資料1-2

伊方発電所

津波評価について <添付資料>

本資料のうち, 枠囲み [__] の内容は商業機密または 核物質防護情報に属しますので公開できません。

令和4年11月14日

(地震に起因する津波に関する補足)

1. 海域活断層に想定される地震に伴う津波の評価手法の差異による影響検討・・・・・・・	P2
1.1.局地的な隆起沈降を考慮した津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P2
1. 2. 断層の不均質な破壊を考慮した津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P44

(地震以外に起因する津波に関する補足)

2.	海底地すべりの評価	• • • • • • • • • • • • • • • • • • • •	P58
----	-----------	---	-----

(基準津波の策定及び検証に関する補足)

З.	基準津波の検証		P72
----	---------	--	-----

(基準津波に対する安全性評価に関する補足)

4 .	水路の水理特性による水位変動(管路解析の詳細)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P76
5.	砂移動に対する評価に関する補足 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P86

(全体に共通する補足)

6. 計算結果一覧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• P96
---	-------

1. 海域活断層に想定される地震に伴う津波の 評価手法の差異による影響検討

1.1.局地的な隆起沈降を考慮した津波評価

(1)海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法

(2)海域調査結果を基に設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法

(3) 断層を幾つかに分割し、ステップさせた断層モデルをMansinha and Smylie (1971)の手法に基づき再現する津波評価手法 (4) まとめ

1.2. 断層の不均質な破壊を考慮した津波評価

YONDEN

敷地前面海域の活断層分布

海底地形

○海底地形には、中央構造線断層帯の延長部に細長い凹みと高まりが直線状に配列する。 ○海域西部では、卓越する潮流によって起伏の著しい海底地形が形成されている。

○D層上面では,中央構造線断層帯の延長部にみられる細長い凹みと高まりが海底面よりも比高を 増しており,地層の変形の累積性が認められる。

○その他に累積性を示唆する構造は認められない。

○T層上面では、地層の変形がさらに累積している。

○活断層の右屈曲部に地溝・盆地状の凹みが認められ、活断層が直線的な区間では凹みと高まりが 交互に配列する。中央構造線断層帯の右横ずれ運動に伴って形成された変動地形と考えられる。

1.1. 局地的な隆起沈隆を考慮した津波評価

平成27年6月3日 まとめ資料再掲

検討方針

○以上を踏まえ、局地的な隆起・沈降を考慮した津波評価として、土木学会(2002)による津波評価手法に加えて、 以下の手法(1)~(3)を一括りとして検討を試みる。

手法(1)海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法

特徴:局地的な隆起・沈降量を考慮した津波評価を行うことができる。

特徴:手法(2)では一部実態と乖離したすべり量を与える必要が生じることから,すべり量等の断層パラメータ設定方法は従来どおり土木学会(2002)に基 づくこととし,断層配置に関してのみ局地的な隆起・沈降を再現できる可能性のある配置で設定することで,発電所への影響を総合的に評価できる。

1. 海域活断層に想定される地震に伴う津波の 評価手法の差異による影響検討

1.1.局地的な隆起沈降を考慮した津波評価

(1)海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法

(2)海域調査結果を基に設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法
 (3)断層を幾つかに分割し、ステップさせた断層モデルをMansinha and Smylie (1971)の手法に基づき再現する津波評価手法
 (4) まとめ

1.2. 断層の不均質な破壊を考慮した津波評価

検討方針 - 手法(1)

○海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価を行う。初期鉛直変位分布(隆起・沈降量)は、海域調査結果を基に次頁以降に示す計2ケースを設定した。

○伊予灘では隆起量の大きいところで約1.5m、沈降量の大きいところで約2.4m、別府湾では最大 6.6m沈降するモデルを構築

YONDEN

○伊予灘では隆起量の大きいところで約2.0m、沈降量の大きいところで約3.3m、別府湾では最大 6.6m沈降する安全側のモデルを構築

→ 最大2. 4mの鉛直変位量(検討ケース1)が概ね妥当であり,最大3. 3mの鉛直変位量(検討ケース2)はやや 大きめである。

項目	計算条件
計算領域	・伊予灘を中心として東西約180km, 南北160kmの領域
格子分割サイズ	・沖合いでの最大400mから200, 100, 50, 25, 12.5, 6.25mと1/2ずつ徐々に 細かい格子を設定。
計算時間間隔	•0.0625秒
基礎方程式	・非線形長波 (浅水理論)の連続式および運動方程式
初期条件	・海域調査結果を基に設定
沖側境界条件	・自由透過条件。 ・ただし関門海峡は波の主成分が反射すると仮定し陸側境界とした。
陸側境界条件	・静水面より上昇する津波に対して完全反射条件 ・静水面より下降する津波に対して小谷(1998)の遡上境界条件により海底露出 を考慮
海底摩擦係数	・マニングの粗度係数n=0.03m ^{-1/3} s (土木学会(2002)に準拠)
水平渦動粘性係数	•10m²/s
計算対象現象時間	・5時間

本資料のうち、枠囲み[__]の内容は商業機密または 核物質防護情報に属しますので公開できません。 平成27年6月3日 まとめ資料再掲

○ 伊予灘を中心として東西約180km, 南北160kmの領域を対象とし, 格子分割は最大400mから200m, 100m, 50m, 25m, 12.5m, 6.25mと1/2ずつ徐々に細かい格子を設定する。

JONDEN 水深データ作成に用いた主な資料:海図(海上保安庁,2000年11月)、南西日本日本近海1000mメツシュ海底地形データ(海洋情報研究センター,1999年6月)、 海底地形デジタルデータM7003ver2.0及びM7018ver2.0(日本水路協会,2008年4月)

本資料のうち、枠囲み[__]の内容は商業機密または 核物質防護情報に属しますので公開できません。

平成27年6月3日

まとめ資料再掲

本資料のうち、枠囲み[__]の内容は商業機密または 核物質防護情報に属しますので公開できません。

16

平成27年6月3日

まとめ資料再掲

1. 海域活断層に想定される地震に伴う津波の 評価手法の差異による影響検討

1.1. 局地的な隆起沈降を考慮した津波評価

(1)海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法

(2)海域調査結果を基に設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法

(3) 断層を幾つかに分割し、ステップさせた断層モデルをMansinha and Smylie (1971)の手法に基づき再現する津波評価手法 (4) まとめ

1.2. 断層の不均質な破壊を考慮した津波評価

検討方針 - 手法(2)

- ○前述の手法(1)では,発電所地点での地盤変動量を算出することができないため,海域調査結果 を基に設定した隆起・沈降量をMansinha and Smylie(1971)の手法に基づき再現する津波評価手 法を試みる。
- ○局地的な隆起・沈降のうち,敷地の津波高さに対して支配的であると考えられる「伊方沖ジョグ」を 含む敷地前面海域の断層群に着目し、局地的な隆起・沈降の再現を試みる。

○再現した地表変位の分布,及び当該地表変位を与える各断層モデルのパラメータ表(傾斜角・すべり角・すべり量)を次頁以降に示す。

検討ケース1

【Mansinha and Smylie(1971)で再現した地表変位分布】

検討ケース1

N_{a} $\#(f)$ $\#(\gamma)$ $\#(\gamma)$ $\#(\gamma)$ $\#(\beta)$ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
1 210.000 80 -165 67.50 1.9792 15.2314 0 2 237.222 80 -165 45.10 1.2669 15.2314 0 3 251.096 85 -165 707.40 2.7359 15.0573 0 5 192.643 89 -15 564.20 2.1946 15.0023 0 6 207.128 90 165 79.60 1.3533 15.0000 0 7 233.44 90 165 79.60 1.5420 15.0000 0 9 287.470 90 165 184.50 1.6144 15.0000 0 10 245.757 90 165 521.60 2.889 15.0000 0 11 246.718 90 -165 18.80 1.5000 0 12 246.718 90 -165 48.50 36.300 1.8408 15.0000 0 <td>No.</td> <td>走向(゜)</td> <td>傾斜角(°)</td> <td>すべり角 (゜)</td> <td>すべり量 (cm)</td> <td>断層距離 (km)</td> <td>断層幅 (km)</td> <td>上縁深さ (km)</td>	No.	走向(゜)	傾斜角(°)	すべり角 (゜)	すべり量 (cm)	断層距離 (km)	断層幅 (km)	上縁深さ (km)
2 237.222 80 -165 45.10 1.2669 15.2314 0 3 251.096 85 -165 707.40 2.7359 15.0573 0 4 194.677 85 -15 479.10 1.9275 15.0573 0 6 207.128 90 165 79.60 1.3533 15.0000 0 7 234.344 90 165 79.60 1.6520 2.6620 15.0000 0 8 271.562 90 165 1335.70 1.6578 15.0000 0 10 255.557 90 165 184.50 1.66144 15.0000 0 11 246.718 90 165 348.20 3.6033 15.0000 0 13 230.900 90 165 348.20 3.6033 15.0000 0 14 224.6718 90 165 18.00 2.1657 15.0000 0 15 239.828	1	210.000	80	-165	67.50	1.9792	15.2314	0
3 251.096 85 -165 707.40 2.7359 15.0573 0 4 194.677 85 -15 479.10 1.9275 15.0573 0 5 192.643 89 -15 564.20 2.1946 15.0023 0 6 207.128 90 165 73.60 1.5333 15.0000 0 7 234.344 90 165 73.60 1.5233 15.0000 0 9 287.470 90 165 174.750 1.6144 15.0000 0 11 246.135 90 165 521.60 2.2869 15.0000 0 13 230.900 90 -165 1.80 2.1557 15.0000 0 14 224.509 90 -165 1.80 2.1557 15.0000 0 15 239.289 90 -165 1.80 2.1537 15.0000 0	2	237.222	80	-165	45.10	1.2669	15.2314	0
4 194.677 85 $\cdot 15$ 479.10 1.9275 15.0573 0 5 192.643 89 $\cdot 15$ 564.20 2.1946 15.0023 0 6 207.128 90 165 79.60 1.3533 15.0000 0 7 234.344 90 165 786.10 0.7740 15.0000 0 9 287.470 90 165 366.50 2.6620 15.0000 0 10 255.57 90 165 187.50 1.6144 15.0000 0 11 246.718 90 165 521.60 2.2869 15.0000 0 13 230.900 90 165 348.20 3.6033 15.0000 0 14 224.580 90 $\cdot 165$ 435.70 2.4697 15.0000 0 15 239.828 90 $\cdot 165$ 136.00 2.1062 15.0023 0 16 234.903	3	251.096	85	-165	707.40	2.7359	15.0573	0
5 192.643 89 $\cdot 15$ 564.20 2.1946 15.0023 0 6 207.128 90 165 79.60 1.5333 15.0000 0 7 234.344 90 165 76.010 0.7740 15.0000 0 8 271.562 90 165 1335.70 1.5420 15.0000 0 10 255.57 90 165 184.50 1.6144 15.0000 0 11 246.135 90 165 951.60 2.2869 15.0000 0 13 230.900 90 165 348.20 3.6033 15.0000 0 14 224.580 90 -165 1.80 2.1657 15.0000 0 15 239.828 90 -165 1.80 2.1676 15.0000 0 18 222.590 91 165 1107.00 1.6526 15.0023 0 21 23.168 87	4	194.677	85	-15	479.10	1.9275	15.0573	0
6 207.128 90 165 79.60 1.3533 15.0000 0 7 234.344 90 165 760.10 0.7740 15.0000 0 8 271.562 90 165 1335.70 1.5420 15.0000 0 9 287.470 90 165 1335.70 1.5420 15.0000 0 10 255.557 90 165 147.50 1.6578 15.0000 0 11 246.135 90 165 521.60 2.2869 15.0000 0 12 246.718 90 165 521.60 2.2869 15.0000 0 13 230.900 90 1165 348.20 3.6033 15.0000 0 14 224.580 90 -165 1.80 2.1557 15.0000 0 17 239.177 90 186 255.70 2.4637 15.0000 0 18 222.590 91 165 1107.00 1.6526 15.0023 0 20 272.959 87 -15 29.20 1.821 15.0266 0 21 231.668 87 -15 1138.10 1.2582 15.0000 0 24 230.917 90 180 203.00 1.5950 15.0000 0 22 226.337 85 -15 1138.10 1.232 15.0000 0 24 230.917 90 180 416.30 <t< td=""><td>5</td><td>192.643</td><td>89</td><td>-15</td><td>564.20</td><td>2.1946</td><td>15.0023</td><td>0</td></t<>	5	192.643	89	-15	564.20	2.1946	15.0023	0
7 234.344 90 165 760.10 0.7740 15.0000 08 271.562 90 165 1335.70 1.5420 15.0000 09 287.470 90 165 366.50 2.6620 15.0000 010 225.557 90 165 147.50 1.6578 15.0000 011 246.135 90 165 521.60 2.2869 15.0000 012 246.718 90 165 96.30 1.8408 15.0000 013 230.900 90 165 96.30 1.8408 15.0000 014 224.580 90 -165 348.20 3.6033 15.0000 015 239.828 90 -165 435.70 2.4697 15.0000 016 234.903 90 -165 435.70 2.4697 15.0023 017 239.177 90 180 258.70 2.6776 15.0023 020 272.959 87 -15 29.20 1.8221 15.0206 021 231.668 87 -15 29.20 1.8221 15.0206 022 206.337 85 -15 1138.10 1.2582 15.0000 023 267.609 90 180 203.00 1.5950 15.0000 024 230.917 90 -165 697.00 2.9719 15.0000 025 239.570 <td>6</td> <td>207.128</td> <td>90</td> <td>165</td> <td>79.60</td> <td>1.3533</td> <td>15.0000</td> <td>0</td>	6	207.128	90	165	79.60	1.3533	15.0000	0
8 271.562 90 165 1335.70 1.5420 15.0000 0 9 287.470 90 165 366.50 2.6620 15.0000 0 10 255.557 90 165 147.50 1.6144 15.0000 0 11 246.135 90 165 521.60 2.2869 15.0000 0 12 246.718 90 165 521.60 2.2869 15.0000 0 14 24.580 90 -165 1.80 2.1557 15.0000 0 15 239.828 90 -165 1.80 2.1557 15.0000 0 18 222.590 91 165 238.00 2.1062 15.0023 0 21 231.683 87 -15 29.20 1.821 15.0266 0 22 206.337 85 -15 1138.10 1.2782 15.0000 0 23 267.609 90	7	234.344	90	165	760.10	0.7740	15.0000	0
9 287.470 90165 366.50 2.6620 15.0000 010 255.557 90165 147.50 1.6578 15.0000 011 246.138 90165 5821.60 2.2869 15.0000 012 246.718 901165 5821.60 2.2869 15.0000 013 230.900 901165 366.30 1.8408 15.0000 014 224.580 90 -165 348.20 3.6033 15.0000 015 239.828 90 -165 435.70 2.4697 15.0000 016 234.903 90 -165 435.70 2.4697 15.0000 017 2239.177 90 180 259.70 2.6776 15.0000 018 222.590 91 165 1107.00 1.6526 15.0023 020 272.959 87 -15 29.20 1.8221 15.0206 021 231.688 87 -15 238.40 1.2782 15.0000 022 206.337 85 -15 1138.10 1.2392 15.0000 023 267.609 90 180 203.00 1.5850 15.0000 024 230.917 90 -165 947.00 2.2196 15.0000 025 238.570 90 180 416.30 1.2392 15.0000 026 234.970 <td>8</td> <td>271.562</td> <td>90</td> <td>165</td> <td>1335.70</td> <td>1.5420</td> <td>15.0000</td> <td>0</td>	8	271.562	90	165	1335.70	1.5420	15.0000	0
10 255.57 90 165 147.50 1.6578 15.000 0 11 246.135 90 165 189.50 1.6144 15.0000 0 12 246.718 90 165 521.60 2.2869 15.0000 0 13 230.900 90 165 96.30 1.8408 15.0000 0 14 224.580 90 -165 1.80 2.1557 15.0000 0 15 239.828 90 -165 435.70 2.4697 15.0000 0 16 234.903 90 -165 1107.00 1.6526 15.0023 0 18 222.590 91 165 238.00 2.1662 15.0023 0 20 272.959 87 -15 292.0 1.8221 15.0206 0 21 231.668 87 -15 388.40 1.2582 15.0206 0 22 206.337 85 -15 1138.10 1.2782 15.0000 0 24 230.917 90 180 416.30 1.2392 15.0000 0 25 239.70 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 416.30 1.2392 15.0000 0 24 230.817 90 180 416.30 1.2392 15.0000 0 24 234.6709 90 180 416.30	9	287.470	90	165	366.50	2.6620	15.0000	0
11246.13590165189.501.614415.000001224.6.71890165 521.60 2.286915.0000013230.9009016596.301.840815.0000014224.88090-165348.203.603315.0000015239.82890-165435.702.469715.0000016234.90390-165435.702.469715.0000017239.17790180259.702.677615.0023020272.95987-15388.002.166215.0023021231.66887-15388.401.258215.0206022206.33785-151138.101.278215.0000023267.6099018020.001.598015.0000024230.91790-165947.002.219615.0000024239.57090180413.202.609915.0000024239.57190165697.000.995515.0000024239.57090180413.202.609915.0000024232.54901800.003.957715.0000025235.57190165643.303.422015.0000026236.97090165508.702.8719	10	255.557	90	165	147.50	1.6578	15.0000	0
12 246.718 90 165 521.60 2.2869 15.000 0 13 230.900 90 165 96.30 1.8408 15.0000 0 14 224.580 90 -165 348.20 3.6033 15.0000 0 15 238.928 90 -165 1.80 2.1557 15.0000 0 16 234.903 90 -165 1.80 2.1557 15.0000 0 18 222.590 91 165 1107.00 1.6526 15.0023 0 20 272.959 87 -15 29.20 1.8221 15.0266 0 21 231.668 87 -15 388.40 1.2582 15.0266 0 22 206.337 85 -15 1138.10 1.2782 15.0266 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 180 416.30 1.2392 15.0000 0 24 230.917 90 180 413.20 2.6099 15.0000 0 27 236.171 90 180 413.20 2.6099 15.0000 0 28 233.254 90 180 413.20 2.6099 15.0000 0 27 236.171 90 165 617.00 3.849 15.0000 0 30 232.298 89 -15 336.50 <	11	246.135	90	165	189.50	1.6144	15.0000	0
13 230.900 90 165 96.30 1.8408 15.0000 0 14 224.580 90 -165 348.20 3.6033 15.0000 0 15 239.828 90 -165 1.80 2.1557 15.0000 0 16 234.903 90 -165 435.70 2.6776 15.0000 0 17 239.177 90 180 259.70 2.6776 15.0023 0 243.869 91 165 238.00 2.1062 15.0023 0 20 272.959 87 -15 29.20 1.8221 15.0266 0 21 231.668 87 -15 388.40 1.2582 15.0000 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 180 416.30 1.2392 15.0000 0 25 239.570 90 180	12	246.718	90	165	521.60	2.2869	15.0000	0
14 224.580 90 $\cdot 165$ 348.20 3.6033 15.0000 0 15 239.828 90 $\cdot 165$ 1.80 2.1557 15.0000 0 16 234.903 90 $\cdot 165$ 435.70 2.6776 15.0000 0 17 239.177 90 180 259.70 2.6776 15.0023 0 19 243.869 91 165 238.00 2.1622 15.0023 0 20 272.959 87 $\cdot 15$ 292.0 1.8221 15.0266 0 21 231.668 87 $\cdot 15$ 138.10 1.2782 15.073 0 22 206.337 85 $\cdot 15$ 1138.10 1.2782 15.0000 0 23 267.609 90 180 416.30 1.2392 15.0000 0 24 230.970 90 180 $416.$	13	230.900	90	165	96.30	1.8408	15.0000	0
15239.82890 $\cdot 165$ 1.80 2.1557 15.0000 016234.90390 $\cdot 165$ 435.70 2.4697 15.0000 017239.17790 180 259.70 2.6776 15.0023 018 222.590 91 165 1107.00 1.6526 15.0023 020 272.959 87 $\cdot 15$ 29.20 1.8221 15.0206 021 231.668 87 $\cdot 15$ 388.40 1.2582 15.0206 022 206.337 85 $\cdot 15$ 1138.10 1.2782 15.073 023 267.609 90 180 203.00 1.5950 15.0000 024 230.917 90 $\cdot 165$ 947.00 2.2196 15.0000 025 238.570 90 180 416.30 1.2392 15.0000 026 236.970 90 180 413.20 2.6099 15.0000 027 236.171 90 $\cdot 165$ 697.00 0.9955 15.0000 028 233.254 90 180 0.00 3.9577 15.0000 029 241.444 89 $\cdot 15$ 505.90 2.9719 15.0023 031 235.511 90 165 412.80 1.6465 15.0000 032 234.995 90 165 642.30 3.4220 15.0000 033 239.014	14	224.580	90	-165	348.20	3.6033	15.0000	0
