福浦断層の端部 - 南端付近の地質調査-

○大坪川ダム左岸において実施したボーリング調査(FD-8, 9孔)により確認した福浦断層(西側)の南方延長において,表土はぎ調査(ルートマップF,G)を実施した結果,岩盤には断層は認められず,群列ボーリング調査の結果,岩盤上面はほぼ水平である。群列ボーリング調査地点で実施した斜めボーリング調査(FD-1孔,FD-2孔)の結果,破砕部は認められない。
○また,ルートマップFの西方で実施した斜めボーリング調査(FD-4孔,FD-5孔,FD-7孔)の結果,福浦断層に対応する破砕部は認められない。

Oさらに南方に分布する中位段丘 I 面及び高位段丘 I a面の旧汀線高度ないし段丘面内縁標高は、ほぼ同じ高度で連続し、反射法地震探査においても、福浦断層に対応する断層は認められ ない。

Oしたがって、断層の南方延長位置において、断層が認められないことを確認したルートマップFの表土はぎ箇所を福浦断層の南端と評価した。

Oなお,大坪川ダム左岸において,活断層研究会(1991)が示した活断層の推定位置にあたる谷地形の延長位置で実施した表土はぎ調査(ルートマップH)の結果,福浦断層から分岐する断層 は認められない。

深度(m)

【福浦断層が認められないボーリング孔(FD-1孔)】

FD-1孔(孔口標高38.94m, 掘進長39m, 傾斜45°)

コア写真(深度0~39m)

・福浦断層に対応する破砕部は認められない。

【福浦断層が認められないボーリング孔(FD-2孔)】

FD-2孔(孔口標高38.41m, 掘進長25m, 傾斜45°)

コア写真(深度0~25m)

第1064回審査会合 資料1 P.132 再掲

【福浦断層が認められないボーリング孔(FD-7孔)】

FD-7孔(孔口標高39.03m, 掘進長60m, 傾斜45°)

・福浦断層に対応する破砕部は認められない。

8-22

 ・・・福浦断層と走向・傾斜が対応しない。また、隣接孔 (FD-4)の想定延長位置(深度35.2m付近)に連続し

・・・福浦断層と走向・傾斜が対応しない。また, ルート

マップFに対応する破砕部は認められない。

③深度41.02~41.39mに厚さ30cmの破砕部。

ない。

(N50° E/77° NW)

【福浦断層が認められないボーリング孔(FD-4孔)】

FD-4孔(孔口標高38.91m, 掘進長50m, 傾斜45°)

コア写真(深度0~50m)

【福浦断層に対応しないと評価した破砕部について】

〇福浦断層南部の追加調査で確認した破砕部について、福浦断層に対応するか否かを以下の手順により評価した。

・リニアメント・変動地形や地質調査による断層位置,反射法地震探査の結果等から,福浦断層の走向・傾斜の基準をNS/70°Wとし,これに調和的な破砕部(走向:±30°,傾斜:±15°,下図 □ 範囲※1)及び □ 範囲に近接する破砕部(FD-8, No.11, No.26, No.42, No.58, No.72, No.90)について,性状の比較(未固結な破砕部の有無等),連続性の観点から,福浦断層に対応するか確認した。

・破砕部の連続性は、対象とする破砕部の想定延長に位置する隣接孔等の破砕部の有無により確認した。隣接孔の想定延長範囲については、反射法地震探査での福浦断層の傾斜のばらつきを 考慮し、検討断面における破砕部位置(偽傾斜を考慮)から傾斜±10°の範囲とした。想定延長範囲に破砕部が認められる場合は、性状、走向・傾斜(走向:±30°,傾斜:±15°)を比較し、対 応する破砕部か確認した。

○その結果, 右下表 ── の破砕部を福浦断層と評価し, それ以外の破砕部については, いずれも福浦断層に対応しないと評価した。

※1:走向は、福浦断層全線にわたる断層トレースの走向データ、傾斜は、反射法地震探査等で確認した傾斜データに基づき、それぞれの ばらつきに余裕を考慮して、走向:±30°、傾斜:±15°のアンジュレーションを設定した。

福浦断層の性状一覧表

			福浦断層	A測線以北			
	名称	確認位置 確認深度(m)	標高(m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕部 の幅 _(cm)	砂状 · 角礫状 破砕部の幅 (cm)
	断層a	地表	EL62付近	N8W/60SW	5.0	2.0	-
ſ	受堤北方尾根	地表	EL87付近	N2W/80NW	1.0	1.0	_
ſ	FK-1	52.48 ~ 52.55	EL 57.37~57.32	N4W/69SW	6.5	1.0	_
	反射法地震探査 福浦測線	CMP380付近	_	約75度西傾斜	_	_	_
	反射法地震探査 A測線	CMP1030付近	_	約70度西傾斜	_	_	_

	福浦断層(東側)										
名称	確認位置 確認深度(m)	標高(m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕部 の幅 _(cm)	砂状・角礫状 破砕部の幅 (cm)					
反射法地震探査 C測線	地震探查 測線 CMP120付近 —		約65度西傾斜	—	—	_					
反射法地震探査 B測線	CMP160付近	—	約80度西傾斜	—	—	—					
OS-4孔	40.60~40.63	EL26.71~26.73	N4W/55SW	2.2	—	—					

	福浦断層(西側)											
名称	確認位置 確認深度(m)	標高(m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕部 の幅 _(cm)	砂状・角礫状 破砕部の幅 (cm)						
反射法地震探査 C測線	反射法地震探查 C測線 CMP180付近 —		約65度西傾斜	_	—	-						
大坪川ダム 右岸北道路	地表	EL35付近	N16W/48~72W ^{%2}	6.5	1.5							
大坪川ダム 右岸トレンチ	地表	EL48付近	N2E/74NW	35	1.0	I						
大坪川ダム 地表 EL43付		EL43付近	N26W/60SW	20	2.0							
反射法地震探査 B測線	CMP100付近	_	約75度西傾斜	_	_							
OS-9孔	17.08~17.18	EL43.47~43.40	N9E/63NW	4.0	—	2.8						
OS-3' 孔	28.32~28.35	EL37.12~37.14	N10E/66NW	2.1	2.1	_						
OS-2孔	94.61~94.62	EL-10.99~-11.00	N21E/69NW	1.6	0.2	_						
ルートマップI	地表	EL50付近	N8E/60NW	10	1.0	_						
FD-8孔	55.80~55.88	EL8.79~8.84	N31W/79SW	8.0	0.5	_						
FD-9孔	14.70~14.76	EL36.68~36.73	N13W/64SW	6.0	_	6.0						

※2:大坪川ダム右岸北道路法面は、上部(傾斜48°)と下部(傾斜72°)で走向・傾斜を計測しているが、 福浦断層全体の傾斜を反映していると考えられる下部(傾斜72°)の走向・傾斜を代表とした。

8-25

【福浦断層以外の破砕部性状一覧①】

・福浦断層と走向・傾斜が対応する破砕部は ・福浦断層と走向・傾斜が対応しない破砕部のうち,未固結な破砕部を伴うものについても,連続性の検討を行った。

				OS-	-1孔	_			_			os-	3A	_		
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕 部の幅 _(cm)	砂状・角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠	No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕 部の幅 (cm)	·砂状 · 角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠	
1	11.94~11.96	EL 43.25~43.23	測定区間外	2.0	-	_	性状が福浦断層と異なる。	18	35.64~35.68	EL31.98~31.95	N21W/71SW	3.4		-	性状が福浦断層と異なり,隣接孔(OS-3'孔 3.3~11.2m)に連続しない。	
2	17.19~17.20	EL 39.53~39.53	N74W/20NE	1.9	-	-	走向・傾斜,性状が福浦断層と異なる。	_								
3	33.61~33.63	EL 27.92~27.91	N17E/61NW	2.1	0.1	_	隣接孔(OS-2孔 0.0~19.9m)に連続しない。					os-	3' 孔 *- 土 ++ T+ T+ T+	动业。有聊业		
4	41.93~41.95	EL 22.04~22.03	N49W/9SW	1.9	_	_	走向・傾斜、性状が福浦断層と異なる。	No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	和工(X 破砕 部の幅 (cm)	砂状・角味状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠	
5	42.04~42.06	EL 21.96~21.95	N1W/21SW	3.6	_	_	走向・傾斜, 性状が福浦断層と異なる。	19	29.87~30.13	EL36.05~35.86	N64W/83NE	15	-	-	走向・傾斜、性状が福浦断層と異なる。	
6	42.32~42.39	EL 21.77~21.72	N8W/13SW	7.3	_	_	走向・傾斜,性状が福浦断層と異なる。	20	42.80~42.82	EL26.91~26.89	N9E/76NW	1.6	-	-	性状が福浦断層と異なり, 隣接孔(OS-4孔 0.5~11.0m)に連続しない。	
7	54.86~54.94	EL 12.90~12.84	N15E/61NW	6.4	-	1.1	隣接孔(OS-2孔 13.8~33.8m)に連続しない。			-	-	-00	47			
8	74.38~74.77	EL -0.90~-1.18	N71E/83SE	21	_	19	走向・傾斜が福浦断層と異なり, 隣接孔(FD- 6孔 15.4~38.1m)に連続しない。	Na	確認深度	標高	走向·傾斜	破砕部の幅	+16 粘土状破砕 部の幅	砂状・角礫状	荷洋院図に社内したことを受けたする	
9	86.59~86.65	EL -9.54~-9.58	N18E/60NW	3.5	1.4	-	隣接孔(OS-2孔 46.0~66.4m)に連続しない。	110.	(m)	(m)	(走向は真北)	(cm)	(cm)	(cm)		
10	87.88~87.92	EL -10.45~-10.48	N50W/80SW	3.0	_	_	走向・傾斜,性状が福浦断層と異なる。	21	18.39~18.44	EL 42.44~42.40	N85E/57SE	4.0	-	4.0	定向・傾斜が備浦断層と異なり、大坪川タム 基礎掘削面に連続しない。	
11	92.36~92.40	EL -13.62~-13.65	N1E/86NW	2.6	1.4	_	走向・傾斜が福浦断層と異なり, 隣接孔(OS- 2月 112~226m)に連続したい	22	18.70~18.79	EL 42.22~42.15	N73W/78SW	6.2	-	6.2	走向・傾斜が福浦断層と異なり, ルートマップ Hに連続しない。	
12	92.71~92.74	EL -13.87~-13.89	N4W/85SW	2.5	1.6	_	隣接孔(OS-2孔 9.3~32.3m)に連続しない。	23	19.02~19.06	EL 41.99~41.96	N56W/80SW	4.0	-	-	走向・傾斜,性状が福浦断層と異なる。	
								24	23.06~23.12	EL 39.13~39.09	N84W/13NE	5.8	-	-	走向・傾斜,性状が福浦断層と異なる。	
	7.★ =31:20 cc	標方	우는 전체	OS-	- 2孔 粘土状破砕	砂状·角礫状		25	38.39 ~ 38.42	EL 28.29~28.27	N56E/42SE	2.5	_	-	走向・傾斜,性状が福浦断層と異なる。	
No.	確認床度 (m)	标向 (m)	定向・1頃料 (走向は真北)	破(評)部の (cm)	部の幅 (cm)	破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠	26	40.91~40.93	EL 26.51~26.50	N5W/48SW	3.0	_	-	走向・傾斜, 性状が福浦断層と異なり, 隣接 孔(FD-6孔 31.7~33.4m)に連続しない。	
13	24.91~24.94	EL 38.30~38.27	N35E/30NW	1.8	-	-	走向・傾斜,性状が福浦断層と異なる。	27	43.78~43.79	EL 24.48~24.48	N42W/89SW	1.2	-	-	走向・傾斜,性状が福浦断層と異なる。	
14	37.95~39.54	EL 29.08~27.95	N89E/74NW	68	-	3.2 2.8	走向・傾斜が福浦断層と異なり, 隣接孔(FD- 6孔 32.5~32.8m)に連続しない。	28	44.40~44.41	EL 24.04~24.04	N36W/81NE	1.2		-	走向・傾斜、性状が福浦断層と異なる。	
15	80.71~80.77	EL -1.17~-1.21	N26W/40SW	6.4	-	-	走向・傾斜,性状が福浦断層と異なる。	29	44.64~44.73	EL 23.87~23.81	N27W/80NE	7.4	_	-	走向・傾斜,性状が福浦断層と異なる。	
16	91.84~91.90	EL -9.03~-9.07	N6W/40SW	5.4	_	-	走向・傾斜、性状が福浦断層と異なる。	30	45.02~45.05	EL 23.61~23.58	N85W/17SW	2.2	_	_	走向・傾斜,性状が福浦断層と異なる。	
17	97.63~97.66	EL -13.12~-13.15	N23W/35SW	3.6	-	-	走向・傾斜、性状が福浦断層と異なる。		45.57 ~ 45.92	EL 23.22~22.97	N85E/80NW	14	1.8	-	走向・傾斜が福浦断層と異なり,大坪川ダム 基礎掘削面に連続しない。	
								32	46.89~47.10	EL 22.28~22.14	N13E/85SE	9.3	_	_	走向・傾斜,性状が福浦断層と異なる。	

