島根原子力発	電所第2号機 審査資料
資料番号	NS2-補-026-02
提出年月日	2022 年 9 月 27 日

取水槽の耐震安全性評価

2022年9月

中国電力株式会社

資料2 取水槽の耐震安全性評価

	目次	今回提出範囲:
1. 評価方法・・・・・・		
2. 評価条件・・・・・・		
2.1 適用規格 · · · · · · · · · · · · · · · · · · ·		
2.2 構造及び補強の概要・・・・・		
2.3 耐震評価フロー ・・・・・		
2.4 地震時荷重算出断面の選定・・・・・		
2.5 使用材料及び材料の物性値・・・・・		
2.6 地盤物性値 ·····		
2.7 評価構造物諸元及び要求機能の考え	方 •••••	
2.7.1 評価構造物諸元·····		
2.7.2 取水槽の要求機能の考え方・・・		
2.8 地下水位		
3. 地震応答解析 · · · · · · · · · · · · · · · · · · ·		
3.1 地震応答解析手法		
3.2 地震応答解析モデルの設定・・・・・		
3.2.1 解析モデル領域・・・・・		
3.2.2 境界条件 ·····		
3.2.3 構造物のモデル化・・・・・		
3.2.4 隣接構造物のモデル化・・・・・		
3.2.5 地盤のモデル化・・・・・		
3.2.6 ジョイント要素の設定・・・・・		
3.3 減衰定数 ·····		
3.4 荷重の組合せ ・・・・・・・・・・・		
3.4.1 機器・配管荷重・・・・・		
3.4.2 浸水防止設備荷重・・・・・		
3.4.3 防護対策設備荷重・・・・・		101
3.4.4 外水圧 · · · · · · · · · · · · · · · · · · ·		
3.4.5 内水圧 ·····		106
3.4.6 積雪荷重 ·····		107
3.4.7 動水圧 ·····		109
3.5 地震応答解析の解析ケース・・・・・		111
3.5.1 耐震評価における解析ケース・		111
3.5.2 機器・配管系の耐震評価に適用	する解析ケース・・・・・	117
4. 3次元構造解析 ·····		127

4.	1 解	¥析手法·					•••					•••	•••	 	• •	 •••			127
4.	2 解	『析モデル	∠の設定				•••	•••	•••			•••	•••	 	• •	 •••			128
	4.2.1	構造物	カのモデ	·ル化·			•••	•••	•••			•••	•••	 	• •	 •••			128
	4.2.2	2 境界系	€件・・・				•••					•••	•••	 		 •••			134
	4.2.3	3 剛域の)設定・				•••					•••	•••	 	• •	 •••			134
	4.2.4	4 地盤に	ťね要素	••••			•••					•••	•••	 	• •	 •••			135
	4.2.5	5 材料0)非線形	特性·			•••	•••	•••			•••	•••	 	••	 •••	•••		138
4.	3 照	资查時刻0)選定・				•••	•••	•••			•••	•••	 	••	 •••	•••		145
4.	4 入	力荷重·					•••	•••	•••			•••	•••	 	••	 •••	•••		148
	4.4.1	常時荷	「重・・・				•••					•••	•••	 		 •••			151
	4.4.2	2 慣性ナ	」(躯体	:) •••			•••					•••	•••	 		 •••			152
	4.4.3	3 慣性ナ	」(機器	・配管	F) ·		•••	•••	•••			•••	•••	 	• •	 •••		• • •	153
	4.4.4	1 慣性ナ	」(浸水	防止診	と備)	• •	•••	•••	•••		•••	•••	•••	 	••	 •••			154
	4.4.5	5 慣性ナ	」(防護	対策認	と備)	• •	•••	•••	•••		•••	•••	•••	 	••	 •••			154
	4.4.6	5 内水日	王・動水	圧・・・			•••					•••	•••	 		 •••			154
	4.4.7	7 地震間	\$土圧・	水庄及	なび層	哥面	せん	し断	力・			•••	•••	 		 •••			155
5.	評価	内容・・・・					•••	•••	•••		•••	•••	•••	 	••	 •••			156
5.	1 入	力地震動	かの設定				•••	•••	•••		•••	•••	•••	 	••	 •••			156
5.	2 許	容限界0)設定・				•••					•••	•••	 		 •••			209
	5.2.1	山曲げ・	軸力系	の破壊	夏に文	すす	る言	午容	限界	ί		•••	•••	 		 •••			209
	5.2.2	2 せん圏	所破壊に	対する	5 許	家限	界					•••	•••	 		 •••			215
	5.2.3	3 壁部杉	すの面内	せん勝	斤に文	すす	る言	午容	限界	ί		•••	•••	 		 •••			221
	5.2.4	4 基礎均	地盤の支	持性俞	言に文	すす	る言	午容	限界	ί		•••	•••	 		 •••			223
	6. 言	平価結果																	

7. まとめ

1. 評価方法

取水槽は,耐震重要施設及び常設重大事故防止設備である原子炉補機冷却海水ポンプ等 を間接支持する支持機能,非常時における海水の通水機能及び浸水防止のための止水機能 が要求される。

取水槽については,基準地震動Ssによる耐震評価として,構造部材の曲げ・軸力系の 破壊,せん断破壊及び基礎地盤の支持性能に対する評価を実施する。

構造部材の健全性評価については、鉄筋コンクリート部材のひずみ、せん断力、壁部材 の面内せん断変形に伴う面内せん断ひずみが要求機能に応じた許容限界を下回ることを 確認する。基礎地盤の支持性能評価については、基礎地盤に発生する応力(接地圧)が極 限支持力に基づく許容限界を下回ること、マンメイドロック(以下「MMR」という。) に発生する応力(接地圧)が支圧強度を下回ること及びMMRの健全性を確認する。 2. 評価条件

2.1 適用規格

取水槽の耐震評価に当たっては、コンクリート標準示方書[構造性能照査編](土木学 会、2002年制定)(以下「コンクリート標準示方書2002」という。)及び原子力発電 所耐震設計技術指針 JEAG4601-1987(社団法人日本電気協会電気技術基準調 査委員会)(以下「JEAG4601-1987」という。)を適用するが、鉄筋コンクリ ート部材の曲げ・軸力系の破壊及びせん断破壊の許容限界の一部については、原子力発 電所屋外重要土木構造物の耐震性能照査指針・マニュアル(土木学会原子力土木委員会、 2005年6月)(以下「土木学会マニュアル」という。)を適用する。

3次元静的材料非線形解析(以下「3次元構造解析」という。)に用いる材料定数に ついては、コンクリート標準示方書[設計編](土木学会、2017年制定)(以下「コンク リート標準示方書 2017」という。)を適用する。

また,3次元構造解析に用いる地盤反力係数については,道路橋示方書(I共通編・ IV下部構造編)・同解説((社)日本道路協会,平成14年3月)(以下「道示・下部 構造編」)及び道路橋示方書(V耐震設計編)・同解説((社)日本道路協会,平成14 年3月)(以下「道示・耐震設計編」)を適用する。

表 2-1 に適用する規格・基準類を示す。

項目	適田する相格 基準箱	備老	確認項目
使用材料及び材料定数	 ・コンクリート標準示 方書[構造性能照査 編](土木学会,2002 年制定) 	・鉄筋コンクリートの材料諸 元 (γ, E, ν)	
い材料定数	 ・コンクリート標準示 方書[設計編](土木 学会,2017年制定) 	 ・コンクリートの材料定数 (3次元構造解析に用いる材料定数) 	_
荷重及び荷 重の組合せ	 ・コンクリート標準示 方書[構造性能照査 編](土木学会,2002 年制定) 	 ・永久荷重,偶発荷重等の適切な組合せを検討 	_
	 ・原子力発電所屋外重 要土木構造物の耐震 性能照査指針・マニ 	・曲げ・軸力系の破壊に対す る照査において,圧縮縁コ ンクリートひずみが 1.0% を下回ることを確認*	・構造強度を有する こと
	ュアル(土木学会,原 子力土木委員会, 2005年6月)	 ・せん断破壊に対する照査は,発生せん断力がせん断耐力を下回ることを確認* 	 ・構造強度を有する こと ・止水機能を損なわないこと
許容限界	 ・コンクリート標準示 方書[構造性能照査 編](土木学会,2002 年制定) 	 ・曲げ・軸力系の破壊に対する照査においておおむね弾性範囲として、発生ひずみが限界ひずみ(コンクリート圧縮 2000 μ、主筋ひずみ1725 μ)以下であることを確認* 	・止水機能を損なわ ないこと
	 ・原子力発電所耐震設 計技術指針 J E A G 	・面内せん断破壊に対する照 査において,面内せん断ひ ずみが2/1000(2000μ)を 下回ることを確認*	・構造強度を有する こと
	4601-1987 (社 団法人,日本電気協 会 電気技術基準調 査委員会)	 ・面内せん断破壊に対する照 査において、スケルトンカ ーブの第一折れ点を下回る ことを確認* 	 ・止水機能を損なわ ないこと

表 2-1(1) 適用する規格,基準類

注記*:妥当な安全余裕を考慮する。

項目	適用する規格,基準類	備考	確認項目	
	 ・原子力発電所耐震設計技 術指針JEAG4601 -1987 	・有限要素法による2	_	
地震心答 解析	 ・道路橋示方書(V耐震設 計編)・同解説((社) 日本道路協会,平成14年3 月) 	次元モデルを用いた 時刻歴非線形解析		
楼达留标	・道路橋示方書(Ⅰ共通編 ・Ⅳ下部構造編)・同解 説((社)日本道路協会 ,平成14年3月)	・地盤反力係数(3次		
1冊 1旦 月平 171	・道路橋示方書(V 耐震設 計編)・同解説((社) 日本道路協会,平成14年3 月)	係数)		

表 2-1(2) 適用する規格,基準類

注記*:妥当な安全余裕を考慮する。

2.2 構造及び補強の概要

取水槽の位置図を図 2-1 に、平面図を図 2-2 に、断面図を図 2-3~図 2-7 に、概 略配筋図を図 2-8~図 2-12 に示す。

取水槽は、地下2階構造となっており、上部は除じん機エリア、海水ポンプエリア及 びストレーナエリアの3エリアに分かれている。下部は水路となっており、除じん機エ リアの下部は6連のボックスカルバート構造、海水ポンプエリアの下部は3連のボック スカルバート構造となっている。また、上部は各エリアが隔壁により仕切られ、各エリ アによって開口部の存在や中床版の設置レベルが異なる等の構造となっている。

取水槽は,加振方向に平行に配置される妻壁や隔壁等の面部材を耐震部材として考慮 する箱形構造物である。

設計当時からの基準地震動Ssの増大により、取水槽の耐震性を確保するため、土圧 低減を目的とした埋戻土の地盤改良及び耐震補強を実施する。耐震補強の概要図を図2 -13に、補強計画図を図2-14~図2-19に示す。

曲げ・軸力系の破壊に対する補強として,気中部における妻壁の増厚補強等を実施する。また,せん断破壊に対する補強として,後施工せん断補強工法(ポストヘッドバー 工法,以下「PHb 工法」という。)によるせん断補強を実施する。合わせて,波及的影響を防止するため原子炉補機海水ポンプ棚(RSW ポンプ棚)の撤去を実施する。

図 2-1 取水槽 位置図

図 2-3 取水槽 断面図(A-A断面)

(単位:mm)

図 2-7 取水槽 断面図 (E-E断面)

□ : PHb 工法適用箇所

図 2-8 取水槽 概略配筋図 (A-A断面)

図 2-9 取水槽 概略配筋図 (B-B断面)

□ : PHb 工法適用箇所

(単位: mm)

図 2-10 取水槽 概略配筋図 (C-C断面)

図 2-11 取水槽 概略配筋図 (D-D断面)

図 2-12 取水槽 概略配筋図 (E-E断面)

(単位: mm)

図 2-13 耐震補強の概要図

(単位:mm) ■:PHb 工法適用箇所

図 2-14 補強計画図 (断面図 (A-A断面))

■:PHb 工法適用箇所

図 2-15 補強計画図(断面図(B-B断面))

(単位:mm)

■:PHb 工法適用箇所

図 2-17 補強計画図(断面図(D-D断面))

■:PHb 工法適用箇所

■:部材追加箇所

■:PHb 工法適用及び部材追加箇所

図 2-18 補強計画図(断面図(F-F断面))

■:PHb 工法適用箇所

図 2-19 補強計画図(断面図(G-G断面))

2.3 耐震評価フロー

取水槽の地震応答解析フロー及び耐震評価フローを図 2-20 及び図 2-21 に示す。 取水槽は、加振方向に平行に配置される妻壁や隔壁を有する箱形構造物であることか ら、3次元非線形シェル要素を用いた3次元構造解析による耐震評価を実施する。図2 -21 の赤破線内に示す範囲について、地震動1波に対する評価内容を具体化したフロ ーを図 2-22 に示す。

さらに、3次元構造解析における基本ケースから水平2方向載荷に至る一連の評価プロセスを図2-23に示す。3次元構造解析にあたっては、2次元有限要素法を用いた地 震応答解析により地震時荷重を算定し、その荷重を3次元構造解析モデルに作用させて 耐震評価を実施する。

地震応答解析により抽出する応答値は、3次元構造解析モデルに作用させる地震時土 圧及び慣性力並びに基礎地盤等に発生する接地圧である。また、機器・配管系、浸水防 止設備及び防護対策設備が耐震性に関する技術基準へ適合することを確認するために 応答値を抽出する。

取水槽の基礎地盤の支持性能については, 地震応答解析により得られた応答値を用い て耐震評価を行う。

図 2-20 取水槽の地震応答解析フロー

図 2-21 取水槽の耐震評価フロー

図 2-22 基本フロー(地震動1波に対する評価フロー)