16 234.903 90 -165 435.70 2.4697 15.000 0 17 239.177 90 180 259.70 2.6776 15.000 0 18 222.590 91 165 1107.00 1.6526 15.0023 0 19 243.869 91 165 238.00 2.1062 15.0023 0 20 272.959 87 -15 29.20 1.8221 15.0026 0 21 231.668 87 -15 388.40 1.2582 15.0206 0 22 206.337 85 -15 1138.10 1.2782 15.0206 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 -165 947.00 2.2196 15.0000 0 25 239.570 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 413.20 2.6099 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0000 0 29 241.444 89 -15 505.90 2.9719 15.0023 0 30 232.298 89 -15 336.50 1.3313 15.0020 0 31 235.511 90 0 0.40 1.7694 15.000 0 33 239.014 90 165 508.70 <td>15</td> <td>239.828</td> <td>90</td> <td>-165</td> <td>1.80</td> <td>2.1557</td> <td>15.0000</td> <td>0</td>	15	239.828	90	-165	1.80	2.1557	15.0000	0
17 239.177 90 180 259.70 2.6776 15.0000 0 18 222.590 91 165 1107.00 1.6526 15.0023 0 19 243.869 91 165 238.00 2.1062 15.0023 0 20 272.959 87 $\cdot 15$ 29.20 1.8221 15.0206 0 21 231.668 87 $\cdot 15$ 388.40 1.2582 15.0206 0 22 206.337 85 $\cdot 15$ 1138.10 1.2782 15.073 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 $\cdot 165$ 947.00 2.2196 15.0000 0 25 239.570 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 413.20 2.6099 15.0000 0 27 236.171 90 $\cdot 165$ 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0023 0 30 232.298 89 $\cdot 15$ 536.50 1.3313 15.0023 0 31 235.511 90 165 412.80 1.6465 15.0000 0 32 234.995 90 165 532.60 2.794 15.0000 0 34 234.630 90 165	16	234.903	90	-165	435.70	2.4697	15.0000	0
18 222.590 91 165 1107.00 1.6526 15.0023 0 19 243.869 91 165 238.00 2.1062 15.0023 0 20 272.959 87 $\cdot 15$ 29.20 1.8221 15.0206 0 21 231.668 87 $\cdot 15$ 388.40 1.2582 15.0206 0 22 206.337 85 $\cdot 15$ 1138.10 1.2782 15.073 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 $\cdot 165$ 947.00 2.2196 15.0000 0 24 230.917 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 416.30 1.2392 15.0000 0 27 236.171 90 $\cdot 165$ 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0023 0 30 232.298 89 $\cdot 15$ 505.90 2.9719 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 34 234.630 90 165 508.70 2.8376 15.0000 0 34 234.630 90 165 508	17	239.177	90	180	259.70	2.6776	15.0000	0
19 243.869 91165 238.00 2.1062 15.0023 020 272.959 87 $\cdot 15$ 29.20 1.8221 15.0206 021 231.668 87 $\cdot 15$ 388.40 1.2582 15.0206 022 206.337 85 $\cdot 15$ 1138.10 1.2782 15.0206 023 267.609 90 180 203.00 1.5950 15.0000 024 230.917 90 $\cdot 165$ 947.00 2.2196 15.0000 025 239.570 90 180 416.30 1.2392 15.0000 026 236.970 90 180 413.20 2.6099 15.0000 027 236.171 90 $\cdot 165$ 697.00 0.9955 15.0000 028 233.254 90 180 0.00 3.9577 15.0023 030 232.298 89 $\cdot 15$ 336.50 1.3313 15.0023 031 235.511 900 0.40 1.7694 15.0000 033 239.014 90 165 412.80 1.6465 15.0000 034 234.630 90 165 532.60 2.7994 15.0000 035 243.474 90 165 531.60 2.7570 15.0000 036 251.513 90 165 454.60 2.7570 15.0000 037 261.396 <td>18</td> <td>222.590</td> <td>91</td> <td>165</td> <td>1107.00</td> <td>1.6526</td> <td>15.0023</td> <td>0</td>	18	222.590	91	165	1107.00	1.6526	15.0023	0
20 272.959 87 -15 29.20 1.8221 15.0206 0 21 231.668 87 -15 388.40 1.2582 15.0206 0 22 206.337 85 -15 1138.10 1.2782 15.0573 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 -165 947.00 2.2196 15.0000 0 25 239.570 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 413.20 2.6099 15.0000 0 27 236.171 90 -165 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0023 0 29 241.444 89 -15 505.90 2.9719 15.0023 0 30 232.298 89 -15 336.50 1.3313 15.0023 0 31 235.511 90 165 412.80 1.6465 15.000 0 34 234.630 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 508.70 2.8376 15.0000 0 35 243.474 90 165 508.70 2.8376 15.0000 0 36 251.513 90 165 951.00	19	243.869	91	165	238.00	2.1062	15.0023	0
21 231.668 87 -15 388.40 1.2582 15.0206 0 22 206.337 85 -15 1138.10 1.2782 15.0573 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 -165 947.00 2.2196 15.0000 0 25 239.570 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 413.20 2.6099 15.0000 0 27 236.171 90 -165 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0023 0 29 241.444 89 -15 505.90 2.9719 15.0023 0 30 232.298 89 -15 33650 1.3313 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6455 15.0000 0 34 234.630 90 165 508.70 2.8376 15.0000 0 34 234.630 90 165 508.70 2.8376 15.0000 0 35 243.474 90 165 508.70 2.8376 15.0000 0 38 263.100 90 165 951.00 </td <td>20</td> <td>272.959</td> <td>87</td> <td>-15</td> <td>29.20</td> <td>1.8221</td> <td>15.0206</td> <td>0</td>	20	272.959	87	-15	29.20	1.8221	15.0206	0
22 206.337 85 -15 1138.10 1.2782 15.0573 0 23 267.609 90 180 203.00 1.5950 15.0000 0 24 230.917 90 -165 947.00 2.2196 15.0000 0 25 239.570 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 413.20 2.6099 15.0000 0 27 236.171 90 -165 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0000 0 29 241.444 89 -15 505.90 2.9719 15.0023 0 30 232.298 89 -15 336.50 1.3313 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 508.70 2.8376 15.0000 0 35 243.474 90 165 508.70 2.8376 15.0000 0 36 251.513 90 165 951.00 1.5131 15.0000 0 38 266.01 90 165 951.00 </td <td>21</td> <td>231.668</td> <td>87</td> <td>-15</td> <td>388.40</td> <td>1.2582</td> <td>15.0206</td> <td>0</td>	21	231.668	87	-15	388.40	1.2582	15.0206	0
23 267.609 90180 203.00 1.5950 15.0000 024 230.917 90 $\cdot 165$ 947.00 2.2196 15.0000 025 239.570 90180 416.30 1.2392 15.0000 026 236.970 90180 413.20 2.6099 15.0000 027 236.171 90 $\cdot 165$ 697.00 0.9955 15.0000 028 233.254 90180 0.00 3.9577 15.0023 029 241.444 89 $\cdot 15$ 505.90 2.9719 15.0023 030 232.298 89 $\cdot 15$ 336.50 1.3313 15.0023 031 235.511 900 0.40 1.7694 15.0000 032 234.995 90 165 412.80 1.6465 15.0000 033 239.014 90 165 642.30 3.4220 15.0000 034 234.630 90 165 508.70 2.8376 15.0000 035 243.474 90 165 508.70 2.8376 15.0000 038 263.100 90 165 951.00 1.5131 15.0000 039 286.031 90 165 15.00 1.5333 15.0000 040 229.254 90 -165 1.50 1.8099 15.0000 041 223.355 90<	22	206.337	85	-15	1138.10	1.2782	15.0573	0
24 230.917 90 -165 947.00 2.2196 15.0000 0 25 239.570 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 413.20 2.6099 15.0000 0 27 236.171 90 -165 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0000 0 29 241.444 89 -15 505.90 2.9719 15.0233 0 30 232.298 89 -15 336.50 1.3313 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 508.70 2.8376 15.0000 0 36 251.513 90 165 508.70 2.8376 15.0000 0 37 261.396 90 165 951.00 1.5131 15.0000 0 38 263.100 90 165 951.00 1.5131 15.0000 0 39 286.031 90 165 1.50 1.8012 15.0000 0 41 223.355 90 -165 1.50	23	267.609	90	180	203.00	1.5950	15.0000	0
25 $239,570$ 90 180 416.30 1.2392 15.0000 0 26 236.970 90 180 413.20 2.6099 15.0000 0 27 236.171 90 -165 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0000 0 29 241.444 89 -15 505.90 2.9719 15.0233 0 30 232.298 89 -15 336.50 1.3313 15.0233 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 532.60 2.7994 15.0000 0 35 243.474 90 165 508.70 2.8376 15.0000 0 36 251.513 90 165 951.00 1.5131 15.0000 0 38 263.100 90 165 951.00 1.5131 15.0000 0 39 286.031 90 -165 316.90 1.3699 15.0000 0 41 223.355 90 -165 1.50 1.8012 15.0000 0 42 204.324 90 -165 1.50 <td>24</td> <td>230.917</td> <td>90</td> <td>-165</td> <td>947.00</td> <td>2.2196</td> <td>15.0000</td> <td>0</td>	24	230.917	90	-165	947.00	2.2196	15.0000	0
26 236.970 90 180 413.20 2.6099 15.0000 0 27 236.171 90 -165 697.00 0.9955 15.0000 0 28 233.254 90 180 0.00 3.9577 15.0000 0 29 241.444 89 -15 505.90 2.9719 15.0233 0 30 232.298 89 -15 336.50 1.3313 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 532.60 2.7994 15.0000 0 35 243.474 90 165 508.70 2.8376 15.0000 0 36 251.513 90 165 508.70 2.8376 15.0000 0 37 261.396 90 165 951.00 1.5131 15.0000 0 39 286.031 90 165 951.00 1.3333 15.0000 0 40 229.254 90 -165 1.50 1.8012 15.0000 0 41 223.355 90 -165 1.50 1.8012 15.0000 0 44 204.324 90 -165 $1.215.60$ </td <td>25</td> <td>239.570</td> <td>90</td> <td>180</td> <td>416.30</td> <td>1.2392</td> <td>15.0000</td> <td>0</td>	25	239.570	90	180	416.30	1.2392	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	236.970	90	180	413.20	2.6099	15.0000	0
28 233.254 90 180 0.00 3.9577 15.000 0 29 241.444 89 $\cdot 15$ 505.90 2.9719 15.0023 0 30 232.298 89 $\cdot 15$ 336.50 1.3313 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 100.80 3.8949 15.0000 0 35 243.474 90 165 532.60 2.7994 15.0000 0 36 251.513 90 165 508.70 2.8376 15.0000 0 37 261.396 90 165 951.00 1.5131 15.0000 0 38 263.100 90 165 951.00 1.5131 15.0000 0 39 286.031 90 165 316.90 1.3699 15.0000 0 41 223.355 90 -165 1.50 1.8012 15.0000 0 42 204.324 90 -165 1215.60 0.9361 15.0000 0 43 238.269 87 -165 0.90 1.6129 15.0206 0 44 305.258 90 -165 661.30 </td <td>27</td> <td>236.171</td> <td>90</td> <td>-165</td> <td>697.00</td> <td>0.9955</td> <td>15.0000</td> <td>0</td>	27	236.171	90	-165	697.00	0.9955	15.0000	0
29 241.444 89 $\cdot 15$ 505.90 2.9719 15.0023 0 30 232.298 89 $\cdot 15$ 336.50 1.3313 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 100.80 3.8949 15.0000 0 35 243.474 90 165 532.60 2.7994 15.0000 0 36 251.513 90 165 508.70 2.8376 15.0000 0 37 261.396 90 165 951.00 1.5131 15.0000 0 38 263.100 90 165 951.00 1.5131 15.0000 0 39 286.031 90 165 316.90 1.3333 15.0000 0 41 223.355 90 -165 1.50 1.8012 15.0000 0 42 204.324 90 -165 1215.60 0.9361 15.0000 0 43 238.269 87 -165 0.90 1.6129 15.0206 0 44 305.258 90 -165 661.30 0.9968 15.000 0	28	233.254	90	180	0.00	3.9577	15.0000	0
30 232.298 89 $\cdot 15$ 336.50 1.3313 15.0023 0 31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 100.80 3.8949 15.0000 0 35 243.474 90 165 532.60 2.7994 15.0000 0 36 251.513 90 165 508.70 2.8376 15.0000 0 37 261.396 90 165 951.00 1.5131 15.0000 0 38 263.100 90 165 951.00 1.5131 15.0000 0 39 286.031 90 165 316.90 1.3333 15.0000 0 40 229.254 90 -165 1.50 1.8012 15.0000 0 41 223.355 90 -165 1215.60 0.9361 15.0000 0 42 204.324 90 -165 661.30 0.9361 15.0000 0 44 305.258 90 -165 661.30 0.9868 15.0000 0	29	241.444	89	-15	505.90	2.9719	15.0023	0
31 235.511 90 0 0.40 1.7694 15.0000 0 32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 100.80 3.8949 15.0000 0 35 243.474 90 165 532.60 2.7994 15.0000 0 36 251.513 90 165 508.70 2.8376 15.0000 0 37 261.396 90 165 951.00 1.5131 15.0000 0 38 263.100 90 165 9.00 1.65 316.90 1.333 15.0000 0 40 229.254 90 -165 1.50 1.8012 15.0000 0 41 223.355 90	30	232.298	89	-15	336.50	1.3313	15.0023	0
32 234.995 90 165 412.80 1.6465 15.0000 0 33 239.014 90 165 642.30 3.4220 15.0000 0 34 234.630 90 165 100.80 3.8949 15.0000 0 35 243.474 90 165 532.60 2.7994 15.0000 0 36 251.513 90 165 508.70 2.8376 15.0000 0 37 261.396 90 165 951.00 1.5131 15.0000 0 38 263.100 90 165 951.00 1.5131 15.0000 0 39 286.031 90 165 0.00 1.0333 15.0000 0 40 229.254 90 -165 1.50 1.8012 15.0000 0 41 223.355 90 -165 125.60	31	235.511	90	0	0.40	1.7694	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	234.995	90	165	412.80	1.6465	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	239.014	90	165	642.30	3.4220	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	234.630	90	165	100.80	3.8949	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	243.474	90	165	532.60	2.7994	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	251.513	90	165	508.70	2.8376	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	261.396	90	165	454.60	2.7570	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	263.100	90	165	951.00	1.5131	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	286.031	90	165	0.00	1.0333	15.0000	0
41 22.3.355 90 -165 1.50 1.8012 15.0000 0 42 204.324 90 -165 1215.60 0.9361 15.0000 0 43 238.269 87 -165 0.90 1.6129 15.0206 0 44 305.258 90 -165 661.30 0.9968 15.0000 0 45 248.167 87 -165 1.30 1.1213 15.0206 0	40	229.254	90	-165	316.90	1.3699	15.0000	0
42 204.324 90 -165 1215.60 0.9361 15.0000 0 43 238.269 87 -165 0.90 1.6129 15.0206 0 44 305.258 90 -165 661.30 0.9968 15.0000 0 45 248.167 87 -165 1.30 1.1213 15.0206 0	41	223.355	90	-165	1.50	1.8012	15.0000	0
43 238.269 87 -165 0.90 1.6129 15.0206 0 44 305.258 90 -165 661.30 0.9968 15.0000 0 45 248.167 87 -165 1.30 1.1213 15.0206 0	42	204.324	90	-165	1215.60	0.9361	15.0000	0
44 305.258 90 -165 661.30 0.9968 15.0000 0 45 248.167 87 -165 1.30 1.1213 15.0206 0	43	238.269	87	-165	0.90	1.6129	15.0206	0
45 248.167 87 -165 1.30 1.1213 15.0206 0	44	305.258	90	-165	661.30	0.9968	15.0000	0
1.00 1.00 1.1210 10.0200 0	45	248.167	87	-165	1.30	1.1213	15.0206	0

