島根原子力発電所第2号機 審査資料					
資料番号	NS2-添 3-013-01 改 01				
提出年月日	2022 年 8 月 22 日				

Ⅵ-3-別添 1-1 竜巻への配慮が必要な施設の強度計算の方針

2022 年 8 月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

1.	概要	1
2.	強度評価の基本方針	1
2.1	評価対象施設	1
2.2	評価方針	2
2.2	2.1 評価の分類	2
3.	強度設計	6
3.1	構造強度の設計方針	6
3.2	機能維持の方針	11
4.	荷重及び荷重の組合せ並びに許容限界	61
4.1	荷重及び荷重の組合せ	61
4.2	許容限界	73
4. 2	2.1 建物・構造物 ······	73
4. 2	2.2 機器・配管系	78
5.	強度評価方法	95
5.1	建物・構造物に関する評価式	96
5.2	1.1 鉄筋コンクリート造構造物	96
5.2	1.2 排気筒	101
5.2	1.3 鋼製構造物	102
5.2	機器・配管系に関する評価式	105
5.2	2.1 衝突評価が必要な機器	105
5.2	2.2 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ	106
5.2	2.3 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ	115
5.2	2.4 原子炉補機海水系配管及び弁, 高圧炉心スプレイ補機海水系配管及び弁, 非常用ディ	ーゼ
	ル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発電設備(燃	料移
	送系)配管及び弁並びに非常用ガス処理系配管及び弁	118
5.2	2.5 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系	ディ
	ーゼル発電設備ディーゼル燃料移送ポンプ	123
5.2	2.6 ダンパ	125
5.2	2.7 角ダクト	130
5.2	2.8 丸ダクト	134
5.2	2.9 隔離弁	138
5.2	2.10 送風機	143
5.2	2.11 処理装置	145
5.2	2.12 排気消音器	147

	5.2.13	排	気管及びべ	ミント管	1	52
6.	適用規	格・	基準等		1	57

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準 規則」という。)第7条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則 の解釈」(以下「解釈」という。)に適合し、技術基準規則第54条及びその解釈に規定される

「重大事故等対処設備」を踏まえた重大事故等対処設備に配慮する設計とするため、VI-1-1-3 「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちVI-1-1-3-3-3「竜巻 防護に関する施設の設計方針」に基づき, 竜巻の影響を考慮する施設が, 竜巻に対して要求され る強度を有することを確認するための強度評価方針について説明するものである。

強度評価は、VI-1-1-3-3-1「竜巻への配慮に関する基本方針」に示す適用規格・基準等を用いて実施する。

なお、竜巻防護対策設備の設計方針については、VI-3-別添 1-2「竜巻防護対策設備の強度計算の方針」に示し、具体的な計算の方法及び結果は、VI-3-別添 1-<mark>3</mark>「竜巻防護ネットの強度計算書」, VI-3-別添 1-<mark>3</mark>「架構の強度計算書」 に示す。

その他の竜巻の影響を考慮する施設の具体的な計算の方法及び結果は、VI-3-別添 1-<mark>6</mark>「竜巻 より防護すべき施設を内包する施設の強度計算書」からVI-3-別添 1-<mark>13</mark>「波及的影響を及ぼす可 能性がある施設の強度計算書」に示す。

2. 強度評価の基本方針

強度評価は、「2.1 評価対象施設」に示す施設を対象として、「4.1 荷重及び荷重の組合 せ」に示す設計竜巻荷重及びそれと組み合わせる荷重を適切に組み合わせた荷重により生じる応 力等が「4.2 許容限界」で示す許容限界内にあることを、「5. 強度評価方法」に示す方法を 使用し、「6. 適用規格・基準等」に示す規格を用いて確認する。

2.1 評価対象施設

VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3.要求機能及び性能目標」にて構造強度上の性能目標を設定している竜巻の影響を考慮する施設を強度評価の対象とする。強度評価を行うにあたり、評価対象施設を以下のとおり分類することとし、表 2-1 に示す。

(1) 竜巻より防護すべき施設を内包する施設(建物等)

設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある屋外の 外部事象防護対象施設のうち,屋内の竜巻より防護すべき施設を防護する外殻となる,竜 巻より防護すべき施設を内包する施設(建物等)とする。

(2) 屋外の外部事象防護対象施設(建物等を除く)

設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある屋外の 外部事象防護対象施設(建物等を除く)とする。

RO

- (3) 外気と繋がっている屋内の外部事象防護対象施設 設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある、外気 と繋がっている屋内の外部事象防護対象施設とする。
- (4) 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設

設計竜巻荷重及びそれと組み合わせる荷重に対し構造強度を保持する必要がある,外部 事象防護対象施設に波及的影響を及ぼす可能性がある施設とする。

2.2 評価方針

竜巻の影響を考慮する施設は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」にて設定している構造強度設計上の性能目標を達成するため、「2.1 評価対象施設」で分類した施設ごとに、竜巻に対する強度評価を実施する。

強度評価の評価方針は、それぞれ「衝突評価」の方針、「構造強度評価」の方針及び「動 的機能維持評価」の方針に分類でき、評価対象施設はこれらの評価を実施する。

外部事象防護対象施設及び外部事象防護対象施設に波及的影響を及ぼす可能性がある施設 の強度評価は,防護措置として設置する竜巻防護対策設備,竜巻より防護すべき施設を内包 する施設の強度評価を踏まえたものであるため,最初に竜巻防護対策設備,竜巻より防護す べき施設を内包する施設について示し,次に外部事象防護対象施設及び外部事象防護対象施 設に波及的影響を及ぼす可能性がある施設について示す。

2.2.1 評価の分類

(1) 衝突評価

衝突評価は、竜巻による設計飛来物による衝撃荷重に対する直接的な影響の評価として、評価対象施設が、貫通、貫入、ひずみの変形が生じた場合においても、当該施設の 機能を維持可能な変形に留めることを確認する評価とする。

評価対象施設の構造及び当該施設の機能を考慮し,設計飛来物の衝突により想定され る損傷モードを以下のとおり分類し,それぞれの評価方針を設定する。

- a. 建物·構造物
 - (a) 貫通
 - (b) ひずみ
- b. 機器·配管系

(a) 貫入

(2) 構造強度評価

RO

構造強度評価は, 竜巻の風圧力による荷重, 気圧差による荷重及び設計飛来物による 衝撃荷重により生じる応力等に対し, 評価対象施設及びその支持構造物が, 当該施設の 機能を維持可能な構造強度を有することを確認する評価とする。構造強度評価は, 構造 強度により閉止性及び開閉機能を確保することの評価を含む。

構造強度評価は,評価対象施設の構造を考慮し,以下の分類ごとに評価方針を設定す る。

a. 建物·構造物

建物・構造物の強度評価のうち,鉄筋コンクリート造構造物と鋼製構造物は,その構 造を踏まえた評価項目を抽出する。

- (a) 鉄筋コンクリート造構造物
 - イ. 裏面剥離
 - ロ. 転倒及び脱落
 - ハ. 変形
- (b) 鋼製構造物
 - イ. 転倒及び脱落
 - 口. 変形
- (c) 排気筒
 - イ. 変形角
- b. 機器・配管系
 - (a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ
 - (b) 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ
 - (c) 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ 系ディーゼル発電設備ディーゼル燃料移送ポンプ
 - (d) 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用 ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディー ゼル発電設備(燃料移送系)配管及び弁
 - (e) ダンパ(換気空調設備)
 - (f) 角ダクト(換気空調設備)及び丸ダクト(換気空調設備)
 - (g) 隔離弁(換気空調設備)
 - (h) 送風機(換気空調設備)
 - (i) 処理装置(換気空調設備)
 - (j) 非常用ガス処理系配管及び弁
 - (k) 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系 ディーゼル発電設備ディーゼル機関の付属施設)

- (1) 排気管及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディー ゼル発電設備ディーゼル燃料貯蔵タンク、ディーゼル燃料デイタンク並びに潤滑 油サンプタンクの付属施設)
- (3) 動的機能維持評価

動的機能維持評価は,設計竜巻荷重及びそれと組み合わせる荷重に対し,竜巻時及び 竜巻通過後において,評価対象施設のうち動的機器が,当該施設の動的機能を保持可能 なことを確認する評価とする。

- a. 機器•配管系
 - (a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

強	度評価における分類	施設名称		
(1)	竜巻より防護すべ	・原子炉建物		
	き施設を内包する	・タービン建物		
	施設 (建物等)	・廃棄物処理建物		
		・制御室建物		
		・ディーゼル燃料貯蔵タンク室		
		・B-ディーゼル燃料貯蔵タンク格納槽		
(2)	屋外の外部事象防	・原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ		
	護対象施設(建物等	・原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレ		
	を除く)	ーナ		
		・排気筒		
		・原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及		
		び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに		
		高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁		
		・非常用ディーゼル発電設備Aーディーゼル燃料移送ポンプ及び高		
		圧炉心スプレイ系ディーゼル燃料移送ポンプ		
(3)	外気と繋がってい	 ・ダンパ(換気空調設備) 		
	る屋内の外部事象	・隔離弁(換気空調設備)		
	防護対象施設	・角ダクト(換気空調設備)及び丸ダクト(換気空調設備)		
		・送風機(換気空調設備)		
		・処理装置(換気空調設備)		
		・非常用ガス処理系配管及び弁		
(4)	外部事象防護対象	a. 機械的影響を与える可能性がある施設		
	施設に波及的影響	・1号機原子炉建物		
	を及ぼし得る施設	・1号機タービン建物		
a.	機械的影響を与える	 1号機廃棄物処理建物 		
	可能性がある施設	 1 号機排気筒 		
b.	機能的影響を与える	・排気筒モニタ室		
	可能性がある施設	・復水貯蔵タンク遮蔽壁		
		b. 機能的影響を与える可能性がある施設		
		・排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧		
		炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)		
		・排気管及びベント管(非常用ディーゼル発電設備及び高圧炉心ス		
		プレイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク、ディーゼ		
		ル燃料デイタンク並びに潤滑油サンプタンクの付属施設)		

表 2-1 強度評価における施設分類

3. 強度設計

Ⅵ-1-1-3-3-1「竜巻への配慮に関する基本方針」で設定している設計竜巻に対し、「2.1 評価 対象施設」で設定している施設が、構造強度設計上の性能目標を達成するよう、Ⅵ-1-1-3-3-3「竜 巻防護に関する施設の設計方針」の「4. 機能設計」で設定している各施設が有する機能を踏まえ、 強度設計の方針を設定する。

各施設の構造強度の設計方針を設定し,設計竜巻荷重及びその他考慮すべき荷重に対し,各施設の構造強度を維持するよう,機能維持の方針において構造設計と評価方針を設定する。

3.1 構造強度の設計方針

VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」で設定 している構造強度設計上の性能目標を達成するための設計方針を「2.1 評価対象施設」で設 定している評価対象施設分類ごとに示す。

(1) 竜巻より防護すべき施設を内包する施設(建物等)

竜巻より防護すべき施設を内包する施設(建物等)は、VI-1-1-3-3-3「竜巻防護に関す る施設の設計方針」の「3. 要求機能及び性能目標」の「3.1(2)c. 性能目標」で設定し ている構造強度設計上の性能目標を踏まえ、以下の設計とする。

原子炉建物,タービン建物,廃棄物処理建物,制御室建物,ディーゼル燃料貯蔵タンク 室及びB-ディーゼル燃料貯蔵タンク格納槽は,設計竜巻荷重及びその他考慮すべき荷重 に対し,設計飛来物が竜巻より防護すべき施設に衝突することを防止するために,竜巻よ り防護すべき施設を内包する施設のうち,竜巻より防護すべき施設を内包する施設の外殻 を構成する部材を設計飛来物が貫通せず,また,竜巻より防護すべき施設に波及的影響を 与えないために,竜巻より防護すべき施設を内包する施設のうち,竜巻より防護すべき施 設を内包する施設の外殻を構成する部材自体の転倒及び脱落(裏面剥離を含む)が生じな い設計とする。

(2) 屋外の外部事象防護対象施設(建物等を除く)

屋外の外部事象防護対象施設(建物等を除く)は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」の「3.1(1)c. 性能目標」で設定している構造強度設計上の性能目標を踏まえ、以下の設計とする。

a. 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,取水槽海水ポンプエリ アに設けた基礎に本体を基礎ボルトで固定し,ポンプの機能保持に必要な付属品を本体に ボルトで固定し,設計竜巻の風圧力による荷重,気圧差による荷重及びその他考慮すべき 荷重に対し,主要な構造部材が海水の送水機能を維持可能な構造強度を有すること及び海 水を送水するための動的機能を維持する設計とする。 b. 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは、取水槽循環水 ポンプエリアに設けた基礎に支持脚を基礎ボルトで固定し、設計竜巻の風圧力による荷 重、気圧差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が海水中の固形 物を除去する機能を保持可能な構造強度を有する設計とする。

c. 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディー ゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備 (燃料移送系)配管及び弁

原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び弁は,取水 槽床面又は壁面にサポートで支持し,設計竜巻の風圧力による荷重,気圧差による荷重 及びその他考慮すべき荷重に対し,主要な構造部材が原子炉補機及び高圧炉心スプレイ 系補機を冷却する機能を保持可能な構造強度を有する設計とする。

非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディ ーゼル発電設備(燃料移送系)配管及び弁は,燃料移送ポンプエリア及び配管ダクト床 面又は壁面にサポートで支持し,設計竜巻の気圧差による荷重及びその他考慮すべき荷 重に対し,主要な構造部材が非常用電源設備に燃料を供給する機能を保持可能な構造強 度を有する設計とする。

d. 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディ ーゼル発電設備ディーゼル燃料移送ポンプ

非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディ ーゼル発電設備ディーゼル燃料移送ポンプは,燃料移送ポンプエリアに設けた基礎に本体 を基礎ボルトで固定し,設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し, 主要な構造部材が非常用電源設備に燃料を供給する機能を保持可能な構造強度を有する設 計とする。

e. 排気筒

排気筒は,設計竜巻荷重及びその他考慮すべき荷重に対し,主要な構造部材が流路を確 保する機能を保持可能な構造強度を有する設計とする。

(3) 外気と繋がっている屋内の外部事象防護対象施設

外気と繋がっている屋内の外部事象防護対象施設は、VI-1-1-3-3-3「竜巻防護に関する 施設の設計方針」の「3.要求機能及び性能目標」の「3.1(3)c.性能目標」で設定してい る構造強度設計上の性能目標を踏まえ、以下の設計とする。

a. ダンパ(換気空調設備)

S2 補 VI-3-別添 1-1 R0

ダンパは,原子炉建物の天井面等にサポートにより固定し,設計竜巻の気圧差による荷 重及びその他考慮すべき荷重に対し,開閉可能な機能及び閉止性の保持を考慮して主要な 構造部材が構造健全性を保持する設計とする。

b. 角ダクト及び丸ダクト(換気空調設備)

角ダクト及び丸ダクトは,原子炉建物の天井面等にサポートで支持し,設計竜巻の気圧 差による荷重及びその他考慮すべき荷重に対し,主要な構造部材が換気空調を行う機能を 保持可能な構造強度を有する設計とする。

c. 隔離弁(換気空調設備)

隔離弁は,換気空調設備のダクトに固定し,設計竜巻の気圧差による荷重及びその他考 慮すべき荷重に対し,開閉可能な機能及び閉止性の保持を考慮して,主要な構造部材が構 造健全性を保持する設計とする。

d. 送風機(換気空調設備)

送風機は,原子炉建物の床面等にサポートで支持し,設計竜巻の気圧差による荷重及び その他考慮すべき荷重に対し,主要な構造部材が必要な風量を送風する機能を保持可能な 構造強度を有する設計とする。

e. 処理装置(換気空調設備)

処理装置は,原子炉建物の床面等にサポートで支持し,設計竜巻の気圧差による荷重及 びその他考慮すべき荷重に対し,主要な構造部材が外気を処理する機能を保持する設計と する。

f. 非常用ガス処理系配管及び弁

非常用ガス処理系配管及び弁は,配管ダクト床面又は壁面にサポートで支持し,設計竜 巻の気圧差による荷重及びその他の考慮すべき荷重に対し,主要な構造部材が放射性物質 の放出低減機能を保持する設計とする。

「(3) 外気と繋がっている屋内の外部事象防護対象施設」の屋内の外部事象防護対象施 設の設計フローを図 3-1 に示す。

図 3-1 屋内の外部事象防護対象施設の設計フロー

- (4) 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設
 - a. 機械的影響を及ぼす可能性がある施設
 機械的影響を及ぼす可能性がある施設は、VI-1-1-3-3-3「竜巻防護に関する施設の設計
 方針」の「3. 要求機能及び性能目標」の「3.4(3) 性能目標」で設定している構造強度
 設計上の性能目標を踏まえ、以下の設計とする。
 - (a) 1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室

1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室は,設計竜巻荷重及 びその他考慮すべき荷重に対し,排気筒並びに竜巻より防護すべき施設を内包するタ ービン建物,廃棄物処理建物及び制御室建物に接触及び倒壊による影響を及ぼさない 設計とする。

(b) 1 号機原子炉建物,1 号機排気筒及び復水貯蔵タンク遮<mark>蔽</mark>壁

1号機原子炉建物,1号機排気筒及び復水貯蔵タンク遮蔽壁は,設計竜巻荷重及びその他考慮すべき荷重に対し,竜巻より防護すべき施設を内包するタービン建物,制御 室建物及びB-ディーゼル燃料貯蔵タンク格納槽等に倒壊による影響を及ぼさない設 計とする。

b. 機能的影響を及ぼす可能性がある施設

機能的影響を及ぼす可能性がある施設は、VI-1-1-3-3-3「竜巻防護に関する施設の設計 方針」の「3.要求機能及び性能目標」の「3.4(3) 性能目標」で設定している構造強度 設計上の性能目標を踏まえ、以下の設計とする。

(a) 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)

排気消音器は,原子炉建物にボルトで固定し,設計竜巻の風圧力による荷重,気圧 差による荷重及びその他考慮すべき荷重に対し,主要な構造部材が排気機能を維持可 能な構造強度を有する設計とする。

(b) 排気管及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼ ル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク並びに潤滑油サン プタンクの付属施設)

排気管及びベント管は、サポート等により建物に固定し、設計竜巻の風圧力、気圧 差による荷重及びその他考慮すべき荷重に対し、主要な構造部材が排気機能を維持可 能な構造強度を有する設計とする。 3.2 機能維持の方針

Ⅵ-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」で設定している構造強度上の性能目標を達成するために、「3.1 構造強度の設計方針」に示す設計方針を踏まえ、Ⅵ-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を適切に考慮して、各施設の構造設計及びそれを踏まえた評価方針を設定する。

(1) 竜巻より防護すべき施設を内包する施設(建物等)

竜巻より防護すべき施設を内包する施設の機能維持の方針は,施設の設置状況に応じ, 以下の方針とする。

- a. 建物(原子炉建物,タービン建物,廃棄物処理建物,制御室建物)
 - (a) 構造設計

建物は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜 巻への配慮に関する基本方針」の「2.1.3(2)荷重の組合せ及び許容限界」で設定して いる荷重を踏まえ、以下の構造とする。

建物に作用する荷重は、外殻を構成する屋根スラブ及び外壁に作用し、建物内に配置 された耐震壁等を介し、直接岩盤に支持される基礎スラブへ伝達する構造とする。 建物の構造計画を表 3-1 に示す。

(b) 評価方針

イ. 衝突評価

建物の衝突評価については,設計飛来物が竜巻より防護すべき施設の外殻を構成 する部材を貫通しない設計とするために,設計飛来物による衝撃荷重に対し,当該 部材が設計飛来物の貫通を生じない最小厚さ以上であることを計算により確認す る。評価方法としては,「5.1.1(3) 強度評価方法」に示す限界厚さ評価式により 算出した厚さを基に評価を行う。

最小厚さ以上であることの確認ができない屋根スラブについては,鉄筋が終局状態に至るようなひずみが生じないことを解析により確認する。評価方法としては, FEMを用いた解析により算出したひずみを基に評価を行う。

竜巻防護対策設備のうち鋼製扉(以下「扉」という。)については,設計飛来物 が竜巻より防護すべき施設の外殻を構成する部材を貫通しない設計とするために, 設計飛来物による衝撃荷重に対し,当該部材が設計飛来物の貫通を生じない必要最 小肉厚以上であることを計算により確認する。評価方法としては,「5.1.3(3) 強 度評価方法」に示す解析による必要最小肉厚と扉の厚さを比較することで評価を行 う。 口. 構造強度評価

建物の構造強度評価については、竜巻より防護すべき施設に波及的影響を与えな い確認として、設計飛来物による衝撃荷重に対し、建物の外殻を構成する部材自体 の脱落を生じない設計とするために、外殻となる外壁及び屋根スラブのうち、コン クリートの裏面剥離により内包する外部事象防護対象施設への影響が考えられる箇 所については、裏面剥離によるコンクリート片の飛散が生じない最小厚さ以上であ ることを計算により確認する。評価方法としては、「5.1.1(3) 強度評価方法」に 示す限界厚さ評価式により算出した厚さを基に評価を行う。

最小厚さ以上であることの確認ができない外壁及び屋根スラブについては、鉄筋 又はデッキプレートが終局状態に至るようなひずみが生じないことを解析により確 認する。評価方法としては、FEMを用いた解析により算出したひずみを基に評価 を行う。

また,建物を構成する部材自体の転倒及び脱落を生じない設計とするため,設計 竜巻荷重及びその他考慮すべき荷重に対し,屋根スラブ及び屋根スラブのスタッド 並びに外壁に終局状態に至るような応力又はひずみが生じないことを計算及び解析 により確認する。評価方法としては,「5.1.1(3)強度評価方法」に示す強度評価 式により算出した応力並びに建物の地震応答解析モデルを用いて算出したせん断ひ ずみを基に評価を行う。

扉については,設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し, 扉支持部材の破断による転倒及び脱落を生じないことを計算により確認する。

S2 補 VI-3-別添 1-1 R0

表 3-1 建物の構造計画 (2/6)

注記*:「EL」は東京湾平均海面(T.P.)を基準としたレベルを示す。

	計画の概要			
施設名称	主体構造	支持構造	記明凶	
タービン 建物	鉄 リ部コト サ ン 造 鉄 リ び 構 成 す る。	荷外る及用に耐レしブ構重設屋びし配震一,へ造はを根外,置壁ム礎達すと建構ス壁建さ及な礎達す物成ラに物れびをスする。	$\int \left(\frac{1}{1} + \frac{1}{1} +$	

表 3-1 建物の構造計画(3/6)

計画の概要		の概要		
他設名称	主体構造	支持構造	就明凶	
廃棄物 処理建物	鉄筋コンクリート造で構成する。	荷外る及用配震礎達すす重殻屋びし置壁スする。はを根外、さをうる。物成ラに内た,へ造のすブ作に耐基伝と	<complex-block></complex-block>	

表 3-1 建物の構造計画(4/6)

	計画(の概要	=× uu isa
施設名称	主体構造 支持構造		記明凶
制建物	鉄市造っンクリ成する。	荷外る及用に耐しブ構 重殻屋びし配震,へ造 はを根外,置 壁 基 伝と 建構ス壁建さをです のすブ作内た介ラる	

表 3-1 建物の構造計画(5/6)

施設		計画の概要		⇒ਮ फ 12
分類	旭武石桥	主体構造	支持構造	武功凶
原建扉(扉)				

表 3-1 建物の構造計画(6/6)