評価開始						
▼						
弱軸方向に対する評価						
地震時何重鼻出断面及び解析手法の選定 弱軸方向:3断面(除じん機エリア,海水ポンプエリア,ストレーナエリア) 解析手法:有効応力解析						
(ア) 基本ケース(地盤物性:平均値)						
地震動12波(基準地震動S s (6波) +位相反転を考慮した地震動(6波))に対して基本フローを 実施						
最大ケース数						
地震応答解析 36ケース(3断面×12波) 2015年ングの世界によります。 2015年ングの世界によりの世)						
<u>3次元構造解析による照査</u> <u>324ゲース(3</u> 断面×9時刻×12波)						
·						
(イ) 地盤物性のばらつきを考慮したケース						
 地震動選定方針により選定した地震動に対して、以下の条件にて基本フローを実施 ○地震動選定方針 ・照査値が0.5を超える照査項目について、最も厳しい地震動を各1波選定(最大3波) ・全ての項目の照査値が0.5以下の場合は、照査値が最も厳しい地震動を1波選定 						
地般物性						
上記地震動選定方針により 平均値+1σ						
選定した地震動 平均値-1σ						
最大ケース数						
地震応答解析 18ケース(3断面×3波×2物性) 3次元構造解析による昭香 162ケース(3断面×9時刻×3波×2物性)						
3 沃九神道神術による照査 1027 二人(3)前面へ9中列入3次人2初注)						
▼						
(ウ) 非液状化を考慮したケース (解析手法:全応力解析)						
(イ)における地震動選定方針により選定した地震動に対して、以下の条件にて基本フローを実施						
地盤物性						
上記地震動選定方針により 平均値 アウトルティー						
選定した地震動 半均値+1 σ						
最大ケース数						
地震応答解析 18ケース(3断面×3波×2物性)						
<u>3</u> (二3 (火元 構 道 所 析 に よ る 照 査 162 ゲース (3 断 面 × 9 時 刻 × 3 波 × 2 物 性)						
(ア) 軍に昭本はが十きくなる可能性がもく相合け軍もて物になっても守住						
(エ)更に照査値が大きくなる可能性がある場合は更なる解析ケースを実施						
····································						
以下の帯重の組合せにて3次元構造解析にトス昭本を1ケース実施						
 ○主方向荷重: ③動方向ケースのうち、最も照査値が厳しい地震動、時刻での荷重 ○従方向荷重: ○従方向荷重: 						
エカ回回車と回じ地展期、時刻における強知力回く約期力回と巨文する用北カ回力クースの何里						
三世 4 2						

図 2-23 取水槽の3次元構造解析フロー

2.4 地震時荷重算出断面の選定

地震時荷重算出断面は、「資料 1 屋外重要土木構造物の耐震安全性評価について」 の「4.4 取水槽」で記載したとおり、東西方向では各エリアにおける剛性の違いが地 震時荷重及び床応答に及ぼす影響を考慮し、除じん機エリア(A-A断面),海水ポン プエリア(B-B断面)及びストレーナエリア(C-C断面)の各エリアの構造モデル を使用し、各エリアの中心を地震時荷重算出断面とし、地震時応答解析に反映する。

また,南北方向(D-D断面)については,構造的特徴や周辺状況を踏まえ,構造物 中心を地震時荷重算出断面とする。

取水槽の地震時荷重算出断面図を図 2-24~図 2-27 に示す。

図 2-24 取水槽 地震時荷重算出断面図 (A-A断面)

図 2-25 取水槽 地震時荷重算出断面図 (B-B断面)

図 2-26 取水槽 地震時荷重算出断面図 (C-C断面)

速度層境界線 人工構造物

図 2-27 取水槽 地震時荷重算出断面図 (D-D断面)

2.5 使用材料及び材料の物性値
 構造物の使用材料を表 2-2 に、材料の物性値を表 2-3 に示す。

	材料	仕様
	底版,側壁,隔壁,妻壁*,	設計基準強度
	導流壁,中床版*	23.5 N/mm^2
	灭 汝八 阙 辟 一 忱 辟	設計基準強度
	术机力離壁, 拴壁	24.0 N/mm^2
	SD345	

表2-2 使用材料

注記*:妻壁及び中床版の一部の部材は,設計基準強度24.0N/mm²である。

設計基準強度 ヤング係数 単位体積重量 材料 ポアソン比 (N/mm^2) (N/mm^2) (kN/m^3) 2. 475×10^4 23.5 24.0 鉄筋コンクリート 0.2 24.0 2.500 × 10⁴ 24.0

表2-3 材料の物性値

2.6 地盤物性値

地盤については、WI-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性 値を用いる。地盤の物性値を表 2-4 に示す。

山水		S波速度	P波速度	単位体積重量	ポアソン比	せん断弾性係数	减衰定数
眉笛子		$\rm V_{s}~(m/s)$	${\rm V}_{\rm p}({\rm m/s})$	γ (kN/m ³)	Ņ	G $(\times 10^5 \mathrm{kN/m^2})$	h (%)
- E 11 #	Ss	127*	422*	20.7	0.45	0. 341*	*8
衣眉U-1	S d	156^{*}	516^{*}	20.7	0.45	0.512^{*}	7*
岩盤①	-2	250	800	20.6	0.446	1.31	3
岩盤②		006	2100	23.0	0.388	19.0	3
岩盤③		1600	3600	24.5	0.377	64.0	3
岩盤④		1950	4000	24.5	0.344	95.1	c,
岩盤⑤		2000	4050	26.0	0. 339	105.9	3
岩盤(6		2350	4950	27.9	0.355	157.9	3
注記*:地]震動1	レベル及び試影	魚結果に基づ	く埋戻土のひす	*み依存性を考	は は した 等価物性値	

表 2-4(1) 解析用物性值(岩盤)

		物理特性		強度特性		静的変形	≶特性	動的変形特性		減衰特性
		₽ ₽	せん断	内部	为。 (1) (1) (1)	-7朱 221 -111 %E 734	静ポアソン	動せん断	動ポアソン	案①订代
		街皮 (_/2)	強度	摩擦角	发笛班皮 (N1/2)		뇠	弾性係数	뇠	顺政止致
		ρ _s (g/ cm ⁻)	τ ₀ (N/mm ²)	φ (°)			${\cal V}_{ m s}$	G_{d} (N/mm ²)	b d	ц
	- T IIII F	* :- c	00 V	00	0.22+	E _11E _0.61	010	$G_0=749 \sigma^{0.66} (N/mm^2)$	11	h=0. 095 \times (1–G/G ₀)
	<u> </u>	7.11	0. 22	77	$\sigma \tan 22^\circ$	E0.5-113 0	0. 40	${ m G/G_0=1/}(1+\gamma~/0.~0027)$	0. 40	h=0. $0958 \times (1-6/G_0) \times 0.85$
	£ ³ , 115 , 2N /2		01 6	10	3.10+	000 06		1 00 ~ 104		
	T CK-19. 00/ IIIII		01.6	40	$\sigma \ tan40^\circ$	20, 000		1. 00 × 10		
	e ² -110 ON /2	00 0	9 60	10	3. 58+	000 66	00	0 17 ~ 103	00 0	60 V
MIMIK	I CK=18. UN/mm ²	2.30	J. 98	40	$\sigma \ tan40^\circ$	22, 000	0. 20	9. 17 × 10°	0. 20	0. 03
	f' ol-03 EN/mm2		7.87	40	4.67+	94 750		8 67×10^3		
	I CK-ZO. DIV		4.01	40	$\sigma \ tan40^\circ$	24, 130		0.01 ~ 10		
及	良地盤⑦	* - -	1 05	c	1.25+		66 V	$G_0 = 1135$	66 V	h=0. 095 \times (1–G/G ₀)
(高圧嘖	簀射攪拌工法)	7.11	1. 20	D	$\sigma \ tan0^\circ$. oo	$G/G_0=1/(1+\gamma~/0.~0011)$	cc .0	h=0. $0958 \times (1-6/6_0) \times 1.007$
注記*:	地下水位以深の	密度を示す。	有効応力解析	下においては	1, 地下水位	以浅の密度と	として 2.00	g/cm ³ を用いる。		

表 2-4(2) 解析用物性值(埋戻土, MMR, 改良地盤⑦)

30

- 2.7 評価構造物諸元及び要求機能の考え方
 - 2.7.1 評価構造物諸元

取水槽の諸元を表 2-5 に,評価部位を図 2-28 示す。

	仕	様*1		
部位	部材厚 (mm)	コンクリート 設計基準強度 f'ck (N/mm ²)	鉄筋	要求機能
底版	1900, 2000	23.5	SD345	通水機能
	700, 2000 (側壁①)	23.5	SD345	通水機能
側壁	1000, 2000 (側壁②)	23.5	SD345	止水機能 支持機能
	700(隔壁①)	23.5	SD345	
隔壁	1000(隔壁②)	24.0	SD345	迎水機能 止水機能
	1300(隔壁③)	23.5	SD345	山小陵祀
	1500(隔壁④,隔壁⑤)	23.5	SD345	又行饭祀
丰晓	1200 (妻壁①)	23.5^{*2}	SD345	古体挑战
安生	700, 2000(妻壁②)	23.5	SD345	又村機肥
導流壁	1200(導流壁①~⑤)	23.5	SD345	通水機能
分離壁	1000 (分離壁①~5)	24.0	SD345	止水機能
控壁	1200 (控壁①~⑤)	24.0	SD345	_
	1000(中床版①)	23.5	SD345	通水機能
中床版	1000(中床版②)	24.0 (一部23.5)	SD345	止水機能
	3500(中床版③)	23.5	SD345	支持機能

表 2-5 評価部位とその仕様

注記*1:補強部材の位置は図 2-14~図 2-19 に示す。

*2: 増厚部の設計基準強度は 24.0N/mm²

図 2-28 評価部位の位置
2.7.2 取水槽の要求機能の考え方

「2.7.1 評価構造物諸元」の表 2-5 に示した取水槽の要求機能について, その 考え方を以下に記載する。

(1) 通水機能

取水槽の通水断面を構成する各部材について,通水機能を要求するものとする。 図 2-29 に通水機能が要求される部材の範囲を示す。

図 2-29 通水機能が要求される部材の範囲(上:壁部,下:床部)

(2) 止水機能

止水機能は、津波の押し波時における外郭防護、屋外タンク損傷時における内郭 防護及び循環水系配管破壊時における内部溢水に対し、部材からの漏水によりSク ラスの機器・配管等の安全機能を損なうことがないよう要求される機能である。 図 2-30 に止水機能が要求される部材の範囲を示す。

図 2-30 止水機能が要求される部材の範囲(上:壁部,下:床部)

(3) 支持機能

耐震重要施設及び常設重要重大事故等対処施設である原子炉補機冷却海水ポン プ等を間接支持する部材を図2-31に示す。支持機能における曲げに対する許容限 界は、構造物全体で終局状態に対する限界ひずみを下回ることに加え、アンカー定 着部周辺においては、部材降伏に対する限界ひずみを下回ることを確認する。なお、 上位の要求機能(通水機能,止水機能)が求められる部材は図示していない。

図 2-31 支持機能が要求される部材の範囲(上:壁部,下:床部)

2.8 地下水位

設計地地下水位は、VI-2-1-3「地盤の支持性能に係る基本方針」に従い設定する。設計地下水位の一覧を表 2-6 に、設計地下水位を図 2-32~図 2-35 に示す。

施設名称	解析断面	設計地下水位(EL m)
取水槽	A-A断面	
	B-B断面	4 50
	C-C断面	4. 50
	D-D断面	

表 2-6 設計用地下水位の一覧

凡 例

図 2-32 設計用地下水位 (A-A断面)

図 2-33 設計用地下水位 (B-B断面)

図 2-35 設計用地下水位 (D-D断面)

- 3. 地震応答解析
- 3.1 地震応答解析手法

地震応答解析は、構造物と地盤の相互作用を考慮できる2次元有限要素法により、基準地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行うこととし、解析手法については、図3-1に示す解析手法の選定フローに基づき選定する。解析手法は、「資料1 屋外重要土木構造物の耐震安全性評価について」の「4.4 取水槽」に示すとおり、東西方向については有効応力解析、南北方向については全応力解析とする。なお、東西方向は有効応力解析に加え、液状化しない場合の影響を確認するため、全応力解析も実施する。

構造部材については、中床版、底版及び地震時荷重算出断面に垂直な壁部材を線形は り要素、断面に平行な壁部材は平面応力要素とし、構造物の奥行方向の長さと各部材の 奥行方向の長さの比率や3次元構造解析モデルとの変位を整合させるためのヤング係 数の調整を行い、3次元解析モデルと等価な剛性となるようモデル化する。

地盤については平面ひずみ要素でモデル化することとし、このうち岩盤、MMR及び 埋戻コンクリートについては、線形でモデル化する。埋戻土及び改良地盤については、 地盤の剛性及び減衰のひずみ依存性を適切に考慮できるマルチスプリング要素でモデ ル化することとし、ばね特性は双曲線モデル(有効応力解析では H-D モデル、全応力解 析では修正 GHE モデル)を用いて非線形性を考慮する。

地震応答解析については,解析コード「FLIP」及び「TDAPⅢ」を使用する。 なお,解析コードの検証及び妥当性確認等の概要については,VI-5「計算機プログラム (解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 3-2 に示す。

図 3-2 地震応答解析の選定フロー

- 3.2 地震応答解析モデルの設定
 - 3.2.1 解析モデル領域

地震応答解析モデルのモデル化領域を図 3-3 に示す。

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及 ぼさないよう十分広い領域とする。具体的には、「JEAG4601-1987」を参 考に、モデル幅を構造物基礎幅の5倍以上、モデル高さを構造物基礎幅の1.5倍~ 2倍確保している。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波長の5分の1程度を考慮し、要素高さを1m程度まで細分割して設定する。

構造物の要素分割については、「土木学会マニュアル」に従い、要素長さを部材の断面厚さ又は有効高さの2.0倍以下とし、1.0倍程度まで細分して設定する。

図 3-3 モデル化領域の考え方

- 3.2.2 境界条件
 - (1) 固有值解析時

Rayleigh 減衰の設定に用いる固有周期を求めるための固有値解析を実施する際 の境界条件は、境界が構造物を含めた周辺地盤の振動特性に影響を与えないよう設 定する。ここで、底面境界は地盤のせん断方向の卓越変形モードを把握するために 固定とする。境界条件の概念図を図 3-4 に示す。

図 3-4 固有値解析における境界条件の概念図

(2) 常時応力解析時

常時応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時 応力を算定するために行う。そこで、常時応力解析時の境界条件は底面固定とし、 側方は自重等による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。 境界条件の概念図を図 3-5 に示す。