・福浦断層と走向・傾斜が対応する破砕部は ・福浦断層と走向・傾斜が対応しない破砕部のうち,未固結な破砕部を 伴うものについても,連続性の検討を行った。

【福浦断層以外の破砕部性状一覧②】

	OS-4귀.											
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 _(cm)	砂状・角礫状 破砕部の幅 _(cm)	福浦断層に対応しないと判断した根拠					
33	47.18~47.23	EL 22.08~22.04	N28E/66NW	3.2	-	-	性状が福浦断層と異なり,隣接孔(OS-11孔 64.7~70.0m)に連続しない。					
34	47.71~48.16	EL 21.70~21.39	N58W/81NE	26	-	-	走向・傾斜,性状が福浦断層と異なる。					
35	48.44~48.46	EL 21.19~21.17	N71W/16SW	1.2	1.2	-	走向・傾斜が福浦断層と異なり、隣接孔(OS- 2孔 63.7~100.0m)に連続しない。					
36	48.82~48.88	EL 20.92~20.88	N49E/21NW	6.6	-	6.6	走向・傾斜が福浦断層と異なり、隣接孔(OS- 3'孔 34.1~57.9m)に連続しない。					
37	49.41~49.48	EL 20.50~20.45	N60W/36SW	7.0	7.0	-	走向・傾斜が福浦断層と異なり, ルートマップ Hに連続しない。					
38	49.67~49.71	EL 20.32~20.29	N60W/85NE	4.0	-	-	走向・傾斜,性状が福浦断層と異なる。					
39	50.28 ~ 50.90	EL 19.89~19.45	N76W/77NE	33	3.4	-	走向・傾斜が福浦断層と異なり、ルートマップ HIに連続しない。					
40	52.21 ~ 52.25	EL 18.52~18.49	N33E/64SE	1.2	-	1.2	走向・傾斜が福浦断層と異なり、隣接孔(OS- 11孔 57.9~65.9m)に連続しない。					
41	58.64~58.79	EL 13.98~13.87	N11E/17NW	16	-	16	走向・傾斜が福浦断層と異なり,ルートマップ Hに連続しない。					
42	60.89~61.12	EL 12.38~12.22	N36E/56NW	17	-	17	走向・傾斜が福浦断層と異なり、隣接孔(OS- 11孔 50.6~53.5m)に連続しない。					
43	62.57~62.67	EL 11.20~11.13	N24W/73SW	10	_	-	性状が福浦断層と異なり、隣接孔(FD-3孔 16.3~25.8m)に連続しない。					
44	62.84~62.87	EL 11.01~10.98	N78W/42SW	2.6	-	-	走向・傾斜,性状が福浦断層と異なる。					
45	63.16~63.22	EL 10.78~10.74	N30W/87NE	3.8	_	-	走向・傾斜,性状が福浦断層と異なる。					
46	63.35 ~ 63.38	EL 10.64~10.62	N51E/49NW	3.4	_	-	走向・傾斜,性状が福浦断層と異なる。					
47	63.75 ~ 63.82	EL 10.36~10.31	N22W/40SW	4.0	-	-	走向・傾斜,性状が福浦断層と異なる。					
48	65.15~65.18	EL 9.37~9.35	N56E/37NW	2.2	_	-	走向・傾斜,性状が福浦断層と異なる。					
49	65.55 ~ 66.09	EL 9.09~8.71	N11W/85NE	30	0.4 10	-	走向・傾斜が福浦断層と異なり、隣接孔(F- 1'孔 67.8~70.3m)に連続しない。					
50	66.31~66.35	EL 8.55~8.52	N32W/84NE	4.0	4.0	-	走向・傾斜が福浦断層と異なり、隣接孔(FD- 3孔 35.4~41.3m)に連続しない。					
51	78.67~78.70	EL -0.19~-0.21	N86E/84NW	2.7	_	_	走向・傾斜、性状が福浦断層と異なる。					
52	84.39~85.05	EL −4.23~−4.70	N76E/69SE	44	_	2.6 9.0	走向・傾斜が福浦断層と異なり, 大坪川ダム 基礎掘削面に連続しない。					
53	85.17~85.35	EL -4.78~-4.83	N62E/77SE	12	_	12	走向・傾斜が福浦断層と異なり, 隣接孔(OS- 5孔 23.1~33.6m, OS-6孔 29.2~37.3m)に 連続しない。					
54	86.00~86.20	EL -5.37∼-5.51	N71E/36SE	15	_	_	走向・傾斜,性状が福浦断層と異なる。					
55	86.70~86.79	EL -5.87~-5.93	N84E/76NW	5.2	1.9	-	走向・傾斜が福浦断層と異なり、大坪川ダム 基礎掘削面に連続しない。					

	0S-47.												
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 _(cm)	砂状・角礫状 破砕部の幅 _(cm)	福浦断層に対応しないと判断した根拠						
56	89.66~89.70	EL -7.96~-7.99	N65W/86NE	3.5	0.3	-	走向・傾斜が福浦断層と異なり, ルートマップ Hに連続しない。						
57	90.77~91.13	EL -8.74~-9.00	N75E/79NW	6.3	0.8	_	走向・傾斜が福浦断層と異なり, 大坪川ダム 基礎掘削面に連続しない。						
58	91.45~91.47	EL -9.22~-9.24	N10E/49NW	2.4	0.6	-	走向・傾斜が福浦断層と異なり, 隣接孔(FD- 3孔 0.0~19.5m)に連続しない。						
59	91.95~92.83	EL -9.58~-10.20	N48W/77SW	72	1.0	6.9	走向・傾斜が福浦断層と異なり, ルートマップ Hに連続しない。						
60	94.45~94.47	EL -11.35~-11.36	N86E/58SE	2.1	0.3	-	走向・傾斜が福浦断層と異なり, 大坪川ダム 基礎掘削面に連続しない。						
61	97.82 ~ 97.89	EL −13.73 ~ −13.78	N24W/69NE	2.4	-	2.4	走向・傾斜が福浦断層と異なり, 隣接孔(FD- 3孔 0.0~35.6m)に連続しない。						
62	98.52 ~ 98.58	EL -14.22~-14.27	N80E/88NW	2.0	-	-	走向・傾斜,性状が福浦断層と異なる。						
63	99.49 ~ 99.55	EL -14.91~-14.95	N58E/72SE	5.4	-	5.4	走向・傾斜が福浦断層と異なり, 大坪川ダム 基礎掘削面に連続しない。						
64	100.46~ 100.49	EL -15.60~-15.62	N84W/77SW	3.6	-	-	走向・傾斜,性状が福浦断層と異なる。						
65	100.81~ 100.86	EL -15.84~-15.88	N74E/50SE	5.1	1.4	_	走向・傾斜が福浦断層と異なり, 大坪川ダム 基礎掘削面に連続しない。						
66	106.03~ 106.08	EL -19.53~-19.57	N58E/77SE	1.4	_	_	走向・傾斜,性状が福浦断層と異なる。						

	FD-8孔										
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 (cm)	砂状・角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠				
67	48.88~48.96	EL 13.74~13.68	N22E/13SE	6.0	2.5	-	走向・傾斜が福浦断層と異なり,隣接孔(OS- 4孔 0~68.9m)に連続しない。				
68	61.78~61.96	EL 4.61~4.49	N29E/22NW	12	1.5	-	走向・傾斜が福浦断層と異なり、ルートマップ Fに連続しない。				

	FD-8'A											
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕 部の幅 (cm)	砂状 · 角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠					
破砕部は認められない												

	FD-9A										
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 (cm)	砂状・角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠				
69	19.44~19.52	EL 33.37~33.32	N89W/42SW	8.0	-	-	走向・傾斜,性状が福浦断層と異なる。				
70	24.63 ~ 24.82	EL 29.70~29.57	N42E/17SE	13	1.0	_	走向・傾斜が福浦断層と異なり, ルートマップ Hに連続しない。				

・福浦断層と走向・傾斜が対応する破砕部は 🔲 で示す。 ・福浦断層と走向・傾斜が対応しない破砕部のうち, 未固結な破砕部を 伴うものについても、連続性の検討を行った。

【福浦断層以外の破砕部性状一覧③】

	08-11 7 .											
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 (cm)	砂状・角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠					
71	13.59~13.63	EL 46.30~46.27	N30W/21SW	4.0	1.2	Ι	走向・傾斜が福浦断層と異なり, 隣接孔(OS- 2孔 10.7~12.4m)に連続しない。					
72	35.37 ~ 35.39	EL 30.90~30.89	N37E/58NW	2.6	0.6	-	走向・傾斜が福浦断層と異なり,隣接孔(OS- 3'孔 38.7~40.8m)に連続しない。					
73	37.70 ~ 37.71	EL 29.25	N5W/72SW	1.1	-	Ι	性状が福浦断層と異なり,隣接孔(OS-2孔 35.3~35.9m)に連続しない。					
74	40.95 ~ 40.96	EL 26.95	N31W/18SW	1.2	1.2	I	走向・傾斜が福浦断層と異なり, 隣接孔(OS- 2孔 32.5~38.1m)に連続しない。					
75	59.77 ~ 59.83	EL 13.65~13.60	N75E/77SE	5.0	-	-	走向・傾斜、性状が福浦断層と異なる。					
76	60.77	EL 12.94	N12W/81SW	1.4	-	1.4	隣接孔(OS-2孔 46.1~50.0m)に連続しない。					
77	61.44~61.54	EL 12.47~12.39	N64E/78SE	4.0	-	I	走向・傾斜,性状が福浦断層と異なる。					
78	61.80~61.81	EL 12.21~12.20	N80E/74NW	1.4	-	-	走向・傾斜、性状が福浦断層と異なる。					
79	65.14~65.55	EL 9.85~9.56	N82E/83SE	31	-	0.5	走向・傾斜が福浦断層と異なり,ルートマップI に連続しない。					

