島根原子力発電所第2号機 審査資料		
資料番号 NS2-他-206 改 01		
提出年月日	2022年10月18日	

先行審査プラントの記載との比較表 (サプレッションチェンバの耐震評価における 内部水質量の考え方の変更等について)

2022 年 10 月中国電力株式会社

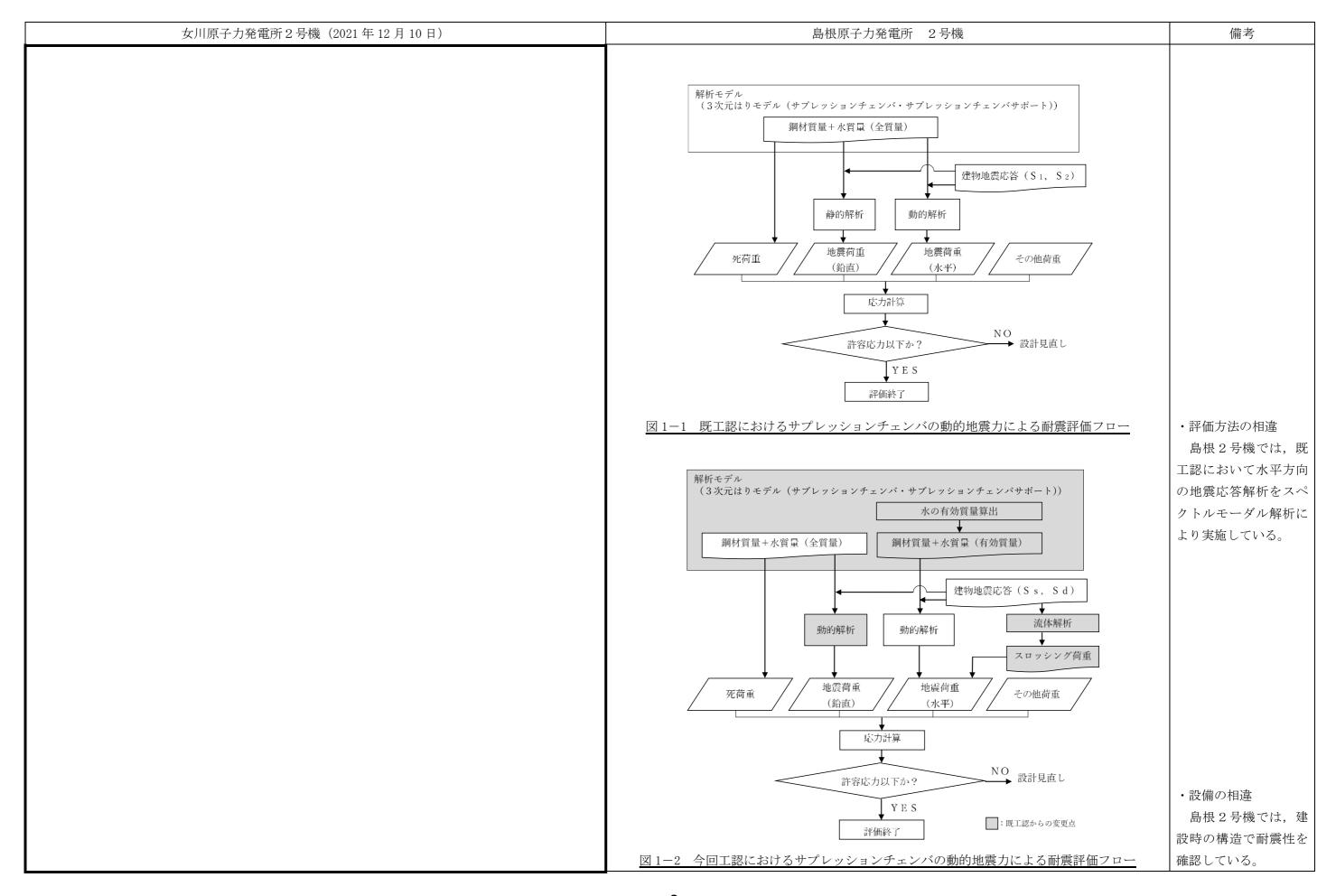
本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

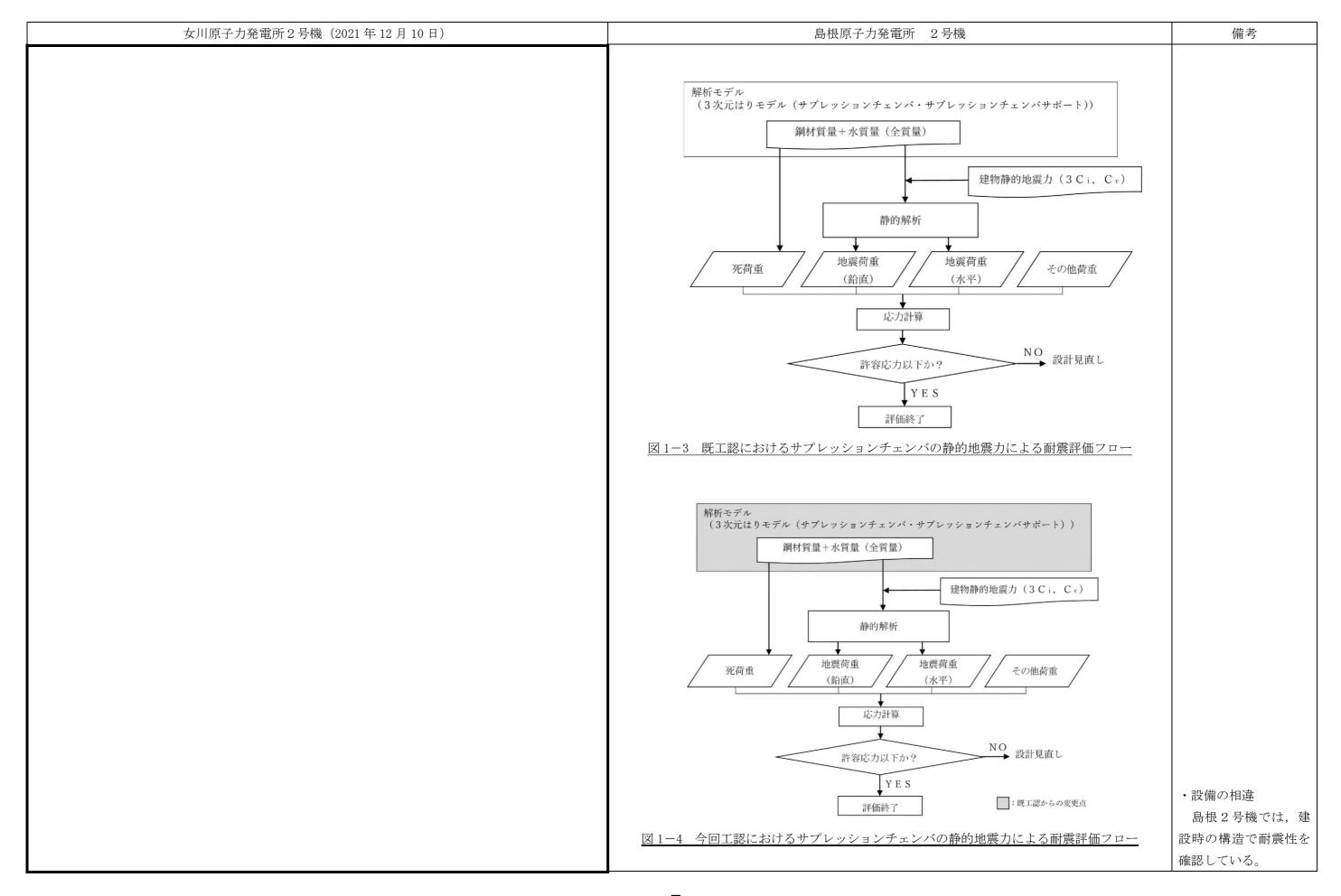
実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

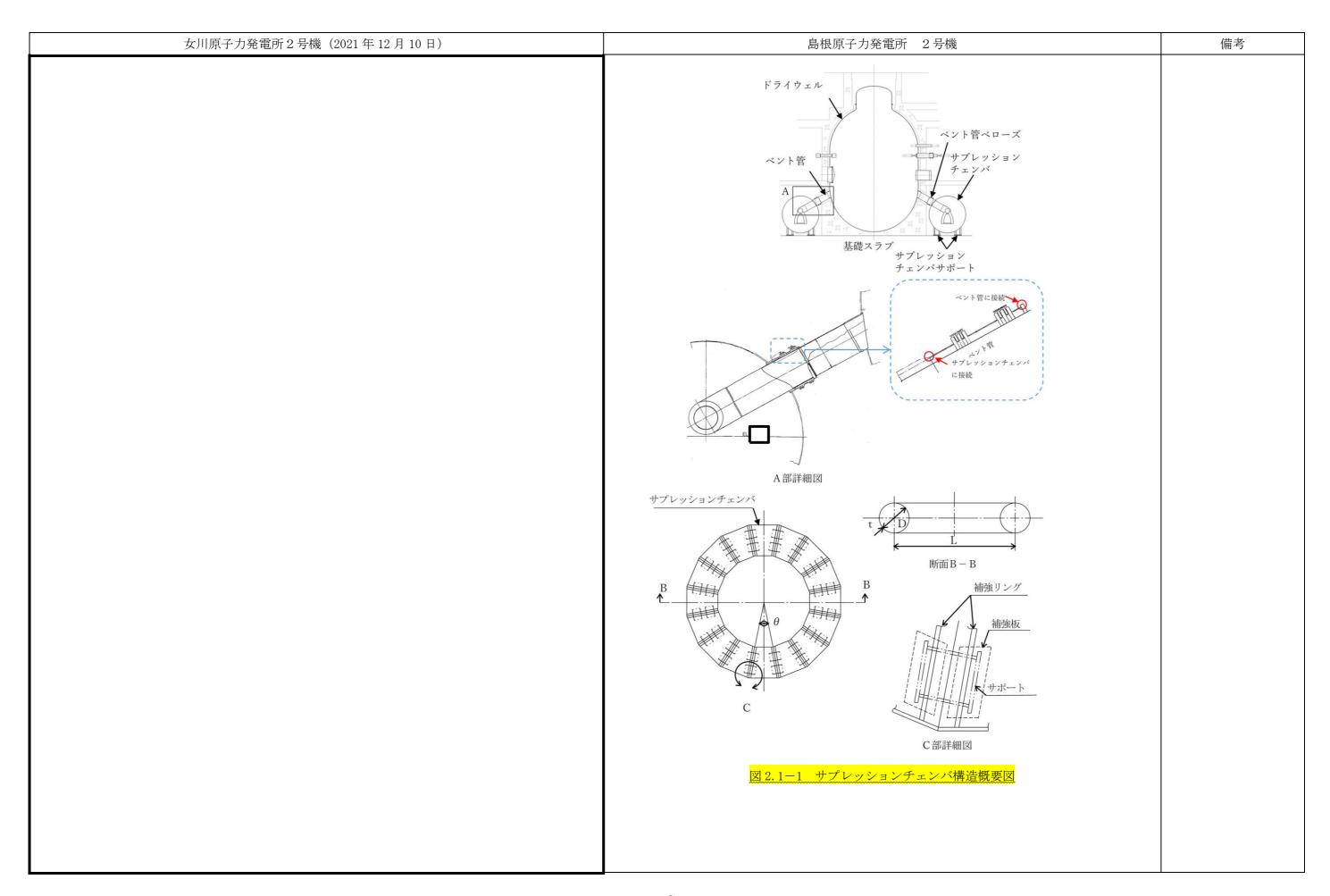
・・前回提出時からの変更箇所

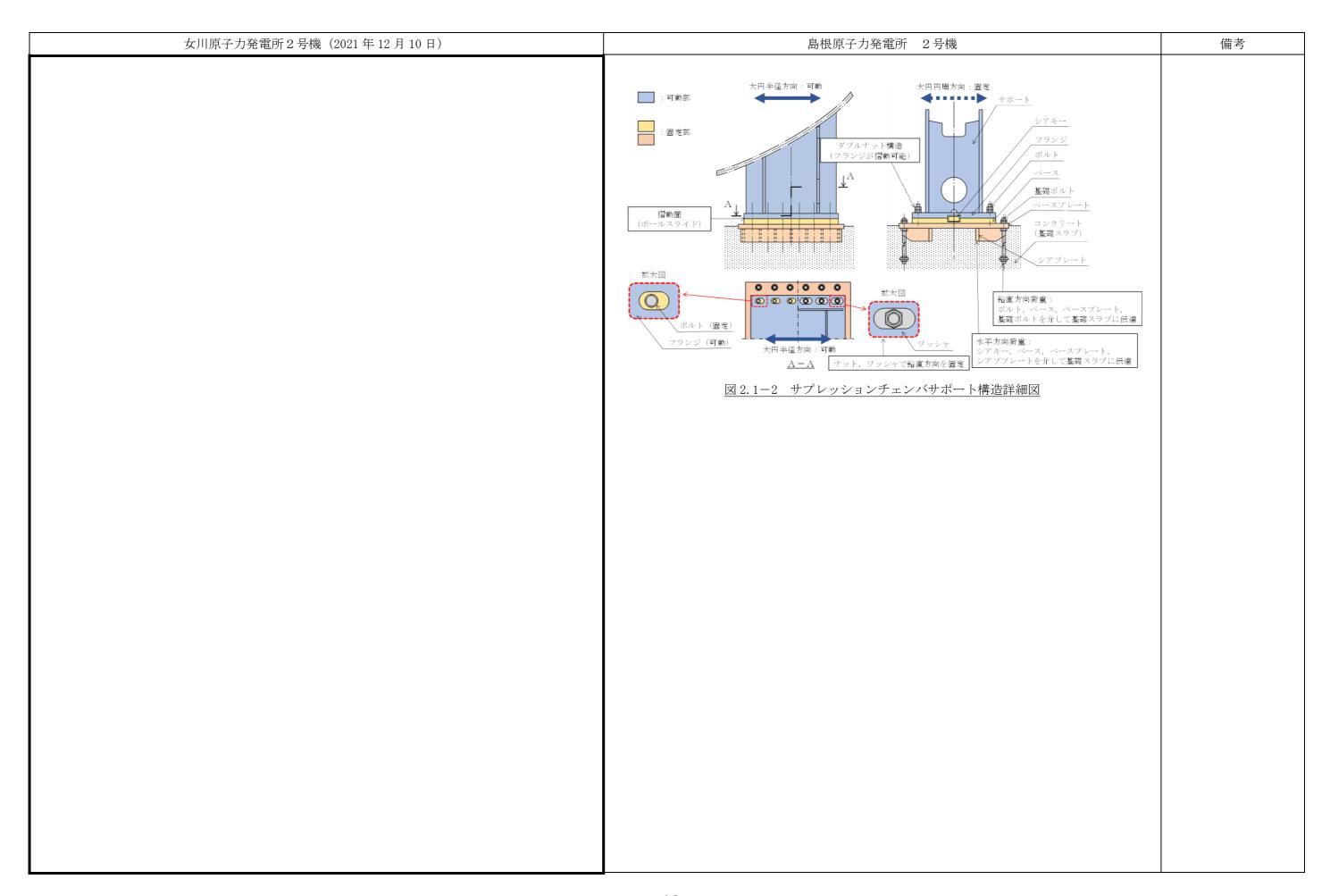
先行審査プラントの記載との比較表 (NS2-補-027-10-45 サプレッションチェンバの耐震評価における内部水質量の考え方の変更等について)

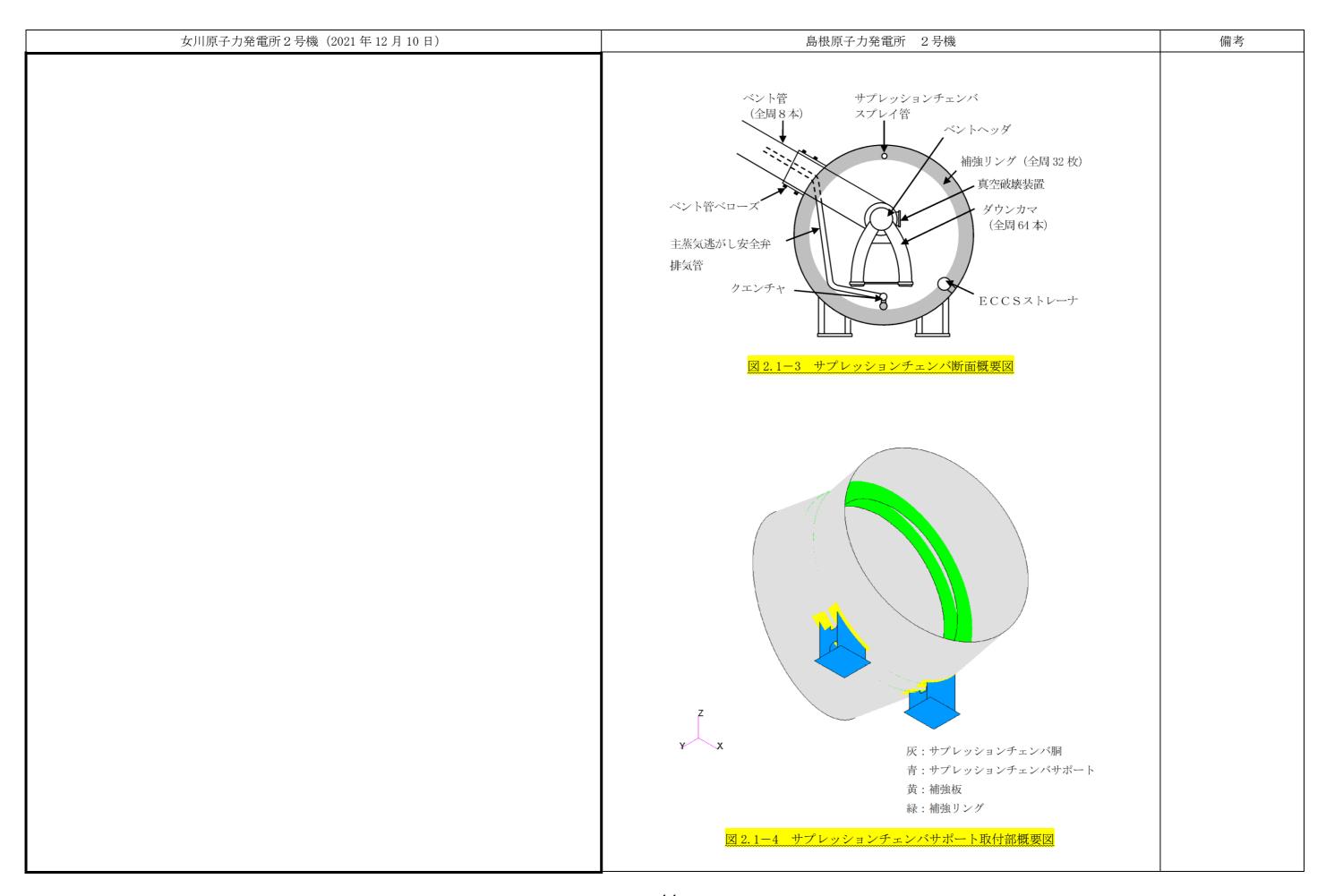

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	サプレッションチェンバの耐震評価における内部水質量の	
	考え方の変更等について	
	つんかの友文寺に グバ	


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	目次	
	1. はじめに・・・・・・・・・・・・・・・・・・・・・・・1	
	2. サプレッションチェンバ及びサプレッションチェンバサポートの構造・・・・・・・・・ 4	
		・設備の相違
		島根2号機では、建
		設時の構造で耐震性を
	3. サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価・・・・・・・・9	確認している。
	3.1 評価手順····································	
	3.2 地震応答解析····································	
	3. 2. 1 基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.2.2 地震心合解析モアル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.3 応力計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3. 3. 1 <u>応力計</u>	
	3. 3. 3 応力評価点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.4 既工認と今回工認における耐震評価手法の相違・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.4 以工誌とう回工誌における画展計画子伝の相選・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4.1 地震応答解析モデル····································	
	4.1.1 サプレッションチェンバ内部水の有効質量算定····································	
	4.1.2 地震応答解析モデルにおける内部水の有効質量の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4.1.3 サプレッションチェンバのモデル化····································	
	4.1.4 サプレッションチェンバサポート取付部のばね剛性の算定············30	
	4.1.5 サプレッションチェンバサポートのモデル化····································	
	4.2 地震応答解析モデルの適用性確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4.2.1 適用性の確認方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4.2.2 適用性確認用解析モデル····································	
	4.2.3 <u>地震応答解析</u> モデルと適用性確認用解析モデルの比較・・・・・・・・・・・・ <mark>39</mark>	
	4. 2. 4. 妥当性確認結果····································	
	4.3 地震応答解析に <mark>おける</mark> 内部水の有効質量 <u>算出方法</u> の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4.4 地震応答解析における高振動数領域の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4. <mark>5</mark> スロッシング荷重····································	
	5. 応力解析の詳細····································	・評価方法の相違
	5.1 応力評価フロー・・・・・・・・・・・・・・・・・・・・・ <mark>71</mark>	島根2号機では,既
	5.2 応力評価点····································	工認と同じ応力評価点
		について評価してい
		る。

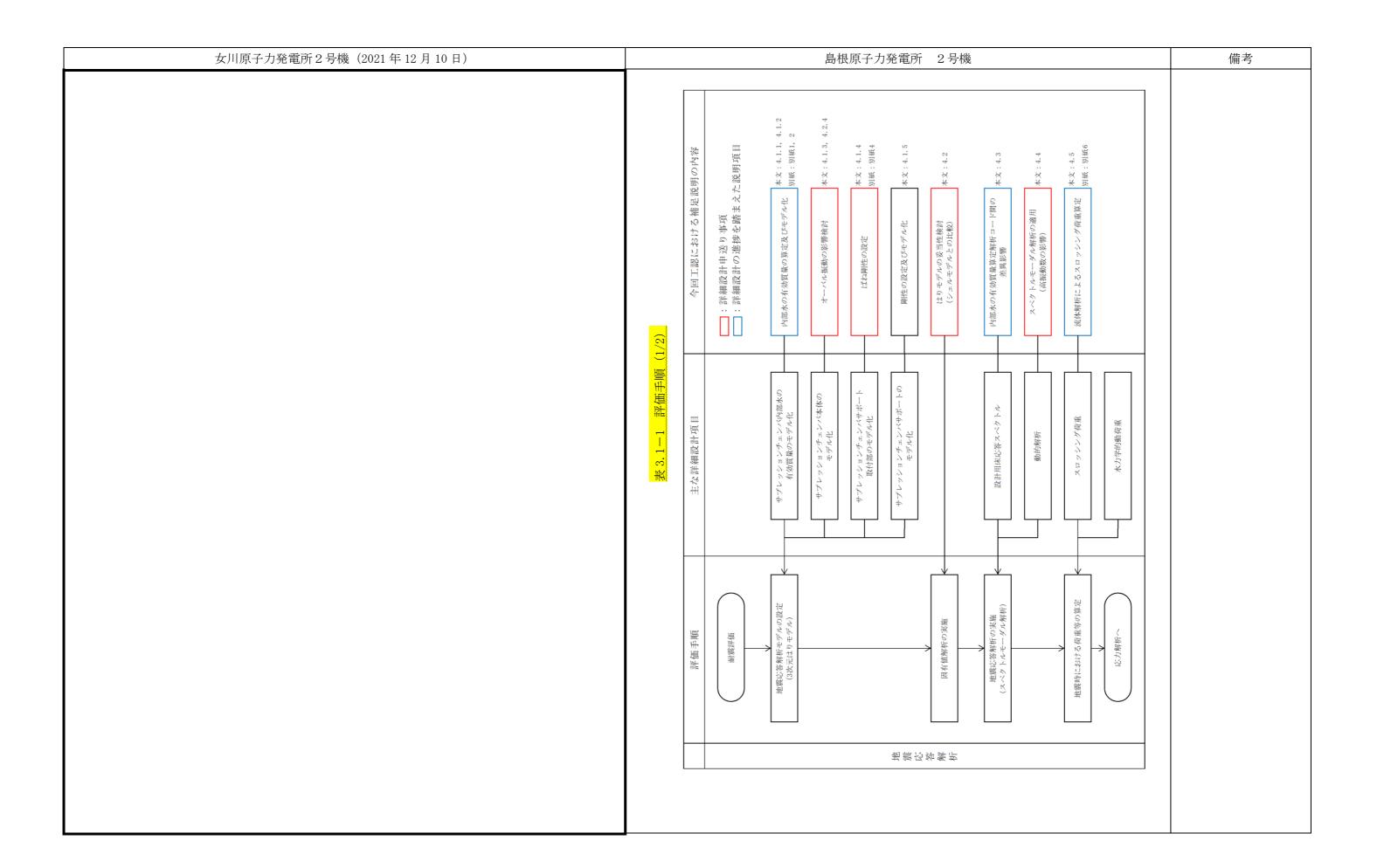
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	5.3 応力解析モデル····································	
	5.4 応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・評価方法の相違 島根 2 号機では、サ プレッションチェンバ サポートの評価は、既 工認と同様に公式等に よる評価を適用してい る。
	別紙1 内部水の有効質量の適用及びその妥当性検証	・記載箇所の相違 島根 2 号機では,
	別紙 2 サプレッションチェンバ内部水の地震応答解析モデルへの縮約方法及びその妥当性	50Hz の領域まで作成し
	別紙3 50Hz の領域まで作成した床応答スペクトルによる影響検討	た床応答スペクトルに
		よる影響検討を別紙3に記載する。
	別紙4 サプレッションチェンバサポート取付部のばね剛性の設定	・検討内容の相違
	別紙5 適用性確認用解析モデル (3 次元シェルモデル) の設定	島根2号機では、実
	別紙6 サプレッションチェンバ内部水によるスロッシング荷重の算定	機の3次元はりモデル
	別紙7計算機コードの概要	について、3次元シェ
	別紙 8 内部水の有効質量の概要	ルモデルとの比較により, オーバル振動の影
	別紙9 規格類における内部水の有効質量の適用例	響を含めた解析モデル
	別紙 10 サプレッションチェンバの水位条件	の適用性の検討を行
	別紙 11 地震時における円筒形状容器内部水の有効質量に係る研究の概要	う。
	別紙 12 内部水の有効質量比に対するスロッシングの影響	・記載箇所の相違 島根2号機では,全
	別紙 13 内部水の有効質量比に対する入力地震動の影響	試験回における内部水
	別紙 1.4 サプレッションチェンバ内部水によるスロッシング荷重及び	の有効質量比を別紙 11
	有効質量の影響	に記載している。
	別紙 15 規格基準における内部水の有効質量比との比較	
		・設備の相違
	別紙 16 原子炉建物基礎スラブにおける地震応答を用いる妥当性について	島根2号機では,建
	別紙 17 サプレッションチェンバサポートの耐震評価における応力算出方法の考え方	設時の構造で耐震性を 確認している。

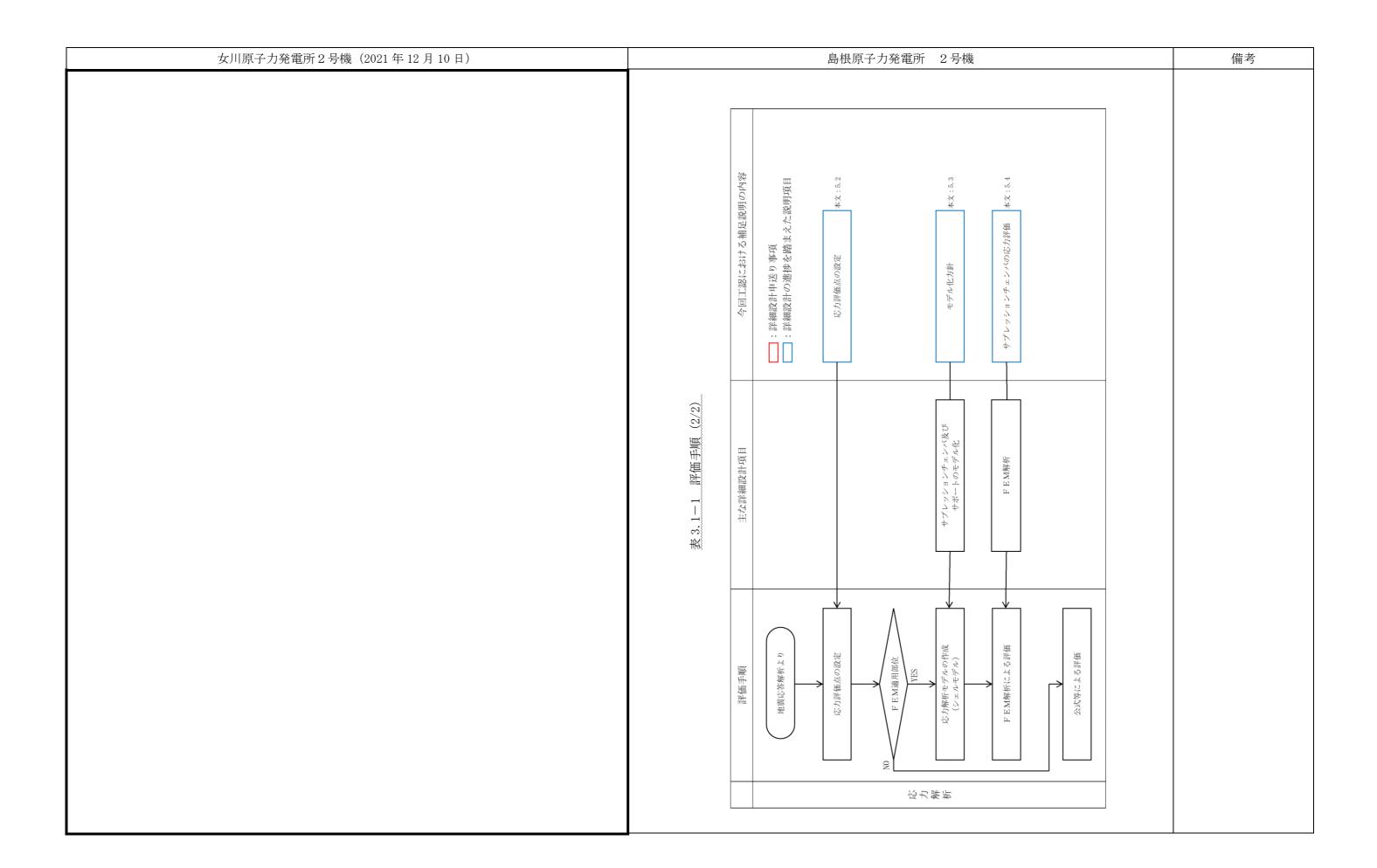

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別紙 18 サプレッションチェンバのモデル化に係る固有周期への影響検討 別紙 19 ベースプレートにおける応力評価の精緻化について	・評価方法の相違 島根2号機では、ベ ースプレートにおける 応力評価の精緻化を実 施する。
	別紙 20 サプレッションチェンバの耐震評価で考慮する水力学的動荷重について	・記載の充実
	別紙 21 内部水の流動による局部的な圧力の影響 別紙 22 地震応答解析における地震動の入力方向 別紙 23 先行プラントとの相違について	・記載の充実 島根 2 号機では、設 置許可段階での説明事 項も含め記載する。 ・記載の充実 島根 2 号機では、先 行プラントとの相違点
	別紙 24 先行プラントとの有効質量比の比較	 について記載する。 ・記載の充実 島根 2 号機では、先 行プラントとの有効質 量比の比較について記載する。


女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	1. はじめに	
	本書は、 <u>島根原子力発電所第2号機(以下「島根2号機」という。)のVI-2-9-2-2「</u> サプレッシ	
	ョンチェンバの耐震性についての計算書」及びVI-2-9-2-4「サプレッションチェンバサポートの耐	
	震性についての計算書」における耐震評価手法についてまとめた資料である。	
	サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価では、サプレッショ	
	ンチェンバ本体とそれを支持するサプレッションチェンバサポートを模擬した地震応答解析モデ	
	ルを用いて地震荷重を算定し、これらに基づき、各部の構造強度評価を行うことで、サプレッショ	
	ンチェンバ及びサプレッションチェンバサポートの耐震性を評価するものである。	
	<u>島根2号機</u> の既工認及び今回工認における動的地震力及び静的地震力に対する耐震評価フロー	
	を <u>図 $1-1\sim 1-4$</u> に示す。	評価方法の相違
	<u>島根2号機</u> の既工認におけるサプレッションチェンバ及びサプレッションチェンバサポートの	島根2号機では、既
	耐震評価は、簡便な扱いとして、サプレッションチェンバ内部水を剛体と見做して、内部水全体を	工認において, 内部水
	固定質量として考慮した3次元はりモデルを用いた地震応答解析を実施していた。	のみを剛体と見做し,
		水平方向の地震応答解
	今回工認においては、重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の	析をスペクトルモーダ
	増加,基準地震動の増大等を踏まえ,詳細な地震応答解析を実施するため,より現実に近いサプレ	ル解析により実施して
	ッションチェンバの内部水の挙動を考慮して内部水質量を従来の固定質量から有効質量へ変更す	いる。
	る*。また、内部水の有効質量のモデル化、地震荷重の増大(内部水質量、基準地震動 S s) を踏	
	まえ,各部材に負荷される地震荷重を詳細に評価するため、サプレッションチェンバサポート取付	・記載箇所の相違
	部のばね定数を考慮した3次元はりモデルによる動的解析(スペクトルモーダル解析)を適用する	評価方法の相違
	こととした。なお、サプレッションチェンバ内部水質量の扱いを有効質量としたことに伴い、サプ	島根2号機では、既
	レッションチェンバ内部水によるスロッシング荷重を流体解析にて算定することとした。	工認においてサプレッ
		ションチェンバサポー
		トを考慮している。
		・記載箇所の相違
		・設備の相違
		島根2号機では、建
	サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析に3次元はりモ	設時の構造で耐震性を
	デルを適用するにあたっては、妥当性確認用解析モデル(3次元シェルモデル)による地震応答解	確認している。
	析結果との比較検討を行い、耐震評価において考慮すべき振動モードが3次元はりモデルにて表	
	現できていること等を確認している。	
	注記*:島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉 地震による損傷の防止	
	別紙-8 サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050 改	
	69(令和3年9月6日)) 参照	



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	2. サプレッションチェンバ及びサプレッションチェンバサポートの構造	
	島根2号機のサプレッションチェンバ構造概要図を図2.1-1に、サプレッションチェンバサポ	
	<u>ート</u> 構造詳細図を図 2.1-2 に, サプレッションチェンバ断面概要図を図 2.1-3 に, <mark>サプレッショ</mark>	
	<u>ンチェンバサポート取付部概要図を図 2.1-4 に</u> サプレッションチェンバ諸元を表 2.1-1 に示	
	す。	
	サプレッションチェンバは,大円が直径mm,小円が直径 mm,板厚 mm,16 セ	
	グメントの円筒を繋ぎ合わせた円環形状(トーラス状)の構造物であ <mark>り,内部に水を有している</mark> 。	
	また, <mark>円筒胴内部に補強リングを備え,</mark> 各セグメントの継ぎ目部(以下「胴エビ継部」という。)	
	には <mark>補強板を介して</mark> 箱状の支持構造物であるサプレッションチェンバサポートが大円の内側及び	
	外側それぞれに 16 箇所の計 32 箇所に取り付けられており、これらが基礎ボルトを介して原子炉	
	建物基礎スラブ上(EL mm) に自立している。サプレッションチェンバサポートは、サプレ	
	ッションチェンバ (大円) の半径方向の熱膨張を吸収する目的で可動し、周方向に地震荷重を原子	
	<u>炉建物基礎スラブ</u> に伝達させる構造となっている。サプレッションチェンバは、ドライウェルとベ	
	ント管を介して接続されているが、ベント管ベローズにより振動が伝達しない構造としており、地	
	震による揺れは、 <u>原子炉建物基礎スラブ</u> から <u>サプレッションチェンバサポート</u> を介してサプレッ	
	ションチェンバに入力される (別紙 <u>16 参照</u>)。 <mark>サプレッションチェンバ内の主要設備としては、ベ</mark>	
	ント系設備(ベント管、ベントヘッダ、ダウンカマ)、サプレッションチェンバスプレイ管、EC	
	CSストレーナ、主蒸気逃がし安全弁排気管、クエンチャがサプレッションチェンバ内に設置され	
	ている。なお、サプレッションチェンバは、ドライウェルとベント管を介して接続されるが、ベン	
	ト管に設けられたベント管ベローズ(材質:オーステナイト系ステンレス鋼(SUS304))に	
	より相対変位を吸収する構造となっている。	





女川原子力発電所 2 号機 (2021 年 12 月 10 日)		£	島根原子力発電所 2号機		備考
表 2.1-1 サプレッションチェンバ諸元		表 2.1-	1 サプレッションチェンバ諸元		
	項目		内 容	備考	
	耐震クラス		Sクラス		
	(設計基準対象施	設)			
	設備分類		常設耐震重要重大事故防止設備常設重大事故緩和設備		
	(重大事故等対処	設備)	常設重大事故等防止設備		
			(設計基準拡張)		
	設置建物		原子炉建物		
	設置高さ		EL. 1300 mm	基礎スラブ上	
		D			
	主要寸法	L		記号は図 2.1-1	
		t		に示す	
		θ			
	質量			通常運転水位	
	(内部水・サポー	トを含む)		耐震解析用重大事	
				故等時水位*	
				通常運転水位	
	内部水質量	量		耐震解析用重大事	・評価方針の相違
				故等時水位*	耐震解析用重大事故
	注記*:重大事故等	等時水位より	も高い水位(<u>ダウンカマ取付部</u> 下端	位置)(別紙 10	等時水位の設定方針の
	参照)				相違
					・設備の相違
					島根2号機では、建
					設時の構造で耐震性を
					確認している。

島根原子力発電所 2号機	
3. サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価	
3.1 評価手順	
サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価に係る評価手順は,	
表 3.1-1 のとおり、地震応答解析及び応力解析に大別される。	
地震応答解析では、サプレッションチェンバ及びサプレッションチェンバサポートの構造特	
性, サプレッションチェンバ内部水の流体特性等を考慮し, サプレッションチェンバ及びサプレ	
<u>ッションチェンバサポート</u> の地震応答解析モデル(3次元はりモデル)を設定し,固有値解析及	
び地震応答解析(スペクトルモーダル解析)を実施し、地震時における荷重等を算定する。なお、	
スロッシング荷重については、地震時のサプレッションチェンバ内部水の挙動を考慮し、流体解	
析にて算定する。	
応力解析では、地震応答解析にて算定した地震時における荷重等を用いて、サプレッションチ	
エンバ及びサプレッションチェンバサポートのシェルモデルを用いたFEM解析による応力解	
析、評価断面の形状から公式等により各応力評価点の応力を算定する。	
なお、表 3.1-1 には、設置変更許可審査時に詳細設計へ申送りした事項(詳細設計申送り事	
	3. サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価 3.1 評価手順 サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価に係る評価手順は、表3.1-1 のとおり、地震応答解析及び応力解析に大別される。 地震応答解析では、サプレッションチェンバ及びサプレッションチェンバ及びサプレッションチェンバ及びサプレッションチェンバ及びサプレッションチェンバ内部水の流体特性等を考慮し、サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析モデル(3次元はりモデル)を設定し、固有値解析及び地震応答解析(スペクトルモーダル解析)を実施し、地震時における荷重等を算定する。なお、スロッシング荷重については、地震時のサプレッションチェンバ内部水の挙動を考慮し、流体解析にて算定する。 応力解析では、地震応答解析にて算定した地震時における荷重等を用いて、サプレッションチェンバ及びサプレッションチェンバサポートのシェルモデルを用いたFEM解析による応力解析、評価断面の形状から公式等により各応力評価点の応力を算定する。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	3.2 地震応答解析	
	3.2.1 基本方針	
	既工認では、簡便な扱いとして、サプレッションチェンバ内部水を剛体と見做して、内部水	・評価方法の相違
	全体を固定質量として考慮した3次元はりモデルを <u>用いた</u> 地震応答解析を実施していた。今	島根2号機では、既
	回工認におけるサプレッションチェンバ及びサプレッションチェンバサポートの地震応答解	工認において、内部水
	析では、重大事故時のサプレッションチェンバの水位上昇に伴う内部水質量の増加、基準地震	のみを剛体と見做し,
	動の増大等を踏まえ、より詳細に地震応答を把握するため、より現実に近いサプレッションチ	水平方向の地震応答解
	ェンバの内部水の挙動を考慮して内部水質量を従来の固定質量から有効質量へ変更する。な	析をスペクトルモーダ
	お、スロッシング荷重については、地震時のサプレッションチェンバ内部水の挙動を考慮し、	ル解析により実施して
	流体解析にて算定する。今回工認に用いる地震応答解析モデルについては、3次元はりモデル	いる。
	に加えて構造をシェル要素で模擬した3次元シェルモデルも既工認実績があるものの,設備	
	の耐震評価で一般的であり数多く用いられている3次元はりモデルを既工認と同様に適用し	
	ている。	
		・評価方法の相違
	地震応答解析モデルの設定にあたっては, <u>サプレッションチェンバサポート</u> 取付部の局部	島根2号機では、サ
	変形の剛性を考慮したばね要素を考慮し、サプレッションチェンバ及びサプレッションチェ	プレッションチェンバ
	ンバサポートの耐震評価をより詳細に実施する。	サポート取付部の <mark>面外</mark>
		方向 (3方向) <mark>のみ</mark> の変
		形をばね要素として考
		慮する。
	なお, 地震応答解析に適用する3次元はりモデルの妥当性確認として, 3次元シェルモデル	・検討内容の相違
	を用いた <u>固有値解析結果</u> との比較検討を行い,耐震評価において考慮すべき振動モードが3	島根2号機では,3
	次元はりモデルにて表現できていること等を確認する。	次元はりモデルの妥当
		性は固有値解析結果に
		より確認し, <mark>オーバル</mark>
		振動等の影響を3次元
	3.2.2 地震応答解析モデル	シェルモデルとの発生
	サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析に適用する	応力の比較で確認す
	3 次元はりモデル <u>を</u> 図 3. 2-1 に示す。 <mark>サプレッションチェンバ及びサプレッションチェンバ</mark>	<u>る。</u>
	サポートの地震応答解析に適用する解析モデル設定にあたっては、サプレッションチェンバ	
	及びサプレッションチェンバサポートを構成する各部材の剛性及び質量,サプレッションチ	・記載箇所の相違
	ェンバ内部水等を適切に考慮することとしている。なお、モデル化の詳細については、4.1.3	島根2号機では、モ
		デル化の詳細を 4.1.3
		に示す。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考	
	空子を開き込ました「子」の「古」では、空子を開き込ました。「別として、仏中になって、「別・中」、「「・」、「・」、「・」、「・」、「・」、「・」、「・」、「・」、「・」、「		
	詳細設計申送り事項,詳細設計段階における進捗等を踏まえ,サプレッションチェンバ及び サプレッションチェンバサポートの3次元はりモデルの設定にあたっての主な考慮事項を以		
	下に示す。なお、詳細検討内容については、4に示す。		
	「「「「ハック」、「はんり、「中小四人民口」というない。		
	(1) サプレッションチェンバ内部水に対する有効質量		
	サプレッションチェンバ内部水に対する有効質量は、NASTRANの仮想質量法を用		
	いて, サプレッションチェンバの内面圧力(水平及び鉛直方向の圧力)から各方向の内部水		
	の有効質量を算出する。また、算出された内部水の有効質量の地震応答解析モデル(3次元		
	はりモデル)への設定は、NASTRANの機能(Guyan縮約法)を用いて、サプレッ		
	ションチェンバの各質点に縮約し、付加する。		
	なお, サプレッションチェンバ内部水の有効質量の妥当性検証として, 試験体を用いた振	・検討内容の相違	
	動試験により算出した内部水の有効質量と比較・検証を行っている。	島根2号機では,島	
		根1号機のサプレッシ	
		ョンチェンバを縮小し	
	(2) サプレッションチェンバ本体のオーバル振動に対する影響	た試験体を使用する。	
	サプレッションチェンバ及び <u>サプレッションチェンバサポート</u> を構成する各部材の剛性,	・検討内容の相違	
	質量,サプレッションチェンバ内部水等を適切に考慮し,はり要素でモデル化する。	島根2号機では、振	
	一方、内部水を有する薄肉円筒容器(たて置円筒容器)の円筒壁面が変形振動(オーバル		
	振動)することの既往知見に対して、既工認におけるサプレッションチェンバ本体(小円)	法の検証を行う。	
	の耐震設計では、補強リングによりサプレッションチェンバ本体(小円)の断面変形を抑制		
	する設計としている。	・設備の相違	
		島根2号機では、建	
		設時の構造で耐震性を	
		確認している。 ・評価方法の相違	
		島根 2 号機では, サ プレッションチェンバ	
		フレッションリェンハ サポート取付部の <mark>面外</mark>	
		方向 (3方向) <mark>のみ</mark> の変	
		形をばね要素として考	
	(3) サプレッションチェンバサポート取付部の局部変形の影響	慮する。	
	既工認におけるサプレッションチェンバサポート取付部の耐震設計では、当該部におけ	,, , , , , , , , , , , , , , , , , ,	
	る局部変形を防止するため、サプレッションチェンバ内部に補強リングを設置するととも		
	に、サプレッションチェンバサポートは当て板を介してサプレッションチェンバに取り付		

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子万発革所 2 号機 (2021 年 12 月 10 日)	けられていることから、サプレッションチェンバサポート取付部の剛性を簡便に剛として扱っていた。今回工認では、重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加、基準地震動の増大等を踏まえ、より詳細な地震応答を把握するため、サプレッションチェンバサポート取付部の局部変形の影響を考慮した、サプレッションチェンバサポート取付部の局部変形を解析モデル(3次元はりモデル)に付与する。サプレッションチェンバサポート取付部の局部変形を考慮したサプレッションチェンバサポート取付部のばね剛性(並進、回転)は、シェルモデルとはりモデルを用いた解析からサプレッションチェンバサポート取付部のばね剛性を各々算定し、そのばね剛性の差から算定を行う。	 評価方法の相違 島根 2 号機では、サ プレッションチェンバ サポート取付部の面外 方向(3方向)のみの変

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では,鉛
		直方向の地震応答解析
		モデルは既工認と同様
		に内部水を固定質量と
		してモデル化する。
	(1) 水平方向	
	<u> </u>	
	(2) 鉛直方向	
	図3.2-1 サプレッションチェンバ及びサプレッションチェンバサポートの	
	<u>地震応答解析モデル(3次元はりモデル)</u>	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	3.3 に力評価方針 今回工認のサプレッションチェンバ及びサプレッションチェンバサボートの耐震評価における応力評価では、重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の増加、基準地震動の増大等を踏まえ、構成部材の形状、断面性能及び存重伝達等を考慮して応力評価点及び応力解析方法を設定し、応力評価を行う。なお、詳細検討内容については、5.項に示す。 3.3.2 応力評価点 サプレッションチェンバ及びサプレッションチェンバサボートの応力評価点を表 3.3-1, 図 3.3-1, 表 3.3-2 及び図 3.3-2 に示す。 なお、応力評価点は既上認から変更は無い。	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2号機							
		<u>表 3. 3-1 サプレッションチェンバの応力評価点</u>							
	応力評価点 番号	応力評価点	応力評価方法	既工認との相違点*	島根2号機では,応 力評価方法及び既工認				
	P 1	サプレッションチェンバ胴中央部上部	公式等による評価	-	との相違点を記載す				
	P 2	サプレッションチェンバ胴中央部下部	公式等による評価	_	る。 				
	Р3	サプレッションチェンバ胴中央部内側	公式等による評価	_					
	P 4	サプレッションチェンバ胴中央部外側	公式等による評価	_					
	P 5	サプレッションチェンバ胴エビ継部上 部	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用					
	P 6	サプレッションチェンバ胴エビ継部下 部	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用					
	P 7	サプレッションチェンバ胴エビ継部内 側	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用					
	P 8	サプレッションチェンバ胴エビ継部外 側	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用					
	P 9	サプレッションチェンバ胴と内側サ ポート補強板との接合部	FEMモデルを用いた 静的解析	_					
	P 1 0	サプレッションチェンバ胴と外側サ ポート補強板との接合部	FEMモデルを用いた 静的解析	_					
	注記*:応	答解析モデル及び応力解析モデルの変	変更を除く応力評価方	法の相違点を示す。	・評価方法の相違 島根 2 号機では、関 工認と同じ応力評価点について評価している。				

