【公開版】

日本原燃株式会社								
資料番号	外外火 04 R14							
提出年月日	令和4年 <u>10</u> 月 <u>3</u> 日							

設工認に係る補足説明資料

外部火災防護設計の基本方針に関する

航空機墜落による火災の防護設計について

 文章中の下線は, R13 から R14 への変更箇所を示す。
 本資料(R14)は, 2022 年 9 月 15 日のヒアリングでの以下のコメントを踏まえ記載 を修正したものである。
 片面に耐火被覆をしているものが、どの面なのかわかるように記載すること。
 :別紙-2(p18,19), 別紙-3(p15)
 ナイブラインの濃度についてどのように算出されたのか示すこと。
 :別紙-2(参考)

1.		概	要	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		• •	•••	• •	• •	• •	• •		• •	• •	•	•••	•	•••	•	•••	•	• •	·	•••	·	1
2.		申	請	書	に	お	け	る	記	載	内	容	と	補	足	事	項	\mathcal{O}	整	理	• •		• •	• •	•	•••	•	•••	•	• •			•	•••	•	2
3.		航	空	機	墜	落	火	災	\mathcal{O}	想	定	に	つ	$\langle v \rangle$	て	• •	••	••	••	•••	• •	• •	• •	•••	•	•••	•	•••	•	•••	•	• •	•	•••	•	6
3.	1		航	空	機	墜	落	地	点	の	設	定		• • •				• •	• •					•••	•		•		•		•		•			6
3.	2		航	空	機	墜	落	火	災	に	お	け	る	熱	影	響	評	価	の	対	象	航	空	機	σ) 逞	星;	定	•							6
3.	3		航	空	機	墜	落	火	災	L	伷	の	事	象	の	組	合	せ	に	っ	5	τ		•••												7
4.		防	護	一対	策		•••					•••				•••			•••••																	7
4.	1	12.4	防	護	対	箫	の	基	本	方	針																									7
1	2		副	ik.	湖	屠	ற	空設																												Q
4.	4		110.3	Л	1)X	1反	v	叹	μI																											9
4.	3		遮	熱	板	の	設	計	••	••	••	• •	• •	•••	• •	• •	••	••	••	•••	• •	• •	• •	•••	•	•••	•	•••	•	•••	•	• •	•	••	•	9
5.		航	空	機	墜	落	火	災	に	対	す	る	施	設	の	評	価	対	象					• •	•	•••	•	•••	•	• •	•		•		•	9
5.	1		航	空	機	墜	落	火	災	の	影	響	に	対	す	る	評	価	対	象	の	分	類		•					• •	•		•	•••	1	0
5.	2		そ	の	他	の	考	慮	••					•••										•••]	10

- 別添-1 熱影響評価の対象航空機の選定
- 別添-2 航空機墜落火災と他事象との重畳
- 別添-3 必要離隔距離の算出
- 別添-4 耐火塗料の説明書
- 別添-5 耐火被覆厚さの設定
- 別添-6 航空機墜落火災の温度評価条件と大臣認定試験条件との比較

i

- 別添-7 施工管理
- 別添-8 維持管理
- 別添-9 対流熱伝達
- 別添-10 熱応力評価

:商業機密および核不拡散の観点から公開できない箇所

目

次

1. 概要

本資料は,再処理施設及びMOX燃料加工施設の第1回設工認申請(令和2 年12月24日申請)のうち,以下の添付書類に示す航空機墜落火災の防護設計 を補足説明するものである。

- ・再処理施設 添付書類「VI-1-1-1-3-3 外部火災への配慮
 が必要な施設の設計方針及び評価方針」
- ・再処理施設 添付書類「VI-1-1-1-3-4 外部火災防護にお ける評価結果」
- ・MOX 燃料加工施設 添付書類「V-1-1-1-3-3 外部火災への配慮が必要な施設の設計方針及び評価方針」
- MOX 燃料加工施設 添付書類「V-1-1-1-3-4 外部火災防
 護における評価結果」

上記添付書類において,航空機墜落火災の防護設計に係る評価方法及び 評価結果を説明している。本資料では,考慮すべき外部火災の一つである 航空機墜落火災について,「原子力発電所の外部火災影響評価ガイド(平成 25年6月19日 原子力規制委員会)」(以下「外部火災ガイド」という。) 及び「実用発電用原子炉施設への航空機落下確率の評価基準について(内 規)」(平成21・06・25原院第1号)(以下「航空機落下評価ガイド」という。) を参考として,航空機墜落火災の防護設計の基本的な考え方及び航空機墜 落火災に対する防護対策の考え方を補足するとともに,評価対象の選定, 評価対象の分類及び評価方針を補足説明する。

本資料において示す航空機墜落火災の防護設計の基本的な考え方及び航 空機墜落火災に対する防護対策の考え方並びに評価対象の選定,評価対象 の分類及び評価方針については,再処理施設及び MOX 燃料加工施設の今回 申請対象以外の建屋や屋外構築物に対しても適用されるものである。

なお、本資料は、第1回設工認申請対象施設を対象としたものであり、 第2回設工認申請時に申請対象施設を踏まえ、記載を拡充する。

また,廃棄物管理施設の設工認申請については別途整理するものとする。

2. 申請書における記載内容と補足事項の整理

航空機墜落火災の防護設計に関する評価方針等について,第1回申請に おいて以下のとおり示している。

これらに対して補足説明すべき事項を合わせて整理した。

(1) 再処理施設

VI-1-1-1-3-1 外部火災への配慮に関する基本方針

添付書類の記載内容	補足内容
2. 外部火災防護に関する基本方針	
2.1.3 外部火災から防護すべき施設の設計	
方針	
(8) 必要な機能を損なわないための運用上	
の措置	
・耐火被覆の維持管理において、耐火被覆	4.2(2)に耐火被覆の維持管理
の定期的な保守管理を行うことを記載。	の概要を示す。また、その具
	体を別添-8に示す。

VI-1-1-1-3-3 外部火災への配慮が必要な施設の設計方針及び評価方針

添付書類の記載内容	補足内容
4.評価方針	
4.3 航空機墜落による火災の熱影響評価	
(1)評価方針	
・熱影響評価の対象航空機として KC-767,	3.2 に選定の概要を示す。ま
F-2, F-16及び F-35を選定し, F-16を代	た,その具体を別添-1に示
表航空機とすることを記載。	す。
・航空機墜落火災と組合せを考慮すべき自	3.3 に航空機墜落火災と組合
然事象として,風(台風)及び積雪,高温	せを考慮すべき自然事象の概
があることを記載。	要を示す。また、その具体を
	別添-2に示す。
 ・耐火被覆(主材)は、外部火災防護対象 	4.2 に耐火被覆厚さの設定に
施設には 3mm 以上を, 波及的影響を及ぼ	ついての概要を示す。また,
し得る施設には 2mm 以上を施工すること	その具体を別添-5に示す。
を記載。	
・耐火被覆の施工にあたっては、主材の剥	4.2(1)に耐火被覆の施工の概
がれを防止するため、下塗りを施工し、	要を示す。また、その具体を
劣化等から保護する中塗り及び上塗りの	別添-7に示す。
塗装を施工することを記載。	

添付書類の記載内容	補足内容
(3)航空機墜落地点	
・航空機墜落地点を建屋等の直近とするこ	3.1 に建屋等の直近の考え方
とを記載。	の具体を示す。
(4)評価方法	
・「i.必要離隔距離の算出」において,必要	4.1 に防護対策としての耐火
離隔距離に基づき耐火被覆を施工するこ	被覆の施工範対象の概要を示
とを記載。	す。また,その具体を別添-
	3に示す。
・「i.必要離隔距離の算出」において,1時	 別添-4に耐火被覆の詳細
間耐火の大臣認定を取得した耐火被覆を	を示す。
施工することを記載。	・別添-6に耐火被覆の熱伝
	導率及び比熱の設定の詳細
	示す。
・建屋外壁温度及び建屋内の温度上昇並び	・輻射強度以外の考慮事項と
に屋外の評価対象施設の温度を算出する	して、対流熱伝達による放
にあたって、火炎からの輻射強度を考慮	熱を考慮しており,その具
することを記載。	体を別添-9に示す。
	・熱応力による影響の詳細を
	別添-10に示す。

(2) MOX 燃料加工施設

V-1-1-1-4-3 外部火災への配慮が必要な施設の設計方針及び評価方針

添付書類の記載内容	補足内容
5. 影響評価	
5.3 航空機墜落による火災の熱影響評価	
(1) 評価方針	
・熱影響評価の対象航空機として KC-767,	3.2 に選定の概要を示す。ま
F-2, F-16 及び F-35 を選定し, F-16 を代	た,その具体を別添-1に示
表航空機とすることを記載。	す。
・航空機墜落火災と組合せを考慮すべき自	3.3 に航空機墜落火災と組合
然事象として,風(台風)及び積雪,高温	せを考慮すべき自然事象の概
があることを記載。	要を示す。また、その具体を
	別添-2に示す。
(3)航空機墜落地点	
・航空機墜落地点を建屋等の直近とするこ	3.1 に建屋等の直近の考え方
とを記載。	の具体を示す。
・建屋外壁温度及び建屋内の温度上昇並び	・輻射強度以外の考慮事項と
に屋外の評価対象施設の温度を算出する	して、対流熱伝達による放
にあたって、火炎からの輻射強度を考慮	熱を考慮しており、その具
することを記載。	体を別添-9に示す。
	・熱応力による影響の詳細を
	別添-10に示す。

添付書類の記載内容	補足内容
2. 外部火災による熱影響評価	
2.3 航空機墜落による火災に対する熱影	
響評価	
(2)評価条件及び評価結果	
・燃料加工建屋に対する航空機墜落による	5.(1)に建屋の評価の概要
火災の影響評価結果を記載。	を示す。燃料加工建屋に要求
	される機能に対する航空機墜
	落による火災の影響を別紙-1
	に示す。

V-1-1-1-4-4 外部火災防護における評価結果

- 3. 航空機墜落火災の想定について
- 3.1 航空機墜落地点の設定

航空機墜落地点については,第3.1-1 図のように,外部火災防護対象 施設を収納する建屋又は屋外の外部火災防護対象施設(以下,「外部火災 防護対象施設等」という)に接する任意の位置を墜落地点として想定し, 円筒火炎を設定する。

------: : 火炎中心(任意の地点へ墜落することを想定)

) :火炎

第3.1-1図 設計上想定する航空機の墜落地点のイメージ(平面図)

3.2 航空機墜落火災における熱影響評価の対象航空機の選定

航空機墜落火災における熱影響評価の対象航空機は、以下の手順にて 選定し、F-16を熱影響評価の対象航空機とした。抽出過程の詳細を別添 -1に示す。

- (1) 航空機落下評価ガイドの落下事故の分類を踏まえ、自衛隊機又は 米軍機の訓練空域内を訓練中及び訓練空域周辺を飛行する航空機 から、墜落による火災を想定する航空機を選定する。
- (2) (1)から外部火災ガイドに基づき,航空機墜落の発生する可能性が高い航空機及び燃料積載量が最大の航空機を墜落による火災を想定する航空機に選定する。
- (3) (2)のうち、火災条件を同等に揃えた場合、燃焼継続時間及び輻射 強度から施設への影響が大きい航空機を、熱影響評価の対象航空 機とする。

3.3 航空機墜落火災と他の事象の組合せについて

航空機墜落火災と組合せを考慮すべき自然事象について,検討対象と する自然現象の抽出,事象の特性の整理を行い,自然現象毎に航空機墜 落火災との組合せの考慮の要否を決定する。

その結果,航空機墜落火災との組合せを考慮する必要のある自然現象 として,風(台風),積雪及び高温が選定された。航空機墜落火災との組 合せを考慮する必要のある自然現象についての検討を別添-2に示す。

- 4. 防護対策
- 4.1 防護対策の基本方針
 - 屋外の外部火災防護対象施設及び波及的影響を及ぼし得る施設は,施設外縁からの離隔距離の確保,若しくは部材の厚さ等について熱容量が大きくなるよう考慮し,温度が上昇しにくい設計の採用を基本とするが,施設の設置環境を考慮する必要があることから,火災時には熱によって発泡し断熱効果を発揮する耐火被覆及び遮熱板を組み合わせた防護設計とし,a.~d.に示す事項を考慮する。
 - a. 防護対策は、耐震成立性及び施工性の観点や、脱落等の発生リ スクを軽減できる耐火被覆を基本とする。
 - b. 耐火被覆の施工が困難なファン駆動部,減速機,電動機等の摺 動部は,火災からの輻射の直接影響を防止するための遮熱板を 設置する。
 - c. 耐火被覆は、火災と直接接する部材は全てを施工対象とするとともに、その他の部材は鋼材の板厚毎に許容温度以下となる離隔距離(以下「必要離隔距離」という。)を確保できないものを施工対象とする。耐火被覆の施工対象の概要を第4.1-1図に、必要離隔距離の詳細を別添-3に示す。また、耐火被覆は、1時間耐火の大臣認定を取得したものを用いることとし、詳細を別添-4に示す。
 - d. 遮熱板を設置する場合は、脱落により外部火災防護対象施設の 安全機能に影響を与えない設計とする。第4.1-2図に遮熱板の 概要を示す。

矢視 B−B

第 4.1-1 図 耐火被覆の施工対象の概要図

第4.1-2図 遮熱板の設計の概要

4.2 耐火被覆の設計

耐火被覆となる主材を含め、主材の剥がれを防止するための下塗り、 主材の保護等を行う中塗り及び上塗りの4層の塗装を施工する設計とする。

耐火被覆の厚さは、外部火災防護対象施設は 3mm, 波及的影響を及ぼ し得る施設は 2mm とする。

耐火被覆厚さに係る設計方針,設定の考え方,設定の流れ等を別添-5に,航空機墜落火災と大臣認定試験の入熱量及び判定基準の比較を別 添-6に示す。

(1) 施工管理

耐火被覆が設計のとおり機能を発揮するために,品質及び設定し た耐火被覆施工厚さを確保する必要がある。そのため,作業環境と して温度や湿度の条件を定めるほか,耐火被覆施工厚さの測定管理 方法を定めて施工する。耐火被覆の施工管理の詳細を別添-7に示 す。

(2) 維持管理

施工後に耐火被覆が設計のとおりの機能を維持するために,耐火 被覆の維持管理が重要である。

耐火被覆の施工実績を調査した結果,耐火被覆特有の損傷事例は 確認されていないことから,一般的な塗料における損傷事例とその 原因を踏まえた,維持管理方法を定める。耐火被覆の維持管理の詳 細を別添-8に示す。

4.3 遮熱板の設計

遮熱板は,火災からの輻射を受ける面に対して耐火被覆を施工することで,遮熱板自体の温度上昇を抑制し,遮熱板からファン駆動部,減速 機,電動機などの摺動部への二次輻射の影響を低減することで,摺動部 の温度を許容温度以下とする。

5. 航空機墜落火災に対する施設の評価対象

航空機墜落火災に対し,施設が機能を維持するために必要な評価対象部 位を選定する。

(1) 外部火災防護対象施設を収納する建屋

航空機墜落火災の火炎からの輻射影響を受けた場合に,建屋内に 収納する外部火災防護対象施設の安全機能を損なわないこと及び建 屋外壁が要求される安全機能を損なわないことを確認するため,外 壁及び天井スラブを対象とし評価する。

ただし, 天井スラブが建屋外壁よりも壁が厚い場合は, 天井スラ ブの評価が建屋外壁の評価に包絡されることを確認する。 (2) 屋外の外部火災防護対象施設

航空機墜落火災の火炎からの輻射影響を受けた場合に,安全機能 を維持するために必要となる部位を対象とし,評価を行う。

安全冷却水系の冷却塔では,冷却水の流路及び電動機等の送風に 必要な部位を対象として評価する。

主排気筒及び屋外ダクトについては, 主排気筒, 屋外ダクト及び 支持架構を対象として評価する。

- (3) 波及的影響を及ぼし得る施設
 - 航空機墜落火災の火炎からの輻射影響を受けた場合に,倒壊しな い強度を維持することで,外部火災防護対象施設へ波及的影響を与 えないようにできることから,外部火災防護対象施設本体と火災源 の間に位置する竜巻防護対策設備の支持構造物を対象とし,評価を 行う。
- (4) 飛来物防護板から影響を受ける外部火災防護対象施設 航空機墜落火災により飛来物防護板は熱影響を受け温度上昇する ことから,飛来物防護板から二次輻射により間接的に熱影響を受け る外部火災防護対象施設の部位を対象とし,評価を行う。
- (5) 使用済燃料収納キャスクを収納する建屋 航空機墜落火災の火炎からの輻射影響を受けた場合に、建屋内に 収納する使用済燃料収納キャスクに波及的影響を及ぼさないことを 評価するために必要となる部位として、建屋外壁及び天井スラブを 対象とし、評価を行う。
- 5.1 航空機墜落火災の影響に対する評価対象の分類

上記 5. に基づき,その評価手法や判断基準を考慮し,航空機墜落火災の影響に対する評価対象を以下のとおり,評価対象毎に分類する。

- (1) 建屋外壁及び天井スラブ
- (2) 安全冷却水系の冷却塔等の冷却能力を損なわないために必要となる電動機等
- (3) 支持構造物
- (4) その他の施設
- 5.2 その他の考慮

航空機墜落火災を施設の直近で想定することにより考慮すべき事項と して,発生する対流熱伝達による高温空気が安全冷却水系の冷却塔の冷 却性能へ影響を及ぼさないことを確認していることから,添付書類「VI-1-1-1-4-3外部火災への配慮が必要な施設の評価方針」では, 輻射による熱影響を評価することとしている。対流熱伝達の影響を別添 -9に示す。

また、添付資料「VI-1-1-1-4-3 外部火災への配慮が必要な 施設の評価方針」では、外部火災防護対象施設が加熱された際に、部位

12

間や部位自体に生じる温度差による熱ひずみや熱伸びが,外部火災防護 対象施設へ影響を及ぼさないことから,評価対象の温度や温度上昇を評 価することとしている。熱ひずみや熱伸びによる影響を別添-10に示す。

以上

別添-1

熱影響評価の対象航空機の選定

目

次

1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 1
2.	墜落による火災を想定する航空機の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 1
2. 2	1 選定の考え方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 1
2.2	2 選定結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 1
3.	熱影響評価の対象航空機の選定・・・・・	• 4
3. 3	1 燃焼継続時間の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 4
3.2	2 輻射強度の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 6
3. 3	3 熱影響評価の対象航空機の選定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 8

1. はじめに

本資料は,墜落による火災を想定する航空機の選定の考え方,航空機墜落火災による 熱影響評価の対象とする航空機(以下「熱影響評価の対象航空機」という。)の選定の 考え方及びそれらの結果について説明する。

熱影響評価の対象航空機の選定に当たっては,墜落による火災を想定する航空機を複 数選定した上で,航空機墜落火災の燃焼継続時間及び航空機墜落火災による輻射強度を 考慮して,最も厳しい熱影響を与える航空機を選定する。

- 2. 墜落による火災を想定する航空機の選定
- 2.1 選定の考え方

墜落による火災を想定する航空機は、「実用発電用原子炉施設への航空機落下確率の評価基準について(内規)」(平成21・06・25原院第1号)の落下事故の分類を踏まえ、 自衛隊機又は米軍機のうち、訓練空域内を訓練中の航空機及び訓練空域周辺を飛行す る航空機から複数選定する。

なお,直行経路を巡航中の計器飛行方式民間航空機については,事業(変更)許可の とおり,航空機落下の発生確率が10⁻⁷回/年となる範囲が敷地外となることから,近 隣の産業施設の火災影響評価に包絡されるため,対象外とする。

墜落による火災を想定する航空機の選定に当たっては,以下の①及び②とともに, 主要な航空機となる可能性のある航空機についても考慮する。

①積載燃料が最大の航空機:

「原子力発電所の外部火災影響評価ガイド(平成25年6月19日 原子力規制委員 会)」(以下「外部火災ガイド」という。)に基づき,航空機墜落評価の対象航空 機のうち燃料積載量が最大の機種を選定する。

②墜落の可能性のある航空機:

航空機墜落火災の発生する可能性のある航空機として、自衛隊機又は米軍機のうち、訓練飛行回数が最も多い航空機を選定する。

2.2 選定結果

選定結果を第2-1表に示す。

(1) 積載燃料が最大の航空機

外部火災ガイドにおいては、「航空機は、当該発電所における航空機墜落評価の 対象航空機のうち燃料積載量が最大の機種とする。」とされていることから、自衛 隊が保有する機種を代表として用途別に燃料積載量等の諸元を調査した。調査結果 を第 2-2 表に示す。

第 2-2 表より、燃料積載量が最大となる KC-767 を選定する。

(2) 墜落の可能性のある航空機 現地において目視及び飛行音により飛来状況を確認し、訓練飛行回数を計測する とともに当該訓練機種の判別を行った。調査結果を第2-3表に示す。訓練飛行回数 の調査の結果,出現割合が高いことから,墜落の可能性のある航空機としては,自 衛隊機の F-2 及び米軍機の F-16 を選定する。

(3) 主要な航空機となる可能性のある航空機

上記(1)及び(2)に加え、主要な航空機となる可能性のあるF-35を選定する。

第2-1表 墜落による火災を想定する航空機及び燃料積載量

墜落による火災を想定する航空機	燃料積載量(m ³)
KC-767	$145.1^{[1]}$
F-2	$10.\ 4^{[2][3]}$
F-16	9. $8^{[5][3]}$
F-35	$10.8^{[3][4]}$

[1] 佐瀬亨, 航空情報 特別編集 世界航空年鑑 2018-2019 年版, せきれい社, 2019.

[2] Paul.Jackson. ed. Jane's All the World's Aircraft 1997-98. Jane's Information Group, 1997.

[3] NASA. "Analysis of NASA JP-4 Fire Tests Data and Development of a Simple Fire Model". NASA Contractor Report. 1980, CR-159209.

[4] Paul, Jackson. Jane's All The World's Aircraft: Development & Production 2017-2018. HIS Markit, 2017.

[5] John. W. R. Taylor. ed. Jane's All the World's Aircraft 1987-88. Jane's Publishing Company Limited, 1987.

유물	見	松呑	田次	会長 (m)	会幅(m)	辦料] 待
門周	形式	1茂1里	用述	至女(m)	(m)	№/ヤヤ惧戦重(1) -
陸上	固定翼	LR-2	連絡偵察	14	18	2,040
自衛隊	回転翼	AH-1S	対戦車	14	3	980
		OH-6D	観測	7	2	242
		OH-1	観測	12	3	953
		UH-1J	多用途	13	3	833
		CH-47J/JA	輸送	16	4/5	7, 828 ^{*4}
		UH-60JA	多用途	16	3	2,722
		AH-64D	戦闘	18	6	1,421
海上	固定翼	P-1	哨戒	38	35	\leq KC-767*1
自衛隊		P-3C	哨戒	36	30	34, 820
	回転翼	SH-60J	哨戒	20	16	1,361
		SH-60K	哨戒	20	16	1,361
		MCH-101	掃海・輸送	23	19	5,250
航空	固定翼	F-15J/DJ	戦闘	19	13	6,100
自衛隊		F-4EJ/EJ 改	戦闘	19	12	12, 100 ^{*5}
		F-2A/B	戦闘	16	11	10,400*5
		F-35A	戦闘	16	11	10, 800
		RF-4E/EJ	偵察	19	12	7, 569
		C-1	輸送	29	31	15, 709
		C-2	輸送	44	44	\leq KC-767 ^{*1}
		С-130Н	輸送	30	40	26, 344
		KC-767	空中給油・輸送	49	48	145, 100
		KC-130H	空中給油・輸送	30	40	\leq KC-767 ^{*2}
		E-2C	早期警戒	18	25	7,002
		E-2D	早期警戒	18	25	7,002
		E-767	早期警戒管制	49	48	55, 963* ³
	回転翼	CH-47J	輸送	16	5	7, 828 ^{*6}

第 2-2 表 主要航空機(自衛隊機)の保有数・性能諸元

出典:令和元年度 防衛白書等

*1: P-1 及び C-2 の燃料量は不明であるが,両機種共に KC-767 より寸法が小さく空中給油機能を備えていないこと から, KC-767 に比べて燃料量は少ないと想定される。

*2: KC-130H の燃料量は不明であるが、ベースとなっている C-130H の最大離陸重量等から推定した結果、KC-767 に 比べて燃料量は少ないと想定される。

*3: E-767のベースとなったボーイング767-200ERを参考に燃料積載量を推定する。

(Paul Jackson, Jane's all the World's Aircraft. 1997-98.)

*4: CH-47 JA の燃料積載量を示す。

*5:外部燃料タンクも付加した場合の値。

*6:陸上自衛隊の CH-47 JA と全長及び全幅の諸元が同じであることから、燃料積載量を CH-47 JA と同じとする。

	2014 年度	2015 年度	2016 年度	2017 年度	2018 年度
調査回数	10,452 回	8,274 回	5,477 回	7,830 回	5,951 回
訓練回数	2万回	2万回	1万回	2 万回	1万回
F-2(自衛隊機)及び					
F-16(米軍機)の	97.4%	98.7%	98.0%	97.4%	99.3%
出現割合					

第2-3表 自衛隊機及び米軍機の訓練飛行回数の調査結果*

* 自社での調査結果に基づく

3. 熱影響評価の対象航空機の選定

上記2.において選定された墜落による火災を想定する航空機から,熱影響評価の対象 航空機を選定する。

選定に当たっては,墜落による火災を想定する航空機の燃焼面積,燃料積載量及び燃 焼速度を設定し燃焼継続時間を算出するとともに,外部火災ガイドに基づき,形態係数 及び輻射発散度を設定し輻射強度を算出する。

算出した燃焼継続時間及び輻射強度を考慮し、熱影響評価の対象航空機を選定する。

3.1 燃焼継続時間の算出

(1) 燃焼面積の設定

燃焼面積については、米国サンディア研究所において実施された実物航空機の衝 突実験において、搭載燃料の摸擬のためタンクに充填した水の飛散範囲を参考とし て設定した。水は第3-1図のとおり同縮尺で併せて示す実物航空機の投影面積に比 して広範囲に飛散しているが、大量に水がたまっていた部分と航空機の面積が同程 度であることから、燃焼面積は航空機の投影面積と同じとする。第3-2図に航空機 の投影面積のイメージを、第3-1表に対象航空機の投影面積を示す。

あっ」 衣 墜洛による火水を思たりる肌空機の反応則相当。	2][3][4]
------------------------------	----------

墜落による火災を 想定する航空機	投影面積(m ²)
KC-767	約 1,500
F-2	約 110
F-16	約 90
F-35	約 110

[1] John.W.R.Taylor. ed. Jane's All the World's Aircraft 1987-88.

Jane's Publishing Company Limited, 1987. [2] Paul.Jackson. ed. Jane's All the World's Aircraft 1997-98. Jane's Information Group, 1997.

[3] Paul, Jackson. Jane's All The World's Aircraft: Development & Production 2017-2018. HIS Markit, 2017.

[4] ボーイング社ホームページ資料. 767 Airplane Characteristics for Airport Planning.