- b. 構造物(ディーゼル燃料貯蔵タンク室及びB-ディーゼル燃料貯蔵タンク格納槽)
 - (a) 構造設計

構造物は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設 定している荷重を踏まえ、以下の構造とする。

構造物は、地下に埋設された鉄筋コンクリート造とし、地上部にはスラブ、開口等 が露出し、露出する開口部には鋼製の蓋を設置する構造とする。

構造物に作用する荷重は、地上に露出したスラブ、鋼製蓋等に作用し、鉄筋コンク リート造の躯体を介し、直接岩盤に支持される基礎スラブへ伝達する構造とする。 構造物の構造計画を表 3-2 に示す。

- (b) 評価方針
 - イ. 衝突評価

構造物の衝突評価については,設計飛来物による衝撃荷重に対し,設計飛来物が 竜巻より防護すべき施設を内包する施設の外殻を構成する部材を貫通しない設計と するために,地上に露出したスラブ及び鋼製蓋が設計飛来物の貫通を生じない最小 厚さ以上であることを計算により確認する。評価方法としては,スラブについて は,「5.1.1(3)強度評価方法」に示す限界厚さ評価式により算出した厚さを基 に,鋼製蓋については,「5.1.3(3)強度評価方法」に示す解析による必要最小肉 厚と鋼製蓋の厚さと比較することで評価を行う。

口. 構造強度評価

構造物の構造強度評価については,設計飛来物による衝撃荷重に対し, 竜巻より 防護すべき施設に波及的影響を与えないよう,構造物の外殻を構成する部材自体の 脱落を生じない設計とするために, スラブが裏面剥離によるコンクリート片の飛散 が生じない最小厚さ以上であることを計算により確認する。評価方法としては, 「5.1.1(3) 強度評価方法」に示す限界厚さ評価式により算出した厚さを基に評価

を行う。

表 3-2 構造物の構造計画(1/3)

	計画	の概要	説明図	
他設名称	主体構造	支持構造		
ディーゼル 燃料貯蔵 タンク室	地た鉄ト部ラクロ部でであった。 に殻ンし出鉄していた。 と露は一にする。 れを一上スン開蓋	荷出クラにンクをする構造し、していた。 し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、	<complex-block><complex-block></complex-block></complex-block>	

表 3-2 構造物の構造計画(2/3)

	計画	の概要	=× up lov	
施設名称	主体構造	支持構造	記明凶	
B – ディー ゼル燃料貯 蔵タンク格 納槽	地れ体クし出はリ部をでたをリーンでたをリーンでの生まで、外鉄ー上スコン、開製でした。 で外鉄ー上スコン、開製でのコ造にラン開製でのコンでは、 していた。 していた。 していた。 していた。 していた。 していた。 していた。 したのでは、 したのでので、 したのでので、 したのでので、 したので、 こので、 したので、 したので、 このでので、 こので、 したので、 したので、 したので、 したので、 したので、 したので、 したので、 したので、 したので、 したので、 したので、 したので、 のでので、 したので、 したので、 したので、 したのでので、 したのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでので	荷出クラにコの基達るはたー及用クライン駆礎する。 「「「「「」」の製鉄トし、伝する。		

表 3-2 構造物の構造計画(3/3)

- (2) 屋外の外部事象防護対象施設(建物等を除く)
 - a. 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ
 - (a) 構造設計

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,「3.1 構造強度の 設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方 針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ,以下 の構造とする。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプは,鋼製の立形ポンプ の上に原動機を取り付け,原動機によりポンプの軸を回転させる構造とする。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプはコンクリート基礎に 基礎ボルトで固定し,原動機はポンプの上の原動機台にボルトで結合する構造とす る。端子箱等のポンプの機能維持に必要な付属品は,原動機にボルトで結合する。ま た,作用する荷重については,各取付ボルトを介して接続する構造部材に伝達し,基 礎ボルトに伝達する構造とする。原子炉補機海水ポンプ及び高圧炉心スプレイ補機海 水ポンプの構造計画を表 3-3 に示す。

- (b) 評価方針
 - イ. 衝突評価

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの衝突評価について は、竜巻防護ネットを通過する飛来物が原子炉補機海水ポンプ及び高圧炉心スプレ イ補機海水ポンプの外殻を構成する部材を貫通しない設計とするために、竜巻防護 ネットを通過する飛来物による衝撃荷重に対し、当該部材が飛来物の貫通を生じな い貫通限界厚さ以上であることを計算により確認する。評価方法としては、「5.2.1(3) 強度評価方法」に示す評価式により算出した厚さを基に評価を行う。

口. 構造強度評価

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価については,設計竜巻の風圧力による荷重,気圧差による荷重及び竜巻防護ネットを通過する飛来物による衝撃荷重に対し,原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ及びポンプの機能保持に必要な付属品を支持する基礎ボルト,取付ボルト並びにポンプの機能維持に必要な付属品を支持する原動機フレームに生じる応力が許容応力以下であることを計算により確認する。評価方法としては,「5.2.2(1)c. 強度評価方法」に示すとおり,評価式により算出した応力を基に評価を行う。 ハ. 動的機能維持評価

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの動的機能維持評価 については,設計竜巻の風圧力による荷重,気圧差による荷重,竜巻防護ネットを通 過する飛来物による衝撃荷重及びその他考慮すべき荷重に対し,軸受部における発 生荷重が,動的機能を維持可能な許容荷重以下であることを計算により確認する。評 価方法としては,「5.2.2(1)c. 強度評価方法」に示すとおり,評価式により算出し た荷重を基に評価を行う。

表 3-3 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造計画(1/2)

	計画の概要		説明図	
他政名你	主体構造 支持構造			
【位置】 原子炉補機	毎水ポンプは唇	屋外の取水槽海水ポンプ	『エリアに設置する設計としている。	
原子炉補 機海水ポ ンプ	鋼製のたて 形ポンプ	基礎に基礎ボルトで 固定する。	端子箱 空気冷却器	
原子炉補 機海水ポ ンプモー タ	鋼製の原動 機フレーム に付属品が 取り付けら れた構造	ポンプの上にボルト (原動機取付ボル ト)で結合する。 付属品は取付ボルト で固定する。	原動機フレーム 原動機取付ボルト 原動機合 原動機合 ポンプ取付ボルト ポンプ部	

表 3-3	原子炉補機海水ポン	~プ及び高圧炉心スプレイ	補機海水ポンプの構造計画(2/2)
-------	-----------	--------------	-------------------

	計	画の概要					
施設名称	主体構造	支持構造	説明図				
【位置】 高圧炉心スプレイ補機海水ポンプは屋外の取水槽海水ポンプエリアに設置する設計としてい る。							
高圧炉心ス プレイ補機 海水ポンプ	鋼 製 の た て 形ポンプ	基礎に基礎ボルト で固定する。	端子箱				
高圧炉心ス プレイ補機 海水ポンプ モータ	鋼製の原動 機フレーム に付属品が 取り付けら れた構造	ポンプの上にボル ト (原動機取付ボル ト) で結合する。 付属品は取付ボル トで固定する。	原動機 原動機 が が が が 水 ト - - - - - - - - - - - - -				

- b. 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ
 - (a) 構造設計

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは,「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-3「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ,以下の構造とする。

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは, 胴と支持 客が鋳物一体となった円筒型の容器を並べて組み合わせ,支持脚をコンクリート基礎 に基礎ボルトで固定する構造とする。また,作用する荷重については,支持脚を介し て基礎ボルトに伝達する構造とする。原子炉補機海水ストレーナ及び高圧炉心スプレ イ補機海水ストレーナの構造計画を表 3-4 に示す。

- (a) 評価方針
 - イ. 構造強度評価

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの構造強度 評価については、設計竜巻の風圧力による荷重、気圧差による荷重及びその他考慮 すべき荷重に対し、原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水スト レーナを構成する基礎ボルトに生じる応力が許容応力以下であることを計算により 確認する。評価方法としては、「5.2.3(1)c. 強度評価方法」に示すとおり、評価 式により算出した応力を基に評価を行う。

表 3-4 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの構造計画

	計画の	概要					
施設名称	主体構造	支持構造	記明凶				
【位置】							
原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナは屋外の取水槽循環水ポ							
ンプエリアに設置する設計としている。							
百乙后并继近	昭卫 / 》 士 						
原ナ炉 補機	胴及ひ文持脚 が鋳物一休と	支持脚を基礎 に基礎ボルト で固定する。					
及び高圧炉心	なった円筒形						
スプレイ補機	の容器を組み						
海水ストレー	合わせて構成						
ナ	する		断面 <u>A−A</u> 基礎ボルト モー A				

- c. 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディー ゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備 (燃料移送系)配管及び弁
 - (a) 構造設計

原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用デ ィーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発 電設備(燃料移送系)配管及び弁は,「3.1 構造強度の設計方針」で設定している設 計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組 合せ及び許容限界」で設定している荷重を踏まえ,以下の構造とする。

配管及び弁は、鋼製の配管本体及び弁を主体構造とし、支持構造物により床、壁等 に支持する構造とする。また、作用する荷重については、配管本体に作用する構造と する。配管及び弁の構造計画を表 3-5 に示す。

- (b) 評価方針
 - イ. 衝突評価

原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用 ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼ ル発電設備(燃料移送系)配管及び弁の衝突評価については,竜巻防護ネット等を 通過する飛来物による衝撃荷重に対し,配管及び弁の外殻を構成する部材が,機能 喪失に至る可能性のある変形を生じないことを計算により確認する。評価方法とし ては,「5.2.1(3)強度評価方法」に示すとおり,評価式により算出した貫通限界 厚さを基に評価を行う。

口. 構造強度評価

原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び弁の強 度評価については,設計竜巻の風圧力による荷重,気圧差による荷重及びその他考 慮すべき荷重に対し,配管本体に生じる応力が許容応力以下であることを計算によ り確認する。非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心 スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁の強度評価については, 設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し,発生する応力が許 容応力以下であることを計算により確認する。評価方法としては,「5.2.4(3)強 度評価方法」に示すとおり,評価式により算出した応力を基に評価を行う。 表 3-5 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディー ゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送 系)配管及び弁の構造計画

	計画の概要			→× nn m		
他設名称	主体構造		支持構造	記明凶		
【位置】 原子炉補機海水系配管及び弁 高圧炉心スプレイ補機海水系配管及び弁 非常用ディーゼル発電設備						
(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁 は屋外の取水槽海水ポンプエリア及び燃料移送ポンプエリアに設置する設計としている。						
原子炉補機海水 系配管及び弁,高 圧炉心スプレイ 補機分子,北 でで が が が が が が が が が が が が が が が が が が	鋼製の配管本 び弁で構成する	体及 5。	配管本体及び 弁は,支持構造 物により床及 び壁等から支 持する。	Re 年 正 正 一 正 一 一 一 一 一 一 一 一 一 一 一 一 一		

- d. 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディ ーゼル発電設備ディーゼル燃料移送ポンプ
 - (a) 構造設計

非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系 ディーゼル発電設備ディーゼル燃料移送ポンプは、「3.1 構造強度の設計方針」で設 定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の

「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重を踏まえ,以下の構造 とする。

非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系 ディーゼル発電設備ディーゼル燃料移送ポンプは、ポンプ部と原動機部からなる横型 ポンプであり、基礎ボルト及び取付ボルトによって固定されている。また、作用する 荷重については、燃料移送ポンプの耐圧部に作用する構造とする。非常用ディーゼル 発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル発電設備 ディーゼル燃料移送ポンプの構造計画を表 3-6 に示す。

- (b) 評価方針
- 口. 構造強度評価

非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ 系ディーゼル発電設備ディーゼル燃料移送ポンプの強度評価については,設計竜巻 の気圧差による荷重及びその他考慮すべき荷重に対し,ポンプ耐圧部に生じる応力 が許容応力以下であることを計算により確認する。評価方法としては,「5.2.4(3) 強度評価方法」に示すとおり,設計竜巻による荷重に運転時の状態で作用する荷重 を加えた応力を基に評価を行う。

表 3-6 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディ ーゼル発電設備ディーゼル燃料移送ポンプの構造計画

キトニロケイム	計画(の概要	説明図		
施設名称	主体構造	支持構造			
【位置】					
非常用ディーゼル発電	記録備A―ディー	ゼル燃料移送ポン	プ及び高圧炉心スプレイ系ディーゼル発		
電設備ディーゼル燃料	移送ポンプは屋	外の燃料移送ポン	プエリアに設置する設計としている。		
非常用ディーゼル発 電設備A—ディーゼ ル燃料移送ポンプ及 び高圧炉心スプレイ 系ディーゼル発電設 備ディーゼル燃料移 送ポンプ	鋼製の横型ポ ンプに付属品 が取り付けら れた構造	基礎に基礎ボ ルト等で固定 する。			

- e. 排気筒
 - (a) 構造設計

排気筒は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設 定している荷重を踏まえ、以下の構造とする。

排気筒は、地盤からの高さ120mである内径3.3mの鋼板製筒身(排気筒(空調換気 系用))を鋼管四角形鉄塔で支えた鋼製鉄塔支持型排気筒である。また、筒身外部に は排気筒(非常用ガス処理系用)が筒身に支持されている。筒身は第4支持点位置

(EL 113.5m)にて制振装置(粘性ダンパ)を介して鉄塔と接合されている。作用する 荷重については、筒身及び鉄塔を介して基礎に伝達する構造とする。

排気筒の構造計画を表 3-7 に示す。

- (b) 評価方針
 - イ. 構造強度評価

排気筒の構造強度評価については,設計竜巻荷重及びその他考慮すべき荷重に対し,排気筒全体が倒壊しないことを計算により確認する。評価方法としては,

「5.2.1(3) 強度評価方法」に示すとおり、FEMを用いた解析により算出した変 形角を基に評価を行う。

	計画の	の概要	乳田図					
施設名孙	主体構造	支持構造	記明凶					
【位置】	【位置】							
排気筒は, 屋	素外に設置する設計	としている。						
			#3.3 (長年作臣)	主胜相	HI *	#位:mm	新助社	
	鋼製の筒身及び	筒身は支持点位 置にて鉄塔で支 持する。	B. 128.5 A B. 14.5 A	1	- 000×057-M	12 10 10	1	
				#267.4×6.6	#216.3×5.8	#210.04.04	0 ¢267.4×6.0	
				4.355.6×6.4	267.4×6.6	12	9 ¢318.5×6.1	
				#406.4×7.9	24	10	¢711.2×7;	
排気筒				508.0× 9.5	¢318.5×6.9		¢ 609.6×12.7	
D1 200164	鉄塔で構成する。		2 S				5	
			持する。		609.6×12.7	4.355.6×7.9	10	#762.0×12.1
				-	57.2×9.5	23.6×9.5	09.6×12.7 ^{• 3}	
				2×12.7 -22×100*1	44	ě –	99 4	
				#711. 8PLs-	4558.8×9.5	0.000000000000000000000000000000000000	č	
				1FALs	(STK400844)	SMA11A (SMA400AP#45)	STK400	
				注記×1: *2: *3:	SS400 SS41# STK49	Ħを示す。 (SS400相 O材を示す。	≜)を示す。	

表 3-7 排気筒の構造計画

- (3) 外気と繋がっている屋内の外部事象防護対象施設
 - a. ダンパ(換気空調設備)
 - (a) 構造設計

ダンパは、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設 定している荷重を踏まえ、以下の構造とする。

ダンパは鋼製の外板,羽根及びシャフトを主体構造とし,支持構造物で天井面等に支持する構造とする。また,作用する荷重については,外板及び羽根に作用し,羽根を介してシャフトに伝達する構造とする。ダンパの構造計画を表 3-8 に示す。

(b) 評価方針

イ. 構造強度評価

ダンパの構造強度評価については、開閉可能な機能及び閉止性を考慮して、設計 竜巻の気圧差による荷重及びその他考慮すべき荷重に対し、発生する応力が許容応 力以下になることを計算により確認する。評価方法としては、「5.2.6(3) 強度評 価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

	計画の)概要	-7¥ 111 5-1		
施設名称	主体構造	支持構造	記明凶		
【位置】					
ダンパは十分な引	歯度を有する建物	(原子炉建物)内	に設置する設計としている。		
ダンパ (換気空 調設備)	外板,羽根及び シャフトなど の鋼材で構成 する。	接続ダクトにより支持する。			

表 3-8 ダンパ (換気空調設備)の構造計画
- b. 角ダクト(換気空調設備)及び丸ダクト(換気空調設備)
 - (a) 構造設計

角ダクト及び丸ダクトは、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び 許容限界」で設定している荷重を踏まえ、以下の構造とする。

角ダクト及び丸ダクトは、鋼製のダクトを主体構造とし、支持構造物により天井面 等に支持する構造とする。また、作用する荷重については、ダクト鋼板に作用する構 造とする。角ダクト及び丸ダクトの構造計画を表 3-9 に示す。

(b) 評価方針

イ. 構造強度評価

角ダクト及び丸ダクトの構造強度評価については、設計竜巻の気圧差による荷重 及びその他考慮すべき荷重に対し、角ダクト及び丸ダクトを構成する鋼製のダクト に生じる応力が許容応力以下であることを計算により確認する。評価方法として は、ダクト形状で評価方法を分類し「5.2.7(3) 強度評価方法」及び「5.2.8(3) 強度評価方法」に示すとおり、評価式により算出した応力を基に評価を行う。

表 3-9 角ダクト(換気空調設備)及び丸ダクト(換気空調設備)の構造計画

	計画0	⊃概要	
施設名称	主体構造	支持構造	記明凶
【位置】		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
用ダクト (換気) 物 制御室建物)	と調設個)及び兆々 GTド盛垂物処理建り	× クト(換気空調調 物)内に設置する	ダ脯)は十分な独皮を有する建物(原ナ炉建一 設計としていろ
<u>物</u> , 前御室建物/ 角ダクト(換気 空調設備)及び 丸ダクト(換気 空調設備)	<u>X</u> の廃 東 物処理建 鋼製のダクト で構成する。	<u> Ø) 内に設置する</u> ダクトは,支持 構物壁,床より 建物壁,から支 持する。	は角ダクト ダクト鋼板 (丸ダクト) ダクト ダクト ダクト ダクト ダクト 女 女 ダクト 女 女 女 女

- c. 隔離弁(換気空調設備)
 - (a) 構造設計

隔離弁は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2)荷重の組合せ及び許容限界」で設定 している荷重を踏まえ、以下の構造とする。

隔離弁は、鋼製の弁箱、弁体及び弁棒で構成し、接続ダクトにより支持する構造と する。内部の弁体、弁棒が回転することにより弁の開閉動作を行う構造とし、閉止時 には、上流と下流の圧力差が気密性を有する弁の耐圧部に作用する構造とする。隔離 弁の構造計画を表 3-10 に示す。

- (b) 評価方針
 - イ. 構造強度評価

隔離弁の構造強度評価については,開閉可能な機能及び閉止性を考慮して,設計 竜巻の気圧差による荷重及びその他考慮すべき荷重に対し,発生する応力が許容応 力以下になることを計算により確認する。評価方法としては「5.2.9(3) 強度評価 方法」に示すとおり,評価式により算出した応力を基に評価を行う。

表	3 -	10	隔離弁	(換気空調設備)	の構造計画

施設名称	計画0	D概要	説囲図
	主体構造	支持構造	
【位置】			
隔離弁は十分な引	魚度を有する建物	(原子炉建物及び厚	経棄物処理建物)内に設置する設計としてい
る。			
隔離弁 (換気空 調設備)	鋳鋼材で構成 する。	接 続 ダ ク ト で 支持する。	SOF Ark Ark Ark Ark Ark

- d. 送風機(換気空調設備)
 - (a) 構造設計

送風機は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定 している荷重を踏まえ、以下の構造とする。

送風機は、流路を形成するケーシング、冷却するための空気を送り込む羽根車及び原 動機からの回転力を伝達する主軸で構成し、床に基礎ボルトで支持する構造とする。送 風機の構造計画を表 3-11 に示す。

- (b) 評価方針
 - イ. 構造強度評価

送風機の構造強度評価については,設計竜巻の気圧差による荷重及びその他考慮 すべき荷重に対し,発生する応力が許容応力以下であることを計算により確認す る。評価方法としては,「5.2.10(3)強度評価方法」に示すとおり,評価式によ り算出した応力を基に評価を行う。

长訊在我	計画の概要		국산 미미 100	
他設名称	主体構造	支持構造	武明区	
【位置】 送風機は十分な	よ強度を有する 疑	聿 物(原子炉建物	の及び廃棄物処理建物) 内に設置する設計としてい	
る。				
送風機 (換気 空調設備)	ケーシング 及びケーシ ング内 び 車 で 構成す る。	床に基礎ボ ルトで支持 する。	羽根車 ケーシング	

表 3-11 送風機(換気空調設備)の構造計画

- e. 処理装置(換気空調設備)
 - (a) 構造設計

処理装置は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定

している荷重を踏まえ、以下の構造とする。

処理装置は流路を形成するケーシング、ケーシングを固定するはり及び長柱で形成 し、床に基礎ボルトで支持する構造とする。処理装置の構造計画を表 3-12 に示す。

- (b) 評価方針
 - イ. 構造強度評価

処理装置の構造強度評価については,設計竜巻の気圧差による荷重及びその他考 慮すべき荷重に対し,発生する応力が許容応力以下であることを計算により確認す る。評価方法としては,「5.2.11(3)強度評価方法」に示すとおり,評価式によ り算出した応力を基に評価を行う。

表	3 - 12	処理装置	(換気空調設備)	の構造計画
~~	<u> </u>			

	計画の	概要	
施設名称	施設名称 主体構造 支持構造		記明凶
【位置】 処理装置は十分ない。	よ 強度を有する建物	勿(原子炉建物及び	び廃棄物処理建物) 内に設置する設計として
			*
処理装置(換気 空調設備)	ケーシング及 びはり等の鋼 材で構成する。		ケーシング
		床に基礎ボル トで支持する。	*
			ケーシング

- f. 非常用ガス処理系配管及び弁
 - (a) 構造設計

非常用ガス処理系配管及び弁は、「3.1 構造強度の設計方針」で設定している設計方 針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2)荷重の組合せ及 び許容限界」で設定している荷重を踏まえ、以下の構造とする。

非常用ガス処理系配管及び弁は鋼製の配管を主体構造とし,支持構造物により床,壁 等に支持する構造とする。また,作用する荷重については,配管本体に作用する構造と する。

- (b) 評価方針
- イ. 構造強度評価

非常用ガス処理系配管及び弁の構造強度評価については,設計竜巻の気圧差によ る荷重及びその他考慮すべき荷重に対し,発生する応力が許容応力以下であること を計算により確認する。評価方法としては,「5.2.4(3)強度評価方法」に示すと おり,評価式により算出した応力を基に評価を行う。

- (4) 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設
 - a. 機械的影響を及ぼす可能性がある施設
 - (a) 1号機原子炉建物,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室
 - イ. 構造設計

1号機原子炉建物,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニ タ室は,「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-3-3-1 「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で 設定している荷重を踏まえ,以下の構造とする。

1号機原子炉建物,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニ タ室は,鉄筋コンクリート造(一部鉄骨造)とし,荷重は建物の外殻を構成する屋 根スラブ及び外壁に作用し,建物内に配置された耐震壁及びフレームを介し,基礎 スラブへ伝達する構造とする。

1号機原子炉建物,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニ タ室の構造計画を表3-13~表3-16に示す。

- 口. 評価方針
 - (イ) 構造強度評価

1号機原子炉建物,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室の構造強度評価については,設計竜巻荷重及びその他考慮すべき荷重に対し,タービン建物,廃棄物処理建物,制御室建物及び排気筒に倒壊による影響を

