国立研究開発法人日本原子力研究開発機構

大洗研究所(南地区)高速実験炉原子炉施設(「常陽」)

第6条(外部からの衝撃による損傷の防止)

(その3: 耐降下火砕物設計)

2022年10月4日

国立研究開発法人日本原子力研究開発機構

大洗研究所高速実験炉部

第6条:外部からの衝撃による損傷の防止

(その3: 耐降下火砕物設計)

目 次

- 要求事項の整理
- 2. 設置許可申請書における記載
- 3. 設置許可申請書の添付書類における記載
 - 3.1 安全設計方針
 - 3.2 気象等
 - 3.3 設備等
- 4. 要求事項への適合性
 - 4.1 基本方針
 - 4.2 耐降下火砕物設計
 - 4.3 要求事項(試験炉設置許可基準規則第6条への適合性説明)

(別紙)

- 別紙1 : 原子炉施設の安全性に影響を与える可能性のある火山事象の評価
- 別紙2 : 降下火砕物に対する安全施設の安全機能の確保
- 別紙3 : 原子炉建物(格納容器を含む。)及び原子炉附属建物に係る降下火砕物影響評価 結果
- 別紙4 : 主冷却機建物に係る降下火砕物影響評価結果
- 別紙5 : 主冷却機のうち屋外部分に係る降下火砕物影響評価結果
- 別紙6 : 主排気筒に係る降下火砕物影響評価結果
- 別紙7 : 第一使用済燃料貯蔵建物に係る降下火砕物影響評価結果
- 別紙8 : 第ニ使用済燃料貯蔵建物に係る降下火砕物影響評価結果
- 別紙9 :非常用ディーゼル電源系に関連する「冷却塔」、「排気筒」及び「吸気系統」に係る 降下火砕物影響評価結果
- 別紙10 :降下火砕物に対する中央制御室の居住性確保

別紙11 : 多量の降下火砕物が原子炉施設に到達するおそれが確認された場合の対応フロー

(添付)

- 添付1 :設置許可申請書における記載
- 添付2 : 設置許可申請書の添付書類における記載(安全設計)
- 添付3 : 設置許可申請書の添付書類における記載(適合性)
- 添付4 :設置許可申請書の添付書類における記載(気象等)

原子炉施設の安全性に影響を与える可能性のある火山事象の評価

施設に影響を及ぼし得る火山を抽出し、原子炉施設の安全性に影響を与える可能性のある火山事象 について評価した【原子炉設置変更許可申請書添付書類六:添付4参照】。

評価結果のまとめを第1表に、概要を以下に示す。

(1) 評価対象の抽出

- ・施設に影響を及ぼし得る火山として12火山(高原山、那須岳、男体・女峰火山群、日光白根火 山群、赤城山、燧ヶ岳、子持山、安達太良山、磐梯山、榛名山、笹森山及び沼沢)を抽出し た。
- ・施設に影響を及ぼし得る火山として抽出した12火山は、敷地から約90km以上の距離を有する 【添付4「8.3」及び添付4「第8.3.1表」参照】。 このため、降下火砕物以外の火山事象について、施設に影響を及ぼす可能性は十分に小さい 【添付4「8.4.2~8.4.5」参照】。

(2) 設計降下火砕物荷重の設定

- ・設計降下火砕物荷重は、設計上考慮する降下火砕物の層厚50cmに湿潤密度1.5g/cm³を乗じて、 設計降下火砕物荷重(降下火砕物による鉛直荷重)は7,355N/m²となる。
- ・文献より赤城山からの降下火砕物の層厚が最大となる【添付4「第8.4.1表」参照】。
 露頭確認による降下火砕物の分布状況及び降下火砕物シミュレーションによる検討結果から総合的に判断し、設計上考慮する降下火砕物の層厚は保守的に50cmと評価される【添付4 「8.4.1.1(4)参照」】。
- ・また、湿潤密度は1.5g/cm³と設定する【密度に関する評価:添付4「8.4.1.2」参照】。

事象	影響	概要	添付4
抽出された	充分に小さい	施設に影響を及ぼし得る火山(12 火山)のうち敷地に最	8.3
火山の活動		も近い高原山で約 98km の距離を有し、且つ基地は、火	
に関する個		山フロントより前弧側(東方)に位置し、敷地周辺では	
別評価		火成活動は確認されていないため、施設に影響を及ぼす	
		可能性は十分に小さいと判断される。	
火山事象の影	響評価		
降下火砕物	<u>与える可能性有</u>	敷地周辺に分布が確認または推定される降下火砕物を	8.4.1
	・設計上考慮す	抽出し、層厚とその噴火規模が最も大きい赤城鹿沼テフ	
	る降下火砕物	ラを対象に、設計上考慮する降下火砕物とした。	
	の層厚 50cm		
	・密度 1.5g/cm ³		
火山性土石	充分に小さい	施設に影響を及ぼし得る 12 火山のうち、敷地から 120	8.4.2
流、火山泥流		kmの範囲内には、敷地の那珂川上流に高原山、那須岳、	
及び洪水		男体・女峰火山群、日光白根火山群の 4 火山が位置す	
		る。	
		文献調査の結果、那珂川に沿う瓜連丘陵に火山性土石流	
		堆積物である粟河軽石が分布する。しかしながら、那珂	
		川の流下方向は敷地へ向かっていない。また、那珂川と	
		敷地の間には鹿島台地が分布し敷地は台地上に位置す	
		る。このことから、火山性土石流、火山泥流及び洪水が	
		施設に影響を及ぼす可能性は十分に小さいと判断され	
		る。	
火山から発	充分に小さい	施設に影響を及ぼし得る 12 火山のうち、最も近い高原	8.4.3
生する飛来		山でも敷地から約 98km と十分離れているため、施設に	
物(噴石)		影響を及ぼす可能性は十分に小さいと判断される。	
火山ガス	充分に小さい	施設に影響を及ぼし得る 12 火山のうち、最も近い高原	8.4.4
		山でも敷地から約 98km と十分離れていること、敷地は	
		太平洋に面する台地上に位置しており火山ガスが滞留	
		する地形ではないため、施設に影響を及ぼす可能性は十	
		分に小さいと判断される。	
その他火山	充分に小さい	施設に影響を及ぼし得る 12 火山のうち、最も近い高原	8.4.5
事象		山でも敷地から約 98km と十分離れていること、敷地は	
		火山フロントより前弧側(東方)に位置することから、	
		津波及び静振、大気現象、火山性地震とこれに関連する	
		事象、熱水系及び地下水の異常について、施設に影響を	
		及ぼす可能性は十分に小さいと判断される。	

第1表 原子炉施設に影響を及ぼし得る火山事象の評価

6条(3)-別紙1-2

降下火砕物に対する安全施設の安全機能の確保

原子炉施設に影響を及ぼし得る火山事象は降下火砕物のみである。耐降下火砕物設計において は、安全機能の重要度分類がクラス1、2、3に属する構築物、系統及び機器を降下火砕物防護施 設とする。外部からの衝撃による損傷の防止に係る安全施設に該当する構築物、系統及び機器を影 響評価の対象とする。当該影響評価にあっては、当該安全施設の外殻施設を評価対象とする場合が ある。想定される降下火砕物に対する影響を評価し、外部からの衝撃による損傷の防止に係る安全 施設が、外殻施設又は降下火砕物の除去に係る措置による防護により、その安全機能を損なわない ように設計する。重要安全施設以外の安全施設は、降下火砕物により損傷するおそれがある場合 に、代替措置や修復等を含めて安全機能を損なわないものとする。安全施設の安全機能の確保の考 え方を第1表に示す。

重要安全施設は、基本的に、原子炉建物(格納容器を含む。)及び原子炉附属建物又は主冷却機建物(第1図参照)を外殻施設としており、影響評価の対象部位は、これらの建物の天井スラブ(コンクリート)とする。また、主冷却機のうち屋外部分及び補機冷却設備のうち非常用ディーゼル電源系に関連する「冷却塔」、「排気筒」及び「吸気系統」については、降下火砕物の除去等に係る措置により、降下火砕物による波及的影響(閉塞及び目詰まり)によって、必要な安全機能を損なわないことを確認する。

外部からの衝撃による損傷の防止に係る重要安全施設以外の安全施設には、原子炉建物(格納容 器を含む。)及び原子炉附属建物又は主冷却機建物ではなく、第一使用済燃料貯蔵建物、第二使用済 燃料貯蔵建物、廃棄物処理建物、メンテナンス建物を外殻施設とするものがある。このうち、廃棄 物処理建物、メンテナンス建物を外殻施設としている安全施設にあっては、以下の設計により、必 要な機能を確保できるものとする。

- ・ 環境条件から降下火砕物が堆積するおそれのないもの
- ・ 誤作動を考慮しても必要な機能を達成できるもの(フェイルセーフ)
- ・ 代替手段により必要な機能を達成できるもの
- 降下火砕物を起因とする事象において、原子炉を停止し、放射性物質の閉じ込め機能
 を維持するために、また、停止状態にある場合は、引き続きその状態を維持するために
 当該構築物、系統及び機器が必須ではないもの

利·士 七人才皆《七人募考《名曰《功·小子¥114	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
第1本 女主地政の女王機能の確保のもえりい護が家	女主地政の女主機能の確保の考え力
【外部からの衝撃による損傷の防止に係る重要安全施設】	 ・ 想定される降下火砕物に対する影響を評価し、外殻施設又は降下火砕物の除去に係る措置による防護によ
 クラス1 	り、その安全機能を損なわないように設計する。
 クラス2のうち、周辺の公衆に過度の放射線被ばくを与えること 	※ 設計降下火砕物荷重を踏まえて健全性を評価し、許容限界以下とすることで、安全施設の安全機能を確
を防止するための安全機能を有し、特に自然現象の影響を受けやす	保する。
く、かつ、代替手段によってその機能の維持が困難であるか、又はそ	※ 主冷却機のうち屋外部分及び補機冷却設備のうち非常用ディーゼル電源系に関連する冷却塔及び排気筒
の修復が著しく困難な構築物、系統及び機器(「過度の放射線被ばく	については、降下火砕物の除去に係る措置により、降下火砕物による波及的影響(閉塞及び目詰まり)に
を与えるおそれのある」とは、安全機能の喪失による周辺の公衆の	よって、必要な安全機能を損なわないものとする。
×シシッシャますカllimew ユヨナビヨニン amo のんにゅしし・ / %/ 小山かたの衝撃に上ろ損傷の防止に係る	【頂子枦建姉(救納容器を含む。)及び原子垣附属建姉や主冷却機建姉に内包されるもの】
「「「」」の「「」」であるためでは、「」」であるため、「」では、「」ので、「」」では、「」ので、「」」では、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	■ ※ こい、 Winner House ※ ~ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※
 クラス2のうち、周辺の公衆に過度の放射線被ばくを与えること 	【第一使用済燃料貯蔵建物、第二使用済燃料貯蔵建物に内包されるもの】
を防止するための安全機能を有し、特に自然現象の影響を受けやす	> 貯蔵ラック、水冷却池及びサイフォンブレーク弁が該当する(クラス2)。
く、かつ、代替手段によってその機能の維持が困難であるか、又はそ	> 外殻施設について、設計降下火砕物荷重を踏まえて健全性を評価し、許容限界以下とすることで、貯蔵
の修復が著しく困難な構築物、系統及び機器に属しないもの*2	ラック、水冷却池及びサイフォンブレーク弁の安全機能(放射性物質の貯蔵、放射性物質の貯蔵及び燃料プ
 クラス3*2 	ール水の保持)を確保する。
	【廃棄物処理建物、メンテナンス建物に内包されるもの】
	> 液体廃棄物処理設備及び固体廃棄物貯蔵設備が該当する(クラス3)。
	> 液体廃棄物処理設備及び固体廃棄物貯蔵設備は、基本的に地下階に位置し、降下火砕物が堆積した場合
	にあっても、放射性物質が拡散することはなく、安全機能(放射性物質の貯蔵)を損なうことはない。
	【建物に内包されないもの】
	> 外周コンクリート壁(クラス2):原子炉建物(格納容器を含む。)及び原子炉附属建物の屋上に位置
	し、堆積面積が小さいことより、原子炉建物(格納容器を含む。)及び原子炉附属建物の影響評価に代表さ
	れるため、降下火砕物に対して、安全機能(放射線の遮蔽及び放出低減)を損なうことはない。
	> 主排気筒(クラス2))::降下火砕物の堆積面積は小さく、主排気筒が倒壊することはない。また、スタッ
	ク下部に 50cm の降下火砕物の堆積を考慮しても流路(高さ:約 400cm)が閉塞されることはなく、安全機能
	(放射線の遮蔽及び放出低減)を損なうことはない。
	> 一般電源系(受電エリア)(クラス3):一般電源系の機能を喪失した場合には、非常用ディーゼル電源
*1 「参考第1表 外部からの衝撃による損傷の防止に係る重要	系等により必要な電源を供給する。これらは、MS-1に該当し、外殻施設の健全性が確保されるため、安 へ極急を出たるとしいたく一ひ辞世座により、ション酸のときた
女主施設及び外殻施設」参照	土陵昨で頂はノーとはよく、17首相直により、必安は陵臣で確保とこの。 >
*2 「参考第2表 外部からの衝撃による損傷の防止に係る重要	/ 「黒江青在11~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
安全施設以外の安全施設及び外殻施設」参照	

外殻施設	① 原子炉建物(格納容器を含む。)及び原子 に附居津か。	M-101)病生初			 ① 原子炉建物(格納容器を含む。)及び原子 	炉附属建物												
特記すべき関連系																		
構築物、系統又は機器	① 原子炉容器 ① アオポ	1) 牛吽 ② 1 次主治却系、1 次補助冷却系及び1 次ナトリウム充填・ドレン系	1)原子炉冷却材バウンダリに属する容器・配管・ポンプ・弁(ただし、計	装等の小口径のものを除く。)	① 炉心支持構造物	 1) 炉心支持板 	2) 支持構造物	 「中心バレル構造物 	 バレル構造体 	 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	1) 炉心燃料集合体	2) 照射燃料集合体	3) 内側反射体	4)外側反射体(A)	5) 材料照射用反射体	 (6) 遮へい集合体 	7) 計測線付実験装置	8) 照射用実験装置
機能	原子炉冷却材 バウンガロ機能				炉心形状の維持機能													
分類	PS-1																	

参考第1表(1) 外部からの衝撃による損傷の防止に係る重要安全施設及び外殻施設

外殼施設	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物 	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物
特記すべき関連系	 「「「「」」「「」」」「「」」」「「「」」」「「」」」」「「」」」」 「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」	① 関連するプロセス計装(ナトリウム漏えい検出器)
構築物、系統又は機器	 ① 制御棒 ② 制御棒駆動※ 1) 駆動機構 2) 上部案内管 ③ 後備炉停止制御棒 ④ 後備炉停止制御棒駆動系 ① 上部案内管 3) 下部案内管 3) 下部案内管 	 ① 原子炉容器 1) リークジャケット 1) リークジャケット 2) 1次主冷却系、1次補助冷却系及び1次ナトリウム充填・ドレン系のう
機能	原子炉の緊急停止及び未臨界維持機能	1 次冷却材漏えい量 の低減機能
分類	MS-1	

参考第1表(2) 外部からの衝撃による損傷の防止に係る重要安全施設及び外殻施設

分類	機能	構築物、系統又は機器	特記すべき関連系	外殼施設
MS-1	原子炉停止後 の除熟機能	 ① 1 次主待却系 1) 1 次主循環ポンプポニーモータ 2) 逆止弁 ② 2 次主冷却系 1) 主冷却機(主送風機を除く。) 	 ① 原子炉容器 1)本体 2)1、本体 2)1、次士冷却系、1、次補助冷却系及び1次ナトリウム充填・ドレン系及び1次ナトリウム充填・ドレン系 1)原子炉冷却材バウングリに属する容く。 3)2次主冷却系、2次補助冷却系、2次ナトリウム純化系及び2次ナトリウム結化系及び2次ナトリウム結素、2次ナトリウム結素、2次計合加系、1)冷却材バウンダリに属する容器・配管・ボンプ・弁(たたし、計装等の小口径のものを除く。) 	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物 ③ 主冷却機建物 ※ 主冷却機のうち屋外部分を除く。
	放射性物質 の閉じ込め機能	 ① 格納容器 ② 格納容器バウングリに属する配管・弁 		 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物
	工学的安全施設 及び原子炉停止系への 作動信号の発生機能	 ① 原子炉保護系 (スクラム) ② 原子炉保護系 (アイソレーション) 	① 関連する核計装 ② 関連するプロセス計装	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物
	安全上特に重要な 関連機能	 ① 中央制御室 ② 非常用ディーゼル電源系 (MS-1に関連するもの) ③ 交流無停電電源系 (MS-1に関連するもの) ④ 直流無停電電源系 (MS-1に関連するもの) 	① 関連する補機冷却設備	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物 ② 主冷却機建物 ※ 補機冷却設備のうち、非常用ディーゼル 電源系に関連する冷却塔を除く。

参考第1表(3) 外部からの衝撃による損傷の防止に係る重要安全施設及び外殻施設

分類	機能	構築物、系統又は機器	特記すべき関連系	外殼施設
PS-2	原子炉冷却材バウンダリに 直接接続されていないもの	① 原子炉附属建物使用済燃料貯蔵設備 1)貯蔵ラック		 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物
	であった、放射性物質を 貯蔵する機能	2) 水冷却池		
	熊料を安全に雨とある機能	① 核燃料物質取扱設備		① 原子炉建物(格納容器を含む。)及び原子 には居津州
MS - 2	取り返し(20mm) 	① 原子炉附属建物使用済燃料貯蔵設備		デロ価値での ① 原子炉建物(格納容器を含む。)及び原子
	の保持機能	1)水冷却池		炉附属建物
		2) 水冷却浄化設備のうち、サイフォンブレーク弁		
	事故時のプラント状態の	① 事故時監視計器の一部		① 原子炉建物(格納容器を含む。)及び原子
	把握機能			炉附属建物
	安全上重要な関連機能	 ① 非常用ディーゼル電源系(MS-1に属するものを除く。) 		① 原子炉建物(格納容器を含む。)及び原子
		② 交流無停電電源系(MS-1に属するものを除く。)		炉附属建物
		③ 直流無停電電源系 (MS-1に属するものを除く。)		② 主冷却機建物

分類	機能	構築物、系統又は機器	外殼施設
P S - 2	原子炉カバーガス等のパウンダリ機能	 ① 1 次アルゴンガス系 ① 1 次アルゴンガス系 1) 原子炉カバーガスのバウンダリに属する容器・配管・弁(ただし、計装等の小口径のものを除く。) ② 原子炉容器 2) 原子炉カバーガスのバウンダリに属するな器・配管・弁(原子炉や却材バウンダリに属するもの及び計装等の小口径のものを除く。) ③ 1 次主ーバフロー系 ① 1 次オーバフロー系 ① 1 次オーバフロー系 ① 1 次オーバフロー系 ① 1 次ナーリウム坑填、ドレン系 ⑤ 1 次ナトリウム坑填、ドレン系 ⑤ 1 次ナトリウム坑填、ドレン系 ⑥ 1 酸子ラグ(ただし、計装等の小口径のものを除く。) ⑥ 回転プラグ(ただし、計装等の小口径のものを除く。) 	①~⑥ 原子炉建物(格納容器を含む。)及び 原子炉附属建物
	原子炉冷却材 、ウンダリに 直接接続されていない ものであって、 放射性物質を	 ① 第一使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 貯蔵ラック 2) 水冷却池 ② 第二使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 貯蔵ラック 	 第一使用済燃料貯蔵建物 第二使用済燃料貯蔵建物
	貯蔵する機能	 本行対池 気体廃棄物処理設備 アルゴン廃ガス処理系 	③ 原子炉建物(格納容器を含む。)及び原子 炉耐属建物
MS - 2	燃料ブール水 の保持機能	 ① 第一使用済燃料貯蔵建物使用済燃料貯蔵設備 1)水冷却池 2)水冷却浄化設備のうち、サイフォンブレーク弁 ② 第二使用済燃料貯蔵建物使用済燃料貯蔵設備 1)水冷却池 2)水冷却浄化設備のうち、サイフォンブレーク升 	 第一使用済燃料貯蔵建物 第二使用済燃料貯蔵建物
	放射線の遮蔽 及び放出低減機能	 ① 外周コンクリート壁 ② アニュラス部排気系 ② アニュラス部排気系 1)アニュラス部排気系(アニュラス部常用排気フィルタを除く。) ③ 非常用ガス処理装置 ④ 主排気筒 ④ 主排気筒 ⑤ 放射線低減効果の大きい遮蔽(安全容器及びコンクリート遮へい体冷却系を含む。) 	 ①④ — ②③⑤ 原子炉建物(格納容器を含む。)及び 原子炉附属建物

参考第2表(1) 外部からの衝撃による損傷の防止に係る重要安全施設以外の安全施設及び外殻施設

外殼施設	①一③ 原子炉建物(格納容器を含む。)及び 原子炉附属建物	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物、主冷却機建物(主冷却機のうち 屋外部分を除く。) 	 原子炉建物(格納容器を含む。)及び原子 炉附属建物、廃棄物処理建物他 原子炉建物(格納容器を含む。)及び原子 炉附属進物、廃棄物処理建物他 	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属進物 ② 主冷却機建物 	① 主冷却機建物	- ①	 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物、主冷却機建物
構築物、系統又は機器	 ① 1次ナトリウム純化系のうち、1次冷却材を内蔵しているか、又は内蔵し得る容器・配管・ポンプ・弁(ただし、計装等の小口径のものを除く。) ② 1次オーバフロー系のうち、1次冷却材を内蔵しているか、又は内蔵し得る容器・配管・ポンプ・弁(ただし、計装等の小口径のものを除く。) ③ 1次ナトリウム充填・ドレン系のうち、1次冷却材を内蔵しているか、又は内蔵し得る容器・配管・弁(PS-1に属するもの及び計装等の小口径のものを除く。) 	 ① 2 次主冷却系、2 次補助冷却系、2 次ナトリウム純化系及び2 次ナトリウム充填・ドレン系 1) 冷却材バウンダリに属する容器・配管・ボンプ・弁(ただし、計装等の小口径のものを除く。) 	 ① 液体廃棄物処理設備 ② 固体廃棄物貯蔵設備 	 ① 1 次主帝邦系 1) 1 次主循環ポンプ 1) 1 次主循環ポンプ本体(循環機能) 1) 1 次主循環ポンプ本体(循環機能) 2) 2 次主帝却系 1) 2 次主循環ポンプ 	 I) Z (八工相採ペンノ本体(相採検ED) I) 電動機 I) 主送風機 I) 主送風機 I) 電動機 I) 電酸ズレーキ 	 ① 一般電源系 (受電エリア) 	① 原子炉冷却材温度制御系(関連するプロセス計装及び制御用圧縮空気設備を含む。)
機能	1 次治却材を 内蔵する機能 (P S - 1 以外のもの)	 2 次治却材を 内蔵する機能 (通常運転時の 炉心の治却 に関連するもの) 	放射性物質 の貯蔵機能	通常運転時の冷却材の循環機能	通常運転時の 最終ヒートシンクへの 熱輸送機能	電源供給機能 (非常用を除く。)	プラント 計測・制御機能 (安全保護機能を除く。)
分類	P S – 3						

外部からの衝撃による損傷の防止に係る重要安全施設設以外の安全施設及び外殻施設 参考第2表(2)

① 炉心構成要素
 1) 炉心燃料集合体
 1) 被覆管
 2) 照射燃料集合体
 1) 被覆管

核分裂生成物の 原子炉冷却材中への 放散防止機能

① 原子炉建物(格納容器を含む。)及び原子 炉附属建物

 機能 制御室外からの 安全停止機能 然料プール水 の補給機能 の補給機能 低 (% (%<th>市央制御室外原子炉停止盤(安全停止に関連するもの) 市央制御室外原子炉停止盤(安全停止に関連するもの) 「原子炉附属建物使用溶燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 第一使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 第二使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 第二使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 1) 水冷却浄化設備(MS - 2に属するものを除く。) 1) 水冷却浄化設備(MS - 2に属するものを除く。) 1) 小海利音は設備(MS - 2に属するものを除く。) 1) 制練引技さインターロック系 1) 制御修引技さインターロック系 1) 制修習(MS - 2に属するものを除く。) 1) 加修設管理施設(MS - 2に属するものを除く。) 1) 加修計 1) 前修引技さインターロック系</th><th> 小般施設 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物 ③ 第一使用済燃料貯蔵建物 ③ 第二使用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ○ ○ ○ ○ ○ </th> ○ ○ 	市央制御室外原子炉停止盤(安全停止に関連するもの) 市央制御室外原子炉停止盤(安全停止に関連するもの) 「原子炉附属建物使用溶燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 第一使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 第二使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 第二使用済燃料貯蔵建物使用済燃料貯蔵設備 1) 水冷却浄化設備(MS - 2に属するものを除く。) 1) 水冷却浄化設備(MS - 2に属するものを除く。) 1) 水冷却浄化設備(MS - 2に属するものを除く。) 1) 小海利音は設備(MS - 2に属するものを除く。) 1) 制練引技さインターロック系 1) 制御修引技さインターロック系 1) 制修習(MS - 2に属するものを除く。) 1) 加修設管理施設(MS - 2に属するものを除く。) 1) 加修計 1) 前修引技さインターロック系	 小般施設 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物 ① 原子炉建物(格納容器を含む。)及び原子 炉附属建物 ③ 第一使用済燃料貯蔵建物 ③ 第二使用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ③ 第二作用済燃料貯蔵建物 ○ ○ ○ ○ ○
	 (1) 安全避難通路 (1) 非常用照明 	ストを除く。 メトを除く。

外部からの衝撃による損傷の防止に係る重要安全施設設以外の安全施設及び外殻施設 参考第2表(3) 原子炉建物(格納容器を含む。)及び原子炉附属建物に係る

降下火砕物影響評価結果

1. 概要

降下火災物から防護すべき安全機能を内包する原子炉建物(格納容器を含む。)及び原子炉附属建 物が降下火砕物を考慮しても構造健全性に問題ないことを確認する。なお、ここでは、降灰予報 等が発表され、多量の降灰が生じるおそれが確認された場合には、原子炉を停止すること、ま た、降下火砕物を除去するために必要な措置を講じることを降下火砕物発生時の対策の基本方 針とするため、降下火砕物は短期荷重として扱う。

2. 一般事項

2.1 建物の位置

第2.1図 原子炉建物(格納容器を含む。)及び原子炉附属建物の位置

2.2 建物の構造概要

原子炉建物(格納容器を含む。)及び原子炉附属建物は、約55m×約50mのほぼ正方形の平面 形状を有する。格納容器は、半球形の頂部、円筒形の胴部(直径28m)及び半楕円球形の底部鏡 板から構成する全高約54m・全重量約1,200tの鋼製容器であり、その内部に円筒状等の剛の壁 で構成する鉄筋コンクリート造の原子炉建物を有する。原子炉附属建物は、格納容器の周囲に配 置された鉄筋コンクリート造の建物である。屋根については、周囲部(原子炉附属建物)は陸屋 根、中央部の格納容器については、半球形の頭部(ドーム部)が露出した構造を有する。

建物の断面図を第2.2図、建物屋上の平面図を第2.3図に示す。

第2.2 図 原子炉建物(格納容器を含む。)及び原子炉附属建物の断面図

6条(3)-別紙 3-2

Т 核物質防護情報が含まれているため公開できません。 1

第2.3 図 原子炉建物(格納容器を含む。)及び原子炉附属建物屋上の平面図

н

2.3 評価方針

原子炉建物(格納容器を含む。)及び原子炉附属建物の降下火砕物に対する評価は、想定する 降下火砕物の荷重に加えて、常時作用する荷重及び自然現象(積雪、風)の荷重を適切に組み合せ た荷重(以下「降下火砕物等の荷重」という。)を建物に作用させ、評価対象部位に作用する応 力等が許容限界に収まることを確認する。

なお、屋根部材の評価においては、許容応力度の比を用いた簡易評価で降下火砕物等の荷重に 耐えられるか確認し、不可となる部位について応力解析による詳細評価を行う。

また、降下火砕物の除去に係る手順を定め【建屋の屋根除灰作業(案):別紙12-別添1参照】、 降下火砕物を屋根から除去することにより長期に荷重を掛け続けない対応を図ることから、降下 火砕物等の荷重を短期に生じる荷重として評価する。評価のフローを第2.4図に示す。

第2.4図 評価フロー

2.4 準拠規格·基準

準拠する基準、規格等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法施行細則
- (3) 発電用原子力設備規格 設計・建設規格 第 I 編 軽水炉規格(以下「JSME NC1 規格」という)
- (4) 平成 12 年建設省告示第 1454 号
- (5) 平成 12 年建設省告示第 2464 号
- (6) 鉄筋コンクリート構造計算規準・同解説 ―許容応力度設計法―(日本建築学会)(以下「RC 規準」という。)
- (7) 鋼構造設計規準 一許容応力度設計法—(日本建築学会)(以下「S規準」という。)
- (8) 2015 年版 建築物の構造関係技術基準解説書
- (9) 建築構造ポケットブック

6条(3)-別紙 3-4

3. 評価条件

3.1 評価対象部位

評価は、降下火砕物等の鉛直荷重が直接作用する屋根部材及び風荷重が作用する耐震壁を評価対象部位として選定する。評価対象部位を第3.1表に示す。

建家名称	評価対象部位
	屋根部材
原子炉附属建物	・屋根スラブ、大梁、小梁
	耐震壁
原子炉格納容器	ドーム

第3.1表 評価対象部位

3.2 荷重の設定及び組合せ

- (1)常時作用する荷重(DVL)
 常時作用する荷重は持続的に生じる荷重であり、構造体自重(自重:DL)、搭載する機器等の積載荷重(積載:LL)を考慮する。
- (2) 降下火砕物の荷重(VA)

敷地において設計上考慮する降下火砕物の層厚は 50cm、湿潤密度は 1.5g/cm³であり、降下火砕物による鉛直荷重を 7,355 N/m²とする。

(3) 積雪荷重(S)

積雪深さは、茨城県建築基準法施行細則第16条の4による大洗町の垂直積雪量30cmに平 均的な積雪荷重を与えるための係数0.35を乗じた10.5cmとして考慮する。また、積雪の単 位荷重は、建築基準法施行令第86条第2項により積雪量1cmごとに20N/m²であり、積雪に よる鉛直荷重を210N/m²とする。

(4) 風荷重(W)

風速は、建築基準法に基づく平成12年建設省告示第1454号に定められた大洗町の基準風 速である34m/sとし、風荷重については、建物の形状により風力係数等が異なるため、建物 ごとに算出する。また、限界耐力計算とするため、算出した風圧力を1.6倍する。

なお、建物に風の荷重が作用すると、屋根に対して鉛直上向きの荷重が働き、鉛直下向き の荷重が低減されるため、保守的に風による鉛直方向の荷重は考慮しない。

(5) 荷重の組合せ

評価対象部位ごとの組合せ荷重を第3.2表に示す。

第3.2表 維	合せ荷重
---------	------

評価対象部位	組合せ荷重
屋根部材	DVL+VA+0.35S
耐震壁	DVL+VA+0.35S+W

3.3 使用材料

使用材料及び許容応力度を第3.3表~第3.5表に示す。

第3.3表 コンクリートの許容応力度

(単位:N/mm²)