第3-1図 実物航空機の衝突実験時の水(模擬燃料)の飛散範囲

外外火 04-別添 1-5

(2) 燃焼継続時間の算出

燃焼継続時間は、下式より算出する。燃焼速度は、文献^[1]から油面降下速度 8.0×10⁻⁵m/sとする。燃焼面積は、上記(1)の対象航空機の投影面積から KC-767 は

1,500m², F-2は110m², F-16は90m²及びF-35は110m²と設定する。

燃料積載量は第 2-3 表から, KC-767 は 145.1m³, F-2 は 10.4m³, F-16 は 9.8m³及 び F-35 は 10.8m³ である。

上記データ及び下式より,第3-2表に示すように,燃焼継続時間はKC-767及び F-2が約1,200秒,F-16が約1,400秒及びF-35が約1,300秒である。

 $t = \frac{V}{A \times v}$

ここで,

- t : 燃料時間(s)
- V : 燃料積載量(m³)
- A : 燃焼面積(m²)
- v : 燃焼速度(m/s)

第3-2表 墜落による火災を想定する航空機の燃焼に関する条件及び算出結果

墜落による火災を	燃焼面積	燃焼半径*	燃料積載量	燃焼速度	燃燒継続時間
想定する航空機	(m^2)	(m)	(m^{3})	(m/s)	(s)
KC-767	約 1,500	約 22	145.1		約 1,200
F-2	約 110	約 6	10.4	$- 8.0 \times 10^{-5}$	約 1,200
F-16	約 90	約 5	9.8	8.0×10	約 1,400
F-35	約 110	約 6	10.8		約1,300

* 燃焼面積を円に換算した場合の等価半径

[1] 日本火災学会編. 火災便覧 新版, 共立出版, 1984.

3.2 輻射強度の算出

航空機墜落火災における輻射強度を算出するため,評価モデルを設定する。評価モ デルは、外部火災ガイドに基づき、以下のとおり設定する。

- ・航空機墜落による火災は、円筒モデルとする。
- ・燃焼面積は、航空機の投影面積に等しいものとする。
- ・航空機は、燃料を満載した状態を想定する。
- (1) 形態係数及び輻射強度の算出

形態係数及び輻射強度の算出は,外部火災ガイドと同様に受熱面が輻射帯の底部 と同一平面上にあると仮定し実施する。航空機墜落による火災の想定模式図を第 3-3 図に示す。

第3-3図 航空機墜落による火災の想定模式図

a. 形態係数の算出

輻射強度を求める際に必要となる形態係数は,外部火災ガイドと同様に下式より 算出する。

$$\emptyset = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$$

$$\nexists \mathcal{E} \mathcal{E} \cup, \quad m = \frac{H}{R} = 3 \quad n = \frac{L}{R} \quad A = (1 + n)^2 + m^2, \quad B = (1 - n)^2 + m^2$$

ここで,

- Ø : 形態係数(-)
- L :離隔距離(m)
- H : 火炎の高さ(m)
- R : 燃焼半径(m)
- b. 受熱面における輻射強度の算出
 輻射強度は外部火災ガイドを参考として、下式より算出する。
 算出結果を第 3-3 表に示す。

$E = Rf \cdot \emptyset + E_s$

ここで,

- E : 輻射強度(W/m²)
- Rf : 輻射発散度(W/m²)
- Ø : 形態係数(-)
- Es :太陽光の輻射強度(W/m²)(=400)^[1]

[1] IAEA. IAEA 安全基準 IAEA 放射性物質安全輸送規則のための助言文書(No. TS-G-1.1). 改訂 1.2008

墜落による火災を 想定する航空機	形態係数*1	輻射発散度*2 (W/m ²)	輻射強度 (W/m ²)
KC-767			
F-2	0 5	E0.X 103	29. 4×10^3
F-16	0.5	58×10^{-5}	
F-35			

第3-3表 墜落による火災を想定する航空機の輻射に関する条件及び算出結果

*1:離隔距離を想定しない場合の形態係数

*2:外部火災ガイドの付属書Bの附録Bデータ集の輻射発散度より

3.3 熱影響評価の対象航空機の選定結果

第3-4表に熱影響評価の対象航空機の選定結果を示す。輻射強度は墜落による火災 を想定する航空機において共通であるが、燃焼継続時間が異なる。輻射強度が同じ場 合は、燃焼継続時間が長い航空機墜落による火災が、厳しい熱影響の結果を与える。 よって、最も燃焼継続時間が長く厳しい熱影響の結果を与える F-16 を、熱影響評価 の対象航空機として選定する。

墜落による火災を 想定する航空機	輻射強度 (W/m ²)	燃焼継続時間 (s)	熱影響評価の対象航空機の 選定結果
KC-767	29. 4×10^3	約 1,200	
F-2		約 1,200	
F-16		約 1,400	0
F-35		約 1,300	

第3-4表 熱影響評価の対象航空機の選定結果

<凡例>〇:選定,一:選定対象外

別添-2

航空機墜落火災と他事象との重畳

目 次

1.	はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	検討対象とする自然現象・・・・・1
3.	航空機墜落火災との組合せの検討4
4.	航空機墜落火災の影響が及ぶ期間における他の自然現象の発生・・・・・・・・・ 7
5.	まとめ ・・・・・・ 9
6.	参考文献

1. はじめに

再処理施設の位置,構造及び設備の基準に関する規則並びに加工施設の 位置,構造及び設備の基準に関する規則の第九条「外部からの衝撃による 損傷の防止」では,自然現象,自然現象の組合せ及び人為事象に対し,安 全機能を有する施設の安全機能を損なわないものとすることが要求されて いる。ここでは,人為事象である航空機墜落火災と他の自然現象の組合せ の考慮の要否について検討した結果について示す。

- 2. 検討対象とする自然現象
- (1) 検討対象とする自然現象の抽出

航空機墜落火災との組合せを検討する自然現象は,再処理施設,MOX 燃料加工施設及び廃棄物管理施設(以下「再処理施設等」という。)の設計において考慮するとした以下の12事象とする。

- a. 地震
- b. 風(台風)
- c. 竜巻
- d. 降水
- e. 落雷
- f. 森林火災
- g. 高温
- h. 凍結
- i. 火山の影響
- j. 積雪
- k. 生物学的事象
- 1. 塩害
- (2) 事象の特性の整理
- a. 航空機墜落火災との相関性

ある特定の自然現象により航空機墜落火災を誘発したり,逆に航空機 墜落火災によりある特定の自然現象を誘発することにより,航空機墜落 火災と自然現象の再処理施設等への影響が重畳するといった相関性がな いか整理を行った(第 2-1 表参照)。その結果,航空機墜落火災と相関性 のある自然現象はなかった。

自然現象		検討結果
地震	•	航空機墜落又は航空機墜落火災により地震が誘発されることは考え
		られない。
	•	地震による影響は,飛行中の航空機に影響を及ぼすことはなく,地
		震が航空機墜落を誘発することは考えられない。
風	•	航空機墜落又は航空機墜落火災により風(台風)が誘発されることは
(台風)		考えられない。
	•	風(台風)が飛行中の航空機に影響を及ぼすことは考えられるが,台
		風を事前に予測して航空機の運航計画を見直すことができることか
		ら,風(台風)が航空機墜落を誘発することは考えられない。
竜 巻	•	航空機墜落又は航空機墜落火災により竜巻が誘発されることは考え
		られない。
	•	竜巻が飛行中の航空機に影響を及ぼすことは考えられるが、航空機
		は原則として原子力関係施設上空を飛行しないよう規制されてお
		り、再処理施設等に対する竜巻の影響と航空機墜落火災の影響が同
nda I		時に及ぶことはない。
降水	•	航空機墜落又は航空機墜落火災により降水が誘発されることは考え
		られない。
	•	降水か航空機墜落を誘発することは考えられない。
洛雷	•	航空機墜落又は航空機墜落火災により落雷か誘発されることは考え
		りれない。 黄金さぶた中で時の後に影響を正式ナミしは考えくもてお、時の機
	•	洛宙が飛行中の航空機に影響を及ばりことは考えられるか、航空機は原則にして原ても関係拡張しかな強行しないとき相對されてお
		は尿則として尿丁刀関係爬設工空を飛行しないよう焼削されてわ b 再加冊協調等に対する黄電の影響と航空機隊黄本災の影響が同
		リ、 円処
杰林火災	•	一時に及ぶことはない。 動地内への航空機隊変又け航空機隊変水災に上り森林水災が誘発さ
	·	気地内への航空機空俗人は航空機空俗八灰により森林八灰が防光されることけ考えられたい
	•	航空機け上空数kmを飛行するため 森林水災に上る執影響 げい
		価 生 (は 生 生 気 K m と R h) る に の , 林 小 八 穴 に よ る 点 か 書 , は v 煙 等 の 影 響 を 受 け ろ こ と け 老 え ら れ か い .
高温	•	航空機隊落又は航空機隊落火災により、気象条件としての高温を誘
141 111		発することは考えられない。
	•	高温が航空機墜落を誘発することは考えられない。
凍 結	•	航空機墜落又は航空機墜落火災により、凍結を誘発することは考え
		られない。
	•	凍結が航空機墜落を誘発することは考えられない。
火山の	٠	航空機墜落又は航空機墜落火災により火山事象が誘発されることは
影響		考えられない。
	•	火山事象(降灰)が飛行中の航空機に影響を及ぼすことは考えられる
		が,航空機は原則として原子力関係施設上空を飛行しないよう規制
		されており、再処理施設等に対する火山の影響と航空機墜落火災の
		影響が同時に及ぶことはない。
積雪	•	航空機墜落又は航空機墜落火災が積雪を誘発することは考えられな
	•	積雪が航空機墜落を誘発することは考えられない。
生物学的	•	航空機墜落又は航空機墜落火災により、生物学的事象を誘発するこ
事 象		とは考えられない。
	•	地上又は水甲で発生している生物学的事象が航空機墜落を誘発する
		ことは考えられない。
塩 害	•	加空機墜洛乂は加空機墜洛火災により、塩害を誘発することは考え
		られない。
	•	るのでは、「などのでは、「ない」では、「ないのでは、「ない」では、「ないのでは、「ない」では、「ないのでは、「ないのでは、「ないのでは、」では、「ないのでは、「ないのでは、」では、「ないのでは、「ないのでは、」では、「ないのでは、「ないのでは、」では、「ないのでは、「ないのでは、」では、「ないのでは、「ないのでは、」では、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、「ないのでは、」、「ないのでは、、」、「ないのでは、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

第 2-1 表 航空機墜落火災と自然現象の相関性

b. 影響モードの分類

組合せを考慮するにあたり,各事象の影響モードを第2-2表及び第 2-1図に示すタイプに分類する。ただし,個別に詳細検討する際には, 各事象の影響モード毎に検討する。

影響タイプ	特性	事象
コンスタント	年間を通してプラントに影響を	凍結,降水,積雪,生物学的事
型,季節型	及ぼすような事象(ただし,常時	象(鳥類,昆虫類,魚類,底生生
	負荷がかかっているわけではな	物及び藻類),風(台風),高温
	い), 若しくは特定の季節で恒常	
	的な事象。	
持続型	恒常的ではないが、影響が長期	火山の影響
	的に持続するような事象。影響	
	持続時間が長ければ数週間に及	
	ぶ可能性があるもの。	
瞬間型	瞬間的にしか起こらないような	地震,生物学的事象(げっ歯
	事象。影響持続時間が数秒程度	類), 竜巻, 森林火災, 落雷,
	(長くても数日程度)のもの。	航空機墜落火災
緩慢型	事象進展が緩慢であり、再処理	塩害
	施設の運転に支障を来すほどの	
	短時間での事象進展がないと判	
	断される事象。	

第2-2表 影響モードのタイプ分類

第 2-1 図 影響モード分類

- 3. 航空機墜落火災との組合せの検討
- 組合せを考慮する事象の数
 - 航空機墜落火災のような発生頻度が低く,影響の厳しい事象が他の自 然現象による影響と重畳することは稀であることから,航空機墜落火災 と 2. (1)に示したもののうち一つの自然現象との重畳を想定する。
- (2) 相関性の考慮

航空機墜落又は航空機墜落火災と相関性を有する自然現象がある場合, その同時発生を考慮したうえで影響が増長される可能性の有無を検討し, 増長される可能性がある組合せについては重畳を考慮する必要がある。 しかし, 2. (2)の a.の検討の結果から,航空機墜落火災と相関性のある 自然現象はないため,相関性の観点で航空機墜落火災との重畳を考慮す る必要のある自然現象はない。

(3) 発生頻度,影響モード等の考慮

航空機墜落又は航空機墜落火災と相関性がなくても、その自然現象が 再処理施設等に影響を及ぼす年超過確率、影響モード等を考慮し、航空 機墜落火災との組合せを適切に考慮する必要がある。航空機墜落火災と の組合せの考慮の要否は以下の観点から検討した。検討フローを第 3-1 図に示す。

a. 発生頻度

航空機墜落火災と同時に再処理施設等に影響を及ぼす可能性が考えられるかを評価し、同時に起こりえない又は同時に影響を及ぼす年超過 確率が10⁻⁷回/年*¹を下回る場合は考慮不要とする。

ただし,第2-2表に示すコンスタント型及び季節型の事象は,航空機 墜落火災と同時に発生する条件を適切に設定し,保守的な結果を与え るように同時発生を考慮することとした。

- *1 実用発電用原子炉施設への航空機落下確率の評価基準について (内規)(平成 21・06・25 原院第1号)を参考に設定。
- b. 影響モード
 航空機墜落火災による熱影響,又は熱影響による強度低下と同一の影響モードがない場合は考慮不要とする。
- c. 航空機墜落火災の影響評価条件としての考慮 航空機墜落火災に対する影響評価の前提条件にて考慮されている場合 は考慮不要とする。

第 3-1 図 航空機墜落火災との組合せの考慮の要否検討フロー

2.(1)で抽出した 12 事象について, 第 3-1 図に従って検討した結果を 第 3-1 表に示す。検討の結果, 航空機墜落火災との組合せを考慮する必 要のある自然現象として, 風(台風), 高温, 積雪が選定された。このう ち高温については, 熱影響評価における初期温度を適切に設定すること により考慮する。

自然現象	検討内容	組合せ要否
地震	航空機落下確率は 4.6×10 ^{-8*} ,地震の年超過確率は	否(a.)
	10 ⁻⁴ ~10 ⁻⁶ 回/年より、これらが再処理施設等に同時に	
	影響を及ぼす年超過確率は 4.6×10 ^{-14*} とごく低頻度で	
	ある。	
風(台風)	航空機落下確率は 4.6×10 ^{-8*} であるが,長期荷重とし	要(d.)
	て風の影響を考慮する必要がある。	
竜 巻	航空機落下確率は 4.6×10 ^{-8*} , 竜巻の年超過確率は	否(a.)
	1.86×10 ^{-8*} 回/年より、これらが再処理施設等に同時	
	に影響を及ぼす年超過確率は 8.6×10 ^{-16*} とごく低頻度	
	である。	
降水	航空機墜落火災と降水では影響モードが異なる(降水は	否(b.)
	航空機墜落火災による熱影響を緩和する方向に作用す	
	る)。	
落雷	航空機墜落火災と落雷では影響モードが異なる。	否(b.)
	航空機墜落火災…熱影響, 強度低下	
	落雷…電気的影響	
森林火災	森林火災は敷地外で発生する事象であり、敷地内で発	否(a.)
	生する航空機墜落火災と同時には起こり得ない。	
高 温	熱影響評価における初期条件として考慮する必要があ	要(d.)
	る。	
凍 結	熱影響評価における初期条件(温度)として,高温にて	否 (高温に
	考慮する。	含む)
火山の	航空機落下確率は 4.6×10 ^{-8*} ,火山の年超過確率は	否(a.)
影響	5.5×10 ⁻⁶ 回/年より、これらが再処理施設等に同時に影	
	響を及ぼす年超過確率は 2.5×10 ^{-13*} とごく低頻度であ	
	る。	
積雪	航空機落下確率は 4.6×10 ^{-8*} であるが,長期荷重とし	要(d.)
	て積雪の影響を考慮する必要がある。	
生物学的	航空機墜落火災と生物学的事象では影響モードが異な	否(b.)
事象(鳥	る。	
類,昆虫	航空機墜落火災…熱影響,強度低下	
類, 魚類,	生物学的事象…電気的影響,閉塞	
底生生物及		
び 藻 類)		
塩害	航空機墜落火災と塩害では影響モードが異なる。	否(b.)
	航空機墜落火災…熱影響,強度低下	
	塩害…電気的影響,腐食	

第 3-1 表 航空機墜落火災と自然現象の組合せ要否の検討結果

* 再処理施設の場合の年超過確率を示している。MOX 燃料加工施設の場合

はさらに年超過確率が低くなる。

4. 航空機墜落火災の影響が及ぶ期間における他の自然現象の発生

3. において,発生頻度の観点から考慮不要とした地震,竜巻,火山の影響については,航空機墜落火災の発生後,その影響が及ぶ期間においてそれらの事象が発生することについて検討する。

航空機墜落火災が発生しても、その継続時間は1,400秒(約24分)であ り、その間に屋外の外部火災防護対象施設及びその外郭となる竜巻防護対 策設備の支持架構の温度上昇があったとしても、時間の経過とともに常温 に戻り、元の強度に戻る^{[1][2]}ものと考えられる。仮に航空機墜落火災が 発生し、これらの支持架構が常温に戻るまでに1日程度の時間を要すると しても、航空機墜落火災の影響が及ぶ期間に地震又は火山の影響がもたら される年超過確率は以下のとおりであり、その可能性は十分小さい。

- (航空機墜落火災の影響が及ぶ期間に地震の影響が発生する年超過確率)
 - = (航空機墜落確率)×(1年のうち航空機墜落火災の影響が及ぶ期間の 比率)×(地震の年超過確率)
 - $= 4.6 \times 10^{-8} \times (1/365) \times 1.0 \times 10^{-4}$
 - $= 1.3 \times 10^{-14}$
- (航空機墜落火災の影響が及ぶ期間に火山の影響が発生する年超過確率)
 - = (航空機墜落確率)×(1年のうち航空機墜落火災の影響が及ぶ期間の 比率)×(火山の年超過確率)
 - $= 4.6 \times 10^{-8} \times (1/365) \times 5.5 \times 10^{-6}$
 - $= 6.9 \times 10^{-16}$

次に,航空機墜落火災が発生し,竜巻防護対策設備のうち飛来物防護ネ ットのネット部分の損傷及び耐火被覆の発泡によるネットへの干渉によ り,飛来物に対する防護機能が損なわれる場合を想定する。1回の航空機 墜落火災では,周辺のネット数枚~十数枚程度が影響を受けるとともに, 周辺の架構の耐火被覆が発泡した状態となると考えられる。その復旧に要 する期間は,過去の調達実績から以下のとおり想定する(第4-1図参照)。

①防護ネットの部材調達: 3~4カ月(②,③と並行して実施)
 ②損傷したネット及び耐火被覆の撤去:1カ月

外外火 04-別添 2-7

③耐火被覆の再施工:3カ月

④ネットの取り付け:2カ月

航空機暨	整落火災発生	Ē			
		①部材調達			
	<u>②破損部</u> <u>撤去</u>	③耐火塗装再施工			
				<u>④防護ネット設置</u>	
	1 t	7月	4 カ	7月 6カ	→ 月

第4-1図 飛来物防護ネットの復旧に係る想定スケジュール

上記より, 飛来物防護ネットの復旧に要する期間を6カ月程度とする と, その期間に竜巻の影響が発生する年超過確率は以下のとおり10⁻⁷回/ 年を下回ることから, その可能性は十分小さい。

また、工事は初期設置と同様の手法を用いることから、特別な荷重は加 わらず、支持架構への強度上の影響は与えない。

- (航空機墜落火災の影響が及ぶ期間に竜巻の影響が発生する年超過確率)
 - = (航空機墜落確率)×(1年のうち航空機墜落火災の影響が及ぶ期間の 比率)×(竜巻の年超過確率)
 - $= 4.6 \times 10^{-8} \times (6/12) \times 1.86 \times 10^{-8}$
 - $= 4.28 \times 10^{-16}$

以上のことから,航空機墜落火災の発生後,その影響が及ぶ期間におい て地震, 竜巻又は火山の影響が発生する可能性は十分小さく,それらの重 畳を考慮する必要はない。 ただし, 万が一, 航空機墜落火災の影響により飛来物防護ネット等の復 旧が必要となった場合には, 復旧までの間, 使用済燃料の再処理を停止す る等の措置を講ずるものとする。

5. まとめ

航空機墜落火災と再処理施設等の設計において考慮する自然現象の組合せについて検討した。

航空機墜落火災と自然現象の相関性,影響モード及び発生頻度の観点からの検討,並びに航空機墜落火災の影響が及ぶ期間における自然現象の影響についての検討を行った結果,航空機墜落火災との重畳を考慮する必要のある自然現象は,風(台風)及び積雪といった長期荷重をもたらす自然現象,並びに航空機墜落火災による熱影響評価の初期温度として考慮する高温が選定された。

- 6. 参考文献
- [1] 国土技術政策総合研究所資料「鋼道路橋の受熱温度推定に関する調査」, ISSN1346-7328 国総研資料第710号, 玉越隆史 大久保雅憲 石尾真理 横井芳輝, 2012年12月.
- [2] 土木学会第71回年次学術講演会「鋼の加熱自然冷却後の常温時強度
 に関する研究」,高橋佑介 小林裕介 細見直史 大山理,平成28年
 9月.

以上

別添一3

必要離隔距離の算出

目 次

1.	必要離隔距離の算出方針について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	必要離隔距離を算出する際の代表形状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	必要離隔距離の算出条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
4.	必要離隔距離の算出方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4.]	1 輻射強度の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4.2	2 必要離隔距離の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
5.	必要離隔距離の算出結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7

参考1 時間刻み設定の妥当性について
1. 必要離隔距離の算出方針について

許容温度を超える部材に対しては、補足説明資料本体の4.防護対策において定めると おり、耐火被覆又は遮熱板による防護対策を施すこととしているが、防護対策が必要と なる範囲を特定するにあたり、航空機墜落火災による円筒火炎に対して鋼材の板厚毎に 許容温度以下となる離隔距離(以下「必要離隔距離」という。)を算出する。

必要離隔距離の算出にあたっては,屋外に設置する外部火災防護対象施設及び竜巻防 護対策設備を構成する部材を調査し確認された主要な形状,材質及び板厚を踏まえ,保 守的な代表形状の選定,算出条件を設定し実施する。

2. 必要離隔距離を算出する際の代表形状

必要離隔距離を算出する上で,形状は評価結果に大きな影響を与えるため,輻射を与 えた場合に温度上昇が最大となる形状で必要離隔距離を算出する。屋外に設置する外部 火災防護対象施設及び竜巻防護対策設備を構成する部材を調査した結果,主要な形状と しては,平板,角管,円管及びH鋼が確認されたことから,平板,角管,円管及びH鋼 の中から代表となる形状を選定する。

平板,角管,円管及びH鋼形状に対して,一方向からの輻射を考慮した入熱面と放熱 面を第2-1図に示す。

第2-1図 部材の形状毎*に想定する熱的条件

* 角管については,角管の平面に対して垂直に輻射が入射する場合と,角管の平 面に対して斜めに輻射が入射する場合を考慮した。また,H鋼については,輻 射入熱面が最大となる方向からの輻射を考慮した。

外外火 04-別添 3-1

部材の単位時間当たりの温度上昇は,時間当たりの熱量[J](=入熱量-放熱量)を熱容量[J/K]で除すことにより算出されることから,与えられる熱量が小さく部材の熱容量が大きいほど部材の温度上昇は小さい。

一方向からの輻射を想定した第2-1 図に示した部材(角管,円管,H鋼)について, 材質と板厚を同一とした場合,角管及び円管は内包している空気を無視しても,平板に 比べ熱容量が大きいため,温度上昇は小さいと考えられる。

H 鋼のウェブ面又はフランジ面に垂直に輻射が入る場合,ウェブ面又はフランジ面の 形状から輻射の当たり方は平板と同様と考えることができるが,H鋼全体で考えた場合, 平板に比べ熱容量が大きいことから,温度上昇は小さいと考えられる。

一方,H鋼のウェブ面又はフランジ面に斜めに輻射が入る場合,円筒火炎の一部からの輻射しか見込まないことから,その面の輻射強度が小さくなるものの,ウェブ面及びフランジ面の両面に輻射が当たることから,受熱面積が大きくなり放熱面積が小さくなるため,斜め輻射を受けるH鋼への熱影響を包絡可能な形状を検討した。

H鋼に入射する輻射は第2-2 図の(1)のように、火炎柱から発生する輻射のうち受熱面 を見込む全ての輻射を合成した輻射強度 E1 (ウェブ面),円筒火炎の一部からの輻射し か見込まない、斜め方向からの輻射成分のみの輻射強度 E2 及び E3 (フランジ面)とな る。この場合,輻射強度 E2 及び E3 と比較して、E1 が最も厳しい輻射強度となる。また、 第2-2 図の考え方から、H 鋼と平板の受熱面と放熱面の面積は同程度と考えられ、形状 による影響は小さいと考えられる。よって、第2-2 図の(2)のように、最も厳しい輻射強 度 E1 を平板の面全体に与えることで、温度上昇が大きくなると考えられる。

以上のことから,角管,円管及びH鋼を第2-2図の(2)のように,形状を最も厳しい輻 射強度 E1 を受ける平板として考慮することにより包絡可能であり,保守的に熱影響を 評価することができる。

第2-2図 熱影響を包絡可能な形状の考え方(H鋼)

3. 必要離隔距離の算出条件

第3-1表から第3-5表に、必要離隔距離の算出に必要な条件を示す。

屋外の外部火災防護対象施設及び波及的影響を及ぼし得る施設である竜巻防護対策設備に用いられる部材は、大きくステンレス鋼(SUS304)と炭素鋼に分類される。炭素鋼は、材質がSS400, SN490B等の低炭素鋼に分類されるが、解析としては密度及び比熱が小さい中炭素鋼として保守的に必要離隔距離を算出する。

第3-1表 屋外の外部火災防護対象施設及び波及的影響を及ぼし得る

項目	条件	備考
形状	平板	保守的に平板と設定
材質	炭素鋼(低炭素鋼), ステンレス鋼(SUS304)	炭素鋼は,評価上は中炭素鋼と設 定
板厚(炭素鋼) [mm]	36, 28, 22, 19, 15, 14, 13, 12, 11, 10, 9, 8, 6.5, 6.4, 6, 4.5, 3.91, 3.9, 3.2, 2.3, 2.11, 1.2	屋外の外部火災防護対象施設及び 竜巻防護対策設備を構成する部材 を調査した結果から設定
板厚(ステンレス鋼) 「mm]	20, 16, 12, 9	

施設に用いられる部材

第 3-2 表 輻射強度算出条件

項目	記号	数値	備考
輻射発散度 [W/m ²]	Rf	58,000	外部火災ガイドより「ガソリ ン・ナフサ」の値を使用
輻射強度(太陽光) [W/m ²]	Es	400	IAEA 放射性物質安全輸送規 則から設定*
燃焼面積 [m ²]	$A_{\rm b}$	90	F-16の投影面積から設定

* IAEA. IAEA 安全基準 IAEA 放射性物質安全輸送規則のための助言文書 (No. TS-G-1.1). 改訂 1. 2008.