検討ケース2

【Mansinha and Smylie(1971)で再現した地表変位分布】

検討ケース2

No.£#P()#######L##2.5 tand1210.000800-165146.401.979215.231402237.222800-16563.101.266915.231402237.222800-16563.101.266915.037304194.677855-15522.001.927515.057305192.643890-15522.001.927515.000306237.1289001651066.300.740415.000207234.344900165107.601.542015.000008271.562900165126.001.67715.000009287.470900165282.901.614415.0000011246.13590016529.601.55715.0000012246.718900165282.901.614415.0000013230.90090016529.602.155715.0000014224.580900-165590.003.663315.0000015239.828900-16529.602.155715.0000016234.903901651471.001.652615.0023016224.901911651471.001.652615.0023016224.90901651471.001.50261.60000<								
1 210.000 80 $\cdot 165$ 146.40 1.9792 15.2314 0 2 237.222 80 $\cdot 165$ 63.10 $\cdot 1.2669$ 15.2314 0 3 251.096 85 $\cdot 165$ 923.20 $\cdot 2.7359$ $\cdot 15.0673$ 0 5 192.643 89 $\cdot 15$ $70.22.00$ $\cdot 1.9275$ $\cdot 15.0002$ 0 6 207.128 90 $\cdot 165$ 107.60 $\cdot 1.5420$ $\cdot 15.0000$ 0 7 23.4344 90 $\cdot 165$ 107.60 $\cdot 1.5420$ $\cdot 15.0000$ 0 9 287.470 90 $\cdot 165$ 228.60 $\cdot 1.6144$ $\cdot 15.0000$ 0 11 246.718 90 $\cdot 165$ 228.60 $\cdot 1.6144$ $\cdot 15.0000$ 0 13 230.900 $\cdot 165$ 29.60 $\cdot 2.1577$ $\cdot 15.0000$ 0 14 224.580 90 $\cdot 165$ 59.000 $\cdot 2.4697$ $i 5.0000$	No.	走向(゜)	傾斜角(゜)	すべり角(゜)	すべり量 (cm)	断層距離 (km)	断層幅 (km)	上縁深さ (km)
2 237.222 80 -165 63.10 1.2669 15.2314 0 3 251.096 85 -165 923.20 2.7359 15.0573 0 4 194.677 85 -15 701.80 2.1946 15.0023 0 6 207.128 90 165 123.50 1.3533 15.0000 0 7 234.344 90 165 1267.60 1.5420 15.0000 0 9 287.470 90 165 229.60 1.6578 15.0000 0 11 246.135 90 165 275.160 2.2869 15.0000 0 13 230.900 90 165 247.60 1.8408 15.0000 0 14 244.518 90 -165 590.00 3.6033 15.0000 0 15 239.828 90 -165 247.60 1.8408 15.0000 0 16 234.903 90	1	210.000	80	-165	146.40	1.9792	15.2314	0
3 251.096 85 -165 923.20 2.7359 15.0873 0 4 194.677 85 -15 522.00 1.9275 15.0573 0 5 192.643 89 -15 701.80 2.1946 15.0023 0 6 207.128 90 165 1006.30 0.7740 15.0000 0 7 234.344 90 165 1677.60 1.5420 15.0000 0 9 287.470 90 165 228.00 1.6144 15.0000 0 11 246.135 90 165 247.60 1.8408 15.0000 0 13 230.900 90 -165 590.00 3.6033 15.0000 0 14 224.580 90 -165 29.60 2.1657 15.0000 0 15 239.928 90 -165 29.60 2.1657 15.0000 0 16 234.903 90	2	237.222	80	-165	63.10	1.2669	15.2314	0
4 194.677 85 $\cdot 15$ 522.00 1.9275 15.0573 0 5 192.643 89 $\cdot 15$ 701.80 2.1946 15.0023 0 6 207.128 90 165 223.50 1.3533 15.0000 0 7 234.344 90 165 1677.60 1.5420 15.0000 0 9 271.562 90 165 426.80 2.6620 15.0000 0 10 255.557 90 165 228.00 1.6144 15.0000 0 11 246.718 90 165 280.00 1.6144 15.0000 0 13 230.900 90 165 290.60 2.1557 15.0000 0 14 224.580 90 -165 29.60 2.1657 15.0000 0 17 239.179 90 165 333.00 2.1662 15.0023 0 18	3	251.096	85	-165	923.20	2.7359	15.0573	0
5 192.643 89 $\cdot 15$ 701.80 2.1946 15.0023 0 6 207.128 90 165 223.50 1.3533 15.0000 0 7 234.344 90 165 1006.30 0.7740 15.0000 0 9 287.470 90 165 426.80 2.6620 15.0000 0 10 255.577 90 165 229.60 1.6578 15.0000 0 11 246.718 90 165 247.60 1.8408 15.0000 0 13 230.900 90 165 590.00 3.6033 15.0000 0 14 224.580 90 -165 596.00 2.1577 15.0000 0 15 23.928 90 -165 14.00 1.6526 15.0023 0 16 234.903 90 165 14.01.00 1.6526 15.0026 0 21 23.937 97 <td>4</td> <td>194.677</td> <td>85</td> <td>-15</td> <td>522.00</td> <td>1.9275</td> <td>15.0573</td> <td>0</td>	4	194.677	85	-15	522.00	1.9275	15.0573	0
6 207.128 90 165 223.50 1.3533 15.000 0 7 234.344 90 165 1006.30 0.7740 15.0000 0 8 271.662 90 165 1677.60 1.5420 15.0000 0 9 287.470 90 165 222.60 1.6578 15.0000 0 11 246.135 90 165 228.290 1.6144 15.0000 0 12 246.718 90 165 247.60 1.8408 15.0000 0 13 230.900 90 165 29.60 2.1557 15.0000 0 14 224.580 90 -165 690.670 2.4697 15.0000 0 17 239.177 90 180 391.30 2.6776 15.0023 0 22 226.590 91 165 333.00 2.1062 15.0023 0 21 23.668 87	5	192.643	89	-15	701.80	2.1946	15.0023	0
7 234.344 90 165 1006.30 0.7740 15.000 0 8 271.562 90 165 1677.60 1.5420 15.0000 0 9 287.470 90 165 426.80 2.6620 15.0000 0 10 255.557 90 165 282.90 1.6144 15.0000 0 11 246.135 90 165 247.60 1.8408 15.0000 0 13 230.900 90 165 296.0 2.1557 15.0000 0 14 224.580 90 -165 690.00 3.6033 15.0000 0 15 239.828 90 -165 690.670 2.4697 15.0000 0 16 234.903 90 -165 690.670 2.4697 15.0000 0 18 222.590 91 165 33.300 2.1062 15.0223 0 21 231.668 87 <td>6</td> <td>207.128</td> <td>90</td> <td>165</td> <td>223.50</td> <td>1.3533</td> <td>15.0000</td> <td>0</td>	6	207.128	90	165	223.50	1.3533	15.0000	0
8 271.562 90 165 1677.60 1.5420 15.0000 0 9 287.470 90 165 426.80 2.6620 15.0000 0 10 255.557 90 165 229.60 1.6578 15.0000 0 11 246.135 90 165 276.60 1.8408 15.0000 0 12 246.718 90 165 276.60 1.8408 15.0000 0 13 230.900 90 165 590.00 3.6033 15.0000 0 16 234.903 90 -165 29.60 2.1557 15.0000 0 17 239.177 90 180 391.30 2.6776 15.0000 0 21 231.683 91 165 333.00 2.1062 15.0223 0 21 231.683 87 -15 81.00 1.8221 15.0206 0 23 267.609 90	7	234.344	90	165	1006.30	0.7740	15.0000	0
9 287.470 90 165 426.80 2.6620 15.0000 0 10 255.557 90 165 229.60 1.6578 15.0000 0 11 246.718 90 165 282.90 1.6144 15.0000 0 12 246.718 90 165 247.60 1.8408 15.0000 0 13 230.900 90 165 247.60 1.8408 15.0000 0 14 224.580 90 -165 590.00 3.6033 15.0000 0 15 239.177 90 186 391.30 2.4757 15.0000 0 17 239.177 90 186 333.00 2.1062 15.0023 0 20 272.959 87 -15 81.00 1.8221 15.0206 0 21 231.668 87 -15 1476.80 1.2782 15.0073 0 22 206.337 85	8	271.562	90	165	1677.60	1.5420	15.0000	0
10 255.557 90 165 229.60 1.6578 15.000 0 11 246.135 90 165 282.90 1.6144 15.000 0 12 246.718 90 165 751.60 2.2869 15.0000 0 13 230.900 90 165 590.00 3.6033 15.0000 0 14 224.580 90 -165 29.60 2.1557 15.0000 0 15 239.828 90 -165 606.70 2.4697 15.0000 0 17 239.177 90 180 391.30 2.6776 15.0023 0 20 272.959 87 -15 81.00 1.8221 15.0023 0 21 231.668 87 -15 81.00 1.8221 15.0026 0 22 206.337 85 -15 1476.80 1.2782 15.0000 0 24 230.917 90	9	287.470	90	165	426.80	2.6620	15.0000	0
11 246.135 90 165 282.90 1.6144 15.000 0 12 246.718 90 165 751.60 2.2869 15.0000 0 13 230.900 90 165 247.60 1.8408 15.0000 0 14 224.580 90 -165 290.00 3.6033 15.0000 0 15 239.828 90 -165 606.70 2.4697 15.0000 0 16 234.903 90 -165 1471.00 1.6526 15.0023 0 17 239.177 90 180 391.30 2.6776 15.0023 0 21 231.668 91 165 333.00 2.1062 15.0236 0 22 206.337 85 -15 1476.80 1.2582 15.0206 0 23 267.609 90 180 625.80 1.2392 15.0000 0 24 230.917 90<	10	255.557	90	165	229.60	1.6578	15.0000	0
12 246.718 90 165 751.60 2.2869 15.000 0 13 230.900 90 165 247.60 1.8408 15.0000 0 14 224.580 90 $\cdot 165$ 590.00 3.6033 15.0000 0 15 239.828 90 $\cdot 165$ 29.60 2.1557 15.0000 0 16 234.903 90 $\cdot 165$ 606.70 2.4697 15.0000 0 18 222.590 91 165 1471.00 1.6526 15.0023 0 20 272.959 87 $\cdot 15$ 81.00 1.8221 15.0266 0 21 231.668 87 $\cdot 15$ 490.80 1.2782 15.0266 0 22 206.337 855 $\cdot 15$ 1476.80 1.2782 15.073 0 23 267.609 90 180 291.00 1.5950 15.0000 0 24 230.917 90 $\cdot165$ 1250.00 2.2196 15.0000 0 25 239.570 90 180 625.80 1.2392 15.0000 0 26 236.970 90 180 696.0 3.9577 15.0000 0 28 233.244 90 180 696.0 3.9577 15.0000 0 29 241.444 89 $\cdot15$ 668.70 2.9719 15.0002 0 30 232.298 89 $\cdot15$ <t< td=""><td>11</td><td>246.135</td><td>90</td><td>165</td><td>282.90</td><td>1.6144</td><td>15.0000</td><td>0</td></t<>	11	246.135	90	165	282.90	1.6144	15.0000	0
13 230.900 90 165 247.60 1.8408 15.000 0 14 224.580 90 $\cdot 165$ 590.00 3.6033 15.0000 0 15 239.828 90 $\cdot 165$ 29.60 2.1557 15.0000 0 16 234.903 90 $\cdot 165$ 606.70 2.4697 15.0000 0 17 239.177 90 180 391.30 2.6776 15.0002 0 18 222.590 91 165 333.00 2.1662 15.0023 0 20 272.959 87 $\cdot 15$ 81.00 1.8221 15.0206 0 21 231.668 87 $\cdot 15$ 490.80 1.2582 15.0206 0 22 206.337 85 $\cdot 15$ 1476.80 1.2782 15.073 0 23 267.609 90 180 625.80 1.2392 15.0000 0 24 230.	12	246.718	90	165	751.60	2.2869	15.0000	0
14 $224,580$ 90 -165 590.00 3.6033 15.0000 0 15 239.828 90 -165 29.60 2.1557 15.0000 0 16 234.903 90 -165 606.70 2.4697 15.0000 0 17 239.177 90 180 391.30 2.6776 15.0003 0 18 222.590 911 165 1471.00 1.6526 15.0023 0 243.869 911 165 333.00 2.1662 15.0023 0 20 272.959 87 -15 81.00 1.8221 15.0266 0 21 231.668 87 -15 490.80 1.2582 15.0266 0 22 206.337 85 -15 1476.80 1.2782 15.0573 0 23 267.609 90 180 291.00 1.5950 15.0000 0 24 230.917 90 -165 125.000 2.2196 15.0000 0 26 236.70 90 180 638.40 2.6099 15.0000 0 27 236.171 90 -165 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 31 235.511 90 0 3.0 1.7694 15.0000 0 32 224.948 89 -15 668.70	13	230.900	90	165	247.60	1.8408	15.0000	0
15239.82890 $\cdot 165$ 29.60 2.1557 15.000016234.90390 $\cdot 165$ 606.70 2.4697 15.0000 017239.17790 180 391.30 2.6776 15.0023 018 222.590 91 165 1471.00 1.6526 15.0023 019 243.869 91 165 333.00 2.1062 15.0023 020 272.959 87 $\cdot 15$ 490.80 1.2582 15.0266 021 231.668 87 $\cdot 15$ 440.80 1.2582 15.0266 022 206.337 855 $\cdot 15$ 1476.80 1.2782 15.073 023 267.609 90 180 291.00 1.5950 15.0000 024 230.917 90 $\cdot 165$ 1250.00 2.2196 15.0000 025 239.570 90 180 638.40 2.6099 15.0000 026 236.970 90 180 69.60 3.9577 15.0000 027 236.171 90 $\cdot 165$ 68.70 2.9719 15.0023 030 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 031 235.511 90 165 540.80 1.6465 15.0000 032 234.995 90 165 540.80 1.6465 15.0000 033 239.014	14	224.580	90	-165	590.00	3.6033	15.0000	0
16 234.903 90 -165 606.70 2.4697 15.0000 017 239.177 90 180 391.30 2.6776 15.0000 018 222.590 91 165 1471.00 1.6526 15.0023 019 243.869 91 165 333.00 2.1062 15.0023 020 272.959 87 -15 81.00 1.8221 15.0266 021 231.668 87 -15 490.80 1.2582 15.0266 022 206.337 85 -15 1476.80 1.2782 15.073 023 267.609 90 180 291.00 1.5950 15.0000 024 230.917 90 -165 1250.00 2.2196 15.0000 025 238.570 90 180 638.40 2.6099 15.0000 026 236.970 90 180 638.40 2.6099 15.0000 027 236.171 90 -165 968.30 0.9955 15.0000 028 233.254 90 180 69.60 3.9577 15.0023 030 232.298 89 -15 668.70 2.9719 15.0233 031 235.511 90 165 540.80 1.6465 15.0000 032 234.995 90 165 36.10 3.4220 15.0000 034 234.630	15	239.828	90	-165	29.60	2.1557	15.0000	0
17 239.177 90 180 391.30 2.6776 15.000 0 18 222.590 91 165 1471.00 1.6526 15.0023 0 19 243.869 91 165 333.00 2.1062 15.0023 0 20 272.959 87 $\cdot 15$ 81.00 1.8221 15.0023 0 21 231.668 87 $\cdot 15$ 490.80 1.2582 15.0266 0 22 206.337 85 $\cdot 15$ 1476.80 1.2782 15.0573 0 23 267.609 90 180 291.00 1.5950 15.0000 0 24 230.917 90 $\cdot 165$ 1250.00 2.2196 15.0000 0 25 239.570 90 180 625.80 1.2392 15.0000 0 26 236.970 90 180 638.40 2.6099 15.0000 0 27 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 30 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 165 540.80 1.6465 15.0000 0 34 234.630 90 165 136.10 3.8494 15.0000 0 35 243.474 90 165 <t< td=""><td>16</td><td>234.903</td><td>90</td><td>-165</td><td>606.70</td><td>2.4697</td><td>15.0000</td><td>0</td></t<>	16	234.903	90	-165	606.70	2.4697	15.0000	0
18 222.590 91165 1471.00 1.6526 15.0023 0 19 243.869 91165 333.00 2.1062 15.0023 0 20 272.959 87 $\cdot 15$ 81.00 1.8221 15.0206 0 21 231.668 87 $\cdot 15$ 490.80 1.2582 15.0206 0 22 206.337 85 $\cdot 15$ 1476.80 1.2782 15.0573 0 23 267.609 90 180 291.00 1.5550 15.0000 0 24 230.917 90 $\cdot 165$ 1250.00 2.2196 15.0000 0 25 239.570 90 180 625.80 1.2392 15.0000 0 26 236.970 90 180 638.40 2.6099 15.0000 0 27 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0023 0 30 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 711.60 2.794 15.0000 0 34 234.630 90 165 59.60 2.7570 15.0000 0 35 243.474 90 165 599.60 2.7570 15.0	17	239.177	90	180	391.30	2.6776	15.0000	0
19 243.869 91165 333.00 2.1062 15.0023 020 272.959 87 $\cdot 15$ 81.00 1.8221 15.0206 021 231.668 87 $\cdot 15$ 490.80 1.2582 15.0206 022 206.337 85 $\cdot 15$ 1476.80 1.2782 15.0573 023 267.609 90 180 291.00 1.5950 15.0000 024 230.917 90 $\cdot 165$ 1250.00 2.2196 15.0000 025 239.570 90 180 625.80 1.2392 15.0000 026 236.970 90 180 638.40 2.6099 15.0000 027 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 028 233.254 90 180 69.60 3.9577 15.0023 030 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 031 235.511 90 0 3.00 1.7694 15.0000 033 239.014 90 165 540.80 1.6465 15.0000 034 234.630 90 165 678.60 2.8376 15.0000 035 243.474 90 165 599.60 2.7570 15.0000 036 251.513 90 165 599.60 2.7570 15.0000 0<	18	222.590	91	165	1471.00	1.6526	15.0023	0
20 272.959 87 $\cdot 15$ 81.00 1.8221 15.0206 0 21 231.668 87 $\cdot 15$ 490.80 1.2582 15.0206 0 22 206.337 85 $\cdot 15$ 1476.80 1.2782 15.0573 0 23 267.609 90 180 291.00 1.5950 15.0000 0 24 230.917 90 $\cdot 165$ 1250.00 2.2196 15.0000 0 24 230.917 90 180 625.80 1.2392 15.0000 0 26 236.970 90 180 638.40 2.6099 15.0000 0 26 236.970 90 180 69.60 3.9577 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 29 241.444 89 $\cdot 15$ 668.70 2.9719 15.0023 0 30 232.288 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 34 234.630 90 165 711.60 2.7994 15.0000 0 34 234.630 90 165 599.60 2.7570 15.0000 0 36 251.513 90 165 678	19	243.869	91	165	333.00	2.1062	15.0023	0
21 231.668 87 $\cdot 15$ 490.80 1.2582 15.0206 0 22 206.337 85 $\cdot 15$ 1476.80 1.2782 15.0573 0 23 267.609 90 180 291.00 1.5950 15.0000 0 24 230.917 90 $\cdot 165$ 1250.00 2.2196 15.0000 0 25 239.570 90 180 625.80 1.2392 15.0000 0 26 236.970 90 180 638.40 2.6099 15.0000 0 27 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 29 241.444 89 $\cdot 15$ 668.70 2.9719 15.0023 0 30 232.288 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 34 234.630 90 165 711.60 2.7994 15.0000 0 34 234.630 90 165 599.60 2.7570 15.0000 0 36 251.513 90 165 599.60 2.7570 15.0000 0 36 225.41 90 165 1	20	272.959	87	-15	81.00	1.8221	15.0206	0
22 206.337 85 $\cdot 15$ 1476.80 1.2782 15.0573 0 23 267.609 90 180 291.00 1.5950 15.0000 0 24 230.917 90 $\cdot 165$ 1250.00 2.2196 15.0000 0 25 239.570 90 180 625.80 1.2392 15.0000 0 26 236.970 90 180 638.40 2.6099 15.0000 0 27 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 29 241.444 89 $\cdot 15$ 668.70 2.9719 15.0023 0 30 232.298 89 $\cdot 15$ 422.10 1.3131 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 711.60 2.7994 15.0000 0 34 234.630 90 165 599.60 2.7570 15.0000 0 36 251.513 90 165 199.40 1.6333 15.0000 0 37 266.3100 90 165	21	231.668	87	-15	490.80	1.2582	15.0206	0
23 267.609 90180 291.00 1.5950 15.000 024 230.917 90 -165 1250.00 2.2196 15.0000 025 239.570 90180 625.80 1.2392 15.0000 026 236.970 90180 638.40 2.6099 15.0000 027 236.171 90 -165 968.30 0.9955 15.0000 028 233.254 90180 69.60 3.9577 15.0023 029 241.444 89 -15 668.70 2.9719 15.0023 030 232.298 89 -15 422.10 1.3313 15.0023 031 235.511 900 3.00 1.7694 15.0000 032 234.995 90 165 540.80 1.6465 15.0000 033 239.014 90 165 851.20 3.4220 15.0000 034 234.630 90 165 711.60 2.7994 15.0000 035 243.474 90 165 599.60 2.7570 15.0000 036 251.513 90 165 1267.80 1.5113 15.0000 037 261.396 90 165 1267.80 1.5113 15.0000 038 263.100 90 165 0.00 1.0333 15.0000 040 229.254 90 <t< td=""><td>22</td><td>206.337</td><td>85</td><td>-15</td><td>1476.80</td><td>1.2782</td><td>15.0573</td><td>0</td></t<>	22	206.337	85	-15	1476.80	1.2782	15.0573	0
24 230.917 90 -165 1250.00 2.2196 15.0000 0 25 239.570 90 180 625.80 1.2392 15.0000 0 26 236.970 90 180 638.40 2.6099 15.0000 0 27 236.171 90 -165 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 29 241.444 89 -15 668.70 2.9719 15.0023 0 30 232.298 89 -15 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 711.60 2.7994 15.0000 0 34 234.630 90 165 599.60 2.7570 15.0000 0 36 251.513 90 165 1267.80 1.5131 15.0000 0 38 263.100 90 165 0.00 1.0333 15.0000 0 39 286.031 90 -165 491.40 1.3699 15.0000 0 44 229.254 90 -165 1613.5	23	267.609	90	180	291.00	1.5950	15.0000	0
25 $239,570$ 90 180 625.80 1.2392 15.000 0 26 236.970 90 180 638.40 2.6099 15.0000 0 27 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 29 241.444 89 $\cdot 15$ 668.70 2.9719 15.0023 0 30 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 136.10 3.8949 15.0000 0 34 234.630 90 165 711.60 2.7994 15.0000 0 36 251.513 90 165 599.60 2.7570 15.0000 0 37 261.396 90 165 1267.80 1.5131 15.0000 0 38 263.100 90 165 0.00 1.0333 15.0000 0 40 229.254 90 $\cdot165$ 491.40 1.3699 15.0000 0 41 223.355 90 -165 1613.5	24	230.917	90	-165	1250.00	2.2196	15.0000	0
26 236.970 90 180 638.40 2.6099 15.0000 0 27 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 29 241.444 89 $\cdot 15$ 668.70 2.9719 15.0023 0 30 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 136.10 3.8949 15.0000 0 34 234.630 90 165 711.60 2.7974 15.0000 0 36 251.513 90 165 599.60 2.7570 15.0000 0 37 261.396 90 165 1267.80 1.5131 15.0000 0 38 263.100 90 165 0.00 1.0333 15.0000 0 40 229.254 90 $\cdot 165$ 491.40 1.3699 15.0000 0 41 223.355 90 -165 1613.50 0.9361 15.0000 0 44 305.258 90 -165 83	25	239.570	90	180	625.80	1.2392	15.0000	0
27 236.171 90 $\cdot 165$ 968.30 0.9955 15.0000 0 28 233.254 90 180 69.60 3.9577 15.0000 0 29 241.444 89 $\cdot 15$ 668.70 2.9719 15.0023 0 30 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 136.10 3.8949 15.0000 0 35 243.474 90 165 711.60 2.7994 15.0000 0 36 251.513 90 165 678.60 2.8376 15.0000 0 37 261.396 90 165 1267.80 1.5131 15.0000 0 38 263.100 90 165 0.00 1.0333 15.0000 0 40 229.254 90 $\cdot165$ 0.10 1.8012 15.0000 0 41 223.355 90 $\cdot165$ 1613.50 0.9361 15.0000 0 44 305.258 90 -165 838.50 0.9668 15.0000 0 44 305.258 90 -165 16.2	26	236.970	90	180	638.40	2.6099	15.0000	0
28 233.254 90 180 69.60 3.9577 15.000 0 29 241.444 89 $\cdot 15$ 668.70 2.9719 15.023 0 30 232.298 89 $\cdot 15$ 422.10 1.3313 15.023 0 31 235.511 90 0 3.00 1.7694 15.000 0 32 234.995 90 165 540.80 1.6465 15.000 0 33 239.014 90 165 851.20 3.4220 15.000 0 34 234.630 90 165 136.10 3.8949 15.000 0 35 243.474 90 165 711.60 2.7994 15.000 0 36 251.513 90 165 599.60 2.7570 15.000 0 37 261.396 90 165 1267.80 1.5131 15.000 0 38 226.310 90 165 491.40 1.3699 15.000 0 39 228.631 90 -165 491.40 1.3699 15.000 0 41 223.355 90 -165 0.101 1.8012 15.0000 0 44 305.258 90 -165 0.20 1.6129 15.0000 0 44 305.258 90 -165 16.20 1.1213 15.0000 0	27	236.171	90	-165	968.30	0.9955	15.0000	0
29 241.444 89 $\cdot 15$ 668.70 2.9719 15.0023 0 30 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 136.10 3.8949 15.0000 0 35 243.474 90 165 711.60 2.7994 15.0000 0 36 251.513 90 165 678.60 2.8376 15.0000 0 37 261.396 90 165 1267.80 1.5131 15.0000 0 38 263.100 90 165 0.00 1.0333 15.0000 0 39 228.031 90 -165 491.40 1.3699 15.0000 0 41 223.355 90 -165 1613.50 0.9361 15.0000 0 42 204.324 90 -165 0.20 1.6129 15.0206 0 44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	28	233.254	90	180	69.60	3.9577	15.0000	0
30 232.298 89 $\cdot 15$ 422.10 1.3313 15.0023 0 31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 136.10 3.8449 15.0000 0 35 243.474 90 165 711.60 2.7994 15.0000 0 36 251.513 90 165 678.60 2.8376 15.0000 0 37 261.396 90 165 1267.80 1.5131 15.0000 0 38 263.100 90 165 0.00 1.0333 15.0000 0 39 228.031 90 165 0.10 1.8012 15.0000 0 41 223.355 90 -165 0.10 1.8012 15.0000 0 42 204.324 90 -165 0.20 1.6129 15.0000 0 44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	29	241.444	89	-15	668.70	2.9719	15.0023	0
31 235.511 90 0 3.00 1.7694 15.0000 0 32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 136.10 3.8949 15.0000 0 35 243.474 90 165 711.60 2.7994 15.0000 0 36 251.513 90 165 678.60 2.8376 15.0000 0 37 261.396 90 165 599.60 2.7570 15.0000 0 38 263.100 90 165 1267.80 1.5131 15.0000 0 39 286.031 90 -165 0.10 1.8012 15.0000 0 41 223.55 90 -165 0.10	30	232.298	89	-15	422.10	1.3313	15.0023	0
32 234.995 90 165 540.80 1.6465 15.0000 0 33 239.014 90 165 851.20 3.4220 15.0000 0 34 234.630 90 165 136.10 3.8949 15.0000 0 35 243.474 90 165 711.60 2.7994 15.0000 0 36 251.513 90 165 678.60 2.8376 15.0000 0 37 261.396 90 165 599.60 2.7570 15.0000 0 38 263.100 90 165 1267.80 1.5131 15.0000 0 39 286.031 90 165 0.00 1.0333 15.0000 0 41 223.254 90 -165 0.10 1.8012 15.0000 0 41 223.355 90 -165 $161.5.0$ <td>31</td> <td>235.511</td> <td>90</td> <td>0</td> <td>3.00</td> <td>1.7694</td> <td>15.0000</td> <td>0</td>	31	235.511	90	0	3.00	1.7694	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	234.995	90	165	540.80	1.6465	15.0000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	239.014	90	165	851.20	3.4220	15.0000	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	234.630	90	165	136.10	3.8949	15.0000	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	243.474	90	165	711.60	2.7994	15.0000	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	251.513	90	165	678.60	2.8376	15.0000	0
38 263.100 90 165 1267.80 1.5131 15.000 0 39 286.031 90 165 0.00 1.0333 15.0000 0 40 229.254 90 -165 491.40 1.3699 15.0000 0 41 223.355 90 -165 0.10 1.8012 15.0000 0 42 204.324 90 -165 1613.50 0.9361 15.0000 0 43 238.269 87 -165 0.20 1.6129 15.0206 0 44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	37	261.396	90	165	599.60	2.7570	15.0000	0
39 286.031 90 165 0.00 1.0333 15.0000 0 40 229.254 90 -165 491.40 1.3699 15.0000 0 41 223.355 90 -165 0.10 1.8012 15.0000 0 42 204.324 90 -165 1613.50 0.9361 15.0000 0 43 238.269 87 -165 0.20 1.6129 15.0206 0 44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	38	263.100	90	165	1267.80	1.5131	15.0000	0
40 229,254 90 -165 491.40 1.3699 15.0000 0 41 223,355 90 -165 0.10 1.8012 15.0000 0 42 204.324 90 -165 1613.50 0.9361 15.0000 0 43 238,269 87 -165 0.20 1.6129 15.0206 0 44 305,258 90 -165 838,50 0.9968 15.0000 0 45 248,167 87 -165 16.20 1.1213 15.0206 0	39	286.031	90	165	0.00	1.0333	15.0000	0
41 223.355 90 -165 0.10 1.8012 15.0000 0 42 204.324 90 -165 1613.50 0.9361 15.0000 0 43 238.269 87 -165 0.20 1.6129 15.0206 0 44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	40	229.254	90	-165	491.40	1.3699	15.0000	0
42 204.324 90 -165 1613.50 0.9361 15.0000 0 43 238.269 87 -165 0.20 1.6129 15.0206 0 44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	41	223.355	90	-165	0.10	1.8012	15.0000	0
43 238.269 87 -165 0.20 1.6129 15.0206 0 44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	42	204.324	90	165	1613.50	0.9361	15.0000	0
44 305.258 90 -165 838.50 0.9968 15.0000 0 45 248.167 87 -165 16.20 1.1213 15.0206 0	43	238.269	87	-165	0.20	1.6129	15.0206	0
45 248.167 87 -165 16.20 1.1213 15.0206 0	44	305.258	90	-165	838.50	0.9968	15.0000	0
	45	248.167	87	-165	16.20	1.1213	15.0206	0

断層パラメータ表における断層No.の配置図

○ 下図(再掲)のとおり、局地的な隆起・沈降をMansinha and Smylie (1971)の地表変位で再現した。再現した地表 変位を初期鉛直変位分布とし、津波計算を実施する。

項目	計算条件
計算領域	・伊予灘を中心として東西約180km, 南北160kmの領域
格子分割サイズ	・沖合いでの最大400mから200, 100, 50, 25, 12.5, 6.25mと1/2ずつ徐々に 細かい格子を設定。
計算時間間隔	•0.0625 秒
基礎方程式	・非線形長波 (浅水理論)の連続式および運動方程式
初期条件	・Mansinha and Smylie(1971)の方法により計算
沖側境界条件	・自由透過条件。 ・ただし関門海峡は波の主成分が反射すると仮定し陸側境界とした。
陸側境界条件	・伊方発電所敷地周囲は陸上遡上を考慮 ・上記以外の陸岸は,静水面より上昇する津波に対して完全反射条件 ・静水面より下降する津波に対して小谷(1998)の遡上境界条件により海底露出 を考慮
海底摩擦係数	・マニングの粗度係数n=0.025m ^{-1/3} s
水平渦動粘性係数	•Om²/s
計算対象現象時間	•5時間

∈№「The displacement fields of inclined faults」, Mansinha.L. and Smilie,D.E., Bulletin of the Seismological Society of America, Vol.61, 5, 1971 「GISを利用した津波遡上計算と被害推定」, 小谷美佐・今村文彦・首藤伸夫, 海岸工学論文集, 45, 356-360, 1998

- 伊予灘を中心として東西約180km, 南北160kmの領域を対象とし, 格子分割は最大400mから200m, 100m, 50m, 25m, 12.5m, 6.25mと1/2ずつ徐々に細かい格子を設定する。
- 水深データについては、データ拡充のために当社が実施した海底地形調査(2013年8月実施)の結果を踏まえて更新している。

格子分割

yundew 水深データ作成に用いた主な資料:海底地形調査(四国電力,2013年8月),海図(海上保安庁,2000年11月),南西日本 日本近海1000mメッシュ海底地形データ (海洋情報研究センター,1999年6月),海底地形デジタルデータM7003ver2.0及びM7018ver2.0(日本水路協会,2008年4月)

本資料のうち, 枠囲み[__]の内容は商業機密または 核物質防護情報に属しますので公開できません。

本資料のうち, 枠囲みの内容は商業機密または 核物質防護情報に属しますので公開できません。

- ○前述の手法(1)では,発電所における地盤変動量が算出されないことから,本検討のとおり「海域調査結果を基 に設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法」により津波評 価を実施した。その結果,土木学会 (2002)の手法による津波評価結果を下回ることを確認した。
- ○合わせて, 伊方発電所における地盤変動量は約20~30cmであり, 土木学会 (2002) による評価手法の結果と 整合的であることも確認した。

1. 海域活断層に想定される地震に伴う津波の 評価手法の差異による影響検討

1.1.局地的な隆起沈降を考慮した津波評価

(1)海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法

(2)海域調査結果を基に設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法

(3) 断層を幾つかに分割し、ステップさせた断層モデルをMansinha and Smylie (1971)の手法に基づき再現する津波評価手法 (4) まとめ

1.2. 断層の不均質な破壊を考慮した津波評価

平成27年6月3日 まとめ資料再掲

- <u> 検討方針 手法(3)</u>
 - ○前述の手法(2)では、一部実態と乖離したすべり量を与える必要が生じる((2)の断層パラメータ 表参照)。
 - ○そこで、すべり量等の断層パラメータ設定方法は従来どおり土木学会(2002)に基づくこととし、断層配置に関してのみ局地的な隆起・沈降を再現できる可能性のある配置で設定し、発電所への影響を総合的に評価することとする。

○具体的には、断層を幾つかに分割し、ステップさせた断層モデルを次頁のとおり設定し、Mansinha and Smylie(1971)の手法に基づき地表変位を算出する。

断層パラメータ

○傾斜角・すべり角は、以下の42ケース(断層傾斜角3ケース×すべり角7ケース×分岐断層の有無 2ケース)を設定する。

断層傾斜角 (度)	すべり角 (度)	<mark>断層幅</mark> (km)	すべり<u>量</u> (m)
北傾斜85	165 170	15.0	7.57
90	175 <mark>180</mark> 185	15.0	7.59
南傾斜85	190 195	15.0	7.57

赤字:基準断層モデル

計算結果(地表変位)

