

資料1-2-1

泊発電所3号炉

地盤の液状化の評価方針について

令和4年12月6日 北海道電力株式会社

] :枠囲みの内容は機密情報に属しますので公開できません。

無断複製·転載等禁止

1

1	. 液状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	. 液状化検討対象層の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3	. 液状化検討対象施設の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4	. 液状化強度試験 試料採取位置選定とその代表性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
5	. 液状化強度試験結果と液状化強度特性の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
6	. 液状化の評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
7	. 全体のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
	補足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	01
	参考文献 ••••••••••••••••••••••••••••••••••••	46

1. 液状化評価の基本方針

1.	. 液状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.	. 液状化検討対象層の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3	. 液状化検討対象施設の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4	. 液状化強度試験 試料採取位置選定とその代表性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
5	. 液状化強度試験結果と液状化強度特性の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
6	. 液状化の評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
7.	. 全体のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
1	補足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
ALL.	参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6

1. 液状化評価の基本方針 評価方針

○ 本資料では、耐震設計における液状化影響の検討方針を示す。

○ 耐震重要施設^{※1}及び常設重大事故等対処施設^{※2}においては,液状化,揺すり込み沈下等の周辺地盤の変状を考慮した場合においても,当該施設の安全機能が損なわれるおそれがないように設計する。

※1:耐震設計上の重要度分類Sクラスの機器・系統及びそれらを支持する建物・構築物 ※2:常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設(特定重大事故等対処施設を除く)

1. 液状化評価の基本方針 評価方針

○ 液状化に関する検討は、以下のフローに従い実施する。

ともに輝く明日のために。

2. 液状化検討対象層の抽出

1	. 液状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	.液状化検討対象層の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3	. 液状化検討対象施設の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4	. 液状化強度試験 試料採取位置選定とその代表性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;4
5	. 液状化強度試験結果と液状化強度特性の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6	;1
6	. 液状化の評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
7	. 全体のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	補足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)1
	参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-6

- 2. 液状化検討対象層の抽出 敷地の地質
- 敷地の基盤をなす地層は,新第三系上部中新統神恵内層であり,神恵内層を覆って第四紀中期更新世以前の海成堆積物,後期更新世の段丘堆積物及び 崖錐↓堆積物,完新世の崖錐↓|堆積物及び沖積層が分布する。
- 敷地の基盤をなす地層である神恵内層は、岩相の特徴から凝灰質泥岩と火砕岩層に大別される。
- 神恵内層の凝灰質泥岩層は、敷地北部の茶津川付近に分布する。
- 神恵内層の火砕岩層は, 敷地全域に広く分布しており, 3号原子炉建屋設置位置付近には安山岩が認められる。
- 原子炉建屋等の基礎地盤は神恵内層で, 1,2号炉は火砕岩類, 3号炉は安山岩である。
- 発電所の埋立地盤については、敷地造成時に発生した掘削岩砕からなる地盤(人工地盤)である。

ともに輝く明日のために。

ともに輝く明日のために。

2. 液状化検討対象層の抽出 敷地の地質(埋戻土・砂層)

- 発電所の埋立地盤については、敷地造成時に発生した掘削岩砕からなる埋立地盤(人工地盤)が主体である。
- 泊発電所の埋立地盤は,施工時期,材料により、1,2号埋戻土、3号埋戻土に区分される。
 - > 1,2号埋戻土は, 1,2号建設時の埋戻土で, 火砕岩主体の岩砕地盤である。
 - > 3号埋戻土は, 3号建設時の埋戻土で, 安山岩主体の岩砕地盤である。
- 岸壁及び津波防護施設前面には,沖積層に相当する砂層(As1, As2),砂礫層(Ag)及び粘土・シルト層(Ac)が分布している。
- ○日本道路協会(2012)では、「砂層,砂礫層はN値が30程度以上あれば良質な支持層と考えてよい。」とされている。
- また, 地盤工学会 (1998) では, N値と相対密度の関係が示されており, 30未満は「中位の~非常に緩い」, 30以上は「密な~非常に密な」ものとされている。 ○ 以上に基づき, 砂層については, N値の大きさによって分類した。
 - ▶ N<30:As1層
 - > 30≦N:As2層

2. 液状化検討対象層の抽出 敷地の地質(埋戻土及び砂層の分布)

○ 埋戻土及び砂層の分布について地質断面図を示す。

ともに輝く明日のために。 Light up your future.

2. 液状化検討対象層の抽出 対象層の選定方針

○ 敷地の埋立地盤である埋戻土と,砂層(As1, As2),砂礫層(Ag),粘土・シルト層(Ac)について,道路橋示方書(2002)に基づき液状化検討対象層を抽出 する。

○ 本評価では泊サイトの基準地震動の特徴(最大加速度が大きい,継続時間が長い)から,道路橋示方書において対象外となる以下の土層も評価対象とする。

- ≻ G.L.-20m以深の飽和土層
- > 平均粒径が10mm以上の飽和土層

【道路橋示方書(2002)において液状化検討の対象となる土層】

沖積層の土層で次の3つの条件全てに該当する場合においては、地震時に 影響を与える液状化が生じる可能性がある。

1) 地下水位がG.L.-10m 以内であり、かつG.L.-20m 以内の飽和土層

2) 細粒分含有率が35%以下,又は細粒分含有率が35%を超えても塑性指数 が15以下の土層

3) 平均粒径が10mm 以下で,かつ10%粒径が1mm 以下である土層

2. 液状化検討対象層の抽出 対象層の選定結果

○ 道路橋示方書・同解説 (Ⅴ耐震設計編) に基づき, 埋戻土と沖積層から液状化検討対象層を抽出した。

○ 液状化検討対象として,地下水位以深の1,2号埋戻土,3号埋戻土,砂層(As1,As2)及び砂礫層(Ag)を選定した。
 ○ 粘土・シルト層(Ac)については、「細粒分含有率Fc>35%,かつ塑性指数lp>15」を満足しているため、液状化検討の対象外とした。
 ○ なお、粘土・シルト層(Ac)を液状化検討の対象外とした考え方については補足説明資料1(P102~104参照)に示す。

地層名	層相	道路橋示方書 における 液状化検討対象層		泊サイトの 液状化検討 対象層	備考			
		深度	粒度分布					
1,2号埋戻土	岩砕 (火砕岩類系)	0	〇 (一 部×)	0	・粒度分布により非液状化層と判定されるもの もあるが,保守的に評価対象とする。			
3号埋戻土	岩砕 (安山岩系)	0	〇 (一 部×)	0	・粒度分布により非液状化層と判定されるもの もあるが,保守的に評価対象とする。			
As1	砂 (N値<30)	×	0	0	・20m以深に分布する範囲についても保守的 に評価対象とする。			
As2	砂 (30≦N値)	×	0	0	・20m以深に分布する範囲についても保守的 に評価対象とする。			
Ag	砂礫	×	〇 (一部×)	0	・20m以深に分布する範囲についても保守的 に評価対象とする。 ・粒度分布により非液状化層と判定されるもの もあるが,保守的に評価対象とする。 ・解析用物性値はAs2層に準拠する。			
Ac	粘土・シルト	×	×	×	・細粒分含有率FC>35%かつ塑性指数lp>15 より評価対象外とする。			

液状化検討対象層の選定結果

※ 〇:液状化検討対象 ×:液状化検討対象外

ともに輝く明日のために。 Light up your future.

2. 液状化検討対象層の抽出 まとめ(液状化検討対象層の抽出)

- 泊発電所の埋立地盤は,施工時期,材料により、1,2号埋戻土(火砕岩主体),3号埋戻土(安山岩主体)に区分される。
- 護岸前面には, 沖積層に相当する砂層 (As1, As2), 砂礫層 (Ag), 粘土・シルト層 (Ac) が分布している。
- 砂層については、N値の大きさによって、N<30をAs1層、30≦NをAs2層と分類した。</p>
 - ▶ N<30:As1層
 - > 30≦N:As2層

【選定方針】

○ 日本道路協会 (2002) 道路橋示方書・同解説 (Ⅴ耐震設計編) に基づき評価対象層を抽出する。

○ ただし, 地表面から20m以深の土層や50%粒径D50>10mmの土層についても, 保守的に液状化検討の対象とする。

【選定結果】 〇 液状化検討対象として、地下水位以深の1.2号埋戻土、3号埋戻土、砂層(As1、As2)及び砂礫層(Ag)を選定した。

○ 粘土・シルト層 (Ac) については、「細粒分含有率Fc>35%かつ塑性指数lp>15」を満足しているため、液状化検討の対象外とした。

3. 液状化検討対象施設の抽出

1.	. 液状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	. 液状化検討対象層の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3	. 液状化検討対象施設の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4	. 液状化強度試験 試料採取位置選定とその代表性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3	4
5	. 液状化強度試験結果と液状化強度特性の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6	;1
6	. 液状化の評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
7	. 全体のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
1	補足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
46 II.a	参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-6

ともに輝く明日のために。

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(1/8)

○ 設計基準対象施設及び重大事故等対象施設の設置状況を考慮し,液状化の影響を検討する必要がある液状化検討対象候補施設を抽出する。抽出にあたっては,設計基準対象施設(建物・構築物,屋外重要土木構造物及び津波防護施設)及び重大事故等対処施設を対象に検討する。

	液状化検討対象候補施設 一覧							
施設分類		施設名称	基礎形式	支持層 ^{*1}	基礎下端高さ ^{※2} (T.P. m)	地下水位の設定方針		
		原子炉建屋	直接基礎	岩盤	+2.8	地下水排水設備の機能に期待		
	-	原子炉補助建屋	直接基礎	岩盤	+0.3	して、設計地下水位を設定		
	運羽・ 構築物	ディーゼル発電機建屋	直接基礎	岩盤	+4.2	(建屋基礎底面下に設計		
	11778 143	A1,A2-燃料油貯油槽タンク室	直接基礎	岩盤	+2.1	1 11111111111111111111111111111111111		
		B1,B2-燃料油貯油槽タンク室	直接基礎	岩盤	+2.0	地表面に設定		
		取水口	直接基礎	岩盤	-11.5	T.P.+0.55m ^{※3} に設定		
設		取水路	直接基礎	岩盤	-9.0			
基	屋外	取水ピットスクリーン室	直接基礎	岩盤	-10.0			
準 対	里安 土木 構造物	取水ピットポンプ室	直接基礎	岩盤	-12.6			
象		原子炉補機冷却海水ポンプ出ロストレーナ室	直接基礎	岩盤	-6.0			
設		原子炉補機冷却海水管ダクト	直接基礎	岩盤	-5.0	山東南に設守		
		B1,B2-ディーゼル発電機燃料油貯油槽トレンチ	直接基礎	岩盤	+8.3	地衣風に改た		
		防潮堤	直接基礎	岩盤	追而			
	 注波	1,2号炉取水ピットスクリーン室防水壁	追而	追而	追而			
	防護	3号炉取水ピットスクリーン室防水壁	追而	追而	追而			
	施設	3号炉放水ピット流路縮小工	直接基礎	岩盤	-3.0			
		屋外排水路逆流防止設備	直接基礎	岩盤	+3.1	T.P.+0.26m ^{*3} に設定		
重大	事故等	緊急時対策所(指揮所,待機所)	直接基礎	岩盤	+37.7	白鉄水は※4に其べき設守		
対処	処施設 代替非常用発電機		直接基礎	岩盤	+32.8	日旅小山 に至して設た		

※1 置換コンクリート等を介して岩盤に支持される施設についても、岩盤に支持されているとした

※2 各施設の代表的な基礎下端高さを示す

※3 防潮堤よりも海側に設置される取水口及び屋外排水路逆流防止設備の設計地下水位については、取水口は残留水位T.P.+0.55m,屋外排水路逆流防止設備は朔望平均満潮位T.P.+0.26mを記載

※4 解析条件を保守的に設定した三次元浸透流解析の予測解析水位

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(2/8)

○ 3号炉における耐震重要施設*1及び常設重大事故等対処施設*2を以下に示す。

液状化検討対象候補施設,可搬型重大事故等対処設備保管場所及びアクセスルート 配置図

:枠囲みの内容は機密情報に属しますので公開できません。

14

ともに輝く明日のために。

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(3/8)

○ 液状化検討対象候補施設(建物・構築物)について、液状化検討対象施設の選定及び解析手法選定フローを以下に示す。

液状化検討対象施設の選定及び解析手法選定フロー(建物・構築物)

ともに輝く明日のために。

ほくて

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(4/8)

○ 液状化検討対象候補施設(建物・構築物を除く)について、液状化検討対象施設の選定及び解析手法選定フローを以下に示す。

ともに輝く明日のために。

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(5/8)

○ 液状化検討対象施設の選定等に当たっては、以下に示す地下水排水設備が機能しない状態が継続した場合の定常的な地下水位分布を予測した浸透流解 析の結果を使用する。

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(6/8)

○ 液状化検討対象施設を選定した結果を以下に示す。

	液状化検討対象施設の選定結果(例)									
				項目						
施設分類		施設名称	 1施設が岩 盤上に設置 されている 		②施設周辺の地下水位が十分に低い	液(水化(検討) 対象施設 〇:対象 ×:対象外				
=7.	建物・ 構築物	原子炉建屋	Yes	_	_	×				
設計		原子炉補助建屋	Yes	_	_	×				
準対		ディーゼル発電機建屋	Yes	_	_	×				
象施設		A1,A2-燃料油貯油槽タンク室	Yes	-	_	×				
πX		B1,B2-燃料油貯油槽タンク室	Yes	-	_	×				

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(7/8)

ほくてん

○ 液状化検討対象施設を選定した結果を以下に示す。

	液状化検討対象施設の選定結果(例)							
				項目				
施設分類		施設名称	 ①施設が岩 盤中に設置 されている 	②施設周辺の地下水位が十分に低い		液状化検討 対象施設 ○:対象 ×:対象外		
		取水口	No	No	T.P.+0.55mに設計地下水位を設定する。	0		
		取水路	No	No	地表面に設計地下水位を設定する。	0		
	屋外	取水ピットスクリーン室	No	No	地表面に設計地下水位を設定する。	0		
	重要 土木 構造物	取水ピットポンプ室	No	No	地表面に設計地下水位を設定する。	0		
設計		原子炉補機冷却海水ポンプ出口ストレーナ室	No	No	地表面に設計地下水位を設定する。	0		
基準		原子炉補機冷却海水管ダクト	No	No	地表面に設計地下水位を設定する。	0		
対象		B1,B2-ディーゼル発電機燃料油貯油槽トレンチ	No	No	地表面に設計地下水位を設定する。	0		
施設		防潮堤	No	No	地表面に設計地下水位を設定する。	0		
	244-2017	1.2号炉取水ピットスクリーン室防水壁	No	No	地表面に設計地下水位を設定する。	0		
	防護	3号炉取水ピットスクリーン室防水壁	No	No	地表面に設計地下水位を設定する。	0		
	他設	3号炉放水ビット流路縮小工	No	No	地表面に設計地下水位を設定する。	0		
		屋外排水路逆流防止設備	No	No	T.P.+0.26mに設計地下水位を設定する。	0		
重大事故等 对処施設		緊急時対策所(指揮所,待機所)	No	Yes	周辺地盤における地下水位が施設底版より低い。	×		
		代替非常用発電機	No	Yes	周辺地盤における地下水位が施設の設置地盤より低い。	×		

3. 液状化検討対象施設の抽出 液状化検討対象施設の選定及び解析手法選定の観点(8/8)

○ 選定した液状化検討対象施設に対し,設計基準対象施設・重大事故等対処施設(建物・構築物を除く)の解析手法を選定した結果を以下に示す。
 ○ ③で施設周辺に改良地盤等がない場合,又は④で悪影響を与える恐れがある場合は,液状化考慮と液状化非考慮で耐震安全性評価上どちらが保守的になるかを確認するため,一次元又は二次元の液状化等を考慮した評価及び液状化等を考慮しない評価を実施した上で,保守的となる解析手法を選定する。④
 ○ で悪影響を与える恐れがない場合は,液状化等を考慮しない評価を実施する。

○ 液状化検討対象施設の選定結果において対象とした施設の設置状況を次頁以降に示す。

				項目			
施設分類		施設名称	③施設周辺に 改良地盤等が ある	④改良地盤等の周辺地盤の液状化又は繰返し 軟化により施設に悪影響を与える恐れがある	 一次元又は二次元の液状化 等を考慮した評価及び液状化 等を考慮しない評価を実施し、 解析手法を選定 〇:対象 ×:対象外 		
		取水口	No	—	0		
	屋外 重要 土木 構造物	取水路	No	_	0		
		取水ピットスクリーン室	No	_	0		
設		取水ピットポンプ室	No	—	0		
計		原子炉補機冷却海水ポンプ出口ストレーナ室	No	_	0		
華		原子炉補機冷却海水管ダクト	No	_	0		
対		B1,B2−ディーゼル発電機燃料油貯油槽トレンチ	No	_	0		
家施		防潮堤	No	_	0		
設	津波	1,2号炉取水ピットスクリーン室防水壁	No	—	0		
	防護	3号炉取水ピットスクリーン室防水壁	No	_	0		
	施設	3号炉放水ピット流路縮小工	No	_	0		
		屋外排水路逆流防止設備	No	_	0		

液状化検討対象施設の解析手法選定結果(例)

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(1/13)

○ 原子炉建屋, 原子炉補助建屋の設置状況を以下に示す。

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(2/13)

○ ディーゼル発電機建屋, A1,A2-燃料油貯油槽タンク室の設置状況を以下に示す。

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(3/13)

○ B1,B2-燃料油貯油槽タンク室及びB1,B2-ディーゼル発電機燃料油貯油槽トレンチの設置状況を以下に示す。

ともに輝く明日のために。

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(4/13)

○ 原子炉補機冷却海水管ダクト及び原子炉補機冷却海水ポンプ出口ストレーナ室の設置状況を以下に示す。

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(5/13)

○ 取水ピットポンプ室の設置状況を以下に示す。

ともに輝く明日のために。 Light up your future.

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(6/13)

○ 取水ピットスクリーン室及び3号炉取水ピットスクリーン室防水壁の設置状況を以下に示す。

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(7/13)

○ 1,2号炉取水ピットスクリーン室及び1,2号炉取水ピットスクリーン室防水壁の設置状況を以下に示す。

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(8/13)

○ 防潮堤の設置状況を以下に示す。

ともに類く明日のために。 Light up your future.

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(9/13)

○ 屋外排水路逆流防止設備の設置状況を以下に示す。

ともに類く明日のために。 Light up your future.

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(10/13)

○ 3号炉放水ピット流路縮小工の設置状況を以下に示す。

ともに輝く明日のために。 Light up your future.

30

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(11/13)

○ 取水口及び取水路の設置状況を以下に示す。

ともに輝く明日のために。

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(12/13)

○ 代替非常用発電機の設置状況を以下に示す。

ともに輝く明日のために。 Light up your future.

3. 液状化検討対象施設の抽出 液状化検討対象候補施設(13/13)

○ 緊急時対策所(指揮所,待機所)の設置状況を以下に示す。

AI級岩盤 A I 級岩盤 A II 級岩盤 安山岩 Aw A Ⅳ 級岩盤 Αv Av 級岩盤 A級岩盤 B級岩盤 С C級岩盤 火砕岩類 D D級岩盤 E級岩盤

埋戻土

MMR

液状化検討対象候補施設

凡例

対象施設位置図

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性

1.	夜状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	夜状化検討対象層の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3	夜状化検討対象施設の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4	夜状化強度試験 試料採取位置選定とその代表性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
5	夜状化強度試験結果と液状化強度特性の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
6	夜状化の評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
7	全体のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
1	足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	101
1997 - 1997 1997 - 1997 1997 - 1997	考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験箇所の選定(埋戻土)

○ 試料採取位置は、「ボーリングが実施可能であること」、「試料採取が可能な位置及び深度であること」を条件に、 飽和した埋戻土が分布する範囲を網羅する 10地点 (1,2号埋戻土)と7地点 (3号埋戻土)を選定した。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験箇所の選定(1,2号埋戻土)

 ○ 1,2号埋戻土の液状化強度試験位置については、1,2号埋戻土の分布範囲から、BF1-2、SW2-3、SW2-4、RE-1、RE-2、RE-3、RE-4、RE-5、RE-6、SH-1の10地点を選定した。

○ 供試体は、1,2号埋戻土の地下水位前後からサンプリングしている。

液状化強度試験位置図

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験箇所の選定(3号埋戻土)

ともに輝く明日のために。 Light up your future.

