島根原子力発電所第2号機 審査資料		
資料番号	NS2-他-206 改 01	
提出年月日	2022年10月18日	

先行審査プラントの記載との比較表 (サプレッションチェンバの耐震評価における 内部水質量の考え方の変更等について)

2022年10月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

先行審査プラントの記載との比較表(NS2-補-027-10-45 サプレッションチェンバの耐震評価における内部水質量の考え方の変更等について)

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	サプレッションチェンバの耐震評価における内部水質量の	
	来る七の亦再学について	
	与ん力の変更守について	

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現,設備名称の相違(実質的な相違なし)

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	目次
	1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2. サブレッションチェンバ及びサブレッションチェンバサボートの構造・
	3 サプレッションチェンバ及びサプレッションチェンバサポートの耐電調
	3.1 評価手順・・・・・
	3.2 地震応答解析
	3.2.1 基本方針
	3.2.2 地震応答解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.3 応力評価・・・・・
	········ 3.3.1 応力評価方針······
	·····································
	3.3.3 応力評価方法
	3.4 既工認と今回工認における耐震評価手法の相違·····
	4. 地震応答解析の詳細・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.1 地震応答解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.1.1 サプレッションチェンバ内部水の有効質量算定・・・・・
	4.1.2 地震応答解析モデルにおける内部水の有効質量の設定・・・・・・
	4.1.3 サプレッションチェンバのモデル化・・・・・・
	4.1.4 <u>サプレッションチェンバサポート</u> 取付部のばね剛性の算定・・・・
	4.1.5 <u>サプレッションチェンバサポート</u> のモデル化·····
	4.2 地震応答解析モデルの適用性確認・・・・・・・・・・・・・・・
	4.2.1 適用性の確認方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.2.2 適用性確認用解析モデル・・・・・・・・・・・・・・・・・・・・
	4.2.3 地震応答解析モデルと適用性確認用解析モデルの比較・・・・・
	<u>4.2.4 妥当性確認結果</u> ······
	4.3 地震応答解析に <mark>おける</mark> 内部水の有効質量 <u>算出方法</u> の影響・・・・・・・
	<mark>4.4 地震応答解析における高振動数領域の影響</mark> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4. <mark>5</mark> スロッシング荷重·····
	5. 応力解析の詳細・・・・・
	5.1 応力評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.2 応力評価点・・・・・

	備考
•••••• 4	
	・設備の相違
	島根2号機では、建
	設時の構造で耐震性を
評価・・・・・ <mark>9</mark>	確認している。
· · · · · · · · · · · · · · · · · 9	
· · · · · · · · · · · · · · · · · 12	
····· <u>12</u>	
····· <u>12</u>	
····· <u>15</u>	
••••••••••••••••••••••••••••••••••••••	
10	
$\frac{13}{21}$	
$\cdots \cdots \cdots \frac{21}{21}$	
$\cdots \cdots \cdots \cdots \frac{21}{21}$	
$\cdots \cdots \cdots \cdots \frac{23}{23}$	
· · · · · · · · · · · · · · · 28	
••••••• <mark>30</mark>	
••••••• <mark>34</mark>	
• • • • • • • • • • • • • • • • • <mark>36</mark>	
• • • • • • • • • • • • • • • • <mark>36</mark>	
••••••• <mark>38</mark>	
••••••• <mark>39</mark>	
••••••• <mark>41</mark>	
• • • • • • • • • • • • • • • • <mark>68</mark>	
••••••••••••••••••••••••••••••••••••••	
••••••••••••••••••••••••••••••••••••••	
····· 71	・評価方法の相違
····· 71	島根2号機では,既
····· 72	L認と同じ応力評価点 に 。いて 認 知り てい
	についく評価してい
	ୖୢ

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	5.3 応力解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	 5.4 応力評価・ 5.4.1 サプレッションチェンバの応力評価・ 5.4.2 <u>サプレッションチェンバサポート</u>の応力評価・ 6. 耐震評価における不確かさの考慮及び保守性・ 7. 耐震評価結果・ 8. まとめ・
	別紙1内部水の有効質量の適用及びその妥当性検証
	別紙2 サプレッションチェンバ内部水の地震応答解析モデルへの縮約方法及び
	別紙3 50Hz の領域まで作成した床応答スペクトルによる影響検討
	別紙4 サプレッションチェンバサポート取付部のばね剛性の設定
	別紙5 適用性確認用解析モデル(3次元シェルモデル)の設定
	別紙6 サプレッションチェンバ内部水によるスロッシング荷重の算定
	別紙7計算機コードの概要
	別紙8 内部水の有効質量の概要
	別紙9 規格類における内部水の有効質量の適用例
	別紙10 サプレッションチェンバの水位条件
	別紙11 地震時における円筒形状容器内部水の有効質量に係る研究の概要
	別紙12 内部水の有効質量比に対するスロッシングの影響
	別紙13 内部水の有効質量比に対する入力地震動の影響
	別紙14 サプレッションチェンバ内部水によるスロッシング荷重及び
	有効質量の影響
	別紙15 規格基準における内部水の有効質量比との比較
	別紙16 原子炉建物基礎スラブにおける地震応答を用いる妥当性について
	別紙17 サプレッションチェンバサポートの耐震評価における応力算出方法の

	備考
••••••••••••••••••••••••••••••••••••••	・評価方法の相違 島根2号機では,サ プレッションチェンバ
····· <mark>73</mark>	サポートの評価は、既
····· 75	工認と同様に公式等に
76	よる評価を適用してい
····· 78	る。
····· 81	
去及びその妥当性	 ・記載箇所の相違 島根2号機では、 50Hzの領域まで作成し た床応答スペクトルに
	よる影響使討を加載う に記載する
	・検討内容の相違
	島根2号機では、実
	機の3次元はりモデル
	について,3次元シェ
	ルモデルとの比較によ
	り、オーバル振動の影
	響を含めた解析モデル
	の適用性の検討を行
要	う。
	 ・記載箇所の相違 島根2号機では,全 試験回における内部水 の有効質量比を別紙11 に記載している。
法の考え方	 ・設備の相違 島根2号機では,建 設時の構造で耐震性を 確認している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	別紙18 サプレッションチェンバのモデル化に係る固有周期への影響検討
	別紙19 ベースプレートにおける応力評価の精緻化について
	別紙20 サプレッションチェンバの耐震評価で考慮する水力学的動荷重について
	別紙 21 内部水の流動による局部的な圧力の影響
	別紙 22 地震応答解析における地震動の入力方向
	<u>別紙 23 先行プラントとの相違について</u>
	別紙24 先行フラントとの有効質量比の比較

	備老
	C., HI
	 ・評価方法の相違 島根2号機では、ベ ースプレートにおける 応力評価の精緻化を実 施する。
<u> かいて</u>	・記載の充実
	・記載の充実 島根2号機では,設 置許可段階での説明事 項 <mark>も含め</mark> 記載する。
	 ・記載の充実 島根2号機では,先 行プラントとの相違点 について記載する。
	・記載の充実 島根2号機では,先 行プラントとの有効質 量比の比較について記 載する。

 1. はたはに 4. はたはに 4. はたはに 4. はたはに 4. はたはに 4. はたは、 4. はたは、 4. はたは、 4. はたして、 4. はたい 4.	女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
 本上に、実体部となな電話になどので、第二、した後の主人は知ると見た、という。、のは、主ならえたりアンシック コントンンのの読む(PA) いたいで、100 (PA)、私にないたいたいたいで、100 (PA)、私にないたいたいたいで、100 (PA)、シントン・マンド・マンドのディンド・マンド・マンドのディンドのディンドのディンドのディンドのディンドのディンド・マンドのディンド・マンドのディンドのディンドのディンドのディンド・マンドのディンド・マンドのディンド・マンドのディンド・マンドのディンドのディンドのディンドのディンドのディンド・マンドのディンドのディンドのディンドのディンドのディンドのディンドのディンドのディ		1. はじめに	
 ングランパの資料性にないため学業員、及び<u>しまたなことなたといたまたことの</u>ない デジーパの支援したしていたした。 デジーパースの、「「「「「「」」」」」」 デジーパースの、「「」」」」 デジーパースの、「「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」」 デジーパースの、「」」」 デジーパースの、「」」 デジーパースの、「」 デジーパースの、「」」 デジーパースの、「」」 デジーパースの、「」 デジーパースの、「」 デジーパースの、「」」 デジーパースの、「」 デジーパースの デジーパースの、「」 デジースの、「」 デジーパースの、「」<td></td><td>本書は、<u>島根原子力発電所第2号機(以下「島根2号機」という。</u>の<u>VI-2-9-2-2</u>サプレッシ</td><td></td>		本書は、 <u>島根原子力発電所第2号機(以下「島根2号機」という。</u> の <u>VI-2-9-2-2</u> サプレッシ	
第日についての対象に、においての対象に、ないてなどから、キャンパタにしておから、キャンパタにしておいてのから、 サイレッションデキンパタにサインジェントンではしていたのの構成では、サイレッション・シーンパタに、しておいていたので、 加速なると思わったす。ここれに、ここれには、ここれになどのなど、しておいてないで、しいてあいた。 加速なると思わったす。ここれに、ここれには、ここれになどのから、 加速なると思わったす。ここれに、ここれになど、しいておいたのの構成を構成した時間にないたいで、 加速なると思わったす。ここれに、ここれになどの時間になどのから、 加速なると思わったす。ここれになどの時間になどのなど、シーンパロなどの思いたいで、 を思いていていた。 を思いては、ここれで、 加速なると思いては、ここれであの解除を構成していた。 である、特徴を扱いして、サインショングェンパの成びをプロションズのなど、「のたるなを描述」 を思いて、「のたるな」 を思いていて、「二、「本学な会評ので大いいで、」の本でなど、ここれになど、 やすのに思想にないては、二、「本学な会評ので大いいで、」の本では、「「「本」」のなど、思いて、 「本でののためになるな」」のなど、ここれになど、「シーンの方式のの場かで構成していた。」」の表示にないて、「ホーマのためになるない」のないたいで、 、本で方のためになるない、ここれにないては、「本」などなないでは、「ないない」のない、 、本で方のためになるない、 マンションデェンパ内容成でのないで、「ないない」とない、 、本で方のためにないては、「本」などのないではない、など、 、ここれにないて、 、ない、「ス」ない、」のない、」のないたいでは、「ないないない」のないでは、 、本で方のためにないては、「「本」ないないないでは、」ないない、 、ないない、 、ここれにないて、 、ないない、 、ないない、 、ないない、 、ないない、 、たいない、 、 、たいない、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、たいない、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		ョンチェンバの耐震性についての計算書」及び <u>VI-2-9-2-4「サプレッションチェンバサポート</u> の耐	
 サブレッションチュンパペレンションテンシンパーンの構成学校のは、シレッションテンシンパーンの構成学校のは、シレッションシンシングランシュンパーンの構成学校であった。シーンパーンの構成学校の中国、地球にするの加速している。するの構成と数化ですって、また、シーンパーンの構成学校の中国、地球にするの加速していた。するため、シーンパーンの構成学校の中国、地球にするの加速していた。するため、シーンパーンの構成学校の中国、地球にするの加速していた。また、シーンパーンの構成学校の中国、地球にするのから、シーンパーンの構成学校の中国、地球にするのから、シーンパーンの構成学校の中国、地球にするのから、シーンパーンの構成学校の中国、シーンパーンの表示、シンパーンの表示、シーンの表示、シーンパーンの表示、シーンパーンの表示、シーンパーンの表示、シーンの表示、シーンの表示、シーンパースの表示、シーンパースのチェーンのシーング、シーンパースの一人の主要がないた。シーンの表示、シーンパースのディーンの目前、かたいた。のまた、シーンパースの表示、シーンパースの表示、シーンパースの表示、シーンパースの表示、シーンの表示、シーンパースの表示、シーンパースの表示、シーンの表示、シーンパースの表示、シーンの表示、シーンの表示、シーンパースの表示、シーンの表示、シーンの表示、シーンの表示、シーンの表示、シーンの表示、シーンのシーング、シーンパーンの表示、シーンのシーンのシーンのシーンのシーンのシーンのシーンの表示、シーンの表示、シーンの表示、シーンの表示、シーンの表示、シーンのシーンのシーンのシーンのシーンのシーンのシーンのシーンの表示、シーンの表示、シーンのシーンのシーンのシーンのシーンのシーンのシーンのシーンのシーンのシーンの		震性についての計算書」における耐震評価手法についてまとめた資料である。	
 シャキ・シャキ体とすたそれです。シェーンパッパートと数徴した規模に実施やデ を用いて地域ではなったけの「国家における新した」とないまたが、各切の参加を実施していた。 デビムンパ吸(ワ)/レッションチェンパリボートの問題性な資化はする可能が用フレー 2011年1日、日にパー、 連位 2015歳の以下説が100キグレッションチェンパリボートの問題性な資化はする可能が用フレー 空口11日、日にパー、 連位 2015歳の以下説が100キグレッションチェンパリボート(1015年)(10155年)(10155555555555555555555555555555555555		サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価では、サプレッショ	
 小を用いて地震管電を設定しまた。キャンパホレーの学校になら、キャンパホレーマンション ション・シンパホレーの学校、ジンパホレーの学校、「中学レッション ション・シンパホレーの学校、「中学レッションシンパ市が本空間を支配して、内容な、 山田 シーレービー(エア・ア・ア・シンパホレーマンパホレージー) ・ は様の方法の構築 山田 シーレービー(エア・ア・ア・シンパホレージー) ・ は様の方法の構築 山田 シーレービー(エア・ア・ア・シンパホレージー) ・ は様の方法の構築 山田 シーレービー(エア・ア・ア・シンパホレージー) ・ は様の方法の構築 山田 シーレービー(エア・ア・ア・シンパホレージー) ・ は様の方法の構築 ・ はまれいては、またまた、 ・ など、 ・ はまれいては、またまたまた ・ など、 ・ はたまれいては、またまたまた ・ など、 ・ はたまれいたい、 ・ はたまれいたい、 ・ はたまれいたい ・ はたまれい ・ はたまれいたまれい ・ はたまれいたい ・ はたまれいたい ・ はたまれいたい ・ はたまれいたい ・ またれいたい ・ はたまれいたれいたい <		ンチェンバ本体とそれを支持するサプレッションチェンバサポートを模擬した地震応答解析モデ	
 シチャンパ気が見したなななションチェンパリ流水に見かめ読みたかである。 画板2 三種のでごねなび毎回正認なび毎回正認ながあい味度力なびから成立がと対する何度等性シア・ なりました11月に、 画板2 登録の際ごはないでは、まプトッシャングなどパ気な登録したり、「スペリオポージ」の 日報で都には、前皮を残ないとして、サブレッシャングなどパ気な登録したして、「スペリオポージ」の 本の方面のの構成の学科を登録して用いたが見などないないた。 本の方面のの構成の学科を登録して用いたが見などを認いたし、 など見たり、「ないないでは、ま人本な登録の中プレッションチョンパの水位上見に作う内部水気量の 市で知られないでは、ま人本な登録の中プレッションチョンパの水位上見に作う内部水気量の なるためになるできましたのの状化で発展できたいた。 などれていたが、 本の方面のの構成の学科を登録して用いたが見ましたのである。より現実に近いサブレ フションチェンパの水位を登録して用いたが、 また、作品のな存在したまたで知い、 なたまりためですかによるの地球(パパク)とから、ジノレンジョンチェンパの水位(小人)によう実施して いたいですがとの ションチェンパリ(私)によるな思いからい、 またました。 たい、サブレッションチェンパリ語水位(小人)にからせたいた。 サブレッションチェンパリ語水位(大くデブレッシェングサニー)ので したととした。 たい、サブレッションチェンパリ語水位(大くデブレッシェングサニー)ので したととした。 たい、サブレッションチェンパリ語水位(大くデブレッシェングサニー)ので サブレッションチェンパリ語水位(大くデブレッシェングサニー)ので キャンクタンパリング、 シンジョンチェンパリ語水位(大くデブレッシェングサニー)ので またまましている。 キャンクリーンが、 オーンパリーン シングーンがないたきましたの。 いうる。 キャンクリーン たいため、 日本は、一人、 オーン(日本)のためで発生)になる定義のであたが、 ないためですたい。 キャンクリーン など、 キャンクリーン など、 本の美術の「日本」 本のためですたい。 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 キャンクリーン など、 本のためですたいで、 キャンクリーン など、 本の見たいで、 キャンクリーン など、 本のためですたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のためですたいで、 キャンクリーン 本のためですたいで、 キャンクリーン 本のしたいで、 キャンクリーン など、 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいですたいで、 キャンクリーン 本のしたいでの。 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいで、 キャンクリーン 本のしたいですたいで、 キャンクリーン 本のしたいですたいで、 キャンクリーン 本のしたいですたいで、 キャンクリーン 本のしたいですたいですたいで、 キャンクリーン 本のしたいですたいですたいで、 キャンクリーン 本のしたいですたいですたいですたいですたいですたいですたいですたいですたいですたいです		ルを用いて地震荷重を算定し、これらに基づき、各部の構造強度評価を行うことで、サプレッショ	
 <u>品限と支援の際に業務及学師の上来における物的線は方法及び特別地域方法対する前は評価でいた。 で把したしたに示す。 進数支援機の低下地におけるサブレッションチェンパ及び<u>サブレッションナまンパ交がよー</u> 研究研究を創催と支援して、売去本産性。 電話になどして、空気として、ウガレッションナまンパ及びサブレッションナまンパ支がよーと 可能になどして空気となった。 すがしたとして空気となった。 すがしたとして、ウガレッションナキンパ成が大型加速とならして、ウラム本産性。 日ご知べて、「カポホ 日ご知べて、この未満を増加していた。 中ゴ ごなはいては、点人事を装置のウリンクションチェンパの水位と目存に作ういれた言葉 がたして空気となった。 すがしたるか、より現実にないて、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいすか、 がたいまり、 がたしまり、 がたいまり、 がたいまり、 がたり、 がたいまり、 がたいまり、 がたいまり、 がたり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたいまり、 がたがまり、 がたいまり、 がたいまり、 がたいまり、 がたり、 がたり、 がたり、 がたり、 がたり、 がたり、 </u>		ンチェンバ及びサプレッションチェンバサポートの耐震性を評価するものである。	
 ・密国について、通じ、マンションディング、なび<u>まプレッションデェングやボート</u>の ないには、「マンションディングにお水を運転と見使して、「古水へ全化」 ・ご認識がの構成 ・読服を登録してできょしく3 次にはりモデルを用いた進編に答解的な実施していた。 ・ご認識がの場合実施していた。 ・ご認識がの「なりたな」を知いた進編に答解的な実施していた。 ・ご認識がの「なりたな」を知いた進編に答解的な実施していた。 ・ご認識がの「なりたな」を知いた進編に答解的な実施していた。 ・ご認識がの「なりたな」を知いた進編に答解的な実施していた。 ・ご認識がの「なりたな」を知いた進編に答解的な実施していた。 ・ご認識がの「なりたな」を知いた進編に答解的な実施していた。 ・ご認識がの「なりたな」を知いた進編に答解的な実施していた。 ・ご認識がの「なりたな」を知いた。 ・ご認識にないては、電力学校を通え、詳細いと地震な差別にないたまで、 ・ジェン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン		<u>島根2号機の既工認及び今回工認における動的地震力及び静的地震力に対する耐震評価フロー</u>	
 血症 2支援の研究 血症 2支援の研究 は合いたいです。シンパンボングランパク、シンパスは少していた。ためかくため、 は合いたいです。 はのです。 はのです。		を図1-1~1-4に示す。	・評価方法の相違
 新しお確認は、無限な扱いとして、サブレッショング、シンパ約部本を担保と圧化した内容が全部 国注管量として考慮した3歳次には95%のを用いた地震応客報行を実通していた。 のある印体と見保し、 のようには、歳人本数差成差野のサブレッションチョンパの依征上目に作う内部水電量の サガレッションチョンパの依征外の検査員があら考慮して内部水電気のから有効質がつきな資産がしたサブレッションションションションションションションションションションションションションシ		<u>島根2号機</u> の既工認におけるサプレッションチェンバ及び <u>サプレッションチェンバサポート</u> の	島根2号機では、既
国立管盤として考慮した 3 次元はりでジルを用いた地域応答解所を実施していた。 0.5 を割拠を2 敗し、 次下力の少量を考慮していた。 0.5 を割拠を含解し 今回 1.認においては、正大学放登湾のサブレッションチェンバの次位上外に伴う内部水管型の 均加、基本地震動の内入学を施生え、許和な地震の学校があまうたか。より受寒に近いサブレ ションティンバの消か、の学物を考慮しては対応常能な差かまうたか。より受寒に近いサブレ フションチェンバの消か、の学物を考慮しては対応常能な差かまうたか。より受寒に近いサブレ ションシェンジャンションチェンバの激化で含め加速に使用水管量を発表の固定管量から有効性も必要す たきとした。なは、サブレッションチェンバサボート医療 高い込む完整な考慮したる文には少な少いや中ズが見けりを通用する こととした。なは、サブレッションチェンバウが動作「スペクトルモーダが4枚明)を通用する こととした。なは、サブレッションチェンバ中部本によるスロッシング例室を法律解析にて第定することととした。 ・認識部の印度: ・で、 ・こととした。 サブレッションチェンバウが、たまるスロッシングの資産を法律解析:こまたことととした。 ・認識部の印度: ・認識部の印度: ・認識部の印度: ・認識部の印度: ・な。 ・認識部の印度: ・認識部の印度: ・認識部の印度: ・認識部の印度: ・な。 サブレッションチェンバウがいて考慮にならいてきたいです。 ・認識部の作用: ・な。 ・認識部の印度: ・な。 ・認識部の解説での いた。 サブレッションチェンバウがいて考慮にないて考慮にないです。 ・認識部の構成のやす ・なる ・認識部の構成のやす ・な。 ・認識部の構成のやす ・なる サブレッションチェンバウがいて考慮にないです。 ・認知者のの変換の学校になる、 ・認識のやす ・なる ・、		耐震評価は、簡便な扱いとして、サプレッションチェンバ内部水を剛体と見做して、内部水全体を	工認において、内部水
今回1認においては、電大事故医時のサブレッションチャンバの次位上昇に伴う内部次質型の 増加、医中地試動の増大等を増まえ、詳細な地定な活動を支援するため、より現実に近いサブ ンションチ・ナンバの内部水の準防を考慮して内部水質量の増大(内部水質の、運転電気数5.3)を低 また、内部水の有効な登載を考慮して内部水質量の増大(内部水質のご覧から有分質にへ支ます いる。 ションナーンバクロ水の準防・考慮して内部水質をの増大(内部水質のご覧から有分質にへ支ます。 主張した内部水の分類型のモデルによる知知時前(スペクトルモーダン体的)を呈用する 主などれた。なお、サブレッションチェンバ内部水質量の扱いを有効質量としたことに伴い、サブ レッションチェンバ内部水によるスロッシング荷量を資格時にて募定することとした。 ションチェンバ内部水によるスロッシング荷量を資格時にで募定することとした。 デルを適用するにあったっては、要当性確認用解解したすみであるたりの正式を使用した。 表現自分の地理 デルを通用するにあったっては、要当性確認用解解したすみであるととした。 ジョンチェンバ内部水ですの運行でき振動モートが3次元はりモデルにて表 定さていること等を確認している。 ビンチェンバの次にサブレッションチェンバ内部水質量の差え力が変更について」(PH00)本 2010年、「本規算子の注意報告報」とな利用の方法 Automatic and appendent appende		固定質量として考慮した3次元はりモデルを用いた地震応答解析を実施していた。	のみを剛体と見做し,
 今回二葉地は取っては、直人率改善時かを実施するため、より現実にはり内部水質量の 増加、基準地認動の増大等を描まえ、詳細な地認定答解がを実施するため、より現実に近いサブレ ッションチェンパの内部水の育効質量のモデル化、加度病量の増大(小部水質量、基準地震動をも)を描 さる。また、内部水の有効質量のモデル化、加度病量の増大(小部水質量、超重地震動をも)を描 さる。また、内部水の有効質量のモデル化、加度病量の増大(小部水質量の扱いを含効質量、シンキンボント、 たる)、お取動所の相違 通知と加速差量を起ことも次にはよる知識に計画するため、サブレッションチェンパウホートのが時期(スペアトルモーダの休か)を適用する こととした。なお、サブレッションチェンパ内部水質量の扱いを有効質量としたことに伴い、サブ レッションチェンパ内部水によるスロッシング確定を流体解析にて算定することとした。 サブレッションチェンパ内部水によるスロッシング確定を流体解析に含次にはり、サブレーションチェンパウボートを考慮している。 やすなしている。 サブレッションチェンパウボートの地段応等解析に含次に見つた。 ・記載箇所の相違 高程2号優では、既 ご認識箇所の相違 高程2号優では、 認識箇所の相違 高程2号優では、既 ご認識箇所の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味の相違 高程2号優では、既 に認識意味がならることとした。 ************************************			水平方向の地震応答解
 増加、蒸却運動の相大学を始まえ、評細な肥実施や客所な実施するため、より要求によいサブレール解析により実施している。 ションチェンバの内部水の学動を考慮して内部水質量を使用に評価するため、より更以に見から有効質量へ変更する。 る。また、内部水の有効質量のモデルに、出農産面の相大(内部水質量ム・モオンパナボート取(記載に請いの財産 主え_A希林に負荷される地震荷車の相大(内部水質量ム、生水(水)ボート取(記載に請いてサブレーンコンチェンバ内部水による方はりモデルによる海的解析(スペクトルモーダル解)を適用する 注酸している。 評価方法の相違 記載においてすごととした。 ジェンチェンバ内部水によるスロッシング毎度を減速(等析にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎度を減速(等析にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎度を減速(等析にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎度を減率時にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎度を減率時にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎度を減率時にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎日を減率時にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎日を減率時にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎日を減率時にご算定することとした。 ジェンチェンバ内部水によるスロッシング毎日を減率時にご算定することとした。 ジェンチェンバ内部水によるスロッシングが正式の支払の定当の利益、 記載においてサブレッションチェンバクがボートの地環応常度時に33次元はりモデルにて表し、 読むくて部以上のまた、 ジェンチェンバクシェンチェンバクホートが33次元はりモデルにて表 確認している。 注意している。 注意したいこと、 読むしている。 注意したいこと、 ジェンチェンバクシェンチェンバクが部本定量が完全提動モートが33次元はりモデルにて表 確認している。 注意したいこと、 ジェントチェンバ内部本定量が完全提動・モートが33次元はりモデルにて、 (第回の内違 数回転一名、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		今回工認においては、重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の	析をスペクトルモーダ
 ションチェンパの内部水の萃動を考慮しているが震量を変来の固定質差から有効質量へ表現す いる。 いる。 、また、内部水の有効管量のモデル化、地震衛査の増大(小部水管量、基準地震動)Sa)を踏 まえ_Sa新化は気荷される地震荷重な詳細に目かるかめ、受力とシンジェンパント取付 部のばれ定数を考慮した3次元はりモデルによる動的解析(スペクトルモーダル解析)を適用する こととした。なお、サブレッションチェンパ内部が質量の扱いを有効質量としたことに伴い、サブ レッションチェンパ内部水によるスロッシング荷重を流体解析にて算定することとした。 ・記載を汚している。 ・デルを満用するにあたっては、妥当性趣識出用解析モデル(3次元と)ルモデルにはよる通知の相違 高級2.2号機では、速 認識についる。 ・記載を売している。 注記率: 記載版画「力量電防量・支持・加量評価において考慮すべき振動モードが3次元はりモデルにで表 取できていること等を確認している。 注記率: 記載版画「力量電防量・支持・加量評価において考慮すべき振動モードが3次元はりモデルにで表 取できていること等を確認している。 注記率: 記載版画「力量電防量・2号が一面素管理「局損原」た力差電防2号が一加量、加量による須換の防止 例紙一名。サブレッション・チェンパ内部水管量の考え方の変更について」(IP-050 改 <u>90(合和3年9月6日))</u>参照 		増加,基準地震動の増大等を踏まえ,詳細な地震応答解析を実施するため,より現実に近いサプレ	ル解析により実施して
る。また、内部水の有効質量のモジル化、地震荷量の現状(内部水質量、芝進ル塩素ある)を構 また。各部材に負荷される地震荷量を詳細に評価するため、 <u>サブレッションチェンパサポート取付</u> <u>部の过起点液を含慮したさ</u> なたはりモブルにたる勤的解析(スペクトルモーダル解析)を運用する こととした。なお、サブレッションチェンバ内部水質量の扱いを有効質量としたことに伴い、サブ レッションチェンバ内部水によるスロッシング荷量を液体解析にて算定することとした。 サブレッションチェンバ内部水によるスロッシング荷量を液体解析にて算定することとした。 ・記載箇所の相違 ・提記においてサブレッ ションチェンパ及び <u>サブレッションチェンパサポート</u> の地震応答解析に3次元はりモ デルを適用するにあたっては、双当性確認用解析モデル(3次元シェルモデル)による速度応答解 析結果との比較検討を行い、耐費評価において考慮すべき振動モードが3次元はりモデルにて表 現できていること等を確認している。 注記*: <u>危機原子力発電所第2号が高空資料「危機原子力発電所2号炉」地震による損傷の防止</u> <u>即紙=8、サブレッション・チェンパ的部水質量の考え方の変更について」(IP-060 改 (9)(全和3年9月6日))</u> 参照		ッションチェンバの内部水の挙動を考慮して内部水質量を従来の固定質量から有効質量へ変更す	いる。
まえ、各部村に負荷される地震管査を詳細に客価するため、使力レッションチェンパウボート取付 部のばね定整数考慮した3改元はりモデルによる動的解析(スペクトルモーダル解析)を適用する 部件価方法の相違 5枚2 5 後には、取 レッションチェンパ内部水によるスロッシング常査を流体解析にて算定することとした。 サブレッションチェンパ内が水によるスロッシング常査を流体解析に3次元といた。 サブレッションチェンパ及び <u>サブレッションチェンパウボート</u> の地震応答解析に3次元はりモ が必要進している。 に記載器所の相違 - 没費の相違 - 記載器所の相違 - 没費の相違 - 認載器所の相違 - 認載器所の相違 - 認載器所の相違 - 没費の相違 - 認載器所の相違 - 認載器のの相違 - 没費の用違 - 認載器所の相違 - 没費の用違 - 認載器所の相違 - 認載器所の相違 - 没費の相違 - 認載器のの相違 - 認識器のの相違 - 認識器のの相違 - 認識器のの相違 - 認識器のの相違 - 認識器のの相違 - 認識器のの相違 - 認識器のの相違 - 認識器のの相違 - 認識 - 認識器のの相違 - 認識 - 認識器のの相違 - 認識 - 認 - 認識 - 認識 - 認識 - 認 - 認識 - 認 - 認 - 認 - 認 - 認 - 認 - 認 - 認		る*。また、内部水の有効質量のモデル化、地震荷重の増大(内部水質量、基準地震動Ss)を踏	
部のほね変数を考慮した3次元はりモデルによる動的解析(スペクトルモーダル解析)を適用する こととした。なお、サプレッションチェンバ内部水質量の扱いを有効質量としたことに伴い、サプ レッションチェンバ内部水によるスロッシング荷量を流体解析にて算定することとした。 サプレッションチェンバの部本によるスロッシング荷量を流体解析にて算定することとした。 サプレッションチェンバの部本によるスロッシング荷量を流体解析に3次元はりモ レッションチェンバウボートの地震応答解析に3次元はりモ デルを適用するにあたっては、波当性確認用解析モデル(3次元シェルモデル)による地震応答解 術話果との比較検討を行い、耐酸評価において考慮すべき振動モードが3次元はりモデルにて表 現できていること等を確認している。 注記*: <u>島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉」地震による損傷の防止</u> <u>別紙-8 サプレッションチェンバ内部水質量の考え方の変更について」(PP-050 改</u> <u>09(合和3年9月6日))</u> 。参照		まえ,各部材に負荷される地震荷重を詳細に評価するため、サプレッションチェンバサポート取付	・記載箇所の相違
こととした。なお、サブレッションチェンバ内部水によるスロッシング潜車を流体解析にて算定することとした。 レッションチェンバ内部水によるスロッシング潜車を流体解析にて算定することとした。 レッションチェンバ及びサブレッションチェンバサボートの地震応答解析に3次元はりモデルにする。 ・記載箇所の相違 ・設備の相違 高根2号機では、建 さ設備の相違 高根2号機では、建 常能果との比較検討を行い、耐震評価において考慮すべき振動モードが3次元はりモデルにで表 現できていること等を確認している。 注記*: <u>品根原子力発電所32号炉蓄重資料「島根原子力発電所3分元はり</u> モデルにで表 通路の防止 別紙-8 サブレッション・チェンバ内部水質量の考え方の変更について」(BP-050 改 <u>699(令和3年9月6日))</u> 参照		部のばね定数を考慮した3次元はりモデルによる動的解析(スペクトルモーダル解析)を適用する	・評価方法の相違
レッションチェンバ内部木によるスロッシング荷重を流体解析にて算定することとした。 レッションチェンバ内部木によるスロッシング荷重を流体解析にて算定することとした。 コンチェンバサポー とを考慮している。 コンポンドルを考慮している。 コン酸価の相違 島根2号機では、律 設備の相違 島根2号機では、律 設備の相違 島根2号機では、律 認時の構造で耐震性を 確認している。 コン酸価の構造で耐震性を 確認している。 コン酸価の構造で耐震性を 確認している。 コン酸価の構造で耐震性を 確認している。		こととした。なお、サプレッションチェンバ内部水質量の扱いを有効質量としたことに伴い、サプ	島根2号機では、既
 ションチェンバサボートを考慮している。 ションチェンバサボートを考慮している。 ションチェンバサボートを考慮している。 ションチェンバク部が ションチェンバク部が ションチェンバク部 ションチェンバク部 ションチェンバク部 ションチェンバク部 ションチェンバク部 ションチェンバウ部 ションチェンバク部 ションチェンバク ションチェンバク部 ションチェンバク ションチェンボ ションチェンバク ションチェンボク ション・チェンボク ション・チェンボク		レッションチェンバ内部水によるスロッシング荷重を流体解析にて算定することとした。	工認においてサプレッ
 ・記載箇所の相違 ・設備の相違 ・設備の構造で耐震性を 確認している。 注記*: ・当している。 ・ <			ションチェンバサポー
サブレッションチェンバ及びサブレッションチェンバサポートの地震応答解析に3次元けの ・記載箇所の相違 サブレッションチェンバ及びサブレッションチェンバサポートの地震応答解析に3次元けの 品根2号機では、建 デルを適用するにあたっては、妥当性確認用解析モデル(3次元シェルモデル)による地震応答解 設時の構造で耐震性を 確認していること等を確認している。 確認している。 注記*: <u>品根原子力発電所第2号炉審査資料「島根原子力発電所2号炉」地震による損傷の防止</u> <u>別紙-8<サブレッション・チェンバ内部水質量の考え方の変更について」(IP-050 改 69(合和3年9月6日))</u> 参照			トを考慮している。
・記載面がの19連 ・設備の相違 ・設備の相違 ・日本 ・日本 <t< td=""><td></td><td></td><td> 記載笛正の相違 </td></t<>			 記載笛正の相違
 は加い日本 は、加い日本 			・ 設備の 相違
 サブレッションチェンバ及びサブレッションチェンバサボートの地震応答解析に3次元はりモ デルを適用するにあたっては、妥当性確認用解析モデル(3次元シェルモデル)による地震応答解 析結果との比較検討を行い、耐震評価において考慮すべき振動モードが3次元はりモデルにて表 現できていること等を確認している。 注記*:<u>島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉</u>地震による損傷の防止 別紙-8 サブレッション・チェンバ内部水質量の考え方の変更について」(EP-050 改 <u>69(令和3年9月6日))</u>参照 			● 起 9 早継でけ 建
 デルを適用するにあたっては、妥当性確認用解析モデル(3次元シェルモデル)による地震応答解 析結果との比較検討を行い、耐震評価において考慮すべき振動モードが3次元はりモデルにて表 現できていること等を確認している。 注記*:<u>島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉</u>地震による損傷の防止 別紙-8 サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050 改 69(合和3年9月6日))参照 		サプレッションチェンバ及びサプレッションチェンバサポートの地震広答解析に3次元けりチ	設時の構造で耐震性を
 がみを通知するにあたっては、気気にはしたったが、気気になったとうながらなったとうながらなったという。 析結果との比較検討を行い、耐震評価において考慮すべき振動モードが3次元はりモデルにて表現できていること等を確認している。 注記*:<u>島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉</u>地震による損傷の防止 別紙-8 サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050 改 <u>69(令和3年9月6日))</u>参照 		デルを適用するにあたってけ 妥当性確認用解析モデル (3次元シェルモデル) による地震応答解	破壊している
現できていること等を確認している。 注記*: <u>島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉</u> 地震による損傷の防止 <u>別紙-8</u> サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050改 <u>69(令和3年9月6日))</u> 参照		析結果との比較検討を行い 耐震評価において考慮すべき振動チードが3次元けりチデルにて表	
注記*: <u>島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉</u> 地震による損傷の防止 <u>別紙-8</u> サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050改 69(令和3年9月6日))参照		明治市へていること等を確認している	
注記*: <u>島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉</u> 地震による損傷の防止 <u>別紙-8 サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050 改</u> <u>69(令和3年9月6日))</u> 参照			
<u>別紙-8 サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050 改</u> 69(令和3年9月6日))参照		注記*: 島根原子力発電所第2号炉審査資料「島根原子力発電所2号炉 地震による損傷の防止	
<u>69(令和3年9月6日))</u> 参照		別紙-8 サプレッション・チェンバ内部水質量の考え方の変更について」(EP-050 改	
		69(令和3年9月6日))参照	

2. サブレッションジェンバ及びサブレッションジェンバサボートの構造 品投2支援のウブレッションチェンバ城造戦要回を回2.1-1に、サブレッションチェンバ吸加速要回を回2.1-3に、サブレッシュンチェンバ吸加速 ート構造詳細回を回2.1-2に、サブレッションチェンバ吸加速要回を回2.1-3に、サブレッシュ ンチェンバサボート取付指触要回起送2.1-11に、サブレッシュンチェンバ吸加速要2.1-11に示 マ. サブレッションチェンバは、大日が直接

	備考
_	

	備考
シアキー	
<u>フランジ</u>	
ボルト	
<u> </u>	
<u>基礎ボルト</u> ベースプレート	
コンクリート (基礎スラブ)	
シアプレート	
±	
『黒: ベース, ベースプレート, トを介して基礎スラブに伝達	
ス, ベースプレート, を介して基礎スラブに伝達	
<u>X</u>	

	備考
E问 32 权)	
置	
7	
本)	
トレーナ	
2017	
バサボート	
王 図	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機				備考
表 2.1-1 サプレッションチェンバ諸元	表2.1-1 サプレッションチェンバ諸元				
	項目		内容	備考	
	耐震クラス		ミクラス		
	(設計基準対象施設	rt)			
			常設耐震重要重大事故防止設備		
	(重大事故等対処認	段備)	常設重大事故等防止設備		
			(設計基準拡張)		
	設置建物		原子炉建物		
	設置高さ		EL.1300 mm	基礎スラブ上	
		D			
	主要寸法	L		記号は図 2.1-1	
	-	t		に示す	
		θ			
	質量			通常運転水位	
	(内部水・サポート	トを含む)		耐震解析用重大事	
				故等時水位*	
				通常運転水位	
	内部水質量	<u>-</u> 		耐震解析用重大事	
				故等時水位*	 ・評価万針の相違 耐震解析用重大事故
	注記*:重大事故等 参照)	時水位より	も高い水位(<u>ダウンカマ取付部</u> 下端	位置)(別紙 10	等時水位の設定方針の 相違
					 ・設備の相違 島根2号機では,建
					設時の構造で耐震性を 確認している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3. サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価	
	3.1 評価手順	
	サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価に係る評価手順は,	
	表 3.1-1のとおり、地震応答解析及び応力解析に大別される。	
	地震応答解析では、サプレッションチェンバ及びサプレッションチェンバサポートの構造特	
	性, サプレッションチェンバ内部水の流体特性等を考慮し, サプレッションチェンバ及びサプレ	
	<u>ッションチェンバサポート</u> の地震応答解析モデル(3次元はりモデル)を設定し,固有値解析及	
	び地震応答解析 (スペクトルモーダル解析)を実施し, 地震時における荷重等を算定する。なお,	
	スロッシング荷重については、地震時のサプレッションチェンバ内部水の挙動を考慮し、流体解	
	析にて算定する。	
	応力解析では、 地震応答解析にて 算定した 地震時における荷重等を用いて、 サプレッションチ	
	ェンバ及び <u>サプレッションチェンバサポート</u> のシェルモデルを用いたFEM解析による応力解	
	析,評価断面の形状から公式等により各応力評価点の応力を算定する。	
	なお,表3.1-1には,設置変更許可審査時に詳細設計へ申送りした事項(詳細設計申送り事	
	項)及び詳細設計の進捗を踏まえて説明する項目を示す。	