第 3-3 表 平板温度算出条件

	>1• = =		
項目	記号	数値	備考
対象鋼板の初期温度 [℃]	Tc0	50	周囲雰囲気温度 29℃に対して保守的に設定
周囲雰囲気温度[℃]	Та	37	外部からの衝撃による損傷防止での高温の 設計外気温度(八戸特別地域気象観測所での 観測記録(1937年~2018年3月)における日 最高気温の極値)である 37.0℃を設定
燃焼時間[s]	t	1,400	F-16 の燃焼継続時間

第3-4表 炭素鋼の物性値(伝熱工学資料 改訂第5版, p284の中炭素鋼)

温度	密度	比熱	熱伝導率
[K]	$[kg/m^3]$	[kJ/kg/K]	[W/m/K]
300	7,850	0.473	51.5
500	7,800	0.520	47.2
800	7,700	0.665	36.8

温度	密度	比熱	熱伝導率
[K]	$[kg/m^3]$	[kJ/kg/K]	[W/m/K]
300	7,920	0.499	16.0
400	7,890	0.511	16.5
600	7,810	0.556	19.0
800	7,730	0.620	22.5
1,000	7,640	0.644	25.7

第 3-5 表 ステンレス鋼の物性値(伝熱工学資料 改訂第 5 版, p285 の SUS304)

- 4. 必要離隔距離の算出方法
- 4.1 輻射強度の算出

航空機墜落火災における輻射強度を算出するため,評価モデルを設定する。評価モデルは,「原子力発電所の外部火災影響評価ガイド(平成25年6月19日 原子力規制 委員会)」(以下「外部火災ガイド」という。)に基づき,以下のとおり設定する。

- ・航空機墜落による火災は、円筒モデルとする。
- ・燃焼面積は、航空機の機体投影面積に等しいものとする。
- ・航空機は、燃料を満載した状態を想定する。

形態係数及び輻射強度の算出は、外部火災ガイドと同様に受熱面が輻射帯の底部と 同一平面状にあると仮定し実施する。航空機墜落による火災の想定模式図を第4-1図 に示す。

a. 形態係数の算出

輻射強度を求める際に必要となる形態係数は,外部火災ガイドと同様に下式より算 出する。

$$\begin{split} & \oint = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \\ & \uparrow z \not\approx \zeta, \\ & m = \frac{H}{R} = 3 \quad , \quad n = \frac{L}{R} \quad , \quad A = (1 + n)^2 + m^2 \quad , \quad B = (1 - n)^2 + m^2 \\ & z = \zeta' \zeta', \end{split}$$

- **ø** :形態係数
- L : 離隔距離 [m]
- H : 火炎の高さ [m]
- R : 燃焼半径 [m]
- b. 受熱面における輻射強度の算出

輻射強度は外部火災ガイドを参考として、下式より算出する。 後述する 4.2 の必要離隔距離の算出においては、任意の距離を入力とした下式から 導出される輻射強度を用いる。

 $E = Rf \times \emptyset + E_s$

ここで,

- E :輻射強度 [₩/m²]
- Rf : 輻射発散度 [W/m²]
- Ø :形態係数 [-]
- **E**s :太陽輻射 [W/m²]
- 4.2 必要離隔距離の算出

任意の距離に応じた輻射強度を考慮し,部材の材質及び板厚毎に一次元非定常熱伝 導計算を行い,許容温度を下回る離隔距離を算出する。

部材の許容温度は、外部火災防護対象施設において 325℃,安全上重要な施設に波 及的影響を及ぼし得る施設において 450℃とする。

計算モデルを第4-2回に示す。輻射を受ける平板の温度は、一次元熱伝導として非 定常計算する。区分区間毎に温度節点を設定し、区分区間は温度一様とし、時間変化 は差分式(陽解法)によるステップ計算を用いる。

外外火 04-別添 3-5

(輻射) Qr = E·A ここで, Qr : 火炎からの輻射熱伝達 [W] E : 輻射強度 [W/m²] A : 対象鋼板の面積 [m²](=1 単位面積)

(対流熱伝達)
Qt = H・A・(Tc(N) – Ta)
ここで、
Qt : 裏面での対流熱伝達 [W]
A :対象鋼板の面積 [m²] (=1 単位面積)
H : 熱伝達率 [W/m²/K] (=12.5)
補足説明資料「外外火 21 外部火災の影響評価における放熱量の設定
の考え方について」のとおり設定。
Tc(i) : 平板の温度 [℃] 節点 i, 節点数 N
Ta : 周囲雰囲気温度 [℃]
(=37 外部からの衝撃による損傷防止での高温の設計外気温度 (八戸
特別地域気象観測所での観測記録(1937 年~2018 年 3 月)における日
最高気温の極値)である 37.0℃を設定)
(平板の温度)
i=1(表面温度)

$$Q = Qr - \frac{\lambda_c}{L_c} \cdot A \cdot (Tc(1) - Tc(2))$$

$$\begin{split} &V = \frac{L_c}{2} \cdot A \\ &Tc(1)_{new} = Tc(1) + dt \cdot \frac{Q}{\rho_c \cdot c_c \cdot V} \\ &i=2{\sim}N{\cdot}1 \,(\text{内部温度}) \\ &Q = \frac{\lambda_c}{L_c} \cdot A \cdot \left(Tc(i-1) - Tc(i)\right) - \frac{\lambda_c}{L_c} \cdot A \cdot \left(Tc(i) - Tc(i+1)\right) \\ &V = L_c \cdot A \\ &Tc(i)_{new} = Tc(i) + dt \cdot \frac{Q}{\rho_c \cdot c_c \cdot V} \\ &i=N \,(\text{${\rm I}$} \text{m]{\rm I}$} \\ &Q = \frac{\lambda_c}{L_c} \cdot A \cdot \left(Tc(N-1) - Tc(N)\right) - Qt \\ &V = \frac{L_c}{2} \cdot A \end{split}$$

$Tc(N)_{new} = Tc(N) + dt \cdot \frac{Q}{\rho_c \cdot c_c \cdot V}$		
ここで,		
Qr	:火炎からの輻射熱伝達 [\]	
А	:対象鋼板の面積 [m²](=1 単位面積)	
Qt	: 裏面での対流熱伝達 [W]	
Tc(i)	: 平板の温度[℃]節点 i,節点数 N	
Q	:区分区間への熱量 [W]	
λc	:鋼板の熱伝導率 [W/m/K]	
$ ho_c$: 鋼板の密度 [kg/m³]	
Cc	:鋼板の比熱 [J/kg/K]	
Lc	:区分区間 [m](=板厚/(N-1))	
V	:区分区間の体積 [m³]	
Tc(i)_new	:時間経過後の平板の温度[℃](i=1~N)	
dt	:時間刻み [s](=0.01)	
	時間刻み設定の妥当性を参考1に示す。	

5. 必要離隔距離の算出結果

屋外に設置する外部火災防護対象施設及び竜巻防護対策設備を構成する部材を調査し 確認された主要な材質及び板厚並びに保守的な代表形状を設定し算出した,必要離隔距 離の算出結果を第 5-1 表に示す。

		必要離隔距離(m)		
材料	板厚 (mm)	屋外に設置する 外部火災防護対象施設	波及的影響を 及ぼし得る施設	
	36	1	_	
	28	2	_	
	22	4	1	
	19	5	1	
	15	7	3	
	14	7	3	
	13	8	4	
	12	9	4	
	11	9	5	
	10	_	6	
巴主纲	9	11	7	
灰糸婀	8	13	8	
	6.5	15	9	
	6.4	15	9	
	6	15	10	
	4.5	18	12	
	3.91	19	13	
	3.9	19	13	
	3.2	21	15	
	2.3	23	17	
	2.11	23	17	
	1.2	25	19	
	20	4	1	
マニンルマ何	16	6	2	
ヘランレス鋼	12	8	4	
	9	11	7	

第 5-1 表 必要離隔距離の算出結果

以上

参考1 時間刻み設定の妥当性について

陽解法による解析においては、時間進行の計算を1ステップ進めるための時間間隔 である時間刻みを設定しており、この時間刻みを大きく設定してしまうと計算結果が収 束せず、正しい結果を得ることができない。

本温度評価で設定している時間刻み 0.01s の妥当性を確認するために,時間刻みをより小さい 0.001s へ変更し解析を実施した。その結果を第1表に示す。全時間刻みにおいて有意な差は見られないことから,時間刻みの設定に問題はない。

なお,耐火被覆の必要厚さの評価(耐火被覆あり)(別添-4)においても,本評価と同様に時間刻みの影響を確認し設定に問題ないことを確認している。

また,耐火被覆の施工を考慮しない本解析では時間刻み 0.01s としているが,耐火被 覆の施工を考慮した解析においては,耐火被覆の発泡を模擬するために計算過程におい て物性値の切り替えを行っており,物性値の切り替え時に計算が適切に行われるよう, 時間刻みを 0.01s よりも細かく設定している。

		屋外に設置する 外部火災防護対象施設			波及的影響を及ぼし得る施設		
材質	板厚 [mm]	必要離隔距離 (時間刻み 0.01s) [m]	必要離隔距離 (時間刻み 0.001s) [m]	差分	必要離隔距離 (時間刻み 0.01s) [m]	必要離隔距離 (時間刻み 0.001s) [m]	差分
	36	1	1	0	—	_	-
	28	2	2	0	-	-	-
	22	4	4	0	1	1	0
	19	5	5	0	1	1	0
	15	7	7	0	3	3	0
	14	7	7	0	3	3	0
	13	8	8	0	4	4	0
	12	9	9	0	4	4	0
	11	9	9	0	5	5	0
	10	-	-	-	6	6	0
出表细	9	11	11	0	7	7	0
灰禾啊	8	13	13	0	8	8	0
	6.5	15	15	0	9	9	0
	6.4	15	15	0	9	9	0
	6	15	15	0	10	10	0
	4.5	18	18	0	12	12	0
	3.91	19	19	0	13	13	0
	3.9	19	19	0	13	13	0
	3.2	21	21	0	15	15	0
	2.3	23	23	0	17	17	0
	2.11	23	23	0	17	17	0
	1.2	25	25	0	19	19	0
	20	4	4	0	1	1	0
ステン	16	6	6	0	2	2	0
レス鋼	12	8	8	0	4	4	0
	9	11	11	0	7	7	0

第1表 必要離隔距離の算出結果の時間刻み変更による影響

以上

別添-4

耐火塗料の説明書

1.	耐火塗料とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	耐火塗料の組成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	耐火被覆の発泡挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2

目

次

1. 耐火塗料とは

耐火塗料は,鉄骨部材等を対象とした耐火被覆材の一つであり,火災時 には数 mm 厚の耐火被覆材が発泡して数十倍に膨らみ,熱伝導性の低い断 熱層を形成し,鉄骨の温度上昇を緩和する。

耐火塗料は、これを塗布した柱や梁等について耐火性能試験を実施し、 建築基準法施行令第百七条に掲げる耐火性能に関する技術的基準に適合す ることを確認することにより、国土交通大臣の認定を受けた塗料である。

国土交通大臣の認定を受けるために必要な耐火性能試験では,別添-5 「耐火被覆厚さの設定の考え方」の「2. 大臣認定試験」に示すとおり, 規定の垂直荷重を載荷した試験体(耐火塗料を塗布した鋼材)に対し IS0834に示す標準加熱曲線による熱を加え,試験時間内において試験体の 最大軸方向収縮量,最大軸方向収縮速度が基準を満たすことを確認する。

耐火塗料は,建設業界にて1万件以上の使用実績がある。使用実績の例を第1-1表に示す。

施工場所	地域	施工時期
医療法人相生会 宮田病院	福岡県	2019 年 4 月
北海道立文書館	北海道	2019 年 7 月
ハレルヤ保育園	沖縄県	2002年5月
青森市スポーツ会館	青森県	2002年8月
浜松市浜北斎場	静岡県	2021年1月

第 1-1 表 耐火塗料の使用実績例

2. 耐火塗料の組成

航空機墜落火災に対する防護対策として用いる耐火塗料は、大臣認定を 受けたもののうち、2種類の耐火塗料を用いる。耐火塗料は、下塗り、主 材、中塗り及び上塗りの4つの役割の塗料を用い、4層の塗装を合わせて 「耐火塗装」という。下塗り、主材、中塗り、上塗りの4種の塗料をそれ ぞれ順に塗装する。それぞれの塗料の役割は次のとおりである。

下塗り:塗装する鋼材の防錆や主材の付着性向上*

- 主材 :耐火性能を発揮する
- 中塗り:主材保護及び上塗りの下地
- 上塗り: 主材保護及び意匠性

第 2-1 表に示すとおり、2 種類の耐火塗料はほぼ同様の組成から構成されていることを確認している。

また,2 種類の耐火塗料は、断熱性能及び発泡挙動に大きな差異がない ことを,国土交通大臣の認定を受けるために必要な耐火性能試験を参照し, 別添-5において確認している。

なお,航空機墜落火災の影響を考慮する施設へ施工する耐火塗料は,限 られた工期に大量に必要であることから,複数の塗料メーカの製品を用い ることとしている。また、主材、中塗り及び上塗りの吹き付け塗装を行う際 は、使用する耐火メーカ指定のエアレス塗装機を用いる必要がある。高い 位置に耐火被覆の施工場所を有する航空機墜落火災の影響を考慮する施設 においては、高所作業に適したエアレス塗装機(小型かつ軽量なもの)で 施工する必要があり、この機材に対応する耐火塗料を用いる必要がある。

よって, 選定する耐火塗料は, メーカの供給能力及び高所での施工性を 考慮し, 耐火塗装 A 及び耐火塗装 B の異なる 2 種類としている。

* 既設の冷却塔等に対しては、既存塗料の上から耐火塗料を施工する。発泡過程において耐火被覆が剥離しないことを、耐火試験において確認している。

耐火塗料		耐火塗装 A*1	耐火塗装 B*1
下塗	樹脂	エポキシ系	変性エポキシ系
	顔料	酸化チタン	カーボンブラック,タル ク等
り	添加剤	有機高分子	有機高分子
	色	グレー	
	発泡剤	ポリりん酸アンモニウム	ポリりん酸アンモニウム
耐	樹脂	ウレタン系	ポリエーテル系
火主	炭化剤	多価アルコール系	多価アルコール系
被材	顏料	酸化チタン系	酸化チタン系
覆	添加剤	無機-有機高分子	無機-有機高分子
	色	白	
	樹脂	ウレタン系	変性エポキシ
中	顏料	酸化チタン等*2	酸化チタン等*2
塗	添加剤	有機高分子	有機高分子
9	色	*2 上塗りの隠蔽性確保の やや淡い色	ため、上塗りと同色又は
上塗り	樹脂	フッ素系	フッ素系
	顏料	酸化チタン等*3	酸化チタン等*3
	添加剤	有機高分子	有機高分子
	色	*3 意匠設計に合わせ調色	(冷却塔では薄い青緑)

第 2-1 表 耐火塗装の組成

*1 認定証,メーカ設計情報

3. 耐火被覆の発泡挙動

耐火被覆は表面温度が 200℃から 300℃になった時点で,主成分である 発泡剤(ポリりん酸アンモニウム)が分解し,りん酸によって多価アルコー ル類が分解し脱水作用によって炭化層を形成する。一方,樹脂の溶融と同 時に発泡剤は分解を起こし,二酸化炭素,アンモニア,水蒸気等のガスを 発生し,樹脂をフォーム状にして炭化層を膨らませて,元の被覆厚の数十 倍の断熱層を形成する。

輻射を受けた耐火被覆の発泡による変化を,第 3-1 図に示す。

通常時

発泡時

発泡後

第 3-1 図 加熱による耐火被覆の発泡による変化

以上

別添-5

耐火被覆厚さの設定

目

次

1.	はじめに ・・・・・・・・・・・・・・・・・・・・・・・1
2.	耐火被覆厚さの設計方針
3.	大臣認定試験 ····································
4.	断熱材の相当厚さの算出・・・・・ 8
5.	耐火被覆厚さの設定と温度評価・・・・・ 12
6.	耐火試験(参考) ····· 15
7.	温度評価及び耐火試験の考察・・・・・ 26

参考1 鋼材の温度評価(断熱材の相当厚さの算出)の方法

- 参考2 耐火被覆を施工した鋼材の温度評価の方法
- 参考3 耐火被覆の必要厚さの解析の計算パラメータ設定の妥当性について
- 参考4 耐火被覆の必要厚さの解析への時間刻みの影響について
- 参考5 耐火試験後の試験体裏面の確認
- 参考6 耐火被覆を施工した SUS 平板の耐火試験結果のトレース解析モデルについて

1. はじめに

航空機墜落火災への防護対策として,必要離隔距離を確保できない部材 には,輻射による温度上昇の影響を緩和する1時間耐火の大臣認定を取得 している耐火塗料を用い,施設の重要度に応じて一律の耐火被覆厚さを設 定することとしている。

本資料は,耐火被覆厚さの設計方針,設定の考え方,設定の流れ及び参考に実施した耐火試験について説明するものである。

耐火被覆厚さの設定に当たっては、1時間耐火の大臣認定試験の方法, 条件及び結果を確認し、この試験結果を再現する耐火被覆の断熱性能を取 得した上で、この断熱性能を適用するとともに、評価条件を保守的に設定 し温度を算出し、耐火被覆厚さの設定の妥当性を評価する。

なお,設定した耐火被覆厚さによる断熱効果を,航空機墜落火災の加熱 条件において確認するために,参考として耐火試験を実施し温度を測定す るとともに,測定し得られた温度結果及び温度評価の結果を比較した上 で,物理現象を整理し考察を行うことで,温度評価の有する保守性を確認 する。

- 2. 耐火被覆厚さの設計方針
 - (1) 耐火被覆について

航空機墜落火災に対する防護対策として施工する耐火被覆は、施設毎に設定した許容温度を満足するために必要な耐火被覆厚さを設定する。

- 採用する耐火被覆は大臣認定(構造方法等の認定)を取得しており,構造方法では要求時間毎に必要厚さが定められている。航空機墜落火災及び大臣認定試験は,火災の想定や判定基準が異なるものの,以下の理由から,1時間耐火の大臣認定を取得している耐火塗料を,航空機墜落火災への防護対策として用いることは妥当である。
- ・建築基準法では、柱、梁に対して建物内の人間の避難が完了するまでの間、建物が倒壊しないよう、その階数により1時間又は2時間の耐火性能を要求している。耐火被覆の施工対象である冷却塔、飛来物防護ネット、主排気筒、屋外ダクト等においても、支持架構を構成する柱、梁が耐火性能を要求される主な対象であり、火災により構築物を 倒壊させないという目的は同じである。
- ・航空機墜落火災と大臣認定試験の条件における入熱量の比較から、後述する航空機墜落火災を模擬した温度評価の燃焼継続時間における入熱量と大臣認定試験における1時間耐火の入熱量は同程度である。詳細は別添-6参照。
- (2) 耐火被覆厚さの設定について

大臣認定では材料の形状や厚さ毎に耐火被覆厚さを定めて認定を取得 しているが,航空機墜落火災への防護対策としては以下の理由から,施 設の重要度に応じて一律の耐火被覆厚さを設定する。

- ・航空機墜落火災では構築物の直近での発生に限定しているが、火炎の 直近の鋼材を許容温度以下とする耐火被覆厚さを、距離が離れた鋼材 にも一律に設定することは保守的な設定であるため。
- ・耐火被覆は現場施工する部材もあることから、管理方法を統一することが品質向上につながるため。
- ・耐火被覆厚さを、部材の材質、形状又は厚さ毎に異なる複雑な設定と せず一律とすることで、耐火被覆厚さの施工間違いを防止するため。 耐火被覆厚さの設定においては、鋼材の代表形状と評価条件を保守的 に設定する。

耐火被覆厚さの設定フローを第2-1図に示す。

耐火被覆は数百℃の高温下において, 化学変化により膨張し断熱層を 形成することによりその性能を発揮する。鋼材の温度評価においては, 耐火被覆の温度に応じた断熱性能を考慮するため, 耐火被覆の温度依存 の熱物性値を設定する必要があるが, 耐火被覆の温度依存の熱物性値は 明確に定まっていない。

そこで,耐火被覆の断熱性能に相当する厚さを持つ断熱材を考慮する ことにより,耐火被覆の温度依存の熱物性値を取得する。

耐火被覆の温度依存の熱物性値の取得に当たっては,耐火被覆の断熱 性能を確認している大臣認定試験の内容を参照した上で(3.大臣認定試 験),高温下における熱物性値が既知の断熱材を考慮するとともに,耐火 被覆の断熱性能が発揮された大臣認定試験の結果を再現する断熱材の厚 さ(以下「断熱材の相当厚さ」という。)を繰り返し計算によって算出す る(4.断熱材の相当厚さの算出)。

断熱材の熱物性値及び断熱材の相当厚さを用いるとともに,鋼材の代 表形状と評価条件を保守的に考慮して,航空機墜落火災時において必要 な耐火被覆厚さを設定する(5.耐火被覆厚さの設定と温度評価)。

なお,設定した耐火被覆厚さによる断熱効果を,航空機墜落火災の加 熱条件において確認するために,参考として耐火試験を実施し温度を測 定する(6.耐火試験(参考))。測定し得られた温度結果及び温度評価の 結果を比較するとともに,物理現象を整理し考察を行うことで,温度評 価の有する保守性を確認する(7.温度評価及び耐火試験の考察)。

54

3. 大臣認定試験

次項 4. において耐火被覆厚さを設定するためには,耐火被覆の断熱性能 に関する熱物性値を取得する必要がある。

耐火被覆の熱物性値を取得するためには、与えられた熱量及び鋼材の温 度変化のデータがあること、また、鋼材の加熱条件が明確であり、鋼材の 温度変化が解析にて算出可能であることが必要である。耐火塗料の製造メ ーカが国土交通大臣認定のために実施した大臣認定試験は、これらの条件 を満足することから、大臣認定試験の結果を用いて耐火被覆の断熱性能を 評価する。

耐火被覆として使用する耐火塗料は,異なる2種類(エスケー化研のSK タイカコートHS(以下「耐火被覆A」という。)及び関西ペイントの耐火テ クト(以下「耐火被覆B」という。))を選定している。選定した2種類の耐 火塗料の詳細を,別添-4に示す。

選定した2種類の耐火被覆の断熱性能が同等であることは,後述する大 臣認定試験の結果を参照し確認している。

(1) 大臣認定試験の概要

大臣認定試験は,建築基準法第二条第七号に基づき,「防耐火性能試験・評価業務方法書(一般財団法人 日本建築総合試験所制定)」(以下「耐火性能試験書」という。)の「4.1 耐火性能試験方法」に準拠して実施 されている。

(2) 大臣認定試験の方法及び条件

第 3-1 図に大臣認定試験の試験装置の概要を示す。試験体には,構造 耐力上主要な部分の断面に長期許容応力度に相当する応力度が生じるように載荷しながら試験する。これは大臣認定試験の合格の判断基準が載 荷状態での加熱による直接的な強度変化の測定であるためである。

第 3-2 図に試験装置雰囲気の加熱曲線を示す。試験装置雰囲気の温度は, IS0834 にて示される標準加熱曲線に従って上昇させ, 炉内熱電対によりほぼ一様の温度となるよう管理する。

第 3-3 図に試験体(角管)への加熱方法を示す。試験装置雰囲気温度から試験体への輻射熱伝達により,要求耐火時間である1時間にわたって 試験体へ入熱させ,試験体の温度変化を測定する。

第 3-1 表に耐火被覆の種類毎に試験体寸法,耐火被覆厚さ,加熱面,加熱時間,試験荷重,判定基準,試験時間及び試験体数の条件を示す。

(断面図, 単位:mm)

炉内平均温度

第 3-2 図 IS0834 にて示される 標準加熱曲線による炉内の温度変化

第 3-3 図 試験体への加熱の概要(角管の断面図)

	耐火被覆 A/耐火被覆 B	備考
	一般構造用角鋼管	荷重支持部材(柱)
試験体 (寸法)	(JIS G 3466 (STKR490))	(耐火性能試験成績書)
	(幅:300mm, 奥 行:300mm, 初 期 高 さ:3500mm,	
	厚さ:9mm)	
耐水波要		被覆材の乾燥被覆厚さ(発
耐八阪復	2 mm	泡前の厚さ)
序で		(耐火性能試験成績書)
加熱面	角鋼管の4面(試験面)	耐火性能試験成績書
加数時間	60 /X	要求耐火時間
加怒时间	00 万	(耐火性能試験書)
	2073.0kN	長期許容応力度から、部材
封驗費重		の有効断面積を考慮して設
		定
		(耐火性能試験成績書)
		試験体の初期高さを考慮し
判定基準		て設定
	取八轴方向收袖迷及(血力).10.5以下	(耐火性能試験書)
		耐火性能試験書の要求耐火
試験時間	240 分	時間の3倍に対して、保守
	(=要求耐火時間 60 分×4)	的に 4 倍の 180 分を加熱し
		ない条件としている。
試 除 休 粉	4 体 (耐火被覆 A:2 体,	耐火被覆毎に2体試験す
时被打夺致	耐 火 被 覆 B:2 体)	る。

第 3-1 表 大臣認定試験の条件

- (3) 大臣認定試験の結果
 - 大臣認定試験から得られた鋼材の温度測定結果を第3-4図に、試験体の試験前後の様子を第3-5図に示す。

2 種類の耐火被覆の温度結果は、同様の温度上昇の推移を示している ことから、同等の耐火性能を有していることを確認した。

また、本項において大臣認定試験を参照する目的は、耐火被覆の断熱 性能の取得にあるため、載荷による変形結果ではなく、同時に測定して いる鋼材の温度変化の結果を、「4. 断熱材の相当厚さの算出」の評価に 用いる。

なお、参照した大臣認定試験の結果では試験体の収縮は確認されず、 判定基準を満足したことから、その試験体は大臣認定(構造方法等の認 定)を取得している。

第 3-4 図 試験体の鋼材温度の時刻歴

(試験前)(試験後)第 3-5 図 大臣認定試験の試験体の試験前後の様子

外外火 04-別添 5-7

- 4. 断熱材の相当厚さの算出
- (1) 評価方針

上記 3.より得られた大臣認定試験の温度測定結果を,高温特性が既知の断熱材(断熱ボード)の熱物性値を用いた一次元非定常熱伝導解析によりトレースすることで,断熱材の相当厚さを算出することにより,耐火 被覆の温度依存の熱物性値を取得する。算出の流れを第4-1図に示す。

第4-1図 断熱材の相当厚さの算出の流れ

(2) 評価条件

断熱材相当厚さの算出のための温度評価においては,大臣認定試験の 加熱条件に合わせ,試験装置雰囲気温度と試験体表面温度との差分に応 じた試験体への輻射熱伝達を考慮するとともに,断熱材表面からの入熱, 断熱材及び鋼材の内部における熱伝導及び角鋼管内部表面から角鋼管内 部空気への熱伝達があるものとする。内部空気の流出入はないものとす る。

第4-1表に評価対象の仕様及び加熱条件,第4-2表に本温度評価に用いた断熱材の熱物性値及び第4-3表に炭素鋼の熱物性値を示す。

なお、断熱材相当厚さの算出のための温度評価において、鋼材の物性 値として機械構造用炭素鋼を用いているが、中炭素鋼の熱物性値を使用 しても温度について有意な差がみられないことは確認している。

鋼材の材質	炭素鋼		
鋼材の形状	角鋼管		
鋼材の外径厚さ	$300 \text{mm} \times 300 \text{mm}$		
鋼材の厚さ	9mm		
耐火被覆の塗装厚さ	2 m m		
耐火被覆の種類	耐火被覆 A/耐火被覆 B		
炉内温度	IS0834 にて示される標準加熱曲線による温度		

第4-1表 評価対象の仕様及び加熱条件

第4-2表 断熱材*1の熱物性値

温度工	密度 ρ d	比熱 c _d	熱伝導率λ _d
[°C]	[g/cm ³]	[kJ/kg/K]	[W/m/K]
100	0.25	0.858	* 2
200	0.25	0.959	* 2
400	0.25	1.083	0.10
600	0.25	1.153	0.14
800	0.25	1.198	0.20
1000	0.25	1.227	0.26

*1 ニチアス ファインフレックス BIO ボード 5625-A

*2 400℃未満は 0.10W/m/Kを設定

第4-3表 炭素鋼の熱物性値(伝熱工学資料の機械構造用炭素鋼より)

温度 T	密度 p f	比 熱 c f	熱伝導率λ _f
[K]	$[kg/m^3]$	[kJ/kg/K]	[W/m/K]
300	7850	0.465	43.0
500	7790	0.528	38.6
800	7700	0.622	27.7