設計基準強度*1	長	期	短期		
Fc	圧縮	せん断	圧縮	せん断	
22.06	7.35	0.71	14.71	1.07	

*1:設計基準強度は、225kg/cm²をSI単位換算。

第3.4表 鉄筋の許容応力度

(単位:N/mm²)

種類	種類		長期		短期	
	鉄筋径	圧縮 引張	せん断 補強筋	圧縮 引張	せん断 補強筋	
SD345 (SD35)*1	D29 未満	215	105	970 F* 2	970 F* ⁹	
	D29 以上	195	195	379.5 -	379.5 -	
SD295 (SD30)*1	D13	195	195	324.5^{*2}	324.5^{*2}	

*1:()内は、建設当時 JIS 規格の種類を示す。

*2:平成12年建設省告示第2464号に基づき、鉄筋の基準強度の1.1倍の数値とする。

第3.5表 鋼材の許容応力度

(単位:N/mm²)

種類		基準強度		長期*2		短期*3	
		F	F*	圧縮 引張	せん断	圧縮 引張	せん断
SS400 相当 (SS41 相当)*1	t \leq 16mm	245	280	163^{*2}	94. 3^{*2}	280* ³	161^{*3}

*1:()内は建設当時 JIS 規格の種類を示す。

*2: JSME NC1 規格に基づき、供用状態 A, C での数値(F 値より算出)を示す。

*3: JSME NC1 規格に基づき、供用状態 D での数値(F*値より算出)を示す。

3.4 許容限界

各評価対象部位の許容限界を第3.6表に示す。

評価対象部位	許容限界
屋根部材	終局耐力に対して妥当な安全裕度を有する許容限界
耐震壁	保有水平耐力以下

第3.6表 許容限界

4. 建物屋根部材の評価

4.1 屋根スラブ

評価方法は、降下火砕物によって建物屋根スラブに生じる荷重によって、屋根スラブに発生す る応力が短期許容応力値を上回らないことを確認する。なお、評価には降下火砕物のほか屋根ス ラブの固定荷重、積載荷重、積雪荷重を考慮するものとし、これらは重力によって下向きの荷重 が作用しているものとする。

4.1.1 屋根スラブが受ける曲げモーメント及びせん断力

屋根スラブは、等分布荷重を受ける四辺固定スラブであり、スラブに発生する応力は、荷重 状態とスラブ周辺の支持条件で変化する。降下火砕物のほか屋根スラブの組合せ荷重により屋 根スラブに発生する単位幅当たりの曲げモーメント及びせん断力は、RC規準より算定する。

算定する屋根スラブの位置を第 4.1 図の平面図に示す。評価対象は、機器積載範囲(A-1~A-12)及び大区画範囲(A-13~A-16)で包絡される。

第4.1図 算定する屋根スラブの位置

6条(3)-別紙 3-7

- 4.1.2 許容曲げモーメント及びせん断力
 - (1) 許容曲げモーメント 建物屋根スラブの単位幅当たりの許容曲げモーメントは、RC 規準より以下の式で算定す る。
 - $M_a = a_t \cdot f_t \cdot j$
 - a_t : 鉄筋断面積 (mm²)
 - ft: :鉄筋の短期引張許容応力度 (N/mm²)
 - (平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)
 - j:スラブの有効丈 (mm)

$$j = \frac{7}{8} \cdot d$$

d:スラブの有効せい (mm)

(2) 許容せん断力

建物屋根スラブの単位幅当たりの許容せん断力は、以下の式で算定する。

 $Q_a = j \cdot f_s$

f_s:コンクリートの短期許容せん断応力度 (N/mm²)

4.1.3 評価結果

屋根スラブの許容応力度計算の結果、屋根スラブ A-1 以外は短期許容曲げモーメント、短期 許容せん断力を上回らないことを確認した。

屋根スラブの許容応力度評価結果(代表: A-1)を第4.1表に示す。また、屋根スラブすべての許容応力度検定比を第4.2表に示す。

屋根スラブ(A-1)については、曲げモーメントの検定比1.15と1.0を超過するため、FEM 弾性解析による評価を実施した。FEM弾性解析で用いたモデルを第4.2図に示す。解析結果を 第4.3図に示す。

耐震壁、冷却塔基礎等を考慮した FEM 弾性解析の結果、屋根スラブに発生する曲げモーメントは 22.33kN・m/m であり、短期許容曲げモーメントが 70.06kN・m/m で、検定比 0.32 と許容 値を満足していることを確認した。

	モーメント			せん	断力	
評価スラブ	短	辺	長	辺	たついつ	
番号	端部	中央	端部	中央	- <u>20</u>	THE REP
	Mx1/Ma	Mx2/Ma	My1/Ma	My2/Ma	Qx/Qa	Qy/Qa
A-1	1.06	0.71	1.15	0.77	0.50	0.55
A-2	0.89	0.60	0.88	0.59	0.42	0.42
A-3	0.65	0.44	0.95	0.63	0.40	0.43
A-4	0.06	0.04	0.05	0.03	0.10	0.10
A-5	0.70	0.47	0.90	0.60	0.41	0.42
A-6	0.63	0.42	0.91	0.60	0.57	0.62
A-7	0.06	0.04	0.05	0.03	0.10	0.10
A-8	0.65	0.43	0.67	0.45	0.36	0.37
A-9	0.33	0.22	0.25	0.17	0.22	0.19
A-10	0.33	0.22	0.23	0.15	0.18	0.17
A-11	0.72	0.48	0.63	0.42	0.36	0.35
A-12	0.28	0.19	0.21	0.14	0.17	0.16
A-13	0.75	0.50	0.79	0.53	0.38	0.40
A-14	0.66	0.44	0.65	0.44	0.43	0.33
A-15	0.56	0.38	0.57	0.38	0.32	0.27
A-16	0.44	0.29	0.30	0.20	0.36	0.14

第4.2表 屋根スラブの許容応力度検定比

第4.2図 FEM 解析モデル

第4.3 図 屋根スラブ (A-1)の FEM 弾性解析による Y 方向モーメントコンター

⁶条(3)-別紙 3-11

4.2 大梁、小梁

4.2.1 大梁、小梁が受ける曲げモーメント、せん断力

大梁は、大梁自体から受ける荷重、屋上スラブから受ける荷重、スラブ内に小梁がある場合 は小梁の集中荷重を考慮し、小梁は、小梁自体から受ける荷重、屋上スラブから受ける荷重を 考慮する。曲げモーメント、せん断力は、大梁が両端固定、小梁が両端ピン支持とし取り扱い、 RC 規準等より算定する。許容応力度計算では、梁下部に耐震壁はないものとしている。

算定する大梁、小梁の位置を第4.4 図の平面図に示す。評価対象は、機器積載範囲の梁(a-1 ~a-24)で包絡される。

第4.4図 算定する大梁、小梁の位置

4.2.2 許容曲げモーメント、せん断力

許容曲げモーメント
 大梁、小梁の許容曲げモーメントは、以下の式で算定する。

 $M_a = a_t \cdot f_t \cdot j$

 a_t :鉄筋断面積 (mm²)

fr: :鉄筋の短期引張許容応力度(N/mm²)

(平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)

j :大梁、小梁の有効丈 (mm)

$$j = \frac{7}{8} \cdot d$$

6条(3)-別紙 3-12

4.2.3 評価結果

屋根スラブを支持する大梁、小梁を長方形梁と見なして許容応力度計算した結果、大梁、小梁に発生する曲げモーメントは、大梁 a-9 以外は短期許容曲げモーメントを上回らないことを 確認した。

大梁、小梁の許容応力度評価結果(代表: a-1、a-9)を第4.3表に示す。また、大梁、小梁 すべての許容応力度検定比を第4.4表に示す。

大梁 a-9 については、曲げモーメントの検定比 1.06 と 1.0 を超過するため、RC 規準より長 方形梁とスラブが一体となった構造であることを考慮して T 形梁として許容応力度計算を実 施した。T 形梁の評価結果を第 4.5 表に示す。

T形梁として大梁 a-9 を評価した結果、端部に発生する曲げモーメント 966kN・m に対して、 端部短期許容曲げモーメントは 997kN・m となり、検定比 0.97 と許容値を満足することを確認 した。

	G.L.	-	m	+13.7m	+13.7m
	評価番号	-	-	a-1	a-9
	位置	_	_	1~2,E	1~2,F
	梁符号	_	-	RG1	RG4
	梁幅	b	mm	500	500
	梁せい	D	mm	1000	1000
	梁長さ	I	mm	9000	9000
	かぶり厚さ	dt	mm	100	100
	有効せい	d	mm	900	900
	有効丈	j	mm	787.50	787.50
	鋼材種(主筋)	-	-	SD35	SD35
ND 1= +0	鉄筋の許容短期引張応力度	ft	N/mm ²	379.5	379.5
梁情報	両端_上端筋A	—	-	6-D25	6-D25
	上端筋Aの断面積	Aat	mm ²	3042	3042
	両端_上端筋B	_	-	6-D25	6-D25
	上端筋Bの断面積	Bat	mm ²	3042	3042
	中央_下端筋	—	-	4-D25	5-D25
	下端筋の断面積	at	mm ²	2028	2535
	せん断補強筋	-	-	2-16 <i>ϕ</i>	2-16 <i>ϕ</i>
	せん断補強筋のピッチ	х	mm	200	200
	鋼材種(せん断補強筋)	_	-	SD30	SD30
	せん断補強筋の許容短期引張応力度	wft	N/mm ²	324.5	324.5
	せん断補強筋の断面積	aw	mm ²	402	402
	せん断補強筋の鉄筋比	pw	-	0.00402	0.00402
	鉄筋コンクリートの単位体積重量	γ	kN/m ³	23.54	23.54
	梁せい(スラブ厚分を引いたもの)	D	mm	750	750
沙白舌	梁自重	W	kN/m	8.83	8.83
木口里	梁自重による両端部モーメント	С	kN・m	59.6	59.6
	梁自重による中央部モーメント	Mo	kN・m	29.8	29.8
	梁自重によるせん断力	Qo	kN	39.7	39.7
	端部Aモーメント合計	C _A	kN・m	900	966
登生モーメン	端部Bモーメント合計	CB	kN∙m	892	950
トーサム断力	中央部モーメント合計	Мо	kN・m	496	492
	端部Aせん断力合計	Q _A	kN	491	528
	端部Bせん断力合計	QB	kN	486	517
	端部A許容モーメント	С _А а	kN・m	909	909
許容モーメン トーせん断力	端部B許容モーメント	С _в а	kN・m	909	909
	中央部許容モーメント	Ма	kN・m	606	758
	端部A許容せん断力	Q _A a	kN	682	683
	端部B許容せん断力	Q _B a	kN	682	683
	C _A /C _A a(端部上端A)	-	-	0.99	1.06
	C _B /C _B a(端部上端B)	-	-	0.98	1.05
検定比	M/Ma(中央下端)	-	-	0.82	0.65
	Q _A /Q _A a(端部A)	-	_	0.72	0.77
	Q _B /Q _b a(端部B)	-	-	0.71	0.76

第4.3 表 大梁、小梁の許容応力度評価結果(代表:a-1、a-9)

部材番号	C _A /C _A a (端部A上端)	C _B /C _B a (端部B上端)	M/Ma (中央下端)	Q _A /Q _A a (端部A)	Q _B /Q _B a (端部B)
a-1	0.99	0.98	0.82	0.72	0.71
a-2	0.90	0.90	0.78	0.66	0.66
a-3	0.53	0.53	0.46	0.38	0.38
a-4	0.51	0.51	0.47	0.51	0.51
a-5	0.48	0.48	0.41	0.35	0.35
a-6	0.26	0.26	0.23	0.21	0.21
a-7	0.76	0.76	0.41	0.74	0.73
a-8	0.47	0.47	0.34	0.39	0.39
a-9	1.06	1.05	0.65	0.77	0.76
a-10	0.44	0.44	0.31	0.36	0.36
a-11	0.06	0.06	0.05	0.08	0.08
a-12	0.05	0.05	0.05	0.07	0.07
a-13	0.60	0.60	0.55	0.59	0.59
a-14	0.39	0.39	0.27	0.32	0.32
a-15	0.16	0.16	0.14	0.14	0.14
a-16	0.12	0.12	0.10	0.11	0.11
a-17	0.17	0.17	0.14	0.15	0.15
a-18	0.25	0.25	0.22	0.20	0.20
a-19	0.25	0.25	0.22	0.22	0.22
a-20	0.28	0.28	0.19	0.24	0.24
a-21	0.46	0.46	0.32	0.38	0.38
a-22	0.47	0.47	0.33	0.38	0.38
a-23	0.47	0.47	0.34	0.39	0.39
a-24	0.45	0.45	0.23	0.37	0.37
a-25(小梁)	0.52	0.52	0.20	0.54	0.54
a-26(小梁)	0.77	0.77	0.29	0.74	0.74

第4.4表 大梁、小梁の許容応力度検定比

左側 右側 900 500 900 250 750 項目 記号 単位 数値 部材番号 _ a-9 _ 位置 _ 1~2,F 梁符号 _ RG4 T形梁の有効幅 2300 mm b 梁せい D 1000 mm 引張側かぶり厚さ dt 100 mm 100 mm 圧縮側かぶり厚さ dc 900 mm 有効せい d 梁上端筋断面積 3042 mm² at1 スラブ筋断面積 at2 1592 mm² 4403 mm² T形梁の有効上端筋断面積(許容応力度考慮) at 2028 mm² 下端筋断面積 ac 6500 mm 左側スラブ а 右側スラフ 5250 а mm 9000 mm 梁スパン L 左側協力幅 ba 900 mm 右側協力幅 ba 900 mm 200 mm スラブ筋ピッチ *(a)* コンクリートの短期許容圧縮応力度 fc 14.71 N/mm² 梁鉄筋の短期許容引張応力度(SD35) ft 379.5 N/mm² スラブ鉄筋の短期許容引張応力度(SD30) ft 324.5 N/mm² 鉄筋のヤング係数 Es 205000 N/mm² コンクリートのヤング係数 Ec 22043 N/mm² ヤング係数比 9.30 n mm^2 T形梁の断面積 А 950000 676.0 重心位置 mm g 圧縮縁側スラブ筋最大本数 9 本 _ _ 考慮するスラブ筋本数 8 本 中立軸までの距離(Ts-(Cs+Cc)=0となる位置) Xn 293.72 mm $\mathbf{n} \cdot \mathbf{c} \, \sigma \, \mathbf{c} \cdot ((\mathbf{d} - \mathbf{Xn}) / \mathbf{Xn})$ sσt 282.39 N/mm² $(n-1) \cdot c \sigma c \cdot ((Xn-dc)/Xn)$ 80.53 N/mm² sσc コンクリートの短期許容圧縮応力度 14.71 N/mm² fc=c σ c 引張鉄筋の合力(s σt · at) Ts 1243 kN 163 kN 圧縮鉄筋の合力(sσc・ac) Cs 圧縮コンクリートの合力(cσc・Xn・b/2) Сс 1080 kΝ 端部A発生モーメント Μ 966 kN • m 端部A許容モーメント Ма 997 kN・m

第4.5表 大梁 a-9をT 形梁とした許容応力度評価結果

6条(3)-別紙 3-16

検定比

M/Ma

0.97

_

5. 建物耐震壁の評価

風荷重により耐震壁に発生するせん断ひずみを評価し、許容限界を超えないことを確認する。 5.1 風荷重の算出

風荷重は、建築基準法に基づく平成12年建設省告示第1454号に基づき算出する。

なお、高さH(建築物の高さと軒の高さとの平均)が5m以上であるため、HがZbを超える場合の式を用いる。第5.1表に風荷重の計算条件、第5.2表に各高さにおける風荷重を示す。

 $W = q \cdot Cf$

W:風荷重(N/m²) q:速度圧(N/m²)

Cf: 風力係数

 $q = 0.6 \cdot E \cdot V_0^2 = 1937$

E=Er²・Gf(速度圧の高さ方向の分布を示す係数)=2.792

Er=1.7・(H/ZG)^α (HがZbを超える場合) =1.156

Er=1.7・(Zb/ZG)^α (HがZb以下の場合)

İ淮 圃油	高さ	7.	7.		ガスト	速度圧
圣华 <u></u> 風速 V。 (m/s)	Н	(m)	LG (m)	α	影響係数	q
v ₀ (m/ S)	(m)	(III)	(III)		Gf	(N/m^2)
34	26.7	5	350	0.15	2.089	1,937

第5.1表 原子炉附属建物の風荷重計算条件

第5.2表 原子炉附属建物の各高さにおける風荷重

高さ	部位	速度圧 q (N/m ²)	風力係数 Cf	風荷重 W=q・Cf (N/m ²)
G.L.+26.7m	円筒部(上1/2)	1,937	0.7	1, 355. 9
	円筒部(下 1/2)	1,937	0.7	1, 355. 9
	主排気筒	1,937	0.7	1, 355. 9
G.L.+13.7m	屋上出入口階段室	1,937	0.8-(-0.4)	2, 324. 4
	パラペット	1,937	0.8-(-0.4)	2, 324. 4
	側壁	1, 937	0.8-(-0.4)	2, 324. 4
G.L.+8.5m	パラペット	1, 937	0.8-(-0.4)	2, 324. 4
	側壁	1, 937	0.8-(-0.4)	2, 324. 4
G. L. +0. 2m	側壁	1,937	0.8-(-0.4)	2, 324. 4

5.2 評価方法

建物形状を考慮した風荷重及び風の受圧面積から、建物質点系解析モデルの各質点高さでの風 荷重による層せん断力を算出する。

建物屋根に降下火砕物等の鉛直荷重を作用させると、耐震壁の復元力特性の評価法より、第1 折点が増加することが明らかである。よって、風荷重による層せん断力と地震荷重による層せん 断力を比較し、風荷重による層せん断力が下回る場合は、地震時の評価結果に包絡されることに なり、地震に対する評価において許容限界を超えていないことから、風荷重に対する評価も許容 限界を超えないことが確認できる。

包絡関係が確認できない場合は、風荷重の層せん断力により耐震壁に発生するせん断ひずみの 評価を行う。なお、隣接建物による風の遮断効果は、考慮しないものとする。

風荷重及び受圧面積を第5.3表に示す。原子炉建物(原子炉格納容器を含む。)及び原子炉附 属建物の質点系解析モデルを第5.1図に示す。
高さ	部位	風荷重 W=q・Cf (N/m ²)	受圧面積 (m ²)	水平 (kN	三力 N)	層 せん断力 (kN)
G.L.+26.7m	円筒部(上 1/2)	1, 355. 9	208.7	283.0	283.0	283.0
	円筒部(下 1/2)	1, 355. 9	208.7	283.0	1, 160. 3	
G. L. +13. 7m	主排気筒	1, 355. 9	265.2	359.6		1, 443. 3
	屋上出入口階段室	2, 324. 4	33.8	78.6		
	パラペット	2, 324. 4	42.3	98.3		
	側壁	2, 324. 4	146.6	340.8		
G.L.+8.5m	パラペット	2, 324. 4	4.5	10.5	054.9	9 207 F
	側壁	2, 324. 4	406.0	943.7	954.2	2, 397. 5
G.L.+0.2m	側壁	2, 324. 4	271.9	632.0	632.0	3,029.5

NS 方向

EW 方向

高さ	部位	風荷重 W=q・Cf (N/m ²)	受圧面積 (m ²)	水平力 (kN)		層 せん断力 (kN)
G.L.+26.7m	円筒部(上1/2)	1, 355. 9	208.7	283.0	283.0	283.0
	円筒部(下1/2)	1, 355. 9	208.7	283.0		1, 443. 9
	主排気筒	1, 355. 9	265.2	359.6	1, 160. 9	
G.L.+13.7m	パイプシャフト室	2, 324. 4	9.0	20.9		
	パラペット	2, 324. 4	47.9	111.3		
	側壁	2, 324. 4	166.1	386.1		
G.L.+8.5m	パラペット	2, 324. 4	4.5	10.5	1 012 0	2 456 0
	側壁	2, 324. 4	431.3	1,002.5	1,013.0	2, 400. 9
G.L.+0.2m	側壁	2, 324. 4	278.0	646.2	646.2	3, 103. 1

第5.1 図 原子炉建物(原子炉格納容器を含む。)及び原子炉附属建物の質点系解析モデル

5.3 評価結果

第5.4表に風荷重と地震荷重による層せん断力の比較を示す。

風荷重による層せん断力と地震荷重による層せん断力を比較し、風荷重による層せん断力が地 震荷重による層せん断力を十分に下回り、耐震壁に発生するせん断ひずみは、地震時の評価結果 に包絡され、許容限界を超えないことを確認した。

第5.4表 原子炉附属建物の風荷重と地震荷重による層せん断力の比較

高さ	風荷重による 層せん断力① (kN)	設計用地震力による 層せん断力② (kN)	1/2
G.L.+26.7m	283.0	7,747	0.037
G.L.+13.7m	1, 443. 3	51, 110	0.028
G.L.+8.5m	2, 397. 5	113, 360	0.021
G.L.+0.2m	3, 029. 5	208, 990	0.014

NS 方向

EW 方向

高さ	風荷重による 層せん断力① (kN)	設計用地震力による 層せん断力② (kN)	1/2
G. L. +26. 7m	283.0	7, 482	0.038
G.L.+13.7m	1, 443. 9	48, 378	0.030
G.L.+8.5m	2, 456. 9	106, 290	0.023
G. L. +0. 2m	3, 103. 1	188, 350	0.016

6. 原子炉格納容器ドーム、アニュラス屋根スラブの評価

6.1 原子炉格納容器ドーム部分の評価

評価方法は、降下火砕物によって原子炉格納容器ドーム、アニュラス屋根スラブに生じる荷重 によって、発生する応力が短期許容応力値を上回らないことを確認する。算定する原子炉格納容 器ドーム、アニュラス屋根スラブ部分を第6.1図に示す。

評価には降下火砕物のほか屋根スラブの固定荷重、積載荷重、積雪荷重を考慮するものとし、 これらは重力によって下向きの荷重が作用しているものとする。

ドーム部分は、公式での許容応力度評価が困難であることから、FEM 弾性解析による評価を実施する。なお、FEM 弾性解析で用いた原子炉格納容器ドーム部分のモデルを第6.2 図に示す。

アニュラス部の屋根スラブは、等分布荷重を受ける片持ち梁として曲げモーメント、せん断力 を RC 規準等より算定する。

第6.1 図 原子炉格納容器ドーム、アニュラス屋根スラブ部分

第6.2図 原子炉格納容器ドーム部分のFEM解析モデル

6条(3)-別紙 3-22

6.2 許容値

- 6.2.1 原子炉格納容器ドーム 原子炉格納容器ドームの許容応力は、第3.5表に示すとおりとする。
- 6.2.2 アニュラス部屋根スラブ
 - (1) 許容曲げモーメント

許容曲げモーメントは、以下の式で算定する。

 $M_a = a_t \cdot f_t \cdot j$

- a_t :鉄筋断面積 (mm²)
- ft: :鉄筋の短期引張許容応力度(N/mm²)

(平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)

j:スラブの有効丈 (mm)

$$j = \frac{7}{8} \cdot d$$

d:スラブの有効せい (mm)

(2) 許容せん断力

許容せん断力は、以下の式で算出する。

$$Q_a = b \cdot j \cdot fs$$

 $b : スラブ幅 (mm)$
 $j : スラブの応力中心距離 (mm)$
 $j = \frac{7}{8} \cdot d$
 $d : スラブの有効せい (mm)$

6.3 評価結果

6.3.1 原子炉格納容器ドーム

原子炉格納容器ドームの降下火砕物による応力評価の結果、発生応力は 8.3N/mm² (8275kN/m²)、許容値 280.0N/mm²を上回らないことを確認した。

原子炉格納容器ドームのミーゼス応力コンターを第6.3図に示す。

6.3.2 アニュラス部屋根スラブ

アニュラス部屋根スラブの許容応力度計算の結果、発生する曲げモーメントは、短期許容曲 げモーメントを上回らないことを確認した。

アニュラス部屋根スラブの許容応力度評価結果を第6.1表に示す。

第6.3 図 原子炉格納容器ドームのミーゼス応力コンター

主冷却機建物に係る降下火砕物影響評価結果

1. 概要

降下火砕物から防護すべき安全機能を内包する主冷却機建物が設計降下火砕物荷重を考慮して も構造健全性に問題ないことを確認する。なお、ここでは、降灰予報等が発表され、多量の降灰が 生じるおそれが確認された場合には、原子炉を停止すること、また、降下火砕物を除去するために 必要な措置を講じることを降下火砕物発生時の対策の基本方針とするため、降下火砕物は短期荷重 として扱う。

- 2. 一般事項
 - 2.1 建物の位置

主冷却機建物の位置を第2.1図に示す。

第2.1図 主冷却機建物の位置

2.2 建物の構造概要

主冷却機建物は、約67m×約27mの矩形の平面形状を有する鉄筋コンクリート造の建物である。 主冷却機建物の全重量は約50,000tであり、基礎底面からの高さは約32mである。屋根について は、陸屋根構造を有する。

建物の断面図を第2.2図、建物屋上の平面図を第2.3図に示す。

核物質防護情報が含まれているため公開できません。

I

第2.2図 主冷却機建物の断面図

ł

第2.3図 主冷却機建物屋上の平面図

6条(3)-別紙 4-3

2.3 評価方針

主冷却機建物の降下火砕物に対する評価は、想定する降下火砕物の荷重に加えて、常時作用す る荷重及び自然現象(積雪、風)の荷重を適切に組み合せた荷重(以下「降下火砕物等の荷重」と いう。)を建物に作用させ、評価対象部位に作用する応力等が許容限界に収まることを確認する。

なお、屋根スラブの評価においては、許容応力度の比を用いた簡易評価で降下火砕物等の荷重 に耐えられるか確認し、不可となる部位について応力解析による詳細評価を行う。

また、降下火砕物の除去に係る手順を定め、降下火砕物を屋根から除去することにより長期に 荷重を掛け続けない対応を図ることから、降下火砕物等の荷重を短期に生じる荷重として評価す る。評価のフローを第2.4図に示す。

第2.4図 評価フロー

2.4 準拠規格·基準

準拠する基準、規格等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法施行細則
- (3) 平成 12 年建設省告示第 1454 号
- (4) 平成 12 年建設省告示第 2464 号
- (5) 鉄筋コンクリート構造計算規準・同解説 ―許容応力度設計法―(日本建築学会)(以下「RC 規準」という。)
- (6) 鋼構造設計規準 一許容応力度設計法—(日本建築学会)(以下「S規準」という。)
- (7) 2015 年版 建築物の構造関係技術基準解説書
- (8) 建築構造ポケットブック

3. 評価条件

3.1 評価対象部位

評価は、降下火砕物等の鉛直荷重が直接作用する屋根スラブ及び風荷重が作用する耐震壁を 評価対象部位として選定する。評価対象部位を第3.1表に示す。

建家名称	評価対象部位
主冷却機建物	屋根部材 ・屋根スラブ、大梁、小梁 ^{武雲時}
主冷却機建物	・屋根スラブ、大梁、/ 耐震壁

第3.1表 評価対象部位

3.2 荷重の設定及び組合せ

- (1)常時作用する荷重(DVL)
 常時作用する荷重は持続的に生じる荷重であり、構造体自重(自重:DL)、搭載する機器等の積載荷重(積載:LL)を考慮する。
- (2) 降下火砕物の荷重(VA) 敷地において設計上考慮する降下火砕物の層厚は 50cm、湿潤密度は 1.5g/cm³であり、降 下火砕物による鉛直荷重を 7,355 N/m²とする。
- (3) 積雪荷重(S)

積雪深さは、茨城県建築基準法施行細則第16条の4による大洗町の垂直積雪量30cmに平 均的な積雪荷重を与えるための係数0.35を乗じた10.5cmとして考慮する。また、積雪の単 位荷重は、建築基準法施行令第86条第2項により積雪量1cmごとに20N/m²であり、積雪に よる鉛直荷重を210N/m²とする。

(4) 風荷重(W)

風速は、建築基準法に基づく平成12年建設省告示第1454号に定められた大洗町の基準風速である34m/sとし、風荷重については、建物の形状により風力係数等が異なるため、建物ごとに算出する。

なお、建物に風の荷重が作用すると、屋根に対して鉛直上向きの荷重が働き、鉛直下向き の荷重が低減されるため、保守的に風による鉛直方向の荷重は考慮しない。

(5) 荷重の組合せ

評価対象部位ごとの組合せ荷重を第3.2表に示す。

評価対象部位	組合せ荷重
屋根部材	DVL+VA+0.35S
耐震壁	DVL+VA+0.35S+W

第3.2表 組合せ荷重

3.3 使用材料

使用材料及び許容応力度を第3.3表~第3.4表に示す。

第3.3表 コンクリートの許容応力度

(単位:N/mm²)

設計基準強度*1	長	期	短期		
Fc	圧縮	せん断	圧縮	せん断	
20. 59	6.86	0.69	13.73	1.03	

*1:設計基準強度は、210kg/cm²をSI単位換算。

第3.4表 鉄筋の許容応力度

(単位:N/mm²)

種類		長期		短期		
	鉄筋径	圧縮 引張	圧縮せん断引張補強筋		せん断 補強筋	
SD345 (SD35)*1	D29 未満	215	105	970 F* ²	270 F*2	
	D29 以上	195	195	379.5**	579.5-	
SD295 (SD30) *1	D13	195	195	324.5^{*2}	324.5^{*2}	

*1:()内は、建設当時 JIS 規格の種類を示す。

*2:平成12年建設省告示第2464号に基づき、鉄筋の基準強度の1.1倍の数値とする。

3.4 許容限界

各評価対象部位の許容限界を第3.5表に示す。

第3.5表 許容限界

評価対象部位	許容限界
屋根部材	終局耐力に対して妥当な安全裕度を有する許容限界
耐震壁	保有水平耐力以下

4. 建物屋根部材の評価

4.1 屋根スラブ

評価方法は、降下火砕物によって建物屋根スラブに生じる荷重によって、屋根スラブに発生す る応力が短期許容応力値を上回らないことを確認する。なお、評価には降下火砕物のほか屋根ス ラブの固定荷重、積載荷重、積雪荷重を考慮するものとし、これらは重力によって下向きの荷重 が作用しているものとする。

4.1.1 屋根スラブが受ける曲げモーメント

屋根スラブは、等分布荷重を受ける四辺固定スラブであり、スラブに発生する応力は、荷重

状態とスラブ周辺の支持条件で変化する。降下火砕物のほか屋根スラブの組合せ荷重により屋根スラブに発生する単位幅当たりの曲げモーメントは、RC規準より算定する。

算定する屋根スラブの位置を第4.1 図~第4.2 図の平面図に示す。評価対象は、機器積載範囲(B-1~B-5)で包絡される。

第4.1図 算定する 4F 屋根スラブの位置

第4.2図 算定する 2F 屋根スラブの位置

- 4.1.2 許容曲げモーメント及びせん断力
 - (1) 許容曲げモーメント

建物屋根スラブの単位幅当たりの許容曲げモーメントは、RC 規準より算定する。

- $M_a = a \cdot f_t \cdot j$
 - a :鉄筋断面積 (mm²)
 - f_t:鉄筋の短期引張許容応力度(N/mm²)