				FD-	4孔					
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕 部の幅 (cm)	砂状・角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠			
	破砕部は認められない									
				FD-	-5fL					
No. 確認深度 (m) 標高 (m) 走向・傾斜 (走向は真北) 破砕部の幅 (cm) 粘土状破砕 部の幅 (cm) 粉土状破砕 酸砕部の幅 (cm) 粘土状破砕 部の幅 福浦断層に対応しないと判断した根拠										
81	37.50~37.61	EL 10.66~10.59	N44E/68NW	7.0	-	_	走向・傾斜,性状が福浦断層と異なる。			

	FD-7孔											
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕 部の幅 (cm)	砂状・角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠					
82	21.40~21.56	EL 23.90~23.78	N52E/64NW	15	_	Ι	走向・傾斜,性状が福浦断層と異なる。					
83	38.22~38.24	EL 12.00~11.99	N83E/29NW	3.0	Ι	-	走向・傾斜,性状が福浦断層と異なる。					
84	41.02~41.39	EL 10.02~9.76	N50E/77NW	30	_	_	走向・傾斜,性状が福浦断層と異なる。					

				FD-	-3A.					
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	走向・傾斜 走向は真北) 破砕部の幅 (cm) 粘土状破砕 砂状・角砂 部の幅 (cm) の(cm)		砂状・角礫状 破砕部の幅 _(cm)	福浦断層に対応しないと判断した根拠			
破砕部は認められない										
FD-6孔										
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 (cm)	砂状 • 角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠			
80	44.92~45.00	EL 21.20~21.14	N11W/19SW	7.5	_	7.5	走向・傾斜が福浦断層と異なり、隣接孔(F- 1'孔 44.7~45.3m)に連続しない。			
				FD-	·1孔					
No.	確認深度 (m)	認深度 (m) (m) (走向・傾斜 (走向は真北) (cm) (cm) (cm) (cm) (cm)		福浦断層に対応しないと判断した根拠						
				破砕部は認	められない					
				FD-	-2孔					
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 ^(cm)	粘土状破砕 部の幅	砂状・角礫状 破砕部の幅	福浦断層に対応しないと判断した根拠			

(cm)

破砕部は認められない

(cm)

	OS-9孔											
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 (cm)	砂状 · 角礫状 破砕部の幅 (cm)	福浦断層に対応しないと判断した根拠					
85	19.12~19.14	EL 42.03~42.02	N17W/82SW	1.4	_	_	性状が福浦断層と異なり, 隣接孔(OS-4孔: 1.4~6.0m, OS-3' 孔:51.9~60.0m)に連続し ない。					
86	20.73~20.93	EL 40.89~40.75	N29W/79SW	15	2.0	_	隣接孔(OS-4孔:6.5~10.1m, OS-3'孔:54.4 ~60.0m)に連続しない。					
87	53.38~53.40	EL 17.80~17.79	N75E/48SE	1.5	_	_	走向・傾斜,性状が福浦断層と異なる。					
88	54.38~54.40	EL 17.10~17.08	N46W/80SW	1.5	0.7	-	走向・傾斜が福浦断層と異なり、隣接孔(OS- 4孔 31.5~37.4m)に連続しない。					
89	55.42~55.50	EL 16.36~16.31	N30E/74SE	6.1	0.2 0.5	Ι	走向・傾斜が福浦断層と異なり,隣接孔(OS- 1孔)の想定延長範囲(56.3~100.0m)に対応 する破砕部が認められない。					
90	61.51~61.53	EL 12.06~12.04	N19W/88SW	1.1	1.1	_	走向・傾斜が福浦断層と異なり,隣接孔(OS- 4孔)の想定延長範囲(1.4~18.6m)に対応す る破砕部が認められない。					
91	68.25~68.33	EL 7.29~7.23	N19E/16NW	5.7	Ι	-	走向・傾斜,性状が福浦断層と異なる。					
92	70.66~70.72	EL 5.59~5.54	N71E/57SE	5.4	_	5.4	走向・傾斜が福浦断層と異なり, 大坪川ダム 基礎掘削面に連続しない。					
93	71.04~71.06	EL 5.32~5.30	N53E/47SE	2.5	0.5	_	走向・傾斜が福浦断層と異なり, 大坪川ダム 基礎掘削面に連続しない。					
94	79.63 ~ 79.67	EL -0.76~-0.79	N62E/71SE	4.0	0.7	_	走向・傾斜が福浦断層と異なり、大坪川ダム 基礎掘削面に連続しない。					

断層oの性状と連続性

断層oの評価 -調査結果-

O大坪川ダム左岸でボーリング調査(調査④)を行った結果, OS-5~OS-8孔の4本のボーリングで, 安山岩と凝灰角礫岩の境界に破砕部が認められる。これらはいずれもNE-SW走向, 南東傾斜 であり, 大坪川ダム基礎掘削面のシーム(断層o)に対応する破砕部であると判断した。

【断層oの連続性】

〇ボーリング調査(OS-9孔)(調査^①)の結果,福浦断層の上盤側で認められた断層oが,福浦断層(西側)を越えて下盤側の想定延長位置に認められない。一方,福浦断層(西側)は断層oの延長 位置を越えて連続的に分布している(左下図)。

〇断層oの北方延長で実施した反射法地震探査(調査E),南方延長で実施した表土はぎ調査(調査E), G)の結果,断層は認められない。

Oしたがって、断層oは長さ約120~360mの断層であると評価した。

Oまた,断層oと福浦断層の分布や運動方向等について検討を行った結果,両断層は分岐や共役の関係ではないと判断した。

【断層oの活動性】

〇地形調査(調査[©])の結果,断層₀を挟んで,大坪川ダム右岸と左岸に分布する高位段丘 I b面(MIS5eより古い高海面期に形成)に高度差は認められない。一方,福浦断層を挟んで分布する高 位段丘 I b面, II 面では,福浦断層の上盤側(南西側)の段丘面標高が下盤側(北東側)に比べてやや高くなる。

〇薄片観察(調査B)の結果,粘土鉱物(I/S混合層:少なくとも後期更新世以降に生成したものではない)がY面を横断して分布し,Y面が不連続になっており,不連続箇所の粘土鉱物(I/S混合層) に変位・変形は認められない。また,断層oと福浦断層の性状を比較した結果,断層oにおいて福浦断層のような層状構造は観察されず,繰り返し活動した構造は認められない。

○断層。の長さは最大でも約360mであり、断層。と福浦断層は分岐や共役の関係ではない。 ○断層。を挟んで高位段丘Ⅰb面に高度差は認められず、薄片観察の結果、断層。の最新活動は1/S混合層の生成以前であることから、断層。に後期更新世以降の活動はないと評価した。

○大坪川ダム基礎掘削面及びボーリングOS-5~8孔において、断層oの分布を約120m区間確認しており、断層長さは最大でもOS-9孔(北端)からルートマップJの 表土はぎ箇所(南端)までの約360mである。

大坪川ダム付近 調査位置図(旧地形)

8-31

推定区間

第1064回審査会合 資料1 P.143 再掲

【断層oと福浦断層の関係(分岐断層の可能性に関する検討)】

〇断層oが福浦断層の分岐断層である可能性について検討を行った。

〇吉岡ほか(2005)は、「2つの断層間に20°以上の急激な走向変化,変位の向きの急変がある場合には、別の活動セグメントとする」としていることから、2つの断層の交差角が20°未満で、変位の向きが同じである場合、両断層は同一の活動セグメントで分岐断層の可能性があると考えられる。

〇断層oは、福浦断層と高角で会合する関係にあり、その交差角が20°以上である。

Oまた, 断層の傾斜方向が逆であり, 断層oは東側隆起, 福浦断層は西側隆起の逆断層であるため, 変位の向きが逆である。

〇以上のことから, 福浦断層の分岐断層ではないと判断した。

【断層oと福浦断層の関係(共役断層の可能性に関する検討)】

〇断層のと福浦断層が共役断層である可能性について検討を行った。

○狩野・村田(1998)は、「2方向の断層の交差する鋭角を挟む方向に短縮する変位成分、鈍角方向に伸張成分をもち、かつ破砕帯の性質が同様なものを共役断層と呼ぶ」としている。 ○断層₀と福浦断層の運動方向を確認した結果、断層₀は鋭角を挟む方向が短縮する変位成分をもつのに対し、福浦断層は鋭角を挟む方向が伸張する変位成分をもつ。

Oまた, 断層oと福浦断層の薄片を比較した結果, 断層oにおいて福浦断層のような層状構造は観察されず, 断層oで認められる複合面構造は福浦断層と比べて不明瞭であることから, これらは 破砕部の性質が異なる。

〇以上のことから、これらは共役断層ではないと判断した。

共役断層の例(狩野・村田, 1998)

第1064回審査会合 資料1 P.147 再掲

断層oの評価 - ④ボーリング調査(OS-5~8孔), ⑧薄片観察(OS-7孔, OS-8孔)-

【断層oの性状(OS-5孔, OS-6孔)】 OS-5孔(孔口標高37.89m, 掘進長50m, 傾斜70°) OS-6孔(孔口標高37.89m, 掘進長60m, 傾斜75°) 深度(m) 深度(m)¦ 深度(m) 深度(m) 39.5 40.5 ¦ 42 43 40.5 41.5 ¦ 43 44 下拡大範囲 42.5 41.5 44 45 コア写真(42~45m) コア写真(39.5~42.5m) 深度(m) 44.5 深度(m) 39.7 39.9 キャん断面 44.6 44.7 44.8 39.8 40.0 破砕部 破砕部 ボーリング ボーリング ボーリング ボーリング 孔口側 孔底側 孔口側 孔底側 (上盤側) (下盤側) (上盤側) (下盤側) 主せん断面 ボーリング ボーリング ボーリング ボーリング 孔口側 孔底側 孔口側 孔底側 (上盤側) (下盤側) (上盤側) (下盤側) 主せん断面※ 拡大写真(上:コア写真,下:CT画像) ※主せん断面位置は掘進境界にあたり、 拡大写真(上:コア写真,下:CT画像) 深度39.66~40.34mに,見掛けの傾斜角10~60°の厚さ47~ ・断層oは凝灰角礫岩(上盤側)と安山岩(下盤側)の岩相境界 一部でコアが乱れている 49cmの破砕部が認められる。 をなす。 深度44.31~44.79mに,見掛けの傾斜角40~60°の厚さ24cmの破砕部が認められる。 厚さ4.4~6.2cmの灰色の粘土状破砕部及び厚さ5.1~5.8cmの ・下盤側の安山岩は、変質を受けており、やや軟質である。 厚さ5.5cmの緑黒~灰色の粘土状破砕部及び厚さ18~19cmの固結した破砕部からなる。 灰~明緑灰色の粘土状破砕部及び厚さ37~38cmの固結した ・主せん断面の下盤側の観察面で110°Rの条線が認められる。 破砕部からなる ・断層oは凝灰角礫岩(上盤側)と安山岩(下盤側)の岩相境界をなす。 下盤側の安山岩は、変質を受けており、やや軟質である。 条線方 観察面 掘進 走向N51°E 方向 イク(*) 傾斜87°SE 概念図 ・断層。の主せん断面の下盤側で観察される条線方向は110°Rである。 ※走向は真北で示す。 ·薄片観察を踏まえると、断層oの運動方向は左横ずれ逆断層センスである。 条線観察面写真 観察面拡大写真

