	2013年度の敷地にお	ける気象観測結果の風速			
	堰直径[m]	1×10°	堰直径が小さいほど蒸発率が大きくなる ため,通常の廊下幅より短い1mに設定			
	空気の動粘性係数 [m²/s]	1.65×10 ⁻⁵	「化学便覧 基礎編 改訂5版」(日本化 学会)より			
	水の空気中における拡散 係数[m²/s]	2. 22×10 ⁻⁶	「化学便覧 基礎編 改訂5版」(日本化 学会)より(窒素/水の相互拡散係数)			

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(260/379)

発電炉 (東海第二)		備考					
	表4-84 敷	表4-84 敷地内の可動源の液体二酸化窒素の放出					
		率に係るパラメータ					
	パラメータ	設定値	備考				
			表4-88より算出される液体二酸化窒素のフラ				
	フラッシュ率	2. 0×10 ⁻²	ッシュ率は1.564×10 ⁻² となるため, 厳しい評価				
			結果を与えるように2.0×10 ⁻² とした 「石油コンビナートの防災アセスメント指針」				
	流出係数	1	では不明の場合0.5とすると記載されている				
	DEPARTS.	-	が、厳しい評価結果を与えるように1とした				
	流出孔面積[m²]	3.9×10 ⁻⁴	抜出し管 (内径: φ22.2) が破断した場合を想				
	(元日子に加州美[m]	3.9 10	定し、流出孔面積を配管の断面積とした				
	重力加速度[m/s²]	9.807	「化学便覧 基礎編 改訂5版」(日本化学会)				
	液面と流出孔の高さ		より				
	の差[m]	1. 322	設計上の容器の液面高さ				
	容器内圧力[Pa]	1.90×10 ⁵	設計上の最高充填圧力				
	大気圧[Pa]	1.01325×10 ⁵	「化学便覧 基礎編 改訂5版」(日本化学会) より				
	液密度[kg/m³]	1. $45 \times 10^3$	国際化学物質安全性データシートより				
	表4-85 液位		素のフラッシュ率に係るパメータ				
	パラメータ	設定值	備考				
	沸点での蒸発潜熱 [J/kg]	8.32×10 ⁵	東横化学株式会社ホームページより				
	LJ/kg」 液体の比熱(容器内		東横化字株式会社ホームペーシより (https://www.toyokokagaku.co.jp/product				
	温度~沸点間の平	$8.23 \times 10^{2}$	/gas/ physical/no2.html) 。				
	均) [J/kg·K]						
	容器內温度[K]	3. $1015 \times 10^2$	八戸特別地域気象観測所の日最高気温の観測 記録				
	液体の大気圧での沸 点[K]	$2.9435 \times 10^{2}$	国際化学物質安全性データシートより				

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(261/379)

発電炉 (東海第二)		再処理施	· · · · · · · · · · · · · · · · · · ·	備考		
20-10/2 (21-1-4-2)(	表4-86 敷地區	表4-86 敷地内の可動源のアンモニアの蒸発率に				
		係るパラメータ				
	パラメータ	設定値	備考			
	堰面積[m²]	6.00×10 ²	最大輸送量3m³と厚さ5mmより算出			
	大気圧[Pa]	1.01325×10 ⁵	「化学便覧 基礎編 改訂5版」(日 本化学会)より			
	アンモニアの分圧[Pa]	7.53×10 ⁴	表4-79に同じ			
	アンモニアの分子量 [kg/kmol]	1.703×10 ²	「化学便覧 基礎編 改訂5版」(日本化学会)より			
	水の分子量[kg/kmol]	1.802×10 ¹	「化学便覧 基礎編 改訂5版」(日 本化学会)より			
	ガス定数[J/kmol・K]	8.314×10 ³	「化学便覧 基礎編 改訂5版」(日 本化学会)より			
	温度[K]	3.0315×10 ²	八戸特別地域気象観測所の日最高気 温の観測記録			
	風速[m/s]	2013年度の敷地におけ				
	堰直径[m]	1×10°	堰直径が小さいほど蒸発率が大きく なるため、通常の廊下幅より短い1m に設定			
	空気の動粘性係数[m²/s]	1.58×10 ⁻⁶	「化学便覧 基礎編 改訂5版」(日 本化学会)より			
	水の空気中における拡散 係数[m²/s]	2. 22×10 ⁻⁵	「化学便覧 基礎編 改訂5版」(日本化学会)より(窒素/水の相互拡散 係数)			

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(262/379)

発電炉 (東海第二)		1. 7		
7□ F□/7 \	表4-87 動物内	再処理施設の可動源のは	メタノールの蒸発率に	V. HIM
	AT OF MALE	係るパラメ		
	パラメータ	設定値	備考	
	堰面積[m²]	6. 00×10 ²	最大輸送量3m³と厚さ5mmより算出	
	大気圧[Pa]	1. 01325×10⁵	「化学便覧 基礎編 改訂5版」 (日本化学会)より	
	メタノールの分圧[Pa]	1.58×10 ⁴	表4-80に同じ	
	メタノールの分子量 [kg/kmol]	3. 204×10 ¹	「化学便覧 基礎編 改訂5版」 (日本化学会)より	
	水の分子量[kg/kmo1]	1.802×10 ¹	「化学便覧 基礎編 改訂5版」 (日本化学会)より	
	ガス定数[J/kmol・K]	8. 314×10 ³	「化学便覧 基礎編 改訂5版」 (日本化学会)より	
	温度[K]	3. 1015×10 ²	八戸特別地域気象観測所の日最高 気温の観測記録	
	風速[m/s]	2013年度の敷地における		
	堰直径[m]	1×10°	堰直径が小さいほど蒸発率が大き くなるため,通常の廊下幅より短い 1 mに設定	
	空気の動粘性係数[m²/s]	1.65×10 ⁻⁶	「化学便覧 基礎編 改訂5版」 (日本化学会)より	
	水の空気中における拡散係 数[m²/s]	2. 22×10 ⁻⁵	「化学便覧 基礎編 改訂5版」 (日本化学会)より(窒素/水の相 互拡散係数)	