6条(3)-別紙 4-7

(平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)

j : スラブの有効丈 (mm)

$$j = \frac{7}{8} \cdot d$$

d:スラブの有効せい (mm)

(2) 許容せん断力

建物屋根スラブの単位幅当たりの許容せん断力は、以下の式で算定する。

 $Q_a = j \cdot f_s$ $f_s : コンクリートの短期許容せん断応力度 (N/mm²)$

4.1.3 評価結果

屋根スラブの許容応力度評価結果(代表:B-5)を第4.1表に示す。また、屋根スラブすべての許容応力度検定比を第4.2表に示す。

屋根スラブの許容応力度計算の結果、屋根スラブに発生する曲げモーメントは、短期許容曲 げモーメントを上回らないことを確認した。

		モーメント				せん断力	
評価スラブ	短辺		長辺		石辺		
番号	端部	中央	端部	中央			
	Mx1/Ma	Mx2/Ma	My1/Ma	My2/Ma	Qx/Qa	Qy/Qa	
B-1	0.55	0.37	0.45	0.30	0.22	0.21	
B-2	0.43	0.29	0.30	0.20	0.19	0.19	
B-3	0.48	0.32	0.33	0.22	0.21	0.21	
B-4	0.39	0.26	0.27	0.18	0.17	0.17	
B-5	0.56	0.38	0.40	0.27	0.29	0.28	

第4.2表 屋根スラブの許容応力度検定比

4.2 大梁、小梁

4.2.1 大梁、小梁が受ける曲げモーメント、せん断力

大梁は、大梁自体から受ける荷重、屋上スラブから受ける荷重、スラブ内に小梁がある場合 は小梁の集中荷重を考慮し、小梁は、小梁自体から受ける荷重、屋上スラブから受ける荷重を 考慮する。曲げモーメント、せん断力は、大梁が両端固定、小梁が両端ピン支持とし取り扱い、 RC 規準より算定する。

算定する大梁、小梁の位置を第4.3 図~第4.4 図の平面図に示す。評価対象は、機器積載範囲の梁(b-1~b-20)で包絡される。

第4.3図 算定する 4F 大梁、小梁の位置

第4.4図 算定する 2F 大梁、小梁の位置

- 4.2.2 許容曲げモーメント、せん断力
 - (1) 許容曲げモーメント

大梁、小梁の許容曲げモーメントは、RC 規準より算定する。

- $M_a = a \cdot f_t \cdot j$
 - a : 鉄筋断面積 (mm²)
 - f_t:鉄筋の短期引張許容応力度(N/mm²)
 (平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)
 - j :大梁、小梁の有効丈 (mm)

$$j = \frac{7}{8} \cdot d$$

d:大梁、小梁の有効せい(mm)

- (2) 許容せん断力
 - 大梁、小梁の許容せん断力は、RC 規準より算出する。

$$Q_{a} = b \cdot j \cdot \{\alpha \cdot f_{s} + 0.5 \cdot wf_{t} \cdot (p_{w} - 0.002)\}$$
ただし、

$$\alpha = \frac{4}{\frac{M}{Q \cdot d} + 1} \quad n \circ n \leq 2$$

$$b : 梁の幅、または T 形梁のウェブの幅 (mm)$$

$$j : 梁の応力中心距離 (mm)$$

$$j = \frac{7}{8} \cdot d$$

$$d : 大梁、小梁の有効せい (mm)$$

$$\alpha$$
:梁のせん断スパン比 $\frac{M}{Q \cdot a}$ による割増係数(-)

Q:梁の最大せん断力(N)

 $f_s: コンクリートの短期許容せん断応力度 (N/mm²)$

wft: せん断補強筋の短期許容引張応力度 (N/mm²)

4.2.3 評価結果

屋根スラブを支持する大梁、小梁の許容応力度計算の結果、大梁、小梁に発生する曲げモー メントは、短期許容曲げモーメントを上回らないことを確認した。

大梁、小梁の許容応力度評価結果(代表:b-2、b-17)を第4.3表に示す。また、大梁、小梁すべての許容応力度検定比を第4.4表に示す。

	FL		m	GL+24.4	GL+12.5
	評価番号	_	_	b-2	b-17
	位置	_	-	5~6,B~C	2,A~B
	梁符号	-	-	小梁Rg1	4BA2
	梁幅	b	mm	300	500
	梁せい	D	mm	700	1200
梁情報	梁長さ	I	mm	6600	8800
	かぶり厚さ	dt	mm	40	50
	有効せい	d	mm	660	1150
22.情報	有効丈	j	mm	577.50	1006.25
	鋼材種(主筋)	_	-	SD35	SD35(D29≦)
370. J == +D	鉄筋の許容短期引張応力度	ft	N/mm ²	379.5	379.5
梁情報	両端_上端筋A	_	-	2-D25	4-D32
	上端筋Aの断面積	Aat	mm ²	1014	3176
	両端_上端筋B	_	-	3-D25	4-D32
	上端筋Bの断面積	Bat	mm ²	1521	3176
	中央_下端筋	-	-	3-D25	6-D32
	下端筋の断面積	at	mm ²	1521	4764
	せん断補強筋	_	-	2-D13	2-D13
	せん断補強筋のピッチ	х	mm	200	250
	鋼材種(せん断補強筋)	-	-	SD35	SD35
	せん断補強筋の許容短期引張応力度	wft	N/mm ²	379.5	379.5
	せん断補強筋の断面積	aw	mm ²	254	254
	せん断補強筋の鉄筋比	pw	-	0.0042	0.0020
	鉄筋コンクリートの単位体積重量	γ	kN/m ³	23.54	23.54
	梁せい(スラブ厚分を引いたもの)	D	mm	500	1000
沕白舌	梁自重	$ b-2$ $b-17$ $ 5\sim 6, B\sim C$ $2, A\sim B$ $ WRg1$ $4BA2$ D mm 300 500 D mm 700 1200 d mm 6600 8800 dt mm 6600 8800 dt mm 577.50 1006.25 d mm 577.50 1006.25 p $ SD35$ $SD35(D29 \leq)$ g ft N/mn^2 379.5 379.5 g ft N/mn^2 379.5 $4-D32$ d mm^2 1014 3176 d mm^2 1025 $4-D32$ d mm^2 1521 3176 d mm^2 1521 379.5 d mm^2 254 254 d mm^2 2503 5035			
朱日里	梁自重による両端部モーメント	С	kN m	12.8	76.0
	梁自重による中央部モーメント	Mo	kN m	6.4	38.0
梁 車 発生モーメン ト、 予容モーメン ト、 許容モーメン ト、 検定比 検定比	梁自重によるせん断力	Qo	kN	11.7	51.8
	端部Aモーメント合計	C _A	kN m	192	956
発生モーメン	端部Bモーメント合計	CB	kN m	192	967
先生と グク	中央部モーメント合計	Mo	kN m	108	482
	端部Aせん断力合計	Q _A	kN	145	531
	端部Bせん断力合計	QB	kN	145	549
	端部A許容モーメント	C _A a	kN m	222	1213
許容モーメン	端部B許容モーメント	С _в а	kN m	333	1213
日本と グク	中央部許容モーメント	Ма	kN m	333	1819
許容モーメン ト、せん断力	端部A許容せん断力	Q _A a	kN	311	822
	端部B許容せん断力	Q _B a	kN	311	4764 2-D13 250 SD35 379.5 254 0.0020 23.54 1000 11.77 76.0 38.0 51.8 956 967 482 531 549 1213 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1
	C _A /C _A a(端部上端A)	-	-	0.86	0.79
梁良さ D Imm 0.00 深美さ 1 mm 6600 方ぶり厚さ dt mm 660 有効セい d mm 660 有効セい d mm 577.50 御材種(主筋) - - SD35 S 激励の容容短期引張た力度 ft N/mm² 379.5 L 「南端上端筋A - - 2-025 L 上端筋Aの断面積 Aat mm² 1014 Imm² 「南端上端筋B - - 3-025 L 上端筋Aの断面積 Bat mm² 1521 Imm² 中央「端筋 - - 3-025 L 「市 市 3-025 Imm² 1521 Imm² 中央「端筋の - - 2-013 Imm² セム断補強筋の管容短期引張応力度 wft N/m² 379.5 Imm² レた断補強筋の管容短期引張応力度 wft N/m² 379.5 Im² セム断補強筋の管容短期引張応力度 wft N/m² 379.5 </td <td>0.80</td>	0.80				
検定比	M/Ma(中央下端)	-	-	0.32	0.26
	Q _A /Q _A a(端部A)	-	_	0.47	0.65
特別へ j mm 577.30 鋼梯種(主筋) - - SD35 SD35 炭筋の許容短期引張た力度 ft N/mm ² 379.5 両端_上端筋A - - 2-125 44 上端筋Bの断面積 Aat mm ² 1014 1 両端_上端筋B - - 3-1025 44 上端筋Bの断面積 Bat mm ² 1521 1 中央下端筋 - - 3-1025 66 下端筋の断面積 Bat mm ² 1521 1 中央下端筋 - - 2-1013 2 ぜん断補強筋の<ビッチ	0.67				

第4.3表 大梁、小梁の許容応力度評価結果(代表:b-2、b-17)

部材番号	C _A /C _A a (端部A上端)	C _B /C _B a (端部B上端)	M/Ma (中央下端)	Q _A /Q _A a (端部A)	Q _B /Q _B a (端部B)	備考
b-1	0.07	0.15	0.06	0.12	0.12	
b-2	0.86	0.57	0.32	0.47	0.47	小梁
b-3	0.12	0.12	0.09	0.12	0.12	
b-4	0.26	0.32	0.31	0.28	0.28	
b-5	0.20	0.40	0.20	0.24	0.24	
b-6	0.28	0.28	0.31	0.28	0.28	
b-7	0.31	0.31	0.12	0.15	0.15	小梁
b-8	0.35	0.35	0.36	0.32	0.32	
b-9	0.35	0.35	0.28	0.26	0.26	
b-10	0.32	0.32	0.41	0.35	0.35	
b-11	0.76	0.76	0.24	0.49	0.49	小梁
b-12	0.47	0.48	0.40	0.44	0.46	
b-13	0.33	0.33	0.27	0.25	0.25	
b-14	0.41	0.94	0.30	0.51	0.50	小梁
b-15	0.94	0.47	0.37	0.54	0.54	小梁
b-16	0.33	0.33	0.12	0.41	0.41	
b-17	0.79	0.80	0.26	0.65	0.67	
b-18	0.41	0.42	0.32	0.42	0.44	
b-19	0.86	0.86	0.27	0.49	0.49	小梁
b-20	0.36	0.36	0.29	0.39	0.39	

第4.4表 大梁、小梁の許容応力度検定比

5. 建物耐震壁の評価

風荷重により耐震壁に発生するせん断ひずみを評価し、許容限界を超えないことを確認する。

5.1 風荷重の算出

風荷重は、建築基準法施行令第87条に基づき算出する。

なお、高さH(建築物の高さと軒の高さとの平均)が5m以上であるため、HがZbを超える場合の式を用いる。第5.1表に風荷重の計算条件、第5.2表に各高さにおける風荷重を示す。

 $W = q \cdot Cf$

W:風荷重(N/m²)

q:速度圧(N/m²)

Cf: 風力係数

ここで、

 $q = 0.6 \cdot E \cdot V_0^2 = 1,896$

E=Er²・Gf(速度圧の高さ方向の分布を示す係数)=2.734

Er=1.7・(H/ZG)^α (HがZbを超える場合) =1.140

Er=1.7・(Zb/ZG)^α (HがZb以下の場合)

6条(3)-別紙 4-14

基準風速 Vo (m/s)	高さ H (m)	Z _b (m)	Z _G (m)	α	ガスト 影響係数 Gf	速度圧 q (N/m²)
34	24.4	5	350	0.15	2.104	1,896

第5.1表 主冷却機建物の風荷重計算条件

高さ	部位	速度圧 q (N/m ²)	風力係数 Cf	風荷重 W=q・Cf (N/m ²)			
	パラペット	1,896	0.8-(-0.4)	2, 275. 2			
G.L.+24.4m	側壁	1,896	0.8-(-0.4)	2, 275. 2			
	パラペット	1,896	0.8-(-0.4)	2, 275. 2			
	屋上空調室	1,896	0.8-(-0.4)	2, 275. 2			
	主冷却機	1,896	2.1	3, 981. 6			
G. L. +12. 5m	ボイラー排気塔	1,896	0.7	1, 327. 2			
	ガラリ	1,896	0.8-(-0.4)	2, 275. 2			
	側壁	1,896	0.8-(-0.4)	2, 275. 2			
G. L. +4. 5m	ボイラー排気塔	1,896	0.7	1, 327. 2			
	側壁	1,896	0.8-(-0.4)	2, 275. 2			
	ガラリ	1,896	0.8-(-0.4)	2, 275. 2			
G. L. +0. 2m	ボイラー排気塔	1,896	0.7	1, 327. 2			
	側壁	1,896	0.8-(-0.4)	2, 275. 2			
	ガラリ	1,896	0.8 - (-0.4)	2, 275. 2			

第5.2表 主冷却機建物の各高さにおける風荷重

5.2 評価方法

建物形状を考慮した風荷重及び風の受圧面積から、建物質点系解析モデルの各質点高さでの風 荷重による層せん断力を算出する。

建物屋根に降下火砕物等の鉛直荷重を作用させると、耐震壁の復元力特性の評価法より、第1 折点が増加することが明らかである。よって、風荷重による層せん断力と地震荷重による層せん 断力を比較し、風荷重による層せん断力が下回る場合は、地震時の評価結果に包絡されことにな り、地震に対する評価において許容限界を超えていないことから、風荷重に対する評価も許容限 界を超えないことが確認できる。

包絡関係が確認できない場合は、風荷重の層せん断力により耐震壁に発生するせん断ひずみの 評価を行う。なお、隣接建物による風の遮断効果は、考慮しないものとする。

風荷重及び受圧面積を第5.3表に示す。主冷却機建物の質点系解析モデルを第5.1図に示す。

[57]

高さ	部位	風荷重 W=q・Cf (N/m ²)	受圧面積 (m ²)	水 ^立 (k	平力 N)	層 せん断力 (kN)
G.L.+24.4m	パラペット	2, 275. 2	9.4	21.4		
	側壁	2, 275. 2	86.3	196.3	217.7	217.7
G. L. +12. 5m	パラペット	1, 516. 8 758. 4	43. 6 34. 1	66. 1 25. 9		
	屋上空調室	2, 275. 2	55.7	126.7		
	主冷却機	3,981.6	249.7	994.2	2,034.3	2,252.0
	ボイラー排気塔	1, 327. 2	11.5	15.3		
	側壁	2, 275. 2	354.3	806.1		
G. L. +4. 5m	ボイラー排気塔	1, 327. 2	6.2	8.2		
	側壁	2, 275. 2	412.1	937.6	955.4	3, 207. 4
	ガラリ	2, 275. 2	4.2	9.6		
G. L. +0. 2m	ボイラー排気塔	1, 327. 2	2.4	3.2		
	側壁	2, 275. 2	157.5	358.3	366.9	3, 574. 3
	ガラリ	2, 275. 2	2.4	5.4		

NS 方向

EW 方向

高さ	部位	風荷重 W=q・Cf (N/m ²)	受圧面積 (m ²)	水平力 (kN)		層 せん断力 (kN)
G.L.+24.4m	パラペット	2, 275. 2	12.2	27.8	991 7	281.7
	側壁	2, 275. 2	111.6	253.9	201.7	
	パラペット	2, 275. 2	17.8	40.5		
G. L. +12. 5m	屋上空調室	2, 275. 2	51.0	116.1		
	主冷却機	3,981.6	94.0	374.3	1, 047. 4	1, 329. 1
	ガラリ	2, 275. 2	5.8	13.2		
	側壁	2, 275. 2	221.2	503.3		
G.L.+4.5m	側壁	2, 275. 2	168.5	383.4	406 6	1 725 7
	ガラリ	2, 275. 2	10.2	23.2	400.0	1, 755.7
G. L. +0. 2m	側壁	2, 275. 2	64.4	146.5	140.0	1, 884. 5
	ガラリ	2, 275. 2	1.0	2.3	148.8	

5.3 評価結果

第5.4表に風荷重と地震荷重による層せん断力の比較を示す。

風荷重による層せん断力と地震荷重による層せん断力を比較し、風荷重による層せん断力が地 震荷重による層せん断力を十分に下回り、耐震壁に発生するせん断ひずみは、地震時の評価結果 に包絡され、許容限界を超えないことを確認した。

第5.4表 主冷却機建物の風荷重と地震荷重による層せん断力の比較

高さ	風荷重による 層せん断力①	設計用地震力による 層せん断力②	1/2		
	(kN)	(kN)			
G.L.+24.4m	217.7	8,952	0.024		
G.L.+12.5m	2, 252. 0	49,006	0.046		
G. L. +4. 5m	3, 207. 4	60, 189	0.053		
G. L. +0. 2m	3, 574. 3	149, 500	0.024		

NS 方向

EW 方向

高さ	風荷重による 層せん断力① (kN)	設計用地震力による 層せん断力② (kN)	1/2
G.L.+24.4m	281.7	6, 460	0.044
G.L.+12.5m	1, 329. 1	36, 318	0.037
G. L. +4. 5m	1, 735. 7	44, 626	0.039
G. L. +0. 2m	1, 884. 5	158, 200	0.012

主冷却機のうち屋外部分に係る降下火砕物影響評価結果

1. 評価方針

主冷却機のうち屋外部分(以下、「屋外ダクト」という。)を対象とし、降下火砕物により、主冷却 機の空気流路の閉塞が生じないことを確認する。

2. 評価結果

2.1 降下火砕物の流入

原子炉停止時にあっても、自然通風により、最終ヒートシンクである大気に熱を輸送するため、 屋外ダクトには、上面開口部に向けた空気の流れが存在する。当該流況により、一定の粒径を下 回る降下火砕物が上面開口部から流入することを抑制できる。仮に、降下火砕物が屋外ダクトに 流入した場合にあっても、設計上考慮する降下火砕物の層厚 50cm に対して、屋外ダクト水平部 は約 300cm の高さを有しており、主冷却機の空気流路が閉塞されることはない。主冷却機屋外ダ クトを第1図に示す。

2.2 降下火砕物の水平ダクト部への積灰

屋外ダクト水平部に設計上考慮する降下火砕物が 50cm 積もった場合について、健全性を確認 するため、FEM 弾性解析による評価を実施する。FEM 弾性解析で用いた屋外ダクト水平部の図面 及び FEM モデルを第2図に示す。応力評価の結果、発生応力は 44.5N/mm² (44,500kN/m²)、許容 値 280.0N/mm²を上回らないことを確認した。屋外ダクト水平部のミーゼス応力コンターを第3 図に示す。

よって、屋外ダクトは、想定される降下火砕物が発生した場合において閉塞することはなく、降 下火砕物防護施設の安全機能が損なわれることはない。

第1図 主冷却機屋外ダクト

第2図 屋外ダクト水平部図面及びFEMモデル

第3図 屋外ダクト水平部ののミーゼス応力コンター

主排気筒に係る降下火砕物影響評価結果

1. 評価方針

主排気筒を対象とし、降下火砕物により、主排気筒の空気流路の閉塞が生じないことを確認する。

2. 評価結果

主排気筒の流路を第1図に示す。第1図より、スタック下部に50cmの降下火砕物の堆積を考慮しても流路(高さ:約400cm)が閉塞されることはなく、重要安全施設の安全機能が損なわれることはない。

第1図 主排気筒の空気流路

第一使用済燃料貯蔵建物に係る降下火砕物影響評価結果

1. 概要

降下火砕物から防護すべき安全機能を内包する第一使用済燃料貯蔵建物が設計降下火砕物荷重 を考慮しても構造健全性に問題ないことを確認する。なお、ここでは、降灰予報等が発表され、 多量の降灰が生じるおそれが確認された場合には、原子炉を停止すること、また、降下火砕物を 除去するために必要な措置を講じることを降下火砕物発生時の対策の基本方針とするため、降下 火砕物は短期荷重として扱う。

- 2. 一般事項
 - 2.1 建物の位置

第一使用済燃料貯蔵建物の位置を第2.1図に示す。

第2.1図 第一使用済燃料貯蔵建物の位置

2.2 建物の構造概要

第一使用済燃料貯蔵建物は、約26m×約32mの矩形の平面形状を有する鉄筋コンクリート造の 建物である。第一使用済燃料貯蔵建物の全重量は約26,000t であり、基礎底面からの高さは約 31m である。屋根については、陸屋根構造を有する。

建物の断面図を第2.2図、建物屋上の平面図を第2.3図に示す。

第2.2図 第一使用済燃料貯蔵建物の断面図

第2.3図 第一使用済燃料貯蔵建物屋上の平面図

2.3 評価方針

第一使用済燃料貯蔵建物の降下火砕物に対する評価は、想定する降下火砕物の荷重に加え て、常時作用する荷重及び自然現象(積雪、風)の荷重を適切に組み合せた荷重(以下「降下火 砕物等の荷重」という。)を建物に作用させ、評価対象部位に作用する応力等が許容限界に収ま ることを確認する。

なお、屋根スラブの評価においては、許容応力度の比を用いた簡易評価で降下火砕物等の荷 重に耐えられるか確認し、不可となる部位について応力解析による詳細評価を行う。

また、降下火砕物の除去に係る手順を定め、降下火砕物を屋根から除去することにより長期 に荷重を掛け続けない対応を図ることから、降下火砕物等の荷重を短期に生じる荷重として評 価する。評価のフローを第2.4 図に示す。

2.4 準拠規格·基準

準拠する基準、規格等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法施行細則
- (3) 平成 12 年建設省告示第 1454 号
- (4) 平成 12 年建設省告示第 2464 号
- (5) 鉄筋コンクリート構造計算規準・同解説 ―許容応力度設計法―(日本建築学会)(以下「RC 規準」という。)
- (6) 鋼構造設計規準 一許容応力度設計法—(日本建築学会)(以下「S規準」という。)
- (7) 2015 年版 建築物の構造関係技術基準解説書
- (8) 建築構造ポケットブック
- (9) 合成梁構造設計指針·解説

6条(3)-別紙 7-4
3. 評価条件

3.1 評価対象部位

評価は、降下火砕物等の鉛直荷重が直接作用する屋根スラブ及び風荷重が作用する耐震壁を 評価対象部位として選定する。評価対象部位を第3.1表に示す。

建家名称	評価対象部位
第一使用済燃料貯蔵建物	屋根部材 ・屋根スラブ、大梁、小梁 耐震壁

第3.1表 評価対象部位

3.2 荷重の設定及び組合せ

- (1)常時作用する荷重(DVL)
 常時作用する荷重は持続的に生じる荷重であり、構造体自重(自重:DL)、搭載する機器等の積載荷重(積載:LL)を考慮する。
- (2) 降下火砕物の荷重(VA) 敷地において設計上考慮する降下火砕物の層厚は 50cm、湿潤密度は 1.5g/cm³であり、降 下火砕物による鉛直荷重を 7,355 N/m²とする。
- (3) 積雪荷重(S)

積雪深さは、茨城県建築基準法施行細則第16条の4による大洗町の垂直積雪量30cmに平 均的な積雪荷重を与えるための係数0.35を乗じた10.5cmとして考慮する。また、積雪の単 位荷重は、建築基準法施行令第86条第2項により積雪量1cmごとに20N/m²であり、積雪に よる鉛直荷重を210N/m²とする。

(4) 風荷重(W)

風速は、建築基準法に基づく平成12年建設省告示第1454号に定められた大洗町の基準風速である34m/sとし、風荷重については、建物の形状により風力係数等が異なるため、建物ごとに算出する。

なお、建物に風の荷重が作用すると、屋根に対して鉛直上向きの荷重が働き、鉛直下向き の荷重が低減されるため、保守的に風による鉛直方向の荷重は考慮しない。

(5) 荷重の組合せ

評価対象部位ごとの組合せ荷重を第3.2表に示す。

評価対象部位	組合せ荷重
屋根部材	DVL+VA+0.35S
耐震壁	DVL+VA+0.35S+W

第3.2表 組合せ荷重

3.3 使用材料

使用材料及び許容応力度を第3.3表~第3.5表に示す。

第3.3表 コンクリートの許容応力度

(単位:N/mm²)

設計基準強度*1	長	期	短	期
Fc	圧縮	せん断	圧縮	せん断
20. 59	6.86	0.69	13.73	1.03

*1:設計基準強度は、210kg/cm²をSI単位換算。

第3.4表 鉄筋の許容応力度

(単位:N/mm²)

種	種類		長期		短期	
	鉄筋径	圧縮 引張	せん断 補強筋	圧縮 引張	せん断 補強筋	
SD345 (SD35)*1	D29 未満	215	105	270 5*2 270 5*2	270 F*2	
D29 以上	195	195	379.57	379.5**		
SD295 (SD30)*1	D13	195	195	324. 5^{*2}	324. 5 ^{*2}	

*1:()内は、建設当時 JIS 規格の種類を示す。

*2:平成12年建設省告示第2464号に基づき、鉄筋の基準強度の1.1倍の数値とする。

第3.5表 鋼材の許容応力度

(単位:N/mm²)

		基準強度		長期		短期	
種類	種類 F		F*	圧縮 引張 曲げ	せん断	圧縮 引張 曲げ	せん断
SS400*1 (SS41)*2	t \leq 16mm	245	280	163^{*3}	94. 3^{*3}	280*4	161^{*4}
SM490 ^{*1} (SM50) ^{*2}	t \leq 40mm	325	343	216.7	125. 1	343	198

*1:圧縮、曲げの許容応力度及び弾性限界は上限値であり、座屈長さなどを勘案して設定する。

*2:()内は、建設当時 JIS 規格の種類を示す。

*3: JSME NC1 規格に基づき、供用状態 A, C での数値(F*値より算出)を示す。

*4:JSME NC1 規格に基づき、供用状態 D での数値(F*値より算出)を示す。

3.4 許容限界

各評価対象部位の許容限界を第3.6表に示す。

第3.6表 許容限界

評価対象部位	許容限界
屋根部材	終局耐力に対して妥当な安全裕度を有する許容限界
耐震壁	保有水平耐力以下

4. 建物屋根部材の評価

4.1 屋根スラブ

評価方法は、降下火砕物によって建物屋根スラブに生じる荷重によって、屋根スラブに発生 する応力が短期許容応力値を上回らないことを確認する。なお、評価には降下火砕物のほか屋 根スラブの固定荷重、積載荷重、積雪荷重を考慮するものとし、これらは重力によって下向き の荷重が作用しているものとする。

4.1.1 屋根スラブが受ける曲げモーメント

屋根スラブは、等分布荷重を受ける四辺固定スラブであり、スラブに発生する応力は、荷 重状態とスラブ周辺の支持条件で変化する。降下火砕物のほか屋根スラブの組合せ荷重によ り屋根スラブに発生する単位幅当たりの曲げモーメントは、RC 規準より算定する。

算定する屋根スラブの位置を第4.1 図~第4.2 図の平面図に示す。評価対象は、機器積載範囲(C-1~C-2)で包絡される。

第4.1図 算定する屋上屋根スラブの位置

第4.2図 算定する 2F 屋根スラブの位置

4.1.2 許容曲げモーメント及びせん断力

(1) 許容曲げモーメント

建物屋根スラブの単位幅当たりの許容曲げモーメントは、RC 規準より算定する。

- $M_a = a \cdot f_t \cdot j$
 - a :鉄筋断面積 (mm²)
 - f_t:鉄筋の短期引張許容応力度(N/mm²)

(平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)

j:スラブの有効丈 (mm)

$$j = \frac{7}{8} \cdot d$$

d:スラブの有効せい(mm)

(2) 許容せん断力

建物屋根スラブの単位幅当たりの許容せん断力は、以下の式で算定する。

 $Q_a = j \cdot f_s$

fs : コンクリートの短期許容せん断応力度 (N/mm²)

4.1.3 評価結果

屋根スラブの許容応力度評価結果(代表:C-1)を第4.1表に示す。また、屋根スラブすべての許容応力度検定比を第4.2表に示す。

屋根スラブの許容応力度計算の結果、屋根スラブに発生する曲げモーメントは、短期許容曲 げモーメントを上回らないことを確認した。

6条(3)-別紙 7-8

		モーン	せん	断力		
評価スラブ	短辺		長	辺	右辺	長辺
番号	端部	中央	端部	中央	<u>Vir 167</u>	KE
	Mx1/Ma	Mx2/Ma	My1/Ma	My2/Ma	Qx1/Qa	Qy1/Qa
C-1	0.25	0.17	0.29	0.19	0.13	0.12
C-2	0.65	0.43	0.74	0.49	0.19	0.19

第4.2表 屋根スラブの許容応力度検定比

4.2 大梁、小梁

4.2.1 大梁、小梁が受ける曲げモーメント、せん断力

大梁は、大梁自体から受ける荷重、屋上スラブから受ける荷重、スラブ内に小梁がある場合は小梁の集中荷重を考慮し、小梁は、小梁自体から受ける荷重、屋上スラブから受ける荷 重を考慮する。曲げモーメント、せん断力は、大梁が両端固定、小梁が両端ピン支持とし取 り扱い、RC 規準等より算定する。

算定する大梁、小梁の位置を第4.3図~第4.4図の平面図に示す。評価対象は、機器積載 範囲の梁(c-1~c-9)で包絡される。

第4.3図 算定する屋上大梁、小梁の位置

[77]

第4.4図 算定する 2F 大梁、小梁の位置

4.2.2 許容曲げモーメント、せん断力

(1) 許容曲げモーメント RCの大梁、小梁の許容曲げモーメントは、RC 規準より算定する。

 $M_a = a \cdot f_t \cdot j$

a :鉄筋断面積 (mm²)

 ft: 鉄筋の短期引張許容応力度(N/mm²)
 (平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)

j : 大梁、小梁の有効丈 (mm)

 $j = \frac{7}{8} \cdot d$

d:大梁、小梁の有効せい(mm)

鉄骨の大梁、小梁の許容曲げモーメントは、以下の式で算定する。

 $M_a = f_b \cdot Z$

M_a:屋根鉄骨の大梁、小梁の許容曲げモーメント

f_b:鉄骨の横座屈許容応力度

(2) 許容せん断力

RCの大梁、小梁の許容せん断力は、RC 規準より算出する。

 $\begin{aligned} Q_a &= b \cdot j \cdot \left\{ \alpha \cdot f_s + 0.5 \cdot {}_w f_t \cdot (p_w - 0.002) \right\} \\ & \text{ttl}. \end{aligned}$