○一部のケースでは地溝状の落ち込みが生じたものの, その規模は小さく, その他のケースでは地溝 状の落ち込みが生じなかった。

-1.50 -2.00 -2.50 -3.00 -3.50 Ø -4.00 0.12m 10 km chikoumsm33bn-085-180-1

平成27年6月3日

まとめ資料再掲

① 地溝状の落ち込みが生じたケース(落ち込みの規模)

○地溝状の落ち込みが生じているケースが幾つか認められたが、その隆起・沈降量は、海域調査結果を基に設定した実際の隆起・沈降量、及びこれらをMansinha and Smylie(1971)の手法に基づき再現した隆起・沈降量と比べて1/2~1/3程度と小さく、また、落ち込みが生じた範囲についても同等または小さい。

○実態と乖離した結果を与え、局地的な隆起・沈降を考慮した津波評価に適さない。

○純横ずれのケースでは地溝状の落ち込みが生じたが、その隆起・沈降量は、海域調査結果を基に設定した実際の 隆起・沈降量(手法(1)参照)、及びこれらをMansinha and Smylie(1971)の手法に基づき再現した隆起・沈降量 (手法(2)参照)と比べて1/2~1/3程度と小さく、また、落ち込みが生じた範囲についても同等または小さいこと から、津波評価を実施したとしても手法(1)(2)の評価結果を上回ることはないと評価できる。

〇上記以外のケースでは,

 ・ステップさせた断層間に挟まれる区間において一方の断層運動による隆起と他方の断層運動による沈降が相 殺され、沈降がほとんど表れない。

・地溝の外側に沈降が生じる。

など、実態と乖離した結果を与え、局地的な隆起・沈降を考慮した津波評価に適さない結果となった。

1. 海域活断層に想定される地震に伴う津波の 評価手法の差異による影響検討

1.1.局地的な隆起沈降を考慮した津波評価

(1)海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法

(2)海域調査結果を基に設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法

(3) 断層を幾つかに分割し、ステップさせた断層モデルをMansinha and Smylie (1971) の手法に基づき再現する津波評価手法 (4) まとめ

1.2. 断層の不均質な破壊を考慮した津波評価

まとめ -局地的な隆起沈降を考慮した津波評価-

- ○評価手法の差異による影響検討のうち,局地的な隆起・沈降を考慮した津波評価として,前述のとおり手法(1) ~(3)の検討を行った。
- ○手法(1)では、「海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法」に より津波評価を実施した。
- ○次に, 手法(1)では発電所における地盤変動量が算出されないことから, 手法(2)として, 「海域調査結果を基に 設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法」により津波評価 を実施した。その結果, 土木学会 (2002)の手法による津波評価結果を下回ることを確認した。
- ○さらに、手法(2)では一部実態と乖離したすべり量を与える必要が生じることから、手法(3)として、すべり量等の 断層パラメータ設定方法は従来どおり土木学会(2002)に基づくこととし、断層配置に関してのみ局地的な隆起・ 沈降を再現できる可能性のある配置で設定し、発電所への影響を総合的に評価した結果、土木学会の手法によ る津波評価結果を下回ると判断した。

○局地的な隆起・沈降を考慮した津波評価については,基準津波に影響を与えるものではないことを確認した。

○なお,敷地の地盤変動量に関して,手法(2)における地盤変動量は,土木学会(2002)の手法により求まる地盤 変動量と整合的であり,手法(3)の地溝状の落ち込みが生じたケースにおける地盤変動量は,土木学会(2002) の手法により求まる地盤変動量と比べて小さい。したがって,耐津波設計において考慮する敷地の地盤変動量は, 土木学会(2002)の手法により求まる基準津波に対応する地盤変動量を用いる。

1. 海域活断層に想定される地震に伴う津波の 評価手法の差異による影響検討

1.1.局地的な隆起沈降を考慮した津波評価

(1)海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える津波評価手法

(2)海域調査結果を基に設定した隆起・沈降量をMansinha and Smylie (1971)の手法に基づき再現する津波評価手法

(3) 断層を幾つかに分割し、ステップさせた断層モデルをMansinha and Smylie (1971) の手法に基づき再現する津波評価手法 (4) まとめ

1.2. 断層の不均質な破壊を考慮した津波評価

○地震動評価との整合性の観点,及び津波評価上厳しい結果を与えるパラメータ設定を行う観点から,以下に示す考え方で再計算を行うこととした。

断層パラメータの設定においては、内陸地殻内地震の地震動評価に係る審査会合(平成26年9月12日)において示した、長大断層である中央構造線断層帯に対して適用性の高い壇・他(2011)に基づいて設定する。

地震動モデル設定にあたって、以下の2点について安全側に考慮する。

 大すべり領域(断層上部)におけるすべり量の不確かさの考慮
 ・既往の検討では、大すべり領域を想定した断層上部のすべり量として、断層平均すべり量の2倍のすべり量(ア スペリティと同程度のすべり量)を設定していた(ケース1)。
 ・さらに、最新の知見を考慮し、壇ほか(2013)、松島ほか(2010)に基づき、断層上部のすべり量として断層平

・さらに, 最新の知見を考慮し, 壇はか(2013), 松島はか(2010)に基つき, 断層上部のすべり重として断層平 均すべり量の2~3倍のすべり量を設定したケース (ケース2)を追加する。

2 破壊伝播の考慮

・地震動評価と同様,一括破壊に加えて破壊開始点の不確かさを考慮したケースを追加する。

津波波源の設定にあたっては、既往の審査会合で示した土木学会(2002)の手法により求めた敷地に対して 最も厳しい波源モデルに対して、上記の地震動モデルを適用する。

○以上のように、地震動モデル及び津波波源に対して安全側となるよう設定したモデルに対して、 津波計算を実施する。検討ケースを次頁に示す。

J_□NDEN 「マグニチュード9クラスのプレート境界地震による強震動予測のための断層モデルの設定方法-南海トラフ巨大地震への適用と東海地方における強震動の試算例-」, 壇一男, 石井やよい, 宮腰淳一, 高橋広人, 護雅史, 福和伸夫, 日本建築学会構造系論文集, 78, 692, 1685-1694, 2013.10 「内陸地殻内の長大断層で発生する地震に関するスケーリング則」, 松島信一, 室谷智子, 吾妻崇, 入倉孝次郎, 北川貞之, 北海道大学地球物理学研究報告, 73, 117-127, 2010

検討ケース

検	討ケース	
地震動モデルの設定方針 (すべり量の設定方針)	波源モデルの設定方針 (断層傾斜角・すべり角の設定方針)	破壊 開始点
ケースO 【地震発生層 (2~15km) のすべり量】 / 博·仲 (2011) に甘ざき恐宕	土木学会 (2002) の手法による既往評価の結果, <mark>水位上昇側</mark> の最も厳しい結果を与える検討ケース ^{※1}	一括破壊 西下端 東下端
増・他(2011)に基づき設定 【断層上部(2km以浅)のすべり量】 アスペリティ上部 :断層平均すべり量の2倍のすべり量を設定 背景領域上部 :背景領域のすべり量を設定	土木学会 (2002) の手法による既往評価の結果. 水位下降側の最も厳しい結果を与える検討ケース ^{※2}	
ケース1 【地震発生層(2~15km)のすべり量】 増・他(2011)に基づき設定	土木学会 (2002) の手法による既往評価の結果, 水位上昇側の最も厳しい結果を与える検討ケース ^{※1}	一括破壊 西下端 東下端
「「「「」」」」)に至って設定 【「断層上部(2km以浅)のすべり量】 アスペリティ上部 :「断層平均すべり量の2倍のすべり量を設定 背景領域上部 : <u>断層平均すべり量の2倍のすべり量を設定</u>	土木学会 (2002) の手法による既往評価の結果, 水位下降側の最も厳しい結果を与える検討ケース ^{※2}	一括破壊 西下端 東下端
ケース2 【地震発生層(2~15km)のすべり量】 増・他(2011)に基づき設定	土木学会 (2002) の手法による既往評価の結果, 水位上昇側の最も厳しい結果を与える検討ケース ^{※1}	一括破壊 西下端 页下端
【断層上部 (2km以浅)のすべり量】 アスペリティ上部 : <u>断層平均すべり量の3倍のすべり量を設定</u> 背景領域上部 :断層平均すべり量の2倍のすべり量を設定	土木学会 (2002) の手法による既往評価の結果, 水位下降側の最も厳しい結果を与える検討ケース ^{※2}	一括破壊 西下端 東下端
※1 水位上昇側【敷地前面海域の断層群+伊予セグメント】傾斜角:北75度, すべり角:1 すべり角:-90度【別府湾断層帯】傾斜角:南75度, すべり角:-90度 ※2 水位下降側【敷地前面海域の断層群+伊予セグメント】傾斜角:北75度, すべり角:1 すべり角:-90度【別府湾断層帯】傾斜角:南75度, すべり角:-90度	65度 【豊予海峡】傾斜角:90度, すべり角:150度 【別府地溝南縁】 95度 【豊予海峡】傾斜角:90度, すべり角:150度 【別府地溝南縁】	傾斜角:北75度, 傾斜角:北75度,

ケースの

○ 断層モデル図及びパラメータを以下に示す。

・教地前面海域の断層群+伊予セグメント (P11のとおり壇・他(2011)に基づきパラメータを設定。下表は津波評価に関連するパラメータのみを抜粋したもの。)

	剧社支	植约合	すべり色	巨々	h프		Мо		地震		断層上部		
断層名	(N/m ²)	(度)	(度)	(km)	(km)	Mw	(N•m)	平均すべり 量(m)	第1アスペリティ すべり量(m)	第2アスペリティ すべり量(m)	背景領域 すべり量(m)	アスペリティ上部 すべり量(m)	背景領域上部 すべり量(m)
敷地前面海域 の断層群	3.3E+10	北75	165* 195*	54	15.5	7.1	6.41E+19	2.67	5.96	3.65	1.64	5.33	1.64
伊予セグメント	3.3E+10	北75	165* 195*	33	15.5	7.0	3.92E+19	2.67	5.33	-	1.64	5.33	1.64

※ 165度:土木学会 (2002)の手法による既往評価の結果,水位上昇側において最も厳しい結果を与えるすべり角 195度:同水位下降側において最も厳しい結果を与えるすべり角 ・別府-万年山断層帯(基準断層モデルに同じ)

断層名		剛性率 (N/m ²)	傾斜角 (度)	すべり角 (度)	長さ (km)	幅 (km)	Mw	Mo (N∙m)	すべり量(m)
豊予海峡	ŧ.	3.3E+10	90	150	34.7	15.00	7.24	9.11E+19	5.30
別府	С		北75	-90	9.5				
地溝	В	3.3E+10	北75	-90	16.8	15.53	7.15	6.67E+19	3.33
南縁	Α		北75	-90	12.8				
別府湾	D	2 25+10	南75	-90	22.5	15.53	7 20	7.34E+19	6.37
断層帯	E	3.32710	南75	-90	20.5	15.53	1.29	3.34E+19	3.18

- Moの算出においては、 地震動評価と同様、 地震発生層 (2~15km)を対象と して行った。
- アスペリティ上部は断層平均すべり量の2倍のすべり量を,背景領域上部は背景領域のすべり量をそれぞれ設定した。
- 別府-万年山断層帯の断層パラメータは基準断層モデルに同じとした。ただし、
 Mo算出の際は安全側となるよう別府-万年山断層帯も考慮して計算した。

ケース1

○ 断層モデル図及びパラメータを以下に示す。

・教地前面海域の断層群+伊予セグメント (P11のとおり壇・他(2011)に基づきパラメータを設定。下表は津波評価に関連するパラメータのみを抜粋したもの。)

	剛性変	植动色	すべり色	巨さ	tion		Mo		地震线	発生層		断層	上部
断層名	(N/m ²)	(度)	(度)	(km)	(km)	Mw	(N•m)	平均すべり 量(m)	第1アスペリティ すべり量(m)	第2アスペリティ すべり量(m)	背景領域 すべり量(m)	アスペリティ上部 すべり量(m)	背景領域上部 すべり量(m)
敷地前面海域 の断層群	3.3E+10	北75	165* 195*	54	15.5	7.1	6.41E+19	2.67	5.96	3.65	1.64	5.33	5.33
伊予セグメント	3.3E+10	北75	165* 195*	33	15.5	7.0	3.92E+19	2.67	5.33	-	1.64	5.33	5.33

※ 165度:土木学会 (2002) の手法による既往評価の結果,水位上昇側において最も厳しい結果を与えるすべり角 195度:同水位下降側において最も厳しい結果を与えるすべり角 ・別府-万年山断層帯(基準断層モデルに同じ)

ケース0との 相違点

断層名		剛性率 (N/m ²)	傾斜角 (度)	すべり角 (度)	長さ (km)	幅 (km)	Mw	Mo (N∙m)	すべり量 (m)
豊予海峡	Ę	3.3E+10	90	150	34.7	15.00	7.24	9.11E+19	5.30
別府	С		北75	-90	9.5				
地溝	В	3.3E+10	北75	-90	16.8	15.53	7.15	6.67E+19	3.33
南縁	Α		北75	-90	12.8				
別府湾	D	2 25+10	南75	-90	22.5	15.53	7 20	7.34E+19	6.37
断層帯	Е	3.3ET 10	南75	-90	20.5	15.53	1.29	3.34E+19	3.18

- Moの算出においては、 地震動評価と同様、 地震発生層 (2~15km)を対象と して行った。
- アスペリティ上部・背景領域上部のいずれについても、断層平均すべり量の2
 倍のすべり量を設定した。
- 別府-万年山断層帯の断層パラメータは基準断層モデルに同じとした。ただし、
 Mo算出の際は安全側となるよう別府-万年山断層帯も考慮して計算した。

ケース2

ケース1との 相違点

○ 断層モデル図及びパラメータを以下に示す。

・教地前面海域の断層群+伊予セグメント (P11のとおり壇・他(2011)に基づきパラメータを設定。下表は津波評価に関連するパラメータのみを抜粋したもの。)

	剧社玄	植约合	すべり色	巨さ	tion		Mo		地震	発生層		断層	上部
断層名	(N/m ²)	(度)	(度)	(km)	(km)	Mw	(N•m)	平均すべり 量(m)	第1アスペリティ すべり量(m)	第2アスペリティ すべり量(m)	背景領域 すべり量(m)	アスペリティ上部 すべり量(m)	背景領域上部 すべり量(m)
敷地前面海域 の断層群	3.3E+10	北75	165* 195*	54	15.5	7.1	6.41E+19	2.67	5.96	3.65	1.64	8.00	5.33
伊予セグメント	3.3E+10	北75	165* 195*	33	15.5	7.0	3.92E+19	2.67	5.33	-	1.64	8.00	5.33

※ 165度:土木学会 (2002)の手法による既往評価の結果,水位上昇側において最も厳しい結果を与えるすべり角 195度:同水位下降側において最も厳しい結果を与えるすべり角

・別府-万年山断層帯(基準断層モデルに同じ)

断層名		剛性率 (N/m ²)	傾斜角 (度)	すべり角 (度)	長さ (km)	幅 (km)	Mw	Mo (N∙m)	すべり量(m)
豊予海峡	F	3.3E+10	90	150	34.7	15.00	7.24	9.11E+19	5.30
別府	С		北75	-90	9.5				
地溝	В	3.3E+10	北75	-90	16.8	15.53	7.15	6.67E+19	3.33
南縁	Α		北75	-90	12.8	1			
別府湾	D	2 25 10	南75	-90	22.5	15.53	7 20	7.34E+19	6.37
断層帯	E	3.3ET 10	南75	-90	20.5	15.53	1.29	3.34E+19	3.18

○ Moの算出においては、地震動評価と同様、地震発生層(2~15km)を対象として行った。

 ○ 壇・他 (2013)では、プレート境界型地震における断層上部のすべり量として「平均すべり量の3倍程度」とされているが、本検討では内陸地殻内地震を対象としていることから、松島ほか (2010)における内陸地殻内地震の断層上部のすべり量を 参考とし、断層上部のすべり量が「平均すべり量の2~3倍程度」となるよう、上図のとおりすべり量を設定した。すなわち、アスペリティ上部は断層平均すべり量の3倍のすべり 量を、背景領域上部は断層平均すべり量の2倍のすべり量を設定した。

○ 別府-万年山断層帯の断層パラメータは基準断層モデルに同じとした。ただし、Mo算 出の際は安全側となるよう別府-万年山断層帯も考慮して計算した。

【比較用】土木学会(2002)の手法による既往評価

○ 土木学会 (2002) の手法による既往評価の結果, 最も厳しい結果を与える検討ケースに対応する断層モデル図及びパラメータを以下に示す。

・敷地前面海域の断層群+伊予セグメント

断層名	剛性率 (N/m ²)	傾斜角 (度)	すべり角 (度)	長さ (km)	幅 (km)	Mw	Mo (N∙m)	すべり量(m)
敷地前面海域 の断層群 + 伊予セグメント	3.3E+10	北75	165* 195*	87	15.5	7.61	3.27E+20	7.37(一様すべり)

※ 165度:土木学会 (2002)の手法による既往評価の結果、水位上昇側において最も厳しい結果を与えるすべり角 195度:同水位下降側において最も厳しい結果を与えるすべり角

別府-万年山断層帯

断層名		剛性率 (N/m ²)	傾斜角 (度)	すべり角 (度)	長さ (km)	幅 (km)	Mw	Mo (N∙m)	すべり量(m)
豊予海峡	F	3.3E+10	90	150	34.7	15.00	7.24	9.11E+19	5.30
別府	С		北75	-90	9.5				
地溝	В	3.3E+10	北75	-90	16.8	15.53	7.15	6.67E+19	3.33
南縁	Α		北75	-90	12.8	1			
別府湾	D	2 25+10	南75	-90	22.5	15.53	7 20	7.34E+19	6.37
断層帯	Е	3.32710	南75	-90	20.5	15.53	1.29	3.34E+19	3.18