及ぼさないことを解析により確認する。評価方法としては,各建物の地震応答解 析モデルを用いて算出したせん断ひずみ及び層間変形角を基に評価を行う。

また,1号機タービン建物,1号機廃棄物処理建物及び排気筒モニタ室の構造 強度評価については,設計竜巻荷重及びその他考慮すべき荷重に対し,タービン 建物,廃棄物処理建物,制御室建物及び排気筒に接触する変形を生じないことを 解析により確認する。評価方法としては,各建物の地震応答解析モデルを用いて 算出した隣接建物との最大相対変位を基に評価を行う。

- (b) 復水貯蔵タンク遮<mark>蔽</mark>壁
 - イ. 強度評価

復水貯蔵タンク遮蔽壁は、「3.1 構造強度の設計方針」で設定している設計方針 及びV-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及 び許容限界」で設定している荷重を踏まえ、以下の構造とする。

復水貯蔵タンク遮<mark>蔽</mark>壁は,鉄筋コンクリート造,荷重は遮<mark>蔽</mark>壁に作用し,基礎へ 伝達する構造とする。

復水貯蔵タンク遮蔽壁の構造計画を表 3-17 に示す。

口. 評価方針

(イ) 構造強度評価

復水貯蔵タンク遮蔽壁の構造強度評価については、設計竜巻荷重及びその他考 慮すべき荷重に対し、竜巻より防護すべき施設を内包するB-ディーゼル燃料貯 蔵タンク格納槽に倒壊による影響及ぼさないことを計算等により確認する。評価 方法としては、はり要素により算出した断面力を基に評価を行う。

表 3-13 1 号機原子炉建物の構造計画(1/2)

长司权	計画	の概要	⇒光 中 152	
他設名你	主体構造	支持構造	記·明凶 	
1号機 原子炉建物	鉄 筋 コ ン ク リ ー 、 り で 構 成 す る。	荷殻根壁物たレ基達る。 するび、さびしへとする。 が屋外建れフ、伝す		

表 3-13 1号機原子炉建物の構造計画(2/2)

表 3-14 1号機タービン建物の構造計画(1/2)

	計画の概要		弐田団	
他設名你	主体構造	支持構造	記明区	
1 号機 タービン 建物	鉄	荷外る及用配震一礎達すすなを根外建体のすご作に耐レ基伝と	<complex-block></complex-block>	

表 3-14 1号機タービン建物の構造計画(2/2)

表 3-15 1号機廃棄物処理建物の構造計画(1/2)

	計画	の概要	
施設名称	主体構造 支持構造		記明凶
 1 号機 廃棄物 処理建物 	鉄筋コンクリート造で構成する。	荷外る及用配震礎達すすする。荷外る及用配震です。 はを根外建な介えて、 を見かし、 でで、 で、 はを根外建た で、 で、 はを根外建た で、 で、 はを根外建た で、 で、 で、 で、 で、 で、 は を で の の で、 の の の の の の の の の の の の の の の	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

表 3-15 1 号機廃棄物処理建物の構造計画(2/2)

表 3-16 排気筒モニタ室の構造計画(1/2)

	計画	の概要	→X EE CO
他议名你	主体構造	支持構造	說明凶
排気筒 モニタ室	鉄筋コンクリート造で構成する。	荷	$(B - B \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

表 3-16 排気筒モニタ室の構造計画 (2/2)

表 3-17 復水貯蔵タンク遮蔽壁の構造計画(2/2)

- (d) 1 号機排気筒
 - イ. 構造設計

1号機排気筒は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2)荷重の組合せ及び許容限 界」で設定している荷重を踏まえ、以下の構造とする。

1号機排気筒は,地盤からの高さ120mである内径2.8mの鋼板製筒身を鋼管四角 形鉄塔で支えた鋼製鉄塔支持型排気筒である。筒身は支持点位置(EL 37.5m, EL 59.5m, EL 89.5m及びEL 113.5m)にて鉄塔と接合されている。また,作用する荷重 については,筒身及び鉄塔を介して基礎に伝達する構造とする。

1号機排気筒の構造計画を表 3-18 に示す。

- 口. 評価方針
 - (イ)構造強度評価

1号機排気筒の構造強度評価については,設計竜巻荷重及びその他考慮すべき 荷重に対し,1号機排気筒が原子炉建物,タービン建物等に倒壊による影響を及ぼ さないことを解析により確認する。評価方法としては,「5.2.1(3)強度評価方 法」に示すとおり,FEMを用いた解析により算出した変形角を基に評価を行う。

キケーマレクイム	計	画の概要	
施設名称	主体構造	支持構造	記明凶
【位置】 1 号機排気筒	育は,屋外に設	置する設計としている。	o
1 号機 排気筒	鋼製の筒身 及び鉄塔で 構成する。	筒身は支持点位置に て鉄塔で支持する。	0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

表 3-18 1号機排気筒の構造計画

- b. 機能的影響を及ぼす施設
 - (a) 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系デ ィーゼル発電設備ディーゼル機関の付属施設)
 - イ. 構造設計

排気消音器は、「3.1 構造強度の設計方針」で設定している設計方針及びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限 界」で設定している荷重を踏まえ、以下の構造とする。

排気消音器は、鋼製の胴板を主体構造とし、原子炉建物屋上に本体を基礎ボルト 及び結合ボルトで固定する構造とする。また、作用する荷重については、排気消音 器を介し、基礎ボルト及び結合ボルトに伝達する構造とする。排気消音器の構造計 画を表 3-19 に示す。

口. 評価方針

(イ) 構造強度評価

排気消音器の強度評価については,設計竜巻の風圧力による荷重,気圧差によ る荷重及びその他考慮すべき荷重に対し,基礎ボルト及び結合ボルトに生じる応 力が許容応力以下であることを計算により確認する。

評価方法としては、「5.2.12(3) 強度評価方法」に示すとおり、評価式により 算出した応力を基に評価を行う。

表 3-19 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディー ゼル発電設備ディーゼル機関の付属施設)の構造計画

	計画	「の概要	→ ¥ 11 53	
施設名称	主体構造	支持構造	記明凶	
【位置】 排気消音器は, 原	原子炉建物屋上に	設置する設計として	いる。	
排気消音器	鋼製の胴板で 構成する。	原子炉建物屋上 に設けた基礎に 本体を基礎ボル ト及び取付ボル トで固定する。		

- (b) 排気管及びベント管(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼ ル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク並びに潤滑油サン プタンクの付属施設)
 - イ. 構造設計

排気管及びベント管は、「3.1 構造強度の設計方針」で設定している設計方針及 びVI-1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及 び許容限界」で設定している荷重を踏まえ、以下の構造とする。

排気管及びベント管は,鋼製の配管を主体構造とし,サポート等により建物に固 定する構造とする。また,作用する荷重については,配管本体に作用する構造とす る。

排気管及びベント管の構造計画を表 3-20 に示す。

- 口. 評価方針
 - (イ) 構造強度評価

排気管及びベント管の強度評価については,設計竜巻の風圧力による荷重,気 圧差による荷重及びその他考慮すべき荷重に対し,排気管及びベント管の配管本 体に生じる応力が許容応力以下であることを計算により確認する。評価方法とし ては,「5.2.13(3)強度評価方法」に示すとおり,評価式により算出した応力 を基に評価を行う。 表 3-20 排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル 発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプ レイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク並びに潤滑油サ ンプタンクの付属施設)の構造計画

	Ŧ								
	計画	面の概要							
施設名称	主体構造	支持構造	説明凶						
【位置】 排気管け 原子恒建物屋上に設置する設計としている									
1年以目は、原丁/	P 建物座上に 取 匠	しりつ取引としている	ν _°						
排気管	鋼製の配管で 構成する。	配管は,支持構造 物により建物等 に固定する。							
ベント管			武持構造物 屋外 床						

「3.2 機能維持の方針」に示す構造設計と作用する荷重の伝達を基に,表 3-21 に示すとおり評価対象部位を設定する。

表 3-21 竜春の影響を考慮する施設 硬度評価対象部位 (1)	₹	-	表 3-21	音巻の影響を	考慮する施設	· 強度評価家	† 象部位(1/	(6)
----------------------------------	---	---	--------	--------	--------	---------	-----------------	-----

分類	施設名称	評価対象部位	評価項目	評価項目分類	選定理由
分 竜巻より防護すべき施設を内包する施設	原子炉建物 タービン建物 廃棄物処理建物 制御室建物	屋根スラブ(デ ッキプレート を含む。) スタッド 外壁 構造躯体	衝突	貫通	竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部に貫通が生じないことを確認するため、竜巻より防護すべき施設を内包する施設の外殻となる屋根スラブ及び外壁を評価対象部位として選定する。
			構造	裏面剥離	竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部の脱落による影響が生じないことを確認するため、 竜巻より防護すべき施設を内包する施設の外殻となる屋根スラブ及び外壁 を評価対象部位として選定する。
			強度	転倒及び 脱落	竜巻より防護すべき施設を内包する施設の外殻となる部分への竜巻による 荷重の作用を考慮し、当該部の転倒及び脱落が生じないことを確認するため、構造躯体、屋根スラブ及び屋根スラブを固定するスタッドを評価対象 部位として選定する。
		扉	衝突	貫通	竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部に貫通が生じないことを確認するため、竜巻より防護すべき施設を内包する施設の外殻となる竜巻の影響に対する防護を期待する扉の扉板を評価対象部位として選定する。
			構造 強度	転倒及び 脱落	竜巻より防護すべき施設を内包する施設の外郭となる部分への竜巻の気圧 差による荷重の作用を考慮し、当該部の転倒及び脱落が生じないことを確 認するため、竜巻の影響に対する防護を期待する扉の扉板を固定する部位 (カンヌキ)を評価対象部位として選定する。
(建物等			衝突	貫通	竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物 の衝突を考慮し,当該部に貫通が生じないことを確認するため,外部に露 出している部位であるスラブを評価対象部位として選定する。
(4	ディーゼル燃料 貯蔵タンク室 Bーディーゼル 燃料貯蔵タンク 格納槽		構造 強度	裏面剥離	竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物の衝突を考慮し、当該部の脱落による影響が生じないことを確認するため、 外部に露出している部位であるスラブを評価対象部位として選定する。
		鋼製蓋	衝突	貫通	竜巻より防護すべき施設を内包する施設の外殻となる部分への設計飛来物 の衝突を考慮し,当該部に貫通が生じないことを確認するため,竜巻の影 響に対する防護を期待する鋼製蓋を評価対象部位として選定する。

A3-21 电仓V影音を与思りつ旭政 悟坦强度計画対象即位	表 3-21	位 (2/6)
-------------------------------	--------	---------

分類	施設名称	評価対象部位	評価項目	評価項目分類	選定理由
屋外の外部事象防護対象施設(外殻を構成する 部材	衝突	貫入	ポンプ据付面より上部の全方向からの飛来物を考慮し,外殻に面する部材 に貫通が生じないことを確認するため,ポンプを構成する部材のうち外殻 に面する部材を評価対象部位として選定する。
	原子炉補機海水ポ ンプ及び高圧炉心 スプレイ補機海水	基礎ボルト 取付ボルト 原動機フレーム	構造強度	立形ポンプ	竜巻の風圧力による荷重の影響を受けるポンプ据付面より上部の各部位 のうち,支持断面積の小さな部位に大きな応力が生じるため,基礎ボルト, 各部取付ボルト及び原動機フレームを評価対象部位として選定する。
	ポンプ	軸受部	機能維持	立形ポンプ	外殻に面する部分への竜巻による荷重の作用を考慮し,施設の外殻を構成 する部材の変形によって,ポンプの動作に影響がないことを確認するた め,動的機能維持に必要な軸受部を評価対象部位として選定する。
	原子炉補機海水ス トレーナ及び高圧 炉心スプレイ補機 海水ストレーナ	基礎ボルト	構造強度	一体鋳造 の容器	設計竜巻による荷重は, 胴及び支持脚を介して, 基礎ボルトに作用する。 これらのうち, 胴及び支持脚と比較し, 断面積が小さく, 発生応力が大き くなる基礎ボルトを評価対象部位として選定する。
ど物等を除く)	非常用ディーゼル 発電設備A-ディ ーゼル燃料移送ポ ンプ及び高圧炉心 スプレイ系ディー ゼル発電設備ディ ーゼル燃料移送ポ ンプ	耐圧部	構造強度 構造強度	横型ポンプ	非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心ス プレイ系ディーゼル発電設備ディーゼル燃料移送ポンプは, 竜巻防護対策 設備内に設置していることから, 竜巻の風圧力による荷重は直接受けない が, 竜巻の気圧差による荷重が耐圧部に作用するため, 非常用ディーゼル 発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼ ル発電設備ディーゼル燃料移送ポンプの耐圧部を評価対象部位として選定 する。

56

分類	施設名称	評価対象部位	評価項目	評価項目分類	選定理由
屋外の外部事象防護対象施設(建	原子炉補機海水系配管及び 弁,高圧炉心スプレイ補機海 水系配管及び弁,非常用ディ ーゼル発電設備(燃料移送	外殻を構成 する部材	衝突	貫入	配管の全方向からの飛来物を考慮し,貫入により施設の 機能が喪失する可能性がある箇所として配管の最小肉厚 部を選定する。
	系) 配管及び弁並びに高圧炉 心スプレイ系ディーゼル発 電設備(燃料移送系) 配管及 び弁	配管本体	構造強度	配管及び弁	竜巻の風圧力による荷重及び気圧差による荷重は、配管 仕様と支持間隔による受圧面積に応じて配管本体に作用 するため、配管本体を評価対象部位として選定する。
物等を除く)	排気筒	筒身及び鉄塔	構造強度	変形角	設計竜巻による荷重は, 筒身及び鉄塔に作用するため, 筒身及び鉄塔を評価対象部位として選定する。

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位(3/6)

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位(4/6)

分類	施設名称	評価対象部位	評価項目	評価項目分類	選定理由
外	ダンパ (換気空調設備)	外板 羽根 シャフト	構造強度	ダンパ	換気空調設備のダンパは建物内に設置されていることから竜巻の風圧 力による荷重は直接受けないが, 竜巻の気圧差による荷重によって風 路である外板に作用する。また, 閉止しているダンパには羽根及びシ ャフトに対しても気圧差による荷重が作用することから, 外板, 羽根 及びシャフトを評価対象部位として選定する。
小気と繋がって	角ダクト(換気空調 設備)及び丸ダクト (換気空調設備)	ダクト鋼板	構造強度	ダクト	換気空調設備のダクトは,建物内に設置していることから竜巻の風圧 力による荷重は直接受けないが,竜巻の気圧差による荷重が考えられ るため,ダクト本体の鋼板部を評価対象部位として選定する。
ている屋内の外	隔離弁 (換気空調設備)	弁箱 弁体 弁棒	構造強度	隔離弁	換気空調設備の隔離弁は,建物内に設置していることから竜巻の風圧 力による荷重は直接受けないが,竜巻の気圧差による荷重が耐圧部に 作用することから,隔離弁の閉止性を確認するため耐圧部を評価対象 部位として選定する。
部事象防護対	送風機 (換気空調設備)	ケーシング	構造強度	送風機	換気空調設備の送風機は,建物内に設置していることから竜巻の風圧 力による荷重は直接受けないが,竜巻の気圧差による荷重が考えられ るため,ケーシングを評価対象部位として選定する。
京象施設	処理装置 (換気空調設備)	ケーシング	構造強度	処理装置	換気空調設備の処理装置は,建物内に設置していることから竜巻の風 圧力による荷重は直接受けないが,竜巻の気圧差による荷重が考えら れるため,ケーシングを評価対象部位として選定する。
	非常用ガス処理系 配管及び弁	配管本体	構造強度	配管及び弁	非常用ガス処理系配管及び弁は,建物内に設置していることから竜巻 の風圧力による荷重は直接受けないが,竜巻の気圧差による荷重が考 えられるため,配管本体を評価対象部位として選定する。

分類	施設名称	評価対象部位	評価項目	評価項目 分類	選定理由
外部事象防護対象施設に波及的影響を及ぼす可能性がある	1号機原子炉建物	構造躯体	構造強度	変形	竜巻より防護すべき施設を内包する施設への倒壊に よる波及的影響を考慮し、1号機原子炉建物の構造 躯体である耐震壁及び鉄骨フレームを評価対象部位 として選定する。
	1 号機タービン建物	構造躯体	構造強度	変形	 竜巻より防護すべき施設を内包する施設への倒壊及び接触による波及的影響を考慮し、1号機タービン 建物の構造躯体である耐震壁を評価対象部位として 選定する。
	1号機廃棄物処理建物	構造躯体	構造強度	変形	竜巻より防護すべき施設を内包する施設への倒壊及 び接触による波及的影響を考慮し,1号機廃棄物処理 建物の構造躯体である耐震壁を評価対象部位として 選定する。
	排気筒モニタ室	構造躯体	構造強度	変形	竜巻より防護すべき施設を内包する施設への倒壊及 び接触による波及的影響を考慮し,排気筒モニタ室 の構造躯体である耐震壁を評価対象部位として選定 する。
	1 号機排気筒	筒身及び鉄塔	構造強度	変形角	竜巻より防護すべき施設を内包する施設への倒壊及 び接触による波及的影響を考慮し,設計竜巻による荷 重は,筒身及び鉄塔に作用するため,筒身及び鉄塔を評 価対象部位として選定する。
施設	復水貯蔵タンク遮蔽壁	構造躯体	構造強度	断面力	竜巻より防護すべき施設を内包する施設への倒壊及 び接触による波及的影響を考慮し、復水貯蔵タンク 遮蔽壁の構造躯体である遮蔽壁を評価対象部位とし て選定する。

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位(5/6)

分類	施設名称	評価対象部位	評価項目	評価項目分類	選定理由
外部事象防護対象施設に波及的影響を及ぼす可能性のある施訊	排気消音器(非常用ディー ゼル発電設備ディーゼル 機関及び高圧炉心スプレ イ系ディーゼル発電設備 ディーゼル機関の付属施 設)	結合ボルト 基礎ボルト	構造強度	消音器	消音器に竜巻の風圧力による荷重が作用した際に, 本体及び架台を支持するための主要な支持部材で ある結合ボルト及び基礎ボルトを評価対象部位と して選定とする。
	排気管及びベント管(非常 用ディーゼル発電設備及 び高圧炉心スプレイ系デ ィーゼル発電設備ディー ゼル燃料貯蔵タンク,ディ ーゼル燃料デイタンク及 びディーゼル潤滑油サン プタンクの付属施設)	配管本体	構造強度	排気管及び ベント管	排気管及びベント管の機能を維持するために,主要 な構成部材である配管本体を評価対象部位として 選定とする。

表 3-21 竜巻の影響を考慮する施設 構造強度評価対象部位(6/6)

4. 荷重及び荷重の組合せ並びに許容限界

竜巻の影響を考慮する施設の強度評価に用いる荷重及び荷重の組合せを、「4.1 荷重及 び荷重の組合せ」に、許容限界を「4.2 許容限界」に示す。

4.1 荷重及び荷重の組合せ

竜巻の影響を考慮する施設の強度評価にて考慮する荷重及び荷重の組合せは、VI -1-1-3-3-1「竜巻への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限 界」を踏まえ、以下のとおり設定する。

- (1) 荷重の種類
 - a. 常時作用する荷重 (F d)

常時作用する荷重は,持続的に生じる荷重であり,自重,水頭圧及び上載荷重とする。

b. 設計竜巻による荷重(W_T)

設計竜巻による荷重は,設計竜巻の以下の特性を踏まえ,風圧力による荷重,気 圧差による荷重及び設計飛来物による衝撃荷重とする。設計竜巻の特性値を表 4-1 に示す。

- ・竜巻の最大気圧低下量(Δ P m a x) (N/m²)
 - $\Delta P_{max} = \rho \cdot V_{Rm^2}$
 - ρ :空気密度(kg/m³)
 - VRm: 竜巻の最大接線風速(m/s)
- ・竜巻の最大接線風速(VRm)(m/s)
- $V_{Rm} = V_D V_T$
- VD: 竜巻の最大風速(m/s)
- VT: 竜巻の移動速度(m/s)
- ・竜巻の移動速度(VT)(m/s)
 - $V_{T} = 0.15 \cdot V_{D}$

VD: 竜巻の最大風速(m/s)

最大風速	移動速度	最大接線風速	最大気圧低下量	
$rac{\mathrm{V}_{\mathrm{D}}}{(\mathrm{m/s})}$	V_{T} (m/s)	$V_{Rm} (m/s)$	${\Delta \operatorname{Pmax} \atop (\mathrm{N/m^2})}$	
92	14	78	7500	

表 4-1 設計竜巻の特性値

(a) 風圧力による荷重(Ww)

風圧力による荷重は、竜巻の最大風速による荷重である。

竜巻による最大風速は、一般的には水平方向の風速として設定されるが、鉛直 方向の風圧力に対して脆弱と考えられる竜巻の影響を考慮する施設が存在する 場合には、鉛直方向の最大風速等に基づいて算出した鉛直方向の風圧力について も考慮した設計とする。

風圧力による荷重は,施設の形状により変化するため,施設の部位ごとに異なる。そのため,各施設及び評価対象部位に対して厳しくなる方向からの風を想定し,各施設の部位ごとに荷重を設定する。

ガスト影響係数(G)は設計竜巻の風速が最大瞬間風速をベースとしているこ と等から,施設の形状によらず竜巻影響評価ガイドを参照して,G=1.0とする。

空気密度 (ρ) は「REGULATORY GUIDE 1.76, DESIGN-BASIS TORNADO AND TORNADOMISSILES FOR NUCLEAR POWER PLANTS, Revision1」 (米国原子力規制委員 会) より $\rho = 1.226 \text{kg/m}^3$ とする。

設計用速度圧については施設の形状に影響を受けないため,設計竜巻の設計用 速度圧(q)は施設の形状によらず q = 5189N/m²と設定する。

(b) 気圧差による荷重(WP)

外気と隔離されている区画の境界部など,気圧差による圧力影響を受ける設備 及び竜巻より防護すべき施設を内包する施設の建物の外壁,屋根等においては, 竜巻による気圧低下によって生じる施設等の内外の気圧差による荷重が発生す る。

閉じた施設(通気がない施設)については、この圧力差により閉じた施設の隔 壁に外向きに作用する圧力が生じるとみなし設定することを基本とする。

部分的に閉じた施設(通気がある施設等)については,施設の構造健全性を評価する上で厳しくなるよう作用する荷重を設定する。

気圧差による荷重は,施設の形状により変化するため,施設の部位ごとに異なる。そのため,各施設の部位ごとに荷重を算出する。

最大気圧低下量(Δ P max)は空気密度及び最大接線風速から、 Δ P m a x = 7500N/m² とする。

(c) 設計飛来物による衝撃荷重(W_M)

設計飛来物である鋼製材の衝突による影響が大きくなる向きで外部事象防護 対象施設等に衝突した場合の衝撃荷重を算出する。

衝突評価においては,設計飛来物の衝突による影響が大きくなる向きで衝突す ることを考慮して評価を行う。

竜巻防護ネット等を設置している箇所には, 竜巻防護ネット等を設置している こと, また, 発電所構内においては, 資機材等について, 適切に管理する運用と していることから, ネットの網目寸法相当等の砂利を飛来物として選定する。計 飛来物の寸法, 質量及び飛来速度を表 4-2 に示す。設計飛来物の飛来速度につ いては, 設置(変更)許可を受けたとおり設定する。