6条(3)-別紙 7-11

 $\alpha = \frac{4}{\frac{M}{Q \cdot d} + 1} \quad \text{in } 1 \leq \alpha \leq 2$ **b**:梁の幅、またはT形梁のウェブの幅(mm) *i*:梁の応力中心距離(mm) $j = \frac{7}{8} \cdot d$ d:大梁、小梁の有効せい(mm) $\alpha: 梁のせん断スパン比<u>M</u>による割増係数(-)$ M:梁の最大曲げモーメント (N・mm) **Q**:梁の最大せん断力(N) $f_s: コンクリートの短期許容せん断応力度 (N/mm²)$ wft: せん断補強筋の短期許容引張応力度 (N/mm²) 鉄骨の大梁、小梁の許容せん断力は、以下の式で算出する。 $Q_a = min(Qa, Qba, Qga)$ **0a**:鉄骨の許容せん断力(N) $Qa = {}_{s}f_{s} \cdot A_{we}$ 。f: 鉄骨の短期許容せん断応力度 (N/mm²) Awe: 鉄骨の断面積 (mm²) $A_{we} = \alpha \cdot A_w$ α : ウェブ断面低減率 (-) *A_w*:鉄骨の断面積 (mm²) Qba: 接続ボルトの許容せん断力 (N) $Qba = q_{b1} \cdot n$ qh1:接続ボルト1本あたりの短期許容せん断力(N) *n* : 接続ボルト本数(-) Qga:ガセットプレートの許容せん断力 (N) $Qga = {}_{s}f_{s} \cdot tg \cdot he$ sfs:短期許容せん断応力度(N/mm²) tg:ガセットプレート板厚 (mm) he: ガセットプレートボルト穴考慮せい(mm)

4.2.3 評価結果

屋根スラブを支持する大梁、小梁の許容応力度計算の結果、大梁、小梁に発生する曲げモー メントは、小梁 c-1 及び大梁 c-8 以外は、短期許容曲げモーメントを上回らないことを確認した。

大梁、小梁の許容応力度評価結果(代表: c-4、c-6)を第4.3表に示す。また、大梁、小梁すべての許容応力度検定比を第4.4表に示す。ピン支持となる小梁(鉄骨) c-1 について

は、中央の曲げモーメントの検定比 1.07 と 1.0 を超過するため、合成梁構造設計指針・解説 より鉄骨梁とスラブが一体となった構造であることを考慮して、合成梁として許容応力度計 算を実施した。合成梁の評価結果を第 4.5 表に示す。大梁 c-8 については、端部の曲げモー メントの検定比 1.23 と 1.0 を超過するため、RC 規準より長方形梁とスラブが一体となった 構造であることを考慮して、T 形梁として許容応力度計算を実施した。T 形梁の評価結果を第 4.6 表に示す。

合成梁として小梁(鉄骨) c-1 を評価した結果、鉄骨梁下端部の発生応力度 96.7N/mm²に対して、鋼材許容応力度は 258.5N/mm²となり、検定比 0.37 と許容値を満足することを確認した。

また、T 形梁として大梁 c-8 を評価した結果、端部に発生する曲げモーメント 545kN・m に 対して、端部短期許容曲げモーメントは 635kN・m となり、検定比 0.86 と許容値を満足する ことを確認した。

	FL	-	m	GL+16.4	GL+10.4
	評価番号	-	-	c-4	c-6
	位置	-	-	6,B~C	1~2,A
	梁符号	-	-	bRG2	aRG7
	梁幅	b	mm	500	800
	梁せい	D	mm	1300	1000
	梁長さ	I	mm	8000	6500
	かぶり厚さ	dt	mm	120	120
	有効せい	d	mm	1180	880
	有効丈	j	mm	1032.50	770.00
	鋼材種(主筋)	-	-	SD35(D29≦)	SD35(D29≦)
	鉄筋の許容短期引張応力度	ft	N/mm ²	379.5	379.5
梁情報	両端_上端筋A	-	_	4-D29	4-D32
	上端筋Aの断面積	Aat	mm ²	2568	3176
	両端_上端筋B	-	-	4-D29	4-D32
	上端筋Bの断面積	Bat	mm ²	2568	3176
	中央_下端筋	-	-	4-D29	4-D32
	下端筋の断面積	at	mm ²	2568	3176
	せん断補強筋	-	-	2-D13	4-D13
	せん断補強筋のピッチ	х	mm	200	200
	鋼材種(せん断補強筋)	-	-	SD30	SD30
	せん断補強筋の許容短期引張応力度	wft	N/mm ²	324.5	324.5
	せん断補強筋の断面積	aw	mm ²	254	508
	せん断補強筋の鉄筋比	pw	-	0.0025	0.0032
	鉄筋コンクリートの単位体積重量	γ	kN/m ³	23.54	23.54
	梁せい(スラブ厚分を引いたもの)	D	mm	1075	800
沙 白舌	梁自重	W	kN/m	12.7	15.1
朱日里	梁自重による両端部モーメント	С	kN m	67.5	53.0
	梁自重による中央部モーメント	Mo	kN m	33.7	26.5
	梁自重によるせん断力	Qo	kN	50.6	49.0
	端部Aモーメント合計	C _A	kN m	352	340
登生モーメン	端部Bモーメント合計	CB	kN m	352	340
ん せん断力	中央部モーメント合計	Mo	kN m	199	285
	端部Aせん断力合計	Q _A	kN	228	238
	端部Bせん断力合計	QB	kN	228	238
	端部A許容モーメント	C _A a	kN m	1006	928
許容モーメン	端部B許容モーメント	С _в а	kN m	1006	928
ト、せん断力	中央部許容モーメント	Ma	kN m	1006	928
	端部A許容せん断力	Q _A a	kN	966	1085
	端部B許容せん断力	Q _B a	kN	966	1085
	C _A /C _A a(端部上端A)	-	-	0.35	0.37
	C _B /C _B a(端部上端B)	-	-	0.35	0.37
検定比	M/Ma(中央下端)	-	-	0.20	0.31
	Q _A /Q _A a(端部A)	-	-	0.24	0.22
	Q _B /Q _b a(端部B)	-	-	0.24	0.22

第4.3 表 大梁、小梁の許容応力度評価結果(代表: c-4、c-6)

회사포므	C _A /Ma	C _B /Ma	Mo/Ma	Q _A /Qa	Q _B /Qa
	(端部A上端)	(端部B上端)	(中央下端)	(端部A)	(端部B)
c-1(鉄骨小梁)	0.00	0.00	1.07	0.24	0.24
c-2	0.10	0.10	0.05	0.08	0.08
c-3(鉄骨大梁)	0.92	0.92	0.47	0.35	0.35
c-4	0.35	0.35	0.20	0.24	0.24
c-5	0.17	0.17	0.13	0.11	0.11
c-6	0.37	0.37	0.31	0.22	0.22
c-7	0.17	0.13	0.16	0.22	0.22
c-8	1.23	1.23	0.38	0.31	0.31
c-9	0.26	0.26	0.13	0.16	0.16

第4.4表 大梁、小梁の許容応力度検定比

第4.5表 小梁(鉄骨) c-1 を合成梁とした許容応力度評価結果

左側 右側 592 199 592 t= 200 50			
440			
百日	함문	教値	用任
た側	a	1751.0	⊥ mm
	a	1751.0	mm
深スパン	1	6500	mm
左側	ba	592.5	mm
「「「」「」「」」「」」	ba	592.5	mm
スラブ筋ピッチ		300	mm
縁側スラブ筋最大本数		4.6	本
考慮するスラブ筋本数		0	本
合成梁の弾性剛性算定に用いる床スラブの有効幅	В	1383	mm
	D	696	mm
Ⅰ形綱の高さ	Н	446	mm
Ⅰ形鋼の幅	В	199	mm
Ⅰ形綱の厚さ	t1	8	mm
形綱の厚さ	t2	12	mm
鉄骨梁の全断面積	sa	8297	mm ²
	sAw	3376	mm ²
鉄骨梁の断面二次モーメント	sl	2.81E+08	mm ⁴
	sd	473	mm
	pt	0.01268	-
	t1	0.42283	-
	n	15	-
判定		中立軸床スラ	ラブ外
判定	:中立軸床ス	ラブ外のとき	
中立軸	xn	215.75	mm
有効等価断面二次モーメント	cln	1.14E+09	mm ⁴
スラブ上端の断面係数	cZc	7.92E+07	mm ³
鉄骨梁下端の断面係数	cZt	2.37E+06	mm ³
発生曲げモーメント	M(中央)	226.9	kN•m
発生応力度(スラブ上端)	σbs	2.87	N/mm ²
発生応力度(鉄骨梁下端)	σbr	95.7	N/mm ²
CON許容応力度	fc	14.7	N/mm ²
鋼材許容応力度	1.1F	258.5	N/mm ²
検定比(スラブ上端)	σbs/fc	0.19	
検定比(鉄骨梁下端)	σ br/1.1F	0.37	

6条(3)-別紙 7-16

第4.6表 大梁 c-8をT 形梁とした許容応力度評価結果

左側			
953 600 865			
200			
1000			
TE B	#3 <u>8</u>	粉店	出任
「取渉の右効値」	- 記万 	<u> 秋</u> 恒 2/18	 mm
	D	1200	mm
「「「「」」「「」」「「」」「」」「「」」「「」」「」」「」」「」」「」」「」	dt	50	mm
	dc	50	mm
有効せい	d	1150	mm
	at1	1161	mm ²
 スラブ筋断面積	at2	426	mm ²
T形梁の有効上端筋断面積(許容応力度考慮)	at	1525	mm ²
下端筋断面積	ac	1935	mm ²
左側スラブ	а	2950	mm
右側スラブ	а	2450	mm
梁スパン	L	10000	mm
左側協力幅	ba	953	mm
右側協力幅	ba	865	mm
スラブ筋ピッチ	0	300	mm
コンクリートの短期許容圧縮応力度	fc	13.7	N/mm ²
梁鉄筋の短期許容引張応力度(SD35)	ft	379.5	N/mm ²
スラブ鉄筋の短期許容引張応力度(SD30)	ft	324.5	N/mm ²
鉄筋のヤング係数	Es	205000	N/mm ²
コンクリートのヤング係数	Ec	21541	N/mm ²
	n	9.52	
T形梁の断面積	А	1083600	mm ²
重心位置	g	761.6	mm
圧縮縁側スラブ筋最大本数		6.06	本
考慮するスラブ筋本数		6	本
中立軸までの距離(Ts-(Cs+Cc)=0となる位置)	Xn	196.79	mm
	σε	39.88	N/mm ²
{(n · c σ c · (d-xn/xn)}	sσt	379.5	N/mm ²
{(n-1) · c σ c · (xn-dc/xn)}	sσc	52.3	N/mm ²
コンクリートの短期許容圧縮応力度	fc=cσc	8.23	N/mm ²
引張鉄筋の合力	Ts	579	kN
上	Cs	101	kN
圧縮コンクリートの合力	Cc	486	kN
許容応力度	Ma	635	kN·m
発生応力(端部上端A)	M	545	kN·m
	M/Ma	0.86	

6条(3)-別紙 7-17

5. 建物耐震壁の評価

風荷重により耐震壁に発生するせん断ひずみを評価し、許容限界を超えないことを確認する。 5.1 風荷重の算出

風荷重は、建築基準法施行令第87条に基づき算出する。

なお、高さH(建築物の高さと軒の高さとの平均)が5m以上であるため、HがZbを超える場合の式を用いる。第5.1表に風荷重の計算条件、第5.2表に各高さにおける風荷重を示す。

 $W = q \cdot Cf$

W:風荷重(N/m²)

q:速度圧(N/m²)

Cf: 風力係数

 $q = 0.6 \cdot E \cdot V_0^2 = 1,726$

E=Er²・Gf(速度圧の高さ方向の分布を示す係数) =2.488

Er=1.7・(H/ZG)^α (HがZbを超える場合) =1.074

Er=1.7・(Zb/ZG)^α (HがZb以下の場合)

第5.1表 第一使用済燃料貯蔵建物の風荷重計算条件

基準風速 V ₀ (m/s)	高さ H (m)	Z _b (m)	Z _G (m)	α	ガスト 影響係数 Gf	速度圧 q (N/m ²)
34	16.4	5	350	0.15	2.157	1,726

第5.2表 第一使用済燃料貯蔵建物の各高さにおける風荷重

高さ	部位	速度圧 q (N/m ²)	風力係数 Cf	風荷重 W=q・Cf (N/m ²)
	パラペット	1,726	0.8-(-0.4)	2,071.2
G. L. +10. 4m	側壁	1,726	0.8-(-0.4)	2,071.2
	パラペット	1,726	0.8-(-0.4)	2,071.2
$C_{1} + 10.4m$	排気塔	1,726	0.7	1, 208. 2
G. L. +10. 4m	屋上出入口	1,726	0.8-(-0.4)	2,071.2
	側壁	1, 726	0.8-(-0.4)	2,071.2
G. L. +4. 7m	側壁	1, 726	0.8-(-0.4)	2,071.2
G.L.+0.2m	側壁	1,726	0.8-(-0.4)	2,071.2

5.2 評価方法

建物形状を考慮した風荷重及び風の受圧面積から、建物質点系解析モデルの各質点高さでの 風荷重による層せん断力を算出する。

建物屋根に降下火砕物等の鉛直荷重を作用させると、耐震壁の復元力特性の評価法より、第1 折点が増加することが明らかである。よって、風荷重による層せん断力と地震荷重による層せん 断力を比較し、風荷重による層せん断力が下回る場合は、地震時の評価結果に包絡されことにな り、地震に対する評価において許容限界を超えていないことから、風荷重に対する評価も許容限 界を超えないことが確認できる。

包絡関係が確認できない場合は、風荷重の層せん断力により耐震壁に発生するせん断ひずみ の評価を行う。なお、隣接建物による風の遮断効果は、考慮しないものとする。

風荷重及び受圧面積を第5.3表に示す。第一使用済燃料貯蔵建物の質点系解析モデルを第5.1 図に示す。

高さ	部位	風荷重 W=q・Cf (N/m ²)	受圧面積 (m ²)	水习 (k	ヹ力 N)	層 せん断力 (kN)
C I 16 4m	パラペット	2,071.2	25.3	52.4	961 9	961 9
G. L. 710, 4m	側壁	2,071.2	101.1	209.4	201. 0	201. 8
	パラペット	2,071.2	45.5	94.2		
G.L.+10.4m	排気塔	1, 208. 2	18.9	22.8	525.3	787.1
	側壁	2,071.2	197.1	408.3		
G. L. +4. 7m	側壁	2,071.2	171.9	356.1	356.1	1, 143. 2
G.L.+0.2m	側壁	2,071.2	82.6	171.1	171.1	1, 314. 3

NS 方向

EW 方向

高さ	部位	風荷重 W=q・Cf (N/m ²)	受圧面積 (m ²)	水 ^立 (k	平力 N)	層 せん断力 (kN)
$C \downarrow \pm 16 \ 4m$	パラペット	2,071.2	15.0	31.1	155 9	155 9
G. L. +10. 4Ⅲ	側壁	2,071.2	59.9	124.1	155.2	155.2
	パラペット	2,071.2	13.5	27.9		
C I + 10.4m	排気塔	1, 208. 2	18.9	22.8	259 F	E07 7
G. L. ⊤10. 4m	屋上出入口	2,071.2	8.3	17.2	552. 5	507.7
	側壁	2,071.2	137.4	284.6		
G.L.+4.7m	側壁	2,071.2	138.7	287.3	287.3	795.0
G. L. +0. 2m	側壁	2,071.2	66.6	138.0	138.0	933.0

第5.1 図 第一使用済燃料貯蔵建物の質点系解析モデル

5.3 評価結果

第5.4表に風荷重と地震荷重による層せん断力の比較を示す。

風荷重による層せん断力と地震荷重による層せん断力を比較し、風荷重による層せん断力が 地震荷重による層せん断力を十分に下回り、耐震壁に発生するせん断ひずみは、地震時の評価結 果に包絡され、許容限界を超えないことを確認した。

第5.4表 第一使用済燃料貯蔵建物の風荷重と地震荷重による層せん断力の比較

	NS	S方向	
高さ	風荷重による 層せん断力① (kN)	設計用地震力による 層せん断力② (kN)	1)/2
G.L.+16.4m	261.8	11,776	0.022
G.L.+10.4m	787.1	27, 685	0.028
G.L.+4.7m	1, 143. 2	40, 770	0.028
G.L.+0.2m	1, 314. 3	87, 103	0.015

EW 方向

	L	" /J [•]	
高さ	風荷重による 層せん断力① (kN)	設計用地震力による 層せん断力② (kN)	1/2
G.L.+16.4m	155.2	11,053	0.014
G.L.+10.4m	507.7	25, 603	0.020
G. L. +4. 7m	795.0	36, 973	0.022
G.L.+0.2m	933. 0	84, 175	0.011

第二使用済燃料貯蔵建物に係る降下火砕物影響評価結果

1. 概要

降下火砕物から防護すべき安全機能を内包する第二使用済燃料貯蔵建物が設計降下火砕物荷重 を考慮しても構造健全性に問題ないことを確認する。なお、ここでは、降灰予報等が発表され、 多量の降灰が生じるおそれが確認された場合には、原子炉を停止すること、また、降下火砕物を 除去するために必要な措置を講じることを降下火砕物発生時の対策の基本方針とするため、降下 火砕物は短期荷重として扱う。

- 2. 一般事項
 - 2.1 建物の位置

第二使用済燃料貯蔵建物の位置を第2.1図に示す。

第2.1図 第二使用済燃料貯蔵建物の位置

2.2 建物の構造概要

第二使用済燃料貯蔵建物は、約26m×約26mのほぼ正方形の平面形状を有する鉄筋コンクリート造の建物である。第二使用済燃料貯蔵建物の全重量は約28,000tであり、基礎底面からの高さは約33mである。屋根については、陸屋根構造を有する。

建物の断面図を第2.2図、建物屋上の平面図を第2.3図に示す。

核物質防護情報が含まれているため公開できません。

第2.2図 第二使用済燃料貯蔵建物の断面図

第2.3図 第二使用済燃料貯蔵建物屋上の平面図

2.3 評価方針

第二使用済燃料貯蔵建物の降下火砕物に対する評価は、想定する降下火砕物の荷重に加え て、常時作用する荷重及び自然現象(積雪、風)の荷重を適切に組み合せた荷重(以下「降下火 砕物等の荷重」という。)を建物に作用させ、評価対象部位に作用する応力等が許容限界に収ま ることを確認する。

なお、屋根スラブの評価においては、許容応力度の比を用いた簡易評価で降下火砕物等の荷 重に耐えられるか確認し、不可となる部位について応力解析による詳細評価を行う。

また、降下火砕物の除去に係る手順を定め、降下火砕物を屋根から除去することにより長期 に荷重を掛け続けない対応を図ることから、降下火砕物等の荷重を短期に生じる荷重として評 価する。評価のフローを第2.4 図に示す。

第2.4図 評価フロー

2.4 準拠規格·基準

準拠する基準、規格等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法施行細則
- (3) 平成 12 年建設省告示第 1454 号
- (4) 平成 12 年建設省告示第 2464 号
- (5) 鉄筋コンクリート構造計算規準・同解説 ―許容応力度設計法―(日本建築学会)(以下「RC 規準」という。)
- (6) 鋼構造設計規準 一許容応力度設計法—(日本建築学会)(以下「S規準」という。)
- (7) 2015 年版 建築物の構造関係技術基準解説書
- (8) 建築構造ポケットブック
- (9) 合成梁構造設計指針·解説

6条(3)-別紙 8-4

3. 評価条件

3.1 評価対象部位

評価は、降下火砕物等の鉛直荷重が直接作用する屋根スラブ及び風荷重が作用する耐震壁を 評価対象部位として選定する。評価対象部位を第3.1表に示す。

建家名称	評価対象部位
第二使用済燃料貯蔵建物	屋根部材 ・屋根スラブ、大梁、小梁 耐震壁

第3.1表 評価対象部位

3.2 荷重の設定及び組合せ

- (1)常時作用する荷重(DVL)
 常時作用する荷重は持続的に生じる荷重であり、構造体自重(自重:DL)、搭載する機器等の積載荷重(積載:LL)を考慮する。
- (2) 降下火砕物の荷重(VA) 敷地において設計上考慮する降下火砕物の層厚は 50cm、湿潤密度は 1.5g/cm³であり、降 下火砕物による鉛直荷重を 7,355 N/m²とする。
- (3) 積雪荷重(S)

積雪深さは、茨城県建築基準法施行細則第16条の4による大洗町の垂直積雪量30cmに平 均的な積雪荷重を与えるための係数0.35を乗じた10.5cmとして考慮する。また、積雪の単 位荷重は、建築基準法施行令第86条第2項により積雪量1cmごとに20N/m²であり、積雪に よる鉛直荷重を210N/m²とする。

(4) 風荷重(W)

風速は、建築基準法に基づく平成12年建設省告示第1454号に定められた大洗町の基準風速である34m/sとし、風荷重については、建物の形状により風力係数等が異なるため、建物ごとに算出する。

なお、建物に風の荷重が作用すると、屋根に対して鉛直上向きの荷重が働き、鉛直下向き の荷重が低減されるため、保守的に風による鉛直方向の荷重は考慮しない。

(5) 荷重の組合せ

評価対象部位ごとの組合せ荷重を第3.2表に示す。

評価対象部位	組合せ荷重
屋根部材	DVL+VA+0.35S
耐震壁	DVL+VA+0.35S+W

第3.2表 組合せ荷重

3.3 使用材料

使用材料及び許容応力度を第3.3表~第3.5表に示す。

第3.3表 コンクリートの許容応力度

(単位:N/mm²)

設計基準強度*1	長	期	短	期
Fc	圧縮	せん断	圧縮	せん断
22.06	7.35	0.71	14.71	1.07

*1:設計基準強度は、225kg/cm²をSI単位換算。

第3.4表 鉄筋の許容応力度

(単位:N/mm²)

種	類	長	期	短	期
	鉄筋径	圧縮 引張	せん断 補強筋	圧縮 引張	せん断 補強筋
SD345 (SD35)*1	D29 未満	215	105	270 F*2	270 F*2
	D29 以上	195	195	379.5 -	379.5 -
SD295 (SD30) *1	D13	195	195	324.5^{*2}	324.5^{*2}

*1:()内は、建設当時 JIS 規格の種類を示す。

*2:平成12年建設省告示第2464号に基づき、鉄筋の基準強度の1.1倍の数値とする。

第3.5表 鋼材の許容応力度

(単位:N/mm²)

		基準	強度	ŀ	長期	短	期
種类	領	F	F*	圧縮 引張 曲げ	せん断	圧縮 引張 曲げ	せん断
SS400*1 (SS41)*2	t \leq 16mm	245	280	163^{*3}	94. 3 ^{*3}	280*4	161^{*4}
SM490 ^{*1} (SM50) ^{*2}	t \leq 40mm	325	343	216.7	125.1	343	198

*1:圧縮、曲げの許容応力度及び弾性限界は上限値であり、座屈長さなどを勘案して設定する。

*2:()内は、建設当時 JIS 規格の種類を示す。

*3: JSME NC1 規格に基づき、供用状態 A, C での数値(F*値より算出)を示す。

*4:JSME NC1 規格に基づき、供用状態 D での数値(F*値より算出)を示す。

3.4 許容限界

各評価対象部位の許容限界を第3.6表に示す。

第3.6表 許容限界

評価対象部位	許容限界
屋根部材	終局耐力に対して妥当な安全裕度を有する許容限界
耐震壁	保有水平耐力以下

- 4. 建物屋根部材の評価
 - 4.1 屋根スラブ

評価方法は、降下火砕物によって建物屋根スラブに生じる荷重によって、屋根スラブに発生 する応力が短期許容応力値を上回らないことを確認する。なお、評価には降下火砕物のほか屋 根スラブの固定荷重、積載荷重、積雪荷重を考慮するものとし、これらは重力によって下向き の荷重が作用しているものとする。

4.1.1 屋根スラブが受ける曲げモーメント

屋根スラブは、等分布荷重を受ける四辺固定スラブであり、スラブに発生する応力は、荷 重状態とスラブ周辺の支持条件で変化する。降下火砕物のほか屋根スラブの組合せ荷重によ り屋根スラブに発生する単位幅当たりの曲げモーメントは、RC 規準より算定する。

算定する屋根スラブの位置を第4.1図~第4.2図の平面図に示す。評価対象は、機器積載範囲(D-1~D-3)で包絡される。

第4.1図 算定する屋上屋根スラブの位置

第4.2図 算定する 3F 屋根スラブの位置

- 4.1.2 許容曲げモーメント及びせん断力
 - (1) 許容曲げモーメント 建物屋根スラブの単位幅当たりの許容曲げモーメントは、RC 規準より算定する。
 - $M_a = a \cdot f_t \cdot j$
 - a :鉄筋断面積 (mm²)
 - ft :鉄筋の短期引張許容応力度 (N/mm²)
 - (平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)
 - j : スラブの有効丈 (mm)

$$j = \frac{7}{8} \cdot d$$

d:スラブの有効せい(mm)

(2) 許容せん断力

建物屋根スラブの単位幅当たりの許容せん断力は、以下の式で算定する。

$$Q_a = j \cdot f_s$$

 $f_s : コンクリートの短期許容せん断応力度 (N/mm2)$

4.1.3 評価結果

屋根スラブの許容応力度評価結果(代表:D-1)を第4.1表に示す。また、屋根スラブすべての許容応力度検定比を第4.2表に示す。

屋根スラブの許容応力度計算の結果、屋根スラブに発生する曲げモーメントは、短期許容曲 げモーメントを上回らないことを確認した。

	第4.1表	屋根スラブの許容応力度評価結果	艮(代表:D−1)	
1				
1				
1				
1				
	核物質防	護情報が含まれているため公開で	できません。	
	核物質防	護情報が含まれているため公開で	できません。	
	核物質防	護情報が含まれているため公開で	できません。	
	核物質阱	護情報が含まれているため公開で	できません。	
	核物質防	護情報が含まれているため公開で	できません。	
	核物質阱	護情報が含まれているため公開で	できません。	
	核物質防	護情報が含まれているため公開で	できません。	
	核物質阱	護情報が含まれているため公開で	できません。	
	核物質阱	護情報が含まれているため公開で	できません。	
	核物質阱	護情報が含まれているため公開で	できません。	
	核物質阱	「護情報が含まれているため公開で	できません。	
	核物質阱	「護情報が含まれているため公開で	できません。	

	モーメント				せん断力	
評価スラブ	短辺		長辺		右ゴ	上辺
番号	端部	中央	端部	中央	<u>Vir 101</u>	
	Mx1/Ma	Mx2/Ma	My1/Ma	My2/Ma	Qx1/Qa	Qy1/Qa
D-1	0.76	0.51	0.70	0.47	0.23	0.24
D-2	0.32	0.21	0.24	0.16	0.13	0.12
D-3	0.52	0.34	0.42	0.28	0.23	0.23

第4.2表 屋根スラブの許容応力度検定比

4.2 大梁、小梁

4.2.1 大梁、小梁が受ける曲げモーメント、せん断力

大梁は、大梁自体から受ける荷重、屋上スラブから受ける荷重、スラブ内に小梁がある場合は小梁の集中荷重を考慮し、小梁は、小梁自体から受ける荷重、屋上スラブから受ける荷 重を考慮する。曲げモーメント、せん断力は、大梁が両端固定、小梁が両端ピン支持とし取 り扱い、RC 規準より算定する。

算定する大梁、小梁の位置を第4.3 図~第4.4 図の平面図に示す。評価対象は、機器積載 範囲の梁(d-1~d-12)で包絡される。

第4.3図 算定する屋上大梁、小梁の位置

第4.4図 算定する 3F 大梁、小梁の位置

4.2.2 許容曲げモーメント、せん断力

(1) 許容曲げモーメント 大梁、小梁の許容曲げモーメントは、RC 規準より算定する。
M_a = a・f_t・j

a : 鉄筋断面積(mm²)
f_t : 鉄筋の短期引張許容応力度(N/mm²)
(平成 12 年建設省告示第 2464 号に基づき、鉄筋の基準強度の 1.1 倍の数値と する)
j : 大梁、小梁の有効丈(mm)
j = 7/8・d
d : 大梁、小梁の有効せい(mm)

鉄骨の大梁、小梁の許容曲げモーメントは、以下の式で算定する。
M_a = f_b・Z

M_a: 屋根鉄骨の大梁、小梁の許容曲げモーメント

f_h:鉄骨の横座屈許容応力度

(2) 許容せん断力

大梁、小梁の許容せん断力は、RC 規準より算出する。

 $Q_a = b \cdot j \cdot \left\{ \alpha \cdot f_s + 0.5 \cdot {}_w f_t \cdot (p_w - 0.002) \right\}$

6条(3)-別紙 8-12

ただし、 $\alpha = \frac{4}{\frac{M}{0 \cdot d} + 1} \quad \text{in a } 1 \leq \alpha \leq 2$ **b**:梁の幅、またはT形梁のウェブの幅(mm) *i*:梁の応力中心距離(mm) $j = \frac{7}{8} \cdot d$ d:大梁、小梁の有効せい(mm) α :梁のせん断スパン比 $\frac{M}{0 \cdot d}$ による割増係数(-) M :梁の最大曲げモーメント (N・mm) **Q**:梁の最大せん断力(N) $f_s: コンクリートの短期許容せん断応力度 (N/mm²)$ wft: せん断補強筋の短期許容引張応力度 (N/mm²) 鉄骨の大梁、小梁の許容せん断力は、以下の式で算出する。 $Q_a = min(Qa, Qba, Qga)$ Qa:鉄骨の許容せん断力 (N) $Qa = {}_{s}f_{s} \cdot A_{we}$ sfs:鉄骨の短期許容せん断応力度 (N/mm²) Awe: 鉄骨の断面積 (mm²) $A_{we} = \alpha \cdot A_w$ α : ウェブ断面低減率 (-) *A_w*: 鉄骨の断面積 (mm²) Qba: 接続ボルトの許容せん断力(N) $Qba = q_{b1} \cdot n$ q_{h1}:接続ボルト1本あたりの短期許容せん断力(N) n : 接続ボルト本数 (-) **Oga**: ガセットプレートの許容せん断力 (N)

- $Qga = {}_{s}f_{s} \cdot tg \cdot he$
 - sfs:短期許容せん断応力度(N/mm²)
 - tg:ガセットプレート板厚 (mm)
 - he:ガセットプレートボルト穴考慮せい (mm)
- 4.2.3 評価結果

屋根スラブを支持する大梁、小梁の許容応力度計算の結果、大梁、小梁に発生する曲げモー メントは、小梁 d-4 及び大梁 d-10 以外は、短期許容曲げモーメントを上回らないことを確認 した。

大梁、小梁の許容応力度評価結果(代表: d-6、d-9)を第4.3表に示す。また、大梁、小

梁すべての許容応力度検定比を第4.4表に示す。ピン支持となる小梁(鉄骨)d-4について は、中央の曲げモーメントの検定比1.60と1.0を超過するため、合成梁構造設計指針・解説 より鉄骨梁とスラブが一体となった構造であることを考慮して、合成梁として許容応力度計 算を実施した。合成梁の評価結果を第4.5表に示す。大梁(鉄骨)d-10については、端部の 曲げモーメントの検定比1.39と1.0を超過するため、小梁d-4と同様に合成梁として許容応 力度計算を実施した。合成梁の評価結果を第4.6表に示す。