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(263/379)

接出点	発電炉(東海第二)	問題主が旧任任に因	再処理施設		備考
連続		表4-88 敷地内0	ガスの放出率		
連続		放出点	有毒ガス	放出率[kg/s]	
歴レベル模談処理連盟					
振舵 1.4×10 ⁻¹ 旧総202 1.1×10 ⁻² 日総202 1.1×10 ⁻² 日総202 1.1×10 ⁻² 日総202 1.1×10 ⁻² 日総202 1.2×10 ⁻² 日本202		主排気筒	一酸化窒素	6. 7×10 ⁻¹	
版いつ、			混触NOx	5. 7×10°	
通熱的な   1.1×10 ²   回熱的な   3.8×10 ⁴   回熱的な   5.1×10 ⁴   回熱的な   5.1×10 ⁴   回熱的な   2.3×10 ⁴   回熱的な   2.4×10 ²   回熱的な   4.9×10 ²   回熱的な   4.9×10 ²   回熱的な   4.9×10 ²   回納を   1.3×10 ⁴		Mr. and delete and C	硝酸	1. 4×10 ⁻³	
照触が次 5.1×10 ⁻²		低レベル廃液処理建屋	混触NOx	1.1×10 ⁻⁵	
議論が次 5.1×10 ²		AKHE	硝酸	3.8×10 ⁻⁴	
出入管理建歴   混整の0x		分析煙屋	混触NOx	5. 1×10 ⁻⁵	
議験00x 2.4×10 ² 前酸 1.3×10 ²		山工禁即选品	硝酸	2.3×10 ⁻⁸	
議論NO ₃		山八官理建崖	混触NOx	2.4×10 ⁻⁵	
議験NOx 4.9×10 ⁴		상황과문	硝酸	1.3×10 ⁻⁴	
京体   一般化窒素及UNOxガス   1.4×10²   三級MOX   2.6×10²4   日報		<b>內果</b> 種座	混触NOx	4.9×10 ⁻⁵	
照触のx 2.6×10 ⁻⁴ 前酸 -=*1 前酸 -=*1 預触のx -=*1 預触のx -=*1 預触のx -=*1 預整のx -=*1			硝酸	1.3×10 ⁻⁶	
(低レベル廃棄物処理建屋 開酸 -@1 (使用済燃料受入れ・貯蔵建屋 研酸 -@1 混触が0x -@1 混触が0x -@1 混触が0x -@1 混触が0x 5.1×10 ⁻³ が料加工建屋 研酸 2.9×10 ⁻⁸ 混触が0x 1.6×10 ⁻³ ガラス関化技術開発建屋 アンモニア 4.7×10 ⁻¹ ユーティリティ建屋 塩素 9.3×10 ⁻² 一般排水処理建屋 塩素 6.4×10 ⁻² 一般排水処理建屋 塩素 6.4×10 ⁻² 第2 一般排水処理建屋 メタノール 2.0×10 ⁻² 塩素 1.4×10 ⁻² ※1: 硝酸を保有する貯槽は地下階のみに設置されており、漏えい が発生した場合でも有毒ガスが地下階にとどまることで外部		ウラン脱硝建屋	液体二酸化窒素及びNOxガス	1. 4×10 ⁻²	
<ul> <li>低レベル廃棄物処理建量</li> <li>提触NOx</li> <li>一⁸¹</li> <li>積酸</li> <li>一⁸¹</li> <li>混触NOx</li> <li>一⁸¹</li> <li>複擬院液貯蔵庫</li> <li>硝酸</li> <li>6.0×10⁻⁶</li> <li>混触NOx</li> <li>5.1×10⁻³</li> <li>         が科加工建量</li> <li>         が所数</li> <li>2.9×10⁻⁶</li> <li>混触NOx</li> <li>1.6×10⁻³</li> <li>ガラス間化技術開発建量</li> <li>アンモニア</li> <li>4.7×10⁻¹</li> <li>ユーティリティ建量</li> <li>塩素</li> <li>9.3×10⁻²</li> <li>一般排水処理建量</li> <li>塩素</li> <li>6.4×10⁻²</li> <li>第2一般排水処理建量</li> <li>メタノール</li> <li>2.0×10⁻²</li> <li>塩素</li> <li>1.4×10⁻²</li> <li>※1: 硝酸を保有する貯槽は地下階のみに設置されており、漏えいが発生した場合でも有毒ガスが地下階にとどまることで外部</li> </ul>			混触NOx	2.6×10 ⁻⁴	
振触NOx ー**I		低レベル廃棄物処理建屋	硝酸	_#1	
使用済燃料受入れ・貯蔵建屋 混絵VOX -#1			混触NOx		
議権WOX*1 横縦廃液貯蔵庫		使用溶燃料受入れ・貯蔵建局	硝酸		
複擬院液貯蔵庫   混触NOx   5.1×10 ⁻³   回酸   2.9×10 ⁻⁸   混触NOx   1.6×10 ⁻³   混触NOx   1.6×10 ⁻³		E/II DA WALL STANDANDE	混触NOx	_*1	
機料加工建屋 硝酸 2.9×10 ⁻⁸ 混触NOx 1.6×10 ⁻³ ガラス固化技術開発建屋 アンモニア 4.7×10 ⁻¹ ユーティリティ建屋 塩素 9.3×10 ⁻² 一般排水処理建屋 塩素 6.4×10 ⁻² 塩素 6.4×10 ⁻² 塩素 1.4×10 ⁻² ※1:硝酸を保有する貯槽は地下階のみに設置されており、漏えいが発生した場合でも有毒ガスが地下階にとどまることで外部		<b>機</b> 緊疫 疹 贮 藤 宙	硝酸	6.0×10 ⁻⁶	
燃料加工建屋     混触NOx     1.6×10 ⁻³ ガラス固化技術開発建屋     アンモニア     4.7×10 ⁻¹ ユーティリティ建屋     塩素     9.3×10 ⁻² 一般排水処理速屋     塩素     6.4×10 ⁻² 第2一般排水処理速屋     メタノール     2.0×10 ⁻² 塩素     1.4×10 ⁻² ※1: 硝酸を保有する貯槽は地下階のみに設置されており、漏えいが発生した場合でも有毒ガスが地下階にとどまることで外部		Department manual	混触NOx	5. 1×10 ⁻³	
		燃料加丁建屋	硝酸	2.9×10 ⁻⁸	
ユーティリティ建屋     塩素     9.3×10 ⁻² 一般排水処理建屋     塩素     6.4×10 ⁻² 第2一般排水処理建屋     メタノール     2.0×10 ⁻² 塩素     1.4×10 ⁻² ※1: 硝酸を保有する貯槽は地下階のみに設置されており、漏えいが発生した場合でも有毒ガスが地下階にとどまることで外部		May 17th and the	混触NOx	1.6×10 ⁻³	
一般排水処理建屋     塩素     6.4×10 ⁻² 第2一般排水処理建屋     メタノール     2.0×10 ⁻² 塩素     1.4×10 ⁻² ※1: 硝酸を保有する貯槽は地下階のみに設置されており、漏えいが発生した場合でも有毒ガスが地下階にとどまることで外部					
第2一般排水処理建屋       メタノール 塩素       2.0×10 ⁻² 1.4×10 ⁻² ※1: 硝酸を保有する貯槽は地下階のみに設置されており、漏えいが発生した場合でも有毒ガスが地下階にとどまることで外部					
第2一般排水処理建屋       塩素       1.4×10 ⁻² ※1: 硝酸を保有する貯槽は地下階のみに設置されており、漏えいが発生した場合でも有毒ガスが地下階にとどまることで外部		一般排水処理建屋			
<u>塩素</u>		第2一般排水処理建屋			
が発生した場合でも有毒ガスが地下階にとどまることで外部					
に多量に放出されないことから、放出率を設定しない。				· ·	
		に多量に放出され	ないことから,放出率を	設定しない。	