図 3-5 常時応力解析における境界条件の概念図

(3) 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬 するため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデ ル底面境界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを 設定する。側方の粘性境界については,自由地盤の地盤振動と不整形地盤側方の地 盤振動の差分が側方を通過していく状態を模擬するため,自由地盤の側方にダッシ ュポットを設定する。取水槽の地震時荷重算出断面図及び地震応答解析モデルを図 3-6~図 3-9 に示す。

凡 例

(a) 地震時荷重算出用地質断面図

図 3-6 取水槽の地震時荷重算出断面及び地震応答解析モデル図(A-A断面)

(a) 地震時荷重算出用地質断面図

図 3-7 取水槽の地震時荷重算出断面及び地震応答解析モデル図(B-B断面)

(b) 地震応答解析モデル図

図 3-8 取水槽の地震時荷重算出断面及び地震応答解析モデル図(C-C断面)

凡 例

(a) 地震時荷重算出用地質断面図

(b) 地震応答解析モデル図

図 3-9 取水槽の地震時荷重算出断面及び地震応答解析モデル図(D-D断面)

- 3.2.3 構造物のモデル化
 - (1) 東西方向

取水槽の東西方向は、構造的特徴を踏まえ、妻壁や隔壁の配置が異なることによる 剛性差を考慮して、除じん機エリア(A-A断面),海水ポンプエリア(B-B断面) 及びストレーナエリア(C-C断面)を通る断面とし、エリアごとに等価剛性モデル を作成する。等価剛性モデルについて、側壁、底版及び中床版のような加振に対して 面外変形で抵抗する部材は、線形はり要素にてモデル化し、隔壁及び妻壁のような加 振に対して面内変形で抵抗する部材は、平面応力要素にてモデル化する。

等価剛性の設定は以下の2つの手順に基づき行う。

手順1として,エリア奥行長さに対する部材の奥行長さの比率から補正係数αを線 形はり要素及び平面応力要素それぞれに設定する。

手順2として,線形の3次元構造解析モデルに水平荷重として単位荷重(100kN/m²) を作用させ,構造物の奥行方向の平均的な水平変位を算定する。さらに,補正係数α を設定した2次元モデルに同じ単位荷重を作用させ,剛性変化部における両側壁の平 均変位を算定し,3次元構造解析モデルの水平変位と等しくなるように補正係数βを 算定する。各エリアの等価剛性モデル概念図を図3-10~図3-12に,各エリアにお ける3次元構造解析モデルとの水平変位の比較位置を図3-13~図3-15に示す。コ ンクリートの弾性係数E。に補正係数α, βを乗じ,等価剛性モデルの弾性係数(剛 性)を設定する。剛性の調整方法を図3-16に,剛性調整結果を図3-17に,補正係 数の計算結果を表3-1~表3-6に示す。また,補正係数βは平面応力要素に対して のみ設定する。なお,単位荷重を載荷させる3次元モデル及び2次元モデルの底面の 境界条件は,構造物の変位に着目するため固定境界としている。

等価剛性モデルは、地震時荷重を保守的に評価するよう線形モデルとする。

(2) 南北方向

取水槽の南北方向断面であるD-D断面は,底版,隔壁,妻壁及び中床版のような 加振に対して面外変形で抵抗する部材は,線形はり要素にてモデル化し,側壁のよう な加振に対して面内変形で抵抗する部材は,平面応力要素にてモデル化する。

D-D断面は、土圧を直接受ける妻壁と各エリアに配置される隔壁が上方向で拘束 されず地震時に一体として挙動しないことから、補正係数βについては調整せず、エ リア奥行長さに対する部材奥行長さの比率から求める補正係数αのみ設定する。

図 3-10 各エリアの等価剛性モデル (A-A断面)

図 3-11 各エリアの等価剛性モデル (B-B断面)

図 3-12 各エリアの等価剛性モデル (C-C断面)

図 3-13 等価剛性モデルと3次元構造解析モデルの変位比較概念図(A-A断面)

図 3-14 等価剛性モデルと3次元構造解析モデルの変位比較概念図(B-B断面)

図 3-15 等価剛性モデルと3次元構造解析モデルの変位比較概念図(C-C断面)

図 3-16 剛性の調整方法

要素番号	α
1	1.000
2	0.333
3	0.333
4	0.333
5	0.333
6	0.333
\overline{O}	1.000
8	1.000
9	0.896
10	0.896
(1)	0.896
12	0.896
13	0.896
14	1.000
15	1.000
16	1.000
(17)	1.000
18	1.000
19	1.000
20	1.000
Ð	1.000
22	0.641
£3	0.525
23	0.238
23	1.000

表 3-1 補正係数の計算結果(はり要素)(A-A断面)

要素番号	α
1	1.000
2	1.000
3	1.000
4	1.000
5	1.000
6	1.000
\overline{O}	1.000
8	0.847
9	1.000

表 3-2 補正係数の計算結果(はり要素)(B-B断面)

表 3-3 補正係数の計算結果(はり要素)(C-C断面)

要素番号	α
1)	1.000
2	1.000
3	1.000

要素番号	α	β
1	0.229	0.063
2	0.220	2.969
3	0.145	0.268
3'	0.145	0.134

表 3-4 補正係数の計算結果(平面応力要素)(A-A断面)

表 3-5 補正係数の計算結果(平面応力要素)(B-B断面)

要素番号	α	β
1	0.238	0.200
2	0.244	0.148
3	0.118	2.274
4	0.118	0.535

要素番号	α	β
1	0.2920	0.2117

0.2983

0.2358

2

表 3-6 補正係数の計算結果(平面応力要素)(C-C断面)

3.2.4 隣接構造物のモデル化

南北方向において、タービン建物及び防波壁(多重鋼管杭式擁壁)は取水槽の隣 接構造物に該当する。タービン建物については取水槽と近接しており、防波壁(多 重鋼管杭式擁壁)については取水槽との間が地盤改良され隣接構造物の地震応答が 剛性の大きい改良地盤を介して取水槽に伝達することが考えられるため、「資料1 屋外重要土木構造物の耐震安全性評価について」の「8.1 隣接構造物のモデル化 方針」に従い、タービン建物及び防波壁(多重鋼管杭式擁壁)をモデル化する。 以下に、それぞれの構造物のモデル化方針を示す。

(1) タービン建物

タービン建物の耐震評価で用いる質点系モデルを基に有限要素モデルを作成し、 質点系モデルと等価な剛性を有する線形の平面ひずみ要素でモデル化する。モデル 化の概念図を図 3-18 に示す。

タービン建物における平面ひずみ要素の物性値及び断面諸元を表 3-7 に示す。

図 3-18 タービン建屋 有限要素モデル図

物性	せん断弾性係数G	ヤング係数E	ポマソンド
番号	(kN/m^2)	(kN/m^2)	ホノノンピッ
1	1.221×10^{5}	3.453 $\times 10^{5}$	0.41375
2	2.174 \times 10 ⁵	6.120×10 ⁵	0.40735
3	4.004 $\times 10^{5}$	1.186×10^{6}	0.48175
4	4.060 \times 10 ⁵	1.203×10^{6}	0.48125
5	4. 487×10^{5}	1.328×10^{6}	0.47987
6	6.592×10^{5}	1.705×10^{7}	0.29326

表 3-7 タービン建屋(平面ひずみ要素)の物性値

(2) 防波壁(多重鋼管杭式擁壁)

防波壁(多重鋼管杭式擁壁)は、VI2-10-2-3-3「防波壁(多重鋼管杭式擁壁)の 耐震性についての計算書」に基づき,線形はり要素(ビーム要素)でモデル化する。 3.2.5 地盤のモデル化

岩盤, MMR及び埋戻コンクリートは線形の平面ひずみ要素でモデル化する。ま た, 埋戻土及び改良地盤は, 地盤の非線形性をマルチスプリング要素で考慮した平 面ひずみ要素でモデル化する。岩盤(速度層)境界は, 南北断面では速度層断面図 の北傾斜をモデル化し, 東西断面では速度層断面図が概ね水平であることから水平 成層としてモデル化するが, 取水槽下部において速度層境界が傾斜しているため, 保守的に低速度層が厚く分布するようモデル化する。

3.2.6 ジョイント要素の設定

地震時の地盤と構造体の剥離とすべりを考慮するため,地盤と構造体の接合面に ジョイント要素を設ける。

ジョイント要素は,隣接する要素の接合面で法線方向及びせん断方向に対して設 定する。法線方向については,常時状態以上の引張荷重が生じた場合,剛性及び応 力をゼロとし,剥離を考慮する。せん断方向については,地盤と構造体の接合面に おけるせん断抵抗力以上のせん断荷重が生じた場合,せん断剛性をゼロとし,すべ りを考慮する。なお,せん断強度は次式により設定する。

 $\tau_{\rm f} = c + \sigma' \tan \phi$

ここで,

τ_f: せん断強度

- c:付着力
- ♦ : 摩擦角

粘着力 c 及び内部摩擦角 φ は,周辺地盤の c, φ とし,「補足-023-01 地盤の 支持性能について」に基づき表 3-8 のとおりとする。また,接合面に設定するジ ョイント要素のせん断強度は,表 3-9 に示すとおり,隣り合う地盤等の各せん断 強度のうち小さい値を採用する。

地盤		粘着力 c	内部摩擦角 φ
		(N/mm^2)	(°)
岩盤(C	_H 級)	1.62	53.0
岩盤 (C _M 級)		1.23	52.0
岩盤 (C _L 級)		0.56	37.0
埋戻土		0.22	22.0
改良地盤		1.25	0
MMR ·	f'ck=15.6	3.10	40.0
埋戻コンクリート	f'ck=18.0	3.58	40.0

表 3-8 周辺地盤の強度特性(粘着力 c 及び摩擦角 φ)

表 3-9 ジョイント要素間の粘着力 c と摩擦角 φ

接合	条件	粘着力 c	内部摩擦角 <i>ϕ</i>
材料1	材料2	(N/mm^2)	(°)
	無筋コンクリー ト*1	材料2のc	材料2のφ
構造物	改良地盤	材料2のc	材料2のφ
	埋戻土	材料2のc	材料2のφ
	岩盤	材料2のc	材料2のφ
	無筋コンクリー ト*1	材料1のc	材料1のφ
ு கடைக்க	埋戻土	材料2のc	材料2のφ
以及地盤	Q 良 地 盛 C H · C M 級 岩 盤	材料1のc	材料1のφ
	C _L 級岩盤	材料2のc	材料2のφ
	無筋コンクリー	設計基準強度が小さい材	設計基準強度が小さい材
無筋コンクリー	ightarrow *1	料の c	料 の ϕ
$arepsilon^{*1}$	埋戻土	材料2のc	材料2のφ
	岩盤	*2	* 2

注記*1:MMR,置換コンクリート及び埋戻コンクリートの総称。

*2:表面を露出させて打継処理が可能である箇所については、ジョイント要素を 設定しない。 また、ジョイント要素のばね定数は、「土木学会マニュアル」を参考に、数値計 算上、不安定な挙動を起こさない程度に周囲材料の剛性よりも十分に大きな値とし て、表 3-10 のとおり設定する。ジョイント要素の力学的特性を図 3-19 に、ジョ イント要素の配置を図 3-20~図 3-23 に示す。

せん断剛性k s	圧縮剛性 k n
(kN/m^3)	(kN/m^3)
1. 0×10^{7}	1.0×10^{7}

表 3-10 ジョイント要素のばね定数

(全体図)

(ジョイント要素拡大) 図 3-20 ジョイント要素の配置(A-A断面)

(全体図)

(ジョイント要素拡大) 図 3-21 ジョイント要素の配置(B-B断面)

(全体図)

(ジョイント要素拡大) 図 3-23 ジョイント要素の配置 (D-D断面)

3.3 減衰定数

減衰定数は、「資料1 屋外重要土木構造物の耐震安全性評価について」の「9. 地 震応答解析における減衰定数」に基づき、粘性減衰及び履歴減衰で考慮する。

粘性減衰は、固有値解析にて求められる解析モデル全体の固有周期と各材料の減衰比 に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。Rayleigh 減衰の設定フローを図 3-24 に 示す。

- $[C] = \alpha [M] + \beta [K]$
- [C]:減衰係数マトリックス
- [M] : 質量マトリックス
- [K] : 剛性マトリックス
- α , β :係数

図 3-24 Rayleigh 減衰の設定フロー

(1) 全応力解析で設定する Rayleigh 減衰

全応力解析における Rayleigh 減衰の係数α, βは,低次のモードの変形が支配的 となる地中埋設構造物に対して,その特定の振動モードの影響が大きいことを考慮し て,固有値解析結果より得られる卓越するモードの減衰と Rayleigh 減衰が一致する ように設定する。なお,卓越するモードは全体系の固有値解析における刺激係数及び モード図にて決定する。

 $h_i = \alpha / 2 \omega_i + \beta \omega_i / 2$

- h_i:固有値解析により求められた i 次モードの減衰定数
- ω_i:固有値解析により求められた i 次モードの固有円振動数

固有値解析結果の一覧を表 3-11~表 3-14 に,固有値解析におけるモード図を図 3-25~図 3-28 に,係数α, βを表 3-15 に,固有値解析結果に基づき設定した Rayleigh 減哀を図 3-29~図 3-32 に示す。

	固有振動数	有効質量比(%)		刺激係数		/曲 土
	(Hz)	Тx	Ту	βх	βу	加方
1	3.841	40	0	3.652	0.000	1次として採用
2	4.137	0	1	0.001	-0.788	_
3	5.399	17	0	-3.355	0.000	_
4	5.972	0	0	-0.004	-0.173	_
5	6.730	13	0	2.023	0.000	_
6	7.502	6	0	2.260	-0.001	_
7	7.664	0	9	-0.004	2.875	_
8	7.734	0	6	0.004	1.294	_
9	8.337	0	0	-0.136	0.000	_
10	9.060	0	2	0.030	1.236	_
11	9.111	5	0	-2.248	0.024	_
12	9.488	2	0	1.115	-0.235	—
13	9.488	1	0	-1.074	-0.308	2次として採用
14	9.868	0	0	-0.234	-0.001	—

表 3-11 固有值解析結果(A-A断面)