(3) 評価方法

鋼材の温度評価は,炉内の温度上昇,炉内から断熱材への輻射熱伝達, 断熱材の温度変化,鋼材の温度変化,鋼材から空気への対流熱伝達及び 内部空気の温度変化を考慮して,非定常一次元熱伝導解析により実施す る。詳細は本資料の参考1に示す。 (4) トレース解析結果から設定する断熱材厚さのモデル

耐火被覆の評価に当たっては,発泡を開始し断熱効果を発揮する温度 に達した断熱材から,その厚さが切り替わるモデル(以下「断熱材厚さの モデル」という。)を考慮する。

大臣認定試験のトレース解析の結果から、断熱材の温度が 280℃に到 達した時点において断熱材の厚さを切り替え,完全発泡後の耐火被覆の 断熱性能は 25mmの断熱材に,発泡前の耐火被覆(2mm)の断熱性能は厚さ 1.25mmの断熱材に相当するとした場合,鋼材の温度変化と大臣認定試験 の温度変化が概ね等しくなることから、断熱材の温度が 280℃に到達し た時点で上記断熱材厚さに切り替えることとし、断熱材厚さのモデルを 設定する。

よって、断熱材厚さについては、耐火被覆厚さ 1mm の断熱性能が、発 泡後では断熱材 12.5mm に相当し、発泡前では断熱材 0.625mm に相当す る設定とする。

また、断熱材の熱物性値の切り替えは、断熱材の温度及び熱物性値を 設定する計算節点毎に行うこととし、計算モデルとしては厚さを変化さ せるのではなく、熱物性値を変化させることで相当する設定とする。

発泡前の熱物性値は、比熱の場合は設定する断熱材の熱物性値に対して20分の1倍(=0.625mm/12.5mm)に、熱伝導率の場合は設定する断熱材の熱物性値に対して20倍(=12.5mm/0.625mm)に設定する。発泡後の熱物性値は、設定する断熱材の熱物性値とする。

(5) 比較結果

上記(4)の断熱材厚さのモデルを適用し評価した断熱材表面温度(赤 色),鋼材温度(緑色)及び大臣認定試験の鋼材温度結果(紫色,水色)の結 果を第4-2図に示す。

温度評価の結果は、断熱材温度が 280℃に到達した時点で、その断熱 材厚さを変化させることで断熱性能を与えている(比熱を大きくし、熱伝 導率を下げる)ため、断熱材表面では 280℃に到達した直後に 100℃超の 急激な温度上昇がみられるとともに、鋼材温度(緑色)が 150℃から 180℃ に達した時点で断熱材の断熱効果が遅れて表れ、鋼材温度の上昇が緩和 されている。

上記の鋼材温度(緑色)の結果は、大臣認定試験の鋼材温度(紫色、水 色)の結果とほぼ同様の傾向を示していることから、トレース解析の結果 から設定した断熱材厚さのモデルは妥当であることを確認した。

第4-2 図 耐火被覆 2mm の大臣認定試験とこれに相当する断熱材厚さを適用 して評価した鋼材温度の比較

5. 耐火被覆厚さの設定と温度評価

上記 4. から得られた耐火被覆の断熱性能に応じて,耐火被覆の必要厚さ を設定するとともに,鋼材温度が許容温度以下となることを確認するため に温度評価を実施する。

(1) 耐火被覆厚さの設定方針

耐火被覆の厚さ設定における考え方を以下に示す。

- ・航空機墜落火災において、安全上重要な施設及び波及的影響を及ぼし得る施設に求められる安全機能に応じて設定した許容温度を満足するために必要な耐火被覆厚さを設定する。
- ・耐火被覆厚さは、部位毎に厚さを変更するのではなく、施設の重要 度に応じて、安全上重要な施設と波及的影響を及ぼし得る施設について、それぞれ一律に設定する。
- ・耐火被覆厚さは、代表部材の評価に基づいて設定する。代表部材は、 以下のとおり検討した結果から、飛来物防護ネットの防護板(SUS304 平板(t9mm))とした。
 - ①輻射強度が最も大きく、厳しい評価となることから、火炎に近い 飛来物防護ネットから選定することする。
 - ②別添-3において設定したとおり、平板を代表とする。
 - ③飛来物防護ネットを構成する部材のうち、最も薄い防護板(t9mm) を代表とする。
 - ④SUS304 は、その熱拡散率(300K で約 4mm²/s)が炭素鋼の熱拡散率 (300K で約 12mm²/s)よりも小さいことから、輻射を受ける鋼材表 面で温度が高い状態が維持されやすい。よって、温度評価上保守 的となる SUS304 を代表とする。

熱拡散率aは、以下の式から求めることができる。

$a = \lambda/(c \times \rho)$

ここで,

λ : 熱伝導率 [W/m/K]

- c :比熱 [J/kg/K]
- ρ : 密度 [kg/m³]
- ・平板以外の形状(H鋼,角柱等)において、代表部材より薄い板厚を 有する部材については、最も薄い板厚を平板に置き換え、耐火試験 にて許容温度を満足することを確認する。
- (2) 評価条件

裏面等から見込まれる放熱効果を無視し,保守的に平板の表裏共に熱 的境界条件を断熱条件(輻射による入熱は見込む)と設定し評価を行 う。

また,航空機墜落火災で想定される輻射強度である約 29.4kW/m²を加熱開始の初期入熱量として保守的に設定し,以降は火炎と耐火被覆表面の温度差に応じた輻射入熱を考慮する。

第 5-1 表に評価対象の仕様及び加熱条件,第 5-2 表にステンレス鋼の 熱物性値を示す。

評価に用いる断熱材としては,前述 4.の第 4-2 表の断熱材及び断熱 材厚さのモデルと同じとする。

9mm

29. $4 \text{kW}/\text{m}^2$

 鋼材の材質
 SUS304

 鋼材の形状
 平板

第 5-1 表 評価対象の仕様および加熱条件

第 5-2 表 ステンレス鋼の物性値(伝熱工学資料の SUS304 より)

温度	密度	密度 比熱	
[K]	$[kg/m^3]$	[kJ/kg/K]	[W/m/K]
300	7920	0.499	16.0
400	7890	0.511	16.5
600	7810	0.556	19.0
800	7730	0.620	22.5
1000	7640	0.644	25.7

(3) 評価方法

鋼材の厚さ

輻射強度

鋼材の温度評価は,輻射強度,鋼材への輻射熱伝達,断熱材(耐火被 覆)の温度変化,鋼材の温度変化について,非定常一次元熱伝導解析に より温度上昇を算出する。詳細は本資料の参考2に示す。

(4) 評価結果

SUS304の9mm平板を代表に,耐火被覆厚さを設定して温度評価を行った結果を第5-1図及び第5-2図に示す。

評価の結果,鋼材温度を 325℃以下とするためには 3mm の耐火被覆厚 さ,450℃以下とするためには 2mm の耐火被覆厚さが必要であることを 確認した。

計算パラメータ設定の妥当性については参考3に,時間刻みの影響に ついては参考4に示す。

なお,鋼材の温度上昇が緩やかな部分(第5-1図:1,200sまで,第 5-2図:900sまで)については,耐火被覆が発泡温度に到達し耐火被覆 厚さが増え,耐火被覆の断熱効果が大きくなる影響が反映されている。

全ての耐火被覆の節点に対して発泡が完了すると,熱容量の変化がな くなり,やがて入熱がそのまま鋼材の温度上昇として計算されること, 発泡完了後の入熱量がほぼ一定になるため直線的に温度上昇するように 計算されると考えられる。

温度評価結果

6. 耐火試験(参考)

上記 5. にて耐火被覆厚さを設定し,SUS304 平板(t9mm)を代表として解 析を行い把握した耐火被覆の挙動を,航空機墜落火災の条件において確認 するために,参考として耐火試験を実施した。耐火試験は,3. に示した条 件①(温度評価と同等の条件)及び条件②(温度評価における熱的境界条件 及び耐火被覆の実施工を念頭に置いた条件)にて行った。

条件①:SUS304 平板(t9mm), 片面耐火被覆 条件②:SS400 平板(t6mm, t12mm), 両面耐火被覆

耐火試験の条件②と上記 5.の温度評価では,鋼材の材質が異なるが,鋼 材厚さは温度評価を行った SUS304 の鋼材厚さ(t9mm)より厚いもの(t12mm) と薄いもの(t6mm)の両方を選定していることから,比較対象として参考に なるものと考えられる。

耐火試験の概要

本試験では,航空機墜落火災から輻射を受けた時の部材の温度変化の 傾向を確認する。試験においては,航空機墜落火災から受ける輻射強度 と同等の輻射を部材に与え,鋼材の温度を測定する。

- (2) 耐火試験の方法及び条件
- a. 試験方法

本試験に用いる装置を第 6-1 図及び第 6-2 図に示す。本試験では,加熱された鋼板(放射源鋼板)を放射源として試験体に放射熱流束を与える。そのため,大型壁加熱炉を用いて鋼板(放射源鋼板)を加熱し,鋼板

から輻射熱を発生させる。

試験開始前に放射源鋼板を予熱し,輻射強度が所定の強度に達した時 点で試験を開始する。予熱中は,試験体への入熱を軽減するため,試験 体と放射源鋼板の前に遮蔽幕を設置する。試験体の近傍に設置した制御 用放射計を用いて輻射熱を管理する。

b. 試験条件

火炎の輻射強度,燃焼継続時間及び試験体の条件を第 6-1 表及び第 6-2 表に示す。

第 6-1 図 試験設備(図面)

第 6-2 図 試験設備写真

項目		条件①				
耐火試験ケース		1-1	1-2	2-1	2-2	
	耐	種類	А	В	А	В
	火	厚さ	2mm 3mm			ım
試 験	被 覆	施工面				
体	鋼 材	话拓	平板			
		悝 頖	SUS304			
		厚さ		9mm		
輻射強度		耐火被覆表面位置にて				
		29,400 W/m^2				
燃焼継続時間		3,600s*				

第 6-1 表 試験条件①

* 想定する燃焼継続時間は 1,400 秒だが,試験では 3,600 秒後まで加熱し温 度測定を実施した。

項目		条件②				
耐火試験ケース		3-1	3-2	4-1	4-2	
	耐	種類	А	В	А	В
	火	厚さ	2 m m			
試 験	被 覆	施工面	両 面			
体	鋼 材	種類	平板			
			SS400			
		厚さ	12mm 6mm			nm
輻射強度		耐火被覆表面位置にて				
		29,400 W/m^2				
燃焼継続時間		3,600s*				

第 6-2 表 試験条件②

- * 想定する燃焼継続時間は 1,400 秒だが,試験では 3,600 秒後まで加熱し温 度測定を実施した。
 - (3) 耐火試験の温度測定結果

温度評価と耐火試験の結果を第 6-3 表に示す。

a. 試験条件①

耐火試験ケース 1-1 及び 1-2 の温度測定結果並びに第 5-2 図に示した 温度評価結果を第 6-3 図に,ケース 2-1 及び 2-2 の温度測定結果並びに 第 5-1 図に示した温度評価結果を第 6-4 図に示す。

耐火試験ケース 1-1 及び 1-2 の初期温度は,温度評価結果と比較して数 10℃程度高くなった。また,耐火試験ケース 1-1 及び 1-2 の温度上昇は,温度評価の結果と比べて緩やかであり,許容温度を大きく下回る結果となった。

耐火試験ケース 2-1 及び 2-2 についても, 耐火試験ケース 1-1 及び 1-

2と同様に、温度評価結果と比較して初期温度は数10℃程度高く、温度 上昇は緩やかであり、許容温度を大きく下回る結果となった。

b. 試験条件②

ケース 3-1 及び 4-1 の温度測定結果並びに第 4-2 図に示した温度評価 結果を第 6-5 図に,ケース 3-2 及び 4-2 の温度測定結果並びに第 5-1 図に示した温度評価結果を第 6-6 図に示す。

耐火試験ケース 3-1 から 4-2 の初期温度は、温度評価結果と比較して 数 10℃から 100℃程度高い結果となった。また、耐火試験ケース 3-1 か ら 4-2 の温度上昇は温度評価の結果と比べて緩やかであり、許容温度を 大きく下回る結果となった。

c. 試験条件①及び②の結果について

比較のために,耐火試験ケース 1-1 及び 1-2 の結果を,それぞれ第 6-5 図及び 6-6 図に示す。

耐火試験ケース 3-1 から 4-2 と耐火試験ケース 1-1 及び 1-2 の結果を 比較すると、鋼材厚さが 6mm の温度測定結果(3,600 秒後)が最も温度が 高く、次に鋼材厚さが 12mm、最も温度が低いのが鋼材厚さ 9mm となった。

(4) 耐火試験前後の耐火被覆の状況観察

耐火試験のケース 1-1 から 4-2 の耐火試験前及び耐火試験後(3,600 秒後)における試験体の様子を,第 6-7 図から第 6-14 図に示す。

第 6-5 図の大臣認定試験の結果からは,試験後は大部分が灰色となっており,十分に炭化した後に灰化にまで至っているが,耐火試験後の耐火被覆表面は黒色となっており炭化しているが,灰化にまでは至っていないことが確認できる。試験後の裏面の様子を参考5に示す。

また,第6-3図から第6-6図の耐火試験により得られた温度測定結果 から,耐火試験の温度上昇の変化は時間の経過とともに緩やかに推移し ており,試験終盤ではほとんど温度上昇がみられない。

以上のことからすると,耐火試験時の耐火被覆は,試験終了時におい ても,まだ余裕を残しているものと考えられる。

第 6-3 図 耐火被覆 2mm の温度評価と耐火試験ケース 1-1, 1-2 の比較

第 6-4 図 耐火被覆 3mm の温度評価と耐火試験ケース 2-1, 2-2 の比較

第 6-5 図 耐火被覆 2mm の温度評価と耐火試験ケース 1-1, 3-1, 4-1 の比較

第 6-6 図 耐火被覆 2mm の温度評価と耐火試験ケース 1-2, 3-2, 4-2 の比較
	鋼材		耐火被覆			試験結果				
ケース	種類	厚さ	施工面	厚さ	種類	温度変化	初期温度	1,400s 後	3,600s 後	試験体の 様子
温度評価1	SUS304	9mm	片面	2mm	_	第 6-3 図, 第 6-5 図, 第 6-6 図	50°C	410°C	410℃超	_
温度評価 2	SUS304	9mm	片面	3mm	—	第 6-4 図	50℃	300°C	300℃超	—
耐火試験 1-1	SUS304	9mm	片面	2mm	А	第 6-3 図	80°C	249°C	266℃	第 6-7 図
耐火試験 2-1	SUS304	9mm	片面	3mm	А	第 6-4 図	95°C	225℃	249°C	第 6-9 図
耐火試験 3-1	SS400	12mm	両面	2mm	А	第 6-5 図	92°C	244°C	282℃	第 6-11 図
耐火試験 4-1	SS400	6mm	両面	2mm	А	第 6-6 図	141°C	269°C	290℃	第 6-13 図
耐火試験 1-2	SUS304	9mm	片面	2mm	В	第 6-3 図	103°C	265°C	274°C	第 6-8 図
耐火試験 2-2	SUS304	9mm	片面	3mm	В	第 6-4 図	105°C	256°C	277℃	第 6-10 図
耐火試験 3-2	SS400	12mm	両面	2mm	В	第 6-5 図	80°C	247°C	277℃	第 6-12 図
耐火試験 4-2	SS400	6mm	両面	2mm	В	第 6-6 図	143°C	285℃	304°C	第 6-14 図

第 6-3 表 温度評価と耐火試験の結果

(試験開始前) (1時間後)第 6-7 図 耐火試験ケース 1-1 の試験前後の試験体の様子

(試験開始前)(1時間後)第 6-8 図 耐火試験ケース 1-2 の試験前後の試験体の様子

(試験開始前) (1時間後)第 6-10 図 耐火試験ケース 2-2 の試験前後の試験体の様子

(試験開始前)

(1時間後)

(試験開始前)第 6-12 図 耐火試験ケース 3-2 の試験前後の試験体の様子

(試験開始前) (1時間後)第 6-13 図 耐火試験ケース 4-1 の試験前後の試験体の様子

(試験開始前)

(1時間後)

第 6-14 図 耐火試験ケース 4-2 の試験前後の試験体の様子

7. 温度評価及び耐火試験の考察

第 6-3 図から第 6-6 図に示す耐火試験により得られたケース 1-1 から 4-2 の温度測定結果及び温度評価結果を比較すると、いずれの温度結果も許 容温度以下となっているものの、試験開始時の鋼材温度及び試験開始から 3,600 秒後までの温度測定結果は温度評価結果と異なるとともに、温度評 価結果が耐火試験による温度測定結果を大幅に上回っている。

これら乖離について、以下の(1)にて物理現象を整理し、(2)にて考察する。

(1) 耐火被覆を施工した試験体に生じる物理現象について

試験開始から 1,400 秒後までに,耐火被覆を施工した試験体に生じる 物理現象は,以下の①から⑦に示すとおりである。

- ① 放射源鋼板と試験体間にあらかじめ設置されている遮蔽幕を取り除くことにより、放射源鋼板から耐火被覆を施工した試験体へ、航空機墜落火災を想定し設定した輻射 29,400W/m²が与えられる。
- ② 放射源鋼板から発泡開始前の耐火被覆表面までは輻射,発泡開始前の耐火被覆(表側)内部,耐火被覆から試験体表面,試験体内部は熱伝導により熱が伝播すると同時に,耐火被覆(表側)及び試験体裏側から輻射及び対流熱伝達により放熱が生じる。
- ③ 耐火被覆(表側)の温度が 200℃前後となった時点で、耐火被覆の主成分である発泡剤(ポリりん酸アンモニウム)が熱分解し、発生したりん酸によって多価アルコール類が分解し脱水作用によって炭化層の形成を開始する。
- ④ ③の樹脂の溶融と同時に発泡剤は分解を起こし、二酸化炭素、アン モニア、水蒸気等のガスを発生し、樹脂をフォーム状に炭化層とし て膨張し、初期耐火被覆厚さ(2mm又は 3mm)を超える厚さのガスを 含む断熱層の形成を開始する。
- ⑤ 耐火被覆内部においては,輻射による入熱が,形成される断熱層内 を熱伝導により伝播するとともに,耐火被覆(表側)表面から輻射及 び対流熱伝達により放熱が生じる。
- ⑥ ⑤と同時に、耐火被覆から試験体表面、耐火被覆内部においては、 形成した耐火被覆(表側)の断熱層により緩和された輻射による入熱 が熱伝導により試験体へ伝播するとともに、試験体裏側から輻射及 び対流熱伝達により放熱が生じる。
- ⑦ 発泡開始後においては、①の輻射の発生が試験開始から3,600秒後 まで継続するのに並行して、③及び④の発泡現象が発泡剤の分解開 始から終了まで継続し、初期耐火被覆厚さの数十倍にもなる断熱層 を形成するとともに、⑤及び⑥の熱伝導及び放熱が発泡剤の分解開 始から3,600秒まで継続する。

(2) 温度評価及び耐火試験の乖離についての考察

温度評価と耐火試験の結果における初期温度の乖離,温度変化の乖離 及び温度結果についての考察を,下記 a.から c.に示す。

本考察においては、耐火試験により得られた耐火試験の全ケース(1-1 から4-2)の温度測定結果及び温度評価結果を示した,第6-3図から第6-6図を参照する。(ケース一覧は第6-3表参照)

- a. 鋼材初期温度の乖離について
- (a) 温度評価と耐火試験の鋼材初期温度

耐火試験においては、出力調整中の放射源鋼板から鋼材への直接輻射を熱的に遮蔽し、試験開始前の鋼材への入熱を極力抑えるために遮 蔽幕を設置しているが、高温となった遮蔽幕から鋼材への二次輻射に より、試験開始時の鋼材温度は、温度評価と比較し数 10℃から 100℃ 程度高くなっている(第 5-3 図から第 5-6 図)。

このような初期温度の乖離は、4.にて把握した耐火被覆の挙動を航 空機墜落火災の条件で参考として確認するという耐火試験の目的を考 慮すると、より厳しい試験条件を与えているということができる。

(b) 耐火試験の鋼材厚さによる鋼材初期温度への影響

鋼材厚さ 6mm の耐火試験ケース 4-1 及び 4-2 の鋼材初期温度は,温 度評価(初期温度 50℃)と比較して 100℃程度高くなっている。また, 鋼材厚さ 12mm の耐火試験 3-1 及び 3-2 の鋼材初期温度は,温度評価 (初期温度 50℃)と比較して数 10℃程度高くなっている。

これは厚さ 6mm 鋼材の方が, 熱容量が小さく, 厚さ 12mm 鋼材より も温度上昇しやすいことが影響していると考えられる。

このような試験開始時の鋼材温度の乖離は、4. にて把握した耐火被 覆の挙動を航空機墜落火災の条件で参考として確認するという耐火試 験の目的を考慮すると、より厳しい試験条件を与えているということ ができる。

- b. 鋼材の温度変化の乖離について
- (a) 温度評価と耐火試験の放熱の違い

第 5-3 図から第 5-6 図より,耐火試験の全ケース(1-1 から 4-2)の 鋼材温度は,時間の経過とともにその上昇が緩やかになる一方,温度 評価の結果は温度上昇し続ける結果となっている。

上記 4. にて示した温度評価は保守的な評価とするために,(1)で整理した現象の②及び⑥の放熱の考慮をしておらず,完全な断熱条件にて評価を実施している。

耐火試験においては,試験体の表側のみ又は,表側及び裏側に耐火 被覆を施工することにより,断熱条件に近い熱的条件としているケー スもあるが,試験体の表側及び裏側からの対流放熱及び輻射放熱は完 全になくすことはできない。特に,耐火試験時には放射源鋼板からの 輻射を直接受熱しない試験体裏側からの放熱及び試験体周辺の環境か ら試験体裏側への二次輻射による入熱の影響は無視できない。

耐火試験時の試験体裏側からの放熱及び試験体裏側への入熱の影響 については、次項(b)にて説明する。

(b) 耐火試験時の試験体裏側からの放熱及び試験体裏側への入熱の影響 前項(a)にて説明した放熱及び二次輻射の影響を確認するため,耐火 試験にて取得したデータから,被輻射体への入熱が被輻射体の温度上 昇とともに減少する効果を試験体の温度解析に考慮した。

耐火試験による温度測定結果及び温度解析による温度評価結果を, 第 6-3 図及び第 6-4 図に示す。

放熱の効果は,耐火試験にて取得したデータによると,時間の経過 に伴って温度上昇が減少することに着目し,試験体裏側への二次輻射 による入熱及び試験体裏側からの放熱を同じと仮定し考慮した。

被輻射体への入熱が被輻射体の温度上昇とともに減少する効果は, 放射源鋼板の温度と被輻射体の温度差により入熱するモデルとし,被 輻射体の温度上昇とともに入熱が減少することを考慮した。

温度解析において、大臣認定試験にて取得した物性値によるモデル を使い,前項(a)にて確認した耐火試験の入熱の減少を考慮して評価し た結果と耐火試験結果の比較を第 6-3 図及び第 6-4 図に示す。これに によると、評価結果と耐火試験結果の温度変化は、ほぼ一致する結果 となった。

これらの比較から,二次輻射及び放熱の影響については,温度上昇 による入熱の減少と同程度であることを確認した。

- c. 鋼材の温度結果(3,600秒後)の乖離について
- (a) 熱容量の違いによる温度結果(3,600秒後の鋼材温度)への影響
 耐火試験の全ケース(1-1から4-2)の温度測定結果のうち,耐火被
 覆厚さ2mmの耐火試験ケース4-1及び4-2は熱容量が最も小さく,他
 の耐火試験ケースと比較して最も鋼材温度(3,600秒後)が高くなった。
 次に,熱容量が最も大きいことから,耐火試験ケース3-1及び3-2
 が最も温度上昇しにくいと考えられるが,実際には耐火試験ケース12及び2-1の鋼材温度(3,600秒後)が最も低かった。これは,耐火試験
 ケース1-2及び2-1は片面にのみ耐火被覆が施工されており,両面に
 耐火被覆が施工されている耐火試験ケース3-1及び3-2よりも,放熱
 の効果が大きいことが影響していると考えられる。

なお,熱容量は最も小さく,両面に耐火被覆が施工され断熱条件に 近い(放熱の効果が小さい)耐火試験ケース 4-1 及び 4-2 の条件におい ても,その温度測定結果から,許容温度に対して十分な余裕があるこ とがわかった。

(b) 試験体の耐火被覆厚さの違いによる温度結果(3,600 秒後の鋼材 温度)への影響

耐火被覆 A においては,耐火被覆厚さ 3mm の耐火試験ケース 2-1 が 最も鋼材温度(3,600 秒後)が低いが,耐火被覆 B においては,耐火被 覆厚さ 2mm の耐火試験ケース 1-2 が最も鋼材温度(3,600 秒後)が低く なった。

耐火被覆厚さ 2mm の耐火試験ケース 1-2 及び耐火被覆厚さ 3mm の耐 火試験ケース 2-2 は,試験体初期温度及び 3,600 秒後の温度において, 同じ 2 から 3℃程度の温度の違いしか現れていないことから,耐火被 覆厚さの違いによる影響はほぼみられない。

耐火被覆厚さ2mmの耐火試験ケース 1-1 及び耐火被覆厚さ3mmの耐 火試験ケース 2-1 は、3,600 秒後の試験体温度において約 15℃の違い が現れているが,試験体初期温度も同様の温度差がみられることから, 耐火被覆厚さの影響ではなく,試験体初期温度の違いが影響している と考えられる。

よって、耐火被覆の種類によって最も低い試験体温度をもたらす耐 火被覆厚さが異なるのは、試験体初期温度の違いによるものと考えら れる。また、耐火被覆の厚さについては、今回の試験条件において 2mm を施工することによって部材の温度上昇を緩和することが十分可能で あることがわかった。

 (c) 温度評価と耐火試験の入熱量による温度結果(3,600 秒後の鋼材 温度)への影響

同じ入熱量を与えた場合には熱容量の観点から,鋼材厚さ9mmの温 度評価の結果は,鋼材厚さ6mmの耐火試験ケース4-1及び4-2の温度 測定結果と鋼材厚さ12mmの耐火試験ケース3-1及び3-2の温度測定 結果の幅に含まれることが考えられるが,温度評価の結果は耐火試験 による温度測定結果を大幅に上回っている。

当社が実施した耐火試験と温度評価の入熱量の違いから、温度結果の違いについて説明する。

当社が実施した耐火試験では試験初期において,試験体位置での輻射強度を約 29.4kW/m²と設定しているものの,試験体の温度が高い状態から試験を開始しているため,実際の入熱量は 29.4kW/m²を下回っており,積算入熱量としては約 8,000kJ/m²となっている。一方,温度評価では計算初期において,被輻射体への入熱を保守的に約 29.4kW/m²と設定しており,積算入熱量としても約 18,000kJ/m²と高い積算入熱量となっている。

このような入熱量の違いにより,温度評価の結果は耐火試験による 温度測定結果を大幅に上回っている。積算入熱量の比較については別 添-6に示す。

(3) まとめ

温度評価と耐火試験の結果における初期温度の乖離,温度変化の乖離, 3,600 秒後の温度の乖離について考察した結果から,耐火試験は航空機 墜落火災の条件を再現している一方,温度評価は以下のとおり保守性を 確保している。

- ・鋼材の全面において、熱的境界条件を完全断熱条件として設定しており、鋼材表面からの放熱がなく、鋼材の温度評価の結果を厳しく評価している。
- ・航空機墜落火災の条件を再現している耐火試験の入熱量(約8,000 kJ/m²)を大幅に上回る入熱量(約18,000kJ/m²)を設定しており,鋼材の 温度評価の結果を厳しく評価している。