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(264/379)

発電炉(東海第二)	再処		備考	
	表4-89 敷地内の固定	评価点(中央制		
	御室の外気取入口			
	放出点	着目方位	相対濃度[s/m³]	
	主排気筒	NE	5. 3×10 ⁻⁷	
	低レベル廃液処理建屋	SSW	9. 5×10 ⁻⁴	
		SW	1. 4×10 ⁻³	
		SSW	4. 2×10 ⁻²	
	分析建屋	SW	1. 0×10 ⁻¹	
		WSW	1. 0×10 ⁻¹	
		W	2. 2×10 ⁻²	
		Е	1. 5×10 ⁻¹	
		ESE	1. 7×10 ⁻¹	
	出入管理建屋	SE	2. 0×10 ⁻¹	
		SSE	3. 2×10 ⁻²	
		S	3. 7×10 ⁻²	
		SSW	4. 2×10 ⁻²	
	試薬建屋	ENE	1. 7×10 ⁻³	
	ウラン脱硝建屋	SE	2. 0×10 ⁻³	
	2 2 Mariana	SSE	4. 8×10 ⁻⁴	
	低レベル廃棄物処理建屋	SW	5. 7×10 ⁻⁴	
	PART OF DESIGN ASSESSED.	WSW	9. 1×10 ⁻⁴	
	使用済燃料受入れ・貯蔵建屋	N	1. 6×10 ⁻⁴	
	DATE OF THE PARTY	NNE	2. 8×10 ⁻⁴	
	模擬廃液貯蔵庫	N	6. 1×10 ⁻⁴	
	燃料加工建屋	SSE	8. 4×10 ⁻⁵	
	Met 170 - AECE	S	1.0×10 ⁻⁴	
	ガラス固化技術開発建屋	S	1. 1×10 ⁻⁵	
	ユーティリティ建屋	NNW	4. 9×10 ⁻⁵	
	一般排水処理建屋	NNE	7. 0×10 ⁻⁵	
	IX DF /F KS/EARIE	NE	9. 0×10 ⁻⁵	
	第2一般排水処理建屋	NNE	7. 0×10 ⁻⁶	

【VI-1-5-2-1 制御室の居住性に関する説明書】(265/379)