	固有振動数	有効質量	圭比(%)	刺激係数		冶 老
	(Hz)	Тx	Ту	β x	βу	加巧
1	3.863	40	0	3.581	0.000	1次として採用
2	4.146	0	1	0.000	0.766	_
3	5.466	17	0	-3.362	0.000	_
4	5.947	0	0	0.001	0.186	_
5	6.764	16	0	-2.201	0.000	_
6	7.547	4	0	1.845	-0.001	_
7	7.638	0	1	-0.002	0.771	_
8	7.706	0	14	-0.001	-1.490	
9	8.420	0	0	-0.272	-0.002	
10	8.986	0	2	-0.005	1.301	
11	9.087	3	0	1.738	-0.001	_
12	9.465	0	0	-0.001	-0.228	
13	9.631	3	0	0.849	0.001	2次として採用
14	9.834	0	0	0.369	0.005	_

表 3-12 固有值解析結果(B-B断面)

表 3-13 固有值解析結果(C-C断面)

	固有振動数	有効質量	量比(%)	刺激係数		供考
	(H_Z)	Тx	Ту	βх	βу	加石
1	3.841	39	0	3.643	0.000	1次として採用
2	4.113	0	1	0.000	-0.773	—
3	5.452	19	0	-3.619	0.000	—
4	5.893	0	0	0.000	0.178	—
5	6.660	18	0	-2.318	0.000	—
6	7.530	2	0	-1.384	0.000	—
7	7.555	0	1	0.000	-0.700	—
8	7.679	0	15	0.000	1.522	—
9	8.410	1	0	-0.422	0.000	—
10	8.902	0	2	0.000	-1.170	—
11	8.990	2	0	-1.290	0.000	—
12	9.374	0	0	0.000	-0.436	—
13	9.699	1	0	0.550	0.000	2次として採用
14	9.780	39	0	-1.095	0.000	—

	固有振動数	有効質量比(%)		刺激	係数	/ 世 土
	(H_Z)	Тx	Ту	βх	βу	加巧
1	2.685	29	0	6.273	0.630	1 次として採用
2	3.412	41	0	-7.215	0.367	2 次として採用
3	4.171	2	5	-1.047	1.813	—
4	4.752	1	0	-0.764	-0.576	—
5	5.316	0	0	-0.539	-0.480	—
6	5.429	2	5	1.654	-2.785	_
7	5.640	0	0	1.239	3.715	_
8	5.938	6	1	-4.463	-1.764	_
9	6.393	0	5	-0.105	1.505	_
10	6.671	0	2	0.088	1.737	_

表 3-14 固有值解析結果 (D-D断面)

評価対象断面	α	β
A-A断面	0.674	2.017 × 10 ⁻⁴
B-B断面	0.674	1.986×10^{-4}
C-C断面	0.708	1.240×10^{-4}
D-D断面	0.609	1.377×10^{-3}

表 3-15 全応力解析で設定する Rayleigh 減衰における係数 α, βの設定結果

図 3-29 設定した Rayleigh 減衰 (A-A断面)

図 3-30 設定した Rayleigh 減衰 (B-B断面)

図 3-32 設定した Rayleigh 減衰 (D-D断面)

(2) 有効応力解析で設定する Rayleigh 減衰

有効応力解析 Rayleigh 減衰は,地震力による時系列での地盤剛性の軟化に伴う1 次固有振動数の低振動数側へのシフトに応じて,地盤応答の保守的な評価が行われる よう係数αを0として設定し,低振動数帯で減衰α[m]の影響がない剛性比例型減 衰としている。また,係数βは,「FLIP研究会14年間の検討成果のまとめ[理論編]」 に基づきβ=0.002と設定する。

有効応力解析で設定する Rayleigh 減衰における係数 α , β を表 3-16, 設定した Rayleigh 減衰を図 3-33 に示す。

表 3-16	有効応力解析	で設定する	Rayleigh 海	咸衰における	S係数α,	βの設定結果
--------	--------	-------	------------	--------	-------	--------

評価対象断面	α	β
A-A断面	0.000	0.002
B-B断面	0.000	0.002
C-C断面	0.000	0.002
D-D断面	0.000	0.002

図 3-33 設定した Rayleigh 減衰

3.4 荷重の組合せ

耐震評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出し, それぞれを組み合せて設定する。地震荷重には,地震時土圧,機器・配管系からの反力 及び動水圧による荷重が含まれるものとする。

なお,取水槽の運転時,設計基準事故時及び重大事故時の状態における荷重条件は同 一であり,評価は設計基準対象施設の評価結果に包括されることから,設計基準対象施 設の評価結果を用いた重大事故等対処施設の評価を行う。

荷重の組合せを表 3-17 に示す。

種別		荷重		算定方法の概要
		躯体自重	0	 ・設計図書に基づいて、対象構造 物の体積に材料の密度を乗じて 設定する。
	固定	機器・配管荷重	0	 ・機器・配管系の重量に基づいて 設定する。
	何里	浸水防止設備荷重	0	・浸水防止設備の重量に基づいて 設定する。
		防護対策設備荷重	0	 防護対策設備の重量に基づいて 設定する。
永久荷重		静止土圧	0	・常時応力解析により設定する。
(常時荷重)	積載荷重	外水圧	0	 ・地下水位に応じた静水圧として 考慮する。 ・地下水の密度を考慮する。
		内水圧	0	 ・内水位に応じた静水圧として考 慮する。 ・海水の密度を考慮する。
		積雪荷重	0	・地表面に考慮する。
	土被り荷重		0	・常時応力解析により設定する。
		永久上載荷重	_	 ・地表面に恒常的に置かれる設備 等はないことから考慮しない。
	水平地震動		0	・基準地震動Ssによる水平・鉛
		鉛直地震動	0	直同時加振を考慮する。
偶発荷重 (地震荷重)	偶発荷重 (地震荷重) 動水圧		0	 ・水位条件及び密度は、永久荷重の うち内水圧と同様とする。 ・地震時動水圧を付加質量により 考慮する。

表 3-17 荷重の組合せ

3.4.1 機器·配管荷重

地震時に取水槽に作用する機器・配管の荷重図を図 3-34 に,荷重を考慮する主 要な機器・配管を表 3-18 に示す。機器・配管の荷重は,機器・配管位置にダミー (剛性0)のビーム要素もしくはシェル要素を作成し,密度を与えることで考慮す る。循環水ポンプや原子炉補機冷却水ポンプ等の主要な機器設置範囲に荷重を載荷 し,配管荷重は,部材全体に分布荷重として考慮する。

図 3-34(2) 機器・配管の荷重図(海水ポンプエリア)

図 3-34(3) 機器・配管の荷重図(ストレーナエリア)

図 3-34 (4) 機器・配管の荷重図 (南北断面)

部	位	主な考慮する機器・配管荷重
除じん機	中床版	除じん機:421.7kN/基
エリア	底版	除じん機:156.9kN/基
	隔壁	循環水ポンプモータ:872.8kN/基
海水ポンプ		循環水ポンプ:837.5kN/基
エリア	中床版	原子炉補機海水ポンプ:161.8kN/基
		タービン補機海水ポンプ:122.6kN/基
ストレーナ		原子炉補機海水ストレーナ:176.5kN/基
エリア	甲床放	タービン補機海水ストレーナ:98.1kN/基

表 3-18 荷重を考慮する主要な機器・配管等

3.4.2 浸水防止設備荷重

取水槽上部に設置されている浸水防止設備の自重を荷重として考慮する。 浸水防止設備の位置図を図 3-35 に,荷重図を図 3-36 に示す。

-: 浸水防止設備

図 3-35 浸水防止設備 位置図

図 3-36(2) 浸水防止設備 荷重図(海水ポンプエリア)

3.4.3 防護対策設備荷重

取水槽上部に設置されている防護対策設備の自重を荷重として考慮する。 防護対策設備の位置図を図 3-37 に,荷重図を図 3-38 に示す。

- : 防護対策設備

図 3-37 防護対策設備 位置図

3.4.4 外水圧

外水圧は、地下水位に応じた静水圧を設定する。地下水位については、「2.8 地 下水位」のとおりとし、地下水の密度として、1.00g/cm³を考慮する。 外水圧図を図 3-39 に示す。

図 3-39(1) 外水圧図(除じん機エリア)

図 3-39(4) 外水圧図 (南北断面)

3.4.5 内水圧

取水槽の内部には, 朔望平均干潮位 EL -0.02m からポンプ通常運転時の水位低 下を加味した EL-0.30m を内水位として設定する。設定の際は,海水の密度として, 1.03g/cm³を考慮する。

内水圧図を図 3-40 に示す。

図 3-40(3) 内水圧図(南北断面)

3.4.6 積雪荷重

取水槽に作用する積雪荷重図を図 3-41 に示す。

積雪荷重は,発電所敷地に最も近い気象官署である松江地方気象台で観測された 観測史上1位の月最深積雪100cmに平均的な積雪荷重を与えるための係数0.35を 考慮し35.0 cmとする。積雪荷重については,松江市建築基準法施行細則により, 積雪量1 cmごとに20N/m²の積雪荷重が作用することを考慮し設定する。

中床版への積雪荷重は、開口部、壁及び梁の面積を除いた範囲とする。

図 3-41(1) 積雪荷重図(除じん機エリア)

図 3-41(3) 積雪荷重図 (ストレーナエリア)

3.4.7 動水圧

動水圧は Westergaard 式から算定する。

(1) 水平方向の動水圧

取水槽内部の水を固定水として扱い,次式で算定する。水平方向動水圧の概要図 を図 3-42 に示す。

k_H:水平震度

図 3-42 水平方向の動水圧分布図

(2) 鉛直方向の動水圧

取水槽内部の水を固定水として扱い,次式で算定する。鉛直方向動水圧の概要図 を図 3-43 に示す。

 $p_w = k_V \times \gamma_w \times h$ $p_w : 動水圧$ $k_V : 鉛直震度$ $\gamma_w : 水の単位体積重量$

h:水深

図 3-43 鉛直方向の動水圧分布図

- 3.5 地震応答解析の解析ケース
 - 3.5.1 耐震評価における解析ケース
 - (1) 地盤物性のばらつきを考慮した解析ケース

取水槽は,構造物の大部分が地中に埋設された鉄筋コンクリート構造物であり, 構造物の耐震性に支配的な損傷モードは地盤のせん断変形を伴う構造部材の曲げ・ 軸力系の破壊及びせん断破壊となる。

A-A断面, B-B断面及びC-C断面周辺には,動的変形特性にひずみ依存性 がある埋戻土が主に分布しており,埋戻土が地震時に構造物への応答に大きく影響 を与えると判断されることから,埋戻土のばらつきについて影響を確認する。ばら つきを考慮する物性値は地盤のせん断変形を定義するせん断弾性係数とし,平均値 を基本ケース(表 3-19に示すケース①)とした場合に加えて,平均値±1.0×標 準偏差(σ)のケース(表 3-19に示すケース②及び③)について確認を行う。さ らに,非液状化の条件を仮定したケース④及び⑤を実施することにより,地盤物性 のばらつきの影響を網羅的に考慮する。

D-D断面は、耐震評価における3次元構造解析の条件をそろえるため、埋戻土のばらつきを考慮することとする。平均値を基本ケース(表3-20に示すケース⑥) とした場合に加えて、平均値±1.0×標準偏差(σ)のケース(表3-20に示すケ ース⑦及び⑧)について確認を行う。

地盤のばらつきの設定方法の詳細は、「補足-023-01 地盤の支持性能について」 に示す。

表 3-19 取水槽の耐震評価における解析ケース

		地盤物性	
解析ケース	解析手法	埋戻土 (G ₀ :初期せん断弾性係数)	岩盤 (G _d :動せん断 弾性係数)
ケース① (基本ケース)	有効応力解析	平均值	平均值
ケース②	有効応力解析	平均值+1 σ	平均值
ケース③	有効応力解析	平均值-1 σ	平均值
ケース④	全応力解析	平均值	平均值
ケース⑤	全応力解析	平均值+1 σ	平均值

(A-A断面, B-B断面及びC-C断面)

表 3-20 取水槽の耐震評価における解析ケース(D-D断面)

		地盤	这物性
解析ケーマ	韶析千江	埋戻土	岩盤
אדער אר	府初于公	(G ₀ :初期せん	(G _d :動せん断
		断弹性係数)	弾性係数)
ケース⑥	令亡力破垢	亚坎荷	亚齿荷
(基本ケース)	主応刀牌別	平均恒	平均恒
ケース⑦	全応力解析	平均值+1σ	平均值
ケース⑧	全応力解析	平均值-1σ	平均值

(2) 耐震評価における解析ケースの組合せ

取水槽の耐震評価においては、基準地震動Ss全波(6波)及びこれらに位相反転を考慮した地震動(6波)を加えた全12波を用いて基本ケース(A-A断面,B-B断面及びC-C断面の場合はケース①,D-D断面の場合はケース⑥)を実施する。

基本ケースにおいて、曲げ・軸力系の破壊、せん断破壊及び地盤の支持力照査の 照査項目ごとに照査値が 0.5 を超えるすべての照査項目に対して、最も厳しい地震 動*を用いて、A-A断面、B-B断面及びC-C断面の場合は表 3-21 に示すケ ース②~⑤を、D-D断面の場合は表 3-22 に示すケース⑦及び⑧を実施する。す べての照査項目の照査値がいずれも 0.5 以下の場合は、照査値が最も厳しくなる地 震動を用いて、A-A断面、B-B断面及びC-C断面の場合はケース②~⑤を、 D-D断面の場合はケース⑦及び⑧を実施する。