合成梁として小梁(鉄骨) d-4 を評価した結果、鉄骨梁下端部の発生応力度 94.6N/mm²に対して、鋼材許容応力度は 258.5N/mm²となり、検定比 0.37 と許容値を満足することを確認した。

また、合成梁として大梁(鉄骨) d-10 を評価した結果、端部に発生する曲げモーメント 138.5kN・m に対して、端部短期許容曲げモーメントは 258.5kN・m となり、検定比 0.54 と許 容値を満足することを確認した。

	FL	-	m	GL+9.6	GL+16.6
	評価番号	_	-	d-6	d-9
	位置	-	-	1~2,D	1,B~C
	梁符号	-	-	3G2a	aRG4
	梁幅	b	mm	600	500
	梁せい	D	mm	1200	1000
	梁長さ	I	mm	7000	7000
	かぶり厚さ	dt	mm	120	120
	有効せい	d	mm	1080	880
	有効丈	j	mm	945.0	770.0
	鋼材種(主筋)	-	-	SD35(D29≦)	SD35(D29≦)
	鉄筋の許容短期引張応力度	ft	N/mm ²	379.5	379.5
梁情報	両端_上端筋A	-	-	8-D32	4-D32
	上端筋Aの断面積	Aat	mm ²	6352	3176
	両端_上端筋B	-	-	8-D32	4-D32
	上端筋Bの断面積	Bat	mm ²	6352	3176
	中央_下端筋	-	-	4-D32	4-D32
	下端筋の断面積	at	mm ²	3176	3176
	せん断補強筋	-	-	3-D13	3-D13
	せん断補強筋のピッチ	х	mm	200	200
	鋼材種(せん断補強筋)	-	-	SD30	SD30
	せん断補強筋の許容短期引張応力度	wft	N/mm ²	324.5	324.5
	せん断補強筋の断面積	aw	mm ²	381	381
	せん断補強筋の鉄筋比	pw	-	0.0032	0.0038
	鉄筋コンクリートの単位体積重量	γ	kN/m ³	23.54	23.54
	梁せい(スラブ厚分を引いたもの)	D	mm	900	775
洒卢手	梁自重	W	kN/m	12.7	9.1
梁日里	梁自重による両端部モーメント	С	kN m	51.9	37.2
	梁自重による中央部モーメント	Mo	kN m	26.0	18.6
	梁自重によるせん断力	Qo	kN	44.5	31.9
	端部Aモーメント合計	C _A	kN m	420.20	248.87
※牛エ_ √ ン	端部Bモーメント合計	CB	kN m	420.20	248.87
	中央部モーメント合計	Mo	kN m	287.78	124.96
下、セん町刀	端部Aせん断力合計	Q _A	kN	289.95	175.43
	端部Bせん断力合計	Q _B	kN	289.95	175.43
	端部A許容モーメント	C _A a	kN m	2278.00	928.07
許容モーメン	端部B許容モーメント	С _в а	kN m	2278.00	928.07
ト、せん断力	中央部許容モーメント	Ma	kN m	1139.00	928.07
	端部A許容せん断力	Q _A a	kN	1140.45	741.53
	端部B許容せん断力	Q _B a	kN	1140.45	741.53
	C _A /C _A a(端部上端A)		_	0.18	0.27
検定比	C _B /C _B a(端部上端B)		-	0.18	0.27
	M/Ma(中央下端)	-	-	0.25	0.13
	Q _A /Q _A a(端部A)		-	0.25	0.24
	Q _B /Q _b a(端部B)	-	-	0.25	0.24

第4.3 表 大梁、小梁の許容応力度評価結果(代表: d-6、d-9)

部材番号	C _A /Ma (端部A上端)	C _B /Ma (端部B上端)	Mo/Ma (中央下端)	Q _A /Qa (端部A)	Q _B /Qa (端部B)
d-1	0.16	0.16	0.09	0.15	0.15
d-2	0.17	0.17	0.17	0.23	0.23
d-3	0.13	0.13	0.06	0.10	0.10
d-4(鉄骨小梁)	0.00	0.00	1.60	0.31	0.31
d-5	0.09	0.09	0.09	0.12	0.12
d-6	0.18	0.18	0.25	0.25	0.25
d-7	0.13	0.13	0.08	0.11	0.11
d-8	0.13	0.13	0.14	0.20	0.20
d-9	0.27	0.27	0.13	0.24	0.24
d-10(鉄骨大梁)	1.39	1.39	0.72	0.40	0.40
d-11	0.11	0.11	0.06	0.08	0.08
d-12	0.21	0.21	0.12	0.16	0.16

第4.4表 大梁、小梁の許容応力度検定比

第4.5表 小梁(鉄骨) d-4 を合成梁とした許容応力度評価結果

左側 右側			
670 199 670			
t= 200			
50			
446			
項目	記号	数値	単位
左側	а	2084.3	mm
右側	а	2084.3	mm
梁スパン	I	7000	mm
左側	ba	669.8	mm
右側	ba	669.8	mm
スラブ筋ピッチ		300	mm
縁側スラブ筋最大本数		5.1	本
考慮するスラブ筋本数		0	本
合成梁の弾性剛性算定に用いる床スラブの有効幅	В	1539	mm
	D	696	mm
Ⅰ形綱の高さ	Н	446	mm
形綱の幅	В	199	mm
Ⅰ形綱の厚さ	t1	8	mm
Ⅰ形綱の厚さ	t2	12	mm
鉄骨梁の全断面積	sa	8297	mm ²
	sAw	3376	mm ²
鉄骨梁の断面二次モーメント	sl	2.81E+08	mm ⁴
	sd	473	mm
	pt	0.01140	-
	t1	0.42283	-
ヤング係数比	n	15	-
判定	中立軸床スラブ外		
判定	:中立軸床スラブ外のとき		
中立軸	xn	207.42	mm
有効等価断面二次モーメント	cIn	1.17E+09	mm ⁴
スラブ上端の断面係数	cZc	8.47E+07	mm ³
鉄骨梁下端の断面係数	cZt	2.40E+06	mm ³
発生曲げモーメント	M(中央)	226.9	kN•m
発生応力度(スラブ上端)	σbs	2.68	N/mm ²
発生応力度(鉄骨梁下端)	σbr	94.6	N/mm ²
CON許容応力度	fc	14.7	N/mm ²
鋼材許容応力度	1.1F	258.5	N/mm ²
検定比(スラブ上端)	σbs/fc	0.18	
検定比(鉄骨梁下端)	σ br/1.1F	0.37	

6条(3)-別紙 8-17
第4.6表 大梁(鉄骨) d-10 を合成梁とした許容応力度評価結果

左側 右側 1414 300 1426 t= 200 50 900			
項目	記号	数値	単位
左側	а	6850.0	mm
右側	а	6700.0	mm
梁スパン		14000	mm
左側	ba	1414.0	mm
右側	ba	1426.1	mm
スラブ筋ピッチ		200	mm
縁側スラブ筋最大本数		15.7	本
考慮するスラブ筋本数		15	本
合成梁の弾性剛性算定に用いる床スラブの有効幅	В	3140	mm
	D	1150	mm
形鋼の高さ	H=sD	900	mm
一日の「日本の日本」	В	300	mm
一日の目的にある「日本の目的」	t1	16	mm
形鋼の厚さ	t2	28	mm
鉄骨梁の全断面積	sa	30580	mm ²
	sAw	13504	mm ²
鉄骨梁の断面二次モーメント	sl	4.04E+09	mm ⁴
	dc	32.5	mm
	rd'	1117.5	mm
	sxn	450.0	mm
鉄筋の断面積	ra	1065	mm ²
	sd	700	mm
	pt	0.01391	-
	t1	0.28571	-
ヤング係数比	n	15	-
中立軸	xn'	472	mm
断面二次モーメント	cln'	4.50E+09	mm⁴
	cZc'	9.52E+06	mm ³
鉄骨梁下端の断面係数	cZť	6.97E+06	mm ³
発生曲げモーメント	M(中央)	965.8	kNm
発生応力度(スラブ上端鉄筋)	σbs	101.4	N/mm ²
発生応力度(鉄骨梁下端)	σbr	138.5	N/mm ²
鉄筋短期許容応力度	1.5ft	324.5	N/mm ²
鋼材短期許容応力度	1.1F	258.5	N/mm ²
検定比(スラブ上端)	σbs/1.5ft	0.31	
検定比(鉄骨梁下端)	σ br/1.1F	0.54	

5. 建物耐震壁の評価

風荷重により耐震壁に発生するせん断ひずみを評価し、許容限界を超えないことを確認する。 5.1 風荷重の算出

風荷重は、建築基準法施行令第87条に基づき算出する。

なお、高さH(建築物の高さと軒の高さとの平均)が5m以上であるため、HがZbを超える場合の式を用いる。第5.1表に風荷重の計算条件、第5.2表に各高さにおける風荷重を示す。

 $W = q \cdot Cf$

W:風荷重(N/m²)

q:速度圧(N/m²)

Cf: 風力係数

 $q = 0.6 \cdot E \cdot V_0^2 = 1,842$

E=Er²・Gf(速度圧の高さ方向の分布を示す係数)=2.655

Er=1.7・(H/ZG)^α (HがZbを超える場合) =1.118

Er=1.7・(Zb/ZG)^α (HがZb以下の場合)

第5.1表 第二使用済燃料貯蔵建物の風荷重計算条件

基準風速 V ₀ (m/s)	高さ H (m)	Z _b (m)	Z _G (m)	α	ガスト 影響係数 Gf	速度圧 q (N/m ²)
34	21.4	5	350	0.15	2.124	1,842

第5.2表 第二使用済燃料貯蔵建物の各高さにおける風荷重

高さ	部位	速度圧 q (N/m ²)	風力係数 Cf	風荷重 W=q・Cf (N/m ²)	
	パラペット	1,842	0.8-(-0.4)	2, 210. 4	
G. L. 721. 4m	側壁	1,842	0.8-(-0.4)	2, 210. 4	
	パラペット	1,842	0.8-(-0.4)	2, 210. 4	
G. L. +10. 0M	側壁	1,842	0.8-(-0.4)	2, 210. 4	
	パラペット	1,842	0.8-(-0.4)	2, 210. 4	
G.L.+9.6m	排気塔	1,842	0. 7	1, 289. 4	
	側壁	1,842	0.8-(-0.4)	2, 210. 4	
G.L.+5.1m	側壁	1,842	0.8-(-0.4)	2, 210. 4	
G. L. +0. 2m	側壁	1,842	0.8-(-0.4)	2, 210. 4	

5.2 評価方法

建物形状を考慮した風荷重及び風の受圧面積から、建物質点系解析モデルの各質点高さでの 風荷重による層せん断力を算出する。

建物屋根に降下火砕物等の鉛直荷重を作用させると、耐震壁の復元力特性の評価法より、第1 折点が増加することが明らかである。よって、風荷重による層せん断力と地震荷重による層せん 断力を比較し、風荷重による層せん断力が下回る場合は、地震時の評価結果に包絡されことにな り、地震に対する評価において許容限界を超えていないことから、風荷重に対する評価も許容限 界を超えないことが確認できる。

包絡関係が確認できない場合は、風荷重の層せん断力により耐震壁に発生するせん断ひずみ の評価を行う。なお、隣接建物による風の遮断効果は、考慮しないものとする。

風荷重及び受圧面積を第5.3表に示す。第二使用済燃料貯蔵建物の質点系解析モデルを第5.1 図に示す。

高さ	部位	風荷重 W=q・Cf (N/m ²)	受圧面積 (m ²)	水平力 (kN)		層 せん断力 (kN)	
G.L.+21.4m	パラペット	2, 210. 4	5.4	12.0	52.0	52 0	
	側壁	2, 210. 4	18.5	40.9	52.9	52.9	
G.L.+16.6m	パラペット	2, 210. 4	24.5	54.2	205 5	259 4	
	側壁	2, 210. 4	113.7	251.3	305.5	556.4	
	パラペット	1, 473. 6 736. 8	0.0 10.6	0. 0 7. 8		738.3	
G. L. +9. 6m	排気塔	1, 289. 4	20.5	26.4	379.9		
	側壁	2, 210. 4	156.4	345.7			
G.L.+5.1m	側壁	2, 210. 4	127.8	282.5	282.5	1,020.8	
G.L.+0.2m	側壁	1, 473. 6 736. 8	121. 0 72. 1	178.3 53.1	231.4	1, 252. 2	

NS 方向

EW 方向

高さ	部位	風荷重 W=1.6q・Cf (N/m ²)	受圧面積 (m ²)	水 ^立 (k	平力 N)	層 せん断力 (kN)	
G.L.+21.4m	パラペット	2, 210. 4	4.9	10.8	47 7		
	側壁	2, 210. 4	16.7	36.9	41.1	47.7	
G.L.+16.6m	パラペット	2, 210. 4	24.6	54.4	202.0	350. 5	
	側壁	2, 210. 4	112.4	248.4	302. 8		
G. L. +9. 6m	パラペット	1, 473. 6 736. 8	9.5 0.0	14. 0 0. 0		738.6	
	排気塔	1, 289. 4	20.5	26.4	388.1		
	側壁	2, 210. 4	157.3	347.7			
G.L.+5.1m	側壁	2, 210. 4	128.5	284.1	284.1	1, 022. 7	
G. L. +0. 2m	側壁	2, 210. 4	121.7	269.0	269.0	1, 291. 7	

第5.1 図 第二使用済燃料貯蔵建物の質点系解析モデル

5.3 評価結果

第5.4表に風荷重と地震荷重による層せん断力の比較を示す。

風荷重による層せん断力と地震荷重による層せん断力を比較し、風荷重による層せん断力が 地震荷重による層せん断力を十分に下回り、耐震壁に発生するせん断ひずみは、地震時の評価結 果に包絡され、許容限界を超えないことを確認した。ただし、G.L+16.6mm 以上は層とみなして いない。

第5.4表 第二使用済燃料貯蔵建物の風荷重と地震荷重による層せん断力の比較

高さ	風荷重による 層せん断力① (kN)	設計用地震力による 層せん断力② (kN)	1)/2						
G.L.+16.6m	358.4	15, 345	0.023						
G. L. +9. 6m	738.3	31, 791	0.023						
G.L.+5.1m	1,020.8	43, 689	0.023						
G. L. +0. 2m	1, 252. 2	70, 568	0.018						

NS 方向

EW 方向

高さ	風荷重による 層せん断力① (kN)	設計用地震力による 層せん断力② (kN)	1/2
G.L.+16.6m	350.5	16, 257	0.022
G.L.+9.6m	738.6	33, 251	0.022
G.L.+5.1m	1,022.7	45, 239	0.023
G.L.+0.2m	1, 291. 7	68, 082	0.019

非常用ディーゼル電源系に関連する「冷却塔」、「排気筒」及び「吸 気系統」に係る降下火砕物影響評価結果

1. 評価方針

補機冷却設備のうち非常用ディーゼル電源系に関連する冷却塔を対象とし、降下火砕物により、デ ィーゼル系冷却塔に汲み上げられた水を、ディーゼル発電機に供給するための配管に閉塞が生じない ことを確認する。なお、当該冷却塔は、更新することを予定している。

2. 冷却塔

2.1 降下火砕物の流入防止措置

降灰予報等が発表され、多量の降下火砕物が原子炉施設に到達するおそれが確認された場合には、 原子炉を停止する。また、多量の降下火砕物が原子炉施設に到達するおそれが確認された場合にあっ ては、降下火砕物が、冷却塔の内部に流入することを防止するため、冷却塔の上部に、降下火砕物流 入防止板を設置する(非常用ディーゼル電源系の冷却塔における降下火砕物流入防止板等の設置イメ ージ:第1図参照)。なお、降下火砕物流入防止板は、その上部に堆積した降下火砕物を適宜取り除 ける構造とする(一時的な撤去を含む。)。また、冷却塔の吸気口に設置するフィルタは、降下火砕物 により閉塞した場合に、降下火砕物を除去、又は閉塞したフィルタを交換できる構造とする。

さらに、冷却塔の内部に降下火砕物が流入した場合を想定し、ディーゼル発電機に水を供給するた めの配管の途中にストレーナーを設ける。なお、2式のストレーナー及びその配管を並列に設けるも のとし、一方が閉塞した場合において、他方を使用し、その間にストレーナーを交換できる構造とす る。

2.2 評価結果

降灰予報等が発表され多量の降下火砕物が原子炉施設に到達するおそれが確認された場合には、原 子炉を停止するため、当該機能は原子炉停止後に外部電源を喪失した場合に使用される。外部電源喪 失時には冷却塔の上部に設置された冷却ファンが作動し、冷却塔内には上面開口部に向けた空気の流 れが存在する。当該流況により、一定の粒径を下回る降下火砕物が上面開口部から流入することを抑 制できる。また、冷却塔の上部に設置する降下火砕物流入防止板を設置することで、上面開口部から の降下火砕物の流入を防止する。

冷却塔の吸気口にはフィルタを設置しており、降下火砕物の流入を防止できる。当該フィルタが閉 塞した場合には、降下火砕物の除去又は閉塞したフィルタの交換により必要な吸気を確保できる。な お、仮に、降下火砕物が冷却塔に流入した場合にあっても、ディーゼル発電機に水を供給するための 配管の途中にストレーナーを有しており、一定粒径以上の降下火砕物の流入を排除することで配管閉 塞を防止できる。ストレーナーを通過した粒子については、配管、機関へ影響を与えることはない(別 添1参照)。

ディーゼル系冷却塔に汲み上げられた水を、ディーゼル発電機に供給するための配管は、想定され る降下火砕物が発生した場合において閉塞することはなく、降下火砕物防護施設の安全機能が損なわ れることはない。

3. 排気筒

3.1 降下火砕物の流入防止措置

既設の非常用 DG 電源系に係る排気筒は、地下 2F より地上に上向きに設置されているため、多量の

降下火砕物が混入することにより閉塞するリスクを有することから、地上部の排気筒端部を恒常的に ベンドする措置を施し、降下火砕物の流入を防止した設計(非常用 DG 電源系に係る排気筒へのベン ド追設案:第2図参照)とする。

3.2 評価結果

排気筒端部にベントを設置することにより、排気筒内部への降下火砕物の流入リスクは排除される ため、降下火砕物防護施設の安全機能が損なわれることはない。。

4. 吸気系統

4.1 降下火砕物の流入防止措置

非常用 DG へ供給される外気は、主冷却機建物ガラリ、吸気ロフィルタを通じて主冷却機建物の室 内に導入され、さらにディーゼル発電機室系送風機を通じてディーゼルエンジンに導入される(主冷 却機建物空気換気設備の構成:第3図参照)。ディーゼル発電機室以外の送風機を停止させることで、 ガラリの空気流入速度を低下させ、降下火砕物を換気空調系へ流入させない。

また、フィルタに閉塞及び目詰まりが発生した場合には、交換及び清掃により対応する。

4.2 評価結果

降灰予報等により、降下火砕物が原子炉施設に到達するおそれがある場合にはディーゼル発電機室 以外の送風機を停止させることでガラリの空気流入速度を低下させることで、主冷却機建物内への降 下火砕物の流入を防ぐとともに、吸気ロフィルタにより降下火砕物の換気空調系への流入を防ぐため、 降下火砕物が換気空調系内部へ流入することにより機器の機能が損なわれることはない。

また、フィルタに閉塞及び目詰まりが生じた場合には、交換及び清掃により対応することから、降 下火砕物防護施設の安全機能が損なわれることはない。

第1図 非常用ディーゼル電源系の冷却塔における降下火砕物流入防止板等の設置イメージ

第2図 非常用 DG 電源系に係る排気筒へのベンド追設案

第3図 主冷却機建物空気換気設備の構成

ディーゼル発電機冷却水配管のストレーナーを通過する降下火砕物の影響評価

ディーゼル発電機の冷却水に侵入した降下火砕物は冷却水配管中のストレーナーに捕獲される。 ストレーナーを通過する粒子径の小さな降下火砕物の機器への影響を評価する。

- (1) 評価内容
- ① 機械的影響 (摩耗)

ストレーナーを通過した降下火砕物の粒子が、ポンプ等の摺動部に侵入する可能性を考慮し、 侵入した場合の機械的影響(摩耗)について評価する。

2 閉塞

ストレーナーを通過した降下火砕物の粒子が冷却水配管の流路を閉塞しないことを評価す る。

③ 化学的影響(腐食)

ストレーナーを通過した降下火砕物の粒子が冷却水の循環系に侵入し、構造物内部の腐食に より機器の機能に影響がないことを評価する。

- (2) 評価結果
 - ① 機械的影響 (摩耗)

ストレーナーを通過した降下火砕物の粒子がポンプ等の摺動部に侵入した場合にあって も、降下火砕物は硬度が低く脆いため、摺動部に侵入した降下火砕物により直ちに摩耗が発 生し、摺動部を損傷させることはない。

2 閉塞

ストレーナーを通過した降下火砕物の粒子が冷却水の循環系に侵入した場合にあっても、 配管の流路に対して粒子径が十分に小さいため、直ちに流路の閉塞を発生させることはなく、 機能に影響を及ぼすことはない。

③ 化学的影響(腐食)

ストレーナーを通過した降下火砕物の粒子が冷却水の循環系に侵入した場合にあっても、 構造材として耐食性のある材料を用いていること、並びに連続通水状態であり、著しい腐食 環境とはならないことから、腐食により機器に影響を及ぼすことはない。

(4) まとめ

ディーゼル発電機冷却水配管のストレーナーを通過する降下火砕物の影響は、摩耗、閉塞、腐食 が想定されるが、各影響因子を考慮して影響評価を実施した結果、直ちに機器の健全性に影響を与 えることはない。

6条(3)-別紙 9-別添 1-1

[119]

また、長期的には、機器の保守点検において、系統内の洗浄や部品交換によって系統内に侵入し た降下火砕物を除去するため、粒子径の小さな降下火砕物の蓄積による機器の損傷を防止すること ができる。 降下火砕物に対する中央制御室の居住性確保

中央制御室空調換気設備の構成を第1図に示す。通常運転時において、外気は、ルーバー、フィ ルタ、外気取入れファン及び空調器を経由し、中央制御室に導入される。フィルタにより、降下火砕 物の流入を抑止することで、中央制御室の居住性を確保する。フィルタに閉塞及び目詰まりが生じた 場合には、交換・清掃により対応する。

また、必要に応じ、閉回路を構築した再循環運転で換気設備の隔離を図る。

通常運転時において、外気は、ルーバー(①)、フィルタ(②:グラス ウールを使用)、外気取入れファン(③)、V92-1(④)及び空調器 (⑤:1台運転)を経由し、中央制御室に導入され、V92-3(⑥)より排気 される。また、中央制御室には還流ライン(破線部)が設けられており、 一部の空気は還流される。なお、DP92-3(⑦)及びV92-2(③)は「閉」、 再循環ファン(⑩)は「停止」で運用される。

第1図 中央制御室空調換気設備の構成

多量の降下火砕物が原子炉施設に到達するおそれ

が確認された場合の対応フロー

降灰予報等が発表され、多量の降下火砕物が原子炉施設に到達するおそれが確認された場合には、 原子炉を停止する。多量の降下火砕物が原子炉施設に到達するおそれが確認された場合の対応フロー を以下に示す。

火山の噴火・降灰の確認

大洗研究所において、公共放送や気象庁ホームページにより、火山情報(火山の噴火及び降 灰予報*1)を入手する。

※1: 「降灰予報」とは、火山の噴火後に、どこに、どれだけの量(「少量」、「やや多量」、 「多量」の3段階に区分)の火山灰が降るかについて、気象庁がホームページなどで 示す詳細な情報

火山降灰警戒の発令

火山の噴火が発生した場合には、降灰予報の状況等から、降灰の到達範囲内(「少量」、「や や多量」、「多量」のいずれの場合においても)に大洗研究所の敷地が含まれるかどうかを確認 する。降灰による警戒が必要と判断した場合には、大洗研究所所長は「火山降灰警戒」を発令 し、大洗研究所内に周知する。また、大洗研究所の現地対策本部を設置し、降灰予報に係る情 報収集及び各施設対応状況の確認を行う。

火山降灰警戒発令時の対応

火山降灰警戒が発令された場合、原子炉運転中にあっては、原子炉を停止する。また、降下 火砕物を除去するために必要な措置(除去等)を講じるため、必要な要員を収集し、対応体制 を構築するとともに、巡視等により、降灰の状況を監視する。さらに、降下火砕物を除去する ために必要な資機材(保護具を含む。)を準備する。なお、サイトでの設計上考慮する最大層 厚の想定因子となる降下火砕物の給源火山(赤城山)から敷地までの距離は126kmであり、風 速約40m/s(堆積厚さが最大となるシミュレーション解析の最大風速)の条件で、約50分で火 山灰が敷地まで移動すると想定される。

④ 敷地に降下火砕物の降灰が確認された場合の対応

大洗研究所の敷地に降下火砕物の降灰が確認された場合は、降下火砕物を除去するため、以 下の措置を講じる。

- 降下火砕物の流入防止措置(降下火砕物流入防止板の設置)
- 中央制御室換気設備の閉回路運転

※必要に応じ、外気の取り入れを停止し再循環運転を行うことで中央制御室内の居住性を 確保する。

- 不要な換気空調設備の停止
- フィルタの閉塞及び目詰まりの監視
 ※ 閉塞等した場合には、系統切替やフィルタ交換を実施。
- 降下火砕物の除去(別添1参照)
 - ※ 降下火砕物の降灰が継続し原子炉施設に重大な損傷を及ぼすおそれがあると判断 した場合。
- ⑤ 降下火砕物の降灰により商用電源等が喪失した場合の対応

降下火砕物発生時において原子炉施設外で想定される外部電源喪失等に対しては、原子炉保 護系の作動等により、原子炉を自動停止する。外部電源喪失時は非常用ディーゼル電源系、交 流無停電電源系及び直流無停電電源系により非常用電源が確保される。原子炉建物・原子炉附 属建物及び主冷却機建物は、開口部にガラリ又はフィルタを有し、降下火砕物の流入を抑止で きる。また、ディーゼル発電機は、吸気口を主冷却機建物内に配置している。

以上の対応を示したタイムチャートを別添2に示す。

建屋の屋根除灰作業(案)

- 1. 除灰に必要な物
- ・防塵マスク
- 防護めがね(コンタクトレンズを使わず眼鏡を着用する)
- ·墜落制止用器具
- ・命綱
- ・ヘルメット
- ・滑りにくい靴
- ・清掃用具(ほうき、スコップ等)
- ・土のう袋
- 2. 手順

設計上考慮されている降下火砕物の層厚は50cmを超過しないよう、大洗研究所所長の「火 砕降灰警戒」発令に基づき設置される現地対策本部指示に基づき、速やかに除灰作業を行う。

- 2.1 作業前準備
- ・防護具を着用する。
- ・除灰対象建屋の周辺を立入禁止にする。
- ・命綱を取り付ける。
- 2.2 除灰作業
- ・火山灰をほうきで掃くか、スコップ等ですくい地上に落とす。
- ・落とした火山灰を土のう袋に詰め回収する。
- ・除灰作業は雨が降る前に実施し散水は極力避ける(火山灰が水分を吸い屋根が潰れる危険がある)。
- 2.3 後片付け
- ・命綱を取り外す。
- ・除灰対象建屋周辺の立入禁止を解除する。

6条(3)-別紙11-別添1-1

別添1

タイムチャート (案)

降灰予報等が発表され、多量の降下火砕物が原子炉施設に到達するおそれが確認された 場合、原子炉停止、降下火砕物除去等の処置を行う。対策の手順と人員に関するタイムチャ ートを第1図に示す。

	備老	С- Ш/												
		4.5												_
		3.5 4												
	寺間)	3				犬態監視							降下火砕物除去	
.1	経過時間(1	2 2.5		(要員招集から 60 分)		~				人防止板設置 人防止板設置		_		_
		1 1.5	約50分 研究所数地へ 隆灰到達	▲約80分						2. 照				_
いり い け 順		0.5	噴火発生 約10分 降灰予想	約 0分 要員召集		原子炉停止		切り替え 操作	左調停止					
坊12 呼次ず豕に>			手順の内容		・降灰に伴う原子炉停止判断	・方針決定、外部との連絡、ブラント 状態監視他	·原子炉停止	・中央制御室空調設備の閉回路運転切 り替え	 ・主冷却建物空調換気設備停止 ・附属建物空調換気設備停止 ・その他空調換気設備停止 	·降下火砕物流入防止板設置	그는 성장 RT 되다	• 沃懸監視	·降下火砕物除去	
	名)	¥		で 名			2名	2名	4	7 0	ティック ディング ディング ディング ディング ディング しょう	12名		
	▲ ◎ ○		運動 調動 調 ()		運転員等	運転員等	作業員等		作業貝寺	作業員等				
			手順の項目		運転操作·状況判断			不要な空調換気設備の停止	除下水祛炒流入防止折裂			除灰作業		

第1図 降灰事象に対する手順のタイムチャート

6条(3)-別紙11-別添2-2

添付1 設置許可申請書における記載

- 5. 試験研究用等原子炉及びその附属施設の位置、構造及び設備
 - ロ. 試験研究用等原子炉施設の一般構造
 - (3) その他の主要な構造
 - (a-8) 火山の影響

安全施設は、原子炉施設の運用期間中において原子炉施設の安全機能に影響を及 ぼし得る火山事象として設定した層厚 50cm、湿潤密度を 1.5g/cm3 の降下火砕物に 対し対策を行い、建屋による防護、構造健全性の維持、代替設備の確保等によっ て、安全機能を損なわない設計とする。 添付2 設置許可申請書の添付書類における記載(安全設計)

添付書類八

- 1. 安全設計の考え方
 - 1.7 外部からの衝撃による損傷の防止に係る設計
 - 1.7.4 火山事象防護
 - 1.7.4.1 火山事象防護に関する基本方針

安全施設が火山事象に対して原子炉施設の安全性を確保するために必要な機能を損なわ ない設計とする。このため、「添付書類6 8.火山」で評価し抽出された原子炉施設に影響 を及ぼし得る火山事象である降下火砕物に対して、対策を行い、建屋による防護、構造健全 性の維持、代替設備の確保等によって、安全機能を損なわない設計とする。

耐降下火砕物設計においては、安全機能の重要度分類がクラス1、2、3に属する構築物、 系統及び機器を降下火砕物防護施設とし、外部からの衝撃による損傷の防止に係る安全施 設に該当する構築物、系統及び機器を影響評価の対象とする。

1.7.4.2 評価方針

後述する評価対象施設について、評価を行う。当該影響評価にあっては、当該安全施設の 外殻施設を評価対象とする場合がある。想定される降下火砕物に対する影響を評価し、外殻 施設又は降下火砕物の除去に係る措置による防護により、その安全機能を損なわないよう に設計する。重要安全施設以外の安全施設は、降下火砕物により損傷するおそれがある場合 に、代替措置や修復等を含め安全機能を損なわないものとする。