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	高根原子力発電所 2 号機 (1) P3 (2) P5 (3) P5 (4) P5 (5) P5 (7) P5 (8) P7 (9) MmB B - B 図 3. 3-1 サブレッションチェンバの応力評価点	備考

女川原子力発電所 2 号機(2021 年 12 月 10 日)		島根原子力発電所 2号機							
		表 3.3-2 サプレッションチュ	サプレッションチェンバサポートの応力評価点						
	応力評価点 番号	応力評価点	応力評価方法	既工認との相違点*	島根2号機では,応 力評価方法及び既工認				
	P 1	サポート	公式等による評価	_	との相違点を記載す				
	P 2	シアキー	公式等による評価	-	る。				
	P 3	ボルト	公式等による評価	_					
	P 4	ベースとベースプレートの接合部	公式等による評価	-					
	P 5	基礎ボルト	公式等による評価	_					
	P 6	ベースプレート	公式等による評価	ボルト反力側評価断面 の見直し					
	P 7	シアプレート	公式等による評価	-					
	P 8	コンクリート	公式等による評価	_					
					・評価方法の相違 島根2号機では、関 工認と同じ応力評価点 について評価している。				

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	P	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	3.3.3 応力評価方法	
	(1) 公式等による応力評価	
	既工認におけるサプレッションチェンバ(サプレッションチェンバサポート取付部除く)	・評価方法の相違
	<u>及びサプレッションチェンバサポート</u> の応力評価は、サプレッションチェンバ <u>及びサプレ</u>	島根2号機では、既
	<u>ッションチェンバサポート</u> をはり要素でモデル化し、 <u>地震応答解析</u> によって得られた地震	工認において, 地震応
	荷重及び評価断面の形状等から、公式等により応力を算出していた。	答解析によって得られ
		た地震荷重から応力を
		算出している。
	今回工認では、サプレッションチェンバ胴中央部及びサプレッションチェンバサポート	評価方法の相違
	については、既工認と同様に公式等による手計算により応力を算出する。なお、サプレッシ	島根2号機では、サ
	ョンチェンバサポートのうちベースプレートについては、精緻に応力評価を行うため、曲げ	プレッションチェンバ
	応力評価における断面係数算出時の評価断面を既工認から見直す(別紙 19 参照)。	胴中央部については,
		公式等による手計算に
		より応力を算出する。
		また、ベースプレート
		については、評価断面
		を既工認から見直す。
	(2) 応力解析モデルを用いたFEM解析による応力評価	
	既工認におけるサプレッションチェンバサポート取付部の応力評価は、内側と外側のサ	
	プレッションチェンバサポート (1 組) とその <u>片側</u> にあるサプレッションチェンバ (胴部)	・評価方法の相違
	をシェル要素でモデル化し、鉛直方向に対しては加速度を、水平方向に対してはサプレッシ	モデル化範囲の相違
	<u>ョンチェンバサポート</u> 下端位置に <u>地震応答解析</u> で算出された地震荷重を入力し,FEM解	評価方法の相違
	析による応力解析を行っていた。	島根2号機では、既
	今回工認では、重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の	工認において, 地震応
	増加,基準地震動の増大等を踏まえ,サプレッションチェンバ及びサプレッションチェンバ	答解析によって得られ
	<u>サポート</u> に負荷される局部的な応力をより詳細に評価するため, <u>サプレッションチェンバ</u>	た地震荷重から応力を
	<u>サポート</u> に加えて、 <u>構造不連続部であるサプレッションチェンバ胴エビ継部</u> についてもF	算出している。
	EM解析による応力解析を行う。	
	応力解析モデルは、サプレッションチェンバサポート取付部のばね剛性の算定に用いた	
	モデルと同等の解析モデルを適用する。また、FEM解析の対象として胴エビ継部を追加し	・評価方法の相違
	たことを踏まえ、地震応答解析で算出された地震荷重等の応力解析モデルへの入力方法を	島根2号機では、サ
	見直し、応力解析モデルへの入力として地震応答変位を用いる。	プレッションチェンバ
		のうち胴エビ継部を対
		象としてFEM解析に
		よる応力解析を行う。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.4 既工認と今回工認における耐震評価手法の相違	
	既工認と今回工認におけるサプレッションチェンバ及びサプレッションチェンバサポートの	
	耐震評価手法について比較・整理した結果を表 3.4-1 に示す。また、既工認におけるサプレッ	
	ションチェンバの地震応答解析モデルを図 3.4-1 に示す。	
	図 3.4-1 既工認におけるサプレッションチェンバの地震応答解析モデル	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機						備考				
		変更理由	重大事故等時のサブレッションチェンバの 本位上昇に伴う内部本質量の増加。基準地 震動の増大等を踏まえ、より詳細に地震応 等を把握するため、解析モデルを詳細化した。	1	原エア維新年俗にはサブレッションチェンス・サボートが取り付けられているため、より詳細に局部的な応力をも離することとして、	脚エド推能も含めて3次元シェルモデルに て評価するため、解析モデルのモデル化範 間を変更し、3次元はりモデルの組織応答 解析より得られた調一機能改及ウサブレッ ションチェンパナポート基額の変位を入力 して評価することとした。	重大事故障時のサブレッションチェンパの 木化上昇に伴う内部水質量の増加、基準地 震動の個大等を踏まえ、より詳細に地震応 発を把握するため、解析手法及び解析モデ	L	曲げな力評価における断価務数算出時の評価所合権徴に見近して評価した。 を呼ばる特徴に見近して評価した。 にサブレッションチェンベキボートを設定		
	曹	工設*4	3 次元はりモデル。 (サプレッションチェンバ全 体を360°モデルとして考慮)	ı	3次元シェルモデル (サブレッションチェンバ本 体とサブレッションチェンバ 体とサブレッションチェンバ サポート (1セグメント分) を 考慮)	3次元ショルモドル*3 (サブレッションチョンバギ 体とサブレッションチョンバ サボート (1セグメント分) か 地震)	3 次元はりモデル。 (サブレッションチェンバ全 体を360° モデルとして希臘)	I			
	今回工認における耐震評価手法の相違	今回解析手法	動的解析 (スペクトルモーダル解析)	公式等による評価	产的编码行	РЕМ Я КИТ	動的解析 (スペクトルモーダル解析)	公式等による評価	公式等による評価 (評価時面の変更) ③ECCSストレーナの連成, ①地		
	う回工器における	場の解析モデル	3 次元はりモデル (サブレッションチェンバ全 休を180°モデルとして考慮)	1	1	3次元シェルモデル。 (サプレッションチェンベ本 体とサプレッションチェンベ サポート (1/2セグメント分) も考慮)	3次元はりモデル (サブレッションチェンバ全 体を180° モデルとして考慮)	I.	ー ・サポート取付部にはお剛性を考慮、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		
	表 3.4-1 既工認と	既了解析手法	動的解析 (スペクトルモーダル解析)	公式等による評価	公式等による評価	PEN确保护	動的解析 (スペクトルモーダル解析)	公式等による評価	公式等による評価 ジャンフッツョンチョン・ ファェンス・チェート 新部の サンフッツョン・		
	发	吃力評価点	全応力評価点	1 酮中央部上部 2 酮中央部下部 3 酮中央部内侧 1 酮中央部外侧	置して維約上部 置して維約で約 置して維約の金 置して維約の金	関と内値サポート補 強板との接合部 同と外値サポート補 強板との接合部	全応力評価点	サボート ンプキー バース・ ベース・ バートの後合部 基礎ボルト ンプアレート コンクリート	ベースプレート に対する有効質量の適用、 ドリ得られたサブレッショ ドリ得られた網一般部及び ングでホー		
		重別	如此	444	P5 P6 P7 P7	P 9	如此	P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 7 P 8	P6 ングス内部水に U環応答解析・ U環応答解析・		
		解析権別	地震応答 解析		応力解析		地震巧裕 解析	応力解析	コードアを		
		設備			7 × × × × × × × × × × × × × × × × × × ×			サブレッション・チェンス中浜ート	注記*1: ①サブレッ: *2: 3次元はリ- *3: 3次元はリ- *4: FT 関いか。		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4. 地震応答解析の詳細	
	4.1 地震応答解析モデル	
	4.1.1 サプレッションチェンバ内部水の有効質量算定	
	(1) 内部水の有効質量算定の考え方	
	内部水の有効質量については、他産業の球形タンクや円筒タンク等の容器の耐震設計	
	に一般的に用いられている考え方である。また,内部水の有効質量は,容器の内部水が自	
	由表面を有する場合, 水平方向の揺れによる動液圧分布を考慮して, 地震荷重として付加	
	される容器の内部水の質量として設定される。この内部水の有効質量は、容器の形状と水	
	位が既知であれば,汎用構造解析プログラムNASTRANの仮想質量法を用いて算出	
	することができる。	
	<u>島根2号機</u> の今回工認において,サプレッションチェンバ及び <u>サプレッションチェン</u>	
	バサポートの地震応答解析に用いるサプレッションチェンバ内部水の有効質量算定フロ	
	ーを図 4.1-1 に示す。	
	地震応答解析に用いる内部水の有効質量は、実機のサプレッションチェンバに対して	
	シェル要素で内部水の有効質量算定用解析モデルを作成し、サプレッションチェンバ内	
	部水の水位を設定(流体部分と構造の接水面設定)した上で、応答解析(仮想質量法)に	
	て, サプレッションチェンバ (各要素) の内面圧力 (水平方向の圧力及び鉛直方向の圧力)	
	から各方向の内部水の有効質量を算定する。	
	また, NASTRANによる内部水の有効質量の算定手法については, サプレッション	
	チェンバが円環形状容器であることを考慮し、試験体を用いた振動試験により算出した	・検討内容の相違
	内部水の有効質量との比較・検証によりその妥当性を確認している。	島根2号機では、島根
	内部水の有効質量の適用及びその妥当性に係る検討結果の詳細については,別紙 1 に	1号機のサプレッショ
	示す。	ンチェンバを縮小した
		試験体を使用する。
		・検討内容の相違
	内部水の有効質量の算定	島根2号機では、振
	J	動試験 <mark>のみで</mark> 仮想質量
	内部水の有効質量算定用解析モデルの作成	法の検証を行う。
	(シェル要素)	
	¥ 运标·加八 L +联生 小粒 ↓ 元 3 n. ⇔	
	流体部分と構造の接水面設定	
	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	
	(仮想質量法)	
	→ 内部水の有効質量の算定結果	
	(各要素における有効質量)	
	図 4.1-1 内部水の有効質量算定フロー	
	四年111月111111111111111111111111111111111	

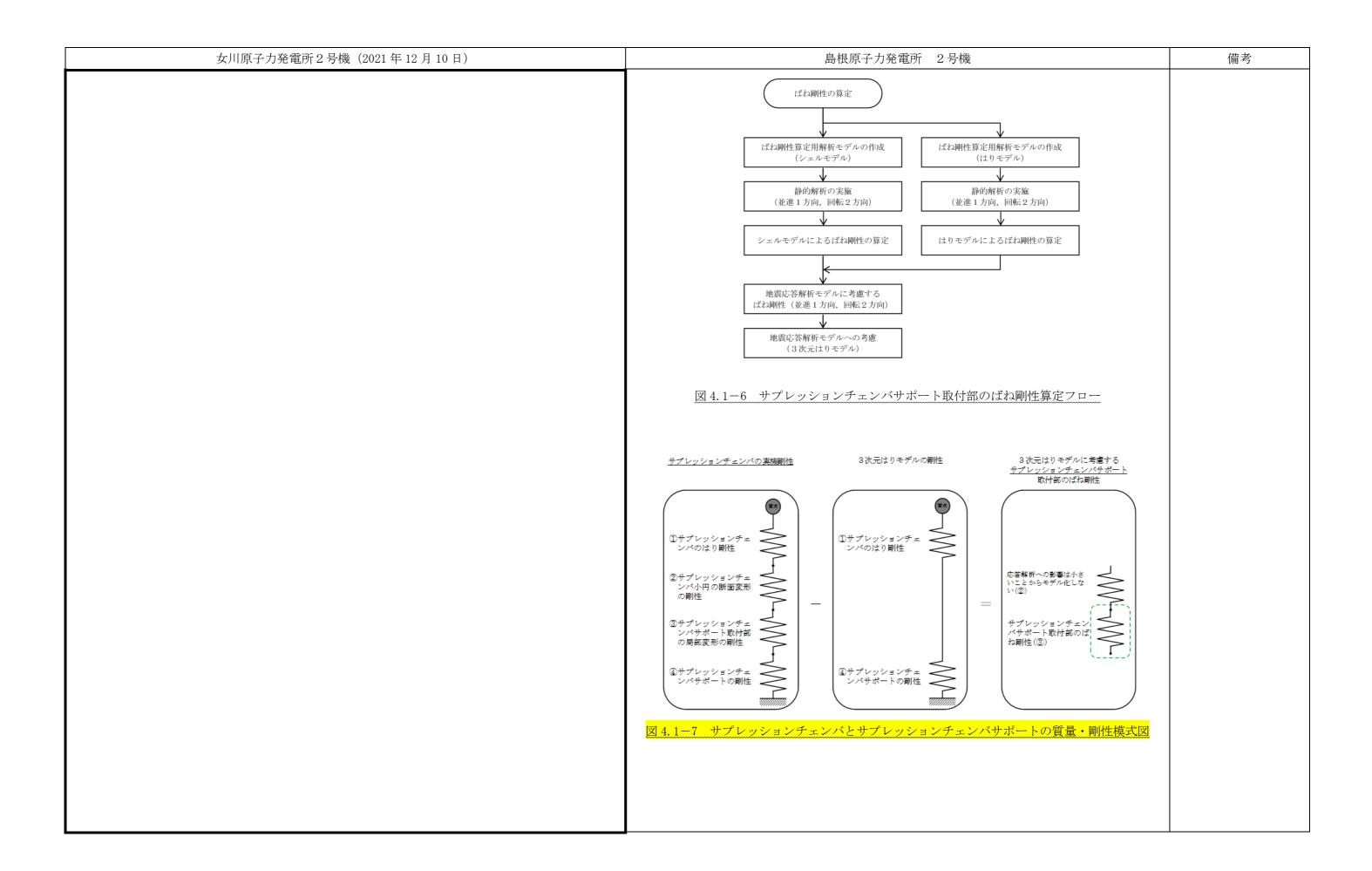
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	(2) 内部水の有効質量の解析モデル	
	サプレッションチェンバ内部水の有効質量を算定するための解析モデルを図 4.1-2 に示	
	す。	
	解析モデルは、サプレッションチェンバ(補強リングを含む)の寸法、剛性を模擬したシ	
	ェル要素とし、サプレッションチェンバ内部水の水位を設定する。なお、サプレッションチ	
	ェンバ内部水の有効質量を算定するための解析モデルの作成にあたっては、内部水の有効	
	質量が解析対象の容器形状及び水位に係る情報のみがあれば算定可能であることから、内	
	部水の有効質量算定に関係のない <u>サプレッションチェンバサポートは</u> 模擬していない。 <u>ま</u>	・評価方法の相違
	た、 <mark>内部水の有効質量を精緻に算定するために</mark> 主要な内部構造物をモデル化することとし、	島根2号機では、主
	ベントヘッダ, ダウンカマ, クエンチャ, ECCSストレーナをモデル化する。	要な内部構造物をモデ
	サプレッションチェンバ内部水の水位は、図 4.1-3 に示すとおり、耐震評価上保守的な	ル化する。
	結果が得られる水位として、耐震解析用重大事故等時水位を設定する。なお、耐震解析用重	・評価方法の相違
	大事故等時水位は、 <u>通常運転時及び重大事故等時の耐震評価用に適用する保守的な</u> 水位で	
	ある(別紙 10 <u>参照</u>)。	常運転時の耐震評価に
		おいても耐震解析用重
		大事故等時水位を用い
		る。
	図 4.1-2 内部水の有効質量算定用解析モデル	
	EL mm	
	耐震解析用重大事故等時水位 EL 7049mm	
	(ダウンカマ取付部下端位置)	
	ELn	
	図 4.1-3 サプレッションチェンバ内部水の設定水位	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原	子力発電所 2号機		備考
	(3) 内部水の有効質量の解析結果 仮想質量法によるサプレッションチェンバ内部水の有効質量比の算定結果を表 4.1-1 に 示す。ここで、算出結果として示している内部水の有効質量比の値は、内部水全質量に対す る水平方向の内部水の有効質量の割合(= (水平方向の内部水の有効質量) ÷ (内部水全質			
				に
				す
				質
	量))を表す。内部水の有効質量の	詳細な設定方法について	は4.1.2に示す。	
	また、内部水の有効質量を算定す	る解析手法の違いによる	る比較として, 汎用流体解析コ	_
	ド <u>Fluent</u> (流体解析) による	算定結果を併せて示す。	仮想質量法と流体解析により	算・評価方法の相違
	出した内部水の有効質量比は一致し	vている。 <u>なお,振動試</u> 験	等では通常運転時に相当する	水 使用する解析コート
	位に対する検討を行っており、表々	1.1-1 と異なる水位に対	けしても仮想質量法による有効	質 の相違
	量比は適切に算出されることを確認	忍している。		・評価結果の相違
				内部水の有効質量比
	表 4.1-1 サプレッショ	ンチェンバ内部水の有効	質量比算定結果	算定結果の相違 ・評価方法の相違
	水位*1	解析手法	手法	島根2号機では、追
	水位:	仮想質量法	流体解析*2	常運転時の耐震評価においても耐震解析用重
	耐震解析用重大事故等時水位	0. 28	0. 28	大事故等時水位を用いる。
	注記*1:通常運転時及び重大事故		ューロー	
	る耐震解析用重大事故等			
	*2:スロッシングの卓越周期	月帯及びサプレッション 5	チェンバの一次固有周期	
	で応答加速度が大きいS	s - Dを用いた算定結果	1	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		島根2号機では,通 常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い る。 ・設備の相違 島根2号機では,建 設時の構造で耐震性を

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	内部水の有効質量の算定(モデル化)	
	内部水の有効質量 (有効質量算定用解析モデル各要素における有効質量)	
	(自然真重弁だ川所川で)が自女派(こ401)が自然真重)	
	縮約(Guyan縮約)	
	при Се и у и плиру	
	● V 3 次元はりモデルに設定する内部水の有効質量	
	(並進質量, 回転質量)	
	地震応答解析モデルの各質点に内部水の有効質量を設定 (モデル化)	
	図 4.1-4 内部水の有効質量の地震応答解析モデルへの設定フロー	
		٦
		J
	図 4.1-5 サプレッションチェンバ及びサプレッションチェンバサポートの 地震応答解析モデル	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 4.1-2 内部水の有効質量の設定(耐震解析用重大事故等時水位, X 方向)	
	並進質量 回転質量	
	質点番号 m_x m_y m_z Rm_x Rm_v Rm_z $\times 10^3 (kg) \times 10^3 (kg) \times 10^3 (kg) \times 10^3 (kg \times m) \times 10^3 (kg \times m) \times 10^3 (kg \times m)$	
	3 4	
	5 6 7	
	8 9	
	10 11	
	$\begin{array}{c c} 12 \\ \hline 13 \end{array}$	
	$\begin{array}{ c c c c c }\hline 14\\\hline 15\\\hline 16\\\hline \end{array}$	
	17 18	
	$\frac{19}{20}$	
	$\begin{array}{c c} 21 \\ \hline 22 \\ \hline 23 \end{array}$	
	24 25	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	28 29	
	$ \begin{array}{c c} & 30 \\ \hline & 31 \\ \hline & 32 \end{array} $	
	$\frac{33}{34}$	
	35 36	
	37 38 39	
	40	
	42 43	
	44 45 46	
	47 48	
	41 42 43 44 45 46 47 48 49 50 51	
	51 52 52	
	52 53 54 55 56 57	
	56 57	
	58 59 60	
	61 62	
	61 62 63 64	
	合計	