また,上記解析ケースの結果を踏まえ,更に照査値が大きくなる可能性がある場 合は,追加解析を実施する。

追加解析ケースを実施する地震動の選定フローを図 3-44 に示す。

注記*:各要求機能(支持機能,通水機能,止水機能)により許容限界は異なるが, 各照査項目に対して,照査値が最大となる地震動を選定する。

			ケース①	ケース(2)	ケース③	ケース④	ケース⑤
							地盤物性のばらし
	御子にたって			地盤物性のばらし	地盤物性のばらし	非液状化の条件を	き(+10)を考
	キーへを		基本ケース	き(+10)を考	분 (-10) 춘考	仮定した解析ケー	慮して非液状化の
				慮した解析ケース	慮した解析ケース	к	条件を仮定した解
							析ケース
	地盤物性		平均値	平均值+1 σ	平均值-1σ	平均値	平均值+1 σ
		*++	0				
	c c	*+	0				
	v s U	* +	0		1	 に位相反転を考慮し	
		*	0		た地震動(6波)を加	えた全12 波に対し,	
地震	S s – F 1	* + +	0		クーく(D) (基本クーく 力系の破壊, せん断砲	ノ を 夫 旭 し, 曲 り • 軸 技 壊 及 び 基 礎 地 盤 の 支	
愈働	S s – F 2	*+++	0		特力照査の各照査項E を超える照査項目に対	ヨごとに照査値が 0.2 †して,最も厳しい(許	
(街:		*++	0		容限界に対する裕度かや用いてた「この」	2最も小さい) 地震動 25年始ナス	
臣)		*+	0	- ,	* ほくくの照査項目の歴	ッと天地りつ。 呉査値がいずれも 0.5	
	S s - N 2	*++	0		以下の場合は、照査値 裏動を用いてケース@	直が最も厳しくなる地)~⑤を実施する。	
	(N S)	*+	0				
	S s – N 2	*++	0				
	(EW)	* + -	0				
注記*:	地震動の位相にく	oいて、++	の左側は水平動,右(削は鉛直動を表し, 「-	- 」は位相を反転させた	ニケースを示す。	

表 3-21 取水槽の耐震評価における解析ケース(基本ケース:有効応力解析)

114

			ケース⑥	ケース⑦	ケース⑧			
	御作を一つ			地盤物性のばらつき	地盤物性のばらつき			
カキャレン			基本ケース	(+1σ)を考慮し	(-1σ)を考慮し			
				た解析ケース	た解析ケース			
	地盤物性		平均值	平均值+1σ	平均值-1σ			
		+ + *	0					
	$S_s - D$	-+*	0	→ 基準地震動 S s (6 波) に位相反転を				
	5 s – D	+-*	0	■ 虚単地展動3 s (0 慮した地震動(6 波))を加えた全 12 波に			
		*	0	─ 対し,ケース⑥(基 曲げ・軸力系の破壊	本ケース)を実施し, 〔, せん断破壊及び基			
地震動(位	S s - F 1	++*	0	磁地盤の支持力照査	の各照査項目ごとに			
	S s - F 2	+ + *	0	R. 量値が 0.5 を超 て,最も厳しい(許	容限界に対する裕度			
	C N 1	++*	0	── が最も小さい)地震 │ 及び⑧を実施する。	動を用いてケース⑦ 🗌			
相	S s - N 1	-+*	0	すべての照査項目の	の照査値がいずれも			
	S s - N 2	+ + *	0	なる地震動を用いて	「ケース⑦及び⑧を実			
	(NS)	-+*	0	施する。				
	S s - N 2	+ + *	0					
	(EW)	-+*	0					

<u> まっ_</u> ? ?	取水構の耐電評価における解析ケース	(其木ケーマ・全亡力解析)
衣 3-22	取小帽の 側長計価にわける 胜州クース	(基本ケーム:主応力胜州)

注記*:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位相 を反転させたケースを示す。

図 3-44 追加解析を実施する地震動の選定フロー(D-D断面の例)

- 3.5.2 機器・配管系の耐震評価に適用する解析ケース
 - (1) 材料物性のばらつきを考慮した解析ケース

材料物性のばらつきについては、剛性を定義するコンクリートのヤング係数が、コ ンクリートの設計基準強度に対応して定まることを踏まえ、コンクリートの設計基準 強度を基本ケースとし、ヤング係数をコンクリートの実強度に対応して定めたケース について確認を行う(表 3-23に示すケース⑨及び表 3-24に示すケース⑪)。

屋外重要土木構造物等の耐震性に支配的な要因である土圧は,構造物と周囲の地盤 の剛性差により生じることから,構造物の剛性が低下し,地盤との剛性差が小さくな ることは,耐震裕度が向上することとなる。したがって,屋外重要土木構造物等のコ ンクリートは設計基準強度に対応する剛性を基本とし,ばらつきの考慮としては,土 圧が大きく評価されるようコンクリートの実強度に対応する剛性について確認を行 う。なお,屋外重要土木構造物等は,屋外かつ湿潤した地盤に接して地中に埋設され ていることから,建物と異なり乾燥する環境にはなく,点検においても乾燥収縮によ る有害なひび割れは確認されておらず,コンクリートの剛性低下は顕在化していない。

取水槽におけるコンクリート実強度は、図 3-45 及び図 3-46 に示す位置におけるコア抜き強度 f'。kの平均値とし、ヤング係数は実強度の平均値からコンクリート標準示方書に基づき算出する。取水槽のコンクリート実強度及びヤング係数を表 3-25 及び表 3-26 に示す。

表 3-23 機器・配管系の耐震評価における解析ケース

		地盤	这物性	
御たな、フ	御忙工计	埋戻土	岩盤	/ 世 - 本
所初クース	 一种机 十 伝	(G₀:初期せん	(G _d :動せん断	加石
		断弹性係数)	弾性係数)	
ケース①	方动亡力初步	亚坎仿	亚均结	
(基本ケース)	有知心刀醉竹	平均恒	平均恒	
ケース2	有効応力解析	平均值+1σ	平均值	
ケース③	有効応力解析	平均值-1σ	平均值	
ケース④	全応力解析	平均值	平均值	
ケース(5)	全応力解析	平均值+1σ	平均值	
k. 70	方动成力初步	亚坎仿	亚均结	コンクリート
7-79	19 30 心力胜竹	平均恒	平均恒	実強度*
ケース10	有効応力解析	平均值	平均值	地下水位低下

(A-A断面, B-B断面及びC-C断面)

注記*:既設構造物のコア採取による圧縮強度試験に基づき表 3-25 に示すとおりとする。

		地盤	物性	
		埋戻土	岩盤	/ 世 北
脾がクース	·	(G ₀ :初期せん)	(G _d :動せん断	加方
		断弹性係数)	弾性係数)	
ケース⑥	入亡力舠七	亚均荷	亚均仿	
(基本ケース)	主心刀醉机	平均恒	平均恒	
ケース⑦	全応力解析	平均值+1σ	平均值	
ケース⑧	全応力解析	平均值-1σ	平均值	
4 7 D	入亡力細た	亚均荷	亚均仿	コンクリート
	「土」がレフ」「時本小」	平均恒	平均恒	実強度*
ケース①	全応力解析	平均值	平均值	地下水位低下

表 3-24 機器・配管系の耐震評価における解析ケース(D-D断面)

注記*:既設構造物のコア採取による圧縮強度試験に基づき表 3-25 に示すとおりとする。

図 3-45 コア採取位置図

コンクリート実強度	ヤング係数
(N/mm^2)	(kN/mm^2)
37.6	30.3

表 3-25 取水槽のコンクリート実強度及びヤング係数

表 3-26 取水槽のコア採取による圧縮強度試験結果

		供試体数 (本)	コンク	リート	ヤング	ブ係数
採取位置*	採取年		実強度	(N/mm^2)	(kN/	mm^2)
			最大	最小	最大	最小
気中帯①~③	2016	3	40.9	32.3	29.0	28.5
干満帯①~③	2016	3	37.5	31.6	27.2	23.7
海中帯①~③	2016	3	41.8	41.6	35.3	31.1

注記*:採取位置は図 3-45 及び図 3-46 に示す。

(2) 地下水位の影響を考慮した解析ケース

取水槽の耐震評価に用いる地下水位は、地下水位低下設備に期待せず、保守的に 高く設定していることから、機器・配管系の床応答への影響を確認するため、地下 水位が十分低下している(解析モデル内に地下水位を設定しない)状態での影響検 討を実施する(表 3-22 に示すケース⑩及び表 3-23 に示すケース⑫)。

(3) 機器・配管系の耐震評価における解析ケースの組合せ

取水槽に支持される機器・配管系の耐震安全性評価に適用する床応答への保守的 な配慮として、基準地震動Ss(全波(6波)及びこれらに位相反転を考慮した地 震動(6波)を加えた全12波)及び弾性設計用地震動Sd(全波(7波)及びこれ らに位相反転を考慮した地震動(9波)を加えた全16波)を用いて、A-A断面及 びB-B断面においては表 3-27及び表 3-28に示すとおり有効応力解析(ケー ス①~③)に加え、全応力解析(ケース⑤)を行う。また、D-D断面においては 表 3-29及び表 3-30に示すとおり全応力解析(ケース⑥~⑧)を行う。

上記に加え、A-A断面及びB-B断面においては表 3-23 に示すとおり影響検 討ケース(ケース⑨及び⑩)を、D-D断面においては表 3-24 に示すとおり影響 検討ケース(ケース⑪及び⑫)を併せて実施する。なお、影響検討ケースは位相特 性の偏りがなく、全周期帯において安定した応答を生じさせる基準地震動Ss-D に対して実施することとする。

					有劾応力解初	Г.		全応力解析
			ケース①	$\gamma - \chi @$	ケース③	ケースの	ケース	ケースの
	観寺子ーム	c3 *		地盤物性のぼら	地盤物性のぼら	材料物性 (コンク	时、可治***	地盤物性のぼらつき
	JH 101 2		基本	つき (+10)	つき (-1 0)	リート)の実強度	地下小小山小笏	(+10)を考慮し
			ケース	を考慮した解析	を考慮した解析	を考慮した解析ケ	司を仮足しに開また」と	て非液状化の条件を
				ケース	ケース	ĸ 1	<u>م</u>	仮定した解析ケース
	地盤物性		平均值	平均值+10	平均值一1 0	平均値	平均值	平均値+1 0
		+++	0	0	0	4	\triangleleft	0
	۲ ، ن	-+*1	0	0	0		I	0
	N S S	* +	0	0	0			0
			0	0	0		I	0
赵寰	S s - F 1	* + +	0	0	0			0
愈働	$S_s - F_2$	* + +	0	0	0		l	0
(泊計	5 N 1	* + +	0	0	0			0
₽)		* + -	0	0	0		I	0
	S s $-$ N 2	* + +	0	0	0	I	ļ	0
	(N S)	* + -	0	0	0			0
	S s $-$ N 2	$+ + *^{1}$	0	0	0	I		0
	(EW)	-+*1	0	0	0			0

表 3-27 取水槽の機器・配管系の耐震評価に適用する解析ケース (基準地震動Ss, A-A断面及びB-B断面)

確認する。

*

2: Oは設計に用いる解析ケースを示し、△は影響検討ケースを示す。影響検討ケースについては、Ss-D(++)により影響の程度を

注記*1:地震動の位相について,++の左側は水平動,右側は鉛直動を表し,「-」は位相を反転させたケースを示す。

123

	表 3-28	取水槽の機器	· 配管系	の耐震評価に適用する解析ケー
--	--------	--------	-------	----------------

			ケース①	ケース2	ケース③	ケース⑤
解析ケース		基本ケース	地盤物性のば らつき(+1 σ)を考慮し た解析ケース	地盤物性のば らつき (-1 σ)を考慮し た解析ケース	非液状化の条 件を仮定した 解析ケース	
	地盤物性		平均值	平均值+1σ	平均值-1σ	平均值+1 σ
		++*	0	0	0	0
	G 4 – D	-+*	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Su D	+-*	0	0	0	0
₩		*	0	0	0	0
	S d - F 1	++*	0	\bigcirc	\bigcirc	\bigcirc
	S d - F 2	++*	0	\bigcirc	\bigcirc	\bigcirc
地 震	S d – N 1	++*	0	\bigcirc	\bigcirc	\bigcirc
動	5 u - N I	-+*	0	0	0	\bigcirc
位	S d - N 2	++*	0	\bigcirc	\bigcirc	\bigcirc
相)	(NS)	-+*	0	0	0	0
	S d - N 2	++*	0	0	0	0
	(EW)	-+*	0	0	0	0
		++*	0	0	0	0
	S d - 1	-+*	0	0	0	0
	3 u - 1	+-*	0	0	0	0
		*	0	0	0	0

(弾性設計用地震動 S d, A-A断面及びB-B断面)

注記*:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位 相を反転させたケースを示す。

0	
N9	
to Día	
調	
旌	

S s - D (++) により影響の程度を 影響検討ケースについては、 2:○は設計に用いる解析ケースを示し、△は影響検討ケースを示す。 *

注記*1:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位相を反転させたケースを示す。

				ケース⑥	$f - \mathcal{A} \mathbb{O}$	ケース®	ケース⑪	$\mathcal{F-A}$
THUL THAN THAN <t< td=""><td></td><td>御持を言う</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>#¥</td><td>地盤物性のばらつ</td><td>地盤物性のばらつき</td><td>材料物性(コンクリ</td><td>地下水が低い場</td></t<>		御持を言う	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	#¥	地盤物性のばらつ	地盤物性のばらつき	材料物性(コンクリ	地下水が低い場
Markwith $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		₩ > _ <		府 (1 (1) (1)	き (+10) を考	(-1 0)を考慮し	ート)の実強度を考	合を仮定した解
Http://Http:/				۲ ۱ ۲	慮した解析ケース	た解析ケース	慮した解析ケース	析ケース
	1622628	地盤物性		平均値	平均値+1 σ	平均値-10	平均值	平均値
			+ *1	0	0	0	\triangleleft	\bigtriangledown
		۲ د	- + * 1	0	0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		U – s c	$+ - *_{1}$	0	0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			 *	0	0	0	I	
		$S_s - F_1$	$+ + *^{1}$	0	0	0	l	
		$S_s - F_2$	$+ + *_{1}$	0	0	0		_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			+ *1	0	0	0	-	
			+ +	0	0	0		
		S s – N 2	+ +	0	0	0		
S s - N 2 $++*^1$ O O -		(NS)	-+ *1	0	0	0		
$(EW) - +^{*1} \bigcirc \bigcirc$		$S_{\rm S} - N 2$	$+ + *^{1}$	0	0	0		
		(EW)	+	0	0	0	I	I

(基準地震動Ss, D-D断面)

表 3-29 取水槽の機器・配管系の耐震評価に適用する解析ケース

125

表 3-30	取水槽の機器	• 🗗	配管系の耐震評価に適用する解析	ケース
--------	--------	-----	-----------------	-----