	備考
	 - HIN
斯 伯	
→ ²	
公式等	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.2 地震応答解析	
	3.2.1 基本方針	
	既工認では, 簡便な扱いとして, サプレッションチェンバ内部水を <u>剛体と見做して, 内部水</u>	・評価方法の相違
	<u>全体を固定質量として考慮した3次元はりモデルを用いた</u> 地震応答解析を実施していた。	島根2号機では、既
	回工認におけるサプレッションチェンバ及び <u>サプレッションチェンバサポート</u> の地震応答解	工認において、内部水
	析では, 重大事故時のサプレッションチェンバの水位上昇に伴う内部水質量の増加, 基準地震	のみを剛体と見做し,
	動の増大等を踏まえ、より詳細に地震応答を把握するため、より現実に近いサプレッションチ	水平方向の地震応答解
	ェンバの内部水の挙動を考慮して内部水質量を従来の固定質量から有効質量へ変更する。な	析をスペクトルモーダ
	お、スロッシング荷重については、地震時のサプレッションチェンバ内部水の挙動を考慮し、	ル解析により実施して
	流体解析にて算定する。 今回工認に用いる地震応答解析モデルについては, 3 次元はりモデル	いる。
	に加えて構造をシェル要素で模擬した3次元シェルモデルも既工認実績があるものの、設備	
	の耐震評価で一般的であり数多く用いられている3次元はりモデルを既工認と同様に適用し	
	ている。	
		・評価方法の相違
	地震応答解析モデルの設定にあたっては, <u>サプレッションチェンバサポート</u> 取付部の局部	島根2号機では、サ
	変形の剛性を考慮したばね要素を考慮し,サプレッションチェンバ及びサプレッションチェ	プレッションチェンバ
	ンバサポートの耐震評価をより詳細に実施する。	サポート取付部の <mark>面外</mark>
		方向 (3方向) <mark>のみ</mark> の変
		形をばね要素として考
		慮する。
	なお、地震応答解析に適用する3次元はりモデルの妥当性確認として、3次元シェルモデル	・検討内容の相違
	を用いた <u>固有値解析結果</u> との比較検討を行い,耐震評価において考慮すべき振動モードが3	島根2号機では、3
	次元はりモデルにて表現できていること等を確認する。	次元はりモデルの妥当
		性は固有値解析結果に
		より確認し, <mark>オーバル</mark>
		<mark>振動等の影響を3次元</mark>
	3.2.2 地震応答解析モデル	<mark>シェルモデルとの発生</mark>
	サプレッションチェンバ及び <u>サプレッションチェンバサポート</u> の地震応答解析に適用する	<mark>応力の比較で確認す</mark>
	3次元はりモデル <u>を</u> 図 3.2-1 に示す。 <mark>サプレッションチェンバ及びサプレッションチェンバ</mark>	<mark>る。</mark>
	<mark>サポートの地震応答解析に適用する解析モデル設定にあたっては,サプレッションチェンバ</mark>	
	<mark>及びサプレッションチェンバサポートを構成する各部材の剛性及び質量,サプレッションチ</mark>	・記載箇所の相違
	<u>ェンバ内部水等を適切に考慮することとしている。なお、モデル化の詳細については、4.1.3</u>	島根2号機では、モ
	に示す。	<mark>デル化の詳細を 4.1.3</mark>
		<mark>に示す。</mark>

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	詳細設計申送り事項,詳細設計段階における進捗等を踏まえ,サプレッションチェンバ及び	
	サプレッションチェンバサポートの3次元はりモデルの設定にあたっての主な考慮事項を以	
	下に示す。なお,詳細検討内容については,4.に示す。	
	(1) サプレッションチェンバ内部水に対する有効質量	
	サプレッションチェンバ内部水に対する有効質量は、NASTRANの仮想質量法を用	
	いて、サプレッションチェンバの内面圧力(水平及び鉛直方向の圧力)から各方向の内部水	
	の有効質量を算出する。また,算出された内部水の有効質量の地震応答解析モデル(3次元	
	はりモデル)への設定は、NASTRANの機能(Guyan縮約法)を用いて、サプレッ	
	ションチェンバの各質点に縮約し、付加する。	
	なお,サプレッションチェンバ内部水の有効質量の妥当性検証として,試験体を用いた振	・検討内容の相違
	動試験により算出した内部水の有効質量と比較・検証を行っている。	島根2号機では、島
		根1号機のサプレッシ
		ョンチェンバを縮小し
	(2) サプレッションチェンバ本体のオーバル振動に対する影響	た試験体を使用する。
	サプレッションチェンバ及びサプレッションチェンバサポートを構成する各部材の剛性,	・検討内容の相違
	質量、サプレッションチェンバ内部水等を適切に考慮し、はり要素でモデル化する。	島根2号機では、振
	一方,内部水を有する薄肉円筒容器(たて置円筒容器)の円筒壁面が変形振動(オーバル	動試験 <mark>のみで</mark> 仮想質量
	振動)することの既往知見に対して、既工認におけるサプレッションチェンバ本体(小円)	法の検証を行う。
	の耐震設計では, 補強リングによりサプレッションチェンバ本体(小円)の断面変形を抑制	
	する設計としている。	・設備の相違
		島根2号機では,建
		設時の構造で耐震性を
		確認している。
		・評価方法の相違
		島根2号機では,サ
		プレッションチェンバ
		サポート取付部の <mark>面外</mark>
		方向 (3 方向) <mark>のみ</mark> の変
		形をばね要素として考
	(3) サブレッションチェンバサボート取付部の局部変形の影響	慮する。
	既上認における <u>サブレッションチェンバサボート</u> 取付部の耐震設計では,当該部におけ	
	る局部変形を防止するため、サブレッションチェンバ内部に <u>補強リング</u> を設置するととも	
	に, <u>サブレッションチェンバサボート</u> は当て板を介してサブレッションチェンバに取り付	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	けられていることから, <u>サプレッションチェンバサポート</u> 取付部の剛性を簡便に剛として	
	扱っていた。 今回工認では, 重大事故等時のサプレッションチェンバの水位上昇に伴う内部	
	水質量の増加,基準地震動の増大等を踏まえ,より詳細な地震応答を把握するため,サプレ	・評価方法の相違
	<u>ッションチェンバサポート</u> 取付部の局部変形の影響を考慮した <u>,サプレッションチェンバ</u>	島根2号機では、サ
	<u> サポート</u> 取付部のばね剛性(並進,回転)をばね要素として地震応答解析モデル(3次元は	プレッションチェンバ
	りモデル) に付与する。 サプレッションチェンバサポート取付部の局部変形を考慮したサプ	サポート取付部の <mark>面外</mark>
	<u>レッションチェンバサポート</u> 取付部のばね剛性(並進,回転)は、シェルモデルとはりモデ	方向 (3方向) <mark>のみ</mark> の変
	ルを用いた解析からサプレッションチェンバサポート取付部のばね剛性を各々算定し、そ	形をばね要素として考
	のばね剛性の差から算定を行う。	慮する。
		・評価方法の相違
		島根2号機では、既
		 工認と同様に計算式に
		よりサプレッションチ
		ェンバサポートの剛性
		を算定している。
		・評価方法の相違
		島根2号機では、個
		別の基礎ボルトに作用
		する荷重は既工認と同
		様に計算式により評価
		している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		 ・評価方法の相違 島根2号機では,鉛 直方向の地震応答解析 モデルは既工認と同様 に内部水を固定質量と してモデル化する。
	(1) 水平方向	
	<u>図 3.2-1 サプレッションチェンバ及びサプレッションチェンバサポートの</u> 地震応答解析モデル(3次元はりモデル)	

3.3 応力評価	•
 1.3.1 定点が確認分離 今日にご添めっアレッションデュンパ及び使<u>ごというかったチュンパク水化上等に</u>体ものは恋愛習の 「違い、水油に最近ののは水を浸添え、他に加速度の面向に加速のでは、5.5 小菜油の起ののは水を浸添え、他に加速度の面向に加速のでは、5.5 小菜油の加速のなど、5.5 (2.3.2 に力評価点 ・ジボック 3.3.1 こ、3.3.2 (法力評価点 ・ジボック 3.3.1 こ、3.3.3 (法力評価点 ・ジボック ・ジボック ・シボック ・ジェック ・シボック ・ジェック ・ジェック	で耐, 相で力面は震 違は評してい しん しんしょう しん しんしょう しんしん しんしん しんしん しんしん し

女川原子力発電所2号機(2021年12月10日)		島根原子力発電	訴 2号機		備考
		<u>表 3.3-1</u> サプレッション	・チェンバの応力評価	i点	・記載の充実
	応力評価点 番号	応力評価点	応力評価方法	既工認との相違点*	島根2号機では,応 力評価方法及び既工認
	P 1	サプレッションチェンバ胴中央部上部	公式等による評価	_	との相違点を記載す
	P 2	サプレッションチェンバ胴中央部下部	公式等による評価	_	る。
	P 3	サプレッションチェンバ胴中央部内側	公式等による評価	_	
	P 4	サプレッションチェンバ胴中央部外側	公式等による評価	_	
	P 5	サプレッションチェンバ胴エビ継部上 部	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用	
	P 6	サプレッションチェンバ胴エビ継部下 部	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用	
	P 7	サプレッションチェンバ胴エビ継部内 側	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用	
	P 8	サプレッションチェンバ胴エビ継部外 側	FEMモデルを用いた 静的解析	FEMモデルを用いた応力 評価の適用	
	Р9	サプレッションチェンバ胴と内側サ ポート補強板との接合部	FEMモデルを用いた 静的解析	-	
	P 1 0	サプレッションチェンバ胴と外側サ ポート補強板との接合部	FEMモデルを用いた 静的解析	-	
	<u>注記*:応答</u>	茶解析モデル及び応力解析モデルの変	変更を除く応力評価方	7法の相違点を示す。	 ・評価方法の相違 島根2号機では,既 工認と同じ応力評価点 について評価してい る。

	備考
)	
P 7	
(9)	
Ŭ	
<u>B</u>	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電	這所 2号機		備考
		表 3.3-2 サプレッションチョ	ェンバサポートの応力詞	平価点	・記載の充実
	応力評価点 番号	応力評価点	応力評価方法	既工認との相違点*	島根2号機では,応 力評価方法及び既工認
	P 1	サポート	公式等による評価	_	との相違点を記載す
	P 2	シアキー	公式等による評価	_	る。
	Р3	ボルト	公式等による評価	_	
	P 4	ベースとベースプレートの接合部	公式等による評価	_	
	P 5	基礎ボルト	公式等による評価	_	
	P 6	ベースプレート	公式等による評価	ボルト反力側評価断面 の見直し	
	Р7	シアプレート	公式等による評価	_	
	P 8	コンクリート	公式等による評価	_	
					・評価方法の相違 島根2号機では,既 工認と同じ応力評価点 について評価してい る。

支川原子ノ先生ぼ 2 分機 (xet) 4 10 月)0 日) 正規原子ノ先生ぼ 2 分機 レーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレー		
	女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	女川原子力発電所2 号機(2021 年 12 月 10 日)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.3.3 応力評価方法(1) 公式等による応力評価	
	既工認におけるサプレッションチェンバ(サプレッションチェンバサポート取付部除く)	・評価方法の相違
	<u>及びサプレッションチェンバサポート</u> の応力評価は,サプレッションチェンバ <u>及びサプレ</u>	島根2号機では、既
	<u>ッションチェンバサポート</u> をはり要素でモデル化し、 <u>地震応答解析</u> によって得られた地震	工認において、地震応
	荷重及び評価断面の形状等から、公式等により応力を算出していた。	答解析によって得られ
		た地震荷重から応力を
		算出している。
	今回工認では,サプレッションチェンバ胴中央部及びサプレッションチェンバサポート	・評価方法の相違
	<u>については</u> ,既工認と同様に公式等による手計算により応力を算出する。なお,サプレッシ	島根2号機では、サ
	ョンチェンバサポートのうちベースプレートについては,精緻に応力評価を行うため,曲げ	プレッションチェンバ
	応力評価における断面係数算出時の評価断面を既工認から見直す(別紙19参照)。	胴中央部については,
		公式等による手計算に
		より応力を算出する。
		また、ベースプレート
		については, 評価断面
		を既工認から見直す。
	(2) 応力解析モデルを用いたFEM解析による応力評価	
	既工認におけるサプレッションチェンバサポート取付部の応力評価は、内側と外側のサ	
	<u>プレッションチェンバサポート</u> (1組)とその <u>片側</u> にあるサプレッションチェンバ(胴部)	・評価方法の相違
	をシェル要素でモデル化し、鉛直方向に対しては加速度を、水平方向に対してはサプレッシ	モデル化範囲の相違
	<u>ヨンチェンバサポート</u> 下端位置に <u>地震応答解析</u> で算出された地震荷重を入力し, FEM解	・評価方法の相違
	析による応力解析を行っていた。	島根2号機では、既
	今回工認では、重大事故等時のサプレッションチェンバの水位上昇に伴う内部水質量の	工認において、地震応
	増加,基準地震動の増大等を踏まえ,サプレッションチェンバ及び <u>サプレッションチェンバ</u>	答解析によって得られ
	<u>サポート</u> に負荷される局部的な応力をより詳細に評価するため, <u>サプレッションチェンバ</u>	た地震荷重から応力を
	<u>サポート</u> に加えて,構造不連続部であるサプレッションチェンバ胴エビ継部についてもF	算出している。
	EM解析による応力解析を行う。	
	応力解析モデルは, <u>サプレッションチェンバサポート</u> 取付部のばね剛性の算定に用いた	
	モデルと同等の解析モデルを適用する。また、 <u>FEM解析の対象として胴エビ継部を追加し</u>	・評価方法の相違
	たことを踏まえ、地震応答解析で算出された地震荷重等の応力解析モデルへの入力方法を	島根2号機では、サ
	見直し、応力解析モデルへの入力として地震応答変位を用いる。	プレッションチェンバ
		のうち胴エビ継部を対
		象としてFEM解析に
		よる応力解析を行う。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.4 既工認と今回工認における耐震評価手法の相違	
	既工認と今回工認におけるサプレッションチェンバ及びサプレッションチェンバサポートの	
	耐震評価手法について比較・整理した結果を表 3.4-1 に示す。また、既工認におけるサプレッ	
	ションチェンバの地震応答解析モデルを図 3.4-1 に示す。	
	図3.4-1 既工認におけるサプレッションチェンバの地震広ダ解析モデル	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

 備考

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2号機							備考			
		変更理由	広事故等時のサプレッションチェンパの K位上昇に伴う内部水質量の増加、基準地 裏動の海大等を踏まえ、より詳細に地震応 変を把握するため、解析モデルを詳細化し ℃。	I	周年で継渡近傍にはサプレッションチェン 、セポートが取り付けられているため、よ の詳細に局額的な応力を考慮するヒととし い。	国エビ縦部も含めて3次元シェルモデルに に評価するため、解析モデルのモデルに 田を変見し、3次元はりモデルの地震応答 解析より得られた曲・変第の変化サブレッ フョンチェンバイサポート東部の変位を入力 して評価することとした。	<u></u> 広本事故等時のサプレッションチェンパの 大位上昇に伴う内部水質量の増加、基準地 良動の損大等を踏まえ、より詳細に地震応 含金把握するため、解析手法及び解析モデ	1	曲げ応力評価における断面係数算出時の評 面前面を精縦に見直して評価した。	(サプレッションチェンスサポートを設定		
	曹	工誌 ^{*4} 角星柏でモデル	3次元はりモデル ¹¹ 3次元はりモデル ¹¹ (サプレッションチェンバ全 (体を380°モデルとして考慮)	I	3次元シェルモデル (サプレッションチェンパ本 体とサプレッションチェンパ サポート (1セグメント分) を 考慮)	3次元シェルモデル*3 (サプレッションチェンバ本 体とサプレッションチェンバ本 サポート (1セグメント分) を 多節)	3次元はりモデル ¹¹ 3次元はりモデル ¹¹ (サプレッションチェンバ金 1 (体を360° モデルとして考慮) 3	I	1	課動の人力方向と一致する方向に		
	耐震評価手法の材	今回。	動的解析 (スペクトルモーダル解析)	公式等による評価	FEM98 HF	HEM 9 44F	動的解析 (スペクトルモーダル解析)	公式等による評価	公式等による評価 (評価断面の変更)	③ECCSストレーナの連成、①地		
	う回工認における	認確拒モデル	3 次元はりモデル (サプレッションチェンバ会 休を180°キデルとして兆徳)	Ĩ	1	3次元シェルモデル ⁴² (サブレシションチェンバ本 休とサプレシションチェンバ サポート(1/2セグメント分) を考慮)	3次元はりモデル (サプレッションチェンバ全 休を180°キデルとして考慮)	I	1	ート取付部にばね調性を考慮。 を入りして評価 ト基語の変位を入力して評価		
	<u>4−1 既工認と</u> <	第二世纪	動的解析 (スペクトルモーダル解析)	公式等による評価	公式等による評価	FEMBRHF	動的解析 (スペクトルモーダル解析)	公式等による評価	公式等による評価	②サブ アッシュノチェンスサボ ノチェンズサポート 幕語の資産 キプアッションチェンスサポー		
	表 。	応力評価点	全応力評価点	胴中央部上部 胴中央部下部 胴中央部内侧 胴中央部外侧	置よと雑誌上紙 置よと雑誌に総 置よて雑誌でに認 置よて雑誌での回 置よと雑誌のの回	脚と内値サポート補 強板との接合部 胴と外側サポート補 強板との後合部	全応力評価点	サポート ペイネート メポント イーメルト イーメルト マートの扱い記 勝続ポント・ コソクリート コソクリート	ベースプレート	に対する有効質量の適用. ・時ちれたサプレッシュ ・時ちれた時代目前のが ・対で示す。 ・グで示す。		
				Р1 Р2 Р3	Р 5 Р 7 Р 8	P9 P10		P 1 P 2 P 3 P 4 P 5 P 7 P 7 P 8	P 6	(内部大)に なな なな なな な た し く ち 、 よ っ し く し う な な な む し っ し む な な な む む し っ し っ し う い つ た ひ い つ い か の 細 都 売 し っ し っ し っ し っ し っ し っ し っ し っ し っ し っ し っ し っ し っ し う し っ し う う こ ひ か っ し う う こ ひ ひ っ し う こ		
		解析種別	地震応答 解析		応力解析		地震応答 解析	応力解析		マイチェント シの地震に マレの地震に 東京を尻(
		設備			サブレッションチェンス			サブレッション チェンパサポート		注記*1:①サプレッショ *2:3 次元はりモウ *4:現工調からの姿 *4:現工調からの姿		

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4. 地震応答解析の詳細	
	4.1 地震応答解析モデル	
	4.1.1 サプレッションチェンバ内部水の有効質量算定	
	(1) 内部水の有効質量算定の考え方	
	内部水の有効質量については、他産業の球形タンクや円筒タンク等の容器の耐震設計	
	に一般的に用いられている考え方である。また、内部水の有効質量は、容器の内部水が自	
	由表面を有する場合,水平方向の揺れによる動液圧分布を考慮して,地震荷重として付加	
	される容器の内部水の質量として設定される。この内部水の有効質量は、容器の形状と水	
	位が既知であれば、汎用構造解析プログラムNASTRANの仮想質量法を用いて算出	
	することができる。	
	島根2号機の今回上認において、サフレッションチェンバ及びサフレッションチェン	
	ハリ <u>ホート</u> の地展応合解析に用いるサノレッションナエンハ内部水の有効質量昇足ノロ ーな図 4.1 1にデオ	
	ーを因 4.1-1 に小り。 地電庁茨敏振に用いる内却水の方効焼号け、実際のサプレッシュンチェンバに対して	
	地長心谷肝何に用いる戸市小の有効負重は、 天阪の リノレリンヨンノエンハに対して シェル要表で内部水の有効質量質定田解析モデルを作成 し サプレッションチェンバ内	
	部水の水位を設定(流体部分と構造の接水面設定)した上で 応答解析(仮想質量法)に	
	て、サプレッションチェンバ(各要素)の内面圧力(水平方向の圧力及び鉛直方向の圧力)	
	から各方向の内部水の有効質量を算定する。	
	また, NASTRANによる内部水の有効質量の算定手法については, サプレッション	
	チェンバが円環形状容器であることを考慮し、試験体を用いた振動試験により算出した	・検討内容の相違
	内部水の有効質量との比較・検証によりその妥当性を確認している。	島根2号機では、島根
	内部水の有効質量の適用及びその妥当性に係る検討結果の詳細については,別紙 1 に	1 号機のサプレッショ
	示す。	ンチェンバを縮小した
		試験体を使用する。
		・検討内容の相違
	内部水の有効質量の算定	島根2号機では、振
		動試験 <mark>のみで</mark> 仮想質量
	内部水の有効質量算定用解析モデルの作成	法の検証を行う。
	流体部分と構造の接水面設定	
	応答解析の実施 (仮相質量法)	
	内部水の有効質量の算定結果 (各更素におけろ有効質量)	
	図 4.1-1 内部水の有効質量算定フロー	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	(2) 内部水の有効質量の解析モデル	
	サプレッションチェンバ内部水の有効質量を算定するための解析モデルを図 4.1-2 に示	
	す。	
	解析モデルは、サプレッションチェンバ (補強リングを含む)の寸法、剛性を模擬したシ	
	ェル要素とし、サプレッションチェンバ内部水の水位を設定する。なお、サプレッションチ	
	ェンバ内部水の有効質量を算定するための解析モデルの作成にあたっては、内部水の有効	
	質量が解析対象の容器形状及び水位に係る情報のみがあれば算定可能であることから、内	
	部水の有効質量算定に関係のない <u>サプレッションチェンバサポートは</u> 模擬していない。 <u>ま</u>	・評価方法の相違
	た、 <mark>内部水の有効質量を精緻に算定するために</mark> 主要な内部構造物をモデル化することとし、	島根2号機では、主
	ベントヘッダ,ダウンカマ,クエンチャ,ECCSストレーナをモデル化する。	要な内部構造物をモデ
	サプレッションチェンバ内部水の水位は、図 4.1-3 に示すとおり、耐震評価上保守的な	ル化する。
	結果が得られる水位として, 耐震解析用重大事故等時水位を設定する。なお, 耐震解析用重	・評価方法の相違
	大事故等時水位は、通常運転時及び重大事故等時の耐震評価用に適用する保守的な水位で	島根2号機では、通
	ある(別紙 10 <u>参照</u>)。	常運転時の耐震評価に
		おいても耐震解析用重
		大事故等時水位を用い
		る。
	図 4.1-2 内部水の有効質量算定用解析モデル	
	EL	
	耐震解析用重大事故等時水位 EL 7049mm (ダウンカマ取け知下端位置)	
	[
	図 4.1-3 サプレッションチェンバ内部水の設定水位	

女川原子力発電所2号機(2021年12月10日)	島根原	備考		
	(3) 内部水の有効質量の解析結果			
	仮想質量法によるサプレッション			
	示す。ここで,算出結果として示し、			
	る水平方向の内部水の有効質量の割			
	<u>量))</u> を表す。 <u>内部水の有効質量の</u> 言	羊細な設定方法について	は4.1.2に示す。	
	また, 内部水の有効質量を算定す	る解析手法の違いによる	ら比較として,汎用流体解析コー	
	ド <u>Fluent</u> (流体解析)による	算定結果を併せて示す。	仮想質量法と流体解析により算	・評価方法の相違
	出した内部水の有効質量比は一致し	ている。 <u>なお</u> , 振動試験	等では通常運転時に相当する水	使用する解析コード
	位に対する検討を行っており,表4	1-1と異なる水位に対	しても仮想質量法による有効質	の相違
	量比は適切に算出されることを確認	している。		・評価結果の相違
				内部水の有効質量比
				算定結果の相違
	表 4.1-1 サプレッション	/チェンバ内部水の有効	質量比算定結果	・評価方法の相違
	- ₩ 2/	解析	手法	島根2号機では,通
	71/11/2	仮想質量法	流体解析*2	常連転時の耐晨評価においても耐震解析用重
	耐震解析用重大事故等時水位	0. 28	0. 28	大事故等時水位を用いる。
	注記*1:通常運転時及び重大事故	等時の耐震評価用に適用	用する保守的な水位であ	
	る耐震解析用重大事故等時	寺水位に対する算定結果	を示す。	
	*2:スロッシングの卓越周期	帯及びサプレッションき	チェンバの一次固有周期	
	で応答加速度が大きいS	s - D を用いた算定結果	5	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 4.1.2 地震応答解析モデルにおける内部水の有効質量の設定 仮想質量法で算定したサブレッションチェンバ内部水の有効質量について、サブレッションチェンパク部水の有効質量はこのいて、サブレッションチェンバ内部水の有効質量は、NASTRAN の機能であるGuyan総約法を用いてサブレッションチェンバ内部水の有効質量は、NASTRAN の機能であるGuyan総約法を用いてサブレッションチェンバ(3次元はりモデル)の各質 点に縮約し、付加する。なお、NASTRANの機能である縮約とは、一般に膨大な数のデー 夕を扱う有限要素法などの解析において、行列の大きさ(次元)を小さくする解析上のテクニ ックとして用いられるものである。 内部水の有効質量算定用解析モデル(シェル要素)で算出されたサブレッションチェンバ各 要素の内部水の有効質量は、その有効質量及び位置(高さ)を考慮し、地震応答解析モデル(は り要素)のサブレッションチェンバ各質点に対する内部水の有効質量(並進質量及び回転質量)として設定される。 今回工認におけるサブレッションチェンバAGび<u>サブレッションチェンバサポート</u>の地震応 答解析モデルを図4.1-5に示す。また、<u>耐震解析用面大事故等時水位において、</u>地震応答解 析モデルの各質点に設定される内部水の有効質量について、水平力回(X力向)及び鉛直力回 (Z力向)の内部水の有効質量(進度)の質量の総和が全質量を表し、その内部水の有効質量に は0.23(0)のもち並進力面(X力向)の質量の総和が全質量を表し、その内部水の有効質量に は0.23(0)のも少述力」)、支も1-1に示すの想定であり、第 面力面(Z力向)のが水力加速力」)、ころの、表4.1-1に示すの想定量量および流能体解 たから算量と見び回転力の意志とを確認した。 なえ、水平力向(Y力向)についても同様に内部水の有効質量を算出し、水平力向(X力向))の つすかうくTRANの機能であることを確認した。 オームのであうGuyan縮約法の表当性については、別紙2に示す。 	 ・評価方法の相違 島根2号機では,通 常運転時の耐震評価に おいても耐震が用ま 大事故等時水位を用い る。 ・設備の相違 島根2号機では,建 設時の構造で耐震性を 確認している。

	備去
	1日~つ
-	
7	
7	
_	
-	
フロー	
11 10 1 -	
サボートの	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 4.1-2 内部水の有効質量の設定(耐震解析用重大事故等時水位,X方向)	
	並進質量 回転質量 質点番号 m, m, Rm, Rm, Rm,	
	$\times 10^{3} (\text{kg}) \times 10^{3} (\text{kg}) \times 10^{3} (\text{kg}) \times 10^{3} (\text{kg} \cdot \text{m}) \times 10^{3} (\text{kg} \cdot \text{m}) \times 10^{3} (\text{kg} \cdot \text{m})$	
	$\frac{11}{12}$	
	$\frac{13}{14}$	
	17 18	
	$\frac{19}{20}$	
	21 22	
	23 24	
	$\frac{25}{26}$	
	29 30	
	$\begin{array}{c} 31 \\ 32 \end{array}$	
	33 34	
	35 36	
	37 38	
	$\frac{39}{40}$	
	$\frac{41}{42}$	
	$\frac{43}{44}$	
	$\frac{45}{46}$	
	$\frac{47}{48}$	
	<u>49</u> 50	
	51 52	
	53 54	
	55	
	57 58	
	59 60	
	61 62	
	$\begin{array}{c} 62\\ 63\\ 64 \end{array}$	
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
--------------------------	---	----
	表 4.1-3 内部水の有効質量の設定(耐震解析用重大事故等時水位, Z 方向)	
	並進質量 回転質量	
	質点番号 m _x m _y m _z Rm _x Rm _y Rm _z ×10 ³ (kg) ×10 ³ (kg) ×10 ³ (kg) ×10 ³ (kg·m) ×10 ³ (kg·m) ×10 ³ (kg·m)	
	$\frac{3}{4}$	
	8 9	
	$\frac{10}{11}$	
	$ \begin{array}{c} 12\\ 13\\ 14 \end{array} $	
	$\frac{15}{16}$	
	17 18	
	$ \frac{19}{20} $	
	$\frac{21}{22}$ 23	
	$\frac{24}{25}$	
	$\frac{26}{27}$	
	$\begin{array}{c} 28 \\ 29 \\ 30 \end{array}$	
	$\begin{array}{c} 31\\ 32 \end{array}$	
	33 34	
	$\frac{35}{36}$	
	$\frac{40}{41}$	
	$\frac{42}{43}$	
	$\begin{array}{c} 41\\ 45\\ 46\end{array}$	
	$\frac{47}{48}$	
	$\frac{49}{50}$	
	51 52 53	
	$\frac{54}{55}$	
	$\frac{56}{57}$	
	$ \begin{array}{c} 58 \\ \overline{59} \\ \overline{60} \end{array} $	
	$\begin{array}{c} 61 \\ 62 \end{array}$	
	$\begin{array}{c} 63 \\ 64 \\ \hline \end{array}$	
	台計	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	4.1.3 サプレッションチェンバのモデル化
	サプレッションチェンバ及びサプレッションチェンバサポートの3
	ブレッションチェンバ胴をサブレッションチェンバ小円断面中心位置
	する。また、補強リンク及びサブレッションチェンパサホートについて
	する。サブレッションナエンバ胴及びサブレッションナエンバサホート
	内部構造物の負重を召む負重とする。なわ、ハント官寺の原士炉恰納
	は、土に下ノイリエルにより文付されている μ , 床寸的に $y = \nu y = \mu$
	<u>」かにし、サブレフジョンフェンハ州と補法フラフは存住で使んされ</u> 剛結会とする。また、サプレッションチェンバサポートと <mark>サプレッショ</mark>
	レッションチェンバサポートの取付部の剛性を考慮したばねを介して接
	なお. 既工認ではサプレッションチェンバとECCSストレーナに個別
	ルを適用していたが、今回工認ではECCSストレーナ(残留熱除去系
	スプレイ系ストレーナ及び低圧炉心系ストレーナ)との地震応答解析*
	ため、サプレッションチェンバと併せてECCSストレーナを解析モデ
	<mark>4 参照)</mark> 。なお,サプレッションチェンバサポートはプラント方位と一
	ていないため、解析モデルではサプレッションチェンバサポートに最大
	に,水平方向の地震動の入力方向と一致する方向にサプレッションチ:
	<u>する (別紙 22 参照)。</u>
	水平方向の地震応答解析モデルでは、内部水の有効質量を64箇所の質
	参照)。鉛直方向については有効質量の考慮による荷重低減効果が小さ
	の地震動等解析モデルでは、既工認と同様に内部水全体を固定質量とし
	内部水の重心位置に設定したはり要素に等分布質量で設定する。
	なお、各はり要素に設定した質量は、解析コードの処理として両端の
	<u>分配される。</u>

備考 ・モデル化方法の相違 島根2号機では、サ 次元はりモデルは, サ プレッションチェンバ にはり要素でモデル化 胴の質量を等分布質量 もはり要素でモデル化 としてはり要素に設定 する。 は,各部材の剛性を考 ※胴に設定する質量は, ・モデル化方法の相違 容器ベント系について 島根2号機では,補 ンチェンバの質量に<mark>含</mark> 強リングをモデル化す 設定した剛体としてモ る。 ており一体構造のため ・モデル化方法の相違 <mark>ンチェンバ胴</mark>は, サプ <mark>島根2号機では,フ</mark> <u>〔続する</u> (<mark>4. 1. 4</mark>参照)。 <mark>ランジサポートのばね</mark> <mark>別の</mark>地震応答解析モデ 剛性を考慮しない。 ストレーナ,高圧炉心 ・モデル化方法の相違 モデルの共通化を行う 島根2号機では, E [×]ルに含める<mark>(表 4.1-</mark> CCSストレーナを解 致する

方向に

配置され 析モデルに含める。 大の荷重が加わるよう ・記載の充実 ェンバサポートを設定 島根2号機では、設 置許可段階での説明事 項<mark>も含め</mark>記載する。 質点に設定する(<mark>4.1.1</mark> いことから, 鉛直方向 ・評価方法の相違 て考慮することとし、 島根2号機では、鉛 直方向の地震応答解析 節点に集中質量として モデルは既工認と同様 に内部水を固定質量と してモデル化する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	サプレッションチェンバ (小円) については, 建設時にサプレッションチェンバ内部に設置	
	した <u>補強リング(32</u> 枚)によって断面変形を抑制する設計としているため、はり要素でモデ	
	ル化しているが, オーバル振動に係る既往知見を踏まえ, サプレッションチェンバに対するオ	
	<u>ーバル振動</u> の影響検討を行い,地震応答解析にあたってサプレッションチェンバ本体をはり	
	要素でモデル化することの適用性を検討した。	
	松弛の休田のはい西井ママブッルしたい母さな知れてづきたといったプロシンズ・ンズ	乳供の打ち
	使討の結末,はり安系でモノル化した地展応合産机モノルにより、サノレッションフェンハ	・ ・ ・
	の振動特性を模擬できていることを確認した。また、 $\frac{y / V y y + z / m}{y / V y y + z / m}$ にはオーバル	博垣の相進により, 自相の見燃ではす。 ぶ
	振動が現れるか、発生心力に対する影響は軽似であることを確認する。これらの結果から、サ	局根2万機ではオーハ 北 振動の影響が明ね
	ノレッションテェンハ本体をはり要素でモデル化することの適用性 <u>を確認する。地震応合件</u> ボェブルに対するよう、バル振動の影響検討な用の影響については、即約10に示す	
	<u> 析モデルに対するオーハル振動の影響 検討結果の 詳細については、 別紙3に示す。</u>	る。
		・記載固所の相遅
	よって、サノレッションナエンバ本体のモアル化は、サフレッションナエンバ本体の小円断	
	面中心位直に円筒断面の理論式により昇足した剛性を考慮したはり要素でモアル化し、その	
	剛性は既上認と同様とする(表 4.1- <mark>5</mark> 参照)。	・評価方法の相遅
		モテル化万法の相違
	また、今回上認では、重大事故時のサブレッションチェンバの水位上昇に伴う内部水質量の	
	増加,基準地震動の増大等を踏まえ、サブレッションチェンバ及びサブレッションチェンバサ	・設備の相違
	ボートの地震応答解析モデルの設定にあたっては、より詳細に地震応答を把握するため、サブ	局根2号機では, 建
	レッションチェンバサボート取付部のはね剛性(並進,回転)を考慮したはね要素を3次元は	設時の構造で耐震性を
	りモデルに付加する。	確認している。
	なお,既工認ではサプレッションチェンバ単体での地震応答解析モデルを適用していたが,	・評価方法の相違
	今回工認ではECCSストレーナ (残留熱除去系ストレーナ,高圧炉心スプレイ系ストレーナ	島根2号機では、E
	及び低圧炉心系ストレーナ)との地震応答解析モデルの共通化を行うため, サプレッションチ	CCSストレーナを解
	エンバと併せてECCSストレーナを解析モデルに含める。	析モデルに含める。
		うおなざったも
		•記載固所の相遅

女川原子力発電所2号機(2021年12月10日)		備考		
	表 4.1-4 既	・評価方法の相違		
	∋ኪ/#	地震応答係	解析モデル	島根2号機では、E
		既工認	今回工認	CCSストレーナを解 ボエデルに合めて
	サプレッションチェンバ サプレッションチェンバサ ポート	180°モデル(ECCSスト レーナとの連成なし)	サプレッションチェンバ及 びサプレッションチェンバ	がモブルに召める。
	ECCSストレーナ	サプレッションチェンバ及 びサプレッションチェンバ サポートの 360°モデルと連 成	サポートの 360° モデルとE CCSストレーナを連成	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機						備考			
	表 4.1-5 サプレッションチェンバ本体のモデル化諸元									
	部材	材質	部材長*1 (mm)	質量 (kg)	断面積 (mm ²)	断面二次 モーメント	有効せん断 断面積 (²)	縦弾性係 数 (MPa)	ポアソン 比	
	サプレッショ ンチェンバ胴	SPV50				(mm)	(mm)	(MPa)	(-)	
	補強リング	SGV49				*2	_*2	1.98×10^{5}	0.3	
	注記*1:3	次元は	りモデル	における	サプレッ	ションチェン	バの全長を表す	0		1
	<u>*2:補</u>	強リング	ブはサプ	レッショ	ンチェン	バ胴と剛体結合	合するため, 質量	量分布のみ	メ考慮す	<u>る。</u> ・評価方法の相違 島根2号機では、補
	4.1.4 世	プレッシ	(ヨンチ:	ェンバサア	ポート取作	寸部のばね剛性	の算定			強リングをモデル化す
	サプレ	ッション	(チェン)	バ及びサ	プレッシ	ョンチェンバサ	ナポートの地震	応答解析	モデルに	っる。
	いては、	サプレッ	ション	チェンバ	とサプレ	ッションチェン	/バサポートを	はり要素 [、] 本ました	でモデル	化
	し, サノ	<u>レツンヨ</u> ナステレ	マギ細	いサルー	ート 取 竹 音 文 た 扣 据 っ	ゆのはね剛性(まる	业理,回転)を	 有感しに	はね安亲	
	サプレ	ッション	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ベサポー	ト取付部の	2…22。 のばね剛性算定	フローを図 4.1	-6 に示	す	
	サプレ	ッション	·チェン	バサポー	→ 下取付部	のばね剛性算知	定に当たっては	,その複	´。 雑な変形	様
	態に対応	するため	う,実機の	のサプレ	ーー ツション	チェンバ及びナ	ナプレッション	チェンバ	サポート	<u></u>
	模擬した	<u>3 次元</u> シ	/ェルモ	デルを用	いる <mark>。サ</mark>	プレッションラ	チェンバにおけ	る剛性の	設定の考	iż.
	<mark>方を整理</mark>	した図を	図 4.1-	-7に示す	- <u>3次元</u>	シェルモデルの	の剛性は、①サ	プレッシ	ョンチェ	<u></u>
	バのはり	<u> </u>	サプレッ	ノションラ	F _エ ンバリ	い円の断面変形	<u>による剛性, ③</u>	サプレッ	ションチ	<u> </u>
	ンバサポ	一上取作	部の局	部変形の	<u> 剛性,④</u>	サプレッション	/チェンバサポ	ートの剛	性に分け	・評価方法の相違
	考えるこ	とができ	<u></u>	<u>で, ①及</u>	(び④につ	いては3次元	はりモデルで既	に表現さ	れている	<u>た</u> 島根2号機では,サ
		ロシェル	モデルと	<u>く3次元に</u>	<u>まりモデル</u>	~の剛性の差か	<u>ら②及び③を算</u>	定する。	このうち パート TE	$\frac{(2)}{(2)}$ プレッションチェンバ
	立のげわ	<u>は応谷角</u> 副版 し	「大夫」	する影響。 たて	かり <u>らい</u>	ため、③をサノ	ノレツンヨンナ	エンハサン	シート取	(竹) 小円の町面変形の剛性
	$\frac{100}{24}$	<u> </u>	ションヨ	<u>りる。</u> FェンバII	司の面内す	「向の変形につ	いてけ 面外方	向の変形	に対して	て 「副
	性が高い	と考えら	れるこ	とから、サ	トプレッシ	/ョンチェンバ		方向のば	ね剛性	(並)・評価方法の相違
	進1方向,	回転2	<u> 方向</u>) を	:算定し,	算定され	たばね剛性を	サプレッション	チェンバ	及びサフ	*レ 島根2号機では,サ
	<u>ッション:</u>	チェンバ	ジナポー	上の地震に	芯答解析∹	モデルに考慮す	る。			プレッションチェンバ
	ばね剛	性算定力	法及び組	詰果の詳約	細について	ては、別紙4に	示す。			サポート取付部の <mark>面外</mark>
										方向 (3方向) <mark>のみ</mark> の変
										形をばね要素として考
										慮する。

(1) ばね剛性算定用解析モデル サプレッシュンチャンジには、16 セグメントの円筒の継ぎ日朝(照下び継朝)に共プレ	
サプレッションチョンジャレト 16 カガマントの田竺の她ジロ如(旧テレ姚如) レルプレ	
リノレツションチェンハには、10 ビグメントの内間の胚さ日部(胴上に胚部)にリノレ	
<u>ッションチェンバサポート</u> がサプレッションチェンバ大円の内側と外側に 1 組配置されて	
いる対称構造であることから、ばね剛性算定用解析モデルのモデル化範囲は、評価対象のサ	
<u>プレッションチェンバサポート</u> 1組を中心として,その両側の <u>胴円筒部の中心</u> までとし,シ・評価方法	らの相違
ェル要素でモデル化する。また、サプレッションチェンバの地震応答解析モデル(3次元は モデル	と範囲の相違
りモデル)で表現している剛性との重複を排除するための解析モデルとして、シェルモデル	
<u>と同じ範囲をはり要素でモデル化する。</u> ばね剛性算定用解析モデルを図 4.1-8.及び図 4.1 ・記載箇所	fの相違
<u>9</u> に示す。	
図4.1-8 はね剛性鼻を用解析モデル(シェルモデル)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・記載箇所の相違
	図 4.1- <mark>9</mark> ばね剛性算定用解析モデル(はりモデル)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機			備考				
	(2) 地震応答解析モデルに考慮するげわ剛性					5 610		
	4.7 地震心音舟がビアルに気悪するは44mmに サプレッションチェンバ及びサプレッションチェンバサポートの地震応答解析に考慮す							
	るサプレッションチェンバサポート取付部のばね剛性を表 4.1-6. 地震応答解析モデルを							
	図 4.1-10 に示す。サプレッションチェンバサポート取付部のばね剛性については、地震応							
	答解析モデル(3次元はりモデル)のサプレッションチェンバサポート上端位置に並進1方						・評価方法の相違	
	向, 回転2方向を設定する。							島根2号機では、サ
		—						プレッションチェンバ
	表 4.1- <mark>6</mark> サプレッションチェンバサポート取付部のばね剛性					サポート取付部の <mark>面外</mark>		
				ば	ぼね剛性			方向 (3方向) <mark>のみ</mark> の変
			考慮する方向	++ /m/		A Ind	_	形をばね要素として考
				内側		2下1則		慮する。
		並進	P:上下方向					
			(N/mm)					
			ML:大円半径軸回り					
		回転	(N·mm/rad)					
			MC:大円円周軸回り					
			(N·mm/rad)					
			図 4 1- <mark>10</mark> 地電広ダ解析	テエデル (げわ踊	驯性老虐	書)		
					t the state of the			