8-36

第1064回審査会合 資料1

P.148 再掲

断層oの評価 - ① 地形調査-

○断層。を挟んで、大坪川ダム右岸と左岸に分布する高位段丘 Ib面に高度差は認められない(D-D', E-E'断面)。
 ○断層。の北方延長位置を挟んで、高位段丘 Ib面、Ⅱ面、Ⅲ面に高度差は認められない(A-A', B-B', C-C'断面)。
 ○さらに断層。の南方延長に位置する谷地形を挟んで、中位段丘 I面、高位段丘 Ia面に高度差は認められない(F-F', G-G'断面)。
 ○一方、大坪川ダム左岸において、福浦断層を挟んで分布する高位段丘 Ib面では、福浦断層の上盤側(南西側)の段丘面標高が下盤側(北東側)に比べてやや高くなる(J-J'断面)。また、大坪川ダム湖の北方の高位段丘 Ib面、Ⅱ面においても、同様の傾向が認められる(H-H', I-I'断面)。

【大坪川ダム周辺 地形断面図②】

【大坪川ダム周辺 地形断面図③】

【福浦断層南部の地形図】

○大坪川ダム建設前の地形図(下図)及び赤色立体地図(次頁)を確認した結果,断層₀に沿って,北東一南西方向に直線的な崖地形が認められる。
 ○この崖地形は,約200m区間で認められるが,福浦断層のリニアメント・変動地形付近で途絶えている。
 ○断層₀の南方延長には,谷地形(3)が分布するが,谷地形・鞍部の位置で表土はぎ調査を実施した結果,断層は認められない。

【福浦断層南部の赤色立体地図】

位置図

↔ :反射法地震探査での断層確認位置 - 断層位置

[リニアメント・変動絶形] Ls (変動地形である可能性がある) ↓ Lc (変動地形である可能性が低い) La (変動地形である可能性は非常に低い) ケバは低下側を示す。 ↓は地形面の傾斜の向きを示す。

航空レーザ計測(2007年実施)により作成

大坪川ダム建設前の赤色立体地図 (1985年撮影の空中写真により作成)

【福浦断層南部の地形図(拡大)】

〇大坪川ダム左岸では、断層oに沿って直線的な岸地形が認められるが、その区間は200m程度であり、連続性に乏しい。 〇ボーリング調査(OS-5~OS-8孔)の結果、断層。は凝灰角礫岩と安山岩の地層境界をなし、断層。を境に下盤側(北西側)の安山岩は強く変質し、軟質化している。 Oよって、断層oに沿って認められる直線的な崖地形は、岩盤の硬軟の差を反映した差別侵食地形であると判断される。 Oまた、断層oの西側の湖内には、浮島状の地形が認められる。この浮島状の地形の北西側に崩壊地形が認められることから、この地形は北西側の斜面から崩れ 落ちた土砂によってできた小丘(流れ山)であり、周辺が侵食によって削られて取り残された地形であると考えられる。 〇この浮島状の地形の北東-南西方向に、同様な地形が連続して認められないため、この地形は断層oの活動に起因するものではないと考えられる。

大坪川ダム建設前の赤色立体地図

(1985年撮影の空中写真により作成)

大坪川ダム建設前の地形図 (1985年撮影の空中写真により作成)

【直線的な崖地形の形成過程の考察】

〇断層oに沿って認められる直線的な崖地形は、福浦断層(西側)を越えて、福浦断層(東側)付近まで連続して認められる。

〇福浦断層(西側)の上盤側では, 断層。を境に北西側が強く変質し, 軟質化している(次頁左)ことから, 直線的な崖地形は, 変質部の境界である断層。を境に北西側が差別侵食を受けたこと により形成されたものと考えられる。

〇一方, 福浦断層(西側)の下盤側では, 上盤側でみられるような明瞭な変質の境界は認められず, 軟質化も認められない(次頁右)ものの, 直線的な崖地形が福浦断層(西側)の上盤側から 連続して認められる。この地形については, 断層。の北西側が差別侵食を受けたことにより, 直線的な崖地形が形成し, その上流側が攻撃斜面にあたることから侵食が進行し, 下流側の崖 地形にすりつくように連続して崖地形が形成されたものと考えられる。

(1985年撮影の空中写真により作成)

第1064回審査会合 資料1 P.170 再掲

【断層oの特徴】

○大坪川ダム基礎掘削面スケッチ及び追加調査(OS-5孔~OS-8孔のコア観察,条線観察,薄片観察)結果により,断層₀は大坪川ダム左岸の直線的な崖地形に沿って分布し,凝灰角礫岩と強く変質を被る安山岩の岩相境界に認められ,厚い未固結な破砕部を伴うなどの性状を有することを確認した。

【OS-9孔の調査結果】

○断層oが福浦断層(西側)を越えて北方に連続するかどうかを確認するために,福浦断層(西側)の下盤側において,ボーリング調査(OS-9孔)を実施した。
○断層oは,大坪川ダム左岸の直線的な崖地形に沿った位置に出現すると想定されることから,断層oの想定延長位置を含んだ範囲において,断層の有無の確認を行った。

〇その結果, OS-9孔において断層oは認められない。

大坪川ダム付近 調査位置図(旧地形※) ※地形改変前の航空写真(当社撮影 (1985年), 編尺8千分の1)から作成

項目	断層oの特徴	OS-9孔の調査結果				
地形との対応	断層。は大坪川ダム左岸の直線的な崖地形に沿っ てNE-SW方向に分布しており、断層トレースの屈曲 はほぼ認められない。	大坪川ダム左岸の直線的な地形に沿った想定延長 位置付近に、断層oと類似した性状を有する破砕部 は認められない。				
岩相境界	大坪川ダム基礎掘削面スケッチ及びOS-5~8孔で 認められる断層oは、凝灰角礫岩と安山岩の岩相境 界に分布する。	凝灰角礫岩と安山岩の岩相境界に破砕部は認められない。				
変質の程度	OS-5~8孔で認められる断層。の下盤側の安山岩は 強く変質を被っている。	強く変質を被っている区間は認められない。				
走向・傾斜 破砕部の幅 連続性	大坪川ダム基礎掘削面で確認した走向・傾斜はN45 ~60°E/69~77°SE。 OS-5~8孔で確認した破砕部の幅は24~51cmであ り,幅4~11cmの未固結な破砕部を伴う。 断層oは長さ約120m区間で確認。	確認された破砕部は、いずれも断層。と走向・傾斜、 性状が異なる、あるいは連続性に乏しい破砕部であ り、断層。に対応しない。				

第1064回審査会合 資料1 P.172 再掲

【断層oが認められないボーリング孔(OS-9孔) 2/3】 OS-9孔(孔口標高55.55m, 掘進長80m, 傾斜45°) 深度(m) 深度(m) 深度(m) 深度(m) MAD 安山岩(角礫質) 凝灰角礫岩 岩相境界 深度59.40m ・・・凝灰角礫岩(孔口側)と安山岩(孔底側)の岩相境界 深度68.10m ・・・安山岩(孔口側)と凝灰角礫岩(孔底側)の岩相境界 深度74.10m ・・・凝灰角礫岩(孔口側)と安山岩(孔底側)の岩相境界 破砕部 ④深度53.38~53.40mに厚さ0.6~1.5cmの破砕部(N75E/48SE) ⑤深度54.38~54.40mに厚さ0.3~1.5cmの破砕部(N46W/80SW) ⑥深度55.42~55.50mに厚さ6.1cmの破砕部(N30E/74SE) ⑦深度61.51~61.53mに厚さ0.3~1.1cmの破砕部(N19W/88SW) ⑧深度68.25~68.33mに厚さ4.0~5.7cmの破砕部(N19E/16NW) ⑨深度70.66~70.72mに厚さ5.4cmの破砕部(N71E/57SE) ⑩深度71.04~71.06mに厚さ1.1~2.5cmの破砕部(N53E/47SE) Star all and the second second ①深度79.63~79.67mに厚さ2.5~4.0cmの破砕部(N62E/71SE)

第1064回審査会合 資料1 P.174 再掲

断層o

【断層oが認められないボーリング孔(OS-9孔) 3/3】

○大坪川ダム基礎掘削面スケッチの結果から、N50° E/73° SEを基準とし、断層oの走向・傾斜に調和的な破砕部(走向:±30°,傾斜:±15°,下図 □ 範囲*)に ついて、性状の比較、連続性の検討を行った。

○検討の結果, OS-9孔に断層oに対応する破砕部は認められない。

※:アンジュレーションの範囲は、福浦断層に準拠し、検討を行った。

	断層o											
名称	確認位置 確認深度(m)	標高(m)	走向・傾斜 (走向は真北)	破砕部の幅 (cm)	粘土状破砕部 の幅 (cm)	砂状・角礫状 破砕部の幅 (cm)						
大坪川ダム基礎掘削面	地表	EL17.5付近	N45~60E/ 69~77SE	—	—	—						
OS-5	39.66~40.34	EL-0.02~0.62	N51E/87SE	49	6.2, 5.8	_						
OS-6	44.31~44.79	EL-5.37~-4.91	N58E/74SE	24	5.5	_						
OS-7	28.22~28.90	EL11.68~12.29	N43E/86SE	35	11	_						
OS-8	29.90~30.68	EL9.04~9.77	N58E/73SE	51	4.0	_						

				08	5-9		
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 _{(cm})	砂状 • 角礫状 破砕部の幅 (cm)	断層oに対応しないと判断した根拠
1	17.08~17.18	EL 43.47~43.40	N9E/63NW	4.0	-	2.8	走向・傾斜, 性状が断層。と異なる。 (福浦断層と評価)
2	19.12~19.14	EL 42.03~42.02	N17W/82SW	1.4	-	-	走向・傾斜,性状が断層。と異なる。
3	20.73~20.93	EL 40.89~40.75	N29W/79SW	15	2.0		走向・傾斜,性状が断層。と異なる。
4	53.38~53.40	EL 17.80~17.79	N75E/48SE	1.5	-	-	走向・傾斜,性状が断層。と異なる。
5	54.38~54.40	EL 17.10~17.08	N46W/80SW	1.5	0.7	-	走向・傾斜, 性状が断層。と異なる。
6	55.42 ~ 55.50	EL 16.36~16.31	N30E/74SE	6.1	0.2 0.5	-	性状が断層oと異なり、隣接孔(OS-1孔 56.3 ~100.0m)に連続しない。
Ø	61.51~61.53	EL 12.06~12.04	N19W/88SW	1.1	1.1	-	走向・傾斜,性状が断層。と異なる。
8	68.25~68.33	EL 7.29~7.23	N19E/16NW	5.7	-	-	走向・傾斜, 性状が断層。と異なる。
9	70.66~70.72	EL 5.59~5.54	N71E/57SE	5.4	-	5.4	走向・傾斜,性状が断層。と異なり,大坪川ダ ム基礎掘削面に連続しない。
10	71.04~71.06	EL 5.32~5.30	N53E/47SE	2.5	0.5	_	走向・傾斜, 性状が断層。と異なる。
1	79.63~79.67	EL -0.76~-0.79	N62E/71SE	4.0	0.7	-	