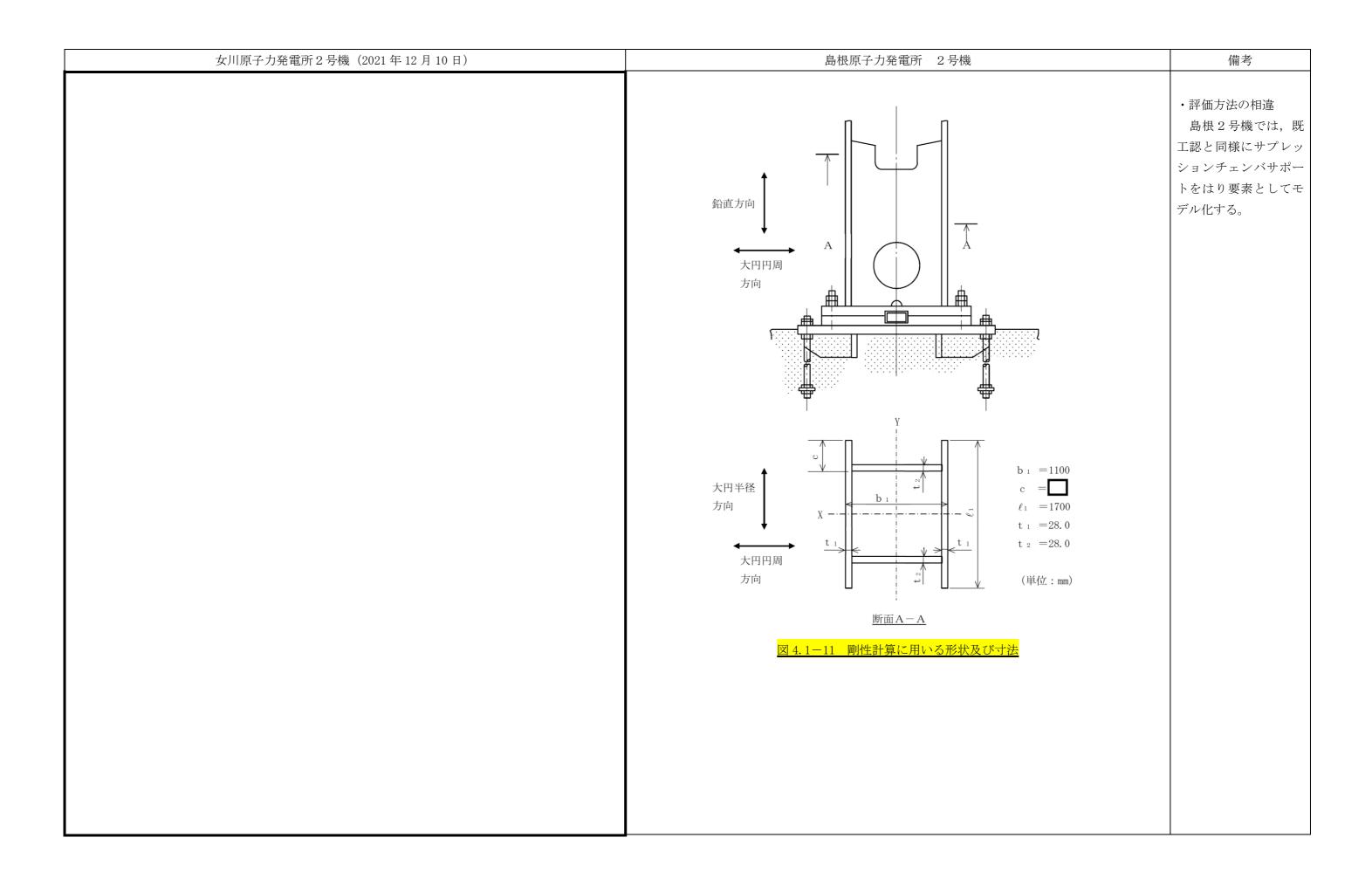

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 4.1-3 内部水の有効質量の設定(耐震解析用重大事故等時水位, Z 方向)	
	並進質量 回転質量	
	質点番号 m_x m_y m_z Rm_x Rm_y Rm_z $\times 10^3 (kg)$ $\times 10^3 (kg)$ $\times 10^3 (kg)$ $\times 10^3 (kg \cdot m)$ $\times 10^3 (kg \cdot m)$ $\times 10^3 (kg \cdot m)$	
	$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$	
	3 4 5	
	6 7	
	8 9 10	
	10 11 12	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	15 16 17	
	18 19	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c c} 22 \\ \hline 23 \\ \hline 24 \end{array}$	
	$\frac{25}{26}$	
	27 28	
	29 30 31	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$ \begin{array}{r} 34 \\ 35 \\ \hline 36 \end{array} $	
	37 38	
	39 40	
	$ \begin{array}{r} 41 \\ 42 \\ 43 \\ 44 \end{array} $	
	44 45	
	45 46 47	
	47 48 49 50	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	53	
	54 55 56 57	
	57 58 59	
	60 61	
	60 61 62 63 64	
	○4 合計	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4.1.3 サプレッションチェンバのモデル化	
		・モデル化方法の相違
		島根2号機では、サ
	サプレッションチェンバ及びサプレッションチェンバサポートの3次元はりモデルは、サ	
	プレッションチェンバ胴をサプレッションチェンバ小円断面中心位置にはり要素でモデル化	
	する。また、補強リング及びサプレッションチェンバサポートについてもはり要素でモデル化	としてはり要素に設定
	する。サプレッションチェンバ胴及びサプレッションチェンバサポートは、各部材の剛性を考	する。
	<u>慮し、各部材の質量を等分布質量で設定する。サプレッションチェンバ胴に設定する質量は、</u>	・モデル化方法の相違
	内部構造物の質量を含む質量とする。なお、ベント管等の原子炉格納容器ベント系について	島根2号機では、補
	は、主にドライウェルにより支持されているが、保守的にサプレッションチェンバの質量に <mark>含</mark>	強リングをモデル化す
	める。補強リング <mark>については、質量分布を考慮するために</mark> 等分布質量を設定した剛体としてモ	5.
	デル化し、サプレッションチェンバ胴と補強リングは溶接で接続されており一体構造のため	・モデル化方法の相違
	剛結合とする。また、サプレッションチェンバサポートとサプレッションチェンバ胴は、サプ	島根2号機では、フ
	レッションチェンバサポートの取付部の剛性を考慮したばねを介して接続する(4.1.4 参照)。 なお、既工認ではサプレッションチェンバ <mark>とECCSストレーナに個別の</mark> 地震応答解析モデ	ランジサポートのばね
	ルを適用していたが、今回工認ではECCSストレーナ(残留熱除去系ストレーナ、高圧炉心	剛性を考慮しない。 ・モデル化方法の相違
	スプレイ系ストレーナ及び低圧炉心系ストレーナ)との地震応答解析モデルの共通化を行う	島根2号機では、E
	ため、サプレッションチェンバと併せてECCSストレーナを解析モデルに含める(表 4.1-	CCSストレーナを解
	4 参照)。なお、サプレッションチェンバサポートはプラント方位と一致する方向に配置され	析モデルに含める。
	ていないため、解析モデルではサプレッションチェンバサポートに最大の荷重が加わるよう	・記載の充実
	に、水平方向の地震動の入力方向と一致する方向にサプレッションチェンバサポートを設定	島根2号機では、設
	する (別紙 22 参照)。	置許可段階での説明事
	<u> 水平方向の地震応答解析モデルでは、内部水の有効質量を 64 箇所の質点に設定する (4.1.1</u>	項 <mark>も含め</mark> 記載する。
	参照)。鉛直方向については有効質量の考慮による荷重低減効果が小さいことから、鉛直方向	・評価方法の相違
	の地震動等解析モデルでは,既工認と同様に内部水全体を固定質量として考慮することとし,	島根2号機では、鉛
	内部水の重心位置に設定したはり要素に等分布質量で設定する。	直方向の地震応答解析
	なお、各はり要素に設定した質量は、解析コードの処理として両端の節点に集中質量として	モデルは既工認と同様
	<mark>分配される。</mark>	に内部水を固定質量と
		してモデル化する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	サプレッションチェンバ (小円) については, 建設時にサプレッションチェンバ内部に設置	
	した <u>補強リング(32</u> 枚)によって断面変形を抑制する設計としているため、はり要素でモデ	
	ル化しているが、 <u>オーバル振動</u> に係る既往知見を踏まえ、サプレッションチェンバに対する <u>オ</u>	
	<u>ーバル振動</u> の影響検討を行い,地震応答解析にあたってサプレッションチェンバ本体をはり	
	要素でモデル化することの適用性を検討した。	
	検討の結果, はり要素でモデル化した地震応答解析モデルにより, サプレッションチェンバ	・設備の相違
	<u>の振動特性を模擬できている</u> ことを確認した。また、 <u>サプレッションチェンバ</u> 胴ではオーバル	構造の相違により,
	振動が現れるが、発生応力に対する影響は軽微であることを確認する。これらの結果から、サ	島根2号機ではオーバ
	プレッションチェンバ本体をはり要素でモデル化することの適用性を確認する。地震応答解	ル振動の影響が現れ
	析モデルに対するオーバル振動の影響検討結果の詳細については、別紙3に示す。	る。
		・記載箇所の相違
	よって、サプレッションチェンバ本体のモデル化は、サプレッションチェンバ本体の小円断	
	面中心位置に円筒断面の理論式により算定した剛性を考慮したはり要素でモデル化し、その	
	剛性は既工認と同様とする(表 4.1- <mark>5</mark> 参照)。	・評価方法の相違
		モデル化方法の相違
	また, 今回工認では, 重大事故時のサプレッションチェンバの水位上昇に伴う内部水質量の	7 1074 1074 1170
	増加,基準地震動の増大等を踏まえ、サプレッションチェンバ及びサプレッションチェンバサ	・設備の相違
	ポートの地震応答解析モデルの設定にあたっては、より詳細に地震応答を把握するため、サプ	島根2号機では、建
		設時の構造で耐震性を
	りモデルに付加する。	確認している。
	なお, 既工認ではサプレッションチェンバ単体での地震応答解析モデルを適用していたが,	・評価方法の相違
	今回工認ではECCSストレーナ(残留熱除去系ストレーナ、高圧炉心スプレイ系ストレーナ	島根2号機では、E
	及び低圧炉心系ストレーナ)との地震応答解析モデルの共通化を行うため、サプレッションチ	一 G C C S ストレーナを解
		析モデルに含める。
	<u>ェンバと併せてECCSストレーナを解析モデルに含める。</u>	例でプルに呂める。
		和井体正の担告
		・記載箇所の相違
Í		
<u> </u>		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発電所 2号機		備考
	表 4.1-4 既工認と今回工認における地震応答解析モデル			
	⇒n. Att	地震応答領	解析モデル	島根2号機では、E
	設備	既工認	今回工認	CCSストレーナを解
	サプレッションチェンバ サプレッションチェンバサ ポート	180° モデル (ECCSスト レーナとの連成なし)	サプレッションチェンバ及 - びサプレッションチェンバ	析モデルに含める。
	ECCSストレーナ	サプレッションチェンバ及 びサプレッションチェンバ サポートの 360° モデルと連 成	サポートの 360° モデルとE	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)				島根	:原子力発	電 所 2 号機				備考
	表 4.1- <mark>5</mark> サプレッションチェンバ本体のモデル化諸元									
	部材	材質	部材長*1 (mm)	質量 (kg)	断面積 (mm²)	断面二次 モーメント (mm ⁴)	有効せん 断面積 (mm²)	析 縦弾性係 数 (MPa)	ポアソン 比 (-)	
	サプレッショ ンチェンバ胴	SPV50						1. 98	0.3	
	補強リング	SGV49			;	_*2	_*2	×10 ⁵	0.3	
	~					ションチェン				
	<u>*2: </u>	強リング	プはサブレ	/ツション	ンチェン	バ胴と剛体結合	含するため,質	負重分布のみ	<u> 外考慮する。</u>	・評価方法の相違 島根2号機では、補
	4.1.4 サ	プレッシ	′ョンチェ	ンバサホ	ペート取付	付部のばね剛性	の算定			強リングをモデル化す
	サプレ	ッション	チェンバ	及びサス	プレッシ	ョンチェンバ	ナポートの地	震応答解析	モデルにつ	る。
					~~~~~	ッションチェン	~~~~~~~			
		~~~~~~		~~~~~	••••	『のばね剛性(	並進,回転)	を考慮した	ばね要素を	
	モデル化プ	~~~~	~~~~~	~~~~~	~~~~~	<u>し</u> る。 Dばね剛性算定	アフローを図り	4 1-6 に示	· 士	
	~~~~~~	~~~~~~	~~~~~	~~~~~	~	のばね剛性算気				
	~~~~~~~	~~~~~~	~~~~~	~~~~~	~~	チェンバ及び				
	模擬した	<mark>3 次元</mark> シ	/ェルモデ	゛ルを用レ	いる <mark>。サ</mark>	プレッションラ	チェンバにお	<mark>ける剛性の</mark>	設定の考え	
	方を整理	した図を	図 4.1一	7に示す。	。3次元	シェルモデル	の剛性は,①	サプレッシ	゚ョンチェン	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·············	~~~~~	~~~~~	~~~~~	、円の断面変形	······································	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		•••••	~~~~~	~~~~~	~~~~~~~~~~	サプレッション	***************************************	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				~~~~~	~~~~~~~~~~~	いては3次元は	***************************************	***************************************		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							プレッションチェンバ 小円の断面変形の剛性
	部のばね				, ,, <u>C 4 ,</u>	<u> </u>			7 7 7 7 7 7 7	を考慮しない。
	_				の面内力	, 向の変形につ	<mark>いては, 面外</mark>	· <mark>方向の変形</mark>	に対して剛	
	<mark>性が高い。</mark>	と考えら	れること	<mark>から,</mark> サ	プレッシ	/ョンチェンバ	胴に対して面	<u> 「外方向の</u> は	ばね剛性 (<u>並</u>	評価方法の相違
	進1方向,	回転2	<u>方向</u>) を	算定し, 匀	算定され	たばね剛性を	サプレッショ	ンチェンバ	及びサプレ	島根2号機では、サ
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			,		モデルに考慮す				プレッションチェンバ
	ばね剛作	生算定力	法及び結	果の詳細	聞について	ては,別紙4に	示す。			サポート取付部の面外
										方向(3方向) <mark>のみ</mark> の変
										形をばね要素として考慮する。
										MEA 7 つり




女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	(1) ばね剛性算定用解析モデル	
	サプレッションチェンバには、16 セグメントの円筒の継ぎ目部(胴エビ継部)に <u>サプレ</u>	
	<u>ッションチェンバサポート</u> がサプレッションチェンバ大円の内側と外側に 1 組配置されて	
	いる対称構造であることから、ばね剛性算定用解析モデルのモデル化範囲は、評価対象の共	
	プレッションチェンバサポート 1 組を中心として, その両側の <u>胴円筒部の中心</u> までとし, シ	
	ェル要素でモデル化する。また、サプレッションチェンバの地震応答解析モデル(3次元は	モデル化範囲の相違
	りモデル)で表現している剛性との重複を排除するための解析モデルとして,シェルモデル	
	と同じ範囲をはり要素でモデル化する。ばね剛性算定用解析モデルを図 4.1- <mark>8</mark> 及び図 4.1	・記載箇所の相違
	<mark>9</mark> に示す。 	
	図 4.1- <mark>8</mark> ばね剛性算定用解析モデル(シェルモデル)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考・記載箇所の相違
	図 4.1 — 9 ばね剛性算定用解析モデル(はりモデル)	

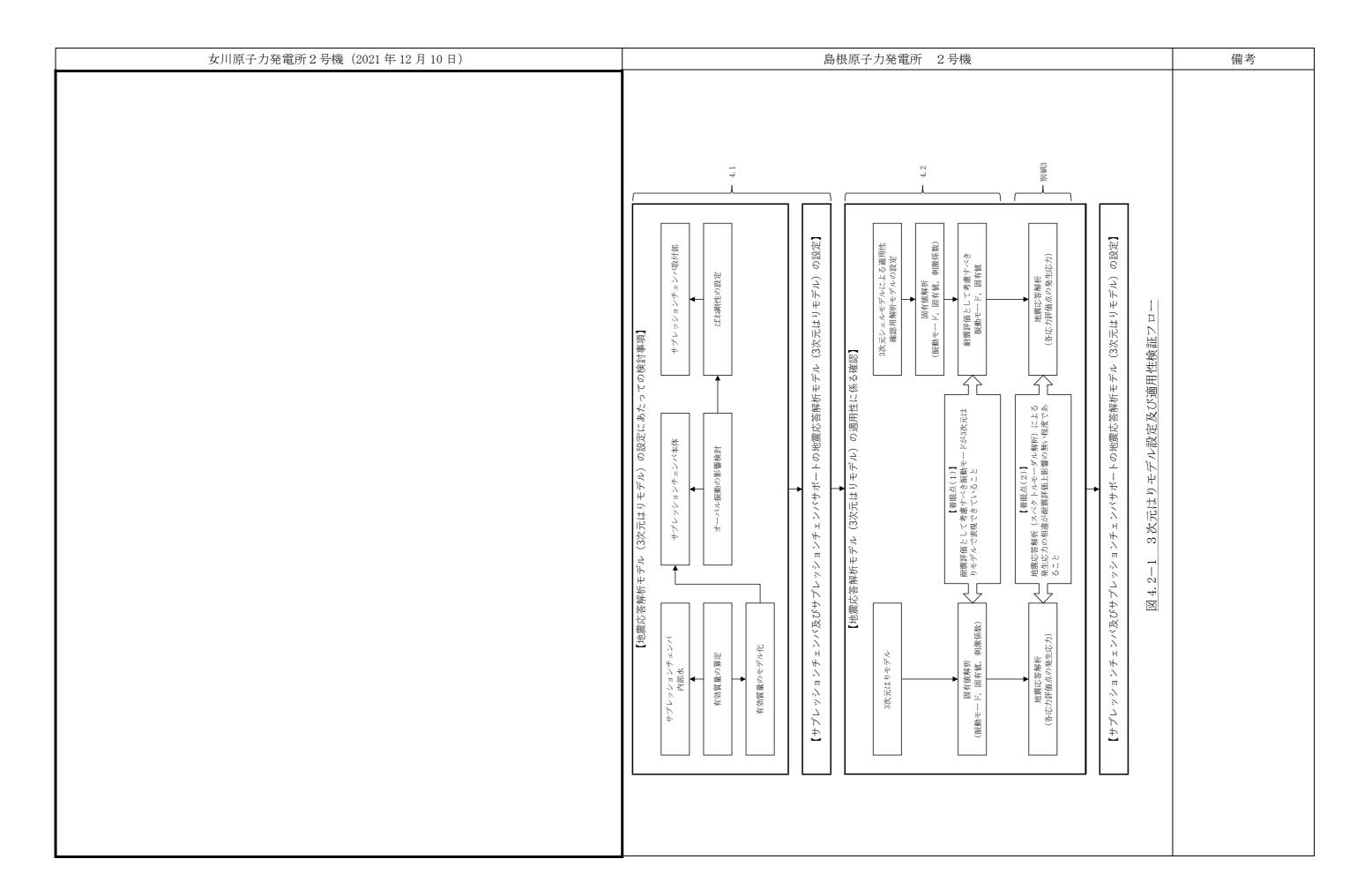
女川原子力発電所2号機(2021年12月10日)	島相	· 原子力発電所 2号機			備考
	(2) 地震応答解析モデルに考慮	するばね剛性			
	サプレッションチェンバ及び	プレッションチェンバ及びサプレッションチェンバサポートの地震応答解析に考			
	る <u>サプレッションチェンバサポート</u> 取付部のばね剛性を表 4.1- <mark>6</mark> , 地震応答解析モデルを				
	図 4.1- <u>10</u> に示す。 <u>サプレッショ</u>	ンチェンバサポート取付	部のばね剛性につい	ては,地震応	
	答解析モデル(3次元はりモデル	v) の <u>サプレッションチェ</u>	ンバサポート上端位は	置に並進 <u>1</u> 方	・評価方法の相違
	向,回転 <u>2</u> 方向を設定する。				島根2号機では,
	表 4.1- <mark>6</mark> サプレッミ	/ョンチェンバサポート取	7付部のばね剛性		プレッションチェン サポート取付部の <mark>面</mark>
		ld	だね剛性		方向 (3方向) <mark>のみ</mark> の
	考慮する方向	内側	外側		形をばね要素として
	並進 P:上下方向			1	慮する。
	(N/mm) ML:大円半径	曲回り			
	(N·mm/rad)	和四人			
	回転 MC:大円円周	<u></u> 軸回り			
	(N·mm/rad)				
				_	
	<u> </u>				
	図 4.1 — <u>10</u> 地方	<b>雲応答解析モデル(ばね</b> 障	川性考慮)		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4.1.5 サプレッションチェンバサポートのモデル化	
		₹/T+\\\ 0 +B\\\
	サプレッションチェンバサポートは既工認と同様に、サプレッションチェンバサポートの 形状等の情報から計算式により設定した剛性をサプレッションチェンバサポートのはり要素	・評価方法の相違 島根2号機では,既
	に考慮する。	工認と同様にサプレッ
	<u> 断面積,断面二次モーメント,有効せん断断面積については,図 4.1-<mark>11</mark> に示す寸法を用い</u>	
	て以下のとおり算出する。	トをはり要素としてモ
	a. 断面積	デル化する。
	$\mathbf{A} = 2 \cdot \mathbf{t}_1 \cdot \ell_1 + 2 \cdot \mathbf{t}_2 \cdot \left( \mathbf{b}_1 - 2 \cdot \mathbf{t}_1 \right)$	
	b. 断面二次モーメント	
	大円半径方向に曲げモーメントを受ける際の断面二次モーメント I x	
	$I_{X} = \frac{2 \cdot t_{1} \cdot \ell_{1}^{3}}{12} + (b_{1} - 2 \cdot t_{1}) \cdot \frac{\{(\ell_{1} - 2 \cdot c + 2 \cdot t_{2})^{3} - (\ell_{1} - 2 \cdot c)^{3}\}}{12}$	
	大円円周方向に曲げモーメントを受ける際の断面二次モーメントIx	
	$I_{Y} = \frac{\ell_{1} \cdot \left\{b_{1}^{3} - \left(b_{1} - 2 \cdot t_{1}\right)^{3}\right\}}{12} + \frac{2 \cdot t_{2} \cdot \left(b_{1} - 2 \cdot t_{1}\right)^{3}}{12}$	
	c. 有効せん断断面積	
	大円半径方向の有効せん断断面積Asy	
	$A_{SY} = K_1 \cdot A$	
	大円円周方向の有効せん断断面積Asx	
	$A_{SX} = K_2 \cdot A$	
	ここで,	
	K ₁ : 大円半径方向のせん断変形に対する形状係数 ^[1] (=)	
	K ₂ : 大円円周方向のせん断変形に対する形状係数 ^[1] (=)	
	サプレッションチェンバサポートのモデル化諸元を表 4.1- <mark>7</mark> に示す。	



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)		・評価方法の相違モデル化手法の相違

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価方法の相違
		島根2号機では、個
		別の基礎ボルトに作用
		する荷重は既工認と同
		様に計算式により評価
		している。


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、個
		別の基礎ボルトに作用
		する荷重は既工認と同
		様に計算式により評価
		している。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、個
		別の基礎ボルトに作用
		する荷重は既工認と同
		様に計算式により評価
		している。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、個
		別の基礎ボルトに作用
		する荷重は既工認と同
		様に計算式により評価
		している。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、個
		別の基礎ボルトに作用
		する荷重は既工認と同
		様に計算式により評価
		している。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	4.2 地震応答解析モデルの適用性確認 4.2.1 適用性の確認力針 4.1 では、今回工認におけるサプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析に適用する3次元はりモデルの設定について、サプレッションチェンバ内部水を有効質量として扱うこと、サプレッションチェンバ本体のモデル化及びサプレッションチェンバ内部水を有効質量として扱うこと、サプレッションチェンバ本体のモデル化及びサプレッションチェンバとサプレッションチェンバサポートの取付部にばね刺性を考慮すること等の考え方を示した。 本項では、上記を踏まえて設定したサプレッションチェンバ及びサプレッションチェンバサポートの3次元はりモデルを地震応答解析に適用することの適用性について確認する。適用性確認にあたっては、サプレッションチェンバ(種強リングを含む)及びサプレッションチェンバサポートをシェル要素でモデル化した適用性確認用解析モデル(3次元シェルモデル)による固有値解析を実施し、3次元はりモデルを用いた固有値解析活程との比較を行う。また、はりモデルにおいて振動モードとして考慮できないオーバル振動による発生応力への影響については、3次元はりモデルと適用性確認用解析モデル(3次元シェルモデル)の発生応力の比較により確認する。図4.2-1にサプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析モデル(3次元はりモデル)に対する適用性確認フローを示すとともに、適用性確認における着眼点を以下に示す。  着眼点(1) 固有値解析による振動モード、固有振動数及び刺激係数を比較し、適用性確認用解析モデル(3次元シェルモデル)の解析結果から耐震評価として考慮すべき振動モードとは、サプレッションチェンバの応答解析結果に影響する振動モードとし、刺激係数が2桁オーダー以上の振動モードを対象とする。  着眼点(2) 地震応答解析(スペクトルモーダル解析)による応力評価部位毎(サプレッションチェンバ肺中央部、胴エビ総部、サプレッションチェンバサポート取付部及びサンチェンバ肺中央部、胴エビ総部、サプレッションチェンバサポート取付部及びサンチェンバ肺のといり	・検討内容の相違 ・検討内容の相違は、3 ・検討根2号機でルの結果が を3ではす値解 を3をでがある。 ・検討をの影響を3がでででででででである。 ・検討は2号機ののはでいる。 ・検討は2号機のの傾向を1 ・検のの傾向を1 ・検のの傾向を1 ・検のの傾向を1 ・検のの傾向を1 ・検のの傾向を1 ・検のの傾向を1 ・検のののののででででいる。
	着眼点(2) 地震応答解析 (スペクトルモーダル解析) による応力評価部位毎 (サプレッショ	比較する。



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	4.2.2 適用性確認用解析モデル 3次元シェルモデル(適用性確認用解析モデル)として、サプレッションチェンバリング及びサプレッションチェンバサポートをシェル要素としてモデル化し、サプンチェンバ胴のシェル要素に、4.1.1 項と同様にNASTRANの仮想質量法により内部水の有効質量を各シェル要素に考慮する。内部水の有効質量算定における水位条震解析用重大事故等時水位とする。3次元シェルモデル(適用性確認用解析モデル)諸元及び解析モデル図を表 4.2-1 及び図 4.2-2 に示す。なお、解析モデルの設定にてついては、別紙 5 に示す。 表 4.2-1 3次元シェルモデル(適用性確認用解析モデル)のモデル諸元	順,補強 レッショ 算定した (件は,耐 のモデル 係る詳細 ・評価方法の相違 島根 2 号機では,通 常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い
	要素数     シェル要素: サプレッションチェンバ胴, 補強リング, サプレッョンチェンバースプレート以外)       and また。     はり要素: サプレッションチェンバサポート (ベース及びベースプレート以外)       はり要素: サプレッションチェンバサポート (ベース及びベープレート)*     ・耐震解析用重大事故等時水位 (EL 7049mm)       ・NASTRAN の仮想質量法を適用       注記*:サプレッションチェンバサポートのうち,シアキー構造より上部の部材について向に可動する構造であるが,半径方向に可動しないシアキー構造より下部の部材	ス <u> </u>   <u> </u>   <u> </u>   <u> </u>   <u>は半径方</u> ・評価方法の相違
	及びベースプレート)は板厚方向の剛性をモデル化する目的ではり要素とする。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul> <li>・評価方法の相違</li> <li>島根 2 号機では、解析における計算コスト低減のため、180°モデルを用いる。</li> </ul>
	図4.2-2 適用性確認用解析モデル (3次元シェルモデル) 図  4.2.3 <u>地震応答解析</u> モデルと適用性確認用解析モデルの比較 3次元はりモデル及び適用性確認用解析モデル (3次元シェルモデル) における主要なモデル化項目の考え方を比較するとともに,モデル化に差異がある場合には,3次元はりモデルにおけるモデル化の適用性について整理した結果を表4.2-2に示す。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)				島根原子力	発電所 2号	幾	備考	
	<b>モデルのモデル化比較</b>	モデル化の差異及びその適用性	内部水の有効質量の算定方法は同じである。 3 次元はりモデルにおける内部水の有効質量のモデル化は, Guyan 縮約を用いてモデル化しており、実機相当の解析モデル による応答解析結果の比較により妥当性を確認している。(別 紙2参照)	3 次元はりモデルにおけるサプレッションチェンバ本体のモデル化は、小円の平面保持を仮定した理論式である。はりモデルで表現されない花びら状の変形等の小円の複雑な断面変形を伴う振動モードによる影響は、耐震評価上問題が無いことを確認する。(別紙3参照)	3 次元はりモデルにおけるサプレッションチェンバサポート取付部のばね剛性は、モデル化の要素が異なるものの、着目している剛性は適用性確認用解析モデルと同じである。(4.1.4 参照)	3 次元はりモデルにおけるサプレッションチェンバサポート取付部のばね剛性は、モデル化の要素が異なるものの、着目している剛性は適用性確認用解析モデルと同じである。(4.1.5 参照)		
	- デル及び適用性確認用解析モデ	適用性確認用解析モデル (3 次元シェルモデル)	NASTRAN の仮想質量法により算出し,この値をシェル要素に考慮	材料物性及び実機構造を模擬したシェル要素でモデル化	材料物性及び実機構造を模擬したシェル要素でモデル化	材料物性及び実機構造を模擬した シェル要素でモデル化		
	表 4.2-2 3 次元はりモ	地震応答解析モデル (3 次元はりモデル)	NASTRAN の仮想質量法により算出し、 NASTRANの機能である Guyan 縮約を用いて はりモデルに付与	材料物性と円筒断面の理論式により算定 したサプレッションチェンバ大円の剛性 を考慮したはり要素でモデル化	実機構造を模擬したばね剛性算定用の3 次元シェルモデル等を用いて取付部の局 部変形を考慮したばね剛性を設定し、サポ ート取付部にばね要素としてモデル化	公式等により曲げ・せん断・伸び剛性を算定し、はり要素でモデル化		
		モデル化項目	内部水有効質量のモデル化	サプレッションチェンバ 胴のモデル化	サプレッションチェンバ サポート取付部のばね 剛性の設定	サプレッションチェンバ サポートのモデル化		

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4.2.4 <u>妥当性</u> 確認結果	
	(1) <mark>着眼点(1)に対する確認結果</mark>	
	a 適用性確認用解析モデル (3次元シェルモデル) による固有値解析結果	
	適用性確認用解析モデル(3次元シェルモデル)を用いた固有値解析結果として、各振	<ul><li>検討内容の相違</li></ul>
	動モードに対する <u>固有振動数</u> ,固有周期及び刺激係数 <u>のうち<mark>,刺激係数が</mark>2桁オーダー以</u>	島根2号機では,主
	<u>上のもの</u> を代表して表 4.2-3 に示す。 <u>また,モード変形図を図 4.2-3 に示す。</u>	要な振動モードについ
		て <mark>のみ</mark> 振動モードを比
	図 $4.2-3$ に示す振動モードにおいて、図 $4.2-3(1)\sim(2)$ はサプレッションチェンバ全	較する。
	体が水平方向に振動する振動モードであり、図 $4.2-3(3)\sim(6)$ はサプレッションチェン	・評価結果の相違
	バ全体が鉛直方向に振動する振動モードである。図 $4.2-3(1)\sim(2)$ 又は図 $4.2-3(3)\sim$	島根2号機では、3
	(6)はいずれも同じ方向にサプレッションチェンバ全体が振動する振動モードであるが、	次元シェルモデルによ
	サプレッションチェンバ胴一般部の応答としてオーバル振動 (花びら状の変形) が現れる	る固有値解析結果とし
	ことで、オーバル振動の振動モードの違いによりサプレッションチェンバ全体が振動す	て、オーバル振動の影
	る振動モードが複数の振動モードに分散して現れている。_	響が現れる。
		・検討内容の相違
		島根2号機では,主
		要な振動モードについ
		て <mark>のみ</mark> 振動モードを比
		較する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	b. 3次元はりモデルと適用性確認用解析モデル(3次元シェルモデル) <u>の振動モード</u> の	<ul><li>検討内容の相違</li></ul>
		島根2号機では、主
		要な振動モードについ
	3次元はりモデルを用いた固有値解析結果として、各振動モードに対する固有振動数	て <mark>のみ</mark> 振動モードを比
	と固有周期,刺激係数のうち,刺激係数が 2 桁オーダー以上のものを代表して表 4.2-4	較する。
	に示す。また、適用性確認用解析モデル(3次元シェルモデル)と3次元はりモデルの各	
	振動モードについて,モード変形図の比較結果を表 4.2-5 に示す。 <mark>なお, 3 次元シェル</mark>	
	モデル (適用性確認用解析モデル) では水平の変形方向が X 軸及び Y 軸方向と一致してい	
	るのに対して、3次元はりモデルではECCSストレーナを連成させていることから変	
	形方向がX軸及びY軸方向からずれている。また、3次元シェルモデル(適用性確認用解	
	析モデル)では,サプレッションチェンバの全周をモデル化した解析モデル(360°モデ	
	ル)ではなく、半周をモデル化した解析モデル(180°モデル)を適用するが、対称条件	
	と反対称条件の 180° モデルを用いることにより、360° モデルと同様の振動特性が表現	
	できる。	
	表 4.2-5 より、3 次元はりモデルの振動モードと比較し、適用性確認用解析モデル(3	
	次元シェルモデル) は胴一般部のオーバル振動が重畳する振動モードとなるものの, 刺激	
	係数が 2 桁オーダー以上のものにおける主要な振動モードは3次元はりモデルと適用性	
	確認用解析モデル (3次元シェルモデル) で対応関係が確認できる。	
	また、適用性確認用解析モデル(3次元シェルモデル)と3次元はりモデルの 50Hz ま	
	での全振動モードにおける固有振動数と有効質量比の関係を図 4.2-4 に示す。図 4.2-	
	4より、3次元はりモデルでは有効質量比が卓越する振動モードが数モードに集約される	
	一方,適用性確認用解析モデル(3次元シェルモデル)の場合は複数の振動モードに分散	
	する結果となるものの、50Hz までの全振動モードにおける固有振動数と有効質量比の全	
	<u>体傾向はおおむね一致している。</u>	
	(2) 着眼点(2) <u>に対する確認結果</u>	
	適用する耐震評価条件は、VI-2-9-2-2「サプレッションチェンバの耐震性についての	
	計算書」及びVI-2-9-2-4「サプレッションチェンバサポートの耐震性についての計算	
	書」における,重大事故等対処設備としての基準地震動Ssに対する評価と同じ条件と	
	<u> </u>	
		・記載箇所の相違
		・記製面別の相選

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	b. 3次元はりモデルと3次元シェルモデル (適用性確認用解析モデル) によるサプレッションチェンバサポートの一次応力の比較 サブレッションチェンバサポートにおける3次元はりモデル及び3次元シェルモデル (適用性確認用解析モデル) による耐震評価結果 (一次応力) を表 4.2-6 及び図 4.2-5 に示す。表 4.2-6 及び図 4.2-5 ではすべての応力評価点において、3次元はりモデルに対して3次元シェルモデル (適用性確認用解析モデル) の発生応力が小さい結果となる。3次元シェルモデル (適用性確認用解析モデル) では、オーバル振動によりサプレッションチェンバ全体が振動する振動モードが、固有周期が近い複数の振動モードに分散している。各振動モードにより生じる荷重の総和としては振動モードが分散しない場合と同程度と考えられる。分散した振動モードにより生じる荷重は二乗和平方根により組み合わせるため、得られる荷重が小さくなると考えられる。	・評価結果の相違 島根2号機では、サ プレッションとにおけるにおけるの応力評価点に で、3次元シェがい で、3次元シェがいい。
	c. 3次元はりモデルと3次元シェルモデル(適用性確認用解析モデル)によるサプレッションチェンバの一次応力の比較 3次元はりモデル及び3次元シェルモデル(適用性確認用解析モデル)によるサプレッションチェンバの耐震評価結果(一次応力)を表4.2-7及び図4.2-6に示す。 3次元はりモデル及び3次元シェルモデル(適用性確認用解析モデル)による発生応力は、サプレッションチェンバの構造特徴を踏まえ応力評価部位を胴中央部、胴エビ継手部及びサプレッションチェンバサポート取付部に分類して比較した場合、応力評価部位によって大小関係は異なるものの、構造的に類似する胴中央部(P1、P2、P3、P4)、胴エビ継手部(P5、P6、P7、P8)及びサポート補強板との接合部(P9、P10)の各分類において許容応力の範囲内で同程度である。	・検討内容の相違 島根 2 号機では、サ プレッションチェンバ において一次応力に対 する検討を実施する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機  d. 3次元はりモデルと3次元シェルモデル (適用性確認用解析モデル)によるサプレッションチェンバの一次土二次応力の比較 3次元はりモデル及び3次元シェルモデル (適用性確認用解析モデル)によるサプレッションチェンバの耐震評価結果 (一次十二次応力)を表4.2~8 及び図4.2~7 に示す。 なお、3次元シェルモデル (適用性確認用解析モデル)では、シェル要素における板厚中央に発生する応力を膜応力として一次局部膜応力に、板厚方向の内面と外面に発生する広力を膜応力と出て一次十二次応力に分類して評価している。 3次元はりモデル及び3次元シェルモデル (適用性確認用解析モデル)による発生応力は、3次元はりモデルに対して3次元シェルモデル (適用性確認用解析モデル)の発生応力が大きい傾向となり。広力評価点P2では特に広力が大きくなる結果が得られる。このように、一次応力に比べて一次十二次応力において、3次元はりモデルと3次元シェルモデル (適用性確認用解析モデル)の発生応力の差異が大きくなるのは、オーバル振動により局部的な曲げ応力 (シェル要素における板厚方向の内面と外面に発生する広力)が大きくなるためである。(図4.2~3(1)、(6)参照)。また、応力評価点P8及びP10では成労評価が必要となる結果が得られる。 3次元シェルモデル (適用性確認用解析モデル)における応力評価点P8及びP10の皮労評価結果を表4.2~9及び図4.2~8に示す。 3次元シェルモデル (適用性確認用解析モデル)の皮労評価結果における皮労界債係数はいずれも1を大きく下回っており、サブレッションチェンバの健全性に影響を与えない結果となる。	備考 ・評価結果の相違は、3 次けて響 ・評価を受けれる。 ・評価を対してのののでは、では、では、では、では、では、ののでは、では、では、では、では、では、では、では、では、では、では、では、では、で
	(3) 適用性確認結果 振動モードの比較結果より、主要な振動モードは3次元はりモデルと3次元シェルモデル (適用性確認用解析モデル) で対応関係が確認できることと、50Hz までの全振動モード における固有振動数と有効質量比の全体傾向はおおむね一致していることから、3次元は りモデルと3次元シェルモデル (適用性確認用解析モデル) の振動特性の傾向はおおむね一致している。	ーバル振動が現れるた

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	3次元はりモデル及び3次元シェルモデル(適用性確認用解析モデル)による応力評価結	
	果の比較により、サプレッションチェンバサポートについて、耐震評価上最も厳しい部位で	
	あるベースプレートを含むすべての応力評価点において、3次元はりモデルに対して3次	
	元シェルモデル(適用性確認用解析モデル)の発生応力が小さい結果が得られた。	
	また, サプレッションチェンバについては, 一次応力が許容応力の範囲内で同程度の結果	
	が得られた。一次+二次応力は、3次元はりモデルに対して3次元シェルモデル(適用性確	
	認用解析モデル)の発生応力が大きい傾向となるが、疲労評価を考慮すると、サプレッショ	
	ンチェンバの耐震評価において十分に余裕のある結果が得られた。	
	以上より、3次元はりモデルと3次元シェルモデル(適用性確認用解析モデル)の振動特	
	性の傾向はおおむね一致していること、耐震評価上厳しい部位であるサプレッションチェ	
	ンバサポートに対しては3次元はりモデルを用いた耐震評価は保守的な結果が得られるこ	
	と、3次元シェルモデル(適用性確認用解析モデル)における耐震評価結果では、オーバル	
	振動により一次+二次応力が大きくなるものの、疲労評価を含む評価結果は十分余裕のある	
	結果が得られることを確認した。このため、島根2号機の今回工認におけるサプレッション	
	チェンバ及びサプレッションチェンバサポートの地震応答解析モデルおいては、3次元は	
	りモデルを適用する。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 4.2-3(1) 適用性確認用解析モデル(3次元シェルモデル)を用いた固有値解析結果	<ul><li>評価方法の相違</li></ul>
	(対称条件)	島根2号機では、適
	固有振動数 固有周期 刺激係数*1, *2	用性確認用解析モデル
	(Hz) (s) X方向 Y方向 Z方向	(3次元シェルモデ
	22 次	ル)として180°モデル
	34 次	を用いる。
	150 次	
	154 次	
	177 次	
	185 次	
	209 次	
	216 次	
	242 次	
	注記*1:モード質量を正規化するモードベクトルを用いる。	
	*2:Y方向及びZ方向の刺激係数が2桁オーダー以上のものを代表して記載	
	表 4.2-3(2) 適用性確認用解析モデル (3次元シェルモデル) を用いた固有値解析結果	
	<u>(反対称条件)</u> 日本标料 日本日世	
	固有振動数   固有周期   刺激係数*1, *2   スナウ   ストウ   ストウ	
	(Hz) (s) X方向 Y方向 Z方向	
	24 次	
	34次	
	注記*1:モード質量を正規化するモードベクトルを用いる。	
	*2: X方向の刺激係数が2桁オーダー以上のものを代表して記載	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
	1	島根2号機では,振
	1 l	動モードの比較を実施
	1 l	する。
	1 l	
	1 I	
	1 I	
	1 I	
	1 I	
	1 I	
	1 I	
	1 I	
	1 l	
	1 l	
	1 I	
	1 l	
	1 I	
	1 I	
	1 I	
	1 l	
	1 I	
	1 l	
	1 l	
	1 l	
	1 l	
	1 I	
	1 l	
	1 l	
	1	
	1	
	1	
	(a) 対称条件	
	図 4.2-3(1) モード変形図:適用性確認用解析モデル (3次元シェルモデル)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>検討内容の相違</li></ul>
		島根2号機では、振
		動モードの比較を実施
		する。
	(a) 対称条件	
	図 4.2-3(2) モード変形図:適用性確認用解析モデル (3次元シェルモデル)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	<u> </u>	
	<u> </u>	
	<u> </u>	
	<u> </u>	
	(a) 対称条件	
	図 4.2-3(3) モード変形図:適用性確認用解析モデル (3次元シェルモデル)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	(a) 対称条件	
	図 4.2-3(4) モード変形図:適用性確認用解析モデル(3次元シェルモデル)	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	(a) 対称条件	
	図 4.2-3(5) モード変形図:適用性確認用解析モデル(3次元シェルモデル)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	<b>                                     </b>	
	(b) 反対称条件	
	図 4.2-3(6) モード変形図:適用性確認用解析モデル(3次元シェルモデル)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、主
		要な振動モードについ
		て振動モードを比較す
		る。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	表 4.2-4(1) 3 次元はりモデルを用いた固有値解析結果	・評価方法の相違
	(地震応答解析モデル:水平方向)	島根2号機では、適
	固有振動数 固有周期 刺激係数*1, *2	用性確認用解析モデル
	(Hz) (s) X方向 Y方向 Z方向	(3次元シェルモデ
	3 次	ル)として180°モデル
	4 次	を用いる。
	9 次*3	
	10 次*3	
	注記*1:モード質量を正規化するモードベクトルを用いる。	
	*2: X方向及びY方向の刺激係数が2桁オーダー以上のものを代表して記載	
	*3: ECCSストレーナをモデルに組み込んだことに伴い卓越したモードであるため、	
	表 4.2-5 の適用性確認用解析モデル (3 次元シェルモデル) との比較対象外とする	
	表 4.2-4(2) 3 次元はりモデルを用いた固有値解析結果	
	固有振動数   固有周期   刺激係数*1, *2   マナウ   マナウ	
	(Hz) (s) X方向 Y方向 Z方向	
	8 次 9 次* ³	
	注記*1:モード質量を正規化するモードベクトルを用いる。	
	*2: Z方向の刺激係数が 2 桁オーダー以上のものを代表して記載 *3: ECCSストレーナをモデルに組み込んだことに伴い卓越したモードであるため,	
	表 4.2-5 の適用性確認用解析モデル(3次元シェルモデル)との比較対象外とする	
	3 年. 2 3 の 週 川   工作   10 / 17 ( 3 1 / 1 / 2 - 1 / 1 / 2 0 ) L	
Í		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	振動モードの考察	
	3次元はりモデル (地震応答解析モデル: 水平方向) ド次数 赤線: 変形前 黒線: 変形後 黒線: 変形後	
	適用性確認用解析モデル (3次元シェルモデル) :対称条件 モード次数 赤線:変形前 モ・ グレー部:変形後 (固有周期)	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	ド変形図の比較結果 振動モードの考察	
	モデル) と3次元はりモデルのモーデル (地震応答解析モデル: 水平方向) 赤線:変形前 黒線:変形後	
	(3次元シュ、 3次元はり モード次数 (固有周期)	
	適用性確認用解析モデル (3 次元シェルモデル):対称条件 モード次数 赤線:変形前	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	振動 大の 大の 対 終	
	3 次元はりモデル (地震応答解析モデル: 水平方向) モード次数 (固有周期) 黒線:変形後	
	適用性確認用解析モデル (3次元シェルモデル):反対称条件	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力発電所 2号機	備考
	ド変形図の比較結果	振動モードの考察		
	レモデル) と3次元はりモデルのモー・デル (沖書だダ徳 ボュデル・* ポポー	/// 、にに戻いる   中間 に ノバ・ 赤線・変形前 黒線・変形後		
	表 4. 2—5(4) 適用性確認用解析モデル ( 海田州			

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	ド変形図の比較結果 振動モードの考察	
	次元シェルモデル)と3次元はりモデルのモー3次元はりモデルのモー	
	選用性確認用解析モデル (3 次元シェルモデル) : 対称条件   キード次数   オルー部:変形的   カルー部:変形後   (国有周期)   ガレー部:変形後   (国有周期)   ガレー部:変形後   (国有周期)   ガレー部:変形後   (国有周期)   カルー部:変形後   (国有周期)   カルー部:変形後   (国有周期)   カルー部:変形後   (国有周期)   カルー部: 変形後   (国有周期)   カルー部: 変形を   (国有国和)   カルー部: 国际   (国有国和)   (国有国和)   (国有国和)   (国有国和)   (国有国和)   (国和)   (	

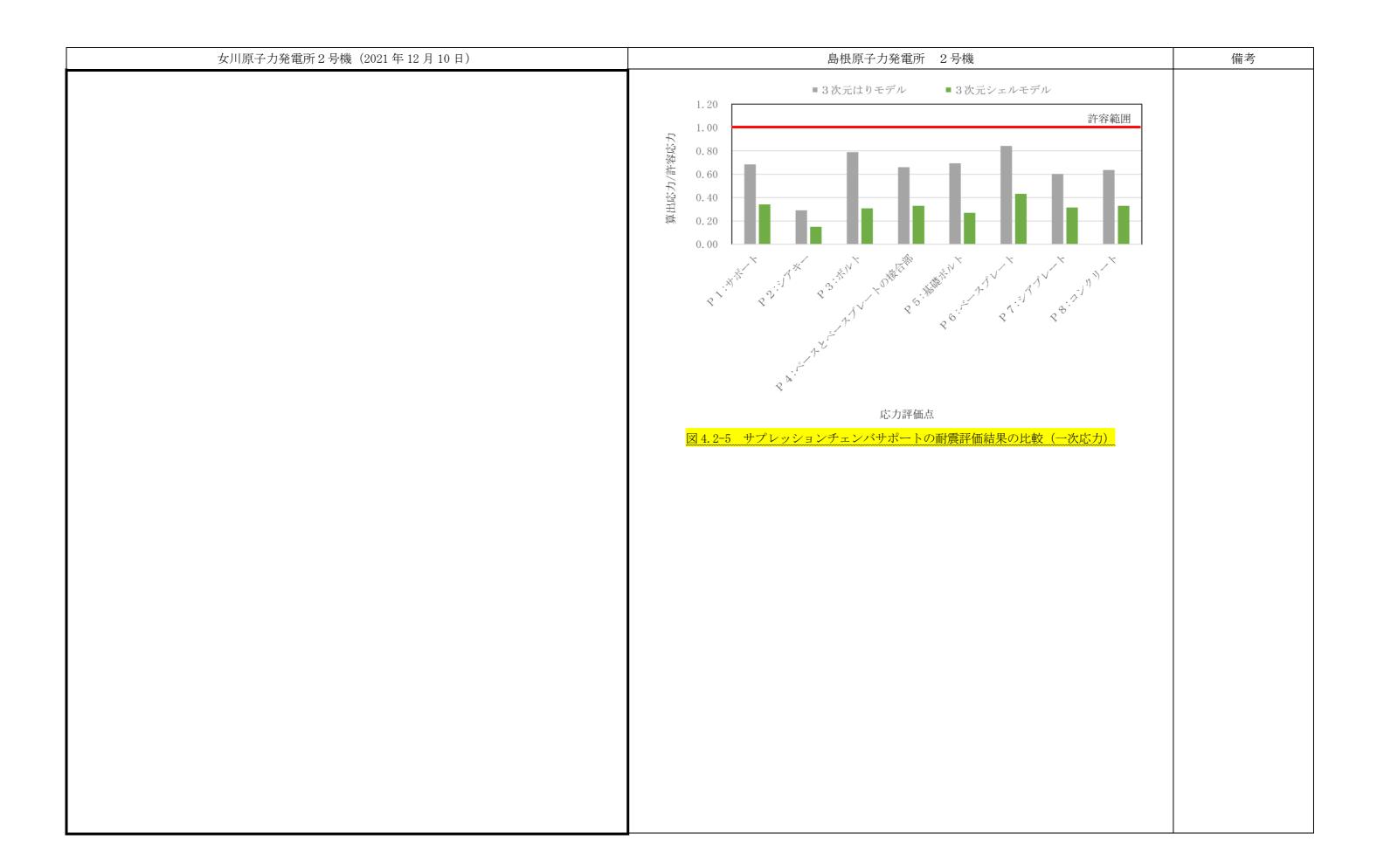
女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力発電所 2 号機	備考
	ド変形図の比較結果	振動モードの考察		
	ェルモデル)と3次元はりモデルのモー	3次元はりモデル(地震応答解析モデル:鉛直方向)         一ド次数         京線:変形前         14周期)		
	モデル (3次元シ	条件       3次元は モード次数 (固有周期)		
	表 4. 2—5(6) 適用性確認用解析	用解析モデル (3次元シェルモデル):対称         赤線:変形前         グレー部:変形後		
		適用性確認用 卡一下次数 (固有周期)		

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	ド変形図の比較結果 振動・モードの考察	
	デル) と3 次元は0 モデルのモー  ( 地震応答解析モデル: 鉛直方向) 赤線:変形前 黒線:変形後	
	(3次元シェルモ 3次元はりモデ モード次数 (固有)周期)	
	適用性確認用解析モデル (3 次元シェルモデル) : 対称条件	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発電所 2号機 備考
	ド変形図の比較結果 振動モードの考察	
	<b>レのモー</b> 鉛直方向)	(固有周期) 黒線:変形後
	表4.2-5(8) 適用性確認用解析モデル()         適用性確認用解析モデル(3次元シェルモデル):対称条件         モード次数	(固有周期) ガレー部:変形後

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	推動モードの考察	
	(地震応答解析モデル: 鉛直方向) 赤線:変形前 黒線:変形後	
	3次元は一十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	
	適用性確認用解析モデル (3 次元シェルモデル) : 対称条件	
	適用性確認用解析4 モード次数 (固有周期)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	接動モードの考察	
	3 次元はりモデル (地震応答解析モデル: 鉛直方向)       モード次数       原有周期)       黒線:変形的       黒線:変形的	
	適用性確認用解析モデル (3 次元シェルモデル) :対称条件 モード次数 (固有周期)	


女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	ド変形図の比較結果 振動 モードの考察	
	3次元シェルモデル) と3次元はりモデルのモード変         3次元はりモデル (地震応答解析モデル: 鉛直方向)         モード次数         原有周期)         黒線:変形前         黒線:変形後	
	(国有周期) 適用性確認用解析モデル (3 次元シェルモデル) : 対称条件	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違 島根2号機では,固 有値と有効質量比の関 係を比較する。
	図 4.2-4(1) 固有値と有効質量比の関係(水平方向)	
	図 4.2-4(2) 固有値と有効質量比の関係(鉛直方向)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・記載箇所の相違

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・記載箇所の相違

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島村	限原子力発育	電所 2号	幾			備考
	表 4.2-6 サプレッションチェンバサポートの耐震評価結果の比較(一次応力)							
	応力 評価点 番号	応力評価点	① 3 次元 はりモデ ルによる 算出応力 (MPa)	② 3 次元 シェルモ デルによ る算出応 力 (MPa)	③許容 応力 (MPa)	1)/3	2/3	
	P 1	サポート	204	102	298	0. 68	0.34	
	P 2	シアキー	118	61	406	0. 29	0. 15	
	P 3	ボルト	385	150	488	0.79	0.31	
	P 4	ベースとベースプレート の接合部	197	98	298	0.66	0. 33	
	P 5	基礎ボルト	339	132	488	0.69	0. 27	
	P 6	ベースプレート	251	129	298	0.84	0. 43	
	P 7	シアプレート	180	94	298	0.60	0.32	
	P 8	コンクリート	11.2	5.8	17. 6	0.64	0. 33	



女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根	原子力発育	電所 2号	機			備考
	表 4.2-7 サプレッションチェンバの耐震評価結果の比較(一次応力)							・検討内容の相違
	応力 評価点 番号	応力評価点	① 3 次元 はりモデ ルによる 算出応力 (MPa)	② 3 次元 シェルモ デルによ る算出応 力	③許容 応力 (MPa)	①/3	2/3	島根2号機では、サ プレッションチェンバ において一次応力に対 する検討を実施する。
	P 1	胴中央部上部	144	(MPa) 141	523	0. 28	0. 27	
	P 2	胴中央部下部	136	219	523	0. 26	0. 42	
	P 3	胴中央部内側	137	169	523	0. 26	0.32	
	P 4	胴中央部外側	125	167	523	0. 24	0.32	
	P 5	胴エビ継部上部	312	244	523	0.60	0. 47	
	P 6	胴エビ継部下部	194	230	523	0.37	0. 44	
	P 7	胴エビ継部内側	316	257	523	0.60	0. 49	
	P 8	胴エビ継部外側	272	326	523	0. 52	0.62	
	P 9	胴と内側サポート補強板 との接合部	250	238	523	0.48	0.46	
	P 1 0	胴と外側サポート補強板 との接合部	204	237	523	0.39	0. 45	
		20 00 80 60 40 20	吃力	洞工	S. TO: HUE SAME	Harry Conference of the State o	y on the Earth	・検討内容の相違 島根 2 号機では、サ プレッションチェンバ において一次応力に対 する検討を実施する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根	·原子力発行	重所 2号	機			備考
	表 4.2-8 サプレッションチェンバの耐震評価結果の比較(一次+二次応力)						・記載箇所の相違	
	応力 評価点 番号	応力評価点	① 3 次元 はりモデ ルによる 算出応力 (MPa)	② 3 次元 シェルモ デルによ る算出応 力	③許容 応力 (MPa)	①/③	2/3	
	D.1	15 to to to 1 to 20 1		(MPa)	F01	0.00	0.00	
	P 1	胴中央部上部 胴中央部下部	128 128	192 358	501 501	0. 26	0. 38	
	P 3	胴中央部内側	128	294	501	0. 24	0.71	
	P 4	胴中央部外側	122	302	501	0. 24	0.60	
	P 5	胴エビ継部上部	360	222	501	0.72	0. 44	
	P 6	胴エビ継部下部	228	408	501	0.46	0.81	
	P 7	胴エビ継部内側	302	276	501	0.60	0. 55	
	P 8	胴エビ継部外側	478	598	501	0.95	1. 19	
	P 9	胴と内側サポート補強板 との接合部	334	384	501	0. 67	0.77	
	P 1 0	胴と外側サポート補強板 との接合部	342	524	501	0.68	1.05	
		1. 40 1. 20 1. 00 0. 80 0. 60 0. 40 0. 20 0. 00	応力		RATIO THE PARTY TO THE PARTY	許容範囲		
		卍*:許容範囲を超えた場合は疲労 <mark>2−7 サプレッションチ:</mark>		震評価結果	具の比較(	<u>一次+二次</u>	大応力)	・記載箇所の相違

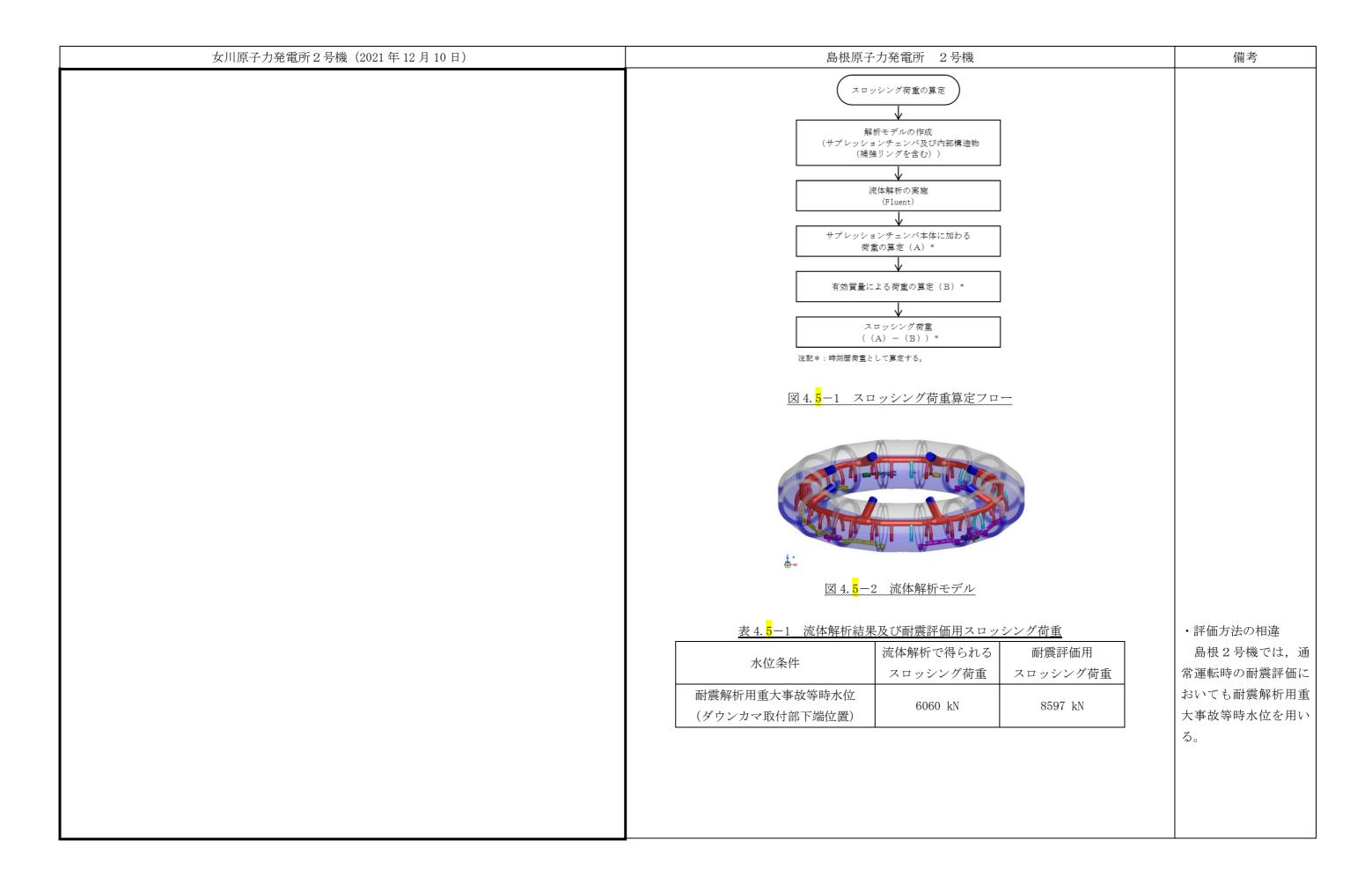
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 4.2-9 サプレッションチェンバの耐震評価結果(疲労評価)	・評価結果の相違
	応力 $S_n$ $K_e$ $S_p$ $S_\ell$ $S_\ell'$ * $N_a$ $N_c$ 疲労累積係数	島根 2 号機では, 3
	番号 (MPa) (MPa) (MPa) (回) N C / N a	次元シェルモデルでの 耐震評価において、疲
	P 8 P 1 0 0.147 0.199	労評価が必要となる。
	注:ここで,	カ評価が必安となる。
	Sn:地震動による応力振幅 (MPa)	
	Ke: 弾塑性解析に用いる繰返しピーク応力強さの補正係数(一)	
	Sp:地震荷重のみにおける一次+二次+ピーク応力の応力差範囲 (MPa)	
	Sℓ:繰返しピーク応力強さ (MPa)	
	S e : 補正繰返しピーク応力強さ (MPa) N a : 地震時の許容繰返し回数 (一)	
	Na: 地震時の計谷練返し回数 (一) Nc: 地震時の実際の繰返し回数 (一)	
	注記*: Sℓに (2.07×105 /E) を乗じた値である。	
	$E = 2.00 \times 10^5 \text{ MPa}$	
	■ 3 次元シェルモデル 1.2	
	許容範囲	
	1.0	
	数	
	<b>※</b> 0.6	
	0. 2	
	0.0	
	0.2 0.0 P8:胴工ど離部外側 P10:胴と外側サポート補強板との接合部	
	8:胴工长被机	
	n M M Th	
	2.10:胴色外。	
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	図 4.2-8 サプレッションチェンバの耐震評価結果(疲労評価)	・評価結果の相違
		島根2号機では,3
		次元シェルモデルでの
		耐震評価において,疲
		労評価が必要となる。

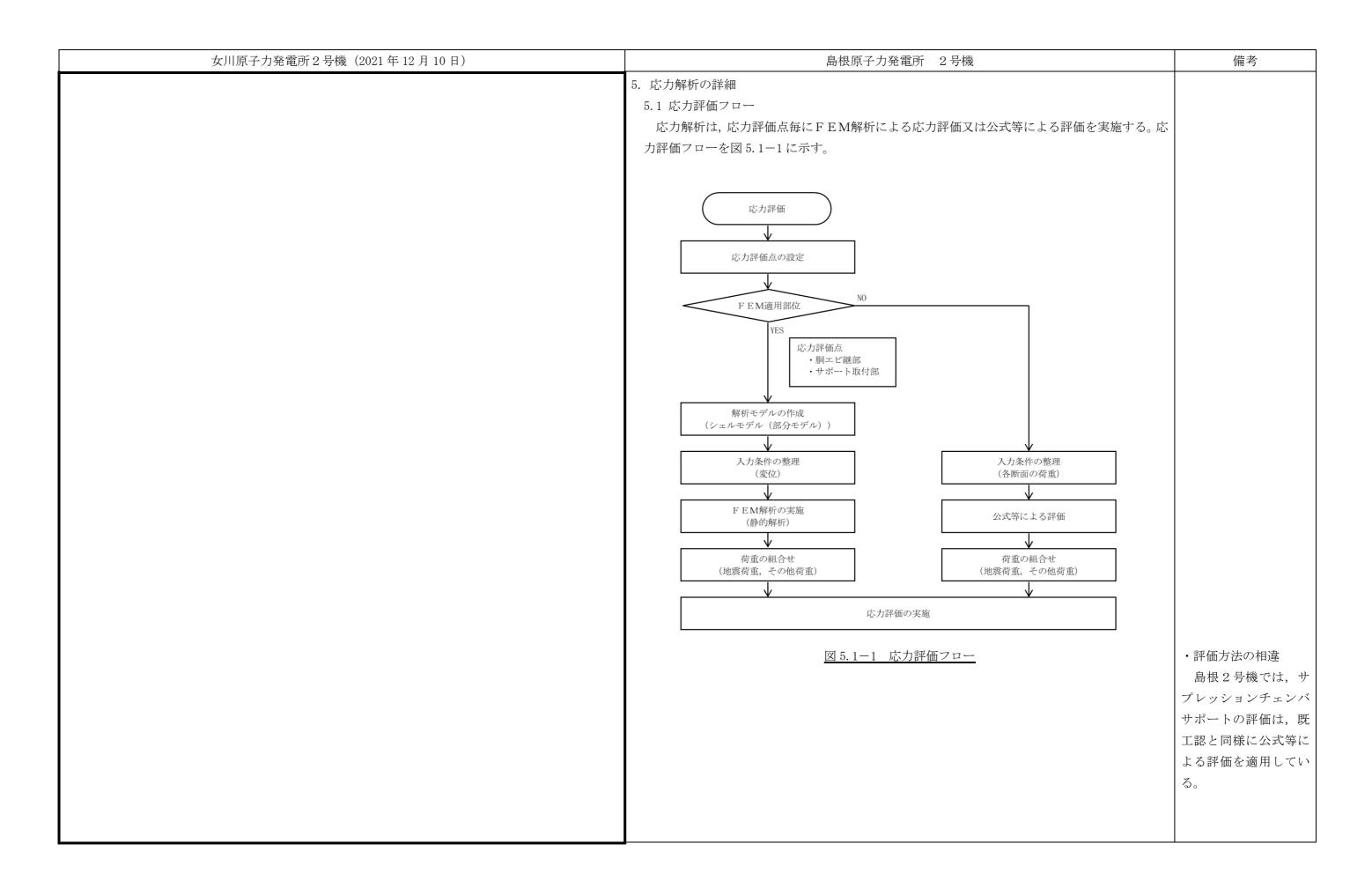
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、加
		速度及び変位の比較を
		実施しない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、加
		速度及び変位の比較を
		実施しない。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	4.3 地震応答解析における内部水の有効質量算出方法の影響 地震応答解析では、サプレッションチェンバ及びサプレッションチェンバサポートの構造特性、サプレッションチェンバ内部水の流体特性等を考慮し、サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析モデル(3次元はりモデル)を設定し、既工認と同様にスペクトルモーダル解析を実施して地震時の荷重を算定する。 本項では、サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析(ス	・評価方法の相違 島根2号機では、既 工認において水平方向 の地震応答解析をスペ クトルモーダル解析に
	ペクトルモーダル解析)に対して、内部水の有効質量算出法として仮想質量法と流体解析による内部水の有効質量の差異及び高振動数領域の入力加速度の影響を検討する。  4.1.1におけるサプレッションチェンバ内部水の有効質量の算定結果では、NASTRANの仮想質量法と汎用流体解析コード Fluentによる流体解析により算出した内部水の有効質量比は一致している。このため、内部水の有効質量算出法の違いによる地震応答解析への影響はほとんどない。	・評価方法の相違 使用する解析コード の相違
		・評価結果の相違 島根2号機では仮想 質量法と流体解析で同 程度の有効質量比が得 られている。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価結果の相違
		島根2号機では仮想
		質量法と流体解析で同
		程度の有効質量比が得
		られている。


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	4.4 地震応答解析における高振動数領域の影響	
	サプレッションチェンバ及び <u>サプレッションチェンバサポート</u> の地震応答解析における動的	
	解析では、配管等に対する地震応答解析と同様に、NS2-補-027-01「設計用床応答スペクトルの	・評価方法の相違
	作成方針に関する補足説明資料」に示す設計用床応答スペクトルを用いたスペクトルモーダル	島根2号機では、設
	解析を実施している。なお、設計用床応答スペクトルでは 0.02 秒 (50Hz) から 0.05 秒 (20Hz)	計用床応答スペクトル
	の範囲に最大応答加速度を上回る震度を設定しており、スペクトルモーダル解析において 50Hz	として 0.02 秒 (50Hz)
	までの振動モードを考慮する。	まで考慮した床応答ス
	島根2号機のサプレッションチェンバの地震応答解析モデルにおいては、サプレッションチ	<mark>ペクトルを用いる。ま</mark>
	ェンバ内部水の質量を考慮した質点が計64か所ある。サプレッションチェンバサポート位置の	た,スペクトルモーダ
	節点は円周方向に剛に固定されているが、サプレッションチェンバサポート間において3つの	ル解析において 50Hz ま
	節点を有していることから、高次モードの影響を十分考慮したモデル化手法となっている。な	での振動モードを適用
	お,0.02 秒(50Hz)までに現れる振動モードにおいて,サプレッションチェンバサポート間の	する。
	サプレッションチェンバ胴が振動するモードは存在しないことを確認している。	
		・記載箇所の相違
		島根2号機では、
		50Hz の領域まで作成し
		た床応答スペクトルに
		よる影響検討を別紙3
		<mark>に記載する。</mark>


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・記載箇所の相違
		島根2号機では、
		50Hz の領域まで作成し
		た床応答スペクトルに
		よる影響検討を別紙 3
		<mark>に記載する。</mark>

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・記載箇所の相違
		島根2号機では、
		50Hz の領域まで作成し
		た床応答スペクトルに
		よる影響検討を別紙 3
		<mark>に記載する。</mark>

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・記載箇所の相違
		島根2号機では、
		50Hz の領域まで作成し
		た床応答スペクトルに
		よる影響検討を別紙 3
		<mark>に記載する。</mark>

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	4. <mark>5</mark> スロッシング荷重	
	既工認では、サプレッションチェンバ内部水全体を剛体としていたため、スロッシング荷重は	
	水平方向の地震荷重に包含される扱いとしていたが、今回工認では、サプレッションチェンバ内	
	部水を有効質量として水平方向の地震荷重を算出するため, スロッシング荷重については, 地震	
	時のサプレッションチェンバ内部水の挙動を考慮し,汎用流体解析コード <u>Fluent</u> を用い	<ul><li>評価方法の相違</li></ul>
	た流体解析により算定する。スロッシング荷重算定フローを図 4. <mark>5</mark> -1 に示す。	使用する解析コード
	流体解析に用いる解析モデルは、図 4.5-2 のとおり、サプレッションチェンバ( <u>補強リング</u>	の相違
	を含む)及び主要な内部構造物 (ベントヘッダ, ダウンカマ, クエンチャ, ECCSストレーナ)	
	をモデル化し、サプレッションチェンバ内部水の水位条件は、内部水の有効質量の算定と同様	
	に、耐震解析用重大事故等時水位とした。また、地震動の入力条件は、スロッシングの卓越周期	<ul><li>評価方法の相違</li></ul>
	<u> 帯及びサプレッションチェンバの一次固有周期で</u> 応答加速度が <u>大きい</u> Ss-Dを用いた。流体	島根2号機では、通
	解析では、サプレッションチェンバ内部水の有効質量による荷重(サプレッションチェンバと一	常運転時の耐震評価に
	体となって振動することによる荷重)とスロッシング荷重の総和として荷重が算定されるため、	おいても耐震解析用重
	内部水の有効質量による荷重を差し引くことによってスロッシング荷重を算定する。サプレッ	大事故等時水位を用い
	ションチェンバ内部水のスロッシング荷重算定の詳細については、別紙6に示す。	る。
	流体解析に基づき算出したスロッシング最大荷重を表 4. <mark>5</mark> -1 に示す。 <mark>なお,スロッシング荷</mark>	
	重は水平1方向+鉛直方向入力による流体解析により設定する。	
	今回工認のサプレッションチェンバ及びサプレッションチェンバサポートの耐震評価におい	
	て, 地震時における荷重として考慮するスロッシング荷重については, 設計基準対象施設として	
	の評価及び重大事故等対処設備としての評価に関係なく,スロッシング現象の不確かさ <mark>及び水</mark>	
	平2方向入力による影響等に対する保守性として√2倍の余裕を考慮し、耐震解析用重大事故	
	時水位条件に対するスロッシング最大荷重に余裕を加味した耐震評価用スロッシング荷重	
	( <u>8597kN</u> ) を用いることとした。 <mark>なお,水平1方向+鉛直方向入力と水平2方向+鉛直方向入力</mark>	
	による流体解析から得られる荷重とおおむね一致することを確認している(別紙14参照)。	
	スロッシング荷重により作用する応力は、水平方向に単位加速度を作用させた静解析により	
	得られる発生応力について係数倍*した結果として算出する。	
	なお、内部水の流動によりサプレッションチェンバ壁面の一部に集中して加わる局部的な圧	・記載の充実
	力は影響が小さいため,サプレッションチェンバの耐震評価において考慮しない(別紙 21 参照)。	島根2号機では、設
		置許可段階での説明事
	注記*:係数=スロッシング荷重/単位加速度により解析モデル基部に作用する水平方向荷重	項を <mark>含め</mark> 記載する。





女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	5.2 応力評価点	
	サプレッションチェンバ及び <u>サプレッションチェンバサポートでは,</u> 既工認において応力評	・評価方法の相違
	価上厳しい部位及び主要な部位を応力評価点として選定しており、今回工認において既工認か	
	ら構造の変更は無いことから,今回工認における応力評価点は既工認と同じ部位として 3.3.2 に	
	- - - - 	について評価してい
		る。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価方法の相違
		島根2号機では、既
		工認と同じ応力評価点
		について評価してい
		る。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>評価方法の相違</li></ul>
		島根2号機では、既
		工認と同じ応力評価点
		について評価してい
		る。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>評価方法の相違</li></ul>
		島根2号機では、既
		工認と同じ応力評価点
		について評価してい
		る。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	5.3 応力解析モデル	
	サプレッションチェンバ (胴エビ継部及びサプレッションチェンバサポート取付部) の応力評価に用いる応力解析モデルは、サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析モデルにおけるばね剛性算定に用いた3次元シェルモデルと同等である。応力解析モデルを、図5.3-1に示す。	島根2号機では、サ
		・設備の相違 島根2号機では,建 設時の構造で耐震性を 確認している。
	図 5.3-1 応力解析モデル	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、サ
		プレッションチェンバ
		サポートの評価は、既
		工認と同様に公式等に
		よる評価を適用してい
		る。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	5.4 応力評価	
	5.4.1 サプレッションチェンバの応力評価	
	サプレッションチェンバ胴中央部については公式等による計算式を用いた評価を行う。サ	・評価方法の相違
	プレッションチェンバエビ継部及びサプレッションチェンバサポート取付部については, F	島根2号機では、サ
	EM解析による応力評価を行う。	プレッションチェンバ
	<u>FEM</u> 解析による応力評価では、地震応答解析から求められる地震荷重(変位)を応力解析	胴中央部については,
	モデルに入力し、FEM解析(静的解析)により各応力評価点の応力を算定する。応力評価の	公式等による手計算に
	詳細は、 <u>VI-2-9-2-2「サプレッションチェンバの耐震性についての計算書」</u> に記載している。	より応力を算出する。
	なお、既工認のサプレッションチェンバサポート取付部の応力評価では、3次元シェルモデル	
	(部分モデル) に鉛直方向に対しては加速度を、水平方向に対してはサプレッションチェンバ	・評価方法の相違
	<u>サポート下端</u> に荷重を入力していたが、今回工認では、 <u>構造不連続部である胴エビ継部につい</u>	既工認における応力
	ても、胴エビ継部両側の胴一般部及び胴エビ継部の下端に取付くサプレッションチェンバサ	評価手法の相違
	ポートへの地震荷重の同時入力により精緻に応力評価を行う。ここで、荷重を同時入力すると	
	解析モデルの境界条件として拘束点が存在せず解析が成立しないため、 評価対象の内側と外	・記載内容の相違
	側のサプレッションチェンバサポート (1 組) とそのサプレッションチェンバ本体中心位置に	島根2号機におい
	対応するはりモデルの変位 <mark>(並進3方向,回転3方向)</mark> を <mark>同時入力して評価する</mark> 。なお,FE	て、既工認の荷重入力
	M解析による応力評価は、個々のサプレッションチェンバエビ継部及びサプレッションチェ	<mark>評価から変位入力評価</mark>
	ンバサポート取付位置に対して評価を行う。	に変更した理由を記載
	既工認と今回工認との地震荷重(変位)入力の概念図を図 5.4-1 に,サプレッションチェ	
	ンバの地震応答解析における地震荷重(変位)の抽出点を図 5.4-2 に、サプレッションチェ	
	ンバの3次元FEM解析モデルの解析条件を図5.4-3に示す。	
		<u> </u>

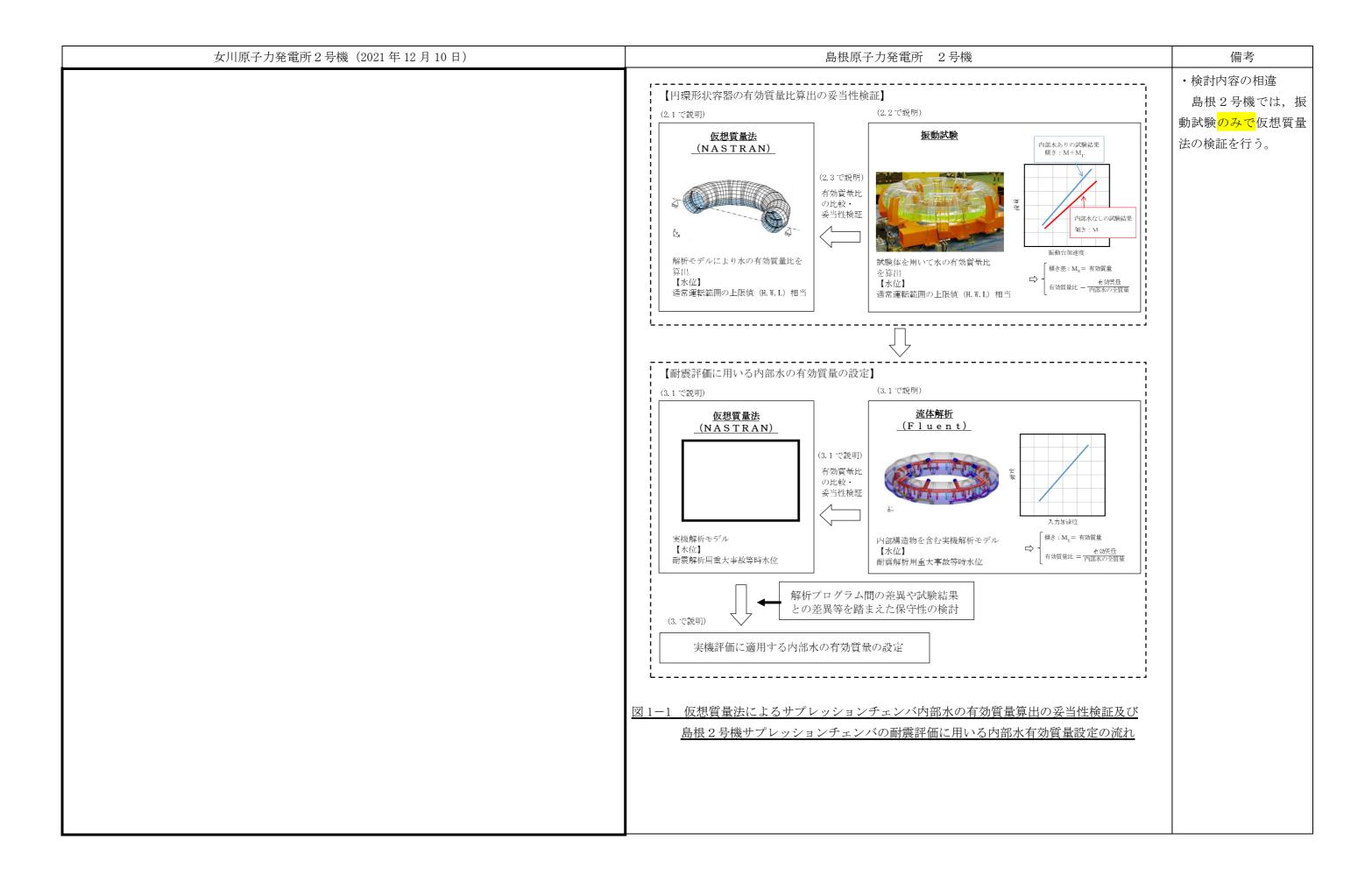
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	サプレッションチェンバ胴 サプレッションチェンバ胴 大称条件 大称条件 大が条件 大が作業 ア E M モデルによる 応力評価位置 ホカ評価位置 サプレッション カニンバサポート 荷重入力 (曲げ) チェンバサポート 鉛直方向 鉛直方向	
	既工認の手法(荷重入力の概念図)	
	サブレッションチェンバ胴  サブレッション 変位入力 (並進3方向,回転3方向)  今回工器の手法(変位入力の概念図)  図 5.4-1 既工器と今回工器との地震荷重(変位)入力の概念図	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	図 5.4-2 地震応答解析における変位抽出点	
	図 5.4-3 サプレッションチェンバの 3 次元 F E Mモデル解析条件	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	5.4.2 サプレッションチェンバサポートの応力評価	
	<u>サプレッションチェンバサポート</u> は,公式等による応力評価を行う(別紙 <u>17 参照</u> )。	・評価方法の相違
		島根2号機では、サ
	公式等による応力評価は、サプレッションチェンバ及びサプレッションチェンバサポート	プレッションチェンバ
	の地震応答解析(3次元はりモデルを用いたスペクトルモーダル解析)から算定された地震荷	サポートの評価は, 既
	重及び構造部材の形状、断面性能等を踏まえて応力を算定する。なお、サプレッションチェン	工認と同様に公式等に
	バサポートのうちベースプレートについては、精緻に応力評価を行うため、曲げ応力評価にお	よる評価を適用してい