	鋼製材	砂利		
寸 法 (m)	$4.2 \times 0.3 \times 0.2$	$0.04 \times 0.04 \times 0.04$		
質 量 (kg)	135	0.20		
水平方向の 飛来速度 (m/s)	51	54		
鉛直方向の 飛来速度 (m/s)	34	36		

表 4-2 設計飛来物の諸元

c. 運転時に作用する荷重(F_p) 運転時に作用する荷重として,配管等にかかる内圧やポンプのスラスト荷重等 の運転時荷重とする。

(2) 荷重の組合せ

竜巻の影響を考慮する施設の設計に用いる竜巻荷重は,気圧差による荷重(WP) を考慮した荷重WT1並びに設計竜巻の風圧力による荷重(Ww),気圧差による荷 重(WP)及び設計飛来物による衝撃荷重(WM)を組み合わせた複合荷重WT2を以 下のとおり設定する。

 $W_{T 1} = W_P$

 $W_{T 2} = W_W + 0.5 \cdot W_P + W_M$

竜巻の影響を考慮する施設にはWT1及びWT2の両荷重をそれぞれ作用させる。各 施設の荷重の組合せについては,施設の設置状況及び構造を踏まえ適切な組合せを設 定する。施設分類ごとの荷重の組合せの考え方を以下に示す。

a. 竜巻より防護すべき施設を内包する施設(表 4-3 (1/4))

設計竜巻による荷重とこれに組み合わせる荷重として,風圧力による荷重,気 圧差による荷重,設計飛来物による衝撃荷重及び常時作用する荷重の組合せを基 本とする。

b. 屋外の外部事象防護対象施設(表 4-3 (2/4))

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ,原子炉補機海水 ストレーナ及び高圧炉心スプレイ補機海水ストレーナ並びに原子炉補機海水系 配管及び弁,高圧炉心スプレイ補機海水系配管及び弁に関しては,風圧力による 荷重,気圧差による荷重及び常時作用する荷重の組合せを基本とする。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ,原子炉補機海水 ストレーナ及び高圧炉心スプレイ補機海水ストレーナ並びに原子炉補機海水系 配管及び弁,高圧炉心スプレイ補機海水系配管及び弁には運転時にスラスト荷重 や内圧等が作用するため,運転時に作用する荷重も考慮する。

非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプ レイ非常用ディーゼル発電設備ディーゼル燃料移送ポンプ並びに非常用ディー ゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心スプレイ系ディーゼル発 電設備(燃料移送系)配管及び弁に関しては,気圧差による荷重,常時作用する 荷重の組合せを基本とする。非常用ディーゼル発電設備A-ディーゼル燃料移送 ポンプ及び高圧炉心スプレイ非常用ディーゼル発電設備ディーゼル燃料移送ポ ンプ並びに非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高圧炉心 スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁には,運転時に内圧が 作用するため,運転時に作用する荷重も考慮する。

竜巻防護ネット又は竜巻防護鋼板(穴あき)により防護される原子炉補機海水 ポンプ及び高圧炉心スプレイ補機海水ポンプ,非常用ディーゼル発電設備A-デ ィーゼル燃料移送ポンプ及び高圧炉心スプレイ非常用ディーゼル発電設備ディ ーゼル燃料移送ポンプ,原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海 水系配管及び弁,非常用ディーゼル発電設備(燃料移送系)配管及び弁並びに高 圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁に関しては,竜 巻防護ネット等を通過する飛来物による衝撃荷重も考慮する。

排気筒に関しては,風圧力による荷重,設計飛来物による衝撃荷重及び常時作 用する荷重の組合せを基本とする。排気筒は屋外施設であり閉じた施設ではない ため,気圧差による荷重を考慮しない。運転時に作用する荷重については,気圧 差同様考慮しない。筒身及び排気筒(非常用ガス処理系用)に関しては,設計飛 来物の衝突により貫通することを考慮しても,閉塞することはなく,飛来物の衝 突により貫通した場合は速やかに補修する運用としていることから,設計竜巻に よる荷重とこれに組み合わせる荷重に衝撃荷重を考慮しない。

c. 外気と繋がっている屋内の外部事象防護対象施設(表 4-3 (3/4))

外気と繋がっている屋内の施設である換気空調設備のダンパ,角ダクト,丸ダ クト,隔離弁,送風機及び処理装置は建物内に設置しているため,風圧力による 荷重及び設計飛来物による衝撃荷重は考慮しないが,外気と繋がっているために 施設に作用する気圧差による荷重と常時作用する荷重を組み合わせることを基 本とする。

運転時の内圧が給気側は負圧,排気側は正圧となるが,保守性を考慮し気圧差 による荷重と同等の向きに作用するものとして,運転時に作用する荷重を組み合 わせる。なお、ダンパ及び隔離弁については閉止していることから,運転時に作 用する荷重は考慮しない。また、送風機の自重は内圧荷重に比べ十分小さく,自 重を考慮しない。

d. 外部事象防護対象施設に波及的影響を及ぼす可能性がある施設(表 4-3
 (4/4))

機械的影響を及ぼす可能性がある施設のうち,1号機原子炉建物,1号機ター ビン建物,1号機廃棄物処理建物,復水貯蔵タンク遮蔽壁及び排気筒モニタ室に 関しては,風圧力による荷重,気圧差による荷重,設計飛来物による衝撃荷重及 び常時作用する荷重の組合せを基本とする。運転時に作用する荷重については作 用しないため考慮しない。

1号機排気筒に関しては、屋外施設であり閉じた施設ではないため、風圧力に よる荷重,設計飛来物による衝撃荷重及び常時作用する荷重の組合せを基本とす る。運転時に作用する荷重については作用しないため、気圧差同様考慮しない。

機能的影響を及ぼす可能性がある施設である排気消音器(非常用ディーゼル発 電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル 機関の付属施設),排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧 炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設)及びベント管

(非常用ディーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディ ーゼル燃料貯蔵タンク,ディーゼル燃料デイタンク及び潤滑油サンプタンクの付 属施設)は、風圧力による荷重及び常時作用する荷重の組合せを基本とする。

排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ 系ディーゼル発電設備ディーゼル機関の付属施設),排気管(非常用ディーゼル 発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼ ル機関の付属施設)及びベント管(非常用ディーゼル発電設備及び高圧炉心スプ レイ系ディーゼル発電設備ディーゼル燃料貯蔵タンク,ディーゼル燃料デイタン ク及び潤滑油サンプタンクの付属施設)は排気機能が健全であれば良く,仮に設 計飛来物による衝撃荷重により貫通しても,その貫通箇所又は本来の排気箇所か ら排気されるため,設計竜巻による荷重とこれに組み合わせる荷重に衝撃荷重を 考慮しない。

また,排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心ス プレイ系ディーゼル発電設備ディーゼル機関の付属施設)は屋外施設であり閉じ た施設ではないため気圧差による荷重を考慮しない。

排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系デ ィーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディーゼル 発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃料貯蔵タン ク,ディーゼル燃料デイタンク及び潤滑油サンプタンクの付属施設)は,運転時 に内圧が作用するため,運転時に作用する荷重も考慮する。

上記の施設分類ごとの荷重の組合せの考え方を踏まえ,各評価対象施設における評価項目ごとの荷重の組合せを表 4-3 に示す。

			荷重							
分類	強度評価の対象施設	評価 項目	常時作用する荷重 (F d)		_ 風圧力による	気圧差に	飛来物によ	運転時に作		
			自重	水頭圧	上載荷重	荷重 (Ww)	よる荷重 (W _P)	る衝撃荷重 (WM)	用する荷重 (F _P)	
竜巻より防護すべき施設を内包する施設	原子炉建物 タービン建物 廃棄物処理建物 制御室建物	衝突	○*1	_	○*1	○*1	○*1	0	_	
		構造 強度	○*2	_	○*2	○*2	$\bigcirc *^2$	0	_	
	ディーゼル燃料貯蔵タンク室 B-ディーゼル燃料貯蔵タンク格納槽	衝突	_	_	_	_	_	0	_	
		構造 強度	_	_	_	_	_	0	_	

表 4-3 竜巻の影響を考慮する施設の荷重の組合せ(1/4)

(○:考慮する荷重を示す。)

注記*1:「設計飛来物の貫通を生じない最小厚さであること」の確認においては考慮しない。 *2:「設計飛来物の裏面剥離を生じない最小厚さであること」の確認においては考慮しない。

分類	強度評価の対象施設	評価 項目	荷重						
			常時作用する荷重 (F d)			風圧力による	気圧差に	飛来物によ	運転時に作
			自重	水頭圧	上載荷重	荷重 (Ww)	よる荷重 (WP)	る衝撃荷重 (W _M)	用する荷重 (F _p)
屋外の外部事象防護対象施設	原子炉補機海水ポンプ及び高圧炉心スプレ イ補機海水ポンプ	衝突		—	_	—	_	\bigcirc	_
		構造強度	\bigcirc	_	—	0	0	_	0
		機能維持	_	—	_	0	0	_	\bigcirc
	原子炉補機海水ストレーナ及び高圧炉心ス プレイ補機海水ストレーナ	構造強度	0	_	_	0	0	_	0
	原子炉補機海水系配管及び弁並びに高圧炉 心スプレイ補機海水系配管及び弁	衝突	_	—	_	_	_	0	_
		構造強度	0	—	_	0	0	_	0
	非常用ディーゼル発電設備(燃料移送系) 配管及び弁並びに高圧炉心スプレイ系ディ ーゼル発電設備(燃料移送系)配管及び弁	構造強度	_	—	_	_	0	_	0
	非常用ディーゼル発電設備A-ディーゼル 燃料移送ポンプ及び高圧炉心スプレイ系デ ィーゼル発電設備ディーゼル燃料移送ポン プ	構造強度	—	—	_	_	0	_	0
	排気筒	構造強度	0	_	0	0	_	0	_

表 4-3 竜巻の影響を考慮する施設の荷重の組合せ(2/4)

(○:考慮する荷重を示す。)

89

分類	強度評価の対象施設	評価項目	荷重							
			常時作用する荷重 (F d)			風圧力によ	気圧差に	飛来物によ	運転時に作	
			重重	水頭圧	上載荷重	る荷重 (Ww)	よる荷重 (Wp)	る衝撃荷重 (W _M)	用する荷重 (F _p)	
外気	ダンパ(換気空調設備)	構造強度	\bigcirc	_	_	_	0	_	_	
こ繋がっ	角ダクト(換気空調設備)	構造強度	0	—	_	—	0		0	
ている屋内の外部事象防護対象施設	丸ダクト(換気空調設備)	構造強度	0	—	_	_	0	_	0	
	隔離弁(換気空調設備)	構造強度	0	—	_	_	0		_	
	送風機(換気空調設備)	構造強度	Ι	—	_	—	0		0	
	処理装置(換気空調設備)	構造強度	Ι	—	_	—	0		0	
	非常用ガス処理系配管及び弁	構造強度	_	—	_	—	0	_	0	

表 4-3 竜巻の影響を考慮する施設の荷重の組合せ(3/4)

(○:考慮する荷重を示す。)

69
<mark>表 4-</mark>	-3	・ 竜巻の影響を考慮する施設の荷重の組合せ((4/4)
1 1	<u> </u>		· · ·

			荷重									
八粘	改成初年の社会ない	評価	常時作用する荷重 (Fd)			前重	風圧力によ	気圧差に	飛来物によ	運転時に作		
万独	知度計1100列家加設	項目	自重	水頭圧	上載荷重	土圧	る荷重 (Ww)	よる荷重 (WP)	る衝撃荷重 (WM)	Д [] , (] (F _P)		
外部事象防護	 1 号機原子炉建物 1 号機タービン建物 1 号機廃棄物処理建物 排気筒モニタ室 	構造強度	0	_	0	_	0	0	0	_		
世がある施設に波及的影響	1 号機排気筒 復水貯蔵タンク遮蔽壁	構造強度	0	_	0	_	0	_	0	_		
	消音器	構造強度	0	_		_	0	_	_	_		
を及ぼす可能	排気管及びベント管	構造強度	0	_	_	_	0	0	_	0		

(○:考慮する荷重を示す。)

70

(3) 荷重の算定方法

「4.1(1) 荷重の種類」で設定している荷重の算出式を以下に示す。

a. 記号の定義

荷重の算出に用いる記号を表 4-4 に示す。

記号	単 位	定義
А	m ²	施設の受圧面積
С	Ι	風力係数(施設の形状や風圧力が作用する部位(屋根,壁 等)に応じて設定する。)
G		ガスト影響係数
g	m/s^2	重力加速度
Н	Ν	自重による荷重
m	kg	質量
ΔPmax	N/m^2	最大気圧低下量
q	N/m^2	設計用速度圧
V d	m/s	設計竜巻の風速
V R m	m/s	設計竜巻の最大接線風速
Wм	Ν	設計飛来物による衝撃荷重
W P	Ν	設計竜巻の気圧差による荷重
Ww	N	設計竜巻の風圧力による荷重
ρ	kg/m^3	空気密度

表 4-4 荷重の算出に用いる記号

b. 自重による荷重の算出

自重による荷重は以下のとおり計算する。

 $H = m \cdot g$

- c. 竜巻による荷重の算出
 - (a) 風圧力による荷重(Ww)
 風圧力による荷重は、「建築基準法施行令」及び「建築物荷重指針・同解説」
 ((社) 日本建築学会)に準拠して、次式のとおり算出する。
 Ww=g・G・C・A

 $z \ge \overline{c},$ $q = \frac{1}{2}\rho V_D^2$

(b) 気圧差による荷重(W_P)
 気圧差による荷重は、次式のとおり算出する。
 W_P = Δ P_{max} • A
 ここで、
 Δ P_{max} = ρ • V_{Rm²}

(c) 設計飛来物による衝撃荷重(WM)
 設計飛来物による衝撃荷重は,設計飛来物が衝突する施設,評価対象部位及び
 評価方法に応じて適切に設定する必要があるため,個別計算書にその算出方法を
 含めて記載する。

評価条件を表 4-5 に示す。

表 4-5 評価条件

V D (m/s)	ho (kg/m ³)	G (-)	${ m q} \ ({ m N/m^2})$	V _{Rm} (m/s)	Δ P m a x (N/m²)
92	1.226	1.0	5189	78	7500

4.2 許容限界

許容限界は、VI-1-1-3-3-3「竜巻防護に関する施設の設計方針」の「3. 要求機能及び性能目標」で設定している構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価項目ごとに設定する。

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた,評価項目ごとの許容限界を表 4-8 に示す。

各施設の許容限界の詳細は,個別計算書で評価対象部位の損傷モードを踏まえ評価項 目を選定し,評価項目ごとに許容限界を定める。

「原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 -1984」(日本電気協会),「原子力発電所耐震設計技術指針 JEAG4601-1987」

(日本電気協会)及び「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」(日本電気協会)(以下「JEAG4601」という。)を準用できる施設については,JEAG4601に基づき「発電用原子力設備規格 設計・建設規格 JSME SNC1-2005/2007」(日本機械学会)(以下「JSME」という。)の付録材料図表及びJISの材料物性値により許容限界を算出している。その他施設や衝撃荷重のみを考慮する施設については,JSMEや既往の実験式に基づき許容限界を設定する。

ただし、JSMEの適用を受ける機器であって、供用状態に応じた許容値の規定がJSMEにないものは機能維持の評価方針を考慮し、JEAG4601に基づいた許容限 界を設定する。

4.2.1 建物·構造物

- (1) 許容限界の設定
 - a. 衝突評価
 - (a) 貫通(表 4-8 (1/7))

建物・構造物の衝突による貫通評価においては,設計飛来物による衝撃荷重 に対し,設計飛来物が竜巻より防護すべき施設の外殻を構成する部材を貫通し ない設計とするために,設計飛来物の貫通を生じない最小厚さ以上であること を計算により確認する評価方針としていることを踏まえ,竜巻より防護すべき 施設を内包する施設の外殻を構成する部材の最小厚さを許容限界として設定 する。

鋼製構造物の衝突による貫通評価においては,設計飛来物に対する必要最小 肉厚が部材の厚さに収まることを計算により確認する評価方針としているこ とを踏まえ,部材の最小厚さを許容限界として設定する。

(b) ひずみ(表 4-8(1/7))
 建物・構造物の衝突による貫通評価のうち,設計飛来物の貫通を生じない最

RO

小厚さ以上であることの確認ができない建物の屋根スラブにおいては,設計飛 来物による衝撃荷重に対し,屋根スラブの鉄筋が終局状態に至るようなひずみ を生じないことを解析により確認する評価方針としていることを踏まえ,鉄筋 の破断ひずみを許容限界として設定する。鉄筋の破断ひずみは,JIS規格値 /TF(TF=2.0)を許容限界とする。

- b. 構造強度評価
 - (a) 裏面剥離(表 4-8 (1/7))

設計飛来物による衝撃荷重に対し, 竜巻より防護すべき施設を内包する施設 の外殻を構成する部材自体の脱落を生じない設計とするために, 裏面剥離によ るコンクリート片の飛散が生じない最小厚さ以上であることを計算により確 認する評価方針としていることを踏まえ, 施設の最小部材厚さを許容限界とし て設定する。また, 許容限界を超えた場合は, 裏面剥離に至るようなひずみを 生じないことを解析により確認する評価方針としていることを踏まえ, 鉄筋又 はデッキプレートの破断ひずみを許容限界として設定する。鉄筋又はデッキプ レートの破断ひずみは, JIS規格値/TF(TF=2.0)を許容限界とする。

(b) 転倒及び脱落(表 4-8 (1/7), (2/7))

鉄筋コンクリート造構造物の転倒及び脱落の評価については,設計竜巻荷重 及びその他考慮すべき荷重に対し,竜巻より防護すべき施設を内包する施設の 外殻を構成する部材自体の転倒及び脱落を生じない設計とするために,構造躯 体のうち耐震壁に終局状態に至るようなひずみが生じないことを計算により 確認する評価方針としていることを踏まえ,コンクリートの終局せん断ひずみ に基づく制限値を許容限界として設定する。制限値はJEAG4601に基づ き 2.0×10⁻³とする。

また,屋根スラブに生じる応力については,「鉄筋コンクリート構造計算規 準・同解説 -許容応力度設計法-」に基づく短期許容応力度を許容限界とし, 屋根スラブのスタッドボルトにおいては,「各種合成構造設計指針・同解説」 に基づく許容耐力を許容限界として設定する。

扉の転倒及び脱落の評価については,設計竜巻の気圧差による荷重及びその 他考慮すべき荷重に対し,施設の外殻を構成する部材自体の転倒及び脱落を生 じない設計とするために,扉支持部材の破断による転倒及び脱落が生じないこ とを計算により確認する評価方針としていることを踏まえ,「鋼構造設計規準 -許容応力度設計法-」に基づく短期許容応力度を許容限界として設定する。 (c) 構造躯体の変形(表 4-8 (6/7))

外部事象防護対象に波及的影響を及ぼす可能性のある施設については,設計 竜巻による荷重及びその他考慮すべき荷重に対し,1号機原子炉建物,1号機 タービン建物,1号機廃棄物処理建物及び排気筒モニタ室が倒壊しないことを 解析により確認する評価方針としていることを踏まえ,耐震壁についてはコン クリートの終局点に対応するせん断ひずみ,鉄骨フレームについては「建築基 準法施行令第82条の2(層間変形角)」に基づく制限値を許容限界として設定 する。制限値は,耐震壁についてはJEAG4601に基づき4.0×10⁻³,鉄 骨フレームについては「建築基準法施行令第82条の2(層間変形角)」に基づ き1/120とする。

また,1号機タービン,1号機廃棄物処理建物,及び排気筒モニタ室につい ては設計竜巻による荷重及びその他考慮すべき荷重に対し,隣接する竜巻より 防護すべき施設を内包する建物等に接触する変形を生じないことを解析によ り確認する評価方針としていることを踏まえ,各建物との離隔距離を許容限界 として設定する。

(d) 変形角(表 4-8(4/7, 6/7))

排気筒の構造強度評価においては,設計竜巻荷重及びその他考慮すべき荷重 に対し,排気筒全体が倒壊しないことを計算により確認する評価方針としてい ることを踏まえ,「建築基準法施行令第82条の2(層間変形角)」に基づく制 限値を許容限界として設定する。

また、1号機排気筒の構造強度評価においては、設計竜巻荷重及びその他考 慮すべき荷重に対し、1号機排気筒が原子炉建物、タービン建物等に倒壊によ る影響を及ぼさないことを解析により確認する評価方針としていることを踏 まえ、「建築基準法施行令第82条の2(層間変形角)」に基づく制限値を許容 限界として設定する。

(e) 壁の曲げ, せん断(表 4-8(6/7))

復水貯蔵タンク遮蔽壁の構造強度評価においては,設計竜巻荷重及びその他 考慮すべき荷重に対し,復水貯蔵タンク遮蔽壁全体が倒壊しないことを計算に より確認する評価方針としていることを踏まえ,「コンクリート標準示方書 (2002)」に基づく設計断面耐力を許容限界として設定する。

- (2) 許容限界設定方法
 - a. 記号の定義

許容限界式に使用する記号を表 4-6 に示す。

記号	単位	定義
A _c	mm^2	コーン状破壊面の有効投影面積
A ₀	mm^2	スタッド頭部の支圧面積
_{ac} a	mm^2	スタッド断面積で,軸部断面積とねじ部有効断面積の小なる方 の値
f n	N/mm^2	コンクリートの支圧強度
p _a	kN	スタッド1本当たりの許容引張力
p _{al}	kN	スタッド鋼材の降伏により定まる場合のスタッド1本当たりの 許容引張力
р _{а2}	kN	定着したコンクリート躯体のコーン状破壊により定まる場合の スタッド1本当たりの許容引張力
p _{a3}	kN	コンクリートの支圧破壊により定まるスタッド1本当たりの許 容引張力
c σ t	N/mm ²	コーン状破壊に対するコンクリートの引張強度
ѕσра	N/mm ²	スタッドの引張強度
Φ_1	_	低減係数
Φ_2	_	低減係数

表 4-6 許容限界式に用いる記号

b. 許容限界式

(a) スタッドの許容限界式

コンクリート躯体中に定着されたスタッド1本あたりの許容引張力Paは, 「各種合成構造設計指針 同解説((社)日本建築学会,2010年改定)」に 基づき,スタッドの降伏により定まる場合の許容引張力pai,定着したコンク リート躯体のコーン状破壊により定まる場合の許容引張力pa2及びコンクリ ートの支圧破壊により定まる場合の許容引張力pa3のうち,最も小さい値と する。スタッドの許容引張力paの算定式を以下に示す。

 $p_{a}=M i n \{p_{a1}, p_{a2}, p_{a3}\}$

ここで,

 $p_{al} = \Phi_1 \cdot {}_s \sigma_{pa} \cdot {}_{ac} a$

$$p_{a2} = \Phi_2 \cdot c_\sigma \cdot A_c$$
$$p_{a3} = f_n \cdot A_0$$

- 4.2.2 機器·配管系
 - (1) 許容限界の設定
 - a. 衝突評価
 - (a) 貫入

衝突による貫入評価においては,設計飛来物による衝撃荷重に対し,外殻を 構成する部材が,機能喪失に至る可能性のある変形を生じないことを計算によ り確認する評価方針としていることを踏まえ,部材厚さを許容限界として設定 する。