1.7.4.3 評価対象施設の抽出

降下火砕物の影響評価を行う降下火砕物影響評価対象施設を以下の各区分から抽出する。

(1) 重要安全施設を内包し保護する外殻施設

原子炉建物(格納容器を含む。)、原子炉附属建物及び主冷却機建物

(2) 外殻で保護されない重要安全施設

主冷却機のうち屋外部分(屋外ダクト)、非常用ディーゼル電源系に関連する「冷却塔」、 「排気筒」及び「吸気系統」(主冷却機建物空調換気設備)

(3)安全施設を内包し保護する外殻施設

第一使用済燃料貯蔵建物及び第二使用済燃料貯蔵建物、廃棄物処理建物、メンテナンス 建物の液体廃棄物処理設備及び固体廃棄物貯蔵設備

(4) 外殻で保護されない安全施設

主排気筒、外周コンクリート壁、一般電源系(受電エリア)及び屋外管理用モニタリン グポスト

6条(3)-添付2-1

廃棄物処理建物、メンテナンス建物に内包される液体廃棄物処理設備及び固体廃棄物 処理設備は、基本的にコンクリート構造の地下階に位置し、上部にはエリアを隔てる蓋が 設置されているため、降下火砕物の影響を受けず、安全機能(放射性物質の貯蔵)を損な うことはないため、評価対象施設から除外した。

一般電源系(受電エリア)は、一般電源系の機能を喪失した場合には、非常用ディーゼル電源系等により必要な電源を供給し、これらはMS-1に該当し、外殻施設の健全性が確保されるため、安全機能を損なうことはなく、代替措置により、必要な機能を確保できるため、評価対象施設から除外した。

屋外管理用モニタリングポストは、屋外管理用モニタリングポストの機能を喪失した場合には、代替措置(可搬型測定器)により、必要な機能を確保できるため、評価対象施設から除外した。

1.7.4.4 設計降下火砕物荷重の算定法

「添付書類6 8. 火山」に示したように、敷地における降下火砕物の想定される最大層 厚は50cmであり、これを設計上考量する降下火砕物の層厚とする。原子力施設の耐降下火 砕物設計に用いる設計降下火砕物荷重は、設計上考慮する降下火砕物の層厚を50cmに、湿 潤密度を1.5g/cm³を乗じて算定することを基本とする。ただし、降下火砕物の層厚につい ては、原子炉施設において、必要に応じて、降下火砕物が外部からの衝撃による損傷の防止 に係る重要安全施設降下火砕物防護施設又は外殻施設への積灰を抑制するための措置を講 じることを考慮して設定する場合がある。

1.7.4.5 荷重の組合せと許容限界

- 1.7.4.5.1 荷重の組合せにおいて考慮する原子炉施設の状態
 - (1) 建物・構築物
 - (i)運転時の状態 原子炉施設が通常運転時若しくは運転時の異常な過渡変化時にあり、通常の自然 条件下におかれている状態
 - (ii)設計基準事故時の状態
 - 原子炉施設が設計基準事故時にある状態
 - (2)機器・配管系
 - (i) 通常運転時の状態

原子炉施設の起動、停止、出力運転、燃料交換等が計画的に行われた場合であっ て、運転条件が所定の制限値以内にある運転状態

(ii) 運転時の異常な過渡変化時の状態

原子炉施設の通常運転時に予想される機械又は器具の単一の故障若しくはその誤 作動又は運転員の単一の誤操作及びこれらと類似の頻度で発生すると予想される外 乱によって発生する異常な状態であって、当該状態が継続した場合には炉心又は原 子炉冷却材バウンダリの著しい損傷が生ずるおそれがあるものとして安全設計上想 定すべき事象が発生した状態

(iii) 設計基準事故時の状態

発生頻度が運転時の異常な過渡変化より低い異常な状態であって、当該状態が発 生した場合には原子炉施設から多量の放射性物質が放出するおそれがあるものとし て安全設計上想定すべき事象が発生した状態

- 1.7.4.5.2 荷重の種類
 - (1) 建物・構築物
 - (i)原子炉のおかれている状態にかかわらず常時作用している荷重(固定荷重、積載 荷重、土圧、水圧並びに通常の気象条件による荷重)
 - (ii) 運転時の状態で作用する荷重
 - (iii) 設計基準事故時の状態で作用する荷重
 - (iv) 設計降下火砕物荷重、風荷重、積雪荷重

なお、運転時の状態で作用する荷重及び設計基準事故時の状態で作用する荷重に は、機器・配管系から作用する荷重が含まれるものとする。

- (2)機器・配管系
 - (i) 通常運転時の状態で作用する荷重
 - (ii) 運転時の異常な過渡変化時の状態で作用する荷重
 - (iii) 設計基準事故時の状態で作用する荷重
 - (iv) 設計降下火砕物荷重
- 1.7.4.5.3 荷重の組合せ

設計降下火砕物荷重と他の荷重との組合せは以下のとおりとする。

- (1) 建物・構築物
 - (i)常時作用している荷重及び運転時の状態で作用する荷重と設計降下火砕物荷重、 風荷重及び積雪荷重を組み合わせる。
- (2)機器・配管系
 - (i)通常運転時の状態で作用する荷重、又は運転時の異常な過渡変化時の状態で作用 する荷重のうち、長時間その作用が続く荷重と設計降下火砕物荷重を組み合わせる。
- (3)荷重の組合せ上の留意事項
 - (i)明らかに、他の荷重の組合せ状態での評価が厳しいことが判明している場合には、 その荷重の組合せ状態での評価は行わなくてもよいものとする。
 - (ii) 複数の荷重が同時に作用する場合、それらの荷重による応力の各ピークの生起時 刻に明らかなずれがあることが判明しているならば、必ずしも、それぞれの応力の ピーク値を重ねなくともよいものとする。
 - (iii)設計基準事故時に評価対象施設に応力は生じないため、設計降下火砕物荷重及び 設計基準事故時に生じる応力の組み合わせは考慮しない。

1.7.4.5.4 許容限界

各施設の設計降下火砕物荷重と他の荷重とを組み合わせた状態に対する許容限界は、以 下のとおりとする。

- (1) 建物・構築物
 - (i)建物・構築物が構造物全体として、十分変形能力(ねばり)の余裕を有し、終局 耐力に対して妥当な安全余裕を持たせることとする。なお、終局耐力は、建物・構 築物に対する荷重又は応力を漸次増大していくとき、その変形又はひずみが著しく 増加するに至る限界の最大耐力とし、既往の実験式等に基づき適切に定めるものと する。
- (2)機器・配管系
 - (i)構造物の相当部分が降伏し塑性変形する場合でも過大な変形、亀裂、破損等が生じ、その施設の機能に影響を及ぼすことがない程度に応力を制限する。
- 1.7.4.6 設計における留意事項
 - (1) 降下火砕物による波及的影響

外部からの衝撃による損傷の防止に係る重要安全施設については、必要に応じて、降 下火砕物の除去に係る措置を講じられるものとし、降下火砕物による波及的影響(閉塞 及び目詰まり)によって、その安全機能の重要度に応じて、必要な安全機能を損なわな いものとするとともに、中央制御室については、その居住環境を維持できるものとする。

(2) 降下火砕物随伴事象等に対する考慮

降灰予報等が発表され、多量の降下火砕物が原子炉施設に到達するおそれが確認さ れた場合には、原子炉を停止する。また、降下火砕物を除去するために必要な措置を講 じる。降下火砕物発生時において原子炉施設外で想定される外部電源喪失等に対して は、原子炉保護系の作動等により、原子炉を自動停止するものとする。また、降下火砕 物に対して非常用ディーゼル発電機の安全機能を維持することで、必要となる電源の 供給が非常用ディーゼル発電機により継続できる設計とすることにより、安全機能を 損なわない設計とする。

1.7.4.7 手順等

「核原料物質,核燃料物質及び原子炉の規制に関する法律」に基づき、原子炉施設保安規 定を定める。原子炉施設保安規定には降下火砕物対策について、以下の内容を含む手順を定 め、適切な管理を行う。

・降灰予報等が発表され、多量の降下火砕物が原子炉施設に到達するおそれが確認された 場合の措置に関すること。 添付3 設置許可申請書の添付書類における記載(適合性)

添付書類八

- 1. 安全設計の考え方
 - 1.8 「設置許可基準規則」への適合 原子炉施設は、「設置許可基準規則」に適合するように設計する。各条文に対する適合のた めの設計方針は次のとおりである。

(外部からの衝撃による損傷の防止)

第六条 安全施設は、想定される自然現象(地震及び津波を除く。次項において同じ。)が発生し た場合においても安全機能を損なわないものでなければならない。

2 重要安全施設は、当該重要安全施設に大きな影響を及ぼすおそれがあると想定される自然 現象により当該重要安全施設に作用する衝撃及び設計基準事故時に生ずる応力を適切に考慮 したものでなければならない。

適合のための設計方針

1 について

(8) 火山の影響

敷地における降下火砕物の想定される最大層厚は50cmであり、これを設計上考量する降 下火砕物の層厚とする。原子力施設の耐降下火砕物設計に用いる設計降下火砕物荷重は、設 計上考慮する降下火砕物の層厚50cmに、湿潤密度を1.5g/cm³を乗じて算定することを基本 とする。ただし、降下火砕物の層厚については、原子炉施設において、必要に応じて、降下 火砕物が降下火砕物防護施設又は外殻施設への積灰を抑制するための措置を講じることを 考慮して設定する場合がある。

設計降下火砕物荷重に対して、建物・構築物が構造物全体として、十分変形能力(ねばり) の余裕を有し、終局耐力に対して妥当な安全余裕を持っていることを確認する。また、機器・ 配管系について、構造物の相当部分が降伏し塑性変形する場合でも過大な変形、亀裂、破損 等が生じ、その施設の機能に影響を及ぼすことがない程度に応力を制限する。

なお、降下火砕物防護施設については、必要に応じて、降下火砕物の除去に係る措置を講 じられるものとし、降下火砕物による波及的影響(閉塞及び目詰まり)によって、その安全 機能の重要度に応じて、必要な安全機能を損なわないものとするとともに、中央制御室につ いては、その居住環境を維持できるものとする。

また、降灰予報等が発表され、多量の降下火砕物が原子炉施設に到達するおそれが確認さ れた場合には、原子炉を停止するとともに、降下火砕物を除去するために必要な措置(除去 等)を講じる。

安全施設のうち、一般電源系(受電エリア)及び屋外管理用モニタリングポストについては、代替措置や修復等により安全機能を損なわないものとする。

降下火砕物発生時において原子炉施設外で想定される外部電源喪失等に対しては、原子 炉保護系の作動等により、原子炉を自動停止するものとする。また、降下火砕物に対して非 常用ディーゼル発電機の安全機能を維持することで、必要となる電源の供給が非常用ディ ーゼル発電機により継続できる設計とすることにより、安全機能を損なわない設計とする。 添付書類六の以下の項目参照
2. 気象
3. 地盤
4. 水理
6. 社会環境
8. 火山
9. 竜巻
10. 生物
添付書類八の以下の項目参照
1. 安全設計の考え方

6条(3)-添付3-3

添付4 :設置許可申請書の添付書類における記載(気象等)

添付書類六 8.火山

8. 火山

8.1 検討の基本方針

自然現象に対する設計上の考慮として、想定される自然現象が発生した場合においても安全 機能を損なわないことを確認するため、試験研究炉の運用期間における火山影響評価を実施す る。

初めに立地評価として施設に影響を及ぼし得る火山の抽出を行い、抽出された火山を対象に 設計対応不可能な火山事象が試験研究炉の運用期間中に影響を及ぼす可能性について評価を行 う。次に影響評価として、試験研究炉の安全性に影響を与える可能性のある火山事象について 評価を行う。

- 8.2 施設に影響を及ぼし得る火山の抽出
 - 8.2.1 地理的領域内の第四紀火山

敷地の地理的領域(半径160kmの範囲)に対して、「日本の火山(第3版)」(中野他 (2013)⁽¹⁾)、「第四紀火山岩体・貫入岩体データベース Ver.1.00」西来他(2016) ⁽²⁾)、「海域火山データベース」(海上保安庁海洋情報部(2013)⁽³⁾)、「日本活火山総 覧(第4版)」(気象庁編(2013)⁽⁴⁾)及び「日本の第四紀火山カタログ」(第四紀火山 カタログ委員会編(1999)⁽⁵⁾)を参照して31の第四紀火山(第8.2.1図)を抽出した。

8.2.2 完新世に活動を行った火山

第四紀火山のうち完新世に活動を行った火山は、高原山、那須岳、男体・女峰火山 群、日光白根火山群、赤城山、燧ヶ岳、安達太良山、磐梯山、榛名山及び沼沢であり、 これらの 10 火山を完新世に活動を行った火山として抽出した。各火山の形式、活動 年代及び最後の活動からの経過期間等を第8.2.1表に示す。

8.2.2.1 高原山

高原山は、栃木県日光市北部に位置する第四紀火山であり、成層火山と溶岩ド ームで構成される。敷地からの距離は約98kmである。活動年代は、約30万年前 ~約6500年前とされている(西来他(2016)⁽²⁾)。高原山の活動履歴について は鈴木(1993)⁽⁶⁾、井上他(1994)⁽⁷⁾、奥野他(1997)⁽⁸⁾、山元(2012)⁽⁹⁾、弦 巻(2012)⁽¹⁰⁾、山元(2013a)⁽¹¹⁾及び中野他(2013)⁽¹⁾を参照した。

高原山は、井上他(1994)⁽⁷⁾等によれば第3期から第7期に区分され、奥野他(1997)⁽⁸⁾等によれば約6500年前には(マグマ)水蒸気噴火が発生したとされる。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出し

た。

8.2.2.2 那須岳

那須岳は、栃木県・福島県境付近に位置する第四紀火山であり、成層火山で構成される。敷地からの距離は約 108km である。活動年代は、約 50 万年前以降で、最新噴火は 1963 年とされている(西来他(2016)⁽²⁾)。那須岳の活動履歴の評価に当たっては鈴木(1992)⁽¹²⁾、伴・高岡(1995)⁽¹³⁾、山元(1997)⁽¹⁴⁾、山元(2012)⁽⁹⁾、中野他(2013)⁽¹⁾、気象庁編(2013)⁽⁴⁾及び産業技術総合研究所地 質調査総合センター編(2014)⁽¹⁵⁾を参照した。

那須岳は、南月山、茶臼岳、朝日岳、三本槍岳、甲子旭岳、二岐山の成層火山 の集合体である(伴・高岡(1995)⁽¹³⁾)。最新活動期の茶臼岳は、山元 (2012)⁽⁹⁾、山元(1997)⁽¹⁴⁾等によれば約 1.9 万年前以降に活動し、1963 年に は水蒸気噴火が発生したとされる。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出した。

8.2.2.3 男体·女峰火山群

男体・女峰火山群は、栃木県日光市に位置する第四紀火山であり、成層火山と 溶岩ドームで構成される。敷地からの距離は約 110km である。活動年代は、約 90 万年前以降で、最新の噴火は約 7000 年前(男体山)とされている(西来他 (2016)⁽²⁾)。男体・女峰火山群の活動履歴の評価に当たっては村本(1992) ⁽¹⁶⁾、鈴木他(1994)⁽¹⁷⁾、佐々木(1994)⁽¹⁸⁾、第四紀火山カタログ委員会編 (1999)⁽⁵⁾、山元(2013a)⁽¹¹⁾、中野他(2013)⁽¹⁾及び石崎他(2014)⁽¹⁹⁾を参照 した。

男体・女峰火山群は、女峰赤薙火山、日光溶岩ドーム群、男体火山、三ツ岳火山により構成され、最新活動期である男体火山は 2.4 万年前から活動し(山元 (2013a)⁽¹¹⁾)、7千年前にはマグマ水蒸気噴火が発生したとされる。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出した。

8.2.2.4 日光白根火山群

日光白根火山群は、栃木県・群馬県境に位置する第四紀火山であり、溶岩流、 小型楯状火山及び溶岩ドームで構成される。敷地からの距離は約 120km である。 活動年代は約 2 万年前以降で、最新噴火は 1890 年とされている(西来他 (2016)⁽²⁾)。日光白根火山群の活動履歴の評価に当たっては奥野他(1993)⁽²⁰⁾、佐々木他(1993)⁽²¹⁾、鈴木他(1994)⁽¹⁷⁾、高橋他(1995)⁽²²⁾、第四紀火山 カタログ委員会編(1999)⁽⁵⁾、中野他(2013)⁽¹⁾、気象庁編(2013)⁽⁴⁾及び産業 技術総合研究所地質調査総合センター編(2014)⁽¹⁵⁾を参照した。

日光白根火山群の活動は新期と古期に区分され、約2万年前以降~1890年に

活動したとされる(奥野他(1993)⁽²⁰⁾等)。また、確認されている有史時代以降の活動は、全て水蒸気噴火であるとされる(佐々木他(1993)⁽²¹⁾)。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出した。

8.2.2.5 赤城山

赤城山は、群馬県前橋市北部に位置する第四紀火山であり、複成火山-カルデ ラ、溶岩ドームで構成される。敷地からの距離は約 126km である。活動年代につ いては、30 万年前より古くから活動し、最新噴火は 1251 年とされている(西来 他(2016)⁽²⁾)。赤城山の活動履歴の評価に当たっては大森編(1986)⁽²³⁾、鈴 木(1990)⁽²⁴⁾、富田他(1994)⁽²⁵⁾、宇井編(1997)⁽²⁶⁾、青木他(2008)⁽²⁷⁾、高 橋他(2012)⁽²⁸⁾、及川(2012)⁽²⁹⁾、山元(2014a)⁽³⁰⁾、山元(2014b)⁽³¹⁾、山元 (2016)⁽³²⁾、気象庁編(2013)⁽⁴⁾及び産業技術総合研究所地質調査総合センタ ー編(2014)⁽¹⁵⁾を参照した。

赤城山の活動は中央火口丘形成期、新期成層火山形成期、古期成層火山形成期 に分けられる。最新活動期の中央火口丘形成期は4.4万年前に開始され、最新の 噴火は1251年噴火であり、この噴火による降下火砕物が確認されている(山元 (2014a)⁽³⁰⁾、青木他(2008)⁽²⁷⁾、及川(2012)⁽²⁹⁾、峰岸(2003)⁽³³⁾)。一方 で、早川(1999)⁽³⁴⁾によれば、1251年噴火に対応する堆積物は確認されておら ず、1251年噴火の根拠とされる吾妻鏡の記録は、噴火ではなく山火事の記録で ある可能性が指摘されている。しかし及川(2012)⁽²⁹⁾、峰岸(2003)⁽³³⁾では、 1251年の水蒸気噴火による堆積物の可能性がある火山灰層が認められ、同時期 の噴火を記録した別の歴史記録も報告されている。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出した。

8.2.2.6 燧ヶ岳

燧ヶ岳は、福島県檜枝岐村に位置する第四紀火山であり、成層火山で構成され る。敷地からの距離は約 136km である。活動年代は約 16 万年前以降で、最新噴 火は 1544 年とされている(西来他(2016)⁽²⁾)。燧ヶ岳の活動履歴の評価に当 たっては早川他(1997)⁽³⁵⁾、山元(1999)⁽³⁶⁾、山元(2012)⁽⁹⁾、中野他 (2013)⁽¹⁾、気象庁編(2013)⁽⁴⁾及び産業技術総合研究所地質調査総合センター 編(2014)⁽¹⁵⁾を参照した。

燧ヶ岳は、燧ヶ岳七入テフラ等の噴出から活動を開始したとされ、460年前に は御池岳溶岩ドームを形成したとされる(山元(2012)⁽⁹⁾、早川他(1997)⁽³⁵⁾ 等)。最新の噴火は、1544年の水蒸気噴火である。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出した。

8.2.2.7 安達太良山

安達太良山は、福島県郡山市北部に位置する第四紀火山であり、複成火山と溶 岩ドームで構成される。敷地からの距離は約 153km である。活動年代は約 55 万 年前~1900 年とされている(西来他(2016)⁽²⁾)。安達太良山の活動履歴の評 価に当たっては第四紀火山カタログ委員会編(1999)⁽⁵⁾、山元・阪口(2000) ⁽³⁷⁾、藤縄他(2001)⁽³⁸⁾、藤縄・鎌田(2005)⁽³⁹⁾、長谷川他(2011)⁽⁴⁰⁾、中野他 (2013)⁽¹⁾、気象庁編(2013)⁽⁴⁾及び産業技術総合研究所地質調査総合センター 編(2014)⁽¹⁵⁾を参照した。

安達太良山の活動は早期、ステージ1、ステージ2、ステージ3に区分され、 ステージ1は55万年前から活動し、最新活動期であるステージ3は約25万年前 から活動したとされる(藤縄他(2001)⁽³⁸⁾等)。最新の噴火は、1900年にマグ マ水蒸気噴火が発生した(山元・阪口(2000)⁽³⁷⁾等)。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出し た。

8.2.2.8 磐梯山

磐梯山は、福島県耶麻郡北東部に位置する第四紀火山であり、複成火山である。 敷地からの距離は約 154km である。活動年代は約 70 万年前~1888 年とされてい る(西来他(2016)⁽²⁾)。磐梯山の活動履歴の評価に当たっては三村(1994) ⁽⁴¹⁾、三村・中村(1995)⁽⁴²⁾、梅田他(1999)⁽⁴³⁾、長谷川他(2011)⁽⁴⁰⁾、山元 (2012)⁽⁹⁾、中野他(2013)⁽¹⁾、気象庁編(2013)⁽⁴⁾及び産業技術総合研究所地 質調査総合センター編(2014)⁽¹⁵⁾を参照した。

磐梯山は先磐梯火山、古磐梯火山、磐梯火山に区分され、約 70 万年前から活動を開始したとされる(山元(2012)⁽⁹⁾、三村(1994)⁽⁴¹⁾等)。また、最新活動期である磐梯火山は 8 万年前から活動し、最新の噴火である 1888 年の噴火では、水蒸気噴火に伴う山体崩壊による岩屑なだれ、火砕サージ等が発生した(長谷川他(2011)⁽⁴⁰⁾等)。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出し た。

8.2.2.9 榛名山

榛名山は、群馬県高崎市に位置する第四紀火山であり、成層火山-カルデラ、 溶岩ドーム及び火砕丘で構成される。敷地からの距離は約154km である。活動年 代は約50万年前以降で、最新噴火は6世紀後半~7世紀初頭とされている(西 来他(2016)⁽²⁾)。

榛名山の活動履歴の評価に当たっては(大森編(1986)⁽²³⁾、Soda(1996)⁽⁴⁴⁾、 第四紀火山カタログ委員会編(1999)⁽⁵⁾、下司(2013)⁽⁴⁵⁾、山元(2013a)⁽¹¹⁾、 中野他(2013)⁽¹⁾、気象庁編(2013)⁽⁴⁾及び産業技術総合研究所地質調査総合セ ンター編(2014)⁽¹⁵⁾)を参照した。

6条(3)-添付4-4

榛名山は古期榛名火山、新期榛名火山に区分される(下司(2013)⁽⁴⁵⁾等)。 最新の噴火では、プリニー式噴火により降下火砕物、火砕流として榛名二ツ岳伊 香保テフラが噴出したとされる(山元(2013a)⁽¹¹⁾)。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出した。

8.2.2.10 沼沢

沼沢は、福島県金山町に位置する第四紀火山であり、溶岩ドーム、カルデラで 構成される。敷地からの距離は約 157km である。活動年代は約 11 万年前~約 5400 年前(西来他(2016)⁽²⁾)である。沼沢の活動履歴の評価に当たっては山 元(1995)⁽⁴⁷⁾、山元(2003)⁽⁴⁸⁾、山元(2012)⁽⁹⁾、中野他(2013)⁽¹⁾を参照し た。

沼沢は11万年前~約5400年前に活動し、沼沢芝原テフラ、惣山溶岩ドーム、 沼沢前山溶岩ドーム、沼沢湖テフラ等を噴出したとされる。最新の活動である沼 沢湖テフラの噴出に伴ってカルデラが形成された(山元(2003)⁽⁴⁸⁾、2012⁽⁹⁾) 等)。

完新世に活動を行った火山であり、施設に影響を及ぼし得る火山として抽出した。

8.2.3 完新世に活動を行っていない火山のうち将来の火山活動可能性が否定できない火山
 完新世に活動を行っていない 21 の火山のうち、最後の活動終了からの期間が、全
 活動期間もしくは過去の最大休止期間より短いとみなされる場合は、将来の活動可能
 性が否定できないと判断し、その結果、子持山と笹森山の2火山を将来の活動可能性
 が否定できない火山として抽出した。各火山の形式、活動年代及び最後の活動からの
 経過期間等を第8.2.1表に示す。

8.2.3.1 子持山

子持山は、群馬県沼田市・渋川市境に位置する第四紀火山であり、複成火山と 溶岩ドームで構成される。敷地からの距離は約 144km である。活動年代は約 90 万年前~約 20 万年前とされている(中野他(2013)⁽¹⁾)。子持山の活動履歴の 評価に当たっては飯塚(1996)⁽⁴⁹⁾と中野他(2013)⁽¹⁾を参照した。

子持山の活動は、綾戸活動期、前期子持火山活動期、後期子持火山活動期に区 分される。また、綾戸活動期と前期子持火山活動期の間に少なくとも約 30 万年 間の休止期があったとされる(飯塚(1996)⁽⁴⁹⁾及び中野他(2013)⁽¹⁾)。

全活動期間よりも最後の活動終了からの期間が短い火山であり、施設に影響を 及ぼし得る火山として抽出した。

8.2.3.2 笹森山

笹森山は、福島県福島市南西部に位置する第四紀火山であり、複成火山である

可能性がある。敷地からの距離は約154kmである。活動年代は約370万年前~約180万年前とされている(西来他(2016)⁽²⁾、山元(2015)⁽⁵²⁾)。笹森山の活動 履歴の評価に当たっては阪口(1995)⁽⁵⁰⁾、第四紀火山カタログ委員会編 (1999)⁽⁵⁾、長橋他(2004)⁽⁵¹⁾、中野他(2013)⁽¹⁾、山元(2015)⁽⁵²⁾を参照した。

笹森山は笹森山安山岩と蓬莱火砕流からなるとされ、最新の噴火活動は、最末期の蓬莱火砕流から 1.9Ma~1.8Ma のフィッショントラック年代が報告されている(山元(2015)⁽⁵²⁾)。

全活動期間よりも最後の活動終了からの期間が短い火山であり、施設に影響を 及ぼし得る火山として抽出した。

8.2.4 将来の活動可能性が否定できない火山の抽出

地理的領域内に分布する第四紀火山について、「完新世に活動を行った火山」及び 「完新世に活動を行っていない火山のうち将来の火山活動可能性が否定できない火 山」を評価し、施設に影響を及ぼし得る火山として、高原山、那須岳、男体・女峰火 山群、日光白根火山群、赤城山、燧ヶ岳、子持山、安達太良山、磐梯山、榛名山、笹 森山及び沼沢の 12 火山を抽出した。

8.3 抽出された火山の火山活動に関する個別評価

施設に影響を及ぼし得る火山(12火山)について、活動履歴に関する文献調査により、評価の対象となる設計対応不可能な火山事象の顕著な発生実績及び過去最大規模の噴火による火山噴出物の敷地への到達可能性について第8.3.1表に整理した。

火砕物密度流については、各火山の過去最大規模の火砕物密度流の分布から到達可能性範囲 を検討した。まず、高原山と日光白根火山群については、活動履歴上、噴出物は溶岩及び火砕 物が主であり、火砕物密度流の発生は認められない。それ以外の火山については、過去最大規 模の火砕物密度流の分布はいずれも山体周辺に限られ、敷地周辺までの到達は認められない

(第8.3.1図、第8.3.2図)。また、溶岩流、岩屑なだれ、地滑り及び斜面崩壊については、 施設に影響を及ぼし得る火山(12火山)のうち敷地に最も近い高原山でも敷地から約98kmと 十分離れている。したがって、これらの火山事象が敷地に到達する可能性は十分に小さいと判 断される。

新しい火口の開口及び地殻変動については、敷地は、火山フロントより前弧側(東方)に位置すること、敷地周辺では火成活動は確認されていないことから、これらの火山事象が敷地において発生する可能性は十分に小さいと判断される。

以上のことから、施設に影響を及ぼし得る火山(12 火山)については過去最大規模の噴火 を想定しても設計対応不可能な火山事象が施設に影響を及ぼす可能性は十分に小さいと評価し、 火山活動のモニタリングは不要と判断した。

8.4 火山事象の影響評価

施設に影響を及ぼし得る火山(12火山)について、試験研究炉の運用期間中における活動 可能性と規模を考慮し、施設の安全性に影響を与える可能性について検討した。 なお、降下火砕物については、地理的領域外の火山も含めてその影響を評価した。

8.4.1 降下火砕物

8.4.1.1 層厚に関する評価

町田・新井(2011)⁽⁵³⁾、山元(2013a)⁽¹¹⁾等に基づき、敷地周辺に分布が確認また は推定される降下火砕物を抽出した。そのうち、噴出源が同定できる降下火砕物につ いては、当該火山の将来の噴火の可能性について噴火履歴等から検討した。一方、噴 出源が同定できない降下火砕物については、その堆積状況より検討した。敷地周辺で 分布が推定される主な降下火砕物の噴出源と敷地の距離、敷地での層厚、噴火規模、 試験研究炉の運用期間中における同規模の噴火の可能性の有無について、文献調査の 結果の整理を第8.4.1 表に示し、試験研究炉の運用期間中に同規模の噴火の可能性の ある降下火砕物の分布を第8.4.1 図に示す。

(1) 噴出源を同定できる降下火砕物の同規模噴火の可能性

a.満美穴テフラ、日光早乙女テフラ、日光行川テフラ、日光矢板テフラ(男体・女 峰火山群)

満美穴テフラ、日光早乙女テフラ、日光行川テフラ及び日光矢板テフラは男体女 峰火山群を噴出源とし、それぞれ約10万年前、約13万年前、約14万年前に噴出し たとされる(山元(2012)⁽⁹⁾)。

佐々木(1994)⁽¹⁸⁾によれば、男体・女峰火山群において、約 60 万年前から約 7 万年前までは女峰赤薙火山が活動し、日光溶岩ドーム群の活動を経て、約 2 万年前 以降に男体火山、三ツ岳火山、日光白根火山が活動したとされる。

上記を踏まえると、満美穴テフラ、日光早乙女テフラ、日光行川テフラ及び日光 矢板テフラが噴出されたのは女峰赤薙火山の活動期であり、現在の活動は男体火山 の活動期であると考えられる。

以上のことから、試験研究炉の運用期間中における満美穴テフラ、日光早乙女テフ ラ、日光行川テフラ及び日光矢板テフラと同規模噴火の発生可能性は十分に小さい と判断される。

b. 真岡テフラ(飯士山)

真岡テフラは飯士山を噴出源とし、約 22 万年前に噴出したとされる(山元 (2013a)⁽¹¹⁾)。

西来他(2016)⁽²⁾、中野他(2013)⁽¹⁾、赤石・梅田(2002)⁽⁵⁴⁾によれば、飯士山の活動形式は成層火山であり、その活動年代は約 30 万年前~約 20 万年前とされている。