			ケース⑥	ケース⑦	ケース⑧
			地盤物性のばらつ	地盤物性のばらつ	
	解析ケース		基本ケース	き(+1σ)を考	き(−1σ)を考
				慮した解析ケース	慮した解析ケース
	地盤物性		平均值	平均值+1σ	平均值-1σ
		++*	0	0	0
		-+*	0	0	0
	Sd-D	+-*	0	0	0
		*	0	0	0
	S d - F 1	++*	0	0	0
	S d - F 2	++*	0	0	0
地 震	C I N I	++*	0	0	0
動(位相)	5 a - N 1	-+*	0	0	0
	S d - N 2	++*	0	0	0
	(NS)	-+*	0	0	0
	S d - N 2	++*	0	0	0
	(EW)	-+*	0	0	0
	S d - 1	++*	0	0	0
		-+*	0	0	0
		+-*	0	0	0
		*	0	0	0

(弾性設計用地震動Sd, D-D断面)

注記*:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位相 を反転させたケースを示す。

4. 3次元構造解析

4.1 解析手法

取水槽は、加振方向に平行に配置される妻壁や隔壁を有する箱形構造物であることか ら、構造部材の応答値の算出は、3次元構造解析により行い、構造物の各部材を非線形 シェル要素でモデル化し、耐震評価を行う。

取水槽は,耐震重要施設及び常設重大事故等対処設備を支持する機能(間接支持機能), 非常時における海水の通水機能及び浸水防止のための止水機能が要求される。

取水槽に作用する荷重は、2次元の地震応答解析において構造物の評価に支配的な荷 重が作用する時刻を選定し、当該時刻における地震時応答から設定する。3次元構造解 析には、解析コード「FINAS/STAR」を用いる。解析コードの検証及び妥当性確認の概要 については、VI-5「計算機プログラム(解析コード)の概要」に示す。

- 4.2 解析モデルの設定
 - 4.2.1 構造物のモデル化

材料の非線形特性を考慮した非線形シェル要素でモデル化する。モデル概念図を 図 4-1 に,各部材の要素座標系を図 4-2 に示す。なお,開口部については,部材 厚程度以上の開口をモデル化することとする。

図 4-1 3次元構造解析モデルの概念図

図 4-2 (1) 各部林

各部材の要素座標系

図 4-2 (2) 各部材の要素座標系

図 4-2 (3) 各部材の要素座標系

非線形シェル要素は、部材高さ方向に平面要素を重ね合わせて構成する。主筋の 位置が層の中心となるよう上側、下側に鉄筋コンクリートの層を設定し、鉄筋コン クリート層を除く範囲は、無筋コンクリート層としてモデル化する。鉄筋コンクリ ート層の厚さは、「土木学会マニュアル」に示される一般的な分割方法に従い、か ぶり厚さの2倍とする。各要素の鉄筋部分は、鉄筋の軸方向剛性のみを有する鉄筋 層としてモデル化する。図4-3に非線形シェル要素の概念図を示す。

また,部材接合部の隅角部には剛域を設ける。剛域は,「コンクリート標準示方書 2002」に基づき,図4-4のように設定する。ただし,剛域を設けることにより, 要素が過度に扁平となる場合には設定しないこととする。

図 4-3 非線形シェル要素の概念図

図 4-4 剛域の設定(「コンクリート標準示方書 2002」より引用)

4.2.2 境界条件

3次元構造解析における境界条件として,南側のタービン建物との接合面については,耐震ジョイントが設置されていることから,東西方向及び鉛直方向にはローラーを配置する。南北方向には,隣接するタービン建物により構造物の変形が拘束されることから,固定とする。

4.2.3 剛域の設定

取水槽の3次元構造解析モデルについては、部材接合部への剛域設定にあたり、 「コンクリート標準示方書2002」に基づき、図4-4に示す範囲について、底版等 部材厚が厚い部材に剛域を設定する(図4-5参照)。

図 4-5 取水槽 剛域設定範囲(赤範囲:剛域)

4.2.4 地盤ばね要素

常時解析において,支持地盤に設定する地盤ばねは基礎地盤に対する静的な載荷 状態を想定して定義されている「道示・下部構造編」に基づき設定する。

地震時解析において,支持地盤及び側方地盤に設定する地盤ばねは地盤と構造物 間の剥離を考慮できる非線形ばねでモデル化し,「道示・耐震設計編」に基づき設 定する。

1方向載荷時には、載荷方向と直交する壁に地盤ばねを設定する。

(1) 常時

常時における地盤ばねは,構造物の底面に面直ばねとせん断方向ばねを考慮する。 面直ばねに設定する鉛直方向地盤反力係数及びせん断方向ばねに設定する水平方 向せん断地盤反力係数は,「道示・下部構造編」により算出する。

a. 鉛直方向地盤反力係数

$$\mathbf{k}_{\mathrm{V}} = \mathbf{k}_{\mathrm{V}0} \left(\frac{\mathbf{B}_{\mathrm{V}}}{0.3}\right)^{\frac{3}{4}}$$

$$k_{V0} = \frac{1}{0.3} \alpha E_S$$

kv:鉛直方向地盤反力係数(kN/m³)

- k vo: 鉛直方向地盤反力係数の基準値(kN/m³)
- B_v :基礎の換算載荷幅 (m) Bv=√Av
- Av : 鉛直方向の載荷面積 (m²)
- Es: 地盤の静的変形係数(kN/m²)
- α :地盤反力係数の換算係数(α = 1)
- b. 水平方向せん断地盤反力係数
 - $k_{s} = \lambda k_{v}$
 - ここで,
 - ks :水平方向せん断地盤反力係数 (kN/m³)
 - λ : 鉛直方向地盤反力係数に対する水平方向せん断地盤反力係数の比で、
 λ = 0.3 とする。
 - kv:鉛直方向地盤反力係数(kN/m³)

(2) 地震時

地震時における地盤ばねは,構造物の底面に面直ばねとせん断方向ばねを考慮す る。面直ばねに設定する鉛直方向地盤反力係数及びせん断方向ばねに設定する。水 平方向せん断地盤反力係数は,「道示・下部構造編」により算出し,面直方向地盤 反力係数の基準値kvoは「道示・耐震設計編」に準拠して算出する。

$$k_{V} = k_{V0} \left(\frac{B_{V}}{0.3}\right)^{-\frac{3}{4}}$$

$$k_{V0} = \frac{1}{0.3} E_{D}$$

$$E_{D} = 2(1+\nu_{D}) G_{D}$$

$$k_{V} : 鉛直方向地盤反力係数 (kN/m^{3})$$

k v o :鉛直方向地盤反力係数の基準値(kN/m³)

Bv : 基礎の換算載荷幅 (m) Bv=√Av

Av : 鉛直方向の載荷面積 (m²)

E_D:地盤の動的変形係数(kN/m²)

- v_D:地盤の動的ポアソン比
- G_D:地盤の動的せん断変形係数(kN/m²)

(3) 側方地盤ばね

側方地盤ばねは,構造物の側面に面直ばねを考慮する。側面の面直方向の地盤反 カ係数k_Hは,「道示・下部構造編」に基づき設定する。そのうちの面直方向地盤 反力係数の基準値k_{H0}は「道示・耐震設計編」に準拠して算出する。

$$k_{H} = k_{H0} \left(\frac{D_{H}}{0.3} \right)^{-\frac{3}{4}}$$
$$k_{H0} = \frac{1}{0.3} E_{D}$$
$$E_{D} = 2(1 + \nu_{D}) G_{D}$$

$$D_{H} = D_{e}$$

ただし、 $D_{H} \leq \sqrt{D_{e}} \cdot L_{e}$

- k_H:水平方向地盤反力係数(kN/m³)
 k_{V0}:水平方向地盤反力係数の基準値(kN/m³)
 D_H:基礎側面の換算載荷幅(m)
 A_V:鉛直方向の載荷面積(m²)
 E_D:地盤の動的変形係数(kN/m²)
 v_D:地盤の動的ポアソン比
 G_D:地盤の動的せん断変形係数(kN/m²)
 D_e:基礎の有効側面幅(m)
- L。:基礎の有効根入れ深さ(m)

- 4.2.5 材料の非線形特性
 - (1) コンクリート
 - a. 圧縮応力下における応力-ひずみ関係

図 4-6 に一軸圧縮応力下における応力-ひずみ関係を示す。圧縮応力下の応 カーひずみの骨格曲線は,最大応力点までの硬化域と,最大応力点を超えた軟化 域で表され,残留塑性ひずみと除荷再載荷時の剛性低下を考慮している。また, ひび割れ発生後のコンクリートの圧縮強度については,図 4-7 に示す,低減係 数を破壊パラメータに乗じることで,ひび割れ発生後の圧縮強度の低下を考慮す る。

$$\sigma'_{c} = E_{0} K \quad (\epsilon'_{c} - \epsilon'_{p}) \ge 0$$

$$E_{0} = \frac{2 \cdot f'_{c d}}{\epsilon'_{p e a k}}$$

$$K = e_{x} p \left\{ -0.73 \frac{\epsilon'_{m a x}}{\epsilon'_{p e a k}} \left(1 - e_{x} p \left(-1.25 \frac{\epsilon'_{m a x}}{\epsilon'_{p e a k}} \right) \right) \right\}$$

$$\epsilon'_{p} = \epsilon'_{m a x} - 2.86 \cdot \epsilon'_{p e a k} \left\{ 1 - e_{x} p \left(-0.35 \frac{\epsilon'_{m a x}}{\epsilon'_{p e a k}} \right) \right\}$$

ここに, f'_{cd} = f'_{ck}/γ_c ε'_{peak} : 圧縮強度に対応するひずみ(一般に, 0.002 としてもよい) ε'_{max} : 過去に受けた圧縮ひずみの最大値 ε'_p : 塑性ひずみ K : 弾性剛性残存率

図 4-6 圧縮応力下におけるコンクリートの非線形特性 (「コンクリート標準示方書 2017」より引用)

b. 引張応力下における応力-ひずみ関係

引張応力下における応カーひずみ関係は、ひび割れ発生までは線形弾性とし、 ひび割れ強度以降は、鉄筋とコンクリートの付着の影響等を考慮し、図4-8 に 示す骨格曲線を用いて、ひび割れ間のコンクリートに引張応力分担を考慮する。 引張力を受ける無筋コンクリート要素では、引張軟化挙動は、破壊エネルギー によって代表される。引張軟化挙動の考慮に当たっては、図4-9 に示す引張軟 化曲線を設定する。

ここに, f_t :引張強度

ε tu :引張軟化開始ひずみ

c : 引張軟化特性を表す係数

図 4-8 引張応力下における鉄筋とコンクリートの

付着効果を考慮した応力-ひずみ関係

(「コンクリート標準示方書 2017」より引用)

コンクリートのモデル化された引張軟化曲線には、例えば解説 図 5.3.4 に示したものがある.

解説 図 5.3.4 引張軟化曲線

図 4-9 コンクリートの破壊エネルギー(「コンクリート標準示方書 2017」より引用)

c. ひび割れ面でのせん断伝達関係

コンクリートのひび割れ発生後にひび割れ角度を固定する固定ひび割れモデ ルでは、ひび割れ面のずれによるせん断応力伝達特性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は, 斜めひび割れの発生に伴う剛性低下や破壊 を評価するため, 図 4-10 に示すとおり, ひび割れ面におけるせん断ひずみγと ひび割れ開口ひずみεの比をパラメータとし, コンクリートの剛性低下を考慮す るモデルを用いる。

ここに、 β :ひび割れ面におけるせん断ひずみ γ とひび割れ開口ひずみ ϵ の 比 (γ / ϵ)

- τ:ひび割れ面でのせん断応力
- τ_{max}:除荷開始時せん断応力
- β_{max} :除荷開始時せん断ひずみ γ とひび割れ開口ひずみ ϵ の比

図 4-10 ひび割れ面でのせん断伝達モデル

(「コンクリート標準示方書 2017」より引用)

d. 鉄筋の非線形特性

ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均応カー平均ひ ずみ関係は、単体鉄筋の応カーひずみ関係と異なり、図4-11に示すひずみ硬化 特性を考慮する。

e. 鉄筋コンクリートとしてのモデル化

コンクリートと鉄筋の界面の付着特性をテンションスティフニング効果(引張 特性が硬化する現象)として,鉄筋コンクリート要素の中心に取り込むことによ り,鉄筋コンクリートの構成則を直接与える。

鉄筋コンクリートの引張応力下の平均応力は以下の式で表される。

$$\overline{\sigma_{RC}} = \frac{A_{S}}{A_{RC}} \overline{\sigma_{S}} + \frac{A_{S}}{A_{RC}} \overline{\sigma_{C}}$$

ここに、 $\overline{\sigma_{S}}$ $\overline{\sigma_{C}}$:それぞれ鉄筋とコンクリートの平面応力 A_s, A_c:それぞれ鉄筋とコンクリートの断面積,

$$A_{RC} = A_{s} + A_{c}$$

4.3 照査時刻の選定

構造部材の健全性評価において,照査時刻は構造的特徴を踏まえ,損傷モードごと及 び部材ごとに評価が厳しくなる照査時刻を地震応答解析の結果から複数選定する。取水 槽の照査時刻の考え方を表4-1に示す。取水槽の地震応答解析断面は除じん機エリア, 海水ポンプエリア及びストレーナエリアの3断面あり,除じん機エリア及び海水ポンプ エリアについては1断面当たり9時刻(時刻1~時刻9)を選定する。ストレーナエリ アについては,除じん機エリア及び海水ポンプエリアと異なり下部構造がなく,時刻1 で確認する損傷モードを時刻2及び時刻3で確認できることから8時刻(時刻2~時刻 9)を選定する。上記を踏まえ,地震動1波当たり26時刻の照査時刻を選定し,3次元 構造解析により耐震評価を実施している。

各エリアで選定された照査時刻の組合せの考え方ついて、側壁のせん断破壊(面外) に対する照査時刻(時刻 5,6)の選定例を図 4-12 に示す。地震応答解析の結果から、 エリア毎の側壁における水平荷重が最大となる時刻(照査時刻 t₁, t₂及び t₃)を選定 後、3次元構造解析に用いる照査時刻の組合せを設定する。

3次元構造解析における照査時刻の組合せは,選定した時刻(照査時刻 t₁, t₂及び t₃)の前後 0.1 秒以内で,着目した断面以外の断面において保守的な荷重となる時刻 とする。なお,着目した断面以外の断面における時刻は,荷重の作用方向等を確認し,大きく変わらないことを確認した上で選定している。