	ける断面係数算出時の評価断面を既工認から見直す。	る。
	応力評価の詳細については, VI-2-9-2-4「サプレッションチェンバサポートの耐震性につい	・評価方法の相違
	ての計算書」に記載している。	島根2号機では、ベ
		ースプレートにおける
		応力評価の精緻化を実
		施する。
		<ul><li>評価方法の相違</li></ul>
		島根2号機では、サ
		プレッションチェンバ
		サポートの評価は, 既
		工認と同様に公式等に
		よる評価を適用してい
		る。

女川原子力発電所 2 号機 (2021 年 12 月 10 日) 島根原子力発電所 2 号機							備考				
	点に係る不確かさ・保守性の配慮	保守性の考慮方法	今回工認	サプレッションチェンバ内部水を有効質量として考慮することで、内部水質量による荷重が詳細化される。NASTRANの仮想質量法の妥当性は振動試験等により確認している。 特により確認している。 内部水の有効質量の算定方法に起因する固有周期の変動については、周期方向土10%拡幅した床応答スペクトルを用いることで保守性を考慮できる。なお、設計用床応答スペクトルと固有周期の関係から、内部水の有効質量なお、設計用床応答スペクトルと固有周期の関係から、内部水の有効質量算出法の違いによって応答加速度が変わらないことから、地震応答解析結集への影響はほとんど無いと考えられる。	サプレッションチェンバ及びサプレッションチェンバサポートのはり要素によるモデル化にあたり、サブレッションチェンバサボート取付部にばお剛性を考慮することで、より詳細に地震応答を把握する。構造の解析モデルへの変換にあたり特段の保守性の考慮無し。	動解析(スペクトルモーダル解析)を適用する。 建物応答の不確かさも包絡した設計用床応答スペクトルを用いることで保守性が担保される。	スロッシングに対して最も厳しい基準地震動Ss-Dを用いて,重大事故等時の水位条件で流体解析により最大荷重を算出し,余裕を加味して耐震評価用スロッシング荷重を設定している。また,地震荷重の最大発生時刻とスロッシング荷重の最大発生時刻が異なると考えられるため,地震荷重とスロッシング荷重はSRSS法により組み合わせる。	胴エビ継部及びサポート取付部をシェル要素でモデル化し, 地震荷重 (変位) を入力とする静解析を実施。特段の保守性の考慮無し。		リブ長さを有効幅として公式等による評価を実施。特段の保守性の考慮無し。	
	表 6-1 今回工認の変更点		_	挙動するサプレッションチェを剛体として扱うことで, 内質量による荷重及びスロッシ 20絡する保守的な荷重が算出	ッションチェンバ及びサプレッチェンバサボートをはり要素でモする。構造の解析モデルへの変換り特段の保守性の考慮無し。	・一ダル解析)を適	本来は流動挙動するサプレッションチェンンパ内部水を剛体として扱うことで、内 部水の有効質量による荷重及びスロッシング荷重を包給する保守的な荷重が算出 される。	5評価。特段の保守性の考慮	胴エビ維部及びサポート取付部をシェル要素でモデル化し、地震荷重を入力とする静解析を実施。特段の保守性の考慮無し。	までを有効幅として公式等に 実施。特段の保守性の考慮無	
		不確かさの	1KY	内部水の有効質量 に起因する荷重, 固有周期	#	入力地震動等の不 確かさ	スロッシング現象の不確かさ	無し	兼っ	兼った。	
		小田 中	BĶ .	內部水質量	構造部分		スロッシングが荷重		付部	<u>ــــــــــــــــــــــــــــــــــــ</u>	
		今回十穀 ホの歩	の日本記での	解析モデル		解析方法	荷重条件	胴エビ維部	サポート取作	メーメプレ	
					<b>岩</b> 齱뎐衸腐	产			位 力 健 地	Ā	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	7. 耐震評価結果	
	設計基準対象施設及び重大事故等対処設備としてのサプレッションチェンバの応力評価結果を	・評価内容の相違
	表 7-1, サプレッションチェンバサポートの応力評価結果を表 7-2 に示す。いずれの応力評価結	島根2号機では、サ
	果も算出応力が許容応力を満足することを確認した。なお、本評価は、水平2方向の地震荷重の組	プレッションチェンバ
	合せを考慮しており、サプレッションチェンバの算出応力は、原子炉格納容器に対する規格基準要	サポートの一次+二次
	求に基づき <u></u> 、応力強さである。 <u>また、サプレッションチェンバサポートについては地震動による二</u>	応力評価を省略する。
	次応力が生じないことから,一次+二次応力評価を省略する。	
	なお、サプレッションチェンバ <u>胴エビ継部外側(P8)</u> の一次+二次応力評価結果は、許容応力	・評価結果の相違
	と接近しており、余裕が小さくなっているが、原子炉格納容器に対する規格基準要求に従えば、仮	裕度が小さい部位の
	に一次+二次応力が許容応力を満足しない場合であっても、疲労評価が認められていることから、	相違
	更に裕度があると考えられる。	
		・評価結果の相違
		裕度が小さい部位の
		相違


女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力	力発電所	2 号機					備考	
		表 7-1 サプレッションチェンバの応力評価結果									
					計基準対象店 + P + M + S			事故等対処			
	評化	:力 価点 応力評価点 号	応力分類	① 算出応力 (MPa)	2	裕度 (②/①)	① 算出応力 (MPa)	2	裕度 (②/①)		
			一次一般膜応力	68	337	4.95	144	349	2.42		
	Р	サプレッションチェン バ胴中央部上部	一次膜+一次曲げ応力	68	505	7.42	144	523	3. 63		
			一次+二次応力	128	501	3. 91	128	501	3. 91		
			一次一般膜応力	86	337	3. 91	136	349	2. 56		
	P	2 サプレッションチェン バ胴中央部下部	一次膜+一次曲げ応力	86	505	5. 87	136	523	3. 84		
			一次+二次応力	128	501	3.91	128	501	3. 91		
			一次一般膜応力	75	337	4. 49	137	349	2. 54		
	P	3 サプレッションチェン バ胴中央部内側	一次膜+一次曲げ応力	75	505	6.73	137	523	3. 81		
			一次+二次応力	122	501	4.10	122	501	4. 10		
			一次一般膜応力	73	337	4.61	125	349	2. 79		
	P	4 サプレッションチェン バ胴中央部外側	ナプレッションチェン 「胴中央部外側 一次膜+一次曲げ応力	73	505	6.91	125	523	4. 18		
			一次+二次応力	122	501	4. 10	122	501	4. 10		
	P	サプレッションチェン バ胴エビ継部上部	一次膜+一次曲げ応力	118	505	4. 27	312	523	1. 67		
			一次+二次応力	360	501	1.39	360	501	1. 39		
	P	サプレッションチェン バ胴エビ継部下部	一次膜+一次曲げ応力	105	505	4.80	194	523	2. 69		
		/ 加工 ビ 株部 下部	一次+二次応力	228	501	2. 19	228	501	2. 19		
	P	7 サプレッションチェン バ胴エビ継部内側	一次膜+一次曲げ応力	122	505	4. 13	316	523	1. 65		
		7.胴工已經部71側	一次+二次応力	302	501	1.65	302	501	1. 65		
	P	************************************	一次膜+一次曲げ応力	161	505	3. 13	272	523	1. 92		
		77.胴工 ビ 麻玉部グト1側	一次+二次応力	478	501	1.04	478	501	1.04		
	P	サプレッションチェン 9 バ胴と内側サポート補		173	505	2.91	250	523	2. 09		
		強板との接合部	一次+二次応力	334	501	1.50	334	501	1. 50		
	P	サプレッションチェン 10 バ胴と外側サポート補	一次膜+一次曲げ応力	151	505	3. 34	204	523	2. 56		
		強板との接合部	一次+二次応力	342	501	1.46	342	501	1. 46		

女川原子力発電所2号機(2021年12月10日)				島根原	子力発電所	f 2号	·機				備考
		表 7-2 サプレッションチェンバサポートの応力評価結果									
					設計基準対象施設			重大事故等対処設備			
	評化	活力 価点	応力評価点	応力分類	(D-	+ P + M + S	S s)	$(D+P_{ALL}+M_{ALL}+Ss)$			
	番	号			算出応力 (MPa)		裕度 (②/①)	算出応力 (MPa)	許容応力 (MPa)	裕度 (②/①)	
				引張応力	52	285	5. 48	40	298	7. 45	
				圧縮応力	79	284	3. 59	66	297	4. 50	
			19 1	せん断応力	41	164	4.00	41	172	4. 19	
		1 5	ポート	曲げ応力	125	285	2. 28	125	298	2. 38	
				組合せ応力(引張)	191	285	1.49	180	298	1. 65	
				組合せ応力(圧縮)	216	285	1.31	204	298	1. 46	
		9 3.	/P &	せん断応力	16	164	10. 25	16	172	10.75	
	P 2		アキー	支圧応力	118	388	3. 28	118	406	3. 44	
	Р	3 ボ	シルト	引張応力	419	473	1.12	385	488	1. 26	
	P 4			引張応力	55	285	5. 18	41	298	7. 26	
				圧縮応力	82	285	3. 47	69	298	4. 31	
			· ースとベースプレー	せん断応力	43	164	3. 81	43	172	4.00	
		⁴   F	の接合部	曲げ応力	113	285	2. 52	113	298	2. 63	
				組合せ応力(引張)	184	285	1.54	171	298	1.74	
				組合せ応力 (圧縮)	209	285	1.36	197	298	1.51	
	P	5 基	礎ボルト	引張応力	371	473	1.27	339	488	1. 43	
				曲げ応力	265	328	1. 23	242	344	1. 42	
			ボルト 反力側	せん断応力	26	164	6. 30	24	172	7. 16	
		~	·ス	組合せ応力	269	285	1.05	246	298	1. 21	
	P	76	プレート	曲げ応力	252	328	1.30	246	344	1. 39	
			コンクリー ト反力側	せん断応力	27	164	6.07	27	172	6. 37	
	P 7			組合せ応力	257	285	1.10	251	298	1. 18	
				曲げ応力	136	328	2. 41	136	344	2. 52	
		7 シ	アプレート	せん断応力	68	164	2. 41	68	172	2. 52	
				組合せ応力	180	285	1.58	180	298	1. 65	
		_   _	ベースプ レート部	圧縮応力度	8.6	17. 6	2.04	8.4	17. 6	2. 09	
		8   1	ート シアプレー ト部	圧縮応力度	11.2	17.6	1.57	11.2	17. 6	1. 57	
			ト部						1		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価結果の相違 裕度が小さい部位の 相違

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	8. まとめ	
	<u>島根2号機</u> におけるサプレッションチェンバ及び <u>サプレッションチェンバサポート</u> の耐震評価	
	では、サプレッションチェンバ本体とそれを支持するサプレッションチェンバサポートを模擬し	
	た地震応答解析モデルを用いて地震荷重を算定し、これらに基づき、各部の構造強度評価を行うこ	
	とで、サプレッションチェンバ及びサプレッションチェンバサポートの耐震性を確認する。	
	今回工認においては、既工認からの変更点として、重大事故等時のサプレッションチェンバの水	
	位上昇に伴う内部水質量の増加、基準地震動の増大等を踏まえ、より詳細な地震応答解析を実施す	
	るため、サプレッションチェンバの内部水質量の扱いとして内部水の有効質量を適用すること、サ	
	プレッションチェンバサポートの取付部にばね剛性を考慮した3次元はりモデルを作成し、スペ	・設備の相違
	クトルモーダル解析を実施する。なお,内部水の有効質量を適用したことに伴い,サプレッション	島根2号機では、建
	チェンバ内部水によるスロッシング荷重を流体解析にて評価する。	設時の構造で耐震性を
		確認している。
	また、サプレッションチェンバにおいては、より詳細な応力解析を実施するための応力解析モデ	
	ルを用いた応力評価を実施する。	
	以上の地震応答解析及び応力解析に関連する種々の検討を実施し、内部水の有効質量のモデル	
	化を含めた耐震評価手法の妥当性及び地震応答解析に対する3次元はりモデルの適用性を確認す	
	るとともに、その耐震評価手法を用いて <u>島根2号機</u> のサプレッションチェンバ及びサプレッショ	
	ンチェンバサポートの耐震性を確認した。	

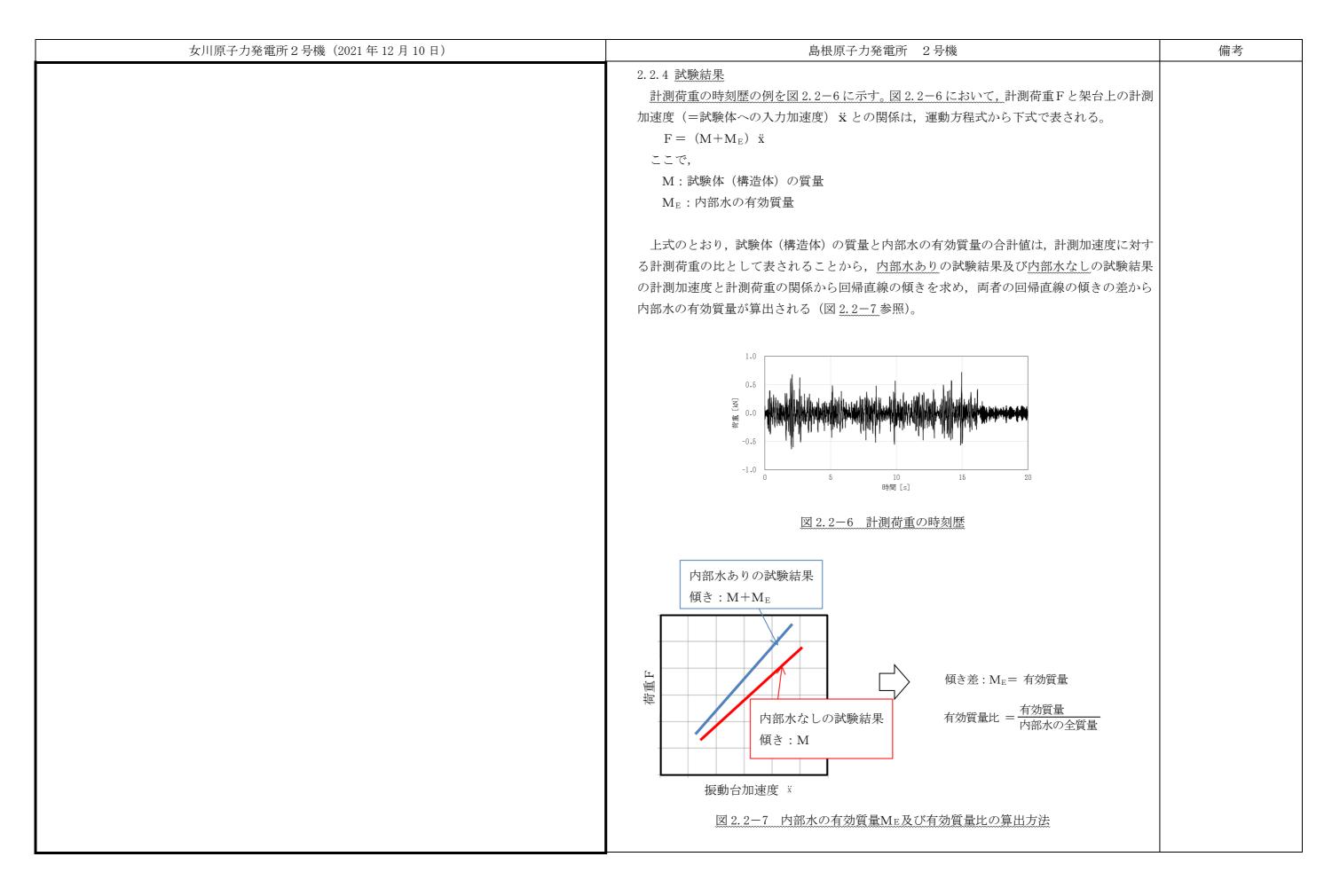
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機  別紙1  内部水の有効質量の適用及びその妥当性検証  1. 有効質量の適用  島根2号機のサブレッションチェンバの耐震評価に当たっては、内部水質量として内部水の 有効質量を適用することとし、内部水の有効質量は、汎用構造解析プログラムNASTRANを 用いた仮想質量法(以下「仮想質量法」という。)(別紙7参照)にて算出する。 内部水の有効質量とは、容器内で内容液が自由表面を有する場合、容器の振動力向に対する実際に地震荷重として付加される質量のことであり、全質量とは異なった値となることが知られている(別紙8参照)。 内部水の有効質量は、他産業の耐震設計において一般的に取り入れられている考え方である(別紙9参照)。  円環形状容器であるサブレッションチェンバ内部水の有効質量の算出に仮想質量法を用いる ため、その妥当性検証として、サブレッションチェンバの内部構造物を除いた円環形状容器のモデルに対して仮想質量法にて内部水の有効質量を求め、試験体(前述の仮想質量法に用いる解析 モデルと同様)を用いた振動試験により算出した内部水の有効質量と比較、検証を行う。(2.にて説明)  島根2号機のサブレッションチェンバの耐震評価に用いる内部水の有効質量は、先に検証した仮想質量法により算出した値に対して、内部構造物を含む解析モデルに対する流体解析により算出した値と比較、検証した上で、解析プログラム間の値の差異や試験結果との差異等を踏まえて仮想質量法で算出された値の保守性を検討し、設定する。(3.にて説明)  仮想質量法によるサプレッションチェンバ内部水の有効質量算出の妥当性検証及び島根2号	
	た仮想質量法により算出した値に対して、内部構造物を含む解析モデルに対する流体解析により算出した値と比較、検証した上で、解析プログラム間の値の差異や試験結果との差異等を踏まえて仮想質量法で算出された値の保守性を検討し、設定する。(3. にて説明)	た試験体を使用する。 ・検討内容の相違 島根 2 号機では、振 動試験 <mark>のみで</mark> 仮想質量



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	2. 円環形状容器の有効質量算出の妥当性検証	
	2.1 構造解析による有効質量比の算出	<ul><li>・検討内容の相違 島根2号機では、振 動試験のみで仮想質量 法の検証を行う。</li></ul>
	円環形状容器の内部水の有効質量は、NASTRANで算出可能であり、入力波によらず、発の構造(形状及び寸法)と内部水の水位により有効質量が定まる。また、NASTRANでは、内部水のスロッシングを評価しないため、スロッシング荷重は癒されない。	
	2.1.1 検討対象 <u>島根 1 号機</u> サプレッションチェンバの解析モデルを妥当性検証の対象とする。島根 1 号標及び島根 2 号機サプレッションチェンバの主要寸法の比較を表 2.1-1 に示す。 <u>表 2.1-1 島根 1 号機及び島根 2 号機サプレッションチェンバの</u>	<ul><li>機 ・検討内容の相違 島根 2 号機では、島 根 1 号機のサプレッションチェンバを縮小し た試験体を使用する。</li></ul>
	主要寸法の比較	た政験体を使用する。
	寸法* [mm]     質量 [ton]       内径     円環直径     鋼材     内部水	
	島根 1 号機 島根 2 号機	
	注記*:() 内は内径に対する比率を表す。  2.1.2 解析モデル     NASTRANによる解析モデルを図 2.1-1に示す。水位は、サプレッションチェンバ     通常運転範囲の上限値(H. W. L) 相当を設定する。サプレッションチェンバシェル及び     強リングをモデル化対象とし、内部構造物はモデル化しない。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	<u>図 2.1-1 解析モデル</u>	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機で参照す
		る振動試験では、通常
		運転範囲の上限値相当
		に対して検討する。


女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	2.1.3 解析結果     NASTRANによる有効質量及び有効質量比の算出結果を表 2.1-2に示す。 <u>また</u> ,内部水の密度は1000kg/m³として,実際の内部水温度を考慮した密度に対して大きい値を適用し,有効質量が保守的に算出される条件を適用する。     表 2.1-2 NASTRANによる有効質量比の算出結果     項目    算出結果     有効質量比    0.21	・検討内容の相違 島根2号機で参照す る振動試験では,通常 運転範囲の上限値相当 に対して検討する。
	2.2 振動試験  円環形状容器の内部水の有効質量算出にNASTRANを用いることの妥当性を検証するため、試験体を作成して振動試験を行い、NASTRANによる有効質量比との比較を行う(別紙11参照)。  2.2.1 試験体  試験体の寸法は、 <u>島根1号機</u> サブレッションチェンパの1/20に設定し、材質は内部水の挙動を確認するためアクリルとし、サブレッションチェンパシェル及び補強リングを試験体として模擬する。  試験装置は、振動台の上に試験体を支持する架台を設け、その上に試験体を設置した。振動台と架台の間には加振方向に2本のリニアガイドを並行に配置し、試験体及び架台が加振方向に移動できる構造とした。試験体及び架台はロードセルを介して振動台に固定されるため、試験体及び架台の振動応答による水平方向反力はロードセルで確認することができる。試験装置の外観を図2.2-1に示す。	・検討内容の相違 島根2号機では、島 根1号機のサプレンがを を使用する。 ・評価を使用する。 ・評価を関連である。 ・評価を ・評価を ・評価を ・評価を ・評価で ・評価で ・でがある。 ・試験が ・でがある。 ・試験方法の相違

島根原子力発電所 2 号機	備考
試験体	・試験方法の相違
マ 大学架台	
内部水 カボカー 大野台	
図 2.2-1 試験装置の外観	
	大部水

女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力発電	所 2号機	備考
	2.2.2 計測項	1目及び計測機	器設置位置		
	計測項目を	表 2.2-1 に示	す。これらのうち	内部水の有効質量を評価する上で重要な計測項	
	目は振動台上	の加速度, 試験	体への入力となる	架台上の加速度及び反力である。計測機器設置	
	位置を図 2.2-	_2に示す。			
		1	表 2.2-1	計測項目	・試験方法の相違
	計測項目	計測機器	位置	計測チャンネル数(設置位置)	
	反力	ロードセル	振動台-架台間		
	加速度	加速度計	振動台上	X成分: 2 (90°, 270°)	
				Y成分: 2 (0°,180°)	
				Z成分: 4 (0°,90°,180°,270°)	
			架台上	X成分: 2 (90°, 270°)	
				Y成分: 2 (0°,180°)	
				Z成分: 4 (0°, 90°, 180°, 270°)	
			試験体上	X成分: 2 (90°, 270°)	
				Y成分: 2 (0°, 180°)	
				Z成分: 4 (0°, 90°, 180°, 270°)	
	0° リニアガイド	270° 90° 方向) : X,		リニアガイド X (加振方向)	

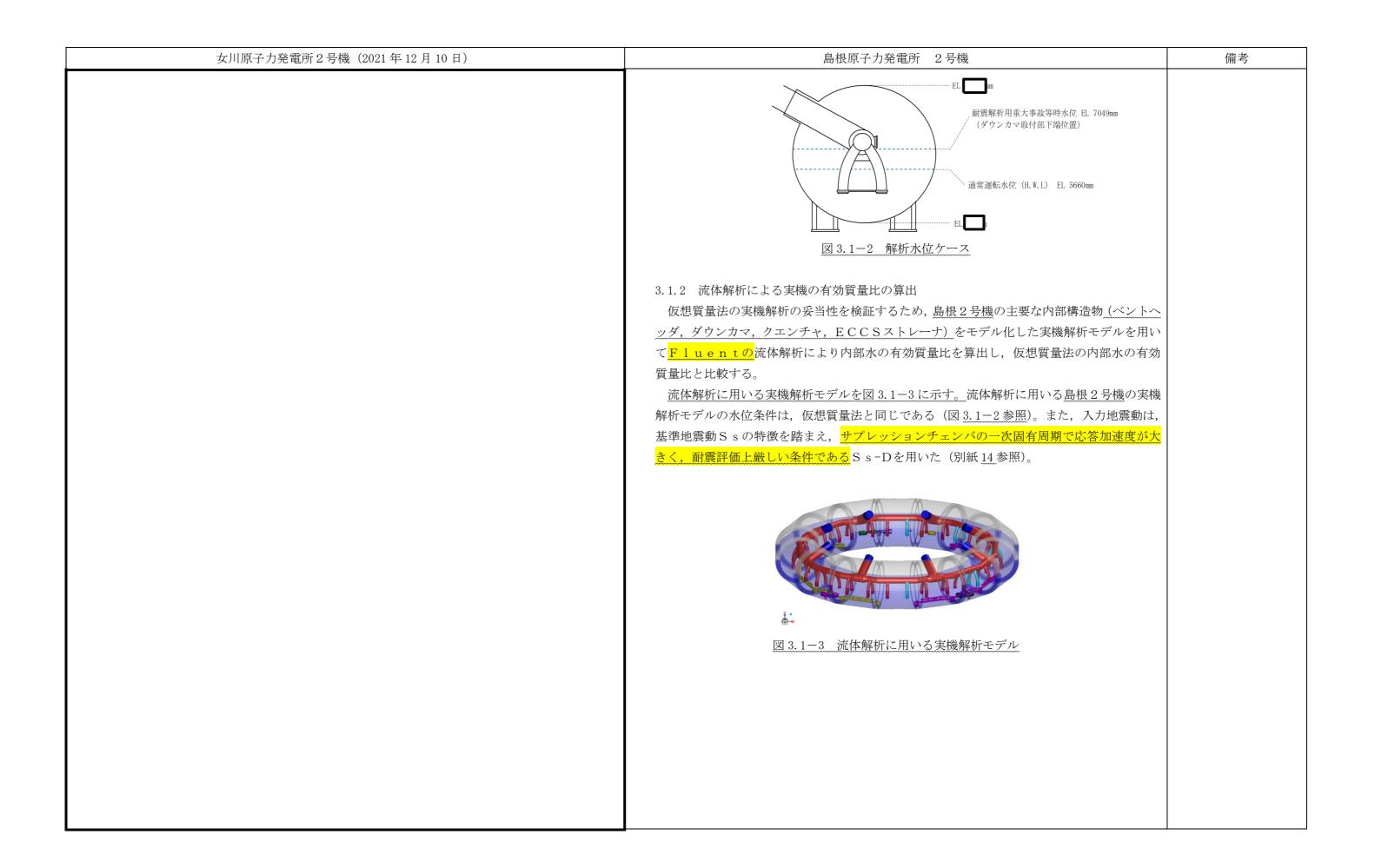
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	2.2.3 試験条件	
	振動試験では振動台への入力波として、スロッシング周期帯に加速度成分を含まないランダム波A及びスロッシング周期帯に加速度成分を含むランダム波Bの模擬地震波を用いており、それぞれのランダム波の最大応答加速度を100Gal、200Gal、300Gal、400Galとする4ケースの試験を実施する。試験体への入力波の時刻歴波形及び加速度応答スペクトルの例を図2.2-3及び図2.2-4に示す。  試験水位レベルは、各試験ケースに対して、内部水なし、内部水あり(H. W. L相当)の計2ケースとする(図2.2-5参照)。	相違
	200 150 150 100 100 100 100 100 100 100 1	水あり、内部水なしのケースを用いて有効質量を評価する。
	ランダム波A  ランダム波A  ランダム波A  ランダム波A  ランダム波A  「記	
	時刻歴波形 スペクトル	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機で参照す
		る振動試験では、通常
		運転範囲の上限値相当に対して検討する。
	H. W. L相当 (161mm*)	
	内部水なし (0mm*)	
	注記*:試験体底面からの高さ	
	図 2.2-5 試験水位レベル	
	E4 2- 2	



質量比を表 2.2-2 に示す。ここで、回帰直線の傾きは、内部水あり・なしの試験について、 異なる加速度での試験ケースごとの最大加速度及び最大荷重を同一のグラフにプロットした 活果として得られる。このときの荷重-加速度関係を図 2.2-8 に示す。本試験では最大加速 度及び最大荷重の関係から有効質量比を算出していることから、表 2.2-2 に示すとおり、ラ	備考
<ul> <li>異なる加速度での試験ケースごとの最大加速度及び最大検電を同一のグラフにプロットした 結果として得られる。このときの情重・加速度階を図2.2~8に示す。 本鉄膜では最大加速 度及び最大荷電の開係から有効度量比を第田していることから、表2.2~2 に示すとおり、 ランク人設 B での名が度量比はスロッシング商電の影響でランダム設 A 10 もわずかに大きく 雰出されるが、内部水の全質量に対しては約2%の相違であり、同程度の結果が得られている。</li> <li>麦2.2~2 振動試験結果から第出した有効管量比</li></ul>	討内容の相違
放果として得られる。このときの荷重一加速度関係を図2.2-8に示す。  本試験では最大加速  度及び最大荷重の関係から有効質果比を聞していることから。ま2.2-2に示すとおり。  アン  タム波Bでの有効質量比はスロッシング商車の影響でランダム成人よりもわずかに大きく  算出されるが、内部木の全質量に対しては約3次の相違であり、同程度の結果が得られている。    次2.2-2 板砂飲酸結果から貸出した有効質量比   入力地楽波   有効質量比   スクダム波A   0.18   ランダム波A   0.20    10 20 30 40 50 回中の64 数は含析験ケースでの 入力波の最大加速度 [m/s²]   スカ波の最大加速度を表す。   図2.2-8 板粉試験における最大加速度と最大荷重の関係	5根2号機で参照
度及び最大荷重の関係から有効質量比を禁出していることから、表2.2-2 に示すとおり、ラングム数目での有効質量比はスロッシング荷重の影響でランダム数名よりもわずがに大きく 原出されるが、内部水の全質量に対しては約2%の相違であり、同種使の結果が得われている。 表2.2-2 振動試験館集から選出した有効質量比	動試験では、最大
#Hされるが、内部水の全質量に対しては約2%の相違であり、同種度の結果が得られている。    表 2 、 2 - 2 、振動試験結果から算出した有効質量比   スノル連葉波 有効質量比   フンダム波 A 0、18   フンダム波 B 0、20   1.5   (種き・607 kg )   (単数 1.5   1.00Ga1   1.5   1.00Ga1   1.5   1.00Ga1   1.5   (種き・607 kg )   (月の原本なし	度及び最大荷重を
算出されるが、内部水の全質量に対しては約 2%の相違であり、同程度の結果が得られている。         表 2.2 - 2 振動武験結果から算出した有効質量比         入力地震波 有効質量比         ランダム波A 0.18         ランダム波B 0.20     A0006a1  (確含:646kg)  (確含:646kg)  (神色:607 kg)  (自然:6407 kg)  (自然:64	て有効質量比を記
表 2.2 - 2 振動試験結果から算出した有効質量比	ている。
スカ地震波 有効質量比 ランダム波	
フンダム波	
ランダム波B   0,20	
3.0 2.5 (調き:646kg	
2.5	
2.5	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機で参照す
		る振動試験では,最大
		加速度及び最大荷重を
		用いて有効質量比を評
		価している。


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機で参照す
		る振動試験では,最大
		加速度及び最大荷重を
		用いて有効質量比を評
		価している。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、振
		動試験 <mark>のみで</mark> 仮想質量
		法の検証を行う。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、振
		動試験 <mark>のみで</mark> 仮想質量
		法の検証を行う。

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所	2号機			備考
	2. 3 多	多当性検証					
	<u>ー1</u> に元 入力: より算 した有: した。」 効質量	及び2.2に示したNAST 示す。 波の特性に関係なく、容器 出した有効質量比に対し( 効質量比が同等であり、ま NASTRANにより算出 比の低減が反映されないた より算出される有効質量比	器の形状及び水位に 別紙 13 参照),内部 SおむねNASTR される内部水の有効 め、保守的な傾向を	より有効質量比が 水の流動を直接 ANの値が保守! が質量比は、内部 と示すと考えられ	が定まる <u>NAST</u> 考慮した振動試験 的な傾向を示すこ 水の流動による内	**RANに 対から算出 とを確認 対部水の有	島根2号機では、振 動試験 <mark>のみで</mark> 仮想質量
		表 2.3-1	各方法による有効	質量比の評価結	<u>果</u>		・検討内容の相違
		項目	NASTRAN		試験		島根2号機で参照す
				ランダム波A			る振動試験では,通常 運転範囲の上限値相当
		有効質量比	0. 21	0. 18	0. 20		に対して検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	品根原子力発電所 2号機  3. 耐震評価に用いる内部水の有効質量の設定 <u>島根2号機</u> の実機評価に適用する内部水の有効質量は、実機解析モデルに対する仮想質量法と内部構造物を含む実機解析モデルに対する流体解析による内部水の有効質量比を比較し、その妥当性を検証した上で、解析プログラム間の値の差異や試験結果との差異等を踏まえて仮想質量法で算出された値の保守性を検討し、設定する。  3.1 仮想質量法による実機内部水の有効質量比の算出 2.により妥当性を確認した仮想質量法を用いて、 <u>島根2号機</u> の実機解析モデルにより内部水の有効質量比を算出する。  3.1.1 仮想質量法に用いる実機解析モデルを図3.1-1に示す。 <u>島根2号機</u> の実機解析モデルは、サプレッションチェンバ(補強リングを含む)の寸法、剛性を模擬したシェル要素とし、内部水の水位を設定する。なお、木解析モデルは、サブレッションチェンバの内部水の有効質量の算出に用いるものであり、サブレッションチェンバサボートは模擬していない。また、主要な内部構造物をモデル化することとし、ベントヘッタ、ダウンカマ、クエンチャ、ECCSストレーナをモデル化することとし、ベントヘッタ、ダウンカマ、クエンチャ、ECCSストレーナをモデル化する。 内部水の水位は、図3.1-2に示すとおり、重大事故等時水位より高い水位(グウンカマ取付部下端位置)(以下「耐震解析用重大事故等時水位」という。)とする。な1、耐震解析用重大事故等時水位は、重大事故後の状態で弾性設計用地震動Sd及び基準地震動Ssによる地震力と組み合わせる水位であるが、対象条件によらず共通の解析モデルを適用するため、耐震評価上保守的な水位として設計基準対象施設としての耐震評価にも適用する(別紙10参照)。	・評価方法の相違 島根 2 号機では、主 要な内部構造物をモデ ル化する。
	図 3.1-1 仮想質量法に用いる実機解析モデル	<b>৩</b> .



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原	子力発電所 2号機		備考
	3.1.3 解析結果 仮想質量法及び流体解析による島村 量比の算出結果を表 3.1-1 に示す。 プレッションチェンバ壁面に加わるイトした結果の回帰直線の傾きとして有	なお,流体解析結果を用り 苛重と入力加速度の時々多	いた有効質量比の算出では,サ 刻々の関係をグラフ上にプロッ	・評価結果の相違
	表 3. 1-1 サプレッショ			・評価方法の相違 島根2号機では,通
	水位	解析- 仮想質量法	手法 流体解析*	常運転時の耐震評価においても耐震解析用重
	耐震解析用重大事故等時水位	0. 28	0. 28	大事故等時水位を用いる。
	注記*: <mark>サプレッションチェンバの上厳しい条件である</mark> Sss			

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	3.2 不確かさを踏まえた耐震評価用の内部水の有効質量の設定 島根2号機の実機評価に適用する内部水の有効質量の設定に当たり、仮想質量法に対する流 体解析及び振動試験の値の差異等を踏まえ、仮想質量法で算出された値の保守性を検討し、島根 2号機の実機評価に適用する内部水の有効質量を設定する。 試験体モデルに対しては、表2.3-1のとおり、仮想質量法、振動試験により算出した内部水 の有効質量比は同等であり、おおむね仮想質量法の値が保守的な傾向を示す。	<ul> <li>・検討内容の相違</li> <li>島根2号機では、振動試験のみで仮想質量</li> <li>法の検証を行う。</li> <li>・評価結果の相違</li> </ul>
	また、容器構造設計指針・同解説に記載されている球形タンク及び円筒タンクの内部水の有効質量比に対して、仮想質量法を用いて内部水の有効質量比の確認解析を実施したところ、いずれのタンクに対しても内部水の有効質量比がほぼ一致している、又は仮想質量法の値が保守的な傾向となっている(別紙 15 参照)。 したがって、島根 2 号機の地震応答解析に考慮する内部水の有効質量は、仮想質量法により算出される内部水の有効質量比が、他評価手法及び容器構造設計指針に対して一致もしくはおおむね保守的な傾向(内部水の有効質量比が大きくなる)を示すことから、仮想質量法により算出される内部水の有効質量を適用する。 なお、評価手法の違い(仮想質量法と流体解析)による内部水の有効質量比の差異によって、サプレッションチェンバの固有周期が変動するため、耐震評価に用いる床応答スペクトルとの関係にも配慮し、地震荷重を算出する。	程度の有効質量比が得

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	別紙 2	
	サプレッションチェンバ内部水の地震応答解析モデルへの縮約方法及びその妥当性	
	1. 概要	
	図 2-1 内部水の有効質量の縮約	
	3. 地震応答解析モデルへの縮約方法 3.1 地震応答解析モデルへの縮約方法の考え方 仮想質量法により算出されるサプレッションチェンバシェルの各要素の内部水の有効質量及 びその位置(高さ)を、地震応答解析モデルのサプレッションチェンバの各質点に縮約する方法 (Guyanの縮約法)のイメージを図3.1-1に示す。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	① 仮想質量法から算出されるサプレッションチェンバの内部水の有効質量 仮想質量法ではサプレッションチェンバシェルの各要素に対する内部水の有効質量が算 出されており,解析モデルの一断面を考えた場合,有効質量算出モデルの1要素における内部水の有効質量 $m_i$ は,水平方向及び鉛直方向の内部水の有効質量 $(m_{xi},m_{zi})$ に分解できる。 なお,水平方向の内部水の有効質量 $m_{xi}$ をサプレッションチェンバ全体に積分するとサプレッションチェンバの内部水に対する有効質量と一致し,また,鉛直方向の内部水の有効質量 $m_{zi}$ をサプレッションチェンバ全体に積分した場合,サプレッションチェンバシェルの底面圧力による荷重と一致する。	
	② 地震応答解析モデルのはり要素(1箇所の質点)への縮約(1要素の有効質量) 上記①で示した水平方向及び鉛直方向の内部水の有効質量( $m_{xi}$ , $m_{zi}$ ),その位置(高 さ)を考慮し,それらが地震応答解析モデルのはり要素(1箇所の質点)における慣性力及 び回転慣性力が等価となるように,並進質量( $m_{x}$ , $m_{z}$ )及び回転質量( $Rm_{x}$ , $Rm_{z}$ ) を設定する。 なお,回転質量 $Rm_{z}$ は,サプレッションチェンバシェルの底面圧力によるモーメントと して考慮される。	
	③ 地震応答解析モデルのはり要素 (1箇所の質点) への縮約 (全要素の内部水の有効質量) 仮想質量法により算出されるサプレッションチェンバシェル全要素の内部水の有効質量 に対して、上記②の考え方を 3 次元の位置関係を考慮して展開し、地震応答解析モデルの はり要素 (1箇所の質点) における並進質量 (mx, my, mz) 及び回転質量 (Rmx, Rmy, Rmz) に縮約する。	
	④ 地震応答解析モデル(全質点)における内部水の有効質量の設定 地震応答解析モデルにおけるはり要素の全質点に対して、上記③の考え方を展開し、並進質量(mx、my、mz)及び回転質量(Rmx、Rmy、Rmz)が設定される。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	図 3.1-1. Guyanの締約法のイメージ	VIB 3
	3.2 地震応答解析モデルへ縮約される内部水の有効質量及びその妥当性 今回工認に用いるサプレッションチェンバの地震応答解析モデルを図 3.2-1 に示す。また、 耐震解析用重大事故等時水位による水平方向(X方向)及び鉛直方向(Z方向)の地震応答解析 モデルの各質点位置に縮約される内部水の有効質量を表 3.2-1 及び表 3.2-2 に示し、今回工 認に用いるサプレッションチェンバの地震応答解析モデルに設定する内部水の有効質量(並進 質量及び回転質量)が有する意味合いを以下に示す。	常運転時の耐震評価に
	(1) 並進質量  ・ X方向の各質点の並進質量mxの合計値 kg は、サプレッションチェンバ内部水の有効質量を表し、Z方向の各質点の並進質量mzの合計値 kg は、サプレッションチェンバ内部水の全質量を表すことから、内部水の有効質量比は、0.28 (= ) となる。 ・ この内部水の有効質量比は、本文表 4.1-1 における仮想質量法による実機解析モデル(耐震解析用重大事故等時水位)の内部水の有効質量比0.28 と一致する。 ・ X方向の並進質量mxは、X軸方向(質点 17,49)がY軸方向(質点 1,33)よりも質量が集中する傾向があり、X方向加振時に想定される圧力分布とも整合している。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	・ $X$ 方向の並進質量 $m_y$ , $m_z$ 及び $Z$ 方向の並進質量 $m_x$ , $m_y$ は, サプレッションチェン バの容器形状 (軸対称) に応じた分布となっており, それぞれの合計値は $0$ となる。	
	(2) 回転質量  ・ X方向の各質点の回転質量Rm,は、サプレッションチェンパの容器内面に加わる圧力(各シェル要素のX方向成分及びZ方向成分)を各質点位置にオフセットした場合の等価な回転質量Rm,は、サプレッションチェンパの容器中心位置(はりモデルの質点位置)を基準としているため、回転質量が負の場合は容器中心位置よりも高い位置に、回転質量が正の場合は容器中心位置よりも低い位置に内部水の等価高さがあるとみなすことができる。 ・ 今回の地震応答解析モデルにおける X 方向の各質点位置の回転質量の合計値は負であるため、サプレッションチェンパ内部水の有効質量の等価高さは、容器中心位置よりも高い位置にあることを表している。 ・ X 方向の有効質量(並進質量m。)の合計値	
	図 3.2-1 サプレッションチェンバ地震応答解析モデル	

常運転時の耐震評価に おいても耐震解析用重	女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い			<ul><li>評価方法の相違</li></ul>
おいても耐震解析用重 大事故等時水位を用い			島根2号機では、通
大事故等時水位を用い			常運転時の耐震評価に
			おいても耐震解析用重
			大事故等時水位を用い
			る。

常運転時の耐震評価に おいても耐震解析用重	女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い			<ul><li>評価方法の相違</li></ul>
おいても耐震解析用重 大事故等時水位を用い			島根2号機では、通
大事故等時水位を用い			常運転時の耐震評価に
			おいても耐震解析用重
			大事故等時水位を用い
			る。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 3.2-1 縮約した内部水の有効質量 (耐震解析用重大事故等時水位, X方向)	
	並進質量    回転質量	
	質点番号 $m_x$ $m_y$ $m_z$ $Rm_x$ $Rm_y$ $Rm_z$ $\times 10^3 (kg) \times 10^3 (kg) \times 10^3 (kg \times 10^3$	
	$\frac{1}{2}$	
	$\begin{array}{c c} 3 \\ \hline 4 \\ \hline 5 \end{array}$	
	$\begin{bmatrix} & 5 \\ & 6 \\ \hline & 7 \end{bmatrix}$	
	8 9	
	10 11	
	12 13	
	14 15	
	16 17	
	18 19 20	
	21 22	
	$\begin{array}{c c} 23 \\ \hline 24 \end{array}$	
	25 26	
	27 28	
	29 30 31	
	32 33	
	$\begin{array}{c c} 34 \\ \hline 35 \end{array}$	
	36 37	
	38 39	
	$egin{array}{c} 40 \\ \hline 41 \\ \hline 42 \\ \hline \end{array}$	
	43 44	
	45 46	
	47 48	
	49 50	
	51 52	
	53 54 55	
	56 57	
	58 59	
	60 61	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	64 合計	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	表 3.2-2 縮約した内部水の有効質量(耐震解析用重大事故等時水位, Z方向)	
	並進質量   回転質量	
	質点番号 $m_x$ $m_y$ $m_z$ $Rm_x$ $Rm_y$ $Rm_z$ $\times 10^3 (kg)$ $\times 10^3 (kg)$ $\times 10^3 (kg)$ $\times 10^3 (kg \cdot m)$ $\times 10^3 (kg \cdot m)$ $\times 10^3 (kg \cdot m)$	
	3 4 5	
	6 7	
	$\frac{8}{9}$	
	10 11	
	12 13	
	14 15 16	
	17 18	
	19 20	
	$\begin{array}{c c} 21 \\ \hline 22 \end{array}$	
	23 24 25	
	25 26 27	
	28 29	
	30 31	
	32 33	
	$ \begin{array}{c c} 34 \\ \hline 35 \\ \hline 36 \end{array} $	
	37 38	
	39 40	
	$\begin{array}{c c} 41 \\ \hline 42 \end{array}$	
	43 44 45	
	$ \begin{array}{c c} 45 \\ 46 \\ 47 \end{array} $	
	48 49	
	50 51	
	52 53	
	54 55	
	56 57 58	
	58 59 60	
	$\frac{61}{62}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	合計	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>検討内容の相違</li></ul>
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>検討内容の相違</li></ul>
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>検討内容の相違</li></ul>
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>検討内容の相違</li></ul>
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		<ul><li>検討内容の相違</li></ul>
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

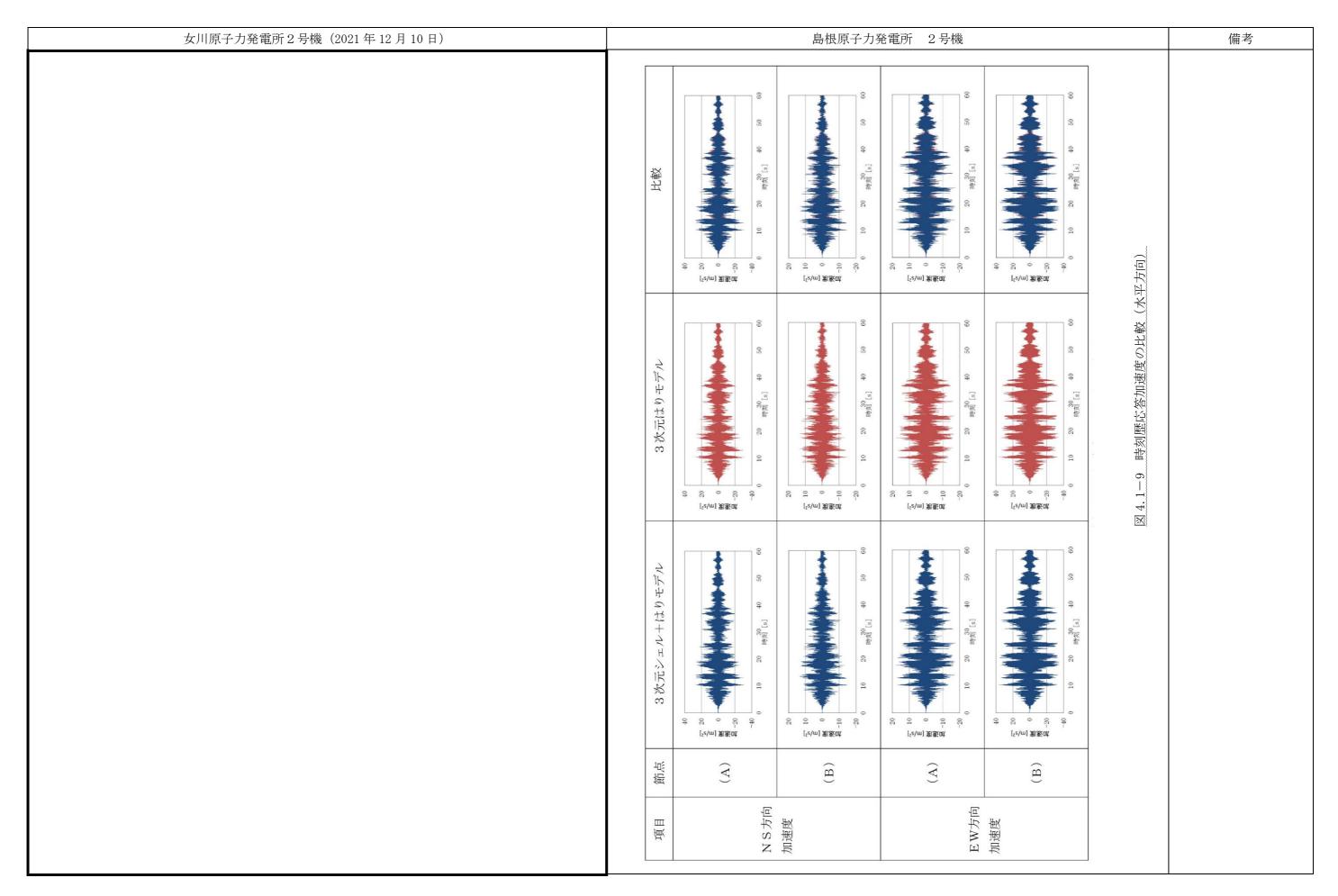
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

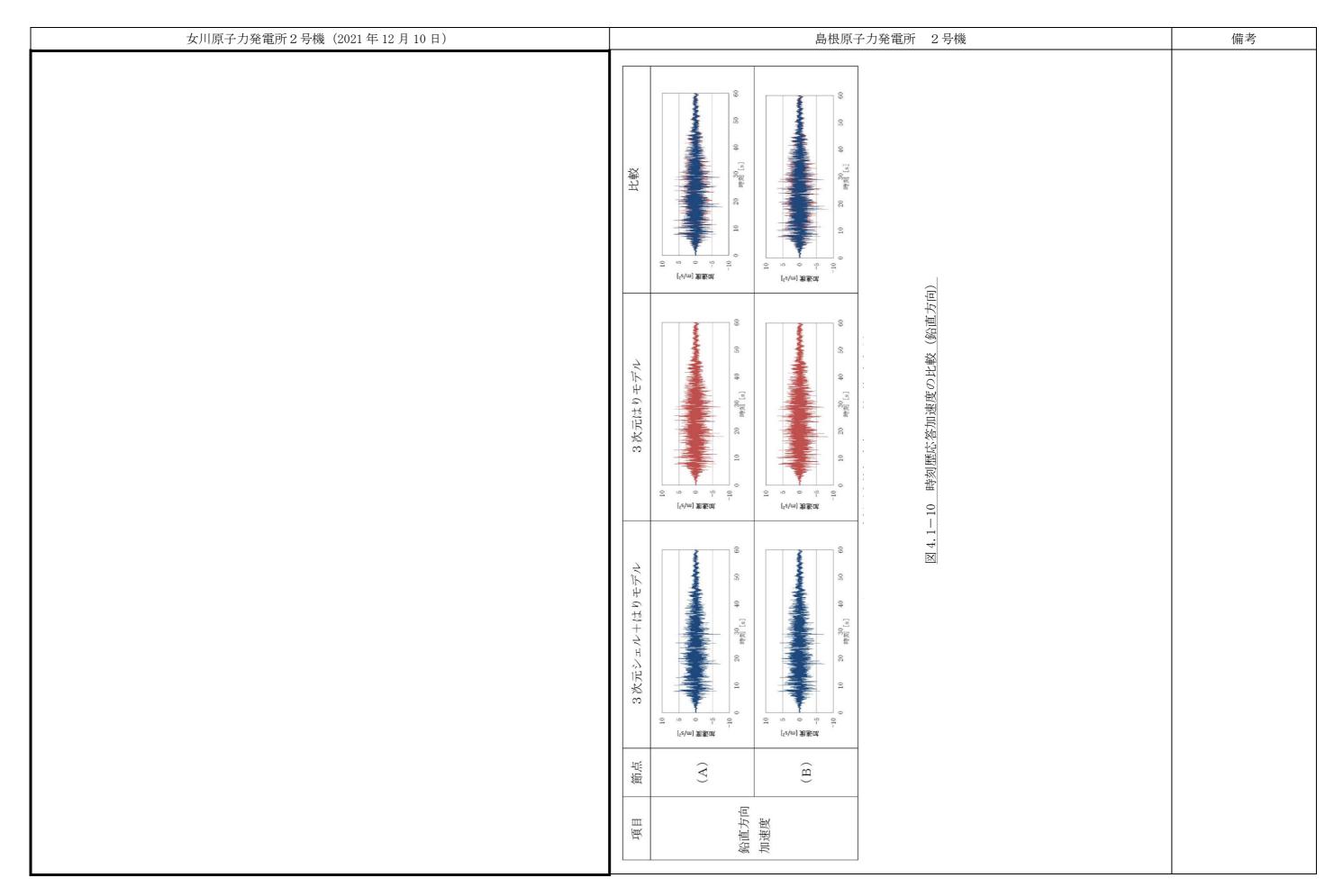
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4. 応答解析モデルの妥当性確認	
	4.1 妥当性確認方針	
	サプレッションチェンバの地震応答解析モデルにおいては,内部水の等価高さを適切に考慮	
	するため、NASTRANの機能であるGuyan縮約法により算出される有効質量を3次元	
	はりモデルの質点位置に設定しており、NASTRANのGuyan縮約法を用いて縮約した	
	水平方向の有効質量については、3.にて、Guyan縮約法を適用していないNASTRAN	
	(3次元シェルモデル)から算出した水平方向の有効質量と同等であることを確認している。	
		- - ・検討内容の相違
		島根2号機では、実
		機相当の解析モデルに
		より縮約法の妥当性を
	ここで、円筒容器等をモデル化する手法として用いられるHousner理論における円筒	確認する。
	容器等の評価式では、有効質量及び等価高さを以下のとおり算定している。	
	① 有効質量は水平方向の加速度による内部水から受ける容器側面圧力(水平方向の圧力)か	
	ら算定	
	② 内部水の等価高さは上記①の有効質量と容器側面圧力(水平方向の圧力)による回転モー	
	メントから算定	
	③ 容器半径に対して水位が低い場合の等価高さは上記②に加えて,底面圧力(鉛直方向の圧	
	力) <u>に</u> よる回転モーメントから算定される高さを加算	
	上記③における等価高さの取り扱い及び 3.2 における等価高さが内部水の重心位置よりも高	
	いことを考慮すると、サプレッションチェンバ内部水から受ける容器側面圧力(水平方向の圧	
	力)に加えて底面圧力(鉛直方向の圧力)を把握することは重要である。	
	今回工認に用いる地震応答解析モデルでは, <u>NASTRAN</u> を用いて容器(各要素)の内面圧	
	力(水平方向の圧力,鉛直方向の圧力)から各方向の有効質量を算定しており、これらはGuy	
	a n縮約法を用いてサプレッションチェンバのはりモデルの質点位置に縮約される。このため、	
	以下の検討によりサプレッションチェンバの応答解析モデルの妥当性の確認を行う。	・検討内容の相違
	① 鉛直方向圧力の妥当性確認	島根2号機では、実
	NASTRAN(3次元シェルモデル)により算出される鉛直方向の有効質量比と、F1	機相当の解析モデルに
	uentによる流体解析結果から得られる流体解析結果から算出される鉛直方向の有効質	より縮約法の妥当性を
	量比との比較により、NASTRANの有効質量算出モデルにおける鉛直方向圧力の妥当	確認する。
	性の確認を行う。	
	② Guyan縮約法の妥当性確認	
	サプレッションチェンバ実機解析モデルにおいて, Guyan縮約法を適用(3次元はり	
	モデル),非適用(3次元シェル+はりモデル)の解析モデルにより得られる応答加速度を	
	<u>比較し,サプレッションチェンバにおけるGuyan縮約法の妥当性確認を行う。</u>	
	本検討の目的を表 4.1-1 に示す。なお、本検討には妥当性確認用の解析モデルを適用し、妥	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2	2号機	備考
	当性確認用解析モデルの水	当性確認用解析モデルの水位は図 4.1-1 に示すとおりとする。妥当性確認用解析モデルの水位		
	は,重大事故等時の耐震評	は, 重大事故等時の耐震評価において, 基準地震動 S s との組合せで基本とするケースである		
	「格納容器過圧・過温破損	(残留熱代替除去系を使用す	する場合)」における水位である(別紙 10	
	<u>参照)。</u>			
		表 4.1-1 検討の		・検討内容の相違
	比較対象	3次元シェルモデル*1	3次元シェル+はりモデル*2	島根2号機では、実
		/流体解析モデル	/ 3 次元はりモデル*3	機相当の解析モデルに
	確認項目	鉛直方向の有効質量比	応答加速度・荷重	より縮約法の妥当性を確認する。
	検討目的	鉛直方向の圧力の 妥当性確認	Guyan縮約法の 妥当性確認	
	注記*1: NASTR	ANによる有効質量算出モラ	· ・ ・ ・	
	*2: NASTRA	ANで算定した有効質量をシ	ェル要素とし,サプレッションチ	
	ェンバの構造	<b>造部分をはりモデルとした応</b>	答解析モデル	
	*3: N A S T R A	ANで算定した有効質量をG	uyan縮約法により試験体のは	
	り要素に付加	『した応答解析モデル(今回	工認におけるサプレッションチェ	
	ンバの地震応	「答解析モデル)		
			ル 耐震解析用重大事故等時水位 EL 7049mm (ダウンカマ取付部下端位置)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4.1.1 鉛直方向圧力の妥当性確認	・検討内容の相違
	(1)解析条件	島根2号機では,実
	3 次元シェルモデル及び流体解析モデルを図 4.1-2 及び図 4.1-	<u>-3 に示す。</u> 機相当の解析モデルに
		より縮約法の妥当性を
		確認する。
		1
	図 4.1-2 3 次元シェルモデル (NASTRAN)	
	a. 外観 b. 内部構 b. 内部構 b. 内部構	·造物
	図 4.1-3 流体解析モデル (Fluent)	
	(2)解析結果	
	実機サプレッションチェンバの鉛直方向の有効質量比の算出結果を	<u>☆表 4.1−2 に示す。 3</u>
	次元シェルモデル及び流体解析モデルにより算出した有効質量比はは	
	ASTRANによる鉛直方向圧力は適切である。	
	表 4.1-2 鉛直方向の有効質量比算出結果	
	3次元シェルモデル 流体解析	
	(NASTRAN) (Flue	<u>nt)</u>
	鉛直方向の 0.98 有効質量比 0.98	9
	TIM只里儿	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4.1.2 Guyan縮約法の妥当性確認 (1)解析モデル 応答解析結果の比較を行う解析モデルを以下に示す。	・検討内容の相違 島根2号機では,実 機相当の解析モデルに より縮約法の妥当性を 確認する。
	<ul><li>① 3次元シェル+はりモデル</li><li>NASTRANで算定した有効質量をシェル要素とし、サプレッションチェンバの</li></ul>	)構
	当部分をはりモデルとした3次元シェル+はりモデル(図 4.1-4 参照)	
	図 4.1-4 3 次元シェル+はりモデル	


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	② 3次元はりモデル	・検討内容の相違
	NASTRANで算定した有効質量をGuyan縮約法により試験体のはり要素に付	
	加した3次元はりモデル(図4.1-5参照)	機相当の解析モデルに
		より縮約法の妥当性を
		確認する。
	図 4.1-5 3 次元はりモデル	


女川原子力発電所2号機(2021年12月10日)			島根原子力発電所 2号機		備考
	(2)解析条件 地震応答解析条件を表 <u>4.1-3</u> に示す。 表 <u>4.1-3</u> 解析条件				
		項目	内约	容*2	
	解析モデル	/	3次元シェル+はりモデル	3次元はりモデル*1	
	モデル	内部水	シェル要素	質点に縮約	
		鋼材部分	はり	モデル	
	内部水の有 算定方法	可効質量の	NASTRANIC.	より有効質量を算定	
	内部水の有モデル化	可効質量の	シェル要素として付加	Guyan縮約法を用いて 試験体のはり要素に付加	
	水位条件		重大事故時想沒	定水位(Ss)	
	入力地震動	h		- D /方向,鉛直方向)	
	解析コート	*		ΓRAN	
		耐震評価用の応記載していない	内容については耐震評価用の応	ななな と同様	
	<u>3次元</u> 及び鉛直	方向の各方向に	<del></del> デル及び3次元はりモデルにお	らいて,加速度はNS方向,EW方「 っせた応答加速度及び荷重を算出っ -	<del>-</del>
		_	加速度及び最大応答加速度の以	<u>比較を行う。応答加速度の比較位</u> 間	# <u>#</u>

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。
	図 4.1-6 応答加速度の比較位置	
	②荷重	1.4. 1b
	サプレッションチェンバサポート基部に生じる最大荷重の比較を行う。比較対	
	る荷重を図4.1-7に示す。なお、サプレッションチェンバサポートは半径方向に ドナス様洗でなるため、光径大点に有意な芸術はせばない。また、芸術の比較位置	
	ドする構造であるため、半径方向に有意な荷重は生じない。また、荷重の比較位置:	<u> </u>
	<u>-8に示す。</u>	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。
	図 4.1-7 荷重の比較項目	
	図 4.1-8 荷重の比較位置	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島	根原子力発電所	2 号機			備考
	① 加速度 応答加速度の最大値の比較結果を表 4.1-4 に,時刻歴応答加速度の比較結果を図 4.1 札				・検討内容の相違		
					島根2号機では、実		
					より縮約法の妥当性を		
	3次元はりモデル	こおいて,	おおむね一致する	5結果が得られて	いる。また,図	4.1-9及	確認する。
	び図 4.1-10 において、3次元シェルモデル及び3次元はりモデルの時刻歴応答加速度はよく一致している。						
			最大加速度	$\xi$ (m/s ² )			
	項目	節点	①3次元 シェル+はり モデル	②3次元 はりモデル	加速度比 (①/②)		
	NS方向	(A)	30.3	30.8	0.98		
	加速度	(B)	14. 6	14.8	0. 99		
	EW方向	(A)	17.7	17. 6	1.01		
	加速度	(B)	36. 4	36. 5	1.00		
	鉛直方向	(A)	7. 4	8. 2	0.90		
	加速度	(B)	7. 4	8. 4	0.88		





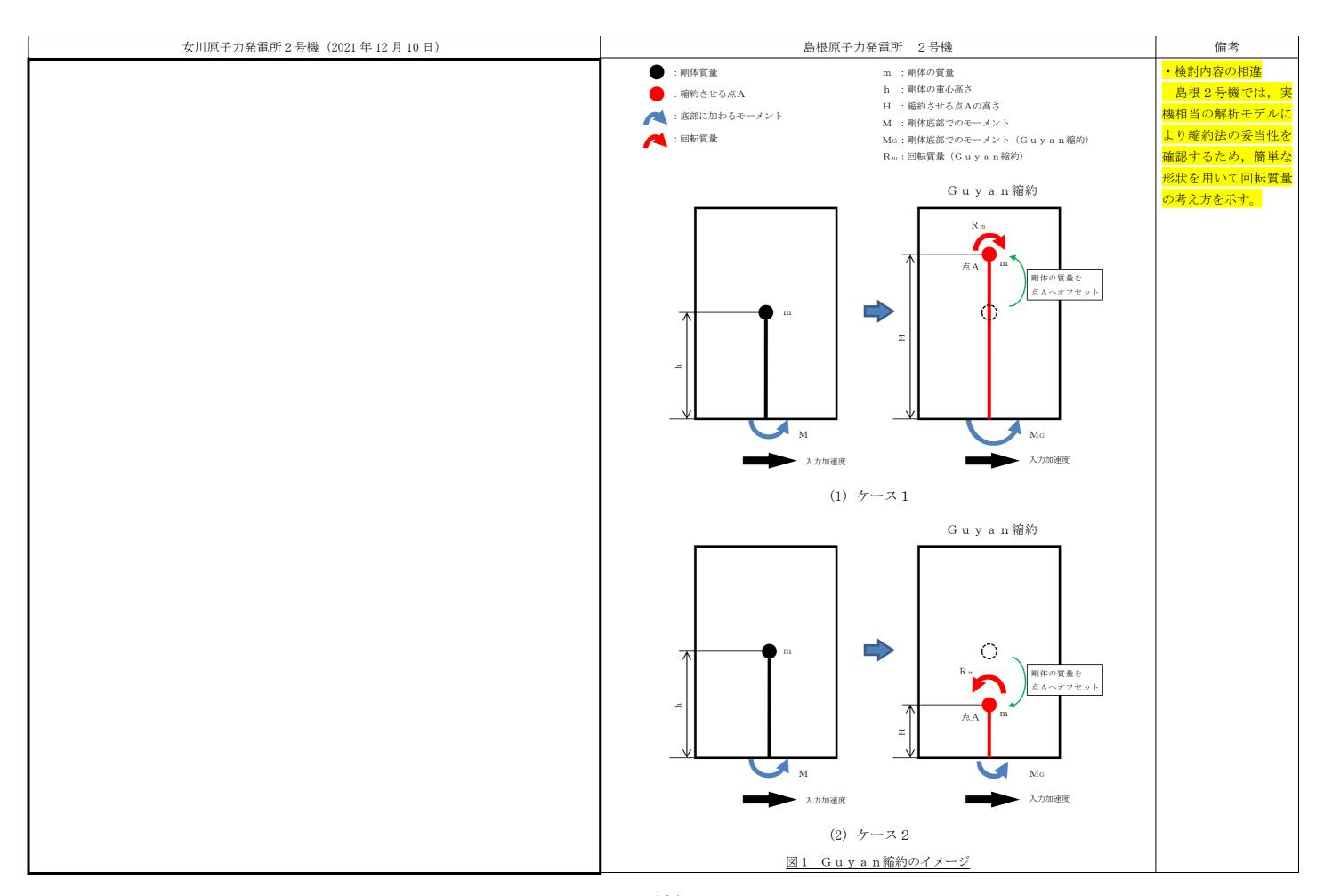
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では,実
		機相当の解析モデルに
		より縮約法の妥当性を
		確認する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考

女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力発電所	2 号機		備考
				4.1-5 に示すとお	り,3次元シェルモデル	
	項目	節点	表 4.1-5 最大荷 ① 3 次元 シェル+はり モデル	重の比較 ②3次元 はりモデル	荷重比 (①/②)	
	周方向反力 (kN)	(a) (b) (c) (d)	4. 00E+03 2. 58E+03 3. 45E+03 2. 23E+03	4. 06E+03 2. 63E+03 3. 51E+03 2. 27E+03	0. 98 0. 98 0. 98 0. 98	
	鉛直方向反力 (kN)	(a) (b) (c) (d)	1. 01E+03 1. 50E+03 1. 06E+03 1. 68E+03	1. 04E+03 1. 58E+03 1. 08E+03 1. 77E+03	0. 98 0. 95 0. 98 0. 95	
	半径軸回り モーメント (N·m)	(a) (b) (c) (d)	4. 55E+06 3. 21E+06 3. 92E+06 2. 77E+06	4. 62E+06 3. 26E+06 3. 98E+06 2. 82E+06	0. 98 0. 98 0. 98 0. 98	
	接線軸回り モーメント (N·m)	(a) (b) (c) (d)	5. 76E+04 5. 76E+04 6. 71E+04 6. 71E+04	5. 52E+04 5. 52E+04 6. 42E+04 6. 42E+04	1. 04 1. 04 1. 05 1. 05	
	鉛直軸回り モーメント (N·m)	(a) (b) (c) (d)	1. 82E+05 1. 82E+05 1. 57E+05 1. 57E+05	1. 85E+05 1. 85E+05 1. 59E+05 1. 59E+05	0. 98 0. 98 0. 98 0. 98	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
-	4. 1. 3 妥当性確認結果	
	4.1.1より、NASTRANの3次元シェルモデルによる解析結果において、内部水の流動	・検討内容の相違
	<u>を考慮した流体解析モデルと同等の有効質量比が得られ</u> ていることから、NASTRANに	島根2号機では、実
	<u>おいて</u> 鉛直方向 <u>における内部水のモデル化</u> は妥当であることを確認した。	機相当の解析モデルに
	また、4.1.2より、3次元シェルモデル及び3次元はりモデルにおいて、最大応答加速度と	より縮約法の妥当性を
	最大荷重がおおむね一致しており、時刻歴応答加速度についてもよく一致した結果が得られ	
	ていることから、Guyan縮約法は妥当であることを確認した。	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	(補足)	・検討内容の相違
	Guyan縮約法における回転質量について	島根2号機では、実
		機相当の解析モデルに
	Guyan縮約法における回転質量の符号と質量の等価高さの関係を示す。	より縮約法の妥当性を
	ある剛体の質量を縮約する場合において、縮約させる位置が剛体の重心高さより高いケース(ケ	確認するため、簡単な
	ース1)と縮約させる位置が剛体の重心高さより低いケース(ケース2)を考える。このとき, G	形状を用いて回転質量
	uyan縮約のイメージを図1に示す。	の考え方を示す。
	ケース1において, 反時計回りをモーメントの正方向とすると, 剛体底部に加わるモーメントM	
	は下式で表される。	
	M=m⋅h	
	ここで、剛体質量を点Aに縮約する場合、並進質量mにより剛体底部に加わるモーメントMGは	
	下式で表される。	
	$MG = m \cdot H$	
	縮約の前後で剛体底部に加わるモーメントは変わらないため、このときの回転質量Rmは以下の	
	関係を満足する値として設定される。	
	M = MG + Rm	
	以上より、回転質量Rmは下式で表される。	
	$R_{m}=M-M_{G}=m (h-H)$	
	ケース1では,縮約させる位置が剛体の重心高さより高い(h < H)ため,回転質量Rmは負の	
	値となる。	
	ケース2においても同様に、回転質量Rmは下式で表される。	
	$R_{m}=M-M_{G}=m (h-H)$	
	ケース2では、縮約させる位置が剛体の重心高さより低い(H <h)ため、回転質量rmは正の< td=""><td></td></h)ため、回転質量rmは正の<>	
	値となる。	
	以上より、反時計回りをモーメントの正方向とすると、Guyan縮約法による縮約の位置が剛	
	体の重心高さより高い場合、回転質量は負の値となり、縮約の位置が剛体の重心高さより低い場	
	合,回転質量は正の値となる。なお、モーメントの正方向を逆にした場合は、回転質量の正負が逆	
	になる。	



島根原子力発電所 2 号機	備考
島根原子力発電所 2号機  「別紙3  「50H2の領域まで作成した床応答スペクトルによる影響検討  スペクトルモーダル解析を適用するに当たって高振動数領域の影響を確認するため、50H2の領域まで作成した検討用の床応答スペクトルを地震応答解析に適用し、重大事故等対処設備としてのサプレッションチェンバ及びサプレッションチェンバサポートの中で最も答度が小さい部位を代表として応力評価を実施した。地震応答解析に用いた床応答スペクトルを図1に、応力評価結果を表1に、固有周期の一覧を表2に示す。本検討に用いた床応答スペクトルは、W-2-1-7「設計用床応答スペクトルの作成方針」に基づき0.02秒(50H2)までの床応答スペクトルを作成したものである。  地震応答解析において検討用床応答スペクトルを用いた場合、サプレッションチェンバ及びサブレッションチェンバサポートの代表応力評価における資出応力は、設計用床応答スペクトルを用いた場合と有効析数の範囲で等しい結果となった。これは、今回工認における耐震評価において、設計上の配慮として0.02秒(50Hz)までの振動モードを考慮していること。高振動額域域における応答加速度と刺激係数が比較的小さいことから、高振動数領域への応答影響が小さいためである。 したがって、サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析における動的解析として高振動数領域の応答によるスペクトルモーダル解析への影響が十分に小さいことを確認した。	<ul> <li>・評価方法の相違</li> <li>島根2号機では、設</li> <li>計用床応答スペクトルとして0.02秒(50Hz)</li> <li>まで考慮した床応答ス</li> </ul>
ける応答加速度と刺激係数が比較的小さいことから、高振動数領域への応答影響が <u>小さいため</u> である。 したがって、サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析における動的解析として高振動数領域の応答によるスペクトルモーダル解析への影響が十分に小さ	として 0.02 秒 (50Hz) まで考慮した床応答ス
	別紙3  50Hz の領域まで作成した床応答スペクトルによる影響検討  スペクトルモーダル解析を適用するに当たって高振動数領域の影響を確認するため、50Hz の領域まで作成した検討用の床応答スペクトルを地震応答解析に適用し、重大事故等対処設備としてのサプレッションチェンパ及びサプレッションチェンパサポートの中で最も裕度が小さい部位を代表として応力評価を実施した。地震応答解析に用いた床応答スペクトルを図1に、応力評価結果を表1に、固有周期の一覧を表2に示す。本検討に用いた床応答スペクトルを図1に、応力評価結果を表1に、固有周期の一覧を表2に示す。本検討に用いた床応答スペクトルを図1に、応力評価結果を表1に、固有周期の一覧を表2に示す。本検討に用いた床応答スペクトルを作成したものである。 地震応答スペクトルの作成方針」に基づき0.02秒(50Hz)までの床応答スペクトルを作成したものである。 地震応答解析において検討用床応答スペクトルを用いた場合、サプレッションチェンバ及びサブレッションチェンバサポートの代表応力評価点に対する算出応力は、設計用床応答スペクトルを用いた場合と有効桁数の範囲で等しい結果となった。これは、今回工認における耐震評価において、設計上の配慮として0.02秒(50Hz)までの振動モードを考慮していること、高振動領域における応答加速度と刺激係数が比較的小さいことから、高振動数領域への応答影響が小さいためである。 したがって、サプレッションチェンパ及びサプレッションチェンパサポートの地震応答解析における動的解析として高振動数領域の応答によるスペクトルモーダル解析への影響が十分に小さ



女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力発電所	2号機			備考
		表 1 応力評価結果					
	當山			算出応力	*2 (MPa)		
		応力評価点 ^{*1}	応力分類	設計用床応答スペクトル		- 許容応力* ² (MPa)	
			一次一般膜応力	144	144	349	
	サプレッ	サプレッションチェンバ _{プレッ} 胴中央部上部 (P1)	一次膜+一次曲げ応力	144	144	523	
	ションチェンバ		一次+二次応力	128	128	501	
	7 = 7 /	サプレッションチェンバ	一次膜+一次曲げ応力	272	272	523	
		胴エビ継部外側(P8)	一次+二次応力	478	478	501	
	サプレッ	2 (72)	曲げ応力	242	242	344	
	チェンバ	ベースプレート(P 6) ボルト反力側	せん断応力	24	24	172	
	サポート		組合せ応力	246	246	298	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 2(1) 固有周期一覧表(地震応答解析モデル:水平方向)	・評価方法の相違
	モード 固有周期 <u>刺激係数*</u> モード (c) <u>ソカロ フカロ</u>	島根2号機では、鉛
	+ (s) X方向 Y方向 Z方向 1次	直方向の地震応答解析
	2次 3次	モデルは既工認と同様
	4次	に内部水を固定質量と
	5次 6次	してモデル化する。
	7次 8次	
	9次	
	10次 11次	
	12次 13次	
	14次	
	15次 16次	
	17次 18次	
	19次	
	20次 21次	
	24次	
	25次 26次	
	27次 28次	
	29次	
	30次 31次	
	32次 33次	
	34次	
	35次 36次	
	37次 38次	
	39次	
	40次 41次	
	42次 43次	
	44次	
	45次 46次	
	47次 48次	
	49次	
	50次 51次	
	注記*:モード質量を正規化するモードベクトルを用いる。	

表 4. 3-2(2)       固有周期一覧表(地震応答解析モデル:鉛直方向)       ・評価方法の相島根 2 号機では、
できる   でき

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め、実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

次元シェルモデルで         ーバル振動が現れる         め、実機解析モデル	女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
次元シェルモデルで ーバル振動が現れる め、実機解析モデル 対してオーバル振動			・検討内容の相違
ーバル振動が現れる         め、実機解析モデル         対してオーバル振動			島根2号機では,3
め, 実機解析モデル         対してオーバル振動			次元シェルモデルでオ
対してオーバル振動			ーバル振動が現れるた
			め,実機解析モデルに
学校校对于2.			対してオーバル振動の
			影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め, 実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、3
		次元シェルモデルでオ
		ーバル振動が現れるた
		め,実機解析モデルに
		対してオーバル振動の
		影響を検討する。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	別紙 4	
	サプレッションチェンバサポート取付部のばね剛性の設定	
	1. はじめに	
	1. はしめに   今回工認で採用したサプレッションチェンバの地震応答解析モデルは,サプレッションチェ	
	ンバ本体とサプレッションチェンバサポートをはり要素で模擬し、サプレッションチェンバ本	
	体と <u>サプレッションチェンバサポート</u> 取付部の局部変形によるばね剛性については, <u>サプレッ</u>	
	ションチェンバサポート取付部にばね要素で模擬することとしている。	
	なお、サプレッションチェンバ小円の断面変形及びサプレッションチェンバ胴の花びら状の	<ul><li>評価方法の相違</li></ul>
	変形については、応力評価に対する影響は別紙3において確認し、サプレッションチェンバの地	島根2号機では、サ
	震応答解析モデルではこれらの影響は考慮しない。	プレッションチェンハ
		サポート取付部の面外
	本資料は、上記を踏まえたばね要素の剛性(ばね剛性)の設定方法についてまとめたものであ	方向 (3 方向) <mark>のみ</mark> の変
	る。	形をばね要素として表慮する。
	2. ばね要素について	思りる。
	サプレッションチェンバは、サプレッションチェンバ大円の内側と外側で 1 組のサプレッシ	
	ョンチェンバサポートが 16 組で支持する構造となっている。このサプレッションチェンバサポ	
	ート取付部の1セグメント部分を切り出して、その構造的な質量と剛性の関係を模式的に表し、	
	サプレッションチェンバにおける剛性の設定の考え方を整理した図を図 2-1 に示す。	
	実機・シェルモデル       地震応答解析モデル         _(はりモデル)	
	(はりモノル)	
	①サプレッションチェンバの 形状・物性値からはり要素でモデル化	
	はり剛性	
	②サプレッションチェンバ	
	小円の断面変形の剛性	
	③サプレッションチェンバ サポート取付部の局部変形の	
	剛性	
	④サプレッションチェンバ 形状・物性値からはり要素でモデル化 サポートの剛性	
	図 2-1 サプレッションチェンバとサプレッションチェンバサポートの質量・剛性模式図	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	サプレッションチェンバの剛性は,断面変化なしの部分のはり剛性①とサプレッションチェ	
	ンバ小円の断面変形による剛性②に分けて考えることができる。また,サプレッションチェンバ	
	<u>サポート</u> 取付部は、はり要素のみでモデル化することが難しい複雑な構造であり局部的に変形	
	するため、これを <u>サプレッションチェンバサポート</u> 取付部の局部変形の剛性③とすると、サプレ	
	ッションチェンバの断面変化なしの部分のはり剛性①、サプレッションチェンバサポートの剛	
	性④をはり要素とし、これを接続する部分をばね要素としてモデル化すれば、実際の挙動に近い	
	地震応答値を求めることができる。 <u>ここで,②については応力評価に対する影響が小さい<mark>ため,</mark></u>	・評価方法の相違
	①と④を接続する要素として、③をばね要素としてモデル化する。	島根2号機では、サ
	なお, サプレッションチェンバ胴の面内方向の変形については, 面外方向の変形に対して剛性	プレッションチェンバ
	<u>が高いと考えられる</u> ことから、ばね要素は <u>サプレッションチェンバ胴の面外方向(並進1方向、</u>	サポート取付部の <mark>面外</mark>
	回転2方向)について考慮する。	方向 (3方向) の変形 <mark>の</mark>
		<mark>み</mark> をばね要素として考
		慮する。
	3. サプレッションチェンバサポート取付部のばね剛性の設定手順	
	ばね剛性の設定にあたっては、サプレッションチェンバ及びサプレッションチェンバサポー	
	<u>ト</u> をシェル要素でモデル化 <u>した解析モデルに荷重を加え,</u> サプレッションチェンバ及び <u>サプレ</u>	・評価方法の相違
	<u>ッションチェンバサポート全体(図 2-1 の①, ②, ③, ④)の変位を算出</u> し, 同じ範囲をはり	島根2号機では、変
	要素でモデル化した解析モデルに同じ大きさの荷重を加え、はり要素(図 2-1 の①、④)の変	位においてはりモデノ
	<u>位を差し引いた結果からばね剛性を設定する。ばね剛性の</u> 設定手順を図 <u>3-1</u> に示す。	の影響を差し引く。
	シェルモデルによる変位算出はりモデルによる変位算出	
	$(\boxtimes 2-1: \textcircled{1}, \ \textcircled{2}, \ \textcircled{3}, \ \textcircled{4}^{*1}) \qquad \qquad (\boxtimes 2-1: \textcircled{1}, \ \textcircled{4}^{*1})$	
	変位の差からサプレッションチェンバ取付部の ばね剛性を設定	
	(サプレッションチェンバ胴面外方向,図2-1:③*1·2)	
	注記 * 1: 各番号は以下の剛性を表す。  ① サプレッションチェンバのはり剛性	
	②サプレッションチェンバ小円の断面変形の剛性	
	③サプレッションチェンパサポート取付部の局部変形の剛性	
	<ul><li>④サプレッションチェンバサポートの剛性</li><li>*2:②におけるサプレッションチェンバ胴面外方向の剛性を含むが、影響は小さいと考えられるため</li></ul>	