発電炉(東海第二)	再	処理施設		備考				
	表4-90 敷地内の固	定源に対する	評価点(使用済					
		燃料の受入れ施設及び貯蔵施設の制御室の外気取						
		たけり支入れ施設及り削減施設の削減量の外域取 入口)における相対濃度						
	人口)に							
	放出点	着目方位	相対濃度[s/m³]					
	主排気筒	SE	6. 4×10 ⁻⁷					
	低レベル廃液処理建屋	S	6. 1×10 ⁻⁵					
	1860年7月18日以及1942年	SSW	7. 0×10 ⁻⁵					
	分析建屋	S	9. 7×10 ⁻⁵					
	7717年年	SSW	1. 1×10 ⁻⁴					
	出入管理建屋	S	1. 0×10 ⁻⁴					
	試薬強屋	SE	8. 7×10 ⁻⁴					
	<b>兴</b> 樂燈座	SSE	1. 4×10 ⁻⁴					
	ウラン脱硝建屋	S	5. 5×10 ⁻⁵					
	低レベル廃棄物処理建屋	SSW	5. 9×10 ⁻⁵					
	医レベル廃棄物処理産生	SW	7. 2×10 ⁻⁵					
	使用済燃料受入れ・貯蔵建屋	<u></u> #1	*i					
	模擬廃液貯蔵庫	SW	1. 1×10 ⁻²					
	燃料加工建屋	S	2. 7×10 ⁻⁵					
	ガラス固化技術開発建屋	S	5. 8×10 ⁻⁶					
	ユーティリティ建屋	NW	1.8×10 ⁻⁴					
	ユーティッティ地座	NNW	1. 9×10 ⁻⁴					
	一般排水処理建屋	NE	2. 5×10 ⁻⁴					
	一般排水処理建産	ENE	3. 7×10 ⁻⁴					
	第2一般排水処理建屋	NE	2. 7×10 ⁻⁴					
	※1:使用済燃料の受入れ施 受入れ・貯蔵建屋内に							

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(266/379)

発電炉(東海第二)		再処理施設							備考	
	表	4-91(1/5)	敷地區	内の固	定源に	対する	中央制	制御		
	室の有毒ガス濃度評価結果									
	着目方位	建屋*1	有毒ガス	外気濃度 [ppm]	有毒ガス防 護判断基準 値[ppm]	有毒ガス		評価		
		(ユーティリティ建 屋)	塩素	1.6×10°	1. 0×10 ¹	1. 6×10 ⁻¹	TH			
		使用済燃料受入れ・貯	硝酸	_#3	2.5×10 ¹	_ #3				
		蔵建屋	混触NOx	_ <del>63</del>	2. 0×10 ¹	_#3		影響		
	N	模擬魔液貯蔵庫	硝酸	6. 0×10 ⁻⁴	2.5×10 ¹	2. 4×10 ⁻⁵	3.9×10 ⁻¹	なし		
			混触NOx	7. 0×10 ⁻¹	2. 0×10 ¹	3. 5×10 ⁻²				
		(一般排水処理建屋)	塩素	1.6×10°	1. 0×10 ¹	1. 6×10 ⁻¹				
		(第2一般排水処理	塩素	3. 5×10 ⁻¹	1. 0×10 ¹	3. 5×10 ⁻²				
		建屋)	メタノール	1. 1×10°	2. 2×10 ³	5. 0×10 ⁻⁴				
		(模擬廃液貯蔵庫)	硝酸	6. 0×10 ⁻⁴	2. 5×10 ¹	2. 4×10 ⁻⁵				
		ALTERNATION AND ACT OF A LOUISING	混触NOx	7. 0×10 ⁻¹	2. 0×10 ¹	3. 5×10 ⁻² _#3				
		使用済燃料受入れ・貯 蔵建屋	硝酸 混触NOx	_ #3	2. 5×10 ¹ 2. 0×10 ¹	_ 10:3				
		一般排水処理建屋	塩素	2. 1×10°	1. 0×10 ¹	2. 1×10 ⁻¹		影響		
	NNE	第2一般排水処理建	塩素	3. 5×10 ⁻¹	1. 0×10 ¹	3. 5×10 ⁻²	$3.6 \times 10^{-1}$	なし		
			屋	メタノール	1. 1×10°	2. 2×10 ³	5. 0×10 ⁻⁴			
		NASA .	硝酸	7. 0×10 ⁻³	2. 5×10 ¹	2. 8×10 ⁻⁴				
		(主排気筒)	一酸化窒素	3. 0×10 ⁻¹	1. 0×10 ²	3. 0×10 ⁻³				
			混触NOx	1.7×10°	2. 0×10 ¹	8. 4×10 ⁻²				
		(使用済燃料受入れ・	硝酸	663	2. 5×10 ¹	_ 853				
		貯蔵建屋)	混触NOx	_ #3	2. 0×10 ¹	—₩3				
		(第2一般排水処理	塩素	3.5×10 ⁻¹	1.0×10 ¹	3. 5×10 ⁻²				
		建屋)	メタノール	1.1×10°	2.2×10 ³	5. 0×10 ⁻⁴				
	NE		硝酸	7. 0×10 ⁻³	2.5×101	2.8×10 ⁻⁴	3 3 × 10-1	影響		
	NE	主排気筒	一酸化窒素	3.0×10 ⁻¹	$1.0 \times 10^{2}$	3. 0×10 ⁻³	3.3×10 ⁻¹	なし		
			混触NOx	1.7×10°	2. 0×10 ¹	8. 4×10 ⁻²				
		一般排水処理建屋	塩素	2.1×10°	1.0×10 ¹	2. 1×10 ⁻¹				
		(試薬建屋)	硝酸	8.8×10 ⁻²	2.5×10 ¹	3. 5×10 ⁻³				
		G STEARCES	混触NOx	4.5×10 ⁻²	2.0×101	2. 3×10 ⁻³				

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(267/379)