以上より温度評価の結果をもとに耐火被覆の厚さを設定することによ り,安全余裕が確保された設計となっているということができる。

第 6-4 図 解析による温度評価結果及び 耐火被覆 B(SUS304, t9mm, 耐火被覆厚さ 2mm)の 耐火試験による温度測定結果

参考1 鋼材の温度評価(断熱材相当の厚さの算出)の方法

鋼材の温度評価の方法を以下に示す。評価モデルの概略を第1図に, 計算モデルの概略を第2図に,空気の物性値を第1表に示す。

(1) 炉内の温度上昇

炉内の温度は IS0834 に基づく時間変化をするものとし,防耐火性能 試験・評価業務方法書より,以下のとおり算出する。

 $Ta = 345 \log_{10}(8t + 1) + 20$

Ta : 炉内平均温度 [℃]

t : 試験経過時間 [min]

(2) 炉内から断熱材への輻射熱伝達

炉内から断熱材への輻射熱伝達は,炉内温度を一様とし,次式より算 出する。

 $Qr = \sigma \cdot A \cdot ((Ta + 273.15)^4 - (Td(1) + 273.15)^4)$

ここで,

- Qr :輻射熱伝達 [W]
- σ : ステファン・ボルツマン定数 [W/m²/K4] (=5.67×10⁻⁸)(伝熱工学資料 改訂第5版 131頁)
 A : 受熱面積 [m²] (=0.282)
 - 角鋼管の内径 0.282m と角鋼管の高さ 1m から受熱面積を
 - 0.282m²と設定
- Ta : 炉内平均温度 [℃]
- Td(1) : 断熱材表面温度 [℃]
- (3) 断熱材の温度変化(非定常熱伝導)

断熱材は温度一様の複数節点の熱伝導とし、温度変化は次式にて設定する。

 $\rho \cdot c \cdot V \cdot \frac{d}{dt} T d = Q$

上式を陽解法により Δt 毎の時間進行の式にすると

$$Td_{n+1} = Td_n + \Delta t \cdot \frac{Q}{\rho \cdot c \cdot V}$$

ここで,

- Q : 熱伝導量 [₩]
- ρ :鋼材又は断熱材の密度 [kg/m³]
- c : 鋼材又は断熱材の比熱 [J/kg/K]
- V :鋼材又は断熱材の体積 [m³]

Td_{n+1} : Δt 後の断熱材温度 [℃] (n+1 は Δt 後の時間ステップ)

Td_n :現在の断熱材温度 [℃] (n は現在の時間ステップ)

Δt :時間刻み [s] (=0.0006)

時間刻みの設定に当たっては,拡散数を算出し閾値と比 較することで,計算が適切に行われることを確認してい る。

なお、時間刻みは、大臣認定試験の温度測定結果が1分 刻みで得られており、分単位での計算結果を得て測定結果 の数値を比較できるようにすることを考慮するとともに、 計算が適切に行われるよう配慮し0.00001min(=0.0006s) を設定する。

節点(j)ごとに熱伝達量Q及び鋼材又は断熱材の体積Vを以下のように設定する。

$$\begin{split} j &= 1 \\ Q &= Qr - \frac{\lambda d(j)}{(Ld/(Nd-1))} \times A \times (Td(j) - Td(j+1)) \\ V &= \frac{1}{2} \times A \times \frac{Ld}{Nd-1} \\ j &= 2 \sim Nd-1 \\ Q &= \frac{\lambda d(j-1)}{(Ld/(Nd-1))} \times A \times (Td(j-1) - Td(j)) - \frac{\lambda d(j)}{(Ld/(Nd-1))} \times A \times (Td(j) - Td(j+1)) \\ V &= A \times \frac{Ld}{Nd-1} \\ j &= Nd \\ Q &= \frac{\lambda d(j-1)}{(Ld/(Nd-1))} \times A \times (Td(j-1) - Td(j)) - \frac{\lambda f(1)}{(Lf/(Nf-1))} \times A \times (Tf(1) - Tf(2)) \\ \rho \cdot c \cdot V &= \rho_d \times c_d \times \frac{1}{2} \times A \times \frac{Ld}{Nd-1} + \rho_f \times c_f \times \frac{1}{2} \times A \times \frac{Lf}{Nf-1} \end{split}$$

ここで、
 Qr : 輻射熱伝達 [W]
 λd : 断熱材の熱伝導率 [W/m/K]
 (別添5の第 4-2 表参照)
 Ld : 断熱材の厚さ [m](別添5の3.(4)参照)
 Nd : 断熱材の節点数 [-](26)

外外火 04-別添 5-33

А	: 伝熱面積 [m ²] (=0.282)
	角鋼管の内径 0.282m と角鋼管の高さ 1m から受熱面積を
	0.282m ² と設定
Td(j)	: 断熱材の節点温度 [℃]
λf	:鋼材の熱伝導率 [W/m/K](別添5の第 4-3 表参照)
Lf	:鋼材の厚さ [m] (=0.009)
Nf	:鋼材の節点数 [-] (10)
Tf(j)	:鋼材の節点温度 [℃]
ρd	:断熱材の密度[kg/m³](別添5の第 4-2 表参照)
C _d	:断熱材の比熱 [J/kg/K](別添 5 の第 4-2 表参照)
$\rho_{\rm f}$: 鋼材の密度 [kg/m³](別添 5 の第 4-3 表参照)
Cf	: 鋼材の比熱 [J/kg/K](別添5の第 4-3 表参照)

(4)鋼材の温度変化(非定常熱伝導)

鋼材は温度一様の複数節点の熱伝導とし、温度変化は次式にて設定する。

 $\rho_{f} \cdot c_{f} \cdot V_{f} \cdot \frac{d}{dt} Tf = Q$

上式を陽解法により Δt ごとの時間進行の式にすると,

 $Tf_{n+1} = Tf_n + \Delta t * \frac{Q}{\rho_{f^*}c_{f^*}V_f}$

ここで,

Q : 熱伝導量 [W] ρ_f : 鋼材の密度 [kg/m³] (別添5の第4-3表参照) c_f : 鋼材の比熱 [J/kg/K] (別添5の第4-3表参照) V_f : 鋼材の体積 [m³] Tf_{n+1} : Δt 後の鋼材温度 [℃] n+1:Δt 後の時間ステップ Tf_n :現在の温度 [℃] n:現在の時間ステップ Δt :時間刻み [s] (=0.0006s)

節点(j)ごとに熱伝達量 Q及び鋼材の体積 V_f を以下のように設定する。

$$\begin{split} j &= 1 \\ Tf(1) = Td(Nd) \\ j &= 2 \sim (Nf-1) \\ Q &= \frac{\lambda f(j-1)}{(Lf/(Nf-1))} \times A \times (Tf(j-1) - Tf(j)) - \frac{\lambda f(j)}{(Lf/(Nf-1))} \times A \times (Tf(j) - Tf(j+1)) \\ V_f &= A \times \frac{Lf}{(Nf-1)} \end{split}$$

(5)鋼材からの空気への対流熱伝達 鋼材から空気への対流熱伝達は,次式にて設定する。

 $Qt = h \cdot A \cdot (Tf(Nf) - Ti)$

ここで,

- **Q**_t : 対流熱伝達 [W]
- h : 熱伝達率 [W/m²/K]
- A : 受熱面積 [m²] (=0.282)
 角鋼管の内径 0.282m と角鋼管の高さ 1m から受熱面積を
 0.282m²と設定
- N_f: 34 (10): 34 (10): 34 (10)
- T_f(Nf) :鋼材裏面温度 [℃]
- T_i :内部空気温度 [℃]

熱伝達率は、ヌセルト数の定義から、次式にて設定する。

h = Nul·λa/HL (伝熱工学資料第4版 68頁)

ここで,

- h : 熱伝達率 [W/m²/K]
- Nul : 平均ヌセルト数
- HL : 角鋼管の高さ [m] (=1)
- λa :空気の熱伝導率 [W/m/K] (第1表参照)

空気の熱伝達率を求めるに当たって、ヌセルト数 Nu、グラスホフ数

外外火 04-別添 5-35

Grを算出するとともに、空気物性としてプラントル数 Pr を用いる。 熱伝達率を求めるに当たっての各無次元数の算出を、以下の(a)から (d)に示す。

(a) 平均ヌセルト数 Nul

ー様温度伝熱面の平板の局所熱伝達率の積分することにより,次式に て設定する。

Nul = (4/3)Nux (伝熱工学資料第4版 69頁)

ここで,

- Nul : 平均ヌセルト数
- Nux :局所ヌセルト数
- (b)局所ヌセルト数 Nux

一様温度伝熱面の平板の局所熱伝達率から、次式にて設定する。
 なお、計算に当たっては、Gr と Pr の積が次式の適用範囲(10⁴≤
 Gr・Pr≤4×10⁹~3×10¹⁰)内であることを確認している。

Nux =
$$C_T(Pr) \left(\nu_{\infty} / \nu_{w} \right)^{0.21} (Gr \cdot Pr)^{1/4}$$
 (伝熱工学資料第4版 69頁)

Nux	:局所ヌセルト数
Pr	: プラントル数(第1表参照)
CT(Pr)	: プラントル数の関数
ν	:動粘性係数 [m ² /s] (第1表参照)
	(添字:∞:周囲流体の値,w:壁面の値)
	$\left(\nu_{\infty} / \nu_{w}\right)^{0.21} = 1$ (伝熱工学資料第4版 69頁)

Gr : グラスホフ数

(c) プラントル数の関数 CT(Pr)

次式で表される。

$$C_{T}(Pr) = \frac{3}{4} \left\{ \frac{Pr}{(2.4+4.9\sqrt{Pr}+5Pr)} \right\}^{1/4} (伝熱工学資料第4版 68頁)$$

ここで、
 $CT(Pr) : プラントル数の関数$
 $Pr : プラントル数(第1表参照)$

(d) グラスホフ数 Gr
 定義から次式で表される。

 $Gr = \frac{g \cdot \beta \cdot HL^{3} \cdot (Tf(Nf) - Ti)}{\nu^{2}} (伝熱工学資料第4版 68頁)$

ここで,	
Gr	: グラスホフ数
g	: 重力加速度 [m/s ²] (=9.80665)
β	: 体膨張率 [1/K]
HL	:角鋼管の高さ [m] (=1)
Nf	:鋼材の節点数(10)
Tf(Nf)	:鋼材裏面温度 [℃]
Ti	:内部空気温度 [℃]
ν	:動粘性係数 [m ² /s] (第1表参照)

(6) 内部空気の温度変化(非定常熱伝導)

内部空気は温度一様として鋼材の各面からの対流熱伝達により温度変 化するものとし,次式にて設定する。

$$\operatorname{Na} \cdot \operatorname{c}_{\operatorname{va}} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \operatorname{T}_{\operatorname{i}} = 4 \cdot \operatorname{Qt}$$

上式を陽解法によりΔtごとの時間進行の式にすると,

$$Ti_{n+1} = Ti_n + \Delta t \cdot \frac{4 \cdot Qt}{Na \cdot c_{va}}$$

ここで,

Qt	:対流熱伝達[W]
Na	: 内部空気量 [mol] (= $ ho_{a} \cdot V_{a} \cdot 10^{3}/M$)
$ ho_{a}$:空気の密度 [kg/m³](第1表参照)
Va	:空気の体積 [m³] (0.282 ² ・HL =0.079524)
	角鋼管の内径 0.282m, 角鋼管の内径 0.282m 及び角鋼管の高
	さ 1m から空気の体積を 0.079524m ³ と設定
Cva	: 定積モル比熱 [J/mo1/K] (=cp-R)
	(岩波理化学辞典 第5版 1122頁 マイヤーの関係式)
Cpa	: 定圧モル比熱 [J/mol/K] (=cp·M)
	(定圧比熱(第1表参照))
М	: 空気の分子量 [g/mol] (=28.97)
	(伝熱工学資料 改訂 5 版 p.279)
R	: 気体定数 [J/mo1/K] (=8.31)
Ti_{n+1}	:Δt後の内部空気温度 [℃]
Tin	:現在の内部空気温度 [℃]
Δt	:時間刻み [s] (=0.0006s)

外外火 04-別添 5-37

	21:					\$ 11
温度		密度	定圧比熱	動粘性係数*2	熱伝導率	プラントル数
Т		ρ	C p	ν	λ	Pr
[K]	°C * 1	[kg/m³]	[kJ/kg/K]	$[mm^2/s]$	[mW/m/K]	—
280	6.85	1.2606	1.007	14.00	24.61	0.720
300	26.85	1.1763	1.007	15.83	26.14	0.717
320	46.85	1.1026	1.008	17.86	27.59	0.719
340	66.85	1.0376	1.009	19.88	29.00	0.718
360	86.85	0.9799	1.011	21.98	30.39	0.717
380	106.85	0.9282	1.012	24.15	31.73	0.715
400	126.85	0.8818	1.015	26.39	33.05	0.715
420	146.85	0.8398	1.017	28.70	34.37	0.713
440	166.85	0.8016	1.020	31.06	35.68	0.712
460	186.85	0.7667	1.023	33.51	36.97	0.711
480	206.85	0.7347	1.027	36.01	38.25	0.710
500	226.85	0.7053	1.031	38.58	39.51	0.710
550	276.85	0.6412	1.041	45.27	42.60	0.709
600	326.85	0.5878	1.052	52.36	45.60	0.710
650	376.85	0.5425	1.064	59.90	48.40	0.714
700	426.85	0.5038	1.076	67.70	51.30	0.715
800	526.85	0.4408	1.099	84.50	56.90	0.719

第1表 空気の物性値(常圧下)(伝熱工学資料第4版 329頁)

*1 Kから摂氏℃変換は-273.15℃とする。

*2 計算への適用は [m²/s] なので 10⁶を乗じた値を用いる。

外外火 04-別添 5-38

第2図 鋼材温度評価の計算モデル

参考2 耐火被覆を施工した鋼材の温度評価の方法

耐火被覆を施工した鋼材の温度評価の方法を以下に示す。評価モデルの 概略を第1図に示す。

耐火被覆は温度に依存し化学反応によって形状変化することから,鋼材の温度評価式においては,熱物性値のパラメータ設定が困難である。したがって,評価式への反映が可能な高温熱物性値が明らかになっている断熱材へ置き換える。

耐火被覆を模擬した断熱材を施工した 9mmSUS 平板に火炎柱がゼロ距離 で隣接した場合の輻射による鋼材温度の変化を計算する。計算は一次元熱 伝導計算とし,耐火被覆側から輻射熱を受け,鋼材側へ熱伝導するものと する。鋼材裏面での放熱はないものとする。

第1図 評価モデル

(1)輻射強度

輻射強度は「原子力発電所の外部火災影響評価ガイド(平成25年6月 19日 原子力規制委員会)」より,以下のとおり算出する。

 $E = Rf \cdot \phi + E_s$

ここで,

E : 輻射強度 [₩/m²]

Rf : 輻射発散度「W/m²](=58,000)

Ø : 円筒火災モデルの形態係数(=0.5)

Es :太陽の影響による輻射強度 [W/m²] (=400)

(2)鋼材への輻射熱伝達

鋼材への輻射熱伝達は火炎柱の火炎温度 1,500℃,鋼材の初期温度を 50℃として、以下のとおり算出する。 $\begin{aligned} Qr &= E \cdot A \cdot \frac{((1,500+273.15)^4 - (Td(1)+273.15)^4)}{((1,500+273.15)^4 - (50+273.15)^4)} \\ \\ &\subset \mathbb{C}^{\circ}, \\ Qr &: 輻射熱伝達 [W] \\ E &: 輻射強度 [W/m^2] \\ A &: 受熱面積 [m^2] (=1) \\ Td(1) &: 断熱材表面温度 [℃] \end{aligned}$

(3) 断熱材の温度変化(非定常熱伝達)

断熱材は温度一様の複数節点の熱伝達とし、1 節点の温度変化は、以下の式にて設定する。

$$\rho \cdot c \cdot V \cdot \frac{d}{dt} T d = Q$$

また, 陽解法により上記式の∆tごとの時間進行を以下の式に示す。

$$Td_{n+1} = Td_n + \Delta t \cdot \frac{Q}{\rho \cdot c \cdot V}$$

ここで

`	
Td_{n+1}	:Δt 秒後の断熱材温度 [℃]
Td_n	:現在の断熱材温度 [℃]
Δt	:時間刻み [s] (=0.001)
Q	:熱伝達量 [₩]
ρ	:鋼材又は断熱材の密度 [kg/m³]
С	:鋼材又は断熱材の比熱 [J/kg/K]
V	:鋼材又は断熱材の体積 [m³]

節点(j)ごとに熱伝達量 Q 及び鋼材又は断熱材の体積 V を以下のように設定する。

j=1の場合 $Q = Qr - \frac{\lambda d(j)}{(Ld/(Nd-1))} \times A \times (Td(j) - Td(j+1))$ $V = \frac{1}{2} \times A \times \frac{Ld}{Nd-1}$

$$\begin{split} j &= 2 \sim \text{Nd-1} \mathcal{O} \ \ \ begin{subarray}{l} & & \\ Q &= \frac{\lambda d(j-1)}{(\text{Ld}/(\text{Nd}-1))} \times \text{A} \times \left(\text{Td}(j-1) - \text{Td}(j)\right) - \frac{\lambda d(j)}{(\text{Ld}/(\text{Nd}-1))} \times \text{A} \times (\text{Td}(j) - \text{Td}(j+1)) \\ \\ V &= \text{A} \times \frac{\text{Ld}}{\text{Nd}-1} \end{split}$$

$$j=Nd \mathcal{O} 場 合$$

$$Q = \frac{\lambda d(j-1)}{(Ld/(Nd-1))} \times A \times (Td(j-1) - Td(j)) - \frac{\lambda f(1)}{(Lf/(Nf-1))} \times A \times (Tf(1) - Tf(2))$$

$$U = \frac{1}{1 + 1} + \frac{Ld}{1 + 1} + \frac{Ld}{1 + 1} + \frac{Lf}{1 + 1}$$

$$\rho \cdot c \cdot V = \rho_d \times c_d \times \frac{1}{2} \times A \times \frac{Ld}{Nd-1} + \rho_f \times c_f \times \frac{1}{2} \times A \times \frac{Lf}{Nf-1}$$

ここで :輻射熱伝達 [W] Qr : 伝熱面積 [m²] (=1) А : 断熱材の熱伝導率 [W/m/K] λd (別添5の第3-2表参照) Ld :断熱材の厚さ [m] (=0.025) : 断熱材の節点数(=26) Nd :節点 j での断熱材温度 [℃] Td(j) :断熱材の密度 [kg/m³] (別添5の第3-2表参照) ρ_d :断熱材の比熱 [J/kg/K] Cd (別添5の第3-2表参照) :鋼材の熱伝導率 [W/m/K] λf (別添5の第4-2表参照) : 鋼材の厚さ「m] (=0.009) Lf :鋼材の節点数(10) Nf : 節点 i での鋼材温度 [℃] Tf(j) :鋼材の密度 [kg/m³] (別添5の第4-2表参照) $\rho_{\rm f}$:鋼材の比熱 [J/kg/K] (別添5の第4-2参照) Cf

耐火被覆厚さ1mmの断熱性能が,発泡前では断熱材 0.625mm に相当し,発泡後では断熱材 12.5mm に相当する設定とする。

なお,発泡前及び発泡後の断熱材の熱物性値の切り替えは,断熱材の 温度及び熱物性値を考慮する計算節点毎に行うこととし,発泡後の断熱 材の計算節点で与える熱物性値は,設定する断熱材の熱物性値とする。 発泡前の熱物性値は,比熱の場合は設定する断熱材の熱物性値に対して 20分の1に,熱伝導率の場合は設定する断熱材の熱物性値に対して20倍に設定する。

(4)鋼材の温度変化(非定常熱伝達)

鋼材は温度一様の複数節点の熱伝達とし、1節点の温度変化は、以下の式にて設定する。

$$\rho_{f} \cdot c_{f} \cdot V_{f} \cdot \frac{d}{dt} Tc = Q$$

また, 陽解法により上記式の Δt ごとの時間進行を以下の式に示す。

$$Tf_{n+1} = Tf_n + \Delta t \cdot \frac{Q}{\rho_f \cdot c_f \cdot V_f}$$

ここで

Tf_{n+1}	:Δt 秒後の鋼材温度 [℃]
Tf_n	:現在の鋼材温度 [℃]
Δt	:時間刻み [s] (=0.001)
Q	: 熱伝達量 [₩]
ρ_{f}	:鋼材の密度 [kg/m³] (別添 5 の第 4-2 表参照)
Cf	:鋼材の比熱 [J/kg/K]
	(別添5の第4-2表参照)
$V_{\rm f}$:鋼材の体積 [m³]

節点(j)ごとに熱伝達量 Q 及び鋼材の体積 V_f を以下のように設定する。

$$j=1$$
の場合
Tf(1) = Td(Nd)
 $V_f = \frac{1}{2} \times A \times \frac{Lf}{(Nf-1)}$

$$\begin{split} j = & 2 \sim (Nf-1) \mathcal{O} \ \ \ denskip \ denskip \ \$$

j=Nfの場合

$$Q = \frac{\lambda f(j-1)}{(Lf/(Nf-1))} \times A \times (Tf(j-1) - Tf(j))$$

$$V_{f} = \frac{1}{2} \times A \times \frac{Lf}{(Nf-1)}$$

ここで、
Tf(1) :鋼材表面温度 [℃]
Td(Nd) :断熱材裏面温度 [℃]
λf :鋼材の熱伝導率 [W/m/K]
(別添5の第4-2表参照)
A :伝熱面積 [m²] (= 1)
Lf :鋼材の厚さ [m] (=0.009)
Nf :鋼材の節点数(=10)
Tf(j) :節点jでの鋼材温度 [℃]

参考3 耐火被覆の必要厚さの解析の計算パラメータ設定の妥当性について (a)妥当性の確認の方法

拡散方程式を陽解法,特に差分法を用いて計算する場合,拡散数の大 きさにより解析の数値的安定性をフォン・ノイマンの安定性解析等によ り評価することができる。

解析を安定に進めるためには, 拡散数 d が次の条件を満たす必要が ある。

 $d \leq \frac{1}{2}$

一次元の熱伝導方程式(拡散方程式)の拡散数は,以下の式から求める ことができる。

$$d = \frac{\lambda}{c \times \rho} \cdot \frac{\Delta t}{\Delta x^2}$$
$$z = z \quad \forall \ ,$$

d : 拡散数

λ : 熱伝導率 [W/m/K]

c :比熱 [J/kg/K]

ρ :密度 [kg/m³]

Δt :時間刻み [s]

Δx :区分厚さ [m]

計算モデル中の節点数はNとするが,Nが3未満になる場合はN=3 と設定する。ここで、区分厚さはΔx=L/(N-1)とする。(L:板厚[m])

(b) 妥当性の確認の結果

断熱材と鋼材とで設定している物性値が異なるため、個別に拡散数 d を評価する。確認の結果 d≤0.2 となることから、解析の安定性は確保 できていることを確認した。

以下に確認結果を示す。

本解析では,時間刻み Δt を 0.001 [s],区分厚さ Δx を 0.001 [m] に設定している。

なお,比熱 c,密度 p 及び熱伝導率 λ は温度依存性を考慮するとともに,拡散数 d の評価結果を厳しく考慮するために,鋼材温度を 327℃,断熱材温度を 600℃として高温の値を用いる。

第1表に算出結果を示す。

評価対象	単位	鋼材	断熱材 2mm	断熱材 3mm
評価対象温度	°C	327	600	600
拡散数 d		0.004	0.194	0.150
熱伝導率 λ	W/m/K	19	2.8*1	2.8 *1
比熱 c	J	556	57.65^{*2}	57.65^{*2}
密度 ρ	kg/m^3	7,810	250	250
時間刻み Δt	S	0.001	0.001	0.001
区部厚さ Δx	m	0.001	0.001	0.001

第1表 拡散数dの算出結果

*1:発泡倍率 20 倍を乗じた値

*2:発泡を想定し1/20を乗じた値

参考4 耐火被覆の必要厚さの解析への時間刻みの影響について

陽解法による解析においては、時間進行の計算を1ステップ進める ための時間間隔である時間刻みを設定しており、この時間刻みを大き く設定してしまうと計算結果が収束せず、正しい結果を得ることがで きない。

本温度評価で設定している時間刻み 0.001sの妥当性を確認するために,時間刻みをより小さい 0.0001s へ変更し解析を実施した。その結果を第1図に示す。全時間刻みにおいて有意な差は見られないことから,時間刻みの設定に問題はない。

なお,必要離隔距離の評価(耐火被覆なし)(別添 - 3)においても, 本評価と同様に時間刻みの影響を確認し設定に問題ないことを確認し ている。

*1 時間刻み 0.001sと時間刻み 0.0001sの温度結果が重なっているため, 赤線のみが表れている。

第1図 時間刻み 0.001s の鋼材温度及び時間刻み 0.0001s の鋼 材温度並びにそれらの差分

参考5 耐火試験後の試験体裏面の確認

耐火被覆を試験体の両面に施工し,耐火試験後の試験体の状況を目視にて確認した。(第1図参照)本試験体の情報を第1表に示す。

試験体裏面では,放射源鋼板から直接輻射を受熱する試験体表面と 異なり,主に試験体の表面から受熱した輻射の裏面への伝熱による温 度上昇に応じて発泡が生じているものの,表面での耐火被覆の発泡に よる断熱効果により伝熱が緩和され,炭化に至っていないことを確認 した。

			山市田市い。ノートの			
	錮	材	耐火被覆			
種類厚さ		施工面	厚さ	種類		
	SS400	6mm	両面	3mm	А	

第1表 裏面確認の試験体情報

(表面)

(裏面)

第1図 耐火試験後の試験体の状況

参考6 耐火被覆を施工した SUS 平板の耐火試験結果のトレース解析モデル について

(1) 概要

第1図に計算モデルを示す。

耐火被覆は温度に依存し化学反応によって形状変化するため,鋼材の温 度評価式において,熱物性値のパラメータ設定が困難である。したがって, 評価式への反映が可能な高温熱物性値が明らかになっている断熱材へ置き 換える。

耐火被覆を模擬した断熱材を施工した 9mmSUS 平板に火炎柱がゼロ距離 で隣接した場合の輻射による鋼材温度の変化を計算する。計算は一次元熱 伝導計算とし,耐火被覆側から輻射熱を受け,鋼材側へ熱伝導する。

温度評価と耐火試験の温度変化への放熱の影響の程度については、上記 6.(2)b.(b)のとおり、試験体周辺の設備の温度上昇による二次輻射、試験 体から周辺への対流放熱及び室内への輻射放熱は見込まないこととする。 温度上昇をもたらす二次輻射及び温度低下をもたらす放熱の影響を同じ程 度と仮定する。

(2)輻射強度

耐火試験では試験体中心だけではなく,試験体の端部においても確実に設定した輻射強度となるよう E=30,000 [W/m²] としており,本解析に

おいても同じ輻射強度 E=30,000 [W/m²] を設定する。

(3) 放射源鋼板から鋼材への輻射

放射源鋼板から鋼材への輻射は、耐火試験より火炎柱の火炎温度を 670℃,鋼材の初期温度を100℃として、次式にて設定する。

 $Qr = E \cdot A \cdot \frac{((670 + 273.15)^4 - (Td(1) + 273.15)^4)}{((670 + 273.15)^4 - (100 + 273.15)^4)}$

ここで、 Qr : 輻射熱伝達 [W] E : 輻射強度 [W/m²] A : 受熱面積 [m²] (=1 単位面積) Td(1) : 断熱材表面温度 [℃]