OS-5 OS-6 OS-7 OS-8 • 9 (5) . .10 3 G 2 1 🧧 福浦断層 🌔 断層o ● 福浦断層, 断層o以外の破砕部 OS-9孔の調査結果 (シュミットネット下半球投影図)

Ν

・断層oと走向・傾斜が対応する破砕部は 📃 で示す。

・ 範囲に近接する破砕部⑨についても,連続性の検討を行った。

富来川南岸断層の性状と連続性

第1064回審査会合 資料1 P.207 再掲

富来川南岸断層の活動性 -東小室西方 ボーリング調査-

O判読したDランクのリニアメント・変動地形について、ボーリング調査を実施した結果、EL-124m付近の穴水累層安山岩中に破砕部が認められた。

○破砕部の傾斜角は約45°,厚さは40cmであり、薄片観察等の結果、複合面構造から逆断層センスが認められること(次頁)、Dランクのリニアメント・変動地形に対応 する南側隆起の逆断層であると考えられる※1ことから、この破砕部が富来川南岸断層に対応すると判断した。

〇上記の結果と、隣接するトレンチ調査地点でCランクのリニアメント・変動地形に対応する断層が認められないこと(前頁)を踏まえ、本区間において富来川南岸断層は Dランクのリニアメント・変動地形付近を通過すると評価した。

※1: ボーリングコアで確認した破砕部の傾斜角を考慮すると、この断層は地表のDランクのリニアメント・変動地形に対応すると考えられる。

富来川南岸断層

【運動方向】

OTJ-1孔で確認した断層のコア観察の結果,複合面構造から逆断層センスを推定した。 O断層の主せん断面において,105°Rの条線方向で作成した薄片観察の結果,複合面構造から逆断層センスを推定した。

富来川南岸断層の端部 ー北東方延長の地質調査-

Oリニアメント・変動地形の北東方において、断層の連続性に関する地質調査を行った。

- Oリニアメント・変動地形は山地-平野境界に判読されることから、和田~今田の山地-平野付近において地表踏査を行った結果、山地から平野に流下する沢沿いに分布する露頭において、断層は認められない(右下図①)。
- Oまた, 今泉ほか(2018)は, 山地-平野境界付近及びその北東延長の山地内に推定活断層と水系の屈曲を示しているが, これらが示された沢における地表踏査及びボーリング調査(WD-1孔) の結果, 断層は認められない(右下図②, 次頁以降)。
- Oさらに、富来川沿いの沖積平野下に断層が伏在して北東方に連続すると考えた場合でも、リニアメント・変動地形の延長方向に位置し、富来川が上流に向かい北東方向から北西方向へ大きく 屈曲するLoc.Aにおいては、別所岳安山岩類の凝灰角礫岩が広く分布し、それらは非破砕であり、断層は認められない(右下図③-1)。また、Loc.Aのうち、リニアメント・変動地形の延長方向 (断層位置(推定区間)沿い)に分布する谷において、ボーリング調査(IM-a孔)を行った結果、富来川南岸断層に対応する破砕部は認められない(右下図③-2)。
- Oなお,和田~今田における富来川の北岸については,丘陵地が南側に張り出し,富来川南岸断層から想定される南側隆起の地形とは異なることから,このエリアを断層が通る可能性が低いと 判断した(右下図④)。
- O以上を踏まえ、地質調査の結果、富来川南岸断層の北東端については、右下図①~④の範囲に断層が存在するとは考え難く、仮にリニアメント・変動地形北東方の沖積平野下に断層が伏在したとしても、最も長く連続した場合でもLoc.AにおけるIM−a孔より北東方には延長しないと判断した。

^{富来川南岸断層(北東端)}【今泉ほか(2018)が水系の屈曲を示した沢における詳細調査(1/2)】

〇今泉ほか(2018)が水系の屈曲を示した沢において、ボーリング調査を行った結果、今泉ほか(2018)の推定断層の地下延長部に断層は認められない。

第1064回審査会合 資料1 P.223 再掲

コア写真(深度40~115m)

富来川南岸断層(北東端)

✓ 層理面の走向・傾斜

位置図

【Loc.Aにおける調査結果(ボーリング調査結果)(1/3)】

○ リニアメント・変動地形の延長方向(断層位置(推定区間)沿い)に分布する谷において,ボーリング調査を行った結果,富来川南岸断層に対応する破砕部は認めら れない。

8-56

富来川南岸断層(北東端)

【Loc.Aにおける調査結果(ボーリング調査結果)(2/3)】

紫字:第1064回審査会合以降の変更箇所

				IM-a孔(孔口標高37.72m, 掘進長80m, 傾斜60°)	
深	度(m)	深度(m)	深度	(m) 深度	₹(m)
0		1	24		25
1	Contraction of the second	2	25		26
2		3	26		27
3		4	27		28
4	Ville in A	5	28	Real of the second seco	29
5	D. C. J. St.	6	29		30
6	A CONTRACT OF A	7	30		31
7	A CONTRACT OF A CONTRACT.	8	31		32
8	La setter de la se	9	32		33
9		1	0 33	The all of	34
10	Contraction of the second second	1	1 34	COLUMN AND AND A	35
11	and the second sec	1:	2 35	Design the states	36
12	Contraction of the	1:	3 36	LIAN A LAND	37
13	8	1	4 37	MONTO STATE	38
14		1	5 38		39
15	the second second second	1	6 39	(V Aparentermenter	40
16	A second second	1	7 40	(41
17	The Free Free	18	8 41	C AL A CAR	42
18	(1	9 42		43
19	Commence Andrew Market	20	0 43	and for the second of the seco	44
20		2	1 44		45
21		22	2 45	C C P TO TO TO TO TO TO TO TO	46
22	C	23	3 46	D RAY YOUR NI	47
23	12 Contract of the	24	47	((48

深度(m)	深度(m)
48	49
49	50
50	51
51	52
52	53
53	54
54	55
55	56
56	57
57	58
58	59
59	60
60	61
61	62
62	63
63	2/ 64
64	65
65	66

破砕部

①深度27.00mに厚さ0.4~1.0cmの破砕部(N38W/64SW)
 ②深度64.94~64.96mに厚さ1.4~2.0cmの破砕部(N84W/61SW)
 ③深度65.41~65.42mに厚さ0.2~1.2cmの破砕部(N86E/65SE)

富来川南岸断層(北東端)

【Loc.Aにおける調査結果(ボーリング調査結果)(3/3)】

紫字:第1064回審査会合以降の変更箇所

コア写真(深度66~80m)

破砕部

④深度66.90~66.92mに厚さ0.4~1.2cmの破砕部(N84E/52NW)
 ⑤深度71.49~71.95mに厚さ0.4~2.0cmの破砕部(N71E/71NW)
 ⑥深度73.68~73.92mに厚さ3.4~4.2cmの破砕部(N80E/42NW)
 ⑦深度76.60mに厚さ0.1~1.6cmの破砕部(N73W/63NE)

	IM−aĤ												
No.	確認深度 (m)	標高 (m)	走向・傾斜 (走向は真北)	破砕部の幅 _(cm)	粘土状破砕 部の幅 (cm)	砂状 • 角礫状 破砕部の幅 (cm)	富来川南岸断層に対応しないと判断した根拠						
1	27.00	EL 14.34	N38W/64SW	1.0	-	-	走向・傾斜,性状が富来川南岸断層と異なる。						
2	64.94~64.96	EL -18.52~-18.54	N84W/61SW	2.0	_	_	走向・傾斜,性状が富来川南岸断層と異なる。						
3	65.41~65.42	EL -18.93~-18.94	N86E/65SE	1.2	-	-	走向・傾斜,性状が富来川南岸断層と異なる。						
4	66.90~66.92	EL -20.22~-20.23	N84E/52NW	1.2	-	-	走向・傾斜,性状が富来川南岸断層と異なる。						
5	71.49~71.95	EL -24.19~-24.59	N71E/71NW	2.0	_	-	走向・傾斜,性状が富来川南岸断層と異なる。						
6	73.68~73.92	EL -26.09~-26.30	N80E/42NW	4.2	-	-	走向・傾斜,性状が富来川南岸断層と異なる。						
Ø	76.60	EL -28.62	N73W/63NE	1.6	-	-	走向・傾斜,性状が富来川南岸断層と異なる。						

・富来川南岸断層に対応する破砕部の性状としては、ボーリングTJ-1孔の 観察結果に基づき、未固結の破砕部を想定した。

※2:②,③の破砕部は、IM-a孔で確認された破砕部の中では走向傾斜が富来川 南岸断層と比較的近いが、全体が固結しており性状が異なる。また、破砕部の幅も2cm、1.2cmと小規模である。

巻末資料1 (第1073回審査会合以降に追加したデータ)

敷地の粘土鉱物の組成に関する考察

第1073回審査会合 資料2 P.136 一部修正

敷地の粘土鉱物の組成に関する考察

OI/S混合層を構成する2八面体型スメクタイトは、日本粘土学会編(2009)によれば、主にモンモリロナイト、鉄質モンモリロナイト、バイデライト、ノントロナイトに分類され、Fe₂O₃の含有量が大きいほどAl₂O₃の含有量が小さい傾向が認められる(左下表)。

○敷地のI/S混合層における Al₂O₃, Fe₂O₃の含有量は、上記の2八面体型スメクタイトにおける含有量の幅に含まれる。このうちH-0.2-60孔、岩盤調査坑No.25切羽、M-2.2孔のI/S混合層は、Al₂O₃の含有量が小さくFe₂O₃の含有量が大きい特徴をもつ(右下図)。

Oまた,敷地のI/S混合層におけるAl₂O₃, Fe₂O₃の含有量は、複数の集団には分かれないものの、漸移的な分布を示す(右下図)。これについて、以下の通り考察した。

・文献調査(吉村, 2001; Deer et al., 2013 など)の結果, 変質作用により生成される粘土鉱物は, 主に, ④温度, ⑧母岩や母材の性質, ◎反応する溶液の性質により異なると考えられる。

・④温度については、I/S混合層が敷地周辺にも広く認められ、敷地周辺一帯が同じような環境下で変質を被ったと考えられることや、敷地が少なくとも曹長石化するような高温の熱水の影響は受けていないことから、これらは同程度の温度環境で生成したと考えられる。

・・B母岩や母材の性質については、試料採取位置の母岩が共通して別所岳安山岩類からなり、敷地の安山岩の既往の分析結果に基づけば大きな組成のばらつきは認められないことから(次 頁)、母岩や母材の性質に大きなばらつきはないと考えられる。

・以上のことを踏まえると、敷地のI/S混合層におけるAl₂O₃、Fe₂O₃の含有量が漸移的な分布を示すことは、 ②反応する溶液の性質にばらつきがあったことを反映している可能性が考えられる。