発電炉(東海第二)			再	備考							
7 27 010077	表	4-91(2/5)		D114							
		王 🗸	の有毒								
	着目 方位 建屋 ⁺¹ 有	有毒ガス	外気濃度	有毒ガス防護判断基準	有毒ガス		評価				
			[ppm]	値[ppm]	個別	和					
			硝酸	7. 0×10 ⁻³	2.5×101	2.8×10 ⁻⁴					
		(主排気筒)	一酸化窒素	3. 0×10 ⁻¹	$1.0 \times 10^{2}$	3. 0×10 ⁻³					
			混触N0x	1.7×10°	2. 0×10 ¹	8. 4×10 ⁻²					
	ENE	(一般排水処理建屋)	塩素	2. 1×10°	1. 0×10 ¹	2. 1×10 ⁻¹	4. 0×10 ⁻¹	影響			
		試薬建屋	硝酸	8. 8×10 ⁻²	2. 5×10 ¹	3. 5×10 ⁻³		なし			
			混触NOx 硝酸	4. 5×10 ⁻² 1. 4×10 ⁻³	$2.0 \times 10^{1}$ $2.5 \times 10^{1}$	2. 3×10 ⁻³ 5. 6×10 ⁻⁵					
		(出入管理建屋)	混触NOx	2. 0×10°	2. 0×10 ¹	1. 0×10 ⁻¹					
			硝酸	8. 8×10 ⁻²	2. 5×10 ¹	3. 5×10 ⁻³					
		(試薬建屋)	混触NOx	4. 5×10 ⁻²	2. 0×10 ¹	2. 3×10 ⁻³		影響			
	Е		硝酸	1.6×10 ⁻³	2.5×101	6. 5×10 ⁻⁵	1.2×10 ⁻¹	なし			
		出入管理建屋	混触NOx	2.3×10°	2.0×10 ¹	1. 2×10 ⁻¹					
		出入管理建屋	硝酸	1.9×10 ⁻³	2.5×10 ¹	7. 5×10 ⁻⁶					
	ESE		四八日在地座	混触N0x	2.7×10°	2. 0×10 ¹	1. 3×10 ⁻¹				
				,	硝酸	1. 1×10 ⁻³	2. 5×10 ¹	4. 3×10 ⁻⁵		影響	
		(ウラン脱硝建屋)	液体二酸化	4 5 440	0.004401		9. 2×10 ⁻¹	なし			
			(ワフン脱卵煙座)	(ワフン脱舶) (ワフン脱・	(ワフン脱帕煙屋)	窒素及び NOxガス	1.5×10 ¹	2. 0×10 ¹	7. 7×10 ⁻¹		
		2	ROXカム 混触NOx	2. 9×10 ⁻¹	2. 0×10 ¹	1. 5×10 ⁻²					
			硝酸	1. 9×10 ⁻³	2. 5×10 ¹	7. 5×10 ⁻⁵					
		出入管理建屋	混触NOx	2. 7×10°	2, 0×10 ¹	1. 3×10 ⁻¹					
			硝酸	1.1×10 ⁻³	2.5×10 ¹	4. 3×10 ⁻⁶					
		1	液体二酸化				ľ	ELC SHEE			
	SE	ウラン脱硝建屋	窒素及び	1.5×10 ¹	2.0×101	7. 7×10 ⁻¹	$9.2 \times 10^{-1}$	影響なし			
			NOxガス					140			
			混触N0x	2. 9×10 ⁻¹	2. 0×10 ¹	1.5×10 ⁻²					
		(燃料加工建屋)	硝酸	1. 0×10 ⁻⁶	2. 5×10 ¹	4. 0×10 ⁻⁸					
			混触NOx	7.6×10 ⁻²	2. 0×10 ¹	$3.8 \times 10^{-3}$					

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(268/379)

発電炉(東海第二)	1104 15	予主の店にはに	再列		備考						
九电》(八神外一)	表	4-91(3/5)	Vm· J								
	11.				定評価		一人	11J.III-H			
		至(									
	着目	建屋※1	of code (35 m)	外気濃度	有毒ガス防		防護判断				
	方位	<b>煙屋**</b>	有毒ガス	[ppm]	護判断基準 値[ppm]	基準値と 個別	和	評価			
			硝酸	1.9×10 ⁻³	2. 5×10 ¹	7. 5×10 ⁻⁵	114				
		出入管理建屋	混触NOx	2.7×10°	2. 0×10 ¹	1.3×10 ⁻¹					
			硝酸	1.1×10 ⁻³	2. 5×10 ¹	4.3×10 ⁻⁵					
			液体二酸化								
	SSE	ウラン脱硝建屋	窒素及び NOxガス	1. 5×10 ¹	2. 0×10 ¹	7. 7×10 ⁻¹	9. 5×10 ⁻¹	影響			
	SSE		NOxガス 混触NOx	2.9×10 ⁻¹	2. 0×10 ¹	1. 5×10 ⁻²	9.0 × 10 .	なし			
		Madel Anne Marie	硝酸	1.2×10 ⁻⁶	2. 5×10 ¹	4. 9×10 ⁻⁸					
		燃料加工建屋	混触NOx	9.4×10 ⁻²	2. 0×10 ¹	4.7×10 ⁻³					
		(ガラス固化技術開 発建屋)	アンモニア	7.8×10°	$3.0 \times 10^{2}$	2.6×10 ⁻²					
			硝酸	2.5×10 ⁻⁴	2. 5×10 ¹	1.0×10 ⁻⁵					
				液体二酸化							
				(ウラン脱硝建屋)	窒素及び NOxガス	3.6×10°	2. 0×10 ¹	1.8×10 ⁻¹			
					混触NOx	6.9×10 ⁻²	2. 0×10 ¹	3. 4×10 ⁻³			
				硝酸	4. 0×10 ⁻⁴	2. 5×10 ¹	1. 6×10 ⁻⁵				
		出入管理建屋	混触NOx	5.7×10 ⁻¹	2. 0×10 ¹	2.8×10 ⁻²		影響			
	S	燃料加工建屋	硝酸	1.2×10 ⁻⁶	2.5×10 ¹	4.9×10 ⁻⁸	5.5×10 ⁻¹	か響			
			混触NOx	9.4×10 ⁻²	2. 0×10 ¹	4. 7×10 ⁻³					
		ガラス固化技術開発	アンモニア	7.8×10°	$3.0 \times 10^{2}$	2.6×10 ⁻²					
		(低レベル廃液処理	硝酸	5.5×10 ⁻¹	2. 5×10 ¹	2. 2×10 ⁻²					
		建屋)	混触NOx 硝酸	5. 9×10 ⁻³ 5. 8×10 ⁰	$2.0 \times 10^{1}$ $2.5 \times 10^{1}$	3. 0×10 ⁻⁴ 2. 3×10 ⁻¹					
		(分析建屋)	明政 混触NOx	1. 0×10°	2. 5×10 ¹ 2. 0×10 ¹	5. 2×10 ⁻²					
	L	-	меничи	110/110	2.07.10	0.2710					