○ 3号埋戻土の液状化強度試験位置については、3号埋戻土の分布範囲から、BF3-1、BF3-2、SW2-1、RE-7、RE-8、RE-8''、SH-2の7地点を選定した。 ○ 供試体は、3号埋戻土の地下水位前後からサンプリングしている。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 試料採取位置の代表性確認指標の選定(埋戻土)

○ 液状化強度試験の試料採取位置とその周辺で実施したボーリング調査位置の物理特性を比較して, 試料採取位置の代表性を確認する。

○ 代表性確認の指標として用いる物理特性は、以下の観点で選定した。

> 粒度分布:

基本的な土の物性値。各基準類における液状化判定に平均粒径,10%粒径が用いられており,液状化強度比RLとの相関が高い。

➢ 細粒分含有率: 各基準類の液状化判定における液状化強度比RLの算定式において,液状化強度比RLを補正するパラメータとして用いられており,液状化強度比RLとの 相関が高い。

> せん断波速度: 冬麺文献において、せん断波速度を用いた液状化強度の

各種文献において、せん断波速度を用いた液状化強度の推定方法や、液状化強度試験の乱れの補正方法等が示されており、液状化強度比R_Lとの相関 が高い。

- N値については、以下の観点から、指標として適切ではないと判断した。
 - ▶ 埋戻土は,標準貫入試験を行った際,礫自体を打撃することによりN値が著しく大きくなる場合(以下,「礫あたり」という。)が考えられる。
 - ▶ また, 空隙箇所を含めて標準貫入試験を行った際には空打ち状態となり, N値を過小評価してしまうことが考えられる。
 - ▶ このことから, N値が過大/過小となる範囲が出現し, 実地盤の性状をN値で代表できない可能性がある。

○ なお、 埋戻土のN値の取扱いについては補足説明資料3 (P130~140参照) に示す。

○ 以上より, 試料採取位置の代表性確認指標として, 粒度分布, 細粒分含有率, せん断波速度を選定した。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度とせん断波速度の関係に関する文献

○ 参考文献における液状化強度とせん断波速度の関係に関する記載について示す。

【地盤工学会(2004)】

○「N値の信頼度が低下する砂礫地盤の液状化強度の指標として, 礫地盤の調査においても信頼できる値が得られ, しかも液状化強度と相関のよいS波速度(または初期せん断剛性)を使用する可能性も研究されている。」

[Tokimatsu et al. (1991)]

○ 「Since the penetration tests may not always provide a reliable estimate and cannot be performed conveniently at all depths or in all soils, it is desirable to have a different method which is hopefully independent from the SPT based correlation. Shear wave velocity is a possible indicator for this purpose because its value tends to increase with increasing liquefaction resistance.」

(貫入試験は信頼性のある評価が常に得られるとは限らず,全ての深度や全ての土質で簡便に行うことができないので,できればSPT(標準貫入試験)に基づく関係とは別 の異なる方法があることが望ましい。せん断波速度は液状化抵抗の増加とともに増えることから,この目的に適う指標である。)

[Andrus et al. (2000)]

○「The use of Vs as an index of liquefaction resistance is soundly based because both Vs and liquefaction resistance are similarly influenced by many of the same factors (e.g., void ratio, state of stress, stress history, and geologic age).」
 (Vsと液状化抵抗の両方とも、多くの同じ要因(例えば、間隙比、応力状態、応力履歴、地質年代)によって同様に影響を受けるということから、液状化抵抗の指標として Vsを用いることには根拠がある。)

【塚本ほか(1997)】

○「まさ土のように礫を多く混入する地盤では, 地盤の平均的なS波速度を求める方法が良いと考えられる。」 「サンプリングや従来の貫入試験の適用が難しい地盤において, S波速度を用いた液状化強度の評価が十分適用できることが分かった。」

【鉄道総合技術研究所(2012)】

○「現在,サンプリング等による供試体の乱れを評価する普遍的な方法は確立されていないが,原位置でのせん断弾性波速度Vsから得られるせん断弾性係数Gosと,室内地 盤材料試験において得られるせん断弾性係数Goeを比較する方法がその一つとして挙げられる。」

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置と周辺調査位置(1,2号埋戻土)

○ 1,2号側について,液状化強度試験位置と周辺調査位置を以下に示す。 ○ 周辺調査位置については、「ボーリングが実施可能である地点」を条件に選定した。

液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(1,2号埋戻土)

【粒度分布を指標とした代表性確認】

○ 粒度分布について、液状化強度試験位置は1,2号側周辺調査位置と概ね同程度の分布である。

ともに輝く明日のために。 Light up your future.

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(1,2号埋戻土)

【細粒分含有率を指標とした代表性確認】 〇 細粒分含有率について,液状化強度試験位置は1,2号側周辺調査位置と同程度の範囲である。

○ 細粒分含有率を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

ともに輝く明日のために。

IJCC H

液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(1,2号埋戻土)

【せん断波速度を指標とした代表性確認】 〇 せん断波速度について,液状化強度試験位置は1,2号側周辺調査位置と同程度の範囲である。

○ せん断波速度を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

ともに輝く明日のために。

43

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置と周辺調査位置(3号埋戻土)

○ 3号側について,液状化強度試験位置と周辺調査位置を以下に示す。
 ○ 周辺調査位置については、「ボーリングが実施可能である地点」を条件に選定した。

ともに輝く明日のために。 Light up your future.

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(3号埋戻土)

【粒度分布を指標とした代表性確認】

○ 粒度分布について、液状化強度試験位置は3号側周辺調査位置と概ね同程度の分布である。

○ 粒度分布を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(3号埋戻土)

【細粒分含有率を指標とした代表性確認】 〇細粒分含有率について,液状化強度試験位置は3号側周辺調査位置と同程度の範囲である。

○ 細粒分含有率を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(3号埋戻土)

【せん断波速度を指標とした代表性確認】 〇 せん断波速度について,液状化強度試験位置は3号側周辺調査位置と同程度の範囲である。

○ せん断波速度を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

ともに輝く明日のために。 Light up your future.

47

4. 液状化強度試験 試料採取位置選定とその代表性 埋戻土の代表性評価のまとめ

○ 1,2号埋戻土及び3号埋戻土について,液状化強度試験位置と周辺調査位置で粒度分布・細粒分含有率・せん断波速度を指標として試料採取位置の代表性 を評価した。

- 1,2号埋戻土
 - > 粒度分布について,液状化強度試験位置は1,2号側周辺調査位置と同程度の範囲となった。
 - > 細粒分含有率について、液状化強度試験位置は1.2号側周辺調査位置と同程度の範囲となった。
 - > せん断波速度について、液状化強度試験位置は1,2号側周辺調査位置と同程度の範囲となった。
- 3号埋戻土
 - > 粒度分布について、液状化強度試験位置は3号側周辺調査位置と同程度の範囲となった。
 - > 細粒分含有率について、液状化強度試験位置は3号側周辺調査位置と同程度の範囲となった。
 - > せん断波速度について、液状化強度試験位置は3号側周辺調査位置と同程度の範囲となった。

○ 以上より, 埋戻土について試料採取位置は代表性を有していると評価した。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験箇所の選定(砂層)

○ 試料採取位置は、砂層が分布する範囲を網羅する7地点を選定した。

○ 採取位置は、「ボーリングが実施可能であること」、「試料採取が可能な位置及び深度であること」、「試料採取可能な層厚を有していること」を条件に選定した。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験箇所の選定(砂層)

ともに輝く明日のために。 ほくてん

○ 砂層の液状化強度試験位置については、砂層の分布範囲から、SW2-1、SW2-4、SW-4、SW-6、SW-7、FS-1、FS-2の7地点を選定した。

液状化強度試験位置図

4. 液状化強度試験 試料採取位置選定とその代表性 試料採取位置の代表性確認指標の選定(砂層)

○ 試料採取位置とその周辺で物理特性を比較して, 試料採取位置の代表性を確認する。

○ 代表性確認の指標として用いる物理特性は、一般に液状化検討の対象となる砂であることを踏まえて、以下の観点で選定した。

- ▶ 粒度分布: 基本的な土の物性値。各基準類における液状化判定に平均粒径、10%粒径が用いられており、液状化強度比RLとの相関が高い。
- ➢ 細粒分含有率: 各基準類の液状化判定における液状化強度比RLの算定式において,液状化強度比RLを補正するパラメータとして用いられており,液状化強度比RLとの 相関が高い。
- ≻ N値:

各基準類の液状化判定における液状化強度比RLの算定式がいずれもN値をパラメータとした式である。また,有効応力解析(FLIP)の簡易パラメータ設定 法にN値が用いられており,液状化強度比RLとの相関が高い。

○ 以上より, 試料採取位置の代表性確認指標として, 粒度分布, 細粒分含有率, N値を選定した。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置と周辺調査位置(砂層)

○ 砂層について、液状化強度試験位置と周辺調査位置を以下に示す。
 ○ 周辺調査位置については、「ボーリングが実施可能であること」を条件に選定した。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(As1層)

【粒度分布を指標とした代表性確認】

○ 粒度分布について、液状化強度試験位置は周辺調査位置と概ね同程度の分布である。

○ 粒度分布を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(As1層)

【細粒分含有率を指標とした代表性確認】 〇 細粒分含有率について,液状化強度試験位置は周辺調査位置と同程度の範囲である。

○細粒分含有率を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

54

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(As1層)

【N値を指標とした代表性確認】

○ N値について,液状化強度試験位置は周辺調査位置と同程度の範囲である。

ともに輝く明日のために。 Light up your future.

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(As2層)

【粒度分布を指標とした代表性確認】

○ 粒度分布について、液状化強度試験位置は周辺調査位置と概ね同程度の分布である。

ともに輝く明日のために。 Lightup your future しまくてん

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(As2層)

【細粒分含有率を指標とした代表性確認】 〇 細粒分含有率について,液状化強度試験位置は周辺調査位置と同程度の範囲である。

○細粒分含有率を指標とした比較において、液状化強度試験位置は代表性を有しているといえる。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 液状化強度試験位置の代表性確認(As2層)

【N値を指標とした代表性確認】

○ N値について,液状化強度試験位置は周辺調査位置と同程度の範囲である。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性 砂層の代表性評価のまとめ

○ As1, As2層について, 試料採取位置とその周辺でN値・細粒分含有率・粒度分布を指標として試料採取位置の代表性を評価した。 ○ As1層

- > 粒度分布について,液状化強度試験位置はAs1層周辺調査位置と同程度の範囲となった。
- > 細粒分含有率について,液状化強度試験位置はAs1層周辺調査位置と同程度の範囲となった。
- > N値について,液状化強度試験位置はAs1層周辺調査位置と同程度の範囲となった。
- 〇 As2層
 - > 粒度分布について,液状化強度試験位置はAs2層周辺調査位置と同程度の範囲となった。
 - > 細粒分含有率について、液状化強度試験位置はAs2層周辺調査位置と同程度の範囲となった。
 - > N値について、液状化強度試験位置はAs2層周辺調査位置と同程度の範囲となった。

ともに輝く明日のために。

4. 液状化強度試験 試料採取位置選定とその代表性

まとめ(液状化強度試験 試料採取位置選定とその代表性)

【埋戻土】

<液状化強度試験箇所の選定>

- 試料採取位置は, 飽和した埋戻土が分布する範囲を網羅する10地点(1,2号埋戻土)と7地点(3号埋戻土)を選定した。
- 採取位置は、「ボーリングが実施可能であること」、「試料採取が可能な位置及び深度であること」を条件に選定した。
- 地下水位以浅/以深の両方を含む範囲から採取深度を選定した。

<代表性評価>

○ 試料採取位置とその周辺で3項目の指標(粒度分布,細粒分含有率,せん断波速度)を比較して,試料採取位置の代表性を確認した。

【砂層】

<液状化強度試験箇所の選定>

- 試料採取位置は、砂層が分布する範囲を網羅する7地点を選定した。
- 採取位置は,「ボーリングが実施可能であること」,「試料採取が可能な位置及び深度であること」,「試料採取可能な層厚を有していること」を条件に選定した。 <代表性評価>
- 試料採取位置とその周辺で3項目の指標(粒度分布,細粒分含有率,N值)を比較して,試料採取位置の代表性を確認した。

○ 試料採取可能な範囲の中から、複数の地点を液状化強度試験箇所として選定した。
 ○ 埋戻土,砂層ともに、液状化強度試験位置が代表性を有していることを確認した。

5. 液状化強度試験結果と液状化強度特性の設定

1.	. 液	秋化	評価の	D基	本	方	針	•	• •	• •	• •	• • •	• •	• •	•	• •	• •	• • •	• •	• •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•	•	•	• •	•	•	• •	•	• •	•	•	2
2	. 液	秋化	検討	付家	層	ທ	抽	出	•	• •	• •	• • •	• •	• •	•	• •	• •	• • •	• •	• •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•	•	•	• •	•	•	• •	•	• •	•	•	5
3	. 液	秋化	検討	付家	施	設	ທ	抽	出	•	• •	•••	• •	• •	•	• •	• •	• •	• •	• •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•	•	•	• •	•	•	• •	•	• •	•	•	12
4	. 液	秋化	強度詞	式駁		「米	抈	E.	zď		۳;	異.	定	と	そ	·0)	什	13	ŧ	± •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•	•	•	• •	•	•	• •	•	• •	•	•	34
5	液	7状化	強度	式騎	結	果	と	夜	伏	化	強	唐	[朱	ŧ	生	በ	設	定	•	••	••	•	• •	• •	• •	• •	•	• •	•	• •	•	• •	• •	•	•	• •	•	• •	• •	•	• •	•	•	61
	• 110				4 4 ° M										_	-	_																											
6	. 液	秋化	の評価	西方	針	•	• •		• •	•••	• •	• • •	• •	• •	•	• •	• •	•	• •	• •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•	•	•	• •	•	•	• •	•	• •	•	•	96
6 7	· 液 . 注	マ状化 (本の)	の評価	西方	針	• •	• • •	• •	•••	•••	• •		•••	•••	•	•••	• •		••	•••	••	•	••	•	•	•••	•	• •	•	••	•	••	•	•	•	•••	•	•	•••	•	• •	•	•	96 98
6	液全 気	マンジャン しんしょう しんしょ しんしょ	の評 (まとめ) 資料	西方 ···	。 针				•••	•••	• •		•••	•••	•	•••	• •		•••	•••	•••		•••			•••	•	• •	•	•••	•	•••		• •	•	•••	•	•	• •	•	• •	•	•	96 98 101

ともに輝く明日のために。

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の分類に対する基本的考え方(1/6)

- 泊発電所の敷地地盤は掘削岩砕を埋め戻して造成しており、道路橋示方書では液状化判定の対象外である粒径や粒度分布であることから、液状化に対する 抵抗性が比較的高いと考えられる。
- また,砂層のうち特にAs2層についてはN値が30以上と比較的大きい。
- 以上から泊発電所の液状化検討対象層は,液状化によってせん断振幅が急増し,地盤全体が泥水状態となり,噴砂や噴水を伴う「ゆるい砂」や「埋立地盤」と は異なり,ひずみの増大に伴って体積膨張を起こし,ある程度の剛性と強度を回復する「ねばり」をもった挙動をすると考えられる。
- そこで, 泊発電所の液状化検討対象層が地震時にどのような挙動をするかを把握する目的で, 液状化強度試験結果を「液状化」, 「繰返し軟化 (サイクリックモ ビリティを含む) 」, 「非液状化」に分類した。
- なお, 分類には, 土木学会地震工学委員会「レベル2地震動による液状化研究小委員会」活動成果報告書を参考にした。

【土木学会地震工学委員会(2003)の報告書より】

- ○(狭儀の)液状化
- ▶ 地震の繰返しせん断力などによって, 飽和した砂や砂礫などの緩い非粘性土からなる地盤内で間隙水圧が上昇・蓄積し, 有効応力がゼロまで低下し液体状となり, その後地盤の「流動」をともなう現象, または「流動ポテンシャル」をもった地盤となる現象。
- ○広義の液状化
 - 緩い砂地盤や砂礫地盤に限定せず、密な砂地盤や密な砂礫地盤さらに粘性土地盤でも地震などを含む種々の外力によって有効応力が 低下し、地盤の強度または剛性の低下により有害な沈下や変形などが起こる現象。一般に飽和地盤が多いが、不飽和地盤においても 起こる類似の現象(ただし、そのメカニズムは必ずしも解明されていない)も含むものとする。
- ○繰返し軟化
- ➢ 繰返し載荷による間隙水圧上昇と剛性低下によりせん断ひずみが発生し、それが繰返し回数とともに徐々に増大するが、土のもつダイレ イタンシー特性や粘性のためにひずみは有限の大きさにとどまり、大きなひずみ範囲にいたるまでの流動は起きない。 ○サイクリック・モビリティ
 - 繰返し載荷において土が「繰返し軟化」する過程で、限られたひずみ範囲ではせん断抵抗が小さくなっても、ひずみが大きく成長しようと すると、正のダイレイタンシー特性のためにせん断抵抗が急激に作用し、せん断ひずみの成長に歯止めがかかる現象。主に、密な砂や礫 質土、過圧密粘土のように正のダイレイタンシー特性が著しい土において顕著に現れる。

液状化に関連する言葉の定義

ともに輝く明日のために。

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の分類に対する基本的考え方(2/6)

○ 液状化強度試験結果は、「① 間隙水圧が上昇・蓄積する。(過剰間隙水圧比95%を超える。)」、「② 有効応力がゼロまで低下する。」、「③ 液体状となり流動する。(ひずみが急増する。)」、「④ 正のダイレイタンシー特性によりせん断抵抗が作用する。(有効応力が回復する。)」の4項目に該当するかどうかを判定し、下表に基づいて分類する。

液状化強度試験結果の判定項目と分類

○:該当する×:該当しない

		繰返し		
判定項目 [※] '	液状化		サイクリック モビリティ	手液状化
 間隙水圧が上昇・蓄積する。 (過剰間隙水圧比95%を超える。) 	0	0	Ο	×
② 有効応力がゼロまで低下する。	Ο	×	0	×
③ 液体状となり流動する。 (ひずみが急増する。)	0	×	×	×
 ④ 正のダイレイタンシー特性により せん断抵抗が作用する。 (有効応力が回復する。) 	×	0	0	○ or ×*²

※1 土木学会地震工学委員会の定義に基づき判定項目を策定したが、液状化強度試験の結果に対して判定できるよう、括弧内の判断項目を 補足した。

※2 項目の判定はするものの、「非液状化」の分類に影響は及ぼさない。

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の分類に対する基本的考え方(3/6)

○ 液状化に分類される文献の事例を示す。

ほくてん

ともに輝く明日のために。

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の分類に対する基本的考え方(4/6)

○ 繰返し軟化 (サイクリックモビリティ) に分類される文献の事例を示す。

試験結果	液状化の判断	
 間隙水圧が上昇・蓄積する。 (過剰間隙水圧比95%を超える。) 	0	
② 有効応力がゼロまで低下する。	0	
③ 液体状となり流動する。 (ひずみが急増する。)	×	繰返し軟化 (サイクリックモビリティ)
④ 正のダイレイタンシー特性により せん断抵抗が作用する。 (有効応力が回復する。)	0	

※1 地盤工学会(2009):地盤材料試験の方法と解説

※2 井合 (2008) :サイクリックモビリティ, 地盤工学会誌

ともに輝く明日のために。 Light up your future.

ともに輝く明日のために。

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の分類に対する基本的考え方(5/6)

○ 参考文献に記載の液状化に関する内容を以下に示す。

【土質工学用語辞典(1985)】

○ 間隙水圧が上昇して有効応力が減少する結果, 飽和砂質土がせん断強さを失うことを液状化という。

【地盤工学会(2006)】

○ 砂などの繰返し載荷において、有効拘束圧がゼロに近づいてから、載荷時にせん断剛性の回復、除荷時に有効応力の減少を繰り返していくが、ひずみは有限の大きさにとどまる現象をサイクリックモビリティといい、液状化とは区別して用いられることがある。

【安田(1991)】

 ○ 密詰めの砂の場合には大ひずみは生じない。一時的に有効拘束圧が0になっても、その後にせん断力を加えると負の過剰間隙水圧が発生して有効拘束圧が 増加(回復)し、有限の小さなひずみ振幅しか発生しない。この現象を"サイクリックモビリティ"と呼んで液状化と区別することもある。

【石原(2017)】

○ 間隙水圧は徐々に上昇しているが, 最終的にこれが初期の拘束圧力 σ'₀ に等しくなっている時点が厳密な意味で液状化の発生ということになる。

○ 砂質土は, その密度や細粒分の含有率によって同じ振幅の繰返し軸荷重を加えても, 間隙水圧の上昇そして軸ひずみ発生の模様が多少変わってくる。

 ○ 細粒分が多い場合, 軸ひずみは増大しても間隙水圧は100%上昇しないことが多い。しかし, 土は著しく軟化し, 繰返し強度が低下しているので, 実用上この 場合も液状化とみなすことが多い。本来は"繰返し軟化"というべき。

ともに輝く明日のために。

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の分類に対する基本的考え方(6/6)

【井合(2008)】

- サイクリックモビリティとは, 密な砂地盤が繰返しせん断を受け, 過剰間隙水圧の増加に伴って, せん断ひずみ振幅が徐々に増大する現象である。
- 地盤の液状化は、ゆるい砂地盤が繰返しせん断を受け、せん断振幅が急増し、地盤全体が泥水状態となり、噴砂や噴水を伴うことが多いので、現象的にサイクリックモビリティとは異なる。

【吉見(1991)】

- ゆるい砂の液状化と異なる点は、密な砂では、せん断ひずみがある限度を超えると、せん断によって体積が膨張しようとする傾向(正のダイレイタンシー)が現れ るので、非排水条件のもとでは、せん断ひずみが大きくなると間隙水圧が減少し、したがって有効応力が回復することである。
- 有効応力がゼロになるのは、せん断応力がゼロになる瞬間だけであり、せん断応力が作用している間は有効応力が存在するので、間隙水圧比が100%に達した後でも、繰返しせん断に対して相当な剛性を保持する。
- 密な砂では、ゆるい砂でみられるような破局的なクイックサンドは起こらず、有限なひずみ振幅を持つせん断変形が繰り返されるにすぎない。

地盤のダイレイタンシー特性の概要

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験の試料採取位置

○ 試料採取位置は、飽和した埋戻土が分布する範囲を網羅する10地点(1,2号埋戻土)と7地点(3号埋戻土)を選定した。

ともに輝く明日のために。

ほくてん

68

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験の試料採取位置

○ 試料採取位置は、砂層が分布する範囲を網羅する7地点を選定した。

ともに輝く明日のために。

69

Light up your future. ほそてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験方法

※GPサンプリング:ゲルプッシュ・サンプリングの略称である。従来の三重管サンプラーや水圧式サンプラーに高濃度ポリマー溶液を組み合わせて使用するサンプリング方法である。マトリックスの流出を防ぎ、 サンプラーの回転に伴う試料の乱れを抑制し、乱れの少ない試料を採取することができる。

ともに輝く明日のために、

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(1,2号埋戻土)

○ 1,2号埋戻土の液状化強度試験結果を以下に示す。

		試料番号		SW2-3	(φ 100)		SW	2-4 (ф10	00)	BF1-2 (ф100)						
	•	サンプリング方法		GPサン	プリング		G	Pサンプリン	グ	GPサンプリング						
	地	表からの深度 (m)		9.90~	-11.15		:	3.03~4.4	5	10.45~11.25						
		標高 T.P.(m)		0.5~	-0.75		C	.87~-0.5	5	-0.05~-0.85						
		供試体No.	16	17	18	19	5	7	8	25	26	27	28			
	土粒子	Fの密度 ρ _s (g/cm ³)		2.6	681			2.741			2.7	'06				
	圧密	応力 σ´c(kN/m²)		2	00			200			20	00				
	繰返応	万振幅比 σ α/2σ´ο	0.608	0.836	0.727	0.501	0.759	0.615	0.823	0.726	0.508	0.618	0.574			
縵	市	DA = 1%	12.9	0.4	0.9	6.0	2.0	9.0	0.7	1.5	19.8	2.0	3.5			
返	両数	DA = 2%	27.7	0.9	2.5	13.8	12.9	28.8	3.0	5.0	39.4	4.5	8.0			
載	振り幅み	DA = 5%	42.6	3.5	9.0	38.1	32.6	55.2	12.9	12.7	77.1	9.5	16.8			
何回	0)	DA = 10%	_	7.5	18.9	98.7	33.8	67.7	26.0	20.6	98.9	12.8	23.6			
数	過乗	间間隙水圧比95% Nu95	11.0	2.0	2.0	6.0	6.0	6.0	2.0	3.0	23.0	3.0	6.0			
				•				•			•					
試料番号			RE-1 (φ 100)	RE-2 (1)) (ф100)	RE-	2 (2) (φ1	00)	RE-2 (3) (\$\$100)						
		サンプリング方法	GPサン	プリング	GPサン	プリング	G	Pサンプリン	グ	GPサンプリング						
	地	表からの深度 (m)	17.35-	~17.55	4.80~	~5.00	8	8.73~10.7	3	10.73~11.73						
		標高 T.P.(m)	-0.65	~-0.85	5.30-	~5.10	1	.37~-0.6	3	-0.63~-1.63						
		供試体No.	2	5		6	9	13	14	15	16	17	18			
土粒子の密度 p _s (g/cm ³)			2.6	52	2.7	781	2.704 2.667 2.717			2.725 2.740 2.738 2.735						
	圧密	応力 σ´c(kN/m²)	20	00	20	00		200		200						
	繰返応	万振幅比 σ α/2σ´ο	0.3	33	0.2	252	0.501	0.602	0.554	0.704	0.555	0.481	0.459			
縵	市	DA = 1%	17	7.6	9	.5	68.9	1.5	0.9	0.5	0.9	2.5	3.0			
返	両む	DA = 2%	DA = 2% 30.5			3.8	99.3	5.0	3.5	0.9	3.0	7.5	6.5			
載	坂の	DA = 5%	45	5.7	19	9.1	123.9	13.5	10.9	3.0	10.0	23.9	15.6			
何回	Ø	DA = 10%	-	-	23	3.7	_	-	_							
数 過剰間隙水圧比95% Nu95			22	2.0	19	9 .0	38.0	4.0	2.0	2.0	3.0 6.0 5.0					

ともに輝く明日のために。 Light up your future.