0.0	1	2	3	9	10	C1	C2	W1	W2	4	5	6	7	8
SiO_2	53.98	51.14	50.72	55.80	59.30	61.77	62.23	64.80,	-62.00	47.38	53.12	51.66	39.92	42.40
Al_2O_3	15.97	19.76	18.12	28.60	36.11	19.85	21.03	24.54	23.42	21.27	0.36	8.13	5.37	5.60
Fe ₂ O ₃	0.95	0.85	2.41	0.41	0.50	1.95	1.75	1.27	3.74	10.66	29.69	14.08	29.46	32.53
FeO	0.19	-	1.02	-	-		0.48	0.56	0.32	-		0.51	0.28	
MgO	4.47	3.22	4.29	2.03	0.10	5.56	5.70	1.60	0.93	0.42	2.49	4.21	0.93	0.32
CaO	2.30	1.62	0.80	2.23	0.02	1.89	0.00	0.00	0.68	0.78	1.51	0.15	2.46	
Na ₂ O	0.13	0.04	3.00	0.09	3.98	0.07	0.65	0.40	0.72	0.12		1.21		
K ₂ O	0.12	0.11	0.62	0.48	0.11	0.09	0.00	0.60	2.63	0.08	0.30	0.71		5.14
H_2O^+	9.12	7.99	6.87	9.70		7.72	7.38	6.71	5.21	9.08		6.74	7.00	
H_2O^-	13.06	14.81	11.90	*		*	*	*	*	9.60	$12.5^{\#}$	10.13	14.38	14.03#
$tal(\%)^{a}$	100.62	99.75	99.90	99.60	100.12^{b}	99.14	99.22	100.48	99.65	99.39	100.05	98.40	99.88	100.02
Si	4.00	3.88	3.85	3.65	3.48	3.91	3.86	3.96	3.92	3.56	4.00	3.97	3.50	3.46
Al	0.00	0.12	0.15	0.35	0.52	0.09	0.14	0.04	0.08	0.44	0.00	0.03	0.50	0.38
Σ	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00**
Al	1.48	1.64	1.46	1.85	1.98	1.38	1.39	1.72	1.66	1.45	0.03	0.74	0.03	0.14
Fe^{3+}	0.05	0.05	0.13	0.02	0.02	0.09	0.08	0.06	0.18	0.60	1.70	0.81	2.02	1.84
Fe ²⁺	-	-	0.06	-	-		0.02	0.03	0.02	-		0.03		
Mg	0.52	0.36	0.45	0.20	0.01	0.54	0.55	0.15	0.09	0.05	0.27	0.48		0.02
Σ	2.05	2.05	2.10	2.07	2.01	2.01	2.04	1.96	1.95	2.10	2.00	2.08	2.05	2.00
Ca/2	0.39	0.20	0.03	0.31	-					0.13	0.12	0.01	0.35	
Na	0.02	0.02	0.42	0.01	0.50					0.02		0.18	0.02	
.K	-	-	0.02	0.04	-					0.01	0.03	0.07		0.56
IT CI	0.37	0.33	0.36	0.34	0.50	0.60	0.59	0.34	0.34	0.19	0.27	0.27	0.35	0.56

8. Besson et al. (1983): nontronite; potassium saturated for analysis, Garfield, Washington, U.S.A.

9. Heystek (1962): beidellite; hydrothermally altered rock, Castle Mountain, Ivanpah, calif., U.S.A.

10. Weir and Gree-Kelly (1962): beidellite; Gouge clay, Black Jack Mine, Beidell, Colo., U.S.A.

C1 and C2: After Grim and Kulbicki (1961) Cheto type montmorillonites, (C1: Cheto, Ariz., U.S.A.; C2: Otay, Calif., U.S.A.)

W1 and W2: After Grim and Kulbicki (1961) Wyoming type montmorillonites, W1: Hojun, Gunma, Japan; W2: Tala, Heras, Mendoza, Argentina.

日本粘土学会編(2009)に一部加筆

・モンモリロナイト (montmorillonite) 八面体シート $M_{0.33}(Al_{1.67}Mg_{0.33})Si_4O_{10}(OH)_2 \cdot nH_2O$

・鉄質モンモリロナイト (iron-rich montmorillonite) 八面体シート

 $M_{0.33}(Al, Fe^{3+}, Mg_{0.33})_2Si_4O_{10}(OH)_2 \cdot nH_2O$

・バイデライト (beidellite) 八面体シート M_{0.33}(Al₂)(Al_{0.33}Si_{3.67})O₁₀(OH)₂·nH₂O

・ノントロナイト (nontronite) 八面体シート M_{0.33}(Fe³⁺)(Al_{0.33}Si_{3.67})O₁₀(OH)₂ · nH₂O

日本粘土学会編(2009)に一部加筆

紫字:第1064回審査会合以降の変更箇所

 ・2八面体型スメクタイトでは、主に八面体を構成するAl がFe³⁺に置換されることにより、相対的にAl₂O₃の含有 量が小さく、Fe₂O₃の含有量が大きくなる(左表、下図)。

8-60

敷地の安山岩に関する調査(化学分析)

■ 敷地の安山岩の化学組成を確認するため,大深度ボーリング及び岩盤調査坑から採取した敷地内の安山岩(均質)について,化学分析を実施した。

生	ギ	
<u> </u>	,	

対象物	試料No.	採取標高 (m)	(wt.%) SiO ₂	TiO ₂	Al_2O_3	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Total	FeO*/MgO	Na ₂ O+K ₂ O
安山岩	GC-1	-18.25	56.77	0.80	16.83	6.79	0.13	3.60	6.99	3.59	1.16	0.16	96.82	1.89	4.75
安山岩	I-9-1	-27.65	60.15	0.72	16.39	5.49	0.07	1.82	5.93	3.81	1.37	0.16	95.91	3.02	5.18
安山岩	I-9-2	-156.50	57.61	0.88	15.43	6.59	0.13	3.62	7.15	3.90	1.17	0.17	96.65	1.82	5.07
安山岩	K-13.6-1	-197.88	58.05	0.77	16.86	6.15	0.15	4.12	7.01	3.68	1.13	0.16	98.08	1.49	4.81
安山岩	I-9-3	-199.90	56.61	0.78	16.06	6.73	0.12	4.70	6.60	3.41	0.82	0.16	95.99	1.43	4.23
安山岩	K-13.6-2	-205.93	56.90	0.73	17.98	6.14	0.12	3.64	7.48	3.66	1.03	0.15	97.83	1.69	4.69
安山岩	I-9-4	-258.80	57.49	0.80	15.99	6.54	0.10	4.04	6.78	3.70	1.18	0.16	96.78	1.62	4.88
安山岩	K-13.6-3	-279.23	58.56	0.77	16.11	6.14	0.08	3.57	6.35	3.85	1.26	0.16	96.85	1.72	5.11
安山岩	K-13.6-4	-504.38	58.20	0.95	16.41	6.56	0.12	3.96	6.74	3.83	1.24	0.18	98.19	1.66	5.07
安山岩	K-13.6-5	-719.08	55.37	0.69	16.74	6.63	0.11	4.46	5.98	3.75	1.51	0.14	95.38	1.49	5.26
安山岩	K-13.6-6	-942.58	58.75	0.61	17.51	4.09	0.13	2.37	5.13	3.99	1.99	0.15	94.72	1.73	5.98
安山岩	K-13.6-7	-982.93	57.03	0.70	16.74	6.05	0.20	3.52	4.91	4.35	1.62	0.14	95.26	1.72	5.97
安山岩	K-13.6-8	-1039.93	53.95	0.74	15.50	6.84	0.13	4.29	6.26	3.72	1.28	0.15	92.86	1.59	5.00
安山岩	K-13.6-9	-1072.88	53.90	0.68	17.02	6.82	0.14	4.47	5.89	3.88	0.95	0.16	93.91	1.53	4.83
[100%ノーマライスナータ]															
<u>[100%ノーマライステータ]</u> 対象物	試料No.	採取標高 (m)	(wt.%) SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	Total	FeO*/MgO	Na ₂ O+K ₂ O
[100%ノーマライステータ] 対象物 安山岩	試料No. GC-1	採取標高 (m) -18.25	(wt.%) SiO ₂ 58.63	TiO ₂ 0.83	Al ₂ O ₃ 17.38	FeO* 7.01	MnO 0.13	MgO 3.72	CaO 7.22	Na₂O 3.71	K₂O 1.20	P ₂ O ₅	Total 100.00	FeO*/MgO 1.89	Na ₂ O+K ₂ O 4.91
[100%ノーマライステータ] 対象物 安山岩 安山岩	試料No. GC-1 I-9-1	採取標高 (m) -18.25 -27.65	(wt.%) SiO ₂ 58.63 62.72	TiO ₂ 0.83 0.75	Al ₂ O ₃ 17.38 17.09	FeO* 7.01 5.72	MnO 0.13 0.07	MgO 3.72 1.90	CaO 7.22 6.18	Na ₂ O 3.71 3.97	K ₂ O 1.20 1.43	P ₂ O ₅ 0.17 0.17	Total 100.00 100.00	FeO*/MgO 1.89 3.02	Na ₂ O+K ₂ O 4.91 5.40
[100%ノーマライステータ] 対象物 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 I-9-2	採取標高 (m) -18.25 -27.65 -156.50	(wt.%) SiO ₂ 58.63 62.72 59.61	TiO ₂ 0.83 0.75 0.91	Al ₂ O ₃ 17.38 17.09 15.96	FeO* 7.01 5.72 6.82	MnO 0.13 0.07 0.13	MgO 3.72 1.90 3.75	CaO 7.22 6.18 7.40	Na ₂ O 3.71 3.97 4.04	K ₂ O 1.20 1.43 1.21	P ₂ O ₅ 0.17 0.17 0.18	Total 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82	Na ₂ O+K ₂ O 4.91 5.40 5.25
[100%ノーマライステータ] 対象物 安山岩 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 I-9-2 K-13.6-1	採取標高 (m) -18.25 -27.65 -156.50 -197.88	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19	TiO ₂ 0.83 0.75 0.91 0.79	Al ₂ O ₃ 17.38 17.09 15.96 17.19	FeO* 7.01 5.72 6.82 6.27	MnO 0.13 0.07 0.13 0.15	MgO 3.72 1.90 3.75 4.20	CaO 7.22 6.18 7.40 7.15	Na ₂ O 3.71 3.97 4.04 3.75	K ₂ O 1.20 1.43 1.21 1.15	P ₂ O ₅ 0.17 0.17 0.18 0.16	Total 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90
[100%ノーマライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97	TiO ₂ 0.83 0.75 0.91 0.79 0.81	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73	FeO* 7.01 5.72 6.82 6.27 7.01	MnO 0.13 0.07 0.13 0.15 0.13	MgO 3.72 1.90 3.75 4.20 4.90	CaO 7.22 6.18 7.40 7.15 6.88	Na ₂ O 3.71 3.97 4.04 3.75 3.55	K ₂ O 1.20 1.43 1.21 1.15 0.85	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17	Total 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41
[100%/-マライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	試料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38	FeO* 7.01 5.72 6.82 6.27 7.01 6.28	MnO 0.13 0.07 0.13 0.15 0.13 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72	CaO 7.22 6.18 7.40 7.15 6.88 7.65	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79
[100%/-マライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04
[100%/一マライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28
[100%/-マライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.18	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16
[100%/-マライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71 17.55	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51
[100%/-マライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5 K-13.6-6	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64	Al ₂ O ₃ 17.38 17.09 15.96 17.19 16.73 18.38 16.52 16.63 16.71 17.55 18.49	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15 0.16	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.72 1.66 1.49 1.73	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31
[100%/-マライステータ] 対象物 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩 安山岩	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5 K-13.6-6 K-13.6-7	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58 -982.93	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02 59.87	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64 0.73	$\begin{array}{c} Al_2O_3 \\ 17.38 \\ 17.09 \\ 15.96 \\ 17.19 \\ 16.73 \\ 18.38 \\ 16.52 \\ 16.63 \\ 16.71 \\ 17.55 \\ 18.49 \\ 17.57 \end{array}$	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32 6.35	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14 0.21	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50 3.70	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42 5.15	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21 4.57	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10 1.70	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15 0.16 0.15	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.62 1.72 1.66 1.49 1.73 1.72	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31 6.27
[100%)/-マライスナータ] 対象物 安山岩 安山岩 <t< th=""><th>武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5 K-13.6-6 K-13.6-7 K-13.6-7 K-13.6-8</th><th>採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58 -982.93 -1039.93</th><th>(wt.%) SiO₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02 59.87 58.10</th><th>TiO₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64 0.73 0.80</th><th>$\begin{array}{c} Al_2O_3\\ 17.38\\ 17.09\\ 15.96\\ 17.19\\ 16.73\\ 18.38\\ 16.52\\ 16.63\\ 16.71\\ 17.55\\ 18.49\\ 17.57\\ 16.69\\ \end{array}$</th><th>FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32 6.35 7.37</th><th>MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14 0.21 0.14</th><th>MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50 3.70 4.62</th><th>CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42 5.15 6.74</th><th>Na₂O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21 4.57 4.01</th><th>K₂O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10 1.70 1.38</th><th>P₂O₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15 0.16 0.15 0.16</th><th>Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00</th><th>FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.62 1.72 1.66 1.49 1.73 1.72 1.59</th><th>Na₂O+K₂O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31 6.27 5.38</th></t<>	武料No. GC-1 I-9-1 I-9-2 K-13.6-1 I-9-3 K-13.6-2 I-9-4 K-13.6-3 K-13.6-4 K-13.6-5 K-13.6-6 K-13.6-7 K-13.6-7 K-13.6-8	採取標高 (m) -18.25 -27.65 -156.50 -197.88 -199.90 -205.93 -258.80 -279.23 -504.38 -719.08 -942.58 -982.93 -1039.93	(wt.%) SiO ₂ 58.63 62.72 59.61 59.19 58.97 58.16 59.40 60.46 59.27 58.05 62.02 59.87 58.10	TiO ₂ 0.83 0.75 0.91 0.79 0.81 0.75 0.83 0.80 0.97 0.72 0.64 0.73 0.80	$\begin{array}{c} Al_2O_3\\ 17.38\\ 17.09\\ 15.96\\ 17.19\\ 16.73\\ 18.38\\ 16.52\\ 16.63\\ 16.71\\ 17.55\\ 18.49\\ 17.57\\ 16.69\\ \end{array}$	FeO* 7.01 5.72 6.82 6.27 7.01 6.28 6.76 6.34 6.68 6.95 4.32 6.35 7.37	MnO 0.13 0.07 0.13 0.15 0.13 0.12 0.10 0.08 0.12 0.12 0.12 0.14 0.21 0.14	MgO 3.72 1.90 3.75 4.20 4.90 3.72 4.17 3.69 4.03 4.68 2.50 3.70 4.62	CaO 7.22 6.18 7.40 7.15 6.88 7.65 7.01 6.56 6.86 6.27 5.42 5.15 6.74	Na ₂ O 3.71 3.97 4.04 3.75 3.55 3.74 3.82 3.98 3.90 3.93 4.21 4.57 4.01	K ₂ O 1.20 1.43 1.21 1.15 0.85 1.05 1.22 1.30 1.26 1.58 2.10 1.70 1.38	P ₂ O ₅ 0.17 0.17 0.18 0.16 0.17 0.15 0.17 0.17 0.17 0.18 0.15 0.16 0.15 0.16	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	FeO*/MgO 1.89 3.02 1.82 1.49 1.43 1.69 1.62 1.62 1.72 1.66 1.49 1.73 1.72 1.59	Na ₂ O+K ₂ O 4.91 5.40 5.25 4.90 4.41 4.79 5.04 5.28 5.16 5.51 6.31 6.27 5.38