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(269/379)

発電炉(東海第二)				備考					
2 = <del></del>	表	4-91(4/5)	 ) 敷地	削御					
					農度評価				
	着目方位	<b>建屋</b> ₩	有毒ガス	外気濃度 [ppm]	有毒ガス防 護判断基準	有毒ガス队 基準値と	の比 ^{※2}	評価	
			硝酸	1. 2×10 ⁻⁶	値[ppm] 2.5×10 ¹	個別 4.9×10 ⁻⁸	和		
		(燃料加工建屋)	混触NOx	9.4×10 ⁻²	2.0×101	4. 7×10 ⁻³			
		(ガラス固化技 術開発建屋)	アンモニア	7.8×10°	$3.0 \times 10^{2}$	2. 6×10 ⁻²			
		低レベル廃液処	硝酸	8.0×10 ⁻¹	2.5×10 ¹	3. 2×10 ⁻²			
	OCW.	理建屋	混触NOx	8.6×10 ⁻³	$2.0 \times 10^{1}$	4. 3×10 ⁻⁴	8. 9×10 ⁻¹	影響	
	SSW	分析建屋	硝酸	1.6×10 ¹	2.5×10 ¹	6. 5×10 ⁻¹	9. 3×10	なし	
		刀彻难座	混触NOx	2.9×10°	2.0×10 ¹	1.5×10 ⁻¹			
		出入管理建屋	硝酸	4.0×10 ⁻⁴	2.5×101	1.6×10 ⁻⁵			
		山八官理建座	混触NOx	5.7×10 ⁻¹	$2.0 \times 10^{1}$	2, 8×10 ⁻²			
		(低レベル廃棄	硝酸	— <del>(6</del> 3	2.5×10 ¹	— <del>@</del> 3			
		物処理建屋)	混触NOx	— <del>@</del> 3	$2.0 \times 10^{1}$	—₩3			
		(出入管理建屋)	硝酸	4.0×10 ⁻⁴	$2.5 \times 10^{1}$	1.6×10 ⁻⁵			
		(田八百姓建座)	混触NOx	5.7×10 ⁻¹	$2.0 \times 10^{1}$	2, 8×10 ⁻²			
		低レベル廃液処	硝酸	8.0×10 ⁻¹	$2.5 \times 10^{1}$	3. 2×10 ⁻²			
	SW	理建屋	混触NOx	8.6×10 ⁻³	$2.0 \times 10^{1}$	4. 3×10 ⁻⁴	8. 6×10 ⁻¹	影響	
	311	分析建屋	硝酸	$1.6 \times 10^{1}$	$2.5 \times 10^{1}$	6. 5×10 ⁻¹	0.0 10	なし	
		万利地座	混触NOx	2.9×10°	$2.0 \times 10^{1}$	1.5×10 ⁻¹			
		低レベル廃棄物	硝酸	— ^{₩3}	$2.5 \times 10^{1}$	— <del>101</del> 3			
		処理建屋	処理建屋 混触NOx - **3 2.0×10 ¹ - **3						
		(低レベル廃液	硝酸	8.0×10 ⁻¹	2.5×10 ¹	3. 2×10 ⁻²			
		処理建屋)	混触NOx	8.6×10 ⁻³	$2.0 \times 10^{1}$	4. 3×10 ⁻⁴			
	WSW	分析建屋	硝酸	$1.6 \times 10^{1}$	2.5×101	6. 5×10 ⁻¹	8. 3×10 ⁻¹	影響	
	#5#	刀刃地座	混触NOx	2.9×10°	$2.0 \times 10^{1}$	1.5×10 ⁻¹	0. 3 ^ 10	なし	
		低レベル廃棄物	硝酸	_ 863	2.5×10 ¹	_ <del>1013</del>			
		処理建屋	混触NOx	— ^{₩3}	$2.0 \times 10^{1}$	— <del>#</del> 3			
		(低レベル廃棄	硝酸	- <del>10</del> 3	$2.5 \times 10^{1}$	— <del>⊕</del> 3			
	w	物処理建屋)	混触NOx	— #3	$2.0 \times 10^{1}$	— #3	7. 7×10 ⁻¹	影響	
	"	分析建屋	硝酸	$1.6 \times 10^{1}$	$2.5 \times 10^{1}$	6. 3×10 ⁻¹	1.1 × 10	なし	
		刀列和座	混触NOx	$2.9 \times 10^{0}$	$2.0 \times 10^{1}$	1. 4×10 ⁻¹			