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4.1.5 <u>サプレッションチェンバサポート</u> のモデル化	
	サプレッションチェンバサポートは既工認と同様に、サプレッションチェンバサポートの	・評価方法の相違
	形状等の情報から計算式により設定した剛性をサフレッションチェンバサホートのはり要素	局根2号機では, 既 「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	<u>にろ思りる。</u> 断面積 断面 ^二 次モーメント 有効せん断断面積については 図41-11 に示す寸法を用い	上認と回家にリノレッ ションチェンバサポー
	て以下のとおり算出する。	トをはり要素としてモ
		デル化する。
	a. 断面積	
	$\mathbf{A} = 2 \cdot \mathbf{t}_1 \cdot \boldsymbol{\ell}_1 + 2 \cdot \mathbf{t}_2 \cdot \left(\mathbf{b}_1 - 2 \cdot \mathbf{t}_1\right)$	
	ト 断西二次エーマント	
	5. 新国二次で アンド 大田半径方向に曲げモーメントを受ける際の断面二次モーメント Iv	
	$\left(\left(1-2\right)^{3}-\left(1-2\right)^{3}\right)$	
	$I_{X} = \frac{2 \cdot t_{1} \cdot \ell_{1}^{3}}{12} + (b_{1} - 2 \cdot t_{1}) \cdot \frac{\left(\ell_{1} - 2 \cdot c + 2 \cdot t_{2}\right) - (\ell_{1} - 2 \cdot c)}{12}$	
	大円円周方向に曲げモーメントを受ける際の断面二次モーメントIv	
	$\left(- \left(\frac{b^3}{b^3} - \frac{b^3}{b^3} - \frac{b^3}{b^3} \right) \right) = (1 - 1)^3$	
	$I_{Y} = \frac{t_{1} \cdot (b_{1} - (b_{1} - 2 \cdot t_{1}))}{12} + \frac{2 \cdot t_{2} \cdot (b_{1} - 2 \cdot t_{1})}{12}$	
	c. 有効せん断断面積	
	大円半径方向の有効せん断断面積Asy	
	$A_{SY} = K_1 \cdot A$	
	大円円周方向の有効せん断断面積Asx	
	$A_{SX} = K_2 \cdot A$	
	ここで,	
	K ₁ : 大円半径方向のせん断変形に対する形状係数 ^[1] (=)	
	K ₂ : 大円円周方向のせん断変形に対する形状係数 ^[1] (=)	
	サプレッションチェンバサポートのモデル化諸元を表 4.1- <mark>7</mark> に示す。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表4.1-7サプレッションチェンバサポートのモデル化諸元部材材質部材長*1 (mm)質量*2 (kg)断面積 (mm²)断面積 (mm²)縦弾性 (mm²)ボアソン (mm²)サプレッショ シチェンバサSGV495GV491.98 ×10 ⁵ 0.3	
	 注記*1:3次元はりモデルにおけるサプレッションチェンバサポート1部材あたりの部材長 を表す。。 *2:3次元はりモデルにおけるサプレッションチェンバサポートの総質量を表す。 参考文献[1]:関西造船協会:「造船設計便覧 第4版」海文堂 	・評価方法の相違 モデル化手法の相違

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
 ・評価方法の相違
島根2号機では、個
別の基礎ボルトに作用
する荷重は既工認と同
様に計算式により評価
している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・評価方法の相違
島根2号機では、個
別の基礎ボルトに作用
する荷重は既工認と同
様に計算式により評価
している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考
・評価方法の相違
島根2号機では、個
別の基礎ボルトに作用
する荷重は既工認と同
様に計算式により評価
している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・評価方法の相違
島根2号機では、個
別の基礎ボルトに作用
する荷重は既工認と同
様に計算式により評価
している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・評価方法の相違
島根2号機では、個
別の基礎ボルトに作用
する荷重は既工認と同
様に計算式により評価
している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	4.2 地震応答解析モデルの適用性確認
	4.2.1 適用性の確認方針
	4.1 では、今回工認におけるサプレッションチェンバ及びサプレッシ
	の地震応答解析に適用する3次元はりモデルの設定について、サプレ
	水を有効質量として扱うこと、サプレッションチェンバ本体のモデル
	チェンバとサプレッションチェンバサポートの取付部にばね剛性を考慮
	を示した。
	本項では、上記を踏まえて設定したサプレッションチェンバ及びサ
	<u>サポートの3次元はりモデルを地震応答解析に適用することの適用性</u>
	用性確認にあたっては、サプレッションチェンバ (補強リングを含む)
	エンバサポートをシェル要素でモデル化した適用性確認用解析モデル
	による <u>固有値解析</u> を実施し、3次元はりモデルを用いた <u>固有値解析</u> 結
	た,はりモデルにおいて振動モードとして考慮できないオーバル振動
	響については、3次元はりモデルと適用性確認用解析モデル(3次元シ
	<u>力の比較により確認する。</u> 図 4.2-1 にサプレッションチェンバ及び <u>サ</u>
	サポートの地震応答解析モデル(3次元はりモデル)に対する適用性確
	に、適用性確認における着眼点を以下に示す。
	着眼点(1) 固有値解析による振動モード, <mark>固有振動数</mark> 及び刺激係数を
	解析モデル(3次元シェルモデル)の解析結果から耐震評価
	認された振動モード(変形方向)が3次元はりモデルにて表
	こで, 耐震評価として考慮すべき振動モードとは, <u>サプレッ</u>
	解析結果に影響する振動モードとし,刺激係数が2桁オーダ
	対象とする。
	看眼点(2) 地震応答解析 (スペクトルモーダル解析) による応力評価
	ンチェンバ胴中央部,胴エビ継部,サブレッションチェンバ
	フレッションチェンパサホート)の発生応力の相違が、耐震
	<u>である</u> こと。

	備考
ョンチェンバサポート ションチェンバ内部 公及びサプレッション 意すること等の考え方 プレッションチェンバ こついて確認する。適 みびサプレッションチ	
~~ 3次元シェルモデル) 3次元シェルモデル) 県との比較を行う。 <u>ま</u>	 ・検討内容の相違 島根2号機では、3
<u>こよる発生応力への影</u> ェルモデル)の発生応 プレッションチェンバ 忍フローを示すととも	 次元はりモデルの妥当 性は固有値解析結果に より確認し、オーバル 振動等の影響を3次元 シェルモデルとの発生
と較し,適用性確認用 として考慮すべきと確 見できていること _e こ ンョンチェンバの応答 以上の振動モードを	応力の比較で確認す る。 ・検討内容の相違 島根2号機では,振 動モード全体の傾向を 比較する。
部位毎(サプレッショ <u>ナポート</u> 取付部及び <u>サ</u> 平価上影響の無い程度	 ・検討内容の相違 島根2号機では、3 次元シェルモデルでオ ーバル振動が現れるた め、発生応力の相違が、 耐震評価上影響の無い 程度であることを確認 する。

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所 2号機	備考
	4.2.2 <u>3次</u> リング ンチェ 内 離析 諸元及 につい	適用性確認 <u> 元シェルモラ</u> 及び <u>サプレ</u> ンバ <u>胴</u> のショ の有効質量 で 相重大事故 で な に 、 別紙 い 、	用解析モデル デル(適用性確認用解析モデル)として、サプレッションチェンバ <u>胴、補強</u> ッションチェンバサポートをシェル要素としてモデル化し、サプレッショ ェル要素に、4.1.1項と同様にNASTRANの仮想質量法により算定した を各シェル要素に考慮する。内部水の有効質量算定における水位条件は、耐 等時水位 <u>とする。3次元シェルモデル(適用性確認用解析モデル)</u> のモデル レ図を表4.2-1及び図4.2-2に示す。なお、解析モデルの設定に係る詳細 5に示す。	 ・評価方法の相違 島根2号機では,通 常運転時の耐震評価に おいても耐震解析用重
		表 4.2-1	<u>3次元シェルモデル(適用性確認用解析モデル)</u> のモデル諸元	大事故等時水位を用い
	モデル化	頁目 要素数 鋼製部 内部水	内容 シェル要素:サプレッションチェンバ胴,補強リング,サプレッシ ョンチェンバサポート (ベース及びベースプレート以外) はり要素 :サプレッションチェンバサポート (ベース及びベース プレート) * ・耐震解析用重大事故等時水位 (EL 7049mm) ・NASTRAN の仮想質量法を適用	る。
	L <u>注記*:サ</u> <u>向</u> 及	 プレッション に可動する相 _びベースプ	パチェンバサポートのうち、シアキー構造より上部の部材については半径方 構造であるが、半径方向に可動しないシアキー構造より下部の部材(ベース ノート)は板厚方向の剛性をモデル化する目的ではり要素とする。	 ・評価方法の相違 島根2号機では、ベ ース及びベースプレー トをはり要素でモデル 化する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	図 4.2-2 適用性確認用解析モデル(3次元シェルモデ/
	4.2.3 <u>地震応答解析</u> モデルと適用性確認用解析モデルの比較
	3次元はりモデル及び適用性確認用解析モデル(3次元シェルモデル
	ル化項目の考え方を比較するとともに、モデル化に差異がある場合には
	おけるモデル化の適用性について整理した結果を表 4.2-2に示す。

	備考
	・評価方法の相違
	島根2号機では、解
	<mark>析における計算コスト</mark>
	<mark>低減のため,180°モデ</mark>
	<mark>ルを用いる。</mark>
ル) 図	
リートロントエー	
ル)にわりる主要なモナ	
は、3次元はりモデルに	

女川原子力発電所2号機(2021年12月10日)				島根原子力	」発電所 2号機	幾	備考	
	モデルのモデル化比較	モデル化の差異及びその適用性	内部水の有効質量の算定方法は同じである。 3 次元はりモデルにおける内部水の有効質量のモデル化は, Guyam 縮約を用いてモデル化しており,実機相当の解析モデル による応答解析結果の比較により妥当性を確認している。(別 紙2参照)	3 次元はりモデルにおけるサプレッションチェンバ本体のモデル化は、小円の平面保持を仮定した理論式である。はりモデルで表現されない花びら状の変形等の小円の複雑な断面変形を伴う振動モードによる影響は、耐態評価上問題が無いことを確認する。(別紙3参照)	3 次元はりモデルにおけるサプレッションチェンバサポート取付部のばね剛性は、モデル化の要素が異なるものの、着目している剛性は適用性確認用解析モデルと同じである。(4.1.4 参照)	3 次元はりモデルにおけるサプレッションチェンバサポート取付部のばね剛性は、モデル化の要素が異なるものの、着目している剛性は適用性確認用解析モデルと同じである。(4.1.5 参照)		
	テブル及び適用性確認用解析⇒	適用性確認用解析モデル (3 次元シェルモデル)	NASTRAN の仮想質量法により算出 し、この値をシェル要素に考慮	材料物性及び実機構造を模擬した シェル要素でモデル化	材料物性及び実機構造を模擬したシェル要素でモデル化	材料物性及び実機構造を模擬した シェル要素でモデル化		
	麦4.2-2 3次元はりモ	地震応答解析モデル (3 次元はりモデル)	NASTRAN の仮想質量法により算出し, NASTRAN の機能である Guyan 縮約を用いて はりモデルに付与	材料物性と円筒断面の理論式により算定したサプレッションチェンバ大円の剛性 とたサプレッションチェンバ大円の剛性 を考慮したはり要素でモデル化	実機構造を模擬したばね剛性算定用の3 次元シェルモデル等を用いて取付部の局 部変形を考慮したばね剛性を設定し、サポ ート取付部にばね要素としてモデル化	公式等により曲げ・せん断・伸び剛性を算 定し、はり要素でモデル化		
		モデル化項目	内部水有効質量の モデル化	サプレッションチェンバ 胴のキゲル化	サプレッションチェンバ サポート取付部のばね 剛性の設定	サプレッションチェンバ サポートのモデル化		

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4.2.4 妥当性確認結果	
	(1) <mark>着眼点(1)に対する確認結果</mark>	
	a. 適用性確認用解析モデル(3次元シェルモデル)による固有値解析結果	
	適用性確認用解析モデル(3次元シェルモデル)を用いた固有値解析結果として、各振	・検討内容の相違
	動モードに対する <u>固有振動数</u> ,固有周期及び刺激係数 <u>のうち,刺激係数が2桁</u> オーダー以	島根2号機では、主
	上のものを <u>代表して表 4.2-3</u> に示す。 <u>また、モード変</u> 形図を図 4.2-3に示す。	要な振動モードについ
		て <mark>のみ</mark> 振動モードを比
	図 4.2-3 に示す振動モードにおいて, 図 4.2-3(1)~(2)はサプレッションチェンバ全	較する。
	体が水平方向に振動する振動モードであり,図 4.2-3(3)~(6)はサプレッションチェン	・評価結果の相違
	バ全体が鉛直方向に振動する振動モードである。図 4.2-3(1)~(2)又は図 4.2-3(3)~	島根2号機では、3
	(6)はいずれも同じ方向にサプレッションチェンバ全体が振動する振動モードであるが,	次元シェルモデルによ
	サプレッションチェンバ胴一般部の応答としてオーバル振動 (花びら状の変形) が現れる	る固有値解析結果とし
	ことで,オーバル振動の振動モードの違いによりサプレッションチェンバ全体が振動す	て,オーバル振動の影
	る振動モードが複数の振動モードに分散して現れている。	響が現れる。
		・検討内容の相違
		島根2号機では、主
		要な振動モードについ
		て <mark>のみ</mark> 振動モードを比
		較する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	b. 3次元はりモデルと適用性確認用解析モデル(3次元シェルモデル)の振動モードの	・検討内容の相違
	比較	島根2号機では、主
		要な振動モードについ
	3次元はりモデルを用いた固有値解析結果として、各振動モードに対する固有振動数	て <mark>のみ</mark> 振動モードを比
	と固有周期,刺激係数のうち,刺激係数が2桁オーダー以上のものを代表して表4.2-4	較する。
	に示す。また、適用性確認用解析モデル(3次元シェルモデル)と3次元はりモデルの各	
	振動モードについて,モード変形図の比較結果を表 4.2-5 に示す。 <mark>なお,3次元シェル</mark>	
	モデル(適用性確認用解析モデル)では水平の変形方向がX軸及びY軸方向と一致してい	
	るのに対して、3次元はりモデルではECCSストレーナを連成させていることから変	
	<mark>形方向がX軸及びY軸方向からずれている。また、3次元シェルモデル (適用性確認用解</mark>	
	析モデル)では,サプレッションチェンバの全周をモデル化した解析モデル(360°モデ	
	ル)ではなく,半周をモデル化した解析モデル(180°モデル)を適用するが,対称条件	
	と反対称条件の 180°モデルを用いることにより、360°モデルと同様の振動特性が表現	
	できる。 「 できる。」	
	表4.2-5より、3次元はりモデルの振動モードと比較し、適用性確認用解析モデル(3	
	次元シェルモデル) は胴一般部のオーバル振動が重畳する振動モードとなるものの, 刺激	
	係数が 2 桁オーダー以上のものにおける主要な振動モードは3次元はりモデルと適用性	
	確認用解析モデル(3次元シェルモデル)で対応関係が確認できる。	
	また,適用性確認用解析モデル(3次元シェルモデル)と3次元はりモデルの 50Hz ま	
	での全振動モードにおける固有振動数と有効質量比の関係を図 4.2-4 に示す。図 4.2-	
	4より、3次元はりモデルでは有効質量比が卓越する振動モードが数モードに集約される	
	一方, 適用性確認用解析モデル(3次元シェルモデル)の場合は複数の振動モードに分散	
	する結果となるものの, 50Hz までの全振動モードにおける固有振動数と有効質量比の全	
	体傾向はおおむね一致している。	
	<u>(2)</u> 着眼点(2) <u>に対する確認結果</u>	
	a. 検討内容	
	適用する耐震評価条件は, VI-2-9-2-2「サプレッションチェンバの耐震性についての	
	計算書」及びVI-2-9-2-4「サプレッションチェンバサポートの耐震性についての計算	
	書」における,重大事故等対処設備としての基準地震動Ssに対する評価と同じ条件と	
	t3	
		・記載箇所の相違

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 3次元はりモデルと3次元シェルモデル(適用性確認用解析モデル)によるサブレッションチェンパサポートの一次応力の比較 サブレッションチェンパサポートにおける3次元はりモデル及び3次元シェルモデル (適用性確認用解析モデル)による耐震評価結果(一次応力)を表4.2-6及び図4.2-5 に示す。表4.2-6及び図4.2-5ではすべての応力評価点において、3次元はりモデルに 対して3次元シェルモデル(適用性確認用解析モデル)の発生応力が小さい結果とな る。3次元シェルモデル(適用性確認用解析モデル)の発生応力が小さい結果とな る。3次元シェルモデル(適用性確認用解析モデル)では、オーバル振動によりサブレ ッションチェンパ全体が振動する振動モードが、固有問期が近い複数の振動モードに分 散している。各振動モードにより生じる荷重の総和としては振動モードが分散しない場 合と同程度と考えられる。分散した振動モードにより生じる荷重は二乗和平力根により 組み合わせるため、得られる荷重が小さくなると考えられる。 	・評価結果の相違 島根2号機では,サ プレッションチェンバ サポートにおけるすべ ての応力評価点におい て,3次元シェルモデ ルの発生応力が小さ
	 c. 3次元はりモデルと3次元シェルモデル(適用性確認用解析モデル)によるサプレッションチェンバの一次応力の比較 3次元はりモデル及び3次元シェルモデル(適用性確認用解析モデル)によるサプレッションチェンバの耐震評価結果(一次応力)を表4.2-7及び図4.2-6に示す。 3次元はりモデル及び3次元シェルモデル(適用性確認用解析モデル)による発生応力は、サプレッションチェンバの構造特徴を踏まえ応力評価部位を胴中央部,胴エビ継手部及びサプレッションチェンバサポート取付部に分類して比較した場合,応力評価部位によって大小関係は異なるものの,構造的に類似する胴中央部(P1, P2, P3, P4),胴エビ継手部(P5, P6, P7, P8)及びサポート補強板との接合部(P9, P10)の各分類において許容応力の範囲内で同程度である。 	い。 ・検討内容の相違 島根2号機では,サ プレッションチェンバ において一次応力に対 する検討を実施する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	d. 3次元はりモデルと3次元シェルモデル(適用性確認用解析モデル)によるサプレッ	
	<u>ションチェンバの一次+二次応力の比較</u>	
	<u>3 次元はりモデル及び<mark>3 次元シェルモデル(適用性確認用解析モデル)</mark>によるサプレ</u>	・評価結果の相違
	<u>ッションチェンバの耐震評価結果(一次+二次応力)を表 4.2-8 及び図 4.2-7 に示す。</u>	島根2号機では、3
	<mark>なお, 3次元シェルモデル(適用性確認用解析モデル)では, シェル要素における板厚</mark>	次元シェルモデルにお
	中央に発生する応力を膜応力として一次局部膜応力に、板厚方向の内面と外面に発生す	ける発生応力につい
	る応力を膜応力+曲げ応力として一次+二次応力に分類して評価している。	て、オーバル振動の影
	<u>3次元はりモデル及び<mark>3次元シェルモデル(適用性確認用解析モデル)</mark>による発生応</u>	響が現れる。
	<u>力は、3次元はりモデルに対して3次元シェルモデル(適用性確認用解析モデル)の発</u>	
	生応力が大きい傾向と <mark>なり,</mark> 応力評価点P2では特に応力が大きくなる結果が <mark>得られ</mark>	
	る。このように、一次応力に比べて一次十二次応力において、3次元はりモデルと3次	
	元シェルモデル(適用性確認用解析モデル)の発生応力の差異が大きくなるのは、オー	
	バル振動により局部的な曲け応力(シェル要素における板厚方向の内面と外面に発生す	
	<u>る応力)</u> か大さくなるためである (図 4.2 $-3(1)$, (6)参照)。また,応力評価点 $P \otimes b$ ズ $P = 1.0$ では広光証価では、2 (図 4.2 $-3(1)$, (6)参照)。また,応力評価点 $P \otimes b$	
		 ・ 証価結果の相違
	<u>3次元シェルモナル(適用性確認用解例モナル)</u> におりる応力評価点P8及 $OP10$ の広学評価は里な書 $42-0$ 及び図 $42-8$ にデオ。 2次元シェルエデル(適用性確認用解	
	0) 版力計価格未を及 $4.2-9$ 及び因 $4.2-0$ に小り。 3 次元ノエルモノル(適用住催応用件 板エデル) の症労評価結果における症労思律係物けいざれた1を大きく下回っており	次元シェルモデルでの
	サプレッションチェンバの健全性に影響を与うたい結果とたろ	耐震評価において、疲
		労評価が必要となる。
		・検討内容の相違
		島根2号機では、加
		速度及び変位の比較を
		実施しない。
		・検討内容の相違
	(3) 適用性確認結果	島根2号機では,3
	振動モードの比較結果より、主要な振動モードは3次元はりモデルと3次元シェルモデ	次元シェルモデルでオ
	ル(適用性確認用解析モデル)で対応関係が確認できることと、50Hz までの全振動モード	ーバル振動が現れるた
	における固有振動数と有効質量比の全体傾向はおおむね一致していることから、3次元は	め、実機解析モデルに
	<u>リモアルとる (ボンエルモアル (適用性確認用解析モアル)</u> の振動特性の傾向はおおむねー	灯してオーバル振動の
	<u>取している。</u>	影響を傾討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3次元はりモデル及び3次元シェルモデル(適用性確認用解析モデル)による応力評価結	
	果の比較により, サプレッションチェンバサポートについて, 耐震評価上最も厳しい部位で	
	あるベースプレートを含むすべての応力評価点において,3次元はりモデルに対して3次	
	<u> 元シェルモデル(適用性確認用解析モデル)の発生応力が小さい結果が得られた。</u>	
	また, サプレッションチェンバについては, 一次応力が許容応力の範囲内で同程度の結果	
	が得られた。一次+二次応力は,3次元はりモデルに対して3次元シェルモデル(適用性確	
	認用解析モデル)の発生応力が大きい傾向となるが,疲労評価を考慮すると,サプレッショ	
	ンチェンバの耐震評価において十分に余裕のある結果が得られた。	
	<u>以上より、3次元はりモデルと3次元シェルモデル(適用性確認用解析モデル)の振動特</u>	
	性の傾向はおおむね一致していること,耐震評価上厳しい部位であるサプレッションチェ	
	ンバサポートに対しては3次元はりモデルを用いた耐震評価は保守的な結果が得られるこ	
	と、3次元シェルモデル(適用性確認用解析モデル)における耐震評価結果では、オーバル	
	振動により一次+二次応力が大きくなるものの,疲労評価を含む評価結果は十分余裕のある	
	結果が得られることを確認した。このため、島根2号機の今回工認におけるサプレッション	
	<u>チェンバ及びサプレッションチェンバサポートの地震応答解析モデルおいては、3次元は</u>	
	<u>りモデルを適用する。</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機					備考	
	表 4.2-3(1) 適用性確認用解析モデル(3次元シェルモデル)を用いた固有値解析結果				吉果・評価方法の相違		
	(対称条件)					島根2号機では、適	
	エード	固有振動数	固有周期		刺激係数*1,	¢2	用性確認用解析モデル
		(Hz)	(s)	X方向	Y方向	Z方向	(3次元シェルモデ
	22 次	_					ル)として180°モデル
	34 次						を用いる。
	150 次						
	154 次						
	177 次						
	185 次						
	209 次						
	216 次						
	242 次						
	注記*1:モード	質量を正規化す	トるモードベク	トルを用いる	5.		
	*2:Y方向)	及び Z 方向の刺	削激係数が2桁	テオーダー以_	上のものを代表	長して記載	
	≠ 4 0 0 (0) ```````````````````````````````		ビエニュ (9)	ケニシ ノール・エー	ゴル)た田い	と田士は細た	休田
	<u> 衣 4.2-3(2)</u>	用性唯認用 <u>脾</u> (豆計称冬件)	リモノル (3f)	人儿シェルモ	ノルノを用い	(こ回有10時11)	
		因右振動数	固有周期		 制激	¢2	
	モード	(Hz)	(s)	X方向	Y 方向	Z方向	-
	24 次				- / 4 4	- / 4 4	
	34 次						
	注記*1:モード	す 量を正規化す	トるモードベク	トルを用いる	5.		
	*2:X方向	の刺激係数が 2	2桁オーダー以	人上のものを住	-。 代表して記載		

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		 ・検討内容の相違 島根2号機では、振 動モードの比較を実施
		9 'So
	(a)対称条件 図 4.2-3(1) モード変形図:適用性確認用解析モデル(3次元シェルモデル)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	<u>凶 4.4 つ(4) モニト友//凶:週用性維祕用胜性モノル(3 伏兀ンエルモアル)</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	(a) 対称条件	
	図 4.2-3(3) モード変形図:適用性確認用解析モデル(3次元シェルモデル)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	(a) 对称条件 図 $4 2-3(4)$ エード亦形図・適用性確認用解析エデル $(2 m - 2 - 4 m - 2 m)$	
	<u>凶 4.4 3(4) に 下次</u> が凶, 適用 江滩 応用件们 て / / / (3 (人 ル ノ エ / <i>レ て /) /)</i>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、振
		動モードの比較を実施
		する。
	(a) 対称条件	
	図 4.2-3(5) モード変形図:適用性確認用解析モデル(3次元シェルモデル)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機	 備考 ・検討内容の相違 島根2号機では,振 動モードの比較を実施 する。
	(b) 反対称条件 図 4.2-3(6) モード変形図:適用性確認用解析モデル(3次元シェルモデル)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考	
・検討内容の相違	
島根2号機では、主	
要な振動モードについ	
て振動モードを比較す	
る。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考	
	<u>表 4.2-4(1) 3 次元はりモデルを用いた固有値解析結果</u> (地震広気解析モデル・水平支向)	・評価方法の相違 島根2号機でけ 適	
	<u>(地展応各時代でノル・水平分内)</u> 固有振動数 固有周期 刺激係数 ^{*1,*2}	用性確認用解析モデル	
	(Hz) (s) X方向 Y方向 Z方向 3次 3次	(3次元シェルモデ ル)として180°モデル	
	4次	を用いる。	
	9次*3		
	注記*1:モード質量を正規化するモードベクトルを用いる。		
	*2:X方向及びY方向の刺激係数が2桁オーダー以上のものを代表して記載		
	*3: ECCSストレーナをモデルに組み込んだことに伴い卓越したモードであるため, 表 4.2-5の適用性確認用解析モデル(3次元シェルモデル)との比較対象外とする。		
	<u>表 4.2-4(2) 3次元はりモデルを用いた固有値解析結果</u> (地震応答解析モデル:鉛直方向)		
	正式 固有振動数 固有周期 刺激係数*1,*2		
	(Hz) (s) X方向 Y方向 Z方向		
	9次* ³		
	注記*1:モード質量を正規化するモードベクトルを用いる。		
	*2:Z方向の刺激係数が2桁オーダー以上のものを代表して記載 *3:ECCSストレーナをモデルに組み込んだことに伴い卓越したモードであるため、		
	表4.2-5の適用性確認用解析モデル(3次元シェルモデル)との比較対象外とする。		
女川原子力発電所2号機(2021年12月10日)			島根原子力発電所 2号機
--------------------------	-------------------------	--	---------------
		5.07	
		老家	
	₩ ₩	6	
		1	
	번	働き	
	N C	振	
	影		-
	ド		
	1	间	
	0 H	平方	
	1/0	×	
	Ч. Г	い 形 影	5 夜
	5	デ数素	ж
	E H	华 梁 鸿	
	狡	% 一、 例 一、 一、 一、 一、 一、 一、 一、 「」、 」、 「」、 」、 「」、 」、 「」、 」、 「」、 」、 「」、 」、 「」、 「	μe
	പ	憲	
	$\overline{\mathbf{a}}$	王	
	J. J.	1	
	H.	*	4
	T H	は数	<u></u>
		べ 次 ビ か ご う う う う う う う う う う う う う う う う う う	
	次 ビ	60 J	
	0	л х	
	2	*	
	۱۲. س	5条1	
	析さ	対手	
	目角	3 \$	ĸ
	影	「デ」	
	生産	シモージョン	38
	用作	○ 隙 Ⅰ · □ 指	
	通	元赤	Ĺ
	(1)	(3 %	~~
	-20	7	
	-2-	モ デ	
	表 4	译析·	
	- # K C	変	
		確認	
		町「	
		適子の	
			-L

	備考
 I	

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所 2号機
	形図の比較結果	振動モードの考察	
	デル)と3次元はりモデルのモード変ヲ	ル(地震応答解析モデル:水平方向) 赤線:変形前 黒線:変形後	
	/(3 次元シェルモ	3 次元はりモデ モード次数 (固有周期)	
	麦 4. 2-5(2) 適用性確認用解析モデル	「新モデル(3次元シェルモデル):対称条件 赤線:変形前 グレー部:変形後	
		適用性確認用解 モード次数 (固有周期)	

	備考

<u>接 4.2 – 5(3)</u> <u>接 4.2 – 5(3)</u> <u>推開時間でか</u> <u>1000000100000000000000000000000000000</u>	接 4.8-601 通知性報経済時代生デル 13 気光シュルーデル)、2 3 気におり モデルハケー 「実活図の上統化版 通用所報2010所作デル (3 気流シュルーデル)、2 3 気におり デル (1000/5 所作) (2 5 気におり デアル・パーパー) (1000 (1000) (10	女川原子力発電所2号機(2021年12月10日)				島根原子力発電所	2 号機
表土2-5(3) 道田住葡萄用新十モグル (3 次元シュルモデル) と3 次元注り ナデルのキー 上修計 1011000000000000000000000000000000000	第4.2 - 6.03. 通用性確認目解肝モデル(3 次元シェルモデル)と3 次元は9.5 モデルの1-4-15案 第4.2 - 6.03. 通用性確認目解肝モデル(3 次元シェルモデル)と3 次元は9.5 モデルの1-4-15案 1.11111111111111111111111111111111111		図の比較結果	振動モードの考察			
			麦 4.2-5(3) 適用性確認用解析モデル(3次元シェルモデル)と3次元はりモデルのモード変形	適用性確認用解析モデル(3次元シェルモデル):反対称条件 3次元はりモデル(地震応答解析モデル:水平方向) モードか数 未の・ドか数 - たん	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		

	備考

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所 2号機
)形図の比較結果	振動モードの考察	
	デル)と3次元はりモデルのモード変	 ・ (地震応答解析モデル:水平方向) 赤線:変形前 黒線:変形後 	
	(3次元シェルモ	3次元はりモデ/ モード次数 (固有周期)	
	麦 4.2-5(4) - 適用性確認用解析モデル	 認用解析モデル(3次元シェルモデル):反対称条件 大数 赤線:変形前 グレー部:変形後 	
		<u>適用性確</u> モード》 (固有周:	

	備考

<u>第.4.2—5.00</u> 通用性機能用除不可少(3.3.5.52.0.4.4.7 ² /2.) と.3.8.5545.9.5.4.055	女川原子力発電所2号機(2021年12月10日)			島根原子力発電所	2 号機
新名, 2 = 5(0)		変形図の比較結果	振動モードの考察		
表4.2-5(6) 適用性確認用條所モデル (3次元シェルモデ		ル)と3次元はりモデルのモード変	(地震応答解析モデル:鉛直方向) 赤線:変形前 黒線:変形後		
表4.2-5(5)適用性確認用解析モデレ 1田性醸試用解析モデル 1日性酸試用解析モデル 1日上酸試用 ボード次数 ボ森:変形前 オ月周切)		レ(3次元シェルモデ	3 次元は9 モデル モード次数 (固有周期)		
		麦 4. 2-5(5) 適用性確認用解析モデル	 ・箇用性確認用解析モデル(3次元シェルモデル):対称条件 ・トド次数 ・大沙 		

	備考	
•		

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所 2号機
	2形図の比較結果	振動モードの考察	
	デル)と3次元はりモデルのモード変	ル(地震応答解析モデル:鉛直方向) 赤線:変形前 黒線:変形後	
	レ(3次元シェルモ	3 次元はりモデ, モード次数 (固有周期)	
	表 4. 2-5(6) 適用性確認用解析モデル	術モデル(3次元シェルモデル):対称条件 赤線:変形前 グレー部:変形後	
		適用性確認用解 モード次数 (固有周期)	

備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	変形図の比較結果 振動モードの考察
	 ゴル)と3次元はりモデルのモード3 (地震応答解析モデル:鉛直方向) 赤線:変形前< 黒線:変形後
	(3 次元シェルモテ 3 次元はりモデル モード次数 (固有周期)
	表 4.2-5(7) 適用性確認用解析モデル デモデル(3次元シェルモデル):対称条件 赤線:変形前 グレー部:変形後
	適用性確認用解析 モード次数 (固有周期)

	備考

	· · · · · · · · · · · · · · · · · · ·
女川原子刀発電所2号機(2021年12月10日)	島根原子刀発電所 2号機
	形図の比較結果 振動 モードの考察
	 ル)と3次元はりモデルのモード変 レ(地震応答解析モデル:鉛直方向) 赤線:変形前< 黒線:変形後
	3 次元シェルモデ, 3 次元はりモデル モード次数
	表 4.2-5(8) 適用性確認用解析モデル (新モデル (3次元シェルモデル):対称条件 赤線:変形前 グレー部:変形後
	◎

	備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	形図の比較結果 振動モードの考察
	Fデル)と3次元はりモデルのモード変 デアル(地震応答解析モデル: 鉛直方向) 赤線:変形前 黒線:変形後
	(3)次元シェル1 モード次数 (固有周期)
	麦4.2-5(9)通用性確認用解析モデル(3次元シェルモデル):対称条件 創用性確認用解析モデル(3次元シェルモデル):対称条件 デード次数 赤線:変形前 グレー部:変形後

	備考
J	

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所 2号機
	5形図の比較結果	振動モードの考察	
	デル)と3次元はりモデルのモード変	ル (地震応答解析モデル:鉛直方向) 赤線:変形前 黒線:変形後	
	(3次元シェルモ	3 次元は9 モデ モード次数 (固有周期)	
	表 4.2-5(10) 適用性確認用解析モデル	解析モデル(3次元シェルモデル):対称条件 赤線:変形前 グレー部:変形後	
		適用性確認用例 モード次数 (固有周期)	

	備考
f	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所	2 号機
	モード変形図の比較結果 5月) 振動モードの考察		
	 ・ 適用性確認用解析モデル(3次元シェルモデル)と3次元はりモデルの= 次元シェルモデル):対称条件 3次元はりモデル(地震応答解析モデル:鉛直方赤線:変形前 オード次数 オード次数 オード次数 ホ線:変形前 		
	表 4.2-5(: 適用性確認用解析モデル(: モード次数 (固有周期)		

	備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)	<u> 島根原子力発電所 2 号機</u> <u>図 4.2-4(1) 固有値と有効質量比の関係 (水平方向)</u>	備考 ・検討内容の相違 島根2号機では、固 有値と有効質量比の関 係を比較する。
	<u>図 4.2-4(2) 固有値と有効質量比の関係(鉛直方向)</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・記載箇所の相違

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考
・記載箇所の相違

女川原子力発電所2号機(2021年12月10日)		島相	根原子力発行	電所 2号	機			備考
	<u>表 4</u>	.2-6 サプレッションチ:	エンバサポー	ートの 耐震	平価結果の	比較(一次	応力)	
	応力 評価点 番号	応力評価点	 ①3次元 はりモデ ルによる 算出応力 (MPa) 	 ② 3 次元 シェルモ デルによ る算出応 力 (m) 	③許容 応力 (MPa)	1/3	2/3	
	D 1	11,12 1	004	(MPa)	000	0.60	0.24	
		シアキー	118	61	298	0.68	0.34	
	P 3	ボルト	385	150	400	0.29	0.15	
	P 4	ベースとベースプレート の接合部	197	98	298	0.66	0.33	
	P 5	基礎ボルト	339	132	488	0.69	0.27	
	P 6	ベースプレート	251	129	298	0.84	0.43	
	P 7	シアプレート	180	94	298	0.60	0.32	
	P 8	コンクリート	11.2	5.8	17.6	0.64	0.33	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機							備考	
	表 4.2-7 サプレッションチェンバの耐震評価結果の比較(一次応力)						・検討内容の相違		
				23次元					島根2号機では、サ
	応力		はりモデ	シェルモ	(3)許容				プレッションチェンバ
	評価点	応力評価点	ルによる	デルによ	応力	1/3	2/3		において一次応力に対
	番号		算出応力	る算出応	(MPa)				する検討を実施する。
			(MPa)	力					
	P 1	11日山	144	(MPa)	523	0.28	0.27		
	P 2		136	219	523	0.26	0. 42		
	P 3	胴中央部内側	137	169	523	0.26	0. 32		
	P 4	胴中央部外側	125	167	523	0.24	0.32		
	P 5	胴エビ継部上部	312	244	523	0.60	0.47		
	P 6	胴エビ継部下部	194	230	523	0.37	0.44		
	Р 7	胴エビ継部内側	316	257	523	0.60	0.49		
	P 8	胴エビ継部外側	272	326	523	0.52	0.62		
	Р9	胴と内側サポート補強板 との接合部	250	238	523	0.48	0.46		
	P 1 0	胴と外側サポート補強板 との接合部	204	237	523	0.39	0.45		
	1.2 1.0 斤均数据 0.6 0.4 0.2 0.0		元はりモデノ	Po····································		モデル サポ との	許容範囲		 ・検討内容の相違 島根2号機では、サ プレッションチェンバ において一次応力に対
		4.2-6 リノレツンヨン	アエンハ	の	祐未の比	<u>較一一次</u> 応	<u>, ((/, (</u>		9 る俠討を美心する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機							備考
	<mark>表 4.</mark>	2-8 サプレッションチ:	ェンバの耐	震評価結果	その比較(<mark>一次+二</mark> ど	<mark>欠応力)</mark>	・記載箇所の相違
	応力 評価点 番号	応力評価点	 ③次元 はりモデ ルによる 算出応力 (MPa) 	 ② 3 次元 シェルモ デルによ る算出応 力 	③許容 応力 (MPa)	0/3	2/3	
				(MPa)				
	P 1		128	192	501	0.26	0.38	
	P 2		128	358	501	0.26	0.71	
	P 3	胴中央部内側	122	294	501	0.24	0.59	
		MT大印77	360	202	501	0.24	0.00	
	P6		228	408	501	0.46	0.44	
	P 7		302	276	501	0.60	0.55	
	P 8	胴エビ継部外側	478	598	501	0.95	1. 19	
	P 9	胴と内側サポート補強板 との接合部	334	384	501	0.67	0.77	
	P 1 0	胴と外側サポート補強板 との接合部	342	524	501	0.68	1.05	
	算出応力/許容応力	= 3 2 1. 40 1. 20 1. 00 0. 80 0. 60 0. 40 0. 20 0. 00 1. 00 0.	次元はりモデハ ま ³⁹⁻¹¹⁰⁻¹¹⁰ R ⁻¹¹¹ R ⁻⁵⁻¹¹⁰⁻¹² R ⁻⁶⁻¹¹ R ⁻⁵⁻¹¹⁰⁻¹² R ⁻⁶⁻¹¹	· 38			*	
	注言	記*:許容範囲を超えた場合は疲労	労評価を実施					
	<u>凶</u> 4.	<u>2-7 サフレッションチ:</u>	ェンバの耐	震評価結身	その比較(<u>一次+二</u> 次	<u> </u>	・記載箇所の相違

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 4. 2-9 サプレッションチェンバの耐震評価結果(疲労評価)	・評価結果の相違
		島根2号機では、3
	評価点 Sn Ke Sp S\ell S\ell' Na Nc 波穷累積係数 番号 (MPa) (MPa) (MPa) (MPa) (回) Nc/Na	次元シェルモデルでの
	P 8 0.147	耐震評価において、疲
	P 1 0 0.199	労評価が必要となる。
	注:ここで,	
	Sn:地震動による応力振幅 (MPa)	
	Ke:弾塑性解析に用いる繰返しビーク応力強さの補正係数(一)	
	Sp: 地震何重のみにおける一次キー(スキビーク応力の応力差範囲(MPa)	
	S ℓ' : 補正繰返しピーク応力強さ (MPa)	
	N a : 地震時の許容繰返し回数(一)	
	N c : 地震時の実際の繰返し回数 (一)	
	注記*:Sℓに(2.07×105/E)を乗じた値である。	
	$E = 2.00 \times 10^5$ MPa	
	■3次元シェルモテル 1.2	
	許容範囲	
	1.0 ※	
	送 0.8	
	一部 0.6	
	义 0.4	
	0. 2	
	0.0	
	18日本	
	2、顺王上游时, 海旗板上0000	
	P8	
	10:1月上外14	
	P I C	
	応力評価点	
	図 4.2-8 サプレッションチェンバの耐震評価結果(疲労評価)	・評価結果の相違
		島根2号機では,3
		次元シェルモデルでの
		耐震評価において、疲
		労評価が必要となる。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