ただし,耐圧部については部材厚さから計算上必要な厚さを差引いた残りの 厚さを許容限界として設定する。

- b. 構造強度評価
 - (a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評 価においては,設計竜巻の風圧力による荷重,気圧差による荷重及び竜巻防護 ネット等を通過する飛来物の衝撃荷重に対し,原子炉補機海水ポンプ及び高圧 炉心スプレイ補機海水ポンプ,原子炉補機海水ポンプ及び高圧炉心スプレイ補 機海水ポンプの機能維持に必要な付属品を支持する取付ボルト並びにポンプ の機能保持に必要な付属品を支持する原動機フレームが,おおむね弾性域に収 まることにより,その施設の安全機能に影響を及ぼすことのないことを計算に より確認する評価方針としていることを踏まえ,JEAG4601等に準じて 供用状態ⅢASの許容応力を許容限界として設定する。
 - (b) 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの構 造強度評価においては,設計竜巻の風圧力による荷重,気圧差による荷重及び その他考慮すべき荷重に対し,原子炉補機海水ストレーナ及び高圧炉心スプレ イ補機海水ストレーナを支持する基礎ボルトが,おおむね弾性状態に留まるこ とにより,その施設の安全機能に影響を及ぼすことのないことを計算により確 認する評価方針としていることを踏まえ,JEAG4601等に準じて許容応 力状態ⅢASの許容応力を許容限界として設定する。

(c) 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁, 非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系 ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管 及び弁

原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び 弁の構造強度評価においては,設計竜巻の風圧力による荷重,気圧差による荷 重,竜巻防護ネットを通過する飛来物による衝撃荷重及びその他考慮すべき荷 重に対し,配管本体が,おおむね弾性域に収まることにより,その施設の安全 機能に影響を及ぼすことのないことを計算により確認する評価方針としてい ることを踏まえ,JEAG4601等に準じて供用状態ⅢASの許容応力を許 容限界として設定する。

非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系 ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及 び弁の構造強度評価においては,気圧差による荷重及びその他考慮すべき荷重 に対し,配管本体が,おおむね弾性域に収まることにより,その施設の安全機 能に影響を及ぼすことのないことを計算により確認する評価方針としている ことを踏まえ,JEAG4601等に準じて供用状態ⅢASの許容応力を許容 限界として設定する。

(d) 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心ス プレイ系ディーゼル発電設備ディーゼル燃料移送ポンプ

非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心ス プレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの構造強度評価にお いては,設計竜巻の気圧差による荷重及びその他考慮すべき荷重に対し,非常 用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ 系ディーゼル発電設備ディーゼル燃料移送ポンプの耐圧部が,燃料を供給する 機能を維持することを確認する評価方針としていることを踏まえ,ポンプの耐 圧試験圧力を許容限界として設定する。

(e) ダンパ

ダンパの構造強度評価においては,設計竜巻の気圧差による荷重及びその他 考慮すべき荷重に対し,ダンパを構成する外板,羽根及びシャフトが,おおむ ね弾性域に収まることにより,その施設の安全機能に影響を及ぼすことのない ことを計算により確認する評価方針としていることを踏まえ,JEAG460 1等に準じて供用状態ⅢASの許容応力を許容限界として設定する。 (f) ダクト

ダクトの構造強度評価においては,設計竜巻の気圧差による荷重及びその他 考慮すべき荷重に対し,ダクトを構成するダクト鋼板が,おおむね弾性域に収 まることにより,その施設の安全機能に影響を及ぼすことのないことを計算に より確認する評価方針としていることを踏まえ,JEAG4601等に準じて 供用状態ⅢAS及び座屈に対する評価式を満足する許容応力又はクリップリ ング座屈及び弾性座屈曲げ応力に応じた許容応力を許容限界として設定する。

(g) 隔離弁

隔離弁の構造強度評価においては,設計竜巻の気圧差による荷重及びその他 考慮すべき荷重に対し,隔離弁が,おおむね弾性域に収まることにより,その 施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方 針としていることを踏まえ,JEAG4601等に準じて供用状態ⅢASの許 容応力又はクリップリング座屈に応じた許容応力を許容限界として設定する。

(h) 送風機

送風機の構造強度評価においては,設計竜巻の気圧差及びその他考慮すべき 荷重に対し,送風機のケーシングが,おおむね弾性域に収まることにより,そ の施設の安全機能に影響を及ぼすことのないことを計算により確認する評価 方針としていることを踏まえ,クリップリング座屈に応じた許容応力を許容限 界として設定する。

(i) 処理装置

処理装置の構造強度評価においては,設計竜巻の気圧差及びその他考慮すべ き荷重に対し,処理装置のケーシングが,おおむね弾性域に収まることにより, その施設の安全機能に影響を及ぼすことのないことを計算により確認する評 価方針としていることを踏まえ,JEAG4601等に準じて供用状態ⅢAS の許容値を許容限界として設定する。

 (j) 排気消音器(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル機関の付属施設) 排気消音器の構造強度評価においては,設計竜巻の風圧力による荷重及びその他考慮すべき荷重に対し,排気消音器を構成する結合ボルト及び基礎ボルトが,おおむね弾性域に収まることにより,その施設の安全機能に影響を及ぼすことのないことを計算により確認する評価方針としていることを踏まえ,JEAG4601等に準じて供用状態ⅢASの許容応力を許容限界として設定す

- る。
- (k) 排気管(非常用ディーゼル発電設備ディーゼル機関及び高圧炉心スプレイ系 ディーゼル発電設備ディーゼル機関の付属施設)及びベント管(非常用ディ ーゼル発電設備及び高圧炉心スプレイ系ディーゼル発電設備ディーゼル燃 料貯蔵タンク,ディーゼル燃料デイタンク及び潤滑油サンプタンクの付属施 設)

排気管及びベント管の構造強度評価においては,設計竜巻の風圧力による荷 重,気圧差による荷重及びその他考慮すべき荷重に対し,配管本体が,おおむ ね弾性域に収まることにより,その施設の安全機能に影響を及ぼすことのない ことを計算により確認する評価方針としていることを踏まえ,JEAG460 1等に準じて供用状態ⅢASの許容応力を許容限界として設定する。

- c. 動的機能維持評価
 - (a) 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの動的機能維 持評価においては,原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポン プの軸受部は,設計竜巻の風圧力による荷重,気圧差による荷重及びその他考 慮すべき荷重に対し,軸受部における発生荷重が,動的機能を維持可能な許容 荷重以下であることを計算により確認する評価方針としていることを踏まえ, 軸受部の接触面圧の許容荷重を許容限界として設定する。

- (2) 許容限界設定方法
 - a. 記号の定義

許容限界式に使用する記号を表 4-7 に示す。

表 4-7	許容限界式に用いる記号	(1)	/2`)
		(\mathbf{I})	,	/

記号	単 位	定義
b	mm	ケーシング外半径
d 1	mm	ダクト内径
d 2	mm	ダクト外径
E	MPa	縦弾性係数
f 1	Ν	曲げモーメントによる圧縮荷重
f 2	Ν	最大気圧低下量及び通常運転圧力による圧縮荷重
f b	MPa	JSME SSB-3121.1 又はSSB-3131 により規定される供用状態A 及びBでの許容曲げ応力
<i>f</i> c	MPa	JSME SSB-3121.1 により規定される供用状態A及びBでの許 容圧縮応力
f s	MPa	JSME SSB-3121.1 又はSSB-3131 により規定される供用状態A 及びBでの許容せん断応力
f t	MPa	JSME SSB-3121.1 又はSSB-3131 により規定される供用状態A 及びBでの許容引張応力
fts	MPa	JSME SSB-3131により規定されるせん断力と引張力を同時に 受けるボルトの許容引張応力
k p	—	座屈係数
L	mm	評価対象板の長さ
L 1	mm	弁箱の面間寸法
M _c r	kN•mm	弾性座屈曲げモーメント
n	—	座屈モードの次数
P m	Ν	限界荷重
R	mm	内半径
S u	MPa	JSME 付録材料図表 Part5表9にて規定される設計引張強さ
S y	MPa	JSME 付録材料図表 Part5表8にて規定される設計降伏点
r m	mm	平均半径
t	mm	板厚
Z	mm ³	断面係数
Z c	_	形状係数
β	_	補正係数
ν	_	ポアソン比
σ _{cr1}	MPa	クリップリング座屈が発生する際に生じる応力

記号	単 位	定義					
σ _{сг2}	MPa	弾性座屈曲げ応力					
σь	MPa	自重による発生応力					
σрь	MPa	設計竜巻による気圧差及び内圧による発生応力					
σу	MPa	降伏応力					
σθ	MPa	ダクトに作用する圧力により軸直角方向に生じる応力					
τ	MPa	せん断応力					

表 4-7 許容限界式に用いる記号(2/2)

- b. 許容限界式
 - (a) 支持構造物の許容限界式
 - イ. ボルト

引張力とせん断力を同時に受けるボルトの許容引張り応力 *f*_t_sは,次式 で算出される。

 $\begin{cases} f_{is} = 1.4(1.5f_i) - 1.6\tau \\ f_{is} \le 1.5f_i \end{cases}$

許容引張応力は f_t,上記 2 式の小なる値をとるものとする。

- (b) 角ダクトの許容限界式
- イ. 軸方向の荷重に対する許容限界

ダクト自重による圧縮荷重 f₁と設計竜巻による気圧差及び内圧による圧縮荷重 f₂の和が許容荷重 P_m以下であることを確認する。

なお、ダクト自重による圧縮荷重 f₁はダクト板1 枚あたりの圧縮荷重と して算出され、設計竜巻による気圧差及び内圧による圧縮荷重 f₂はダクト板 4 枚あたりの圧縮荷重として算出される。許容荷重 P_mはダクト板1 枚あた りとして算出されるため、これらの関係は以下の式で表わされる。

ここで,

$$P_{m} = \frac{\pi}{\sqrt{3(1-\nu^{2})}} \sqrt{E \cdot \sigma_{y}} \cdot t^{2}$$

- (c) 丸ダクトの許容限界式
 - イ. 軸直角方向の荷重により生じる応力に対する許容限界

ダクトに作用する圧力により軸直角方向の荷重が生じ、この荷重により生 じる応力 σ_{θ} が、クリップリング座屈が発生する際に生じる応力 (座屈応力) σ_{cr1} を超えないことを確認する。クリップリング座屈が発生する際に生じ る応力 σ_{cr1} は、円筒殻の座屈応力の式より算出する。

 $\sigma \ \theta \leqq \sigma \ \mathrm{c} \ \mathrm{r} \ \mathrm{1}$

$$\sigma_{c r 1} = k_{p} \left\{ \frac{\pi^{2} E}{12(1-\nu^{2})} \right\} \cdot \left(\frac{t}{L}\right)^{2}$$
$$k_{p} = \frac{\left(1+\beta^{2}\right)^{2}}{0.5+\beta^{2}} + \frac{12 \cdot z_{c}^{2}}{\pi^{4} \cdot (0.5+\beta^{2}) \cdot (1+\beta^{2})^{2}}$$

$$\beta = \frac{L \cdot n}{\pi \cdot r_{m}}$$

$$z_{c} = \frac{L^{2}}{r_{m} \cdot t} \sqrt{1 - v^{2}}$$
ここで、座屈モードの次数nはkpが最小となる時の次数とする。

ロ. 軸方向の荷重により生じる応力に対する許容限界

ダクト自重による軸方向圧縮荷重により生じる曲げ応力 σ_bと設計竜巻に よる気圧差及び内圧により生じる軸方向圧縮荷重による応力 σ_{Pb}の和が, 弾性座屈曲げ応力 σ_{or2}以下であることを確認する。

 $\sigma \ {}_{b} + \sigma \ {}_{P \ b} \leqq \sigma \ {}_{c \ r \ 2}$

$$\sigma_{\rm cr2} = \frac{M_{\rm cr}}{Z}$$

$$M_{cr} = \frac{\beta \cdot E \cdot R \cdot t^{2}}{\left(1 - \nu^{2}\right)}, \quad \beta = 0.72$$
$$Z = \frac{\pi}{32} \cdot \frac{d^{2} - d^{4}}{d^{2}}$$

(d) 隔離弁の許容限界式

イ. 弁箱に対する許容応力

隔離弁に作用する圧力により生じる周方向応力は,クリップリング座屈が 発生する際に生じる周方向応力(座屈応力) σ errlを超えないこととする。

隔離弁に作用する圧力によるクリップリング座屈が発生する際に生じる 周方向応力 σ_{cr1}は,円筒殻の座屈応力の式より算出する。

$$\sigma_{c r 1} = \frac{k_{p} \cdot \pi^{2} \cdot E}{12(1-\nu^{2})} \left(\frac{t}{L_{1}}\right)^{2}$$

$$k_{p} = \frac{(1+\beta^{2})^{2}}{0.5+\beta^{2}} + \frac{12 \cdot z_{c}^{2}}{\pi^{4}(1+\beta^{2})^{2}(0.5+\beta^{2})}$$

$$\beta = \frac{L_{1} \cdot n}{\pi \cdot R}$$

$$z_{c} = \frac{L_{1}^{2}}{R \cdot t} \sqrt{1-\nu^{2}}$$

- (e) 送風機の許容限界式
- イ. 外圧に対する許容応力

外圧により生じる周方向応力は,クリップリング座屈が発生する際に生じる周方向応力(座屈応力)σ_{cr1}を超えないこととする。

外圧によるクリップリング座屈が発生する際に生じる周方向応力σ cr1 は、円筒殻の座屈応力の式より算出する。

$$\sigma_{cr1} = k_{p} \left\{ \frac{\pi^{2} E}{12(1-\nu^{2})} \right\} \cdot \left(\frac{t}{L} \right)^{2} \times \square$$

$$k_{p} = \frac{\left(1+\beta^{2}\right)^{2}}{0.5+\beta^{2}} + \frac{12 \cdot z_{c}^{2}}{\pi^{4} \cdot \left(0.5+\beta^{2}\right) \cdot \left(1+\beta^{2}\right)^{2}}$$
$$\beta = \frac{L \cdot n}{\pi \cdot b}, \quad z_{c} = \frac{L^{2}}{b \cdot t} \sqrt{1-\nu^{2}}$$

施設	拡 乳 夕 升	世 まの 知 人 斗	亚伍哥伊尔克	評価	機能損傷モード		<u></u>	
分類	分類	何里の組合せ	計個对象前位	項目	応力等の状態	限界状態	计谷ኲ外	
		W _M	屋根スラブ 外壁		変形	貫通	施設の最小部材厚さが貫通限 界厚さ以上とする。	
		$ \begin{array}{c} F_{d} + W_{T} (W_{W}, \\ W_{M}) \end{array} $	屋根スラブ	衝突	変形	貫通	鉄筋の発生ひずみがJIS規 格値/TF(TF=2.0)を考 慮した値以下とする。	
竜巻より防護すべき施		W _M	屋根スラブ 外壁		変形	裏面剥離に よるコンク リート片の 飛散	施設の最小部材厚さが裏面剥 離限界厚さ以上とする。	
	原子炉建物 タービン建物 廃棄物処理建物 制御室建物	- 炉建物 - ビン建物 医物処理建物 - ドッキャー(Ww, 屋根スラブ WM) - ドッキャー(Ww, 外壁		変形	裏面剥離に よるコンク リート片の 飛散	鉄筋及びデッキプレートの発 生ひずみがJIS規格値/T F(TF=2.0)を考慮した値 以下とする。		
		$ \begin{array}{c} F_{d} + W_{T} (W_{W}, \\ W_{P}) \end{array} $	屋根スラブ	構造強度	曲げ,せん断	部材の破断 による転倒 及び脱落	「鉄筋コンクリート構造設計 規準・同解説 – 許容応力度設計 法 – 」に基づく短期許容応力度 以下とする。	
設 を 内 包		$ \begin{array}{c} F_{d} + W_{T} (W_{W}, \\ W_{P}) \end{array} $	スタッド		引張り	部材の破断 による転倒 及び脱落	「各種合成構造設計指針・同解 説」に基づく許容耐力以下とす る。	
する施設		$F_{d} + W_{T} (W_{W}, W_{P}, W_{M})$	耐震壁		変形	部材の破断 による転倒 及び脱落	コンクリートのせん断ひずみ が制限値 (2.0×10 ⁻³) 以下とす る。	
叹			スラブ	任中	杰亚	±+, \Z	施設の最小部材厚さが貫通限 界厚さ以上とする。	
	アイーセル燃料 貯蔵タンク室	W M	鋼製蓋	餌矢	変形	貝迪	施設の最小部材厚さが必要最 小肉厚以上とする。	
	D - ク 格 納 槽	W _M	スラブ	構造 強度	変形	裏面剥離に よるコンク リート片の 飛散	施設の最小部材厚さが裏面剥 離限界厚さ以上とする。	

表 4-8 施設ごとの許容限界(1/7)

施設	協 設 夕 称	荷重の組合せ	亚価対象部位	評価	機能損傷	モード	許容限界	
分類	加西市文之口中小	前里沙拉古巴	고 대태 大종 (1八 교대) 1대	項目	応力等の状態	限界状態		
竜巻より防護	百乙后建物	Wм	扉(扉板)	衝突	変形	貫通	施設の最小部材厚さが必要最 小肉厚以上とする。	
る施設	床丁炉 建初	W P	扉 (カンヌキ)	構造 強度	曲げ,せん断	部材の降伏	「鋼構造設計規準 – 許容応力 度設計法 – 」に基づく短期許容 応力度以下とする。	

表 4-8 施設ごとの許容限界(2/7)

施設	齿乳友升	世まの知会社	河在社会刘位	評価	機能損傷モ	ード	<u></u>	
分類	他取名你	何里の組合せ	評個对象即位	項目	応力等の状態	限界状態	計谷限外	
	原子炉補機海水		外殻を構成する 部材	衝突	変形	送水機能の 喪失	評価式により算定した貫通限界 厚さが,外殻を構成する部材の厚 さ未満とする。	
	海水ポンプ及び高圧炉心スプレ	$F_{d} + W_{T}$ $(W_{W}, W_{P},$	基礎ボルト 取付ボルト	構造 強度	引張り、せん断	部材が弾性 域に留まら	「原子力発電所耐震設計技術指 針 JEAG4601-1987」等	
P.	イ 補機 海 水 ボン プ	W_M) + F P	原動機フレーム	構造 強度	曲げ	ず塑性域に 入る状態	に準じて許容応力状態ⅢAS*の 許容応力以下とする。	
屋外の外部事象防護対象施設			軸受部	機能 維持	接触	軸と軸受が 接触する	軸受荷重が接触面圧の許容荷重 以下とする。	
	原子炉補機海水 ストレーナ及び 高圧炉心スプレ イ補機海水スト レーナ	F d + W T (WW, WP) + F P	基礎ボルト	構造 強度	引張り,せん断	部材が弾性 域に留まら ず塑性域に 入る状態	「原子力発電所耐震設計技術指 針 JEAG4601-1987」等 に準じて許容応力状態ⅢAS*の 許容応力以下とする。	
	非常イーゼ ルディーゼ アイージンプ を に が た の の の の の の の の の の の の の の の の の の	$W_P + F_P$	耐圧部	構造度	一次応力	部材が弾性 域に留まら ず塑性域に 入る状態	耐圧試験圧力以下とする。	

表 4-8 施設ごとの許容限界(3/7)

注記*: JEAG4601を基に,表4-9 クラス1・クラス2,3・その他の支持構造物の許容応力を準用する。

施設		共手の知人は	評価対象部	評価	機能損傷	モード	計应阻用	
分類		何里の組合セ	位	項目	応力等の状態	限界状態	计谷限外	
屋外の外部事象防護対象施設	原子炉補機海水系 配管及び弁,高圧 炉心スプレイ補機 海水系配管及び 弁,非常用ディー ゼル発電設備(燃 料移送系)配管及	$F_{d} + W_{T}$ $(W_{W}, W_{P}, W_{M}) + F_{P}$	外殻を構成 する部材	衝突	変形	流路を確保する機能の喪失	評価式により算定した貫通限界 厚さが,外殻を構成する部材の厚 さから計算上必要な厚さを差し 引いた残りの厚さ未満とする。	
	 の ・ ・ ・		配管本体	構造 強度	曲げ, 一次一般膜	部材がに 増留 生 す に ず に ず 能 し 、 、 、 、 、 、 、 、 、 、 、 、 、	「原子力発電所耐震設計技術指 針 JEAG4601-1987」等 に準じて許容応力状態ⅢAS*の 許容応力値以下とする。	
ΠX	排気筒	$\begin{array}{c} \mathrm{F}_{\mathrm{d}} + \mathrm{W}_{\mathrm{T}} \\ (\mathrm{W}_{\mathrm{W}}, \ \mathrm{W}_{\mathrm{M}}) \end{array}$	筒身及び 鉄塔	構造 強度	変形	部材の損 傷による 転倒	変形が「建築基準法施行令第 82 条の 2 (層間変形角)」に基づく 層間変形角以下とする。	

表 4-8 施設ごとの許容限界(4/7)

注記*: JEAG4601を基に,表4-10 クラス2,3配管の許容応力を準用する。

			× -			(3, 1)	
施				評価 項目	機能損傷モード		
武 分 類	施設名称	荷重の組合せ	評価対象部位		応力等の状態	限界状態	許容限界
h	ダンパ(換気空 調設備)	$F_{d} + W_{P}$	外板 羽根 シャフト	構造 強度	曲げ,せん断	部材が弾性 域に留まら ず塑性域に 入る状態	「原子力発電所耐震設計技術指針 JE AG4601-1987」等に基づく許容応力 状態ⅢAS ^{*1} に応じた許容応力値以下とす る。
外気と繋がって	角ダクト(換気 空調設備)及び 丸ダクト(換気 空調設備)	F _d +W _P + F _P	ダクト鋼板 (本体)	構造 強度	曲げ,座屈	部材が弾性 域に留まら ず塑性域に 入る状態	「原子力発電所耐震設計技術指針 JE AG4601-1987」等に準じて許容応力 状態ⅢAS ^{*1} ,座屈に対する評価式を満足 する許容応力以下又はクリップリング座 屈に応じた許容応力以下とする。
いる屋外の	隔離弁(換気空 調設備)	$F_{d} + W_{P}$	弁箱 弁体 弁棒	構造 強度	変形	部材が弾性 域に留まら ず塑性域に 入る状態	呼び圧力以下とする。
外部事象防	送風機(換気空 調設備)	$W_P + F_P$	ケーシング	構造 強度	曲げ	部材が弾性 域に留まら ず塑性域に 入る状態	「原子力発電所耐震設計技術指針 JE AG4601-1987」等に基づく許容応力 状態ⅢAS*1に応じた許容応力値以下とす る。
護対象施設	処理装置(換気 空調設備)	$W_P + F_P$	ケーシング	構造 強度	曲げ	部材が弾性 域に留まら ず塑性域に 入る状態	「原子力発電所耐震設計技術指針 JE AG4601-1987」等に基づく許容応力 状態ⅢAS ^{*1} に応じた許容応力値以下とす る。
	非常用ガス処 理系配管及び 弁	$W_P + F_P$	配管本体	構造 強度	一次一般膜	部材が弾性 域に留まら ず塑性域に 入る状態	「原子力発電所耐震設計技術指針 JE AG4601-1987」等に基づく許容応力 状態ⅢAS* ² 応じた許容応力値以下とす る。

表 4-8 施設ごとの許容限界(5/7)