(4) 断熱材の温度変化

断熱材は区間毎に温度一様とする複数節点の熱伝導とし,1節点の温 度変化は次式にて設定する。

$$\rho \cdot \mathbf{c} \cdot \mathbf{V} \cdot \frac{\mathbf{d}}{\mathbf{dt}} \mathrm{Td}(\mathbf{i}) = \mathbf{Q}$$

上式を陽解法により Δt 毎の時間進行の式にすると

$$Td(i)_{n+1} = Td(i)_n + \Delta t \cdot \frac{Q}{\rho \cdot c \cdot V}$$

ここで,

Q : 熱伝導量 [₩]

ρ :鋼材又は断熱材の密度 [kg/m³]

c :鋼材又は断熱材の比熱 [J/kg/K]

V :鋼材又は断熱材の体積「m³」

Td(i)_{n+1}:Δt 後の断熱材温度 [℃](n+1 は Δt 後の時間ステップ)

Td(i)_n :現在の断熱材温度 [℃](nは現在の時間ステップ)

Δt :時間刻み [s] (=0.001 s)

節点(j)毎に熱伝導量 Q 及び鋼材又は断熱材の体積 V を以下のように 設定する。

$$Q = Qr - \frac{\lambda d}{(Ld/(M-1))} \cdot A \cdot (Td(1) - Td(2))$$
$$V = 1/2 \cdot A \cdot Ld/(M-1)$$

$$\begin{split} i &= 2 \sim M \cdot 1 \\ Q &= \frac{\lambda d}{(Ld/(M-1))} \cdot A \cdot \left(Td(i-1) - Td(i) \right) - \frac{\lambda d}{(Ld/(M-1))} \cdot A \cdot \left(Td(i) - Td(i+1) \right) \\ V &= A \cdot Ld/(M-1) \end{split}$$

i = M

i=1

$$Q = \frac{\lambda d}{(Ld/(M-1))} \cdot A \cdot \left(Td(M-1) - Td(M) \right) - \frac{\lambda f}{(Lf/(N-1))} \cdot A \cdot \left(Tf(1) - Tf(2) \right)$$
$$\rho \cdot c \cdot V = \rho_d \cdot c_d \cdot 1/2 \cdot A \cdot Ld/(M-1) + \rho_f \cdot c_f \cdot 1/2 \cdot A \cdot Lf/(N-1)$$

ここで,

Qr	:	熱伝導量[₩]
λd	:	断熱材の熱伝導率 [W/m/K](別添5の第3-2表参照)
Ld	:	断熱材の厚さ [m](耐火被覆厚さ 2mm の場合:0.025
		耐火被覆厚さ 3mm の場合 : 0.0375)
М	:	断熱材の節点数(耐火被覆厚さ 2mm の場合:26
		耐火被覆厚さ 3mm の場合 : 34)
А	:	伝熱面積 [m ²] (=1 単位面積)
Td(i)	:	断熱材の節点温度 [℃]
λf	:	鋼材の熱伝導率 [W/m/K] (別添 5 の第 4-2 表参照)
Lf	:	鋼材の厚さ [m] (=0.009)
Ν	:	鋼材の節点数(10)
Tf(i)	:	鋼材の節点温度[℃]
ρ_d	:	断熱材の密度 [kg/m³](別添 5 の第 3-2 表参照)
Cd	:	断熱材の比熱 [J/kg/K](別添 5 の第 3-2 表参照)
$\rho_{\rm f}$:	鋼材の密度 [kg/m³](別添 5 の第 4-2 表参照)
Cf	:	鋼材の比熱 [J/kg/K](別添5の第 4-2 表参照)

また,耐火被覆の代替として断熱材の物性値を使用しているため,耐 火被覆の発泡については,鋼材温度が 280℃を超えた時点で断熱材が 1 mmから 20mmに変化するものとする。ただしモデルの形状変化はさせず, 280℃以下の場合,断熱材の比熱は 20 分の 1 に,熱伝導率は 20 倍に設 定する。

(5)鋼材の温度変化

鋼材は区分毎に温度一様とする複数節点の熱伝導とし,1 節点の温度 変化は次式にて設定する。

 $\rho_f \cdot c_f \cdot V_f \cdot \frac{d}{dt} Tf(i) = Q$

上式を陽解法により Δt 毎の時間進行の式にすると

$$Tf(i)_{n+1} = Tf(i)_n + \Delta t \cdot \frac{Q}{\rho_f \cdot c \cdot f V_f}$$

ここで,

Q	: 熱	伝導量 [₩]
ρ_{f}	: 鋿	材の密度 [kg/m³](別添5の第 4-2 表参照)
Cf	:鎁	材の比熱 [J/kg/K](別添 5 の第 4-2 表参照)
$V_{\rm f}$:鎁	材の体積 [m ³]
$Tf(i)_{n+1}$:Δt	:後の鋼材温度 [℃] (n+1 は Δt 後の時間ステップ)
$Tf(i)_n$:現	在の温度 [℃] (n は現在の時間ステップ)
Δt	:時	間刻み [s] (=0.001s)

節点 i 毎に熱伝導量 Q 及び鋼材の体積 Vfを以下のように設定する。 i=1 Tf(i) = Td(i) i=2~N-1

$$Q = \frac{\lambda f}{(Lf/(N-1))} \cdot A \cdot (Tf(i-1) - Tf(i)) - \frac{\lambda f}{(Lf/(N-1))} \cdot A \cdot (Tf(i) - Tf(i+1))$$
$$V_f = A \cdot Lf/(N-1)$$

i=N

$$\begin{split} & Q = \frac{\lambda f}{(Lf/(N-1))} \cdot A \cdot \big(Tf(N-1) - Tf(N) \big) \\ & V_f = 1/2 \cdot A \cdot Lf/(N-1) \end{split}$$

ここで,

- Tf(i) :鋼材の節点温度 [℃]
- Td(i) :断熱材の節点温度 [℃]
- Lf :鋼材の厚さ [m] (=0.009)
- N:鋼材の節点数(10)
- A : 伝熱面積 [m²] (=1 単位面積)
- λf :鋼材の熱伝導率 [W/m/K] (別添 5 の第 4-2 表参照)

別添一6

航空機墜落火災の

温度評価条件と大臣認定試験の条件との比較

目

次

1.	はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	大臣認定試験の条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	積算入熱量について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	1 積算入熱量の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.2	2 積算入熱量の比較結果に基づく考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
4.	判定基準の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
5.	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4

1. はじめに

航空機墜落火災に対する防護対策で用いる耐火被覆は、大臣認定(建築基準法第2条第 七号 同法施工令第107条)を取得しているものを用いている。また、耐火被覆の断熱性能 (発泡温度,発泡前後の熱伝導率,比熱等)の設定には、大臣認定試験の結果を用いてい る。

本資料では、大臣認定試験、温度評価(耐火被覆厚さの設定)及び当社が参考として実施 した耐火試験の条件について比較・考察し、大臣認定から取得した耐火被覆の断熱性能 (発泡温度,発泡前後の熱伝導率,比熱等)を用いて、航空機墜落火災の耐火被覆厚さを 評価し設定することの妥当性を示す。

2. 大臣認定試験の条件

大臣認定試験は、「防耐火性能試験・評価業務方法書(一般財団法人建材試験センター)」 に規定された方法で実施するものである。耐火被覆の厚さを設定するために用いた大臣 認定試験と温度評価に用いた航空機墜落火災の条件を第1-1表のとおり比較した。

	大臣認定試験	温度評価(航空機墜落火災)
加熱	試験体を加熱炉内に設置し,	鋼材表面が航空機墜落火災の火炎
条件	炉内温度が IS0834 にて示される標準加熱	の直近に位置することを模擬し,
	曲線の温度となるように加熱	29.4kW/m ² 相当の輻射を設定
加熱	耐火構造,準耐火構造,防火構造,特定防	火災継続時間により設定
時間	火設備、防火設備等の認定区分により設定	1,400sec(23.3min)
	30min, 1hr, 2hr	
合否	長期許容応力度に相当する応力度を載荷し	鋼材温度が、安全上重要な施設に
判定	ながら加熱し、以下の値以下であること。	おいては 325℃,波及的影響を与え
	柱:hは試験体の初期高さ(mm)	るおそれのある施設では450℃を超
	最大軸方向収縮量(mm):h/100	えないこと。
	最大軸方向収縮速度(mm/分):3h/1000	
	梁:Lは試験体の支点間距離	
	最大たわみ量(mm):L ² /400d	
	最大たわみ速度(mm/分):L ² /9000d	
	荷重を載荷しない場合にあっては	
	鋼材温度が最高 450℃,平均温度が 350℃	
	を超えないこと	

第1-1表 大臣認定試験と航空機墜落火災の条件
- 3. 積算入熱量について
- 3.1 積算入熱量の結果

鋼板における積算入熱量について、「大臣認定試験」の測定結果(①)と当社で行った 航空機墜落火災の「耐火被覆厚さ 2mm の温度評価」の評価結果(②)を第 1-1 図に示す。 また、航空機墜落火災を模擬して「当社が参考として実施した耐火試験」の測定結果 (③)についても図中に示す。

大臣認定試験においては、ISO834 にて示される標準加熱曲線に基づき、試験を実施 している。当社で行った耐火被覆厚さ 2mm の温度評価及び当社の耐火試験については 以下のとおり実施している。

耐火被覆厚さ 2mm の温度評価の輻射強度については、加熱初期において 29.4kW/m²の 入熱を考慮しているが、実現象としては、被輻射体への入熱は被輻射体の温度上昇とと もに減少するため、1,400 秒間に渡って 29.4kW/m²の輻射強度が一定入熱することは考 えにくい。そのため、耐火被覆厚さ 2mm に対する温度解析においては、上記物理現象を 考慮し、初期に約 29.4kW/m²の入熱があるものの、その後は断熱材表面温度の上昇を考 慮した輻射入熱量を計算している(②)。

また,当社が実施した耐火試験においては,試験体位置において約29.4kW/m²の輻射 強度となるように放射源鋼板の温度を管理しており,放熱面と受熱面の温度データか ら輻射入熱量を算出している(③)。

耐火被覆厚さ 2mm の温度評価における 1,400 秒後の積算入熱量(②)と大臣認定試験 の 3,600 秒後の積算入熱量(①)はほぼ同等であり,航空機墜落火災を模擬して試験体 位置の輻射入熱量が 29.4kW/m²となるように実施した耐火試験(③)に対し,保守的であ ることを確認した。

	分類	備考
1	大臣認定試験	放熱なし(全面入熱)
2	耐火被覆厚さ 2mm の温度解析	放熱なし(片面入熱)
3	当社が実施した耐火試験	放熱あり

第1-1図 積算入熱量の比較

3.2 積算入熱量の比較結果に基づく考察

加熱条件については、1時間耐火の大臣認定試験が ISO834 にて示される標準加熱曲線に基づいた加熱である一方,航空機墜落火災は 29.4kW/m²の輻射による加熱であり,両者の加熱条件は異なるものの,耐火被覆厚さ 2mm の温度評価における 1,400 秒後の総入熱量(②)と大臣認定試験の 3,600 秒後の総入熱量(①)は同等である。

また,大臣認定試験は鋼材の加熱条件が明確であり,鋼材の温度変化が解析にて算出 可能であることから,耐火被覆の断熱性能(発泡温度,発泡前後の熱伝導率,比熱等) を大臣認定試験から取得できる。

したがって、大臣認定試験の結果を航空機墜落火災の温度評価に適用することは妥 当であるとともに、大臣認定試験の結果から耐火被覆の断熱性能を設定することは可 能である。

なお,1時間耐火の大臣認定試験における試験体及び航空機墜落火災の代表部材は 9mmの鋼材としており,耐火被覆厚さは両者ともに2mmとしている。部材の物性値の違いが,温度結果に有意に影響を及ぼすことがないことを確認している。(別添-5)

4. 判定基準の比較

次に大臣認定試験と航空機墜落火災に対する判定基準を比較する。大臣認定試験の判 定基準は長期許容応力度相当の荷重をかけた状態の収縮量やたわみ量が一定値以下であ ることであるのに対し,航空機墜落火災に対する温度評価では温度が一定温度以下であ ることであり,単純に比較はできない。一方,大臣認定試験では荷重を載荷しない場合に は,平均350℃以下であることが判定基準として設定されている。これは,外部火災防護 対象施設の許容温度325℃に近く,両者の判定基準は同等であるといえる。

5. まとめ

3. 及び 4. の結果から,大臣認定試験と航空機墜落火災の加熱時間,加熱条件及び合否 判定といった条件は直接比較するものではないものの,入熱量及び判定基準はほぼ同等 であることから,大臣認定から取得した耐火被覆の断熱性能(発泡温度,発泡前後の熱伝 導率,比熱等)を用いて,航空機墜落火災の耐火被覆厚さを評価し設定することは妥当で ある。

以上

別添-7

施工管理

目 次

1. 施工管理

耐火被覆が設計のとおりの機能を発揮するため,施工時の品質確保に係る管理事項等について説明する。

(1) 耐火塗料施工時の管理項目

耐火塗料の施工時における管理項目と管理方法を第1-1表に示す。

第1-1表 耐火塗料の施工時における管理項目と管理方法

作業		管理項目	管理要求	管理方法
施	素地確認	表面の状態	錆・付着物が除去されてい ること。	目視にて確認
上 前	下地調整	既設塗装の 下地の状態	既存塗布面が下地処理され ていること。	目視にて確認
	作業環境		メーカ規定内であること。 以下に規定例を示す。 温度:5~35℃内 湿度:30~85%内 強風や塵埃,降雨,降雪	温湿度計で測定する。 防風,防塵対策及び塗装
			の影響を受けないこと。	面養生を施す。
		塗膜厚さ	下塗りがメーカ規定膜厚以 上塗布されていること。	塗膜厚さは塗料の使用量 で確認する。
施工中	下塗り	表面状態	浮き,汚れ,液だれ,傷が 無く,硬化乾燥しているこ と。	目視にて確認
	主材塗り (耐火 被覆)	塗膜厚さ	外部火災防護対象施設:設 定膜厚 3mm -0mm(全検査値)であるこ と。 波及影響を与える施設:設 定膜厚 2mm -0mm(全検査値)であるこ と。	膜厚計で主材の膜厚を測 定する。 主材塗終了後の厚さ-下塗 終了後の厚さ=主材塗厚 さ
		表面状態	浮き,汚れ,液だれ,傷が 無く,硬化乾燥しているこ と。	目視にて確認
	中塗り	塗膜厚さ	中塗りがメーカ規定膜厚以 上塗布されていること。 上塗りがメーカ規定膜厚以 上塗布されていること。	塗膜厚さは塗料の使用量 で確認する。
	上塗り	表面状態	浮き,汚れ,液だれ,傷が 無く,硬化乾燥しているこ と。	目視にて確認

(2) 耐火塗料の施工手順

耐火塗料の施工手順を以下の第1-1図に示す。

各手順において作業箇所毎に検査記録や工事記録を作成し管理す る。

第1-1図 耐火塗料の施工手順

(3) 耐火被覆厚さに関する測定方法

耐火被覆の耐火性能は耐火被覆厚さに依存し,施工にあたり所定の耐火被覆厚さを確保するための膜厚管理が必要となっている。

耐火被覆の必要厚さが確保されていることを確認するため, 電磁 膜厚計を用いて耐火被覆厚さを測定する。

耐火被覆厚さの測定に関して「構造材料の耐火性ガイドブック (2017)日本建築学会」を準用し管理する。

主材乾燥後,事前に定めた被覆厚測定箇所における主材の乾燥被 覆厚を測定する。

主材被覆厚さは耐火被覆の施工後の厚さから下塗りの厚さを差し 引いた値であり、その値が管理値に達していない場合は主材を再度 塗布する。

a. 耐火被覆厚さの測定原理

電磁膜厚計は, 膜厚計本体とプローブ(検出部)で構成される。 電磁膜厚計の仕様例は次のとおりとする。

測定範囲: 0~20mm

表示分解能: 0.01mm(測定範囲が1~5mmの場合)

なお,電磁膜厚計及びプローブ共に国家標準器までの体系で校 正されている計測器を,耐火被覆の測定に使用する。 また,測定誤差を出来る限り小さくするため,ゼロ板と呼ばれ る測定母材と同一材質で出来た試験板を用いて,ゼロ調整を行う。 その後,標準厚板と呼ばれる測定する皮膜と同程度の厚さを有す る試験板をゼロ板に重ねて,標準調整を行う。

耐火被覆厚さの測定原理を第1-2図に示す。交流電磁石を鋼材 (磁性金属)に接近させると,接近距離によって,コイルの磁束数 が変化し,コイル両端にかかる電圧が変化する。この電圧変化を 電流値から読み取り,耐火被覆厚さに換算する。

第1-2図 耐火被覆厚さの測定原理

- (4) 耐火被覆厚さの測定管理について
 - a. 管理単位

鉄骨・防護板部材の耐火被覆厚さの管理は部材毎に実施し、耐 火被覆面積が 8m²ごとの測定とし、1 箇所あたりの測定点は 5 点 とする。測定点の選定は、部材の形状や長さを考慮し偏りが生じ ないよう選定する。

測定箇所は、下塗り厚さと主材塗り厚さが同じ箇所で測定でき るように、部材毎に起点を定めそこからの距離を定めて測定を実 施する。

b. 管理基準

下限値設定被覆厚: -0 mm (全検査値) 上限値設定被覆厚: +1 mm (平均値)(目標)*

* 耐震計算では、想定する耐火被覆重量を必要被覆厚さ +1mmで設定している。耐火被覆の施工管理において耐震 計算に影響を与えない様平均+1mmを管理上限としてい る。 (a) 下限值

1 点でも下限値を下回った場合は、下回った点のある管理単位の範囲(8m²)に塗り増しを行う。塗り増し後、再度検査を行い 管理基準内値であることを確認する。

耐火塗装の施工完了後に管理基準の逸脱や施工不良を確認 した場合は、該当する部材の耐火塗装を剥離後、再度耐火塗料 を施工し、上記「a. 管理基準」に従った耐火被覆の測定を実 施する。

(b) 上限值

管理単位の範囲(8m²)の測定値の平均が+1mmを上回った場合, 管理単位の範囲(8m²)内で追加1箇所(5点)測定し,上限値以下 であることを確認する。追加5箇所程度測定後も測定値が上限 値を上回る場合は,測定された膜厚から耐震計算に影響がない ことを確認する。

以上

別添-8

維持管理

目

次

1.	維持管理
2.	損傷事例と原因・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	耐火被覆の劣化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	定期点検の考え方・・・・・・ 3
5.	点検概要 ······ 3
6.	補修時期 ······ 3
7.	寒冷地・塩害地域の点検実施状況4
8.	耐火塗装の剥がれ等に対する補修方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 維持管理

耐火被覆が設計どおりの機能を維持するためには,耐火塗装の維持管理 が重要となる。

耐火被覆の損傷実績を調査した結果,耐火被覆特有の損傷事例は確認されていないことから,一般的な塗料における損傷事例とその原因を踏まえ, 管理方法について説明する。

2. 損傷事例と原因

耐火被覆の性能を発揮する主材は,その上に塗布される中塗り塗料・上 塗り塗料で保護されるため,中塗り塗料・上塗り塗料の健全性を維持する ことにより性能を担保している。

中塗り塗料・上塗り塗料の塗膜の健全性を損なう劣化事例を,第2-1表 に示す。

項目	内容	劣化状況写真
割れ	塗膜に裂け目ができる現象	
浮き (膨れ)	塗膜がガス又は液体を含んでい る状態	
浮き (剥がれ)	塗膜が付着力を失って塗装面か ら離れる現象	
傷	外的な荷重によって,塗膜が損 傷した状態	

第 2-1 表 中塗り塗料・上塗り塗料の劣化事例

第 2-1 表の劣化事例に対し,考えられる中塗り塗料・上塗り塗料の劣化 を引き起こす要因は以下のとおりである。

- ①紫外線:紫外線が樹脂を分解し,着色顔料が粉となる白亜化が生じ, 塗膜が薄くなることで劣化する。
- ②水分 :雨水等は①で薄くなった塗装面から浸透し,塗膜中にとどまることで塗膜の膨れや剥離につながり,耐火塗装を劣化させる。
- ③塩分 :飛来塩分が塗膜面に付着し、雨水に塩分が溶けて①で薄くなった塗膜面から浸透し、塗膜中にとどまることで塗膜の膨れや剥離につながり、耐火塗装を劣化させる。
- ④温度差:主材以外の塗膜は経年で堅くなり、温度差により伸縮する鋼材に対し主材以外の塗膜が伸縮する鋼材に追従しにくくなる。そのため引っ張り力が強く働く中塗り塗料・上塗りの塗膜に優先的に割れが発生することで、塗膜中に水分や塩分が侵入し塗膜の膨れや剥離につながり耐火塗装を劣化させる。
- ⑤衝突物:物理的損傷により塗膜に傷が付いた部分から水分が浸透し, 耐火塗装を劣化させる。また,傷の程度によっては,耐火被 覆まで損傷することもある。
- 3. 耐火被覆の劣化

中塗り塗料・上塗り塗料に劣化が生じ,耐火被覆である主材まで損傷さ せた場合,耐火性能に影響を与えることになる。耐火被覆である主材に影響を与える要因は次のとおりである。

なお,耐火被覆である主材は,鋼材の地震等による歪みや温度変化によ る伸縮に対し追従できるよう微弾性を有することから地震や温度差による 影響は受けない。

- ①紫外線:紫外線が樹脂を分解し、耐火被覆である主材の厚さが減り、耐火性能が低下する等の影響を与える。
- ②水分 :耐火被覆である主材に水分が触れることで分解し、耐火性能が低下する等の影響を与える。
- ③塩分 :耐火被覆である主材に塩分が触れることで反応し、耐火性能が低下する等の影響を与える。
- ④衝突物:物理的損傷により耐火被覆である主材の層が減り,耐火性能が低下する等の影響を与える。

4. 定期点検の考え方

「3. 耐火被覆の劣化」で整理した劣化要因と事象を踏まえた上で,定 期点検の考え方を整理する。

耐火塗装は、下塗り塗料、耐火被覆である主材、中塗り塗料及び上塗り 塗料の4層で構成されており、高耐候性のふっ素樹脂系の上塗り塗料で保 護されるため長期間安定した塗膜を維持可能である。

しかしながら、上塗り塗料の塗膜劣化や傷等により、耐火被覆である主 材が保護されなくなった場合、耐火性能が低下するおそれがある。これを 防止するため、点検により上塗り塗料の塗膜劣化を早期に発見し、補修又 は塗増しを行い、塗膜の維持管理をする。

5. 点検概要

耐火性能維持のためには,施工後は巡視点検として日々の塗装面の外観 点検に加えて 1回/年の頻度で詳細に外観点検を実施し,傷や上塗り塗料 の塗膜劣化の早期発見に努めると共に,適切な補修または塗増し等を実施 する。

飛来物防護ネット等の天面といった通常目視出来ない箇所については、 1回/年の外観点検時に足場を立てて直接確認するか又はカメラ等を用い て点検する。また,狭隘部はハンドライトで照らして点検するなどの対応 を行う。

異常が確認された場合や塗装面に影響を与えるような地震等が発生した 場合は、メーカによる確認を実施する。

6. 補修時期

耐火塗装は、上塗り塗料にふっ素樹脂系を適用している。上塗り塗料に ふっ素樹脂を使用することで高耐候性能が期待できるが、紫外線等による 経年劣化が発生するため、第 6-1 表に示すサイクルで上塗り塗料の補修塗 装(塗増し)をする。また、補修塗装作業に支障となる付属品(防護ネット 等)は、作業に影響を与えない様一時的に取外して作業を行う。

なお,補修塗装に合わせて耐火被覆である主材に異常が見られないこと を確認する。

<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
上塗材	屋外設備の 補修時期	備考
ふっ素樹脂系	8~10 年程	設置環境や施工部位,設備の方 角等により異なるため,今後状 況を確認し適切なサイクルを設
		定する。

第 6-1 表 期待耐用年数の塗増し時期

7. 寒冷地・塩害地域の点検実施状況

再処理施設は、寒冷地・塩害地域に該当するため、地域特有の劣化が生 じる可能性について、耐火塗装の寒冷地・塩害地域での施工実績を確認し た。確認の結果、施工後における塗膜劣化の事例は確認できないことから 寒冷地と塩害地域特有の影響は生じないと考えられる。よって、寒冷地と 塩害地域を限定とした特別な点検は不要と考えられる。

ただし、塗装面に傷や劣化があれば一般地域に比べて劣化速度が早まる ことが予想されるため、上記「5. 点検概要」に記載した点検を実施する。

8. 耐火塗装の剥がれ等に対する補修方法

耐火塗料の剥がれ等の劣化(損傷)に対して,以下の第8-1図に示す手順に基づき対応する。

代表的な損傷の事例とその補修要領について、第8-1表に示す。

第 8-1 図 耐火塗装補修作業概略手順

	事例-1	事例-2	事例-3	事例-4	
	上塗り/中塗り損傷	主材残存	下塗り残存	素地露出	
損傷事例	✓ 上塗り/中塗り ← 主材	 ← 上塗り/中塗り ← 主材 	 ← 上塗り/中塗り ← 主材 	 ← 上塗り/中塗り ← 主材 	
	← 下塗り	◆ 下塗り	▲ 下塗り	● 下塗り	
	▲ 鋼材	← 鋼材	← 鋼材	← 鋼材	
損傷範囲	上塗り/中塗りの損傷	主材まで損傷あり (主材残存)	主材まで損傷あり (下塗り露出あり)	主材まで損傷あり (素地露出あり)	
	補修範囲	補修範囲	補修範囲	補修範囲	
拔 悠 仕 垟	 ← 上塗り/中塗り ← 主材 	 ← 上塗り/中塗り ← 主材 	 ← 上塗り/中塗り ← 主材 	 ← 上塗り/中塗り ← 主材 	
	← 下塗り	▲ 下塗り	▲ 下塗り	◆ 下塗り	
	← 鋼材	← 鋼材	◀— 鋼材	◀── 鋼材	
補修までの 養生保護	不要	不要	不要	要	
		 カッターや動力工具等で 削り取る。 	同左		
損傷部の除去	サンドペーパー等で擦る。	 損傷部の端部から 5mm 程 度の幅及び長さの範囲に ある途膜を除去する。 		同左	
		・主材に剥がれや浮きがあ る場合は,損傷を有する			
		深さまで塗膜を削り取り テーパー処理する。			

第 8-1 表 損傷事例及び補修要領一覧(1/2)

*1 上塗りは塗装部位毎で指定された色となり異なるが,主材は白色のため上塗りと主材は区別することができる。

		事例-1	事 例 −2	事例-3	事 例 - 4
		上塗り/中塗り損傷	主材残存	下塗り残存	素地露出
損傷事例		 ✓ ← 上塗り/中塗り ← 主材 ← 下塗り ← 鋼材 	 ← 上塗り/中塗り ← 主材 ← 下塗り ← 鋼材 	 ← 上塗り/中塗り ← 主材 ← 下塗り ← 鋼材 	 ← 上塗り/中塗り ← 主材 ← 下塗り ← 鋼材
素地/⁻	下地調整	被塗面(残存塗装表面)を サンドペーパー等で目荒 らしして汚れや油分を除 去する。	同左	同左	素地露出部は2種ケレン 相当
	プライマー	_	_	_	要
	下塗り	_	_	_	要
1 インボック インド インド インド インド インド・ション インド・ション インド インド・ション インド・シー インド・シー インド・シー インド・シー (本 クリン・シー・シー インド・シー インド・シー インド・シー (本 クリン・シー・シー インド・シー (本 クリン・シー・シー (本 クリン・シー・シー・シー (本 クリン・シー・シー・シー (本 クリン・シー・シー・シー (本 クリン・シー・シー・シー・シー (本 クリン・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・	主材	—	要(必要に応じ)	要	要
	中塗り	要(必要に応じ)	要(必要に応じ)	要	要
	上塗り	要	要	要	要
上塗り 塗装方法		 ・スプレー, ハケ, ローラ ・オテ, コテ等の ・カラ, コテ等の ・レラ, コテ等の ・方法は, 欠損形状(損8部) ・方法後の形状)や大きさ, 現場の形状)や大きさ, 現場の現地で決定する。 ・塗装をの ・塗装基準等は,工場施 工時の こと。 	同左	同左	同左