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(270/379)

<del>_</del>	- 111.1 lm	単至の店住住		処理施		/ 313)			
発電炉(東海第二)			備考						
	表	4-91(5/5)							
		室(*)							
	I								
	着目	建屋※1	有毒ガス	外気濃度	有毒ガス防護判断基準	有毒ガス以基準値と			
	方位	建座**	有毎カム	[ppm]	護刊断基準 値[ppm]	歴年但と	和	64-1m	
			硝酸	3.4×10°	2. 5×10 ¹	1. 4×10 ⁻¹		影響	
	WNW	(分析建屋)	混触NOx	6. 2×10 ⁻¹	2.0×10 ¹	3. 1×10 ⁻²	1. 7×10 ⁻¹	なし	
	NW	(ユーティリティ建屋)	塩素	1.6×10°	1. 0×10 ¹	1.6×10 ⁻¹	1.6×10 ⁻¹	影響なし	
		ユーティリティ建屋	塩素	1.6×10°	1. 0×10 ¹	1. 6×10 ⁻¹			
		(使用済燃料受入	硝酸	— <u>⊕</u> 3	2. 5×10 ¹	-#3	†	P1 / 48F	
	NNW	れ・貯蔵建屋)	混触NOx	— <u></u> ⊕3	2.0×10 ¹	<b>-</b> ₩3	2. 0×10 ⁻¹	影響なし	
	(模擬廃液貯蔵庫)	]	120						
		(Denementary marter)	混触NOx	7.0×10 ⁻¹	$2.0 \times 10^{1}$	3. 5×10 ⁻²			
	<b>*</b> 3:	にある複数の ため、有毒ガ 放出率の設定	ス防護判	断基準値	直との比の	和を算出	した。	, 2	

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(271/379)

		再	<b>「</b> 処理」	<b></b> 包設				備考		
表4-92(1/5) 敷地内の固定源に対する使用済燃										
料の受入れ施設及び貯蔵施設の制御室の有毒ガス										
科	<b>ル</b> ク									
濃度評価結果										
着目			从与油油	有毒ガス防 外気濃度		防護判断				
方位	建屋型	有毒ガス	アス優及 [ppm]	護判断基準	基準値	との比 ^{※2}	評価			
7715			[bbm]	值[ppm]	個別	和				
N	(ユーティリティ 建屋)	塩素	6.5×10°	1.0×101	6.5×10 ⁻¹	6.5×10 ⁻¹	影響 なし			
	(一般排水処理建 屋)	塩素	5.7×10°	1. 0×10 ¹	5. 7×10 ⁻¹		影響			
NNE	(第2一般排水処	塩素	1.3×10°	1.0×10 ¹	1.3×10 ⁻¹	7. 1×10 ⁻¹	なし			
	理建屋)	メタノール	4.2×10°	2. 2×10³	1.9×10 ⁻³	1				
	一般排水処理建屋	塩素	8.5×10°	1. 0×10 ¹	8.5×10 ⁻¹		影響			
NE	第2一般排水処理	塩素	1.3×10°	1.0×10 ¹	1.3×10 ⁻¹	9.9×10 ⁻¹	影響なし			
	建屋	メタノール	4.2×10°	2. 2×10 ³	1.9×10 ⁻³		-20			
	(第2一般排水処	塩素	1.3×10°	1. 0×10 ¹	1.3×10 ⁻¹	]	影響			
ENE	理建屋)	メタノール	4.2×10°	$2.2 \times 10^3$	1.9×10 ⁻³	9.9×10 ⁻¹	なし			
	一般排水処理建屋	塩素	8.5×10°	1. 0×10 ¹	8.5×10 ⁻¹					
Е	(一般排水処理建 屋)	塩素	8.5×10°	1.0×101	8.5×10 ⁻¹	8.5×10 ⁻¹	影響 なし			
	(主排気筒)	硝酸	8.5×10 ⁻³	2.5×10 ¹	3.4×10 ⁻⁴	]				
			(主排気筒) ESE	一酸化窒素	3.7×10 ⁻¹	1.0×10 ²	3.7×10 ⁻³		影響	
ESE				混触NOx	2.0×10°	2. 0×10 ¹	1.0×10 ⁻¹	1.1×10 ⁻¹	なし	
	(試薬建屋)	硝酸	4. 6×10 ⁻²	2. 5×10 ¹	1.8×10 ⁻³					
		混触NOx	2. 4×10 ⁻²	2. 0×10 ¹	1. 2×10 ⁻³					
	> 10 to Mr	硝酸	8. 5×10 ⁻³	2. 5×10 ¹	3. 4×10 ⁻⁴					
	主排気筒	一酸化窒素	3. 7×10 ⁻¹	1. 0×10 ²	3. 7×10 ⁻³		影響			
SE		混触NOx	2. 0×10°	2. 0×10 ¹	1. 0×10 ⁻¹	1. 1×10 ⁻¹	なし			
	試薬建屋	硝酸 混触NOx	4. 6×10 ⁻² 2. 4×10 ⁻²	$2.5 \times 10^{1}$ $2.0 \times 10^{1}$	1.8×10 ⁻³ 1.2×10 ⁻³					
					1. 2 × 10 ⁻³					