照査 時刻	損傷 モード	着目部位		荷重抽出時刻	抽出する応答値
時刻1	曲げ・軸力系 の破壊	壁 (面外)		下部構造における 頂底版間の層間変 位が最大となる時 刻	中部2節点,下部 2節点の応答変位 を用いて回転成分 を除去した層間変 位
時刻 2	曲げ・軸力系の破壊	壁 (面外)		上部構造における 各側壁の転倒曲げ モーメントが最大 となる時刻	 (上部構造に隣接する側面地盤水平土 (上部構造側壁の (世力)×上部構造の (世力)×上部構造 (市)
時刻 3					
時刻4	せん断破壊 (面外)	壁 (面外)		総水平荷重が最大 となる時刻	底面地盤せん断応 力の積算値
時刻 5	せん断破壊 (西外)	壁 (面外)		上部構造における 各側壁の水平荷重 が最大となる時刻	上部構造に隣接す る側面地盤水平土 圧と上部構造側壁 の慣性力の積算値
時刻 6					
時刻 7	せん断破壊 (面内)	壁 (面内)		面部材の層間変位 が最大となる時刻	上部2節点,中部 2節点の応答変位 を用いて回転成分 を除去した層間変 位
時刻 8	曲げ・軸力系の破壊及び	壁、	¢ [] \$	上部構造における 各側壁の上部荷重	上部構造に隣接す る側面地盤の上半 分の水平十圧と側
時刻 9	せん断破壊(面外)	(面外)		が最大となる時刻	壁の慣性力の積算

表 4-1 照査時刻の考え方(1 断面当たり*)

注記*:除じん機エリア及び海水ポンプエリアは時刻 1~時刻 9, ストレーナエリアは 時刻 2~時刻 9を選定しており,地震動 1 波当たり 26 時刻の照査を行う。

各エリアの荷重抽出時刻					
	荷重抽出時刻				
	ストレーナ	海水ポンプ	除じん機		
	エリア	エリア	エリア		
上部構造における					
各側壁の水平荷重が	t_1^{*1}	t_2^{*2}	t ₃ * ³		
最大となる時刻					

注記*1:ストレーナエリアの地震応答解析結果により選定された時刻

*2:海水ポンプエリアの地震応答解析結果により選定された時刻

*3:除じん機エリアの地震応答解析結果により選定された時刻

各エリアの照査時刻を選定後, 選定された時刻の±0.1秒以内で保守的な荷重となる時刻を

組み合わせる。

	照查時刻*1				
	ストレーナ	海水ポンプ	除じん機		
	エリア	エリア	エリア		
上部構造における	t_1	t ₁₋₁ *2	t_{1-2} *2		
各側壁の水平荷重が	t ₂₋₁ *3	t_2	t_{2-2} *3		
最大となる時刻	t ₃₋₁ *4	t 3-2 * 4	t ₃		
汁 シュー・ キャット 羊日ナス 低声 にかけ ス 味刻 な テナ					

注記*1:赤枠は,着目する断面における時刻を示す。

*2:t1±0.1 秒以内で保守的な荷重となる時刻

*3:t₂±0.1 秒以内で保守的な荷重となる時刻

*4:t3±0.1 秒以内で保守的な荷重となる時刻

図 4-12 照査時刻の組合せの考え方

4.4 入力荷重

3次元構造解析の入力荷重は「4.3 照査時刻の選定」にて選定した照査時刻に対し、 地震応答解析から同時刻における水平荷重及び鉛直荷重の応答値を抽出し、算定する。 入力荷重の一覧を表 4-2 に、各入力荷重の算定フローを図 4-13 に示す。また、地震 応答解析から算出される荷重を 3 次元構造解析モデルへ載荷するまでのフローを図 4-14 に示す。常時荷重は、表 3-17 に示す荷重を考慮する。

入力荷重		地震応答解析から抽出	批 世位 署			
		する応答値	戰1月12上 匡			
慣性力	躯体の慣性力	応答加速度	躯体全体			
	機器・配管の慣性力	応答加速度	設置位置			
	浸水防止設備の慣性力	応答加速度	設置位置			
	防護対策設備の慣性力	応答加速度	設置位置			
	積載荷重の慣性力	応答加速度	作用位置			
内水圧・動水圧		応答加速度*	作用位置			
地震時土圧・水圧		土圧・水圧	作用位置			
周面せん断力		土圧・水圧	作用位置			

表 4-2 入力荷重一覧

注記*:動水圧は、地震時応答解析から抽出した応答加速度に基づき算定する。

図 4-14 地震時荷重を3次元構造解析モデルへ載荷するまでのフロー図

- 4.4.1 常時荷重
 - (1) 躯体自重躯体の体積に鉄筋コンクリートの密度を乗じて設定する。
 - (2) 静止土圧及び外水圧

地震応答解析の常時解析から求まる静止土圧及び外水圧を躯体側面に作用させる。なお,各断面から算出した土圧及び外水圧は,各区間の奥行方向に一様に載荷 する。

(3) 内水圧

取水槽の内部には, EL-0.30m を静水面とした静水圧を作用させる。設定の際は, 海水の密度として, 1.03kg/cm³を考慮する。

(4) 機器荷重

機器の重量に基づいて設定する。

- (5) 配管荷重配管の重量に基づいて設定する。
- (6)積載荷重積載荷重として,取水槽に作用する積雪荷重を考慮する。

4.4.2 慣性力(躯体)

躯体の慣性力は、地震応答解析モデルにおける鉄筋コンクリート部材の各節点、 照査時刻における応答加速度から算定する。応答加速度の抽出位置を図 4-15 に示 す。

水平方向(南北方向及び東西方向)及び鉛直方向の加速度の抽出位置は,各断面 の鉄筋コンクリート部材及び妻壁の位置に当たる全節点とする。

算定した慣性力は,取水槽の3次元構造解析モデルに水平方向及び鉛直方向に同 時に入力する。入力する慣性力は,各照査時刻における水平方向及び鉛直方向の応 答加速度の正負の方向とする。

図 4-15 応答加速度の抽出位置

4.4.3 慣性力(機器·配管)

機器・配管の慣性力は、地震応答解析モデルにおける機器が設置されている各節 点、照査時刻における応答加速度から算定する。応答加速度の抽出位置を図4-16 に示す。

水平方向(南北方向及び東西方向)及び鉛直方向の加速度の抽出位置は,機器・ 配管が設置される節点とする。

慣性力は,抽出した加速度に機器・配管荷重を乗じて算定する。算定した慣性力は,取水槽の3次元構造解析モデルに入力する。

除じん機エリア

海水ポンプエリア

抽出位置

図 4-16 応答加速度の抽出位置

4.4.4 慣性力(浸水防止設備)

浸水防止設備の慣性力は,地震応答解析モデルにおける浸水防止設備が設置され ている各節点,照査時刻における応答加速度から算定する。

水平方向(南北方向及び東西方向)及び鉛直方向の加速度の抽出位置は,浸水防 止設備が設置される節点とする。

算定した慣性力は、取水槽の3次元構造解析モデルに入力する。

4.4.5 慣性力(防護対策設備)

防護対策設備の慣性力は、地震応答解析モデルにおける防護対策設備が設置され ている各節点,照査時刻における応答加速度から算定する。

水平方向(南北方向及び東西方向)及び鉛直方向の加速度の抽出位置は,防護対 策設備が設置される節点とする。

算定した慣性力は、取水槽の3次元構造解析モデルに入力する。

4.4.6 内水圧·動水圧

取水槽の内部には, EL-0.30m を水位とした内水圧を設定する。設定の際は,海水の密度として,1.03kg/cm³を考慮する。

動水圧については、「3.4.4 動水圧」の考え方に基づき、自由水面のある開水 路として荷重を作用させる。「3 地震応答解析」より得られた側壁及び導流壁に おける各節点の加速度を用いて動水圧を算定する。なお、取水槽の3次元構造解析 モデルに入力する。 4.4.7 地震時土圧・水圧及び周面せん断力

躯体側面に作用する地震時土圧・水圧及び周面せん断力は,地震応答解析モデル において各部位に接する地盤要素の,照査時刻における要素応力から算定する。地 震時土圧・水圧及び周面せん断力の抽出位置を図4-17に示す。また,算定した地 震時土圧・水圧及び周面せん断力は,取水槽の3次元構造解析モデルに入力する。

図 4-17 地震時土圧・水圧及び周面せん断力の抽出位置

- 5. 評価内容
- 5.1 入力地震動の設定

入力地震動は、VI-2-1-6「地震応答解析の基本方針」のうち「2.3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ss及び 弾性設計用地震動Sdを一次元波動論により地震応答解析モデル下端位置で評価した ものを用いる。なお,入力地震動の設定に用いる地下構造モデルは,VI-2-1-3「地盤の 支持性能に係る基本方針」のうち「7.1 入力地震動の設定に用いる地下構造モデル」 を用いる。

図 5-1 に入力地震動算定の概念図を,図 5-2~図 5-53 に入力地震動の加速度時刻 歴波形及び加速度応答スペクトルを示す。入力地震動の算定には,解析コード 「microSHAKE/3D」を使用する。解析コードの検証及び妥当性確認の概要については, VI-5「計算機プログラム(解析コード)の概要」に示す。

図 5-2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: S s - D)

図 5-3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: S s - D)

(a) 加速度時刻歷波形

図 5-4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-F1)

図 5-5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Ss-F1)

(a) 加速度時刻歷波形

図 5-6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-F2)

(a) 加速度時刻歷波形

図 5-7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Ss-F2)

(a) 加速度時刻歷波形

図 5-8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-N1)

(a) 加速度時刻歷波形

図 5-9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: S s - N 1)

図 5-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-N2(NS))

図 5-11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Ss-N2(NS))

図 5-12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-N2(EW))

図 5-13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Ss-N2(EW))

図 5-14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-D)

図 5-15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Sd-D)

(a) 加速度時刻歷波形

図 5-16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-F1)

(a) 加速度時刻歷波形

図 5-17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Sd-F1)

(a) 加速度時刻歷波形

図 5-18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-F2)

(a) 加速度時刻歷波形

図 5-19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Sd-F2)

(a) 加速度時刻歷波形

図 5-20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-N1)

(a) 加速度時刻歷波形

図 5-21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Sd-N1)

図 5-22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-N2 (NS))

図 5-23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Sd-N2 (NS))

図 5-24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-N2 (EW))

図 5-25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Sd-N2(EW))

図 5-26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-1)

図 5-27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分: Sd-1)

図 5-28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: S s-D)

図 5-29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: S s - D)

(a) 加速度時刻歷波形

図 5-30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-F1)

(a) 加速度時刻歷波形

図 5-31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Ss-F1)

(a) 加速度時刻歷波形

図 5-32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-F2)

(a) 加速度時刻歷波形

図 5-33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Ss-F2)

(a) 加速度時刻歷波形

図 5-34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-N1)

(a) 加速度時刻歷波形

図 5-35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Ss-N1)

図 5-36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-N2(NS))

図 5-37 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Ss-N2(NS))

図 5-38 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-N2(EW))

図 5-39 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: S s - N 2 (EW))

図 5-40 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-D)

図 5-41 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Sd-D)

(a) 加速度時刻歷波形

図 5-42 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-F1)

(a) 加速度時刻歷波形

図 5-43 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Sd-F1)

(a) 加速度時刻歷波形

図 5-44 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-F2)

(a) 加速度時刻歷波形

図 5-45 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Sd-F2)

(a) 加速度時刻歷波形

図 5-46 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-N1)

(a) 加速度時刻歷波形

図 5-47 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Sd-N1)

図 5-48 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-N2 (NS))

図 5-49 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Sd-N2 (NS))

図 5-50 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-N2 (EW))

図 5-51 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Sd-N2(EW))

図 5-52 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-1)

図 5-53 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分: Sd-1)

5.2 許容限界の設定

5.2.1 曲げ・軸力系の破壊に対する許容限界

構造強度を有することの確認における曲げ・軸力系の破壊に対する許容限界は, 「土木学会マニュアル」に基づき,限界ひずみ(圧縮縁コンクリートひずみ:1.0% (10000μ))とする。

曲げ・軸力系の破壊に対する限界状態については、「土木学会マニュアル」では コンクリートの圧縮縁のかぶりが剥落しないこととされており、圧縮縁コンクリー トひずみ 1.0%の状態は、かぶりコンクリートが剥落する前の状態であることが、 屋外重要土木構造物を模したラーメン構造の破壊実験及び数値シミュレーション 等の結果より確認されている。この状態を限界値とすることで構造全体としての安 定性等が確保できるとして設定されたものである。

各要求機能について, 通水機能を有すること及びSクラスの施設を支持する機能 を損なわないことの確認においては, 部材が終局状態に至らないことを目標性能と することから, 限界ひずみ(圧縮縁コンクリートひずみ 1.0%)を許容限界とする。 止水機能を損なわないことの確認においては,「コンクリート標準示方書 2002」に 基づき, コンクリートの圧縮ひずみ及び主筋ひずみについて, 部材降伏に相当する ひずみ(コンクリートの圧縮ひずみ 2000 µ, 主筋ひずみ 1725 µ)とする。

曲げ・軸力系の破壊に対する照査に用いるコンクリート及び鉄筋の照査用ひずみ は、3次元構造解析により得られた発生ひずみに安全係数(構造解析係数)1.2を 乗じることにより、曲げ・軸力系の破壊に対する安全裕度を見込んだ評価を実施す る。また、PHb 工法を適用する部材について、PHb 工法はおおむね弾性範囲となる 状況下で使用することから、コンクリート及び鉄筋のひずみが、部材降伏に相当す る限界ひずみ(コンクリートの圧縮ひずみ:2000 μ、主筋ひずみ:1725 μ)を下回 ることを併せて確認する。

取水槽において PHb 工法を適用する部材を図 5-54~図 5-59 に示す。 取水槽の曲げ・軸力系の破壊に対する許容限界を表 5-1 に示す。

■:PHb 工法適用箇所

図 5-54 PHb による耐震補強箇所(断面図(A-A断面))(再掲)

図 5-55 PHb による耐震補強箇所(断面図(B-B断面))(再掲)

(単位:mm)

■:PHb 工法適用箇所

RSW ポンプ棚撤去箇所

- ■:部材追加箇所
- ■:PHb 工法適用及び部材追加箇所

図 5-57 PHb による耐震補強箇所(断面図(D-D断面))(再掲)