[]
備考
・検討内容の相違
島根2号機では,加
速度及び変位の比較を
実施しない。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

(井 十)
備考
・検討内容の相違
島根2号機では、加
速度及び変位の比較を
実施しない。

ガ川原子力発電所2号機(2021年12月10日)	島根原子力 殺 雷所 2 号機	備老
关州水1772°电//2374%(2021 + 1271 10 日)		C cm/
	4.3 地長心合胜州にわりる内部小の有効員里昇田五伝の影響	
	地長心谷胜州 じは、リノレツションフェンバ及いリノレツションフェンバリホートの構造付	
	に、リノレリンヨンノエンバロホルの加体付任寺を与慮し、リノレリンヨンノエンバ及いリノレ いいコンチョンバサポートの地震亡気敏振エデル(2次元けれエデル)を設定し、 町丁辺し同様	・証価士社の担告
	ソノヨノノエノハリホートの地展心合併切てノル(3次九はリてノル)を設たし、 <u>以工誌と同様</u> にてペクトルエーダル破垢を実施して地震時の芸重を管定する	・計価力伝の相連
	にへいクトルモークル牌別を実施して地展時の何重を昇足りる。	田似 2 万城 C は, 以 工初において水亚古向
		工誌にわいて小千万円の地震亡茨留折ちっぺ
	本頂でけ サプレッシュンチェンバ及びサプレッシュンチェンバサポートの地震内欠解症(フ	の地展心合肝切をハ、
	本項には、リノレリンヨンノエンバ及びリノレリンヨンノエンバリホードの地震心合併们(ハ ペクトルエーダル解析)に対して、内部水の右効質量管中法トして仮相質量法ト液体解析による	トルモ クル肝がに
	内部水の右効好暑の主思及び真拒動粉領域の入力加速度の影響を検討する	より天旭している。
	内部小の有効員重の定共及い同派動致限域の八刀加速度の影響を使討する。	
	4.1.1 にわけるリノレッションフェンハ的部爪の有効員重の昇足枯末では、NASIRAN の仮相焼鼻洗レ汎用法体報振っ一ドロール。n+にとる法体報抵にとり管出した内部水の方	・証価士社の担告
	の仮芯貝重伝と仍用派体推例 $-$ 下 <u>Γ I U e II L</u> による派体推例により昇山した内部派の有	・計価力伝の相座
		の知道
		 ・ 証価結果の相違
		自根の号機でけ仮相
		面伝2.5% (なび心) 哲量法と流休解析で同
		段重広で航岸がいて内
		られていろ

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考
・評価結果の相違
島根2号機では仮想
質量法と流体解析で同
程度の有効質量比が得
られている。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4.4 地震応答解析における高振動数領域の影響	
	サプレッションチェンバ及び <u>サプレッションチェンバサポート</u> の地震応答解析における動的	
	解析では、配管等に対する地震応答解析と同様に、NS2-補-027-01「設計用床応答スペクトルの	・評価方法の相違
	作成方針に関する補足説明資料」に示す設計用床応答スペクトルを用いたスペクトルモーダル	<mark>島根2号機では,設</mark>
	<u>解析を実施</u> している。 <mark>なお,設計用床応答スペクトルでは 0.02 秒(50Hz)から 0.05 秒(20Hz)</mark>	<mark>計用床応答スペクトル</mark>
	の範囲に最大応答加速度を上回る震度を設定しており,スペクトルモーダル解析において 50Hz	として 0.02 秒(50Hz)
	までの振動モードを考慮する。	<mark>まで考慮した床応答ス</mark>
	島根2号機のサプレッションチェンバの地震応答解析モデルにおいては,サプレッションチ	<mark>ペクトルを用いる。ま</mark>
	ェンバ内部水の質量を考慮した質点が計64か所ある。サプレッションチェンバサポート位置の	た,スペクトルモーダ
	節点は円周方向に剛に固定されているが,サプレッションチェンバサポート間において 3 つの	ル解析において 50Hz ま
	節点を有していることから、高次モードの影響を十分考慮したモデル化手法となっている。な	<mark>での振動モードを適用</mark>
	お, 0.02 秒(50Hz)までに現れる振動モードにおいて, サプレッションチェンバサポート間の	する。
	サプレッションチェンバ胴が振動するモードは存在しないことを確認している。	
		・記載箇所の相違
		島根2号機では、
		50Hz の領域まで作成し
		<mark>た床応答スペクトルに</mark>
		よる影響検討を別紙 3
		<mark>に記載する。</mark>

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・記載箇所の相違
島根2号機では、
50Hz の領域まで作成し
た床応答スペクトルに
よる影響検討を別紙 3

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・記載箇所の相違
島根2号機では、
50Hz の領域まで作成し
た床応答スペクトルに
よる影響検討を別紙 3

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・記載箇所の相違
島根2号機では、
50Hz の領域まで作成し
た床応答スペクトルに
よる影響検討を別紙 3

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4. <mark>5</mark> スロッシング荷重	
	既工認では、サプレッションチェンバ内部水全体を剛体としていたため、スロッシング荷重は	
	水平方向の地震荷重に包含される扱いとしていたが、今回工認では、サプレッションチェンバ内	
	部水を有効質量として水平方向の地震荷重を算出するため,スロッシング荷重については,地震	
	時のサプレッションチェンバ内部水の挙動を考慮し,汎用流体解析コード <u>Fluent</u> を用い	・評価方法の相違
	た流体解析により算定する。スロッシング荷重算定フローを図 4. <mark>5</mark> -1 に示す。	使用する解析コード
	流体解析に用いる解析モデルは,図4.5-2のとおり,サプレッションチェンバ(<u>補強リング</u>	の相違
	を含む)及び主要な内部構造物(ベントヘッダ,ダウンカマ,クエンチャ,ECCSストレーナ)	
	をモデル化し、サプレッションチェンバ内部水の水位条件は、内部水の有効質量の算定と同様	
	に,,耐震解析用重大事故等時水位とした。また,地震動の入力条件は,スロッシングの卓越周期	・評価方法の相違
	<u>帯及びサプレッションチェンバの一次固有周期で</u> 応答加速度が <u>大きい</u> Ss-Dを用いた。流体	島根2号機では、通
	解析では、サプレッションチェンバ内部水の有効質量による荷重(サプレッションチェンバと-	常運転時の耐震評価に
	体となって振動することによる荷重)とスロッシング荷重の総和として荷重が算定されるため、	おいても耐震解析用重
	内部水の有効質量による荷重を差し引くことによってスロッシング荷重を算定する。サプレッ	大事故等時水位を用い
	ションチェンバ内部水のスロッシング荷重算定の詳細については,別紙6に示す。	る。
	流体解析に基づき算出したスロッシング最大荷重を表 4.5-1 に示す。なお,スロッシング荷	
	<u>重は水平1方向+鉛直方向入力による流体解析により設定する。</u>	
	今回工認のサプレッションチェンバ及び <u>サプレッションチェンバサポート</u> の耐震評価におい	
	て,地震時における荷重として考慮するスロッシング荷重については,設計基準対象施設として	
	の評価及び重大事故等対処設備としての評価に関係なく、スロッシング現象の不確かさ及び水	
	<u> 平2方向入力による影響等</u> に対する保守性 として√2倍の余裕 を考慮し、耐震解析用重大事故	
	時水位条件に対するスロッシング最大荷重に余裕を加味した耐震評価用スロッシング荷重	
	(<u>8597kN</u>)を用いることとした。 <mark>なお,水平1方向+鉛直方向入力と水平2方向+鉛直方向入力</mark>	
	<u>による流体解析から得られる荷重とおおむね一致することを確認している(別紙14参照)。</u>	
	スロッシング荷重により作用する応力は、水平方向に単位加速度を作用させた静解析により	
	得られる発生応力について係数倍*した結果として算出する。	
	なお、内部水の流動によりサプレッションチェンバ壁面の一部に集中して加わる局部的な圧	・記載の充実
	力は影響が小さいため、サプレッションチェンバの耐震評価において考慮しない(別紙 21 参照)。	島根2号機では、設
		置許可段階での説明事
	注記*:係数=スロッシング荷重/単位加速度により解析モデル基部に作用する水平方向荷重	項を <mark>含め</mark> 記載する。

	備考
	備考
<u>重</u> 雲評価用 シング荷重 597 kN	 ・評価方法の相違 島根2号機では,通 常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い る。

	備考
る評価を実施する。応	
:理 重)	
平価	
せ 也荷重)	
	・評価方法の相違 島根2号機では,サ プレッションチェンバ サポートの評価は,既 工認と同様に公式等に よる評価を適用してい る。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	5.2 応力評価点
	サプレッションチェンバ及びサプレッションチェンバサポートでは,
	価上厳しい部位及び主要な部位を応力評価点として選定しており、今回
	ら構造の変更は無いことから,今回工認における応力評価点は既工認と同
	示す評価点とする。

	備考
死工認において応力評 <u>こ認において既工認か</u> ご部位として 3. 3. 2 に	・評価方法の相違 島根2号機では,既 工認と同じ応力評価点 について評価してい る。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
 ・評価方法の相違
島根2号機では、既
工認と同じ応力評価点
について評価してい
3.
1

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
 ・評価方法の相違
島根2号機では、既
工認と同じ応力評価点
について評価してい
3.
4 0
1

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
 ・評価方法の相違
島根2号機では、既
工認と同じ応力評価点
について評価してい
3.
4 0
1

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	5.3 応力解析モデル	
	サプレッションチェンバ (胴エビ継部及びサプレッションチェンバサポート取付部)の応力評	・評価方法の相違
	「個に用いる応力時付モケルは、リノレッションケェンハ及びリノレッションケェンハリホート の地震応答解析モデルにおけるげね剛性寛定に用いた3次元シェルモデルと同等である。応力	局根2万機では、サ プレッションチェンバ
	解析モデルを,図5.3-1に示す。	胴中央部については,
		公式等による手計算に
		より応力を算出する。
		島根2号機では、建 設時の構造で耐雪性を
		確認している。
	図 5.3-1 応力解析モデル	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・評価方法の相違
島根2号機では、サ
プレッションチェンバ
サポートの評価は,既
工認と同様に公式等に
よる評価を適用してい
る。
女川原子力発電所2号機(2021年12月10日)

サ ンバ は, 算に 5.

応力

おい 入力 評価 記載

	備考
エンバ胴	
EMモデルによる り評価位置	
入力(鉛直)	
	
无念図	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	図 5.4-2 地震応答解析における変位抽出点	
	<u>図 5.4-3 サブレッションチェンバの3次元FEMモデル解析条件</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	5.4.2 <u>サプレッションチェンバサポート</u> の応力評価	
	<u>サプレッションチェンバサポート</u> は,公式等による応力評価を行う(別紙 <u>17参照</u>)。	・評価方法の相違
		島根2号機では、サ
	公式等による応力評価は、サプレッションチェンバ及びサプレッションチェンバサポート	プレッションチェンバ
	の地震応答解析(3次元はりモデルを用いたスペクトルモーダル解析)から算定された地震荷	サポートの評価は、既
	重及び構造部材の形状, 断面性能等を踏まえて応力を算定する。 なお, サプレッションチェン	工認と同様に公式等に
	バサポートのうちベースプレートについては、精緻に応力評価を行うため、曲げ応力評価にお	よる評価を適用してい
	ける断面係数算出時の評価断面を既工認から見直す。	る。
	応力評価の詳細については、VI-2-9-2-4「サプレッションチェンバサポートの耐震性につい	・評価方法の相違
	ての計算書」に記載している。	島根2号機では、ベ
		ースプレートにおける
		応力評価の精緻化を実
		施する。
		・評価方法の相違
		島根2号機では、サ
		プレッションチェンバ
		サポートの評価は、既
		工認と同様に公式等に
		よる評価を適用してい
		3.

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	6. 耐震評価における不確かさの考慮及び保守性	
	サプレッションチェンバ及びサプレッションチェンバサポートの耐震評価の既工認からの変更	
	に関する不確かさ・保守性の配慮について, 地震応答解析から応力解析に至る評価手順に沿って整	
	理したものを表 6-1 に示す。	
	地震応答解析においては、サプレッションチェンバ内部水の扱いとして内部水の有効質量を適	
	用したこと, サプレッションチェンバサポート取付部にばね剛性を考慮したこと等による解析モ	
	デルの詳細化を行った。	・評価方法の相違
		島根2号機では、既
	内部水の有効質量の適用については、サプレッションチェンバ内部水の有効質量を <u>適切</u> に算定	工認において水平方向
	する解析方法を採用しており、サプレッションチェンバ内部水の挙動をより詳細に考慮している。	の地震応答解析をスペ
	また,解析モデルの詳細化にあたって,サプレッションチェンバ及びサプレッションチェンバサポ	クトルモーダル解析に
	<u>一ト</u> の構造を解析モデルに変換する部分については,特段の不確かさはなく,前述までの説明のと	より実施している。
	おり,実機のサプレッションチェンバ及びサプレッションチェンバサポートの主要な振動モード	・評価結果の相違
	をよく再現できる解析モデルとなっている。	内部水の有効質量比
	動的解析方法における不確かさに対しては、建物応答の不確かさも包絡した設計用床応答スペ	算定結果の相違
	<u>クトル</u> を用いることによって,他機器と同様の保守性が確保される。なお,床応答スペクトルの周	・評価方法の相違
	期方向±10%拡幅によって、内部水の有効質量の不確かさによる固有周期への影響も配慮できる。	島根2号機では,既
		工認において水平方向
		の地震応答解析をスペ
	また、サプレッションチェンバ内部水質量の扱いとして内部水の有効質量を適用したことに伴	クトルモーダル解析に
	い、サプレッションチェンバ内部水によるスロッシング荷重を新たに考慮することとした。スロッ	より実施している。
	シング荷重については、サプレッションチェンバ内部水の条件、地震動等の他、スロッシング現象	
	の不確かさを考慮し、耐震評価用スロッシング荷重を保守的に設定している。	
	応力解析については、いずれも解析の精緻化であり、サプレッションチェンバ及びサプレッショ	
	ンチェンバサポートの構造を解析モデルに変換する部分については、特段の不確かさはなく、地震	
	応答解析と相まって、他機器と同様の保守性が確保されるものと考えられる。	
	以上のことから、今回工認におけるサプレッションチェンバ及びサプレッションチェンバサポ	
	<u>一ト</u> の耐震評価については,既工認からの地震応答解析及び応力解析に係る変更を考慮しても,保	
	守性が確保されているものと判断できる。	

女川原子力発電所2号機(2021年12月10日)				Ē	晶根原子力	発電所	2号機				備考	
	点に係る不確かさ・保守性の配慮	保守性の考慮方法	今回工調	サプレッションチェンバ内部水や有効質量として考慮するにとた,内部水質量による荷重必詳細化される。NASTRANの仮想質量法の妥当性は振動試験等により確認している。 内部水の有効質量の算定方法に起因する固有周期の変動については,周期方向±10%抗幅した床応塔スペクトルを用いることな保守性や考慮にある。たお,設計用床応塔スペクトルと固有周期の関係から,内部水の有効質量がお、設計用床応塔スペクトルと固有周期の関係から,内部水の有効質量算出法の違いによって応答加速度が変わらないことから,地震応答解析結果への影響はほとんど無いと考えられる。	サプレッションチェンバ及びサプレッションチェンバサボートのはり艱難によるモデル化にあたり、サプレッションチェンバサボート取付部にぼね圓性を考慮することだ、より詳細に地醸応絶を把握する。構造の解析モデノへの変換におたり特段の保中柱の考慮無し。	動解析(スペクトルモーダル解析)を適用する。 建物応答の不確かさも包絡した設計用床応答スペクトルを用いることで保 守性が担保される。	スロッシングに対して最も厳しい基準地震動Ss-Dを用いて,重大事故等時の水位条件で流体解析により最大荷重を算出し,余裕を加味して耐震評価用スロッシング荷重を設定している。また,地震荷重の最大発生時刻とスロッシンング荷重の最大発生時刻が異なると考えられるため,地震荷重とスロッシング荷重はSRSS法により組み合わせる。	胴エビ継部及びサポート取付部をシェル要素でモデル化し,地震荷重(変位)を入力とする静解析を実施。特段の保守性の考慮無し。		リブ長さを有効幅として公式等による評価を実施。特段の保守性の考慮無し。		
	表 6-1 今回工認の変更)		既工認	本来は流動挙動するサプレッションチャンメ内部水を剛体として扱ってとで、内ンメ内部水を剛体として扱ってとで、内部水の有物質量による荷重及びスロッシング荷重を包絡する保守的な荷重ぶ算出される。	サプレッションチェンバ及びサプレッションチェンバサポートをはり要素でモションチェンバサポートをはり要素でモデル化する。構造の解析モデルへの変換にあたり特段の保守性の考慮無し。	動解析(スペクトルモーダル解析)を適用する。	本来は流動挙動するサプレッションチェンメ内部水を剛体として扱ってとで、内ンス内部水を剛体として扱ってとで、内部水の有効質量による荷重及びスロッシング荷重を包給する保守的な荷重が算出される。	公式等による評価。特段の保守性の考慮 無し。	調エビ維部及びサポート取付部をシェル要素でモデル化し、地震荷重を入力とする静解析を実施。特段の保守性の考慮無し。	ポルト中心までを有効幅として公式等による評価を実施。 特段の保守性の考慮無し。		
		不確かさの 専業	¥.	内部水の有効質量 に起因する荷重, 固有周期	進	入力地震動等の不 確かさ	スロッシング現象 の不確かさ	無し	二 川	王 一		
		う回工認での変更点		内部水質量解析モデル	構造部分	解析方法	苛重条件 スロッシング 荷重	調子で業部	サポート取付部	パーメプレー		
		4		~	地震応答解	به له			広力解析			

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2 号機
	7. 耐震評価結果
	設計基準対象施設及び重大事故等対処設備としてのサプレッションチェン
	表 7-1, サプレッションチェンバサポートの応力評価結果を表 7-2 に示す。
	果も算出応力が許容応力を満足することを確認した。なお、本評価は、水平
	合せを考慮しており、サプレッションチェンバの算出応力は、原子炉格納容器
	求に基づき 広力強さである また サプレッションチェンバサポートについ
	$ $
	<u> 大心力が主じないことがら</u> 、
	と接近してわり、宗俗が小さくなっているが、原子炉俗納谷器に対する規格
	に一次+二次応力が許容応力を満足しない場合であっても, 波労評価が認め
	更に裕度があると考えられる。

	備考
バの応力評価結果を いずれの応力評価結 2 方向の地震荷重の組 器に対する規格基準要 いては地震動による二	 ・評価内容の相違 島根2号機では、サ プレッションチェンバ サポートの一次+二次 応力評価を省略する。
評価結果は, 許容応力 基準要求に従えば, 仮 られていることから,	 ・評価結果の相違 裕度が小さい部位の 相違
	 ・評価結果の相違 裕度が小さい部位の 相違

女川原子力発電所2号機(2021年12月10日)			島根原子ナ	」発電所	2 号機					備考
	表7-1 サプレッションチェンバの応力評価結果									
	K +		力評価点 応力分類	設言 (D	+基準対象 + P + M + S	施設 S s)	重大事故等対処設備 (D+P_ALL+M_ALL+S_S)			
	心刀 評価点 番号	京 応力評価点		① 算出応力 (MPa)	② 許容応力 (MPa)	裕度 (②/①)	① 算出応力 (MPa)	② 許容応力 (MPa)	裕度 (②/①)	
			一次一般膜応力	68	337	4.95	144	349	2.42	
	P 1	サプレッションチェン バ胴中央部上部	次膜+次曲げ応力	68	505	7.42	144	523	3. 63	
			一次+二次応力	128	501	3.91	128	501	3. 91	
			一次一般膜応力	86	337	3.91	136	349	2.56	
	P 2	サプレッションチェン バ胴中央部下部	次膜+次曲げ応力	86	505	5.87	136	523	3.84	
			一次+二次応力	128	501	3.91	128	501	3. 91	
			一次一般膜応力	75	337	4.49	137	349	2.54	
	P 3	サプレッションチェン バ胴中央部内側	次膜+次曲げ応力	75	505	6.73	137	523	3.81	
			一次十二次応力	122	501	4.10	122	501	4.10	
			一次一般膜応力	73	337	4.61	125	349	2.79	
	P 4	サブレッションチェンバ胴中央部外側	次膜+次曲げ応力	73	505	6.91	125	523	4.18	
			一次+二次応力	122	501	4.10	122	501	4.10	
	P 5	サプレッションチェン	次膜+次曲げ応力	118	505	4.27	312	523	1.67	
		ハ胴上に舷前上前	一次+二次応力	360	501	1.39	360	501	1.39	
	P 6	サプレッションチェン	次膜+次曲げ応力	105	505	4.80	194	523	2.69	
		에마가 이미조배 그 스- 베마가 ~	一次+二次応力	228	501	2.19	228	501	2.19	
	P 7	サプレッションチェン	次膜+次曲げ応力	122	505	4.13	316	523	1.65	
		///间上 L 飛行) // 1 // 1	一次+二次応力	302	501	1.65	302	501	1.65	
	P 8	サプレッションチェン バ胴エビ継部外側	一次膜+一次曲げ応力	161	505	3.13	272	523	1.92	
			一次+二次応力	478	501	1.04	478	501	1.04	
	Р9	サプレッションチェンバ胴と内側サポート補	一次膜+一次曲げ応力	173	505	2.91	250	523	2.09	
		通板との接合部	一次+二次応力	334	501	1.50	334	501	1.50	
	P 1 0	サプレッションチェン バ胴と外側サポート補	一次膜+一次曲げ応力	151	505	3.34	204	523	2.56	
		四田似といな可可	一次+_次応力	342	501	1.46	342	501	1.46	

女川原子力発電所2号機(2021年12月10日)				島根原子	力発電所	〒 2号	機				備考
	表 7-2 サプレッションチェンバサポートの応力評価結果										
					設計基準対象施設			重大事故等対処設備			
	応力 評価点	応ナ	力評価点	応力分類	(D-	+ P + M + S	S s) 松库	$(D + P_A)$	2	L+Ss) 裕度	
					算出応力 (MPa)	許容応力 (MPa)	(2/1)	算出応力 (MPa)	許容応力 (MPa)	(2/1)	
				引張応力	52	285	5.48	40	298	7.45	
		P1 サポート		圧縮応力	79	284	3.59	66	297	4.50	
	P 1			せん断応力	41	164	4.00	41	172	4.19	
				曲げ応力	125	285	2.28	125	298	2. 38	
				組合せ応力 (引張)	191	285	1.49	180	298	1.65	
				組合せ応力(圧縮)	216	285	1.31	204	298	1.46	
	P 9	シアキー		せん断応力	16	164	10.25	16	172	10.75	
				支圧応力	118	388	3.28	118	406	3. 44	
	Р 3	ボルト		引張応力	419	473	1.12	385	488	1.26	
				引張応力	55	285	5.18	41	298	7.26	
				圧縮応力	82	285	3.47	69	298	4. 31	
	D 4	ベースと	ベースプレー	せん断応力	43	164	3.81	43	172	4.00	
	P4	トの接合語	部	曲げ応力	113	285	2.52	113	298	2.63	
				組合せ応力(引張)	184	285	1.54	171	298	1.74	
				組合せ応力(圧縮)	209	285	1.36	197	298	1.51	
	Р 5	5 基礎ボルト		引張応力	371	473	1.27	339	488	1.43	
				曲げ応力	265	328	1.23	242	344	1.42	
			ボルト 反力側	せん断応力	26	164	6.30	24	172	7.16	
	DC	ベース プレート		組合せ応力	269	285	1.05	246	298	1.21	
	P6			曲げ応力	252	328	1.30	246	344	1.39	
			コンクリー ト反力側	せん断応力	27	164	6.07	27	172	6. 37	
				組合せ応力	257	285	1.10	251	298	1.18	
				曲げ応力	136	328	2.41	136	344	2. 52	
	P 7	シアプレー	ŀ	せん断応力	68	164	2.41	68	172	2.52	
				組合せ応力	180	285	1.58	180	298	1.65	
	De	コンク	ベースプ レート部	圧縮応力度	8.6	17.6	2.04	8.4	17.6	2.09	
	P 8	リート	シアプレー ト部	圧縮応力度	11.2	17.6	1.57	11.2	17.6	1.57	
						,				,	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 ・評価結果の相違 裕度が小さい部位の 相違 	 備考
裕度が小さい部位の相違	・評価結果の相違
	裕度が小さい部位の
	相違

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	8. まとめ	
	<u>島根2号機</u> におけるサプレッションチェンバ及びサプレッションチェンバサポートの耐震評価	
	では、サプレッションチェンバ本体とそれを支持するサプレッションチェンバサポートを模擬し	
	た地震応答解析モデルを用いて地震荷重を算定し, これらに基づき, 各部の構造強度評価を行うこ	
	とで、サプレッションチェンバ及びサプレッションチェンバサポートの耐震性を確認する。	
	今回工認においては、既工認からの変更点として、重大事故等時のサプレッションチェンバの水	
	位上昇に伴う内部水質量の増加,基準地震動の増大等を踏まえ,より詳細な地震応答解析を実施す	
	るため、サプレッションチェンバの内部水質量の扱いとして内部水の有効質量を適用すること, サ	
	プレッションチェンバサポートの取付部にばね剛性を考慮した3次元はりモデルを作成し、スペ	・設備の相違
	クトルモーダル解析を実施する。なお、内部水の有効質量を適用したことに伴い、サプレッション	島根2号機では、建
	チェンバ内部水によるスロッシング荷重を流体解析にて評価する。	設時の構造で耐震性を 確認している。
	また、サプレッションチェンバにおいては、より詳細な広力解析を実施するための広力解析モデ	
	ルを用いた応力評価を実施する。	
	以上の地震応答解析及び応力解析に関連する種々の検討を実施し、内部水の有効質量のモデル	
	化を含めた耐震評価手法の妥当性及び地震応答解析に対する3次元はりモデルの適用性を確認す	
	るとともに、その耐震評価手法を用いて <u>島根2号機</u> のサプレッションチェンバ及びサプレッショ	
	ンチェンバサポートの耐震性を確認した。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機			
	2. 円環形状容器の有効質量算出の妥当性検証			
	2.1 <u>構造解析</u> による有効質量比の算出			
	円環形状容器の内部水の有効質量は, <u>NASTRAN</u> で算出可能であ 器の構造(形状及び寸法)と内部水の水位により有効質量が定まる。 また, <u>NASTRAN</u> では,内部水のスロッシングを評価しないた& 慮されない。			
	 2.1.1 検討対象 <u>島根1号機</u>サプレッションチェンバの解析モデルを妥当性検証 及び島根2号機サプレッションチェンバの主要寸法の比較を表2. 表2.1-1 島根1号機及び島根2号機サプレッション 			
	<u>主要寸法の比較</u>			
	寸法* [mm] 水位	質		
	内径 円環直径 (H. W. L) 爭	岡材		
	島根1号機			
	島根2号機			
	注記*:()内は内径に対する比率を表す。			
	 2.1.2 解析モデル <u>NASTRANによる</u>解析モデルを図 2.1-1 に示す。水位は、 通常運転範囲の上限値(H.W.L)相当を設定する。サプレッジ 強リングをモデル化対象とし、内部構造物はモデル化しない。 	サプ ンヨン		

	備考
	 ・検討内容の相違 島根2号機では,振 動試験のみで仮想質量 法の検証を行う。
),入力波によらず,容 スロッシング荷重は考	
象と <u>する。</u> 島根1号機 に示す。 ンバの	 ・検討内容の相違 島根2号機では、島 根1号機のサプレッションチェンバを縮小し た試験体を使用する。
量 [ton] 内部水	
[°] レッションチェンバの ´ <u>チェンバシェル及び補</u>	 ・評価方法の相違 モデル化範囲の相違 ・検討内容の相違 島根2号機で参照す る振動試験では,通常 運転範囲の上限値相当 に対して検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	図 9.1-1 留振工デル

備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

 備考
・検討内容の相違
島根2号機で参照す
る振動試験では、通常
運転範囲の上限値相当
に対して検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	2.1.3 解析結果 NASTRANによる有効質量及び有効質量比の算出結果を表 2.1-2に示す。 <u>また、内部水の密度は1000kg/m³として、実際の内部水温度を考慮した密度に対して大きい値を適用し、</u> 有効質量が保守的に算出される条件を適用する。 <u>表 2.1-2</u> NASTRANによる有効質量比の算出結果 <u>項目</u> 算出結果 1 有効質量比 0.21	 ・検討内容の相違 島根2号機で参照す る振動試験では,通常 運転範囲の上限値相当 に対して検討する。
	 1.2 振動試験 P環形状容器の内部水の有効質量算出に<u>NASTRAN</u>を用いることの妥当性を検証するため、試験体を<u>作成して</u>振動試験を行い、<u>NASTRAN</u>による有効質量比との比較を行う(別紙1)を開)。 2.1 試験体 武験体の寸法は、<u>島根1号機</u>サプレッションチェンバの1/20に設定し、材質は内部水の挙動を確認するためアクリルとし<u>、サプレッションチェンバシェル及び補強リングを試験体として模擬する。 </u> X験装置は、振動台の上に試験体を支持する架台を設け、<u>その上に試験体を設置した。振動台と架台の間には加振方向に2本のリニアガイドを並行に配置し、試験体及び架台が加振方向に移動できる構造とした。試験体及び架台に回一ドセルで確認することができる。</u>試験 支置の<u>外観</u>を図 2.2-1に示す。 	 ・検討内容の相違 島根2号機では,島 根1号機のサプレッションチェンバを縮小し た試験体を使用する。 ・評価方法の相違 島根2号機で参照す る振動試験では,試験 体に補強リングをモデ ル化する。 ・試験方法の相違

	備考
	・試験方法の相違
又持朱百	
リニアガイド	
振動台	

女川原子力発電所2号機(2021年12月10日)			島根原子力発電	所 2号機
	2.2.2 計測項目及び計測機器設置 <u>位置</u> 計測項目を表 <u>2.2-1</u> に示す。これらのうち内部水の有効質量を評価 目は振動台上の加速度,試験体への入力となる架台上の加速度及び反力			
				内部水の有効質量を評価す
	位置を図 <u>2.2</u> -	-2.に示す。		
			表 2.2-1	計測項目
	計測項目	計測機器	位置	計測チャンネル数
	反力	ロードセル	振動台-架台間	X成分
	加速度	加速度計	振動台上	X成分:2(90°,270°
				Y成分:2(0°,180°
				Z成分:4(0°,90°,
			架台上	X成分:2(90°,270°
				Y成分:2(0°,180°
				Z成分:4(0°,90°,
			試験体上	X成分:2(90°,270°
				Y成分:2(0°,180°
				Z成分:4(0°,90°,
	о° У <u>у=тлак</u> Z X (加振力		(トーラス) (架台) (振動台) 180° ート・ 振動台 Z 成分 Z 成分	トーラス固定用バンド ビル レーラス固定用バンド メ (加振方向)
			図 2.2-2 計測机	幾器設置位置

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機 2.2.3 試験条件 <u>振動試験では</u> 振動台への入力波として, <u>スロッシング</u> 周期帯に加速度成分を含まないラン <u>ダム波A及びスロッシング</u> 周期帯に加速度成分を含むランダム波Bの模擬地震波を用いてお り,それぞれのランダム波の最大応答加速度を100Ga1,200Ga1,300Ga1,400Ga1とする4ケ ースの試験を実施する。試験体への入力波の時刻歴波形及び加速度応答スペクトルの例を図 <u>2.2-3及び図2.2-4に示す。</u> <u>試験水位レベルは,各試験ケースに対して,内部水なし,内部水あり(H.W.L相当)の</u> <u>計2ケースとする(図2.2-5参照)。</u>	 備考 ・検討内容及び結果の 相違 ・記載箇所の相違 ・適用条件の相違 島根2号機で参照す る振動試験では、内部
	 a b c b c b c b c b c b c b c b c b c b	水あり、内部水なしの ケースを用いて有効質 量を評価する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
女川原子力発電所 2 号機(2021 年 12 月 10 日)		備考 ・検討内容の相違 島根2号機で参照す る振動試験では、通常 運転範囲の上限値相当 に対して検討する。

	備考
荷重Fと架台上の計測 ℃表される。	
は, 計測加速度に対す <u>可部水なし</u> の試験結果 青直線の傾きの差から	
劾質量	
め質量 邪水の全質量	
法	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	試験結果として得られた荷重-加速度関係の回帰直線の傾き及びこれらから算出した有効	・検討内容の相違
	質量比を表 2.2-2 に示す。ここで,回帰直線の傾きは,内部水あり・なしの試験について,	島根2号機で参照す
	異なる加速度での試験ケースごとの最大加速度及び最大荷重を同一のグラフにプロットした	る振動試験では、最大
	結果として得られる。このときの荷重-加速度関係を図 2.2-8 に示す。 <mark>本試験では最大加速</mark>	加速度及び最大荷重を
	度及び最大荷重の関係から有効質量比を算出していることから,表 2.2-2に示すとおり,ラ	用いて有効質量比を評
	ンダム波Bでの有効質量比はスロッシング荷重の影響でランダム波Aよりもわずかに大きく	価している。
	算出されるが,内部水の全質量に対しては約2%の相違であり,同程度の結果が得られている。	
	表 2.2-2 振動試験結果から算出した有効質量比	
	人刀地震波 有効質量比	
	フンダム波A 0.18	
	- フンタム波B 0.20	
	30 0	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

 備考
・検討内容の相違
島根2号機で参照す
る振動試験では、最大
加速度及び最大荷重を
用いて有効質量比を評
価している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

 備考
・検討内容の相違
島根2号機で参照す
る振動試験では、最大
加速度及び最大荷重を
用いて有効質量比を評
価している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・検討内容の相違 島根2号機では、振 動試験のみで仮想質量
法の検証を行う。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、振
動試験 <mark>のみで</mark> 仮想質量
法の検証を行う。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	2.3 妥当性検証	
	2.1及び2.2に示したNASTRAN,振動試験により算出した有効質量比を整理して表2.3 -1に示す。 入力波の特性に関係なく、容器の形状及び水位により有効質量比が定まるNASTRANに より算出した有効質量比に対し(別紙13参照),内部水の流動を直接考慮した振動試験から算出 した有効質量比が同等であり、おおむねNASTRANの値が保守的な傾向を示すことを確認 した。NASTRANにより算出される内部水の有効質量比は、内部水の流動による内部水の有 効質量比の低減が反映されないため、保守的な傾向を示すと考えられる。以上より、NASTR ANにより算出される有効質量比は妥当であると考えられる。	 ・検討内容の相違 島根2号機では,振 動試験のみで仮想質量 法の検証を行う。
	表 2.3-1 各方法による有効質量比の評価結果	・検討内容の相違
	項目 NASTRAN 振動試験	島根2号機で参照す
	マロー NASTRAN ランダム波A ランダム波B	る振動試験では、通常
	有効質量比 0.21 0.18 0.20	理転範囲の上限値相当 に対して検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3. 耐震評価に用いる内部水の有効質量の設定	
	<u>島根2号機</u> の実機評価に適用する内部水の有効質量は、実機解析モデルに対する仮想質量法	
	と内部構造物を含む実機解析モデルに対する流体解析による内部水の有効質量比を比較し、そ	
	の妥当性を検証した上で、解析プログラム間の値の差異や試験結果との差異等を踏まえて仮想	
	質量法で算出された値の保守性を検討し、設定する。	
	3.1 仮想質量法による実機内部水の有効質量比の算出	
	2. により妥当性を確認した仮想質量法を用いて,島根2号機の実機解析モデルにより内部水	
	の有効質量比を算出する。	
	3 1 1 仮相質量法に用いろ実機解析モデル	
	仮想質量法に用いる実機解析モデルを図 3.1-1.に示す。	
	<u>島根2号機</u> の実機解析モデルは、サプレッションチェンバ(補強リングを含む)の寸法、剛	
	性を模擬したシェル要素とし、内部水の水位を設定する。なお、本解析モデルは、サプレッシ	
	ョンチェンバの内部水の有効質量の算出に用いるものであり, <u>サプレッションチェンバサポ</u>	
	<u>ート</u> は模擬していない。 <u>また、主要な内部構造物をモデル化することとし、ベントヘッダ、ダ</u>	・評価方法の相違
	<u>ウンカマ,クエンチャ,ECCSストレーナをモデル化する。</u>	島根2号機では,主
	内部水の水位は、図 3.1-2 に示すとおり、重大事故等時水位より高い水位(ダウンカマ取	要な内部構造物をモデ
	<u>付部下端位直</u>)(以下「耐農解析用車大事故等時水位」という。)とする。	ル化する。
	なわ、 <u> 展時 民時 </u>	 ・評価力町の相連 耐雪飯板田重十重歩
	を適用するため、耐震評価上保守的な水位として設計基準対象施設としての耐震評価にも適	等時水位の設定方針の
	<u>- ことが、 10 参照</u>)。	相違
		・評価方法の相違
		島根2号機では、通
		常運転時の耐震評価に
		おいても耐震解析用重
		大事故等時水位を用い
		る。
	図31-1 仮相質量注に用いる実機解析エデル	

	備考
(等時水位 EL 7049mm 3下端位置)	
.) EL 5660mm	
内部構造物 (ベントへ	
実機解析モデルを用い	
質量法の内部水の有効	
いる島根2号機の実機	
また、入力地震動は、	
司用て心合加速度が入	