上記を踏まえると、全活動期間よりも最後の活動終了からの期間が長いことから、 飯士山は将来の活動可能性はない火山と判断される。

以上のことから、試験研究炉の運用期間中における真岡テフラと同規模噴火の発生 可能性は十分に小さいと判断される。
c. 立川ローム上部ガラス質テフラ、浅間板鼻黄色テフラ(浅間山)

立川ローム上部ガラス質テフラは約 1.5 万年前~約 1.6 万年前に、浅間板鼻黄色 テフラは約 1.5 万年前~約 1.65 万年前に、浅間山を噴出源として噴出した広域テフ ラである(町田・新井(2011)⁽⁵³⁾)。

高橋他(2013)⁽⁵⁵⁾によれば、浅間山の活動は、黒斑火山、仏岩火山、前掛火山に 区分される。高橋・安井(2013)⁽⁵⁶⁾によれば、最新活動期である前掛火山は約1万 年前(山元(2014b)⁽³¹⁾)から活動を開始したとされる。

山元(2014b)⁽³¹⁾によれば、立川ローム上部ガラス質テフラ及び浅間板鼻黄色テ フラは仏岩火山の活動であり、現在は前掛火山の活動となっており、2015年にはご く小規模な噴火が発生し、微量の降灰が確認された(気象庁(2015)⁽⁵⁷⁾)。

なお、現在の活動での最大規模の噴火は、浅間Bテフラであるが、敷地周辺(半 径約 30km 以内)で確認または分布は推定されない。

以上のことから、試験研究炉の運用期間中における立川ローム上部ガラス質テフ ラ及び浅間板鼻黄色テフラと同規模噴火の発生可能性は十分に小さいと判断される。 d. 箱根東京テフラ、箱根吉沢下部7テフラ(箱根火山群)

箱根東京テフラは約 6.6 万年前に、箱根吉沢下部 7 テフラは約 12.8 万年前〜約 13.2 万年前の間に、箱根火山群を噴出源として噴出した広域テフラである(町田・新井(2011)⁽⁵³⁾)。

長井・高橋(2008)⁽⁵⁸⁾によれば、箱根火山群の活動は、初期の陸上火山活動である ステージ1、玄武岩〜安山岩質成層火山群形成期のステージ2、安山岩質成層火山 群及び独立単成火山群形成期のステージ3、カルデラ及び単成火山群形成期のステ ージ4、前期中央火口丘形成期のステージ5、爆発的 噴火期のステージ6、後期 中央火口丘形成期のステージ7に区分される。

山元(2014b)⁽³¹⁾によれば、箱根東京テフラは爆発的噴火を主体としていたステ ージ6、箱根吉沢下部7テフラはステージ5で発生した降下火砕物である。現在は 中央火口丘での溶岩ドームの活動であるステージ7であり、顕著な降下火砕物の発 生は確認されない。

以上のことから、試験研究炉の運用期間中における箱根東京テフラ及び箱根吉沢 下部7テフラと同規模噴火の発生可能性は十分に小さいと判断される。

e. 飯縄上樽 a テフラ (飯縄山)

飯縄上樽 a テフラは、約 13 万年前に飯縄山を噴出源として噴出したテフラである (町田・新井(2011)⁽⁵³⁾)。

飯縄山は、第 I 活動期と第 II 活動期の 2 つの活動期間に大別され、第 I 活動期は、 約 34 万年前ごろ、第 II 活動期は約 20 万年前にはじまり、飯縄上樽 a テフラは第 II 活動期に発生した(早津他(2008)⁽⁵⁹⁾)。早津他(2008)⁽⁵⁹⁾によれば、飯縄山は妙 高火山群を構成する火山の 1 つであり、その活動は玄武岩質マグマによって開始し、 デイサイト質マグマの活動によって終わるとされ、飯縄山の第 II 活動期においても、 噴出するマグマの性質が玄武岩質から安山岩質、安山岩質からデイサイト質へと変 化したとされる。また、第 II 活動期は、飯縄上樽 a テフラ噴出後の活動である溶岩 ドーム群の活動を最後に急速に衰退し、約6万年前の水蒸気爆発の発生以降、噴火の痕跡は確認されず、噴気活動や高温の温泉の湧出等は全く認められないことから、現在、火山活動は完全に停止状態にあると考えられている(早津他(2008)⁽⁵⁹⁾)。

以上のことから、試験研究炉の運用期間中における飯縄上樽 a テフラと同規模噴 火の発生可能性は十分に小さいと判断される。

f. 御嶽第1テフラ(御嶽山)

御嶽第1テフラは、約9.5万年前~約10万年前に御嶽山を噴出源として噴出した 広域テフラである(町田・新井(2011)⁽⁵³⁾)。

御嶽山の活動は、山元(2014b)⁽³¹⁾、及川他(2014)⁽⁶⁰⁾によれば、古期御嶽火山 と新期御嶽火山に分けられ、現在は新期御嶽火山の活動期であり、御嶽第1テフラ は約 10 万年前に発生したとされる。また、木村(1993)⁽⁶¹⁾によれば、新期御嶽火 山の活動は 3 つのステージに分けられ、御嶽第1テフラをもたらした噴火が発生し たステージはO1 ステージ(デイサイトー流紋岩質のプリニー式噴火と、カルデラ 陥没及び溶岩ドームの形成)であり、現在は山頂付近の小円錐火山群の形成期であ るO3ステージで、約2 万年前以降は水蒸気噴火を中心とした活動であるとされる。 なお、及川他(2014)⁽⁶⁰⁾によれば、過去1万年以内に少なくとも4回のマグマ噴

火が確認されている。

以上のことから、試験研究炉の運用期間中における御嶽第1テフラと同規模噴火 の発生可能性は十分に小さいと判断される。

g. 谷口テフラ、大峰テフラ(爺ヶ岳)、恵比須峠福田テフラ、丹生川テフラ(穂高 岳)

谷ロテフラ及び大峰テフラの噴出源である爺ヶ岳、並びに恵比須峠福田テフラ及 び丹生川テフラの噴出源である穂高岳はいずれも飛騨山脈に位置する第四紀火山で ある(及川(2003)⁽⁶²⁾)。

及川(2003)⁽⁶²⁾によれば、飛騨山脈での火成活動は Stage I ~Ⅲの 3 つの活動期 に区分され、谷ロテフラ、大峰テフラ、恵比須峠福田テフラ、丹生川テフラを発生 させた時期はいずれも Stage I (2.5Ma~1.5Ma)である。

現在の活動期は Stage Ⅲ(0.8Ma~0Ma)であり、東西圧縮応力場のもとで、成層 火山形成を主体とした活動が継続していることから、飛騨山脈において Stage I で 発生した大規模な噴火の発生可能性は十分に小さいと考えられる。

以上のことから、試験研究炉の運用期間中において谷ロテフラ、大峰テフラ、恵 比須峠福田テフラ、丹生川テフラと同規模の噴火の発生可能性は十分に小さいと判 断される。

h. 大町Apmテフラ群(樅沢岳)

大町Apmテフラ群は、樅沢岳を噴出源として噴出した広域テフラ群である(町 田・新井(2011)⁽⁵³⁾)。

西来他(2016)⁽²⁾、中野他(2013)⁽¹⁾、原山(1990)⁽⁶³⁾、町田・新井(2011)⁽⁵³⁾ 等によれば、火山の活動形式は火砕流であり、その活動年代は約 40 万年〜約 30 万 年前とされている。 上記を踏まえると、樅沢岳は全活動期間より、最後の活動終了からの期間が長い ことから、将来の活動可能性はないと判断される。

以上のことから、試験研究炉の運用期間中における大町Apmテフラ群と同規模 噴火の可能性は十分に小さいと判断される。

i. 貝塩上宝テフラ(上宝)

貝塩上宝テフラは、上宝を噴出源として噴出した広域テフラである(町田・新井(2011)⁽⁵³⁾)。

西来他(2016)⁽²⁾、中野他(2013)⁽¹⁾によれば、火山の活動形式は火砕流であり、 その活動期間は約 60 万年前とされている。また、鈴木(2000)⁽⁶⁴⁾等によれば、約 62 万年前から約 60 万年前の間に大規模な噴火が発生し、貝塩給源火道から上宝火 砕流及び貝塩上宝テフラが噴出したとされる。上記を踏まえると、全活動期間より も最後の活動終了からの期間が長いことから、将来の活動可能性はないと判断され る。

以上のことから、試験研究炉の運用期間中における貝塩上宝テフラと同規模噴火 の可能性は十分に小さいと判断される。

j. 玉川R4テフラ(玉川カルデラ)

玉川R4テフラは、約200万年前に玉川カルデラを噴出源とし噴出した広域テフ ラである(町田・新井(2011)⁽⁵³⁾)。

鈴木・中山(2007)⁽⁶⁵⁾によれば、敷地周辺に玉川R4テフラの分布が示され、その降灰年代は2.0Maと推定されるとしている。梅田他(1999)⁽⁴³⁾によれば、東北日本の2Ma以降の火山活動は、活動年代、噴出量、噴火様式、広域応力場変遷の観点から次の3ステージに区分される。stage1(2Ma~1Ma)では、弱圧縮応力場の環境下で大規模珪長質火砕流の噴出が卓越したとされる。stage2(1Ma~0.6Ma)では、強圧縮応力場の環境下で成層火山の活動が卓越したとされる。stage3(0.6Ma以降)では、強圧縮応力場におかれ、脊梁山脈全体で断層運動が活発化し、大規模珪長質火砕流、成層火山の活動が共に認められ、マグマ噴出量が増大したとされる。

現在の東北日本における火山活動は stage3 に相当することに加え、高橋(1995) ⁽⁶⁰⁾によれば、大量の珪長質マグマを蓄積するには低地殻歪速度が必要であるとされ る。

以上のことから、試験研究炉の運用期間中における玉川R4テフラと同規模噴火 の発生可能性は十分に小さいと判断される。

k. 八甲田国本テフラ(八甲田カルデラ)

八甲田国本テフラは、約76万年前に八甲田カルデラ(八甲田火山)を噴出源とし て噴出した広域テフラである(町田・新井(2011)⁽⁵³⁾)。

気象庁編(2013)⁽⁴⁾によれば、八甲田火山は、南八甲田火山群、北八甲田火山群 に区分され、八甲田カルデラは北八甲田火山群の直下〜北東に存在するとされてい る。中野他(2013)⁽¹⁾及び工藤他(2011)⁽⁶⁷⁾によれば、八甲田火山の活動を、南八 甲田火山群、八甲田カルデラ、北八甲田火山群の活動に区分し、このうち、八甲田 カルデラにおいては、約 1Ma(八甲田中里川)、0.9Ma(八甲田黄瀬)、0.76Ma(八 甲田第1期)、0.4Ma(八甲田第2期)に大規模火砕流を噴出したとされている。八 甲田火山は、110万年前から活動を開始し、南八甲田火山群及び八甲田カルデラの 活動後、最近30万年間では、北八甲田火山群のみの活動が継続している。八甲田国 本テフラは八甲田カルデラの活動で発生したものであり、現在は北八甲田火山群の 活動である。

以上のことから、試験研究炉の運用期間中における八甲田国本テフラと同規模噴 火の発生可能性は十分に小さいと判断される。

1. 大山倉吉テフラ (大山)

大山倉吉テフラは、約 5.5 万年前に大山を噴出源として噴出した広域テフラである(町田・新井(2011)⁽⁵³⁾)。

守屋(1983)⁽⁶⁸⁾の日本の第四紀火山の地形発達過程に基づく分類によれば大山は 最終期である第4期とされる。また、米倉(2001)⁽⁶⁹⁾によれば、一般にこの第4期 の噴出量は第1期~第3期と比べて少なく、数km³とされる。

また、山元(2014b)⁽³¹⁾による活動履歴情報の整理に基づけば、約40万年前以降、 最も規模の大きな噴火は大山倉吉テフラ噴火であるが、これに至る活動間隔は、大 山倉吉テフラ噴火以降の経過期間に比べて十分に長い。

ただし、数 km³以下の規模の噴火については、大山倉吉テフラ噴火以前もしくは 以降においても繰り返し発生している。また、Zhao et al. (2011)⁽⁷⁰⁾によれば、 大山の地下深部に広がる低速度層と、大山の西方地下で発生している低周波地震の 存在から、地下深部にはマグマ溜まりが存在している可能性が示唆される。保守的 に、この低速度層をマグマ溜まりとして評価した場合、その深度は 20km 以深に位置 し、これは爆発的噴火を引き起こす珪長質マグマの浮力中立点の深度 7km (東宮 (1997)⁽⁷¹⁾)よりも深い位置に相当する。

以上のことから、試験研究炉の運用期間中における大山倉吉テフラと同規模噴火 の発生可能性は十分に小さいと判断される。

m. 阿蘇4、阿蘇3テフラ(阿蘇カルデラ)

阿蘇4テフラは約8.5万年前~約9万年前に、阿蘇3テフラは約13万年前に、いずれも阿蘇カルデラを噴出源として噴出した広域テフラである(町田・新井(2011)⁽⁵³⁾)。

Nagaoka (1988) ⁽⁷²⁾に基づけば、現在の阿蘇カルデラの活動期は、最新の破局的 噴火(約9万年前の阿蘇4テフラの噴出)以降、阿蘇山において草千里ヶ浜軽石等 の多様な噴火様式による小規模噴火が発生していることから、阿蘇山における後カ ルデラ噴火ステージの活動と考えられ、苦鉄質火山噴出物及び珪長質火山噴出物の 給源火口の分布(三好他(2005) ⁽⁷³⁾)から、地下に大規模な珪長質マグマ溜まり は存在していないと考えられる。また、破局的噴火の最短の活動間隔(約2万年) は、最新の破局的噴火からの経過期間(約9万年)と比べて短い。

以上のことから、試験研究炉の運用期間中における阿蘇4、阿蘇3テフラと同規 模噴火の発生可能性は十分に小さいと判断される。

n. 姶良Tnテフラ(姶良カルデラ)

[147]

姶良Tnテフラは、南九州の姶良カルデラを噴出源とし、約2.8万年前~約3万 年前に噴出した広域テフラである(町田・新井(2011)⁽⁵³⁾)。

現在の姶良カルデラの活動期は、Nagaoka (1988)⁽⁷²⁾に基づけば、後カルデラ火山 噴火ステージであると考えられる。また、破局的噴火の活動間隔(約6万年以上) は、最新の破局的噴火である約3万年前の姶良Tnテフラの噴出からの経過期間と 比べ十分に長く、現在は破局的噴火に先行して発生するプリニー式噴火ステージの 兆候が認められない。

以上のことから、試験研究炉の運用期間中における、姶良Tnテフラと同規模噴 火の可能性は十分に小さいと判断される。

o. 鬼界アカホヤテフラ、鬼界葛原テフラ(鬼界カルデラ)

鬼界アカホヤテフラは約7,300年前に、鬼界葛原テフラは約9.5万年前に、いず れも鬼界カルデラを噴出源として噴出した広域テフラである(町田・新井(2011)⁽⁵³⁾)。

現在の鬼界カルデラの活動期は、Nagaoka (1988)⁽⁷²⁾に基づけば、後カルデラ火 山噴火ステージ(薩摩硫黄島)であると考えられる。また、鬼界カルデラにおける 破局的噴火の活動間隔は約 5 万年以上であり、最新の破局的噴火からの経過期間 (約 0.7 万年)に比べて十分長い。

以上のことから、試験研究炉の運用期間中における鬼界アカホヤテフラ及び鬼界 葛原テフラと同規模噴火の発生可能性は十分に小さいと判断される。

(2) 噴出源が同定できない降下火砕物

敷地周辺で確認された噴出源が同定できない降下火砕物は、敷地から西北西に約 23kmの茨城県笠間市大古山の涸沼川沿いで確認される「涸沼川テフラ」(山元 (2013a)⁽¹¹⁾)の1つである。本テフラは見和層下部のエスチュアリー相泥質堆積物 中に再堆積物として挟まれる層厚15 cmの軽石質の粗粒火山灰であるとされている (山元(2013a)⁽¹¹⁾)。また、涸沼川テフラは敷地近傍においてその分布が認められ ないことから、敷地への影響は十分に小さいと判断される。

(3) 設計上考慮する降下火砕物の層厚の検討

文献調査結果から、敷地周辺で分布が推定される主な降下火砕物のうち、噴出源が 同定でき、試験研究炉の運用期間中における同規模の噴火の可能性のある降下火砕物 として、高原山を噴出源とする高原戸室山2テフラ、男体・女峰火山群を噴出源とす る男体今市テフラ、男体七本桜テフラ、赤城山を噴出源とする赤城鹿沼テフラ、赤城 行川2テフラ、赤城水沼1テフラ、赤城水沼2テフラ、赤城水沼8テフラ、赤城水沼 9-10テフラ、燧ケ岳を噴出源とする燧ヶ岳七入テフラ、沼沢を噴出源とする沼沢 芝原テフラ、榛名山を噴出源とする榛名八崎テフラ、四阿山を噴出源とする四阿菅平 2テフラが挙げられる。

一方、噴出源が同定できない降下火砕物として、涸沼川テフラが認められる。

これらの降下火砕物のうち、敷地周辺において層厚とその噴火規模が最も大きい降 下火砕物は赤城鹿沼テフラであり、設計上考慮する降下火砕物として詳細に検討を行 った。 a. 降下火砕物の分布状況

赤城鹿沼テフラの分布に関する以下の敷地周辺の層厚調査及び敷地内の地質調査の結果から、赤城鹿沼テフラの敷地及び敷地近傍での層厚は約35cmであるが、敷地 周辺で最大50cmが確認され、保守性を考慮して50cmと評価される。

(a) 敷地周辺の層厚調査

降下火砕物の等層厚線図から、敷地において最も層厚が大きい降下火砕物は赤 城鹿沼テフラと判断される。その分布主軸は敷地の方向を向いており、「新編火 山灰アトラス」(町田・新井(2011)⁽⁵³⁾)によれば 10cm~40cm、山元(2013a)⁽¹¹⁾では 32cm~64cm の 32cm 等層厚線付近に位置する。山元(2013a)⁽¹¹⁾、茨城県 自然博物館(2001)⁽⁷⁴⁾、茨城県自然博物館(2007)⁽⁷⁵⁾及び敷地周辺の地質調査結 果より敷地周辺の赤城鹿沼テフラの層厚を調査したところ、敷地近傍で約 35 cm、 敷地周辺で概ね 40cm 以下、敷地から噴出源方向に約 10km の地点で最大 50cm が確 認される。(第 8.4.2 図)

(b) 敷地内の地質調査

敷地での赤城鹿沼テフラの層厚を把握するため、地質調査を実施した。ボーリ ング調査において、ローム層中に黄褐色の軽石層が認められ、火山灰分析の結果、 赤城鹿沼テフラに対比される。また、ボーリング調査による層厚は25~30cm、露 頭で層厚30~35cmであり、文献で示される層厚に整合している。(第8.4.3 図)

b. 降下火砕物シミュレーション

現在の気象条件での敷地における降下火砕物の層厚を検討するため、敷地周辺に おける堆積厚さが最も大きい赤城鹿沼テフラの噴出源である赤城山を対象に降下火 砕物シミュレーションを行った。

山元(2016)⁽³²⁾、高橋他(2012)⁽²⁸⁾、守屋(1979)⁽⁷⁶⁾によれば、赤城山の活動 は約50万年前から溶岩と火砕物を主とした噴火様式の古期成層火山の活動から始ま り、約22万年前の山体崩壊を境に、その後、新期成層火山の活動となっている。新 期成層火山についても3つの活動期に分けられ、赤城鹿沼テフラは現在の活動ステ ージである後カルデラ期に発生した降下火砕物であるとされる。現在の赤城山の活 動ステージにおいて最大規模の噴火による降下火砕物噴出は赤城鹿沼テフラであり、 その噴出量は2km³DRE(見かけ体積5km³)とされている(第8.4.4図)。このこと を踏まえ、解析条件の噴出量には見かけ体積5km³を設定した。主な解析条件につい ては第8.4.2表に示す。

風向・風速は、気象庁が行っているラジオゾンデの定期観測データ(観測地点: 館野)を用いて行った。

月別平年解析の結果、1 年を通じて偏西風の影響を受け、分布主軸が東から東北 東に向く傾向があり、敷地における降下火砕物の堆積厚さは7月の21時の風のケー スで最大(約12cm)となる(第8.4.5図)。さらに、層厚が最大となった7月の21 時を基本ケースとして、噴煙柱・風速・風向の3つの要素について、不確かさに関 する検討を行った(第8.4.6図)。その結果、風速の不確かさを考慮した場合が最 大で層厚は約22cmであり、敷地及び敷地周辺の調査で確認された層厚を上回らない。 (4) 設計上考慮する降下火砕物の層厚の設定

上記を踏まえ、降下火砕物の分布状況及び降下火砕物シミュレーションによる検討結 果から総合的に判断し、設計上考慮する降下火砕物の層厚を保守的に 50 cmと設定す る。

8.4.1.2 密度に関する評価

富田他(1994)⁽²⁵⁾によれば、笠間地区における赤城鹿沼テフラの密度は湿潤状態で 1.0g/cm³、乾燥状態で 0.3g/cm³である。また、地質調査(土質試験)により赤城山から敷地までの距離とほぼ同一な距離における赤城鹿沼テフラの密度を確認した結果、湿潤密度で最大約 1.1g/cm³、乾燥密度で最小約 0.3g/cm³であった(第 8.4.7 図)。

一方で、宇井編(1997)⁽²⁶⁾によれば、乾燥した火山灰は密度が 0.4 g/cm³~0.7
 g/cm³であるが、湿ると 1.2 g/cm³を超えることがあるとされている。
 以上のことから、湿潤密度は 1.5 g/cm³と設定する。

8.4.2 火山性土石流、火山泥流及び洪水

施設に影響を及ぼし得る 12 火山のうち、敷地から 120 kmの範囲内には高原山、那須岳、 男体・女峰火山群、日光白根火山群の4火山が位置する。敷地は那珂川流域に位置し、上 流域に対象火山が存在する。

文献調査の結果、那珂川に沿う瓜連丘陵に火山性土石流堆積物である粟河軽石が分布する(坂本・宇野沢(1976)⁽⁷⁷⁾)。しかしながら、那珂川の流下方向は敷地へ向かっていない。また、那珂川と敷地の間には鹿島台地が分布し敷地は台地上に位置する。(第 8.4.8 図)。このことから、火山性土石流、火山泥流及び洪水が施設に影響を及ぼす可能性は十分に小さいと判断される。

8.4.3 火山から発生する飛来物 (噴石)

施設に影響を及ぼし得る12火山のうち、最も近いものでも敷地から約98kmと十分離れていることから、火山から発生する飛来物が施設に影響を及ぼす可能性は十分に小さいと 判断される。

8.4.4 火山ガス

施設に影響を及ぼし得る12火山のうち、最も近いものでも敷地から約98kmと十分離れていること、敷地は太平洋に面する台地上に位置しており火山ガスが滞留する地形ではないことから、火山ガスが施設に影響を及ぼす可能性は十分に小さいと判断される。

8.4.5 その他火山事象

施設に影響を及ぼし得る12火山のうち、最も近いものでも敷地から約98kmと十分離れ ていること、敷地は火山フロントより前弧側(東方)に位置することから、津波及び静振、 大気現象、火山性地震とこれに関連する事象、熱水系及び地下水の異常について、施設に 影響を及ぼす可能性は十分に小さいと判断される。

- 8.5 参考文献
 - (1) 中野俊・西来邦章・宝田晋治・星住英夫・石塚吉浩・伊藤順一・川辺禎久・及川輝樹・ 古川竜太・下司信夫・石塚治・山元孝広・岸本清行(2013):日本の火山(第3版), 産業技術総合研究所地質調査総合センター
 - (2) 西来邦章,伊藤順一,上野龍之,内藤一樹,塚本斉(2016):産業技術総合研究所地質 調査総合センター (2016):第四紀噴火・貫入活動データベース,産業技術総合研究 所地質調査総合センター,https://gbank.gsj.jp/quatigneous/index_qvir.php
 - (3) 海上保安庁海洋情報部(2013):海域火山データベース,http://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/list-2.htm
 - (4) 気象庁編(2013):日本活火山総覧(第4版),気象業務支援センター
 - (5) 第四紀火山カタログ委員会編(1999):日本の第四紀火山カタログ、日本火山学会
 - (6) 鈴木毅彦(1993):北関東那須野原周辺に分布する指標テフラ層,地学雑誌,102,
 p.73-90
 - (7) 井上道則,吉田武義,藤巻宏和,伴雅雄(1994):東北本州弧,高原火山群における山 体形成史とマグマの成因,核理研研究報告,第27巻,第2号,1994年12月,p169-198
 - (8) 奥野充,守屋以智雄,田中耕平,中村俊夫(1997):北関東,高原火山の約 6500cal yr
 BP の噴火,火山,42,p393-402
 - (9) 山元孝広(2012):福島-栃木地域における過去約 30 万年間のテフラの再記載と定量
 化,地質調査研究報告,63,p35-91
 - (10) 弦巻賢介(2012):東北日本弧南部,高原火山における山体形成史とマグマ供給系の発達,日本火山学会講演予稿集,p56
 - (11) 山元孝広(2013a):栃木-茨城地域における過去約30万年間のテフラの再記載と定量
 化,地質調査研究報告,第64巻,第9/10号,p251-304,2013
 - (12) 鈴木毅彦(1992):那須火山のテフロクロノロジー,火山, 37, p251-263
 - (13) 伴雅雄,高岡宣雄(1995):東北日本弧,那須火山群の形成史,岩鉱,90, p195-214, 1995
 - (14) 山元孝広(1997):テフラ層序から見た那須茶臼岳火山の噴火史,地質学雑誌,103, p676-691
 - (15) 産業技術総合研究所地質調査総合センター編(2014):1 万年噴火イベントデータ集
 (ver. 2.2), https://gbank.gsj.jp/volcano/eruption/index.html
 - (16) 村本芳英(1992):日光火山群東方地域に分布する中・後期更新世テフラー日光火山群 の噴火史ー,静岡大学地球科学研究報告,18, p59-91
 - (17) 鈴木毅彦, 奥野 充, 早川由紀夫(1994): テフラからみた日光火山群の噴火史, 月刊 地球, 16, p.215-221
 - (18) 佐々木 実(1994):日光火山群の岩石学,月刊地球,116,p221-230
 - (19) 石崎泰男,森田考美・岡村裕子・小池一馬・宮本亜里沙・及川輝樹(2014):男体火山

の最近 17000 年間の噴火史,火山, 59, 3, p185-206

- (20) 奥野充,中村俊夫,守屋以智雄(1993):那須・高原・日光白根火山の完新世テフラの 加速器 14C 年代,日本火山学会講演予稿集,p6,p92
- (21) 佐々木 実,橋野 剛,村上 浩(1993):日光火山群,日光白根火山および三ツ岳火山の地質と岩石,弘前大学理学部地球科学科報告,40,p101-117(1993)
- (22) 高橋正樹,小堀容子,矢島有紀子(1995):日光白根火山下マグマ供給システムの岩石 学的モデル,月間地球,17,p113-119
- (23) 大森昌衛編(1986):日本の地質3 関東地方,共立出版,p335
- (24) 鈴木毅彦(1990):テフロクロノロジーからみた赤城火山最近 20 万年間の噴火史,地
 学雑誌,99,2(1990),p60-75
- (25) 富田平四郎,中野政詩,鈴木敬(1994):地域,深さによる鹿沼土の物理的構成と各種
 物理性の差異について,土壌の物理性,第69号,p11-21 (1994)
- (26) 宇井忠英編(1997):火山噴火と災害,東京大学出版会
- (27) 青木かおり,入野智久,大場忠道(2008): 鹿島沖海底コア MD01-2421 の後期更新世 テフラ層序,第四紀研究,47,(6),p391-407
- (28) 高橋正樹,関慎一郎,鈴木洋美,竹本弘幸,長井雅史,金丸龍夫(2012):赤城火山噴
 出物の全岩化学組成-分析データ 381 個の総括-,日本大学文理学部自然科学研究所研
 究紀要,47,p341-400
- (29) 及川輝樹(2012):赤城山と栗駒山の歴史時代の噴火記録,日本火山学会講演予稿集, p140
- (30) 山元孝広(2014a):赤城火山の噴火履歴の再検討と定量化,日本火山学会講演予稿集
- (31) 山元孝広(2014b):日本の主要第四紀火山の積算マグマ噴出量階段図,地質調査総合 センター研究資料集,613,産総研地質調査総合センター
- (32) 山元孝広(2016):赤城火山軽石噴火期のマグマ噴出率と組成の変化,地質学雑誌, 122, p109-126
- (33) 峰岸純夫(2003):中世における赤城山於呂嶽(荒山)の噴火と富士山浅間信仰,日本中世 史の再発見,吉川弘文館, p. 132-144.
- (34) 早川由紀夫(1999):赤城山は活火山か?,地球惑星科学関連学会合同大会予稿集(CD-ROM), As-012
- (35) 早川由紀夫,新井房夫,北爪智啓(1997):燧ヶ岳火山の噴火史,地学雑誌,106, p660-664
- (36) 山元孝広(1999):福島-栃木地域に分布する 30-10 万年前のプリニー式降下火砕物: 沼沢・燧ヶ岳・鬼怒沼・砂子原火山を給源とするテフラ群の層序,地質調査所月報,50, p743-767
- (37) 山元孝広,阪口圭一(2000): テフラ層序からみた安達太良火山,最近約 25 万年間の 噴火活動,地質学雑誌,106,p865-882
- (38) 藤縄明彦,林信太郎,梅田浩司(2001):安達太良火山の K-Ar 年代:安達太良火山形 成史の再検討,火山,46, p95-106
- (39) 藤縄明彦,鎌田光春(2005):安達太良火山の最近 25 万年間における山体形成史とマ