	③のみの剛性として扱う。	
	図 3-1 サプレッションチェンバサポート取付部のばね剛性の設定手順	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4. 解析モデルを用いた変位の算出	・評価方法の相違
	(1) シェルモデルを用いた変位の算出	島根2号機では、変
	サプレッションチェンバ及びサプレッションチェンバサポートは, 16 セグメントのエビ	位においてはりモデル
	継部にサプレッションチェンバサポートがサプレッションチェンバ大円の内側と外側に 1	の影響を差し引く。
	組配置されている対称構造であることを踏まえ,モデル化の範囲は評価対象の <u>サプレッシ</u>	
	ョンチェンバサポート 1 組を中心として、その両側のセグメントのサプレッションチェン	・評価方法の相違
	<u>バ胴中央部までをシェル要素でモデル化する。両端のサプレッションチェンバ胴は完全拘</u>	モデル化手法の相違
	<u></u> 束条件とし, 内側及び外側のサプレッションチェンバサポート下端に同時に荷重を与え, サ	・評価方法の相違
	プレッションチェンバサポート取付部の変位を算出する。解析モデルを図 <u>4-1</u> に示す。 <mark>両</mark>	島根2号機では、変
	端のサプレッションチェンバ胴は完全拘束条件とし,図 4-2 に示す荷重作用点と内側及び	位においてはりモデル
	外側のサプレッションチェンバサポート下端のうち、可動する半径方向以外の方向をそれ	の影響を差し引く。
	ぞれ剛ばねで結合し、内側及び外側のサプレッションチェンバサポートに同時に荷重(並進	
	荷重、モーメント)を作用させ、サプレッションチェンバサポート取付部の変位を算出する。	
	また,変位算出のための解析条件及び変位算出方法を図4-3に示す。	
	図 4-1 サプレッションチェンバサポート取付部の変位算出用シェルモデル	

- 選ュン 変化算は用モブルーの高電作用方成

女川原子力発電所2号機(2021年12月10日)			島根原子力	刀発電所 2号機		備考
	ば	ねの成分	解析条件	3	变位算出方法	・評価方法の相違
				•		島根 2 号機では, サ プレッションチェンバ
						サポート取付部の <mark>面外</mark>
	並進	上下軸 (Z)				方向 (3方向) の変形 <mark>の</mark>
						<mark>み</mark> をばね要素として考
						慮する。
		大円半径 軸回り				
		<b>軸回り</b> (X)				
	回転					
		大円円周 軸回り				
		(Y)				
			_		_	
			<u>図 4-<mark>3</mark> シェルモ</u>	デルによる変位算出力	<u>i法</u>	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、変
		位においてはりモデル
		の影響を差し引く。
		<u> </u>

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	(2) はりモデルを用いた変位の算出	・評価方法の相違
		島根2号機では、変
	(1)のシェルモデルと同じ範囲をはり要素でモデル化する。また、変位算出のための拘束	位においてはりモデル
	条件及び荷重入力方法についても(1)と同様とする。解析モデルを図 4- <mark>4</mark> に示す。 <u>また,変</u>	の影響を差し引く。
	位算出のための解析条件及び変位算出方法を図 4- <mark>5</mark> に示す。	・評価方法の相違
		モデル化手法の相違
	図 4- <mark>4</mark> サプレッションチェンバサポート取付部の変位算出用はりモデル	
	図 4 ⁻⁴ リグレッショングエンバリホート取刊前の <u>変位</u> 昇山州はサモブル	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)				島根原子力発電所	2号機	備考
		ばね	ロの成分	解析条件	変位算出方法	・評価方法の相違
	Ì	<b>並</b> 進	上下軸 (Z)			島根 2 号機では、サ プレッションチェンバ サポート取付部の <mark>面外</mark> 方向 (3 方向) の変形 <mark>の</mark> みをばね要素として考 慮する。
	ī	□転 -	大円半径 軸回り (X)			
	F		大円円周 軸回り (Y)			
		1		図 4- <mark>5</mark> はりモデルによる	3 <u>変位算出方法</u>	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、変
		位においてはりモデル
		の影響を差し引く。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	<ul> <li>5. サプレッションチェンバサポート取付部のばね剛性設定</li> <li>4.で算定した変位について、シェルモデルから算出した変位からはりモデルから算出した変位を差し引いた変位を用いてばね剛性を以下のとおり設定する。</li> <li>並進ばね:</li> <li>ばね定数 = 荷重 / 並進変位</li> <li>回転ばね:</li> <li>ばね定数 = モーメント / 回転変位</li> </ul>	・評価方法の相違 島根 2 号機では、変位においてはりモデルの影響を差し引く。
	6. サプレッションチェンバサポート取付部のばね剛性設定結果 4.~5.の結果を表 6-1に示す。既工認実績があるサプレッションチェンバ地震応答解析モデルにおいては、サプレッションチェンバ胴及びサプレッションチェンバサポートをはり要素でモデル化し、サプレッションチェンバ胴とサプレッションチェンバサポート取付部は剛結合としていた。今回工認のサプレッションチェンバ地震応答解析モデルでは、表 6-1のサプレッションチェンバサポート取付部のばね剛性を設定することにより、従来モデルに比べ、振動モードが精緻化されたものと考える。	・評価方法の相違 既工認におけるモデ ル化方法の相違

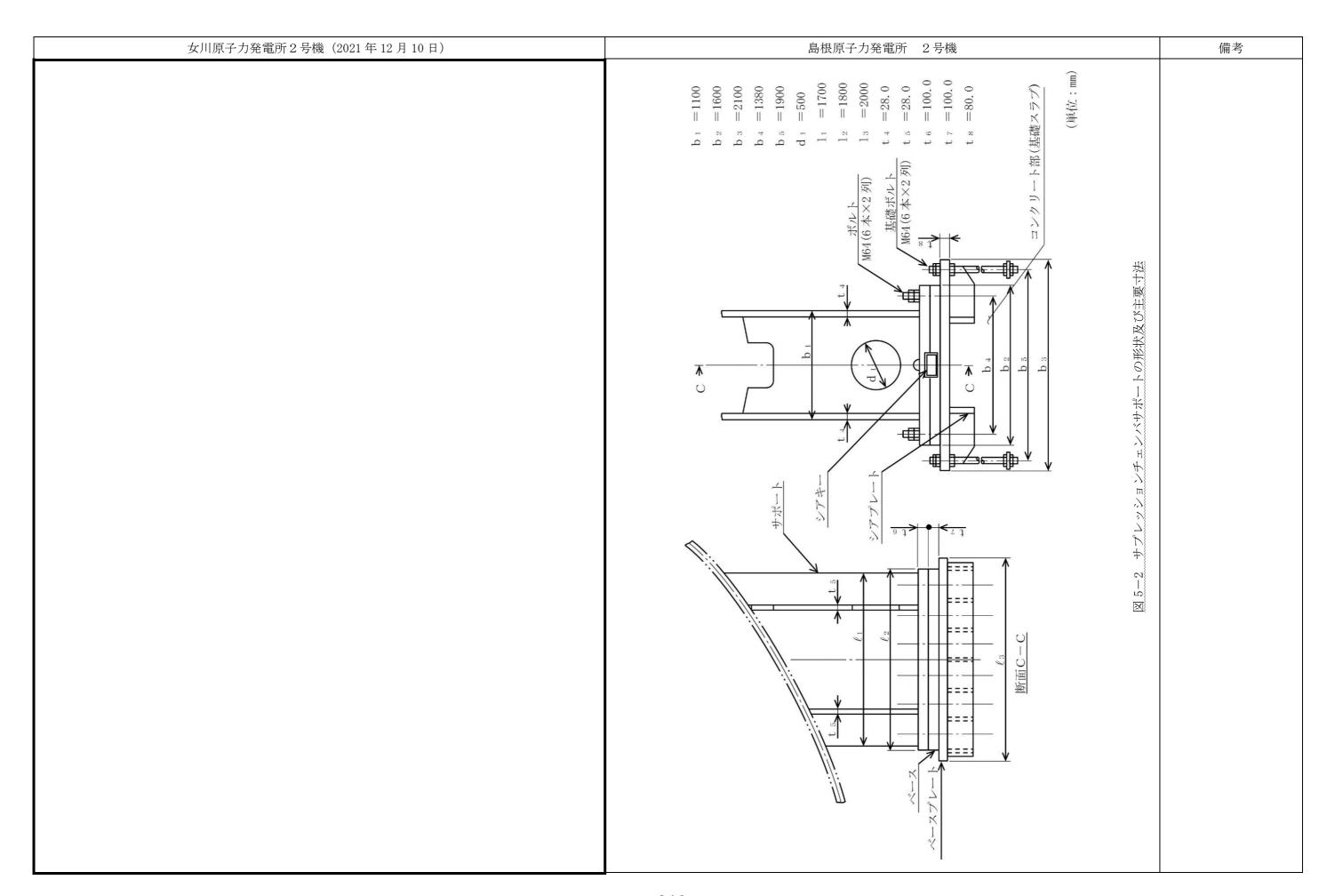
女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発	電所 2号機		備考
		表 6-1 サプレッションチェンバサポート取付部のばね剛性			
			ばね剛性		島根2号機では、サ
		考慮する方向		外側	プレッションチェンバ
		P:上下方向	内側		## ## ## ## ## ## ## ## ## ## ## ## ##
	並進	(N/mm)			カー(3カー)の変形 <mark>の</mark> みをばね要素として考
		ML:大円半径軸回り			慮する。
	回転	(N·mm/rad)			
		MC: 大円円周軸回り			
		(N·mm/rad)			_

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、サ
		ポート取付部の剛性の
		影響は大きいものとし
		て <mark>,個別に影響の確認</mark>
		は行っていない。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、サ
		ポート取付部の剛性の
		影響は大きいものとし
		て、個別に影響の確認
		<mark>は行っていない。</mark>

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、サ
		ポート取付部の剛性の
		影響は大きいものとし
		て、個別に影響の確認
		<mark>は行っていない。</mark>


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、サ
		ポート取付部の剛性の
		影響は大きいものとし
		て <mark>,個別に影響の確認</mark>
		<mark>は行っていない。</mark>


女川原子力発電所 2 号機(2021 年 12 月 10 日)				島根原子力発電所 2号機	備考		
	(補足)						
		ばね算定用解析モデルのモデル化範囲について					
	サプレッションチェンバサポート取付部のばね剛性を設定するにあたり、シェルモデル及び はりモデルを用いた。評価対象のサプレッションチェンバサポートに荷重を加えて変形を起こ						
	と解析モ	させることでサプレッションチェンバサポート取付部のばね剛性を算定するが、荷重入力位置と解析モデルの境界が近いと、算定しようとしているサプレッションチェンバサポート取付部のばね剛性に対して、境界条件の影響が及ぶ懸念がある。このため、モデル化の範囲は境界条件の影響が及ぶ懸念がある。このため、モデル化の範囲は境界条件の影響が及ぶ形式ない第四は、スク東側のなが、					
		の影響が及ばない範囲として、評価対象のサプレッションチェンバサポートと、その <u>両側のセグ</u> メントのサプレッションチェンバ胴中央部までをモデル化することとした。ばね剛性算定解析の変形コンター図を図1に示す。図のとおり、変形範囲と境界条件が離れている、または、変形					
	***************************************	~~~~~	~~~~~~	なぶ場合であっても、変形が大きく表れる範囲に対して境界条件が離れ 『局所を対象としているばね剛性の算定において妥当であると考えられ			
	<u></u>						
		並進	上下軸 (Z)				
			( <i>L</i> )				
			大円半径				
			軸回り (X)				
		回転					
			大円円周				
			軸回り (Y)				
		図1 ばね剛性算定解析変形図					

女川原子力発電所 2 号機(2021 年 12 月 10 日)				島根原子力発電所 2 号機	備考				
				別紙 5					
		3次元シェルモデル <u>(適用性確認用解析モデル)</u> の設定							
	1. 想	1. 概要							
			3次元は5	) モデルの適用性検証に用いた <mark>3次元シェルモデル (適用性確認用解析</mark>					
	エラ	<mark>ジル)</mark> の評(	価条件やモ	デル化の詳細を示すものである。					
		呼価条件 で価条件によ	のいてまり	1 17 二十					
	煎	F1四宋1十(c)	フバ (衣 2-	-1 に示す。					
				表 2-1 評価条件	<ul><li>評価方法の相違</li></ul>				
		Ŋ	頁目	内容	島根2号機では、ベ				
			要素数		ース及びベースプレー				
				シェル要素:サプレッションチェンバ胴,補強リング,サプレッション	トをはり要素でモデル 化する。				
			鋼製部	チェンバサポート (ベース及びベースプレート以外) はり要素 : サプレッションチェンバサポート (ベース及びベース					
		モデル化		プレート)*1					
				・耐震解析用重大事故等時水位 (EL 7049mm)					
			内部水	・NASTRAN の仮想質量法を適用(本文 4.1.1 項の手法と同様)					
			解析手法	スペクトルモーダル解析					
		地震応答	地震力	設計用床応答スペクトル I (基準地震動 S s)					
		解析	地長刀	(原子炉建物 EL 1300mm) *2					
		減衰定数 1.0%							
	)	応力評価		一次十二次応力					
	/ / / / / / / / / / / / / / / / / / /			・ェンバサポートのうち,シアキー構造より上部の部材については半径 造であるが,半径方向に可動しないシアキー構造より下部の部材(ベー					
				□ C めるか、千怪万向に可動しないシノヤー構造より下部の部内 (へーート) は板厚方向の剛性をモデル化する目的ではり要素とする。					
	*			末応答スペクトルの作成方針」の設計用床応答スペクトル(図番: NS2-					
				2-RB-SsEW-RB82, NS2-RB-SsV-RB82) を適用					

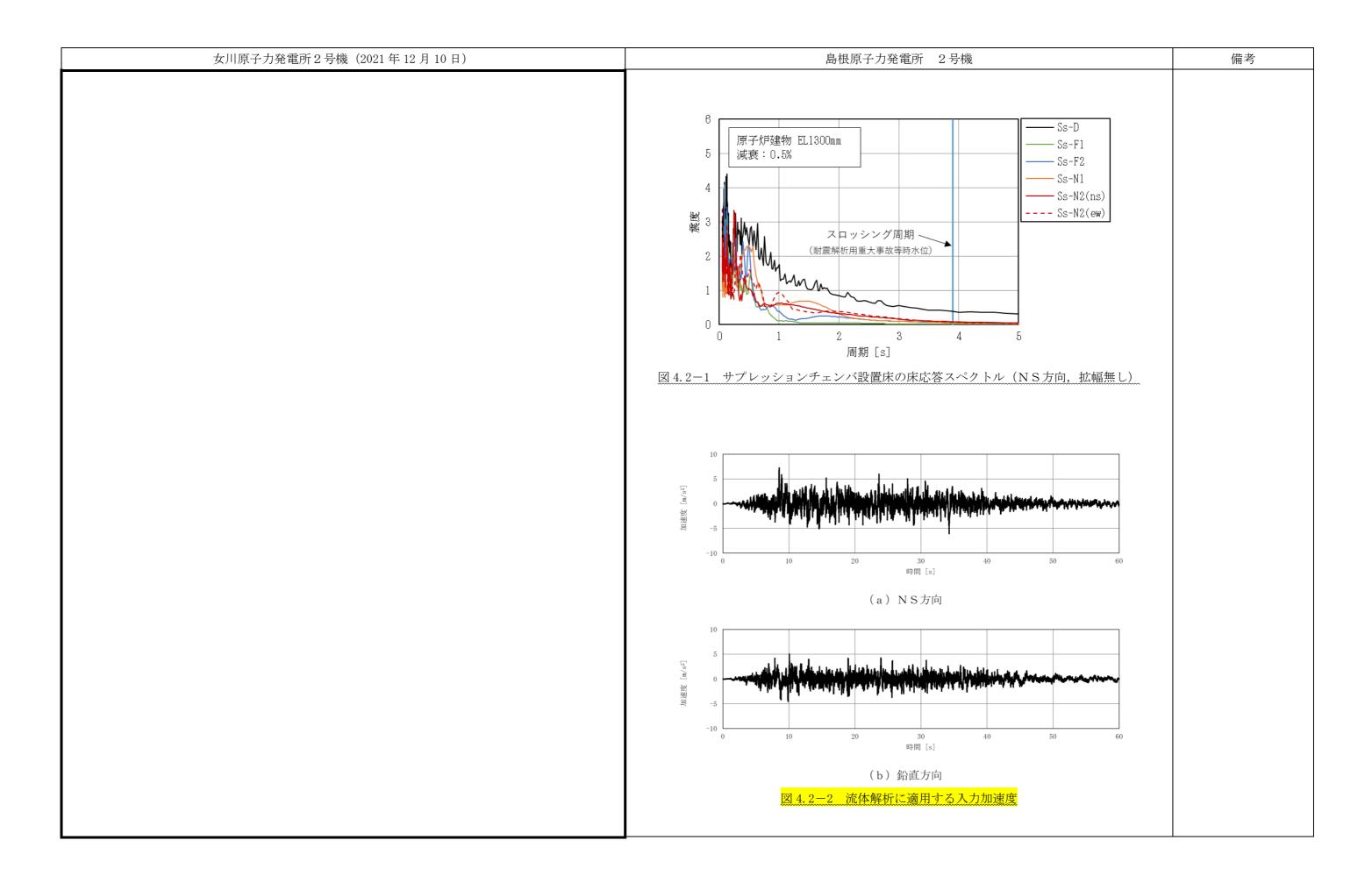
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	3. 解析モデル	
	解析モデルは,構造及び荷重の対称性を踏まえ,サプレッションチェンバ全体の 1/2 モデルと	
	する。解析モデルを図 3-1 に示す。	島根2号機では、通
		用性確認用解析モデル
		として 180° モデルを
		用いる。
		J
	図 3-1 解析モデル	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機				備考	
	4. モデル化諸元 モデル化諸元を表 4-1 に	示す。				
		表 4-1	モデル化諸元			
	部材	材料	質量 (10 ³ kg)	縦弾性係数 (MPa)	ポアソン比 (-)	
	サプレッションチェンバ胴	SPV50				
	補強板	SGV49		1 00 1 1 0 5		
	補強リング	SGV49		$1.98 \times 10^{5}$	0.3	
	サプレッションチェンバ サポート	SGV49				



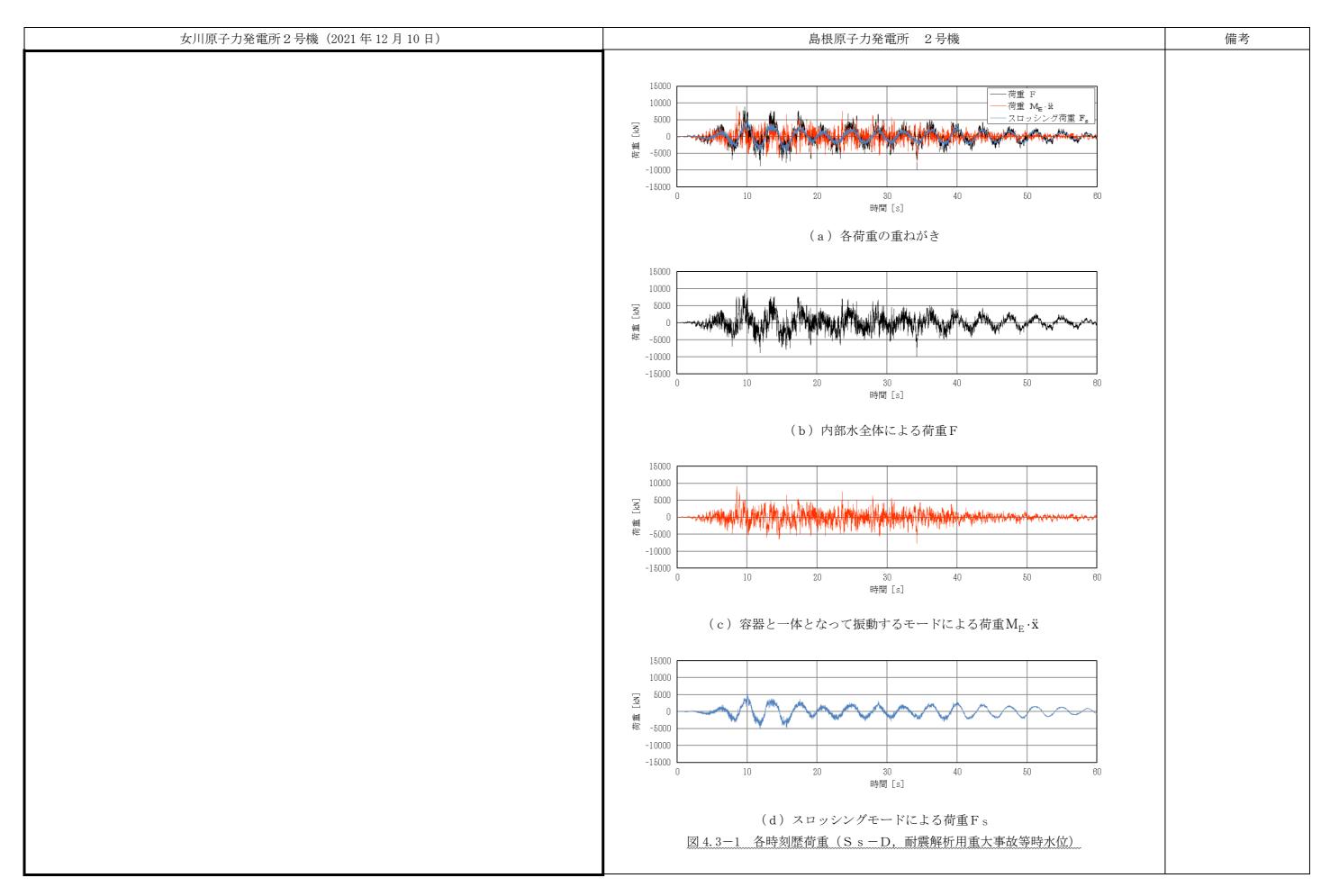


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	1	・評価方法の相違
		島根2号機では、適
		用性確認用解析モデル
		として 180° モデルを
		用いる。
	図 5-3 サプレッションチェンバの詳細モデル図	


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、ベ
		ース及びベースプレー
		トをはり要素でモデル
		化する。
	<b>                                     </b>	
	<b>[ ]</b>	
	<u> </u>	
	<u> </u>	
	<b>                                     </b>	
	<b>1</b>	
	<b>[ ]</b>	
	<b>[ ]</b>	
	<b>[ ]</b>	
	図5-4 サプレッションチェンバサポートの詳細モデル図	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	別紙 6  サプレッションチェンバ内部水によるスロッシング荷重の算定  1. 概要  耐震評価における構造物の内部水の考え方としては、たて置円筒容器などでハウスナーの手 法が一般的に採用されている。  本資料では、ハウスナーの手法の考え方を用いてサプレッションチェンバの内部水の扱いに ついて説明する。	
	また、汎用流体解析コード <u>Fluent</u> を用いたスロッシング荷重の算定方法について説明する。  2. ハウスナーの手法による内部水の考え方 たて置円筒容器の内部水の地震時の挙動の概念について、図 2-1に示す。 水平方向の地震動に対する内部水の挙動としては、液面表面が揺れるスロッシングモードと 内部水が容器と一体となって振動するモードの2つのモードが組み合わされる。  ハウスナーの手法では、容器と一体となって振動するモードとして付加される質量M _E (有効質量)を剛体として、スロッシングモードとして付加される質量M ₁ とスロッシングの固有周期を考慮したバネを容器に結合した解析モデルにて、耐震評価を行い容器と一体となって振動するモード及びスロッシングモードによる荷重を計算する。	・評価方法の相違使用する解析コードの相違
	地震動   地震動   地震動   地震動   地震動   地震動   は高動   は高動   は高い   はるモデル化   はるモデル化   図 2-1   たて置円筒容器の内部水の地震時の挙動の概念	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3. サプレッションチェンバの内部水の扱い	
	地震時のサプレッションチェンバに対する荷重を算出する場合のサプレッションチェンバの	
	内部水の扱いについて、水平方向及び鉛直方向に分けて説明する。	
	水平方向の地震動によるサプレッションチェンバに対する地震荷重は、容器と一体となって	
	振動するモードによる荷重及びスロッシングモードによる荷重に分けて評価する。	
	容器と一体となって振動するモードによる荷重は、汎用構造解析プログラムNASTRAN	
	から算出される有効質量を用いて、地震応答解析モデルに付加質量M _E として設定し、はりモデルを用いた動的解析 (スペクトルモーダル解析等) により算出する。ここで、この地震応答解析	
	モデルでは、スロッシングモードとして付加される質量M _i とバネは考慮しない。	
	一方, スロッシングモードによる荷重は, 前述の地震応答解析とは別に, 実機サプレッション	
	チェンバの内部構造物及び内部水の全質量(水位)を考慮し、汎用流体解析コード <u>Fluent</u>	  ・評価方法の相違
	により算出する。ここで、 $Fluent$ を用いて地震時の内部水によるサプレッションチェンバ	
	に対する荷重を算出する場合、スロッシングモードによる荷重及び容器と一体となって振動す	
	るモードによる荷重の総和Fとして算出される。このため、荷重の総和Fから容器と一体となっ	,
	て振動するモードによる荷重を差し引くことでスロッシング荷重を算出する。	
	鉛直方向の地震動によるサプレッションチェンバに対する地震荷重は,地震応答解析モデル	
	上、内部水の全質量を考慮し、はりモデルを用いて算出する。	


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4. 実機スロッシング荷重の算定方法	
	<u>Fluent</u> を用いたスロッシング荷重の算出方法について,重大事故時における <u>算出例</u> を説明する。	使用する解析コード
	説明する。         4.1 解析モデル 解析モデルを図 4.1-1に、解析諸元を表 4.1-1に示す。         図 4.1-1 流体解析モデル 表 4.1-1 解析諸元         格子数 格子サイズ	使用する解析コードの相違・評価方法の相違・語根2号機では、通常では、通常では、通常では、一般では、一般では、一般では、一般では、一般では、一般では、一般では、一般

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4.2 解析条件	
	解析条件を表 4.2-1 に,基準地震動 S s におけるサプレッションチェンバ設置床の応答加速	
	度スペクトルを図 <u>4.2-1</u> に <u>,流体解析に適用する入力加速度を図 4.2-2</u> 示す。	
	表 4.2-1 解析条件	・評価方法の相違
	モデル化範囲 サプレッションチェンバ内	島根2号機では,通
	水位     耐震解析用重大事故等時水位	常運転時の耐震評価に
	(ダウンカマ取付部下端位置:EL 7049mm)	おいても耐震解析用重
	評価用地震動 基準地震動 S s - D (水平方向及び鉛直方向) * に対	大事故等時水位を用し
	する原子炉建物 EL1300mm における建物床応答	る。
	解析コード Fluent ver.18.2 (汎用流体解析コード)	
	VOF法を用いた流体解析	
	その他 内部構造物のモデル化範囲: ベントヘッダ, ダウンカ	
	マ、クエンチャ、ECCSストレーナ	
	注記*:スロッシングの卓越周期帯及びサプレッションチェンバの一次固有周期	
	で応答加速度が大きいSs-Dを用いる。	



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4.3 スロッシング荷重算定	
	4.3.1 スロッシング荷重算定方法	
	Fluentで算出される内部水全体による荷重(有効質量による荷重及びスロッシング	・評価方法の相違
	荷重)Fは、スロッシングモードによる荷重Fs及び容器と一体となって振動するモードによ	使用する解析コード
	る荷重 $M_E \cdot \ddot{\mathbf{x}}$ の和であることから、スロッシング <u>モードによる</u> 荷重 $F \cdot \mathbf{s}$ は、下式で表される。	の相違
	$F = F_S + M_E \cdot \ddot{x}$	
	h e e e e e e e e e e e e e e e e e e e	
	よって,スロッシングモードによる荷重 $F_s$ は下式で表される。	
	$F_S = F - M_E \cdot \ddot{x}$	
	T S T WE A	
	ここで、	
	F _s :スロッシングモードによる荷重	
	F : 内部水全体による荷重	
	M _E : 内部水の有効質量 (流体解析により得られた有効質量比から算出)	
	x : 入力加速度	
	なお,有効質量の算出においては,荷重時刻歴波形についてフィルター処理を行い, <u>0.2~</u>	
	0.3Hz のスロッシング周期成分を取り除いている。	
	4.3.2 スロッシング荷重算定結果	
		・証価大法の担告
	Fluentで算定した内部水による荷重 $F$ ,容器と一体となって振動するモードによる荷重 $M_{\rm E}$ ・ $\ddot{x}$ ,スロッシングモードによる荷重 $F_{\rm S}$ の荷重時刻歴を図 $4.3-1$ に,スロッシングモ	
	ードによる最大荷重及びスロッシングモードによる荷重算定における有効質量比を表 4.3-1	
	に、 $Fluent$ で算出した内部水による荷重Fのフーリエスペクトル ( $Ss-D$ , 耐震解析	・評価方法の相違
	用重大事故等時水位)を図4.3-2に、フーリエスペクトルから求めたスロッシングの固有周	島根2号機では、通
	期を表 $4.3-2$ に示す。また,スロッシング解析結果例( $Ss-D$ , <u>重大事故時想定水位($S$</u>	
	<u>s)</u> , 最大荷重発生時刻付近( <u>34</u> 秒時点))を図 <u>4.3-3</u> に示す。 <u>この時刻での最大波高は</u>	おいても耐震解析用重
	0.76m である。 <mark>なお,全時刻での最大波高は 2.39m である。</mark>	大事故等時水位を用い
	スロッシング荷重は、耐震解析用重大事故等時水位で6060kNとなり、これを包絡する8597kN	る。
	を耐震評価で用いるスロッシング荷重とする。	
		・評価方法の相違
	<u>耐震解析用重大事故等時水位</u> に対する内部水の有効質量比は仮想質量法の <u>0.28</u> に対して <u>流</u>	島根2号機では、通
	体解析で 0.28 であり、仮想質量法による有効質量が適切に算定されることを確認した。	常運転時の耐震評価に
		おいても耐震解析用重
		大事故等時水位を用い
		る。

常運転時の耐震評価に おいても耐震解析用重	女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い			<ul><li>評価方法の相違</li></ul>
おいても耐震解析用重 大事故等時水位を用い			島根2号機では、通
大事故等時水位を用い			常運転時の耐震評価に
			おいても耐震解析用重
			大事故等時水位を用い
			る。



女川原子力発電所 2 号機(2021 年 12 月 10 日)		島根原子	カ発電所 2 号機		備考
		表 4.3-1 スロッシン:	グ荷重及び内部水の有	効質量比	<ul><li>評価方法の相違</li></ul>
	地震動	水位条件	スロッシング荷重* (最大)	内部水の有効質量比	島根2号機では,通 常運転時の耐震評価に
	S s - D	耐震解析用 重大事故等時水位	6060kN	0.28	おいても耐震解析用重 大事故等時水位を用い
	注記*:水平2	方向入力の影響を考慮			る。
	1. 野野 ガニー イ・ 4.	2E+07 0E+07 0E+08 0E+08 0E+08 0E+08 0E+00	0.26Hz (3.8秒)		
		フーリエスペクトル( <u>表 4.3-2</u> ス	振動数 [Hz] S s - D, 耐震解析用 ロッシングの卓越周期	<u> </u>	・評価方法の相違 島根2号機では,通
		水位条件 耐震解析用 重大事故等時水位	卓越周期 約3.8利		常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い
	注:色の違いは,	水面高さの違いを表す。また			る。 
	( <u>S</u> s -	図 4.3-3 ス - D,耐震解析用重大事	ロッシング解析結果例 故等時水位,最大荷重		

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	別紙 7 計算機コードの概要  1. はじめに 本資料は,「サプレッションチェンバの耐震評価における内部水質量の考え方の変更等について」 において用いた汎用解析プログラムNASTRAN及び汎用流体解析コード <u>Fluent</u> の解析	・評価方法の相違
	<ul> <li>(2) <u>Fluent (別紙7-2参照)</u></li> <li><u>Fluent</u>は、サプレッションチェンバ内の空間をモデル化し、流体の流れをVOF (Volume)</li> </ul>	・評価方法の相違 使用する解析コード の相違

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発電所 2号機	備考
	(1) NASTRAN	別紙 7-1	
	解析コードの概要		
	コード名	MSC NASTRAN	
	開発機関	MSC. Software Corporation	
	開発時期	1971年	
	使用したバージョン	2005, 2013	
	使用目的	3 次元有限要素法(シェル要素)による有効質量の算定	
	コードの概要	有限要素法を用いたMSC NASTRANは、世界で圧倒的シェアを持つ汎用構造解析プログラムのスタンダードである。その誕生は1965年、現在の米国MSC. SoftwareCorporationの前身である米国The MacNeal-Schwendler Corporationの創設者、マクニール博士とシュウェンドラー博士が、当時NASA (The National Aeronautics and Space Administration)で行われていた、航空機の機体強度をコンピュータ上で解析することをテーマとした「有限要素法プログラム作成プロジェクト」に参画したことに始まる。そこで作成されたプログラムはNASTRAN(NASA Structural Analysis Program)と命名され、1971年にThe MacNeal-Schwendler CorporationからMSCNASTRANとして一般商業用にリリースされた。以来、数多くの研究機関や企業において、航空宇宙、自動車、造船、機械、建築、土木などの様々な分野の構造解析に広く利	
		用されている。また各分野からの高度な技術的要求とコンピュ ータの発展に対応するために、常にプログラムの改善と機能拡 張を続けている。	
	検証と妥当性の確認	「検証」 本解析コードの検証は以下のとおり実施済みである。 ・ サプレッションチェンバの模擬試験体による振動試験により算定された有効質量比とNASTRANによる3次元有限要素法(シェル要素)及び付加質量法(Virtual Mass Method)により算定された有効質量比が一致することを確認している。 ・ 本コードの適用条件について、開発機関から提示された要件を満足していることを確認している。 [妥当性確認] 本コードの妥当性確認の内容は以下のとおりである。	

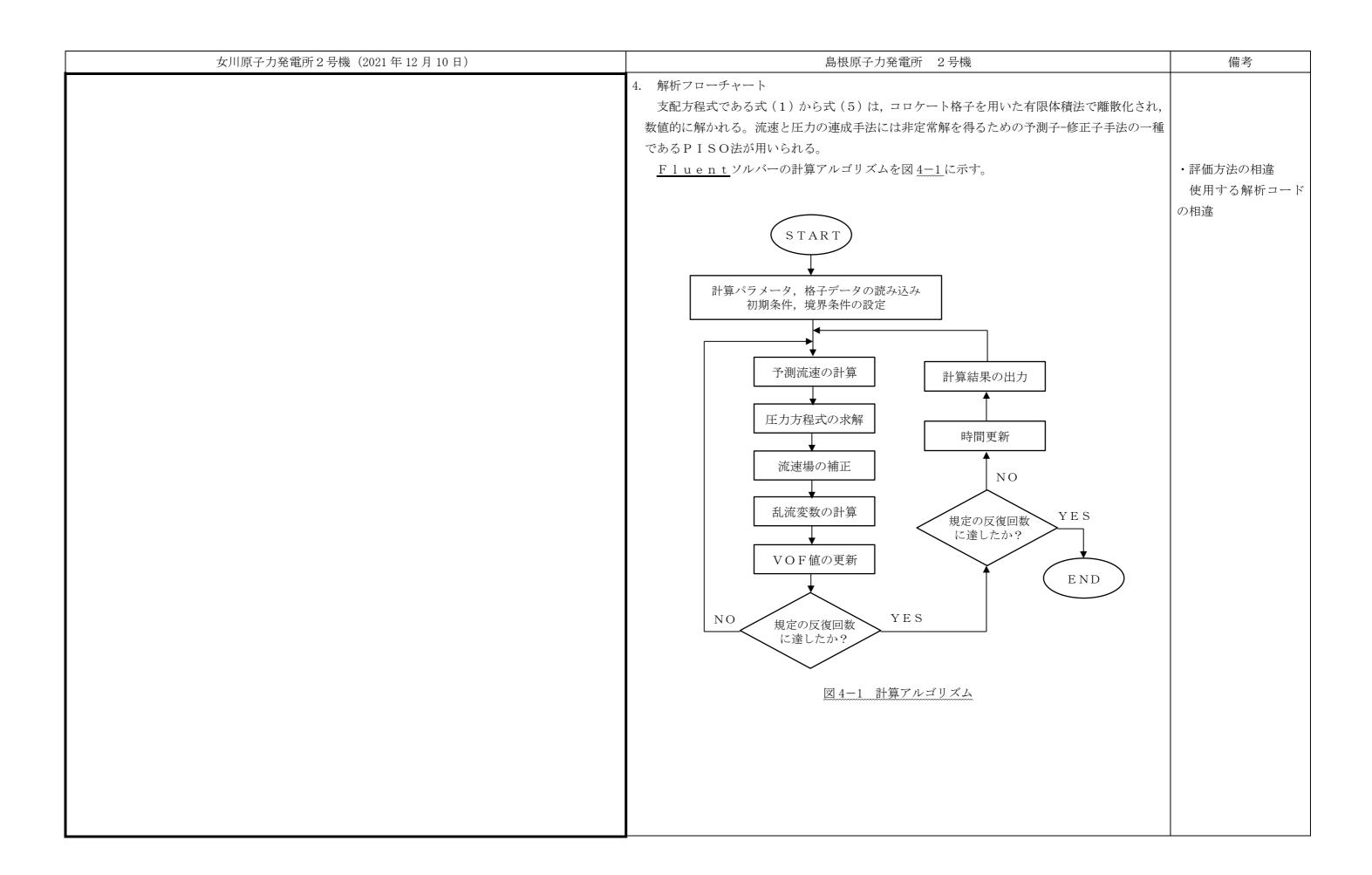
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
ANIMATI / THE MILE AND COULT TO HY	1. 概要 有限要素法を用いたMSC NASTRANは、世界で圧倒的シェアを持つ汎用構造解析プログラムのスタンダードである。その誕生は1965 年、現在の米国 MSC. Software Corporation の前身である米国 The MacNeal-Schwendler Corporation の創設者、マクニール博士とシュウェンドラー博士が、当時 NASA (The National Aeronautics and Space Administration) で行われていた, 航空機の機体強度をコンピュータ上で解析することをテーマとした「有限要素法プログラム作成プロジェクト」に参画したことに始まる。そこで作成されたプログラムは NASTRAN (NASA Structural Analysis Program) と命名され、1971年にThe MacNeal-Schwendler CorporationからMSC NASTRANとして一般商業用にリリースされた。以来、数多くの研究機関や企業において、航空宇宙、自動車、造船、機械、建築、土木などの様々な分野の構造解析に広く利用されている。また、各分野からの高度な技術的要求とコンピュータの発展に対応するために、常にプログラムの改善と機能拡張を続けている。  2. 本コードの特徴 NASTRANは、MSC. Software Corporationにより開発保守されている汎用構造解析コードである。原子力発電所の機器の応力評価で用いられる有限要素法による応力評価に加え、流体の入ったタンク構造や没水タービン等、接流体表面を持つ構造の振動解析で一般に広く用いられている。また、解析における縮約処理は、膨大な数のデータを扱う有限要素法などの解析において、行列の大きさ(次元)を小さくする解析上のテクニックであり、その手法として、Guyanの縮約法(Guyan's Reduction)が広く一般的に使われており、NASTRANの機能として整備されている。	NH **5
	3. 解析理論  本コードのうち、流体の入ったタンク構造や没水タービン等、接流体表面を持つ構造の振動解析で用いる仮想質量法の解析理論について述べる。 振動時に容器壁面に作用する圧力は、流体解析によって求められる。サプレッションチェンバのような複雑な形状に対しては、数値解析に依存することとなる。NASTRAN仮想質量法では、前者の理想流体(非圧縮性、非粘性、渦無し)を仮定した速度ポテンシャル法に沿う考え方が採用されている。	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	同解析コードでは、構造体の接水面に設定した節点において、構造体の振動により発生する流体圧力と流速を算定し、接水面における流体圧力と加速度の関係式を構造体の運動方程式に流体項を加えることで、構造体と流体の運動方程式が構築される。固有値解析あるいは応答解析を実施して、振動質量を求め、これから構造体の振動質量を差し引くことで、流体の振動質量すなわち流体の有効質量が算定される。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	<ul> <li>4. 解析フローチャート         NASTRAN仮想質量法を用いたサプレッションチェンバ内部水の有効質量算定手順を図         4-1 に示す。</li></ul>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	5. Guyan縮約法 本コードのうち、Guyan縮約法の解析理論について述べる。 動的問題に対する基礎方程式は、縮約を行う前に $u_f$ セットに対して組み立てられる。縮約を 行う前の標準マトリクス方程式は次式の形になる。 $\begin{bmatrix}\overline{M}_a & M_{a0} \\ M_{0a} & M_{00}\end{bmatrix} \begin{bmatrix} \ddot{u}_a \\ \ddot{u}_0 \end{bmatrix} + \begin{bmatrix} \overline{B}_a & B_{a0} \\ B_{0a} & B_{00} \end{bmatrix} \begin{bmatrix} \dot{u}_a \\ \dot{u}_0 \end{bmatrix} + \begin{bmatrix} \overline{K}_a & K_{a0} \\ K_{0a} & K_{00} \end{bmatrix} \begin{bmatrix} u_a \\ u_0 \end{bmatrix} = \begin{bmatrix} \overline{P}_a \\ P_0 \end{bmatrix} $ (1)	
	ここで $u_a$ , $\dot{u}_a$ , $\ddot{u}_a$ :解析セットに残される変位,速度,加速度自由度 $u_0$ , $\dot{u}_0$ , $\ddot{u}_0$ :消去セットに入れて消去される変位,速度,加速度自由度 $\overline{P_a}$ , $P_0$ :作用荷重	
	フリーボディ運動は解析セットに含めなければならない。そうしなければ, $K_{00}$ が特異になってしまう。バーを付けた量( $\overline{P}$ など)は縮約の対象にならない量を示す。 静的問題では,質量と減衰効果を無視して,式( $1$ )下段の分割行を解いて $u_0$ を計算することができる。	
	$\{ u_0 \} = -[K_0^{-1}] ([K_0] \{ u_a \} - \{ P_0 \}) $ (2)	
	式 $(2)$ の右辺は、 $G$ u y a n マトリクス $G$ $_0$ と静的補正変位 $u_0^0$ の $2$ つの部分に分解して、次式で表すことができる。	
	$[G_0] = -[K_0^{-1}][K_{0a}] $ (3)	
	$\{ u_0^0 \} = [K_{00}^{-1}] \{ P_0 \} $ (4)	
	式(2)から式(4)を式(1)上段の分割行に代入すれば厳密な静的求解の系が得られ、次 式の形に縮約された静解析方程式になる。	
	$[K_{a a}] \{u_a\} = \{P_a\} $ (5)	
	$\{u_0\} = [G_0]\{u_a\} + \{u_0^0\} $ (6)	
	ここで	
	$[K_{a a}] = [\overline{K}_{a a}] + [K_{a 0}][G_{0}] $ (7)	
	$\{P_a\} = \{\overline{P}_a\} + [G_0^T] \{P_0\} $ (8)	
	これに対して、動解析では、ベクトル $\ddot{u}_0$ と $\dot{u}_0$ を近似することによって系の次数を小さくすることができる。静的マトリクス方程式から出発して縮約を行うのがよい。式(6) から次式の変換を定義する。	
	$\{u_{f}\} = \begin{Bmatrix} u_{a} \\ u_{0} \end{Bmatrix} = [H_{f}] \{u_{f}'\} \tag{9}$	


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機		
	ここで、		
	$\{\mathbf{u}_{\mathbf{f}}'\} = \begin{Bmatrix} \mathbf{u}_{\mathbf{a}} \\ \mathbf{u}_{0}^{0} \end{Bmatrix}$	(10)	
	$[H_f] = \begin{bmatrix} I & 0 \\ G_0 & I \end{bmatrix}$	(11)	
	ここで、 $\mathbf{u}_0^o$ は静的変位形状に対する変位増分である。式( $1$ )で表すことなく新しい座標系に変換することができる。変換された系にお式の形になる。		
	$ [K_{f f}] = \begin{bmatrix} I & G_{0}^{T} \\ 0 & I \end{bmatrix} \begin{bmatrix} K_{a a} & K_{a 0} \\ K_{0 a} & K_{0 0} \end{bmatrix} \begin{bmatrix} I & 0 \\ G_{0} & I \end{bmatrix} $	(12)	
	マトリクスの乗算を行い、式(3)を代入すると、次式が得られる。	0	
	$ [K_{f f}] = \begin{bmatrix} K_{a a} & 0 \\ 0 & K_{0 0} \end{bmatrix} $	(13)	
	剛性マトリクス内の連成は解除されたが、質量と減衰マトリクスは る結果になる。減衰マトリクスは質量マトリクスと同じ形であるから、 を省略して考える。厳密な変換系は次式の形になる。		
	$\begin{bmatrix} M_{a\ a}^{'} & M_{a\ 0}^{'} \\ M_{0\ a}^{'} & M_{0\ 0}^{'} \end{bmatrix} \!\! \begin{pmatrix} \ddot{u}_{a} \\ \ddot{u}_{0} \end{pmatrix} \! + \! \begin{bmatrix} K_{a\ a} & 0 \\ 0 & K_{0\ 0} \end{bmatrix} \!\! \begin{pmatrix} u_{a} \\ u_{0} \end{pmatrix} \! = \! \begin{Bmatrix} P_{a} \\ P_{0} \end{Bmatrix}$	(14)	
	ここで、		
	$[M'_{a a}] = [M_{a a}] + [M_{a 0}][G_{0}] + [G_{0}]^{T}[M_{0 a} + M_{0 0}G_{0}]$	(15)	
	$[M_{a\ 0}] = [M_{0\ a}]^T = [M_{a\ 0}] + [G_0^T M_{0\ 0}]$	(16)	
	$[\mathbf{M}_{0}^{'}] = [\mathbf{M}_{0}]$	(17)	
	B' _{ff} の減衰マトリクス成分は、質量マトリクス分割と同じ形で表すこが対称変換でなくても、上記と同じ変換を得る方法を次に紹介する。こら、縮約される加速度の影響を以下の式で見積もる。		
	$\{\ddot{\mathbf{u}}_0\} \cong [\mathbf{G}_0] \{\ddot{\mathbf{u}}_a\}$	(18)	
	式 (18) を式 (1) 下段の分割行に代入してu ₀ に関して解くと, 以	J下の近似式が得られる。	
	$\{\mathbf{u}_{0}\} = [\mathbf{K}_{0\ 0}^{-1}] (\{\mathbf{P}_{0}\} - [\mathbf{K}_{0\ a}] \{\mathbf{u}_{a}\} - [\mathbf{M}_{0\ a} + \mathbf{M}_{0\ 0} \mathbf{G}_{0}] \{\ddot{\mathbf{u}}_{a}\})$	(19)	
	K ₀ aに関する式(3)及び質量項に関する式(16)を式(19)に代入	すると、次式が得られる。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機		備考
	$\{\mathbf{u}_{0}\} \cong [\mathbf{G}_{0}] \{\mathbf{u}_{a}\} + \mathbf{K}_{0}^{-1}[\{\mathbf{P}_{0}\} - [\mathbf{M}_{0}]^{'} \{\ddot{\mathbf{u}}_{a}\}]$	(20)	
	式 (18) と式 (20) を式 (1) 上段の分割行に代入すると、次式	が得られる。	
	$[\overline{\mathrm{M}}_{\mathbf{a}}\ _{\mathbf{a}}+\mathrm{M}_{\mathbf{a}}\ _{0}\mathrm{G}_{0}]\left\{ \ddot{\mathbf{u}}_{\mathbf{a}}\right\} +[\overline{\mathrm{K}}_{\mathbf{a}}\ _{\mathbf{a}}+\mathrm{K}_{\mathbf{a}}\ _{0}\mathrm{G}_{0}]\left\{ \mathbf{u}_{\mathbf{a}}\right\}$		
	$-[K_{a_0}K_{0_0}^{-1}][M_{0_a}+M_{0_0}G_{0}]\{\ddot{u}_{a}\}\!=\!\{\overline{P}_{a}\}\!-\![K_{a_0}][K_{0_0}^{-1}]\{P_{0}\}$	(21)	
	項を整理すると、式(14)~式(17)と同じ結果が得られる。 上記の縮約手順から、Guyan変換の特長がわかる。 ・近似が導入されるのは加速度成分のみである(式(18))。 ・縮約した系の剛性成分は厳密な内容である。 ・式(14)及び式(20)で定義される内部変位はほとんど等しい。		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発電所 2号機	備考
		別紙 7-2	
	(2) <u>Fluent</u>		<ul><li>評価方法の相違</li></ul>
	解析コードの概要		使用する解析コード
	コード名	Fluent	の相違
	開発機関	ANSYS, Inc	
	開発時期	2017年(初版開発時期 1983年)	
	使用したバージョン	Ver. 18. 2. 0	
	コードの概要	ANSYS Fluent は汎用熱流体解析コードであり、数値流体力学解析の	
		初心者からエキスパートまで、幅広い要求に応える使いやすさと多	
		くの機能を備える。有限体積法をベースとした非構造格子に対応す	
		るソルバを搭載しており、VOF(Volume of Fluid)法を用いて溢	
		水を伴う大波高現象の解析を実施することが可能である。VOF法	
		はスロッシング解析における精度の高い手法であり、複雑な容器形	
		状や流体の非線形現象を考慮する場合に有効である。	
	検証と妥当性の確認	[検証]	
		・本解析コードは有限体積法を用いた汎用流体解析プログラムであ	
		り、数多くの研究機関や企業において、様々な分野の流体解析に	
		広く利用されていることを確認している。 ・流体力学分野における典型的な事象について,解析結果が理論解	
		及び実験結果と一致することを確認している。	
		<ul><li>・本解析コードの製品開発,テスト,メンテナンス,サポートの各</li></ul>	
		プロセスは、United States Nuclear Regulatory Commission (ア	
		メリカ合衆国原子力規制委員会)の品質要件を満たしている。	
		[妥当性確認]	
		・本解析コードは、航空宇宙、自動車、化学などの様々な分野にお	
		ける使用実績を有しており、妥当性は十分に確認されている。	
		・2次元スロッシング問題の解析結果と実験結果とを比較し、よく	
		一致することを確認している。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	1. 概要	
	ANSYS Fluent は汎用熱流体解析コードであり、数値流体力学解析の初心者からエキスパート	<ul><li>評価方法の相違</li></ul>
	まで、幅広い要求に応える使いやすさと多くの機能を備える。有限体積法をベースとした非構造	使用する解析コード
	格子に対応するソルバを搭載しており、VOF(Volume of Fluid)法を用いて溢水を伴う大波高	の相違
	現象の解析を実施することが可能である。VOF法はスロッシング解析における精度の高い手	
	法であり、複雑な容器形状や流体の非線形現象を考慮する場合に有効である。	
	2. 本コードの特徴	
	1) 本コードの主な解析機能をつぎに列挙する。	
	・非圧縮性・圧縮性流れの定常・非定常解析	
	・ニュートン・非ニュートン流体の取り扱い	
	・熱・物質の輸送、化学反応、燃焼、粒子追跡	
	· 単相流, 多相流, 熱物理的状態変化, 自由表面流	
	・層流・乱流,音響	・評価方法の相違
		使用する解析コード
		の相違
	2) 非構造格子の採用による複雑境界の表現と格子細分化が可能である。	
	3)MPI(Message Passing Interface)による並列処理に対応している。	
	3. 解析理論	
	(1) VOF法について	・評価方法の相違
	VOFは下式に示すように計算格子(セル)における流体の割合を示すスカラー量であ	使用する解析コード
	<u>る。スロッシング解析では水を 100%含む計算セルを $VOF = 1.0$,水が存在せず 100%空気</u> の計算セルを $VOF = 0.0$ としている。 $VOF$ の計算セルの例を図 $3-1$ に示す。	の相違
	$V_{\bullet}$	
	$\alpha_1 = \frac{V_1}{V} \tag{1}$	
	: VOF値	
	V ₁ : 流体体積	
	V : 計算セル体積	
	THIST STATEMENT	

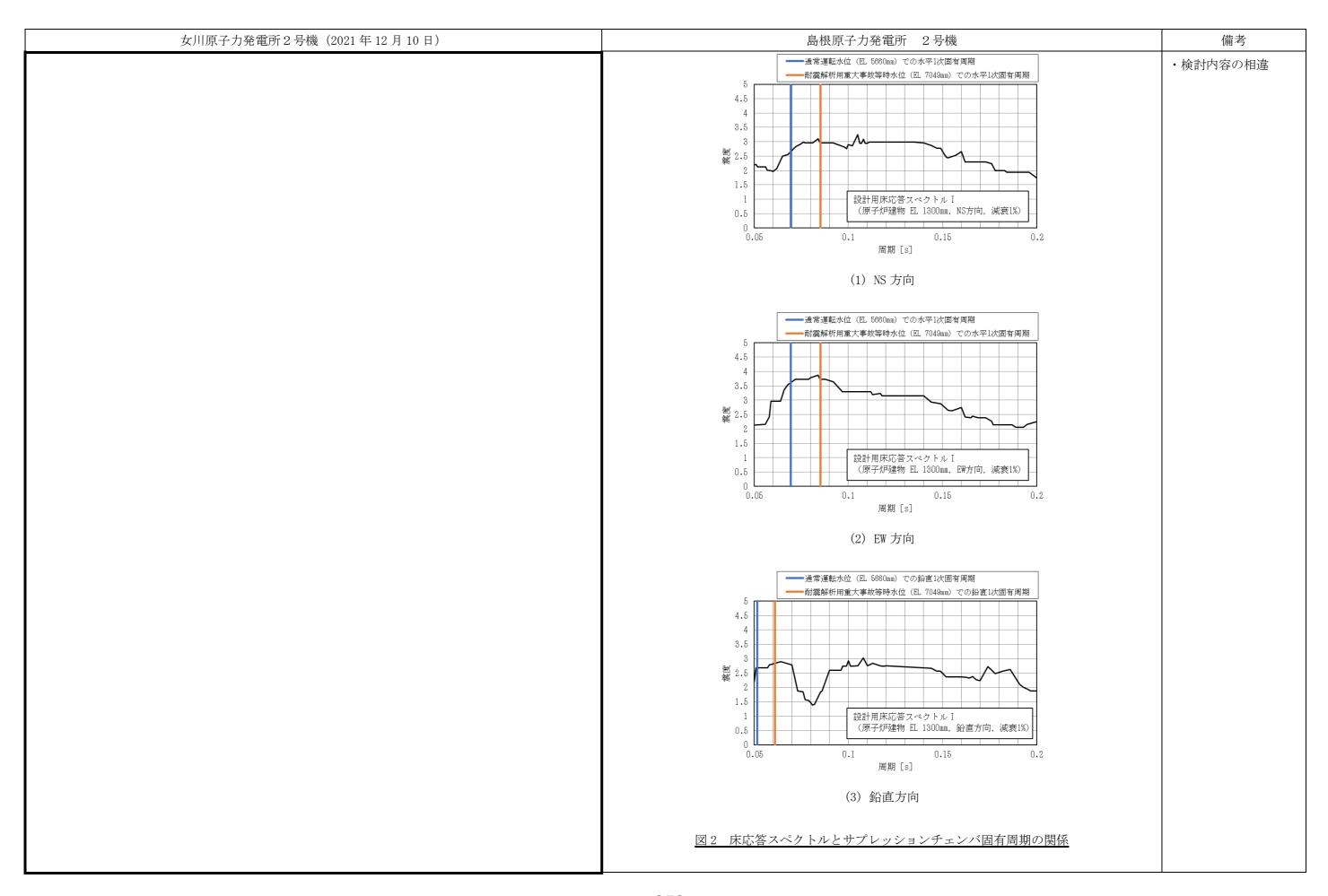
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
(2021 4- 12 H 10 H)	の政策下力更進別 2 分機 $\sqrt{OF=0.0}$	・評価方法の相違使用する解析コードの相違



女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機  内部水の有効質量の概要  容器の振動方向に地震荷重として付加される荷重は、内部水を剛体として扱う場合の荷重よりも小さいことが知られており、このときのみかけの質量は有効質量(又は付加質量、仮想質量等)と呼ばれている。ここでは、円筒タンクを例に有効質量の概要を説明する。 図1のように、直径Dの円筒タンクに液面高さLの水が入っているとする。通常、容器内の水は自由表面を有しており、このタンクに水平方向に単位加速度を与えた場合の側板における動液圧力は、図2に示すように自由表面において0であり、深さ方向に二次曲線的な分布を生じる。一方、容器内を満水とし自由表面を無くした場合には、水全体が一体となって動くため、側板の動液圧力は高さ方向に一定となる。このように、自由表面を有する場合に側板に作用する地震荷重は、自由表面がない場合(水全体が一体に動く場合)の地震荷重に対して小さくなる。円筒タンクに加わる地震荷重のイメージを図3に示す。 荷重評価において、自由表面を有する内容液の加速度に対する実際に地震荷重として付加される質量を有効質量という。また、水の全質量に対する有効質量の比を有効質量比という。	備考
	れる質量を有効質量という。また、水の全質量に対する有効質量の比を有効質量比という。  D  自由表面あり  - 自由表面なし(密閉)  上  地震力  地震力	
	図1 円筒タンクの内容液 図2 加速度に対する側板の (イメージ) 動液圧分布	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考		
安川原子力発電所 2 号機 (2021 年 12 月 10 日)	お供原子力発電所 2号機	備考		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機				
	別紙 9				
	規格類における内部水の有効質量の適用例				
	が保持(これ) るとはいった。 が保持(これ) るとはいった。 がは、 がは、 がは、 がは、 がは、 がは、 がは、 がは、				
	1. 概要				
	有効質量の考え方は、他産業の耐震設計において一般的に取り入れられている。その一例として「容器構造設計指針・同解説(日本建築学会)」における球形タンク及び円筒タンクの設計へ				
	の適用例を示す。				
	(球形タンクへの適用例)				


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	(円筒タンクへの適用例)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別紙 10	
	サプレッションチェンバの水位条件	
	事故シーケンス等におけるサプレッションチェンバの水位について図1に示す。また, 重大事	
	故等時におけるサプレッションチェンバの耐震評価に用いる水位条件*の考え方を表1に示す。	
	通常運転時の耐震評価では、重大事故等時に考慮する水位(耐震解析用重大事故等時水位)を	    ・評価方法の相違
	適用することにより、内部水質量が通常運転時に対して大きくなる条件を設定することで、重大	・計画ガ伝の相達   - 島根2号機では,通
	事故等時と共通の地震応答解析モデルを適用している。なお、水位を高く設定することでサプレ	常運転時の耐震評価に
	ッションチェンバの固有周期が変化するが、図2に示すとおり、床応答スペクトルと固有周期の	おいても耐震解析用重
	関係においても通常運転時の水位に対して、耐震解析用重大事故等時水位は保守的な条件とな	大事故等時水位を用レ
	る。図2において、通常運転時の水位における固有周期と、耐震解析用重大事故等時水位におけ	る。
	<u>る固有周期の間に床応答スペクトルのピークが存在するが、耐震解析用重大事故等時水位の固</u>	・検討内容の相違
	有周期における床応答スペクトルの値に対して 5%以内の増分であること、床応答スペクトルの	
	ピークの固有周期に対応する水位は耐震解析用重大事故等時水位よりも低い水位であり、内部	
	水質量が少ないことから、床応答スペクトルのピークの影響は軽微である。	
		   ・資料構成の相違
		島根2号機では,サ
		プレッションチェンバ
		の水位条件はVI-1-8-
	注記*: VI-1-8-1 「原子炉格納施設の設計条件に関する説明書」を参照	「原子炉格納施設の記
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	編集	
	大位の範囲	
	***********************************	
	本位の割田 DB S A A A A A A A A A A A A A A A A A A	
	25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25.06   25	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発電所 2号機							
及川原 1 万元电 <b>川 2 夕</b> (成(2021 午 12 月 10 日)		耐震評価に こる水位条件*6	耐震評価に あ水位条件*6 水位条件の考え方 耐震評価上,水位が高い が大きくなるにひから, 通洋運転着囲の上段値 (3.66m(H.W.L))を用い ることを基本とする**4 が、 評価対象条件によら が、 評価対象条件によら ガン基本的には発生荷画 が、 配の解析・アンを 一種するため, 更に高い水 位をしてSA時と同じ水 位条件を用いる。 が基本的には発生荷画 が基本的には発生荷画 が基本的には発生荷画 が基本的には発生荷画 が表さくなることが高い が大きくなることがら、 ながな客は過価下・ が位が高い 方が基本的には発生荷画 が大きくなることがら、 ながないないと。 ながないないと。 が大きくなることがら、 ながないとなることがら、 ながないとなることがら、 ながないとなることがら、 ながないとなることがら、 ながないとなることがら、 ながないることがら、 ながないとなることがら、 ながないとがら、 を持ななることがら、 ながないとなることがら、 ながないることがら、 ながないることがら、 を持なないることがら、 ながないることがも、 ながないることがら、 ながないることがら、 を持なないることがある。				耐震評価上, 水位が高い 方が基本的には発生荷重 が大きくなることから, 格納容器過圧・過温破損 (不確かさケース)を上 のる条件を用いる。 (EL 7049mm*5)	6保安措置) 第46条 サブレッションチェンバ おに考慮しない。 ンバの水位が通常運転水位+1.29m (水位4.9m) 到 と実施しなかった場合においても, サブレッション	
	バの耐震評価に用いる水位条件の考え	水位条件の想定の考え方用い	保安規定*2に基づきサプレッション チェンバの水位を管理しており、運転 上の制限を満足しない場合は、措置				運転手順に基づきサプレッションチェンバの水位を管理しており、格納容器過圧・過温破損(全事故シーケンスのうち、格納容器水位が最も厳しくなる事故シーケンスを選定)のうち、「格約容器過圧・過温破損(残留敷代替除去系を使用しない場合)(不確かさケース:2Pdに到達)」**を踏まえた水位条件。	(2号炉および3号炉に係る 耐震評価に用いる水位条件 いて、サブレッションチェ た、2Pdに達するまで操作 まい。 る説明書」に示す。	
	ンコンコンコンコンコンコンコンコンコンコンコンコンコンコンコンコンコンコンコ	想定する 水位条件		3. 56m (L. W. L)	3. 66m (H. W. L.)		3.56m(L.W.L) — ※约5.05m	運転段階の発電用原子炉施設編(2号炉お 定に定める復旧時間等を踏まえ,耐震評価 ピアアクシデント)「SOP」において,サブペントを行う手順としている。また,2Pdにいる水位約5.05mを上回ることは無い。 原子炉格納施設の設計条件に関する説明書」	
	4 7 7 2	許容応力 決態		II S IV S		III S IV S	V _A S * 1 V _A S * 1	5. 2. 「第 1 編 運転段階の 立は,保安規定に定め。 年要領書(シビアアク、 専止し,PCVベントを行 震評価に用いる水位約 「VI-1-8-1 原子炉格納	
	麦1	荷重の組合せ		D+P+M+Sd* D+P+M+Ss		$D+P_L+M_L+Sd*$ $D+P_L*+M_L+Sd*$	$D + P_{SAL} + M_{SAL} + S d$ $D + P_{SALL} + M_{SALL} + S s$	*1: V vs としてIV s の許容限界を用いる。 *2: 島根原子力発電所原子炉施設保安規定「第1編 運転段階の発電用原子炉施設編の水位」(補足1参照) *3: 運転上の制限を満足しない場合の水位は,保安規定に定める復旧時間等を踏まえ, *4: 有効性評価結果を踏まえた事故時操作要領書 (シビアアクシデント) 「SOP」にお連をもって格納容器代替スプレイを停止し, PCVベントを行う手順としている。まチェンバの水位は約5.03mであり, 耐震評価に用いる水位約5.05mを上回ることは集*5: ダウンカマ取付部下端位置 *5: ダウンカマ取付部下端位置 *6: 耐震評価に用いる水位については,「VI-1-8-1 原子炉格納施設の設計条件に関す	
		運転状態	運転状態I	運転状態工	運転状態皿	運転狀態IV	運転状態V	NasとしてID 島根原子力発 の水位」(補 運転上の制限 有効性評価結 連をむって格 チェンバの水 ダウンカマ取 耐震評価に用	
		闸		д			A &	知 * * * * * * * * * * * * * * * * * * *	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	(記号の説明)  D : 死荷重  P : 地震と和み合わすべきブラントの運転状態(地震との組合せが独立な運転状態IV, Vは除く。)における圧力荷電  M : 地震及び北荷重以外で地震と組み合わすべきブラントの運転状態(地震との組合せが独立な運転状態IV, Vは除く。)で設備に作用している機械的荷重各運転状態におけるP及びMについては、安全側に設定された値(最高使用圧力,設計機械的重等)を用いてもよい。  P₁ : 地震との組合せが独立な運転状態IVの事故の直後を除き、その後に生じている圧力荷重 P₂。 : 冷却材度失事故後最大内圧  M₁ : 地震との組合せが独立な運転状態IVの事故の直後を除き、その後に生じている死荷重及び地震荷重以外の機械的荷重  PsΔL: 重大事故等時の状態(運転状態V)で長期的(長期(L))に作用する圧力荷重 MsΔL: 重大事故等時の状態(運転状態V)で長期的(長期(L))に作用する機械的荷重 PsΔLL: 重大事故等時の状態(運転状態V)で長期的(長期(L))より更に長期的(長期(L))に作用する機械的荷重  S d : 弾性設計用地震動とはにより定まる地震力  S d : 弾性設計用地震動とはにより定まる地震力 S d * : 弾性設計用地震動とないよりの地震力のいずれか大きい方の地震力 S d * : 弾性設計用地震動とはより定まる地震力 S d * : 弾性設計用地震動とはより定まる地震力 S f * : 発電別用等力設備規格(設計・建設規格(2005年版(2007年9月)(以下「設計・建設規格」という。)の供用状態C相当の許容応力を基準として、それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態  IV S : 設計・建設規格の供用状態D相当の許容応力を基準として、それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	



女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	補足1 島根原子力発電所原子炉施設保安規定 抜粋	
	(サプレッションチェンバの水位) 第46条 原子炉の状態が運転,起動および高温停止において,サプレッションチェンバの水 位は,表46-1(図46)に定める事項を運転上の制限とする。ただし,地震時における 一時的な水位変動を除く。	
	<ul><li>2. サプレッションチェンバの水位が、前項に定める運転上の制限を満足していることを確認するため、次号を実施する。</li><li>(1) 当直長は、原子炉の状態が運転、起動および高温停止において、サプレッションチェンバの水位を24時間に1回確認する。</li></ul>	
	3. 当直長は、サプレッションチェンバの水位が、第1項に定める運転上の制限を満足していないと判断した場合は、表46-2の措置を講じる。	
	表 4 6 - 1	
	-5 cm (下限値)以上 図46	
	領域 B 上限値 + 10cm	
	通常運転範囲 下限値	
	領域 A ———— 下限値−10cm 領域 B	
	表46-2	
	条     件     要求される措置     完了時間       A. サプレッションチェンバの水位     A1. サプレッションチェンバの水位を制     2 4 時間	
	が図46の領域Aの場合 限値以内に復旧する。	
	B. 条件 A で要求される措置を完了B1. 高温停止にする。2 4 時間時間内に達成できない場合および	
	B2. 冷温停止にする。     3 6 時間       C. サプレッションチェンバの水位 が図 4 6 の領域 B の場合     C1. 原子炉をスクラムする。     速やかに	
	注記:図46に記載の「上限値」はH.W.L (3.66m) を表し,「下限値」はL.W.L (3.56m) を表す。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・ 資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

プレッションチェンバ の水位条件はVI-1-8-1 「原子炉格納施設の設	女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
プレッションチェンバ の水位条件はVI-1-8-1 「原子炉格納施設の設 計条件に関する説明			・資料構成の相違
の水位条件はVI-1-8-1 「原子炉格納施設の設 計条件に関する説明			島根2号機では、サ
「原子炉格納施設の設 計条件に関する説明			プレッションチェンバ
計条件に関する説明			の水位条件はVI-1-8-1
			「原子炉格納施設の設
表) 本欲依下る。			計条件に関する説明
			書」を参照する。
			,

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・ 資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

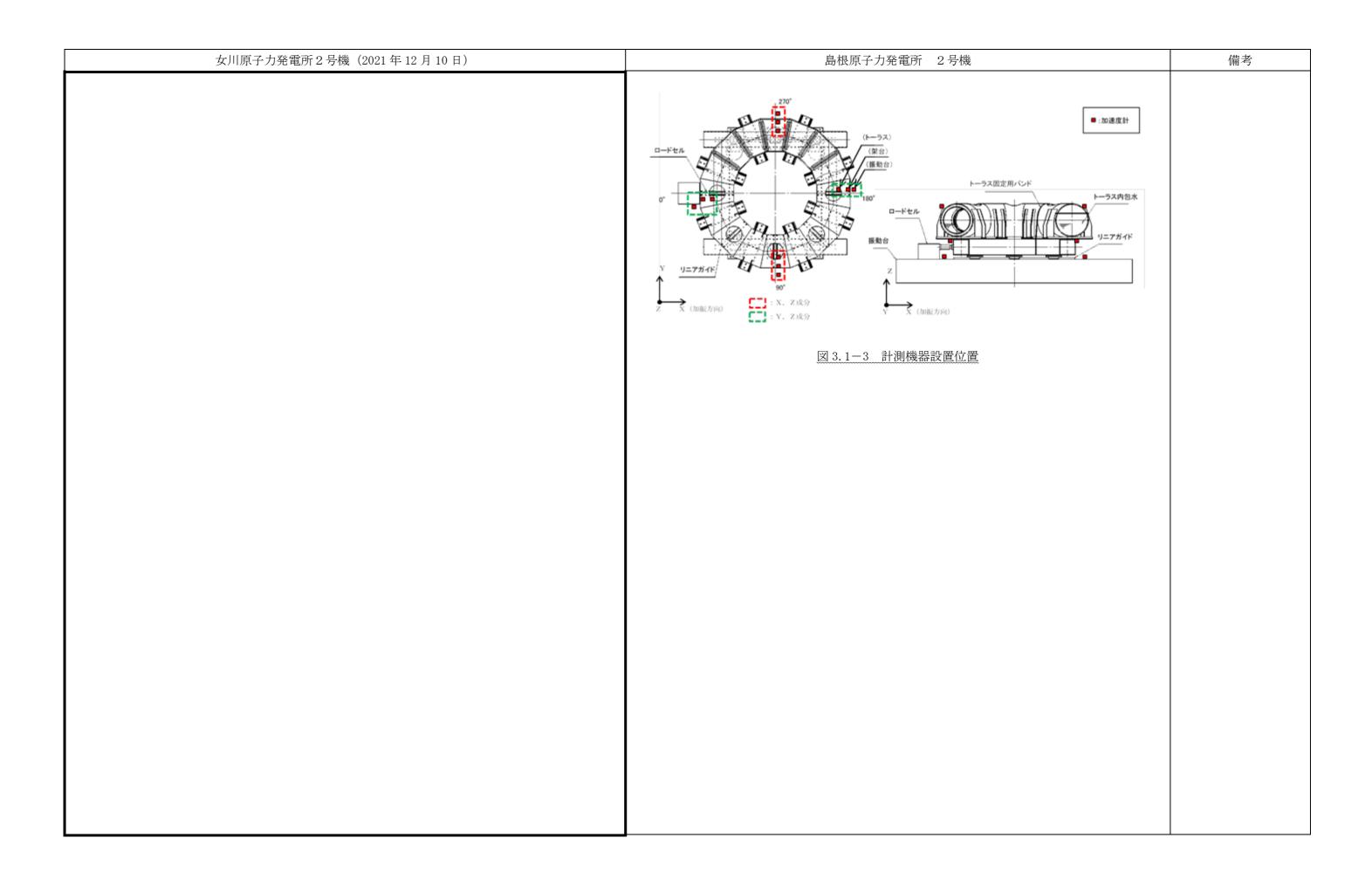
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

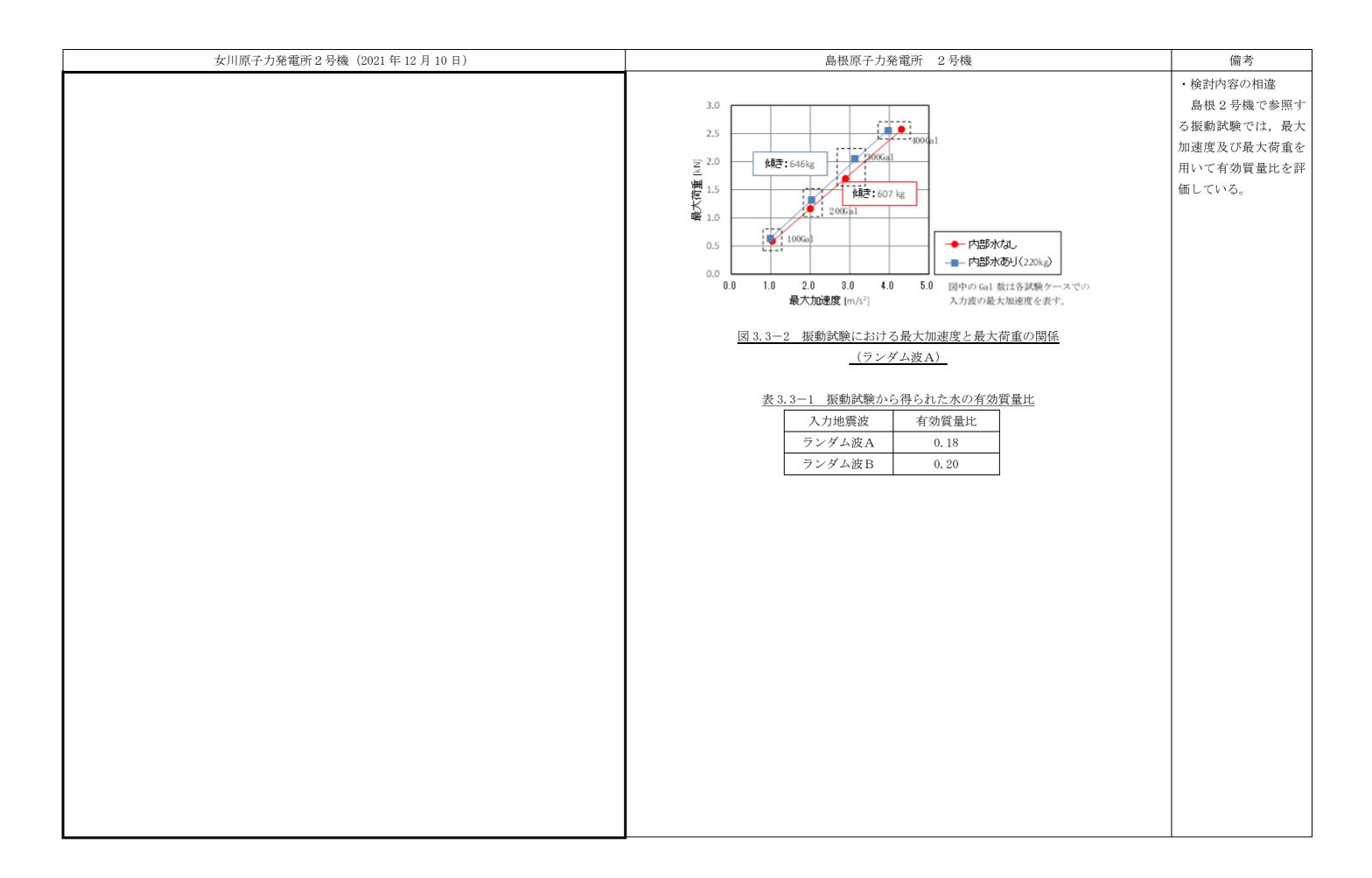
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では,サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では,サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。


女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では,サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・資料構成の相違
		島根2号機では、サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では,サ
		プレッションチェンバ
		の水位条件はVI-1-8-1
		「原子炉格納施設の設
		計条件に関する説明
		書」を参照する。


女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別紙 11	
	地震時における円筒形状容器内部水の有効質量に係る研究の概要	
	1. 概要	
	本研究では、円環形状容器に対しNASTRANによる有効質量評価の妥当性を確認することを目的とする。そのため、サプレッションチェンバを縮小模擬した試験体による振動試験を実施し	・検討内容の相違 島根2号機で参照す
	た。	る振動試験では、通常
		運転範囲の上限値相当   に対して検討する。
	2. 研究計画	・検討内容の相違
	2.1 研究時期	島根2号機では、振
	<u>平成14年度</u>	動試験 <mark>のみ</mark> により仮想   質量法の検証を行う。
	2.2 研究体制	
	本研究は、下記の体制及び役割分担で実施した。	
	体制  役割分担	
	中国電力株式会社 研究の計画策定 研究の実施 振動試験実施状況の確認	
	振動試験結果及び解析結果の確認株式会社日立製作所振動試験の実施NASTRANによる有効質量の解析	
	2.3 研究実施場所	
	本研究における振動試験は、日立製作所機械研究所の振動台で実施した。	
	3. 振動試験による有効質量評価	
	3.1 試験体	<ul><li>検討内容の相違</li></ul>
	島根1号機サプレッションチェンバを縮小模擬した試験体を製作し振動試験を実施した。試験の状況を図3.1-1に示す。試験体は実機と同様に16個の円筒を円環形に繋いだ形状とし、寸	島根 2 号機では, 島 根 1 号機のサプレッシ
	法は実機 <u>サプレッションチェンバ</u> の 1/20 程度である円環の直径 1464mm, 断面の内径 400mm とし	日子機のリプレッションチェンバを縮小し
	た。材質は内部水の挙動を確認するため透明のアクリル製とした。試験体の形状及び寸法を図 3.1-2 に示す。試験装置は、振動台の上に試験体を支持する架台を設け、その上に試験体を設	た試験体を使用する。 ・試験方法の相違

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	 備考
2 10 100 4 7 4 2 4 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7		· 試験方法の相違
	が加振方向に移動できる構造とした。試験体及び架台はロードセルを介して振動台に固定され	
	るため、試験体及び架台の振動応答による水平方向反力はロードセルで確認することができる。	
	主な計測項目は、振動台上、架台上及び試験体上の加速度、架台を含めた試験体の荷重である。	
	表 3.1-1 に計測項目,図 3.1-3 に計器配置を示す。	
	図 3. 1-1 試験装置 図 3. 1-2 円環形状容器 表 3. 1-1 計測項目	
	計測項目 計測機器 位置 計測チャンネル数 (設置位置)	
	対象   対象   対象   対象   対象   対象   対象   対象	
	加速度 加速度計 振動台上 X成分: 2 (90°, 270°)	
	Y成分: 2 (0°, 180°)       Z成分: 4 (0°, 90°, 180°)	
	y 台 ト	
	Y成分: 2 (0°, 180°)         Z成分: 4 (0°, 90°, 180°, 270°)	
	試験体 L X成分: 2 (90°, 270°)	
	Y 成分: 2 (0°, 180°)	
	Z成分: 4 (0°,90°,180°,270°)	



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	3.2 試験条件 加振波は、スロッシング周期帯に加速度成分を含まないランダム波A及びスロッシング周期帯に加速度成分を含むランダム波Bの模擬地震波を用いる。図 3.2-1 及び図 3.2-2 に各地震波の時刻歴波形及び加速度応答スペクトル(減衰 0.5%)を示す。試験では図 3.2-1 及び図 3.2-1 との地震波の 1倍、2倍、3倍及び4倍で加振を行った。加振は水平1方向とする。水位は、内部水なし及び内部水あり(H. W. L相当)の2ケースとする。表 3.2-1 に試験条件を示す。	・試験条件の相違
	200 150 100 100 100 100 100 100 100 100 1	
	図 3.2-1 ランダム波 A 図 3.2-2 ランダム波 B	・試験条件の相違
	表3.2-1 試験条件	・試験条件の相違

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	3.3 試験結果に基づく有効質量評価	
	<u>ランダム波A(100Gal,内部水あり)</u> の試験ケースにおいて計測された荷重の時刻歴波形を図 3.3-1に示す。	・試験条件の相違
	一般的にスロッシングの固有振動数は低く,本研究で対象とするような容器支持部に作用する地震荷重への寄与は小さいと考えられるため,内容水荷重F[N]と架台上の計測加速度 [m/s2]との関係は以下の式で表される。	
	$F = (M+M_E) \ddot{x} \tag{1}$	
	ここに、M[kg]は架台を含む容器の質量、Me [kg]は水の有効質量である。式 (1) のとおり、質量は加速度に対する荷重の比として表される。 図 3.3-2 にランダム液 Aにおける試験ケースごとの最大加速度と最大荷重の関係を示す。図 3.3-2 における内部水ありのケースの回帰直線の傾きから架台及び容器の総質量を引いたものが水の有効質量となり、水の全質量に対する比として有効質量比が算出できる。ただし、本研究では、内部水なしの条件における試験結果を用いて、上記と同様の方法で式 (1) より架台及び容器の総質量を算出している。 ランダム液 A及びランダム液 Bによる試験結果から得られた有効質量比を表 3.3-1 に示す。加援波の違い及びスロッシング周期の加速度成分の有無による有効質量比の相違は小さいことを確認した。  図 3.3-1 計測荷重の時刻歴波形(ランダム波 A、100Ga1、内部水あり)	島根2号機で参照する振動試験では、最大加速度及び最大荷重を用いて有効質量比を評価している。



女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	4. NASTRANによる有効質量評価	
	汎用構造解析ソフトNASTRANでは, 容器形状と水位が既知であれば, 仮想質量法により有	
	効質量が算出できる。そのため、振動試験や煩雑な数値計算を実施することなく、式(1)より効	
	率的に容器に作用する地震荷重を推定することができる。本研究では、振動試験と同様の解析モデ	
	ルに対しNASTRANの仮想質量法により有効質量比を算出した結果を実験結果と比較し、そ	
	の妥当性を検証する。なお、本方法は流体を非圧縮性のポテンシャル流れと仮定することにより構	
	造物に接する流体の振動質量を求める方法であり、自由表面の重力影響は考慮されない。解析モデ	
	ルを図4-1に、解析結果を有効質量比として表4-1に整理する。	
	Ex.	
	図 4-1 構造解析モデル	
	表 4-1 NASTRANによる有効質量比の算出結果	
	項目	
	有効質量比 0.21	
		・検討内容の相違
		島根2号機では、拡
		動試験により仮想質量
		法の検証を行う。
		14 / 0

女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力発電所	2号機		備考
	5 妥当性	生検証				
			ンバに対する振動試	験,NASTR	ANのそれぞれで得られた	で得られた・検討内容の相違
					,振動試験の結果と同等の	
		~~~~~			当であることが確認された。	
						ョンチェンバを縮小し
		表 5-1	各方法による有効質	質量比の評価結り	<u> </u>	た試験体を使用する。
		F	N. A. C. W. S	振動	 助試験	・検討内容の相違
		項目	NASTRAN	ランダム波A	ランダム波B	島根2号機では、振
		有効質量比	0. 21	0.18	0. 20	動試験により仮想質量
						法の検証を行う。
						・検討内容の相違
						島根2号機で参照った。
						る振動試験では、通行
						運転範囲の上限値相 に対して検討する。
						に対して使削する。
	6. 結論					
	****	大容器における有効質量(の把握を目的に. 振	動試験及び汎用	構造解析ソフトNASTR	 ・検討内容の相違
	***************************************	···			による有効質量算出の妥当	
	性が確認っ					る振動試験では、通知
	,,,,,,,,	·				運転範囲の上限値相
						に対して検討する。
						・検討内容の相違
	7 学会	発表実績				島根2号機では、抗
		吉果については,日本機材	戒学会 <u>2008</u> 年度年次	大会にて学会発	表している「11」。	動試験により仮想質量
						法の検証を行う。
						・検討内容の相違
	参考文献	1]:丸山 直伴, 田村 伊久	四郎,福士 直己,大	坂 雅昭,鈴木	彩子,鈴木 学:トーラス形	島根2号機で参照で
		容器における内部水の	の地震時荷重評価,日	本機械学会 200	8年度年次大会講演論文集,	る振動試験では,通常
		2008.7巻				運転範囲の上限値相当
						に対して検討する。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	<補足1> 常温下での振動試験の妥当性について	・記載の充実
	今回実施した振動試験については、以下の検討を踏まえ、常温下で実施している。	島根2号機では、設
		置許可段階での説明事
	① サプレッションチェンバの耐震評価において考慮する運転状態(重大事故時の荷重の組合	項を記載する。
	せについては,「重大事故等対処設備について(補足説明資料)39 条 地震による損傷の	
	防止 39-4 重大事故等対処施設の耐震設計における重大事故と地震の組合せについて」に	
	<u>で説明)</u>	
	・サプレッションチェンバの耐震評価は、設計基準事故時及び重大事故時ともに、事故の	
	発生確率、継続時間及び地震の年超過確率を踏まえ、地震荷重と事故時の荷重の組合せ	
	を考慮するため、今回実施した振動試験の温度条件(水温)は、基準地震動 S s と荷重	
	の組合せが必要となる運転状態を考慮する。	
	・設計基準事故時における温度条件は通常運転状態(飽和温度以下)である。	
	・重大事故時は、事象発生後 2×10 ⁻¹ 年以降の荷重と基準地震動 S s との組合せとなるた	
	め、温度条件は飽和温度以下(沸騰状態ではない)である。	
	② 水温による有効質量比への影響	
	・有効質量に関連する内部水の質量は密度の関数であり、水温が飽和温度以下では温度変	
	化に対する影響は小さい。	
	<u>,=::::::::::::::::::::::::::::::::::::</u>	
	なお、サプレッションチェンバの耐震評価における地震応答解析及び応力評価に用いる部材	
	温度は,運転状態を考慮した温度条件を用いる。	