(単位:mm) ■ : PHb 工法適用箇所

図 5-59 PHb による耐震補強箇所(断面図(G-G断面))(再掲)

要求機能	許容限界		
構造強度を有すること	限界ひずみ	圧縮縁コンクリートひずみ	
		1.0% (10000 μ) *1	
通水機能を有すること		圧縮縁コンクリートひずみ	
		1.0% (10000 μ) *1	
止水機能を損なわないこと		圧縮ひずみ:2000μ*2	
		主筋ひずみ:1725 µ *²	
Sクラスの施設を支持する		圧縮縁コンクリートひずみ	
機能を損なわないこと		1.0% (10000 μ) *1	

表 5-1 曲げ・軸力系の破壊に対する許容限界

注記*1: $\gamma_i \cdot \frac{\varepsilon_d}{\varepsilon_L} < 1.0$

ここで,

 γ_i :構造物係数 ($\gamma_i = 1.0$)

ε_L:限界ひずみ (圧縮縁コンクリートひずみ 10000 μ)

 ε_d : 照査用ひずみ $\varepsilon_d = \gamma_a \cdot \varepsilon$

 γ_a :構造解析係数 ($\gamma_a = 1.2$)

ε: 圧縮縁の発生ひずみ

*2 : $\gamma_i \cdot \frac{\varepsilon_d}{\varepsilon_R} < 1.0$

ここで,

- γ_i :構造物係数 ($\gamma_i = 1.0$)
- ε_R:限界ひずみ (圧縮ひずみ:2000μ, 主筋ひずみ:1725μ)

 ε_d :照査用ひずみ $\varepsilon_d = \gamma_a \cdot \varepsilon$

 γ_a :構造解析係数 ($\gamma_a = 1.2$)

ε :発生ひずみ

5.2.2 せん断破壊に対する許容限界

構造強度を有することの確認,通水機能を有することの確認,止水機能を損なわ ないことの確認及びSクラスの施設を支持する機能を損なわないことの確認にお けるせん断破壊に対する許容限界は,「土木学会マニュアル」に基づくせん断耐力 とする。せん断耐力の評価式は部材の種類に応じて2種類を用いる。

せん断耐力は、「土木学会マニュアル」に基づき「(1)棒部材式」を適用するこ ととし、ディープビームとなる部材についても、「(1)棒部材式」を用いることで 安全側の評価とする。

PHb 工法を用いる構造部材については「(2) PHb によりせん断補強された部材の せん断耐力式」を用いる。

鉄筋コンクリート部材のせん断照査に用いる照査用せん断力は、3次元構造解析 により得られたせん断力に安全係数(構造解析係数)1.05を乗じることにより、せ ん断破壊に対して安全余裕を見込んだ評価を実施する。

$$\gamma_i \cdot \frac{V_{\rm d}}{V_{\rm yd}} < 1.0$$

ここで、 γ_i :構造物係数 ($\gamma_i = 1.0$) $V_{@@}$:せん断耐力 V_d :照査用せん断力 ($V_d = \gamma_a \cdot V$) γ_a :構造解析係数 ($\gamma_a = 1.05$) V :発生せん断力

また、「土木学会マニュアル」におけるせん断耐力式による評価においては、表 5-2に示すとおり、複数の安全係数(材料係数,部材係数,構造解析係数)が見込 まれていることから、せん断破壊に対して安全余裕を見込んだ評価を実施すること が可能である。

安全係数		せん断照査		中公	
		応答値算定	限界值算定	内谷	
オ料係数	コンクリート γr		1.0	1.3	コンクリートの特性値
		γ _{mc}			(圧縮強度)を低減
	鉄筋	$\gamma_{\rm s}$	1.0	1.0	_
コンクリ 部材係数* 鉄角		コンクリート γ _{bc}		1.3	コンクリートが自相すろ
	コンクリート				
					せん断力を低減
	鉄筋 γ _{bs}		_	1.1	せん断補強筋が負担する
		<i>V</i> bs			せん断力を低減
構造解析係数			1.05	_	応答値(断面力)の
		Υa	1.05		割り増し

表 5-2 せん断耐力式による評価において考慮している安全係数

注記*:「土木学会マニュアル」では、部材係数 $\gamma_b = \gamma_{b1} \times \gamma_{b2}$

$$\gamma_{b1} = \{ \begin{array}{cc}
1.3 & (コンクリート) \\
1.1 & (鉄筋)
\end{array}$$

$$\gamma_{b2} = \begin{cases} 1.0 & (R \le 0.01) \\ \frac{100R+2}{3} & (0.01 < R \le 0.025) \\ 1.5 & (R > 0.025) \end{cases}$$

ここで, R:応答層間変形角

とされている。

 γ_{b2} は層間変形角の値によらず、部材が降伏していない状態であれば、 $\gamma_{b2} = 1.0$ としてよい とされている。解析結果から取水槽の鉄筋コンクリート部材については降伏が認められ なかったため、 $\gamma_{b2} = 1.0$ とする。

(1) 棒部材式

$$V_{yd} = V_{cd} + V_{sd}$$

ここで、 V_{yd} : せん断耐力
 V_{cd} : コンクリートが負担するせん断耐力
 V_{sd} : せん断補強鉄筋が分担するせん断耐力

 $V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot \beta_a \cdot f_{vcd} \cdot b_w \cdot d/\gamma_{bc}$

$$\begin{split} \mathbf{f}_{vcd} &= 0.20^3 \sqrt{\mathbf{f}_{cd}} \quad \text{ただし, } \mathbf{f}_{vcd} > 0.72 (\text{N/mm}^2) \text{となる場合は} \quad \mathbf{f}_{vcd} = 0.72 (\text{N} / \text{mm}^2) \\ \beta_{d} &= \sqrt[4]{1/d} (d[\text{m}]) \quad \text{ただし, } \beta_{d} > 1.5 \quad \text{となる場合は} \beta_{d} = 1.5 \\ \beta_{p} &= \sqrt[3]{100 p_{v}} \qquad \text{ただし, } \beta_{p} > 1.5 \quad \text{となる場合は} \beta_{p} = 1.5 \\ \beta_{n} &= 1 + 2M_{0} / M_{ud} \quad (\text{N}_{d} \geq 0) \quad \text{cだl}, \quad \beta_{n} > 2.0 \quad \text{となる場合は} \beta_{n} = 2.0 \\ &= 1 + 4M_{0} / M_{ud} \quad (\text{N}_{d} < 0) \quad \text{cだl}, \quad \beta_{n} < 0 \quad \text{となる場合は} \beta_{n} = 0 \\ \beta_{a} &= 1 \end{split}$$

ここで,

- \mathbf{f}_{cd} : コンクリート圧縮強度の設計用値(N/mm²)で設計基準強度 \mathbf{f}_{ck} を材料係数 γ_{mc} で除したもの
- P_v : 引張鉄筋比 $p_v = A_s / (b_w \cdot d)$
- A_s :引張側鋼材の断面積
- *b*_w : 部材の有効幅
- **d** : 部材の有効高さ
- N'_d :設計軸圧縮力
- Mud: 軸方向力を考慮しない純曲げ耐力
- M_0 : M_d に対する引張縁において、軸方向力によって発生する応力を打ち消すのに必要なモーメント(デコンプレッションモーメント) $M_0 = N'_d \cdot D/6$
- D : 断面高さ
- a/d : せん断スパン比
- γ_{bc} :部材係数
- γ_{mc} :材料係数

 $V_{sd} = \{A_w \square f_{wyd} \square (\sin \alpha + \cos \alpha) / s \} \square z / \gamma_{bs}$

ここで,

Aw: :区間 s におけるせん断補強筋の総断面積

- f_{wyd}: せん断補強筋の降伏強度の材料係数γ_{ms}で除したもので、400N/mm²以下と する。ただし、コンクリートの圧縮強度の特性値f'_{ck}が 60N/mm²以上の時 は、800N/mm²以下としてよい。
- α : せん断補強筋と部材軸のなす角度
- s : せん断補強筋の配置間隔
- z : 圧縮応力の合力の作用位置から引張鋼材図心までの距離で, d/1.15とする。
- γ_{bs} :部材係数
- γ_{ms} :材料係数

(2) PHb によりせん断補強された部材のせん断耐力式

取水槽において後施工せん断補強(ポストヘッドバー(PHb))を配置した構造 部材のせん断耐力については、「建設技術審査証明報告書 技術名称 後施工プレー ト定着型せん断補強鉄筋「Post-Head-bar」,一般財団法人土木研究センター」 (以下「建設技術証明書」という。)に示されている以下の設計式により求める。

$$\begin{split} V_{pyd} &= V_{cd} + V_{sd} + V_{phb} \\ V_{phb} &= \beta_{aw} \cdot V_{awd} = \beta_{aw} \mathbb{I} \{ A_{aw} \cdot f_{awyd} (\sin \alpha_{aw} + \cos \alpha_{aw}) / S_{aw} \} \mathbb{Z} z / \gamma_b \\ \beta_{aw} &= 1 - I_y \{ 2 \cdot (d - d) \} \quad \text{for } J, \quad \beta_{aw} \leq 0.9 \end{split}$$

ここで,

- Vcd : せん断補強鋼材を用いない RC 部材の単位長さあたりのせん断耐力
- Vsa
 : 既存のせん断補強鋼材により受け持たれる壁部材の単位幅あたりのせん

 断耐力
- *V_{phb}*: PHb により受け持たれる RC 部材の単位長さあたりのせん断耐力
- V_{awa}: PHb を通常のスターラップと見なして求められる単位長さあたりのせん 断耐力

βaw : PHb のせん断耐力の向上への有効性を示す係数

- A_{aw}:単位長さ当たりの区間S_{aw}における PHb の総断面積
- fawvd : PHb の設計降伏強度で 400N/mm²以下とする。
- α_{aw}: PHb が部材軸となす角度
- Saw : PHb の配置間隔
- z : 圧縮応力の合力の作用位置から引張鋼材図心までの距離で一般にd/1.15としてよい。
- γ_b :部材係数(一般に 1.10 としてよい)
- I_v : PHb の埋込側に必要な定着長
- d-d': :補強対象部材の圧縮鉄筋と引張鉄筋の間隔(d-d'≧I_v)

PHb が負担するせん断耐力は、先端型定着体の定着長が 3.5D~5.5D であること から、通常のせん断鉄筋に比べ補強効率が低下する。PHb が負担するせん断耐力は 同定着長と補強対象部材の主鉄筋間隔から算出される有効率 β_{aw} を通常のせん断 補強鉄筋の負担分に乗じることにより考慮されている。図 5-60 に有効率算定にお ける概念図を示す。

図 5-60 ポストヘッドバー (PHb) の有効率算定の概念図

なお,設計上の保守的な配慮として,ポストヘッドバー(PHb)によるせん断補 強を配置する場合は,対象とする構造部材の主鉄筋の降伏以下の場合に適用するこ ととし,せん断破壊に対する照査値は 0.80 程度とする。

また, 面内せん断ひずみを 2000 μ 未満とする。

5.2.3 壁部材の面内せん断に対する許容限界

壁部材の面内せん断に対する許容限界は,「JEAG4601-1987」に基づき, 面内せん断ひずみ 2000 μ (2/1000) を許容限界とする。

「JEAG4601-1987」において,限界せん断ひずみ2000µ(2/1000)は, 耐震壁の終局耐力に相当する面内せん断ひずみ4000µ(4/1000)に余裕を見込ん だ許容限界として規定されている。

壁部材の面内せん断照査に用いる照査用面内せん断ひずみは、3次元構造解析に より得られた面内せん断ひずみに安全係数(構造解析係数)1.2を乗じることによ り、面内せん断破壊に対して安全余裕を見込んだ評価を実施する。

各要求機能について、止水機能を損わないことの確認においては、面内せん断ひ ずみが「JEAG4601-1987」で規定されているスケルトンカーブの第一折点 (γ₁)を下回る場合は、水密性に影響のあるひび割れは生じないと考えられる(図 5-61参照)。

「5.2.1 曲げ・軸力系の破壊に対する許容限界」で示す許容限界を下回る場合, おおむね弾性範囲に収まっており,顕著な漏水は発生しないと評価できる。なお, 面内せん断ひずみが y1を超過する場合においては,念のため漏水量の算定を行う。

また, PHb 工法を適用する部材について, PHb 工法は面内せん断ひずみが 2000 μ までの範囲内において使用することから, 面内せん断ひずみが 2000 μ を下回るこ とを確認する。取水槽において PHb 工法を適用する部材を図 5-54~図 5-59 に示 す。

$$\gamma_i \cdot \frac{\gamma_d}{\gamma_R} < 1.0$$

ここで,

 γ_i :構造部材係数 ($\gamma_i = 1.0$)

 $\gamma_d = \gamma_a \cdot \varepsilon$

- γ_a :構造解析係数 ($\gamma_a = 1.2$)
- γ:発生する面内せん断ひずみ
- γ_R: せん断ひずみ度に関する許容限界の目安値

 $\gamma_R = \gamma_u / 2.0$

γ_u:終局せん断ひずみ度で4.0×10⁻³

図 5-61 耐震壁のトリリニア・スケルトンカーブ (τ-γ関係) と評価式

- 5.2.4 基礎地盤の支持性能に対する許容限界
 - (1) 支持地盤(C_M級岩盤)

支持地盤に発生する接地圧に対する許容限界は, VI-2-1-3「地盤の支持性能に係る基本方針」に基づき, C_M級岩盤の極限支持力とする。

A-A断面~D-D断面の地質図を図 5-62~図 5-65, 支持地盤の接地圧に対 する許容限界を表 5-3 に示す。

図 5-62 地質断面図 (A-A断面)

図 5-63 地質断面図 (B-B断面)

図 5-64 地質断面図 (C-C断面)

図 5-65 地質断面図 (D-D断面)

評価項目	其磁地般	許容限界
		(N/mm^2)
極限支持力	C _M 級岩盤	9.8

(2) MMR

MMRに発生する接地圧に対する許容限界は、「コンクリート標準示方書 2002」 に基づき、コンクリートの支圧強度とする。MMRの接地圧に対する許容限界を表 5-4に示す。

評価項目	MMR	許容限界 (N/mm ²)
支圧強度	コンクリート (f' _{ck} =18.0(N/mm ²))	18.0

表 5-4 MMRの支持性能に対する許容限界