注記*1:JEAG4601を基に,表4-9 クラス1・クラス2,3・その他の支持構造物の許容応力を準用する。

*2: JEAG4601を基に,表4-10 クラス2,3配管の許容応力を準用する。

91

	· · · · · · · · · · · · · · · · · · ·	r			,			
施設	協設 名称	荷重の組合せ	評価対象部位		評価	機能損傷	モード	<u></u>
分類	加出民人口化小	彻里∽加口с			項目	応力等の状態	限界状態	HI (717)
外部東	1号機原子炉	$F_{d} + W_{T} (W_{W},$	構造	耐震壁	構造強度	亦形	倒늍	変形がコンクリートの終局せ ん断ひずみに基づく制限値以 下とする。
事象防護	建物	W _P , W _M)	躯体	鉄骨 フレ ーム			问资	変形が「建築基準法施行令第82 条の2(層間変形角)」に基づく 層間変形角以下とする。
対象施設に	1 号機タービ ン建物						接触	隣接する建物との相対変位が, 各建物との離隔距離以下とす
に波	1号機廃棄物	$F_{d} + W_{T} (W_{W},$	構造躯体		構造 強度	変形		<i>′</i> ⊋ ₀
及的	処理建物	W_P , W_M)					倒壊	変形がコンクリートの終局せ
影響を及	排気筒モニタ 室							ん断ひずみに基づく制限値以 下とする。
ぼ す 可 能	1号機排気筒	$F_{d} + W_{T}$ (W_{W}, W_{M})	筒身 鉄	∙及び ^{実塔}	構造 強度	変形	部材の損傷 による転倒	変形が「建築基準法施行令第82 条の2(層間変形角)」に基づく 層間変形角以下とする。
「能性がある施設	復水貯蔵タン ク遮蔽壁	$F_{d} + W_{T} (W_{W}, W_{M})$	壁		構造 強度	曲げ,せん断	倒壞	「コンクリート標準示方書 (2002)」に基づく設計断面耐 力以下とする。

表 4-8 施設ごとの許容限界(6/7)

施設	齿乳友新	世手の知会社	冠在社会如应	評価	機能損傷モード		<u> </u>		
分類	他設名你	何里の組合セ	評価対象部位	項目	応力等の状態	限界状態	计谷限介		
「ます可能性があり、「いう」です。「「いう」では、「いう」では、「いう」では、「いう」では、「いう」では、「いう」では、「いう」では、「いっ」では、「いっ」では、「いっ」では、「いっ」では、「いっ」では、	消音器	F _d +W _T (Ww, W _P)	結合ボルト 基礎ボルト	構造	引張り,せん断	部 材 が 弾 生 ら ず 塑 生 に 、 入 る 状 態	「原子力発電所耐震設計技 術指針 JEAG4601 -1987」等に基づく許容応力 状態ⅢAS ^{*1} に応じた許容応 力値以下とする。		
る施設	排気管及び ベント管	$\begin{array}{c} F_{d} + W_{T} (W_{W}, \\ W_{P}) + F_{P} \end{array}$	配管本体	構造 強度	曲げ	部材が弾性 域に留まら ず塑性域に 入る状態	「原子力発電所耐震設計技 術指針 JEAG4601 -1987」等に基づく許容応力 状態ⅢAS*2に応じた許容応 力値以下とする。		

表 4-8 施設ごとの許容限界(7/7)

注記*1: JEAG4601を基に,表4-9 クラス1・クラス2,3・その他の支持構造物の許容応力を準用する。

*2: JEAG4601を基に,表4-10 クラス2,3配管の許容応力を準用する。

<u> </u>	<u> </u>		, 0 (*)			/5
許容		許容応力 (ボル)	許容』 (ボル	芯力* ² ト等)		
応力		一次	一次応力			
状態 	引張り	せん断	圧 縮	曲げ	引張り	せん断
III _A S	1.5 • f_{t}	$1.5 \cdot f_s$	$1.5 \cdot f_{c}$	1.5 • $f_{\rm b}$	1.5 • f_{t}	$1.5 \cdot f_s$

表 4-9 クラス1・クラス2, 3・その他の支持構造物の許容応力

注記*1:「鋼構造設計規準SI単位版」(2002年日本建築学会)等の幅厚比の制限を満足 させる。

*2:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*3:耐圧部に溶接等により直接取り付けられる支持構造物であって耐圧部と一体の応 力解析を行うものについては,耐圧部と同じ許容応力とする。

許容	許容	· 応 力
応力 状態	一次一般膜応力	一次応力(膜+曲げ)
III a S	Min [Sy, 0.6Su] ただし,オーステナイト系ステン レス鋼及び高ニッケル合金につい ては1.2Sとしてもよい。	S y

表 4-10 クラス2,3配管の許容応力

5. 強度評価方法

評価手法は,以下に示す解析法により,適用性に留意の上,規格及び基準類や既往の 文献において適用が妥当とされる手法に基づき実施することを基本とする。

- ・FEM等を用いた解析法
- ・定式化された評価式を用いた解析法

「原子力発電所の竜巻影響評価ガイド」を参照して,設計竜巻による荷重は地震荷重 と同様に施設に作用する場合は,地震荷重と同様に外力として評価をするため,JEA G4601を適用可能とする。ただし,閉じた施設となる屋外配管等については,その 施設の大きさ及び形状を考慮した上で気圧差を見かけ上の配管の内圧の増加として評価 する。

設計竜巻の風圧力による荷重の影響を考慮する施設については,建築基準法施行令等 に基づき風圧力による荷重を考慮し,設備の受圧面に対して等分布荷重として扱って良 いことから,評価上高さの1/2又は荷重作用点より高い重心位置に集中荷重として作用 するものとする。設計竜巻荷重が作用する場合に強度評価を行う施設のうち,強度評価 方法としてポンプ,容器及び建物等の定式化された評価式を用いた解析法を以下に示す。

ただし,以下に示す強度評価方法が適用できない施設及び評価対象部位については, 個別計算書にその強度評価方法を含めて記載する。

- 5.1 建物・構造物に関する評価式
 - 5.1.1 鉄筋コンクリート造構造物
 - (1) 評価条件
 - a. 貫通限界厚さは、NEI07-13に示されているDegen式を用いて算定する。Degen式における貫入深さは、「タービンミサイル評価について(昭和52年7月20日原子炉安全専門審査会)」で用いられている修正NDR C式を用いて算定する。
 - b. 裏面剥離限界厚さは、NEI07-13に示されているChang式を用いて算 定する。
 - c. 荷重及び応力は力学における標準式を用いて算定する。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5-1 に示す。

施設名称	評価対象部位	評価内容
 ・原子炉建物 ・タービン建物 ・廃棄物処理建物 ・制御室建物 	屋根スラブ 外壁 構造躯体 スタッド	貫通 裏面剥離 転倒及び脱落
 ・ディーゼル燃料貯蔵タンク室 ・B-ディーゼル燃料貯蔵タン ク格納槽 	スラブ	貫通 裏面剥離
 ・1号機原子炉建物 ・1号機タービン建物 ・1号機廃棄物処理建物 ・排気筒モニタ室 	構造躯体	変形
・復水貯蔵タンク遮蔽壁	構造躯体	断面力

表 5-1 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

Degen式による貫通限界厚さの算定に用いる記号を表 5-2 に、Chang式による裏面剥離限界厚さの算定に用いる記号を表 5-3 に、力学における標準式による荷重及び応力の算定に用いる記号を表 5-4 に示す。

記号	単位	定義				
D	kgf/cm^3	設計飛来物	勿直径密度 $(D = W / d^3)$			
d	cm	設計飛来物	勿直径			
е	cm	貫通限界層	貫通限界厚さ			
F _c	kgf/cm^2	コンクリートの設計基準強度				
Ν	—	設計飛来物の形状係数				
17		壁面	設計飛来物の衝突速度(水平)			
v	III/ S	屋根 設計飛来物の衝突速度(鉛直)				
W	kgf	設計飛来物重量				
X	cm	貫入深さ				
α _e	_	低減係数				

表 5-2 Degen式による鉄筋コンクリート部の貫通限界厚さの算定に用いる記号

表 5-3 Chang式による裏面剥離限界厚さの算定に用いる記号

記号	単位	定義			
d	cm	設計飛来物直径			
f .'	kgf/cm^2	コンクリートの設計基準強度			
S	cm	裏面剥離限界厚さ			
X 7	m/s	壁面	設計飛来物の衝突速度(水平)		
v		屋根	設計飛来物の衝突速度(鉛直)		
V 0	m/s	飛来物基準速度			
W	kgf	設計飛来物重量			
αs	_	低減係数			

表 5-4(1/3) 力学における標準式による荷重及び応力の算定に用いる記号

(荷重算定用)

記号	単位	定義
W_{M}	Ν	設計飛来物による衝撃荷重
m	kg	設計飛来物質量
V	m/s	設計飛来物の衝突速度(水平)
Δ t	S	設計飛来物と被衝突体の接触時間
L ₁	m	設計飛来物の最も短い辺の全長

97

表 5-4(2/3) 力学における標準式による荷重及び応力の算定に用いる記号

記号	単位	定義
L	m	屋根スラブの支持スパン
М	kN•m	設計竜巻による単位幅当たりの曲げモーメント
Q	kN	屋根スラブに生じる単位幅当たりのせん断力
ωd	kN/m	常時作用する荷重による単位幅当たりの荷重
	1 NT /.	設計竜巻による単位幅当たりの荷重
ωτ	KIN/ III	$(=M a x \{ \omega_{T1}, \omega_{T2} \})$
ω _{T1}	kN/m	複合荷重W _{T1} による単位幅当たりの荷重
	kN/m	複合荷重W _{T2} による単位幅当たりの荷重(設計飛来物による
ω _{T2}		衝撃荷重W _M は考慮しない)

(屋根スラブ)

表 5-4(3/3) 力学における標準式による荷重及び応力の算定に用いる記号

(スタッド)

記号	単位	定義
L	m	屋根スラブの支持スパン
р	mm	スタッドの間隔
Q	kN	屋根スラブに生じる単位幅当たりのせん断力
Т	kN	スタッドに生じる引張力
	1-NI /	設計竜巻による単位幅当たりの荷重
ωτ	KIN/ M	$(=M a x \{ \omega_{T1}, \omega_{T2} \})$
ω _T 1	kN/m	複合荷重W _{T1} による単位幅当たりの荷重
	1.11	複合荷重W _{T2} による単位幅当たりの荷重(設計飛来物による
ω τ2	kN/m	衝撃荷重WMは考慮しない)

- b. 評価方法
- (a) Degen式による裏面剥離限界厚さの算定
 Degen式を以下に示す。
 1.52≤X/d≤13.42の場合

$$\mathbf{e} = \alpha_{\mathbf{e}} \cdot \left\{ 0.69 + 1.29 \cdot \left(\mathbf{X} \swarrow \mathbf{d} \right) \right\} \cdot \mathbf{d}$$

X/d≦1.52の場合

$$\mathbf{e} = \alpha_{\mathbf{e}} \cdot \left\{ 2.2 \cdot \left(\mathbf{X} \swarrow \mathbf{d} \right) - 0.3 \cdot \left(\mathbf{X} \swarrow \mathbf{d} \right)^{2} \right\} \cdot \mathbf{d}$$

修正NDRC式を以下に示す。

X/d≦2.0の場合

$$X \swarrow d = 2 \cdot \left\{ \left(12145 \swarrow \sqrt{F_{c}} \right) \cdot N \cdot d^{0.2} \cdot D \cdot \left(V \swarrow 1000 \right)^{1.8} \right\}^{0.5}$$

X/d ≧2.0 の場合

$$X \swarrow d = (12145 \swarrow \sqrt{F_c}) \cdot N \cdot d^{0.2} \cdot D \cdot (V \swarrow 1000)^{1.8} + 1$$

(b) Chang式による貫通限界厚さの算定 Chang式を以下に示す。

S =1.84 ·
$$\alpha_{s}$$
 · $\left(\frac{V_{0}}{V}\right)^{0.13}$ · $\left(\frac{W \cdot V^{2}}{0.0980}\right)^{0.4}$
d $\frac{W \cdot V^{2}}{10000}$

(c) 力学における標準式による荷重の算定

- イ. 設計飛来物による衝撃荷重
 W_M=m·V/Δt=m·V²/L₁
- ロ. 屋根スラブに発生する単位幅当たりの曲げモーメント

 $M = M a x \{M_1, M_2\}$

ここで,

$$M_{1} = \frac{9}{128} \cdot (\omega_{T} - \omega_{d}) \cdot L^{2}$$
$$M_{2} = \frac{1}{8} \cdot (\omega_{T} - \omega_{d}) \cdot L^{2}$$

ハ. 屋根スラブに発生する単位幅当たりのせん断力

$$\mathbf{Q} = \frac{5}{4} \cdot \left(\boldsymbol{\omega}_{\mathrm{T}} - \boldsymbol{\omega}_{\mathrm{d}}\right) \cdot \mathbf{L}$$

$$T = Q \cdot \frac{p}{1000 \cdot n}$$

ここで、
$$Q = \frac{\omega_T \cdot L}{2}$$

n : スタッドの本数 (本)

- 5.1.2 排気筒
 - (1) 評価条件
 - a. 排気筒は筒身と鉄塔が一体となって構成されるため、施設全体で風圧力による一様な荷重を受けるモデルとして評価を行う。この際、排気筒の主要な支持機能を有する鉄塔部材に対して、設計竜巻による設計飛来物が衝突するものとする。排気筒のモデル図を図 5-1 に示す。
 - b. 計算に用いる寸法は公称値を使用する。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5-5 に示す。

施設名称	評価対象部位	評価内容
 ・排気筒 ・1号機排気筒 	筒身及び鉄塔	・変形角

表 5-5 評価対象部位及び評価内容

(3) 強度評価方法

a. 解析モデル

図5-1 排気筒のモデル図

b. 評価方法

排気筒について、3次元FEMモデルによる変形評価を実施し、頂部最大変 位を排気筒高さで除した全体変形角が許容限界を超えないことを確認する。

- 5.1.3 鋼製構造物
- (1) 評価条件
 - a. 設計飛来物が外部事象防護対象施設に衝突する場合の必要最小肉厚を, 衝突 解析により求める。
 - b. 荷重及び応力は力学における標準式を用いて算定する。
 - c. 計算に用いる寸法は公称値を使用する。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5-6 に示す。

施設名称	評価対象部位	評価内容
・原子炉建物	扉	貫通 転倒及び脱落
 ・ディーゼル燃料貯蔵タンク室 ・Bーディーゼル燃料貯蔵タン ク格納槽 	鋼製蓋	貫通

表 5-6 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

力学における標準式による荷重及び応力の算定に用いる記号を表 5-7 に示 す。

表 5-7 力学における標準式による荷重及び応力の算定に用いる記号

(扉)

記号	単位	定義
A_1	m^2	表面鋼板の受圧面積
A_2	mm^2	カンヌキの断面積
L	mm	カンヌキと扉枠の距離
n	本	カンヌキの本数
R	Ν	カンヌキ1本当たりに生じる荷重
W_{P}	Ν	設計竜巻の気圧差による荷重
ΔPmax	N/m^2	設計竜巻の最大気圧低下量
Z	mm^3	カンヌキの断面係数
σ _b	N/mm^2	曲げ応力度
τ	N/mm^2	せん断応力度

- b. 評価方法
 - (a) 解析による必要最小肉厚の算定 解析における被衝突物の破断ひずみは、JISに規定されている伸びの下限 値を基に設定するが、「NEI 07-13」において、TF(多軸性係数) を考慮することが推奨されていることを踏まえ、安全余裕として二軸引張状 態でTF=2.0を考慮して設定する。
 - (b) 力学における標準式による荷重の算定
 - イ. 扉支持部材 (カンヌキ) に生じる荷重

次式により算定する設計竜巻の気圧差による荷重による反力から,各部 材に発生する荷重を算定する。扉のカンヌキに生じる荷重の例を図5-2に 示す。

 $W_{P} = \Delta P_{max} \cdot A_{1}$

$$R = \frac{W_{P}}{n}$$

(b) 正面図図5-2 カンヌキに生じる荷重の例

カンヌキの詳細図を図5-3に示す。カンヌキに生じる曲げモーメント M_k及びせん断力Q_kは次式により算定する。

 $M_{k} = R \cdot L$ $Q_{k} = R$

図 5-3 カンヌキの詳細図

ロ. カンヌキ1本当たりに生じる曲げ応力度

$$\sigma_{b} = \frac{M_{k}}{Z}$$

ハ. カンヌキ1本当たりに生じるせん断応力度

$$\tau = \frac{Q_k}{A_2}$$

- 5.2 機器・配管系に関する評価式
 - 5.2.1 衝突評価が必要な機器
 - (1) 評価条件

衝突評価を行う場合、以下の条件に従うものとする。

- a. 貫通計算においては,評価対象部位に飛来物が衝突した際に跳ね返らず,貫 通するものとして評価する。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-8 に示す。

評価対象部位	応力等の状態
飛来物が衝突する可能性がある部位のう ち,最小肉厚部等,貫通によって当該施設 が機能喪失する可能性がある箇所	衝突による貫通力

表 5-8 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

衝突評価に用いる記号を表 5-9 に示す。

表 5-9 衝突評価に用いる記号

記号	単 位	定義	
d	m	評価において考慮する飛来物が衝突する衝突断面の等価直径	
Κ	_	鋼板の材質に関する係数	
М	kg	評価において考慮する飛来物の質量	
Т	mm	鋼板の貫通限界厚さ	
V	m/s	評価において考慮する飛来物の飛来速度	

b. 評価方法

(a) 貫通限界厚さの算出

飛来物が防護対象施設に衝突する場合の貫通限界厚さを「タービンミサイ ル評価について(昭和52年7月20日 原子炉安全専門審査会)」で用いら れているBRL式を用いて算出する。

$$T^{\frac{3}{2}} = \frac{0.5 \cdot M \cdot v^2}{1.4396 \times 10^9 \cdot K^2 \cdot d^{\frac{3}{2}}}$$
- 5.2.2 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ
 - a. 評価条件
 - (a) 計算モデルは1質点系モデルとし、ポンプ部は全高の1/2の位置に、原動
 機部は重心位置に複合荷重が作用することとする。また、設計竜巻による風
 荷重はそれぞれの評価対象部位に対して発生応力が大きくなる方向から当たるものとする。

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価対象部位を図 5-4 に示す。また、ポンプ部及び原動機部の応力計算モデル図 を図 5-5 に示す。

(b) 原動機フレームのたわみ量計算においては、ポンプ据付面から原動機台上端まで(ポンプ部)と、原動機台上端から原動機上部軸受部まで(原動機部)の片持ちはりと考える。ポンプ部については、ポンプ部の断面性能は原動機台が最も小さいことから、原動機台の断面性能を一様に有する単純円筒形モデルとして評価する。原動機部については、原動機フレームの断面性能を用いて評価する。このため、計算モデルは違う断面性能の一軸中空形モデルとして考え、荷重は全高の半分の位置に作用することとする。

たわみ量計算モデル図を図 5-5 に示す。

ポンプ据付面より上部の静止体(原動機フレーム等)は、水平方向の複合 荷重により、ポンプ据付面を固定端として一方向に変形する。一方、回転 体(ポンプ軸及び原動機軸)は、風荷重を受けないため、変形せず、原動 機上部から鉛直方向に吊り下げられた状態を維持する。原動機フレーム等 の変形により、軸受反力が許容荷重を超えないことを確認する。

(c) 計算に用いる寸法は公称値を使用する。

b. 評価対象部位

評価対象部位及び評価内容を表 5-10 に示す。

評価対象部位	応力等の状態
基礎ボルト,取付ボルト	引張 せん断
原動機フレーム	引張
エンドカバー取付ボルト	せん断

表 5-10 評価対象部位及び評価内容

- c. 強度評価方法
 - (a) 記号の定義

原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度評価 に用いる記号を表 5-11 に示す。

表 5-11 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価及 び動的機能維持評価に用いる記号(1/3)

₹1 P	ж (+	
記方	单 12	正
а	mm	部材間の長さ
a 1	mm	ポンプ据付面からの原動機台上端までの長さ
a 2	mm	原動機台上端から原動機下部軸受までの長さ
a 3	mm	原動機台から荷重作用点までの長さ
А	m^2	受圧面積(風向に垂直な面に投影した面積)
A 1	m^2	四角形状の部分の受圧面積
A 2	m^2	円形状の部分の受圧面積
Аь	mm^2	各ボルトの軸断面積
С	-	建築物荷重指針・同解説により規定される風力係数
C i	_	四角形状の部分に対する建築物荷重指針・同解説により規定
CI		される風力係数
C a	_	円形状の部分に対する建築物荷重指針・同解説により規定さ
C 2		れる風力係数
C p	_	ポンプ振動による震度
d	mm	回転子コア径
D	mm	各ボルトのピッチ円直径
D m	mm	原動機フレーム外径
d m	mm	原動機フレーム内径
D p	mm	原動機台外径
d p	mm	原動機台内径
Е	MPa	縦弾性係数
E m	MPa	原動機フレームの縦弾性係数
Ер	MPa	原動機台の縦弾性係数
Em'	MPa	回転子の縦弾性係数

表 5-11 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価及

記号	単 位	定義
Fь	Ν	各ボルトに対する引張力
F i	Ν	転倒支点からLiの距離にあるボルトに対する引張力
Fн	Ν	水平方向に作用する荷重
G	-	ガスト影響係数
g	m/s^2	重力加速度
h	mm	基準面から荷重作用点までの距離
h 1'	mm	ポンプ据付面から荷重作用点までの距離
h 2'	mm	原動機下部軸受から荷重作用点までの距離
h 3'	mm	荷重作用点から荷重作用点までの距離
h g	mm	基準面から重心位置までの距離
h w	mm	すみ肉溶接高さ
Ι	mm^4	断面二次モーメント
I m	mm^4	原動機フレームの断面二次モーメント
I m'	mm^4	回転子の断面二次モーメント
Iр	mm^4	原動機台の断面二次モーメント
L g	mm	重心からボルト間の距離
L i	mm	転倒支点からボルトの距離
m	kg	質量
М	N•mm	設計竜巻により作用するモーメント
M a	N•mm	設計竜巻により作用するモーメント
M b	N•mm	設計竜巻により作用するモーメント
M c	N•mm	設計竜巻により作用するモーメント
Mc p	N•mm	ポンプ振動による転倒モーメント
M p	N•mm	ポンプの回転によるモーメント
N	rpm	回転数 (原動機の同期回転数)
n	-	各ボルトの本数
n f	-	引張力を受ける各ボルトの本数
Q b	Ν	各ボルトに対するせん断力
Р	kW	原動機出力
ΔPmax	N/m^2	設計竜巻の最大気圧低下量
q	N/m^2	設計用速度圧

び動的機能維持評価に用いる記号(2/3)

表 5-11 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの構造強度評価及 び動的機能維持評価に用いる記号(3/3)