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(1,2号埋戻土)

○ 1,2号埋戻土の液状化強度試験結果を以下に示す。

		試料番号		RE-3 (1)	(φ100)			RE-3 (2)	(φ 100)		RE-:	3(3)(00)	
	t,	サンプリング方法		GPサン	プリング			GPサン	プリング		G	Pサンプリン	グ	
	地	表からの深度 (m)		2.80	~4.23			4.40-	-5.70		7	′.45 ~ 15.5	6	
		標高 T.P.(m)		7.00	~5.57			5.40-	-4.10		2	.35~-5.7	6	
		供試体No.	3	5	1'	2'	6	7	8	9	11	14	18	
	土粒子	Fの密度 ρ _s (g/cm ³)	2.706	2.688	2.708	2.698	2.703	2.765	2.756	2.750	2.709	2.717	2.728	
	圧密	応力 σ´c(kN/m²)		2	00			20	0			200		
	繰返応	万振幅比 σ d/2σ´o	0.503	0.428	0.401	0.383	0.401	0.502	0.451	0.413	0.502	0.381	0.352	
縵	赤巾	DA = 1%	1.0	0.9	4.0	2.0	18.7	1.0	1.5	2.0	0.7	0.8	3.5	
返	両む	DA = 2%	3.0	2.5	10.0	4.5	45.5	4.0	3.5	5.0	1.5	2.0	7.5	
載	振り幅み	DA = 5%	DA = 5% 5.5 5.5 26 DA = 10%				75.9	11.1	9.5	14.7	3.5	4.5	18.7	
何回	Ø	DA = 10%	_	_	_	_	_	-	_	_	_	_	_	
数	過乗	间間隙水圧比95% Nu95	4.0	2.0	10.0	4.0	_	-	_	-	_	5.0	6.0	
		試料番号	RE-4 (φ 100)	RE-5 (1)	(d100)		RE-5 (2)	(d100)			RE-5 (3)	(•100)	
	+	試料番号 サンプリング方法	RE-4(GPサン	φ 100) プリング	RE-5 (1) GPサン	(RE-5 (2) GPサン	(φ 100) プリング			RE-5 (3) GPサン	(φ 100) プリング	
		試料番号 サンプリング方法 表からの深度 (m)	RE-4(GPサン 9.75~	φ 100) プリング ~9.95	RE-5 (1) GPサン 3.03-	(RE-5 (2) GPサン 3.43~	(φ 100) プリング ·10.05			RE-5 (3) GPサン 4.15~	(φ 100) プリング ~6.60	
	t 地	試料番号 サンプリング方法 表からの深度(m) 標高 T.P.(m)	RE-4(GPサン 9.75~ 0.55~	φ 100) プリング ~9.95 ~0.35	RE-5 (1) GPサン 3.03- 0.47-	(ф 100) プリング ~3.43 ~0.07		RE-5 (2) GPサン 3.43~ 0.07~	(φ 100) プリング · 10.05 · -6.55			RE-5 (3) GPサン 4.15- -0.65	(ф 100) プリング ~6.60 ~-3.1	
	+ 地:	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No.	RE-4(GPサン 9.75~ 0.55~	φ 100) プリング ~9.95 ~0.35 7	RE-5 (1) GPサン 3.03- 0.47- 6	(ф 100) プリング ~3.43 ~0.07 7	8	RE-5 (2) GPサン 3.43~ 0.07~ 9	(20	10	RE-5 (3) GPサン 4.15~ -0.65 13	(17
	+; 地: 土粒子	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³)	RE-4(GPサン 9.75~ 0.55~ 1 2.6	φ100) プリング ~9.95 ~0.35 7 591	RE-5 (1) GPサン 3.03- 0.47- 6 2.787	(\$ 100) プリング ~3.43 ~0.07 7 2.791	8 2.665	RE-5 (2) GPサン 3.43~ 0.07~ 9 2.670	(20 2.748	10	RE-5 (3) GPサン 4.15- -0.65 13 2.677	(17 2.785
	+; 地: 土粒子 庄密:	武料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²)	RE-4(GPサン 9.75~ 0.55~ 1 2.6 20	φ 100) ブリング ~9.95 ~0.35 7 591 00	RE-5 (1) GPサン 3.03- 0.47- 6 2.787 20	(8 2.665	RE-5 (2) GPサン 3.43~ 0.07~ 9 2.670 20	(20 2.748	10 2.663	RE-5 (3) GPサン 4.15~ -0.65 13 2.677 20	(17 2.785
	+; 地 土粒 王 密 繰返応	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 応力 振幅比 σ _d /2σ ^c ₀	RE-4 (GPサン 9.75~ 0.55~ 1 2.6 20 0.7	Φ 100) プリング ~9.95 ~0.35 7 991 00 05	RE-5 (1) GPサン 3.03- 0.47- 6 2.787 2.0 0.702	(8 2.665 0.349	RE-5 (2) GPサン 3.43~ 0.07~ 9 2.670 2.670 2.0503	(20 2.748 0.756	10 2.663 0.402	RE-5 (3) GPサン 4.15- -0.65 13 2.677 20 0.553	(17 2.785 0.433
	+, 地: 土粒子 圧密, 繰返応	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c (kN/m ²) 応力振幅比 σ _d /2σ ⁻ ₀ DA = 1%	RE-4 (GPサン 9.75- 0.55- 1 2.6 20 0.7	φ 100) プリンダ ~9.95 ~0.35 7 591 00 105 .5	RE-5 (1) GPサン 3.03- 0.47- 6 2.787 20 0.702 11.8	(8 2.665 0.349 25.7	RE-5 (2) GPサン 3.43~ 9 2.670 20 0.503 9.5	(20 2.748 0.756 0.2	10 2.663 0.402 10.5	RE-5 (3) GPサン 4.15- -0.65 13 2.677 20 0.553 0.8	(17 2.785 0.433 2.0
	+ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	試料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 応力 σ ^f c (kN/m ²) 応力 s ^f d振幅比 σ _d /2 σ ^f o DA = 1% DA = 2%	RE-4 (GPサン 9.75~ 0.55~ 1 2.6 2(0.7 1 7	 	RE-5 (1) GPサン 3.03- 0.47- 6 2.787 20 0.702 11.8 49.8	(8 2.665 0.349 25.7 39.8	RE-5 (2) GPサン 3.43~ 9 2.670 20 0.503 9.5 27.7	(20 2.748 0.756 0.2 0.4	10 2.663 0.402 10.5 27.2	RE-5 (3) GPサン 4.15- -0.65 13 2.677 20 0.553 0.8 2.5	(∲ 100) プリンダ ~6.60 ~-3.1 16 2.792 00 0.450 2.0 5.0	17 2.785 0.433 2.0 4.5
	+ ・ ・ 地 二 正 返 軸 ひず み - - - - - - - - - - - - -	武料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c (kN/m ²) につかっ ^c (kN/m ²) につかっ ^c α/2σ ^c α DA = 1% DA = 2% DA = 5%	RE-4 (GPサン 9.75- 0.55- 1 2.6 20 0.7 1 7 1 9	Φ 100) プリング ~9.95 ~0.35 7 991 00 05 .5 .5 0.8	RE-5 (1) GPサン 3.03- 0.47- 6 2.787 20 0.702 11.8 49.8 99.0	(8 2.665 0.349 25.7 39.8 56.7	RE-5 (2) GPサン 3.43~ 0.07~ 9 2.670 20 0.503 9.5 27.7 53.6	(20 2.748 0.756 0.2 0.4 1.0	10 2.663 0.402 10.5 27.2 67.1	RE-5 (3) GPサン 4.15- -0.65 13 2.677 20 0.553 0.8 2.5 8.5	(0100) ブリング ~6.60 ~-3.1 16 2.792 00 0.450 2.0 5.0 12.8	17 2.785 0.433 2.0 4.5 11.3
繰返し載荷回	+ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c (kN/m ²) の 方振幅比 σ _d /2 σ ⁻ ₀ DA = 1% DA = 2% DA = 5% DA = 10%	RE-4 (GPサン 9.75- 0.55- 1 2.6 20 0.7 1 7 19		RE-5 (1) GPサン 3.03- 0.47- 6 2.787 20 0.702 11.8 49.8 99.0 -	(8 2.665 0.349 25.7 39.8 56.7 —	RE-5 (2) GPサン 3.43~ 0.07~ 9 2.670 20 0.503 9.5 27.7 53.6 —	(20 2.748 0.756 0.2 0.4 1.0 —	10 2.663 0.402 10.5 27.2 67.1 —	RE-5 (3) GPサン 4.15- -0.65 13 2.677 20 0.553 0.8 2.5 8.5 -	(17 2.785 0.433 2.0 4.5 11.3 —
繰返し載荷回数	+ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 応力 σ ^c c (kN/m ²) つ振幅比 σ _d /2σ ^c o DA = 1% DA = 2% DA = 5% DA = 5% DA = 10%	RE-4 (GPサン 9.75~ 0.55~ 1 2.6 2(0.7 1 7 1 5	 	RE-5 (1) GPサン 3.03- 0.47- 6 2.787 20 0.702 11.8 49.8 99.0 - - -	(8 2.665 0.349 25.7 39.8 56.7 — 35.0	RE-5 (2) GPサン 3.43~ 0.07~ 9 2.670 20 0.503 9.5 27.7 53.6 — 48.0	(20 2.748 0.756 0.2 0.4 1.0 - 1.0	10 2.663 0.402 10.5 27.2 67.1 — 15.0	RE-5 (3) GPサン 4.15- -0.65 13 2.677 20 0.553 0.8 2.5 8.5 - 3.0	(17 2.785 0.433 2.0 4.5 11.3 — 4.0

□:試験結果を例示したケース

ともに輝く明日のために。

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(1,2号埋戻土)

○ 1,2号埋戻土の液状化強度試験結果を以下に示す。

	試料番号 RE-6 (Φ100) サンプリング方法 GPサンプリング 地表からの深度 (m) 7.50~14.15 標高 T.P. (m) -4.00~-10.65 供試体No. 16 17 18 土粒子の密度 ρ _s (g/cm ³) 2.751 2.639 2.618 2. 圧密応力 σ c (kN/m ²) 200 繰返応力振幅比 σ _d /2 σ ⁻ 0 0.404 0.503 0.374 0.						SH-1 (1)	(\$300)			SH-1 (2)	(\$300)		
	•	サンプリング方法		GPサン	プリング			GPサン	プリング			GPサン	プリング	
	地	表からの深度 (m)		7.50~	·14.15			1.55-	~2.15			2.90-	~3.55	
		標高 T.P.(m)		-4.00~	-10.65			2.25	~1.65			0.90-	~0.25	
		供試体No.16171820土粒子の密度 ρ _s (g/cm³)2.7512.6392.6182.7			20	1-1	1-4	1-5	1-6	2-2	2-3	2-4	2-6	
	土粒子	供試体No. 16 17 18 18 16 17 18 18 16 17 18 16 16 17 18 16 16 17 18 16 17 18 16 17 18 12 16 16 17 18 12 16 16 17 18 12 12 16 16 16 <				2.724	2.745	2.761	2.760	2.736	2.725	2.711	2.716	2.712
	圧密	応力 σ´c(kN/m²)		20	00			20	00			20	00	
	繰返応	万振幅比 σ α/2σ´ο	0.404	0.503	0.374	0.361	0.311	0.235	0.200	0.212	0.311	0.359	0.440	0.328
繰	曲	DA = 1%	3.5	0.5	2.5	2.0	2.0	9.0	61.9	45.9	8.0	15.9	6.0	23.6
返し	両び	DA = 2%	10.0	1.5	5.5	5.0	3.5	11.0	69.7	52.7	11.6	22.8	11.6	29.2
載	幅み	DA = 5%	26.2	4.5	12.6	14.0	5.5	14.0	76.0	59.2	16.6	28.9	16.8	34.8
何回	0	DA = 10%	45.0	9.5	20.6	24.6	6.5	16.8	80.9	64.9	19.8	—	—	37.9
数	過乗	间間隙水圧比95 % Nu95	10.0	2.0	5.0	6.0	—	—	64.0	55.0	15.0	22.0	—	28.0

		試料番号		SH-1 (3)	(\$300)	
	•	サンプリング方法		GPサン	プリング	
	地	表からの深度 (m)		4.40-	~5.00	
		標高 T.P.(m)		-0.6-	~-1.2	
		供試体No.	3-2	3-3	3-4	3-5
	土粒子	Fの密度 ρ _s (g/cm ³)	2.750	2.757	2.744	2.774
	圧密	応力 σ´c(kN/m²)		20	00	
	繰返応	万振幅比 σ α/2σ´ο	0.358	0.423	0.490	0.328
繰	曲	DA = 1%	10.9	4.0	1.5	14.9
返し	両び	DA = 2%	21.1	10.0	5.5	24.5
載	幅み	DA = 5%	40.1	21.7	15.3	39.6
何回	0	DA = 10%	60.7	-	27.9	61.8
数	過乗	间間隙水圧比95% Nu95	19.0	12.0	_	23.0

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(3号埋戻土)

試料番号 SW2-1 (\$100) BF3-1 (\$100) BF3-2 (\$\$100) RE-7 (\$\$100) RE-8 (\$ 100) GPサンプリング GPサンプリング GPサンプリング サンプリング方法 GPサンプリング GPサンプリング 地表からの深度(m) 10.05~11.30 9.78~10.48 8.60~8.80 18.65~19.05 8.05~8.25 標高 T.P.(m) -0.35~-1.60 1.20~1.00 -1.95~-2.35 2.05~1.85 -0.08~-0.78 供試体No. 12 13 14 15 11 21 22 21 19' 20' 21' 土粒子の密度 $\rho_s(g/cm^3)$ 2.761 2.659 2,700 2,779 2.688 2.947 2.681 **圧密応力** σ c (kN/m^2) 200 200 200 200 200 繰返応力振幅比 $\sigma_d/2\sigma_0$ 0.757 0.651 0.542 0.435 0.785 0.670 0.651 0.336 0 500 0.399 0.376 DA = 1%1.0 0.9 3.5 48.8 5.5 0.9 3.0 4.0 0.4 1.5 4.5 繰返し載荷回 = 両振幅 DA = 2%5.5 3.0 7.5 4.0 8.5 65.7 0.9 9.5 14.8 10.7 9.0 DA = 5%15.0 14.6 22.7 104.9 6.5 19.2 32.8 17.3 8.0 19.6 20.7 DA = 10%28.7 42.8 44.8 _ 13.7 25.4 55.5 21.8 _ _ _ 数 過剩間隙水圧比95% Nu95 4.0 9.0 8.0 67.0 2.0 17.0 30.0 11.0 5.0 5.0 9.0 試料番号 RE-8''(1) (\$\$100) RE-8'' (2) (\$100) SH-2 (\$ 300) サンプリング方法 GPサンプリング GPサンプリング GPサンプリング 地表からの深度(m) 11.12~11.80 12.25~13.45 4.77~8.40 標高 T.P.(m) -1.32~-2.00 -2.45~-3.65 4.98~1.30 3 3' 5' 供試体No. 4 1' 5 6 4' 1-5 1-6 3-1 3-4 土粒子の密度 $\rho_s(g/cm^3)$ 2.633 2.651 2.628 2.633 2.654 2.622 2.738 2.751 2.683 2.675 2.626 2.655 **圧密応力** σ c (kN/m^2) 200 200 200 繰返応力振幅比 $\sigma_d/2\sigma_0$ 0.401 0.351 0.374 0.454 0.400 0.502 0.602 0.706 0.438 0.485 0.526 0.359 DA = 1%1.5 2.0 3.5 1.5 9.5 2.0 0.8 0.7 11.8 13.7 0.6 49.6 軸ひずみの 繰返し載荷回 DA = 2%5.0 10.0 8.5 6.5 42.8 10.5 3.0 2.0 16.6 17.7 2.0 57.0 12.8 DA = 5%49.6 17.9 27.5 150.4 39.2 15.1 8.5 21.0 21.9 6.0 67.0 DA = 10%22.0 82.8 33.2 50.8 _ 74.9 36.9 _ _ 249 _ _ 数 過剩間隙水圧比95% Nug5 80 5.0 8.0 7.0 18.0 6.0 3.0 2.0 22.0 20.0 _ 52.0

○ 3号埋戻土の液状化強度試験結果を以下に示す。

□:試験結果を例示したケース

ともに輝く明日のために。

ほくてん

ともに輝く明日のために。 Light up your future.

ほくてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(As1層)

○ As1層の液状化強度試験結果を以下に示す。

	試料番号	SW-4-1	(φ 50)	SW-4-7	7 (φ50)		SW-4-1	0 (φ50)			SW-6-5	5 (φ50)	
ŧ	ナンプリング方法	トリプルチュー	ブサンプリング	トリプルチュー	ブサンプリング	<u>ب</u> ا	ノプルチュー	ブサンプリン	ッグ	H.	ノプルチュー	ブサンプリン	グ
地	表からの深度 (m)	21.90-	~22.80	27.65-	~28.65		30.65-	~31.65			25.70	~26.70	
	標高 T.P. (m)	-12.20-	~-13.10	-17.95-	~-18.95		-20.95-	~-21.95			-16.00	~-17.00	
	供試体No.	2	4	3	4	1	2	3	4	1	2	3	4
土粒子	-の密度 ρ s(g/cm³)	2.7	19	2.7	754		2.7	89			2.7	749	
圧密	応力 σ´c(kN/m²)	3	10	3	70		40	00			3	50	
繰返応	カ振幅比 σ d/2σ´o	0.292	0.243	0.188	0.233	0.250	0.226	0.182	0.202	0.257	0.213	0.192	0.171
軸	DA = 1%	0.9	17.0	40.7	0.4	2.5	1.5	41.7	27.7	0.8	10.8	19.7	66.8
両ひ	DA = 2%	2.0	28.8	44.9	0.9	4.0	2.5	48.7	33.0	2.0	13.6	21.6	70.7
振り幅み	DA = 5%	4.5	40.9	50.9	4.0	6.0	4.0	55.5	39.7	5.0	18.9	24.7	76.8
0)	DA = 10%	7.5	43.9	57.1	10.3	8.5	6.0	59.7	43.5	11.6	35.6	28.9	90.3
過乗	间間隙水圧比95% Nu95	5.0	37.0	49.0	4.0	6.0	4.0	52.0	33.0	5.0	17.0	24.0	73.0
	+ 地 土 圧 返 軸 ひずみの 通 乗	試料番号 サンプリング方法 地表からの深度(m) 標高 T.P.(m) 供試体No. 土粒子の密度 ρ _s (g/cm ³) 圧密応力 σ ^c c(kN/m ²) 繰返応力振幅比 σ _d /2σ ^c o DA = 1% DA = 2% DA = 5% DA = 10% 過剰間隙水圧比95% Nu95	試料番号SW-4-1サンブリング方法トリブルチュー地表からの深度 (m)21.90~標高 T.P. (m)-12.20~供試体No.2土粒子の密度 ρ _s (g/cm ³)2.7圧密応力 σ [*] c (kN/m ²)3繰返応力振幅比 σ _d /2 σ [*] 00.292面 ひ 振 みDA = 1%0.9DA = 2%2.0五 = 5%4.5DA = 10%7.5過剰間隙水圧比95% Nu955.0	試料番号 SW-4-1 (Φ50) サンプリング方法 トリプルチューブサンプリング 地表からの深度(m) 21.90~22.80 標高 T.P. (m) -12.20~-13.10 供試体No. 2 4 土粒子の密度 ρ _s (g/cm ³) 2.719 圧密応力 σ ^c c (kN/m ²) 310 繰返応力振幅比 σ _d /2 σ ⁻⁰ 0.292 0.243 両 ひ 振 索 の DA = 1% 0.9 17.0 DA = 5% 4.5 40.9 DA = 5% 4.5 40.9 DA = 10% 7.5 43.9 過剰間隙水圧比95% Nu95 5.0 37.0	試料番号 SW-4-1 (Φ 50) SW-4-7 サンプリング方法 トリブルチュ-フサンブリング トリブルチュ- 地表からの深度(m) 21.90~22.80 27.65 標高 T.P. (m) -12.20~-13.10 -17.95 供試体No. 2 4 3 土粒子の密度 ρ _s (g/cm ³) 2.719 2.7 圧密応力 σ´c (kN/m ²) 310 3 繰返応力振幅比 σ _d /2 σ´₀ 0.292 0.243 0.188 DA = 1% 0.9 17.0 40.7 動間 ひ 病幅 み のの DA = 5% 4.5 40.9 50.9 DA = 5% 4.5 40.9 50.9 57.1 過剰間隙水圧比95% Nu95 5.0 37.0 49.0	試料番号 SW-4-1 (Φ 50) SW-4-7 (Φ 50) サンプリング方法 トリブルチューブサンブリング トリブルチューブサンブリング 地表からの深度 (m) 21.90~22.80 27.65~28.65 標高 T.P. (m) -12.20~-13.10 -17.95~-18.95 供試体No. 2 4 3 4 土粒子の密度 ρ _s (g/cm ³) 2.719 2.754 圧密応力 σ [*] c (kN/m ²) 310 370 繰返応力振幅比 σ _d /2 σ [*] 0 0.292 0.243 0.188 0.233 動 振 ヴ 幅 の DA = 1% 0.9 17.0 40.7 0.4 DA = 5% 4.5 40.9 50.9 4.0 DA = 5% 5.0 37.0 49.0 4.0	試料番号 SW-4-1 (050) SW-4-7 (050) サンプリング方法 トリブルチューブサンブリング トリブルチューブサンブリング 地表からの深度 (m) 21.90~22.80 27.65~28.65 標高 T.P. (m) -12.20~-13.10 -17.95~18.95 供試体No. 2 4 3 4 土粒子の密度 p _s (g/cm ³) 2.719 2.754 1 圧密応力 σ [*] c (kN/m ²) 310 370 370 繰返応力振幅比 σ _d /2 σ [*] 0 0.292 0.243 0.188 0.233 0.250 動数 DA = 1% 0.9 17.0 40.7 0.4 2.5 動数 DA = 5% 4.5 40.9 50.9 4.0 6.0 DA = 10% 7.5 43.9 57.1 10.3 8.5 過剰間隙水圧比95% Nu95 5.0 37.0 49.0 4.0 6.0	試料番号 SW-4-1 (Φ 50) SW-4-7 (Φ 50) SW-4-1 サンプリング方法 トリブルチューブサンブリング トリブルチューブサンブリング トリブルチューブサンブリング 地表からの深度 (m) 21.90~22.80 27.65~28.65 30.65~ 標高 T.P. (m) -12.20~-13.10 -17.95~-18.95 -20.95~ 供試体No. 2 4 3 4 1 2 土粒子の密度 ρ _s (g/cm ³) 2.719 2.754 2.7 圧密応力 σ [*] c (kN/m ²) 310 370 40 繰返応力振幅比 σ _d /2 σ [*] 0 0.292 0.243 0.188 0.233 0.250 0.226 動 び 満振 び づ DA = 1% 0.9 17.0 40.7 0.4 2.5 1.5 DA = 5% 4.5 40.9 50.9 4.0 6.0 4.0 DA = 10% 7.5 43.9 57.1 10.3 8.5 6.0 過剰間隙水圧比95% Nu95 5.0 37.0 49.0 4.0 6.0 4.0	試料番号SW-4-1 (050)SW-4-7 (050)SW-4-10 (050)サンプリング方法トリブルチューブサンブリングトリブルチューブサンブリングトリブルチューブサンブリング地表からの深度 (m)21.90~22.8027.65~28.6530.65~31.65標高 T.P. (m)-12.20~-13.10-17.95~18.95-20.95~21.95供試体No.2434123土粒子の密度 ps (g/cm ³)2.7192.7542.789圧密応力 σ [*] c (kN/m ²)310370400繰返応力振幅比 σd/2 σ [*] 00.2920.2430.1880.2330.2500.2260.182内 ひ 振奏DA = 1%0.917.040.70.42.51.541.7DA = 5%4.540.950.94.06.04.055.5DA = 10%7.543.957.110.38.56.059.7過剰間除水圧比95% Nu955.037.049.04.06.04.052.0	試料番号 SW-4-1 (\$\psilon\$ 50) SW-4-7 (\$\psilon\$ 50) SW-4-10 (\$\psilon\$ 50) サンプリング方法 トリブルチューブサンプリング トリブルチューブサンプリング トリブルチューブサンプリング 地表からの深度 (m) 21.90~22.80 27.65~28.65 30.65~31.65 標高 T.P. (m) -12.20~-13.10 -17.95~-18.95 -20.95~-21.95 供試体No. 2 4 3 4 1 2 3 4 土粒子の密度 \$\rho_s\$(g/cm ³) 2.719 2.754 2.789 - 圧密応力 \$\sigma's\$(g/cm ³) 2.719 370 400 - 0.202 0.243 0.188 0.233 0.250 0.226 0.182 0.202 振 支流 DA = 1% 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 動振 J DA = 2% 2.0 28.8 44.9 0.9 4.0 2.5 48.7 33.0 DA = 5% 4.5 40.9 50.9 4.0 6.0 4.0 55.5 39.7 DA = 10% 7.5 43.9 57.1	試料番号 SW-4-1 (0 50) SW-4-7 (0 50) SW-4-10 (0 50) FU サンプリング方法 トリブルチューブサンブリング トリブルチューブサンブリング トリブルチューブサンブリング トリブルチューブサンブリング トリ 地表からの深度 (m) 21.90~22.80 27.65~28.65 30.65~31.65 - - 標高 T.P. (m) -12.20~-13.10 -17.95~-18.95 -20.95~-21.95 - - (株試体No. 2 4 3 4 1 2 3 4 1 土粒子の密度 ρ _s (g/cm ³) 2.719 2.754 2.789 - - - 座窓応力 σ c (kN/m ²) 310 370 400 0.26 0.182 0.202 0.257 線 DA = 1% 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 0.8 面前 Ŭ 振 ma of ma of c (kN/m ²) 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 0.8 回 of ma of c (kN/m ²) 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 </th <th>試料番号 SW-4-1 (0 50) SW-4-7 (0 50) SW-4-10 (0 50) SW-6-5 サンプリング方法 トリブルチューブサンプリング トリブルチューブサンプリング トリブルチューブサンプリング トリブルチューブサンプリング トリブルチュー 地表からの深度 (m) 21.90~22.80 27.65~28.65 30.65~31.65 25.70 標高 T.P. (m) -12.20~-13.10 -17.95~18.95 -20.95~21.95 -16.00 供試体No. 2 4 3 4 1 2 3 4 1 2 建築応力 5° (g/cm³) 2.719 2.754 2.789 2.789 2.7 理密応力 5° (k//m²) 310 370 400 3.0 2.67 3.0 課題応力振幅比 5 d/2 5 0 0.292 0.243 0.188 0.233 0.250 0.226 0.182 0.202 0.257 0.213 調査 DA = 1% 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 0.8 10.8 調査 DA = 1% 0.9 17.0 40.9 50.9 4.0 6.0 4.0 55.</th> <th>試料番号 SW-4-1 (0 50) SW-4-7 (0 50) SW-4-10 (0 50) SW-6-5 (0 50) サンブリング方法 トリブルチューブサンブリング トリブルチューブサンブリング トリブルチューブサンブリング トリブルチューブサンブリング 地表からの深度 (m) 21.90~22.80 27.65~28.65 30.65~31.65 25.70~26.70 標高 T.P. (m) -12.20~-13.10 -17.95~-18.95 -20.95~-21.95 -16.00~-17.00 (株試体No. 2 4 3 4 1 2 3 4 1 2 3 生粒子の密度 ρ_s(g/cm³) 2.719 2.754 2.789 2.749 生物子の密度 ρ_s(g/cm³) 0.292 0.243 0.188 0.233 0.250 0.226 0.182 0.202 0.257 0.213 0.192 腰膝方 σ c (kN/m²) 310 370 400 2.5 1.5 41.7 27.7 0.8 10.8 19.7 腰膝方 σ f c (kN/m²) 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 0.8 10.8 19.7 動 DA = 1% 0.9 17.0 40</th>	試料番号 SW-4-1 (0 50) SW-4-7 (0 50) SW-4-10 (0 50) SW-6-5 サンプリング方法 トリブルチューブサンプリング トリブルチューブサンプリング トリブルチューブサンプリング トリブルチューブサンプリング トリブルチュー 地表からの深度 (m) 21.90~22.80 27.65~28.65 30.65~31.65 25.70 標高 T.P. (m) -12.20~-13.10 -17.95~18.95 -20.95~21.95 -16.00 供試体No. 2 4 3 4 1 2 3 4 1 2 建築応力 5° (g/cm ³) 2.719 2.754 2.789 2.789 2.7 理密応力 5° (k//m ²) 310 370 400 3.0 2.67 3.0 課題応力振幅比 5 d/2 5 0 0.292 0.243 0.188 0.233 0.250 0.226 0.182 0.202 0.257 0.213 調査 DA = 1% 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 0.8 10.8 調査 DA = 1% 0.9 17.0 40.9 50.9 4.0 6.0 4.0 55.	試料番号 SW-4-1 (0 50) SW-4-7 (0 50) SW-4-10 (0 50) SW-6-5 (0 50) サンブリング方法 トリブルチューブサンブリング トリブルチューブサンブリング トリブルチューブサンブリング トリブルチューブサンブリング 地表からの深度 (m) 21.90~22.80 27.65~28.65 30.65~31.65 25.70~26.70 標高 T.P. (m) -12.20~-13.10 -17.95~-18.95 -20.95~-21.95 -16.00~-17.00 (株試体No. 2 4 3 4 1 2 3 4 1 2 3 生粒子の密度 ρ _s (g/cm ³) 2.719 2.754 2.789 2.749 生物子の密度 ρ _s (g/cm ³) 0.292 0.243 0.188 0.233 0.250 0.226 0.182 0.202 0.257 0.213 0.192 腰膝方 σ c (kN/m ²) 310 370 400 2.5 1.5 41.7 27.7 0.8 10.8 19.7 腰膝方 σ f c (kN/m ²) 0.9 17.0 40.7 0.4 2.5 1.5 41.7 27.7 0.8 10.8 19.7 動 DA = 1% 0.9 17.0 40

		試料番号		SW-6-6	φ50)			SW-6-7	(φ50)	
	•	サンプリング方法	۲.	ノプルチュー	ブサンプリン	ッグ	トリプルチューブサンプリング 27.70~28.70 -18.00~-19.00 1 2 3 4 2.744 370 0.255 0.212 0.160 0.18			ッグ
	地	表からの深度 (m)		26.70-	~27.70			27.70-	~28.70	
		標高 T.P. (m)		-17.00-	~-18.00		-18.00~-19.00 1 2 3 4 2.744 270			
		供試体No.	1	2	3	4	-18.00~-19.00 1 2 3 4 2.744			4
	土粒子	Fの密度 ρ _s (g/cm ³)		2.7	43		-18.00~-19.00 1 2 3 4 2.744 370			
	圧密	応力 σ´c(kN/m²)		30	60		1 2 3 4 2.744 370			
	繰返応	万振幅比 σ α/2σ´ο	0.256	0.213	0.160	0.182	0.255	0.212	0.160	0.187
繰	亩山	DA = 1%	1.5	4.5	125.9	22.9	0.6	5.5	48.6	24.5
返し	両ひ	DA = 2%	3.0	5.5	131.9	25.5	1.5	7.5	53.5	27.8
載	振り幅み	DA = 5%	5.5	8.0	138.7	28.8	2.5	10.6	58.8	33.6
何回	0)	DA = 10%	10.0	10.5	144.7	31.5	4.0	13.8	63.7	40.9
数	過乗	间間隙水圧比95% Nu95	5.0	7.0	135.0	27.0	3.0	10.0	55.0	31.0

○ As1層の液状化強度試験結果を以下に示す。

			試料番号		SW-7-1	0 (φ50)			SW2-4 (2	2) (φ50)		SW2-4 (4	4) (φ50)]	
		ţ	ナンプリング方法	۲	リプルチュー	ブサンプリン	ヴ		GPサン	プリング		GPサン	プリング	1	
		地	表からの深度 (m)		32.00-	~33.00			22.15	~22.55		26.63	~26.73	1	
			標高 T.P.(m)		-22.20-	~-23.20			-18.25	~-18.65		-22.73	~-22.83	1	
			供試体No.	1	2	3	4	37	38	39	40	5	55	1	
		土粒子	Fの密度ρ _s (g/cm³)		2.7	'18			2.7	'04		2.7	738]	
		圧密	応力 σ´c(kN/m²)		4	10			2	60		3	00]	
	i	繰返応	万振幅比 σ d/2σ´o	0.236	0.196	0.218	0.171	0.295	0.264	0.232	0.250	0.2	220		
	繰	曲	DA = 1%	0.7	13.6	3.0	144.7	3.0	2.0	55.6	18.0	8	5.5		
	返し	両び	DA = 2%	1.5	16.6	4.5	153.8	5.0	4.0	70.6	24.3	10	0.8		
	載	脳み	DA = 5%	3.0	21.0	8.5	166.0	10.9	15.4	90.6	43.0	14	4.6		
	何	0)	DA = 10%	5.0	3.0 21.0 8.5 5.0 27.7 17.5			11.6	69.9	90.7	48.6	18	8.6		
	数	過乗	间間隙水圧比95% N u95	3.0	19.0	7.0	157.0	6.0	9.0	64.0	27.0	1	4.0		
Γ			試料番号	FS	-1-② (1)	三軸(Φ5	50)	FS	-1-② (2)	三軸(Φ5	50)	FS	-1-② (3)	三軸(Φ5	50)
		ţ	サンプリング方法		凍結サン	イプリング			凍結サン	イプリング			凍結サン	プリング	
		地	表からの深度 (m)		18.21-	~18.41			18.36	~18.56			18.51~	-18.71	
			標高 T.P.(m)		-14.41-	~-14.61			-14.56-	~-14.76			-14.71-	~-14.91	
			供試体No.	1-7	2-6	3-6	4-6	1-8	2-7	3-7	4-7	1-9	2-8	3-8	4-8
		土粒子	Fの密度ρ _s (g/cm ³)	2.669	2.681	2.692	2.658	2.687	2.687	2.653	2.662	2.626	2.640	2.686	2.659
		圧密	応力 σ´c(kN/m²)		19	90			19	90			19	90	
	i	繰返応	方振幅比 σ d/2σ ⁻ 0	0.251	0.216	0.298	0.391	0.253	0.301	0.447	0.348	0.455	0.254	0.358	0.549
	繰	軸	DA = 1%	5.5	39.0	1.5	0.5	9.5	3.5	0.3	1.5	0.3	20.0	1.5	0.3
	返し	両び	DA = 2%	8.5	45.0	3.0	1.5	14.0	7.5	0.7	3.0	0.6	27.0	4.5	0.7
	載	脳み	DA = 5%	14.0	56.0	6.0	4.5	28.0	15.0	2.5	8.0	2.0	40.0	13.0	3.0
	19)	0	DA = 10%	24.0	62.0	11.0	7.5	41.0	25.0	4.5	13.0	4.5	61.0	17.0	6.5
	数	调垂		15.0	52.0	8.5	-	25.0	15.0	-	11.0	-	37.0		-
														1	

□:試験結果を例示したケース

ともに輝く明日のために。

ともに輝く明日のために。 Light up your future.

ほくてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(As1層)

○ As1層の液状化強度試験結果を以下に示す。

		試料番号	FS-	1-@ (A-1) 三軸 (50)	FS-	1-@ (A-2)三軸(φ	50)	FS-	1-@ (A-2)三軸(φ	50)
	t,	ナンプリング方法		凍結サン	ィプリング			凍結サン	プリング			凍結サン	プリング	
	地	表からの深度 (m)		19.95~	~20.21			20.20~	~20.42			26.85-	-27.11	
		標高 T.P. (m)		-16.15-	~-16.41			-16.4~	-16.62			-23.05-	23.31	
		供試体No.	2-13	3-14	1-15	4-14	2-14	3-15	4-15	1-16	4-41	1-38	3-40	2-40
	土粒子	Fの密度 ρ _s (g/cm ³)	2.670	2.677	2.689	2.659	2.675	2.674	2.652	2.670	2.713	2.720	2.724	2.720
	圧密	応力 σ´c(kN/m²)		19	90			19	90			2	50	
	繰返応	万振幅比 σ d/2σ´o	0.254	0.203	0.229	0.173	0.251	0.304	0.347	0.277	0.462	0.375	0.308	0.206
縵	市	DA = 1%	4.0	26.0	6.0	813.0	21.0	4.0	0.4	5.0	0.1	0.4	0.8	0.8
返	両む	DA = 2%	5.5	30.0	9.0	823.0	29.0	8.0	0.8	9.0	0.2	0.7	2.0	4.0
載	$\frac{BA = 2\pi}{100} = \frac{BA = 2\pi}{100} = \frac{100}{100} = \frac{100}$				835.0	44.0	17.0	4.0	17.0	0.6	4.0	4.0	11.0	
何回	振す 幅みの DA = 5% 10.0 38.0 14.0 8 DA = 10% 温剰間隙水圧比95% Nuos 9.0 35.0 13.0 8				_	-	_	-	_	_	_	_	-	
数	過剰	间間隙水圧比95% Nu95	9.0	35.0	13.0	827.0	37.0	14.0	4.0	14.0	_	_	_	9.0
		计发展中	ES	_1_0 (1)	由空 (本7	(0)	ES	-1-0 (2)	由空 (太7	'0)	EC	_1_⑦ (2)	市空 (本7	<u>'0</u>)
	+	試料番号	FS	-1-②(1) 油結サ、	中空(φ7 パリング	'0)	FS	-1-② (2) 海結井、	中空(φ7 プリング	(0)	FS	-1-② (3) 油結井、	中空(¢7 パリング	'0)
	t,	試料番号 サンプリング方法 まからの深度 (m)	FS	-1-② (1) 凍結サン	中空(¢7 イプリング	'0)	FS	-1-② (2) 凍結サン	中空(φ7 プリング	0)	FS	-1-② (3) 凍結サン	中空(¢7 イプリング	' 0)
	t 地:	試料番号 サンプリング方法 表からの深度 (m)	FS	-1-② (1) 凍結サン 18.70~	中空(ф7 パリング ~19.26	'0)	FS	-1-② (2) 凍結サン 18.81~	中空(φ7 プリング ~19.01	0)	FS	-1-② (3) 凍結サン 18.96-	中空(¢7 /プリング ~19.20	<u>'0)</u>
	t 地:	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m)	FS	-1-②(1) 凍結サン 18.70~ -14.90~	中空(ф7 イプリング ~19.26 ~-15.46	/0)	FS-	-1-②(2) 凍結サン 18.81- -15.01-	中空(ф7 /プリング ~19.01 ~-15.21	0)	FS	-1-② (3) 凍結サン 18.96~ -15.16	中空(φ7 イプリング ~19.20 ~15.40	20)
	+ 地:	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No.	FS 4-12	-1-②(1) 凍結サン 18.70- -14.90- 1-10	中空(φ7 イプリング ~19.26 ~-15.46 2-9	3-9	FS 4-10	-1-②(2) 凍結サン 18.81- -15.01- 1-11	中空(φ7 イプリング ~19.01 ~-15.21 2-10	3-10	FS 4-11	-1-②(3) 凍結サン 18.96- -15.16 1-12	中空(φ7 イプリング ~19.20 ~15.40 3-11	2-11
	t; 地; 土粒子	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³)	FS 4-12 2.652	-1-② (1) 凍結サン 18.70~ -14.90~ 1-10 2.671	中空(Φ7 マブリング ~19.26 ~-15.46 2-9 2.688	⁷ 0) 3-9 2.705	FS 4-10 2.684	-1-②(2) 凍結サン 18.81~ -15.01~ 1-11 2.694	中空(φ7 /プリング ~19.01 ~-15.21 2-10 2.662	0) 3-10 2.658	FS 4-11 2.682	-1-② (3) 凍結サン 18.96~ -15.16 1-12 2.746	中空(Φ7 マブリング ~19.20 ~15.40 3-11 2.689	2-11 2.676
	t; 地; 土粒子 圧密。	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²)	FS 4-12 2.652	-1-② (1) 凍結サン 18.70- -14.90- 1-10 2.671 15	中空(Φ7 ップリング ~19.26 ~-15.46 2-9 2.688 90	3-9 2.705	FS 4-10 2.684	-1-②(2) 凍結サン 18.81- -15.01- 1-11 2.694 15	中空(φ7 マブリング ~19.01 ~-15.21 2-10 2.662 90	0) 3-10 2.658	FS 4-11 2.682	-1-② (3) 凍結サン 18.96~ -15.16 1-12 2.746 15	中空(Φ7 パブリング ~19.20 ~15.40 3-11 2.689 90	2-11 2.676
	+ 地 土粒子 圧密 繰返応	試料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 5 力振幅比 σ _d /2σ ^c ₀	FS 4-12 2.652 0.354	-1-② (1) 凍結サン 18.70- -14.90- 1-10 2.671 19 0.505	中空(Φ7 マブリング ~19.26 ~-15.46 2-9 2.688 90 0.302	 3−9 2.705 0.404 	FS 4-10 2.684 0.352	-1-② (2) 凍結サン 18.81- -15.01- 1-11 2.694 15 0.304	中空(Φ7 マブリング ~19.01 ~-15.21 2-10 2.662 00 0.231	0) 3-10 2.658 0.277	FS 4-11 2.682 0.281	-1-② (3) 凍結サン 18.96- -15.16 1-12 2.746 19 0.352	中空(Φ7 イブリング ~19.20 ~15.40 3-11 2.689 90 0.251	2-11 2.676 0.316
·····································	+ 地: 土粒子 圧密 繰返応	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²) 応力 π ⁻ c (kN/m ²) 応力 π ⁻ c (kN/m ²)	FS 4-12 2.652 0.354 1.5	-1-② (1) 凍結サン 18.70~ -14.90~ 1-10 2.671 15 0.505 0.6	中空(ゆ7 パリング ~19.26 ~-15.46 2-9 2.688 90 0.302 69.0	 3-9 2.705 0.404 1.5 	FS 4-10 2.684 0.352 2.5	-1-② (2) 凍結サン 18.81- -15.01- 1-11 2.694 15 0.304 6.5	中空(Φ7 マブリング ~19.01 ~-15.21 2-10 2.662 00 0.231 173.0	3-10 2.658 0.277 14.0	FS 4-11 2.682 0.281 13.0	-1-② (3) 凍結サン 18.96~ -15.16 1-12 2.746 15 0.352 2.0	中空(Φ7 マプリング ~19.20 ~15.40 3-11 2.689 90 0.251 29.0	2-11 2.676 0.316 3.5
····································	+ 地 土 粒 子 密 応 本 動 ひ ず ず	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c (kN/m ²) 5.力振幅比 σ _d /2σ ⁻ ₀ DA = 1% DA = 2%	FS 4-12 2.652 0.354 1.5 3.0	-1-② (1) 凍結サン 18.70~ -14.90~ 1-10 2.671 15 0.505 0.6 1.5	中空(ゆ7 パリング ~19.26 ~-15.46 2-9 2.688 90 0.302 69.0 77.0	3-9 2.705 0.404 1.5 2.5	FS 4-10 2.684 0.352 2.5 6.0	-1-② (2) 凍結サン 18.81- -15.01- 1-11 2.694 19 0.304 6.5 8.5	中空(φ7 マブリング ~19.01 ~-15.21 2-10 2.662 00 0.231 173.0 181.0	0) <u>3-10</u> 2.658 0.277 14.0 17.0	FS 4-11 2.682 0.281 13.0 16.0	-1-② (3) 凍結サン 18.96- -15.16 1-12 2.746 19 0.352 2.0 3.0	中空(φ7 [•] ブリング ~19.20 ~15.40 3-11 2.689 90 0.251 29.0 33.0	2-11 2.676 0.316 3.5 5.0
 繰返し載荷	+ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	武料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²) 応力 σ ⁻ c (kN/m ²) 応力 振幅比 σ _d /2 σ ⁻ o DA = 1% DA = 2% DA = 5%	FS 4-12 2.652 0.354 1.5 3.0 5.5	-1-②(1) 凍結サン 18.70~ -14.90~ 1-10 2.671 15 0.505 0.6 1.5 3.5	中空(ゆ7 イブリング ~19.26 ~-15.46 2-9 2.688 90 0.302 69.0 77.0 90.0	3-9 2.705 0.404 1.5 2.5 8.5	FS 4-10 2.684 0.352 2.5 6.0 12.0	-1-② (2) 凍結サン 18.81- -15.01- 1-11 2.694 19 0.304 6.5 8.5 16.0	中空(Φ7 マブリング ~19.01 ~-15.21 2-10 2.662 00 0.231 173.0 181.0 191.0	3-10 2.658 0.277 14.0 17.0 27.0	FS 4-11 2.682 0.281 13.0 16.0 22.0	-1-② (3) 凍結サン 18.96- -15.16 1-12 2.746 19 0.352 2.0 3.0 6.0	中空(Φ7 /プリング ~19.20 ~15.40 3-11 2.689 90 0.251 29.0 33.0 40.0	2-11 2.676 0.316 3.5 5.0 8.5
 繰返し載荷回数	+ 地 土 正 返 軸 ひずみの の	試料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²) た力振幅比 σ _d /2σ ⁻ o DA = 1% DA = 5% DA = 10%	FS 4-12 2.652 0.354 1.5 3.0 5.5 11.0	-1-② (1) 凍結サン 18.70~ -14.90~ 1-10 2.671 15 0.505 0.6 1.5 3.5 11.0	中空(ゆ7 マブリング ~19.26 ~-15.46 2-9 2.688 90 0.302 69.0 77.0 90.0 112.0	 3-9 2.705 0.404 1.5 2.5 8.5 26.0 	FS 4-10 2.684 0.352 2.5 6.0 12.0 22.0	-1-②(2) 凍結サン 18.81- -15.01- 1-11 2.694 15 0.304 6.5 8.5 16.0 32.0	中空(07 マブリング - 19.01 15.21 2-10 2.662 00 0.231 173.0 181.0 191.0 205.0	3-10 2.658 0.277 14.0 17.0 27.0 48.0	FS 4-11 2.682 0.281 13.0 16.0 22.0 32.0	-1-② (3) 凍結サン 18.96~ -15.16 1-12 2.746 11 0.352 2.0 3.0 6.0 13.0	中空(Φ7 √プリング ~19.20 ~15.40 3-11 2.689 90 0.251 29.0 33.0 40.0 54.0	2-11 2.676 0.316 3.5 5.0 8.5 15.0