女川原子力発電所 2 号機 (2021 年 12 月 10 日) 島根原子力発電所 2 号機		備考
	<補足2> 振動試験における加振波について	・記載の充実
	振動試験において、以下の条件を考慮して加振波を設定している。	島根2号機では,設
	①スロッシング荷重の考慮	置許可段階での説明事
	スロッシング荷重による内部水の有効質量への影響を確認するため、スロッシング周	項を記載する。
	期(約0.8秒)帯に加速度成分を含む加振波(ランダム波B)とスロッシング周期帯に加	
	速度成分を含まない加振波(ランダム波A)を適用する。	
	②試験体の運動の影響	
	有効質量は内部水ありの場合と内部水なしの場合での振動試験結果から得られる荷重	
	-加速度関係の回帰直線の傾きの差から算出する。このため、有効質量比を精度良く算出	
	するには、試験体の運動により加わる荷重を相対的に小さくする必要があることから、試	
	験体の固有周期 (約0.025秒) 及びこの周辺の短周期の加速度成分が小さい加振波を適用	
	<u>する。</u>	
	③周波数成分の影響	
	加振波の周波数特性は内部水の有効質量に影響しない[1][2]ことから、ランダム波を適	
	<u>用する。</u>	
	以上の条件を踏まえ、ランダム波Aでは $0.1\sim0.2$ 秒、ランダム波Bでは $0.1\sim2$ 秒の周期成分	
	を一定としたフーリエスペクトルから模擬地震波を作成する。作成した模擬地震波の応答加速	
	度スペクトルを図1に示す。	
	試験体の固有周期(約0.025秒) 試験体の運動の影響を除外 減衰:0.5% 1200 1000 10	
	ランダム波 A ランダム波 B 図 1 入力波の応答加速度スペクトル	
	図1 人分仮の心各加速度へ・ツ トル	
	[1] Housner, G. W.: Nuclear Reactors And Earthquakes, TID Rep. 7024, 1963. [2]容器構造設計指針・同解説(日本建築学会)	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別紙 12	
	内部水の有効質量比に対するスロッシングの影響	
	1. 概要 有効質量比に対するスロッシング影響の有無を確認するため、 <u>流体解析</u> で得られた荷重時刻歴 (スロッシング周期成分を含む)及びスロッシング周期成分を取り除いた荷重時刻歴に対する有 効質量比を算定し、比較・検討した。	
	2. 検討内容 流体解析におけるスロッシング周期は入力加速度と荷重のフーリエスペクトルの関係より 0.26 Hz (耐震解析用重大事故等時水位)として得られている。このため、流体解析で得られた荷重時 刻歴に対して、フィルタ処理を行い、0.2~0.3Hz のスロッシング周期成分を取り除いた荷重時刻 歴を求め、有効質量比を算定した。	島根2号機では、流
	3. 検討結果 スロッシング周期成分 <u>あり</u> 及びスロッシング周期成分 <u>なし</u> の荷重時刻歴に対する加速度と荷重の関係図を図 <u>3-1</u> に,有効質量比の比較結果を表 <u>3-1</u> に示す。 スロッシング周期成分 <u>あり</u> 及びスロッシング周期成分 <u>なし</u> の有効質量比 <u>は同程度であり</u> ,有効質量比に対するスロッシングの影響はほぼない。	・評価方法の相違 島根2号機では,通 常運転時の耐震評価に
	20000 150	おいても耐震解析用重 大事故等時水位を用い る。
	-2000 -10 -5 0 5 10 -10 -5 0 5 10 加速度 [m/s²] 加速度 [m/s²] 加速度 [m/s²] (a) スロッシング周期成分あり (b) スロッシング周期成分なし 図 3-1 荷重と加速度の関係	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発電所 2号機		備考		
		表 3-1 有効質量比の比較結果				
		流体解析		・評価方法の相違 島根2号機では,通		
	水位	スロッシング周期成分あり	スロッシング周期成分なし	常運転時の耐震評価に おいても耐震解析用重		
	耐震解析用重大事故等時水位	0. 29	0. 28	大事故等時水位を用いる。		