女川原子力発電所2号機(2021年12月10日)	島根原	子力発電所 2号機		備考
	 3.1.3 解析結果 仮想質量法及び流体解析による島机 量比の算出結果を表 3.1-1に示す。 プレッションチェンバ壁面に加わる荷 トした結果の回帰直線の傾きとして有 	2 号機の実機サプレッ なお,流体解析結果を用 所重と入力加速度の時々 効質量比が得られる(国	ションチェンバ内部水の有効質 いた有効質量比の算出では, サ 刻々の関係をグラフ上にプロッ 3.1-4参照)。	 ・評価結果の相違 島根2号機では仮想 質量法と流体解析で同 程度の有効質量比が得 られている。
	<u>表 3.1-1 サプレッション</u> 水位	<u> </u>	<u>質量比算定結果</u> 手法 流体解析*	 ・評価方法の相違 島根2号機では,通 常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い
	耐 炭 麻 朳 用 里 大 事 故 寺 時 水 位 注記*:サプレッションチェンバの 上厳しい条件であるSs ²⁰⁰⁰ 15000 15000 10000 5000 1000 10000	0.28 つ一次固有周期で応答加 ーDを用いた算定結果	0.28 速度が大きく, 耐震評価	る。
	地 -5000 -10000 -15000 -10 -10 -10	-5 0 5 加速度 [m/s ²] 荷重と加速度の関係	10	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.2 不確かさを踏まえた耐震評価用の内部水の有効質量の設定	
	島根2号機の実機評価に適用する内部水の有効質量の設定に当たり、仮想質量法に対する流	
	体解析及び振動試験の値の差異等を踏まえ、仮想質量法で算出された値の保守性を検討し、島根	
	<u>2号機の実機評価に適用する内部水の有効質量を設定する。</u>	
	試験体モデルに対しては、表 2.3-1のとおり、仮想質量法、振動試験により算出した内部水	・検討内容の相違
	の有効質量比は同等であり、おおむね仮想質量法の値が保守的な傾向を示す。	島根2号機では、振
		動試験 <mark>のみで</mark> 仮想質量
		法の検証を行う。
	実機解析モデルに対しては、表 3.1-1_のとおり、仮想質量法により算出される内部水の有効	
	質量比は、流体解析により算出される内部水の有効質量比と同等である。	・評価結果の相違
		島根2号機では仮想
	また,容器構造設計指針・同解説に記載されている球形タンク及び円筒タンクの内部水の有効	質量法と流体解析で同
	質量比に対して,仮想質量法を用いて内部水の有効質量比の確認解析を実施したところ,いずれ	程度の有効質量比が得
	のタンクに対しても内部水の有効質量比がほぼ一致している、又は仮想質量法の値が保守的な	られている。
	傾向となっている(別紙15参照)。	
	したがって、島根2号機の地震応答解析に考慮する内部水の有効質量は、仮想質量法により算	
	出される内部水の有効質量比が、他評価手法及び容器構造設計指針に対して一致もしくはおお	
	むね保守的な傾向(内部水の有効質量比か大さくなる)を示すことから、仮想質量法により算出	
	これる内部水の月刻貨車を週用する。	
	なわ,計画子伝の遅い(仮恐員重伝と孤体麻何)による内部小の有効員重比の左共にようし, サプレッシュンチェンバの田方国期が亦動するため、耐雪証価に用いる中亡ダスペクトルトの	
	リノレリンヨンノエンパの回行向知が変動りるにの、耐食計画に用いる水心合パペリトルとの 問係にた配慮し 地震芸重を管理する	
	周床にも記慮し、 地展何里を昇山 タ る。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙2 サプレッションチェンバ内部水の地震応答解析モデルへの縮約方法及びその妥当性	
	 概要 今回工認に用いる<u>島根2号機</u>のサプレッションチェンバ地震応答解析モデル(はり要素を用いた3 次元多質点モデル)における内部水の有効質量は、NASTRANを用いた仮想質量法(以下「仮想質量法」という。)(シェル要素を用いた実機解析モデル)により算出される各要素の内部水の有効質量及びその位置(高さ)を考慮し、地震応答解析モデルの各質点に縮約して設定する。 本資料では、その縮約方法の考え方及びその妥当性について説明する。 縮約 縮約とは、膨大な数のデータを扱う有限要素法などの解析において、行列の大きさ(次元)を 小さくする解析上のテクニックであり、その美法として、Guyaanの統約法(Guyan's) 	
	Reduction)が広く一般的に使われている。 サプレッションチェンバの内部水に対する有効質量を地震応答解析モデルに設定するに <u>あた</u> り,この手法を用いて,NASTRANにより算出されるサプレッションチェンバシェルの各要素の有効質量及びその位置(高さ)を,地震応答解析モデルの各質点に縮約する(図2-1参照)。	
	 図2-1 内部水の有効質量の縮約 3. 地震応答解析モデルへの縮約方法 3.1 地震応答解析モデルへの縮約方法の考え方 仮想質量法により算出されるサプレッションチェンバシェルの各要素の内部水の有効質量及 びその位置(高さ)を,地震応答解析モデルのサプレッションチェンバの各質点に縮約する方法 (Guyanの縮約法)のイメージを図 <u>3.1-1</u>に示す。 	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 ① 仮想質量法から算出されるサプレッションチェンバの内部水の有効質量 仮想質量法ではサプレッションチェンバシェルの各要素に対する内部水の有効質量が算 出されており,解析モデルの一断面を考えた場合,有効質量算出モデルの1要素における内 部水の有効質量m_iは,水平方向及び鉛直方向の内部水の有効質量(m_{xi}, m_{zi})に分解で きる。 なお,水平方向の内部水の有効質量m_{xi}をサプレッションチェンバ全体に積分するとサ プレッションチェンバの内部水に対する有効質量と一致し,また,鉛直方向の内部水の有効 質量m_{zi}をサプレッションチェンバ全体に積分した場合,サプレッションチェンバシェル の底面圧力による荷重と一致する。 	
	 ② 地震応答解析モデルのはり要素(1箇所の質点)への縮約(1要素の有効質量) 上記①で示した水平方向及び鉛直方向の内部水の有効質量(mxi, mzi),その位置(高 さ)を考慮し、それらが地震応答解析モデルのはり要素(1箇所の質点)における慣性力及 び回転慣性力が等価となるように、並進質量(mx, mz)及び回転質量(Rmx, Rmz) を設定する。 なお、回転質量Rmzは、サプレッションチェンバシェルの底面圧力によるモーメントと して考慮される。 ③ 地震応答解析モデルのはり要素(1箇所の質点)への縮約(全要素の内部水の有効質量) 仮想質量法により算出されるサプレッションチェンバシェル全要素の内部水の有効質量 に対して、上記②の考え方を3次元の位置関係を考慮して展開し、地震応答解析モデルの はり要素(1箇所の質点)における並進質量(mx, my, mz)及び回転質量(Rmx, R my, Rmz)に縮約する。 ④ 地震応答解析モデル(全質点)における内部水の有効質量の設定 地震応答解析モデルにおけるはり要素の全質点に対して、上記③の考え方を展開し、並進 	
	質量 (m _x , m _y , m _z) 及び回転質量 (Rm _x , Rm _y , Rm _z) が設定される。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	図 3.1-1 Guyanの縮約法のイメージ	
	2.9 地震亡ダ敏振エデル。 婉始されて内如水の右執所具及びその巫坐歴	
	3.2 地長心各麻朳モノルや福利される内部小の有効員重及いその安当性 今回工認に用いるサプレッションチェンバの地震応答解析モデルを図 <u>3.2-1</u> に示す。また,	・評価方法の相違
	<u>耐震解析用重大事故等時水位</u> による水平 <u>方向</u> (X方向)及び鉛直 <u>方向</u> (Z方向)の地震応答解析	島根2号機では、通
	モデルの各質点位置に縮約される内部水の有効質量を表 3.2-1 及び表 3.2-2 に示し、今回工	常運転時の耐震評価に
	認に用いるサフレッションチェンハの地震応答解析モアルに設定する内部水の有効質量(亚進 質量及び回転質量)が有する意味合いを以下に示す。	おいても耐晨解析用里大事故等時水位を用い
		る。
	(1) 並准質量	
	・X方向の各質点の並進質量m _x の合計値 kg は, サプレッションチェンバ	
	内部水の有効質量を表し、Z方向の各質点の並進質量mzの合計値 kg	
	は、サプレッションチェンバ内部水の全質量を表すことから、内部水の有効質量比は、	
	0.28 (=) となる。 ・この内部水の有効質量比け 本文表 / 1-1 における仮相質量決に上る実機解析エデル	
	(耐震解析用重大事故等時水位)の内部水の有効質量比 0.28 と一致する。	
	・X方向の並進質量m _x は,X軸方向(質点 <u>17,49</u>)がY軸方向(質点 <u>1,33</u>)よりも質量	
	が集中する傾向があり、X方向加振時に想定される圧力分布とも整合している。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	・X方向の並進質量m _y ,m _z 及びZ方向の並進質量m _x ,m _y は,サプレッションチェン バの容器形状(軸対称)に応じた分布となっており,それぞれの合計値は0となる。	
	 (2) 回転質量 ・ X方向の各質点の回転質量Rm,は、サブレッションチェンバの容器内面に加わる圧力 (各シェル要素のX方向成分及びZ方向成分)を各質点位置にオフセットした場合の 等価な回転慣性力を表している。 ・ 各質点での回転質量Rm,は、サブレッションチェンバの容器中心位置(はりモデルの 質点位置)を基準としているため,回転資量が負の場合は容器中心位置に内部水の等価高さがあると みなすことができる。 ・ 今回の地震応答解析モデルにおけるX方向の各質点位置の回転質量の合計値は負であ るため、サブレッションチェンバ内部水の有効質量の等価高さは、容器中心位置よりも 高い位置にあることを表している。 ・ X方向の有効質量(逆速質量m_s)の合計値kg と X方向の回転質量Rm kg abb (j = kg と X方向の回転質量Rm kg abb (j = kg e X方向の回転質量Rm)))	
	図29-1 サプレッションチェンバ地電庁体留にエデル	
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	
--------------------------	--------------	--

· · · · · · · · · · · · · · · · · · ·
備考
・評価方法の相違
島根2号機では、通
常運転時の耐震評価に
おいても耐震解析用重
大事故等時水位を用い
3.
∞ 0

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

· · · · · · · · · · · · · · · · · · ·
備考
・評価方法の相違
島根2号機では、通
常運転時の耐震評価に
おいても耐震解析用重
大事故等時水位を用い
3.
∞ 0

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 3.2-1 縮約した内部水の有効質量(<u>耐震解析用重大事故等時水位</u> , X方向)	
	並進質量	
	質点番号 m_x m_y m_z Rm_x Rm_y Rm_z ×10 ³ (kg) ×10 ³ (kg) ×10 ³ (kg) ×10 ³ (kg) ×10 ³ (kg·m) ×10 ³ (kg·m) ×10 ³ (kg·m)	
	$\frac{3}{4}$	
	5 6	
	<u>7</u> 8	
	9 10	
	$\begin{array}{c} 13 \\ 14 \end{array}$	
	$\begin{array}{c} 15 \\ 16 \\ \end{array}$	
	$\frac{17}{18}$	
	$\frac{19}{20}$	
	$\frac{21}{22}$	
	$\frac{23}{24}$	
	26 27	
	28 29	
	$\frac{30}{31}$	
	$\frac{32}{33}$	
	$\frac{34}{35}$	
	$\frac{36}{37}$	
	38 39	
	$\frac{40}{41}$	
	42 43	
	$\frac{44}{45}$	
	$\frac{46}{47}$	
	$\frac{48}{49}$	
	$50 \\ 51 \\ 52$	
	$53 \\ 54$	
	<u>57</u> 58	
	59 60	
	$\begin{array}{c} 61 \\ \hline 62 \end{array}$	
	63 - 64 - 64	
	合計	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 <u>3.2-2</u> 縮約した内部水の有効質量(<u>耐震解析用重大事故等時水位</u> , Z方向)	
	\dot{w} m_z m_x m_{w_z} Rm_x Rm_y Rm_z m_x m_v m_z Rm_x Rm_y Rm_z $\times 10^3$ (kg) $\times 10^3$ (kg) $\times 10^3$ (kg·m) $\times 10^3$ (kg·m) $\times 10^3$ (kg·m)	
	$ \begin{array}{c} 1\\ 2\\ 3\\ -4\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5$	
	$ \begin{array}{c} 3 \\ 6 \\ $	
	$ \begin{array}{r} 10 \\ 11 \\ 12 \\ 13 \end{array} $	
	$ \begin{array}{r} 16 \\ 15 \\ 16 \\ 17 \end{array} $	
	18 19 20 21	
	$ \begin{array}{c} 22 \\ 23 \\ 24 \\ 25 \end{array} $	
	26 27 28 29	
	$ \begin{array}{r} 30 \\ 31 \\ 32 \\ 33 \end{array} $	
	$ \begin{array}{r} 34 \\ 35 \\ 36 \\ 37 \end{array} $	
	38 39 40 41	
	$ \begin{array}{r} 42 \\ 43 \\ 44 \\ 45 \end{array} $	
	$50 \\ 51 \\ 52 \\ 53 \\ 53 \\ 51 \\ 51 \\ 53 \\ 53 \\ 51 \\ 51$	
	$ \begin{array}{r} 54 \\ 55 \\ 56 \\ 57 \\ 58 \end{array} $	
	63 64 合計	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

· · · · · · · · · · · · · · · · · · ·
備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

· · · · · · · · · · · · · · · · · · ·
備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

· · · · · · · · · · · · · · · · · · ·
備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

· · · · · · · · · · · · · · · · · · ·
備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

· · · · · · · · · · · · · · · · · · ·
備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

· · · · · · · · · · · · · · · · · · ·
備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

· · · · · · · · · · · · · · · · · · ·
備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4 応答解析モデルの妥当性確認	
	<u>4.1</u> 妥当性確認方針	
	サプレッションチェンバの地震応答解析モデルにおいては、内部水の等価高さを適切に考慮	
	するため、NASTRANの機能であるGuyan縮約法により算出される有効質量を3次元	
	はりモデルの質点位置に設定しており, NASTRANのGuyan縮約法を用いて縮約した	
	水平方向の有効質量については、3.にて、Guyan縮約法を適用していないNASTRAN	
	(3次元シェルモデル)から算出した水平方向の有効質量と同等であることを確認している。	
		・検討内容の相違
		鳥根2号機では、実
		機相当の解析モデルに
		より縮約法の妥当性を
	ここで、円筒容器等をモデル化する手法として用いられるHousner理論における円筒	確認する。
	容器等の評価式では、有効質量及び等価高さを以下のとおり算定している。	
	 有効質量は水平方向の加速度による内部水から受ける容器側面圧力(水平方向の圧力)から算定 	
	② 内部水の等価高さは上記①の有効質量と容器側面圧力(水平方向の圧力)による回転モー	
	メントから算定	
	③ 容器半径に対して水位が低い場合の等価高さは上記②に加えて,底面圧力(鉛直方向の圧	
	力)による回転モーメントから算定される高さを加算	
	上記③における等価高さの取り扱い及び 3.2.における等価高さが内部水の重心位置よりも高	
	いことを考慮すると、サプレッションチェンバ内部水から受ける容器側面圧力(水平方向の圧	
	力)に加えて底面圧力(鉛直方向の圧力)を把握することは重要である。	
	今回工認に用いる地震応答解析モデルでは, <u>NASTRAN</u> を用いて容器(各要素)の内面圧	
	力(水平方向の圧力,鉛直方向の圧力)から各方向の有効質量を算定しており、これらはGuy	
	an縮約法を用いてサプレッションチェンバのはりモデルの質点位置に縮約される。このため、	
	以下の検討によりサプレッションチェンバの応答解析モデルの妥当性の確認を行う。	・検討内容の相違
	 鉛直方向圧力の妥当性確認 	島根2号機では、実
	<u>NASTRAN(3次元シェルモデル)により算出される鉛直方向の有効質量比と、F1</u>	機相当の解析モデルに
	<u>uent</u> による流体解析結果から得られる流体解析結果から算出される鉛直方向の有効質	より縮約法の妥当性を
	<u>量比との比較により、NASTRANの有効質量算出モデルにおける鉛直方向圧力の妥当</u>	確認する。
	性の確認を行う。	
	② Guyan縮約法の妥当性確認	
	サプレッションチェンバ実機解析モデルにおいて, Guyan縮約法を適用(3次元はり	
	モデル),非適用(3次元シェル+はりモデル)の解析モデルにより得られる応答加速度を	
	<u>比較し、サプレッションチェンバにおけるGuyan縮約法の妥当性確認を行う。</u>	
	本検討の目的を表 4.1-1 に示す。なお、本検討には妥当性確認用の解析モデルを適用し、妥	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2	号機	備考
	当性確認用解析モデルの水位は図 4.1-1 に示すとおりとする。妥当性確認用解析モデルの水位		位	
	は,重大事故等時の耐気	震評価において,基準地震動 S	s との組合せで基本とするケースであ	<u>3</u>
	「格納容器過圧・過温研	破損(残留熱代替除去系を使用す	トる場合)」における水位である(別紙	<u>10</u>
	参照)。			
		表 4.1-1 検討の	目的	・検討内容の相違
		3次元シェルモデル*1	3次元シェル+はりモデル*2	島根2号機では、実
	比較対象	/流体解析モデル	/3次元はりモデル*3	機相当の解析モデルに
	確認項目	鉛直方向の有効質量比	応答加速度・荷重	より縮約法の妥当性を 確認する。
	検討目的	鉛直方向の圧力の 妥当性確認	Guyan 縮約法の 妥当性確認	
	上 注記 * 1 : N A S T	Ⅰ 「RANによる有効質量算出モラ	 ジル	
	*2: NAST	`RANで算定した有効質量をシ	エル要素とし, サプレッションチ	
	ェンバの	構造部分をはりモデルとした応	答解析モデル	
	*3:NAST	RANで算定した有効質量をG	u y a n 縮約法により試験体のは	
	り要素に	付加した応答解析モデル(今回	工認におけるサプレッションチェ	
	ンバの地対	震応答解析モデル)		
		区 4.1-1 妥当性確認用解析	 ・	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	
	<u>4.1.1</u> 鉛直方向圧力の妥当性確認	
	(1) 解析条件	
	3次元シェルモデル及び流体解析モデルを図 4.1-2	2及び図 4.1-
	■ 図 4.1-2 3次元シェルモデル(NAS	TRAN)
		1 101110
	a. 外観	b. 内部構
	<u>図 4.1-3</u> 流体解析モデル(Flu	ent)
		の体山外田子
	<u>夫懐サノレッションテェンハの鉛胆力回の有効負重比</u> 次ニシールエデル及び法体報任エデルにより管出したた	の昇田結末を
	<u>次元シェルモケル及び加体脾机モケルにより鼻面した有</u> ASTPANによる鉛直古向圧力は適切である	別頁里比は
	ASIKANによる如直刀间江川は過男でめる。	
	表41-2 鉛直方向の有効質量比算	们结果
	3次元シェルモデル	流体解析
	(NASTRAN)	(Flue
	鉛直方向の	(2.1.4.)
		0.9

	備考
	・検討内容の相違
	島根2号機では、実
-3に示す。	機相当の解析モデルに
	より縮約法の妥当性を
ר	確認する。
J	
菁 造物	
2 表 4.1-2 に示す。3	
<u>はは一致しており, N</u>	
ent)	
99	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	4.1.2 Guyan縮約法の妥当性確認
	(1) 解析モデル
	応答解析結果の比較を行う解析モデルを以下に示す。
	① 3次元シェル+はりモデル
	<u>NASTRANで算定した有効質量をシェル要素とし、サプレ</u>
	<u>造部分をはりモデルとした3次元シェル+はりモデル(図4.1-4</u>
	図 4.1-4 3次元シェル+はりモデル

	備考
	・検討内容の相違
	島根2号機では、実
	機相当の解析モデルに
	より縮約法の妥当性を
	確認する。
<u>ッションチェンバの構</u>	
参照)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	② 3次元はりモデル
	NASTRANで算定した有効質量をGuyan縮約法により
	加した3次元はりモデル(図4.1-5参照)
	図 4.1-5 3 次元はりモデル

	備考
	・検討内容の相違
式験体のはり要素に <u>付</u>	島根2号機では、実
	機相当の解析モデルに
	より縮約法の妥当性を
	確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機					
	 (2)解析条件 地震応答解析条件を表 <u>4.1-3</u>に示す。 <u>表 4.1-3</u>解析条件 					
			表 4.1-3 解析条件			
	1	項目		容* ²		
	解析モデル		3次元シェル+はりモデル	3 次元は		
	モデル	内部水	シェル要素	質点		
		鋼材部分	はり・	モデル		
	内部水の有効質量の 算定方法NAS内部水の有効質量の モデル化シェル要素と		NASTRANK.	より有効質量を		
			シェル要素として付加	Guyan新 試験体のは		
	水位条件		重大事故時想知	定水位(Ss)		
	入力地震動 解析コード		Ss (NS方向, EW	S s − D (N S 方向, E W 方向, 鉛直方		
			NASTRAN			
	<u>(3)入力加 3次元3</u> 及び鉛直力 <u>る。加速度</u> <u>① 加速度</u> <u>各方向</u> <u>を図 4.1</u>	<u>ロ速度及び比較 / ェル+はりモ ち向の各方向に 度及び荷重の比 向の時刻歴応答 L-6 に示す。</u>	2項目 デル及び3次元はりモデルにま 二入力し、3方向入力を組み合れ 一較項目は以下のとおりとする。	<u>いて, 加速度</u> っせた応答加速 - 上較を行う <u>。</u> 応		

		備考
+ 0 エデル*1		
(に縮約)		
を算定		
縮約法を用いて		
より要素に付加		
向)		
č		
		・検討内容の相違
はNS方向, EW大	「向	島根2号機では、実
<u> 東</u> 度及び荷重を算出	す	機相当の解析モデルに
		確認する。
「	7番	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	図 4.1-6 応答加速度の比較位置
	サフレッションテェンバサボート基部に生じる最大荷重の比較
	<u>②何里で凶4.1~(に不9。</u> なわ、サノレツンヨンブエンハサホー ドオス構造であるため、半級古向に右音か恭重けたじかし、また
	<u> 「」、 つ 他 a に b つ b b b b b b b b b b</u>

	備考
	 備考 ・検討内容の相違 島根2号機では,実 機相当の解析モデルに より縮約法の妥当性を 確認する。
<u> 彩を行う。比較対象とす</u> - トは半径方向にスライ 苛重の比較位置を図 4.1	

備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機				備考	
	解析結果					・検討内容の相違
	①加速度					島根2号機では、実
	応答加速度の最	大値の比較	統果を表 4.1-4	に,時刻歴応答が	加速度の比較結果を図	<u>4.1</u> 機相当の解析モデルに
	-9及び図 4.1-1	0に示す。	表 4.1-4 におい	て,最大加速度に	は3次元シェルモデル	<u>及び</u> より縮約法の妥当性を
	3次元はりモデル	において,	おおむね一致する	る結果が得られて	いる。また,図 4.1-	<u>9及</u> 確認する。
	び図 4.1-10 にお	おいて、32	次元シェルモデル	及び3次元はりヨ	デルの時刻歴応答加	<u>東度</u>
	はよく一致してい	る。				
		<u>表 4.1</u>	-4 最大応答加注	速度の比較	r1	
			最大加速度	E (m/s ²)		
	項目	節点	①3次元 シェル+はり	②3次元 はりモデル	加速度比 (①/②)	
	NS方向	(A)	30.3	30.8	0.98	
	加速度	(B)	14.6	14.8	0.99	
	EW方向	(A)	17.7	17.6	1.01	
	加速度	(B)	36.4	36.5	1.00	
	鉛直方向	(A)	7.4	8.2	0.90	
	加速度	(B)	7.4	8.4	0.88	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2号機					備考
	比較	$\begin{array}{c} 40\\ -40\\ -20\\ -40\\ -40\\ -40\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -10\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -2$	20 20 20 20 20 20 20 20 20 20	20 10 20 20 20 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10	、平方向).	
	3次元はりモデル	10 20 60 60 60 60 60 60 60 60 60 60 60 60 60	20 20 20 20 20 0 10 20 时 10 10 10 10 10 10 10 10 10 10	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	40 -40 -20 -40 -40 -40 -40 -40 -50 -60 -40 -50 -60	図 4. 1-9 時刻歴応答加速度の比較(水	
	3 次元シェル+はりモデル	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 10 -20 0 10 20 時刻 (s) 40 50 60	20 10 20 20 20 0 10 20 10 10 50 60 60	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
	第点	(V)	(B)	(Y)	(B)		
	通目	N S 方向	加速度	EW方向	加速度		

女川原子力発電所2号機(2021年12月10日)			島根原	子力発電所 2号機
	比較	10 10 10 10 10 10 10 10 10 10	10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -	
	3次元はりモデル	10 -5 -10 -10 -10 -10 -10 -10 -10 -10	10 -5 -10 -10 -10 -10 -10 -10 -10 -10	- 10 時刻歴応答加速度の比較(鉛直方I
	3次元シェル+はりモデル	10 加速度 (m/m) -10 0 10 20 mp30[s] 40 50 60	10 10 10 10 10 10 10 10 10 10 10 10 10 1	图 4.1-
	節点	(A)	(B)	
	通目	鉛直方向	加速度	

 備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考
・検討内容の相違
島根2号機では、実
機相当の解析モデルに
より縮約法の妥当性を
確認する。
1 I

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

 備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

 備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機					備考
	2 荷重					
	最大荷重の比較結果を表 4.1-5 に示す。表 4.1-5 に示すとおり,3 次元シェルモデル					・検討内容の相違
	及び3次元はり	モデルの量		一致している。		島根2号機では、実
						機相当の解析モデルに
					より縮約法の妥当性を	
						確認する。
			<u> </u>		1	
	百日	岱占	13次元	23次元	荷重比	
	項口	小山	シェルーはり	はりモデル	(1)/2)	
		(a)	4. 00E+03	4,06E+03	0.98	
	周方向反力	(b)	2.58E+03	2.63E+03	0.98	
	(kN)	(c)	3.45E+03	3.51E+03	0.98	
		(d)	2.23E+03	2.27E+03	0.98	
		(a)	1.01E+03	1.04E+03	0.98	
	鉛直方向反力	(b)	1.50E+03	1.58E+03	0.95	
	(kN)	(c)	1.06E+03	1.08E+03	0.98	
		(d)	1.68E+03	1.77E+03	0.95	
	半径軸回り モーメント (N・m)	(a)	4.55E+06	4. 62E+06	0.98	
		(b)	3. 21E+06	3. 26E+06	0.98	
		(c)	3.92E+06	3.98E+06	0.98	
		(d)	2.77E+06	2.82E+06	0.98	
	接線軸同り	(a)	5.76E+04	5.52E+04	1.04	
	支标軸回り	(b)	5.76E+04	5.52E+04	1.04	
	(N•m)	(c)	6.71E+04	6.42E+04	1.05	
		(d)	6.71E+04	6.42E+04	1.05	
	鉛 す 軸 同 り	(a)	1.82E+05	1.85E+05	0.98	
	モーメント	(b)	1.82E+05	1.85E+05	0.98	
	(N·m)	(c)	1.57E+05	1.59E+05	0.98	
		(d)	1.57E+05	1.59E+05	0.98	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4.1.3 妥当性確認結果	
	4.1.1より、NASTRANの3次元シェルモデルによる解析結果において、内部水の流動	・検討内容の相違
	を考慮した流体解析モデルと同等の有効質量比が得られていることから、NASTRANに	島根2号機では、実
	<u>おいて</u> 鉛直方向 <u>における内部水のモデル化</u> は妥当であることを確認した。	機相当の解析モデルに
	また、4.1.2より、3次元シェルモデル及び3次元はりモデルにおいて、最大応答加速度と	より縮約法の妥当性を
	最大荷重がおおむね一致しており、時刻歴応答加速度についてもよく一致した結果が得られ	確認する。
	<u>ていることから、Guyan縮約法は</u> 妥当であることを確認した。	
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
--------------------------	---	-------------------------
	(補足)	・検討内容の相違
	Guyan縮約法における回転質量について	島根2号機では、実
		<mark>機相当の解析モデルに</mark>
	Guyan縮約法における回転質量の符号と質量の等価高さの関係を示す。	<mark>より縮約法の妥当性を</mark>
	ある剛体の質量を縮約する場合において, 縮約させる位置が剛体の重心高さより高いケース (ケ	確認するため,簡単な
	ース1)と縮約させる位置が剛体の重心高さより低いケース(ケース2)を考える。このとき、G	形状を用いて回転質量
	u y a n 縮約のイメージを図1に示す。	<mark>の考え方を示す。</mark>
	ケース1において,反時計回りをモーメントの正方向とすると,剛体底部に加わるモーメントM	
	は下式で表される。	
	$M=m \cdot h$	
	ここで、剛体質量を点Aに縮約する場合、並進質量mにより剛体低部に加わるモーメントMGは	
	下式で表される。	
	$M_G = m \cdot H$	
	縦約の前後で剛体底部に加わるエーマントけ亦わらないため、このときの同転焼骨P…けり下の	
	関係を満足すろ値として設定される。	
	$M = M_G + R_m$	
	以上より,回転質量Rmは下式で表される。	
	$R_m = M - M_G = m (h - H)$	
	ケース1では、縮約させる位置が剛体の重心高さより高い(h <h)ため、回転質量rmは負の< td=""><td></td></h)ため、回転質量rmは負の<>	
	値となる。	
	ケース2においても同様に、回転質量Rmは下式で表される。	
	$R_m = M - M_G = m (h - H)$	
	ケース2では、縮約させる位置が剛体の重心高さより低い(H <h)ため、回転質量rmは正の< td=""><td></td></h)ため、回転質量rmは正の<>	
	値となる。	
	以上より、反時計回りをモーメントの正方向とすると、Guyan縮約法による縮約の位置が剛	
	体の重心高さより高い場合、回転質量は負の値となり、縮約の位置が剛体の重心高さより低い場	
	合,回転質量は正の値となる。なお,モーメントの正方向を逆にした場合は,回転質量の正負が逆	
	になる。	

	白田居子に恐患で、今日炒
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機 50Hz の領域まで作成した床応答スペクトルによる影響検 スペクトルモーダル解析を適用するに当たって高振動数領域の影響を確認 域まで作成した検討用の床応答スペクトルを地震応答解析に適用し,重大型 のサプレッションチェンバ及びサプレッションチェンバサポートの中で最 代表として応力評価を実施した。地震応答解析に用いた床応答スペクトルを を表1に、固有周期の一覧を表2に示す。本検討に用いた床応答スペクトルを を表1に、固有周期の一覧を表2に示す。本検討に用いた床応答スペクトル 床応答スペクトルの作成方針」に基づき0.02秒(50Hz)までの床応答スペ である。 地震応答解析に <u>おいて検討用床応答スペクトルを</u> 用いた場合、サプレッジ プレッションチェンバサポートの代表応力評価点に対する算出応力は、 <u>設置</u> を用いた場合と有効桁数の範囲で等しい結果となった。これは、今回工認に
	て,設計上の配慮として 0.02 秒 (50Hz) までの振動モードを考慮している ける応答加速度と刺激係数が比較的小さいことから,高振動数領域への応
	ある。 したがって、サプレッションチェンバ及び <u>サプレッションチェンバサポ</u> おける動的解析として高振動数領域の応答によるスペクトルモーダル解析・ いことを確認した。

	備考
別紙 3 計 は するため、50Hz の領 事故等対処設備として 5裕度が小さい部位を 図1に、応力評価結果 は、VI-2-1-7「設計用 クトルを作成したもの ンヨンチェンバ及びサ 十用床応答スペクトル おける耐震評価におい こと、高振動領域にお 客影響が小さいためで -トの地震応答解析に への影響が十分に小さ	備考 ・評価方法の相違 島根2号機では,設 計用床応答スペクトル として0.02秒(50Hz) まで考慮した床応答ス ペクトルを用いる。

	備考
	・評価方法の相違
	<mark>島根 2 号機では,設</mark>
	計用床応答スペクトル
	として 0.02 秒(50Hz)
	<mark>まで考慮した床応答ス</mark>
	<mark>ペクトルを用いる。</mark>
l	
L	
<u>.</u>	

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所	2 号機			備考
	<u>表1</u> 応力評価結果						
			······································				
		応力評価点*1	応力分類		- (MPa) 検討用床応答 スペクトル	- 許容応力 ^{*2} (MPa)	
			一次一般膜応力	144	144	349	
	サプレッ ション	サプレッションチェンバ 		144	144	523	
			一次+二次応力	128	128	501	
	チェンバ	バ サプレッションチェンバ	- 次膜+ - 次曲げ応力	272	272	523	
		胴エビ継部外側 (P8)	一次+二次応力	478	478	501	
	サプレッ		曲げ応力	242	242	344	
	ション	ション ベースプレート (P6)		24	24	172	
	サポート		 組合せ応力	246	246	298	
	注記*1:応	5.力評価点は3.3.2に示す。		1	1		
	1	トポートの耐震性についての計算	書」における「D+P _{SALL}	+M _{SALL} +SsJ	に対する評価結果を	·示す。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 2(1) 固有周期一覧表(地震応答解析モデル:水平方向)	・評価方法の相違
	モード 固有周期 刺激係数*	島根2号機では、鉛
	(s) X方向 Z方向 1次	直方向の地震応答解析
	2次	モデルは既工認と同様
		に内部水を固定質量と
	<u> </u>	してモデル化する。
	77次 82次	
	<u>12次</u> 13次	
	13八 16次	
	<u>177次</u> 18次大	
	19次	
	<u>24次</u> 25次	
	26次	
	31次	
	33次	
	352	
	<u>36次</u> 37次	
	<u>38次</u> 39次	
	<u>43次</u> 44次	
	<u>45次</u> 46次	
	<u>50次</u> 51次	
	注記*・モード質量を正相化するモードベクトルを用いる	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 4.3-2(2) 固有周期一覧表(地震応答解析モデル:鉛直方向)	・評価方法の相違
	モード 固有周期 刺激係数*	島根2号機では、鉛
	(8) X方间 Y方间 Z方间 1次 9次	直方向の地震応答解析
		モデルは既工認と同様
	<u>5次</u> 6次	に内部水を固定質量と
	7次 8次	してモデル化する。
	90X 109X	
	$142\times$ 142× 157×	
	16次 17次	
	18次 	
	237X 247X	
	<u>25次</u> 26次	
	277X 287X	
	280× 300×	
	322A 322A	
	<u>- 34次</u> 35次	
	36次 37次	
	382× 392×	
	40次 41次 41次	
	430 430	
	45次 46次	
	$\frac{472\times}{482\times}$	
	44/ズ 50/次 5.12/7	
	522X 522X	
	56次 57次	
	582× 582×	
	00/A 61次 82次	
	637× 647×	
	65次	
	注記*:モード質量を正規化するモードベクトルを用いる。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め,実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め、実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め、実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め、実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め,実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め、実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め,実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め、実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め,実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め,実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め、実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考
・検討内容の相違
島根2号機では、3
次元シェルモデルでオ
ーバル振動が現れるた
め,実機解析モデルに
対してオーバル振動の
影響を検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙4	
	 1. はじめに 今回工認で採用したサプレッションチェンバの地震応答解析モデルは、サプレッションチェ ンバ本体とサプレッションチェンバサポートをはり要素で模擬し、サプレッションチェンバ本 体とサプレッションチェンバサポート取付部の局部変形によるばね剛性については、サプレッ ションチェンバサポート取付部にばね要素で模擬することとしている。 <u>なお、サプレッションチェンバ小円の断面変形及びサプレッションチェンバ胴の花びら状の</u> 変形については、応力評価に対する影響は別紙3において確認し、サプレッションチェンバの地 震応答解析モデルではこれらの影響は考慮しない。 	 ・評価方法の相違 島根2号機では、サ プレッションチェンバ サポート取付部の面外
	本資料は,上記を踏まえたばね要素の剛性(ばね剛性)の設定方法についてまとめたものである。	方向 (3 方向) <mark>のみ</mark> の変 形をばね要素として考 _{席ナス}
	 ばね要素について サプレッションチェンバは、サプレッションチェンバ大円の内側と外側で1 組のサプレッションチェンバサポートが16 組で支持する構造となっている。このサプレッションチェンバサポート取付部の1 セグメント部分を切り出して、その構造的な質量と剛性の関係を模式的に表し、サプレッションチェンバにおける剛性の設定の考え方を整理した図を図 2-1 に示す。 実機・シェルモデル 	
	 ①サブレッションチェンバの はり剛性 ③サプレッションチェンバ 小円の断面変形の剛性 	
	③サプレッションチェンバ サポート取付部の局部変形の 剛性 シェル要素より算出したばね剛性を設定 (サプレッションチェンバ胴面外方向) ④サプレッションチェンバ サポートの剛性 形状・物性値からはり要素でモデル化	
	図 2-1 サプレッションチェンバとサプレッションチェンバサポートの質量・剛性模式図	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	サプレッションチェンバの剛性は、断面変化なしの部分のはり剛性①とサプレッションチェ	
	ンバ小円の断面変形による剛性②に分けて考えることができる。また、サプレッションチェンバ	
	サポート取付部は、はり要素のみでモデル化することが難しい複雑な構造であり局部的に変形	
	するため、これをサプレッションチェンバサポート取付部の局部変形の剛性③とすると、サプレ	
	ッションチェンバの断面変化なしの部分のはり剛性①, サプレッションチェンバサポートの剛	
	性④をはり要素とし、これを接続する部分をばね要素としてモデル化すれば、実際の挙動に近い	
	地震応答値を求めることができる。 <u>ここで、②については応力評価に対する影響が小さいため</u> ,	・評価方法の相違
	①と④を接続する要素として、③をばね要素としてモデル化する。	島根2号機では、サ
	なお, サプレッションチェンバ胴の面内方向の変形については, 面外方向の変形に対して剛性	プレッションチェンバ
	<u>が高いと考えられる</u> ことから、ばね要素はサプレッションチェンバ胴の面外方向(並進1方向,	 サポート取付部の <mark>面外</mark>
	回転2方向)について考慮する。	 方向 (3方向) の変形 <mark>の</mark>
		<mark>み</mark> をばね要素として考
		慮する。
	3. サプレッションチェンバサポート取付部のばね剛性の設定手順	
	ばね剛性の設定にあたっては、サプレッションチェンバ及びサプレッションチェンバサポー	
	<u>ト</u> をシェル要素でモデル化した解析モデルに荷重を加え,サプレッションチェンバ及びサプレ	・評価方法の相違
	<u>ッションチェンバサポート</u> 全体 <u>(図 2-1 の①,②,③,④)</u> の <u>変位を算出</u> し,同じ範囲をはり	島根2号機では、変
	要素でモデル化した解析モデルに同じ大きさの荷重を加え、はり要素(図2-1の①、④)の変	位においてはりモデル
	位を差し引いた結果からばね剛性を設定する。ばね剛性の設定手順を図 3-1 に示す。	の影響を差し引く。
	シェルモデルによる変位算出 はりモデルによる変位算出 (図2-1・① ② ③ ④*1) (図2-1・① ④*1)	
	変位の差からサプレッションチェンバ取付部の	
	ばね剛性を設定	
	(サブレッションデェンハ胴面外方向,図2-1:③****)	
	注記*1:各番号は以下の剛性を表す。	
	①サプレッションチェンバのはり剛性	
	②サプレッションチェンバ小円の断面変形の剛性 ③サプレッションチェンバサポート取付部の局部変形の剛性	
	④サプレッションチェンバサポートの剛性	
	*2: ②におけるサプレッションチェンバ胴面外方向の剛性を含むが、影響は小さいと考えられるため ③の五の剛性として扱う	
	図 3-1 サブレッションナエンパサホート取付部のはね剛性の設定手順	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4. 解析モデルを用いた変位の算出	・評価方法の相違
	(1) シェルモデルを用いた変位の算出	島根2号機では、変
	サプレッションチェンバ及びサプレッションチェンバサポートは,16 セグメントのエビ	位においてはりモデル
	継部にサプレッションチェンバサポートがサプレッションチェンバ大円の内側と外側に 1	の影響を差し引く。
	組配置されている対称構造であることを踏まえ、モデル化の範囲は評価対象の <u>サプレッシ</u>	
	<u>ョンチェンバサポート</u> 1 組を中心として,その両側 <u>のセグメントのサプレッションチェン</u>	・評価方法の相違
	<u>バ胴中央部</u> まで <u>を</u> シェル要素でモデル化する。両端の <u>サプレッションチェンバ胴は完全拘</u>	モデル化手法の相違
	東条件とし、内側及び外側のサプレッションチェンバサポート下端に同時に荷重を与え、サ	・評価方法の相違
	<u>プレッションチェンバサポート取付部の変位を算出する。</u> 解析モデルを図 <u>4―1</u> に示す。 <mark>西</mark>	島根2号機では、変
	<u>端のサプレッションチェンバ胴は完全拘束条件とし,図4-2に示す荷重作用点と内側及び</u>	位においてはりモデル
	<mark>外側のサプレッションチェンバサポート下端のうち,可動する半径方向以外の方向をそれ</mark>	の影響を差し引く。
	<u> ぞれ剛ばねで結合し, 内側及び外側のサプレッションチェンバサポートに同時に荷重(並進</u>	
	<u>荷重,モーメント)を作用させ,サプレッションチェンバサポート取付部の変位を算出する。</u>	
	<u>また,変位算出のための解析条件及び変位算出方法を図4-3</u> に示す。	
	図4-1 サブレッションチェンバサボート取付部の変位算出用シェルモデル	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	■ 図 <u>4−2</u> 変位算出用モデルへの荷重作用方法

備考

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2号機			備考
	I	ねの成分	解析条件	変位算出方法	・評価方法の相違
	並進	上下軸 (Z)			島根2号機では,サ プレッションチェンバ サポート取付部の <mark>面外</mark> 方向(3方向)の変形 <mark>の</mark> みをばね要素として考 慮する。
	回転	大円半径 軸回り (X)			
		大円円周 軸回り (Y)			
			図 4- <mark>3</mark> シェルモデ	ルによる変位算出 <u>方法</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2	2号機

[]
備考
・評価方法の相違
島根2号機では、変
位においてはりモデル
の影響を差し引く。

女川原子力発電所2号機(2021年12月10日)	鳥根原子力発電所 2 号機
	(2) はりモデルを用いた変位の簋出
	(1)のシェルモデルと同じ範囲をはり要素でモデル化する。 <u>また</u> , 条件及び荷重入力方法についても(1)と同様とする。解析モデルを図 位算出のための解析条件及び変位算出方法を図4-5に示す。
	図4- <mark>4</mark> サプレッションチェンバサポート取付部の変位算出用

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機			備考
	ばねの成分	解析条件	変位算出方法	・評価方法の相違
	並進 上下軸 (Z)			島根2号機では,サ プレッションチェンバ サポート取付部の <mark>面外</mark> 方向(3方向)の変形 <mark>の</mark> みをばね要素として考 慮する。
	大円半径 軸回り (X)			
	大円円周 軸回り (Y)			
		図 4- <mark>5</mark> はりモデルに。	よる変位算出方法	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

[]
備考
・評価方法の相違
島根2号機では、変
位においてはりモデル
の影響を差し引く。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	 <u>5.</u> サプレッションチェンバサポート取付部のばね剛性設定 <u>4.</u>で算定した変位について、シェルモデルから算出した変位からはり <u>位を差し引いた変位を用いてばね剛性を以下のとおり設定する。</u> <u>並進ばね:</u> <u>ばね定数 = 荷重 / 並進変位</u> <u>回転ばね:</u> <u>ばね定数 = モーメント / 回転変位</u>
	 <u>6</u>. <u>サプレッションチェンバサポート</u>取付部のばね剛性設定結果 4. ~5.の結果を表 6-1に示す。既工認実績があるサプレッションチェ ルにおいては、<u>サプレッションチェンバ胴及びサプレッションチェンバ</u> モデル化し、<u>サプレッションチェンバ胴とサプレッションチェンバサポ</u> していた。今回工認のサプレッションチェンバ地震応答解析モデルでは、 <u>ョンチェンバサポート</u>取付部のばね剛性を設定することにより、従来モデ が精緻化されたものと考える。

	備考
<u>モデルから算出した変</u>	・評価方法の相違 島根2号機では,変 位においてはりモデル の影響を差し引く。
ンバ地震応答解析モデ	
<u>+ポート</u> をはり要素で <u>-ト取付部は剛結合と</u> 表 <u>6-1</u> のサプレッシ ルに比べ,振動モード	・評価方法の相違 既工認におけるモデ ル化方法の相違

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機			備考	
	表 6-1 サプレッションチェンバサポート取付部のばね剛性			・評価方法の相違	
		考慮する方向		ね剛性	島根2号機では、サ
				外側	プレッションチェンバ
	3	P:上下方向			5 小一下取付部の <mark>面外</mark> 方向(3 方向)の変形の
	<u> </u>	(N/mm)			みをばね要素として考
		ML:大円半径軸回り			慮する。
	1	回転 (N·mm/rad)			
		MC. 八日日周軸回り (N•mm/rad)			
		(1, 1111) 1000			