□:試験結果を例示したケース

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(As1層)

○ As1層の液状化強度試験結果を以下に示す。

		試料番号	FS	-1-④ (1)	中空(ф7	'0)	FS	-1-④ (2)	中空(φ7	'0)	FS	-1-④ (3)	中空(φ7	'0)
	t	ナンプリング方法		凍結サン	ィプリング			凍結サン	プリング			凍結サン	ィプリング	
	地	表からの深度 (m)		26.06~	~26.36			26.21-	~26.51			26.44-	~26.68	
		標高 T.P. (m)		-22.26-	~-22.56			-22.41	~-22.71			-22.64	~-22.88	
		供試体No.	2-36	1-34	4-37	3-36	2-37	1-35	4-38	3-37	1-36	4-39	3-38	2-38
	土粒子	Fの密度ρ _s (g/cm³)	2.647	2.706	2.724	2.680	2.674	2.684	2.695	2.730	2.678	2.706	2.719	2.696
	圧密	応力 σ´c(kN/m²)		2	50			25	50			2	50	
	繰返応	万振幅比 σ d/2σ´o	0.301	0.390	0.346	0.323	0.354	0.428	0.392	0.369	0.296	0.445	0.252	0.191
繰	趈	DA = 1%	117.0	1.0	4.0	4.5	46.0	0.2	3.0	4.0	4.0	0.2	10.0	272.0
返し	両む	DA = 2%	132.0	2.5	6.5	7.0	62.0	0.6	5.0	7.0	5.0	0.4	13.0	279.0
載	「振り」	$\begin{array}{c} \textbf{J} \\ $				12.0	92.0	1.5	8.0	15.0	7.0	1.0	15.0	284.0
何回	構 9 向のの DA = 5% 151.0 4.0 10.0 DA = 10% 175.0 6.5 15.0 10.0 過剰問防水圧比0.5% 147.0 5.0 11.0				20.0	136.0	3.5	12.0	33.0	9.0	2.0	18.0	288.0	
数	過剰	间間隙水圧比95% N u95	147.0	5.0	11.0	12.0	87.0	3.0	10.0	16.0	8.0	_	15.0	282.0
							1							
		試料番号	l FS	-2-3 (1)	三軸(Φ5	O)	FS	-2-3 (2)	三軸(Φ5	60)	FS	-2-3 (3)	三軸(Φ5	60)
	+		FS	-2-③ (1) 凍結サン	三軸(φ5 /プリング	0)	FS	-2-③ (2) 凍結サン	三軸(φ5 /プリング	iO)	FS	-2-③ (3) 凍結サン	三軸(ゆき /プリング	iO)
	・ 地	武料番号 ナンプリング方法 表からの深度 (m)	FS	-2-③ (1) 凍結サン 22.19~	三軸(φ5 /プリング ~22.46	0)	FS	-2-③ (2) 凍結サン 22.39~	三軸(φ5 /プリング ~22.70	iO)	FS	-2-③ (3) 凍結サン 22.59~	三軸(φ5 /プリング ~22.90	iO)
	ち 地報	試料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m)	FS	-2-③(1) 凍結サン 22.19- -12.39-	三軸(φ5 イプリング 〜22.46 〜-12.66	iO)	FS	-2-③(2) 凍結サン 22.39~ -12.59~	三軸(φ5 イプリング 〜22.70 〜-12.90	iO)	FS	-2-③(3) 凍結サン 22.59- -12.79-	三軸(φ5 /プリング ~22.90 ~-13.10	iO)
		武料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No.	FS 	-2-③(1) 凍結サン 22.19~ -12.39~ 2-5	三軸(Φ5 /プリング ~22.46 ~-12.66 3-5	4-8	FS 1-8	-2-③(2) 凍結サン 22.39~ -12.59~ 2-6	三軸(φ5 /プリング ~22.70 ~-12.90 4-9	3-6	FS 1-9	-2-③(3) 凍結サン 22.59~ -12.79~ 2-7	三軸(φ5 イプリング ~22.90 ~-13.10 4-10	3-7
	+ 地 : 土粒子	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³)	FS 1-7 2.710	-2-③(1) 凍結サン 22.19- -12.39- 2-5 2.723	三軸(Φ5 パリング ~22.46 ~-12.66 3-5 2.711	4-8 2.702	FS 1-8 2.675	-2-③(2) 凍結サン 22.39~ -12.59~ 2-6 2.689	三軸(Φ5 プリング ~22.70 ~-12.90 4-9 2.675	3-6 2.695	FS 1-9 2.682	-2-③ (3) 凍結サン 22.59- -12.79- 2-7 2.688	三軸(Φ5 ·プリング ~22.90 ~-13.10 4-10 2.702	3-7 2.694
	+ 地 : 土粒子 圧密	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²)	FS 1-7 2.710	-2-③ (1) 凍結サン 22.19- -12.39- 2-5 2.723 3:	三軸(Φ5 /プリング ~22.46 ~-12.66 3-5 2.711 30	4-8 2.702	FS 1-8 2.675	-2-③ (2) 凍結サン 22.39~ -12.59~ 2-6 2.689 3(三軸(Φ5 /プリング ~22.70 ~-12.90 4-9 2.675 30	3-6 2.695	FS 1-9 2.682	-2-③ (3) 凍結サン 22.59- -12.79- 2-7 2.688 3:	三軸(Φ5 /プリング ~22.90 ~-13.10 4-10 2.702 30	3-7 2.694
	+ 地 : 土粒子 圧密 線返応	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c (kN/m ²) 応力振幅比 σ _d /2 σ ^c ₀	FS 1-7 2.710 0.301	-2-③ (1) 凍結サン 22.19~ -12.39~ 2-5 2.723 3: 0.252	三軸(Φ5 マブリング ~22.46 ~-12.66 3-5 2.711 30 0.197	(0) 4-8 2.702 0.227	FS 1-8 2.675 0.251	-2-③ (2) 凍結サン 22.39~ -12.59~ 2-6 2.689 3(0.153	三軸(Φ5 ·プリング ~22.70 ~-12.90 4-9 2.675 30 0.202	3-6 2.695 0.223	FS 1-9 2.682 0.250	-2-③ (3) 凍結サン 22.59 -12.79 2-7 2.688 3: 0.202	三軸(Φ5 ·プリング ~22.90 ~-13.10 4-10 2.702 30 0.152	3-7 2.694 0.177
	+ 地 主粒子 圧密 繰返応	武料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c(kN/m ²) 応力 s ⁻ c(kN/m ²) 応力 s ⁻ n振幅比 σ _d /2 σ ⁻ ₀ DA = 1%	FS 1-7 2.710 0.301 0.5	-2-③ (1) 凍結サン 22.19- -12.39- 2-5 2.723 3(0.252 10.0	三軸(Φ5 パブリング ~22.46 ~-12.66 3-5 2.711 30 0.197 35.0	4-8 2.702 0.227 8.0	FS 1-8 2.675 0.251 2.0	-2-③ (2) 凍結サン 22.39~ -12.59~ 2-6 2.689 3(0.153 1062.0	三軸(Φ5 vブリング ~22.70 ~-12.90 4-9 2.675 30 0.202 15.0	3-6 2.695 0.223 14.0	FS 1-9 2.682 0.250 2.0	-2-③ (3) 凍結サン 22.59- -12.79- 2-7 2.688 3: 0.202 10.0	三軸(Φ5 マフリング マ22.90 マー13.10 4-10 2.702 30 0.152 87.0	3-7 2.694 0.177 37.0
	+ 地 土 粒 室 振 返 輸 ひ 子	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 忘力振幅比 σ _d /2σ ^c ₀ DA = 1% DA = 2%	FS 1-7 2.710 0.301 0.5 1.0	-2-③ (1) 凍結サン 22.19- -12.39- 2-5 2.723 3: 0.252 10.0 13.0	三軸(Φ5 /ブリング ~22.46 ~-12.66 3-5 2.711 30 0.197 35.0 38.0	4-8 2.702 0.227 8.0 11.0	FS 1-8 2.675 0.251 2.0 3.0	-2-③ (2) 凍結サン 22.39- -12.59- 2-6 2.689 3: 0.153 1062.0 1071.0	三軸(Φ5 /ブリング ~22.70 ~-12.90 4-9 2.675 30 0.202 15.0 18.0	3-6 2.695 0.223 14.0 17.0	FS 1-9 2.682 0.250 2.0 2.5	-2-③ (3) 凍結サン 22.59- -12.79- 2-7 2.688 3: 0.202 10.0 12.0	三軸(Φ5 /ブリング ~22.90 ~-13.10 4-10 2.702 30 0.152 87.0 90.0	3-7 2.694 0.177 37.0 40.0
 繰返し載	t 地 土 粒 室 路 本 町 振 幅 辺 ず み	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c (kN/m ²) 応力 σ ^c (kN/m ²) 応力 s ⁻ (kN/m ²) た力 5 (kN/m ²) (kN/m ²)	FS 1-7 2.710 0.301 0.5 1.0 4.0	-2-3 (1) 凍結サン 22.19- -12.39- 2-5 2.723 3: 0.252 10.0 13.0 18.0	三軸(Φ5 パブリング ~22.46 ~-12.66 3-5 2.711 30 0.197 35.0 38.0 44.0	4-8 2.702 0.227 8.0 11.0 15.0	FS 1-8 2.675 0.251 2.0 3.0 7.0	-2-3 (2) 凍結サン 22.39- -12.59- 2-6 2.689 3: 0.153 1062.0 1071.0 1088.0	三軸(Φ5 /ブリング ~22.70 ~12.90 4-9 2.675 30 0.202 15.0 18.0 24.0	3-6 2.695 0.223 14.0 17.0 23.0	FS 1-9 2.682 0.250 2.0 2.5 4.0	-2-③ (3) 凍結サン 22.59- -12.79- 2-7 2.688 3: 0.202 10.0 12.0 15.0	三軸(Φ5 /ブリング ~22.90 ~-13.10 4-10 2.702 30 0.152 87.0 90.0 94.0	3-7 2.694 0.177 37.0 40.0 44.0
 繰返し載荷回	+ 地 土 粒 王 密 本 の 振 幅 の	武料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρs(g/cm ³) 応力 σ c (kN/m ²) 5カ振幅比 σd/2σ o DA = 1% DA = 2% DA = 5% DA = 10%	FS 1-7 2.710 0.301 0.5 1.0 4.0 8.0	-2-③ (1) 凍結サン 22.19- -12.39- 2-5 2.723 3: 0.252 10.0 13.0 18.0 23.0	三軸(Φ5 /ブリング ~22.46 ~-12.66 3-5 2.711 30 0.197 35.0 38.0 44.0 53.0	4-8 2.702 0.227 8.0 11.0 15.0 21.0	FS 1-8 2.675 0.251 2.0 3.0 7.0 14.0	-2-③ (2) 凍結サン 22.39- -12.59- 2-6 2.689 3: 0.153 1062.0 1071.0 1088.0 1104.0	三軸(ゆ5 /プリング ~22.70 ~-12.90 4-9 2.675 30 0.202 15.0 18.0 24.0 30.0	3-6 2.695 0.223 14.0 17.0 23.0 27.0	FS 1-9 2.682 0.250 2.0 2.5 4.0 7.0	-2-③ (3) 凍結サン 22.59- -12.79- 2-7 2.688 3: 0.202 10.0 12.0 15.0 18.0	三軸(Φ5 マフリング マ22.90 マー13.10 4-10 2.702 30 0.152 87.0 90.0 94.0 101.0	3-7 2.694 0.177 37.0 40.0 44.0 53.0
	+ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 忘力振幅比 σ _d /2σ ⁻ ₀ DA = 1% DA = 2% DA = 5% DA = 10% 引間隙水圧比95% Nu95	FS 1-7 2.710 0.301 0.5 1.0 4.0 8.0 4.0	-2-③ (1) 凍結サン 22.19- -12.39- 2-5 2.723 3: 0.252 10.0 13.0 18.0 23.0 15.0	三軸(Φ5 /ブリング ~22.46 ~-12.66 3-5 2.711 30 0.197 35.0 38.0 44.0 53.0 39.0	4-8 2.702 0.227 8.0 11.0 15.0 21.0 12.0	FS 1-8 2.675 0.251 2.0 3.0 7.0 14.0 6.0	-2-③ (2) 凍結サン 22.39- -12.59- 2-6 2.689 3: 0.153 1062.0 1071.0 1088.0 1104.0 1073.0	三軸(ゆ5 /ブリング ~22.70 ~-12.90 4-9 2.675 30 0.202 15.0 18.0 24.0 30.0 20.0	3-6 2.695 0.223 14.0 17.0 23.0 27.0 20.0	FS 1-9 2.682 0.250 2.0 2.5 4.0 7.0 4.0	-2-③ (3) 凍結サン 22.59- -12.79- 2-7 2.688 3: 0.202 10.0 12.0 15.0 18.0 13.0	 三軸(Φ5 プリング ~22.90 ~13.10 4-10 2.702 30 0.152 87.0 90.0 94.0 101.0 90.0 	3-7 2.694 0.177 37.0 40.0 44.0 53.0 41.0

Light up your future. ほそてん

ほくてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(As1層)

○ As1層の液状化強度試験結果を以下に示す。

ほくてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(As2層)

○ As2層の液状化強度試験結果を以下に示す。

[試料番号	SW	-6-2 (¢	50)	SW2	-1(T5) (\$ 50)	SW2-4(1) (ф50)	SW2	-4(3) (φ	50)
	٩	サンプリング方法	G	Pサンプリン	グ	トリプル・	チューブサン	ィプリング	GPサン	プリング	G	Pサンプリン	グ
	地	表からの深度 (m)	2	3.40~24.	40	3	6.00~37.	00	18.15-	~18.35	2	3.05~24.0)3
		標高 T.P. (m)	-1	3.70~-14	1.70	-2	6.30~-27	7.30	-14.25-	~-14.45	-1	9.15~-20	.13
		供試体No.	2	3	4	1	2	3	20	21	42	43	44
	土粒子	子の密度 ρ _s (g/cm³)		2.729			2.794		2.7	46		2.728	
	圧密	応力 σ´c(kN/m²)		330			450		22	20		260	
	繰返席	ふ力振幅比 $\sigma_d/2\sigma_0$	0.214	0.285	0.186	0.294	0.318	0.234	0.309	0.277	0.332	0.297	0.316
	繰動	DA = 1%	16.6	1.5	25.0	0.8	0.9	30.7	4.5	6.5	0.8	5.0	5.0
	返両び	DA = 2%	19.9	2.5	28.7	3.5	5.0	42.8	8.0	10.0	2.5	18.4	13.0
	載幅み	DA = 5%	25.8	4.5	35.1	12.9	22.9	49.6	17.6	17.5	6.0	74.2	29.7
	何の	DA = 10%	-	6.5	46.2	-	57.6	49.7	_	26.7	11.5	-	39.6
	数過剩	制間隙水圧比95% Nu95	21.0	4.0	31.0	8.0	11.0	50.0	10.0	12.0	5.0	46.0	17.0
[試料番号	FS-1-3	3)(1)三朝	i (6 50)	FS-1-3	3)(2)三輔	(ф 50)	FS-1-3 (3)	三軸 (\$ 50)	1		
		 サンプリング方法	凍	結サンプリン	ノヴ	凍	結サンプリン	ノヴ	凍結サン	 /プリング	-		
	地	表からの深度 (m)	2	1.99~22.	44	2	2.47~22.	70	22.62~	~22.85	-		
		標高 T.P. (m)	-1	8.29~-18	8.74	-1	8.44~-19	9.00	-18.92	~-19.15			
		供試体No.	1-18	;	3-17	1-19)	2-18	1-20	2-19			
	土粒子	子の密度 ρ _s (g/cm ³)	2.692	2	2.694	2.68	1	2.678	2.682	2.668			
	圧密	応力 σ´c(kN/m²)		220			220		22	20			
	繰返応	5 カ振幅比 σ d/2σ´o	0.551		0.453	0.43	7	0.356	0.376	0.340			
	繰 軸	DA = 1%	0.6		0.6	0.6		7.0	0.6	0.6			
	返両む	DA = 2%	0.6		0.7	0.6		21.0	0.7	0.6			
	載幅み	DA = 5%	0.8		10.0	0.8		56.0	6.0	0.7			
	何の	DA = 10%	6.0		16.0	7.0		62.0	21.0	3.0]		
	数 過剰	制間隙水圧比95% Nu95	_		_	4.0		49.0	8.0	2.0]		

□:試験結果を例示したケース

○ As2層の液状化強度試験結果を以下に示す。

_													
		試料番号	FS	-1-④	(1) 三軸(φ5	50)	FS	-1-④ (2)	三軸(φ 5	50)	FS-1-@	(3)	三軸 (
		サンプリング方法		凍結	サンプリング			凍結サン	ノプリング		凍網	結サン	プリング
	地	3表からの深度 (m)		25.1	12~25.49			25.27	~25.64		25	j.42~	·25.79
		標高 T.P. (m)		-21.4	42~-21.79			-21.57	~-21.94		-21	.72~	-22.09
		供試体No.	1-30	2-32	2 3-31	4-32	1-31	2-33	3-32	4-33	1-32		3-33
	土粒	子の密度 ρ _s (g/cm ³)	2.712	2.69	0 2.718	2.712	2.701	2.708	2.697	2.786	2.764	ł	2.690
	圧密	客応力 σ´c(kN/m²)			250	•		2	50			25	0
	繰返席	芯力振幅比 σ d/2σ´o	0.405	0.45	4 0.376	0.502	0.409	0.306	0.562	0.351	0.353	6	0.402
綬	t the	DA = 1%	1.0	0.5	0.8	0.1	0.4	34.0	0.1	0.6	2.5		0.3
迈	両ひ	DA = 2%	8.5	0.9	4.5	0.3	0.8	50.0	0.3	1.5	8.5		0.6
重	振 9	DA = 5%	8.5 0.9 4.3 28.0 4.5 17.0 31.0 11.0 34.0				3.5	71.0	0.7	8.5	20.0		2.0
何回	[0) [$\frac{1}{100} \frac{1}{100} \frac{1}$				2.5	5.5	96.0	2.0	20.0	38.0		5.0
数	【 過非	剰間隙水圧比95 % Nu95	-	_	20.0	2.5	-	63.0	2.5	8.5	20.0		4.0
		試料番号	FS-1-3	(Δ -1)	三軸 (あ50)		ES-	1-@ (Δ -1) 三軸 (ヵ	50)			
		サンプリング方法	101 ⑧	結サンフ	ー+= 、+ • • • / パリング			· 、 (A · 」 凄結サン	·/ ── ~ /プリング				
	tit.		2	2 06~2	22 55			24 34	~24.95				
		標高 T.P. (m)	- 18	8.36~-	-18.85			-20.64	~-21.25				
		供試体No.	2-17	,	1-17	3-28	4-27	1-25	2-27	4-30	4-29		
	土粒	子の密度 ρ _s (g/cm ³)	2.670)	2.659	2.696	2.750	2.719	2.726	2.729	2.723		
	圧密	応力 σ´c(kN/m²)		220)		1	2	50	1			
	繰返席	芯力振幅比 σ d/2σ´0	0.467	7	0.522	0.307	0.350	0.413	0.513	0.407	0.459		
緍	**	DA = 1%	0.5		0.3	0.7	0.7	0.7	0.8	0.4	0.4		
	両ひ	DA = 2%	1.0		0.6	5.0	8.0	10.0	10.0	0.8	0.8		
重	振す	DA = 5%	10.0		6.0	21.0	24.0	56.0	44.0	5.0	6.0		
伺	r の	DA = 10%	-		_	-	-	-	-	-	_		
数	【 過非	制間隙水圧比95 % Nu95	-		-	18.0	19.0	51.0	43.0	-	-		

ともに 輝く明日のために。 Light up your future.