FeO^{*}:全鉄をFeOとして表示

巻末資料2 (第1073回審査会合以降に追加したデータ)

福浦断層南部のXRD分析結果

福浦断層南部のXRD分析結果

○福浦断層で実施したXRD分析の結果, I/S混合層(FK-1孔:イライト混合率5%)が確認された。ただし,分析結果はFK-1孔のみであったことから,データの客観性向上を目的に追加(OS-2孔, OS-3'孔)でXRD分析を行い,結晶構造判定を実施した。

Oその結果,いずれもI/S混合層(OS-2孔:イライト混合率15%, OS-3'孔:イライト混合率5%)であると判定された。FK-1孔, OS-3'孔は敷地のI/S混合層(イライト混合率10~35%)と比べてイライト混合率が小さいが, OS-2孔は敷地と同程度の混合率であり,福浦断層におけるイライト混合率の違いは,敷地周辺のイライト混合率のばらつきの範囲内と考えられ,局所的な変質の程度の違いであると判断した。

<粘土鉱物の結晶構造判定結果>

SS

福浦断層

(FK-1孔)

敷地の粘土鉱物

標準的なスメクタイト

Nakata et al.(2019)

5.00

スメクタイト

6.00

8-64

福浦断層_OS−2孔

【XRD分析結果】

・OS-2孔の粘土鉱物でXRD分析による結晶構造判定を実施した結果,粘土鉱物(スメクタイト)はI/S 混合層であると判定した。

EG処理スメクタイトのピーク回折角

①5~8°	5.04°
@9~11°	10.14°
316~18°	15.78°
$\Delta 2\theta_1$ (2–1)	5.10°
$\Delta 2\theta_2$ (3–2)	5.64°

\square

渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)
渡辺(1981)による イライト混合割合	イライトが15%程度混合

福浦断層_OS-3'孔

【XRD分析結果】

・OS-3' 孔の粘土鉱物でXRD分析による結晶構造判定を実施した結果,粘土鉱物(スメクタイト)は I/S混合層であると判定した。

EG処理スメクタイトのピーク回折角

①5~8°	5.17°
@9~11°	10.27°
316~18°	15.67°
$\Delta 2 \theta_1$ (2–1)	5.10°
$\Delta 2\theta_2$ (3–2)	5.40°

I/S混合層構造判定

渡辺(1986)による I/S混合層構造判定	I/S混合層(R=0)
渡辺(1981)による イライト混合割合	イライトが5%程度混合

調查⑨ 薄片観察 (敷地内断層・福浦断層・断層o)

薄片一覧表(2021年11月現地調査以降に追加したデータ)

断層		評価地点			2022年5月の	2022年7月の	2022年9月の	2022年9月の		
評価 対象断層		孔名	薄片名	確認範囲	審査会合で追加したデータ	審査会合で 追加したデータ	審査会合で 追加したデータ	審査会合以降に 追加したデータ	備考	
		H-6.6-1 <i>∓</i> L	薄片①	範囲A						
			薄片①	範囲B						
				範囲A						
	S-1	H-6.7孔	薄片②	範囲B						
				範囲A	0				・2021年11月の現地調査での指摘を踏まえて追加したデータ	
				範囲A	0					
		M-12.5"孔		範囲A 範囲P						
		K-6 2-2∓l	薄片①	範囲A						
	S-2•S-6	F-8.5' 7.	薄片①	範囲A						
		E-8.5-2孔	MATTE	範囲A						
			薄片①	範囲B						
			薄片①	範囲A						
		E-8.50'''孔	###	範囲A	0					
	S-4		薄片(2)	範囲B	0				・2021年11月の現地調査での指摘を踏まえて追加したテータ	
		E-8.60子L	薄片①	範囲A						
	0.5	R-8.1-1-3孔	薄片①	範囲A						
敷	5-5	R-8.1-1-2孔	薄片①	範囲A	0				・2021年11月の現地調査での指摘を踏まえて追加したデータ	
地		H-5.4-1E孔	薄片①	範囲A						
断			薄片①	範囲A						
層	S-7	H-57'7.	₩ЛШ	範囲B						
		H-5.7 TL	薄片②	範囲A	0				・2021年11月の現地調査での指摘を踏まえて追加したデータ	
				範囲B	0					
	S-8	F6.75孔	薄片①	範囲A						
				範囲B	0				・2021年11月の現地調査での指摘を踏まれて追加したテータ	
		H−1 1−87 7 I	薄片①	• 町田A					・2022年5月の番貨会合じの指摘を踏まえて追加したアーダ	
	K O	H-1.1-0/fL	Marin U	範囲B	0				・2021年11月の現地調査での指摘を踏まえて追加したデータ・2022年5月の審査会合での黄色、灰色及び白色の粘土鉱物の境界への指摘を踏まえて追加したデータ	
	K-2		薄片①	範囲A			0		・2022年5月の審査会合以際に説明性向上の日的で追加したデータ	
		G-1.5-80孔	薄片②	範囲A			0			
			薄片③	範囲A					・2022年9月の審査会合以降に説明性向上の目的で追加したデータ	
	K-3	M-2.2孔	薄片① ほか	破砕部 全体	0				・2021年11月の現地調査での指摘を踏まえて追加したデータ	
	K-14	H0.3-80孔	薄片①	範囲A						
		H-0.2-75孔	薄片①	範囲A						
			薄片②	範囲A					・2022年5月の審査会合での横断箇所の割れ目や線状の粘土鉱物への指摘を踏まえて追加したデータ	
	K-18		薄片③	範囲A			0		・2022年5月の審査会合以降に説明性向上の目的で追加したデータ	
		H-0.2-607L	薄片①	範囲A			0		・2022年5月の審査会合以降に説明性向上の目的で追加したデータ	しい新規ナータ
		11 0.2 0036	薄片②	範囲A				0	・2022年9月の審査会合以降に説明性向上の目的で追加したデータ	□:指摘に対して説明を
		FK-1孔	薄;	<u>†1)</u>						追加したデータ
		大坪川ダム	薄片①	(100R)						
福	浦断層	石库トレンナ	薄片(2	薄片(2)(10R) 🗆					・2021年11月の現地調査での指摘を踏まえて追加したデータ ・2022年5月の審査会合でのY面の不連続筒所や粘土鉱物がY面を横断しているように見える筒所についての	水色:2021年11月現地調査以降
			薄)	† ①					指摘を踏まえて追加したデータ	に追加したデータ
<u> </u>		ス 坪川ダム石 岸南道路	薄,	+ ①						
断層o		OS-7孔	薄) 薄)	†1) †2)		0			・2022年1月の審査会合での指摘を踏まえて追加したデータ	
		OS-8孔	薄)	† ①		0			1	9-2

第1073回審査会合 資料2 P.22 一部修正

鉱物脈法による評価に用いた薄片一覧表(敷地内断層)