/	パラメ	ータ詳細

mage mage <thmage< th=""> mage mage <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></thmage<>														
$ \begin{array}{ $	25′20″ 33°	33° 25′ 20″	33° 15′ 12″	33° 20′ 25″	33° 21′ 37″	33° 15′ 13″	33° 13′ 35″	33° 16′ 42″	-		[- 北緯		位罢 西湖
k = </td <td>1′ 42″ 132°</td> <td>132° 1′ 42″</td> <td>131°42′58″</td> <td>131° 38′ 26″</td> <td>131° 30′ 57″</td> <td>131°42′57″</td> <td>131° 37′ 9″</td> <td>131°27′00″</td> <td>-</td> <td></td> <td></td> <td>- 東経</td> <td>- m</td> <td>1호텔 전체</td>	1′ 42″ 132°	132° 1′ 42″	131°42′58″	131° 38′ 26″	131° 30′ 57″	131°42′57″	131° 37′ 9″	131°27′00″	-			- 東経	- m	1호텔 전체
d#4isisisisisisisisisisF1.0III <td>57E</td> <td>N57E</td> <td>N62.7E</td> <td>N85.6E</td> <td>N103. 5E</td> <td>N71.4E</td> <td>N110E</td> <td>N66E</td> <td> </td> <td></td> <td></td> <td><i>θ</i> [度]</td> <td>θ</td> <td></td>	57E	N57E	N62.7E	N85.6E	N103. 5E	N71.4E	N110E	N66E				<i>θ</i> [度]	θ	
ボト・ ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< ··< <	/5	75	90	75	75	75	75	75	-			<i>δ</i> [度]	δ	角
勝景上勝第之 月 [km] (km] <	ずれ 右	右横ずれ	右横ずれ	正断層	正断層	正断層	正断層	正断層	-				-	の種類
hemHemL[Iu]Image203.812.816.89.522.520.534.7HemHemKanW=5.L12.9C12.9C12.4213.38±103.3	2	2	2	3	3	3	3	3	—			<i>H</i> [km]	Н	上端深さ
IFF IFF <thiff< th=""> <thiff< th=""> <thiff< th=""></thiff<></thiff<></thiff<>	4. 0	54.0	34.7	20.5	22. 5	9.5	16.8	12.8	203.8			<i>L</i> [km]	L	長さ
hf B if B if K (Ya ²) S ² L k W) 2642.0 159.0 208.7 118.0 279.5 QE4.7 451.1 H V (Ya ²) µ=µβ ² - 3.50 <th< td=""><td>46 1</td><td>13.46</td><td>13.00</td><td>12.42</td><td>12.42</td><td>12.42</td><td>12.42</td><td>12.42</td><td>12.96</td><td>W=S/L</td><td>W</td><td><i>W</i> [km]</td><td>W</td><td>幅</td></th<>	46 1	13.46	13.00	12.42	12.42	12.42	12.42	12.42	12.96	W=S/L	W	<i>W</i> [km]	W	幅
μ μ (N ₄) μ μ μ β μ β μ β β μ β β μ β<	j. 8 🛛 🗸	726.8	451.1	254.7	279.5	118.0	208.7	159.0	2642.0	$S = \Sigma (L \times W)$] 5	<i>S</i> [km ²]	S	面積
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E+10 3	3.3E+10	3.3E+10	3. 3E+10	3.3E+10	3.3E+10	3.3E+10	3.3E+10	-	$\mu = \rho \beta^2$	έ] μ	μ [N/m ²]	μ	率
B ρ $[g_{c}m]^{2}$ (m_{c}) $[q_{c}m]^{2}$ $()$ 2.7 $2.$. 5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	-		;]	β [km/s]	β	速度
w # H # # # # # # # # # # # # # # # # # # #	. 7	2.7	2.7	2.7	2.7	2.7	2.7	2. 7	-		3]	ho [g/cm ³]	ρ	
$u \equiv + - + > \cdot$ M_0 $[N \cdot u]$ u - u - u - u - n $1.40E+19$ $1.04E+19$ $1.04E+19$ $2.46E+19$ $2.25E+19$ $3.98E+19$ $E + > V^{-} Y^{-} $	5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	-	$V_{\rm r}$ =0.72 eta (Geller et al., 1976)	;] V	$V_{\rm r}$ [km/s]	Vr	伝播速度
±······ M _w Image: Minipage Minipa	E+19 3.	6. 41E+19	3. 98E+19	2. 25E+19	2.46E+19	1.04E+19	1.84E+19	1.40E+19	2. 33E+20	壇·他(2011)] 壇	M_0 [N·m]	M	モーメント
$ \$$ $ r$ $ M_{1}$ $ M_{2}$ $ r$ $ r$ $ r$ $ - r$ $ - r$ $ r$ <td>.1</td> <td>7.1</td> <td>7.0</td> <td>6.8</td> <td>6.9</td> <td>6.6</td> <td>6.8</td> <td>6.7</td> <td>7.5</td> <td>kanamori(1977)</td> <td>ka</td> <td>М_w —</td> <td>M_W</td> <td>トマク゛ニチュート゛</td>	.1	7.1	7.0	6.8	6.9	6.6	6.8	6.7	7.5	kanamori(1977)	ka	М _w —	M _W	トマク゛ニチュート゛
平均 求 < り D [cm] $D = M_{\phi}/(\mu S)$ 267 267	-	-	-	-	-	-	-	-	8.1	武村(1998)	南	М ј —	. М _л	庁マグニチュード
ψψψψψ $\Delta \sigma$ [MPa] #(a(2011)) 3.4 3.2 3.2 3.2	š7	267	267	267	267	267	267	267	-	$D = M_0 / (\mu S)$	D	<i>D</i> [cm]	D	すべり量
	4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	壇・他(2011)] 壇	$\Delta\sigma$ [MPa]	Ξ Δσ	動的応力降下量
$\frac{1}{2}$ $\frac{1}$	3E+19 1.	1.58E+19	1.25E+19	9. 38E+18	9.82E+18	6. 38E+18	8. 49E+18	7. 41E+18	3. 02E+19	$A' = (A_a^2 + A_b^2)^{0.5}$	s^2] A	A' [N·m/s ²]	Α'	期レベル
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/E+19 2.	3. 57E+19	2. 22E+19	1.25E+19	1.37E+19	5.80E+18	1.03E+19	7.81E+18	1.30E+20	$M_{0a} = \mu D_a S_a$]	M_{0a} [N·m]	M_0	地震モーメント
\vec{v} v	2.5 1	202.5	125.7	71.0	77.9	32.9	58.2	44. 3	736.3	$S_a = S \cdot \Delta \sigma / \Delta \sigma_a = 0.279 \cdot S$] 5	S_{a} [km ²]	S _a	面積
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	533	533	533	533	533	533	533	—	$D_{a} = \gamma_{D} \cdot D, \gamma_{D} = 2.0$	D	<i>D</i> _a [cm]	量 D _a	平均すべり量
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. 2	12.2	12. 2	12. 2	12.2	12.2	12. 2	12. 2	12.2	壇·他(2011)] 壇	$\Delta\sigma_{\mathrm{a}}$ [MPa]	量 <i>△</i> σ	動的応力降下量
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E+19 1.	1.51E+19	1.19E+19	8. 93E+18	9.35E+18	6. 08E+18	8.08E+18	7.05E+18	2.88E+19	$A_{\rm a}=4\pi\beta^2\sigma_{\rm a}(S_{\rm a}/\pi)^{0.5}$	s^2] A	$A_{\rm a}$ [N·m/s ²]	A _a	短周期レベル
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DE+19 2.	2.90E+19	2. 22E+19	1.25E+19	1.37E+19	5.80E+18	1.03E+19	7.81E+18		$M_{0al} = \mu \cdot D_{al} \cdot S_{al}$]	<i>M</i> _{0a1} [N⋅m]	M_{0a}	地震モーメント
$\frac{2}{\sqrt{3}}$ $\frac{7}{\sqrt{3}}$ $\frac{7}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{2}\sqrt{3}}$ $\frac{1}{\sqrt{3}\sqrt{3}}$ $\frac{1}{\sqrt{3}\sqrt{3}}$ $\frac{533}{533}$ $\frac{533}$	1.3 1	147.3	125.7	71.0	77.9	32.9	58.2	44. 3	-]	S_{a1} [km ²]	S _{a1}	面積
$ \frac{1}{2} 1$	16	596	533	533	533	533	533	533	-	$D_{al} = (\gamma_l / \Sigma \gamma_i^{3}) \cdot D_a, \gamma_i = r_i / r$	D	<i>D</i> _{al} [cm]	量 D _a	平均すべり量
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 2	12.2	12. 2	12. 2	12.2	12.2	12. 2	12. 2		$\sigma_{al} = \Delta \sigma_a$]	σ_{al} [MPa]	$\sigma_{ m al}$	実効応力
	JE+19 1.	1.29E+19	1.19E+19	8. 93E+18	9.35E+18	6. 08E+18	8. 08E+18	7.05E+18	_	$A_{al} = 4\pi\beta^2 \sigma_{al} (S_{al}/\pi)^{0.5}$	s^2] A	$A_{\rm al}$ [N·m/s ²]	A _{al}	短周期レベル
ア 面積 S_{a2} $[km^2]$ - マ 平均すべり量 D_{a2} $[cm]$ $D_{a2}=(\gamma_2/2\gamma_i^3)\cdot D_a, \gamma_i=r_i/r$ - ツ 実効応力 σ_{a2} $[MPa]$ $\sigma_{a2}=\Delta\sigma_a$ -	/E+18	6. 67E+18							_	$M_{0a2} = \mu \cdot D_{a2} \cdot S_{a2}$] M	<i>M</i> _{0a2} [N⋅m]	M_{0a}	地震モーメント
	. 2	55.2							-]	S_{a2} [km ²]	S _{a2}	面積
リ 実効応力 σ_{a2} [MPa] $\sigma_{a2}=\Delta\sigma_a$ ー	i5	365							_	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a, \gamma_i = r_i / r$	D	<i>D</i> _{a2} [cm]		平均すべり量
	. 2	12.2							-	$\sigma_{a2}=\Delta\sigma_a$] σ,	σ_{a2} [MPa]	$\sigma_{ m a2}$	実効応力
$'$ 短周期レ [*] ル A_{a2} [N·m/s ²] $A_{a2} = 4 \pi \beta^2 \sigma_{a2} (S_{a2}/\pi)^{0.5}$ -	3E+18	7.88E+18							_	$A_{a2} = 4 \pi \beta^2 \sigma_{a2} (S_{a2}/\pi)^{0.5}$	s^2] A	A_{a2} [N·m/s ²]	A a2	短周期レベル
地震モーメント M _{0b} [N・m] M _{0b} =M ₀ -M _{0a} - 6.20E+18 8.14E+18 4.60E+18 1.09E+19 9.94E+18 1.76E+19	E+19 1.	2.84E+19	1.76E+19	9.94E+18	1.09E+19	4. 60E+18	8.14E+18	6.20E+18	-	$M_{0b} = M_0 - M_{0a}$] M	<i>М</i> _{0b} [N·m]	M 0	地震モーメント
$T_{\rm m}$ $S_{\rm b}$ $[{\rm km}^2]$ $S_{\rm b}=S-S_{\rm a}$ - 114.7 150.5 85.1 201.6 183.7 325.4	4. 2 3	524.2	325.4	183. 7	201.6	85.1	150.5	114. 7	_	$S_{b}=S-\overline{S}_{a}$] 5	<i>S</i> _b [km ²]	S _b	面積
景 平均すべり量 D _b [cm] D _b =M _{0b} /(µS _b) - 164 164 164 164 164	j4	164	164	164	164	164	164	164	_	$D_{\rm b}=M_{\rm 0b}/(\mu S_{\rm b})$	D	<i>D</i> _b [cm]	量 D _b	平均すべり量
成 支効応力 σ _b [MPa] σ _b =0.2·σ _a - 2.4 2.4 2.4 2.4 2.4	4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	_	$\sigma_{\rm b}=0.2 \cdot \sigma_{\rm a}$] σ	$\sigma_{\rm b}$ [MPa]	$\sigma_{ m b}$	実効応力
短周期レベル A _b [N·m/s ²] A _b =4\piβ ² σ _b (S _b /π) ^{0.5} - 2.27E+18 2.60E+18 1.96E+18 3.01E+18 2.87E+18 3.82E+18	jE+18 3.	4.85E+18	3.82E+18	2.87E+18	3.01E+18	1.96E+18	2. 60E+18	2.27E+18	_	$A_{\rm b}=4\pi\beta^2\sigma_{\rm b}(S_{\rm b}/\pi)^{0.5}$	s^2] A	$A_{\rm b}$ [N·m/s ²]	A _b	短周期レベル

前述のとおり, Mo算出の際は, 安全側となるよう上表のとおり別府-万年山断層帯も考慮して計算している。津波計算においては, 別府-万年山断層帯の断層パラメータは基準 断層モデルに同じとした。

項目	計算条件
計算領域	・伊予灘を中心として東西約180km, 南北160kmの領域
格子分割サイズ	・沖合いでの最大400mから200, 100, 50, 25, 12.5, 6.25mと1/2ずつ徐々に 細かい格子を設定。
計算時間間隔	•0.0625秒
基礎方程式	・非線形長波(浅水理論)の連続式および運動方程式
初期条件	・Mansinha and Smylie(1971)の方法により計算
沖側境界条件	・自由透過条件。 ・ただし関門海峡は波の主成分が反射すると仮定し陸側境界とした。
陸側境界条件	・伊方発電所敷地周囲は陸上遡上を考慮 ・上記以外の陸岸は,静水面より上昇する津波に対して完全反射条件 ・静水面より下降する津波に対して小谷(1998)の遡上境界条件により海底露出 を考慮
海底摩擦係数	•マニングの粗度係数n=0.025m ^{-1/3} s
水平渦動粘性係数	•Om²/s
計算対象現象時間	·5時間

DEN「The displacement fields of inclined faults」, Mansinha,L. and Smilie,D.E., Bulletin of the Seismological Society of America, Vol.61, 5, 1971 「GISを利用した津波遡上計算と被害推定」, 小谷美佐・今村文彦・首藤仲夫, 海岸工学論文集, 45, 356−360, 1998

- 伊予灘を中心として東西約180km, 南北160kmの領域を対象とし, 格子分割は最大400mから200m, 100m, 50m, 25m, 12.5m, 6.25mと1/2ずつ徐々に細かい格子を設定する。
- 水深データについては、データ拡充のために当社が実施した海底地形調査(2013年8月実施)の結果を踏まえて更新している。

yuwwew 水深データ作成に用いた主な資料:海底地形調査(四国電力,2013年8月),海図(海上保安庁,2000年11月),南西日本 日本近海1000mメッシュ海底地形データ (海洋情報研究センター,1999年6月),海底地形デジタルデータM7003ver2.0及びM7018ver2.0(日本水路協会,2008年4月)

平成27年6月3日 まとめ資料再掲

計算結果

○その他のケースも含め.計算結果の一覧を以下に示す。

○ケース0の水位変動量はケース1.2に対して小さい。

○ケース1とケース2の水位変動量は同程度の結果を示している。

○ケース1の厳しいケースは「東下端」、ケース2の厳しいケースも「東下端」であり、両者はほぼ同程度であるが、 ケース1のほうがやや大きい。

検討ケース			水位上昇側				水位下降側
			3号炉 敷地前面	3号炉 海水取水口	3号炉 T/B復水器取水先端	3号炉 放水口	3号炉 海水取水口
断層の不均質な破壊を 考慮した津波評価 (破壊伝播及び大すべり域のすべり量の 不確かさを考慮した津波評価)	ケース0	一括破壊	T.P.+3.10m [-0.17m]	T.P.+2.71m [-0.17m]	T.P.+2.45m [-0.17m]	T.P.+2.62m [-0.17m]	T.P2.34m [+0.10m]
		西下端	T.P.+3.22m [-0.16m]	T.P.+2.75m [-0.17m]	T.P.+2.50m [-0.17m]	T.P.+2.63m [-0.17m]	T.P.−2.55m [+0.10m]
		東下端	T.P.+3.15m [-0.17m]	T.P.+2.68m [-0.17m]	T.P.+2.42m [-0.17m]	T.P.+2.64m [-0.17m]	T.P2.34m [+0.10m]
	ケース1	一括破壊	T.P.+6.07m [-0.19m]	T.P.+3.94m [-0.19m]	T.P.+3.23m [-0.18m]	T.P.+3.46m [-0.19m]	T.P3.23m [+0.09m]
		西下端	T.P.+5.82m [-0.19m]	T.P.+3.77m [-0.19m]	T.P.+3.15m [-0.18m]	T.P.+3.31m [-0.19m]	T.P3.12m [+0.09m]
		東下端	T.P.+6.30m [-0.19m]	T.P.+4.14m [-0.19m]	T.P.+3.29m [-0.18m]	T.P.+3.63m [-0.19m]	T.P3.31m [+0.09m]
	ー ケース2 西 東	一括破壊	T.P.+5.93m [-0.18m]	T.P.+3.88m [-0.18m]	T.P.+3.15m [-0.18m]	T.P.+3.39m [-0.18m]	T.P3.15m [+0.10m]
		西下端	T.P.+5.71m [-0.18m]	T.P.+3.71m [-0.18m]	T.P.+3.08m [-0.18m]	T.P.+3.24m [-0.18m]	T.P3.04m [+0.10m]
		東下端	T.P.+6.18m [-0.18m]	T.P.+4.08m [-0.18m]	T.P.+3.22m [-0.18m]	T.P.+3.56m [-0.18m]	T.P3.24m [+0.10m]

水位上昇側は朔望平均満潮位(T.P.+1.62m)を考慮し、水位下降側は朔望平均干潮位(T.P.-1.69m)を考慮した値。 「 〕内の数値は伊方発電所における地盤変動量(+が隆起、ーが沈隆)。

○上記の結果は、下表に示す既往の評価手法(土木学会、2002)による津波評価に基づく水位変動量よりも小さい ことを確認した。

	水位上昇側				水位下降側
検討ケース	3号炉	3号炉	3号炉	3号炉	3号炉
	敷地前面	海水取水口	T/B復水器取水先端	放水口	海水取水口
既往の評価手法(土木学会, 2002)による津波評価結果	T.P.+7.56m	T.P.+5.22m	T.P.+3.87m	T.P.+4.37m	T.P4.08m
	[-0.33m]	[-0.40m]	[-0.36m]	[-0.40m]	[+0.34m]

まとめ - 断層の不均質な破壊を考慮した津波評価-

- ○評価手法の差異による影響検討として、地震動評価との整合性の観点から、断層の不均質な破壊を考慮した断 層モデルによる津波評価を実施し、既往の評価手法(土木学会、2002)による津波評価結果との比較検証を 行った。
- ○評価においては、津波評価上厳しい結果を与えるパラメータ設定を行う観点から、大すべり領域におけるすべり量等の不確かさを考慮した。
- ○結果,断層の不均質な破壊を考慮した断層モデルによる津波評価結果は,既往の評価手法(土木学会,2002) による津波評価結果よりも小さい結果を与えることから,基準津波に対して影響を及ぼすものではないことを確認 した。

2. 海底地すべりの評価

- ○敷地は,外洋からの津波の影響が小さい瀬戸内海の伊予灘に面しており,敷地前面海域の海底地形は極めて平坦である。
- ○敷地から100km以上離れた高知県の足摺岬南方沖合いに海底地すべりが示されているものの(岡村, 1998), 敷地周辺海域の海底地形に海底地すべりの痕跡は認められない。
- ○なお,海底地すべりに関連する知見として,敷地前面海域西方の別府湾において,1596年慶長豊後地震に伴う瓜生島沈没の事例 が挙げられる。國生(2002)は「瓜生島沈没伝説」として,海中地盤の水中音波探査等の結果から「大地震とそれによって発生した 津波により,崩壊,液状化,地すべりなどの地変が起き,島とそこにあった家屋は流出して海底に没した」と推論している。
- ○仮に1596年慶長豊後地震に伴い瓜生島が沈没したとしても、当地震での津波の記録は別府湾沿岸のみに限定されると考えられ、 敷地周辺において被害があったという記録は見当たらない。

○以上述べたように、敷地は外洋からの津波の影響が小さい瀬戸内海の伊予灘に面して海底地形は極めて平坦であり、また敷地に影響を与えるような海底地すべりの痕跡も認められないため、他の要因による津波よりも影響が小さいものと評価される。

○以下の流れに従い、敷地へ影響を及ぼす可能性のある海底地すべりの抽出を行う。

2. 海底地すべりの評価

豊後水道における海底地すべり(岡村, 1998)

 〇敷地に最も近い海底地すべりは岡村(1998)に図示される豊後水道における海底地すべりである。この海底 地すべりは大陸棚斜面下部の水深約800m以深に位置し、南西方向に開いた滑落崖として示されている。
 〇敷地は外洋からの津波の影響が小さい瀬戸内海の伊予灘に面しており、敷地から100km以上離れた豊後水 道(高知県の足摺岬南方沖合い)に海底地すべりが示されているものの、その影響は小さい。

2. 海底地すべりの評価 海底地形判読による海底地すべり地形の特徴

2. 海底地すべりの評価 音波探査記録による海底地すべりの特徴

平成27年6月3日 まとめ資料再掲

2. 海底地すべりの評価

平成27年6月3日 まとめ資料再掲

2. 海底地すべりの評価 **敷地前面海域における海底地形図**(海底地形デジタルデータM7000)

平成27年6月3日 まとめ資料再掲

2. 海底地すべりの評価 別府湾における海底地すべり地形の特徴

〇別府湾では不明瞭ながら、地すべりを示唆する地形が2ヶ所判読される。 〇判読された地すべりを示唆する地形の滑落土塊の大きさは幅が2~4km、長さが4~8km程度である。

JONDEN ※海底地形等深線は日本水路協会 M7000シリーズを用いた。

平成27年6月3日

まとめ資料再掲

平成27年6月3日 まとめ資料再掲

〇音波探査記録によると、海底に若干の傾斜変換部がみられるものの、断層変位によるものと判断される。 また、堆積層中には断層による変位が認められるものの、海底地すべりを示す乱れた堆積構造は認められず、海底地すべりではないと判断される。

2. 海底地すべりの評価

音波探査記録を用いた海底地すべりの検討2

JUNDEN ※海底地形等深線は日本水路協会 M7000シリーズを用いた。

平成27年6月3日

まとめ資料再掲

JUNDEN ※海底地形等深線は日本水路協会 M7000シリーズを用いた。

JUNDEN ※海底地形等深線は日本水路協会 M7000シリーズを用いた。

○敷地は外洋からの津波の影響が小さい瀬戸内海の伊予灘に面して海底地形は極めて平坦であり,また敷地周辺において海底地すべりによる津波被害があったという記録は見当たらない。

○したがって,基本的には問題ないと考えられるものの,2011年東北地方太平洋沖地震の経験を踏まえ,過去の事例に捉われず発電所 の更なる安全性向上を図る観点から,敷地に影響を与えるような海底地すべりが発生する可能性について検討した。

○既存の文献に図示された海底地すべりについて海底地形判読および音波探査記録の反射パターンにより特徴を把握した。

○把握した海底地すべりの特徴に基づき,敷地周辺において海底地形デジタルデータ(M7000シリーズ)を用いて海底地形判読を行い, 別府湾において2ヶ所の地すべりを示唆する地形を抽出した。その他の海域において地すべりを示唆する地形は認められなかった。

○別府湾における2ヶ所の海底地すべりを示唆する地形について音波探査記録を用いて海底地すべりであるか否かについて検討を行った 。海底にサンドウェーブと断層変位地形が認められるものの,全体的には海底下の反射面の連続性が良く,成層構造を示すことから海 底地すべりではないと判断される。

○以上より、伊方発電所に影響を与えるような海底地すべりは認められない。

3. 基準津波の検証

南海道および近地において津波を引き起こした地震の震央位置

- ○瀬戸内海地域を震源とする地震による津波記録としては1596年慶長豊後地震による記録があるものの、敷地周辺において被害があったという記録は見当たらない。
- ○太平洋側では南海トラフ沿いのプレート境界に おいて、過去に概ね100~150年間隔でM8ク ラスの巨大地震が繰り返し発生しているものの 、瀬戸内海沿岸における津波高さは最大で3m 程度であるとされている。
- ○発電所周辺での津波堆積物調査結果によると
 ,豊後水道や別府湾においては津波イベントが
 示唆されるものの,伊予灘での津波イベントの
 報告はない。

○当社の評価結果と概ね整合的である。

「日本被害津波総覧」渡辺偉夫、東京大学出版会、1985 「日本被害津波総覧(第2版)」渡辺偉夫、東京大学出版会、1998 「最新版 日本被害地震総覧(第2版)」浮津徳治はか編集、朝倉書店、2003 「地震の事典(第2版)」字津徳治はが編集、朝倉書店、2001 「別府湾沿岸における慶長元年(1596年)豊後地震の津波調査」羽島徳太郎、地震研究所彙報、Vol.60, 429-438, 1985 「瀬戸内海・豊後水道沿岸における宝永(1707)・安政(1854)・昭和(1946)南海道津波の孝勤」羽島徳太郎、地震2, 41, 215-221, 1988 「1596年豊後地震における「かみの間」の津波被害」松岡裕也・今村文彦・都司嘉宣、津波の孝勤」羽島徳太郎、地震2, 41, 215-221, 1988 「1596年豊後地震における「かみの聞」の津波被害」松岡裕也・今村文彦・都司嘉宣、海江学研究報告、29号, 225-252, 2012 「古文書に見る大分の地震・津波」平井義人、大分県先哲史料館、史料館研究紀要、第17号, 2013 「四国における歴史津波(1605慶長・1707宝永・1854安政)の津波高の再検討」、村上仁士・島田富美男・伊藤禎彦・山本尚明・石塚淳一、自然災害科学、15-1, 39-52, 1996 「四国沿岸域における歴史津波高評価」村上仁史・島田富美男・山本尚明・上月康則・佐藤広章、月刊 海洋、号外28, 61-72, 2002 「記録に基づく四国4県の歴史地震津波に同する被害状況」山本尚明・村上仁史・島田富美男・上月康則・佐藤広章、歴史地震、17, 117-126, 2001 「瀬戸内海の歴史南海地震津波について」山本尚明、歴史地震、19, 153-160, 2003

瀬戸内海沿岸に影響を及ぼしたと考えられる既往津波高

				(単 位 : m)					(単位 : m)					(単位:m)
県	市町村名	地名	1707 年 宝永地震	1854 年 安政南海	1946 年 昭和南海	県	市町村名	地 名	1707 年 宝永地震	1854 年 安政南海	1946 年 昭和南海	県	市町村名	地名	1707 年 宝永地震	1854 年 安政南海	1946 年 昭和南海
愛媛県	西条市	西条	1-2*			徳島県	海陽町	浅川	6 - 7	6.5-7.2	4.7-5.3	高知県	須崎市	多ノ郷	8.7	7.1-8.4	3.5
	西条市	壬生川	1-2**				海陽町	那佐 那佐大師堂		5.5			須崎市	須崎	8	5.5	4.4
	松山市	三津浜		1.5*	1.2*		海陽町	那 佐			4.2		須崎市	安和			5.1
	松前町	松前		2*	1.5		海陽町	鞆 浦	3	3.5	2		中土佐町	久礼	7.5-8	5.6-8.3	2.3,3.7
	伊马市	伊马		2 9 5 [®]			海陽町	宍 喰			3.6		中土佐町	上ノ加江		5-6	2.5-3.1
	の声町	(ア)	-	2.5			海陽町	宍喰 願行寺	5.5				中土佐町	矢 井 賀		7.8	
	发用可 西面町	石小 法会	-	3.5-4			海陽町	宍喰 鈴ヶ峯桜の本		5.3			四万十町	興 津		6	4.3
	发出可	199 月 次 油		2 - 3			海陽町	宍喰 宍喰川上流		4.5			黒潮町	佐賀			4.7
	发出可	休 m		4-5			海陽町	宍喰 八幡		3.6			黒潮町	伊田		5-6	
	发出可	入 尺 目 促		2-3			海陽町	宍喰 祇園拝殿		3.2			黒潮町	上川口			4.9
	2 市 引 空 和 島 市	二、小小	5 1	2 - 3	1.5		海陽町	宍喰 愛宕山		3.9			黒潮町	鞭		8.5	4.0
	字和自市	古 田	5	3 7	1.5		海陽町	天唯 古目大師堂		7.9			黒潮町	入野	8.6	6-6.5	l
	而予市	二 粗	0	0.1	1.0	and free and	海陽町	云 唯 古 目 御 番 所	-	7.7			四万十市	下田		4-5	3.9
	八幡浜市	八幡近			0.9	局 知 県	泉 洋 町	甲油	6	3.6	4.3		土佐清水市	布			2.5
	伊方町	伊方			1.2		室戸町	任喜丧	5		2.9		土佐清水市	下ノ加江	10	7.2	3.7
	伊方町	三崎			1.2		室戸町	椎名			4.8		土佐清水市	大岐	8.1	4.9-5.3	
	伊方町	内の浦			0.7		至戶可	洋 西		0	1.9		土佐清水巾	以布利	10	4.3-4.7	3.1
香川県	内海町	内海	2.*				至尸可	至伴	6-7	3	2		土佐清水市	注 津	0.0	4.4	l
L 7171	直島町	百島	-	1 %			宗十利司	宗十利			0.0		工佐清水巾	大供	8.6	5	0.0
	直动力	宮 松	1.0 😤	1 5 2	0.0		女田可	安田			2.3		工佐清水巾	工任育不	ъ	4	2.3
	同位巾 宜れま	南位	1.0	1.5	0.9		安芸市	アルホ	6 - 7	5	3		工佐清水巾	下 益 對 一 kk	7	4-5	2
	高松巾	施行	1.8~				女 云 巾 黍 南 市	5 云 毛 站	6-7	5	3 3		工佐清水巾	二吋	1	5-6	3
	高松市	· 查 也		1.3**			香雨市	于如	9 3	0	0.0		工佐清水巾	下川山 目之川	1-8	4-5	3
	坂 出 帀	木沢浦		1 **			孟南市	- 区 条	5.5	5	1.5		上佐頂水巾	良 / 川	8	4	
	坂出市	浜西		1.5 **			香南市	赤岡	4-5	4	1.0		工任佰小中	大伴	'	4	2 5
	丸亀市	丸亀	2 *				香南市	ま川	4-5				大方可	白色白		2 2	3.0
徳島県	鳴門市	撫 養		1-2	0.9		南国市	土市	7-8				左五市	行向		3.3	1.8
	徳島市	徳島		1-2	1.4		高知市	仁井田	6-7				宿毛市	ハイタカ神社	9.8	3.9	2.5
	小松島市	小松島		1.5-2	2		高知市	種崎	5-6		1.7		宿毛市	清宝寺	4 5-5 5	0.2	2.0
	阿南市	中島		4-5			高知市	下田	6-7				宿毛市	和田の鹿	4 1		
	阿南市	橘	3-4	3	4		高知市	吸江	6-7				宿毛市	天神社		3	
	阿南市	椿泊			3.7		高知市	一宮	7.7				宿毛市	河戸堰		3.5-4	
	美波町	阿部		5.5			高知市	潮江	5-6		1.3	L	10 0 11	177 83			L
	美波町	由岐	6-7	7-8	4		高知市	高知	2-3	3	0.5						
	美波町	由岐長円寺		7.2			高知市	御畳瀬	5-6		1.3						
	夫 波 町	田岐八幡神住		7.7			高知市	藻州渴		5	2.2						
	夫 波 町	出开 観音		4.3			高知市	浦戸	5-6	4.5-5	1.8						
	夫 波 町	山 开	0.7		2		高知市	桂 浜	5-6	4.5-5							
	夫改可	木 岐 土 社 ガ ヘ キ	6-7	0.5	4.2		高知市	甲殿	5-6	5	4.3-5.1						
	天波司	小哎 建茚可		b. 5 6 7			土佐市	宇佐	8-13	5.8-8.9	4.6						
	天波司	小哎 大即應		b. /	9596		土佐市	福島	7-8	7-8	4						
	天改列	白相佐司	6.7	2-3	2.5,3.6		須崎市	奥 浦	3.1								
	午岐町	午収 会社 お見神法	b=/	θ- <i>1</i>	4.5		須崎市	野見			5.6						
	午岐町	中収 杉甩伸杠	3.0				須崎市	押 岡		7-8							
	午岐町	平町 石ケ半 山辺白	8	C	2.6		須崎市	吾井ノ郷	9	7-8							
l	平 岐 町	山之即		0	ა. ხ												