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果(As2層)

○ As2層の液状化強度試験結果を以下に示す。

数

過剩間隙水圧比95% Nu95

161.0

			試料番号	FS	-1-3 (1)	中空(\$7	0)	FS	-1-3 (2)	中空(\$7	0)	FS	-1-3 (3)	· 中空(φ7	0)
		サ	ンプリング方法		凍結サン	ィプリング			凍結サン	ィプリング			凍結サン	ィプリング	
		地表	長からの深度 (m)		23.06	~23.36			23.29-	~23.81			23.70-	~23.96	
			標高 T.P.(m)		-19.36	~-19.66			-19.59-	~-20.11			-20.00-	~-20.26	
			供試体No.	4-22	2-21	3-21	2-20	3-23	2-22	3-22	2-24	4-23	1-21	3-25	2-25
	±	:粒子	の密度 ρ _s (g/cm ³)	2.751	2.715	2.716	2.718	2.737	2.746	2.724	2.737	2.742	2.750	2.741	2.730
	I	圧密に	芯力 σ´c (kN/m²)		2	20			22	20			2:	20	
	繰	返応	力振幅比 σ d/2σ´o	0.497	0.593	0.396	0.351	0.542	0.326	0.403	0.445	0.494	0.597	0.551	0.686
	繰	亩山	DA = 1%	3.0	0.7	4.0	60.0	0.6	81.0	4.0	1.5	8.5	0.6	2.0	0.2
	返し	ΰŸ	DA = 2%	8.0	2.0	8.5	75.0	2.0	97.0	8.0	4.0	23.0	1.5	8.0	0.6
	載 幅	み	DA = 5%	21.0	8.5	22.0	97.0	13.0	123.0	17.0	10.0	60.0	17.0	48.0	2.0
	何日	0	DA = 10%	52.0	24.0	48.0	130.0	99.0	199.0	32.0	26.0	-	91.0	142.0	4.5
	数	過剰	間隙水圧比95% Nu95	26.0	16.0	22.0	95.0	23.0	120.0	18.0	13.0	61.0	30.0	56.0	4.0
			試料番号	FS-2-@	④ (1) 三朝	Ι (φ 50)	FS-2-@	④ (2) 三 軸	I (ф 50)	FS-2-@	4)(3)三軸	Ι (φ 50)]		
		ť	ンプリング方法	凍	結サンプリン	ノグ	凍	結サンプリン	バ	凍	結サンプリン	ノグ			
ľ		地表	長からの深度 (m)	2	6.53~26.	75	2	6.65~26.9	90	2	6.98~27.	13			
			標高 T.P. (m)	-1	6.73~-16	6.95	-1	6.85~-17	.10	-1	7.18~-17	.33			
Ī			供試体No.	1-23	;	3-21	1-24	2-23	3-22		4-26				
	±	:粒子	の密度 ρ _s (g/cm ³)	2.728	3	2.733	2.790	2.930	2.911		3.007				
	1	圧密に	芯力 σ´c (kN/m²)		360			360			360				
	繰	返応	力振幅比 σ d/2σ´o	0.203	3	0.507	0.512	0.402	0.653		0.599				
	繰	市山	DA = 1%	147.0)	0.4	0.4	0.3	0.2		0.7				
	返声	υÜ	DA = 2%	154.0)	0.8	0.8	0.7	0.5		3.5				
	載 幅	み	DA = 5%	164.0)	9.5	6.0	8.5	3.5		32.0				
	何	0)	DA = 10%	168.0)	11.0	12.0	17.0	4.5		44.0]		

12.0

_

12.0

_

38.0

○ As2層の液状化強度試験結果を以下に示す。

		試料番号	FS-2-@)(1)三	曲 (φ50)	FS-2-@	③ (2) 三軸	(\$50)	FS-2-@	③ (3) 三軸	(\$50)
	•	サンプリング方法	凍	結サンプリ	ング	凍	結サンプリン	ノグ	凍	結サンプリン	バ
	地	表からの深度 (m)	30	0.43~30	.60	30	0.58~30.9	90	30	0.73~31.0)5
		標高 T.P.(m)	-20	0.63~-2	0.80	-20	0.78~-21	.10	-20	0.93~-21	.25
		供試体No.	1-47	,	3-43	1-48	3-44	3-45	1-49	3-46	4-48
	土粒子	Fの密度 ρ _s (g/cm³)	2.813	3	2.750	2.836	2.767	2.730	2.702	2.721	2.691
	圧密	応力 σ´c(kN/m²)		400			400			400	
	繰返応	万振幅比 σ α/2σ´ο	0.255	5	0.353	0.377	0.612	0.454	0.255	0.605	0.451
繰	曲	DA = 1%	8.5		0.6	0.6	0.3	0.2	3.5	0.2	0.4
返し	両ひ	DA = 2%	40.0		2.5	3.5	0.6	0.4	5.5	0.5	0.8
載	振み	DA = 5%	170.0)	18.0	30.0	4.5	0.6	10.0	2.5	11.0
何回	0)	DA = 10%	-		20.0	36.0	11.0	4.0	14.0	7.0	13.0
数	過乗	间間隙水圧比95% Nu95	108.0)	-	—	9.5	—	12.0	—	—
		試料番号	FS-2-④	(A−1) Ξ	軸(φ 50)	FS-2-5	(A-1) 三朝	妯(FS-2-6	(A-1) 三	妯(φ50)
		試料番号 サンプリング方法	FS-2-④ 凍i	(A−1)三 結サンプリ	i軸(φ50) ング	FS-2-⑤ 凍	(A-1)三車 結サンプリン	歯(φ 50) ッグ	FS-2-⑥ 凍	(A-1)三車 結サンプリン	歯(
	· ·	試料番号 サンプリング方法 表からの深度 (m)	FS-2-④ 凍i	(A-1)三 結サンプリ 6.98~27	軸(φ 50) ング .23	FS-2-⑤ 凍	(A-1) 三車 結サンプリン 8.83~29.1	軸(φ50) <i>νグ</i> 13	FS-2-⑥ 凍i	(A-1)三車 結サンプリン 1.35~31.6	軸(φ 50) ッグ 62
	+ 地	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m)	FS-2-④ 凍 20 -17	(A-1)三 結サンプリ 6.98~27 7.18~-1	軸(φ50) ング .23 7.43	FS-2-⑤ 凍 28 -1	(A-1) 三朝 結サンプリン 3.83~29.1 9.03~19.	曲(φ50) バグ 13 33	FS-2-⑥ 凍 3 [·] -2 [·]	(A-1) 三 結サンプリン 1.35~31.6 1.55~-21	軸(φ50) バグ 62 .82
		試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No.	FS-2-④ 凍 26 -17 1-26	(A-1) 三 結サンプリ 6.98~27 7.18~-1 3-24	軸 (φ50) ング 23 7.43 2-25	FS-2-⑤ 凍 28 -1 1-37	(A-1) 三朝 結サンプリン 3.83~29.1 9.03~19. 3-35	軸(φ 50) バグ 13 33 4-38	FS-2-⑥ 凍 3 ⁻ -2 ⁻ 4-50	(A-1) 三 結サンプリン 1.35~31.6 1.55~-21 1-53	軸(φ50) バグ 62 .82 3-48
	· 地 土粒子	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³)	FS-2-④ 凍i 20 -17 1-26 2.826	(A-1) 三 結サンプリ 5.98~27 7.18~-1 3-24 2.793	 軸(φ50) ング .23 7.43 2-25 2.739 	FS-2-⑤ 凍 24 -1 1-37 2.748	(A-1) 三 結サンプリン 3.83~29.1 9.03~19. 3-35 2.760	曲 (φ 50) ソグ 13 33 4-38 2.689	FS-2-⑥ 凍 3 ⁻ -2 ⁻ 4-50 2.750	(A-1) 三 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692	曲(φ 50) ング 52 .82 3-48 2.806
	· · · · · · · · · · · · · · · · · · ·	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²)	FS-2-4 凍 26 -17 1-26 2.826	(A-1) 三 結サンプリ 5.98~27 7.18~-1 3-24 2.793 360	(ゆ50) ング 23 7.43 2-25 2.739	FS-2-⑤ 凍 28 -1 1-37 2.748	(A-1) 三朝 結サンプリン 3.83~29.1 9.03~19. 3-35 2.760 380	曲(ゆ50) バグ 13 33 4-38 2.689	FS-2-⑥ 凍 3 [:] -2 [:] 4-50 2.750	(A-1) 三日 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692 400	ing (Φ50) パグ 62 .82 3-48 2.806
	+ 地 土粒子 圧密 繰返応	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 応力振幅比 σ _d /2σ ^c ₀	FS-2-④ 凍i 26 -17 1-26 2.826 0.511	(A-1) 三 結サンプリ 5.98~27 7.18~-1 3-24 2.793 360 0.414	 (ゆ50) ング 23 7.43 2-25 2.739 0.462 	FS-2-⑤ 凍 24 -1 1-37 2.748 0.461	 (A-1) 三日 結サンプリン 3.83~29.1 9.03~19. 3-35 2.760 380 0.307 	 (φ50) グ 13 33 4-38 2.689 0.262 	FS-2-⑥ 凍 3 [:] -2 [:] 4-50 2.750 0.411	(A-1) 三 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692 400 0.356	 (ゆ50) グラ 52 .82 3-48 2.806 0.336
	+ 地 土粒子 圧密 繰返応 か	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²) 応力振幅比 σ _d /2σ ⁻ ₀ DA = 1%	FS-2-4) () () () () () () () () () ((A-1) Ξ 結サンプリ 5.98~27 7.18~-1 3-24 2.793 360 0.414 0.8 	 ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・<th>FS-2-⑤ 凍 24 -1 1-37 2.748 0.461 0.6</th><th> (A-1) 三峰 結サンプリン 3.83~29.1 9.03~19. 3-35 2.760 380 0.307 0.9 </th><th> (ゆ50) グ 13 33 4-38 2.689 0.262 127.0 </th><th>FS-2-⑥ 凍 3⁻² 4-50 2.750 0.411 0.3</th><th> (A-1) 三 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692 400 0.356 0.3 </th><th> (ゆ50) グラ 52 .82 3-48 2.806 0.336 0.3 </th>	FS-2-⑤ 凍 24 -1 1-37 2.748 0.461 0.6	 (A-1) 三峰 結サンプリン 3.83~29.1 9.03~19. 3-35 2.760 380 0.307 0.9 	 (ゆ50) グ 13 33 4-38 2.689 0.262 127.0 	FS-2-⑥ 凍 3 ⁻² 4-50 2.750 0.411 0.3	 (A-1) 三 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692 400 0.356 0.3 	 (ゆ50) グラ 52 .82 3-48 2.806 0.336 0.3
	土田を成する	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²) 応力 σ ⁻ c (kN/m ²) た力振幅比 σ _d /2σ ⁻ ₀ DA = 1% DA = 2%	FS-2-④ 凍i 26 -17 1-26 2.826 0.511 0.4 0.9	 (A-1) 三 結サンプリ 5.98~27 7.18~-1 3-24 2.793 360 0.414 0.8 12.0 	 軸(Φ50) ング .23 7.43 2-25 2.739 0.462 0.5 3.0 	FS-2-⑤ 凍 28 -1 1-37 2.748 0.461 0.6 3.0	 (A-1) 三貫 結サンプリン 3.83~29.1 9.03~19. 3-35 2.760 380 0.307 0.9 5.0 	 油 (FS-2-® 凍 3 ⁻² 4-50 2.750 0.411 0.3 0.6	 (A-1) 三日 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692 400 0.356 0.3 0.5 	 油(Φ50) パグ 52 .82 3-48 2.806 0.336 0.3 0.7
	- - 地 社 圧 返 軸 ひずみ 2	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 応力振幅比 σ _d /2σ ^c o DA = 1% DA = 2% DA = 5%	FS-2-4) () () () () () () () () () ((A-1) 三 結サンプリ 5.98~27 7.18~-1 3-24 2.793 360 0.414 0.8 12.0 29.0 	 軸(Φ50) ング 23 7.43 2-25 2.739 0.462 0.5 3.0 21.0 	FS-2-⑤ 凍 24 -1 1-37 2.748 0.461 0.6 3.0 15.0	 (A-1) 三貫 結サンプリン 3.83~29.1 9.03~19. 3-35 2.760 380 0.307 0.9 5.0 15.0 	 油(φ50) グラ 13 33 4-38 2.689 0.262 127.0 166.0 208.0 	FS-2-⑥ 凍 3 ⁻²⁻ 4-50 2.750 0.411 0.3 0.6 4.0	 (A-1) 三日 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692 400 0.356 0.3 0.5 4.0 	 (ゆ50) グラ 52 .82 3-48 2.806 0.336 0.3 0.7 6.0
 繰返し載荷回	・ ・ 地 土 加 王 返 本 動 ひずみの の	試料番号 サンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ⁻ c (kN/m ²) 5.力振幅比 σ _d /2σ ⁻ ₀ DA = 1% DA = 2% DA = 5% DA = 10%	FS-2-④ 凍i 20 -17 1-26 2.826 0.511 0.4 0.9 7.0 -	(A-1) 三 結サンプリ 5.98~27 7.18~-1 3-24 2.793 360 0.414 0.8 12.0 29.0 -	 (ゆ50) ング 23 7.43 2-25 2.739 0.462 0.5 3.0 21.0 - 	FS-2-⑤ 凍 24 -1 1-37 2.748 0.461 0.6 3.0 15.0 -	 (A-1) 三県 結サンプリン 3.83~29.1 3-35 2.760 380 0.307 0.9 5.0 15.0 - 	mh (φ 50) γσ 13 33 4-38 2.689 0.262 127.0 166.0 208.0 208.0	FS-2-⑥ 凍 3 ⁻² 4-50 2.750 0.411 0.3 0.6 4.0 -	 (A-1) 三日 結サンプリン 1.35~31.6 1.55~-21 1-53 2.692 400 0.356 0.3 0.5 4.0 – 	 (ゆ50) グラ 52 .82 3-48 2.806 0.336 0.3 0.7 6.0 –