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・記載箇所の相違
		島根2号機では、全
		試験回における内部水
		の有効質量比を別紙 11
		に記載している。

	女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
考察する。 ンチェンバを用いて 討している。 ・検討内容の相違 振動台への入力波は、メロッシング成分を含まないランダム波A及びスロッシング成分を含む ランダム波Bの人工地震波を用いた。 また、振動試験では、上記地震波の1倍、2倍、3倍及び4倍で加振を行った。 期特性の違いによる響を検討する。 ・試験条件の相違 ・減験条件の相違 ・検討内容の相違 島根 2 号機では、 ・検討内容の相違 島根 2 号機では、 ・検討内容の相違 島根 2 号機では、 ・検討内容の相違 島根 2 号機では、 ・検討内容の相違 ・検討内容の相違 ・検討内容の相違 ・検討内容の相違 ・ ・	女川原子力発電所 2 号機(2021 年 12 月 10 日)	別紙 13 内部水の有効質量比に対する入力地震動の影響 1. 概要 サブレッションチェンパの地震荷重算出に当たり、サブレッションチェンパの内部水の有効質量をNASTRANにより算出することの妥当性を検証するため、 <u>島根 1 号機サブレッションチェンパに対して、NASTRANによる有効質量の算出及び</u> 試験体を用いた振動試験を実施しており、両者の有効質量比が同等であることを確認している。 本資料では、振動試験に用いた入力地震動に対して、周期特性の違いによる有効質量への影響を考察する。 2. 振動試験の入力地震動振動台への入力波は、スロッシング成分を含まないランダム波A及びスロッシング成分を含むランダム波Bの人工地震波を用いた。 また、振動試験では、上記地震波の1倍、2倍、3倍及び4倍で加振を行った。 3. 有効質量比に対する入力地震動の影響検討	・検討内容の相違 ・検討のと ・機では、のの相ででは、 ・機がは、ののでは、 ・検討をでいる。 ・検討をでいる。 ・自動を検がによる。 ・検討を検討では、 ・はいる。 ・検討を検診をはいる。 ・検討を検診をはいる。 ・検討をもいる。 ・検討をはいる。 ・検討を検診をはいる。 ・検討を検診をはいる。 ・検討を検診をはいる。 ・検討を検診をはいる。 ・検討をはいる。 ・検討をはいる。 ・検討を検診による。 ・検討をはいる。 ・検討を検診による。 ・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検診をはいる。 ・・検がによる。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	3.1 周期特性の違い	試験条件の相違
	ランダム波A及びランダム波Bの入力加速度時刻歴波形及び加速度応答スペクトルを図 3.1 -1に示す。また、これらの周期特性の異なる地震波に対する振動試験から算出された有効質量 比を表 3.1-1に示す。	・検討内容の相違 島根2号機で参照す る振動試験では、通常 運転範囲の上限値相当 に対して検討する。 ・試験条件の相違
	ランダム波A及びランダム波Bによる振動試験結果より算出した有効質量比は同程度であり、 有効質量は入力地震動の周期特性によらず、評価対象とする容器の形状に依存していることを 示すものと考えられる。 100 100 100 100 100 100 100 100 100 100	・試験条件の相違 ・検討内容の相違 ・機計内容の相違 ・島根2号機で参照す る振動試験では,通常 運転範囲の上限値相当 に対して検討する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 3.1-1 振動試験から得られた水の有効質量比	
	(別紙 11 表 3.3-1 の再掲)	
	入力地震波 有効質量比	
	ランダム波A 0.18	
	ランダム波B 0.20	
		・検討内容の相違
		島根2号機で参照す
		る振動試験では,通常
		運転範囲の上限値相当
		に対して検討する。
	4. 考察	
	上記のとおり、振動試験に用いた入力地震動に対する周期特性の違いによる有効質量への影響	・検討内容の相違
	について、今回実施した振動試験結果を用いて検討した結果、入力地震動の周期特性の違いによる	
	影響が小さいことを確認した。	期特性の違いによる影
	なお、今回の検討結果は、NASTRANにより算出される有効質量が評価対象とする容器形状	響を検討する。
	及び容器内水位を与えられれば、地震動を用いることなく、有効質量を算出できるという特徴とも	
	整合している。	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別紙 1.4	
	サプレッションチェンバ内部水によるスロッシング荷重及び有効質量の影響	
	1. スロッシング荷重及び有効質量に与える影響検討	
	サプレッションチェンバ内部水によるスロッシング荷重は、サプレッションチェンバの主要な 内部構造物を考慮した解析モデルを用いて、水平 <mark>1</mark> 方向+鉛直方向の地震動を入力した解析結果	
	から算定している。上記解析条件に対して水平2方向入力による影響を検討し、スロッシング荷重	・評価条件の相違
	及び有効質量に与える影響について検討を行う。	島根2号機では、主
	次の自然見里に子だるが音について依明では子。	要な内部構造物をモデ
		ル化してスロッシング
		荷重を算定することか
		ら、内部構造物による
		影響検討は行っていな
		<mark>۷۱</mark> ۰
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期及びスロッシング周
		期で応答加速度が大きい $S s - D$ を用いて,
		スロッシング荷重を算
		定する <mark>ことから、地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では,ス ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		<mark>期</mark> で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算 定する <mark>ことから、地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		<mark>期</mark> で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		<mark>期</mark> で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから、地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		期で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		<mark>期</mark> で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		<mark>っていない</mark> 。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		期で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		期で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		期で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		期で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、ス
		ロッシングの卓越周期
		帯及びサプレッション
		チェンバの一次固有周
		期 <mark>及びスロッシング周</mark>
		<mark>期</mark> で応答加速度が大き
		いSs-Dを用いて,
		スロッシング荷重を算
		定する <mark>ことから,地震</mark>
		動による影響検討は行
		っていない。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、鉛
		直方向の地震動を入力
		してスロッシング荷重
		を算定する <mark>ことから、</mark>
		鉛直方向地震動による
		影響検討は行っていな
		<mark>v.</mark> 。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、鉛
		直方向の地震動を入力
		してスロッシング荷重
		を算定する <mark>ことから、</mark>
		鉛直方向地震動による
		影響検討は行っていな
		<mark>V`</mark> 。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	2. 水平2方向入力による影響	
	水平2方向入力によるスロッシング荷重への影響について、地震動の入力条件を水平1方向 +鉛直方向及び水平2方向+鉛直方向とした場合のスロッシング荷重を比較し、確認する。	
	「如色分門及び水中なが門」の配色が同じのた物目のバークママク門至と地域で、神経地グで	
	<u>2.1</u> 解析モデル	
	<u>解析モデルを図 2.1-1 に,解析諸元を表 2.1-1 に示す。</u>	
	<u>図 2.1-1 流体解析モデル</u>	
	<u>表 2.1—1 解析諸元</u>	
	格子数	
	格子サイズ	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力発電所	2 号機	備考
	<u>2.2</u> 解析条件 解析条件を表 <u>2.2-1</u>	に示す。		
		表 2. 2-1 解析条件(水平	2 方向入力)	
	項目	基本ケース	影響検討ケース	
	解析コード	Fluent	同左	
	解析モデル	実機解析モデル	同左	
	入力波	S s -D	N S 方向: S s - D E W 方向: 位相特性の異なる S s - D*	
	地震動の	 水平1方向	水平2方向	
	入力方向	+鉛直方向	+鉛直方向	
	水位	EL 4000mm (検討用水位)	同左	
			_	
	す。		秒) の変位コンター図を図 <u>2.3-1</u> ついて, 基本ケース(合成荷重:水	
			-ス(水平2方向入力の時刻歴荷重	
			可入力の影響により、スロッシング	
			特性によるものと考えられる。ま	
	平2方向の入力波を位相	目反転させた場合の影響は、サ	^ナ プレッションチェンバが円環形状	(対称
	形状)であることから、	スロッシング荷重への影響は	はないと考えられる。	
	よって, サプレッショ	コンチェンバのスロッシング荷	「重評価は基本ケースのとおり,入	力地震
			らことを確認した。 <u>また</u> ,有効質量	
		-スで一致しており、水平2力	5向入力による有効質量比への影響	はない
	ことを確認した。	APPLACE IA ALL		
			コッシング最大荷重発生時刻付近の)変位コ
	ンター図ははは同様な気	}布,波高であり,大きな差昇	ゃかないことを催認した。	
	<u>J</u>			

女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力発電所 2	2 号機		備考
		表 23	<u>5—1</u> 評価結果(水平 2	2方向入力)		
	検討ケー	ース	①基本ケース (水平1方向入力)	②影響検討ケース (水平2方向入力)	1/2	
	スロッシング	NS	5, 363	5, 364* ²	1.00	
	最大荷重*1	EW	_	3, 699*2	1. 45	
	(kN)	合成荷重	7, 584*3	5, 372*4	1.41	
	有効質量比	NS	0. 23	0. 23	1.00	
	注記*1:スロット (最大荷) (最大荷) 注 色の違	で の の の の の の の の の の の の の	所重は地震波に依存する 必ず荷重を確認する必要 ははEW)のみに着目し 所重の√2倍の荷重 ロッシング荷重を時刻句	た場合の最大荷重 Eに合成(√N S ² + EW ²) ②影響検討ケース 大荷重発生時刻(12 秒) , 高さは初期水位を 0 r	した値の最	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価条件の相違
		島根2号機では、主
		要な内部構造物をモデ
		ル化してスロッシング
		荷重を算定する <mark>ことか</mark>
		ら, 内部構造物による
		影響検討は行っていな
		v.

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・評価条件の相違
		島根2号機では、主
		要な内部構造物をモデ
		ル化してスロッシング
		荷重を算定する <mark>ことか</mark>
		ら、内部構造物による
		影響検討は行っていな
		<mark>دن</mark> .