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・検討内容の相違
島根2号機では、サ
ポート取付部の剛性の
影響は大きいものとし
て <mark>, 個別に影響の確認</mark>
は行っていない。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

in to
備考
・検討内容の相違
島根2号機では、サ
ポート取付部の剛性の
影響は大きいものとし
て <mark>, 個別に影響の確認</mark>
<mark>は行っていない。</mark>

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・検討内容の相違
島根2号機では、サ
ポート取付部の剛性の
影響は大きいものとし
て <mark>、個別に影響の確認</mark>
は行っていない。
1

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・検討内容の相違
島根2号機では、サ
ポート取付部の剛性の
影響は大きいものとし
て <mark>, 個別に影響の確認</mark>
は行っていない。

女川原子力発電所2号機(2021年12月10日)		備考					
	(補足)						
	サプリ						
	はりモ	はりモデルを用いた。評価対象のサプレッションチェンバサポートに荷重を加えて変形を起こ					
	させる、	させることで <u>サプレッションチェンバサポート</u> 取付部のばね剛性を算定するが,荷重入力位置					
	と解析	と解析モデルの境界が近いと、算定しようとしているサプレッションチェンバサポート取付部					
	のはねば	「証価十計の相当					
	の影響な	・評価力法の相遅 モデル化毛法の相違					
	<u>クライ</u> 。 の変形:						
	範囲がお						
	ており,	サポ	一卜取付普	部局所を対象としているばね剛性の算定において妥当であると考えられ			
	3						
			上下軸				
		並進	(Z)				
			大円手径軸回り				
			(X)				
		回転		4 1			
			大円円周				
			(Y)				

女川原子力発電所2号機(2021年12月10日)		備考			
	1. 概要 本資* モデル)	料では,)の評価	<u>3次元</u> 3次元は 西条件やモ	別紙 5 シェルモデル(適用性確認用解析モデル)の設定 りモデルの適用性検証に用いた <mark>3次元シェルモデル(適用性確認用解析</mark> デル化の詳細を示すものである。	
	2. 評価学	条件			
	計価系	条件にく	ついて表 2-	-1 に示す。	
	表 2-1 評価条件				・評価方法の相違
		項	〔 日	内容	島根2号機では、ベ
			要素数		ース及びベースプレー
	÷	デル化	鋼製部	シェル要素:サプレッションチェンバ胴,補強リング,サプレッション チェンバサポート (ベース及びベースプレート以外) はり要素 :サプレッションチェンバサポート (ベース及びベース プレート)*1	下をはり安系でモノル化する。
			内部水	 ・耐震解析用重大事故等時水位(EL 7049mm) ・NASTRANの仮想質量法を適用(本文 4.1.1 項の手法と同様) 	
	地:	2震応答 解析	解析手法 地震力	スペクトルモーダル解析 設計用床応答スペクトルI(基準地震動Ss) (原子炉建物 EL 1300mm) *2	
			減衰定数	1.0%	
	応	力評価		一次十二次応力	
	注記*1: 7 *2: ⁷ R	サプレ 方向に ^同 ス及び^ VI-2-1- RB-SsNS ⁻	ッションヲ 可動する構 ベースプレ -7「設計用 -RB82, NS	*ェンバサポートのうち、シアキー構造より上部の部材については半径 造であるが、半径方向に可動しないシアキー構造より下部の部材(ベー ート)は板厚方向の剛性をモデル化する目的ではり要素とする。 床応答スペクトルの作成方針」の設計用床応答スペクトル(図番:NS2- 2-RB-SsEW-RB82, NS2-RB-SsV-RB82)を適用	
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機				
--------------------------	-----------------------------------				
	3. 解析モデル				
	解析モデルは、構造及び荷重の対称性を踏まえ、サプレッションチェン/				
	する。解析モデルを図 3-1 に示す。				
	図 3-1 解析モデル				

	備考
·バ全体の 1/2 モデルと	 ・評価方法の相違 島根2号機では,適 用性確認用解析モデル として 180°モデルを 用いる。

女川原子力発電所2号機(2021年12月10日)		島根原子	子力発電所 2号	機		備考
	4. モデル化諸元					
	モデル化諸元を表 4-1 に	示す。				
		表 4	1 モデル化諸元			
	部材	材料	質量 (10 ³ kg)	縦弾性係数 (MPa)	ポアソン比 (-)	
	サプレッションチェンバ胴	SPV50				
	補強板	SGV49		1.00×105	0.2	
	補強リング	SGV49		1. 98 × 10	0.3	
	サプレッションチェンバ サポート	SGV49				
		L	1	I	11	

	備考
が主要寸法並びに詳	
コンチェンバ胴	
A	
<u>¥_</u>	
チェンバサポート	
(甲位:mm)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
女川原子力発電所2号機(2021年12月10日)	第41-FLON鉄なび主搬士 第41-FLON鉄なび工搬土 第41-FLON鉄なび工搬土 第41-FLON鉄なび工搬土 第41-FLON鉄なび工搬土 第41-FLON鉄なび工搬土 第41-FLON鉄なび工搬土 11-1-FLICOO 11-1-	備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	■ 図 5-3 サプレッションチェンバの詳細モデル図

	備考		
]	・評価方法の相違		
	島根2号機では、適		
	用性確認用解析モデル		
	として 180° モデルを		
	目のる		
) [] V , Q 0		

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機
		よれ、1の詳価をつい
	<u>凶 b-4 サノレツンヨンナェンパ</u>	リホートの詳細セアル図

	I
	備考
	・評価方法の相違
	島根2号機では、ベ
	ース及びベースプレー
	トをはり要素でモデル
	化する。
× . ⊡	
シレビ	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 6 サプレッションチェンバ内部水によるスロッシング荷重の算定	
	 概要 耐震評価における構造物の内部水の考え方としては、たて置円筒容器などでハウスナーの手 法が一般的に採用されている。 本資料では、ハウスナーの手法の考え方を用いてサプレッションチェンバの内部水の扱いに ついて説明する。 また、汎用流体解析コード<u>Fluent</u>を用いたスロッシング荷重の算定方法について説明 する。 	 ・評価方法の相違 使用する解析コード
	 2. ハウスナーの手法による内部水の考え方 たて置円筒容器の内部水の地震時の挙動の概念について、図 2-1 に示す。 水平方向の地震動に対する内部水の挙動としては、液面表面が揺れる<u>スロッシングモード</u>と 内部水が容器と一体となって振動するモードの2つのモードが組み合わされる。 ハウスナーの手法では、容器と一体となって振動するモードとして付加される質量M_E(有効 所見) た剛体トレス、スローンングエードトレス体型として使用される質量M_E(有効 	の相違
	質量)を剛体として、スロッシングモードとして付加される質量M _i とスロッシングの固有周期 を考慮したバネを容器に結合した解析モデルにて、耐震評価を行い容器 <u>と一体となって振動するモード及びスロッシングモードによる</u> 荷重を計算する。	
	図 2-1 たて置円筒容器の内部水の地震時の挙動の概念	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3. サプレッションチェンバの内部水の扱い	
	地震時のサプレッションチェンバに対する荷重を算出する場合のサプレッションチェンバの	
	内部水の扱いについて、水平方向及び鉛直方向に分けて説明する。	
	水平方向の地震動によるサプレッションチェンバに対する地震荷重は, 容器と一体となって	
	振動するモードによる荷重及びスロッシングモードによる荷重に分けて評価する。	
	容器と一体となって振動するモードによる荷重は、汎用構造解析プログラムNASTRAN	
	から算出される有効質量を用いて、地震応答解析モデルに付加質量M _E として設定し、はりモデ	
	ルを用いた動的解析 (スペクトルモーダル解析等) により算出する。ここで、この地震応答解析	
	モデルでは、スロッシングモードとして付加される質量Miとバネは考慮しない。	
	一方,スロッシングモードによる荷重は,前述の地震応答解析とは別に,実機サプレッション	
	チェンバの内部構造物及び内部水の全質量(水位)を考慮し,汎用流体解析コード <u>Fluent</u>	・評価方法の相違
	により算出する。ここで, <u>Fluent</u> を用いて地震時の内部水によるサプレッションチェンバ	使用する解析コード
	に対する荷重を算出する場合,スロッシングモードによる荷重及び容器と一体となって振動す	の相違
	るモードによる荷重の総和Fとして算出される。このため、荷重の総和Fから容器と一体となっ	
	て振動するモードによる荷重を差し引くことでスロッシング荷重を算出する。	
	鉛直方向の地震動によるサプレッションチェンバに対する地震荷重は、地震応答解析モデル	
	上、内部水の全質量を考慮し、はりモデルを用いて算出する。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	4. 実機スロッシング荷重の算定方法
	<u>Fluent</u> を用いたスロッシング荷重の算出方法について,重大事
	説明する。
	4.1 解析セアル 留振エデルな図 $(1-1)$ に一般振動でなま $(1-1)$ にデオ
	府和にアルを国生.1
	図 4.1-1 流体解析モデル
	表 4.1-1 解析諸元
	格子数
	格子サイズ

女川原子力発電所2号機(2021年12月10日)		備考	
	4.2 解析条件		
	解析条件を表 <u>4.2-1</u> に, 基	準地震動Ssにおけるサプレッションチェンバ設置床の応答加速	
	度スペクトルを図 <u>4.2-1</u> に <mark>,</mark>	<u>流体解析に適用する入力加速度を図 4.2-2</u> 示す。	
	マディルケー	<u>表 4.2-1 解析条件</u>	・評価方法の相違
	モデル化範囲		局根2 方機では, 連 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
	715412		市連転時の順長計価に
		(グリンガマ取り部下端位直:EL (049mm)	おいても耐晨解切用重
	許個用地展動	基準地展動55-D(小平方向及び超直方向) に対 すろ原子恒建物 FI 1300mm におけろ建物床広答	大争成寺時小位を用い
	解析コード	Fluent ver. 18.2 (汎用流体解析コード)	
	741 01	VOF法を用いた流体解析	
	その他	内部構造物のモデル化範囲:ベントヘッダ,ダウンカ	
		マ、クエンチャ、ECCSストレーナ	
	注記*:スロッシングの	〕卓越周期帯及びサプレッションチェンバの一次固有周期	
	で応答加速度が	「大きいSs-Dを用いる。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	4.3 スロッシング荷重算定	
	4.3.1 スロッシング荷重算定方法	
	<u>Fluent</u> で算出される内部水全体による荷重(有効質量による荷重及びスロッシング	・評価方法の相違
	荷重) Fは、スロッシングモードによる荷重Fs及び容器と一体となって振動するモードによ	使用する解析コード
	る荷重M _E ·xの和であることから、スロッシングモードによる荷重 Fsは、下式で表される。	の相違
	$F = F_s + M_E \cdot \ddot{x}$	
	よって、スロッシングモードによる何里Fsは下式で表される。	
	$\mathbf{F} = \mathbf{F} - \mathbf{M} \cdot \ddot{\mathbf{v}}$	
	$\Gamma_{\rm S} = \Gamma - M_{\rm E} \cdot X$	
	ここで、	
	Fs: スロッシングモードによる荷重	
	F : 内部水全体による荷重	
	M _E : 内部水の有効質量(流体解析により得られた有効質量比から算出)	
	x :入力加速度	
	なお、有効質量の算出においては、荷重時刻歴波形についてフィルター処理を行い、0.2~	
	0.3Hzのスロッシング周期成分を取り除いている。	
	4.3.2 スロッシング荷車算定結果	
	<u>Fluent</u> で昇定した <u>内部水による</u> 何車F, <u>谷器と一体となって振動するモート</u> による 黄重M \ddot{v} フロッジンングエードによる 黄重M \ddot{v} フロッジンングエ	・評価方法の相遅
	何里ME·X, ハロリンシット 「いころ何里FSの何里FSの何里時刻産を凶生る」」に, ハロリンシット	() () () () () () () () () () () () () (
	C Fluentで筧出した内部水に上ろ荷重Fのフーリエスペクトル(Ss-D)耐電解析	・ 評価 方法の 相違
	用重大事故等時水位)を図4.3-2に、フーリエスペクトルから求めたスロッシングの固有周	島根2号機では、通
	期を表 4.3-2 に示す。また、スロッシング解析結果例(Ss-D,重大事故時想定水位(S	常運転時の耐震評価に
	<u>s)</u> ,最大荷重発生時刻付近(<u>34</u> 秒時点))を図 <u>4.3-3</u> に示す。 <u>この時刻での最大波高は</u> ,	おいても耐震解析用重
	 <u>0.76m である。<mark>なお,全時刻での最大波高は 2.39m である。</mark></u>	大事故等時水位を用い
	スロッシング荷重は, 耐震解析用重大事故等時水位で 6060kN となり, これを包絡する 8597kN	る。
	を耐震評価で用いるスロッシング荷重とする。	
		・評価方法の相違
	耐震解析用重大事故等時水位に対する内部水の有効質量比は仮想質量法の 0.28 に対して流	島根2号機では,通
	体解析で 0.28 であり、仮想質量法による有効質量が適切に算定されることを確認した。	常運転時の耐震評価に
		おいても耐震解析用重
		大事故等時水位を用い
		る。

	女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機
l			

· · · · · · · · · · · · · · · · · · ·
備考
・評価方法の相違
島根2号機では、通
常運転時の耐震評価に
おいても耐震解析用重
大事故等時水位を用い
3.
∞ 0

女川原子力発電所2号機(2021年12月10日)		島根原子	力発電所 2号機		備考
	表 4.3-1 スロッシング荷重及び内部水の有効質量比			・評価方法の相違	
	地震動	水位条件	スロッシング荷重** (最大)	内部水の有効質量比	島根2号機では,通 常運転時の耐震評価に
	Ss-D	耐震解析用 重大事故等時水位	6060kN	0. 28	おいても耐震解析用重 大事故等時水位を用い
	注記*:水平	2 方向入力の影響を考慮			る。
	1	.2E+07	0.26Hz (3.8秒)		
] 理 s	.0E+07			
	」 デ 6 歳	.0E+06			
	► 4 2	.0E+06			
	C	.0E+00 0.001 0.01		.0 100	
			振動数 [Hz]		
	⊠ 4.3−2	フーリエスペクトル (<u>S s - D, 耐震解析</u> 用	重大事故等時水位)	
	Γ	<u>表 4.3-2 ス</u> 水位条件	<u>ロッシングの卓越周期</u> <u> 卓越周期</u>	<u> </u>	 ・評価方法の相違 島根2号機では,通
	-	耐震解析用	約 3.8 利	∲	常運転時の耐震評価に おいても耐震解析用重
		里大争战寺时水位			大事故等時水位を用いる。
	注:色の違いは,	水面高さの違いを表す。ま	た,高さは初期水位を Om	としたものを表している。	
			ロッシング解析結果例		
	<u> (S s </u>	-D, 耐震解析用重大事	和政等时水位,最大荷重	<u> </u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 7 計算機コードの概要	
	 はじめに 本資料は、「サプレッションチェンバの耐震評価における内部水質量の考え方の変更等について」 において用いた汎用解析プログラムNASTRAN及び汎用流体解析コード<u>Fluent</u>の解析 コードについて説明するものである。 	 ・評価方法の相違 使用する解析コード の相違
	 使用した解析コードの概要 NASTRAN (別紙 7-1 参照)	
	 (2) <u>Fluent</u>(別紙7-2参照) <u>Fluent</u>は,サプレッションチェンバ内の空間をモデル化し,流体の流れをVOF(Volume Of Fluid)法により解析する。 	 ・評価方法の相違 使用する解析コード の相違

女川原子力発電所2号機(2021年12月10日)		備考	
		別紙7-1	
	(1) NASTRAN		
	解析コードの概要		
	コード名	MSC NASTRAN	
	開発機関	MSC. Software Corporation	
	開発時期	1971年	
	使用したバージョン	2005, 2013	
	使用目的	3 次元有限要素法(シェル要素)による有効質量の算定	
	コードの概要	有限要素法を用いたMSC NASTRANは,世界で圧倒	
		的シェアを持つ汎用構造解析プログラムのスタンダードであ	
		る。その誕生は1965年,現在の米国MSC.SoftwareCorporation	
		の前身である米国The MacNeal-Schwendler Corporation の創	
		設者,マクニール博士とシュウェンドラー博士が,当時NAS	
		A (The National Aeronautics and Space Administration)	
		で行われていた, 航空機の機体強度をコンピュータ上で解析す	
		ることをテーマとした「有限要素法プログラム作成プロジェク	
		ト」に参画したことに始まる。そこで作成されたプログラムは	
		NASTRAN(NASA Structural Analysis Program) と命名され,	
		1971 年にThe MacNeal-Schwendler Corporation からMSC	
		NASTRANとして一般商業用にリリースされた。	
		以来,数多くの研究機関や企業において,航空宇宙,自動車,	
		造船,機械,建築,土木などの様々な分野の構造解析に広く利	
		用されている。また各分野からの高度な技術的要求とコンピュ	
		ータの発展に対応するために、常にプログラムの改善と機能拡	
		張を続けている。	
	検証と妥当性の確認	[検証]	
		本解析コードの検証は以下のとおり実施済みである。	
		 サプレッションチェンバの模擬試験体による振動試験によ 	
		り算定された有効質量比とNASTRANによる3次元有	
		限要素法(シェル要素)及び付加質量法(Virtual Mass	
		Method)により算定された有効質量比が一致することを確認	
		している。	
		 ・本コードの適用条件について、開発機関から提示された要 	
		件を満足していることを確認している。	
		[妥当性確認]	
		本コードの妥当性確認の内容は以下のとおりである。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
、 、 、 、 、 、 、 、 、 、 、 、 、 、	 Antor 1 が光電用 2 が減 1. 概要 有限要素法を用いたMSC NASTRANは、世界で圧倒的シェアを持つ汎用構造解析プ ログラムのスタンダードである。その誕生は 1965 年、現在の米国 MSC. Software Corporation の前身である米国 The MacNeal-Schwendler Corporation の創設者、マクニール博士とシュウェ ンドラー博士が、当時 NASA (The National Aeronautics and Space Administration) で行われ ていた、航空機の機体強度をコンピュータ上で解析することをテーマとした「有限要素法プログ ラム作成プロジェクト」に参画したことに始まる。そこで作成されたプログラム<u>は</u>NASTRAN (NASA Structural Analysis Program)と始名され、1971 年に The MacNeal-Schwendler Corporation か らMSC NASTRANとして一般商業用にリリースされた。以来、数多くの研究機関や企業 において、航空宇宙、自動車、造船、機械、建築、土木などの様々な分野の構造解析に広く利用 されている。また、各分野からの高度な技術的要求とコンピュータの発展に対応するために、常 にプログラムの改善と機能拡張を続けている。 2. 本コードの特徴 NASTRANは, MSC. Software Corporation により開発保守されている汎用構造解析コー ドである。原子力発電所の機器の応力評価で用いられる有限要素法による応力評価に加え、流体 の入ったタンク構造や没水タービン等、接流体表面を持つ構造の振動解析で一般に広く用いら れている。 また、解析における縮約処理は、膨大な数のデータを扱う有限要素法などの解析において、行 列の大きさ (次元) を小さくする解析上のテクニックであり、その手法として、Guy a nの縮 約法 (Guyan's Reduction) が広く一般的に使われており、NASTRANの機能として整備さ れている。 3. 解析理論 	
	本コードのうち,流体の入ったタンク構造や没水タービン等,接流体表面を持つ構造の振動解 析で用いる仮想質量法の解析理論について述べる。 振動時 <u>に</u> 容器壁面に作用する圧力は,流体解析によって求められる。サプレッションチェンバ のような複雑な形状に対しては,数値解析に依存することとなる。NASTRAN仮想質量法で は,前者の理想流体(非圧縮性,非粘性,渦無し)を仮定した速度ポテンシャル法に沿う考え方 が採用されている。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	同解析コードでは、構造体の接水面に設定した節点において、構造体の振動により発生する流体圧力と流速を算定し、接水面における流体圧力と加速度の関係式を構造体の運動方程式に流	
	体項を加えることで、構造体と流体の運動方程式が構築される。固有値解析あるいは応答解析を	
	実施して,振動質量を求め,これから構造体の振動質量を差し引くことで,流体の振動質量すな わち流体の有効質量が算定される。	

	備考
自効質量算定手順を図	
、 、	
)	
/ ä	
*** 法任准武	
身垣・ 元体理成 1 キニナ	
を示す。	
モーンバ	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	5. Guyan縮約法 本コードのうち, Guyan縮約法の解析理論について述べる。 動的問題に対する基礎方程式は,縮約を行う前にu _f セットに対して組み立てられる。縮約を 行う前の標準マトリクス方程式は次式の形になる。 $\begin{bmatrix}\overline{M}_{a\ a} & M_{a\ 0}\\M_{0\ a} & M_{0\ 0}\end{bmatrix}\begin{bmatrix}\ddot{u}_{a}\\\ddot{u}_{0}\end{bmatrix} + \begin{bmatrix}\overline{B}_{a\ a} & B_{a\ 0}\\B_{0\ a} & B_{0\ 0}\end{bmatrix}\begin{bmatrix}\dot{u}_{a}\\\dot{u}_{0}\end{bmatrix} + \begin{bmatrix}\overline{K}_{a\ a} & K_{a\ 0}\\K_{0\ a} & K_{0\ 0}\end{bmatrix}\begin{bmatrix}u_{a}\\u_{0}\end{bmatrix} = \begin{bmatrix}\overline{P}_{a}\\P_{0}\end{bmatrix}$ (1)	
	ここで u _a , u _a , ü _a : 解析セットに残される変位, 速度, 加速度自由度 u ₀ , u ₀ , ü ₀ : 消去セットに入れて消去される変位, 速度, 加速度自由度 <u>P_a</u> , P ₀ : 作用荷重	
	フリーボディ運動は解析セットに含めなければならない。そうしなければ, K ₀₀ が特異になってしまう。バーを付けた量(P など)は縮約の対象にならない量を示す。 静的問題では,質量と減衰効果を無視して,式(1)下段の分割行を解いてu ₀ を計算するこ とができる。	
	$\{u_0\} = -[K_0^{-1}]([K_0_a]\{u_a\} - \{P_0\}) $ (2)	
	式(2)の右辺は、 $GuyanマトリクスG_0と静的補正変位u_0^0の2つの部分に分解して、次式で表すことができる。$	
	$[G_0] = -[K_0^{-1}][K_0] $ (3)	
	$\{u_0^0\} = [K_{0\ 0}^{-1}]\{P_0\} $ (4)	
	式(2)から式(4)を式(1)上段の分割行に代入すれば厳密な静的求解の系が得られ、次 式の形に縮約された静解析方程式になる。	
	$[K_{a a}] \{u_{a}\} = \{P_{a}\} $ (5)	
	$\{u_0\} = [G_0] \{u_a\} + \{u_0^0\} $ (6)	
	ここで	
	$[K_{a a}] = [\overline{K}_{a a}] + [K_{a 0}][G_{0}] $ (7)	
	$\{P_a\} = \{\overline{P}_a\} + [G_0^T] \{P_0\} $ (8)	
	これに対して,動解析では、ベクトル $\ddot{u}_0 \ge \dot{u}_0$ を近似することによって系の次数を小さくする ことができる。静的マトリクス方程式から出発して縮約を行うのがよい。式(6)から次式の変 換を定義する。 $\{u_f\} = \begin{cases} u_a \\ u_f \end{cases} = [H_f] \{u_f'\}$ (9)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機		備考
	ここで,		
	$\{\mathbf{u}_{f}\} = \begin{cases} \mathbf{u}_{a} \\ \mathbf{u}_{0}^{0} \end{cases}$	(10)	
	$[H_{f}] = \begin{bmatrix} I & 0 \\ G_{0} & I \end{bmatrix}$	(11)	
	ここで、u ₀ ⁰ は静的変位形状に対する変位増分である。式(1)で表される すことなく新しい座標系に変換することができる。変換された系における剛 式の形になる。	5系は,精度を落と 性マトリクスは次	
	$ \begin{bmatrix} \mathbf{K}_{\mathrm{f}}^{'} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{G}_{\mathrm{0}}^{\mathrm{T}} \\ 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{\mathrm{a}} & \mathbf{K}_{\mathrm{a}} & 0 \\ \mathbf{K}_{\mathrm{0}} & \mathbf{K}_{\mathrm{0}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{I} & 0 \\ \mathbf{G}_{\mathrm{0}} & \mathbf{I} \end{bmatrix} $	(12)	
	マトリクスの乗算を行い,式(3)を代入すると,次式が得られる。		
	$\begin{bmatrix} \mathbf{K}_{\mathrm{f}} \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{\mathrm{a}} & 0 \\ 0 & \mathbf{K}_{\mathrm{0}} \end{bmatrix}$	(13)	
	剛性マトリクス内の連成は解除されたが、質量と減衰マトリクスは最初の る結果になる。減衰マトリクスは質量マトリクスと同じ形であるから、ここで を省略して考える。厳密な変換系は次式の形になる。	o系より連成が増え ごは減衰マトリクス	
	$ \begin{bmatrix} M_{a \ a}^{'} & M_{a \ 0}^{'} \\ M_{0 \ a}^{'} & M_{0 \ 0}^{'} \end{bmatrix} \!\! \left\{ \begin{matrix} \ddot{u}_{a} \\ \ddot{u}_{0} \end{matrix} \right\} \! + \! \begin{bmatrix} K_{a \ a} & 0 \\ 0 & K_{0 \ 0} \end{bmatrix} \!\! \left\{ \begin{matrix} u_{a} \\ u_{0} \end{matrix} \right\} \! = \! \left\{ \begin{matrix} P_{a} \\ P_{0} \end{matrix} \right\} $	(14)	
	ここで,		
	$[M_{a a}] = [M_{a a}] + [M_{a 0}][G_{0}] + [G_{0}]^{1}[M_{0 a} + M_{0 0}G_{0}]$	(15)	
	$[M_{a\ 0}^{'}] = [M_{0\ a}^{'T}] = [M_{a\ 0}] + [G_{0}^{T}M_{0\ 0}]$	(16)	
	$[M_{00}] = [M_{00}]$	(17)	
	B _f の減衰マトリクス成分は,質量マトリクス分割と同じ形で表すことがで が対称変換でなくても,上記と同じ変換を得る方法を次に紹介する。まず, ら,縮約される加速度の影響を以下の式で見積もる。	できる。マトリクス 弌(1)~(8)か	
	$\{\ddot{\boldsymbol{u}}_0\} \cong [\boldsymbol{G}_0] \{\ddot{\boldsymbol{u}}_a\}$	(18)	
	式(18)を式(1)下段の分割行に代入してu ₀ に関して解くと,以下の近	f似式が得られる。	
	$\{u_0\} = [K_{0\ 0}^{-1}] (\{P_0\} - [K_{0\ a}] \{u_a\} - [M_{0\ a} + M_{0\ 0}G_0] \{\ddot{u}_a\})$	(19)	
	K ₀ aに関する式(3)及び質量項に関する式(16)を式(19)に代入すると	,次式が得られる。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機		備考
	$\{u_0\} \cong [G_0] \{u_a\} + K_{00}^{-1} [\{P_0\} - [M_{0a}] \{\ddot{u}_a\}]$	(20)	
	式(18)と式(20)を式(1)上段の分割行に代入すると、次式が得られる。		
	$[\overline{M}_{a\ a} + M_{a\ 0}G_0]\{\ddot{u}_a\} + [\overline{K}_{a\ a} + K_{a\ 0}G_0]\{u_a\}$		
	$-[K_{a0}K_{00}^{-1}][M_{0a} + M_{00}G_{0}]\{\ddot{u}_{a}\} = \{\overline{P}_{a}\} - [K_{a0}][K_{00}^{-1}]\{P_{0}\}$	(21)	
	 -[K_{*0}K₀₀⁻¹][M₀[*] + M₀₀G₀] {ü_x} = {P_x} - [K_{*0}][K₀₀⁻¹] {P₀} 項を整理すると,式 (14) ~式 (17) と同じ結果が得られる。 上記の縮約手順から,Guyan変換の特長がわかる。 近似が導入されるのは加速度成分のみである (式 (18))。 縮約した系の剛性成分は厳密な内容である。 式 (14) 及び式 (20) で定義される内部変位はほとんど等しい。 	(21)	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2号機	備考
	(2) <u>Fluent</u> 解析コードの概要	別紙 7-2	 ・評価方法の相違 使用する解析コード
	コード名	Fluent	の相違
	開発機関	ANSYS, Inc	
	開発時期	2017年(初版開発時期 1983年)	
	使用したバージョン	Ver. 18. 2. 0	
	コードの概要	ANSYS Fluent は汎用熱流体解析コードであり,数値流体力学解析の 初心者からエキスパートまで,幅広い要求に応える使いやすさと多 くの機能を備える。有限体積法をベースとした非構造格子に対応す るソルバを搭載しており,VOF(Volume of Fluid)法を用いて溢 水を伴う大波高現象の解析を実施することが可能である。VOF法 はスロッシング解析における精度の高い手法であり,複雑な容器形 状や流体の非線形現象を考慮する場合に有効である。	
	検証と妥当性の確認	 秋や流体の非緑形現象を考慮する場合に有効である。 「検証] ・本解析コードは有限体積法を用いた汎用流体解析プログラムであ り、数多くの研究機関や企業において、様々な分野の流体解析に 広く利用されていることを確認している。 ・流体力学分野における典型的な事象について、解析結果が理論解 及び実験結果と一致することを確認している。 ・本解析コードの製品開発、テスト、メンテナンス、サポートの各 プロセスは、United States Nuclear Regulatory Commission (ア メリカ合衆国原子力規制委員会)の品質要件を満たしている。 「妥当性確認] ・本解析コードは、航空宇宙、自動車、化学などの様々な分野にお ける使用実績を有しており、妥当性は十分に確認されている。 ・2次元スロッシング問題の解析結果と実験結果とを比較し、よく 一致することを確認している。 	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	1. 概要 <u>ANSYS Fluent は汎用熱流体解析コードであり、数値流体力学解析の初心者からエキスパート</u> <u>まで、幅広い要求に応える使いやすさと多くの機能を備える。有限体積法をベースとした非構造</u> <u>格子に対応するソルバを搭載しており、VOF(Volume of Fluid)法を用いて溢水を伴う大波高</u> 現象の解析を実施することが可能である。VOF法はスロッシング解析における精度の高い手 法であり、複雑な容器形状や流体の非線形現象を考慮する場合に有効である。	 ・評価方法の相違 使用する解析コード の相違
	 本コードの特徴 本コードの主な解析機能<u>をつぎに列挙する。</u> ・非圧縮性・圧縮性流れの定常・非定常解析 ・ニュートン・非ニュートン流体の取り扱い ・熱・物質の輸送,化学反応,燃焼,粒子追跡 ・単相流,多相流,熱物理的状態変化,自由表面流 ・ 単相流,多相流,熱物理的状態変化,自由表面流 ・層流・乱流,音響	 ・評価方法の相違 使用する解析コード の相違
	(1) VOF法について VOFは下式に示すように計算格子(セル)における流体の割合を示すスカラー量であ Δ_c 、スロッシング解析では水を100%含む計算セルをVOF=1.0,水が存在せず100%空気 の計算セルをVOF=0.0としている。VOFの計算セルの例を図 3-1に示す。 $\alpha_1 = \frac{V_1}{V}$ (1) $\alpha_1 = \frac{V_1}{V}$ V_1 : 流体体積 V : 計算セル体積	 ・評価方法の相違 使用する解析コード の相違

$\frac{(a_{kl}^{*} \beta_{ll}^{*} \beta_{ll}^{*})}{(a_{ll}^{*} - b_{ll}^{*})} = \frac{(a_{ll}^{*} \beta_{ll}^{*} \beta_{ll}^{*$	女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	女川原子力発電所2 号機(2021 年 12 月 10 日)	$b \ Reg 7 b \ Reg m 2 \ Set were level in the set of $	備考 ・評価方法の相違 使用する解析コード の相違

	備考
体積法で離散化され, 子-修正子手法の一種	
	 ・評価方法の相違 使用する解析コード の相違
Y E S E N D	

島根原子力発電所 2号機

女川原子力発電所2号機(2021年12月10日)

内部水の有効質量の概要

容器の振動方向に地震荷重として付加される荷重は、内部水を剛体とし りも小さいことが知られており、このときのみかけの質量は有効質量(又似 等)と呼ばれている。ここでは、円筒タンクを例に有効質量の概要を説明 図1のように、直径Dの円筒タンクに液面高さLの水が入っているとす は自由表面を有しており、このタンクに水平方向に単位加速度を与えた場 液圧力は、図2に示すように自由表面において0であり、深さ方向に二次 る。一方、容器内を満水とし自由表面を無くした場合には、水全体が一体ん 板の動液圧力は高さ方向に一定となる。このように、自由表面を有する場合 震荷重は、自由表面がない場合(水全体が一体に動く場合)の地震荷重に気 筒タンクに加わる地震荷重のイメージを図3に示す。

荷重評価において,自由表面を有する内容液の加速度に対する実際に地 れる質量を有効質量という。また,水の全質量に対する有効質量の比を有

	備考
別紙 8	
して扱う場合の荷重よ	
は付加質量, 仮想質量	
する。	
る。 通常, 容器内の水	
 島合の側板における動	
次曲線的な分布を生じ	
となって動くため、側	
合に側板に作用する地	
対して小さくなる。円	
也震荷重として付加さ	
効質量比という。	
5閉)	
全質量と有効	
質量の差分	
*	
\mathbf{N}	
р	
側板の	

	備考
←る 効質量)	
こ加わる地震荷重	
$F = M_E \ddot{X} + F_S$ $(M_E < M)$	
重	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	規格類における内部水の有効質量の適用例
	 概要 有効質量の考え方は、他産業の耐震設計において一般的に取り入れられて て「容器構造設計指針・同解説(日本建築学会)」における球形タンク及びFの の適用例を示す。
	(球形タンクへの適用例)

		,	備考	
別約	氏9			
ていろ その一例り	• 1			
び円筒タンクの設計	- U 			

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	(円筒タンクへの適用例)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 10	
	サプレッションチェンバの水位条件	
	事故シーケンス等におけるサプレッションチェンバの水位について図1に示す。また,重大事	
	故等時におけるサプレッションチェンバの耐震評価に用いる水位条件*の考え方を表1に示す。	
	通常運転時の耐震評価では、重大事故等時に考慮する水位(耐震解析用重大事故等時水位)を	・評価方法の相違
	適用することにより, 内部水質量が通常運転時に対して大きくなる条件を設定することで, 重大	島根2号機では、通
	事故等時と共通の地震応答解析モデルを適用している。なお,水位を高く設定することでサプレ	常運転時の耐震評価に
	ッションチェンバの固有周期が変化するが、図2に示すとおり、床応答スペクトルと固有周期の	おいても耐震解析用重
	関係においても通常運転時の水位に対して、耐震解析用重大事故等時水位は保守的な条件とな	大事故等時水位を用い
	る。図2において、通常運転時の水位における固有周期と、耐震解析用重大事故等時水位におけ	る。
	有周期における床応答スペクトルの値に対して 5%以内の増分であること 床応答スペクトルの	一
	ピークの固有周期に対応する水位は耐震解析用重大事故等時水位よりも低い水位であり、内部	
	水質量が少ないことから、床応答スペクトルのピークの影響は軽微である。	
		 ・資料構成の相違 島根2号機では、サ プレッションチェンバ
	注記*: VI-1-8-1 「原子炉格納施設の設計条件に関する説明書」を参照	の水位条件はVI-1-8-1 「原子炉格納施設の設 計条件に関する説明 書」を参照する。

幾	EP-015란78 劳-。	「中戸 個大事故等以承の有効性評価」(活施設の設計条件に関する説明書」に示す 評価上床中的な火付や希慮する。	「島根原子力発電所 2 ーケンス等を示す。 - VI-1-8-1 原子炉結終 :適用するため、耐醸	「御御御覧萃 さらぬ事役ぐ つこれに、 留寺市上ぐぬ	も根原子力発電所第2步% 8和3年9月6日))にお 8輛評価に用いる水位に、 1歳条件によらず共通の例	莊記★1:5 	
2号			トーラス水位"低″		通常運転水位 (L.W.L)	3. 56m	- China - Chin
発電所		通常運転時	トーラス水位『齓"		通常:運転水位 (H.W.L)	3. 66m	
原子力	重大事故等時の耐震評価(S s)との組合せで基本とする ケース	格納容器過圧・過温破損 殘留熱代替除去系を使用する場合				新514m	
島根		格納容器過圧・過温破損 残留熱代替除去系を使用しない場合 (ペースケース)	事故時操作要領書 に基づく PCVベント 実施水位	£	真空破 娘介 下端位置 - 0. 4m	》 约4.9m	
		格納容器過圧・過電破損 痰留熱代替除去系を使用しない場合 (不確かさケース:2Pdに刻達)		宜独☆的府-界 <>		^余 55.03m	
		■大事故等時の耐燥評価(Ss, S d) に用いる水位*2(耐濃解析用氟大 事故等時水位) 通常適屈時の耐健評価(Ss, Sd) に用いる水位*2、*3			ダウンカマ 取付部下編位置	% ர5. 05m	
	備売	事 故シーケンス等*1	警報等	<位の範囲 B SA	位置	水位	
					-		
女川原子力発電所2号機(2021年12月10日)							

女川原子力発電所2号機(2021年12月10日)						島根	表原子力発電所 2号标	<u>幾</u>	備考
	考え方	耐震評価に 耐震評価に用いる 用いる水位条件*6 水位条件の考え方	耐震評価上、水位が高い方が基本的には発生荷重が大きくなるととから、活や業価の上面があるのでの	通転通転担の1))を用いて、 (3.66m(H. W. L))を用い でいたや城本か少め*4 まです。そのそうよい	(ET 1049mm*s) ///: 計画20系光FTにより ず共通の解析モバンや通 用するため、更に高いよ	位条件を用いる。	耐震評価上, 水位が高い 方が基本的には発生荷重 が大きくなることから, 格納容器過圧・過温破損 (天確かさケース) を上 (EL 7049mm*5) 回る条件を用いる。	置) 第46条 サブレッションチェンバ しない。 (位が通常運転水位+1.29m(水位4.9m)到 なかった場合においても、サプレッション	
	、の耐震評価に用いる水位条件の	水位条件の想定の考え方	保安規定**に基心きサプレッションチェンズの水位を管理しており、運転チェンズの水位を管理しており、運転上の制限を満足しない場合は、 措置、1994年、 6月間日本、6月回した。 4回、4回、4回、4回	(連転上の制版内への復に、局通・倍温停止又はスタタオ)を講じることとしたいる。			運転手順に基づきサプレッションチェンバの水位を管理しており、格納容器通圧・通温破損(全事故シーケンスのうち、格納容器水位が最も厳しくなるうち、格納容器水位が最も厳しくなる事故シーケンスを選定)のうち、「格納容器通圧・過温破損(残留熱代替除去奈を使用しない場合)(不確かさケース:2Pdに到達)」*3を踏まえた水位条件。	設編(2号炉および3号炉に係る保安措 まえ,耐震評価に用いる水位条件に考慮 において,サプレッションチェンバのか でまた,2Pdに達するまで操作を実施し とは無い。 こ関する説明書」に示す。	
	ションチェン	想定する 水位条件		3. 56m (L. W. L)	3.66m(H.W.L)		3. 56m (L. W. L) 糸匀5. 05m	の発電用原子炉施 る復日時間等や踏 シゲント)「SOP」 ら、05mや上回るい 5.05mや上回るい	
	サプレッ	許容応力 状態		$\mathbb{I}_{A}^{A}S$ $\mathbb{I}V_{A}^{A}S$		$\frac{\rm I\!I_AS}{\rm IV_AS}$	V _A S *1 V _A S *1	■ 運動設備 「 「 」 同 し し し し し し し し し し し し し	
	表1	荷重の組合せ		D+P+M+Sd* D+P+M+Ss		$D + P_{L} + M_{L} + S d^{*}$ $D + P_{L}^{*} + M_{L} + S d^{*}$	D+P _{SAL} +M _{SAL} +Sd D+P _{SAL} +M _{SAL} +Ss	N ^A sの許容限界を用いる。 鶴所原子炉施設保安規府「第1; 尼1参照) 冷満足しない場合の水位は、保: 予満足しない場合の水位は、保: 予満足しない場合の水位は、保: 予満足しない場合の水位は、保 不能まえた事故時操作要領書 都容器代替スプレイを停止し、I 位は約5:03mであり、耐震評価に 付部下端位置 いる水位については、「VI-1-8-	
		転状態	運転狀態 I	運転狀態II	運転状態皿	運転狀態IV	運転状態V	N vs s v f a m m m m m m m m m m m m m を り り を を 原 を 有 を か む ち つ か む む む む む む む き る き す る か す う う か す い う が す む い う か が 御 間 い う う か か む 詰 昭 若 な か な 取 用 に な か な が ま ひ う ひ か な た む に ち か か か か か か か か か か か か か か か か か か	
		瀻		р С	j j		SA	浜田二 1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	