ともに輝く明日のために。

○ As2層の液状化強度試験結果を以下に示す。

試料番号			FS	-2-④ (1)	中空(φ7	'0)	FS	-2-④ (2)	中空(φ7	0)	FS-2-④(3)中空(φ 70)			
サンプリング方法				凍結サン	ィプリング		凍結サンプリング 凍結サンプリング			ィプリング				
地表からの深度 (m)				26.01~	~26.23		26.16~26.45 25.90~26.60				~26.60			
標高 T.P. (m)				-16.21-	~-16.43			-16.36-	~-16.65		-16.10~-16.80			
供試体No.			4-21	2-19	3-18	1-20	4-22	2-20	1-21	3-19	2-21	3-17	4-23	3-20
土粒子の密度 ρ _s (g/cm ³)			2.708	2.723	2.743	2.713	2.736	2.717	2.746	2.707	2.732	2.696	2.710	2.715
	圧密	応力 σ´c(kN/m²)		36	60		360			360				
繰返応力振幅比 σ _d /2σ ⁻ 0			0.503	0.415	0.457	0.353	0.454	0.555	0.507	0.478	0.512	0.427	0.455	0.405
繰	曲	DA = 1%	0.6	3.5	1.5	7.5	9.0	0.8	0.8	2.0	0.5	4.0	0.9	21.0
返し	両ひ	DA = 2%	1.5	8.0	4.0	11.0	30.0	2.0	2.0	7.5	1.0	8.0	1.5	26.0
載	振り幅み	DA = 5%	3.5	23.0	18.0	16.0	81.0	6.5	8.0	30.0	3.0	19.0	4.0	33.0
何回	0)	DA = 10%	8.0	58.0	58.0	22.0	168.0	18.0	31.0	_	6.0	45.0	6.5	43.0
数	過乗	间間隙水圧比95% Nu95	7.0	29.0	25.0	17.0	88.0	11.0	14.0	41.0	_	23.0	6.0	35.0
		試料番号	FS	-2-⑥ (1)	中空(\$7	'0)	FS	-2-@ (2)	中空(ф7	0)	FS	-2-@ (3)	中空(ф7	'0)
	ţ	試料番号 ナンプリング方法	FS	-2-⑥(1) 凍結サン	中空(ф7 ・プリング	'0)	FS	-2-⑥ (2) 凍結サン	中空(ф7 /プリング	0)	FS	-2-⑥ (3) 凍結サン	中空(φ7 /プリング	'0)
	t 地:	試料番号 ナンプリング方法 表からの深度 (m)	FS	-2-⑥(1) 凍結サン 29.98~	中空(ф7 /プリング ~30.18	(0)	FS	-2-⑥ (2) 凍結サン 30.13-	中空(ф7 /プリング ~30.33	0)	FS	-2-⑥ (3) 凍結サン 30.28~	中空(φ7 イプリング ~30.56	'0)
	<u>+</u> 地:	試料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m)	FS	-2-⑥(1) 凍結サン 29.98~ -20.18~	中空(ф7 イプリング 〜30.18 〜-20.38	'0)	FS	-2-⑥ (2) 凍結サン 30.13~ -20.33~	中空(ф7 イプリング ~30.33 ~-20.53	' 0)	FS	-2-⑥(3) 凍結サン 30.28~ -20.48~	中空(φ7 イプリング ~30.56 ~-20.76	'0)
	t 地	武料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No.	FS 1-44	-2-⑥(1) 凍結サン 29.98~ -20.18~ 3-40	中空(φ7 イプリング ~30.18 ~-20.38 4-44	2-43	FS 1-45	-2-⑥(2) 凍結サン 30.13~ -20.33~ 3-41	中空(φ7 イプリング ~30.33 ~-20.53 4-45	2-44	FS ⁻	-2-⑥(3) 凍結サン 30.28~ -20.48~ 3-42	中空(ф7 イプリング ~30.56 ~-20.76 2-45	'0) 4-46
	+ 地: 土粒子	武料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. 2の密度 ρ _s (g/cm ³)	FS 1-44 2.723	-2-⑥ (1) 凍結サン 29.98~ -20.18~ 3-40 2.755	中空(Φ7 イプリング ~30.18 ~-20.38 4-44 2.696	2-43 2.748	FS 1-45 2.709	-2-⑥ (2) 凍結サン 30.13- -20.33- 3-41 2.714	中空(φ7 イプリング ~30.33 ~-20.53 4-45 2.747	2-44 2.773	FS- 1-46 2.730	-2-⑥ (3) 凍結サン 30.28~ -20.48~ 3-42 2.764	中空(φ7 /プリング ~30.56 ~-20.76 2-45 2.769	4-46 2.740
	+ 地 土粒子 庄密	武料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c(kN/m ²)	FS 1-44 2.723	-2-⑥ (1) 凍結サン 29.98~ -20.18~ 3-40 2.755 40	中空(Φ7 マブリング ~30.18 ~-20.38 4-44 2.696 00	2-43 2.748	FS 1-45 2.709	-2-⑥ (2) 凍結サン 30.13- -20.33- 3-41 2.714 4(中空(4 7 -プリング -30.33 20.53 4-45 2.747 00	2-44 2.773	FS 1-46 2.730	-2-⑥ (3) 凍結サン 30.28~ -20.48~ 3-42 2.764 4(中空(φ7 /プリング ~30.56 ~-20.76 2-45 2.769)0	(0) 4-46 2.740
	+ 地 土粒子 圧密 繰返応	武料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 応力振幅比 σ _d /2σ ^c 0	FS 1-44 2.723 0.407	-2-⑥ (1) 凍結サン 29.98~ -20.18~ 3-40 2.755 4(0.353	中空(Φ7 マブリング ~30.18 ~-20.38 4-44 2.696 00 0.383	2-43 2.748 0.456	FS 1-45 2.709 0.405	-2-⑥ (2) 凍結サン 30.13- -20.33- 3-41 2.714 4(0.358	中空(Φ7 /プリング ~30.33 ~-20.53 4-45 2.747 00 0.385	0) 2-44 2.773 0.459	FS 1-46 2.730 0.406	-2-⑥ (3) 凍結サン 30.28~ -20.48~ 3-42 2.764 4(0.338	中空(φ7 /プリング ~30.56 ~-20.76 2-45 2.769)0 0.377	(0) 4-46 2.740 0.467
	+ 地 土粒子 圧密 繰返応	武料番号 ナンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. 2 の密度 ρ _s (g/cm ³) 応力 σ ^c c(kN/m ²) 5 力振幅比 σ _d /2σ ^c o DA = 1%	FS 1-44 2.723 0.407 2.5	-2-⑥ (1) 凍結サン 29.98~ -20.18~ 3-40 2.755 4(0.353 30.0	中空(Φ7 vブリング ~30.18 ~-20.38 4-44 2.696 00 0.383 10.0	2-43 2.748 0.456 2.0	FS 1-45 2.709 0.405 2.0	-2-⑥ (2) 凍結サン 30.13- -20.33- 3-41 2.714 4(0.358 28.0	中空(07 マブリング ~30.33 ~-20.53 4-45 2.747 00 0.385 3.0	0) 2-44 2.773 0.459 1.5	FS- 1-46 2.730 0.406 2.0	-2-⑥ (3) 凍結サン 30.28~ -20.48~ 3-42 2.764 4(0.338 14.0	中空(φ7 ·ブリング -30.56 20.76 2-45 2.769)0 0.377 56.0	(0) 4-46 2.740 0.467 0.7
	+ 地 土 王 王 返 藤 町 5 で 町 5 で	武料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c (kN/m ²) 応力 σ ^c c (kN/m ²) た力振幅比 σ _d /2σ ^c o DA = 1% DA = 2%	FS 1-44 2.723 0.407 2.5 6.0	-2-⑥ (1) 凍結サン 29.98~ -20.18~ 3-40 2.755 4(0.353 30.0 44.0	中空(Φ7 - 30.18 20.38 4 - 44 2.696 00 0.383 10.0 25.0	2-43 2.748 0.456 2.0 5.0	FS 1-45 2.709 0.405 2.0 5.5	-2-⑥ (2) 凍結サン 30.13- -20.33- 3-41 2.714 40 0.358 28.0 43.0	中空(47 /プリング ~30.33 ~-20.53 4-45 2.747 00 0.385 3.0 6.5	2-44 2.773 0.459 1.5 4.0	FS- 1-46 2.730 0.406 2.0 4.0	-2-⑥ (3) 凍結サン 30.28- -20.48- 3-42 2.764 4(0.338 14.0 20.0	中空(φ7 vブリング ~30.56 ~-20.76 2-45 2.769 D0 0.377 56.0 86.0	 4-46 2.740 0.467 0.7 2.0
 繰返し載	+ 地 土 圧 返 軸ひずみ(行) 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	試料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c(kN/m ²) 応力 σ ^c c(kN/m ²) 応力 σ ^l c(kN/m ²) 応力 σ ^l c(kN/m ²) た力 50 DA = 1% DA = 2% DA = 5%	FS 1-44 2.723 0.407 2.5 6.0 16.0	-2-⑥ (1) 凍結サン 29.98~ -20.18~ 3-40 2.755 40 0.353 30.0 44.0 75.0	中空(Φ7 -7リング -30.18 20.38 4-44 2.696 00 0.383 10.0 25.0 64.0	2-43 2.748 0.456 2.0 5.0 13.0	FS 1-45 2.709 0.405 2.0 5.5 12.0	-2-⑥ (2) 凍結サン 30.13- -20.33- 3-41 2.714 4(0.358 28.0 43.0 76.0	中空(47 - 30.33 20.53 4-45 2.747 00 0.385 3.0 6.5 16.0	0) 2-44 2.773 0.459 1.5 4.0 11.0	FS- 1-46 2.730 0.406 2.0 4.0 9.0	-2-⑥ (3) 凍結サン 30.28- -20.48- 3-42 2.764 4(0.338 14.0 20.0 32.0	中空(47 - 30.56 20.76 2-45 2.769)0 0.377 56.0 86.0 139.0	4-46 2.740 0.467 0.7 2.0 6.0
 繰返し載荷回	+ 地 土 正 返 軸 ひずみの	武料番号 オンプリング方法 表からの深度 (m) 標高 T.P. (m) 供試体No. その密度 ρ _s (g/cm ³) 応力 σ ^c c(kN/m ²) 応力 σ ^c c(kN/m ²) 5カ振幅比 σ _d /2σ ^c o DA = 1% DA = 2% DA = 5% DA = 10%	FS 1-44 2.723 0.407 2.5 6.0 16.0 34.0	-2-⑥ (1) 凍結サン 29.98~ -20.18~ 3-40 2.755 4(0.353 30.0 44.0 75.0 121.0	中空(Φ7 vブリング ~30.18 ~-20.38 4-44 2.696 00 0.383 10.0 25.0 64.0 136.0	2-43 2.748 0.456 2.0 5.0 13.0 30.0	FS 1-45 2.709 0.405 2.0 5.5 12.0 24.0	-2-⑥ (2) 凍結サン 30.13- -20.33- 3-41 2.714 4(0.358 28.0 43.0 76.0 135.0	中空(07 マブリング マ30.33 マー20.53 4-45 2.747 00 0.385 3.0 6.5 16.0 40.0	0) 2-44 2.773 0.459 1.5 4.0 11.0 28.0	FS- 1-46 2.730 0.406 2.0 4.0 9.0 19.0	-2-⑥ (3) 凍結サン 30.28- -20.48- 3-42 2.764 4(0.338 14.0 20.0 32.0 50.0	中空(07 マブリング ~30.56 ~-20.76 2-45 2.769)0 0.377 56.0 86.0 139.0 -	4-46 2.740 0.467 0.7 2.0 6.0 19.0

ともに 輝く明日のために。 Light up your future.

○ As2層の液状化強度試験結果を以下に示す。

試料番号			FS-2-⑥(4)中空(φ70)			FS-2-⑥ (5) 中空 (φ70)				
サンプリング方法			凍結サンプリング				凍結サンプリング			
地表からの深度 (m)			34.35~34.55				34.50~34.70			
標高 T.P.(m)			-24.55~-24.75					-24.70~-24.90		
供試体No.			4-68	2-70	3-66	1-71	4-69	2-71	3-67	1-72
	土粒子の密度 ρ _s (g/cm ³)			2.827	2.796	2.762	2.709	2.768	2.693	2.793
	圧密応力 σ ⁻ c(kN/m ²)			440			440			
	繰返応力振幅比 σd/2σ ⁻ 0		0.411	0.357	0.384	0.309	0.357	0.305	0.256	0.491
繰	市中	DA = 1%	2.0	74.0	1.5	9.5	2.5	6.0	2041.0	0.5
返し		DA = 2%	4.5	117.0	3.5	14.0	5.0	9.0	2290.0	0.9
載		DA = 5%	9.0	232.0	7.0	26.0	12.0	17.0	2511.0	3.0
何回	0)	DA = 10%	21.0	344.0	13.0	55.0	34.0	30.0	—	8.0
数	過乗	间間隙水圧比95% Nu95	14.0	204.0	10.0	28.0	17.0	19.0	2407.0	6.0

ともに輝く明日のために。 Light up your future.

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果 例 その1 (1,2号埋戻土)

○ 液状化強度試験結果(RE-3(2))

10

12 14 16

> 14 16

ともに輝く明日のために。

ほくてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果 例 その2 (3号埋戻土)

○ 液状化強度試験結果(RE-7)

ともに輝く明日のために。 Light up your future.

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果 例 その3 (As1層)

○ 液状化強度試験結果(FS-1-④(A-2) 三軸)

0.95 1

-1

2

繰返し回数(回)

過剰間隙水圧比-繰返し回数関係

6

88

ともに輝く明日のために。

ほくてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果 例 その4 (As1層)

○ 液状化強度試験結果(SW7-10)

※有効応力がゼロまで低下していないが保守的に液状化に区分した。

ともに輝く明日のために。

○ 液状化強度試験結果(SW2-4(1))

せん断剛性が保持され、ひずみが急激に 繰返し載荷しても、有効応力がゼロになること 進行することがない。 はなく、液体状になることはない。 400 400 軸差応力 (kN/m²) (KN/ 過剰間隙水圧比 (*Δw/σ`*。) 0 軸差応力 -400 -400 50 150 250 -15 0 15 0 100 200 有効平均主応力(kN/m²) 軸ひずみ (%) 軸差応力-軸ひずみ関係 2 有効応力経路 **(3)(4)**

ともに輝く明日のために。 Light up your future.

30

30

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の分類

		繰返し		
	液状化		サイクリック モビリティ	非液状化
1,2号埋戻土	0	47	1	10
3号埋戻土	0	22	0	1
As1層	2	77	11	11
As2層	1	68	5	28

○ 1,2号及び3号埋戻土の液状化強度試験結果は、多くのケースが「繰返し軟化」に分類される。 ○ As1層及びAs2層は、一部が「液状化」に分類されるものの、多くのケースが「繰返し軟化」に分類される。

【液状化強度試験結果の考察】

- 泊発電所の埋戻土は、多くのケースが「繰返し軟化」に分類されることから、液体状となり支持力を完全に喪失するような事象は発生せず、ひずみが漸増する ねばり強い挙動を示す。
- 泊発電所のAs1層及びAs2層は, 一部が「液状化」に分類されるものの大部分が「繰返し軟化」に分類されることから, 全体としては液体状となり支持力を完全 に喪失するような事象は発生せず, ひずみが漸増するねばり強い挙動を示す。

ほくてん

○ 1,2号埋戻土, 3号埋戻土について, 液状化強度試験で得られた両振幅軸ひずみDA=5%に対する繰返し応力振幅比と繰返し載荷回数の関係を示す。

92

ともに輝く明日のために。 Light up your future. ほくてん

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度試験結果の整理(砂層)

○ As1層, As2層について, 液状化強度試験で得られた両振幅軸ひずみDA=5%に対する繰返し応力振幅比と繰返し載荷回数の関係を示す。

砂層の液状化強度試験結果

5. 液状化強度試験結果と液状化強度特性の設定 液状化強度特性の設定

- 埋戻土について、 φ 100mmの試験結果はばらつきが大きく、 φ 300mmの試験結果はばらつきが小さくなっている。これは供試体寸法に対する礫の比率が小さい φ 300mmの供試体の方が、 礫の入り方のばらつきによる影響が小さいためと考えられる。これらの供試体径におけるばらつきを踏まえて、 液状化強度特性を下限値で設定することを基本とする。
- 砂層については、対象施設に近い陸側で試料採取しているものの採取可能範囲が限定的であることを勘案して、液状化強度特性を下限値で設定することを 基本とする。

5. 液状化強度試験結果と液状化強度特性の設定 まとめ(液状化強度試験の結果と考察)

【液状化強度試験方法と試験条件】

○ 埋戻土・砂層のそれぞれについて、採用したサンプリング方法・試験方法及び試験条件について示した。

【液状化強度試験結果の整理】

○ 液状化強度試験結果の一覧と両振幅軸ひずみDA=5%に対する繰返し応力振幅比と繰返し載荷回数の関係について示した。

【液状化強度試験結果の分類】

- 泊発電所の液状化検討対象層が, 地震時にどのような挙動をするかを把握する目的で, 液状化強度試験結果を「液状化」,「繰返し軟化(サイクリックモビリティを含む)」,「非液状化」に分類した。
- 埋戻土, 砂層ともに, ほとんどの液状化強度試験結果が「繰返し軟化 (サイクリックモビリティを含む)」に分類された。

【液状化強度特性の設定】

- 埋戻土については、供試体径におけるばらつきを踏まえて、液状化強度特性を下限値で設定することを基本とする。
- 砂層については,採取可能範囲が限定的であることを勘案して,液状化強度特性を下限値で設定することを基本とする。

○ 以上により、液状化強度試験方法・試験条件・試験結果を示した。

ともに輝く明日のために

IFCT'

6. 液状化の評価方針

1.	液状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.	液状化検討対象層の抽出 ・・・・・・・・・・	5
3.	液状化検討対象施設の抽出 ・・・・・・・・・	12
4.	液状化強度試験 試料採取位置選定とその代表	長性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 34
5.	液状化強度試験結果と液状化強度特性の設定	61
6.	液状化の評価方針 ・・・・・・・・・・・・・・・	96
7.	全体のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
補	甫足説明資料・・・・・・・・・・・・・・・・・・・・・・・・	
\$	参考文献·····	

6. 液状化の評価方針 液状化の評価方針

○ 泊発電所における液状化影響評価については、道路橋示方書の評価方法を参考に、道路橋示方書においては対象外とされているG.L.-20m以深の土層等についても液状化強度試験を実施し、全ての埋戻土、砂層を液状化検討対象層とすることで保守的な構造物の評価を実施する。

- また,施設ごとに地下水排水設備を考慮の上設定した地下水位及び液状化検討対象層の分布状況を踏まえて,検討の必要性を判断する。
- 有効応力解析に用いる液状化強度特性については, 敷地全体の液状化強度試験から得られる液状化強度特性を保守的(下限値)に設定する。
- なお,液状化考慮と液状化非考慮で耐震安全性評価上どちらが保守的な評価となるかを確認するため,液状化等を考慮した評価と考慮しない評価の結果を 比較して,解析手法を選定する。
- 有効応力解析においては,解析コード「FLIP」を用いることとし,解析に用いる液状化パラメータは保守的に設定した液状化強度を満足するように設定する。

7. 全体のまとめ

1.	. 液状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	. 液状化検討対象層の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	. 液状化検討対象施設の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	. 液状化強度試験 試料採取位置選定とその代表性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	、液状化強度試験結果と液状化強度特性の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.	. 液状化の評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7.	, 全体のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
*	浦足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
AML.	参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

7. 全体のまとめ 全体のまとめ (1/2)

- 液状化に関する検討のまとめを以下に示す。
 - 【1. 液状化評価の基本方針】
 - > 検討フローを示すとともに,液状化評価に関する基本方針について示した。

【2. 液状化検討対象層の抽出】

- > 道路橋示方書・同解説 (V 耐震設計編) に基づき液状化検討対象層を抽出した。
- > ただし、道路橋示方書において対象外となる以下の土層も保守的に対象とした。
 - ・地表面から20m以深の土層
 - 50%粒径D50が10mm以上となる土層

【3. 液状化検討対象施設の抽出】

- ▶ 設計基準対象施設(建物・構築物,屋外重要土木構造物及び津波防護施設)及び重大事故等対処施設を抽出し,液状化の影響を検討する必要がある施設を液状化検討対象施設として選定した。
- 【4. 液状化強度試験 試料採取位置選定とその代表性】
 - > 試料採取可能な地点の中から敷地全体を網羅するように液状化強度試験箇所を選定した。
 - > 液状化強度試験の試料採取位置について, 敷地全体と基本物性値を比較し, その代表性を確認した。
 - ・埋戻土は、粒度分布と細粒分含有率Fcとせん断波速度Vsを指標にして代表性を評価した。
 - ・砂層は、粒度分布と細粒分含有率FcとN値を指標にして代表性を評価した。

7. 全体のまとめ 全体のまとめ (2/2)

- > 埋戻土, 砂層のそれぞれについて, 採用したサンプリング方法・試験方法及び試験条件について示した。
- > 液状化強度試験結果の一覧と両振幅軸ひずみDA=5%に対する繰返し応力振幅比と繰返し載荷回数の関係について示した。
- ▶ 液状化強度試験結果を「液状化」・「繰返し軟化(サイクリックモビリティを含む)」・「非液状化」に分類し、ほとんどの液状化強度試験結果が「繰返し軟化」に 分類されることを確認した。
- > 有効応力解析に用いる液状化強度特性については、敷地全体の液状化強度試験から得られる液状化強度特性を保守的(下限値)に設定する。

【6. 液状化の評価方針】

- > 全ての埋戻土, 砂層を液状化検討対象層とすることで保守的な構造物の評価を実施する。
- >施設ごとに地下水排水設備を考慮の上設定した地下水位及び液状化検討対象層の分布状況を踏まえて、検討の必要性を判断する。
- > 耐震安全性評価上どちらが保守的な評価となるかを確認するため, 液状化等を考慮した評価と考慮しない評価の結果を比較して, 解析手法を選定する。

ともに輝く明日のために

補足説明資料

1.	皮状化評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	夜状化検討対象層の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3.	夜状化検討対象施設の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4	夜状化強度試験 試料採取位置選定とその代表性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
5	夜状化強度試験結果と液状化強度特性の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
6	皮状化の評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
7.	全体のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
ł	足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	101
AM In	考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146

1. 液状化検討対象層の選定について (Ac層)

補足説明資料1. 液状化検討対象層の選定について (Ac層) Ac層の細粒分含有率,塑性指数

○ Ac層については、細粒分含有率Fc>35%、かつ塑性指数lp>15を満足していることから、液状化検討の対象外とする。

103

ともに輝く明日のために。

ほくてん

補足説明資料1. 液状化検討対象層の選定について (Ac層) Ac層の粘土分含有率

- 日本建築学会 (2019) 及び鉄道総合技術研究所 (2012) において,粘土分含有率Pcを液状化判定の指標としていることから,Ac層の粘土分含有率Pcについても確認した。
- 日本建築学会 (2019) では、「粘土分 (0.005mm以下の粒径を持つ土粒子) 含有率が10%以下、または塑性指数が15以下の埋立地盤あるいは盛土地盤に ついては液状化の検討を行う。」とされている。
- 鉄道総合技術研究所(2012)では、細粒分含有率Fcが35%を越えても粘土分含有率Pcが15%以下の土層は液状化の判定を行う必要があるとされている。
- Ac層の粘土分含有率Pcは全て15%以上であり、液状化検討の対象外となる。

液状化検討対象層の判定基準

文献名	細粒分含有率Fc	塑性指数IP	粘土分含有率Pc
道路橋示方書 (2012)	35%以下	15以下	
日本建築学会 (2019)	35%以下	15以下	10%以下
鉄道総合技術研究所 (2012)	35%以下		15%以下

※各指標について、いずれかの判定基準に該当する土層は液状化検討対象層とする。
※日本建築学会 (2019) の塑性指数及び粘土分含有率については造成地盤を対象とした
判定基準として扱われている。

2. 埋戻土・砂層の基本物性

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SW2-3地点)の基本物性 <1,2号埋戻土>

- SW2-3地点の基本物性を以下に示す。
- N値は7~50以上とばらつきが認められる。
- ○供試体の粒度分布は、D₅₀は13.3~41.8mmで10mm以上であり、D₁₀は0.19~0.26mmで1mm以下である。細粒分含有率はFc=4.2~8.4%である。せん断波 速度VsはVs=300~388m/sである。

- SW2-4地点の基本物性を以下に示す。
- N値は5~50以上とばらつきが認められる。
- 供試体の粒度分布は、D₅₀は11.8~81.1mmで10mm以上であり、D₁₀は0.24~1.11mmで1mm以上となる1データを含んでいる。細粒分含有率はFc=5.9~
 9.1%である。せん断波速度VsはVs=349~411m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置(BF1-2地点)の基本物性 <1,2号埋戻土>

○ BF1-2地点の基本物性を以下に示す。

○ N値は7~49とばらつきが認められる。

○ 供試体の粒度分布は、D₅₀は9.7~38.1mmで1データを除き10mm以上であり、D₁₀は0.16~0.44mmで1mm以下である。細粒分含有率はFc=4.5~8.9%である。せん断波速度VsはVs=359~560m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (RE-1地点)の基本物性 <1,2号埋戻土>

○ RE-1地点の基本物性を以下に示す。

○ N値は7~50以上とばらつきが認められる。

 ○供試体の粒度分布は、D₅₀は10.08mmで10mm以上であり、D₁₀は0.16mmで1mm以下である。細粒分含有率はFc=6.7%である。せん断波速度VsはVs=509 ~909m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (RE-2地点)の基本物性 <1,2号埋戻土>

- RE-2地点の基本物性を以下に示す。
- N値は7~50以上とばらつきが認められる。
- 供試体の粒度分布は、D₅₀は0.27~45.25mmで7データ/8データが10mm以上であり、D₁₀は0.19~0.39mmで1mm以下である。細粒分・砂分が多い1データは、T.P.+4.9mの浅い位置のデータである。細粒分含有率はFc=4.0~25.3%である。せん断速度VsはVs=464~741m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (RE-3地点)の基本物性 <1,2号埋戻土>

○ RE-3地点の基本物性を以下に示す。

○ N値は3~50以上とばらつきが認められる。

 ○供試体の粒度分布は、D₅₀は0.43~22.82mmで4データ/11データが10mm以上であり、D₁₀は0.08mm~0.16mmで1mm以下である。細粒分含有率は Fc=4.9~25.1%である。せん断速度VsはVs=274~823m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (RE-4地点)の基本物性 <1,2号埋戻土>

○ RE-4地点の基本物性を以下に示す。

○ N値は0~39とばらつきが認められる。

 〇供試体の粒度分布は、D₅₀は11.64mmmで10mm以上であり、D₁₀は0.34mmで1mm以下である。細粒分含有率はFc=4.8%である。せん断速度VsはVs=249 ~709m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (RE-5地点)の基本物性 <1,2号埋戻土>

- RE-5地点の基本物性を以下に示す。
- N値は3~50以上とばらつきが認められる。
- 供試体の粒度分布は、D₅₀は6.26~15.40mmで4データ/10データが10mm以上であり、D₁₀は0.11~0.31mmで1mm以下である。細粒分含有率はFc=2.6~ 11.5%である。せん断速度VsはVs=286~340m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (RE-6地点)の基本物性 <1,2号埋戻土>