- ○行政機関による既往評価としては、プレート境界付近に想定される地震に伴う津波として内閣府検討会、海域の活断層に想定される地震に伴う津波として大分県(2013)がある。
 - ・内閣府検討会は,プレート境界付近に想定される地震に伴う津波に関する検討のとおり,既往の南海トラフ沿いの津波波源モデルの中で 最大となるよう設定された波源設定の考え方,解析条件等に着目して精査を行った上で,津波波源に組み入れている。
 - ・大分県 (2013) についても, 海域の活断層に想定される地震に伴う津波の検討のとおり, 波源設定の考え方, 解析条件等に着目して精 査を行った上で, 津波波源に組み入れる際に保守側の評価となるよう設定している。

○したがって,行政機関による既往評価については,その内容を精査した上で安全側の評価となっていることを確認又は安全側の評価となるように設定した上で基準津波の策定に反映している。

4. 水路の水理特性による水位変動(管路解析の詳細)

平成27年6月3日 まとめ資料再掲

○損失係数等は以下のとおり。

1 損失係数

水路の形状に応じた各損失係数は、水理公式集[平成11年版](土木学会、1999)、火力・原子力発電所土木構造物の設計-増補改訂版-(電力土木技術協会、1995)、発電水力演習(千秋、1967)に準拠して設定した。

粗度係数は、火力・原子力発電所土木構造物の設計 - 増補改訂版 - (下表)を参考に設定した。

取水量	路の形式	断面流速	貝等の付着代	粗度係数
暗	渠	0.8~2.2m/s	0~20cm (0, 5, 10cmが多い)	0.014~0.027 (0.015, 0.020が多い)
管	路	2.0~3.6m/s	$0 \sim 10 \mathrm{cm}$	0.015~0.018

表 取水路の貝等の付着代と粗度係数 (火力・原子力発電所土木構造物の設計-増補改訂版-より引用・加筆)

暗渠:コンクリート水路 管路:鋼管

2 ピット内の流量公式

・海水ピット堰

水理公式集[平成11年版]p245「台形せきの越流量」に基づき流量を 算出する。

$Q = CBh^{3/2}$		完全越流
$Q = C(\alpha \cdot \mathbf{h'}/\mathbf{h} + \beta)$	$\mathrm{B}\mathrm{h}^{^{3/2}}$	不完全越流
$Q = \gamma CB h' \sqrt{h - h'}$		もぐり越流

Q: 越流量(m3/s), C: 流量係数(m1/2/s), B: 堰の幅(m), h: 越流水深(m), m1: 上流面勾配, m2: 下流面勾配, W: 堰高(m), L: 堰長(m), h': 堰高を基準とする下流水深(m), α, β, γ:定数

図1 台形せきの諸元(水理公式集[平成11年版]より抜粋)

表1 台形せきの越流状態とh'/hの関係および定数値 (水理公式集[平成11年版]より抜粋)

上流面勾配 <i>m</i> 1		完全越流	不完全越流			もぐり)越流	
	下沉田勾配 m ₂	h' /hの範囲	h' /h の範囲	定 数		ト//トの筋囲	定 数	
	~	れ / れの単四	n /n of arrest	α	β		γ	
$0 \sim 4/3$	$\geq 5/3$	~0.6	0.6~0.7	-0.030	1.018	0.7~	2.6	
$0 \sim 2/3$	1/1 付近	~0.45	0.45~0.8	-0.200	1.090	0.8~	2.6	
0~1/3	2/3 付近	~0.25	0.25~0.8	-0.124	1.032 🏷	0.8~	2.6	
$m_1 = m_2 = 0$, $h/L < 1/2$	~2/3		-		2/3~	2.6	

・フラップゲート

水理公式集(平成11年版)における「水平水路床のゲート」のスルース ゲートに基づき流量を算出する。フラップゲートの挙動を再現するため, 順流側の場合は開度100%,逆流側の場合は開度0%と設定する。

- $Q = CaB\sqrt{2gh_0}$ 自由流出
- $Q = C_1 a B \sqrt{2gh_0}$ もぐり流出
- Q:流量(m3/s), a:ゲートの開き, C, C1:流量係数, B:流出幅, h0:上流水深, h2:下流水深

図2 スルースゲートからの自由流出

○除塵装置によるスクリーン損失の有無,管路への貝付着の有無,ポンプ取水量など,ピット内水位に影響がある 条件については,以下の考えにより設定した。

	計算条件	条件設定
	スクリーン損失	・スクリーン損失を考慮するケースおよび考慮しないケースの両ケースを解析。
海水	貝付着	・定期的に管路の除貝清掃を実施していることから,貝付着あり/なしの両ケースを 解析。
系取水	海水ピット堰	・津波, 地震に対して強度を有する海水ピット堰が常設されているため, 海水ピット堰 ありを選定。
路	海水ポンプ等の 運転状態	・ブラックアウトシーケンス作動による海水ポンプ4台運転状態,通常の海水ポンプ2 台運転状態に加え,海水ポンプ2台運転+海水取水ポンプ1台運転状態の3ケースを 解析。
循	スクリーン損失	・スクリーン損失を考慮するケースおよび考慮しないケースの両ケースを解析。
環水系	貝付着	・定期的に管路の除貝清掃を実施していることから貝付着あり/なしの両ケースを 解析。
取水路	循環水ポンプの 運転状態	・ピット内の水位が高くなる循環水ポンプ停止中を基本ケースとして選定。 ・タービン建屋への浸水量評価において考慮することから, 運転中のケースも解析。
14	放水ピット・放水路の貝付着	・管路の除貝清掃を実施していないことから貝付着ありを選定。
<u>欣</u> 水路	循環水ポンプの 運転状態	・ピット内の水位が高くなる循環水ポンプ運転中を基本ケースとして選定。 ・タービン建屋への浸水量評価において考慮することから,停止中のケースも解析。

○前述の条件に基づく計算結果一覧は下表のとおり。

①-a 海水系取水路(水位上昇側)

・スクリーンありの場合

	津	波計算				管路解析				地盤
水平渦動粘性	海底	副性率		スクリーン指生	目付差	海水ピット堰	ポンプ	取水量	TP(m)	也盛 亦動昰
	加尼	(N/m^2)	波源	あり/なし	「気」に加加していた。	あり/なし	海水	海水取水	1.1. (11)	<u> </u>
床奴 (III / S)				0,77 0.0	0,77 0.0	0,77 0,0	ポンプ	ポンプ	最高	(11)
			海域活断層						3.34	-0.40
			地すべり				2台	0台	2.26	0.00
			重畳						3.06	-0.40
			海域活断層						3.32	-0.40
			地すべり		考慮する		2台	1台	2.25	0.00
			重畳						3.04	-0.40
			海域活断層						3.04	-0.40
			地すべり			,	4台	0台	2.16	$\begin{array}{c} -0.40\\ 0.00\\ -0.40\\ -0.40\\ 0.00\\ -0.4$
0	新	3.3×10^{10}	重畳	有り		有※。			2.92	-0.40
0	191	0.0 × 10	海域活断層	, , , , , , , , , , , , , , , , , , , ,		(0.2005m ²)			4.13	-0.40
			地すべり				2台	0台	2.42	0.00
			重畳						3.92	-0.40
			海域活断層				0.4	4.4	4.10	-0.40
			地すべり		考慮しない		2台	「台	2.41	0.00
			重置						3.85	-0.40
			<u>海域沽断層</u>				A />	0.45	3.88	-0.40
			地すべり				4台	∪台	2.34	0.00
			重置						3.47	-0.40
※海水ピット堰フラ	ップゲー ** エ=====	トの有効開口面	う積について、海	○波源の違い	いによる影響は	、海域活断層>	重畳>地す	べりであった。		
水ヒット堰の美福	幾 て試験	こ奉つく半均値	(0.2005m ²)を用	〇貝付着の有	まの影響は、	貝付着なし>貝	何看ありであ	った。		

水ピット堰の実機大試験に基づく平均値(0.2005m²)を用 いていたが、スクリーンなしの場合については、より安全 側の数値である最小値(0.1810m²)を用いた。

| ○ボンブ運転状態(取水量)は海水ポンプ2台運転が最も厳しくなった。 | 以上より、スクリーンなしの場合について、以下のケースを代表ケースとして選定し解析した。

・スクリーンなしの場合

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>20 H</b>			$\checkmark$								
	津	波計算											
水平渦動粘性	海底	剛性率		スクリーン損失	目付差	海水ピット堰	ポンプ取水量		TP(m)	心盛 亦動量			
	<i>海</i> 丞 地形	$(N/m^2)$	波源	あり/なし	し 気 付 加 し し し し し し し し し し し し し し し し し し	あり/なし	海水	海水取水	1.1. (11)	<u> </u>			
示奴(  1 / 5/					0,077 0,00	3	ポンプ	ポンプ	最高	(11)			
0	文丘	$2.2 \times 10^{10}$	海域活断層	4000	老虎したい	有※	2台	0台	4.30	-0.40			
0	利	$3.3 \times 10$	重畳		ち慮しない	(0.1810m ² )	2台	0台	3.91	-0.40			

○スクリーンなしのケースでは、スクリーンありのケースに比べて、水位変動が17cm大きくなった。海水ピットポンプ室の入力津波の設定にあたっては 最も厳しいケースである、スクリーンなし、貝付着なし、海水ポンプ2台、波源は海域活断層の場合のT.P.+4.30mとする。

## ①-b 海水系取水路(水位下降侧)

#### ・スクリーンありの場合

	津	波計算				管路解析				ከር ሰሌ
水亚渦動粘性	海底	副性率		スクリーン損生	目付着	海水ピット堰	ポンプ	取水量	ビット内水1业 TP(m)	地盛 変動量
	地形	$(N/m^2)$	波源	あり/なし	あり/なし	あり/なし	海水	海水取水	1.1. (11)	<u> </u>
床致 (III / 3)				0,0,7,7, 0,00	0,077 0,00	0,0,0	ポンプ	ポンプ	最低	(11)
			海域活断層						-2.66	0.34
			地すべり				2台	0台	-1.92	0.00
			重畳						-2.62	0.34
			海域活断層			有			-2.81	0.34
			地すべり			$(0.2005m^2)$	2台	1台	-1.94	0.00
			重畳			(0.2003111)			-2.67	0.34
			海域活断層						-3.13	0.34
			地すべり			4台     0台	-2.24	0.00		
			重畳		老歯する				-3.25	0.34
			海域活断層		う 心 う 心				-3.38	0.34
			地すべり	活断層 <u>すべり</u> <u></u>			2台	0台 1台 0台	-2.30	0.00
			重畳						-3.31	0.34
			海域活断層						-3.38	0.34
			地すべり			無	2台 1台	-2.32	0.00	
			重畳						$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.34
			海域活断層							
			地すべり				4台	0台	-2.44	0.00
0	新	$3.3 \times 10^{10}$	重畳	有り					-3.38	0.34           0.00           0.34           0.034           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34           0.34
			海域活断層				0.4	o //	3.38           1台        2.32          3.31        3.46           0台        2.44          3.38        2.71           0台        1.91          2.61        2.82	0.34
			地すべり				2台	0台		0.00
										0.34
			海域沽断層			有	0 ()	1 />	-2.82	0.34
			地すべり			(0.2005m ² )	2百		-1.93	0.00
						· · · ·			-2.67	0.34
			<u>海 观 活 断 層</u>				14	0.4	-3.12	0.34
			<u>地すべり</u> 壬里				4百	08	$\begin{array}{r} -2.44 \\ -3.38 \\ -2.71 \\ -1.91 \\ -2.61 \\ -2.82 \\ -1.93 \\ -2.67 \\ -3.12 \\ -2.21 \\ -3.22 \end{array}$	0.00
					考慮しない				-3.22	0.34
			一世以近町唐				24	04	-3.44	0.04
			<u> 地 9 八 9</u> 舌 思				20		-2.37	0.00
									-3.30	0.34
			一世以近と同じ			毎	24	1台	-3.44	0.34
			<u> 地 9 ハ 9</u> 舌 単			***	4 🗆	' 🗆	-2.39	0.00
									-3.30	0.34
			一世境内的層				4台	0台	-3.52	0.04
			<u> 地 9 ハッ</u> 舌 単				70		-2.30	0.00
			里直						-3.30	0.34

○波源の違いによる影響は、海域活断層もしくは重畳が厳しくなった。
 ○貝付着の有無の影響は、貝付着あり・なしのどちらかが厳しくなった。
 ○ポンプ運転状態(取水量)は海水ポンプ4台運転が最も厳しくなった。
 以上より、スクリーンなしの場合について、以下のケースを代表ケースとして選定し解析した。

・スクリーン	なしの	場合					$\checkmark$								
	津	波計算						ተተ ወጉ							
水亚冯勐粘性	海底	副性家		フクリーン指生	日付差	海水ピット恒	ポンブ	取水量	TP(m)	^也 监 亦					
	<i>海</i> 戍 抽形	$(N/m^2)$	波源		東南省ありノた日	ありくたい	海水	海水取水	1.1. (11)	_					
休奴 (11 / 5)	2017				w)// &C		ポンプ	ポンプ	最低						
			海域活断層		老虐したい				-3.14	0.34					
0	≠⊏	$2.2 \times 10^{10}$	重畳	<u></u>	与慮しない	有	14	<u>٥</u>	-3.24	0.34					
0	利	3.3 × 10	海域活断層	無し	老虐オる	(0.1810m ² )	4 🗖	UЦ	-3.15	0.34					
			重畳		ち思りる				-3.25	0.34					

#### ・スクリーンありの場合(フラップゲート有効開口面積見直しの影響評価)

	津波計算				管路解析					
水平渦動粘性	海底	副性率		スクリーン損失	目付着	海水ピット堰	ポンプ取水量		TP(m)	^也 盈 変動量
係数 (m ² /s)	地形	$(N/m^2)$	波源	あり/なし	あり/なし	あり/なし	海水	海水取水		<i>文勁重</i> (m)
							ポンプ	ポンプ	最低	. ,
0	<del>¢⊊</del>	2.2 × 10 ¹⁰	壬里	<b></b>	老虐す z	有 (0.1810m ² )	14	04	-3.26	0.34
0	利	3.3 × 10		有り	ち思りる	有 (0.2005m ² )	4 0		-3.25	0.34

○スクリーンありのケースについて、海水ピット堰フラップゲートの有効開口面積を海水ピット堰の実機大試験に基づく平均値(0.2005m²)から最小値( 0.1810m²)に変更し、解析した。

○その結果、海水ピットポンプ室の水位は、スクリーンあり、貝付着あり、海水ポンプ4台、波源は重畳の場合のT.P.-3.26mが最も厳しくなったためこれを海 水ピットポンプ室(水位下降側)の入力津波として設定する。



#### ・スクリーンなしの場合(海水ピット堰あり)(再掲)

	津	波計算								
水平渦動粘性	海底	副性家		スクリーン指生	目付差	海水ピット堰	ポンプ	取水量		也盛 亦動景
	加形	$(N/m^2)$	波源	あり/なし	「気」「加」」	あり/なし	海水	海水取水	1.1. (11)	
示奴 (11 / 3/					377 50	0,77 0,0	ポンプ	ポンプ	最低	
0			海域活断層		老歯したい				-3.14	(m) 0.34 0.34
	女に	2221010	重畳	<u></u>	ち思しない	有	14	04	-3.24	0.34
	和「	$3.3 \times 10^{10}$	海域活断層	無し	* = + 7	(0.1810m ² )	4台	U d'	-3.15	0.34
			重畳		ち思りる				-3.25	0.34

○海水ピット堰の津波防護施設としての有効性を評価するため、スクリーンなしの場合(海水ピ ット堰あり)で選定した4ケースについて、「海水ピット堰なし」として解析した。

#### ・スクリーンなしの場合(海水ピット堰なし)

	津波計算				管路解析					
水亚渦動粘性	(平渦動粘性) 海底 剛性率			スクリーン指生	日付差	海水ピット堰	ポンプ	取水量	TP(m)	也盛 亦動景
	油心 地形	$(N/m^2)$	波源	あり/なし	「良い酒」	あり/なし	海水	海水取水	1.1. (11)	<i>友</i> 動重 (m)
示致 (   / 3/				0.0	0,77 0,0		ポンプ	ポンプ	最低	(11)
			海域活断層		老虎したい				-3.77	0.34
0	☆⊂	0.01/10/10	10 ¹⁰ <u>重畳</u> 海域活断層	Áпт I	ち思しない	<u>/π</u>	14	04	-3.76	0.34
U	析厂	3.3 × 10		無し	老虐する	卅	4 🗖		-3.55	0.34
			重畳		ち思9る				-3.47	0.34

○海水ピット堰なしの場合、T.P.-3.77mが最も厳しくなった。これに地盤変動量として0.34mの隆起を考慮した場合、水位はT.P.-4.11mとなり、海水ポンプの取水可能水位T.P.-4.10mを一時的に下回るため、海水ピットに海水ピット堰を設置する。



## ② 循環水系取水路

	津	波計算				ピットロナは	生生	
水平渦動粘性 係数 (m ² /s)	海底 地形	剛性率 (N/m ² )	波源	スクリーン損失 あり/なし	貝付着 あり/なし	循環水ポンプ 運転状態	T.P. (m) 最高	^{地盈} 変動量 (m)
			发出过度			停止時	3.64	-0.36
			<b>海</b> 域 活 断 唐			運転時	1.44	-0.36
			またい	<b></b>		停止時	2.65	0.00
			地すべり	有り		運転時	0.71	0.00
			舌里			停止時	3.80	-0.36
					考慮する	運転時	1.25	-0.36
			治抗汛害国			停止時	3.77	-0.36
			/ 世域/ 百断 唐			運転時	1.88	-0.36
			地すべり	無し		停止時	2.78	0.00
	新	3.3×10 ¹⁰		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1.15	0.00
			重畳				4.21	-0.36
0							1.84	-0.36
			海域活断層			停止时 	3.80	-0.36
				-			1.90	-0.36
			地すべり	有り			1.26	0.00
						停止時	436	-0.36
			重畳				1.99	-0.36
			次计试验员		考慮しない		4.31	-0.36
			<i></i>			運転時	2.49	-0.36
		-	地すべけ	4##1		停止時	3.04	0.00
			モットラ	無し		運転時	1.70	0.00
			香墨			停止時	4.87	-0.36
			主旦			運転時	2.65	-0.36

○波源は海域活断層もしくは重畳の影響度合いが大きく、スクリーン損失及び貝付着はいずれもなしのほうが厳しくなった。循環水ポンプ運転状態は停止時のほうが厳しくなることがわかった。
 ○以上の結果より、最も厳しいスクリーンなし、貝付着なし、循環水ポンプ停止時、波源を重畳とした場合の取水ピット水位T.P.+4.87mを入力津波として選定する



## ③ 放水路

津波計算				管路解析	ピットロットは	书户 敬公	
水平渦動粘性	海底	剛性率 (N/m ² )	波源	目付着	循環水ポンプ	T.P. (m)	^{也盈} 変動量 (m)
	비민기가			8397 AC	建和17.88	最高	
			海域活断層		停止時	3.36	-0.39
					運転時	4.07	-0.39
0	新	$22 \times 10^{10}$	ますべい	老唐する	停止時	2.33	0.00
0		3.3 × 10	起すべり		運転時	3.18	0.00
			千里		停止時 3.35		-0.39
					運転時	4.02	-0.39

○波源は海域活断層の影響度合いが大きく、循環水ポンプ運転状態は運転時のほうが厳しくなることがわかった。
○以上の結果より、循環水ポンプ運転時、波源を海域活断層とした場合の放水ピット水位T.P.+4.07mを入力津波として選定する



# 5. 砂移動に対する評価に関する補足





平成27年6月3日 まとめ資料再掲

○環境影響調査書の底質に関する記述を以下に整理する。

・第一に,環境影響調査書(S58.4)においては,下図に示す調査点で底質調査が行われているが,化学的酸素要 求量等の環境に関する調査項目が主であり,土粒子の比重及び中央粒径については整理されていない。

底質調査測点位置 (調査時期:昭和56年8月,11月,昭和57年2月,5月)(環境影響調査書(858.4)より抜粋)





- ・第二に,環境影響調査書(S58.4)においては,底質の分布状況に関する調査が行われており、下図に示す東西約 3.5km×南北約1.5kmの範囲について底質分布図が作成されている。前頁同様,土粒子の比重及び中央粒径に ついては整理されていない。
- ・底質分布図によると,汀線際には主に岩・石が,沖合には主に砂がそれぞれ分布しており,前述のとおり設定した 土粒子の比重及び中央粒径を東西約10km×南北約5kmの広範囲にわたって層厚25mと仮定して分布させるこ とは安全側と考えられる。



88





## 影響検討① 変動を考慮した試算による評価

- ○砂移動計算に用いる土粒子の比重及びD50の値については、発電所増設時に実施した海上ボーリング 調査結果に基づいている。増設後においても、底質の堆積環境や供給源の土質が著しく変わることは ないと考えられるものの、変動を考慮した試算を実施する。
- ○既往の砂移動計算の結果から、最大堆積厚が大きい基準津波として、水位下降側(重畳津波 重畳ケースE)のうち藤井ほか(1998)・浮遊砂上限体積濃度5%を代表ケースとして試算を行う。また、複数の手法で確認する観点から、同ケースについて高橋ほか(1999)の手法でも試算を行う。
- ○土粒子の比重及び中央粒径D50の変動については、海上ボーリング調査結果に基づき 「採用値-1.0×標準偏差」として下表のとおり設定した。

	土粒子の比重	<b>中央粒径</b> D50 (mm)
採用値	2.9	0.27
採用値-1.0×標準偏差	2.85	0.11

D50は「土の粒度試験方法 (JIS A 1204)」を参考に対数標準偏差を考慮

○計算結果を次頁に示す。変動を考慮した場合でも、海水取水口における最大堆積量は0.5mより十分 小さいことから、砂の堆積高さが海水取水口下端に到達することはないと評価できるため、海水ポンプ の取水性に影響を及ぼすことはない。