6条(3)-添付4-16

グマ供給系の変遷,岩石鉱物科学,34,p35-58

- (40) 長谷川健,藤縄明彦,伊藤太久(2011):磐吾妻,安達太良:活火山ランク B の三火山, 地質学雑誌,117,p33-48
- (41) 三村弘二(1994):磐梯火山の放射年代-概報-,地質調査所月報,第45巻,第10号, p565-571,1994
- (42) 三村弘二,中村洋一(1995):磐梯山の地質形成史と岩石,磐梯火山,p87-101 (1995)
- (43) 梅田浩司,林信太郎,伴雅雄,佐々木実,大場司,赤石和幸(1999):東北日本,火山 フロント付近の 2.0Ma 以降の火山活動とテクトニクスの推移,火山,第 44 巻(1999), p233-249
- (44) Soda, Tsutomu. (1996) : Explosive activities of Haruna volcano and their impacts on human life in the sixth century A.D., Geograph.Rep. Tokyo Metropolitan Univ, 31, p37-52
- (45) 下司信夫(2013):詳細火山データ集:榛名火山,日本の火山,産業技術総合研究所地 質調査総合センター(https://gbank.gsj.jp/volcano/Act_Vol/haruna/index.html)
- (46) 山元孝広(2013b):東茨城台地に分布する更新統の新層序と MIS5-7 海面変化との関係:地下地質とテフラ対比による茨城層,見和層,夏海層,笠神層の再定義,地質調査 所報告,第64巻,第9/10号,p225-249
- (47) 山元孝広(1995): 沼沢火山における火砕流噴火の多様性, 沼沢湖および水沼火砕堆積 物の層序, 火山, 40, p6.7-81
- (48) 山元孝広(2003):東北日本,沼沢火山の形成史:噴出物層序,噴出年代及びマグマ噴 出量の再検討,地質調査研究報告,54,p323-340
- (49) 飯塚義之(1996):子持火山の地質と活動年代,岩鉱,91,p73-85
- (50) 阪口圭一(1995):5万分の1地質図幅「二本松地域の地質」,産業技術総合研究所地 質調査総合センター,p66
- (51) 長橋良隆,木村裕司,大竹二男,八島隆一(2004):福島市南西部に分布する鮮新世
 「笹森山安山岩」のK-Ar 年代,地球科学,58, p407-412
- (52) 山元孝広(2015):新たに認定された第四紀火山の放射年代:笹森山火山,地質調査研 究報告,66,p15-20
- (53) 町田洋・新井房夫(2011):新編火山灰アトラス-日本列島とその周辺,東京大学出版 会
- (54) 赤石和幸,梅田浩司(2002):新潟県飯士火山の形成史とK-Ar 年代(演旨) 日本鉱物 学会年会,日本岩石鉱物鉱床学会学術講演会講演要旨集,P304
- (55) 高橋正樹,市川寛海,金丸龍夫,安井真也, 間瀬口輝浩(2013):浅間黒斑火山崩壊 カルデラ壁北部仙人岩付近のプロキシマル火砕岩相-牙溶岩グループの火山角礫岩・凝 灰角礫岩および仙人溶岩グループの溶結火砕岩-,日本大学文理学部自然科学研究所研 究紀要,48, p.141-168
- (56) 高橋正樹・安井真也(2013):浅間前掛火山のプロキシマル火山地質学及び巡検案内書 -浅間前掛火山黒豆河原周辺の歴史時代噴出物-,火山,58, p.311-328

- (57) 気象庁(2015):浅間山の火山活動解説資料,火山活動解説資料(平成27年6月24日 18時30分),気象庁地震火山部火山監視・情報センター,p.1-10
- (58) 長井雅史,高橋正樹(2008):箱根火山の地質と形成史,神奈川県立博物館研究調査報告(自然),13, p.25-42.
- (59) 早津賢二,新井房夫,小島正巳,大場孝信(2008):妙高火山群 --多世代火山のライ フヒストリー, p424
- (60) 及川輝樹,鈴木雄介,千葉達郎(2014):御嶽山の噴火-その歴史と 2014 年噴火,科
 学,岩波書館, p1218-1225
- (61) 木村純一(1993):後期更新世の御岳火山:火山灰層序と火山層序学を用いた火山活動
 史の再検討,地球科学,47,p301-321
- (62) 及川輝樹(2003):飛騨山脈の隆起と火成活動の時空的関連,第四紀研究 42(3) p. 141
 -156
- (63) 原山智(1990):上高地地域の地質,地域地質研究報告,5万分の1地質図幅,地質調査所,p175
- (64) 鈴木毅彦(2000):飛騨山脈貝塚給源火道起源の貝塚上宝テフラを用いた中期更新世前 半の地形面編年,地理学評論, 73A-1, p1-25
- (65) 鈴木毅彦,中山俊雄(2007):東北日本弧,仙岩地熱地域を給源とする 2.0Ma に噴出した大規模火砕流に伴う広域テフラ,火山,第52巻(2007),第1号, p.23-38
- (66) 高橋正樹(1995):大規模珪長質火山活動と地殻歪速度,火山,第40巻(1995),p.33-42
- (67) 工藤崇,檀原徹,山下透,植木岳雪,佐藤大介(2011):八甲田カルデラ起源火砕流堆 積物の層序の再検討,日本第四紀学会講演要旨集,p144-145
- (68) 守屋以智雄(1983):日本の火山地形,東京大学出版会,p135
- (69) 米倉伸之(2001):日本の地形(1)総説,東京大学出版会,p349
- (70) Zhao Dapeng, Wei Wei, Nishizono Yukihisa, Inakura Hirohito (2011) : Low frequency earthquakes and tomography in western Japan: Insight into fluid and magmatic activity, Journal of Asian Earth Sciences, 42, p.1381-1393
- (71) 東宮昭彦(1997):実験岩石学的手法で求めるマグマ溜まりの深さ,月刊地球,Vol19, No11, p720-724
- (72) Nagaoka Shinji (1988) : The late quaternary tephra layers from the caldera volcanoes in and around kagoshima bay, southern kyushu, Japan, 23, p.49-122
- (73) 三好雅也,長谷中利昭,佐野貴司(2005):阿蘇カルデラ形成後に活動した多様なマグ マとそれらの因果関係について,火山,第50巻(2005),第5号,p.269-283
- (74) 茨城県自然博物館(2001):茨城県自然博物館 第2次総合調査報告書(2001) 関東 ローム層, p. 87-102
- (75) 茨城県自然博物館(2007):茨城県自然博物館 第 4 次総合調査報告書(2007) 関東 ローム層, p. 85-99
- (76) 守屋以智雄(1979): 日本の第四紀火山の地形発達と分類,地理学評論, 52-9, p479-501, 1979

6条(3)-添付4-18

[154]

- (77) 坂本亨,宇野沢昭(1976):茨城県瓜連丘陵の第四系と久慈川・那珂川の河谷発達史, 地質調査所月報,第27巻,第10号p655-664,1976
- (78) 三村弘二(2002):東北日本,猫魔火山の地質と放射年代,火山,第47巻(2002), 第4号, p217-225
- (79) 大石雅之(2009):四阿火山を起源とする噴出物の岩石記載的特徴とテフラ分布,地学
 雑誌,118(6), p.1237-1246,2009
- (80) 鈴木毅彦(2001):海洋酸素同位体ステージ 5-6 境界に降下した飯縄上樽テフラ群と
 その編年学的意義,第四紀研究,40⁽¹⁾, p.29-41
- (81) Tamura Itoko, Yamazaki Haruo, Mizuno Kiyohide (2008) : Characteristics for the recognition of Pliocene and early Pleistocene marker tephras in central Japan, Quaternary International 178 (2008) , p. 85-99
- (82) 鈴木毅彦・早川由紀夫(1990):中期更新世に噴出した大町 Apm テフラ群の層位と年代,
 第四紀研究, 29 (2), p.105-120
- (83) 鈴木毅彦, 檀原徹, 藤原治(2001): 東北日本の大規模火砕流は広域テフラを生産したか?, 月間地球, Vo123, No9, p. 610-613
- (84) Newhall and Self (1982) :The Volcanic Explosivity Index (VEI) 'An Estimate of Explosive Magnitude for Historical Volcanism, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 87, NO. C2, p1231-1238, FEBRUARY 20, 1982
- (85) 萬年一剛(2013):降下火山灰シミュレーションコード Tephra2の理論と現状-第四紀
 学での利用を視野に,第四紀研究,52(4), p. 173-187
- (86) 山崎正男(1958):日光火山群,地球科学,第36号(1958年2月),p.27-35
- (87) 山元孝広(2011): 磐梯火山最初期噴出物におけるマグマ組成の時間変化: 裏磐梯高原 コアの化学分析結果,火山,第56巻(2011),第6号, p. 189-200
- (88) 山元孝広,須藤茂(1996):テフラ層序からみた磐梯火山の噴火活動史,地質調査所 月報,第47巻,第6号,p335-359,1996
- (89) 小荒井衛,津沢正晴,星野実(1995):磐梯山の地形発達史,「火山地域における土砂 災害発生予測手法の開発に関する国際共同研究」「岩屑流発生場に関する研究」分科会 研究成果,磐梯火山,p135-143
- (90) 早田勉(1989):6 世紀における榛名火山の2回の噴火とその災害,第四紀研究,27
 (4), p.297-312
- (91) 山元孝広,長谷部忠夫(2014):福島県只見町叶津の埋没化石林の放射性炭素年代:沼沢火山水沼噴火年代の再検討,地質学雑誌,第120巻,第1号,p1-9

0		敷地からの		HQ	動年代※3	盟離婚圣李	最後の活動からの期	施設に影響を) (12)	及ぼし得る火山 火山)
No.	火山名 ^{案(}	建臣育能 (km)	火山の形式**2	10-10	(千年前)	(千年)	間(千年前)	完新世に活動 を行った火山 (10火山)	将来の活動可能性が 否定できない火山 (2火山)
·	高原山	86	複成火山. 溶岩ドーム	300	2	300	6.5	0	r
2	塩原カルデラ	103	カルデラー火砕流	350	~ 300	50	300	×	×
3	那須岳	108	複成火山	500	٤	500	AD1963	0	ı
4	男体・女峰火山群	110	複成火山. 溶岩ドーム	006	۲	006	3.3	0	x
5	七曲	114	複成(複合)火山	1300	~ 1200	100	1200	×	×
9	塔のへつり カルデラ群	115	カルデラー火砕流. 溶岩ドーム	1400	~ 1000	400	1000	×	×
7	「「実	118	複成火山	1600	006 ~	700	006	×	×
∞	二岐山	120	複成火山. 浴岩ド-ム	140	06~~	50	06	×	×
6	日光白根火山群	120	溶岩流及び 小型攜状火山、溶岩ドーム	20	2	20	AD1890	0	
10	根名草山	121	ダーメ昇炭		300	I	300	×	×
=	錫ヶ岳	121	複成火山?	2700	~ 2100	600	2100	×	×
12	鬼怒沼	125	溶岩流. 火砕流		240	I	240	×	×
13	赤城山	126	複成火山一カルデラ. 溶岩ドーム	300	z	300	AD1251	0	
14	四郎岳	126	複成火山?	2500	~ 2200	1	2200	×	×
15	而土路	127	複成火山		1100	1	1100	×	×
16	会津布引山	127	複成火山		1400	1	1400	×	×
※1.2 ※3 泡	火山名,火山の形式は中 5動年代は,中野地 (2013)	■野他(2013)⑴ ゥ ⑴ 及び「第四条	に基づく。 3噴火・貫入岩データベース」(西来f	也(2016) ⁽²⁾)に基づき評価した	0			

第8.2.1表(1) 地理的領域内の第四紀火山における活動可能性

6条(3)-別添4-20

動可能性
活
No
20
44
2
Ξ
×
峾
E
箫
6
Æ
函
漸
14
Ē
五
44
$\overline{0}$
表
-
2.
8.
筙

		敷地からの		1	7		最後の活動からの期	施設に影響をJ (12)	及ぼし得る火山 と山)
No.	火山名**	RE ME (km)	火山の形式**2		年元*** 年前)	王活即,州间 (千年)	間 (千年前)	完新世に活動 を行った火山 (10火山)	将来の活動可能性が 否定できない火山 (2火山)
17	縫ヶ岳	136	複成火山	160	2	160	AD1544	0	-
18	チャメ	136	複成火山	-	600	1	1600	×	×
19	上州武尊山	140	複成火山	1200	~ 1000	200	1000	×	×
20	加干制	142	複成火山	2800	~ 2500	300	2500	×	×
21	子持山	144	複成火山、溶岩ドーム	006	~ 200	700	200	×	0
22	奈良俣カルデラ	146	カルデラー火砕流	2	100	I	2100	×	×
23	小野子山	149	複成火山	1300	~ 1200	100	1200	×	×
24	安達太良山	153	複成火山、溶岩ドーム	550	2	550	AD1900	0	2
25	砂子原カルデラ	153	カルデラ、溶岩ドーム	290	~ 220	70	220	×	×
26	糖桃山	154	複成火山	200	2	700	AD1888	0	ı
27	榛名山	154	複成火山-カルデラ. 溶岩ド-ム、火砕丘	500	2	500	6世紀中頃	0	,
28	笹森山	154	複成火山?	3700	∼ 1800 ×4	1900	1800	×	0
29	猫魔ヶ岳	156	複成火山	1430	~ 400	1030	400	×	×
30	西鴉川	157	複成(複合)火山	1850	~ 1140	710	1140	×	×
31	沼沢	157	溶岩ドーム、カルデラ	110	2	110	5.4	0	
活 4 5 3 3 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5	2 火山名,火山の形式は9 舌動年代は,中野他(2013 主森山起源の火砕流堆積物 手動林止期間が明確に記さ	中野也(2013)(1 1)(1)及び「第四 のフィッション たんいる哲見点	」に基づく。 紀噴火・貫入岩データベース」(西来 ・トラック年代を示している山元(2 ある三村(2002) ⁽¹⁸⁾ に基づき、最後の	:他(2016) ⁽²⁾) 015) ⁽⁵²⁾ による)活動からの経道	に基づき評価し」 。 ●期間が活動期間	と₀ 中の最大休止期間よりも	子 い とみ な せ る 火 山 と	して評価した。	

							敷地は、火山フロントより前弧	、施設に影 側(東万)に位置すること、敷 、施設に影 地周辺では火成活動は確認され い。 アニシおいとしから アの重色が設	いいない」こから、ロシオ家がよい、戦争で行の通用期間中に影響や及ぼす回能性は十分に小さい。					
+ + +	海地底 玉玉 妻子 ジョ	石庫なに4い,地9~1 						敷地と火山の距離から 響を及ぼす可能性はな						
	火砕物密度流(160km)	雀矬珊趧	活動履歴上,噴出物は溶岩や火砕物が主であ り、火砕物密度流の発生実績は認められない。	敷地と火砕物密度流の到達可能性範囲の距離 から、敷地に影響を及ぼす可能性は十分に小	4M°	活動履歴上、噴出物は溶岩や火砕物が主であ り、火砕物密度流の発生実績は認められない。					がり,旭政に影響を及ばりり肥住は十分に小ない。 さい。			
		到達可能性範囲 (km)	I	約17	約18	Ι	約24	約6	約6	約16	約10	約23	約13	約17
	敷地から	の距離 (km)	98	108	110	120	126	136	144	153	154	154	154	157
		火山名	里原山	那須岳	男体・女峰 火山群	日光白根山	小城山	燧ケ岳	丁特山	安達太良山	可樂盪	榛名山	田茶山	沿沿
		No.	1	3	4	8	12	17	21	24	26	27	28	30

第8.3.1表 設計対応不可能な火山事象とその噴火物の敷地への到達可能性

敷地と 火山と の距離	敷地及び敷地近傍で確認 される主な降下火砕物	記号	火山から 敷地への方向 (距離(km))	給源火山		試験研究炉の運用期間中の 同規模噴火の可能性 (○:あり,×:可能性は十分に小さい)	敷地の層厚	降下火砕 物の 噴火規模 (VEI) ^{**}
	高原戸室山2テフラ	Tk-TM2	南東 (約98km)	高原山	0	_	8cm以下*1	5
	男体七本桜テフラ	Nt-S	東南東		0		$0\sim 20 \text{ cm}^{*2}$	4
	男体今市テフラ	Nt-I	(約110km)	労体・女峰火山井	0	_	0∼20 c m*2	4
	満美穴テフラ	Nk-Ma					32cm以下*3	5
	日光早乙女テフラ	Nk-S0	東南東	用什 上城山山畔	×	女峰赤薙火山の活動で発生した降下火砕物であ	16cm以下*3	4
	日光行川テフラ	Nk-NM	(約110km)	另1本・女唯八山柱		り、現在は男体山、三ツ岳火山の活動が継続	16cm以下*3	5
	日光矢板テフラ	Nk-YT					16cm以下*3	4
	赤城鹿沼テフラ	Ag-KP					$32 \text{cm} \sim 64 \text{cm}^{*1}$	5
半径 160km	赤城行川2テフラ	Ag-NM2					4cm以下*1	4
内	赤城水沼1テフラ	Ag-MzP1	東南東	±++++1+	~		5cm~20cm*2	4
	赤城水沼2テフラ	Ag-MzP2	(約126km)	亦城山	0	_	4cm以下*1	4
	赤城水沼8テフラ	Ag-MzP8					8cm以下*1	4
	赤城水沼9-10テフラ	Ag-MzP9-10					16cm以下*1	4
	燧ヶ岳七入テフラ	Hu-NN	南東 (約136km)	燧ヶ岳	0	_	8cm以下*3	5
	沼沢芝原テフラ	Nm-SB	南東 (約157km)	沼沢	0	-	16cm以下*3	4
	榛名八崎テフラ	Hr-HP	東 (約154km)	榛名山	0	-	0cm~10cm*2	4
	鬼怒沼黒田原テフラ	Kn-KD	東南東 (約125 k m)	鬼怒沼	×	将来の活動可能性のない火山	16cm以下*3	5

第8.4.1表(1) 降下火砕物の文献調査結果

※噴火規模(VEI)の定義は町田・新井(2011)⁽⁵³⁾に基づく

試験研究炉の運用期間中の同規模噴火の可能性あり。
 試験研究炉の運用期間中の同規模噴火の可能性が十分に小さい。

*1:山元(2013a) ⁽¹¹⁾, *2:町田・新井(2011) ⁽⁵³⁾, *3:山元(2012) ⁽⁹⁾, *4:大石(2009) ⁽⁷⁹⁾, *5:鈴木 (2001) ⁽⁸⁰⁾ *6:Tamura et al(2008) ⁽⁸¹⁾, *7:鈴木・早川(1990) ⁽⁸²⁾, *8:鈴木・中山(2007) ⁽⁶⁵⁾, *9:鈴木他(2001) ⁽⁸³⁾ *10:山元(2013b) ⁽⁴⁶⁾

敷地と 火山と の距離	敷地及び敷地近傍で確認 される主な降下火砕物	記号	火山から 敷地への方向 (距離(km))	給源火山		試験研究炉の運用期間中の 同規模噴火の可能性 (○:あり,×:可能性は十分に小さい)	敷地の層厚	降下火砕 物の 噴火規模
	真岡テフラ	MoP	東南東 (約172km)	飯士山	×	将来の活動可能性のない火山	32cm~16cm*1	5
	立川ローム上部 ガラス質テフラ	UG	東	浅間山	×	仏岩期の活動で発生した降下火砕物であり、	0cm以上*2	6
	浅間板鼻黄色テフラ	As-YP	(約183km)	1200		現在は前掛火山の活動が継続	0cm以上*2	5
	四阿菅平2テフラ	Azy-SgP2	東 (約194km)	四阿山	0	-	0cm以上*4	5
	箱根東京テフラ	Hk-TP	北東	然相志山平	~	現在は溶岩ドームの活動が継続(顕著な降下	0cm以上*2	6
	箱根吉沢下部7テフラ	Hk-Klp7	(約180km)	相低火山祥		火砕物発生はない)	0cm以上*2	5
	飯縄上樽aテフラ	In-Kta	東 (約223km)	飯縄山	×	現在は活動停止期が継続	0cm以上*5	?
	御岳第1テフラ	On-Pm1	東北東 (約280km)	御嶽山	×	山頂付近における小規模の噴火活動が継続	$10 \text{cm} \sim 0 \text{cm}^{*2}$	6
	谷口テフラ	Tng	東	飛騨山脈			30cm以下*6	?
	大峰テフラ (大峰-SK110)	Omn (Omn-SK110)	(約254km)	(爺ヶ岳)	×	将来の活動可能性のない火山	10cm以下*6	6?
坐径	大町Apmテフラ群	Tky-Ng1	東 (約265km)	飛騨山脈 (樅沢岳)	×	将来の活動可能性のない火山	0cm以上*7	6?
160km	恵比須峠福田テフラ	Ebs-Fkd	東	飛騨山脈			約30cm*6	7?
9F	丹生川テフラ (穂高-Kd39)	Nyg (Htk-Kd39)	(約261km)	(穂高岳)	×	将来の活動可能性のない火山	20cm~10cm*6	?
	貝塩上宝テフラ	KMT	東 (約275km)	飛騨山脈 (上宝)	×	将来の活動可能性のない火山	0cm以上*2	6?
	玉川R4テフラ	Tmg-R4	南 (約412km)	玉川カルデラ	×	将来の活動可能性のない火山	0cm以上*8	6
	八甲田1テフラ (八甲田国本テフラ, Kul)	Hkd1	南 (約491km)	八甲田カルデラ	×	現在は後カルデラ火山の活動が継続	0cm以上*9	?
	大山倉吉テフラ	DKP	東北東 (約641km)	大山	×	数km ³ 以下の噴火活動が継続	5 cm \sim 0cm *2	6
	阿蘇3テフラ	Aso-3	東北東	阿藤山。ゴニ		用をは彼ようごこんはの活動が働け	0cm以上*2	7
	阿蘇4テフラ	Aso-4	(約943km)	阿魚レスノレクシ		現在は後カルケノ火山の活動が継続	15cm以下*2	7
	姶良Tnテフラ	AT	東北東 (約1045km)	姶良カルデラ	×	現在は後カルデラ火山の活動が継続	20cm~10cm*2	7
	鬼界アカホヤテフラ	K-Ah	北東	由界カルデラ	×	現在は後カルデラ水山の活動が継続	20cm~0cm*2	7
	鬼界葛原テフラ	K-Kz	(約1126km)				5 cm \sim 2cm *2	7
噴出源 不明	涸沼川テフラ	_	-	_	-	-	(再堆積)*1,10	_

第8.4.1表(2) 降下火砕物の文献調査結果

※噴火規模(VEI)の定義は町田・新井(2011)⁽⁵³⁾に基づく

試験研究炉の運用期間中の同規模噴火の可能性あり。
 試験研究炉の運用期間中の同規模噴火の可能性が十分に小さい。

*1:山元(2013a)⁽¹¹⁾,*2:町田・新井(2011)⁽⁵³⁾,*3:山元(2012)⁽⁹⁾,*4:大石(2009)⁽⁷⁸⁾,*5:鈴木(2001)⁽⁸⁰⁾ *6:Tamura et al(2008)⁽⁸¹⁾,*7:鈴木・早川(1990)⁽⁸²⁾,*8:鈴木・中山(2007)⁽⁶⁵⁾,*9:鈴木他(2001)⁽⁸³⁾ *10:山元(2013b)⁽⁴⁶⁾

11
Å.
Ř
魚
R.
ŦĦ
6
\mathcal{A}
Π
\$
1
Ĺ
Ц
111
2
ž
も
ぼく
1
<u>+</u>
陞
表
$^{\circ}$
4.
×.
箫

設定噴火規模	×	ラメータ	単位	設定値	設定根拠等
	噴出量、	(見かけ体積量)	km ³	5	山元(2016) ⁶²⁾ 及び山元(2013a) ⁽¹¹⁾ に基づき設定 (見かけ体積量に降下火砕物の密度800kg/m ³ を乗じた4.0×10 ¹³ kgを設定)
	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	唾柱高度	km	25	同程度の規模の噴火 (VEI5) の一般値 (Newhall and Self(1982) ⁽⁶⁴⁾ による)に基づいて設定
	噴煙	性分割高さ	ш	100	萬年(2013) ⁽⁸⁵⁾ より設定
		最大	(Ф)	1,024 (-10)	Tephra2のconfigfileに示された珪長質噴火の一般値
	茶	最小	шш (Ф)	1/1, 024 (10)	Tephra2のconfigfileに示された珪長質噴火の一般値
	铤	中央	шш Ш	1/2 (1.0)	Tephra2のconfigfileに示される他の噴火事例に基づいて設定(エトナ1998年噴火の例を参照)
赤城鹿沼テフラ (As-KD)		標準偏差	ш (Ф)	1/3 (1. 5)	Tephra2のconfigfileに示される他の噴火事例に基づいて設定(エトナ1998年噴火の例を参照)
0	*	1.子密度	t/m^3	1. 0	噴出物を構成する粒子が全て軽石と想定 なお,山元(2013a) ^(III) において赤城鹿沼テフラは発泡の良い軽石火山礫からなるとされており, 地質調査においても軽石主体であることが確認されている。
	見かけ	の渦拡散係数	m²/s	0.04	萬年(2013) (85)より設定
	4	5 散係数	m^2/s	10, 000	萬年(2013) (85)より設定
	Fall Ti	me Threshold	N	3,600	萬年(2013) (85)より設定
	Plu	me Ratio	I	0.1	Tephra2のconfigfileに示された事例に基づく一般値
	聖	X(東距)	ш	338, 296	
	(王)	Y(北距)	m	4, 047, 614	「日本の火山(第3版)」(中野他(2013) ⁽¹⁾)より設定
	じ し	標高	ш	1, 828	

数 お が の の の 品 離 (Km)	127	136	136	140	142	144	146	149	153	153	154	154	154	156	157	157
第四紀火山	まいつののできま 会津布引山	0.95#Att	キャッカイト	υεου «οα α α α α α 上州武尊山	山工制 はかせでま	2659£	^{ならまた} 奈良俣カルデラ	18026ま 小野子山	**た6** 安達太良山	** ²⁴⁶ 砂子原カルデラ	日本でした	ussen 機名山	886072 笹森山	acawati 猫院ヶ岳	LL#94#P	ないたの
No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
数 あ な の の 品 羅 (s (a)	98	103	108	110	114	115	118	120	120	121	121	125	126	126	127	
第四紀火山	5.046.0% 高原山	しaute 塩原カルデラ	ut tit 那須岳	αλαιν-Γιμα∂ 男体・女峰火山群	ا ته ک	とうめへつり 塔のへつりカルデラ群	11年1月 11年1月	^{≼≿≇≿} ₽≇ 二岐山	にっこういらね 日光白根火山群	200、872	ままがたい 鍋ヶ岳	eeee 鬼怒沼	またまた	しるうだけ	13.11U	
0.	-	2	3	4	S	9	2	~~~~	6	0	=	12	3	4	5	

第8.2.1図 地理的領域内の第四紀火山

6条(3)-別添4-26

No.	第四紀火山	敷 お か の の 距離 (km)	No.	第四紀火山	敷 志 の の の の の の に 間 編 (Km)
-	たかはらでま 高原山	86	16	まいづきのひきゃま 会津布引山	127
2	^{しatt6} 塩原カルデラ	1 03	17	0.95#4th 絕 介岳	136
3	\$ \$ £U	108	18	まできょうら アヤメ平	136
4	ŧムἑい・ビュ≝う 男体・女峰火山群	110	19	じょうしゅうほたかやま 上州武尊山	140
5	た 世	114	20	はかせやま はかせやま	142
9	とうのへつり 塔のへつりカルデラ群	115	21	川针 七 #4992	144
7	丁銀音	118	22	^{ならまた} 奈良俣カルデラ	146
8	ふたまたやま 二岐山	120	23	<u>い野子山</u>	149
6	Eszsvéa 日光白観火山群	120	24	▲££69≇ 安達太良山	153
10	ねるできま	121	25	***こはや 砂子原カルデラ	153
÷	ままかたい 鍋ケ岳	121	26	川鉄 編 78/1777	154
12	enne 鬼怒沼	125	27	山名 (山)の (山)の (山)の (山)の (山)の (山)の (山)の (山)の	154
13	川謝孝 79348	126	28	€ 660 P£ 笹森山	154
14	しるうだけ 四郎岳	126	29	ac##### 猫魔ケ岳	156
15	町十足	127	30	にしからすがわ 西鴉川	157
			31	asea 来祝	157

第8.3.1 図 地理的領域内の火山地質図

6条(3)-別添4-27

第8.3.2図(1) 火砕物密度流の到達可能性範囲(那須岳)

第8.3.2図(2) 火砕物密度流の到達可能性範囲(男体・女峰火山群)

第8.3.2図(3) 火砕物密度流の到達可能性範囲(赤城山)

第8.3.2図(4) 火砕物密度流の到達可能性範囲(燧ヶ岳)

第8.3.2図(5) 火砕物密度流の到達可能性範囲(子持山)

山元・阪口(2000) (37) に基づき作成

第8.3.2図(6) 火砕物密度流の到達可能性範囲(安達太良山)

山元(2011)⁽⁸⁷⁾,山元・須藤(1996)⁽⁸⁸⁾,小荒井他(1995)⁽⁸⁹⁾に基づき作成 ※葉山1火砕流は過去最大規模の噴火ではないが、到達距離としては最大であるため併記した

第8.3.2図(7) 火砕物密度流の到達可能性範囲(磐梯山)

大森編(1986)⁽³³⁾,早田(1989)⁽⁹⁰⁾に基づき作成 ※榛名ニッ岳-渋川火砕流堆積物(火砕サージを含む)は過去最大規模の噴火ではないが、 到達距離としては最大であるため併記した

第8.3.2図(8) 火砕物密度流の到達可能性範囲(榛名山)

山元(2015) ⁽⁵²⁾に基づき作成

第8.3.2図(9) 火砕物密度流の到達可能性範囲(笹森山)

山元(2003)⁽⁴⁸⁾,山元・長谷部(2014)⁽⁹¹⁾に基づき作成

第8.3.2図(10) 火砕物密度流の到達可能性範囲(沼沢)

敷地周辺の赤城鹿沼テラフの層厚分布

第8.4.2 図

6条(3)-別添4-40

第8.4.3図(2) 敷地内の赤城鹿沼テラフの層厚

6条(3)-別添4-41

6条(3)-別添4-44

6条(3)-別添4-45

第8.4.6図(1) 不確かさの検討結果 (噴煙性高度)

6条(3)-別添4-47

6条(3)-別添4-48

第8.4.7 図 敷地周辺の赤城鹿沼テフラの密度

富田他(1994)(25)に加筆

Fig. 1 栃木県における縦石層の分布 Distribution chart of the volcanic pumice strata in Tochigi prefecture

地質調査

関東

EX

約品

뮲

53

1

-

E

-8

ш

頖

87.4 22.19 68.07 9.74 130.0 88.0 109.7 1.301 0.620 2.794 3.507 77.81 69.2 13.29 62.50 24.21 87.06 118.4 167.8 2.776 6.730 0.200 0.994 .367 ●東海第二発電所 KP : Kanuma pumice(Akagi) IP : Imaichi pumice(Nantai) SP : Shichihonsakura pumice (Nantai) 整間地区 ●(大洗研究所 2.701 7.488 88.21 11.81 61.73 26.46 .135 194.0 0.937 0.318 70.0 80.0 KP25 1 6.212 86.13 13.83 66.10 20.07 0.65 175.6 1.039 2.718 0.378 MANE 0.760 76.7 3 log 0 - KPO 69.12 19.03 Loam 11.85 87.0 KP25 88.15 78.4 220.0 7.442 .230 .006 0.315 2.653 KPO S' TI > 1>> ⊙)r Moka Buried soil 13.60 68.98 17.42 0.765 1.290 191.5 1.051 0.361 2.650 86.4 82.0 Thickness KP150 Tochigi Pre. C 0.390 213.2 1.062 0.339 2.674 87.3 82.7 $\frac{12.70}{72.37}$ 14.93 $95 \sim 120$ 6.902 10511 10511 KP150-D Explanation 0, 25, 50 82 Mt. Nantai 自然含水比 wn (%) 湿潤密度 p. (g/cm³) 乾燥密度 p. (g/cm³) 比 重 G. E Gunma Pre. Mt.Akagi 採取深さ

Table 2 鹿沼土の物理的性質 Physical properties of Kanumatsuchi

6条(3)-別添4-50