 (公共の説明) □ : 死何重 P: :: 地場見: 急からわすべきブラントの運転状態(油量をの過合せが低立な運転状態(水) Vに 防く、): における正力が空 広く3): における正力が空 M: :: 地場是: 認知ならわすべきブラントの運転状態(油量をの通合せが低 立な運転状態(水)、Vに加く、): 空濃縮に作用していく低極が停止が構成が重要)を用い こくまれ、 □ :: 地場との組合せが建立な証表状値(V) で支援的に使用力、数計機械作電等)を用い でもおい。 □ :: 地場との組合せが建立な証表状値(V) で支援的(支援): この者で、 □ :: 地場との組合せが建立な証表状値(V) で支援的(支援): この者で、 □ :: 地場との組合せが建立な証表状値(V) で支援的(支援): この者で、 □ :: 地域との進み体が増加し、 □ :: 地域との進み体域が増加 □ :: 地域との進み体域が増加 □ :: 地域との進み体域が増加 □ :: (二大車な砂糖の次地(通転状態V) で支援的(支援)(1): (に用する互振が増重) □ :: (二大車な砂糖の次地(通転状態V) で支期的(支援)(1): に(用する互振が増重) □ :: (二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二二十二十二

	備考
	 ・検討内容の相違
]	
-	
-	
1.2	
]	
]	
_	
_	
.2	
-	
-	
-	
.2	
の関係	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	補足1	
	捕足1 島根原子力発電所原子炉施設保安規定 抜粋 (サプレッションチェンバの水位) 第46条 原子炉の状態が運転,起動および高温停止において,サプレッシ 位は、表46-1 (図46)に定める事項を運転上の制限をする。ただし 一時的な水位変動を除く。 2. サプレッションチェンバの水位が,前項に定める運転上の制限を満足し するため、次号を実施する。 (1) 当直長は、原子炉の状態が運転,起動および高温停止において,サプ バの水位を24時間に1回確認する。 3. 当直長は、サプレッションチェンバの水位が、第1項に定める運転上の ないと判断した場合は、表46-2の措置を講じる。 麦46-1 項目 運転上の制限 +5 cm (上限値) サプレッションチェンバ水位 +5 cm (上限値) サプレッションチェンバ水位 -5 cm (下限値) 図46 領域A 上限値 上限値	ヨンチェンバの水 , 地震時における ていることを確認 レッションチェン 制限を満足してい
	通常運転範囲	
	条件 要求される措置 A.サプレッションチェンバの水位 A1.サプレッションチェンバの水位を制	
	が図46の領域Aの場合 限値以内に復旧する。 B.条件Aで要求される措置を完了 B1.高温停止にする。 時間内に達成できない場合 82 冷温停止にする。	24時間
	C. サプレッションチェンバの水位 が図46の領域Bの場合 C1. 原子炉をスクラムする。	速やかに
	注記:図46に記載の「上限値」はH.W.L (3.66m)を表し,「下限値」はL.W.L (3.	56m)を表す。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
· 資料構成の相違
息根2号機でけ サ
プレッションチェンバ
の水位冬供けVI-1-8-1
「百乙后枚幼旋設の設
「原丁炉俗酌池成の成
市 余 件 に 送 9 る 説 明 ました
音」を変忠りる。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備去
・
■ 局恨 2 方機では, サ ■ 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参昭する

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

 備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はⅥ-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2	2号機

) 世史
加考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

Γ	女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機
Ì			
1			

備考
・資料構成の相違
島根2号機では、サ
プレッションチェンバ
の水位条件はVI-1-8-1
「原子炉格納施設の設
計条件に関する説明
書」を参照する。

Γ	女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機
Ì			
1			

備考		
・資料構成の相違		
島根2号機では、サ		
プレッションチェンバ		
の水位条件はVI-1-8-1		
「原子炉格納施設の設		
計条件に関する説明		
書」を参照する。		

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考		
・資料構成の相違		
島根2号機では、サ		
プレッションチェンバ		
の水位条件はVI-1-8-1		
「原子炉格納施設の設		
計条件に関する説明		
書」を参照する。		

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考		
・資料構成の相違		
島根2号機では、サ		
プレッションチェンバ		
の水位条件はVI-1-8-1		
「原子炉格納施設の設		
計条件に関する説明		
書」を参照する。		

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 11 地震時における <u>円筒形状</u> 容器内部水の有効質量に係る研究の概要	
	1. 概要 本研究では、 <u>円環形状</u> 容器に対しNASTRANによる有効質量評価の妥当性を確認すること を目的と <u>する</u> 。そのため、 <u>サプレッションチェンバを縮小模擬した試験体</u> による振動試験を実施し た。	 ・検討内容の相違 島根2号機で参照す る振動試験では,通常 運転範囲の上限値相当
	 研究計画 1 研究時期 <u>平成14年度</u> <u>2.2 研究体制</u> <u>末田</u>究は、下記の体制氏び犯制公用で実施した 	に対して検討する。 ・検討内容の相違 島根2号機では,振 動試験 <mark>のみ</mark> により仮想 質量法の検証を行う。
	本研究は、下記の体制及び役割分担で実施した。 体制 役割分担 中国電力株式会社 研究の計画策定 研究の実施 振動試験実施状況の確認 振動試験結果及び解析結果の確認 株式会社日立製作所 振動試験の実施 NASTRANによる有効質量の解析	
	2.3 研究実施場所 本研究における振動試験は, <u>日立製作所機械研究所</u> の振動台で実施した。	
	 3. 振動試験による有効質量評価 3.1 試験体 <u>島根1号機サプレッションチェンバを縮小模擬した</u>試験体を製作し振動試験を実施した。試験の状況を図3.1-1に示す。試験体は実機と同様に16個の円筒を円環形に繋いだ形状とし、寸法は実機サプレッションチェンバの1/20程度である円環の直径1464mm、断面の内径400mmとした。材質は内部水の挙動を確認するため透明のアクリル製とした。試験体の形状及び寸法を図3.1-2に示す。試験装置は、振動台の上に試験体を支持する架台を設け、その上に試験体を設 	 ・検討内容の相違 島根2号機では,島 根1号機のサプレッションチェンバを縮小し た試験体を使用する。 ・試験方法の相違

女川原子力発電所2号機(2021年12月10日)			島根原子力発電	所 2号機	備考
	置した。振動台と	架台の間には	加振方向に2本の	リニアガイドを並行に配置し, 試験体及び架台	・試験方法の相違
	が加振方向に移動	めできる構造と	こした。試験体及び	び架台はロードセルを介して振動台に固定され	
	るため,試験体及	なび架台の振動	応答による水平力	万向反力はロードセルで確認することができる。	
	主な計測項目に 表 <u>3.1-1</u> に計測	t, 振動台上, 禁 項目, 図 <u>3. 1</u> -	梁台上及び試験体_ _3_に計器配置を示	上の加速度, 架台を含めた試験体の荷重である。 <す。	
	Image: Second secon	 一1 試験装置 	<image/>	0400 図 3. 1-2 円環形状容器	
			表 3.1-1	計測項目	
	計測項目	計測機器	位置	計測チャンネル数(設置位置)	
	反力	ロードセル	振動台-架台間	X成分	
	加速度	加速度計	振動台上 架台上	X成分:2 (90°,270°) Y成分:2 (0°,180°) Z成分:4 (0°,90°,180°,270°) X成分:2 (90°,270°) Y成分:2 (0°,180°)	
			試験体上	Z成分:4 (0°,90°,180°,270°) X成分:2 (90°,270°) Y成分:2 (0°,180°) Z成分:4 (0°,90°,180°,270°)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.2 試験条件 加振波は、 <u>スロッシング周期帯に加速度成分を含まないランダム波A</u> 及び <u>スロッシング周期</u> 帯に加速度成分を含むランダム波Bの模擬地震波を用いる。図 <u>3.2-1</u> 及び図 <u>3.2-2</u> に各地震 波の時刻歴波形及び加速度応答スペクトル(減衰 0.5%)を示す。試験では図 <u>3.2-1</u> 及び図 <u>3.2</u> -2の地震波の <u>1倍、2倍、3倍及び4倍</u> で加振を行った。加振は水平1方向とする。水位は、 内部水なし及び <u>内部水あり(H.W.L相当)の2</u> ケースとする。表 <u>3.2-1</u> に試験条件を示す。	・試験条件の相違
	$ = 200 _ 0.01 _ 0.1 _ 1 _ 10 _ 10 _ 0.01 _ 0.1 _ 1 _ 10 _ 0.1 $	・試験条件の相違
	表 3.2-1<	・試験条件の相違

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.3 試験結果に基づく有効質量評価	
	<u>ランダム波A(100Gal,内部水あり)</u> の試験ケースにおいて計測された荷重の時刻歴波形を図	・試験条件の相違
	<u>3.3-1</u> に示す。	
	一般的にスロッシングの固有振動数は低く、本研究で対象とするような容器支持部に作用す	
	る地震荷重への寄与は小さいと考えられるため,内容水荷重F[N]と架台上の計測加速度[m/s2]	
	との関係は以下の式で表される。	
	$F = (M+M_{E}) \ddot{x}$ (1)	
	ここに、 $M[kg]$ は架台を含む容器の質量、 $M_E[kg]$ は水の有効質量である。式(1)のとおり、	
	頁里は加速度に対する何里の比としてなされる g_{m}	・検封内宏の知道
	$\Delta 3.3 2 ())) へここの取八加速度と取八何重の関係を小り。\Delta3.3-2 における内部水ありのケースの回帰直線の傾きから架台及び容器の総質量を引いたもの$	- 彼前内谷の伯達
	が水の有効質量となり、水の全質量に対する比として有効質量比が算出できる。ただし、本研究	る振動試験では、最大
	では、内部水なしの条件における試験結果を用いて、上記と同様の方法で式(1)より架台及び	加速度及び最大荷重を
	容器の総質量を算出している。	用いて有効質量比を評
	ランダム波A及びランダム波Bによる試験結果から得られた有効質量比を表 3.3-1に示す。	価している。
	加振波の違い及びスロッシング周期の加速度成分の有無による有効質量比の相違は小さいこと	・検討内容の相違
	を確認した。	島根2号機では、ス
		ロッシング周期の加速
		度成分の有無により,
		スロッシングの影響を
	1.0	確認する。
		松弛中空の招達
		・ 使 討 り 谷 の 相 遅 し 相 の - 地 な い し エ
	as direction and the second se	□
	-1.0	いて振動試験を実施す
	U 5 1U 15 20 時間[s]	Sin Birrin C The ?
	図 3.3-1 計測荷重の時刻歴波形(ランダム波A, 100Gal, 内部水あり)	・ 検討内容の相違
		島根2号機で参照す
		る振動試験では、最大
		加速度及び最大荷重を
		用いて有効質量比を評
		価している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	<figure>A DECEMPTION AND A DECEMPTION AND A</figure>	 ・検討内容の相違 島根2号機で参照す る振動試験では、最大 加速度及び最大荷重を 用いて有効質量比を評 価している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 NASTRANによる有効質量評価 	
	汎用構造解析ソフトNASTRANでは,容器形状と水位が既知であれば,仮想質量法により有	
	効質量が算出できる。そのため、振動試験や煩雑な数値計算を実施することなく、式(1)より効	
	率的に容器に作用する地震荷重を推定することができる。本研究では、振動試験と同様の解析モデ	
	ルに対しNASTRANの仮想質量法により有効質量比を算出した結果を実験結果と比較し、そ	
	の妥当性を検証する。なお、本方法は流体を非圧縮性のポテンシャル流れと仮定することにより構	
	造物に接する流体の振動質量を求める方法であり,自由表面の重力影響は考慮されない。解析モデ	
	ルを図 4-1に,解析結果を有効質量比として表 4-1に整理する。	
	Ex	
	図 4-1 構造解析モデル	
	表4-1 NASTRANによる有効質量比の算出結果	
	項目 算出結果	
	有効質量比 0.21	
		・検討内容の相違
		島根2号機では、振
		動試験により仮想質量
		法の検証を行う。

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所	2 号機			備考
	5 妥当性検証					
	島根1号機サプレッションチェ	ンバに対する振動試!	験,NASTR	ANのそれぞれで行	得られた	・検討内容の相違
	有効質量比を表 5-1 に整理する。	NASTRANによ	る有効質量比は	、振動試験の結果	と同等の	島根2号機では、島
	<u>結果が得られて</u> おり、NASTR	ANにより算出される	る有効質量は妥	当であることが確認	はれた。	根1号機のサプレッシ
						ョンチェンバを縮小し
	<u>表 5-1</u>	各方法による有効貿	重量比の評価結果	<u> </u>		た試験体を使用する。
	項目	NASTRAN	振動	助試験		・検討内容の相違
			フンダム波A	フンダム波B		局根2
	有効質量比	0.21	0.18	0.20		動 い 練 に より 仮 恣 員 里 注の 検 証 を 行 う
						 ・ 検討内容の相違
						島根2号機で参照す
						る振動試験では、通常
						運転範囲の上限値相当
						に対して検討する。
	6. 結論					
	○… 円環形状容器における有効質量	の把握を目的に、振	動試験及び汎用	構造解析ソフトNム	ASTR	・検討内容の相違
	ANにより有効質量を評価し比較	を行った。その結果,	NASTRAN	[による有効質量算]	出の妥当	島根2号機で参照す
	性が確認できた。					る振動試験では、通常
						運転範囲の上限値相当
						に対して検討する。
						・検討内容の相違
	7. 学会発表実績					島根2号機では、振
	本研究結果については、日本機	械学会 2008 年度年次	大会にて学会発	表している「ユユ」。		動試験により仮想質量
						法の検証を行う。 ・ 検討内容の相違
		知郎 垣上 声コート	厉 雅切 总卡	彭子 谷木 学・1	ーラマ形	・ (
	家器におけろ内部水	の地震時荷重評価 日	<u>太</u> 機械学会 900	<u>8</u> 年度年次大会講演		る振動試験では、通常
	2008.7 巻		-1-12002 <u>- 1-1200</u>		3.HM(2).ZS2.	運転範囲の上限値相当
						に対して検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	<補足1> 常温下での振動試験の妥当性について	・記載の充実
	今回実施した振動試験については、以下の検討を踏まえ、常温下で実施している。	島根2号機では、設
		置許可段階での説明事
	① サプレッションチェンバの耐震評価において考慮する運転状態(重大事故時の荷重の組合	項を記載する。
	せについては, 「重大事故等対処設備について(補足説明資料)39 条 地震による損傷の	
	防止 39-4 重大事故等対処施設の耐震設計における重大事故と地震の組合せについて」に	
	<u>て説明)</u>	
	 ・サプレッションチェンバの耐震評価は、設計基準事故時及び重大事故時ともに、事故の 	
	発生確率,継続時間及び地震の年超過確率を踏まえ,地震荷重と事故時の荷重の組合せ	
	を考慮するため、今回実施した振動試験の温度条件(水温)は、基準地震動Ssと荷重	
	の組合せが必要となる運転状態を考慮する。	
	 ・設計基準事故時における温度条件は通常運転状態(飽和温度以下)である。 	
	・重大事故時は,事象発生後 2×10 ⁻¹ 年以降の荷重と基準地震動 Ss との組合せとなるた	
	め、温度条件は飽和温度以下(沸騰状態ではない)である。	
	② 水温による有効質量比への影響	
	 ・有効質量に関連する内部水の質量は密度の関数であり、水温が飽和温度以下では温度変 	
	化に対する影響は小さい。	
	なお、サブレッションチェンバの耐震評価における地震応答解析及び応力評価に用いる部材	
	温度は, 連転状態を考慮した温度条件を用いる。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	<補足2> 振動試験における加振波について	・記載の充実
	振動試験において、以下の条件を考慮して加振波を設定している。	島根2号機では、設
	①スロッシング荷重の考慮	置許可段階での説明事
	スロッシング荷重による内部水の有効質量への影響を確認するため、スロッシング周	項を記載する。
	期(約0.8秒)帯に加速度成分を含む加振波(ランダム波B)とスロッシング周期帯に加	
	速度成分を含まない加振波(ランダム波A)を適用する。	
	②試験体の運動の影響	
	有効質量は内部水ありの場合と内部水なしの場合での振動試験結果から得られる荷重	
	-加速度関係の回帰直線の傾きの差から算出する。このため、有効質量比を精度良く算出	
	するには、試験体の運動により加わる荷重を相対的に小さくする必要があることから、試	
	験体の固有周期(約0.025秒)及びこの周辺の短周期の加速度成分が小さい加振波を適用	
	<u>する。</u>	
	③周波数成分の影響	
	加振波の周波数特性は内部水の有効質量に影響しない[1][2]ことから、ランダム波を適	
	用する。	
	以上の条件を踏まえ、ランダム波Aでは0.1~0.2秒、ランダム波Bでは0.1~2秒の周期成分	
	を一定としたフーリエスペクトルから模擬地震波を作成する。作成した模擬地震波の応答加速	
	度スペクトルを図1に示す。	
	twe would be a constrained by the second sec	
	ランダム波A ランダム波B 図1 入力波の応答加速度スペクトル	
	<u>[1]Housner, G. W.: Nuclear Reactors And Earthquakes, TID Rep. 7024, 1963.</u> <u>[2]</u> 容器構造設計指針・同解説(日本建築学会)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 12	
	内部水の有効質量比に対するスロッシングの影響	
	1. 概要	
	有効質量比に対するスロッシング影響の有無を確認するため, <u>流体解析</u> で得られた荷重時刻歴 (スロッシング周期成分を含む)及びスロッシング周期成分を取り除いた荷重時刻歴に対する有 効質量比を算定し,比較・検討した。	 ・検討内容の相違 島根2号機では、流 体解析により有効質量 比の検証を行う。
	 検討内容 <u>流体解析におけるスロッシング周期は入力加速度と荷重のフーリエスペクトルの関係より 0.26</u> <u>Hz(耐震解析用重大事故等時水位)として得られている。</u>このため、<u>流体解析</u>で得られた荷重時 刻歴に対して、<u>フィルタ</u>処理を行い、<u>0.2~0.3Hz</u>のスロッシング周期成分を取り除いた荷重時刻 歴を求め、有効質量比を算定した。 	 ・検討内容の相違 島根2号機では、流 体解析により有効質量 比の検証を行う。
	 検討結果 スロッシング周期成分あり及びスロッシング周期成分なしの荷重時刻歴に対する加速度と荷重の関係図を図 3-1に,有効質量比の比較結果を表 3-1に示す。 スロッシング周期成分あり及びスロッシング周期成分なしの有効質量比は同程度であり,有効 質量比に対するスロッシングの影響はほぼない。 	 ・評価方法の相違 島根2号機では,通
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	常運転時の耐震評価に おいても耐震解析用重 大事故等時水位を用い る。
	-20000 -10 -5 0 5 10 -20000 -10 -5 0 5 10 加速度 [m/s ²] 加速度 [m/s ²]	
	(a)スロッシング周期成分あり (b)スロッシング周期成分なし	
	図 3-1 荷重と加速度の関係	

女川原子力発電所2号機(2021年12月10日)		島根原子力発電所 2号機		備考	
	表 3-1 有効質量比の比較結果			・評価方法の相違	
	水位		流体	解析	島根2号機では、通
		スロッシング周期成分あり	スロッシング周期成分なし	常運転時の耐震評価に おいても耐震解析用重	
	耐震解析用重大事故等時水位	0.29	0. 28	大事故等時水位を用いる。	
				~ o	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・記載箇所の相違
島根2号機では、全
試験回における内部水
の有効質量比を別紙 11
に記載している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	内部水の有効質量比に対する入力地震動の影響
	1. 概要 サプレッションチェンバの地震荷重算出に当たり,サプレッションチェン 量をNASTRANにより算出することの妥当性を検証するため, <u>島根1号</u> <u>エンバに対して,NASTRANによる有効質量の算出及び</u> 試験体を用いた おり,両者の有効質量比が同等であることを確認している。 本資料では,振動試験に用いた入力地震動に対して,周期特性の違いによる 考察する。
	 振動試験の入力地震動 振動台への入力波は、スロッシング成分を含まないランダム波A及びスロ ランダム波Bの人工地震波を用いた。 また、振動試験では、上記地震波の1倍、2倍、3倍及び4倍で加振を行
	3. 有効質量比に対する入力地震動の影響検討

	備考	
別紙 13		
ノバの内部水の有効質 <u> 号機サプレッションチ</u> と振動試験を実施して る有効質量への影響を <u> ロッシング成分を含む</u> <u> たった</u> 。	 ・検討内容の相違 島根2号機で参照する振動試験では,島根 1号機のサプレッションチェンバを用いて検討している。 ・検討内容の相違 島根2号機では,周期特性の違いによる影響を検討する。 ・試験条件の相違 	
	 ・検討内容の相違 島根2号機では,周 期特性の違いによる影 響を検討する。 	
女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
--------------------------	---	--
	<u>3.1</u> 周期特性の違い	・試験条件の相違
	<u>ランダム波A及びランダム波Bの入力加速度時刻歴波形及び加速度応答スペクトルを図 3.1</u> <u>-1に示す。また、これらの周期特性の異なる地震波に対する振動試験から算出された有効質量</u> <u>比を表 3.1-1</u> に示す。	 ・検討内容の相違 島根2号機で参照す る振動試験では,通常 運転範囲の上限値相当 に対して検討する。 ・試験条件の相違
	与びためなびランダム波Bによる振動試験結果より算出した有効質量比は同程度であり、 有効管量は入力地震動の周期特性によらず、評価対象とする容器の形状に依存していること なっこのと考えられる。	 ・試験条件の相違 ・検討内容の相違 島根2号機で参照する振動試験では、通常 運転範囲の上限値相当 に対して検討する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 3.1-1 振動試験から得られた水の有効質量比	
	(別紙 11 表 3.3-1の再掲)	
	入力地震波 有効質量比	
	ランダム波A 0.18	
	ランダム波B 0.20	
		松斗中安の相等
		 ・ 使 的 内 谷 の 相 遅 自 相 の - 地 、 会 昭 士
		西松2万機(参照) ス振動試験でけ 通党
		電転範囲の上限値相当
		に対して検討する。
	4. 考察	
	上記のとおり、振動試験に用いた入力地震動に対する周期特性の違いによる有効質量への影響	・検討内容の相違
	について,今回実施した振動試験結果を用いて検討した結果,入力地震動の周期特性の違いによる	■ 島根2号機では、周 ■ 世界の表示により
	影響が小さいことを確認した。	期特性の遅いによる影
	なお、今回の検討結果は、NASTRANにより算出される有効質量が評価対象とする容器形状	
	及い谷 研内 水 位 を 与 え ら れ れ し は , 地 晨 動 を 用 い る こ と な く , 有 効 質 重 を 昇 出 で ぎ る と い う 特 徴 と も	
	金百している。	

別紙 14 サプレッションチェンバ内部水によるスロッシング荷重及び有効質量の影響 1. スロッシング荷重及び有効質量に与える影響検討 サプレッションチェンバ内部水によるスロッシング荷重は、サプレッションチェンバの主要な 内部構造物を考慮した解析モデルを用いて、水平1方向十鉛直方向の地震動を入力した解析結果 から算定している。上記解析条件に対して水平2方向入力による影響を検討し、スロッシング荷重 及び有効質量に与える影響について検討を行う。 ・評価条件の相違 島根2号機では、当 要な内部構造物をモデ ル化にマロッシング
サプレッションチェンバ内部水によるスロッシング荷重及び有効質量の影響 1. スロッシング荷重及び有効質量に与える影響検討 サプレッションチェンバ内部水によるスロッシング荷重は、サプレッションチェンバの主要な 内部構造物を考慮した解析モデルを用いて、水平1方向十鉛直方向の地震動を入力した解析結果 から算定している。上記解析条件に対して水平2方向入力による影響を検討し、スロッシング荷重 及び有効質量に与える影響について検討を行う。 ・評価条件の相違 身板では、引 要な内部構造物をすぎ ル化してスロッシング 荷重を算定することれ
サプレッションチェンバ内部水によるスロッシング荷重及び有効質量の影響 1. スロッシング荷重及び有効質量に与える影響検討 サプレッションチェンバ内部水によるスロッシング荷重は、サプレッションチェンバの主要な 内部構造物を考慮した解析モデルを用いて、水平1方向十鉛直方向の地震動を入力した解析結果 から算定している。 上記解析条件に対して水平2方向入力による影響を検討し、スロッシング荷重 島根2号機では、自要な内部構造物をモラル化してスロッシング ウ部構造物をすう。
1. スロッシング荷重及び有効質量に与える影響検討 サプレッションチェンバ内部水によるスロッシング荷重は、サプレッションチェンバの主要な 内部構造物を考慮した解析モデルを用いて、水平1方向十鉛直方向の地震動を入力した解析結果 から算定している。上記解析条件に対して水平2方向入力による影響を検討し,スロッシング荷重 及び有効質量に与える影響について検討を行う。 ・評価条件の相違 島根2号機では、当 要な内部構造物をモデレル化してスロッシング 荷重を算定することが
・・ハニノンシント回車及び日が見風にラムジンを自び用 ・アイレッションチェンバ内部水によるスロッシング荷重は、サプレッションチェンバの主要な サプレッションチェンバ内部水によるスロッシング荷重は、サプレッションチェンバの主要な ・評価条件の相違 内部構造物を考慮した解析モデルを用いて、水平1方向入力による影響を検討し、スロッシング荷重 ・評価条件の相違 及び有効質量に与える影響について検討を行う。 ・評価条件の相違 日本の主要なののでは、 ・評価条件の相違 日本の主要なののでは、 ・評価条件の相違 日本の主要なののでは、 ・評価条件の相違 日本の主要なののでは、 ・ 日本の主要なのでは、 ・ 日本の主要なのでは、
内部構造物を考慮した解析モデルを用いて,水平 <mark>1</mark> 方向+鉛直方向の地震動を入力した解析結果 から算定している。 <u>上記解析条件に対して水平2方向入力による影響を検討し,スロッシング荷重</u> <u>及び有効質量に与える影響について検討を行う。</u> ・評価条件の相違 島根2号機では, 要な内部構造物をモラ ル化してスロッシング 荷重を算定することか
から算定している。 上記解析条件に対して水平2方向入力による影響を検討し,スロッシング荷重 したす効質量に与える影響について検討を行う。 ・評価条件の相違 ・認知構造物をモラ ル化してスロッシング 荷重を算定することが この知様法物による
及び有効質量に与える影響について検討を行う。 島根2号機では、Ξ 要な内部構造物をモラ ル化してスロッシンク 荷重を算定することが この知識法物による
要な内部構造物をモラ ル化してスロッシンク 荷重を算定する <mark>ことが</mark>
ル化してスロッシンシ 荷重を算定する <mark>ことが この対構法物にトス</mark>
何重を算定する <mark>ことれ</mark> こ
・評価条件の相違
島根 2 号機では, ス
ロッシングの卓越周期
帯及びサブレッション
リエンハの一次面有に 期 <mark>及びスロッシング</mark>
期で応答加速度が大き
いSs-Dを用いて,
スロッシング荷重を算
定する <mark>ことから、地震</mark>
動による影響検討は行動になった。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

1
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期及びスロッシング周
期で応答加速度が大き
いSs-Dを用いて
スロッシング荷重を質
ニーノンンノ 向重と昇 完する - とから 地震
た y る こ こ から, 地展 動に ト ス 影 郷 絵 計け 行
あたよるが音快的は1

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

/## -##
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期 <mark>及びスロッシング周</mark>
<mark>期</mark> で応答加速度が大き
いSs-Dを用いて.
スロッシング荷重を筧
完する ことから 地震
たりる <mark>ことから</mark> , 地展 動に上る影響検到け行
\sim

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

/## -##
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期 <mark>及びスロッシング周</mark>
<mark>期</mark> で応答加速度が大き
いSs-Dを用いて.
スロッシング荷重を筧
完する ことから 地震
たりる <mark>ことから</mark> , 地展 動に上る影響検到け行
\sim

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

/## -##
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期 <mark>及びスロッシング周</mark>
<mark>期</mark> で応答加速度が大き
いSs-Dを用いて.
スロッシング荷重を筧
完する ことから 地震
たりる <u>ことから</u> , 地展 動に上る影響検到け行
\sim

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

/## -##
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期 <mark>及びスロッシング周</mark>
<mark>期</mark> で応答加速度が大き
いSs-Dを用いて.
スロッシング荷重を筧
完する ことから 地震
たりる <mark>ことから</mark> , 地展 動に上る影響検到け行
\sim

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

/## -##
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期 <mark>及びスロッシング周</mark>
<mark>期</mark> で応答加速度が大き
いSs-Dを用いて.
スロッシング荷重を筧
完する ことから 地震
たりる <mark>ことから</mark> , 地展 動に上る影響検到け行
\sim

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

/## -##
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期 <mark>及びスロッシング周</mark>
<mark>期</mark> で応答加速度が大き
いSs-Dを用いて.
スロッシング荷重を筧
完する ことから 地震
たりる <mark>ことから</mark> , 地展 動に上る影響検到け行
\sim

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

/## -##
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期 <mark>及びスロッシング周</mark>
<mark>期</mark> で応答加速度が大き
いSs-Dを用いて.
スロッシング荷重を筧
完する ことから 地震
たりる <u>ことから</u> , 地展 動に上る影響検到け行
\sim

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

1
備考
・評価条件の相違
島根2号機では、ス
ロッシングの卓越周期
帯及びサプレッション
チェンバの一次固有周
期及びスロッシング周
期で応答加速度が大き
いSs-Dを用いて
スロッシング荷重を質
ニーノンンノ 向重と昇 完する - とから 地震
た y る こ こ から, 地展 動に ト ス 影 郷 絵 計け 行
あたよるが音快的は1

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

 備考
・評価条件の相違
島根2号機では、鉛
直方向の地震動を入力
してスロッシング荷重
を算定する <mark>ことから,</mark>
<mark>鉛直方向地震動による</mark>
<mark>影</mark> 響検討は行っていな
<mark>، را</mark>

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

 備考
・評価条件の相違
島根2号機では、鉛
直方向の地震動を入力
してスロッシング荷重
を算定する <mark>ことから,</mark>
<mark>鉛直方向地震動による</mark>
<mark>影</mark> 響検討は行っていな
<mark>، را</mark>

女川協子力発送所 2 外暢 高規原子力発送所 2 外暢 2 木平区 力向人力に上方SK KT 米平区 力向人力に上方SK KT 米平区 力向人力に上方SK KT 米田田 内板 以び 来 2 夕向日 力印に支付 KT 地質 内板 以び 来 2 夕向日 力印に支付 KT 1 油田 方向 以び 来 2 夕向日 力印に支付 KT 1 油田 方向 以び 来 2 夕向日 力印に支付 KT 1 油田 方向 以び 来 2 夕向日 力印に支付 KT 1 油田 方向 以び 来 2 夕向日 力印に支付 KT 1 油田 方向 以び 来 2 夕向日 力印に支付 KT 1 二 1 1 1 <		
2. 水平20月の入口によるスロッシング発生ペールです。 ※近2万向入口によるスロッシング発生ペートで、 ※広り川板で大平マノバー転合のスロッシング発生ペート ※日ごグルや説をユーロで、「解析部元を大クシューロに示す。 第日ごグルや説をユーロで、「解析部元を大クシューロに示す。 第日ごグルや説をユーロで、 第日ごグルや説をユーロで、 第日ごグルや説をスーロに示す。 第日ごグルや説を見していて、 第日ごグルや説を見していて、 第日ごグルや説を見いていて、 第日ごグルや説を見いていて、 第日ごグルや説を見いていていて、 第日ごグルや説を見いていていていていていていていていていていていていていていていていていていて	女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
水学を方向入りによるスロッシング要量への影響について、地質集成 一般直力的及び株平20時半点之力のとした場合のスロッシング要量ない 2.1 那所でうか 第時でうかえばまし、11: 新用電光を表し、11: 売す。 「「「「」」」「」「「「」」」「」」「」」「」」「」」「」」「」」「」」「」」		2 水平2方向入力による影響
予約直方向表で水平2方向中和直方向を1.本場合のスロッシング演点を1 2.1 新好モデル (新行モデル な図2.1-1) 1111 第分第五文法2.1-1 に対応 1111 1111 11111 11111 11111 11111<		水平2方向入力によるスロッシング荷重への影響について、地震動の
2.上 熱粉モデル 解灯・ビブルをは2.上 1に、解竹詰売を支え上して示す。 回2.1-1 式体影行モデル 返2.1-1 式体影行モデル 支2.1-1 頭折詰売 第二 頭折詰売 (約子歩イズ) 第子サイズ		+ 鉛直方向及び水平2方向+鉛直方向とした場合のスロッシング荷重を比
21 第項でブル 解析モブルな図2.1-1に、熱射視元を完え1ー1に示す。 図2.1-1 液体影響モブル 図2.1-1 液体影響モブル 液2.1-1 液体影響モブル 液2.1-1 液体影響モブル 液2.1-1 原射協定 格子改 格子改 格子サイズ		
解析・デルを図2.1-1に、作り読えを表2.1-1に示す。 図2.1-1 図2.1-1 資源規範定でか。 設定して、資源規範定でか。 設定して、資源規範定でか。 現金 税子数 格子サイズ		<u>2.1</u> 解析モデル
国工11 風化報告エラブル 安2.1-1 納竹読売 格子数 格子サイズ		<u>解析モデルを図 2.1-1 に,解析諸元を表 2.1-1 に示す。</u>
図2.1-1. 就作解析でダイル 炭之.1-1. 解作違元 焼子数 格子数 格子サイズ		
<u>図 2.1 - 1</u> . 族好話元 <u>密 2.1 - 1</u> . 族好話元		
<mark>図2.1-1 液体解析モデル</mark> <u>表2.1-1 解析議定</u> 格子数 格子サイズ		
図 2.1-1 試修解析モデル 戻2.1-1 解析電元 格子数 格子サイズ		
図 2.1-1 滅体解析モデル <u> 戻2.1-1 解析</u> 議元 格子数 格子サイズ		
図2.1-1. 液体解析モデル 麦2.1-1. 解析講元 格子数 格子数 格子サイズ		
(図 2.1-1) 就体解析モデル 要2.1-1 解析適定 後子数 格子サイズ		
図 2.1-1 液体解析モデル 要2.1-1 解析諸元 格子数 格子サイズ		
図2.1-1 滋休解析モデル 友2.1-1 解析菌元 格子数 格子サイズ		
図 2.1-1 液体解析 モズ& <u>家 2.1-1 解析講元</u> 格子数 格子サイズ		
終子数 格子数 格子サイズ		<u>図 2.1-1 流体解析モデル</u>
度2.1-1 解析講定 格子数 格子サイズ		
格子数 格子サイズ		表 2.1-1 解析諸元
格子サイズ		格子数
		格子サイズ

	備考
、力条件を水平1方向 較し,確認する。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機			備考
	<u>2.2</u> 解析条件 解析条件を表 <u>2.2</u>	に示す。		
		表 <u>2.2-1</u> 解析条件(水平	2方向入力)	
	項目	基本ケース	影響検討ケース]
	解析コード	Fluent	同左	
	解析モデル	実機解析モデル	同左	
	入力波	S s -D	NS方向:Ss-D EW方向:位相特性の異なる Ss-D*	
	地震動の	水平1方向	水平2方向	
	入力方向	+鉛直方向	+鉛直方向	
	水位	EL 4000mm (検討用水位)	同左	
	 「水平 照 2.3 影響検討結果 評価結果を表2.3-ゴ す。 水平2方向入力によ 向入力の最大荷重値の 値)は、小さいことを 周方向へ分散している 平2方向の入力波を位 形状)であることから よって、サプレッシ 動を水平1方向+鉛直 本ケースと影響検討ケ ことを確認した。 なお、基本ケース及 ンター図はほぼ同様な 	2 万向及び鉛直万向地震力の組 , 最大荷重発生時刻付近(12.4 るスロッシング荷重の影響につ √2倍)に比べ,影響検討ケー 確認した。これは,水平2方向 こと及びEW方向地震動の位相 相反転させた場合の影響は,サ ,スロッシング荷重への影響は ョンチェンバのスロッシング荷 方向とすることで保守的になる ースで一致しており,水平2方 び影響検討ケースに対するスロ 分布,波高であり,大きな差異	合せに関する検討について」参 (次の変位コンター図を図2.3-1) かて、基本ケース(合成荷重:水 な、(水平2方向入力の時刻歴荷重 入力の影響により、スロッシンク 特性によるものと考えられる。ま プレッションチェンバが円環形状 ないと考えられる。 電評価は基本ケースのとおり、入 ことを確認した。また、有効質量 向入力による有効質量比への影響 ないことを確認した。	、 に示 、 平1方 の 最大 、 荷重が た、、水 、 、 大 、 大 、 大 、 大 、 大 、 大 、 大 、 、 、 、 、 、 、 、 、 、 、 、 、

女川原子力発電所2号機(2021年12月10日)	女川原子力発電所 2 号機(2021 年 12 月 10 日) 島根原子力発電所 2 号機			備考		
	表 <u>2.3-1</u> 評価結果(水平2方向入力)					
	検討ケー	ース	①基本ケース(水平1方向入力)	②影響検討ケース (水平2方向入力)	1/2	
	スロッシング	N S	5, 363	5, 364* ²	1.00	
	最大荷重*1	EW	_	3, 699* ²	1.45	
	(kN)	合成荷重	7, 584 ^{*3}	5, 372* ⁴	1.41	
	七番節見し	N S	0.00	0.23	1.00	
	有効質重比	ΕW	0.23	0.23	1.00	
	注記*1:スロシ に対す *2:1方向 *3:基本グ *4:各方向 大値 (最大荷] 注 色の違 ものを	 シング最大花 うるスロッシン 可成分(NS) 「一スの最大花 可に加わるスロ ①基本ケー 重発生時刻(1 記している。 	市重は地震波に依存する べの荷重を確認する必要 くはEW)のみに着目し 市重の√2倍の荷重 コッシング荷重を時刻毎 ス 12秒)付近) (最て) 、 ゴング 、 さの違いを表す。また 図 2.3-1 変位コング	Sことから、今後作成す 気があるため暫定値 た場合の最大荷重 手に合成(√NS ² +EW ²) ②影響検討ケース 大荷重発生時刻(12秒) ,高さは初期水位を0r ター図	⁻ る建物応答 した値の最 付近) mとした	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	

備考
・評価条件の相違
島根2号機では、主
要な内部構造物をモデ
ル化してスロッシング
荷重を算定する <mark>ことか</mark>
<mark>ら, 内部構造物による</mark>
影響検討は行っていな
$\mathbb{N}_{\mathcal{N}}$

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

 備考
・評価条件の相違
島根2号機では、主
要な内部構造物をモデ
ル化してスロッシング
荷重を算定する <mark>ことか</mark>
<mark>ら,内部構造物による</mark>
<mark>影響検討は行っていな</mark>
<mark>い</mark> 。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考
 ・資料構成の相違 島根2号機では、位 相特性の異なる模擬地 震波については、NS2 補
足-023-4「水平2方向 及び鉛直方向地震力の 組合せに関する検討に ついて」において説明 する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

備考

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	規格基準における内部水の有効質量比との比較 1. はじめに 本資料は、NASTRANによる有効質量比 <u>算定</u> の妥当性を確認するため、 同解説(2010年3月改訂版)(以下「容器指針」という。)に記載されている球 ンクの有効質量比とNASTRANによる有効質量比の算定結果の比較検討
	2.90年初日単比2.NA31KANCよる有効日単比の基定相未の比較後期 2.解析結果 (1) 球形タンク NASTRANO解析モデルを図2 <u>-1</u> ,解析モデル諸元を表2 <u>-1</u> , る有効質量比の算定結果及び容器指針における球形タンクの有効質量

	備考
別紙 15	
,容器構造設計指針・	
求形タンク及び円筒タ	
を行う。	
NIA O T D A NUZ E	
NASIRANCL	
比を図 2-2 に示す。	
Fモデル諸元	
0.5m	
約 5400	
積	
タンクの容積	
鼻やけ試験に	
里としてようい物化し	

	備考
NASTRANによ	
を図 2-4 に示す。	
Fモデル諸元	
0.5m	
2 5m	
之. 3m 約 6400	
示了 6400	
•	
算出結果と容器指針に	
算出は妥当であること	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 16	
	原子炉建物基礎スラブにおける地震応答を用いる妥当性について	
	1	
	1. 風女 サプレッションチェンバけ ドライウェルとベント管を介して接続されるが ベント管に設けら	
	リノレリションノエンハは、アノイリエルとハンド目を用してほれどれのか、ハンド目に取りられたベント管ベローズ(材質・オーステナイト系ステンレス鋼(SUIS304))に上り相対亦位	
	ないに、シードに、ロース(初員、オース)ノイトポスノジレス調(303304))により作利麦匹 を吸収する構造となっているため、サプレッシュンチェンバの耐雪評価に当たってけ、ドライウェ	
	2.000 melecなりているにの, サブレブジョンフェンハの前後前面に当たりては, アブイフェ ルの地震広なと切り離し 百子恒建物基礎スラブにおける地震広なを用いている	
	本資料でけ ベント答べローズの構造及びサプレッションチェンバへの地震応答をの影響を確	
	本員相ては、「マード自てに への構造及びサブレブジョンフェンジでの地震応告への影音を確 辺1 上記扱いの巫当姓について確認する	
	2. ベント管ベローズの構造	
	ベント管ベローズは、図 2-1.に示すとおり、サプレッションチェンバとベント管の熱膨張によ	
	る相対変位や地震相対変位を吸収できる構造となっている。	
	また, 地震相対変位によるサプレッションチェンバへの反力は, ベント管ベローズのばね定数と	
	地震相対変位により算定することができる。サプレッションチェンバの荷重伝達イメージを図 2	
	 に示す。 	
	3. サプレッションチェンバの地震応答への影響	
	サプレッションチェンバとベント管の地震相対変位,ベント管ベローズの反力,サプレッション	
	チェンバの地震荷重及びそれらの比率を表 3-1に示す。評価条件としては、設計用条件 I (基準	
	<u>地震動Ss</u>)を用いた。地震相対変位によるベント管ベローズの反力は、サプレッションチェンバ	
	の地震荷重に対して 0.05%程度と軽微であり、サプレッションチェンバの地震応答解析に原子炉建	
	物基礎スラブにおける地震応答を用いることは、妥当と考えられる。	
	われ、よ、マニよノしズマニンル、マ畑のマンドでは広い明上フにローンレーマルドマナホン・・・・・・	
	なわ、AーAアブイト米Aアンレス鋼のいすみ速度に関する知見としていずみ速度か Isec 以	
	下となるものについては、ひすみ速度が順力や設計対策強さに影響がないものとされている…。	
	ヘント官ヘロースのひすみ速度は、 <u>5. (×10⁻ sec</u> 程度) じめり、上記知見を踏まえると、材料物	
	性への影響かないと推走されるため、剛性に対しても回様に影響かないものと考えられる。	
	注記*::地震応答解析モデルの固有周期 Γ に対するサプレッションチェンバの最大ひずみ量 ε の	
	比 (ε/T) からひずみ速度 (sec ⁻¹) を算出	
	参考文献[1]:Hiroe Kobayashi et al., Strain Rate of Pipe Elbow at Seismic Event and Its	
	Effect on Dynamic Strain Aging, ASME Pressure Vessels and Piping Conference,	
	July 26-30, 2009	