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・資料構成の相違
		島根2号機では、位
		相特性の異なる模擬地
		震波については, NS2 補
		足-023-4「水平2方向
		及び鉛直方向地震力の
		組合せに関する検討に
		ついて」において説明
		する。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	別紙 15	
	規格基準における内部水の有効質量比との比較	
	1. はじめに	
	本資料は、NASTRANによる有効質量比算定の妥当性を確認するため、容器構造設計指針・	
	同解説(2010年3月改訂版)(以下「容器指針」という。)に記載されている球形タンク及び円筒タ	
	ンクの有効質量比とNASTRANによる有効質量比の算定結果の比較検討を行う。	
	2. 解析結果	
	(1) 球形タンク	
	NASTRANの解析モデルを図 $2-1$,解析モデル諸元を表 $2-1$,NASTRANによる有効質量比の <u>算定</u> 結果及び容器指針における球形タンクの有効質量比を図 $2-2$ に示す。	
	3月別員重比の <u>昇足</u> 相未及び存益相則における場形グラクの月別員重比を囚 <u>工工</u> に小り。	
	表 <u>2-1</u> 球形タンク解析モデル諸元	
	半径 0.5m メッシュ数 約 5400	
	7 7 V — 3A N 100	
	図 <u>2-1</u> 球形タンク解析モデル	
	注記 * 1 液量率 = 液体の体積 /球形タンクの容積	
	注記*2 容器指針の有効質量比は試験に	
	より得られている。	
	図 2-2 球形タンクの有効質量比	

(2) 円筒タンク	· 色電所 2号機	備考
San	 経電所 2号機 ,解析モデル諸元を表 2-2、NASTRANによける円筒タンクの有効質量比を図 2-4に示す。 表 2-2 円筒タンク解析モデル諸元 半径 0.5m 高さ 2.5m メッシュ数 約 6400 ンクの有効質量比 TRANによる有効質量比算出結果と容器指針にTRANによる有効質量比算出は妥当であること	備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	別紙 1.6	
	原子炉建物基礎スラブにおける地震応答を用いる妥当性について	
	1. 概要	
	サプレッションチェンバは、ドライウェルとベント管を介して接続されるが、ベント管に設けられたベント管ベローズ(材質:オーステナイト系ステンレス鋼(SUS304))により相対変位	
	を吸収する構造となっているため、サプレッションチェンバの耐震評価に当たっては、ドライウェ	
	ルの地震応答と切り離し、原子炉建物基礎スラブにおける地震応答を用いている。	
	本資料では、ベント管ベローズの構造及びサプレッションチェンバへの地震応答への影響を確	
	認し、上記扱いの妥当性について確認する。	
	2. ベント管ベローズの構造	
	ベント管ベローズは、図 2-1 に示すとおり、サプレッションチェンバとベント管の熱膨張によ	
	る相対変位や地震相対変位を吸収できる構造となっている。	
	また、地震相対変位によるサプレッションチェンバへの反力は、ベント管ベローズのばね定数と	
	地震相対変位により算定することができる。サプレッションチェンバの荷重伝達イメージを図 2- 2 に示す。	
	3. サプレッションチェンバの地震応答への影響	
	サプレッションチェンバとベント管の地震相対変位, ベント管ベローズの反力, サプレッション	
	チェンバの地震荷重及びそれらの比率を表 <u>3-1</u> に示す。評価条件としては、設計用条件I (基準	
	地震動Ss)を用いた。地震相対変位によるベント管ベローズの反力は、サプレッションチェンバ	
	の地震荷重に対して 0.05%程度と軽微であり、サプレッションチェンバの地震応答解析に原子炉建物基礎スラブにおける地震応答を用いることは、妥当と考えられる。	
	が金融パンクにもののも地域が行って行いることは、 ダコとうたりものる。	
	なお、オーステナイト系ステンレス鋼のひずみ速度に関する知見としてひずみ速度が 1sec-1以	
	下となるものについては、ひずみ速度が耐力や設計引張強さに影響がないものとされている [1]。	
	ベント管ベローズのひずみ速度は、 $5.7 \times 10^{-2} \mathrm{sec^{-1}}$ 程度*であり、上記知見を踏まえると、材料物	
	性への影響がないと推定されるため、剛性に対しても同様に影響がないものと考えられる。	
	注記*:地震応答解析モデルの固有周期 T に対するサプレッションチェンバの最大ひずみ量 ε の	
	比 (ε/T) からひずみ速度 (sec ⁻¹) を算出	
	参考文献[1]:Hiroe Kobayashi et al., Strain Rate of Pipe Elbow at Seismic Event and Its	
	Effect on Dynamic Strain Aging, ASME Pressure Vessels and Piping Conference,	
	July 26-30, 2009	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	スント管に接続 サブレッションチェンバ に接続 a. ベント管ベローズの構造概要	
	b. ベント管ベローズの主要寸法	
	図 2-1 ベント管ベローズの構造	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	→ サプレッションチェンバの地震荷重	
		
	★ ベント管ベローズ及びサプレッションチェンバ間の相対変位	
	サプレッションチェンバ変位 地震動 図 2-2 サプレッションチェンバの荷重伝達イメージ	
	表 3-1 相対変位による影響評価結果 項目* ¹ 評価値* ²	
	項目*1 評価値*2 ①地震相対変位 mm	
	②地震相対変位による	
	3.561×10 ⁴ N ベント管ベローズの反力	
	③サプレッションチェンバ の地震荷重 6.807×10 ⁷ N	
	比率 (2/3) 0.05 %	
	注記*1:項目の①~③は,図2の番号に対応する。	
	*2:設計用条件 I (基準地震動 S s) により算出	

島根原子力発電所 2 号機	備考
別紙 1.7	
サブレッションチェンバサボートの耐震評価における応力算出方法の考え方	
1. 概要	
サプレッションチェンバサポートの耐震評価における応力算出は、既工認で公式等による応力	
評価を行っていることを踏まえ、今回工認においても同様に公式等による応力評価を行っている。	・評価方法の相違
なお、サプレッションチェンバのうち胴エビ継部及びサプレッションチェンバサポート取付部の	島根2号機では、サ
応力評価は、3 次元 FEM 解析モデルによる応力評価を行っている。	プレッションチェンバ
本書では、今回工認におけるサプレッションチェンバサポートの耐震評価における応力算出方	サポートの評価は、既
法に対して、公式等による応力評価を行うことの考え方について説明する。	工認と同様に公式等に
	よる評価を適用してい
2. 耐震評価における応力算出方法の考え方	る。
2.1 適用規格	・評価方法の相違
サプレッションチェンバ及び <u>サプレッションチェンバサポート</u> は,原子力発電所耐震設計技	島根2号機では、サ
術指針JEAG4601・補-1984,JEAG4601-1987(以下「JEAG4601」という。)	プレッションチェンバ
に基づき, サプレッションチェンバは原子炉格納容器として, サプレッションチェンバサポート	のうち胴エビ継部及び
は原子炉格納容器の支持構造物として耐震評価を行う。また,JEAG4601において,原子	サプレッションチェン
炉格納容器及び原子炉格納容器の支持構造物の耐震評価について地震力と他の荷重を組み合わ	バサポート取付部の応
せた場合には、原則として過大な変形がないようにすることが求められている。	力評価にFEM解析を
	用いる。
2.2 原子炉格納容器及び原子炉格納容器の支持構造物の耐震評価	
原子炉格納容器に対する地震荷重との組合せ評価は,JEAG4601に従い,以下の項目に	
対する応力評価が要求される。	
① 一次応力評価	
② 一次十二次応力評価	
③ 一次+二次+ピーク応力評価(疲れ解析)	
ただし,原子炉格納容器の一次+二次+ピーク応力評価(疲れ解析)は,設計・建設規格JS	
ME <u>S</u> NC1-2005/2007 PVB-3140(6)の要求を満足する場合,評価を省略することができ	
る。なお,一次+二次応力評価に対する許容応力3Smを超える場合は,評価対象部位の応力集	
中係数を用いた一次+二次+ピーク応力評価又は3次元FEM解析による疲れ解析を行う。	
一方,原子炉格納容器の支持構造物に対する地震荷重との組合せ評価は,JEAG4601	
上,一次応力,一次+二次応力に対する応力評価が要求されており,一次+二次+ピーク応力に	
対する応力評価は要求されていない。	
2.3 サプレッションチェンバサポートの耐震評価における広力篁出方法	
る。原子炉格納容器の支持構造物に対する要求事項に基づき、サプレッションチェンバサポート	
	別紙17 サブレッションチェンバサボートの耐震評価における応力算出方法の考え方 1. 概要 サブレッションチェンバサボートの耐震評価における応力算出方法の考え方 1. 概要 サブレッションチェンバサボートの耐震評価における応力算出は、既工認で公式等による応力評価を行っている。 なお、サブレッションチェンバのうち胴エビ雑部及びサブレッションチェンバサボート取付認の応力評価は、3 次元 FM 解析モデルによる応力評価を行っている。 本書では、今回工認におけるサプレッションチェンバサボートの耐震評価における応力算用方法に対して、公式等による応力評価を行うことの考え方について説明する。 2. 耐燃評価における応力算出方法の考え方 2.1 適用規格 サブレッションチェンバ及びサブレッションチェンバサボートは、原子力発電所耐震設計技術指針 J E A G 4 6 0 1 - 1987 (以下「J E A G 4 6 0 1] という。) に基づき、サブレッションチェンパは原子炉格納容器として、サブレッションチェンパサポートは原子炉格納容器の支持構造物の耐震評価について地震力と他の荷重を組み合わせた場合には、原則として過大な変形がないようにすることが求められている。 2.2 原子炉格納容器の支持構造物の耐震評価 原子炉格納容器の対する地索荷重との組合せ評価は、J E A G 4 6 0 1 に従い、以下の項目に対する応力評価が要求される。 ① 一次ホニ次ホリオーの表力評価(疲れ解析)は、設計・建設規格 J S M C S N C 1 - 2005/2007 PVB-3140 (6) の要求を満足する場合、評価対象部位の方角集中係数を用いた一次十二次ホガーの対計価に対する許容広力3 S m を超える場合は、評価対象部位の方角集中係数を用いた一次十二次ホガーの計画に対する許容広力3 S m を超える場合は、評価対象部位の方角中係数を用いた一次十二次十ピーク応力評価に対する時容にある場合は評価は、J E A G 4 6 0 1 上、一次に力、一次十二次にプロに対する応力評価が要求されており、一次十二次より加入する応力評価は要求されていない。 2.3 サブレッションチェンバサボートの耐震評価における応力算用方法上記のとおり、サブレッションチェンバサボートの耐震評価における応力算用方法上記のとおり、サブレッションチェンバサボートの耐震評価における応力算用方法上記のとおり、サブレッションチェンバサボートの耐震評価における応力算用方法上記のとおり、サブレッションチェンバサボートは、原子炉格納容器の支持構造物に該当す

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	の耐震評価は、一次応力に対する応力評価を行い、過大な変形がないことを確認する。また、耐震評価における応力算出については、サプレッションチェンバサポートの構造から面外変形もなく単純な曲げ・せん断変形が主であること、一次十二次十ピーク応力といった局部的な応力評価要求がないことから、既工認に用いた公式等による応力評価からの変更は不要と判断している。 なお、サプレッションチェンバサポートには二次応力として考慮すべき荷重が作用しないことから、サプレッションチェンバサポートの耐震評価では、建設時より一次応力評価で代表させ	・評価方法の相違 島根 2 号機は、サプ レッションチェンバサ ポートには二次応力と して考慮すべき荷重が 作用しないことから一

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別添 1 J E A G 4 6 0 1-1987	
	(3.1.3 荷霊の組合せと許容限界	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	JEAG 4 6 0 1・補-1984 <第2種容器に対する評価>	
	2.1.2 第2種容器の許容応力 第2種容器の許容応力を次に示す。	
	応力分類 1次円般膜応力 1次膜応力+ 1次十2次応力 特別な応力限界 許容 1次一般膜応力 1次曲げ応力 1次十2次応力 端せん断応力	
	設計条件 S 1.5 S	
	I A - (2) 運転状態 I 及び II における荷重 の組合せについ て疲れ解析を行い変れ累積係数 (6) (7)(8) (7)(8) (1.5 S _y) (1.5 S _y) (1.5 S _y)	
	II A	
	$\mathbf{III_A}$ $\mathbf{S_y}$ \succeq 2/3 $\mathbf{S_u}$ の 小さい方。ただしオーステナイト系ステンレス 鋼及び高ニッケル合金については1.2 \mathbf{S} とする。	
	構造上の連続な 部分は 0.6 S _u , 不連続な部分は S _y と 0.6 S _u の 小さい方。ただ しオーステナイト系ステンレス 鋼及び高ニッケ ル合金について は,構造上の連続な部分は 2 S と 0.6 S _u の 小さい方,不連続 な部分は 1.2 S とする。	
	III_AS $S_y \ge 0.6 S_u o$ 小さい方。ただしオーステナイト系ステンレス 鋼及び高ニッケル合金については1.2 S とする。 $S_y \ge 0.6 S$ $S_y = 0$	
	地震動のみによる応力 振幅について連転な部分は Sy と 0.6 Su の小さい方。ただしオーステナイト系ステンレス	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	備考
	 注:(1) 3 S_m を超えるときは、告示第14条の弾煙性解析を用いることができる。 ② 告示第18条第 1 項第三号を描してきまは、変れ解析を行うことを要しない。 ③ 三軸に集り 場合に、別に正成りの整約44 Sa S_m を超えないことを検討する。 (4) 3 S_m を超えるときは弾型性解析を行うこと。この場合傷示第14条 (同条第 3 号を除く)の理整解析を用いることができる。 (5) 告示第18条第 1 項第三号へを満たすときは、緩れ解析を行うことを要しない。ただし、へ項の 16カの全議権 は S_m 又は5, 地震動による店がの全議権 と読替える。 (6) 運転水腫 1, 頂には 17 変更 解析を要しない場合は、地震動のみによる度れ累積係数が 1.0 以下できること。 (7) 告示第18条第 1 項第一号チによる。 (8) 告示第18条第 1 項第一号 りによる。 (9) (1) 内は、支圧衛車の作用報から自由端までの距離が支圧荷重の作用報より大きい場合の値。 (10) オメガシール及びキャノビシールにあっては、 Im S_m N_m S IC ついて 1 次一般観応力及び地震動のみによる 1 次 + 2 次広力の評価を行う。ただし、 1 次一般観応力は、告示第13条第 1 項第四号による。 	

女川原子力発電所2号機(2021年12月10日)				島	,根原子	力発電	 	2号機						備考	亏
	 2.8.2 第2種支持構造物の許容応力 2.8.1の(2),(3)及び(4)の規定を準用する。 2.8.3 第3種支持構造物の許容応力 														
	2.8.1の		及び(4)の	対規定を	準用す	⁻ る。									
	応力分類	5	1	次 応	こ カ	-			1 次 +	- 2 次	応力				
	許容応力状態	引張	せん断	圧縮	曲げ	支圧	引張	せん断	曲げ	支圧	巫	屈			
	設計条件	-	_	_	-	_	_	_		_		_			
	IA	f t	f s	f c	f _b	f _P	3 f _t	3 f _s ⁽¹⁾	3f _b	1.5 f _P	1.5 f _s	又は1.5 f _c	(1)		
	Па	f t	fs	f _c	f _b	f _P	3 f _t	3 f _s ⁽¹⁾	3f _b	1.5 f _P	1.5 f _s	又は1.5 f _c	0)		
	ША	1.5 f _t	1.5 f _s	1.5 f _c	1.5 f _b	1.5 f _P				_					
	IV _A	1.5 f *	1.5 f _s *	1.5 f _c *	1.5 f _b *	1.5 f _P *	-		_						
	III _A S	1.5 f _t	1.5 f _s	1.5 f _c	1.5 f _b	1.5 f _P	3f _t	3 f _s ⁽¹⁾	3 f _b ⁽²⁾	1.5 f _P ⁽⁴	1.5 f _b	4)			
	IV _A S	1.5 f *	1.5 f _s *	1.5 f _c *	1.5 f _b *	1.5 f _P *	(Si又 みに、	は S ₂ 地 よる応力 て評価す	震動の 振幅に) 1.5 f _P (4)	1.5 f _s	スは1.5 f _c			
	(3) 応 (4) 自 圧 (5) 鋼 (6) 上 (7) 耐	→ め肉溶接 → 示第88条 ・ 力の最大 ・ 力の最大 ・ 重,熱腹 ・ 縮最大値 ・ 構造設計 ・ 記応力の	部に第3項値に張ってのでは、現金に、現金をは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、	っぽこり でいまる でっこう でいま でいま でいま でいま でま を 楽ら 直	大応にはずれている。大応には一年の一年の一年の一年の一年の一年の一年の一年の一年の一年の一年の一年の一年の一	c対して り求めた る荷重に と。 1970年ほ 合には、 られる支	1.5 f _s f _b とす ,地震 度制定) 組合せ 持構造	とする。 -ること。 動による) 等の輔 応力に対	荷重を温厚比のしても	重ね合せ) 制限を 評価を行	けて得られ 満足する 行うこと。	いる応力の			

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・設備の相違
		島根2号機では,建
		設時の構造で耐震性を
		確認している。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・設備の相違
		島根2号機では,建
		設時の構造で耐震性を
		確認している。

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・設備の相違
		島根2号機では、建
		設時の構造で耐震性を
		確認している。

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	別紙 18	
	サプレッションチェンバのモデル化に係る固有周期への影響検討	
	1. 概要	
	サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析モデル (3次元	
	はりモデル)に対する適用性確認のため、適用性確認用解析モデルとして3次元シェルモデルによ	
	る固有値解析を行い,耐震評価に考慮すべき振動モードが <u>おおむね</u> 一致していることを確認して	
	いる。	
	この3次元はりモデルは、既工認でサプレッションチェンバとサプレッションチェンバサポー	
	<u>ト</u> の強度を評価するために用いたサプレッションチェンバ大円の変形を模擬したはりモデルに,	
	サプレッションチェンバサポート取付部の局部変形を考慮したばねを加えた地震応答解析モデル	評価方法の相違
	である。これは、サプレッションチェンバサポート取付部の変形を地震応答解析モデルに考慮する	島根2号機では、サ
	ことで、今回工認における地震応答解析モデルが3次元シェルモデルによる地震応答挙動と同等	プレッションチェンバ
	の解析結果を算定できるようにしているものである。	サポート取付部の <mark>面外</mark>
	本資料では、今回工認の地震応答解析モデル(3次元はりモデル)と適用性確認用解析モデル(3	方向 (3方向) の変形 <mark>の</mark>
	次元シェルモデル)のモデル化の差異が固有周期に与える影響について、定量的に検討を行う。	<mark>み</mark> をばね要素として考
		慮する。
		・検討内容の相違
		島根2号機では、振
		動モード全体の傾向を
	2. モデル化の差異に係る影響検討	比較する。
	サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析モデル(3次元は	
	りモデル)で考慮したモデル化項目に着目して、その影響を検討する。影響検討を行うモデル化	
	項目に対する地震応答解析モデル(3次元はりモデル)及び適用性確認用解析モデル(3次元シ	
	ェルモデル)のモデル化内容と影響検討内容を表2-1に示す。	
Í		
Í		

※響検討	影響検討内容	よ 有効質量(Guyan縮約)に着目し、内部水質量を除外した に 場合(有効質量の考慮なし)について、地震応答解析モデル(3 次元はりモデル)及び適用性確認用解析モデル(3次元シェル モデル)の固有周期を比較する。			た サプレッションチェンバサポート以外を剛構造とした3次元 はりモデルとサプレッションチェンバサポート以外を剛構造とした3次元シェルモデルの固有周期を比較する。	
-1 モデル化の差異に係る影響検討		NASTRANの仮想質量法により算出し,この値をシェル要素に考慮	材料物性及び実機構造を模擬したシェル要素でモデル化	材料物性及び実機構造を模擬したシェル要素でモデル化	材料物性及び実機構造を模擬したシェル要素でモデル化	
表 2.2	25.45 地震応答解析モデル (3次元はりモデル)	NASTRANの仮想質量法により算出 し, NASTRANの機能である Guyan 縮 約を用いてはりモデルに付与	材料物性と円筒断面の理論式により算定 したサブレッションチェンバ大円の剛性 を考慮したはり要素でモデル化	実機構造を模擬したばね剛性算定用の3 次元シェルモデル等を用いて取付部の局 部変形を考慮したばね剛性を設定し、サポ ート取付部にばね要素としてモデル化	公式等により曲げ・せん断・伸び剛性を算定し、はり要素でモデル化	
	モデル化項目	内部水有効質量のモデル化	サプレッションチェンバ 胴のモデン化	サプレッションチェンバ サポート取付部のばね 剛性の設定	サプレッションチェンバサボートのモデル化	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)			島根原子力系	E 電所 2 号機				備考
女川原子力発電所 2 号機 (2021 年 12 月 10 日)	3. 影響検討結果 3.1 内部水有弦 有効質量を 2.1 デルの影響 が 3.1 大の影響 が 3.1 で 4.1 で 4.1 で 4.1 で 4.1 で 4.1 で 5.1 で 5.1 で 5.1 で 6.1	yan縮約に y+はりモデル いて、内部水 バル(3次元シ であり、有 であり、イ であり、イ であり、 (B) 参照)。 表3.1-1 [地震応答解	化の影響 てモデル化す。 を用いた妥当(の有無による) エルモデル)の 応答解析モデル 比較結果を表 効質量が影響 ル(3次元は) 質量をGuya	る手法の妥当性 生確認により, 也震応答解析で 心(3次元はり 3.1-1に示す。 する水平1次の する水平1次の のにでで があいにでも があいにでき があいにでも があいにでも があいにでも があいにでも があいにでも があいにでも があいたでも があいにでも があいにでも があいにでも があいにでも があいとでも があいとでも があいたでも があいとでも がある がある がある がある がある がある がある がある がある がある	Eは、別紙 2 の 既に確認してい デル(3 次元に 較を行う。 <u>なま</u> モデル)のみに のモードで内部 用性確認用解析	いるが,有 はりモデル 3, Guy ご適用する 3水の有無 によ で が で が と は と と と と と は と と と と と と と と と と と	効質量のモン 及び適用 a n 縮約に ため, 水平 による固有 (3 次元シェ	・検討内容の相違 島根2号機では、流 体解析モデル及び3次 元シェル+はりモデル を用いて有効質量の妥 当性を確認する。 ・評価方法の相違 島根2号機では、鉛

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.2 サプレッションチェンバ胴のモデル化の影響	
	3次元はりモデルにおけるサプレッションチェンバ本体のモデル化は、小円の平面保持を仮	・評価方法の相違
	定した理論式である。このことを踏まえ、小円の平面保持を条件とした3次元シェルモデルを用	島根2号機では、サ
	いて、地震応答解析モデル(3次元はりモデル)及び適用性確認用解析モデル(3次元シェルモ	プレッションチェンバ
	デル)の <mark>固有振動数</mark> と有効質量比の関係を比較する。 <u>ここで、小円の平面保持を条件とした3次</u>	サポートを含めてモデ
	元シェルモデルを図 3.2-1 に示す。セグメントごとに 3 箇所ずつサプレッションチェンバ胴の	ル化する。
	断面を剛体要素で結合することにより、小円の平面を保持する。	・検討内容の相違
	<u>小円の平面保持を条件とした3次元シェルモデル (胴一般部断面保持)</u> を用いた固有値解析結	島根2号機では、固
	果として、各振動モードに対する固有振動数、固有周期及び刺激係数のうち、刺激係数が2桁オ	有値と有効質量比の関
	ーダー以上のものを代表して表 3.2−1 に示す。また、50Hz までの全振動モードにおける固有振	係を比較する。
	動数と有効質量比の関係を図 3.2-2 に示す。	・評価方法の相違
	図3.2-2において、適用性確認用解析モデル(3次元シェルモデル)ではサプレッションチ	島根2号機では、す
	エンバ全体が振動する振動モードが複数の振動モードに分散して現れるが、小円の平面を保持	プレッションチェング
	することにより、地震応答解析モデル(3次元はりモデル)と同様にサプレッションチェンバ全	胴の断面を剛体要素で
	体が振動する振動モードが数モードに集約されることが確認できる。	結合する。
	図 3.2-2(1)では,水平方向について, 3 次元シェルモデル (胴一般部断面保持) と地震応答	
	解析モデル(3次元はりモデル)で差異が生じている。これは、 <mark>地震応答解析モデル(3次元は</mark>	
	りモデル)のサプレッションチェンバサポートの剛性は既工認と同様に、サプレッションチェン	
	バサポートの形状等の情報から計算式により設定しており、適用性確認用解析モデル(3次元シ	
	ェルモデル)よりも剛性が大きく算出されるため、差異が生じるものと考えられる(3.4参照)。	
	図 3.2-2(2)では、鉛直方向について、 3 次元シェルモデル (胴一般部断面保持) の主な振動	
	モードが、地震応答解析モデル(3次元はりモデル)の主な振動モードよりも高振動数側となっ	
	<u>ている。これは, 3 次元シェルモデル<mark>(胴一般部断面保持)</mark>では,図 3.2-1 に示す<mark>とおり</mark>,剛</u>	
	体要素を設定することにより、サプレッションチェンバサポート取付部付近の剛性が高くなる	
	<u>こと<mark>が</mark>原因と考えられる。</u>	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考 ・評価方法の相違 島根2号機では、サ プレッションチェン 胴の断面を剛体要素で 結合する。
	図 3.2-1 小円の平面保持を条件とした 3 次元シェルモデル	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	表 3.2-1(1) 3 次元シェルモデル <mark>(胴一般部断面保持)</mark> を用いた固有値解析結果	・検討内容の相違
	<u>(対称条件)</u>	島根2号機では,固
	固有振動数 固有周期 刺激係数*1, *2	有値と有効質量比の関
	(Hz) (s) X方向 Y方向 Z方向	係を比較する。
	2 次	
	53 次	
	注記*1:モード質量を正規化するモードベクトルを用いる。	
	*2: Y方向及びZ方向の刺激係数が2桁オーダー以上のものを代表して記載	
	まりり 1/0~ りたこと メイデン (旧 <u>如本地で</u> ではせ) オロンカロナは何だ休田	
	表 3.2-1(2) 3 次元シェルモデル (胴一般部断面保持) を用いた固有値解析結果 (原対数条件)	
	<u>(反対称条件)</u> 固有振動数 固有周期 刺激係数* ^{1,*2}	
	モード (Hz) (s) X方向 Y方向 Z方向	
	2次	
	注記 *1: モード質量を正規化するモードベクトルを用いる。	
	*2: X方向の刺激係数が2桁オーダー以上のものを代表して記載	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違 島根 2 号機では, 固 有値と有効質量比の関 係を比較する。
	図 3.2-2(1) 固有振動数と有効質量比の関係(水平方向)	
	□ 3.2-2(2) 固有振動数と有効質量比の関係(鉛直方向) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違
		島根2号機では、は
		り要素を 4 分割した3
		次元はりモデルを使用
		する <mark>ため,はり要素の</mark>
		分割数の影響検討は行
		っていない。

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所	2号機				備考
	3.3 サプレ	/ッションチェンバ	ナポート取付部ばね	剛性のモデル化の景	 響			
	今回工認で	ば, サプレッション	チェンバ取付部の	局部変形を考慮した	ばね剛性を	と算定し,	地震	
	応答解析モデ	・ル(3次元はりモラ	シル) のサプレッショ	ョンチェンバサポー	上取付部に	ばね要素	とし	
	てモデル化し	ており、それが固て	有周期に与える影響	を確認する。				
	サプレッシ	/ョンチェンバサポ	<u></u> ト取付部のばね要	素を考慮した地震に	芯答解析モ	デル(3)	次元	
	はりモデル)	及びそのモデルか	うサプレッションチ	エンバサポート取付	寸部のばね	要素を取	り除	
	いた3次元は	はりモデルと適用性研	確認用解析モデル (3次元シェルモデル) との固有	「周期の比	較結	
	果を表 3.3-	1.に示す。						
	固有周期の)比較結果から, サ	プレッションチェン	バサポート取付部の	のばね要素	を取り除	いた	
	3次元はりモ	デルと適用性確認原	月解析モデル(3次	元シェルモデル) と	の固有周期	朗は <u>, 鉛直</u>	1次	・検討内容の相違
	について大き	く差がある (表 3. 3	3-1(A)参照)。					島根2号機では、
								平1次モードと鉛直
								次モードへの影響の
	· · · · · · · · · · · · · · · · · · ·							いについて検討する。
	参照)。この	ため,サプレッショ		りばね要素として考	慮している	, サプレ	ツシ	
	ョンチェンバ 響は小さい。		€ 1 方向,回転 2 方[句)の変形が水平方	句の固有居	<u> 期に与え</u>	る影	
	響は小さい。			向) の変形が水平方 シバサポート取付音				
	響は小さい。						(上)	
	響は小さい。					のモデル((上)	
	響は小さい。 表 3.3-1 固有	有周期の比較結果(サプレッションチェ	ンバサポート取付音		のモデル((上)	
	響は小さい。 表 3.3-1 固有	有周期の比較結果()①地震応答角	サプレッションチェ ②	ンバサポート取付音	ボばね剛性・	のモデル((上)	
	響は小さい。検討ケース	有周期の比較結果()①地震応答角	サプレッションチェ ② 解析モデル .りモデル)	ンバサポート取付音	形ばね剛性 (A)	のモデル(単位: (B)	(上)	
	響は小さい。 表 3.3-1 固有	有周期の比較結果(① 地震応答(3 次元は	サプレッションチェ ② 解析モデル :りモデル)	- ンバサポート取付音 ③ 適用性確認用解	ボばね剛性・	のモデル((上)	
	響は小さい。検討ケース	有周期の比較結果(① 地震応答 (3次元は サプレッション	サプレッションチェ ② 解析モデル : りモデル) サプレッション	ンバサポート取付音 ③ 適用性確認用解 析モデル(3次	形ばね剛性 (A)	のモデル(単位: (B)	(上)	
	響は小さい。検討ケース	可周期の比較結果(① 地震応答 (3次元は サプレッション チェンバサポー	サプレッションチェ ② 解析モデル :りモデル) サプレッション チェンバサポー	ンバサポート取付音 ③ 適用性確認用解 析モデル(3次 元シェルモデ	形ばね剛性 (A)	のモデル(単位: (B)	(上)	
	響は小さい。検討ケース	可問期の比較結果()地震応答症(3次元は)サプレッションチェンバサポート取付部のばね	サプレッションチェ ② 解析モデル りモデル) サプレッション チェンバサポー ト取付部のばね	ンバサポート取付音 ③ 適用性確認用解 析モデル(3次 元シェルモデ	形ばね剛性 (A)	のモデル(単位: (B)	(上)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)		島根原子力	発電所 2 号機		備考
	3.4 サプレッ	ッションチェンバサポートのヨ	デル化の影響		
	サプレッショ	ョンチェンバサポートは既工 i	忍と同様に,サプレッション	チェンバサポートの形	・評価方法の相違
	状等の情報から	ら計算式により設定した剛性:	をサプレッションチェンバサ	ポートのはり要素に考	島根2号機では,サ
	慮する。このモ	プレッションチェンバ			
	した3次元はり	サポートの評価は、既			
	デルの固有周期	工認と同様に公式等に			
	固有周期の比	 よる評価を適用してい			
	3次元はりモラ	デルの方が固有周期が小さい	(表 3.4-1 (A) 参照)。		る。
	サプレッショ	ョンチェンバサポートの剛性の	の設定において,穴部等の詳	細な構造は考慮してい	・評価方法の相違
	<u>ないため、3巻</u>	大元はりモデルの方が固有周期	閉が小さくなったと考えられる	3 <u>.</u>	島根2号機では、本
					検討においてサプレッ
					ションチェンバサポー
					ト以外を剛構造とした
					モデルを用いる。
					検討内容の相違
					島根2号機では、サ
					プレッションチェンバ
					サポートについて, 公
					式等による剛性の設定
	表 3.4-	1 固有周期の比較結果(サフ	゜レッションチェンバサポー	トのモデル化)	について妥当性を確認
				(単位:s)	している。
	検討ケース	1	2	(A)	
	解析モデル	3次元はりモデル	3次元シェルモデル	1)/2	
		(サポート以外剛構造)	(サポート以外剛構造)	1)/2)	
	水平1次	0.042	0.049	0.86	
	鉛直1次	0.017	0.018	0. 94	
				_	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・評価方法の相違
		島根2号機では、本
		検討においてサプレッ
		ションチェンバサポー
		ト以外を剛構造とした
		モデルを用いる。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.5 3次元シェルモデルを用いた剛性の設定による影響検討	・検討内容の相違
	3.2及び3.4の結果を踏まえ, サプレッションチェンバサポートの剛性がサプレッションチ	島根2号機では、サ
	エンバ全体の固有周期に与える影響を検討する。サプレッションチェンバサポート単体をシェ	プレッションチェンバ
	ル要素でモデル化した3次元シェルモデルを用いて、サプレッションチェンバサポートの剛性	サポートについて,公
	を精緻に算定し、はり要素としてモデル化を行う。このはり要素を用いて3次元はりモデル(サ	式等による剛性の設定
	ポート剛性見直し)を作成し、3.2に示す他のモデルとの固有振動数と有効質量比の関係を比較	について妥当性を確認
	する。影響検討に用いたサプレッションチェンバサポート単体モデル図を図 3.4-1 に示す。	していることから,サ
	3次元はりモデル(サポート剛性見直し)を用いた固有値解析結果として,各振動モードに対	ポートの剛性の見直し
	する固有振動数,固有周期及び刺激係数のうち,刺激係数が2桁オーダー以上のものを代表して	による影響を検討す
	表 3.4-2 に示す。また、50Hz までの全振動モードにおける固有振動数と有効質量比の関係を図	る。
	3. 4-2 に示す。	
	直すことによって、3次元はりモデルと3次元シェルモデルの差異は小さくなる。このことか	
	ら, サプレッションチェンバサポートの剛性の設定方法が地震応答解析モデル(3次元はりモデ	
	ル)と適用性確認用モデル(3次元シェルモデル)の固有周期の差異に影響を与える主な要因の	
	ーつであるといえる。図 3.4−2(2)に示すとおり、鉛直方向についてはサプレッションチェンバ	
	サポートの剛性を見直しによって固有周期がほぼ変わらないことを確認した。	
	図3.4-1 影響検討に用いたサプレッションチェンバサポート単体モデル図	
Í		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	表 3.4-2(1) 3 次元はりモデル (サポート剛性見直し) を用いた固有値解析結果 (水平方向)	・検討内容の相違 島根2号機では、サ
	モード 固有振動数 固有周期 刺激係数*1, *2 (Hz) (s) X方向 Y方向 Z方向	プレッションチェンバサポートについて、公
	3 次 4 次 10 次* ³	式等による剛性の設定 について妥当性を確認 していることから,サ
	注記*1:モード質量を正規化するモードベクトルを用いる。 *2: X方向及びY方向の刺激係数が2桁オーダー以上のものを代表して記載	ポートの剛性の見直しによる影響を検討す
	*3: ECCSストレーナをモデルに組み込んだことに伴い卓越したモード	る。
	表 3.4-2(2) 3 次元はりモデル (サポート剛性見直し) を用いた固有値解析結果 (鉛直方向)	
	モード 固有振動数 固有周期 刺激係数*1, *2 (Hz) (s) X方向 Y方向 Z方向	
	9 次 10 次* ³	
	注記*1:モード質量を正規化するモードベクトルを用いる。 *2: Z方向の刺激係数が2桁オーダー以上のものを代表して記載	
	*3: ECCSストレーナをモデルに組み込んだことに伴い卓越したモード	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・検討内容の相違
		島根2号機では、サ
		プレッションチェンバ
		サポートについて,公
		式等による剛性の設定
		について妥当性を確認
		していることから,サ
		ポートの剛性の見直し
		による影響を検討す
		る。
	図 3.4-2(1) 固有振動数と有効質量比の関係(水平方向)	
	四····································	
	図3.4-2(2) 固有振動数と有効質量比の関係(鉛直方向)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	4. まとめ	
	3. の影響検討結果から、固有周期が完全に一致しない(差を生む)要因 <u>として、サプレッショ</u>	<u>ン</u> ・設備の相違
	チェンバサポートの剛性の設定方法の影響が主な要因の一つであることを確認した。	構造の相違により,
		島根2号機ではオーバ
		ル振動の影響が現れ
		る。
	今回工認における地震応答解析モデルは、上記のように固有周期が完全に一致しない(差を	生
	む)要因が考えられるものの、本文 4.2.4 におけるはりモデルの適用性確認結果(主要な振動モ	ー・検討内容の相違
	ドは3次元はりモデルと適用性確認用解析モデル(3次元シェルモデル)で対応関係が確認でき	
	こと及び 50Hz までの全振動モードにおける固有振動数と有効質量比の全体傾向はおおむね一致	 -
	ていること)を踏まえ、島根2号機の今回工認におけるサプレッションチェンバ及びサプレッシ	
	ンチェンバサポートの地震応答解析モデルへの今回設定した3次元はりモデルの適用性がある	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	<u>別紙 19</u>	・評価方法の相違
		島根2号機では、ベ
	<u>ベースプレートにおける応力評価の精緻化について</u>	ースプレートにおける
		応力評価の精緻化を実
	<u>1. 概要</u>	施する。
	本書は、サプレッションチェンバサポートの耐震評価部位のうち、ベースプレート(ボルト反力	
	側)の応力評価における精緻化について説明するものである。	
	2. ベースプレートの応力評価方法	
	サプレッションチェンバサポートの耐震評価では、サプレッションチェンバの地震応答解析に	
	より得られる荷重に対する応力評価を実施している。ベースプレートには、サプレッションチェン	
	バサポートに加わる荷重に対して、基礎ボルト及びコンクリートからベースプレートが受ける反	
	力に対する応力評価を行っている。	
	ベースプレートの耐震評価において考慮する反力のイメージを図 2-1 に示す。	
	サプレッションチェンバサポートに加わる 鉛直方向荷重・曲げモーメント (水平方向荷重はシアプレートで負担する。) 基礎ポルトの引張荷重 による反力 図 2-1 ベースプレートが受ける反力のイメージ	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
	3. 応力評価の精緻化内容	・評価方法の相違
	ベースプレートが負担する反力のうち、ボルト反力側の応力評価において、既工認ではベースプ	島根2号機では、ベ
	レートが荷重を負担する範囲について、ベース端部からボルト中心までの 150mm を有効幅として	
	考慮していた。しかしながら、荷重を負担する有効幅としてはリブ長さを考慮することが可能であ	
	ると考えられる[1]ため、今回工認では 180mm を有効幅として考慮する。既工認及び今回工認におけ	施する。
	るベースプレートが荷重を負担する範囲を表 3-1 に示す。	
	表 3-1 ベースプレートが荷重を負担する範囲(ボルト反力側)	
	既工認 今回工認	
	ベースプレートが基礎ボルト1本 からの荷重を負担する範囲 ベースプレートが基礎ボルト1本 からの荷重を負担する範囲	
	A A A A A A A A A A A A A A A A A A A	
	有效幅	
	<u>A-A</u>	
	参考文献[1]:水原旭他:「構造計算便覧」産業図書	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・評価方法の相違 島根2号機では,ベ
	将是 时画区克(<u>狄什)</u>	ースプレートにおける
		応力評価の精緻化を実
		施する。

女川原子力発電所2号機(2021年12月10日)	女川原子力発電所 2 号機(2021 年 12 月 10 日) 島根原子力発電所 2 号機					
	別紙 20	・記載の充実				
	サプレンシャンイーンがの型電源に本来をナフォカ党的利益を17~17~					
	サプレッションチェンバの耐震評価で考慮する水力学的動荷重について					
	設計基準事故時及び重大事故等時 の動荷重については,蒸気凝縮振動荷重(以下「CO 荷重」と					
	いう。), チャギング荷重(以下「CH 荷重」という。)及び逃がし安全弁による気泡振動荷重(以下					
	「SRV 動荷重」という。) それぞれについて、既工認の解析結果に基づいて算定している。CO 荷重					
	及びCH荷重は実機を模擬した米国実規模実験(FSTF実験),SRV 動荷重は米国 Monticello 発電所					
	における実機の試験結果に基づいて擾乱 (ソース) を設定し三次元モデルによる解析にて各動荷重 の分布を評価している。この解析によってサプレッションチェンバ内面に作用する動荷重の分布					
	を考慮している。					
	なお,CO 荷重,CH 荷重及び SRV 動荷重の詳細については,NS2-補-011「No.1 重大事故等時の動					
	荷重について」に示す。					

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2号機	備考
		・記載の充実 島根2号機では,設 置許可段階での説明事
	サプレッションチェンバ内部水の流動によりサプレッションチェンバ壁面に加わる圧力において,汎用流体解析コードFluentによる流動解析の結果,壁面の一部に集中して加わる局部的な圧力は10kPa程度であり,サプレッションチェンバの設計圧力(427kPa)及びSA耐性条件(853kPa)と比較して小さく部分的であるため,サプレッションチェンバの地震応答解析へ与える影響は十分に小さい(図1参照)。	項を記載する。
	50.0	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別紙 22	・記載の充実
		島根2号機では、設
	地震応答解析における地震動の入力方向	置許可段階での説明事
		項を記載する。
	サプレッションチェンバは16セグメントの円筒容器を繋ぎ合わせた円環形状容器である。各セ	
	グメントの継ぎ目に2箇所ずつ全32箇所のサポートが設けられており、プラント方位に対して、	
	図1に示す配置となっている。	
	また、サプレッションチェンバサポートは、径方向にスライドし、周方向に固定される構造とな	
	っている。このため、サプレッションチェンバサポートに最大の荷重が加わるように、サプレッシ	
	ョンチェンバに対する水平方向の地震応答解析における地震動の入力方向を、プラント方位から	
	反時計周りに 11.25°回転した向きに設定する。なお,既工認ではプラント方位に沿った水平方向	
	<u>入力を行っている。</u>	
	: 加速度入力方向 : サプレッションチェンバサポート	
	スライド方向(代表2箇所を記載)	
	270° 1.11.1 90°	
	180°	
	図 1 サプレッションチェンバへの地震荷重入力方向	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	別紙 23	・記載の充実
		島根2号機では、先
	<u>先行プラントとの相違について</u>	行プラントとの相違点
		について記載する。
	本資料では、サプレッションチェンバ及びサプレッションチェンバサポートの構造、耐震評価手	
	法について、先行プラント(女川2号機)との相違点を整理して示す。	
	なお,先行プラントの情報に係る記載内容については,公開資料を基に当社の責任において記載	
	するものであり、記載する名称及び用語の一部は島根2号機に対応する名称及び用語に見直して	
	<u>いる。</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機							備考	
		島根2号機における相違理由	又は相違点の影響 サプレッションチェンバ胴の板厚及び補強 リングの枚数が異なるため、オーバル振動 による影響が異なる。	建設時と同じ構造による耐震性を確認しており、構造変更は不要。	- (同様の解析手法を適用している。)	基礎ボルトを剛要素としてモデル化することによる応答解析への影響はない。また、 計算式により算出した、基礎ボルトに加わる荷重に対する権全性を確認しており、個別の基礎ボルトに加わる荷重を精緻に確認する必要は無い。	- (同様の方法でモデル化している。)	水位を高く設定することで質量が大きくなるため、耐震評価上保守的な条件である。また、固有周期と床応答スペクトルの関係についても保守的な条件であることを確認している (別紙10参照)。	
	表 先行プラントとの相違(1/6)	内容 (下線:相違点)	女川2号機島根2号機16セグメントの円筒を繋ぎあわせた 円管形状構造物 大円直径 小円直径 板厚 サポート 16箇所 (内外計32箇所) 補強リング 32枚		3次元はりモデルを用いたスペクトルモーダル解析	・胴及びサポートの剛性を考慮したはり要素でモデル化・サポート取付部の剛性を考慮したばね要素を設定	仮想質量法により算定した内部水の 有効質量を質点 (64箇所) に縮約し て設定	耐震解析用重大事故等水位を設定 (設計基準対象施設としての耐震評価に保守的な水位を設定)	
		理	構造概要	建設時からの構造変更	解析手法	解析 モデル化 構造部分 モデル 方法	万部	水位	
			難 担			元 袮	解护		

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	### 2 / 10 / 10 / 10 10 10 10 10 10	
	項目	

	島根2号機における相違理由	又は相違点の影響 耐震評価用の内部水有効質量の算出の際に は,女川2号機と同様に流体解析との比較 を実施している(本文4.1参照)。	耐震評価用の内部水有効質量の算出の際には、女川2号機と同様に流体解析との比較を実施しており、おおむね一致することを確認している(本文4.1参照)。	- (同様の解析手法を適用している。)	検討結果は同様であり,耐震評価条件は保守的な設定をしている(本文4.3参照)。	
表 先行プラントとの相違 (3/6)	内容(下線:	女川2号機 試験体を用いた振動試験により算出 した内部水有効質量比と比較	試験体を用いた振動試験により算出 した内部水有効質量は、仮想質量法 により算出した内部水有効質量比と おおむね一致する。	裕度の小さい部位について、耐震性についての計算書で適用した床応答スペクトルと50Lkまで考慮した床応答スペクトルを用いた場合のスペクトルモーダル解析を適用した耐震評価結果として得られる発生応力を比較	高振動数領域における刺激係数が 比較的小さいこと <u>、耐震性につい</u> ての計算書における評価では50比 までの振動モードを考慮している ことから、発生応力はほとんど増 加しない。	
	道目	内部水有効検討方法質量の設定方法 (仮想質量法)の妥当性確認	検討結果	帝 高振動数領 検討方法 析 域の影響	検討結果	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	### 19 (1	
	本	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	島根2号機における相違理由 又は相違点の影響 い円の変形による影響を確認を目的として おり、同等の検討を行っている。 が、主要な振動モードの対応関係があるこ と及び固有振動数と有効質量比の関係がお おむね一致することを確認している(本文 4.2.4参照)。 地震応答解析モデルにおける分割数を多く 設定(4分割)していることから,検討対 象外とする。 一(同様の検討を行っている。)	
	東本アル化要 サブレッ 検討方法 サブレッ サブレッ サブレッ サブレッ サブレッ サブレッ サブレッ サブレッ 検討結果 (要素分割 検討結果 (数) サボート取 検討結果 (4)	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
	島根2号機における相違理由 又は相違点の影響 国有周期に影響する部位はサポートのみで あり,同等の検討を行っている。 チェンパ全体の固有周期に与える影響は小 さい(別紙18参照)。 同様の部位を評価対象としており,公式等 による評価を適用している部位は単純な形 状の部位であり,評価手法は妥当である。 範囲をモデル化している点でモデル化範囲 は同様である。 一(同様の入力を行っている。)	
	表 先行プラントとの相違 (6 / 6) 内容 (下議: 相違点)	
	項目	

女川原子力発電所 2 号機(2021 年 12 月 10 日)	島根原子力発電所 2 号機	備考
		・記載の充実
		島根2号機では,先
	<u> 先行プラントとの有効質量比の比較</u>	行プラントとの比較に
		ついて記載する。
	1. 概要	
	島根2号機における検討で得られた有効質量比について、先行プラントとの比較により妥当性	
	<u>を確認する。</u>	
	なお,先行プラントの情報に係る記載内容については,公開資料を基に当社の責任において記載	
	するものであり、記載する名称及び用語の一部は島根2号機に対応する名称及び用語に見直して	
	<u>いる。</u>	
	2. 有効質量比の比較	
	先行プラント(女川2号機)及び島根2号機における検討で得られた水位と有効質量比の関係を	
	表1及び図1に示す。	
	強め輪が流体の運動を阻害するため、強め輪がある場合に容器が流体から受ける反力が大きくな	
	るためであると考えられる。また、島根2号機の検討に用いた試験体は島根1号機の縮小試験体で	
	あることから、容器寸法の違いによる差が生じている。	
	強め輪の模擬や寸法の相違等により、有効質量比の算出結果にばらつきはあるが、先行プラント	
	(女川2号機)及び島根2号機において同等の条件による検討で得られた有効質量比は同程度の	
	結果が得られている。	

女川原子力発電所 2 号機(2021 年 12 月 10 日)			島根原	子力発電所	新 2 号機		備考
	表 1 有効質量比の比較	プラント 対象 直径 内径 水位 流体解析の 加加 加加 加加 加加 加加 加加 流体解析		試験体 無 1,464 400 161 0.40 ランダム波A 0.21 0.20	s - D 0. 23 0. 28	H T T T T T T T T T T T T T	

女川原子力発電所 2 号機 (2021 年 12 月 10 日)	島根原子力発電所 2 号機 備考					
	図1 水位と有効質量比の関係					