記号	単 位	定義
W	Ν	自重
TT 7,	N	たわみ量及び発生荷重計算において設計竜巻による風圧を
W	IN	受ける面それぞれのWr2の合計の複合荷重
W"	Ν	発生荷重
Wм	Ν	設計竜巻による飛来物の衝撃荷重
W P	Ν	設計竜巻による気圧差による荷重
Wт	Ν	設計竜巻による複合荷重
W т 1, W т 2	Ν	設計竜巻による複合荷重
Ww	Ν	設計竜巻による風圧力による荷重
х	mm	荷重作用点から評価対象部位までの距離
х '	mm	評価対象部位から支点までの距離
Xa'	mm	ポンプグランド部から原動機下部軸受部までの距離
xb'	mm	原動機下部軸受部から原動機上部軸受部までの距離
У	mm	たわみ量
У 1	mm	ポンプ据付面から原動機台上端部のたわみ量
y 2	mm	原動機台上端部から原動機下部軸受部のたわみ量
у з	mm	原動機台上端部から荷重作用点のたわみ量
У4	mm	荷重作用点のたわみ量
у 5	mm	荷重作用点から原動機上部軸受部のたわみ量
y a	mm	原動機下部案内軸受部のたわみ量
у ь	mm	原動機上部案内軸のたわみ量
σb	MPa	各ボルトに生じる引張応力
σ w	MPa	原動機フレームに生じる引張応力
τ	MPa	各ボルトに生じるせん断応力
θ	rad	傾斜
θ 1	rad	ポンプ据付面から原動機台上端部の傾斜
Ө з	rad	原動機台上端部から荷重作用点の傾斜
heta 4	rad	荷重作用点の傾斜
δ	mm	フレーム変位量
δa	mm	ポンプ据付面から原動機下部軸受部までのフレーム変位量
S -		原動機下部軸受部から電動機上部軸受部までのフレーム変
0 в	mm	位量

(b) 計算モデル

(高圧炉心スプレイ補機海水ポンプ)

図 5-4 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの評価対象部位

(ポンプ部)

(原動機部)

(たわみ量計算モデル)

図 5-5 応力計算モデル図

- (c) 評価方法
 - イ. 応力の算出
 - (イ) ポンプ部 (ボルト部)
 - ・引張力σbt

$$F_{h} = \frac{W_{T} \cdot h + M_{C_{p}} + ((m \cdot g \cdot D)/2) \cdot (C_{p} - 1)}{(C_{p} - 1)}$$

$$3/8 \cdot D \cdot n_f$$

ただし, Fb≤0 ならば引張力は発生しない。

 $F_{b} > 0$ ならば引張力は作用しているので、以下の引張応力の計算を行う。

$$\sigma_{bt} = \frac{F_b}{A_b}$$

・せん断応力 τ
 $\tau = \frac{W_T}{A_b \cdot n}$

(ロ) 原動機部

・原動機フレーム部(RSWポンプ)(HPSWポンプ) 原動機フレームの応力算出方法を以下に示す。 設計竜巻により作用する転倒モーメントM

$$M = W_T \cdot h_g$$

引張応力 σ w

$$\sigma_{\mathbf{w}} = \frac{5.66 \cdot \mathbf{M}}{\pi \cdot \mathbf{h}_{\mathbf{w}} \cdot \mathbf{D}^2}$$

・端子箱取付ボルト部(RSWポンプ)(HPSWポンプ)
 端子箱取付ボルトの応力算出方法を以下に示す。

設計竜巻により作用するモーメントM

 $F_{b} = \frac{M + W \cdot h_{g}}{L_{1} \cdot n_{f}}$ $\sigma_{b} = \frac{F_{b}}{A_{b}}$ せん断応力 τ $\tau_{b} = \frac{F_{H}}{A_{b} \cdot n}$

ここで,

$$F_{\rm H} = \sqrt{W_{\rm T}^2 + W^2}$$

・通風ダクト取付ボルト部、空気冷却器取付ボルト部

通風ダクト取付ボルト部、空気冷却器取付ボルト部の応力算出方法を示す。

設計竜巻によって生じる転倒荷重が,通風ダクト等に作用した際の各取付ボルトに 生じる際の引張応力を算出し評価する。なお,通風ダクトは上部軸受ブラケットとの 接続もあるが,空気冷却器とのみ接続されているとして,評価する。(評価上厳しい 条件)

風による転倒モーメントM

$$M = W_T \cdot h_g$$

引張応力 σ b

$$\begin{split} \mathsf{M} &= \sum_{i=1}^{8} \mathsf{F}_{i} \cdot \mathsf{L}_{i} \cdot \cdot \cdot \cdot \mathbb{1} \\ & \frac{\mathsf{F}_{i}}{\mathsf{L}_{i}} = - 定 \cdot \cdot \cdot \mathbb{2} \end{split}$$

①, ②式より,

$$F_{b} = \frac{F_{1}}{n_{f}} = \frac{M}{n_{f} \cdot \sum_{i=1}^{8} L_{i}^{2}} L_{1}$$

よって,

$$\sigma_{\rm b} = \frac{F_{\rm n}}{A_{\rm b}}$$

せん断応力τ

$$\tau = \frac{W_{T}}{A_{b} \cdot n}$$

・エンドカバー取付ボルト(HPSWポンプ)

竜巻によって生じる転倒荷重が,エンドカバーに作用した際の取付ボルトに生じ る引張応力を算出し評価する。

(i) ポンプ回転によるモーメント
$$M_{p} = \frac{60}{2 \cdot \pi \cdot N} \cdot 10^{6} \cdot P$$

(ii) せん断応力

$$\tau = \frac{W_{\rm T} + 2 \cdot \frac{M_{\rm p}}{D}}{n \cdot A_{\rm b}}$$

- ロ. 発生荷重の計算
- (イ) たわみ量の算出

たわみ量の算出において, 竜巻による風圧力を受ける面(原動機台, 原動機フレーム, 端子箱, 通風ダクト及び空気冷却器)のそれぞれのW_{T2}の合計を複合荷 重W'とする。

W' = ΣW_{T2}

以下のミオソテスの方法より各評価対象部位のたわみ量 y と傾斜 θ を算出する。 なお、荷重は高さの半分の位置に作用することとする。

ミオソテスの方法

$$y = \frac{M \cdot a^{2}}{2 \cdot E \cdot I} + \frac{W' \cdot a^{3}}{3 \cdot E \cdot I}$$
$$\theta = \frac{M \cdot a}{E \cdot I} + \frac{W' \cdot a^{2}}{2 \cdot E \cdot I}$$
$$M = W' \cdot h'$$

(ロ) 発生荷重の算出

軸受部において,フレーム変位により作用する軸受反力と軸受許容荷重を比較 し,発生荷重が許容荷重より小さいことを確認する。発生荷重W"は次式より計 算する。

 $\delta = 評価対象部位の変位量 - 支点の変位量$ また,発生荷重は $<math>\delta = \frac{W'' \cdot x^{,3}}{3 \cdot E \cdot I}$

より

W" =
$$\frac{3 \cdot E \cdot I \cdot \delta}{x^{3}}$$

- 5.2.3 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナ
 - (1) 評価条件

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの強度評価を行う 場合,以下の条件に従うものとする。

- a. 設計竜巻の風圧力による荷重,気圧差による荷重,有効運転質量を考慮した荷重が作 用する1質点系モデルとして計算を行う。ここで,荷重の作用点は評価上高さの1/2よ り高いストレーナの重心位置とする。原子炉補機海水ストレーナ及び高圧炉心スプレイ 補機海水ストレーナの応力の計算モデル図を図5-6に示す。
- b. 計算に用いる寸法は公称値を使用する。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-12 に示す。

評価対象部位	応力等の状態
基礎ボルト	引張 せん断

表 5-12 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの強度評価に用 いる記号を表 5-13 に示す。

表 5-13 原子炉補機海水ストレーナ及び高圧炉心スプレイ補機海水ストレーナの強度評価に用い

記号	単位	定義
А	m^2	受圧面積
Аb	mm^2	基礎ボルトの軸断面積
С	-	建築物荷重指針・同解説により規定される風力係数
d	mm	基礎ボルト呼び径
Fь	Ν	基礎ボルトに対する引張力
G	-	ガスト影響係数
g	m/s^2	重力加速度
h	mm	ストレーナ重心高さ
Н	Ν	自重
1	mm	重心から基礎ボルト間の水平距離
m	kg	容器の有効運転質量
Ν	_	基礎ボルトの本数
n f	_	引張力を受ける基礎ボルトの本数
Q b	Ν	基礎ボルトに対するせん断力
q	N/m^2	設計用速度圧
WΡ	Ν	設計竜巻による気圧差による荷重
WT1, WT2	Ν	設計竜巻による複合荷重
Ww	Ν	設計竜巻による風圧力による荷重
ΔPmax	N/m^2	設計竜巻の最大気圧低下量
σb	MPa	基礎ボルトに生じる引張応力
ρ	kg/m^3	空気密度
τ	MPa	基礎ボルトに生じるせん断応力

る記号

b. 計算モデル

図 5-6 海水ストレーナのモデル図

- c. 評価方法
 - (a) 引張応力

基礎ボルトに対する引張力は最も厳しい条件として,図 5-6 で基礎ボルトを支点と する転倒を考え、これを片側の基礎ボルトで受けるものとして計算する。 引張力

$$F_b = \frac{W_{T2} \cdot h - m \cdot g \cdot l}{n_f \cdot 2 \cdot l}$$

引張応力

$$\sigma_b = \frac{F_b}{A_b}$$

ここで, 基礎ボルトの軸断面積Abは

$$A_b = \frac{\pi}{4}d^2$$

(b) せん断応力

基礎ボルトに対するせん断力は、基礎ボルト全本数で受けるものとして計算する。 せん断力 $Q_b = W_{T2}$

せん断応力

$$\tau = \frac{Q_b}{A_b \cdot N}$$

- 5.2.4 原子炉補機海水系配管及び弁,高圧炉心スプレイ補機海水系配管及び弁,非常用ディー ゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発電設備(燃料 移送系)配管及び弁並びに非常用ガス処理系配管及び弁
 - (1) 評価条件

配管及び弁の強度評価を行う場合、以下の条件に従うものとする。

- a. 配管は一定距離ごとにサポートにより支持されているため,風圧力による一様な荷重 を受ける単純支持はりとして評価を行う。評価に用いる支持間隔は,管外径,材質ご とにサポートの支持間隔が最長となる箇所を選定する。配管モデルは,図5-7のとお り,曲がり部を直管とみなし評価を行うが,曲がり部の影響を考慮し,当該支持間隔 内にある曲がり部の応力係数のうち最大のものを,最大曲げモーメント発生位置にお ける応力に乗じることとする。保温材を使用している配管については,保温材を含め た受圧面積を考慮して評価を行う。弁を設置している場合はサポート支持間隔が短く なるため,弁を設置している場合の受圧面積は最大支持間隔での受圧面積に包絡され る。
- b. 非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁は建物内等に設置されているため,気圧差による荷重を配管内部に受けるものとして計算を行う。 非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁のモデル図を図 5-8 に示す。
- c. 計算に用いる寸法は公称値を用いる。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-14 に示す。

評価対象部位	応力等の状態
配管本体	一次応力

表 5-14 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

配管及び弁の強度評価に用いる記号を表 5-15 に示す。

記号	単位	定義
А	m^2/m	単位長さ当たりの受圧面積(風向に垂直な面に投影した面積)
С	-	風力係数
D	mm	管外径
g	m/s^2	重力加速度
G	_	ガスト影響係数
i	-	応力係数でJSME PPC-3810(5)c.に規定する値または1.33の いずれか大きい方の値
L	m	支持間隔
m	kg/m	単位長さ当たりの質量
M a	N•m	風圧力により作用する曲げモーメント
$M{ m b}$	N•m	自重により作用する曲げモーメント
P 1	MPa	内圧
Рь	MPa	配管に作用する圧力
ΔPmax	N/m^2	設計竜巻の最大気圧低下量
q	N/m^2	設計用速度圧
r m	mm	平均半径
S p r m	MPa	一次応力
t	mm	配管の厚さ
V d	m/s	竜巻の最大風速
WP	N/m	単位長さ当たりの気圧差による荷重
Ww	N/m	単位長さ当たりの風圧力による荷重
W	N/m	単位長さ当たりの自重による荷重
Z	m ³	断面係数
σ	MPa	最大発生応力
σ WP	MPa	気圧差により生じる応力
σ 内圧	MPa	内圧により生じる応力
σθ	MPa	管に生じる周方向応力
ρ	kg/m^3	空気密度

表 5-15 配管及び弁の強度評価に用いる記号

b. 原子炉補機海水系配管及び弁並びに高圧炉心スプレイ補機海水系配管及び弁

図 5-7 配管のモデル図

- (b) 評価方法
 - イ. 竜巻による応力計算
 - (イ) 風圧力により生じるモーメント

風圧力により生じるモーメントは、風圧力による荷重が配管の支持スパンに等 分布荷重として加わり、曲げモーメントを発生させるものとして、以下の式によ り算定する。

$$M_{a} = \frac{W_{W} \cdot L^{2}}{8}$$

(ロ) 気圧差により生じる応力

気圧差により生じる応力は,気圧が低下した分,内圧により生じる一次一般膜 応力が増加すると考えて,その応力増加分を以下の式により算定する。

$$\sigma_{\rm WP} = \frac{\Delta P_{\rm max} \cdot D}{4 t}$$

ロ. 組合せ応力

竜巻荷重と組み合わせる荷重として,配管に常時作用する自重及び運転時に作用 する内圧による荷重を考慮する。自重により生じる曲げモーメント及び内圧により 生じる一次一般膜応力は,以下の式により算定する。

$$M_{b} = \frac{W \cdot L^{2}}{8}$$
$$\sigma \not = \frac{P_{1} \cdot D}{4 t}$$

したがって、応力係数を考慮した自重及び風圧力により生じる曲げ応力と気圧差 及び内圧により生じる一次一般膜応力を足し合わせ、配管に生じる応力として以下 の式により Sprmを算出する。

$$S_{p r m} = \frac{P_{b} \cdot D}{4 t} + \frac{0.75 \cdot i \cdot (M_{a} + M_{b})}{Z}$$

$$Z \subset \mathcal{O}, P_{b} = \Delta P_{max} + P_{1}$$

- c. 非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁
 - (a) 計算モデル

図 5-8 非常用ディーゼル発電設備(燃料移送系)配管及び弁,高圧炉心スプレイ系ディーゼル発 電設備(燃料移送系)配管及び弁並びに非常用ガス処理系配管及び弁のモデル図

- (b) 計算方法
 - イ. 配管に作用する圧力により生じる周方向応力
 配管に作用する圧力は、設計竜巻により発生する気圧差及び運転圧が影響するので、

$$P_{b} = \Delta P_{max} + P_{1}$$

$$\sigma_{\theta} = \frac{P_{b} \cdot r_{m}}{t}$$
ただし,
$$r_{m} = \frac{D-t}{2}$$

- 5.2.5 非常用ディーゼル発電設備A-ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系デ ィーゼル発電設備ディーゼル燃料移送ポンプ
 - (1) 評価条件

非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディー ゼル発電設備ディーゼル燃料移送ポンプの強度評価を行う場合,以下の条件に従うものと する。

- a. 気圧差による荷重は、非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧
 炉心スプレイ系ディーゼル発電設備ディーゼル燃料移送ポンプの耐圧部に作用する。非
 常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼル
 発電設備ディーゼル燃料移送ポンプの概要図を図 5-9 に示す。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-16 に示す。

	表 5-16	評価対象部位及び評価内容
--	--------	--------------

評価対象部位	応力等の状態
耐圧部	一次応力

(3) 強度評価方法

a. 記号の定義

非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディー ゼル発電設備ディーゼル燃料移送ポンプの強度評価に用いる記号を表 5-17 に示す。

表 5-17 非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼ

儿	~発電設備ディー	ビル燃料移送ポンプの強度評価に用いる記号(1/2)

記号	単 位	定義
ΔPmax	MPa	設計竜巻最大の気圧低下量
Р	MPa	設計竜巻により発生する圧力
P 1	MPa	最高使用圧力

b. 計算モデル

図 5-9 非常用ディーゼル発電設備ディーゼル燃料移送ポンプ及び高圧炉心スプレイ系ディーゼ ル発電設備ディーゼル燃料移送ポンプの概要図

c. 評価方法

評価方法は,運転時に作用する内圧に設計竜巻による気圧差を加え,これと燃料移送 ポンプの耐圧試験圧力との比較を行う。運転時に作用する内圧として,燃料移送ポンプ の最高使用圧力P₁を考慮する。

設計竜巻により発生する圧力は以下のとおり。

 $\mathbf{P} = \Delta \mathbf{P}_{\mathrm{m \, a \, x}} + \mathbf{P}_{\mathrm{1}}$

- 5.2.6 ダンパ
 - a. 評価の条件

ダンパの強度評価を行う場合、以下の条件に従うものとする。

- (a) 外板は,外板を4辺に分割し,その1辺を同等の断面性能を持つ単純支持はりとして 計算を行う。外板のモデル図を図 5-10 に示す。
- (b) 羽根は、4 辺支持長方形板に等分布荷重がかかるものとし、曲げ応力による評価を行う。羽根のモデル図を図 5-11 に示す。
- (c) シャフトは、ダンパに作用する圧力及び自重により発生する荷重が両端のシャフトに 均等に作用するものとし、シャフト断面についてせん断応力による評価を行う。シャ フトのモデル図を図 5-12 に示す。
- (d) 計算に用いる寸法は公称値を使用する。
- b. 評価対象部位

評価対象部位及び評価内容を表 5-18 に示す。

評価対象部位	応力等の状態
外板	曲げ
羽根	曲げ
シャフト	せん断

表 5-18 評価対象位及び評価内容

- c. 強度評価方法
- (a) 記号の定義

ダンパの強度評価に用いる記号を表 5-19 に示す。

記号	単 位	定義
а	mm	評価対象板の短辺
А	mm^2	シャフト断面積
b	mm	評価対象板の長辺
D	mm	シャフト直径
e	mm	外板における断面の重心高さ
F 1	N/mm	気圧低下による分布荷重
F 2	N/mm	自重による分布荷重
g	m/s^2	重力加速度
h	mm	羽根厚さ
Н	mm	外板高さ
E	MPa	縦弾性係数
Ι	mm^4	断面二次モーメント
L	mm	面間寸法
m	kg	羽根質量
M 1	kg	外板質量
M 2	kg	上流側フランジ質量
М з	kg	下流側フランジ質量
M x	N•mm	外板に作用する曲げモーメント
Р	MPa	ダンパに作用する圧力
ΔPmax	MPa	設計竜巻の最大気圧低下量
W	mm	外板幅
Z	mm^3	断面係数
ν		ポアソン比
ωmax	mm	羽根の最大変位量
σmax	MPa	羽根に生じる面外方向の荷重による最大応力
σbmax	MPa	外板に生じる最大曲げ応力
σsmax	MPa	シャフトに生じる最大せん断応力

表 5-19 ダンパの強度評価に用いる記号

(b) 計算モデル

図 5-10 外板モデル図

図 5-12 シャフトモデル図

(c) 評価方法

ダンパに作用する圧力は、設計竜巻の気圧差によって発生する。

 $\mathbf{P}=\Delta \,\,\mathbf{P}\,{}_{\mathrm{m\,a~x}}$

イ. 外板

外板に作用する最大曲げモーメント

$$M_{x} = \frac{MAX(W, H) \times (F_{1} + F_{2})}{8}$$

ここで,

ここで,

$$F_1 = P \times L$$

$$F_2 = \frac{(M_1 + M_2 + M_3) \times 9.80665}{MAX(W, H)}$$

外板に生じる最大曲げ応力

$$\sigma_{b \max} = \frac{M_x}{Z}$$

$$Z = \frac{I}{e}$$

口. 羽根

羽根に生じる応力は、4辺単純支持の長方形板が等分布荷重を受ける場合におい て、ダンパに作用する圧力及び自重による面外荷重により生じる最大応力σ_{max}と その面外荷重による羽根の最大変位量ω_{max}との関係は、以下の式で表される。

機械工学便覧に記載されている4辺単純支持の長方形板が等分布荷重を受ける場 合の長方形板の大たわみ式を引用する。

$$\sigma_{\max} = \frac{\pi^2 E \omega_{\max}}{8(1-\nu^2)} \left\{ \frac{(2-\nu^2)\omega_{\max}+4h}{b^2} + \frac{\nu(\omega_{\max}+4h)}{a^2} \right\} \quad \cdots 3$$

$$\frac{256(1-\nu^{2})(F_{1}+F_{2})}{\pi^{6}E h^{4}} = \frac{4}{3}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)^{2}\frac{\omega_{\max}}{h} + \left\{\frac{4\nu}{a^{2}b^{2}}+(3-\nu^{2})\left(\frac{1}{a^{4}}+\frac{1}{b^{4}}\right)\right\}\left(\frac{\omega_{\max}}{h}\right)^{3} \cdots \qquad (4)$$

式④で得られる ω_{max} の値を式③に代入し、 σ_{max} を算出する。 ここで、

 $F_{1} = P$ $F_{2} = \frac{m \cdot g}{a \cdot b}$

ハ. シャフトシャフトに生じる最大せん断応力

$$\sigma_{s \max} = \frac{F_1 + F_2}{A}$$

$$\Box \subset \mathcal{C},$$

$$F_1 = P \cdot a \cdot b$$

$$F_2 = m \cdot g$$

$$A = \pi \cdot \left(\frac{D}{2}\right)^2$$

- 5.2.7 角ダクト
 - (1) 評価条件

角ダクトの強度評価を行う場合、以下の条件に従うものとする。

- a. 角ダクトは、任意のダクト面に着目すると、ダクト面は両サイドをほかの2つの側面のダクト面で、軸方向(流れ方向)を補強材・フランジで支持された長方形の板とみなすことができる。そのため、鋼板を補強部材と両サイドのウェブで支持された4辺単純支持長方形板とし評価を行う。自重等によりダクトに生じる曲げモーメントに関し、ウェブでの応力分布が線形で、中立面がフランジの両側から等距離の中央線上にあるとする。角ダクトのモデル図を図5-13、図5-14に示す。
- b. 計算に用いる寸法は公称値を使用する。
 - (a) 評価対象部位評価対象部位及び評価内容を表 5-20 に示す。

表 5-20 評価対象部位及び評価内容

機器形状	評価対象部位	応力等の状態
角ダクト	ダクト (本体)	曲げ 座屈

- (b) 強度評価方法
 - イ. 記号の定義

角ダクトの強度評価に用いる記号を表 5-21 に示す。

記号	単位	定義
a	mm	評価対象板の短辺
h	mm	評価対象板の長辺
0	11111	
С	mm	ダクト支持間隔
E	MPa	縦弾性係数
f 1	Ν	曲げモーメントによる圧縮荷重
f 2	Ν	最大気圧低下量及び通常運転圧力による圧縮荷重
Н	mm	ダクト高さ
М	N• mm	自重による曲げモーメント
ΔPmax	Pa	設計竜巻の最大気圧低下量
Р	Pa	ダクトに作用する圧力
P 1	Pa	通常運転圧力
t	mm	ダクト厚さ
W	mm	ダクト幅
W 1	N/mm	ダクト単位長さ当たりの荷重
W 2	N/mm^2	ダクト単位面積当たりの荷重
ν	_	ポアソン比
ωmax	mm	軸直角方向の荷重によるダクトの最大変位量
σ m a x	MPa	軸直角方向の荷重により生じる最大応力

表 5-21 角ダクトの強度評価に用いる記号

c. 評価方法

ダクトに作用する圧力は、設計竜巻の気圧差及び内圧が影響するので、 $P = \Delta P_{max} + P_1$

(a) 軸直角方向の荷重による発生応力

4 辺単純支持(周辺で水平,垂直方向の変位拘束,たわみ角は自由)の長方形板 が等分布荷重を受ける場合において,ダクトに作用する圧力及び自重による軸直角 方向の荷重により生じる最大応力σmaxとその軸直角方向の荷重によるダクト鋼 板の最大変位量δmaxとの関係は,以下の式で表される。