本資料のうち、枠囲み[__]の内容は商業機密または 核物質防護情報に属しますので公開できません。

## 基準津波

・水位下降側 重畳津波(重畳ケースE*)

·浮遊砂上限体積濃度5%

※ 重畳ケースE: 【敷地前面海域の断層群+伊予セグメント】傾斜角:北75度, すべり角:195度【豊予海峡】傾斜角:90度, すべり角:150度【別府地溝南縁】傾斜角:北75度, すべり角:-90度【別府湾断層帯】傾斜角:南75度, すべり角:-90度【地すべり地点】③(海岬)【評価手法】二層流【時間差】71秒

	藤井ほか(1998)										
	採用値(比重:2.9, D50:0.27mm)	採用値-1σ(比重:2.85,D50:0.11mm)									
最大堆積量											
最大浸食量											





本資料のうち,枠囲み[__]の内容は商業機密または 核物質防護情報に属しますので公開できません。

## 基準津波

- ・水位下降側 重畳津波(重畳ケースE*)
- ·浮遊砂上限体積濃度5%

※ 重畳ケースE: 【敷地前面海域の断層群+伊予セグメント】傾斜角:北75度, すべり角:195度【豊予海峡】傾斜角:90度, すべり角:150度【別府地溝南縁】傾斜角:北75度, すべり角:-90度【別府湾断層帯】傾斜角:南75度, すべり角:-90度【地すべり地点】③ (海岬)【評価手法】二層流【時間差】71秒

	高橋ほか	v(1999)
	採用値(比重:2.9, D50:0.27mm)	採用値-1σ(比重:2.85, D50:0.11mm)
最大堆積量		
最大浸食量		

# 土粒子の比重及びD50の変動による影響検討



## 影響検討② 表層しか洗掘されないことを考慮した評価

○既往の砂移動計算の結果,表層しか洗掘されないことが分かったため,海上ボーリング調査の結果のうち,表層 の結果のみを対象とした平均値を整理し,影響検討を行う。既往の砂移動計算における最大浸食深が約1.1m であることから,深度0~2mの結果について整理することとした。

○整理の結果,深度0~2mの平均値は,土粒子の比重が2.86,中央粒径D50が0.62mmとなる。

○これらの値は,採用値(土粒子の比重:2.9, 中央粒径D50:0.27mm)と比較して,ほぼ同 じまたはやや大きい値である。

したがって,採用値の場合と比較して最大堆 積量がやや変動することが考えられるが,採用 値の場合の最大堆積量が0.01m以下と極めて 小さいことから,変動した場合でも海水ポンプ の取水性に影響を及ぼすことはないと評価で きる。

○なお、念のため土粒子の比重を2.86、中央粒 径D50を0.62mmとして砂移動計算を実施した ところ、既往検討と同様、海水取水口における 最大堆積量が0.5mより十分小さいことを確認 したことから、砂の堆積高さが海水取水口下端 に到達することはないと評価できるため、海水 ポンプの取水性に影響を及ぼすことはない。

調査は	也点	<b>深度</b> (m)	<b>中央粒径</b> D50 (mm)	土粒子の 比重		調査地点		<b>深度</b> (m)	<b>中央粒径</b> D50 (mm)	土粒子の 比重
\$57.7	C-1	4.15~4.45	0.45	2.983				10.50~11.00	0.085	2.884
S57.8	C-2	0.00~1.00	0.57	2.807				11.15~11.45	0.075	2.862
		6.15~6.45	0.17	2.948				11.50~12.00	0.067	2.919
\$57.7	C-5	6.50~7.00	0.16	2.953				12.15~12.45	0.075	2.872
		7.15~7.45	0.19	2.947				12.50~13.00	0.057	2.934
		0.15~0.45	0.65	2.838				13.15~13.45	0.083	2.908
		0.50~1.00	0.24	2.848				13.50~14.00	0.14	2.935
		1.15~1.45	0.62	2.905				14.20~15.00	0.15	2.906
		1.50~2.00	1.00	2.885				15.15~15.45	0.16	2.917
		2.15~2.45	0.6	2.864				15.50~16.00	0.17	2,929
		2.50~3.00	0.44	2.894		\$57.7		16.15~16.45	0.18	2.924
		3.15~3.45	0.70	2.885				$16.50 \sim 17.00$	0.15	2 931
		3.50~4.00	0.72	欠測			C-7	17 15~17 45	0.21	2 924
		3.50~4.00	0.19	2.878				17 50~18 00	0.17	2 9 2 5
\$57.7	C-7	4.15~4.45	0.48	2.838				18 15~18 45	0.22	2 9 1 7
		4.50~5.00	0.52	2.88				18 50~19.00	0.21	2.017
		5.15~5.45	0.39	2.828				10.50~19.00	0.21	2.925
		5.50~6.00	0.25	2.828				10 50 - 20 00	0.22	2.317
		6.15~6.45	0.15	2.802				19.50~20.00	0.22	2.921
		6.50~7.00	0.15	2.835				20.15~20.45	0.32	2.934
		7.05~7.90	0.13	2.824				20.50~21.00	0.18	2.926
		8.15~8.45	0.10	2.836				21.15~21.45	0.26	2.933
		8.50~9.00	0.13	2.841				21.50~22.00	0.25	2.938
		9.05~9.75	0.12	2.851				22.15~22.45	0.25	2.936
		10.15~10.45	0.085	2.807				22.50~23.00	0.23	2.932

粒径が砂以下の試料(岩盤や礫を除く試料)について整理(C-3,C-4,C-6,C-8,C-9,C-10では全深度で岩盤や礫のみが出現する)。





本資料のうち、枠囲み
こ_]の
内容は商業機密または
核物質防護情報に属しますので
公開できません。

## 基準津波

- ・水位下降側 重畳津波(重畳ケースE*)
- ·浮遊砂上限体積濃度5%

※ 重畳ケースE: 【敷地前面海域の断層群+伊予セグメント】傾斜角:北75度, すべり角:195度【豊予海峡】傾斜角:90度, すべり角:150度【別府地溝南縁】傾斜角:北75度, すべり角:-90度【別府湾断層帯】傾斜角:南75度, すべり角:-90度【地すべり地点】③ (海岬)【評価手法】二層流【時間差】71秒







本資料のうち, 枠囲み[__]の内容は商業機密または 核物質防護情報に属しますので公開できません。

## 基準津波

- ・水位下降側 重畳津波(重畳ケースE*)
- ·浮遊砂上限体積濃度5%

※ 重畳ケースE: 【敷地前面海域の断層群+伊予セグメント】傾斜角:北75度, すべり角:195度【豊予海峡】傾斜角:90度, すべり角:150度【別府地溝南縁】傾斜角:北75度, すべり角:-90度【別府湾断層帯】傾斜角:南75度, すべり角:-90度【地すべり地点】③(海岬)【評価手法】二層流【時間差】71秒

	高橋ほか(1999)									
	採用値(比重:2.9, D50:0.27mm)	表層値(比重:2.86, D50:0.62mm)								
最大堆積量										
最大浸食量										

# 土粒子の比重及びD50の変動による影響検討



## 影響検討③ 最新の調査結果を踏まえた評価

○影響検討②で述べたとおり、既往の砂移動計算の結果、表層しか洗掘されないことが分かった。伊方発電所では、環境調査として水質、泥質、海藻類等の調査を定期的に行っており、その一環として表層の底質を採取する底質調査を行っている。至近の底質調査の結果によれば、土粒子の比重が2.84、中央粒径D50が0.38mm(いずれも至近5か年の平均値)である。

○これらの値は,採用値並びに影響検討①及び②で整理した値の概ね範囲内である。

○したがって、最新の調査結果を踏まえても、既往検討と同様、砂移動により海水ポンプの取水性に影響 を及ぼすことはないと評価できる。





# 6. 計算結果一覧



6. 計算結果一覧 計算結果一覧

#### 平成27年6月3日 まとめ資料再掲

# ○すべての波源のすべての計算結果を次頁以降に示す。 ○各波源の最も厳しいケースの中から適切に基準津波が策定されている。



6. 計算結果一覧

# 3.1 プレート境界付近に想定される地震に伴う津波



最大水位上昇量・下降量 (評価地点及び波源別)

朔望平均満干潮位を考慮

最高·最低水位 (評価地点及び波源別)

6. 基準津波

検討ケース					21 プレート使用けにに相中		
			水位。	上昇側		水位下降側	される地震に伴う津波
		3号炉 敷地前面	3号炉 海水取水口	3号炉 T/B復水 器取水先端	3号炉 放水口	3号炉 海水取水口	3.2 海域活断層に想定 される地震に伴う津波
南海トラフの巨大地震に伴う津波 (内閣府検討会 ケース⑤)		<u>+0.83m</u> [-0.84m]	<u>+0.76m</u> [-0.84m]	<u>+0.76m</u> [-0.84m]	<u>+0.77m</u> [-0.84m]	<u>-0.86m</u> [-0.84m]	4.1 火山の山体崩壊に 伴う津波
	ケース1	+0.40m [-0.06m]	+0.37m [-0.06m]	+0.38m [-0.06m]	+0.37m [-0.06m]	-0.36m [-0.06m]	4.2 地すべりに伴う津波
琉球海溝Mw9.0の 地震に伴う津波	ケース2	+0.40m [-0.06m]	+0.38m [-0.06m]	+0.38m [-0.06m]	+0.38m [-0.06m]	-0.35m [-0.06m]	
	ケース3	+0.39m [-0.06m]	+0.38m [-0.06m]	+0.37m [-0.06m]	+0.37m [-0.06m]	-0.35m [-0.06m]	5. 重畳津波
下線・ター次評価地占における地盤変動景を	老膚した最も厳しいケーマ						

[]内の数値は伊方発電所における地盤変動量(+が隆起, ーが沈降)





# ^{...} *3.1 プレート境界付近に想定される地震に伴う津波*



【3号炉敷地前面(水位上昇側)】 南海トラフの巨大地震に伴う津波(内閣府検討会 ケース⑤)



【3号炉放水口(水位上昇側)】 南海トラフの巨大地震に伴う津波(内閣府検討会 ケース⑤)



【3号炉海水取水口 (水位下降側)】 南海トラフの巨大地震に伴う津波 (内閣府検討会 ケース⑤)



南海トラフの巨大地震に伴う津波(内閣府検討会 ケース⑤) η(m)

【3号炉海水取水口(水位上昇側)】



#### 【3号炉T/B復水器取水先端(水位上昇側)】 南海トラフの巨大地震に伴う津波(内閣府検討会 ケース⑤)



#### 【基準津波定義地点】 南海トラフの巨大地震に伴う津波(内閣府検討会 ケース⑤)



# 3.2 海域活断層に想定される地震に伴う津波

・概略パラメータスタディ

****~~7		一次評価地点									
【 <b>央</b> 討・				水位下降側							
<b>傾斜角</b> * (度)	<b>すべり角</b> * (度)	3号炉 敷地前面	3号炉 海水取水口	3号炉 T/B復水器 取水先端	3号炉 放水口	3号炉 海水取水口					
	170	+4.14m [-0.24m]	+2.12m [-0.25m]	<u>+1.48m[-0.24m]</u>	<u>+1.68m[-0.24m]</u>	-1.08m [-0.25m]					
<b>北</b> 80	180	+0.41m[±0.00m]	+0.39m [±0.00m]	+0.37m [±0.00m]	+0.38m [±0.00m]	-0.62m[±0.00m]					
	190	+0.80m [+0.25m]	+0.73m [0.25m]	+0.73m [0.25m]	+0.72m [0.25m]	<u>-1.72m [0.25m]</u>					
	170	<u>+4.11m [-0.28m]</u>	<u>+2.11m [-0.28m]</u>	+1.41m [-0.28m]	+1.64m [-0.28m]	-1.06m [-0.28m]					
90	180	+0.43m [+0.01m]	+0.40m [0.01m]	+0.38m [0.01m]	+0.40m [0.01m]	-0.61m [0.01m]					
	190	+0.77m [+0.29m]	+0.70m [0.30m]	+0.71m [0.30m]	+0.69m [0.30m]	-1.61m [0.30m]					
	170	+3.86m [-0.30m]	+1.93m [-0.30m]	+1.25m [-0.30m]	+1.48m [-0.30m]	-1.03m [-0.30m]					
南80	180	+0.44m [+0.02m]	+0.41m [0.02m]	+0.39m [0.02m]	+0.41m [0.02m]	-0.59m [0.02m]					
	190	+0.82m [+0.33m]	+0.80m [0.34m]	+0.80m [0.34m]	+0.80m [0.34m]	-1.44m [0.34m]					

<u>下線</u>:各一次評価地点における地盤変動量を考慮した最も厳しいケース

[]]内の数値は伊方発電所における地盤変動量(+が隆起, -が沈降)

※ 敷地前面海域の断層群(中央構造線断層帯:海域部)のうち敷地前面海域の断層群及び伊予セグメントのパラメータであり、別府一万年山断層帯は基準断層モデルと同じ。

wand? 10 20 30 40 50 km 基準断層モデル

3.1 プレート境界付近に想定 される地震に伴う津波 3.2 海域活断層に想定 される地震に伴う津波 4.1 火山の山体崩壊に 伴う津波 4.2 地すべりに伴う津波 5. 重畳津波 最大水位上昇量·下降量 (評価地点及び波源別) 朔望平均満干潮位を考慮 最高·最低水位 (評価地点及び波源別) 6. 基準津波

平成27年6月3日

まとめ資料再掲

# 3.2 海域活断層に想定される地震に伴う津波

#### ・詳細パラメータスタディ

検討ケース									
1天		~		水位下降側					
傾斜角 (度)	<b>9</b> *1 )	すべり 角 ^{※1} (度)	3号炉 敷地前面	3号炉 海水取水口	3号炉 T/B復水器 取水先端	3号炉 放水口	3号炉 海水取水口		
		165	<u>+5.94m [-0.33m]</u>	+3.52m [-0.34m]	+2.26m [-0.33m]	+2.73m [-0.33m]	/		
치	<b>Ľ</b> 75	170	+4.06m [-0.22m]	+2.07m [-0.23m]	+1.48m [-0.22m]	+1.66m [-0.22m]			
		175	+1.98m[-0.11m]	+0.94m [-0.11m]	+0.70m [-0.11m]	+0.77m [-0.11m]			
*	2	165	+5.90m [-0.36m]	+3.59m [-0.37m]	+2.25m [-0.36m]	+2.76m [-0.37m]			
치	£80	170	+4.14m [-0.24m]	+2.12m [-0.25m]	+1.48m [-0.24m]	+1.68m [-0.24m]			
		175	+2.00m [-0.12m]	+0.94m [-0.12m]	+0.70m [-0.12m]	+0.77m [-0.12m]			
ζ 7		165	+5.84m [-0.39m]	+3.60m [-0.40m]	+2.20m [-0.39m]	+2.75m [-0.40m]			
, i	<b>Ľ</b> 85	170	+4.14m [-0.26m]	+2.14m [-0.26m]	+1.45m [-0.26m]	+1.68m [-0.26m]			
F J		175	+2.01m [-0.13m]	+0.93m [-0.13m]	+0.68m [-0.13m]	+0.76m [-0.13m]			
*	3	165	+5.83m [-0.42m]	+3.55m [-0.42m]	+2.12m [-0.42m]	+2.69m [-0.42m]			
	90	170	+4.11m [-0.28m]	+2.11m [-0.28m]	+1.41m [-0.28m]	+1.64m [-0.28m]			
		175	+1.99m [-0.13m]	+0.91m [-0.13m]	+0.66m [-0.13m]	+0.74m [-0.13m]			
		165	+5.60m [-0.44m]	+3.45m [-0.44m]	+2.01m [-0.44m]	+2.59m [-0.44m]			
Ē	<b>5</b> 85	170	+4.00m [-0.29m]	+2.05m [-0.29m]	+1.34m [-0.29m]	+1.57m [-0.29m]			
		175	+1.96m [-0.14m]	+0.88m [-0.14m]	+0.62m [-0.14m]	+0.71m [-0.14m]			
		185					-0.95m [+0.11m]		
치	<b>Ľ</b> 75	190	※2 概略パラメー	-タスタディ結果のうち上昇	早側の着目地点		-1.75m [+0.23m]		
		195	13号炉1/日	復水器取水先端」3号	炉放水口」における最も	<b>厳しいケース</b>	<u>-2.39m [+0.34m]</u>		
*	4	185	※3 概略バラメー 「3号炉敷地	-タ人タディ結果のうち上身 も前面」「3号炉海水取水	平側の着目地点 、口」における最も厳しい	ケース	-0.94m [+0.13m]		
치	£80	190	※4 概略パラメー	-タスタディ結果のうち下降	<b>锋側の着目地点</b>		-1.72m [+0.25m]		
		195	「3号炉海水	-2.34m [+0.38m]					
		185							
1	<b>Ľ</b> 85	190					-1.68m [+0.28m]		
		195					-2.27m [+0.41m]		

※ 敷地前面海域の断層群(中央構造線断層帯:海域部)のうち敷地前面海域の断層群及び伊予セグメントのパラメータであり、別府-万年山断層帯は基準断層モデルと同じ。

1 プレート境界付近に想定 される地震に伴う津波

#### 2 海域活断層に想定 れる地震に伴う津波

4.1 火山の山体崩壊に 伴う津波

4.2 地すべりに伴う津波

5. 重畳津波

最大水位上昇量·下降量 (評価地点及び波源別)

朔望平均満干潮位を考慮

最高·最低水位 (評価地点及び波源別)

6. 基準津波

## ◎ ####= 第 <u>3.2 海域活断層に想定される地震に伴う津波</u>

#### 【3号炉敷地前面(水位上昇側)】

(敷地前面海域の断層群, 伊予セグメント) 傾斜角:北75度, すべり角:165度 (別府-万年山断層帯) 基準断層モデルと同じ



【3号炉海水取水口(水位上昇側)】 (敷地前面海域の断層群、伊予セグメント)傾斜角:北85度、すべり角:165度(別府-万年山断層帯)基準断層モデルと同じ



【3号炉T/B復水器取水先端(水位上昇側)】 (敷地前面海域の断層群,伊予セグメント)傾斜角:北80度,すべり角:165度 (別府-万年山断層帯)基準断層モデルと同じ



※ 基準津波定義地点は、3号炉敷地前面(水位上昇側)及び3号炉海水取水口(水位下降側)について最も 厳しい結果を与えるケースの時刻歴水位のみを記載

【3号炉放水口(水位上昇側)】 (敷地前面海域の断層群, 伊予セグメント) 傾斜角:北85度, すべり角:165度 (別府-万年山断層帯)基準断層モデルと同じ



【3号炉海水取水口(水位下降側)】 (敷地前面海域の断層群、伊予セグメント)傾斜角:北75度、すべり角:195度(別府-万年山断層帯)基準断層モデルと同じ







(敷地前面海域の断層群, 伊予セグメント)傾斜角:北75度, すべり角:195度 (別府-万年山断層帯)基準断層モデルと同じ



#### 6. 計算結果一覧

# 4.1 火山の山体崩壊に伴う津波

検討ケース				3.1 プレート倍界付近に相定			
			水位_	上昇側		水位下降側	3.1 ノレート現界的近に認定 される地震に伴う津波
		3号炉 敷地前面	3号炉 海水取水口	3号炉 T∕B復水 器取水先端	3号炉 放水口	3号炉 海水取水口	3.2 海域活断層に想定 される地震に伴う津波
岩海ム フイ	二層流モデル	+ <b>0.04m</b> [±0.00m]	+0.03m [±0.00m]	+0.03m [±0.00m]	+ <b>0.03m</b> [±0.00m]	-0.04m [±0.00m]	4.1 火山の山体崩壊に
崩壊ケースト	Kinematic Landslide モデル	+ <b>0.02m</b> [±0.00m]	+ <b>0.01m</b> [±0.00m]	+0.01m [±0.00m]	+ <b>0.01m</b> [±0.00m]	-0.01m [±0.00m]	
岩塘たってつ	二層流モデル	<u>+0.94m</u> [±0.00m]	<u>+0.91m</u> [±0.00m]	+0.90m [±0.00m]	+0.90m [±0.00m]	<u>-0.71m</u> [±0.00m]	4.2 地すべりに伴う津波
朋康リースと	Kinematic Landslide モデル	+ <b>0.62m</b> [±0.00m]	+ <b>0.61m</b> [±0.00m]	+ <b>0.61m</b> [±0.00m]	+ <b>0.61m</b> [±0.00m]	- <b>0.42m</b> [±0.00m]	
<u>下線</u> :各一次評価地点における地盤変動量を [○]内の数値は伊方発電所における地盤変						5. 重畳津波	





最大水位上昇量・下降量 (評価地点及び波源別)

朔望平均満干潮位を考慮

最高·最低水位 (評価地点及び波源別)

6. 基準津波



【3号炉敷地前面(水位上昇側)】



【3号炉放水口(水位上昇側)】 崩壊ケース2, 二層流モデル



#### 【3号炉海水取水口(水位下降側)】 崩壊ケース2. 二層流モデル



 $\eta$  (m) 6.0

【3号炉海水取水口(水位上昇側)】

崩壊ケース2. 二層流モデル

 $\eta$  (m)

6.0

5.0

4.0

 $3.0 \\ 2.0$ 

 $1.0 \\ 0.0$ 

3.0

臣

×  $^{-1.0}_{-2.0}$ 



【3号炉T/B復水器取水先端(水位上昇側)】 崩壊ケース2, 二層流モデル

0.90m

60

30

- Mon

120

150

180

210

240

270

90





6. 計算結果一覧

#### 平成27年6月3日 まとめ資料再掲

# 4.2 地すべりに伴う津波

	一次評価地点					り イ プリート 原田 分にに相立	
			水位_	上昇側		水位下降側	3.1 ノレート境界的近に認定 される地震に伴う津波
検討ケース		3号炉 敷地前面	3号炉 海水取水口	3号炉 T/B復水 器取水先端	3号炉 放水口	3号炉 海水取水口	3.2 海域活断層に想定 される地震に伴う津波
①小島	二層流モデル	+0.34m [±0.00m]	+0.28m [±0.00m]	+0.17m [±0.00m]	+0.16m [±0.00m]	-0.26m [±0.00m]	4.1 火山の山体崩壊に 伴う津波
②流順要	二層流モデル	<u>+4.73m</u> [±0.00m]	+1.39m [±0.00m]	+1.09m [±0.00m]	+1.37m [±0.00m]	-1.15m [±0.00m]	4.2 地すべりに伴う津波
	Kinematic Landslide モデル	+0.64m [±0.00m]	+0.39m [±0.00m]	+0.29m [±0.00m]	+0.30m [±0.00m]	-0.24m [±0.00m]	
③ 海岬	二層流モデル	+4.21m [±0.00m]	+ <u>2.37m</u> [±0.00m]	+1.24m [±0.00m]	+ <u>2.28m</u> [±0.00m]	<u>-1.67m</u> [±0.00m]	5. 重畳津波
④ 亀浦	二層流モデル	+4.20m [±0.00m]	+1.92m [±0.00m]	+ <u>1.64m</u> [±0.00m]	+1.59m [±0.00m]	-1.10m [±0.00m]	
⑤ 立神岩	二層流モデル	+0.54m [±0.00m]	+0.43m [±0.00m]	+0.39m [±0.00m]	+0.41m [±0.00m]	-0.29m [±0.00m]	最大水位上昇量・下降量 (評価地点及び波源別)
<b>一大地,</b> 在一次就在此上上,从了此的本书目4	**						

下線:各一次評価地点における地盤変動量を考慮した最も厳しいケース
[]内の数値は伊方発電所における地盤変動量(+が隆起, ーが沈降)



6. 基準津波

朔望平均満干潮位を考慮

最高·最低水位 (評価地点及び波源別)