第8-1表 損傷事例及び補修要領一覧(2/2)

*1 上塗りは塗装部位毎で指定された色となり異なるが,主材は白色のため上塗りと主材は区別することができる。

別添一9

対流熱伝達

目 次

1.	はじめに ・・・・・	1
2.	影響の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	結論	7
4.	参考文献	7

参考1 FDS の計算概要について

参考2 燃料組成の設定について

1. はじめに

本資料は,航空機墜落火災により発生する高温空気が,冷却塔の空気吸い込み口に流入 し,高温空気の対流熱伝達により冷却塔本体へ影響を与えないことを説明するものであ る。

航空機墜落火災発生時の空気の流れのイメージを第1-1図に示す。火炎柱の中では、燃焼によって発生する高温のガスが上昇流となるとともに、火炎柱の外から空気を巻き込む流れが発生する。

第1-1図 航空機墜落火災発生時の空気流れ

- 2. 影響の検討
- (1) 解析による影響検討

航空機墜落火災を想定した火炎の周囲の風速と温度の分布について, Fire Dynamics Simulator(以下「FDS」という。)を用いた解析を実施する。FDSは, アメリカ国立標準 技術研究所が開発し米国NRCが認証した火災シミュレーションソフトであり, 燃焼によ る熱の発生, 火炎の挙動, 空気流動等を含む3次元シミュレーションが可能である。FDS による計算の概要を参考1に示す。

FDSを用いた解析の設定条件を第2-1表に示す。航空機墜落火災の熱影響評価対象航 空機はF-16であるが、ここでは同規模の航空機墜落火災による高温空気の影響を確認 することを目的とし、過去に実施したF-2の諸元に基づく解析結果を流用する。F-16と F-2の円筒火炎の設定条件のうち異なるのは、燃焼面積、燃料積載量、燃焼継続時間及 び燃焼半径である。

燃焼面積,燃料積載量及び燃焼半径については,F-16よりもF-2の方が若干大ではあ るものの,ほぼ同等であることから,火災の規模は同等であると考えられる。よって, F-2の設定条件に基づく高温空気の影響と,F-16の高温空気の影響は同等であると考え

られる。

また,燃焼継続時間については,航空機墜落火災は開放空間で発生するものであり, 時間経過によって火炎内部の風況や温度分布が変わることはなく,着火後に火炎が安 定した状態における火炎柱付近の風速データ及び温度データをもとに影響を検討する ことから,燃焼継続時間が若干異なるF-2の諸元を用いた解析結果でも,F-16の高温空 気による対流熱伝達の影響の傾向を把握することは可能である。

火炎柱付近の風速データを可視化した結果を第2-1図に,火炎柱付近の温度データを 可視化した結果を第2-2図に示す。

第2-1 図より,火炎柱中心では10m/s以上,最大約30m/sの上昇流が発生し,火炎柱 に隣接する空間では,火炎柱に向かって周囲の空気を巻き込む流れが発生することが 確認できる。また,火炎柱下部において,火炎柱から周辺に向かって高温空気が流れる 傾向は見られない。これらのことから,高温空気が冷却塔に向かって流れ込むことは考 えられず,冷却塔に影響を及ぼすことはないと考えられる。

第2-2 図からは、火炎が周囲の低温空気を巻き込むことにより、上方に向かって高温 空気の断面積が小さくなっていることが確認でき、火炎柱の外側では空気自体の温度 はほとんど上昇していないことがわかる。航空機墜落火災が竜巻防護対策設備の直近 にて発生することを想定したとしても、冷却塔の空気吸い込み口までは3m以上の距離 があることから、高温空気が冷却塔に影響を及ぼすことはないと考えられる。

なお,データの取得は,火炎が安定した状態での開放空間での風況及び温度分布であ り,燃焼継続時間により風況及び温度分布に大きな違いは生じない。

項目 值		単位	備考		
			F-2の燃焼面積に相当する諸元を		
燃焼面積	約 110	m^2	用いた。F-16 の燃焼面積は約		
			90m ² °		
			F-2の燃焼面積に相当する諸元を		
燃料積載量	10.4	m^3	用いた。F-16 の燃料積載量は		
			9.8m ³ °		
wh.ck、主中	0.0×10-5		石油コンビナートの防災アセス		
<u> </u>	8.0×10	m/s	メント指針*1より引用。		
			燃料積載量÷燃料面積÷燃焼速		
燃焼継続時間	約 1200	S	度より算出。F-16の場合の燃焼継		
			続時間は約 1400s。		
			ガソリン, ナフサのうち入気温度		
			が高くなるのはナフサだが, ナフ		
	ペンタン		サの燃焼パラメータ(最大質量燃		
		_	焼率,実験定数,燃焼熱,表面放		
燃料組成			射強度等)の値がデータベースに		
			なかったため, 燃焼挙動の近いペ		
			ンタンのデータを使用した。ペン		
			タンのデータで代替することと		
			した検討を参考2に示す。		
			外部火災ガイド*2に基づき形状		
燃焼半径 (円形)	約 5.9	m	を円形とし算出。F-16の場合の燃		
			焼半径は約5.4m。		
外部風速	0	m/s	外部火災ガイド*2に基づき設定。		
外部風向	_		外部火災ガイド*2に基づき設定。		
			外部からの衝撃による損傷防止		
			での高温の設計外気温度(八戸特		
加 曲 沪 庄	27	°C	別地域気象観測所での観測記録		
们别值反	51	C	(1937 年~2018 年 3 月)における		
			日最高気温の極値) である 37.0℃		
			を設定		

第 2-1 表 FDS による火災シミュレーションの設定条件

*1 消防庁特殊災害室 石油コンビナートの防災アセスメント指針,平成25年3月

*2 原子力発電所の外部火災影響評価ガイド(平成25年6月19日 原子力規制委員会)

第2-1図 火炎柱近傍における風速データ*(単位系:m/s)

* 火炎の形状は着火から約 10 秒でほぼ安定するが,100 秒の時点での可視化 画像としている。

第 2-2 図 火炎柱近傍における温度データ*1(単位:℃)

* 火炎の形状は着火から約 10 秒でほぼ安定するが,100 秒の時点での可視化 画像としている。

(2) 既往の文献からの影響検討

火炎柱下部近傍の温度について,第2-3 図に示す Vinay and Prabhu^[1]の実施したプ ール火災試験において,燃料プール外縁よりも外側では顕著な温度上昇がみられない ことが報告されている。これは,(1)に示した FDS 解析による結果とも整合するもので ある。

第2-3図 直径1mのヘプタンプール火災試験で測定された温度分布(Vinay and Prabhu^[1] (2018)*に加筆)

- * 風速 0.5~1.0m/s の屋外にて,雰囲気温度・燃料初期温度 33℃の環境下 において,金属容器に燃料としてヘプタンを入れて発火させ,プール火 災を模擬し,50mm 間隔で配置した熱電対にて温度を測定した試験。
- (3) 冷却塔の運転状態を考慮した影響検討

使用済燃料の受入れ施設及び貯蔵施設用 安全冷却水系冷却塔 B(安全冷却水系冷却 塔 B),再処理設備本体用 安全冷却水系冷却塔 B(安全冷却水 B 冷却塔)を例として, 火災による高温空気が冷却塔に吸い込まれる可能性について検討した(第 2-4 図参 照)。検討においては,前提条件を以下のように設定した。

- a. 第2-1 図より,火災による上昇流を10m/sとした。
- b. 飛来物防護ネット外面における冷却塔への吸い込み風速は1~3m/s であるが,安全 側に 3m/s とした。
- c. 冷却塔への空気吸い込み口はファンリング下端の高さであるが,安全側に飛来物防 護ネット外面において空気の流入がある下端の高さとした。

以上から、冷却塔の冷却空気吸い込み口におけるネット外面からの距離、高さを 考慮すると、高温空気が冷却塔の空気吸い込み口に入ることはないと考えられる(第 2-4 図及び第 2-2 表参照)。また、実現象においては、周辺から火炎柱に向かって吸 い込まれる空気の流速もあるため、冷却塔に向かって流れる空気の流速はさらに小 さくなると考えられることから、航空機墜落火災による高温空気が冷却塔に吸い込 まれ、冷却塔に影響を及ぼすことはないと考えられる。

第2-2表 冷却塔における高温空気の流入の可能性検討結果

設備	安全冷却水系冷却塔 B	安全冷却水 B 冷却塔
飛来物防護ネット外面から冷却空	Sm	
気吸い込み口までの距離	5111	
冷却塔の空気吸い込み口高さ(ファ	C.	
ンリング下端高さ)	om	
飛来物防護ネット外面の冷却空気		
流入高さ	3. 3m	
飛来物防護ネット外面からの仰角	40°	
(a)	42	
高温空気の流入角度	7.00	
(b)	13	
高温空気の流入の有無*	なし	

* 1a<b:流入なし a>b:流入あり

第2-4図 火災による高温空気の冷却塔への流入可能性の検討

3. 結論

2. に示す影響検討の結果,火炎柱内部及び周辺の空気の流れ,火炎柱周辺の空気の温 度分布及び冷却塔の運転状態を考慮しても,火炎による高温空気が冷却塔の安全機能に 影響を及ぼすことは考えられない。

4. 参考文献

 Vinay and Prabhu: Measurement of geometric and radiative properties of heptane pool fires. Fire Safety Journal 96, pp 13-26 (2018)

以上

- 参考1 FDS の計算概要について
- ①コード名: Fire Dynamics Simulator (FDS)
- ②開発機関: National Institute of Standards and Technology, NIST)
- ③開発時期: 2000年(初版リリース)
- ④使用したバージョン: 6.7.1
- ⑤使用目的: プール火災時の温度・流れ場分布の数値解析
- ⑥コードの概要: 燃焼による熱の発生,火炎の挙動,空気流動等を含む3次元シミュレ ーションを可能とする CFD ソフトウェア。
- ⑦検証(Verification)及び妥当性確認(Validation):
 - 【検証(Verification)】
 - ・開発機関が発行しているリファレンスガイド verification 編において,多数検証 が行われている。
 - 【妥当性確認(Validation)】
 - ・開発機関が発行しているリファレンスガイド validation 編において、実測データ に基づく妥当性確認が多数行われている。米国 NRC の火災評価ガイド(U.S.Nuclear Regulatory Commission(2011). Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG). NUREG-1934.)に取り上げられた実績を有する。

本数値解析に用いた Fire Dynamics Simulator (FDS) のライブラリではナフサのデータが 用意されていなかった^[1]。

このため、代替とする燃料を検討し、ペンタンとナフサのプール火災時の燃焼パラメータ (最大質量燃焼率,実験定数,燃焼熱,表面放射強度等)が同じ値との知見^[2]を得たことから、 本数値解析に用いるナフサの燃焼パラメータとして、ペンタンの燃焼パラメータを設定し た。

Fuel	Maximum Mass Burning Rate	Empirical Constant	Heat of Combustion	Surface Emissive Power	Empirical Constant	Carbon to Hydrogen Ratio	Un-obscuration Ratio		Ur (m ² ·m ⁻²)	
	mmax (kg.m ⁻² s ⁻¹)	k _β (m ⁻¹)	ΔHc (kJ/kg)	SEPmax (kW·m ⁻²)	Km (m ⁻¹)	C/H	D<10m	10m <d<20m< th=""><th>D<20m</th></d<20m<>	D<20m	
Acetone	0.038	2.238	25.800	130	100	0.50	0.02	0.02	0.02	
Benzine	0.085	2.700	40.100	130	100	1.00	0.02	0.02	0.02	
Butane	0.110	0.852	45.700	225	0.937	0.40	0.23	0.12	0.08	
Crude Oil	0.051	1.301	42.600	130	100	0.54	0.05	0.05	0.05	
Diesel	0.054	1.301	44.400	130	100	0.53	0.02	0.02	0.02	
Ethanol	0.029	100.000	29.700	130	100	0.33	1.00	1.00	1.00	
Fuel Oil	0.034	1.67	39.700	130	100	0.61	0.02	0.02	0.02	
Gasoline/ Petrol	0.055	1.480	43.700	130	100	0.43	0.02	0.02	0.02	
Heptane	0.081	1.394	44.600	200	100	0.438	0.23	0.12	0.08	
Hexane	0.075	1.394	44.700	200	100	0.429	0.23	0.12	0.08	
Hydrogen/ Liquified	0.161	6.741		70	7.415	0.00	1.00	1.00	1.00	
GP4	0.056	1.962	43.500	130	100	0.46	0.02	0.02	0.02	
GP5/ Kerosene	0.063	1.269	43.000	130	100	0.45	0.02	0.02	0.02	
LNG	0.141	0.136		265	0.149	0.25	0.77	0.69	0.55	
LPG	0.181	0.500		250	0.55	0.375	0.55	0.23	0.16	
Methanol	0.020	100.000	20.000	70	100	0.25	1.00	1.00	1.00	
Naphtha/ Pentane	0.095	100.000		200	100	0.417	0.23	0.12	0.08	
Octane	0.081	1.394		200	100	0.444	0.23	0.12	0.08	
Toluene	0.066	3.370		130	100	0.875	0.02	0.02	0.02	
Xylene	0.090	1.400	40.800	130	100	0.80	0.02	0.02	0.02	

第1表 プール火災時の燃焼パラメータの設定[2]

[1]Kevin B. McGrattan etal. "Fire Dynamics Simulator User's Guide" NIST Special

Publication 1019, sixth edition, revision FDS6.6.0-129-g951268a (2017).

[2]C.Goula, C.Malkotsi "Numerical simulation of pool hydrocarbon fires and their effect on adjacent tanks", Master Thesis, Department of Civil Engineering, University of Thessaly, Greece (2017).

別添-10

熱応力評価

次

1.	はじめに1	
2.	熱応力評価	
2.	1 支持構造物本体の影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.2	2 支持構造物を構成する部材の影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.	結論	

1. はじめに

冷却塔及び竜巻防護ネットの支持構造物を構成する部材には,耐火被覆 を施工する部材と施工しない部材があり,航空機墜落地点に応じて輻射を 受熱する部材と受熱しない部材が生じる。そのため,支持構造物内で温度 差が発生することから,本資料では,支持構造物内での温度差による熱影 響として熱応力について検討する。温度差により発生する熱応力は,変位 制御型の二次応力に分類される。二次応力は,自己拘束によって発生する 応力であり,部材が降伏又はひずみを生じた場合,それ以上の応力の増加 は起こらないことから,熱応力によって支持架構が破損することはないた め,本評価は,熱応力により生じる支持架構への影響について確認するこ とを目的とする。

2. 熱応力評価

輻射による熱影響の検討においては,耐火被覆を施工する部材と施工し ない部材の境界で温度差が生じる支持構造物本体に対する影響評価と,輻 射を受ける面と受けない面で温度差が生じる支持構造物を構成する部材に 対する影響評価を実施する。

2.1 支持構造物本体の影響評価

支持構造物本体に対する熱影響について検討する。本検討においては, 火炎により輻射を受けた部材の伸びを,接続する梁材等により,拘束さ れたことにより生じる応力に対し,構造健全性が維持できていることを 確認する。

(1) 評価対象について

本評価は、支持構造物の主柱の間隔が短く、入熱量の差が大きい方 が、梁による拘束力が大きくなり、主柱の熱伸びを拘束することとな るため、保守的な評価となる。竜巻防護対策設備は、直近に航空機墜 落火災を想定することから、主柱と主柱を結ぶ梁材も耐火塗装の対象 となり、それぞれの入熱量の違いは比較的小さいものとなる。一方、 冷却塔は構成部材の離隔距離に応じて耐火被覆の有無及び入熱量の違 いが生じることから、冷却塔を評価対象とする。

冷却塔を構成する部材のうち,評価対象とする部位は,熱伸び量が 最も大きくなる部位を対象とし,その熱応力評価結果が許容値を満足 することをもって,支持構造物本体の構造健全性に影響がないと評価 する。評価モデルを第2-1図に示す。

第 2-1 図 支持構造物本体の評価モデル

(2) 評価方法について

a. 部材の温度評価

熱伸び量を算出するため,評価対象の温度評価を実施する。温度上 昇における評価モデルを第2-2図に示す。なお,1列目は耐火被覆に より入熱面以外は断熱条件で評価した。

第 2-2 図 部材の温度評価モデル

柱の温度を次式により計算する。

 $\rho \cdot c_p \cdot V \cdot \frac{dT}{dt} = Q$

上式を陽解法により時間刻み Δt ごとの時間進行の式にすると次式 となる。

$$T(t+\Delta t)=T(t)+\frac{Q\cdot\Delta t}{\rho\cdot c_{p}\cdot V}$$

b. 熱応力評価
 温度上昇による熱伸びを下式より算出する。

 $\delta = \alpha \times H \times \Delta T$

熱伸びを拘束することにより生じる熱応力を下式より算出する。

 $\sigma{=}\frac{_{6\times E\times I\times \delta}}{_{L^{2}\times Z}}$

(3) 評価条件について

部材の温度評価条件を第 2-1 表に,熱応力評価条件を第 2-2 表に示す。

記号	単位	定義	数值
T(t=0)	°C	評価点の初期温度	37
		(外部からの衝撃による損	
		傷防止での高温の設計外気	
		温度(八戸特別地域気象観	
		測所での観測記録(1937年	
		~2018 年 3 月) における日	
		最高気温の極値)である	
		37.0℃を設定)	
t	sec	燃焼時間	1,400
Δt	sec	時間刻み	0.001
Q	W	熱の授受量(輻射入熱)	1 列目 : 14,262*1
			2列目:7,998 ^{*2}
ρ	kg/m^3	評価点の部材の密度	7,850 ^{*3}
Cp	J/kg/K	評価点の部材の比熱	$465 * {}^{3}$
V	m ³	評価点の部材の体積	0.016^{*4}

第 2-1 表 評価条件

*1 (輻射発散度 58,000 [W/m²]×形態係数 0.239+太陽輻射 400 [W/m²])×単位面積。こ れに耐火被覆の熱抵抗を考慮し,鋼材への入熱を与える。

*2 (輻射発散度 58,000[W/m²]×形態係数 0.131+太陽輻射 400[W/m²])×単位面積。こ れに放熱を考慮し、鋼材への入熱を与える。

*3 伝熱工学資料改訂第5版 p.284 機械構造用炭素鋼 S35c (at 300K)

*4 鋼材厚み ■mm×単位面積。

第 2-2 表 熱応力評価条件

記号	単位	定義	数値
δ	mm	熱伸び差	10.9
α	1/K	線膨張係数	1. $34 \times 10^{-5 * 1}$
Н	m	柱の高さ	10.75
Е	MPa	弹性係数	205,000* ²
Ι	mm^4	梁の断面二次モーメント	4. 72×10^{7}
L	m	梁の長さ	6. 58
Z	mm ³	梁の断面係数	4. 72×10^{5}

*1 発電用原子力設備企画 材料規格(日本機械学会)

*2 鋼構造設計基準(日本建築学会)

(4) 評価結果について

1列目と2列目の1400秒後の部材の温度評価結果を第2-3表,第2-3 図に示す。部材の温度評価結果を第 2-3 図に示す。また、熱応力評 価結果を第2-4表に示す。

発生する熱応力は許容値以下であり、構造健全性に影響はない。

第 2-3 表 部 核	すの温度評価結果
	温度[℃]
1 列 目	267
2 列 目	187

第2-3図 部材の温度評価結果

· 用 2−4 衣	然心刀評価結果
発生応力(MPa)	許容 値(MPa)
31	245

第 2-4 表	熱応力	評価結果	÷
---------	-----	------	---
(5) 耐火被覆の有無による柱の温度上昇について

耐火被覆の有無による柱の温度上昇について,耐火被覆が施工されていない2列目の柱の方が,耐火被覆の施工されている1列目より温度が高くなるケースが無いか確認した。

安全冷却水 B 冷却塔以外の冷却塔も含めて確認し,火炎から見て 1 列目に耐火被覆有りの柱,2 列目に耐火被覆なしの柱が位置する場合 は,2 列目の耐火被覆なしの柱の温度が 1 列目の耐火被覆有りの柱よ り高くなるケースは確認されなかった。

これは耐火被覆有りの柱の方が温度は上がり難いが火炎に近いこと、耐火被覆なしの柱は火炎から 1m 離れるごとに温度が 20℃前後下がる こと、及び耐火被覆有無の柱間の距離は約 ■m あることから、火炎から 見て 1 列目に耐火被覆有りの柱、2 列目に耐火被覆なしの柱が位置す る場合は耐火被覆有りの柱の方が温度は高くなると考えられる。

また、火炎から見て1列目に耐火被覆の有りの柱となしの柱が横並 びしている場合の熱応力評価も実施(発生応力は約 21MPa)し、上記の 結果に包絡されることを確認した。評価モデルを第 2-4 図に示す。

第 2-4 図 評価モデル

2.2 支持構造物を構成する部材の影響評価

火炎からの輻射を受熱する部材に対する熱影響について検討する。本 検討においては、火炎から受ける輻射を受ける面と受けない面で生じる 温度差による影響について検討する。火炎に近い方が輻射の有無による 温度差が大きいため,竜巻防護対策設備の支持架構を対象に評価を行う。 (1) 評価対象について

支持架構を構成する代表的な部材には,梁(H 鋼),柱(角型鋼管)が ある。そのため、どの部材を評価モデルに設定することが保守的な評価となるか検討する。

部材の評価モデルを第2-5図に示す。

H 鋼は,全体的に輻射を受けるのに対し,角型鋼管は,火炎の反対 面は輻射を受けず,鋼材の熱伝導による温度上昇しか見込めず,温度 差が大きいと考えられることから,角型鋼管を評価対象とする。

-:輻射熱が当たる箇所

第 2-5 図 部材の評価モデル

- (2) 評価方法について
 - a. 部材の温度評価 熱伸び量を算出するため,評価対象の温度評価を実施する。温度上 昇における評価モデルを第 2-6 図に示す。

熱伸び差の影響を受ける板

第2-6図 部材の温度評価モデル

部材の温度を次式により計算する。

$$\rho \cdot c_p \cdot V \cdot \frac{dT}{dt} = Q$$

上式を陽解法により時間刻み Δt ごとの時間進行の式にすると次式 となる。

$$T(t+\Delta t)=T(t)+\frac{Q\cdot\Delta t}{\rho\cdot c_{p}\cdot V}$$

b. 熱応力評価
 温度上昇による熱伸びを下式より算出する。

 $\delta = \alpha \times H \times \Delta T$

熱伸びを拘束することにより生じる熱応力を下式より算出する。

$\sigma {=} \frac{6 {\times} E {\times} I {\times} \delta}{L^2 {\times} Z}$

(3) 評価条件について
 部材の温度評価条件を第 2-5 表に,熱応力評価条件を第 2-6 表に示す。

記号	単位	定義	数值
T(t=0)	°C	評価点の初期温度	37
		(外部からの衝撃による損	
		傷防止での高温の設計外気	
		温度(八戸特別地域気象観	
		測所での観測記録(1937年~	
		2018年3月)における日最高	
		気温の極値)である 37.0℃を	
		設定)	
t	sec	燃焼継続時間	1,400
Δt	sec	時間刻み	0.001
Q	W	熱の授受量(輻射入熱)	正面:574*1
			側面:133 ^{*2}
ρ	kg/m^3	評価点の部材の密度	7,850*3
Cp	J/kg/K	評価点の部材の比熱	$465 * {}^{3}$
V	m ³	評価点の部材の体積	$7 \times 10^{-4} * 4$

第 2-5 表 部材の温度評価条件

*1 (輻射発散度 58,000[W/m²]×形態係数 0.389+太陽輻射 400[W/m²])×区分面積(= 周方向区分長さ 25mm×軸方向単位長さ)。これに耐火被覆の熱抵抗を考慮し,鋼 材への入熱を与える。

*2 (輻射発散度 58,000 [W/m²]×形態係数 0.085+太陽輻射 400 [W/m²])×区分面積(= 周方向区分長さ 25mm×軸方向単位長さ)。これに塗装の熱抵抗を考慮し,鋼材へ の入熱を与える。

*3 伝熱工学資料改訂第5版 p.284 機械構造用炭素鋼 S35C (at 300K)

*4 鋼材厚み 28mm×周方向区分長さ 25mm×軸方向単位長さ。

記号	単位	定義	数值
δ	mm	熱伸び差	0.60
α	1/K	線膨張係数	1. $34 \times 10^{-5 * 1}$
Н	mm	角型鋼管のサイズ÷2	250
Е	MPa	弾性係数	$205,000*^{2}$
Ι	mm^4	板の断面二次モーメント	1,829
L	mm	板の長さ	500
Z	mm ³	板の断面係数	130

第 2-6 表 熱応力評価条件

*1 発電用原子力設備企画 材料規格(日本機械学会)

*2 鋼構造設計基準

(4) 評価結果について

角型鋼管の1400秒後の各面の温度評価結果を第2-7表,第2-7図 に示す。また、部材の熱応力評価結果を第2-8表に示す。

発生する熱応力は許容値を満足するものであり、構造健全性に影響 はない。

· 用 2⁻ (衣 一 部 ≬	」の温度上升結果
部材	温度[℃]
正面	221
裏面	42

ぶ 材 の 涅 度 ト 見 結 里

第 2-7 図 温度評価結果

第 2-8 表 部 材 0	> 熱応力評価結果
発生応力(MPa)	許容値(MPa)
42	325

Lat. 如社の教史も荻伊外

3. 結論

評価結果から支持架構の構造体としても,部材としても,発生応力は許 容値内であり,航空機墜落火災による輻射を受けた場合の温度差を考慮し ても,支持架構の構造健全性を維持できていることを確認した。

以上

別紙

設工認に係る補足説明資料別紙リスト

	別紙			(世 支
資料 No.	名称	提出日	Rev	加方
別紙-1	燃料加工建屋の評価書	9/7	6	
別紙-2	安全冷却水 B 冷却塔の評価対象部位の選定	10/3	7	
別紙-3	安全冷却水 B 冷却塔 飛来物防護ネットの評価書	10/3	<u>9</u>	

外外火04【航空機墜落による火災の防護設計について】

令和4年9月7日 R6

別紙-1

燃料加工建屋の評価書

1.	概	要	• •		••			•	•••			•	•••	•••	•••	•••	• •	•••	•••	• •	•••		•		•	•••	•	•••	•		•		•	 •	•	1
2.	評	価	対	象	部	位		•	•••			•	•••	•••	•••	•••	•••	• •	•••	• •	•••		•	•••	•		•	•••	•		•	•••	•	 •	•	1
3.	建	屋	及	び	建	屋	外	壁	が	有	す	る	機	能	\sim	17)影	泛響	<u>.</u>	• •	•••		•	•••	•		•	•••	•		•	•••	•	 •	•	1
3.1	L	建	屋	外	壁	\sim	の	要	求	機	能	\mathcal{O}	確	認	結	果	: •	• •	•••	• •	•••		•	•••	•		•	•••	•		•	•••	•	 •	•	1
3.2	2	建	屋	全	体	の	支	持	₩機	能	に	0	いい	て	•	•••	•••	• •	•••	• •	•••		•	• •	•	•••	•	•••	•	• •	•	• •	•	 •	•	4
4.	参	考	文	献	••		••	•	•••		• •	•		•••	•••	•••	•••			• •		•••	•		•		•		•	•••	•	•••	•	 •	•	5