- RE-6地点の基本物性を以下に示す。
- N値は4~50以上とばらつきが認められる。
- ○供試体の粒度分布は、D₅₀は4.87~7.73mmで10mm以上のデータはなく、D₁₀は0.29~0.64mmで1mm以下である。細粒分含有率はFc=1.5~5.0%である。
 せん断速度VsはVs=238~372m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SH-1地点)の基本物性 <1,2号埋戻土>

- SH-1地点の基本物性を以下に示す。
- N値は6~50以上とばらつきが認められる。
- 供試体の粒度分布は、D₅₀は0.39~25.08mmで8データ/12データが10mm以上であり、D₁₀は0.01~0.55mmで1mm以下である。細粒分含有率はFc=4.3~ 19%である。せん断速度VsはVs=269~476m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SW2-1地点)の基本物性 <3号埋戻土>

- SW2-1地点の基本物性を以下に示す。
- N値は6~50以上とばらつきが認められる。
- ○供試体の粒度分布は、D₅₀は12.6~66.7mmで10mm以上であり、D₁₀は0.12~0.51mmで1mm以下である。細粒分含有率はFc=6.4~8.2%である。せん断速 度VsはVs=293~508m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (BF3-1地点)の基本物性 <3号埋戻土>

○ BF3-1地点の基本物性を以下に示す。

○ N値は7~50以上とばらつきが認められる。

 ○供試体の粒度分布は、D₅₀は17.6mmで10mm以上であり、D₁₀は0.23mmで1mm以下である。細粒分含有率はFc=5.8%である。せん断速度VsはVs=294~ 759m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (BF3-2地点)の基本物性 <3号埋戻土>

- BF3-2地点の基本物性を以下に示す。
- N値は5~50以上とばらつきが認められる。
- ○供試体の粒度分布は、D₅₀は10.2~23.8mmで10mm以上であり、D₁₀は0.16~0.22mmで1mm以下である。細粒分含有率はFc=5.5~6.1%である。せん断速 度VsはVs=340~650m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置(RE-7地点)の基本物性 <3号埋戻土>

○ RE-7地点の基本物性を以下に示す。

○ N値は5~27以上とばらつきが認められる。

 〇供試体の粒度分布は、D₅₀は0.31mmで砂分が多くなっており、D₁₀は0.075mm以下である。細粒分含有率はFc=12.6%である。せん断速度VsはVs=227~ 559m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置(RE-8地点)の基本物性 <3号埋戻土>

- RE-8地点の基本物性を以下に示す。
- N値は0~50以上とばらつきが認められる。
- ○供試体の粒度分布は、D₅₀は8.92~13.92mmで2データ/3データが10mm以上であり、D₁₀は0.11~0.17mmで1mm以下である。細粒分含有率はFc=6.6~
 8.6%である。せん断速度VsはVs=203~823m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (RE-8'' 地点)の基本物性 <3号埋戻土>

○ RE-8"地点の基本物性を以下に示す。

○ N値は9~50以上とばらつきが認められる。

 ○ 供試体の粒度分布は、D₅₀は4.43~9.24mmで10mm以上のデータはなく、D₁₀は0.07~0.19mmで1mm以下である。細粒分含有率はFc=7.3~10.5%である。 せん断速度VsはVs=425~489m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SH-2地点)の基本物性 <3号埋戻土>

○ SH-2地点の基本物性を以下に示す。

○ N値は10~50以上とばらつきが認められる。

 〇供試体の粒度分布は、D₅₀は16.72~24.00mmで10mm以上であり、D₁₀は0.075mm以下である。細粒分含有率はFc=12.7~18.8%である。せん断速度Vsは Vs=428~568m/sである。

122

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SW-4地点)の基本物性 <砂層>

- SW-4地点の基本物性を以下に示す。
- N値は8~50以上とばらつきが認められる。
- 〇供試体の粒度分布は、D50は0.22~1.04mmで10mm以下であり、D10は0.15~0.29mmで1mm以下である。細粒分含有率はFc=2.8~27.9%である。せん 断波速度VsはVs=244~338m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SW-6地点)の基本物性 <砂層>

○ SW-6地点の基本物性を以下に示す。

○ N値は7~50以上とばらつきが認められる。

○供試体の粒度分布は、D₅₀は0.15~0.30mmで10mm以下であり、D₁₀は0.01~0.03mmで1mm以下である。細粒分含有率はFc=12.4~32.3%である。
 断波速度VsはVs=212~218m/sである。

調査位置

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SW-7地点)の基本物性 <砂層>

○ SW-7地点の基本物性を以下に示す。

○ N値は14~50以上とばらつきが認められる。

 ○供試体の粒度分布は、D₅₀は0.17mmで10mm以下であり、D₁₀は0.01mmで1mm以下である。細粒分含有率はFc=21.1%である。せん断波速度VsはVs=259 ~368m/sである。

調査位置

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SW2-1地点)の基本物性 <砂層>

- SW2-1地点の基本物性を以下に示す。
- N値は19~50以上とばらつきが認められる。
- 〇供試体の粒度分布は、D₅₀は0.31mmで10mm以下であり、D₁₀は0.16mmで1mm以下である。細粒分含有率はFc=0.4%である。せん断波速度VsはVs=288~ 475m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (SW2-4地点)の基本物性 <砂層>

- SW2-4地点の基本物性を以下に示す。
- N値は3~50以上とばらつきが認められる。
- ○供試体の粒度分布は、D₅₀は0.22~0.34mmで10mm以下であり、D₁₀は0.11~0.17mmで1mm以下である。細粒分含有率はFc=1.2~4.6%である。せん断波 速度VsはVs=216~358m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (FS-1地点)の基本物性 <砂層>

○ FS-1地点の基本物性を以下に示す。

○ N値は7~50以上とばらつきが認められる。

 ○供試体の粒度分布は、D₅₀は0.18~0.37mmで10mm以下であり、D₁₀は0.04~0.17mmで1mm以下である。細粒分含有率はFc=0.5~12.8%である。せん断 波速度VsはVs=243~307m/sである。

補足説明資料2. 埋戻土・砂層の基本物性 試料採取位置 (FS-2地点)の基本物性 <砂層>

○ FS-2地点の基本物性を以下に示す。

○ N値は11~50以上とばらつきが認められる。

 〇供試体の粒度分布は、D₅₀は0.21mm~1.09mmで10mm以下であり、D₁₀は0.08~0.29mmで1mm以下である。細粒分含有率はFc=0.4~9.9%である。せん 断波速度VsはVs=308~459m/sである。

3. 埋戻土のN値の取扱いについて

補足説明資料3. 埋戻土のN値の取扱いについて 埋戻土のN値の取扱いについて

【埋戻土の試料採取位置の代表性確認のうちN値について】

○ 試料採取位置の代表性確認指標としては, 粒度分布のほか, 液状化判定において参照するパラメータ(細粒分含有率, N値)を用いるのが一般的だと考えら れるが, 以下の理由により適正なN値の測定が難しいことから, 指標としては採用しない。

【埋戻土のN値採用が難しい理由】

- 埋戻土として使用した岩砕は, 礫を多く含む箇所があり, 標準貫入試験を行った箇所に礫が存在した場合は, 礫自体を打撃することによりN値が著しく大きくな る場合 (以下, 礫あたり) が考えられる。
- また, 岩砕を主体として埋め戻した場合, 施工時に礫のかみ合わせにより, 空隙も生じていると考えられる。これらの空隙箇所も含めて試験を行った際には, 空 打ち状態となりN値を過小評価してしまうことが考えられる。

○ このことから、N値が過大/過小となる範囲が出現するため、実際の地盤の性状をN値で代表できない可能性がある。

補足説明資料3. 埋戻土のN値の取扱いについて 埋戻土のN値の取扱いについて(1,2号埋戻土)

○ N値の小さい箇所は離散的に出現する傾向があり、深さ方向に不連続となっている。 ○ N値の深度方向のばらつきの程度は埋戻土のマトリクス(礫の混入程度)により異なり、局所的に小さいN値も存在する。N値50以上は礫あたりと考えられる。

T.P.(m) U-3 U-4 U-5 U-6 U-7 U-8 SW2-2 SW2-3 SW2-4 BF1-2 BF2-2 H22-1 H22-2 RE-1 RE-2 RE-3 RE-4 RE-5 RE-6 RE-9 RE-10 RE-11 SH-1 10~9 9~8 8~7 7~6 $6\sim 5$ -3 RE-11 5~4 RE-9-RE-10-U-4-4~3 SW2-2_ 3~2 ORF-2~1 W2-400FS-1 :12号埋厚十 1~0 ◎:液状化強度試験位置 0~-1 ○:周辺調査位置 -1~-2 X -2~-3 -3~-4 -4~-5 -5~-6 -6~-7 -7~-8 -8~-9 -9~-10 10~-11 -12~-13 -13~-14 -14~-15 -15~-16

1.2号埋戻土における深度方向のN値の分布

N ≦ 5

N>50 (礫あたり)

_____ 地下水位

ほくてん

補足説明資料3. 埋戻土のN値の取扱いについて N値とせん断波速度の比較(1,2号埋戻土)(1/4)

○ その結果, せん断波速度は深度方向に変わらない。また, N値は礫の存在により深度方向にばらついており, 両者の相関はない。

○したがって、埋戻土のN値は、初期せん断剛性G₀と関係が深いせん断波速度と傾向が異なることから、地盤性状を代表できないと考えられる。

補足説明資料3. 埋戻土のN値の取扱いについて N値とせん断波速度の比較(1,2号埋戻土)(2/4)

○ 地盤性状 (応力状態や変形)を評価するのに必要な初期せん断弾性剛性G₀は,弾性論に基づきせん断波速度から求めることができるため,せん断波速度とN 値を比較した。

○ その結果, せん断波速度は深度方向に変わらない。また, N値は礫の存在により深度方向にばらついており, 両者の相関はない。

○したがって、埋戻土のN値は、初期せん断剛性G₀と関係が深いせん断波速度と傾向が異なることから、地盤性状を代表できないと考えられる。

補足説明資料3. 埋戻土のN値の取扱いについて N値とせん断波速度の比較(1,2号埋戻土)(3/4)

- 地盤性状(応力状態や変形)を評価するのに必要な初期せん断弾性剛性G₀は,弾性論に基づきせん断波速度から求めることができるため,せん断波速度とN 値を比較した。
- その結果, せん断波速度は深度方向に変わらない。また, N値は礫の存在により深度方向にばらついており, 両者の相関はない。
- ○したがって、埋戻土のN値は、初期せん断剛性G₀と関係が深いせん断波速度と傾向が異なることから、地盤性状を代表できないと考えられる。

液状化強度試験位置

補足説明資料3. 埋戻土のN値の取扱いについて N値とせん断波速度の比較(1,2号埋戻土)(4/4)

○ 地盤性状 (応力状態や変形)を評価するのに必要な初期せん断弾性剛性G₀は,弾性論に基づきせん断波速度から求めることができるため,せん断波速度とN 値を比較した。

○ その結果, せん断波速度は深度方向に変わらない。また, N値は礫の存在により深度方向にばらついており, 両者の相関はない。

○したがって、埋戻土のN値は、初期せん断剛性G₀と関係が深いせん断波速度と傾向が異なることから、地盤性状を代表できないと考えられる。

補足説明資料3. 埋戻土のN値の取扱いについて 埋戻土のN値の取扱いについて(3号埋戻土)

○ N値の小さい箇所は離散的に出現する傾向があり、深さ方向に不連続となっている。 ○ N値の深度方向のばらつきの程度は埋戻土のマトリクス(礫の混入程度)により異なり、局所的に小さいN値も存在する。N値50以上は礫あたりと考えられる。

3号埋戻土における深度方向のN値の分布

—— 地下水位

ほくてん

○ 地盤性状 (応力状態や変形) を評価するのに必要な初期せん断弾性剛性G₀は, 弾性論に基づきせん断波速度から求めることができるため, せん断波速度とN 値を比較した。

○ その結果, せん断波速度は深度方向に変わらない。また, N値は礫の存在により深度方向にばらついており, 両者の相関はない。

○したがって、埋戻土のN値は、初期せん断剛性G₀と関係が深いせん断波速度と傾向が異なることから、地盤性状を代表できないと考えられる。

補足説明資料3. 埋戻土のN値の取扱いについて N値とせん断波速度の比較(3号埋戻土)(2/3)

- 地盤性状 (応力状態や変形) を評価するのに必要な初期せん断弾性剛性G₀は, 弾性論に基づきせん断波速度から求めることができるため, せん断波速度とN 値を比較した。
- その結果, せん断波速度は深度方向に変わらない。また, N値は礫の存在により深度方向にばらついており, 両者の相関はない。
- ○したがって、埋戻土のN値は、初期せん断剛性G₀と関係が深いせん断波速度と傾向が異なることから、地盤性状を代表できないと考えられる。

液状化強度試験位置

補足説明資料3. 埋戻土のN値の取扱いについて N値とせん断波速度の比較(3号埋戻土)(3/3)

○ 地盤性状(応力状態や変形)を評価するのに必要な初期せん断弾性剛性G₀は,弾性論に基づきせん断波速度から求めることができるため,せん断波速度とN 値を比較した。

○ その結果, せん断波速度は深度方向に変わらない。また, N値は礫の存在により深度方向にばらついており, 両者の相関はない。

○したがって、埋戻土のN値は、初期せん断剛性G₀と関係が深いせん断波速度と傾向が異なることから、地盤性状を代表できないと考えられる。

4. 液状化に関連する基本物性の補足

補足説明資料4. 液状化に関連する基本物性の補足 N値(標準貫入試験)

○ N値とは、標準貫入試験において、SPTサンプラーを(自重及び予備うちによって貫入させた後)300mm打込むのに必要な打撃回数である。
 ○ N値は、原位置における土の硬軟、締まり程度を知る指標となる。

【試験方法】

・標準貫入試験は、「標準貫入試験方法」(JIS A 1219:2013)に基づいて実施する。

・試験は、質量63.5kgのハンマーを760mmの高さからアンビルに落下させて、SPTサンプラーを打ち込む。

・本打ちの打撃回数は特に必要のない限り50回を限度とし、その時の累計貫入量を測定する。

・下図に、標準貫入試験装置の例を示す。

補足説明資料4. 液状化に関連する基本物性の補足 細粒分含有率(Fc)

- ○細粒分含有率とは、土中にある粒子のうち、75µmふるいを通過した粒子の含有質量百分率をいい、Fcで表す。
- 地盤材料の工学的分類方法では、細粒土と粗粒土に分類するために用いられる。
- また, N値から液状化の判定を行う場合の対象土層の条件および砂質土の繰り返し三軸強度比を求める際の係数や, 盛土の品質管理を規定するための材料 区分にも使われる。

【試験方法】

- ・細粒分含有率は、「土の粒度試験方法」(JIS A 1204:2020)により算出する。
- ・試験は、粒径0.075mm以上の土粒子に適用されるふるい分析と、0075mm未満の土粒子に適用される沈降分析に分けられる。
- 一般的な試験の順は下図に示す通りで、試料は、まず2mmふるいでふるい分けが行われ、その残留分に対しふるい分析が、また通過分に対し沈降分析が行われ る。さらに沈降分析後の試料に対し、75µmふるいでふるい分けが行われ、その残留分に対しふるい分析が行われる。

・細粒分含有率は、以下の式を用いて算出する。

- Fc = ms-mso/ms ×100 ms = m / (1+w/100) ここに、Fc :細粒分含有率(%)
 - m :試料の質量 (g)
 - ms:試料の炉乾燥質量(g)
 - mso:75µmのふるいに残留した炉乾燥質量(g)
 - w:試料の含水比(%)

補足説明資料4. 液状化に関連する基本物性の補足 粒径加積曲線

- 粒径加積曲線とは、土の粒度組成を表すために粒度試験の結果を図示したもので、横軸に粒径を対数目盛でとり、縦軸に各々の粒径より細かいものの質量 百分率(通過質量百分率)をプロットした曲線をいう。
- 粒度試験の結果は,主として土の分類に使われ,粒径加積曲線の位置あるいは傾きから土の粒度特性を知ることができる。また,石分は施工に際しても問題となることが多く,特に施工方法や施工機械の選定などに関係することが多い。盛土施工に際して盛土材料に含まれる石分の最大粒径は盛土巻出し厚との関係で重要な問題となる。
- 粒径加積曲線の勾配がなだらかで、粒径の異なる粒子を広い範囲にわたり含む土を粒径幅が広いといい、その勾配が急で特定の粒径に集中する土を分級されたあるいは集中粒径の土という。

【試験方法】

- ・粒径加積曲線は,「土の粒度試験方法」(JIS A 1204:2020)および「石分を含む地盤材料の粒度試験方法」(JGS 0132-2020)により算出する。石分とは, 粒 径が75mm以上の土質材料をいう。
- ・「土の粒度試験方法」は、粒径0.075mm以上の土粒子に適用されるふるい分析と、0075mm未満の土粒子に適用される沈降分析に分けられる。一般的な試験の順は下図に示す通りで、試料は、まず2mmふるいでふるい分けが行われ、その残留分に対しふるい分析が、また通過分に対し沈降分析が行われる。さらに沈降分析後の試料に対し、75µmふるいでふるい分けが行われ、その残留分に対しふるい分析が行われる。
- ・「石分を含む地盤材料の粒度試験方法」は、ふるいは目開き75mm、125mm、300mmのものとし、粒径が75mm未満の土質材料の粒度を求めるには「土の粒 度試験方法」を適用する。

144

補足説明資料4.液状化に関連する基本物性の補足 せん断波速度(Vs)

 ○ せん断波速度 (Vs) は, 無限に広がっている弾性体を伝わる弾性波のうち, 波の伝播する方向と波の伝播に伴う媒質粒子の振動方向が直角な波である。
○ 土質地盤の場合, S波速度は地層の変化や地盤の強度 (N値) に対して敏感に変化するため, 工学的にはP波よりS波速度構造を求めることの方がより有効な 情報を多く抽出することができる。

【試験方法】

・速度検層は, ボーリング孔を利用して弾性波速度の深さ方向の分布を測定する物理検層であり, 「地盤の弾性波速度検層方法」(JGS 1122-2012)に準拠し て実施する。

・測定は以下による。

・所定の深さにゾンデを設置する。

- ・起振装置を用いてP波及びS波を発生させ、所定の深さにおけるP波とS波の波形を測定し、記録する。
- ・測定深さを変えて上記の操作を繰り返す。
- ・深さ毎にP波及びS波の走時を読み取る。S波の場合は起振時から初動までの時間を読み取るが、初動の判別が困難な場合は、波形の山または谷の位置の時 間を読み取る。
- ・読み取った走時を横軸にとり、深さを縦軸にとって両者の関係を表す走時曲線図を作成する。

参考文献

1. 液状化評価の表	基本方針・・	• • • • • • •					••••• 2
2. 液状化検討対象	象層の抽出	• • • • • • •	• • • • • • •		• • • • • • • • • • • •	• • • • • • • • • • •	••••• 5
3. 液状化検討対象	象施設の抽と	ቲ •••••	• • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	••••• 12
4. 液状化強度試験	険 試料採取	位置選知	主とその作	代表性・・・・・	• • • • • • • • • • • •	• • • • • • • • • • •	••••• 34
5. 液状化強度試驗	験結果と液物	犬化強度	特性の設	定・・・・・	• • • • • • • • • • • •	• • • • • • • • • • •	••••• 61
6. 液状化の評価フ	方針・・・・・	• • • • • • •	•••••	• • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	••••• 96
7. 全体のまとめ・	• • • • • • • • • •	• • • • • • •	•••••	• • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	••••• 98
補足説明資料・・	• • • • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	••••• 101
参考文献	••••	• • • • • • •	• • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • •	••••• 146

参考文献

- (1) 日本道路協会 (2012): 道路橋示方書・同解説 Ⅳ下部構造編 平成24年3月.
- (2) 地盤工学会(1998): 地盤調査・土質試験結果の解釈と適用例, p328.
- (3) 日本道路協会(2002):道路橋示方書·同解説 V耐震設計編 平成14年3月.
- (4) 日本道路協会(2012):道路橋示方書·同解説 V耐震設計編 平成24年3月.
- (5) 地盤工学会(2004): 地盤工学・実務シリーズ18 液状化対策工法, pp.73-74.
- (6) Tokimatsu, K., Tamura, S. and Kuwayama, S. (1991): Liquefaction Potential Evaluation Based on Rayleigh Wave Investigation and Its Comparison with Field Behavior, International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 34, pp.357–364.
- (7) Andrus, R.D. and Kenneth, H. (2000): Liquefaction Resistance of Soils from Shear-Wave Velocity, Journal of Geotechnical and Geoenvironmental Engineering, pp.1015-1025.
- (8) 塚本登士・中島俊・山本正人・村田芳信(1997):4.兵庫県南部地震における埋立地の液状化現象とS波速度を用いた液状化強度の評価例, 応用地質技術年報 兵庫県南部地震特集号,pp.215-235.
- (9) 鉄道総合技術研究所(2012): 鉄道構造物等設計標準·同解説 耐震設計 平成24年9月, 国土交通省鉄道局監修.
- (10) 土木学会地震工学委員会(2003):「レベル2地震動による液状化研究小委員会」活動成果報告書.
- (11) 地盤工学会(2009): 地盤材料試験の方法と解説。
- (12) 井合進 (2008): サイクリックモビリティ Cyclic Mobility, 地盤工学会誌, pp.56-58.
- (13) 土質工学用語辞典編集委員会(編集)(1985):土質工学用語辞典, p140.
- (14) 地盤工学会 (2006): 地盤工学用語辞典, p219.
- (15) 安田進(1991): 液状化の調査から対策工まで, p77.
- (16)石原研而(2017): 地盤の液状化 発生原理と予測・影響・対策.
- (17) 吉見吉昭(1991):砂地盤の液状化(第2版), pp.54-59.
- (18) 日本建築学会(2019): 建築基礎構造設計指針, pp.54-55.