#### 【VI-1-5-2-1 制御室の居住性に関する説明書】(272/379)

		,		処理が		<u>, , , , , , , , , , , , , , , , , , , </u>			備考								
71.5W (MANA—)	表4-92(2/5) 敷地内の固定源に対する使用済燃																
	科(	の受入れ施															
	着目			外気濃度	有毒ガス防	有毒ガス	防護判断										
	方位	建屋*1	有毒ガス	[ppm]	護判断基準		との比 ^{※2}	評価									
					値[ppm]	個別	和	$\vdash$									
		( - ) - Life for Adv (	硝酸	8. 5×10 ⁻³	2. 5×10 ¹	3. 4×10 ⁻⁴											
		(主排気筒)	一酸化窒素	3.7×10 ⁻¹	1. 0×10 ²	3. 7×10 ⁻³											
			混触NOx	2. 0×10°	2. 0×10 ¹	1. 0×10 ⁻¹											
		試薬建屋	硝酸 混触NOx	4. 6×10 ⁻² 2. 4×10 ⁻²	2. 5×10 ¹ 2. 0×10 ¹	1. 8×10 ⁻³ 1. 2×10 ⁻³											
		(低レベル廃液処理	花無NOX 硝酸	3. 6×10 ⁻²	2. 5×10 ¹	1. 2×10 ⁻³											
		建屋)	混触NOx	3. 8×10 ⁻⁴	2. 0×10 ¹	1. 4×10 ⁻⁵											
		AECE!	花 MINUX 硝酸	1. 5×10 ⁻²	2. 0×10 ³ 2. 5×10 ¹	6. 0×10 ⁻⁴											
		(分析建屋)	混触NOx	2. 7×10 ⁻³	2. 0×10 ¹	1. 4×10 ⁻⁴											
			硝酸	9. 8×10 ⁻⁷	2. 5×10 ¹	3. 9×10 ⁻⁸		影響									
	SSE	(出入管理建屋)	混触NOx	1. 4×10 ⁻³	2. 0×10 ¹	7. 0×10 ⁻⁵	1.5×10 ⁻¹	なし									
			硝酸	2. 9×10 ⁻⁵	2. 5×10 ¹	1. 1×10 ⁻⁶											
			液体二酸化														
		(ウラン脱硝建屋)	(ウラン脱硝建屋)	窒素及びNOx	4. 1×10 ⁻¹	2. 0×10 ¹	2. 1×10 ⁻²										
			ガス														
			混触NOx	7.8×10 ⁻³	2. 0×10 ¹	3.9×10 ⁻⁴											
		(燃料加工建屋)	(燃料加工建屋)	(燃料加工建屋)	(燃料加工建屋)	(燃料加工建屋)	/###1+n-= 7#+ FL\	(###1+n = ## EL)	/M************************************	/White Lange to D	硝酸	3. 2×10 ⁻⁷	2.5×101	1.3×10 ⁻⁸			
							混触NOx	2. 4×10 ⁻²	2.0×10 ¹	1.2×10 ⁻³							
		(ガラス固化技術開 発建屋)	アンモニア	4. 1×10°	3.0×10 ²	1. 4×10 ⁻²											
					l												

### 【VI-1-5-2-1 制御室の居住性に関する説明書】(273/379)

発電炉 (東海第二)			F	<b> </b>	施設				備考			
	表4	-92(3/5)										
		の受入れが										
	7-1 *	> X / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
		1	1/5 									
	着目方	建屋常	<b>建屋</b> *□	<b>建屋</b> *□	建屋*1 有盡力	有毒ガス	外気濃度	護判断基準	毒ガス防 有毒ガス 判断基準 基準値と		評価	
	位			[ppm]	值[ppm]	個別	和					
		(試薬建屋)	硝酸 混触NOx	7. 3×10 ⁻³ 3. 7×10 ⁻³	$2.5 \times 10^{1}$ $2.0 \times 10^{1}$	2. 9×10 ⁻⁴ 1. 9×10 ⁻⁴	-					
		低レベル廃液処	硝酸	4. 1×10 ⁻²	2. 5×10 ¹	1.6×10 ⁻³	1					
		理建屋	混触NOx	4. 4×10 ⁻⁴	2. 0×10 ¹	2.2×10 ⁻⁵	]					
		分析建屋	硝酸	1.7×10 ⁻²	2. 5×10 ¹	6.8×10 ⁻⁴	1					
			混触NOx 硝酸	3. 1×10 ⁻³ 9. 8×10 ⁻⁷	$2.0 \times 10^{1}$ $2.5 \times 10^{1}$	1.5×10 ⁻⁴ 3.9×10 ⁻⁸	-					
		出入管理建屋 提触Nox 1.4×10 ⁻³ 2.0×10 ¹ 7.0×10 ⁻⁵										
			硝酸	2.9×10 ⁻⁶	2. 5×10 ¹	1.1×10 ⁻⁶	1	影響				
	S	ウラン脱硝建屋	液体二酸化				3.9×10 ⁻²	なし				
			ワラン脱硝建屋	<b>ワフン脱硝</b> 運屋	窒素及びNOx ガス	4. 1×10 ⁻¹	2. 0×10 ¹	2. 1×10 ⁻²				
			混触NOx	7.8×10 ⁻³	2. 0×10 ¹	3.9×10 ⁻⁴	1					
		燃料加工建屋ガラス固化技術	硝酸	3.2×10 ⁻⁷	2. 5×10 ¹	1.3×10 ⁻⁸	]					
			混触NOx	2. 4×10 ⁻²	2. 0×10 ¹	1.2×10 ⁻³	-					
		ガラス固化技術開発建屋	アンモニア	4.1×10°	$3.0 \times 10^{2}$	1.4×10 ⁻²						
		(低レベル廃棄	硝酸	_#3	2. 5×10 ¹	<b>_</b> ₩3	]					
		物処理建屋)	混触NOx	_ #3	2. 0×10 ¹	<b>_</b> #3						