機械工学便覧に記載されている4辺単純支持の長方形板が等分布荷重を受ける 場合の長方形板の「大たわみの式」を引用する。

$$\sigma_{\max} = \frac{\pi^2 E \omega_{\max}}{8(1-\nu^2)} \left\{ \frac{(2-\nu^2)\omega_{\max}+4t}{b^2} + \frac{\nu(\omega_{\max}+4t)}{a^2} \right\} \qquad (5)$$

$$\frac{256(1-\nu^2)(P+w_2)}{\pi^6 E t^4} = \frac{4}{3} \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2 \frac{\omega_{\max}}{t}$$

$$+\left\{\frac{4\nu}{a^{2}b^{2}}+(3-\nu^{2})\left(\frac{1}{a^{4}}+\frac{1}{b^{4}}\right)\right\}\left(\frac{\omega_{\max}}{t}\right)^{3}$$
...6)

式⑥より得られるωmaxの値を式⑤へ代入し、σmaxを算出する。

- (b) 軸方向の荷重による発生応力
- イ. 自重による圧縮荷重

ダクトの自重により発生する曲げモーメントによる軸方向の圧縮荷重は,以下の 式により算出する。

$$f_1 = \frac{M}{H}$$

ここで, 2

$$M = \frac{w_1 \cdot c^2}{8}$$

ロ. ダクトに作用する圧力による圧縮荷重

ダクトが軸方向に受ける設計竜巻の気圧差と内圧による圧縮荷重は,以下の式に より算出する。

$$f_{2} = \frac{(W+2\cdot t)\cdot(H+2\cdot t)\cdot P}{10^{6}}$$

- 5.2.8 丸ダクト
 - (1) 評価条件

丸ダクトの強度評価を行う場合、以下の条件に従うものとする。

- a. 丸ダクトは両端を補強部材で支持された円筒のはりとみなし計算を行う。
 丸ダクトのモデル図を図 5-15,図 5-16 に示す。
- b. 計算に用いる寸法は公称値を使用する。
 - (a) 評価対象部位

評価対象部位及び評価内容を表 5-22 に示す。

表	5 -	-2.2	評	価対象	象部⁄	位及	で評評	油内	容
1	0		ні	IHH / 1 >	37 H P		\smile H I I	щі	1 ' H

機器形状	評価対象部位	応力等の状態
丸ダクト	ダクト (本体)	曲げ 座屈

(b) 強度評価方法

イ. 記号の定義

丸ダクトの強度評価に用いる記号を表 5-23 に示す。

記号	単位	
A 1	mm^2	ダクト全断面積
A 2	mm^2	ダクト板の断面積
С	mm	ダクト支持間隔
d 1	mm	ダクト内径
d 2	mm	ダクト外径
М	N• mm	自重による曲げモーメント
L	mm	ダクト板の長さ
Р	MPa	ダクトに作用する圧力
ΔPmax	MPa	設計竜巻の最大気圧低下量
P 1	MPa	通常運転圧力
R	mm	内半径
r m	mm	平均半径
t	mm	ダクト厚さ
ν	_	ポアソン比
w	N/mm	ダクト単位長さ当たりの荷重
Z	mm^3	断面係数
σb	MPa	自重による発生応力
σPb	MPa	設計竜巻による気圧差及び内圧による発生応力
σΡ	MPa	ダクトに作用する圧力による発生応力
σθ	MPa	ダクトに作用する圧力により軸直角方向に生じる応力

表 5-23 丸ダクトの強度評価に用いる記号

図 5-15 丸ダクトの軸方向荷重のモデル図

図 5-16 丸ダクトの軸方向荷重のモデル図

ハ. 評価方法

ダクトに作用する圧力は、設計竜巻の気圧差及び内圧が影響する。

 $P = \Delta P_{max} + P_1$

(イ) ダクトに作用する圧力により生じる周方向応力

$$\sigma_{\theta} = -\frac{r_{m}P}{t}$$

- (ロ) 面内荷重による発生応力
 - (i) 自重による発生応力 ダクトが軸方向に受ける自重による曲げ応力は、以下の式により算出する。

$$\sigma_{b} = \frac{M}{Z}$$

$$Z = \frac{w c^2}{8}$$
$$Z = \frac{\pi}{32} \cdot \frac{d_2^4 - d_1^4}{d_2}$$

(ii) ダクトに作用する圧力による発生応力

ダクトが軸方向に受ける設計竜巻の気圧差と内圧による圧縮応力は,以下の 式により算出する。

$$\sigma_{\rm P} = \mathbf{P} \times \frac{\mathbf{A}_1}{\mathbf{A}_2}$$

$$\Box \subset \mathcal{O},$$

$$\mathbf{A}_1 = \frac{\pi}{4} \times \mathbf{d}_2^{-2}$$

$$\mathbf{A}_2 = \frac{\pi}{4} \times \left(\mathbf{d}_2^{-2} - \mathbf{d}_1^{-2}\right)$$

- 5.2.9 隔離弁
 - (1) 評価条件

隔離弁の強度評価を行う場合、以下の条件に従うものとする。

- a. 弁箱は、両端を補強部材で支持された円筒のはりとみなし、計算を行う。弁箱のモデ ル図を図 5-17 に示す。
- b. 弁体は、円形の弁体面積に受ける荷重を長方形の評価面積に作用するとみなし、弁体 評価面積の断面と同等の断面性能を持つ単純はりとして、曲げ応力による計算を行う。
 弁体のモデル図を図 5-18 に示す。
- c. 弁棒は、内部圧力及び自重により発生する荷重が両端の弁棒に作用するものとし、弁 棒断面についてせん断応力による計算を行う。弁棒のモデル図を図 5-19 に示す。
- d. 計算に用いる寸法は公称値を使用する。
 - (a) 評価対象部位

評価対象部位及び評価内容を表 5-24 に示す。

機器形状	評価対象部位	応力等の状態
	弁箱	座屈
隔離弁	弁体	曲げ
	弁棒	せん断

表 5-24 評価対象部位及び評価内容

(b) 強度評価方法

イ. 記号の定義

隔離弁の強度評価に用いる記号を表 5-25 に示す。

	X ° 10 11	
記号	単 位	定義
А	mm^2	弁棒断面積
D	mm	弁棒直径
е	mm	主軸から断面最端点までの距離
F 1	Ν	最大気圧低下量による荷重
F 2	Ν	自重による荷重
g	m/s^2	重力加速度
h	mm	弁体厚さ
Н	mm	弁体幅
Ι	mm^4	断面二次モーメント
l	mm	弁体評価面の長さ
L 1	mm	弁箱の面間寸法
L 2	mm	弁体長さ
М	kg	弁体質量
Мx	N•mm	弁体に作用する曲げモーメント
Р	MPa	隔離弁に作用する圧力
ΔPmax	MPa	設計竜巻の最大気圧低下量
R	mm	内半径
r m	mm	平均半径
t	mm	弁箱厚さ
W	mm	弁体評価面の幅
ν	_	ポアソン比
Z	mm ³	断面係数
σmax	MPa	弁箱に生じる周方向応力
σbmax	MPa	弁体に生じる最大曲げ応力
σsmax	MPa	弁棒に生じる最大せん断応力

表 5-25 隔離弁の強度評価に用いる記号

(c) 計算モデル

図 5-19 弁棒モデル図

- (d) 評価方法
 隔離弁に作用する圧力は、設計竜巻の気圧差によって発生する。
 P = Δ P m a x
- イ. 弁箱弁箱に生じる周方向応力

$$\sigma_{max} = \frac{r_{m} \times P}{t}$$

口. 弁体

弁体に作用する曲げモーメント

$$M_x = (F_1 + F_2) \times \frac{1}{4}$$

ここで,

$$F_{1} = P \times \left(\pi \times \left(\frac{H}{2}\right)^{2}\right)$$
$$F_{2} = M \cdot g$$

弁体に生じる最大曲げ応力

$$\sigma_{b \max} = \frac{M_x}{Z}$$

ここで,

$$Z = \frac{I}{e}$$
$$I = \frac{\ell}{12} \times (w h^{3})$$

ハ. 弁棒シャフトに生じる最大せん断応力

$$\sigma_{\rm S max} = \frac{\rm F_1 + \rm F_2}{\rm A}$$

ここで,
$$F_{1} = P \times \left\{ \pi \cdot \left(\frac{L_{2}}{2}\right)^{2} \right\}$$
$$F_{2} = M \cdot g$$
$$A = \pi \times \left(\frac{D}{2}\right)^{2}$$

- 5.2.10 送風機
 - (1) 評価条件

送風機の強度評価を行う場合、以下の条件に従うものとする。

- a. 送風機は両端を補強部材で支持された円筒のはりとみなし、計算を行う。送風機のモ デル図を図 5-20 に示す。
- b. 計算に用いる寸法は公称値を使用する。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-26 に示す。

河体为色如应	広力笠の比能
計個对象即位	応力等の状態
ケーシング	座屈

表 5-26 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

送風機の強度評価に用いる記号を表 5-27 に示す。

記号	単 位	定義
а	mm	ケーシング内半径
b	mm	ケーシング外半径
Р	MPa	送風機に作用する圧力
ΔPmax	MPa	設計竜巻の最大気圧低下量
P 1	MPa	通常運転圧力
t	mm	ケーシングの肉厚
σ	MPa	送風機に作用する圧力により生じる周方向応力

表 5-27 送風機の強度評価に用いる記号

b. 計算モデル

図 5-20 ケーシングのモデル図

c. 評価方法

送風機に作用する圧力は、設計竜巻の気圧差及び内圧が影響する。

 $\mathbf{P} = \Delta \mathbf{P}_{\mathrm{m \, a \, x}} + \mathbf{P}_{\mathrm{1}}$

(a) 送風機に作用する圧力により生じる周方向応力

$$\sigma = \frac{2 b^2}{b^2 - a^2} P$$

- 5.2.11 処理装置
 - (1) 評価条件
 - a. 処理装置のケーシングは両サイドを補強部材で支持された長方形の板とみなすことが できる。そのため、ケーシングの両サイドを補強部で支持された4辺単純支持長方形 板とし、評価を行う。処理装置のモデル図を図 5-21 に示す。
 - b. 計算に用いる寸法は公称値を使用する。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5-28 に示す。

評価対象部位	応力等の状態	
ケーシング	座屈	

表 5-28 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

処理装置の強度評価に用いる記号を表 5-29 に示す。

表 5-29 処理装置の強度評価に用いる記号

記号	単 位	定義
а	mm	長方形板の短辺
b	mm	長方形板の長辺
Е	MPa	縦弾性係数
Р	MPa	処理装置に作用する圧力
ΔPmax	MPa	設計竜巻の最大気圧低下量
P_1	MPa	通常運転圧力
t	mm	ケーシング厚さ
ν	_	ポアソン比
ωmax	mm	面外方向の荷重によるケーシングの最大変位量
σmax	MPa	面外方向の荷重により生じる最大応力

b. 計算モデル

図 5-21 処理装置のモデル図

c. 評価方法
 処理装置に作用する圧力は、設計竜巻により発生する気圧差及び内圧が影響する。
 P=ΔPmax+P1

イ. ケーシングの変形

4辺単純支持(周辺で水平,垂直方向の変位拘束,たわみ角は自由)の長方形板が 等分布荷重を受ける場合において,処理装置に作用する圧力及び自重による面外荷 重により生じる最大応力σmaxとその面外荷重によるケーシングの最大変位量 ωmaxとの関係は,以下の式で表される。

機械工学便覧に記載されている4辺単純支持の長方形板が等分布荷重を受ける場 合の長方形板の「大たわみの式」を引用する。

$$\sigma_{\max} = \frac{\pi^{2} E \omega_{\max}}{8(1-\nu^{2})} \left\{ \frac{(2-\nu^{2})\omega_{\max}+4t}{b^{2}} + \frac{\nu(\omega_{\max}+4t)}{a^{2}} \right\} \qquad \cdots ??$$

$$\frac{256(1-\nu^{2})P}{\pi^{6}E t^{4}} = \frac{4}{3} \left(\frac{1}{a^{2}} + \frac{1}{b^{2}} \right)^{2} \frac{\omega_{\max}}{t}$$

$$+ \left\{ \frac{4\nu}{a^{2}b^{2}} + (3-\nu^{2}) \left(\frac{1}{a^{4}} + \frac{1}{b^{4}} \right) \right\} \left(\frac{\omega_{\max}}{t} \right)^{3} \qquad \cdots ??$$

式⑧より得られるωmaxの値を式⑦へ代入し、σmaxを算出する。

- 5.2.12 排気消音器
 - (1) 評価条件

消音器の強度評価を行う場合、以下の条件に従うものとする。

- a. 重心位置に風圧力による荷重が作用する1質点系モデルとして計算を行う。なお, 基礎ボルトに関しては,非常用ディーゼル発電設備ディーゼル機関と高圧炉心スプ レイ系ディーゼル発電設備ディーゼル機関の排気消音器で取付位置が異なるためそ れぞれで評価を行う。消音器のモデル図を図 5-22 に示す。
- b. 計算に用いる寸法は公称値を使用する。

(2) 評価対象部位

評価対象部位及び評価内容を表 5-30 に示す。

₹0 00 日	四对家时匹及0日回门石
評価対象部位	応力等の状態
基礎ボルト 結合ボルト	引張り せん断

表 5-30 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

消音器の強度評価に用いる記号を表 5-31 に示す。

記号	単 位	定義
А	m^2	排気消音器の受圧面積
A b	mm^2	ボルトの断面積
С		建築物荷重指針・同解説により規定される風力係数
d	mm	ボルト呼び径
Fь	Ν	ボルトに生じる引張荷重
G		ガスト影響係数
g	m/s^2	重力加速度
h 1	mm	取付面から重心までの高さ
h 2	mm	脚結合部から重心までの高さ
Q 1	mm	軸方向における基礎ボルトと重心の距離
Q 2	mm	軸方向における基礎ボルトと重心の距離
l 3	mm	軸方向における結合ボルトと重心の距離
Q 4	mm	軸方向における結合ボルトと重心の距離
Q 1 '	mm	軸直角方向における基礎ボルトと重心の距離
Q 2 '	mm	軸直角方向における基礎ボルトと重心の距離
lз'	mm	軸直角方向における結合ボルトと重心の距離
Q4'	mm	軸直角方向における結合ボルトと重心の距離
m	kg	排気消音器の質量
n		ボルトの本数
n f		引張荷重を受けるボルトの本数
Q b	Ν	ボルトに生じるせん断荷重
q	N/m^2	設計用速度圧

表 5-31 消音器の強度評価に用いる記号(1/2)

記号	単 位	定義	
V d	m/s	設計竜巻の最大風速	
Wт	Ν	設計竜巻による荷重	
Ww	Ν	風圧力により作用する荷重	
σb	MPa	ボルトに生じる引張応力	
τ	MPa	ボルトに生じるせん断応力	
ρ	kg/m^3	空気密度	

表 5-31 消音器の強度評価に用いる記号(2/2)

b. 計算モデル

- c. 評価方法
 - (a) 基礎ボルトの引張応力

基礎ボルトに対する引張力は最も厳しい条件として,図 5-22 で基礎ボルトを支点 とする転倒を考え、これを片側の基礎ボルトで受けるものとして計算する。なお、軸 直角方向と軸方向の各引張応力を比較し、値の大きい値を採用する。

- イ. 軸直角方向
 - (イ) 引張力

$$F_{b} = \frac{\left(W_{w} \cdot h_{1} - m \cdot g \cdot \ell_{1}'\right) \cdot \left(\ell_{1}' + \ell_{2}'\right)}{\left(\ell_{1}' + \ell_{2}'\right)^{2} + \left(\ell_{1}' + \ell_{2}' - 160\right)^{2}}$$

(ロ) 引張応力

$$\sigma_{b} = \frac{F_{b}}{n_{f} \cdot A_{b}}$$
ここで、基礎ボルトの軸断面積A_bは

$$A_{b} = \frac{\pi}{4}d^{2}$$

ロ. 軸方向

(イ) 引張力

$$F_{b} = \frac{W_{W} \cdot h_{1} - m \cdot g \cdot \ell_{1}}{\ell_{1} + \ell_{2}}$$

- (ロ) 引張応力 σ_b = F_b <u>n_f·A_b</u>
- (b) 基礎ボルトのせん断応力 基礎ボルトに対するせん断応力は,基礎ボルト全本数で受けるものとして計算する。
 - イ. せん断力 Qb=Ww
 - ロ. せん断応力

$$\tau = \frac{Q_{b}}{n \cdot A_{b}}$$

(c) 結合ボルトの引張応力

結合ボルトに対する引張力は最も厳しい条件として,図 5-22 で結合ボルトを支点とする転倒を考え、これを片側の結合ボルトで受けるものとして計算する。なお、強度評価においては軸直角方向と軸方向の各引張応力を比較し、値の大きいほうを採用する。

イ. 軸直角方向

- (イ) 引張力 F_b = $\frac{Ww \cdot h_2 - m \cdot g \cdot \ell_3}{\ell_3' + \ell_4'}$
- (ロ) 引張応力 $\sigma_b = \frac{F_b}{n_f \cdot A_b}$

口. 軸方向

- (イ) 引張力 F_b = $\frac{Ww \cdot h_2 - m \cdot g \cdot \ell_3}{\ell_3 + \ell_4}$
- (ロ) 引張応力

$$\sigma_{b} = \frac{F_{b}}{n_{f} \cdot A_{b}}$$

(d) 結合ボルトのせん断応力

結合ボルトに対するせん断応力は,基礎ボルト全本数で受けるものとして 計算する。

イ. せん断力 Qb=Ww

ロ. せん断応力

$$\tau = \frac{Q_{b}}{n \cdot A_{b}}$$

- 5.2.13 排気管及びベント管
 - (1) 評価条件
 - a. 配管は一定距離ごとにサポートよって支えられているため,風圧力による一様な荷重を受ける単純支持はりとして評価を行う。評価に用いる支持間隔はサポートの支持間隔が最長となる箇所を用いる。なお,排気管及びベント管は,配管端部が片持ち形状となっていることから,配管端部についても片持ちはりとして評価を行う。排気管及びベント管のモデル図を図 5-23 に示す。
 - b. 計算に用いる寸法は公称値を使用する。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5-32 に示す。

評価対象部位	応力等の状態
排気管 ベント管	一次応力

表 5-32 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

排気管及びベント管の強度評価に用いる記号を表 5-33 に示す。

記号	単 位	定 義
А	2 /	単位長さ当たりの受圧面積(風向に垂直な面を投影し
	m²/m	た面積)
С	—	建築物荷重指針・同解説により規定される風力係数
D	mm	配管外径
g	m/s^2	重力加速度
G		ガスト影響係数
Q	m	受圧部長さ(片持ち部)
L	m	支持間隔
m	kg/m	単位長さ当たりの質量
М	N•m	風圧力による曲げモーメント
Р	MPa	内圧
ΔPmax	N/m^2	設計竜巻の最大気圧低下量
q	MPa	設計用速度圧
V d	m/s	設計竜巻の最大風速
t	mm	板厚
W P	Ν	気圧差による荷重
Ww	N/m	単位長さ当たりの風圧力による荷重
W	N/m	単位長さ当たりの自重による荷重
Z	m ³	断面係数
σ1, σ2	MPa	配管に生じる応力
σΨΡ	MPa	気圧差により生じる応力
σ W T 1, σ W T 2	MPa	複合荷重により生じる応力
σ ww	MPa	風圧力により生じる応力
σ 自重	MPa	自重により生じる応力
σ 内圧	MPa	内圧により生じる応力
ρ	kg/m^3	空気密度

表 5-33 排気管及びベント管の強度評価に用いる記号

b. 計算モデル

図 5-23 排気管及びベント管モデル図

- c. 評価方法
 - (a) 竜巻による応力計算
 - イ. 風圧力により生じる応力

風圧力による荷重が配管の支持間隔に等分布荷重として加わり,曲げ応 力を発生させるものとして,以下の式により算定する。

$$\sigma_{ww} = \frac{M}{Z} = \frac{W_w \cdot L^2}{2 \cdot Z}$$

$$\Xi \equiv \frac{\pi}{32 \cdot D} \cdot \{D^4 - (D - 2t)^4\}$$

ロ. 気圧差により生じる応力

気圧差による荷重は,気圧が低下した分,内圧により生じる一次一般膜 応力が増加すると考えて,その応力増加分を以下の式により算定する。

 $\sigma w_{P} = \frac{\Delta P_{max} \cdot D}{4 \cdot t}$

したがって、イ.,ロ.項の複合荷重により生じる応力 σ WT1及び σ WT2 は以下の式により算出する。

 $\sigma \text{ w T }_{1} = \sigma \text{ w P}$ $\sigma \text{ w T }_{2} = \sigma \text{ w w} + 0.5 \cdot \sigma \text{ w P}$

(b) 組合せ応力

竜巻荷重と組み合わせる荷重として,配管に常時作用する自重及び運転時 に作用する内圧を考慮する。自重により生じる曲げ応力及び内圧により生じ る一次一般膜応力は,以下の式により算定する。

イ. 自重により生じる応力

$$\sigma_{\pm\pm} = \frac{M}{Z} = \frac{W \cdot L^2}{2 \cdot Z}$$

ロ. 内圧により生じる応力

$$\sigma_{\textbf{P}\textbf{E}} = \frac{\textbf{P} \cdot \textbf{D}}{4 \cdot \textbf{t}}$$

したがって、自重及び風圧力による荷重により生じる曲げ応力と気圧差 による荷重及び内圧により生じる一次一般膜応力を足し合わせ、配管に生 じる応力として以下の式によりσ1及びσ2を算出する。

- 6. 適用規格·基準等
 - (1) 適用規格・基準等

竜巻の影響を考慮する施設の強度評価に用いる適用規格・基準等は、VI -1-1-3-3-1「竜巻への配慮に関する基本方針」による。

- ・建築基準法及び同施行令
- ・建築物荷重指針・同解説(日本建築学会 2004 改定)
- ・原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG460
 1・補-1984)(日本電気協会 電気技術基準調査委員会 昭和59年9月)
- ・原子力発電所耐震設計技術指針(JEAG4601-1987)(日本電気協会 電気技術基準調査委員会 昭和62年8月)
- ・原子力発電所耐震設計技術指針(JEAG4601・追補版-1991)(日本 電気協会 電気技術基準調査委員会 平成3年12月)
- ・発電用原子力設備規格(設計・建設規格 JSME S NC1-2005(2007 年追補版含む。))(日本機械学会 2007年9月)
- ・ISE7607-3 軽水炉構造機器の衝撃荷重に関する調査 その3 ミサイルの衝 突による構造壁の損傷に関する評価式の比較検討(昭和51年10月 高温構 造安全技術研究組合)
- ・タービンミサイル評価について(昭和 52 年 7 月 20 日 原子炉安全専門審査 会)
- ・鋼構造設計規準 -許容応力度設計法-((社)日本建築学会,2005改定)
- ・鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法-((社)日本建築学会,1999改定)
- ・日本産業規格(JIS)
- ·各種合成構造設計指針 同解説((社)日本建築学会,2010年改定)
- Methodology for Performing Aircraft Impact Assessments for New Plant Designs (Nuclear Energy Institute 2011 Rev8P (NEI07-13))
- ・理科年表(国立天文台,第85冊,2003年)
- ・コンクリート標準示方書 構造性能照査編((社)土木学会,2002年)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会, 2005 制定)
- (2) 参考文献
 - Wichman, K. R. et al, :Local Stress in Spherical and Cylindrical Shells due to External Loadings, Welding Research Council bulletin, March 1979 revision of W.R.C bulletin 107/August 1965.
 - Bijlaard, P. P. :Stresses from Radical Loads and External Moments in

Cylindrical Pressure Vessels, The Welding Journal, 34(12), Research Supplement, 1955.