## ^{6. 計算結果─覧} 4.2 地すべりに伴う津波

【3号炉敷地前面(水位上昇側)】



【3号炉海水取水口(水位上昇側)】 ③海岬、二層流モデル



#### 【3号炉放水口 (水位上昇側)】 ③海岬, 二層流モデル





#### 【3号炉海水取水口 (水位下降側)】 ③海岬, 二層流モデル



#### 【3号炉T/B復水器取水先端(水位上昇側)】 ④亀浦, ニ層流モデル



【基準津波定義地点】 ②海岬西, 二層流モデル



③海岬, 二層流モデル



※ 基準津波定義地点は、3号炉敷地前面(水位上昇側)及び3号炉海水取水口(水位下降側)について最も 厳しい結果を与えるケースの時刻歴水位のみを記載 6. 計算結果一覧

# 5. 重畳津波

									一次評価地点							
		検討ケース       海域の活断層に想定され る地震に伴う津波 (激地前面海域の周囲群(中央構造 に伴う津波)     地すべり津波 (伊予潮沿岸部の地すべりに 伴う津波)     時間差 (伊予潮沿岸部の地すべりに 伴う津波)     時間差       (酸前面高端の周囲群(中央構造 に伴う津波)     (伊予潮沿岸部の地すべりに 伴う津波)     時間差       (酸前面音::)     (夏)     地点     評価 手法       3号炉     北75     165     (④)     97						水位 上昇側				水位 下降側		3.1	プレート境界付近に想定 れる地震に伴う津波	
	一次評価 地点		海域の活断層に想定され る地震に伴う津波 (敷地前面海域の断層群(中央構造 総断層帯:海域部)に想定される地震 に伴う津波)		<b>地すべり津波</b> (伊予潮沿岸部の地すべりに 伴う津波)		<b>時間差</b> (秒)	3号炉 敷地前面	3号炉 海水 取水口	3号炉 T/B 復水器	3号炉 放水口	3号炉 海水 取水口		3.	2 海域活断層に想定 れる地震に伴う津波	
			傾斜角* (度)	<b>すべり角</b> * (度)	地点	評価 手法				取水先端				4.1	1 火山の山体崩壊に	
上水	重畳ケース A	3号炉 敷地前面	北75	165	④ (亀浦)		97	+5.79m [-0.33m]	+3.42m [-0.34m]	+2.47m [-0.33m]	+2.87m [-0.33m]			伴う津波		
	重畳ケース B	3号炉 海水取水口	北85	165	④ (亀浦)	二層流 モデル	79	+5.79m [-0.39m]	<u>+3.84m</u> [-0.40m]	+2.18m [-0.39m]	+2.90m [-0.40m]			4.:	2 地すべりに伴う津波	
	重畳ケース C	3号炉 T/B復水器 取水先端	北80	165	⑤ (立神岩)		15	<u>+6.50m</u> [-0.36m]	+3.81m [-0.37m]	<u>+2.59m</u> [-0.36m]	+3.07m [-0.37m]				5. 重畳津波	
	重畳ケース D	3号炉 放水口	北85	165	⑤ (立神岩)		12	+6.44m [-0.39m]	+3.83m [-0.40m]	+2.54m [-0.39m]	<u>+3.07m</u> [-0.40m]					
下水 降位	重畳ケース E	3号炉 海水取水口	北75	195	③ (海岬)		71	:: [+!				<u>-2.91m</u> [+0.34m]		最;	大水位上昇量・下降量	
下線:各	一次評価地点は	こおける地盤変	動量を考慮した	と最も厳しいケ・	-ス									(評価地点及び波源別)		

[]内の数値は伊方発電所における地盤変動量(+が隆起, ーが沈降)

重量ケースA 傾斜角*:北75度,すべり角*:165度,地すべり地点:④(亀浦),評価手法:二層流,時間差:97秒 重量ケースB 傾斜角*:北85度,すべり角*:165度,地すべり地点:④(亀浦),評価手法:二層流,時間差:79秒 重量ケースC 傾斜角*:北80度,すべり角*:165度,地すべり地点:⑤(立神岩),評価手法:二層流,時間差:15秒 重量ケースD 傾斜角*:北85度,すべり角*:165度,地すべり地点:⑤(立神岩),評価手法:二層流,時間差:12秒 重量ケースE 傾斜角*:北75度,すべり角*:195度,地すべり地点:③(海岬),評価手法:二層流,時間差:71秒

※ 敷地前面海域の断層群(中央構造線断層帯:海域部)のうち敷地前面海域の断層群及び伊予セグメントのパラメータであり、別府-万年山断層帯は基準断層モデルと同じ。



朔望平均満干潮位を考慮

最高·最低水位

(評価地点及び波源別)

6. 基準津波
【3号炉敷地前面(水位上昇側)】









#### 【3号炉海水取水口(水位上昇側)】 ^{重畳ケースB}



【3号炉T/B復水器取水先端(水位上昇側)】 _{重量ケースC}



※ 基準津波定義地点は、3号炉敷地前面 (水位上昇側) 及び3号炉海水取水口 (水位下降側) について最も 厳しい結果を与えるケースの時刻歴水位のみを記載

【基準津波定義地点】

【3号炉放水口(水位上昇側)】









## 6. 計算結果-覧 最大水位上昇量·下降量

3.1 プレート境界付近に想定 される地震に伴う津波

3.2 海域活断層に想定 される地震に伴う津波

4.1 火山の山体崩壊に 伴う津波

4.2 地すべりに伴う津波

5. 重畳津波

最大水位上昇量・下降量 (評価地点及び波源別)

朔望平均満干潮位を考慮

最高·最低水位 (評価地点及び波源別)

		一次評価地点							
		水位下降側							
波源及び検	討ケース	3号炉 敷地前面	3号炉 海水取水口	3号炉 T/B復水器 取水先端	3号炉 放水口	3号炉 海水取水口			
1 プレート境界に想定される地震	<b>ミに伴う津波</b> (南海トラフの巨大地	也震に伴う津波)							
南海トラフの巨大地	也震に伴う津波	+0.83m [-0.84m]	+0.76m [-0.84m]	+0.76m [-0.84m]	+0.77m [-0.84m]	-0.86m [-0.84m]			
2 海域の活断層に想定される地	震に伴う津波(敷地前面海域の	断層群 (中央構造線團	「層帯:海域部)に想	定される地震に伴う	<b>聿波</b> )				
傾斜角 [※] :北75度	すべり角*:165度	+5.94m [-0.33m]							
<b>傾斜角[※]:北85度</b>	すべり角*:165度		+3.60m [-0.40m]		+2.75m [-0.40m]				
傾斜角※:北80度	すべり角*:165度			+2.25m [-0.36m]					
傾斜角*:北75度	すべり角*:195度					−2.39m [+0.34m]			
4.1 火山の山体崩壊に伴う津波	8(鶴見岳の山体崩壊に伴う津波)								
崩壊ケース2	二層流モデル	+0.94m [±0.00m]	+0.91m [±0.00m]	+0.90m [±0.00m]	+0.90m [±0.00m]	-0.71m [±0.00m]			
1 地すべり津波 (伊予灘沿岸部の)	地すべりに伴う津波)								
② 海岬西	二層流モデル	+4.73m [±0.00m]							
③ 海岬	二層流モデル		+2.37m [±0.00m]		+2.28m [±0.00m]	-1.67m [±0.00m]			
④ 亀浦	二層流モデル			+1.64m [±0.00m]					
5. 重畳津波 (「敷地前面海域の断」	層群(中央構造線断層帯:海域部)	に想定される地震に	半う津波」と「伊予灘	沿岸部の地すべりに作	<b>半う津波」を重畳さ</b> せ	とた津波)			
重畳ケー	-70	+6.50m [-0.36m]		+2.59m [-0.36m]					
重畳ケー	- <b>Z</b> B		+3.84m [-0.40m]						
重畳ケー	-ZD				+3.07m [-0.40m]				
重畳ケー	-7E					-2.91m [+0.34m]			
価地点及び波源別の最大水位変動	量を示しており、これ以外は空欄と	している。[ ]内の数	値は伊方発電所にお	ける地盤変動量(+が	「隆起、一が沈降)				

重量ケースB 傾斜角*:北85度, すべり角*:165度, 地すべり地点:④(亀浦), 評価手法:二層流, 時間差:79秒 重量ケースC 傾斜角*:北80度, すべり角*:165度, 地すべり地点:⑤(立神岩), 評価手法:二層流, 時間差:15秒 重畳ケースD 傾斜角*:北85度, すべり角*:165度, 地すべり地点:⑤(立神岩), 評価手法:二層流, 時間差:12秒 重畳ケースE 傾斜角*:北75度, すべり角*:195度, 地すべり地点:③(海岬), 評価手法:二層流, 時間差:71秒

※ 敷地前面海域の断層群(中央構造線断層帯:海域部)のうち敷地前面海域の断層群及び伊予セグメントのバラメータであり,別府一万年山断層帯は基準断層モデルと同じ。

6. 基準津波

# 最高・最低水位(※前頁の値に朔望平均満干潮位を考慮)



水位上昇側 水位下降側 水位下降側
1 プレート境界に想定される地震に伴う津波(南海トラフの巨大地震に伴う津波)
南海トラフの巨大地震に伴う津波         T.P.+2.45m [-0.84m]         T.P.+2.38m [-0.84m]         T.P.+2.38m [-0.84m]         T.P.+2.39m [-0.84m]         T.P.+2.39m [-0.84m]         T.P2.55m [-0.84m]
2 海域の活断層に想定される地震に伴う津波(敷地前面海域の断層群(中央構造線断層帯:海域部)に想定される地震に伴う津波)
傾斜角 [*] :北75度 すべり角 [*] :165度 T.P.+7.56m [-0.33m]
傾斜角*:北85度         すべり角*:165度         T.P.+5.22m [-0.40m]         T.P.+4.37m [-0.40m]
傾斜角*:北80度     すべり角*:165度     T.P.+3.87m       [-0.36m]
傾斜角*:北75度すべり角*:195度T.P4.08m [+0.34m]
4.1 火山の山体崩壊に伴う津波(鶴見岳の山体崩壊に伴う津波)
崩壊ケース2 「アース2 「アース2 「アース2,56m 「アース2,56m 「アース2,53m 「アース2,53m 「アース2,53m 「アース2,53m 「アース2,53m 「アース2,53m 「アース2,53m 「アース2,53m 「アース2,53m 「アース2,53m
4 地すべり津波(伊予灘沿岸部の地すべりに伴う津波)
② 海岬西 二層流モデル T.P.+6.35m [±0m]
③ 海岬         二層流モデル         T.P.+3.99m [±0m]         T.P.+3.90m [±0m]         T.P3.36m [±0m]
④ 亀浦     二層流モデル     T.P.+3.26m       [±0m]     [±0m]
5. 重畳津波 (「敷地前面海域の断層群(中央構造線断層帯:海域部)に想定される地震に伴う津波」と「伊予灘沿岸部の地すべりに伴う津波」を重畳させた津波)
重畳ケースC <u>I.P.+8.12m</u> [-0.36m] <u>I.P.+4.21m</u> [-0.36m]
重畳ケースB <u>I.P.+5.46m</u> [-0.40m]
重畳ケースD <u>T.P.+4.69m</u> [-0.40m]
重畳ケースE <u> エ.P4.60m</u> [+0.34m]
・価地点及び波源別の最高水位・最低水位を示しており、これ以外は空欄としている。水位上昇側は朔望平均満潮位(T.P.+1.62m)を考慮し、水位下降側は朔望平均干潮位 「.P.−1.69m)を考慮した値。 [ ]内の数値は伊方発電所における地盤変動量(+が隆起, -が沈降)。 <mark>下線</mark> :各一次評価地点における地盤変動量を考慮した最も厳しいケース
豊ケースB 傾斜角※:北85度,すべり角※:165度,地すべり地点:④(亀浦),評価手法:二層流,時間差:79秒
1電ケームC 「限料用率:北80度, 9へり用率:165度, 地すべり地点:⑤(立神君), 評価手法:二層流, 時間差:15秒 (量ケースD 「解料用率:北85度, すべり角率:165度, 地すべり地点:⑤(立神岩), 評価手法:二層流, 時間差:12秒  黒たっこF 「解料角率:北75度、すべり角率:105度, 地すべり地点:⑥(立神岩), 評価手法:二層流, 時間差:12秒
重ツーヘビ「預料用**・心(つ皮, 9 ヘツ用**:19つ皮, 叱9 ヘリ地品:③(海畔), 評画于法:二層流, 時间左:/ 1秒 敷地前面海域の断層群(中央構造線断層帯:海域部)のうち敷地前面海域の断層群及び伊予ヤグメントのパラメータであり. 別府-万年山斯層帯は基準断層モデルと同じ.

# 6. 基準津波

				一次評価地点				二次評	価地点		0.1	
	波通及75		水上	位 早側		水位 下降側		水位 上昇側		水位 下降側	3.1 ಕ	シレート現赤可近に忍足
名称	検討ケース	3号炉 敷地前面	3号炉 海水 取水口	3号炉 T/B 復水器 取水先端	3号炉 放水口	3号炉 海水 取水口	3号炉 海水 ピット ポンプ室	3号炉 取水 ピット	3号炉 放水 ピット	3号炉 海水 ビット ポンプ室	3	2 海域活断層に想定 れる地震に伴う津波
重畳津波	(「敷地前面海域の断刷	<b>]</b> 群(中央構造線	断層帯:海域部	)に想定される地	震に伴う津波」と	「伊予灘沿岸部	の地すべりに作	半う津波」を重	畳させた津派	E)	4	1火山の山体崩壊に
基準 津波1	重畳ケースC	<u>T.P.+8.12m</u> [-0.36m]		<u>T.P.+4.21m</u> [-0.36m]				T.P.+4.87m [-0.36m]				伴う津波
基準 津波2	重畳ケースB		<u>T.P.+5.46m</u> [-0.40m]								4.	2 地すべりに伴う津波
基準 津波3	重畳ケースD				<u>T.P.+4.69m</u> [-0.40m]							
基準 津波4	重畳ケースE					<u>T.P4.60m</u> [+0.34m]				T.P3.26m [+0.34m]		5. 重畳津波
海域の活	断層に想定される地	也震に伴う津	波(敷地前面》	毎域の断層群(中	央構造線断層帯	詩:海域部)に想知	とされる地震に	(伴う津波)				
基準 津波5	傾斜角*:北85度 すべり角*:165度						T.P.+4.30m [-0.40m]		T.P.+4.07m [-0.39m]		最	大水位上昇量・下降量
各評価地点のi 1.69m)を考慮	最高水位・最低水位を示し した値。[ ]内の数値は	しており, これ以り 伊方発電所におし	外は空欄としてい ナる地盤変動量(	る。水位上昇側 +が隆起, ーがぷ	は朔望平均満潮 れ降 )。	位(T.P.+1.62m)	)を考慮し、水	位下降側は朔	望平均干潮	垃(T.P	()	平価地点及び波源別)
重畳ケースB 重畳ケースC 重畳ケースD	頃斜角※:北85度, すべ 傾斜角※:北80度, すべ 頃斜角※:北85度, すべ	り角※:165度,1 り角※:165度,1 り角※:165度,1	也すべり地点:④ 地すべり地点:⑤ 地すべり地点:⑤	〔亀浦〕,評価手〕 〔立神岩〕,評価 〔立神岩〕,評価 〔 こ神岩 〕,評価	法:二層流,時間 手法:二層流,時 手法:二層流,時	差:79秒  間差:15秒  間差:12秒					9	相望平均満干潮位を考慮
里査ゲースE ) ※ 敷地前面浴	頃料用※:北/5度,9へ 毎域の断層群(中央構造約	Ø周∞:195度,〕 線断層帯:海域部	109へり地点:③) 3)のうち敷地前面	、海岬),評価手が 「海域の断層群)	法:二層流,時间 及び伊予セグメン	差:/   秒  トのパラメータで	あり、別府ーフ	「年山断層帯	は基準断層モ	テルと同じ。	(1	最高・最低水位 平価地点及び波源別)
						◎ 基準津波の定ま (敷地の沖合い約2.5	<b>養地点</b> 5km.水深約47m	) 		(m) 100 50 -50 -100 -150		注淮洼池
					60 40 -30	Mi	1-1-	伊方発電	。 所	200 50 0 0 1 km		

【基準津波1(水位上昇側)】



【基準津波4(水位下降側)】



## 【基準津波2(水位上昇側)】

 $\eta$  (m) 3.0 1.88m (T.P.+3.50m) 2.0巻 1.0 ★ 0.0 -1.0 -2.0 L 240 30 60 90 120150 180 210270300 分

【基準津波5(水位上昇側)】



### 【基準津波3(水位上昇側)】



# (参考) 〇局地的な隆起・沈降を考慮した評価 〇断層の不均質な破壊を考慮した評価





# 〇局地的な隆起・沈降を考慮した評価 (手法(2)※1:海域調査結果を基に設定した隆起・沈降量をMansinha and Smylie(1971)の手法に基づき再現する評価手法)

	一次評価地点							
		水位下降側						
検討ケース	3号炉 敷地前面	3号炉 海水取水口	3号炉 T/B復水 器取水先端	3号炉 放水口	3号炉 海水取水口			
ケース1 (伊予灘では最大約2.4m, 別府湾では最大6.6m沈降するモデル ^{※2)}	+4.18m [+0.18m]	+1.31m [+0.21m]	+0.63m [+0.19m]	+0.90m [+0.20m]	-1.15m [+0.21m]			
ケース2 (伊予灘では最大約3.3m, 別府湾では最大6.6m沈降するモデル ^{※2)}	<u>+4.61m</u> [+0.23m]	<u>+1.87m</u> [+0.27m]	<u>+0.81m</u> [+0.25m]	<u>+1.15m</u> [+0.26m]	<u>-1.57m</u> [+0.27m]			
「線・冬誕価地占における地般変動景を孝慮した最も厳しいケース								

[]内の数値は伊方発電所における地盤変動量(+が隆起, -が沈降)

※1 平成26年5月16日審査会合資料2-1第11章 または 平成27年2月25日ヒアリングまとめ資料2.3.2.1参照。概要は以下のとおり。 ・手法(1)では発電所における地盤変動量が算出されない。

・手法(3)では沈隆が生じない、または生じたとしても手法(2)より規模が小さいことなどから手法(2)の評価結果を上回ることはないと評価。

手法(1):海域調査結果を基に設定した隆起・沈降量を初期鉛直変位分布として与える評価手法 手法(3):断層を幾つかに分割し、ステップさせた断層モデルをMansinha and Smylie(1971)の手法に基づき再現する評価手法

#### ※2 平成25年10月23日審査会合資料1-2第2章 または 平成26年12月8日ヒアリングまとめ資料別紙1.2参照。



3.1 プレート境界付近に想定 される地震に伴う津波

3.2 海域活断層に想定される 地震に伴う津波

局地的な隆起・沈隆を 考慮した評価

まとめ資料再掲

最高·最低水位 (評価地点及び波源別)



# ○局地的な隆起・沈降を考慮した評価



【3号炉海水取水口(水位上昇側)】 ケース2(伊予灘では最大約3.3m,別府湾では最大6.6m沈降するモデル)



【3号炉海水取水口 (水位下降側)】 ケース2 (伊予灘では最大約3.3m, 別府湾では最大6.6m沈降するモデル)



【3号炉T/B復水器取水先端(水位上昇側)】 ケース2(伊予灘では最大約3.3m, 別府湾では最大6.6m沈隆するモデル)



【基準津波定義地点】



ケース2(伊予灘では最大約3.3m, 別府湾では最大6.6m沈降するモデル)

平成27年6月3日

まとめ資料再掲

## 。####="" 3.2 海域活断層に想定される地震に伴う津波(参考)

○断層の不均質な破壊を考慮した評価※1

※1 平成26年11月14日審査会合資料2の第1章参照

			一次評価地点									
検討ケース			水位下降側									
			3号炉 敷地前面	3号炉 海水取水口	3号炉T∕B復水器 取水先端	3号炉 放水口	3号炉 海水取水口					
		一括破壊	+1.48m [-0.17m]	+1.09m [-0.17m]	+0.83m [-0.17m]	+1.00m [-0.17m]						
	ケース〇	西下端	+1.60m [-0.16m]	+1.13m [-0.17m]	+0.88m [-0.17m]	+1.01m [-0.17m]						
		東下端	+1.53m [-0.17m]	+1.06m [-0.17m]	+0.80m [-0.17m]	+1.02m [-0.17m]						
		一括破壊	+4.45m [-0.19m]	+2.32m [-0.19m]	+1.61m [-0.18m]	+1.84m [-0.19m]						
(①  /ml※2	ケース1	西下端	+4.20m [-0.19m]	+2.15m [-0.19m]	+1.53m [-0.18m]	+1.69m [-0.19m]						
F10J ~~ 2		東下端	<u>+4.68m [-0.19m]</u>	<u>+2.52m [-0.19m]</u>	<u>+1.67m [-0.18m]</u>	<u>+2.01m [-0.19m]</u>						
		一括破壊	+4.31m [-0.18m]	+2.26m [-0.18m]	+1.53m [-0.18m]	+1.77m [-0.18m]						
	ケース2	西下端	+4.09m [-0.18m]	+2.09m [-0.18m]	+1.46m [-0.18m]	+1.62m [-0.18m]						
		東下端	+4.56m [-0.18m]	+2.46m [-0.18m]	+1.60m [-0.18m]	+1.94m [-0.18m]						
		一括破壊					-0.65m [+0.10m]					
	ケース0	西下端	※2 水位上昇側:傾斜 水位下路側:傾斜	角北75度, すべり角165月 角北75度 すべり角105月	£		-0.86m [+0.10m]					
		東下端	43 4 LEE   1   144   183 9   194 (194				-0.65m [+0.10m]					
法		一括破壊					-1.54m [+0.09m]					
1立 全国[※2	ケース1	西下端					-1.43m [+0.09m]					
		東下端					<u>-1.62m [+0.09m]</u>					
		一括破壊					-1.46m [+0.10m]					
	ケース2	西下端					-1.35m [+0.10m]					
		東下端					-1.55m [+0.10m]					
各評価地 内の数値	9点における地 は伊方発電所(	盤変動量を考慮 こおける地盤変	髱した最も厳しいケース ፻動量 (+が隆起, −が沈降	) 		, .	0km					
				教地前面海域の断	<b>日本</b> 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	₩ <u>₽</u> ₽ <del>7</del> ×≻⊦(	2km 13.5km 15km 75° N					
				<u></u> ケーフ	KO (水位上昇側:すべり角	165度,水位下降側:すべ	り角195度) ^{0km}					
							2km 13.5k 15km 75° N					
				ケーフ	く1 (水位上昇側:すべり角	165度,水位下降側:すべ	り角195度)					
							2km					

ケース2(水位上昇側:すべり角165度,水位下降側:すべり角195度)

116

平成27年6月3日 まとめ資料再掲

3.1 プレート境界付近に想定

される地震に伴う津波

3.2 海域活断層に想定される 地震に伴う津波

局地的な隆起・沈降を 考慮した評価

断層の不均質な破壊を 考慮した評価

4.1 火山の山体崩壊に伴う津波

4.2 地すべりに伴う津波

5. 重畳津波

最大水位上昇量・下降量 (評価地点及び波源別)

朔望平均満干潮位を考慮

最高·最低水位 (評価地点及び波源別)

6. 基準津波

\13.5km

75° N

15km

# 3.2 海域活断層に想定される地震に伴う津波(参考)



# ○断層の不均質な破壊を考慮した評価



【3号炉海水取水口(水位上昇側)】 ケース1,東下端(水位上昇側:傾斜角北75度,すべり角165度)



#### 【3号炉海水取水口 (水位下降側)】 ケース1,東下端(水位下降側:傾斜角北75度,すべり角195度)



#### 【3号炉T/B復水器取水先端(水位上昇側)】 ケース1.東下端(水位上昇側:傾斜角北75度,すべり角165度)



### 【基準津波定義地点】









※ 基準津波定義地点は、3号炉敷地前面 (水位上昇側) 及び3号炉海水取水口 (水位下降側) について最も 厳しい結果を与えるケースの時刻歴水位のみを記載