	評価 対象断層	評価地点			評価に用いた 変質鉱物等	断層活動(最新面及び最新ゾーン) と変質鉱物との関係				紫字:第1073回審査会合以降の 追加箇所
断層						最新面			備考	
		孔名	薄片名	確認範囲	1		最新ソーン			
		H-6.6-1孔		範囲A	I/S混合層	0	_	_		
			薄斤①	範囲B	I/S混合層	_	0	_		
			###	範囲A	I/S混合層	0	_	_		
		H-6.7孔	薄片②	範囲B	I/S混合層	_	※ 1	_	※1∶現地調査で「鉱物脈が明瞭に横断しているようには見えない」との指摘を受けた	
	S-1			範囲A	I/S混合層	0	_	_		
				範囲B	I/S混合層	_	O%1'	_	※1':※1の指摘を踏まえ、最新面2を横断する鉱物脈の観察データを追加した	I
		M-12.5"孔	#10	範囲A	砕屑岩脈	\diamond	_	_		
			薄片①	範囲B	砕屑岩脈	_	♦	_		
		K-6.2-2孔	薄片①	範囲A	I/S混合層	0	0	_		
		F-8.5' 孔	薄片①	範囲A	I/S混合層	(Э	_		
	S-2•S-6			範囲A	I/S混合層	*8 —		_		
		E-8.5-2孔	薄片①	範囲B	I/S混合層	×	% 8	_	※8:再観察の結果,鉱物脈が最新面を明瞭に横断していないと判断した	
			薄片①	範囲A	I/S混合層	0	※ 2	_	※2:現地調査で「鉱物脈が明瞭に横断しているようには見えない」との指摘を受けた	
		E-8.50""孔		範囲A	I/S混合層	0	O%2'	_	※2':※2の指摘を踏まえ、最新面2を横断する鉱物脈の観察データを追加した	
	S-4		薄片②	範囲B	I/S混合層	_	O%2'	_		
		E-8.60孔	薄片①	範囲A	I/S混合層	0		_		
		R-8.1-1-3孔	薄片①	範囲A	I/S混合層	*3		_	※3:現地調査で「鉱物脈が明瞭に横断しているようには見えない」との指摘を受けた	
	S-5	R-8.1-1-2孔	薄片①	範囲A	I/S混合層	O%3'		_	※3':※3の指摘を踏まえ、最新面を横断する鉱物脈の観察データを追加した	
		H-5.4-1E孔	薄片①	範囲A	I/S混合層	0		_		
敷				範囲A	I/S混合層	0	_	_		
地内	S-7	H-5.7'孔	薄片①	範囲B	I/S混合層	_	<u>*</u> 4	_	※4:現地調査で「鉱物脈が明瞭に横断しているようには見えない」との指摘を受けた	
断			薄片②	範囲A	I/S混合層	_	O%4'	_		O:最新面が不連続になってお
層				範囲B	I/S混合層	_	O%4'	_	※4':※4の指摘を踏まえ,最新面2を横断する鉱物脈の観察データを追加した	り、不連続箇所の変質鉱物
				範囲A	I/S混合層	(с. С	_		に変位・変形は認められない
	S-8	F-6.75孔	薄片①	範囲B	I/S混合層	(C	_		◇・是新両及び是新ゾーン全体
		H-1.1-87孔		範囲A	I/S混合層	0	*5	_	※5:再観察の結果、鉱物脈が最新面を明瞭に横断していないと判断した	を横断し、横断箇所に変位・
	К-2		薄片①	範囲B	I/S混合層		O%5'	_	※57:※5を踏まえ、最新面を横断する鉱物脈の観察データを追加した ※9:黄色、灰色及び白色の粘土鉱物の境界への指摘を踏まえて再観察した結果、これらの粘土鉱物の境界 にせん断面は認められない。なお、セビオライト(白色の粘土鉱物)の生成年代が不明確なことを踏まえ、 範囲Bでは評価せず、最新面1と鉱物脈との関係については、範囲Aで評価した	変形は認められない ロ:最新ゾーンでは岩片間の基
			薄片①	範囲A	I/S混合層	(C	—		買甲に変質鉱物が網目状に ひ左□ その細日はの恋顔が
		G-1.5-80孔	薄片②	範囲A	I/S混合層	(C	—		カ中し、ての網日状の変負動物に変位・変形は認められた
			薄片③	範囲A	I/S混合層	(C	_		
	К-3	M-2.2₹L	薄片① ほか	破砕部 全体	I/S混合層			□※6	※6:現地調査で「断層の最新面が不明瞭になっている」との指摘を受け再観察した結果、最新面を明確に認定 できないことから、最新面が分布する可能性のある最新ゾーンと鉱物脈との関係を確認した	-
	K-14	H0.3-807L	薄片①	範囲A	I/S混合層	(C	_		—:当該範囲では確認できない
			薄片①	範囲A	I/S混合層	×	% 7	_	※7:再観察の結果、鉱物脈が最新面を明瞭に横断していないと判断した	
	К-18	H-0.2-75孔	薄片②	範囲A	I/S混合層	03	×10	_	※10:横断箇所の割れ目や線状の粘土鉱物への指摘を踏まえて再観察した結果,割れ目は横断箇所の途中 で途絶えており、鉱物脈が最新面を明瞭に横断していることが確認できた。また,線状の粘土鉱物は岩 片のリムや割れ目に沿った位置でのみ観察されており,直線性・連続性に乏しく、その方向はランダムで あり、最新面の方向と関連性がないことから、断層活動により形成した構造(Y面)ではないと判断した	水色:2021年11月現地調査以降 に追加したデータ
			薄片③	範囲A	I/S混合層	(C	_		
		H-0 2-607I	薄片①	範囲A	I/S混合層	(C	—		
		H-0.2-60fl	薄片②	範囲A	I/S混合層	(С	_		9-3

薄片観察 鉱物脈法(S-1)

第1049回審査会合 資料1 P.164 再掲

○ 鉱物脈法に関する調査箇所

S-1の鉱物脈法による評価地点

■鉱物脈法による評価地点

- 2地点(H-6.6-1孔, H-6.7孔)において, S-1の最新ゾーンに少なくとも後期更新世以降に生成したものではないと評価した変質鉱物であるI/S混合層が認められたことから, 断層活動(最新面)と変質鉱物との関係による評価を行った。
- M-12.5"孔において、S-1の最新ゾーンに少なくとも後期更新世以降 に形成したものではないと評価した砕屑岩脈が認められたことから、 断層活動(最新面)と砕屑岩脈との関係による評価を行った。
- 〇 有識者会合時の評価データ(1号原子炉建屋底盤(露頭観察)及び 岩盤調査坑(露頭,研磨面,薄片)),有識者会合以降の評価データ (No.25切羽(薄片観察), H-6.5-2孔, K-10.3SW孔,岩盤調査坑No.9 孔(SEM観察))も用いて,評価を行った。

評価地点	
H−6.6−1孔 (深度57.25m,EL−37.95m)	
H−6.7孔 (深度35.10m,EL−19.01m)	
M−12.5"孔 (深度49.96m,EL−21.66m)	
1号原子炉建屋底盤(露頭観察) (EL−7.1m)	
岩盤調査坑(露頭, 研磨面, 薄片) (EL−18m)	
岩盤調査坑No.25切羽(薄片観察) (EL−18m)	
H−6.5−2孔 (深度70.70m,EL−49.50m)	
K−10.3SW孔 (深度27.81m,EL−6.17m)	黄色
岩盤調査坑No.9孔(SEM観察) (深度0.20m,EL-18.38m)	青雪

黄色網掛け:断層の後期更新世以降の活動を否定するにあたり、 地層や鉱物脈等の年代及び断層による変位・変形 がないことが明確に確認できるデータ

※鉱物脈法による評価のために実施したボーリング

S-1 (2) H-6.7孔 一評価結果-

【最新面の認定】

OH-6.7孔の深度35.10m付近で認められるS-1において、巨視的観察及び微視的観察を実施し、最新ゾーンの上盤側及び下盤側の境界にそれぞれ最新面1、最新面 2を認定した。

【鉱物の同定】

〇微視的観察により確認した粘土鉱物は、EPMA分析(定量)による化学組成の検討結果及びXRD分析(粘土分濃集)による結晶構造判定結果から、I/S混合層である と判断した。

【変質鉱物の分布と最新面との関係】

OEPMA分析(マッピング)や薄片観察により、粘土鉱物(I/S混合層)の分布範囲を確認した結果、粘土鉱物(I/S混合層)は最新ゾーン及びその周辺に分布している。 ○粘土鉱物(I/S混合層)が最新面1,2を横断して分布し、最新面1,2が不連続になっており、不連続箇所の粘土鉱物(I/S混合層)に変位・変形は認められない。

〇以上のことを踏まえると、S-1の最新活動は、I/S混合層の生成以前である。

調査位置図

OH-6.7孔の深度35.10m付近で認められるS-1において、巨視的観察(ボーリングコア観察、CT画像観察)を実施し、最も直線性・ 連続性がよい断層面を主せん断面として抽出した。

(m)

○隣接孔(H-6.5-2孔)の主せん断面における条線観察の結果,66°Rの条線方向が確認されたことから,H-6.7孔において, 66°Rで薄片を2枚作成した(ブロック写真)。

右ブロック採取箇所

右ブロック採取箇所

粘土状破砕部 固結した破砕部

上

CT画像(H-6.7孔)

ボーリングコア写真(H-6.7孔)

S-1 (2) H-6.7孔① -最新面の認定(微視的観察)-

○薄片①で実施した微視的観察(薄片観察)の結果,色調や礫径などから,上盤側より I ~ Ⅲに分帯した。

〇そのうち, 最も細粒化している分帯 Ⅱを最新ゾーンとして抽出した。

○最新ゾーンと分帯 I との境界に、面1(緑矢印)が認められる。面1は全体的に不明瞭だが、最新ゾーンの中では比較的連続性がよい面である。
 ○最新ゾーンと分帯Ⅲとの境界に、面2(紫矢印)が認められる。面2は全体的に不明瞭だが、最新ゾーンの中では比較的連続性がよい面である。
 ○最新ゾーン中に認められるY面は面1、面2のみであり、面1、面2は同程度の直線性・連続性を有することから、面1を最新面1、面2を最新面2とし、
 それぞれについて変質鉱物との関係を確認する。

9-10

S-1 (2) H-6.7孔① -鉱物の同定(XRD分析, EPMA分析)-

〇最新ゾーン付近でXRD分析を実施した結果,主な粘土鉱物としてスメクタイトが認められる。

Oスメクタイトについて詳細な結晶構造判定を行うために、同一断層の別孔(岩盤調査坑No.27孔, No.7-1孔, No.16付近)の破砕部においてXRD分析(粘土分濃集)を実施した結果、I/S混合層と判定した。

Oまた, 隣接孔(H-6.6-1孔)で実施したEPMA分析(定量)による化学組成の検討において, 最新ゾーンやその周辺でI/S混合層を確認している。

第1049回審査会合 資料1 P.186 再掲

S-1 (2) H-6.7孔① -変質鉱物の分布(薄片観察)-

下

○薄片①で実施した薄片観察や,隣接孔(H-6.6-1孔)のEPMA用薄片で実施したEPMA分析(マッピング)における化学組成の観点での観察により, 粘土鉱物(I/S混合層)の分布範囲を確認した結果,粘土鉱物(I/S混合層)は最新ゾーンやその周辺に分布している。
○この粘土鉱物(I/S混合層)と最新面との関係を確認する。

S-1 (2) H-6.7孔① -最新面とI/S混合層との関係(範囲A)-

〇範囲Aにおいて詳細に観察した結果,粘土鉱物(I/S混合層)が最新面1を横断して分布し,最新面1が不連続になっており,不連続箇所の粘土鉱物(I/S混合層)に変位・変形は認められない。

○なお,不連続箇所においてI/S混合層生成以降の注入現象の有無を確認した結果,弓状構造や粒子の配列などの注入の痕跡は認められない。
 ○さらに,薄片作成時等に生じた空隙は,明確に認定できる最新面1が不連続になる箇所の粘土鉱物(I/S混合層)の構造に影響を与えていないことから,不連続箇所は薄片作成時等の乱れの影響を受けていないと判断した。

範囲A写真

9-15