	備考
変位	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	サプレッションチェンバサポートの耐震評価における応力算出方法
	1. 概要
	サプレッションチェンバサポートの耐震評価における応力算出は,既工調 評価を行っていることを踏まえ。今回工器においても同様に公式等による応
	11回を17 シマンシュンチェンバのうち胴エビ継部及びサプレッションチェン
	応力評価は、3次元 FEM 解析モデルによる応力評価を行っている。
	本書では、今回工認におけるサプレッションチェンバサポートの耐震評価
	法に対して、公式等による応力評価を行うことの考え方について説明する。
	2. 耐震評価における応力算出方法の考え方
	2.1 適用規格
	サプレッションチェンバ及びサプレッションチェンバサポートは,原子
	術指針JEAG4601・補-1984, JEAG4601-1987(以下「JEA
	に基づき,サプレッションチェンバは原子炉格納容器として,サプレッショ
	は原子炉格納容器の支持構造物として耐震評価を行う。また, JEAG4
	炉格納容器及び原子炉格納容器の支持構造物の耐震評価について地震力と
	せた場合には、原則として過大な変形がないようにすることが求められて
	2.2 原子炉格納容器及び原子炉格納容器の支持構造物の耐震評価
	原子炉格納容器に対する地震荷重との組合せ評価は、JEAG4601
	対する応力評価が要求される。
	① 一次応力評価
	② 一次+二次応力評価
	③ 一次+二次+ピーク応力評価(疲れ解析)
	ただし,原子炉格納容器の一次+二次+ピーク応力評価(疲れ解析)は,
	ME <u>S</u> NC1-2005/2007 PVB-3140(6)の要求を満足する場合,評価を
	る。なお、一次+二次応力評価に対する許容応力3Smを超える場合は、言
	中係数を用いた一次+二次+ピーク応力評価又は3次元FEM解析による
	一方、原子炉格納容器の支持構造物に対する地震荷重との組合せ評価に
	上,一次応力,一次+二次応力に対する応力評価が要求されており,一次-
	対する応刀評価は要求されていない。
	2.3 <u>サプレッションチェンバサポート</u> の耐震評価における応力算出方法
	上記のとおり, <u>サプレッションチェンバサポート</u> は,原子炉格納容器の
	る。原子炉格納容器の支持構造物に対する要求事項に基づき、サプレッショ

	備考
別紙 17	
法の考え方	
恩で公式等による応力	
力評価を行っている。	・評価方法の相違
<u>/バサポート取付部</u> の	島根2号機では、サ
	プレッションチェンバ
町における応力算出方	サポートの評価は,既
	工認と同様に公式等に
	よる評価を適用してい
	る。
	・評価方法の相違
子力発電所耐震設計技	島根2号機では、サ
G4601」という。)	プレッションチェンバ
ョンチェンバサポート	のうち胴エビ継部及び
601において, 原子	サプレッションチェン
:他の荷重を組み合わ	バサポート取付部の応
いる。	力評価にFEM解析を
	用いる。
に従い,以下の項目に	
,設計・建設規格JS	
を省略することができ	
評価対象部位の応力集	
疲れ解析を行う。	
t, JEAG4601	
+二次+ピーク応力に	
の支持構造物に該当す	
ョンチェンバサポート	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	の耐震評価は、一次応力に対する応力評価を行い、過大な変形がないことを確認する。また、耐	・評価方法の相違
	震評価における応力算出については, <u>サプレッションチェンバサポート</u> の構造から面外変形も	島根2号機は、サプ
	なく単純な曲げ・せん断変形が主であること,一次+二次+ピーク応力といった局部的な応力評	レッションチェンバサ
	価要求がないことから、既工認に用いた公式等による応力評価からの変更は不要と判断してい	ポートには二次応力と
	る。	して考慮すべき荷重が
	なお,サプレッションチェンバサポートには二次応力として考慮すべき荷重が作用しないこ	作用しないことから一
	とから, サプレッションチェンバサポートの耐震評価では, 建設時より一次応力評価で代表させ	次+二次応力評価を省
	ることとしており、一次+二次応力評価については省略している。	略している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別添1	
	J E A G 4 6 0 1 - 1987	
	6.1.3 荷重の組合せと許容限界 荷重の組合せと許容限界についての原則を以下に示すが。 ^{(6.1.1-1),(6.2.1-1)}	
	(1) 荷重の組合せ a 地震動によって引き起こされるおそれのある事象については その荷重を組合せる	
	b. 地震動によって引き起こされるおそれのない事象については、その事象の発生確率	
	と荷重の継続時間及び地震の発生確率を考え、同時に発生する確率が高い場合にはその組合いた表表すよくのトナス	
	(2) 許容限界	
	a. As クラス	
	(a) 基準地震動 S1 乂は静的震度による地震力と他の何重とを組合せた場合には,原 則として弾性状態にあるようにする。	
	(b) 基準地震動 S2による地震力と他の荷重とを組合せた場合には, 原則として過大	
	<u>な変形がないようにする。</u> b. A クラス	
	上記 a. (a)と同じ。	
	 c. B 及び C クラス 静的震度による地震力と他の荷重と組合せた場合には、原則として弾性状態にある 	
	ようにする。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	<u>JEAG4601・補-1984</u> <第2種容器に対する評価>	
	2.1.2 第2種容器の許容応力第2種容器の許容応力を次に示す。	
	応力分類 1次一般膜応力 1次膜応力+ 1次+2次応力 1次+2次 許容 1次一般膜応力 1次曲げ応力 1次+2次応力 1次+2次応力	
	設計条件 S 1.5 S	
	$I_A (1) (1) (1.5 S_y) (1.5$	
	Π_{A}	
	$ III_{A} III_{A} Sy & 2/3 S_u O 小さい方。ただ しオーステナイ ド系ステンレス 鋼及び高ニッケ ル合金について は1.2 S とする。 た欄の1.5 倍の値 - - (6) (7)(8) (1.5 S_y) (1.5 S_y) $	
	構造上の連続な 部分は0.6 S _u , 不連続な部分は S _y \geq 0.6 S _u o 	
	$ III_{A}S S $	
	地震動のみ による応力 部分は 0.6 S _u , 不連続な部分は Sy ≥ 0.6 S _u 0 小さい方。ただ しオーステナイ ト系ステンレス 鋼及び高ニッケ ル合金について は、構造上の連続な部分は 2 S 参しの S _u $0/4$ S _u れ条傾係数を水 め、運転状態 I, Iにおける疲れ 累積係数との和 が 1.0 以下であ ること。IVAS鋼及び高ニッケ ル合金について は、構造上の連 続な部分は 2 S と 0.6 S _u $0/4$ S _u (8)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	 注:(1) 3 S_mを超えるときは、告示第14条の弾塑性解析を用いることができる (2) 告示第13条第1項第三号を満たすときは、彼れ解析を行うことを要した (3) S_mを超えるときは弾弾性解析を行うこと。この場合告示第14条(15) の弾塑性解析を用いることができる。 (5) 告示第13条第1項第三号へを満たすときは、彼れ解析を行うことを要しただし、へ項の、応力の全振福"は、S₁又はS₂地理動による広力の学 (6) 運転状態1, IIにおいて彼れ解析を要しない場合は、地震動のみによる近 以下であること。 (7) 告示第13条第1項第一号」による。 (8) (1) 内は、女圧荷重の作用端から自由端までの距離が支圧荷重の作用の値。 (10) オメガシール及びキャノビシールにあっては、II_A S, IV_A Sについて11地震動のみによる1次+2次応力の評価を行う。ただし、1次一般規模第1項第四号による。

	備考
い。 討する。 条第3号を除く)	
ない。 振幅″と読替える。 れ累積係数が 1.0	
幅より大きい場合	
次一般膜応力及び 力は,告示第13条	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・設備の相違
島根2号機では、建
設時の構造で耐震性を
確認している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機

備考
・設備の相違
島根2号機では、建
設時の構造で耐震性を
確認している。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2 号機

 備考
・設備の相違
島根2号機では、建
設時の構造で耐震性を
確認している。
女川原子力発電所2号機(2021年12月10日)

 ガイビル目 オイクシント ガイビル オクシント ガービー ガイビル目 オクシント オクシット <l< th=""></l<>
キボント キャプレキャー キャプレー キャプレー キャプレー キャプレー キャプレー キャプレー キャプレー キャプレー キャー キャプレー キャー キャー キャー キャー キャー キャー キャー キャ

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機				備考			
	3. 影響検討結果							
	3.1 内部水有効質量のモデル化の影響							
	有効質量をG u	u y a n 縮約に	てモデル化す	る手法の妥当性	は,別紙2の	4. で <u>流体</u>	解析モデル	・検討内容の相違
	及び3次元シェル	レ+はりモデル	を用いた妥当	生確認により、	既に確認してい	いるが,有	効質量のモ	島根2号機では、流
	デル化の影響にな	ついて, 内部水	の有無による	地震応答解析モ	デル(3次元に	よりモデル	~)及び適用	体解析モデル及び3次
	性確認用解析モラ	『ル(3次元シ	ェルモデル)の	の固有周期の比	較を <u>行う</u> 。 <u>な</u> お	ð, Guy	a n 縮約に	元シェル+はりモデル
	よるモデル化はオ	ヽ平方向の地震	応答解析モデ	ル (3 次元はり	モデル) のみに	こ適用する	っため,水平	を用いて有効質量の妥
	方向の固有周期の)比較を行う。	比較結果を表	3.1-1に示す。)			当性を確認する。
	固有周期の比較	校結果から, 有	効質量が影響	する水平 1 次	のモードで内部	『水の有無	による固有	・評価方法の相違
	周期の比率が地震	豪応答解析モデ	ル(3次元は)	りモデル) と適	用性確認用解析	Fモデル((3次元シェ	島根2号機では、鉛
	ルモデル) で同等	であり,有効	質量をGuya	n縮約にてモ	デル化する手法	ミは妥当と	判断できる	直方向の地震応答解析
	<u>(表 3.1-1 (A)</u> ,	(B) 参照)。						モデルは既工認と同様
								に内部水を固定質量と
								してモデル化する。
								・検討内容の相違
		表 3.1-1 [国有周期の比較	結果(有効質量	量のモデル化)	-		島根2号機では、刺
			_		T	1	(単位:s)	激係数が 2 桁以上の振
	検討ケース	(1)	2	3	(4)	_		<mark>動</mark> モードについて検討
	解析モデル	地震応答用	解析モデル	適用性確認	用解析モデル	(A)	(B)	する。
		(3次元は	りモデル)	(3次元シ	ェルモデル)	(1)/(2)	(3)/(4)	
	内部水	有り	無し	有り	無し			
	水平1次	0.085	0.051	0.109	0.063	1.67	1.73	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.2 サプレッションチェンバ胴のモデル化の影響	
	3次元はりモデルにおけるサプレッションチェンバ本体のモデル化は,小円の平面保持を仮	・評価方法の相違
	定した理論式である。このことを踏まえ、小円の平面保持を条件とした3次元シェルモデルを用	島根2号機では、サ
	いて,地震応答解析モデル(3次元はりモデル)及び適用性確認用解析モデル(3次元シェルモ	プレッションチェンバ
	デル)の <mark>固有振動数</mark> と有効質量比の関係を比較する。ここで、小円の平面保持を条件とした3次	サポートを含めてモデ
	元シェルモデルを図 3.2-1 に示す。セグメントごとに 3 箇所ずつサプレッションチェンバ胴の	ル化する。
	断面を剛体要素で結合することにより、小円の平面を保持する。	・検討内容の相違
	小円の平面保持を条件とした3次元シェルモデル <mark>(胴一般部断面保持)</mark> を用いた固有値解析結	島根2号機では、固
	果として,各振動モードに対する固有振動数,固有周期及び刺激係数のうち,刺激係数が2桁オ	有値と有効質量比の関
	ーダー以上のものを代表して表 3.2-1 に示す。また、50Hz までの全振動モードにおける固有振	係を比較する。
	動数と有効質量比の関係を図 3.2-2 に示す。	・評価方法の相違
	図 3.2-2 において,適用性確認用解析モデル(3次元シェルモデル)ではサプレッションチ	島根2号機では、サ
	<u>エンバ全体が振動する振動モードが複数の振動モードに分散して現れるが、小円の平面を保持</u>	プレッションチェンバ
	することにより、地震応答解析モデル(3次元はりモデル)と同様にサプレッションチェンバ全	胴の断面を剛体要素で
	体が振動する振動モードが数モードに集約されることが確認できる。	結合する。
	図 3.2-2(1)では,水平方向について,3次元シェルモデル(胴一般部断面保持)と地震応答	
	解析モデル(3次元はりモデル)で差異が生じている。これは、 <mark>地震応答解析モデル(3次元は</mark>	
	<u>りモデル)のサプレッションチェンバサポートの剛性は既工認と同様に、サプレッションチェン</u>	
	<u>バサポートの形状等の情報から計算式により設定しており,適用性確認用解析モデル(3次元シ</u>	
	<u>ェルモデル)よりも剛性が大きく算出されるため,差異が生じるものと考えられる(3.4参照)。</u>	
	<u>図 3.2-2(2)では,鉛直方向について,3次元シェルモデル<mark>(胴一般部断面保持)</mark>の主な振動</u>	
	<u>モードが、地震応答解析モデル(3次元はりモデル)の主な振動モードよりも高振動数側となっ</u>	
	<u>ている。これは, 3 次元シェルモデル<mark>(胴一般部断面保持)</mark>では,図 3.2-1 に示す<mark>とおり</mark>,剛</u>	
	体要素を設定することにより、サプレッションチェンバサポート取付部付近の剛性が高くなる	
	<u>こと<mark>が</mark>原因と考えられる。</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・評価方法の相違
		島根2号機では、サ
		プレッションチェンバ
		胴の断面を剛体要素で
		結合する。
	図 3.2-1 小円の平面保持を条件とした 3 次元シェルモデル	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	表 3.2-1(1) 3次元シェルモデル <mark>(胴一般部断面保持)</mark> を用いた固有値解析結果	・検討内容の相違
	(対称条件)	島根2号機では、固
	田有振動数 固有周期 刺激係数*1,*2	有値と有効質量比の関
	(Hz) (s) X方向 Y方向 Z方向	係を比較する。
	2次	
	53 次	
	注記*1:モード質量を正規化するモードベクトルを用いる。	
	*2:Y方向及びZ方向の刺激係数が2桁オーダー以上のものを代表して記載	
	表32-1(2) 3次元シェルモデル (胴一般部断面保持) を用いた固有値解析結果	
	(反対称条件)	
	モード (Hz) (s) X方向 Y方向 Z方向	
	2次	
	注記*1:モード質量を正規化するモードベクトルを用いる。	
	*2:X方向の刺激係数が2桁オーダー以上のものを代表して記載	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	図 3.2-2(1) 固有振動数と有効質量比の関係(水平方
	L
	図 3.2-2(2) 固有振動数と有効質量比の関係(鉛直方)

	備考
	・検討内容の相違
	島根2号機では、固
	有値と有効質量比の関
	係を比較する。
<u>ı)</u>	
<u>ਗ਼)</u>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考 ・評価方法の相違 島根2号機では,は り要素を4分割した3 次元はりモデルを使用 するため,はり要素の 分割数の影響検討は行 っていない。	
 ・評価方法の相違 島根2号機では,は り要素を4分割した3 次元はりモデルを使用 するため,はり要素の 分割数の影響検討は行 っていない。 	備考
島根2号機では、は り要素を4分割した3 次元はりモデルを使用 するため、はり要素の 分割数の影響検討は行 っていない。	・評価方法の相違
り要素を 4 分割した 3 次元はりモデルを使用 する ため、はり要素の 分割数の影響検討は行 っていない。	島根2号機では、は
次元はりモデルを使用 するため、はり要素の 分割数の影響検討は行 っていない。	り要素を 4 分割した 3
する <mark>ため,はり要素の</mark> 分割数の影響検討は行 っていない。	次元はりモデルを使用
<mark>う つ ていない</mark> 。	する <mark>ため,はり要素の</mark>
	分割数の影響検討は行
	っていない。

女川原子力発電所2号機(2021年12月10日)			島根原子力発電所	2 号機			備考
	3.3 サプレッションチェンバサポート取付部ばね剛性のモデル化の影響						
	今回工認では、サプレッションチェンバ取付部の局部変形を考慮したばね剛性を算定し、地震						
	応答解析モデル(3次元はりモデル)のサプレッションチェンバサポート取付部にばね要素とし						
	てモデル化しており、それが固有周期に与える影響を確認する。						
	<u>サプレッションチェンバサポート</u> 取付部のばね要素を考慮した地震応答解析モデル(3次元						
	はりモデル)及びそのモデルから <u>サプレッションチェンバサポート</u> 取付部のばね要素を取り除						
	いた3次元はりモデルと適用性確認用解析モデル(3次元シェルモデル)との固有周期の比較結						
	果を表 <u>3.3</u> -	1に示す。					
	固有周期の)比較結果から, サ	プレッションチェン	バサポート取付部の	Dばね要素	雨を取り除いた	
	3次元はりモ	デルと適用性確認用	月解析モデル(3次)	元シェルモデル)と	の固有周期	朝は <u>, 鉛直1次</u>	・検討内容の相違
	について大き	く差がある(表 3.3	3-1(A)参照)。				島根2号機では、水
	今回工認の)地震応答解析モデル	レ(サプレッション	チェンバサポート取	付部のば	ね要素を考慮)	平1次モードと鉛直1
	<u>では</u> , 適用性	確認用解析モデル((3次元シェルモデ)	レ) との鉛直1次のB	固有周期に	はおおむね一致	次モードへの影響の違
	するが,水平	1次の固有周期に~	っいてはほとんど影	響の無い結果となっ	た(表3.	3-1 (A), (B)	いについて検討する。
	<u>参照)。この</u>	ため、サプレッショ	<u>ンチェンバ取付部の</u>)ばね要素として考慮	<u> 意している</u>	<u>る,サプレッシ</u>	
	<u>ヨンチェンバ</u>	「胴の面外方向(並進	[1方向, 回転2方]	<u>句)の変形が水半方</u>	旬の固有周	周期に与える影	
	警は小さい。	-					
	表 3.3-1 固有	有周期の比較結果(サプレッションチェ	ンバサポート取付音	『ばね剛性	のモデル化)	
						(単位:s)	
	検討ケース	1	2	3			
		地震応答解	解析モデル				
		(3次元は	りモデル)	適用性確認用解		(D)	
	細たてごれ	サプレッション	サプレッション	析モデル(3次	(A)	(B)	
	脾ケナル	チェンバサポー	チェンバサポー	元シェルモデ	1/3	(2)/(3)	
		ト取付部のばね	ト取付部のばね	ル)			
		要素無し	要素を考慮				
	水平1次	0.081	0.085	0.109	0.74	0.78	
	鉛直1次	0.026	0.061	0.067	0.39	0.91	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機				備考
	3.4 サプレッションチェンバサポートのモデル化の影響				
					・評価方法の相違
	状等の情報から計算式により設定した剛性をサプレッションチェンバサポートのはり要素に考				島根2号機では、サ
	慮する。このモデル化の影響を確認するため、サプレッションチェンバサポート以外を剛構造と				プレッションチェンバ
	した3次元は	りモデルとサプレッションチョ	ェンバサポート以外を剛構造	とした3次元シェルモ	サポートの評価は、既
	デルの固有周期	期の比較を行う。比較結果を表	き3.4-1に示す。		工認と同様に公式等に
	固有周期の比	北較結果から, 3次元はりモラ	「ルと3次元シェルモデルとの	つ固有周期は差があり、	よる評価を適用してい
	3次元はりモラ	デルの方が固有周期が小さい	(表 3.4-1 (A) 参照)。		る。
	サプレッショ	ョンチェンバサポートの剛性の	D設定において、穴部等の詳	細な構造は考慮してい	・評価方法の相違
	<u>ないため、38</u>	次元はりモデルの方が固有周期	財が小さくなったと考えられる	5	島根2号機では、本
					検討においてサプレッ
					ションチェンバサポー
					ト以外を剛構造とした
					モデルを用いる。
					・検討内容の相違
					局根2号機では,サ
					フレッションチェンバ
					サホートについて、公
	主 2 4	1 田左国期の比較は田(斗づ	゚レッシュンチュンバサポート	のエデルル	式寺による剛性の設止 についての当世な確認
	<u> </u>	1 回有同期の比較相未(9)		(単位・。)	について女ヨ性を確認
	検討ケース	(I)	0	(平位、5)	
		3次元けりエデル	3次元シェルモデル	(A)	
	解析モデル	(サポート以外剛構造)	(サポート以外剛構造)	1/2	
	水平1次	0.042	0. 049	0.86	
	鉛直1次	0.017	0. 018	0.94	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所	2号機

備考
・評価方法の相違
島根2号機では、本
検討においてサプレッ
ションチェンバサポー
ト以外を剛構造とした
モデルを用いる。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3.5 3次元シェルモデルを用いた剛性の設定による影響検討	・検討内容の相違
	3.2及び 3.4の結果を踏まえ, サプレッションチェンバサポートの剛性がサプレッションチ	島根2号機では、サ
	ェンバ全体の固有周期に与える影響を検討する。サプレッションチェンバサポート単体をシェ	プレッションチェンバ
	ル要素でモデル化した3次元シェルモデルを用いて,サプレッションチェンバサポートの剛性	サポートについて,公
	を精緻に算定し、はり要素としてモデル化を行う。このはり要素を用いて3次元はりモデル(サ	式等による剛性の設定
	ポート剛性見直し)を作成し、3.2に示す他のモデルとの固有振動数と有効質量比の関係を比較	について妥当性を確認
	する。影響検討に用いたサプレッションチェンバサポート単体モデル図を図 3.4-1 に示す。	していることから、サ
	3次元はりモデル(サポート剛性見直し)を用いた固有値解析結果として,各振動モードに対	ポートの剛性の見直し
	する固有振動数,固有周期及び刺激係数のうち,刺激係数が2桁オーダー以上のものを代表して	による影響を検討す
	表 3.4-2 に示す。また、50Hz までの全振動モードにおける固有振動数と有効質量比の関係を図	る。
	<u>3.4-2に示す。</u>	
	図 3.4-2(1)に示すとおり,水平方向についてはサプレッションチェンバサポートの剛性を見	
	直すことによって、3次元はりモデルと3次元シェルモデルの差異は小さくなる。このことか	
	ら,サプレッションチェンバサポートの剛性の設定方法が地震応答解析モデル(3次元はりモデ	
	ル)と適用性確認用モデル(3次元シェルモデル)の固有周期の差異に影響を与える主な要因の	
	一つであるといえる。図 3.4-2(2)に示すとおり,鉛直方向についてはサプレッションチェンバ	
	<mark>サポートの剛性を見直しによって固有周期がほぼ変わらないことを確認した。</mark>	
	図 3.4-1 影響検討に用いたサプレッションチェンバサポート単体モデル図	

女川原子力発電所2号機(2021年12月10日)			島根原子力発電	電所 2号機			備考
	表 3.4-2(1)	3次元はり日	E デル(サポー	- 卜剛性見直	」)を用いた園	国有值解析結果	・検討内容の相違
			(水平)	<mark>方向)</mark>			島根2号機では、サ
		固有振動数	固有周期		刺激係数*1,	*2	プレッションチェンバ
		(Hz)	(s)	X方向	Y方向	Z方向	サポートについて,公
	3次			•			式等による剛性の設定
	4次						について妥当性を確認
	10 次*3						していることから、サ
	注記*1:モード	質量を正規化で	するモードベク	トルを用い	3.		ポートの剛性の見直し
	*2:X方向》	&びY 方向の朝	刺激係数が2枚	テオーダー以	上のものを代表	表して記載	による影響を検討す
	*3 : E C C S	Sストレーナ	をモデルに組み	⊁込んだこと	こ伴い卓越した	たモード	る。
	表 3.4-2(2)	3次元はり7	Eデル(サポー	- ト剛性見直 โ	」)を用いた国	固有値解析結果	
			<mark>(鉛直)</mark>	<mark>方向)</mark>			_
	チード	固有振動数	固有周期		刺激係数*1,*	*2	
		(Hz)	(s)	X方向	Y方向	Z方向	
	9次						
	10次*3						J
	注記*1:モード	質量を正規化す	するモードベク	トルを用い	3.		
	*2:Z方向0	の刺激係数が	2 桁オーダーじ	人上のものを	代表して記載		
	*3 : E C C \$	5ストレーナを	をモデルに組み	∗込んだこと	こ伴い卓越した	シモード	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
		・検討内容の相違
		島根2号機では、サ
		プレッションチェンバ
		サポートについて, 公
		式等による剛性の設定
		について妥当性を確認
		していることから,サ
		ポートの剛性の見直し
		による影響を検討す
		る。
	図 3.4-2(1) 固有振動数と有効質量比の関係(水平方向)	
	図 3.4-2(2) 固有振動数と有効質量比の関係(鉛直方向)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 まとめ <u>3.の</u>影響検討結果から,固有周期が完全に一致しない(差を生む)要因として、サプレッション チェンバサポートの剛性の設定方法の影響が主な要因の一つであることを確認した。 	 ・設備の相違 構造の相違により、 島根2号機ではオーバ ル振動の影響が現れる。
	今回工認における地震応答解析モデルは、上記のように固有周期が完全に一致しない(差を生 む)要因が考えられるものの、本文4.2.4におけるはりモデルの適用性確認結果(<u>主要な振動モードは3次元はりモデルと適用性確認用解析モデル(3次元シェルモデル)で対応関係が確認できる こと及び50Hzまでの全振動モードにおける固有振動数と有効質量比の全体傾向はおおむね一致し ていること)を踏まえ、島根2号機の今回工認におけるサプレッションチェンバ及びサプレッショ ンチェンバサポートの地震応答解析モデルへの今回設定した3次元はりモデルの適用性があると 判断<u>する</u>。</u>	 ・検討内容の相違 島根2号機では,振 動モード全体の傾向を 比較する。

	備考
別紙 19	・評価方法の相違
	島根2号機では、ベ
	ースプレートにおける
	応力評価の精緻化を実
	施する。
プレート (ボルト反力	
/バの地震応答解析に	
サプレッションチェン	
<プレートが受ける反	
下す。	
トポートに加わる	
ジント シートで自由する)	
縮荷重に上る反力	
間刑里による区川	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	3. 応力評価の精緻化内容	・評価方法の相違
	ベースプレートが負担する反力のうち,ボルト反力側の応力評価において,既工認ではベースプ	島根2号機では、ベ
	レートが荷重を負担する範囲について、ベース端部からボルト中心までの 150mm を有効幅として	ースプレートにおける
	考慮していた。しかしながら、荷重を負担する有効幅としてはリブ長さを考慮することが可能であ	応力評価の精緻化を実
	ると考えられる ^[1] ため,今回工認では180mmを有効幅として考慮する。既工認及び今回工認におけ	施する。
	るベースプレートが荷重を負担する範囲を表 3-1 に示す。	
	表 3-1 ベースプレートが荷重を負担する範囲(ボルト反力側)	
	既工認 今回工認	
	ベースプレートが基礎ボルト1本 からの荷重を負担する範囲 ベースプレートが基礎ボルト1本 からの荷重を負担する範囲	
	参考文献[1]:水原旭他:「構造計算便覧」産業図書	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	構造計画便覧(抜粋)

	備考
(参考)	・評価方法の相違
	島根2号機では、ベ
	ースプレートにおける
	応力評価の精緻化を実
	施する。

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 20	・記載の充実
	サプレッションチェンバの耐震評価で考慮する水力学的動荷重について	
	乳乳甘涎毒ゼ味及び毛上毒ゼ炊味。の乳芯毛に、ヘルマは、茎白斑蛇に乳芯毛(いて「00 芯毛」)、	
	<u> </u>	
	(1)。), ノイインノ何里(以上「い何里」という。)及び超がし女主力によるX12派動何里(以上 「SRV 動荷重」という)それぞれについて一匹工認の解析結果に基づいて質定している。(0 荷重	
	及びCH 荷重は実機を模擬した米国実規模実験(FSTF 実験), SRV 動荷重は米国 Monticello 発電所	
	における実機の試験結果に基づいて擾乱(ソース)を設定し三次元モデルによる解析にて各動荷重	
	の分布を評価している。この解析によってサプレッションチェンバ内面に作用する動荷重の分布	
	を考慮している。	
	なお, CO 荷重, CH 荷重及び SRV 動荷重の詳細については, NS2-補-011「No.1 重大事故等時の動	
	荷重について」に示す。	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 21	・記載の充実
		島根2号機では、設
	内部水の流動による局部的な圧力の影響	置許可段階での説明事
		項を記載する。
	サプレッションチェンバ内部水の流動によりサプレッションチェンバ壁面に加わる圧力におい	
	て,汎用流体解析コードF1uentによる流動解析の結果,壁面の一部に集中して加わる局部的	
	な圧力は 10kPa 程度であり、サプレッションチェンバの設計圧力(427kPa)及びSA耐性条件	
	(853kPa)と比較して小さく部分的であるため、サプレッションチェンバの地震応答解析へ与える	
	影響は十分に小さい(図1参照)。	
	70.0	
	60.0 静水頭+動水圧	
	50.0 50.0	
	물 40.0	
	0 10 20 30 40 50 60 時間「s]	
	<u>凶1</u> 取入動圧光生位直にわける動圧時刻症(355-D, 耐晨胜竹用重入争取寺時小位)	

	備考
別紙 22	・記載の充実
	島根2号機では、設
	置許可段階での説明事
	項を記載する。
形状容器である。各セ	
ラント方位に対して、	
こ固定される構造とな	
るように,サプレッシ	
を、プラント方位から	
方位に沿った水平方向	
发)	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	別紙 23	・記載の充実
		島根2号機では、先
	先行プラントとの相違について	行プラントとの相違点
		について記載する。
	本資料では、サプレッションチェンバ及びサプレッションチェンバサポートの構造、耐震評価手	
	法について、先行プラント(女川2号機)との相違点を整理して示す。	
	なお, 先行プラントの情報に係る記載内容については, 公開資料を基に当社の責任において記載	
	するものであり,記載する名称及び用語の一部は島根2号機に対応する名称及び用語に見直して	
	<u>113.</u>	

女川原子力発電所2号機(2021年12月10日)				島根	原子	力発電所 2号機	備考
		島根 2 号機における相違理由 又は相違点の影響	サプレッションチェンバ胴の板厚及び補強リングの枚数が異なるため、オーバル振動による影響が異なる。	建設時と同じ構造による耐震性を確認して おり,構造変更は不要。	- (同様の解析手法を適用している。)	基礎ボントを画要素としてモデン行するい とによる応答解析への影響はない。また、 計算式により算出した、基礎ボントに泊む の荷重に対する確全性や確認しており、面 回の基礎ボントに加むる荷庫や精緻に確認 する必要は無い。 してにも保力的な条件である。)	
	テプラントとの相違(1/6)	内容(<u>下線</u> :相違点) JII2号機 島根2号機	16セグメントの円筒を繋ぎあわせた 円崎液 大円直径 小円直径 板厚 サポート 16箇所 (内外計32箇所) 補強リング 32枚	該当無し	3次元はりモデルを用いたスペクトル モーダル解析	・ - 地球ートの副性を考慮した はり要素でキデン化 ・サポート取付的の副性を考慮した にお要素や設定 有効質量を質点(60箇円)にた内部大の 耐震解析用重大事故等水位を設定 (設計基準対象施設としたの耐濃評 面に保守的な水位や設定)	
	表先行	項日 女// 女//	構造機要 市 補	建設時からの構造変更	解析手法	解析 モバンC 離胎的公 カボン 力前 力前 大白 予約 予約	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	島根2号機における相違理由 又は相違点の影響 又は相違点の影響 影響の大きい面外方向のばね剛性を設定す る。 算に仮定が異なるが、算定方法は同等であ る。 第二十二人化範囲と解析モデルの境界が離れてお の。 変形範囲と解析モデルの境界が離れてお の。 影響の大きい面外方向のばね剛性を設定す 影響の大きい面外方向のばね剛性を設定す の。 影響の大きい面外方向のばね剛性を設定す の。 影響の大きい面外方向のばね剛性を設定す の。 影響の大きい面外方向のばね剛性を設定す 影響の大きい面外方向のばね剛性を設定す の。 影響の大きい面外方向のばね剛性を設定す 影響が見たいるのがお近間用作とし ては振動モードの全体傾向を確認するにと として(下記「検討結果」参照)、オーバ 心振動による影響が現れるものの、3次元 はりモデル及び3次元シェルモデルにおける の。 3次元シェルモデルではオーバル振動(花び の供動による影響が現れるものの、3次元 はりモデル及び3次元シェルモデルでおける の。 のにているととを確認している(本文4.2.4 参照)。	
	水 内容(工識: 相違点) 内容(工識: 相違点) 女川29-時線 周回面外力向(電油)力向及び回転 第次示シェレモデル(商分モデル)及 3次示シェレモデル(商分モデル)及 3次示シェレモデル(商分モデル)及 3次示シェレモデル(市金庫) 1マグメント 国の加生を設定 1マグメント 国の加生として海庫 3次示シェレモデル(アニット・取付着) 1マグメント 日本の力(前分・デル)の変位の強分 23次示シェレモデル(アニット・取付着) 1マグメント 日本の力のでは、オー・パル橋 3次示シェレモデル(ア・オー・パル橋 1マクシント 日本の力のでは、オー・パル橋 1マクシント 日本の力のでは、オー・パル橋 1マクシント 日本の力のでは、オー・パル橋 1マクシント 日本の力の変化の強分 1マクシント 日本の力の変化の強分 3次示ションモデルシャン 1マクシン 1日 1日	
	局田 府納席 市市 中北-ト 市 中北-ト 市 市 市 <	

	島根2号機における相違理由	又は相違点の影響	耐震評価用の内部水有効質量の算出の際には、女川2号機と同様に流体解析との比較を実施している(本文4.1参照)。	耐震評価用の内部水有効質量の算出の際に は、女川2号機と同様に流体解析との比較 を実施しており、おおむね一致することを 確認している(本文4.1参照)。	- (同様の解析手法を適用している。)	検討結果は同様であり、耐震評価条件は保 せわさ部せなしていて(オナルの参照)
<u>表 先行プラントとの相違(3/6)</u>	内容(<u>下線</u> :相違点)	女川 2 号機 島根 2 号機	試験体を用いた振動試験により算出した内部水有効質量比と比較	試験体を用いた振動試験により算出した内部水有効質量は、仮想質量法により算出した内部水有効質量比とおおむね一致する。	格度の小さい部位について、耐震性についての計算書で適用した床応答についての計算書で適用した床応答スペクトルと20Hzまで考慮した床応替スペクトルを用いた場合のスペクトルモーダル解析を適用した耐震評価結果として得られる発生応力を比較	・高振動数領域における刺激係数が 世報的ホネルント・ 西電州 こくい
	垣日	цÝ	検討方法	検討結果	検討方法	検討結果
	·		内部 本 御 御 御 御 御 御 御 御 御 御 御 御 御		高振動数領 域の影響	
				ţų tet	6解析	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 ・ 開催 2 号機における相違理由 「又は相違点の影響 又は相違点の影響 ぶ次抗はりホケンと3次氾ホッテナイルントにお はん症動の影響が思わった必能的しかた がた動の影響が見ためいとや確認したた がた物の意いによりオーバン振動の影響が増いている。 ・ 「「「」」、「」、「」、「」、「「」、「「」、「「」、「「」」、「「」	
	 表 北行ブラントとの抽論 (4/6) 内容 (下議: 由準点) 内容 (下議: 市庫) 第(下議: 市庫) 第(下意: 市庫) 第(下意: 中ブレッションチェンパでは、 中ブレッションチェンパでは、 中ブレッションチェンパでは、 ホーストロンの総単にたいの総単にたい、 ホーストロンの総単にたい、 ホーストロンの総単にたい、 ホーストロンの総単にたい、 ホーストロンの総単にたい、 ホーストロンの総単にたい、 ホーストロン ホーストロ ホース ホーストロ ホース ホース	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 島根2号機における相違理由 又は相違点の影響 又は相違点の影響 小田の変形により、3次元はりモデルと おり、同等の検討を行っている。 小田の変形により、3次元はりモデルと が、主要な振動モードの対応関係があるに と及び国有振動表している(本文 4.2.4参照)。 1.2.4参照)。 一(同様の検討を行っている)、検討教 のたとする。 一(同様の検討法果が得られている。) 	
	表 先行プラントとの相論(5/6) 内容(下義: 相違点) 内容(下義: 相違点) 東京(129-54) 東京(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東市(120-54) 東京(120-54) 東市(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東市(120-54) 東京(120-54) 東市(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東京(120-54) 東市(120-54) 西田市(120-54) 東市(120-54) 西田市(120-54) 西田市(120-54) 大い(120-54) 西田市(120-54) 市(120-54) 西田市(120-54) 西田市(120-54) 西田市(120-54) 西田市(120-54) 西田市(120-54) 日本(120-54) 日本(120-54) 日本(120-54) 日本(120-54) <td></td>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機	備考
	 - (回様の報告における相違理由 又は相違点の影響 又は相違点の影響 - (回報の検討を行っている。 - (回様の商門を行っている。 - (回様の留告手法を適用している。) - (回様の報告手法を適用している。) - (回様の部件が必じ、おり、公式等 式やない(別紙18参照)。 - (回様の部件手法を適用している。) - (回様の部件であり、評価手法は楽当である。 ***> ***> ***> ***> ***> 	
	表 先行プラントとの相違(6/6) 内容(圧線: 商薬点) 内容(圧線: 商薬点) 女川29-6歳 サポートン処へ診園性とした3次元にしていないことにより、3次元はりモデルの創催の酸粧におしていたの範疇の詳細は意味にないとから、サポートの創催が高いによいるいと参考えられる。 中ポートの創催が高いてとから、 中ポートの創催が高いてきための 本体に ・サポートの創催が高いてきから、 ・サポートの創催が高いてきから、 ・サポートの創催が高いてきから、 ・サポートの創催が高いてきから、 ・サポートの前能が変換 水体に ・サポート取らいとからい ・サポート取り詰 ・サポート取り ・サポート取り ・サポート取り ・サポート取り ・日田中央的 ・日田中央的 ・サポート取り ・日田中央的 ・日田中央的 ・日田中央的 ・日田内部 ・日日本台湾 ・日田内部 ・日日 ・日 ・日 <td< td=""><td></td></td<>	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	先行プラントとの有効質量比の比較
	1. 概要
	島根2号機における検討で得られた有効質量比について、先行プラントと
	を確認する。
	なお,先行プラントの情報に係る記載内容については,公開資料を基に当れ
	するものであり、記載する名称及び用語の一部は島根2号機に対応する名称
	<u>いる。</u>
	2. 有効質量比の比較
	先行プラント(女川2号機)及び島根2号機における検討で得られた水位と
	表1及び図1に示す。
	有効質量比は、強め輪がない場合と比較して、強め輪がある場合に大きい
	強め輪が流体の運動を阻害するため、強め輪がある場合に容器が流体から受
	るためであると考えられる。また,島根2号機の検討に用いた試験体は島根:
	あることから、容器寸法の違いによる差が生じている。
	強め輪の模擬や寸法の相違等により,有効質量比の算出結果にばらつきは
	(女川2号機)及び島根2号機において同等の条件による検討で得られた有
	結果が得られている。

	備考
別紙 24	 記載の充実
	島根2号機では、先
	行プラントとの比較に
	ついて記載する。
の比較により妥当性	
土の責任において記載	
なび用語に見直して なるので	
と有効質量比の関係を	
傾向がある。これは <u>,</u>	
<u> そける反力が大きくな</u>	
1 号機の縮小試験体で	
あるが, 先行プラント	
有効質量比は同程度の	

女川原子力発電所2号機(2021年12月10日)	島根原子力発電所 2号機
	図1 水位と有効質量比の関係

備考