目 次

1. 概要

航空機墜落による火災に対する燃料加工建屋への熱影響について,添付 書類「V-1-1-1-3-3 外部火災への配慮が必要な施設の設計方 針及び評価方針」及び添付書類「V-1-1-1-3-4 外部火災にお ける評価結果」にて,評価条件及び評価結果を示している。

本書では,航空機墜落よる火災の熱影響評価における燃料加工建屋の評 価対象部位とその理由について示す。また,航空機墜落による火災におけ る建屋及び建屋外壁が有する機能への影響を確認した結果も示す。

2. 評価対象部位

燃料加工建屋の屋根は外壁同様 1.3m 以上のスラブ厚があり,外壁の熱 影響評価に包絡させることから,補足説明資料本文「5.(1) 外部火災防護 対象施設を収納する建屋」に基づき外壁を評価対象部位とする。

3. 建屋及び建屋外壁が有する機能への影響

3.1 建屋外壁への要求機能の確認結果

燃料加工建屋外壁に要求される機能と想定される損傷を考慮した影響 評価を実施した結果は第3.1-1表に示すとおりであり,燃料加工建屋外 壁が要求される機能を損なわない。

また、外壁に設けられた扉部等の開口部について、開口面積 10m²以上 の大きいもの又は長方形の開口部であって両辺とも 1.2m を超え、かつ、 開口部を有する室に外部火災防護対象施設があるものは、堅固な壁等に よる迷路構造により開口内部を直接見込めない構造となっているため、 火災による輻射が直接建屋内に及ばない。その他の比較的開口面積が小 さい扉はコンクリート製フードが設置されており、火炎による輻射が直 接建屋内へ及ぶことはない。

要求機能	内容	影響評価
放出経路の 維持機能	換気空調設備と合わ せて建物の区画形成 により放出経路を維 持する機能	外壁表面の損傷のみであり,放出 経路の維持機能に影響はない。
遮蔽機能	放射線量を所定レベ ルまで低減する機能	損傷した部分(外壁表面から 5cm) が存在しないものとして壁厚を 評価しても必要遮蔽厚 150cm ^{*1} が 確保できること ^{*2} ,直線的な貫通 ひび割れが発生しないことから 遮蔽機能に影響はない。
支持機能	主要設備・機器を支持 する機能	外壁表面の損傷のみであり,主要 設備等の支持機能に影響はない。
波及的影響の 防止機能	破損,落下又は転倒に より,設備・機器の機 能を阻害しない機能	コンクリートの表面損傷程度で あり,設備・機器への物理的な波 及的影響はない。

第3.1-1表 燃料加工建屋外壁への要求機能と影響評価

注記 *1:事業許可(変更許可)において平常時における MOX 燃料加工施設 からの直接線及びスカイシャイン線による公衆の線量を求める 際の遮蔽条件として,燃料集合体貯蔵設備を取り囲むコンクリ ート壁等を考慮した設定値

*2:燃料集合体貯蔵設備とその周辺の建屋外壁厚さを第 3.1-1 図に 示す。燃料集合体は地下1階に貯蔵し、その外壁厚さは 170cmと なる。また、地上階以上の外壁厚さは 130cm であるが、建屋内の スラブ,壁又は遮蔽蓋の厚さを合計すると必要遮蔽厚を確保でき る構造となっている。

第3.1-1図 集合体貯蔵エリア周辺の壁厚

3.2 建屋全体の支持機能について

熱影響評価の結果を踏まえ,建屋外壁に想定される損傷を考慮した場 合においても,燃料加工建屋全体の支持機能が維持されることを,以下 の方法にて確認する。

- <確認方法>
- ・損傷範囲を減じた軸断面積 A'にて支持重量 W を支えられることを軸応力度 σ(W/A')とコンクリートの許容圧縮応力度 fc の比較により確認する。
- $\alpha = fc/\sigma > 1$
- <評価条件>
- ・損傷範囲は長辺方向の外壁一面の深さ5cmとする。
- ・荷重条件は質点系モデルを用いた燃料加工建屋の地震応答計算 において設定している荷重とする。
- ・許容圧縮応力度 fc は「建築基準法施行令第 91 条」を参考に下 式より 10N/mm²とする。

$$fc = F/3$$

ただし, F:設計基準強度(普通コンクリート設計基準強度 30N/mm²)⁽¹⁾

上記の内容に基づき実施した評価結果を第3.2-1表に示す。

		바 년 무 소	支持重	車中 除色	声 待	軸	許容	断面	
要素		地上向さ	量	甲田 [49]	山作具	応力度	応力度	裕度	
番号	偕 増	1. M. S. L.	W	А	A'	σ	fc	α	
		m	k N	m ²	m ²	N/mm^2	N/mm^2	$1 \leq \alpha$	
1	塔屋階	70.2 \sim 77.5	174000	420.5	416.1	0.42	10	23.8	
2	地上2階	62.8 \sim 70.2	503000	760.0	755.6	0.67	10	14.9	
3	地上1階	56.8∼62.8	888000	957.1	952.7	0.93	10	10.8	
4	地下1階	50.3∼56.8	1317000	1208.1	1203.7	1.09	10	9.2	

第3.2-1表 燃料加工建屋の損傷後の軸応力評価結果

以上より,燃料加工建屋全体の支持機能が損なわれないことを確認した。

4. 参考文献

(1) 建築工事標準仕様書 同解説 JASS 5N 原子力発電所施設における鉄筋コンクリート工事(2013 改定)

令和4年10月3日 R7

別紙-2

安全冷却水 B 冷却塔の評価対象部位の選定

1.	概要 · · · · · · · · · · · · · · · · · · ·	1
2.	熱影響評価の対象機器の選定と防護対策について・・・・・・・・	8
3.	熱影響評価の対象部位の選定について・・・・・・・・・・・・・・・・・・・	12
4.	耐火試験について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20

目 次

1. 概要

航空機墜落火災に対する安全冷却水 B 冷却塔への熱影響について,添付 資料「再処理施設 添付書類「VI-1-1-1-3-3 外部火災への配 慮が必要な施設の設計方針及び評価方針」」及び「再処理施設 添付書類 「VI-1-1-1-3-4 外部火災防護における評価結果」」にて,安 全冷却水 B 冷却塔の安全機能を維持するのに必要な機器について評価条件 及び評価結果を示している。

本書では、安全冷却水 B 冷却塔の安全機能を維持するために必要な機器 及び部位のうち、熱影響評価の対象の選定の考え方及び選定結果並びに耐 火試験により確認するとした対象については耐火試験の方法,許容温度及 び結果を示す。

熱影響評価の選定は,安全冷却水 B 冷却塔の安全機能を維持するために 必要な機器,機器を構成する部位の順に行う。

安全冷却水 B 冷却塔の機能及び構造を以下(1)及び(2)に示す。

(1) 安全冷却水 B 冷却塔の機能について

安全冷却水 B 冷却塔は,再処理施設内の各施設を冷却した後の冷却水を, 空気と熱交換することで冷却するための設備である。そのため,安全冷却 水 B 冷却塔は崩壊熱により溶液が沸騰するおそれのある機器の崩壊熱を 除去するための冷却機能を有している。

(2)安全冷却水 B 冷却塔の構造について

安全冷却水 B 冷却塔は,安全冷却水 B 冷却塔が有する安全機能である崩 壊熱除去機能を直接的に担う機器,間接的に担う機器及び崩壊熱除去機能 を担わない機器で構成される複合設備である。安全冷却水 B 冷却塔を構成 する機器と部位を第 1-1 表に示す。

また,安全冷却水 B 冷却塔の概要図を第 1-1 図から第 1-4 図,崩壊熱除 去機能を有しない構成品を第 1-5 図から第 1-7 図に示す。

分類	機器	部位
	管束・配管	管束(伝熱管,チューブサポート,管束フレーム, ヘッダー),配管,管束取付ボルト
	ファン駆動部	ファンリング,ファンブレード,減速機,原動機, ファンリングサポート,各取付ボルト,コモンベ ッド,ケーブル及びケーブルトレイ
	支持架構 (基礎ボルト含む)	主柱,床はり,機械台はり,立面ブレース, 水平ブレース,基礎ボルト
	ルーバ	ルーバ (ルーバフレーム, ルーバブレード, ブレ ードシャフト), ルーバ取付ボルト
	火災感知器・ PHS アンテナ	_
	側部ルーバ	—
	ファンガード	_
	上部プレナム (デッキプレート)	_
	歩廊	_
	盤	_

第 1-1 表 安全冷却水 B 冷却塔を構成する機器と部位

第1-1 図 安全冷却水 B 冷却塔 概要図

第 1-3 図 管束構造図

外外火 04-別紙 2-5

第1-5図 側部ルーバ,上部プレナム及び歩廊の写真

第1-6図 ファンガードの写真及び構造図

第 1-7 図 盤の写真

外外火 04-別紙 2-7

2. 熱影響評価の対象機器の選定と防護対策について

第1-1表に示す機器のうち,崩壊熱除去機能を直接又は間接的に担う機器については,航空機墜落火災の影響により損傷に至る可能性に着目し,耐火被覆又は遮熱板の施工の要否を判断した上で,熱影響評価によりその妥当性を確認する。

崩壊熱除去機能を担わない機器については,航空機墜落火災の影響によ り損傷に至る可能性及び損傷した際の崩壊熱除去機能を直接的に担う機器 又は間接的に担う機器への影響の有無に着目し,耐火被覆又は遮熱板の施 工の要否を判断する。

安全冷却水 B 冷却塔の機器に対する耐火被覆又は遮熱板の施工対象及び 熱影響評価対象の選定フローを第 2-1 図に示す。選定フローに基づき評価 対象を選定した結果を第 2-1 表に示す。

また,以下(1)及び(2)にて,安全冷却水 B 冷却塔の耐火被覆及び遮熱板 による対策の概要を示す。

(1)耐火被覆による防護対策について

耐火被覆による防護対策が必要となる範囲を特定するにあたり,航空機 墜落火災による円筒火炎に対して鋼材の板厚毎に許容温度以下となる離 隔距離(以下「必要離隔距離」という。)を算出することとし,詳細を別添 -3に示す。

耐火被覆は,1時間耐火の大臣認定を取得したものを用いることとし,詳細を別添-4に示す。

耐火被覆の厚さは、外部火災防護対象施設は 3mm, 波及的影響を及ぼし 得る施設は 2mm とする。耐火被覆厚さに係る設計方針, 設定の考え方, 設 定の流れ等を別添-5に示す。

(2) 遮熱板による防護対策について

遮熱板の仕様は、板厚 6mm に対して公差を考慮しその下限値を丸めた 必要最小厚さの板厚 5mm の炭素鋼とし、必要に応じて耐火被覆厚さ 3mm を施工することとする。遮熱板の構造の概要を第 2-2 図に示す。

遮熱板は,駆動部を有しており,かつ耐火被覆の施工が困難である原 動機及び減速機が,火炎からの輻射を受けないようその周辺を囲って設 置する。

遮熱板は,基準地震動及び設計竜巻による風荷重に対し強度評価を行い,問題ないことを確認する。

遮熱板は,原動機及び減速機の点検が可能な構造とするため,取り外しが可能なボルトで固定する構造とする。

遮熱板は、原動機及び減速機の放熱を考慮し設置する。

類	機器	選定理由	評価 対象
	管束・配管		0
	ファン駆動部		0
	支持架構		0
	ルーバ		×
	火災感知器・ PHS アンテナ		×
	側部ルーバ		×
	ファンガード		×
	上部プレナム (デッキプレ ート)		×
	歩廊		×
	盤		×

第 2-1 表 熱影響評価対象の選定結果

第 2-1 図 熱影響評価対象の選定フロー

3. 熱影響評価の対象部位の選定について

第 2-1 表にて選定された機器に対し,航空機墜落火災の影響を考慮する 部位を選定する。

なお,前項2.にて示した耐火被覆又は遮熱板の評価対象については,耐 火被覆又は遮熱板による防護対策を考慮して熱影響評価を実施する。

耐火被覆の施工範囲を第 3-1 図から第 3-4 図に示す。

また、冷却塔の冷却能力を維持するため、

象として選定する。

(1) 冷却水

☆却水を評価対象

冷却水を評価対

- とする。
- (2) 管束・配管
 管束の評価対象部位の選定理由を第 3-1 表に示す。
- (3) ファン駆動部 ファン駆動部の評価対象部位の選定理由を第 3-2 表に示す。
- (4) 支持架構

により構成されている。

評価対象とする。

(5) まとめ

安全冷却水 B 冷却塔の評価対象の評価内容及び防護設計を第3-3 表 に示す。

第 3-1 表 管束及び配管の評価対象部位の選定

<凡例>〇:選定対象部位,一:選定対象外

部位	機能	選定 結果	選 定 理 由
ファン リング		0	評価対象とする。
ファン ブレー ド		0	評価対象とする。
減速機		0	評価対象とする。
原動機		0	評価対象とする。
ファン リング サポー ト		0	評価対象とする。
減取 ル 原取 ル フ リ サ ト ボ ル ア ン ポ 取 ル ア ン ポ の ル 動 付 ト ア ン ポ の ル の ア ン リ サ ト ボ の ア の ア ン の ア の が の の の の の の の の の の の の の の の の		0	評価対象とする。
コモン ベッド		0	評価対象とする。
ケーブ ル			ケーブルは評価対象外と する。
ケーブ ルトレ イ	: 選定対象部位, —: 選定	〇対象外	評価対象とする。

第 3-2 表 ファン駆動部の評価対象部位の選定

機 器	部 位	評価内容・防護設計	確 認 方 法
冷却水			温度
(配管の内部流体)			計 1曲
管束・配管	チューブサポート		温度 評価
	管東フレーム		耐火 試験
	管東取付ボルト		_
ファン駆動部	ファンリング		耐火 試験
	ファンブレード		温 度 評 価
	減 速 機		温 度 評 価
	原動機		温 度 評 価
	ファンリングサポート		耐火 試験
	減速機取付ボルト		—
	原動機取付ボルト		_
	ファンリングサポート 取付ボルト		
	コモンベッド		耐火 試験
	ケーブルトレイ		耐火 試験
支持架構	主柱		
	<u>休はり</u> 機械会けり		泪中
	立面ブレース		血 度 評 価
	水平ブレース		1.1. Ikeed
	基礎ボルト		

第3-3表 評価対象部位の評価内容,防護設計及び確認方法

第 3-2 図 冷却塔の耐火被覆範囲図(B-B 断面)

第 3-3 図 冷却塔の耐火被覆範囲図(C-C 断面)

第 3-4 図 冷却塔の耐火被覆範囲図(D-D 断面)

- 4. 耐火試験について
- 4.1 確認方法

前項 3. にて耐火試験により確認するとした管束フレーム,ファンリ ング,ファンリングサポート,コモンベッド及びケーブルトレイについ ては,耐火被覆を施工することにより,許容温度以下とする設計として いる。これらの部材については,耐火被覆施工後の温度上昇が許容温度 以下であることを当社の実施した耐火試験にて確認する。当社の実施し た耐火試験の試験方法を別添-5に示す。

当社の実施した耐火試験においては、それぞれの部材の最小板厚及び 火炎からの距離を考慮し、最も厳しい評価条件となる部材にて試験を実 施する。

第4-1表に対象部材の板厚と火炎からの距離を示す。第4-1表より, 板厚と火炎からの距離のパラメータがあるが,当社の実施した耐火試験 においては,これらを網羅させるため,最も薄い板厚であるケーブルト レイの ■■mm を試験体の板厚として選定し,火炎との距離はこれらより 近い 2.0m の輻射強度にて試験を実施する。

部材	板厚(mm)	火炎からの距離(m)
管東フレーム		約 5.5
ファンリング		約 6.5
ファンリングサポート		約 6.0
コモンベッド		約 7.5
ケーブルトレイ		約 2.5

第4-1表 板厚と火炎距離

4.2 許容温度

管束フレーム、ファンリング、ファンリングサポート、コモンベッド 及びケーブルトレイについて、航空機墜落火災時においても強度が低下 しない設計とし Cを 許容温度とする。

4.3 耐火試験の結果

ケーブルトレイの板厚にて耐火試験を実施した結果を第4-1図に示す。1,400秒後の温度は約260℃であり、許容温度 ■℃未満であることを確認した。

以上のことから、1時間耐火の大臣認定試験を取得した耐火被覆を施 工することで許容温度以下となることを確認した。

以上

安全冷却水B冷却塔の冷却水の物性(比重,比熱)について

参考

<u>冷却塔や接続する配管は屋外に設置されており、冬期は水の凍結</u> 温度以下の外気に晒されることから、凍結防止対策を施している。

<u>安全冷却水 B 冷却塔の冷却水は,冬期外気温が凍結において考慮</u> <u>する外気温</u>(<u>℃)となっても凍結しない様,凍結防止対策と</u> して不凍液(ナイブライン)を含ませている。

不凍液(ナイブライン)の濃度は、平成 10 年6月9日付け9安
 核規 第596 号 にて認可を受けた設工認申請書「添付 VI 設計及び
 工事の方法の技術基準への適合に関する説明書 添付-10 安全冷却
 水系の屋外設備の凍結防止に関する説明書」に記載している通り、
 凍結において考慮する外気温に対して凍結しないよう、■ 質量%
 としている。

この時の冷却水の比重,比熱について以下に示す。

〇比重

メーカ図書より不凍液(ナイブライン)濃度と比重の関係を 示したグラフを図1に示す

比重は、冷却塔の冷却水入口(■℃)と冷却水出口

(°C)	の平均	温度て	ぎある		℃の供	に にんしょう しんしょう しんしょ しんしょ	度にう	近い	°C	、
℃の紡	良の請	臣み取り	り値を	C	Cでテ	。 線形補	完し	[kg/m^3]	<u>ک</u>	ι
ている。											

図1 不凍液 (ナイブライン)濃度と比重のグラフ

○比熱

表 1	不庙游	(ナイブラ	11/	濃度レ	ド執の	ガラフ

令和4年10月3日 R9

別紙-3

飛来物防護ネット(再処理設備本体用 安全冷却水系冷却塔 B)の評価書

1.	概要・・・			••••			•••	•••							•			•	1
2.	評価対象	良部位の	選定に	つい	て・		• • • •	•••							•			•	1
2.1	安全将	う却水 E	冷却塔	へ波	及的]影∛	臀を	及ぼ	され	よい	たり	りに	必	要フ	な	部	位	の	選
	定・・・			• • • •			•••	•••							•			•	6
2.2	評価文	计 象部标	すの選定	••••			•••	•••							•			•	7
3.	評価方金	+につい	って・・・・	••••	• • •		•••	•••					• •		•	• •	•••	•	9
3.1	支持樟	靠造物 σ)評価方	針・・	• • •		•••	•••					• •		•	• •	•••	•	9
4.	評価結果	ų	••••	••••	• • •		•••	•••					• •	•••	• •	• •	•••	•	9
4.1	支持樟	青造物 σ) 評価結	果・・			•••	•••							•	• •		•	9

目 次

1. 概要

航空機墜落火災に対する飛来物防護ネット(再処理設備本体用 安全冷却水系冷却塔 B)(以下「飛来物防護ネット」という。)への熱影響について、添付資料「再処理施設 添付書類「VI-1-1-1-3-3 外部火災への配慮が必要な施設の設計方針及び評価方針」」及び「再処理施設 添付書類「VI-1-1-1-3-4 外部火災防護における評価結果」」にて、支持架構や防護板について評価条件及び評価結果を示している。

本書では,安全冷却水 B 冷却塔の安全機能を維持するために必要な機器 及び部位のうち,熱影響評価の対象の選定の考え方及び選定結果を示す。

2. 評価対象部位の選定について

飛来物防護ネットは、竜巻襲来時に安全冷却水 B 冷却塔に飛来物が衝突 することを防止するための設備であり、竜巻襲来時にその機能を求められ る。そのため、航空機墜落火災においては、飛来物の衝突を考慮する必要 がないことから、飛来物防護ネットが安全冷却水 B 冷却塔へ波及的影響を 及ぼさないことが求められる。飛来物防護ネットが安全冷却水 B 冷却塔へ 波及的影響を及ぼさないために必要な部位と評価対象を選定する。 飛来物防護ネットの概要図を第 2-1 図及び第 2-2 図に示す。

外外火 04-別紙 3-1

(南面)第 2-1 図 飛来物防護ネットの概要図(1/3)

(北面)

(東面) 第 2-1 図 飛来物防護ネットの概要図(2/3)

第 2-1 図 飛来物防護ネットの概要図(3/3)

第2-2図 飛来物防護ネットの支持架構の概要図

2.1 安全冷却水 B 冷却塔へ波及的影響を及ぼさないために必要な部位の選 定

安全冷却水 B 冷却塔へ波及的影響を及ぼさないためには,安全冷却水 B 冷却塔へ衝突等の物理的な影響を及ぼさないことが求められる。よっ て,物理的影響を及ぼし得る部位を選定する。

選定結果を第 2-1 表に示す。

部位	選定理由	設計方針
支持架構	支持架構は倒壊若しくは脱落すると、安	支持構造物
	全冷却水 B 冷却塔の損傷を引き起こす可	
	能性があることから、評価対象とする。	
防護ネット	天面に設置している防護ネットのうちネ	—
	ット及びワイヤロープの落下が想定され	
	るが,単位面積当たりの重量が約15kg/m ²	
	と軽量であることからたとえ天面から脱	
	落したとしても、ルーバで止まることか	
	ら,安全冷却水 B 冷却塔への物理的な影	
	響は考えにくいことから、評価対象外と	
	する。	
	また、車両を通行させるため支持架構に	
	ガイドレールを取付け、トロリを用いて	
	防護ネット(鋼製枠)を吊り下げて, レー	
	ルを走行させることにより開閉できる構	
	造としているものがあるが、当該ネット	
	が脱落したとしても当該ネット自身が支	
	持架構の開口部より大きいことから、安	
	全冷却水 B 冷却塔への物理的な影響は考	
	えにくいことから、評価対象外とする。	
防護板	天面の防護板が脱落した場合、安全冷却	支持構造物
	水 B 冷却塔の損傷を引き起こす可能性が	
	あることから、評価対象とする。	
補助防護板	天面の補助防護板が脱落した場合、安全	支持構造物
	冷却水 B 冷却塔の損傷を引き起こす可能	
	性があることから、評価対象とする。	

第 2-1 表 評価対象部位の選定結果

2.2 評価対象部材の選定

第 2-1 表にて選定された部位に対し,航空機墜落火災の影響を考慮する部材を選定する。

(1) 支持架構

柱,大はり,小はり,トラス柱,水平ブレース,鉛直ブレース, 座屈拘束ブレースにより構成されている。

支持架構を構成する部材が損傷した場合,支持架構は倒壊若しく は脱落し,安全冷却水 B 冷却塔に波及的影響を及ぼし得るおそれが あることから,評価対象とする。

支持架構は、補足説明資料「外外火 04 航空機墜落による火災の防護設計について」の4.3(3)「支持構造物」に基づいた設計を実施 することとし、耐火被覆の施工を前提とする。

(2) 防護板/補助防護板

鋼板及び取付ボルトにより構成されている。

天面の鋼板が脱落した場合,安全冷却水 B 冷却塔に波及的影響を 及ぼし得るおそれがあることから,評価対象とする。防護板/補助 防護板は,補足説明資料「外外火 04 航空機墜落による火災の防護 設計について」の 4.3(3)「支持構造物」に準じた設計を実施するこ ととし,耐火被覆の施工を前提とする。

(3) まとめ

飛来物防護ネットの評価対象部位の選定結果一覧を第2-2表に示す。

機器	部在	<u>M</u>	評価 対象	評価内容・防護設計			
	柱			奥井香车排心 一足 计行为字母语			
	大は	り		飛来物防護イットは, 主近ご航空機 墜落火災が発生することを想定する			
支	小は	り		ことから、耐火被覆を施工する。			
持	トラン	マ柱	\bigcirc	施上範囲は必要離隔距離表を用いて 設定する。			
栄構	水平ブし	ノース		施工後の支持架構が許容温度内であ			
113	鉛直ブι	ノース		ることを、必要離隔距離表及び温度 評価にて確認する			
	座屈拘束に	座屈拘束ブレース					
防護ネット				_			
防護板 輝 補助防護板		鋼 板	0	飛来物防護ネットは,至近で航空機 墜落火災が発生することを想定する ことから,耐火被覆を施工する。 施工範囲は必要離隔距離表を用いて 設定する。 施工後の鋼板が許容温度内であるこ とを,温度評価にて確認する。			
		取 付 ボルト	0	耐火被覆を施工する鋼板の取付ボル トには耐火被覆を施工する。			

第2-2表 飛来物防護ネット 評価対象の選定

<凡例>〇:評価対象部位,一:評価対象外

- 3. 評価方針について
- 3.1 支持構造物の評価方針
 - (1) 温度評価

火炎からの輻射を受けた時の,支持構造物構成部材の温度上昇を 評価する。飛来物防護ネットは至近で航空機墜落火災が発生するこ とを踏まえ,直近の部材はその板厚によらず耐火被覆 2mm を施工す る。また,耐火被覆の施工範囲は,別添-5の必要離隔距離表を基 に設定する。

耐火被覆施工後の支持構造物構成部材が許容温度内であることを, 耐火試験にて確認する。

耐火試験による確認の対象とする部材は,飛来物防護ネットの支持架構を構成する部材のうち,最小板厚であるブレース材(板厚 6mm)とし,耐火被覆 2mm を施工し許容温度以下となることを確認する。

(2) 構造強度の評価

波及的影響を及ぼし得る施設である飛来物防護ネットは、その許容温度が 450℃であり、一時的に鋼材の強度低下が発生する。そのため、強度低下が発生した場合においても、支持架構は必要な構造 強度を維持していることを評価する。

評価においては、固定荷重、積雪荷重及び風荷重を考慮する。

- 4. 評価結果
- 4.1 支持構造物の評価結果
 - (1) 温度評価

飛来物防護ネットの構成部材と必要離隔距離の関係を第4-1表に 示す。第4-1表から支持架構,防護板,補助防護板それぞれの耐火 被覆の施工範囲を第4-1図,第4-2図及び第4-3図に示す。また, 飛来物防護ネットの支持架構に取り付けられる防護ネットについて は,飛来物に対する防護機能に影響する部材は耐火被覆を施工しな いことから,施工対象外となる防護ネット取付金物周辺の施工範囲 及び防護ネット(車両用扉)周辺の施工範囲を第4-4図及び第4-5図 に示す。

耐火被覆を施工しない部材は必要離隔距離表から,許容温度を満足する部材となることを確認した。

耐火被覆を施工する部材のうち,最小板厚はブレース材の板厚 6mm(H形鋼)である。そのため、本部材を包絡する当社の実施した耐 火試験結果を第4-6回に示す。試験結果より、許容温度内であるこ とを確認した。耐火試験の条件を別添-4に示す。 なお、中心鋼材をモルタルと鋼管で覆う複合材である座屈拘束ブ レースについて、鋼管(板厚 6mm 以上)へ耐火被覆を施工することに より、中心鋼材も許容温度以下となる。

また,航空機墜落火災時の耐火被覆の発泡と防護ネットのワイヤ ロープ等の部材との干渉については,熱を受け発泡した耐火被覆は 柔らかく周囲の部材(ワイヤロープ等)があった場合でもそれらを避 けて包み込むように発泡が進み断熱層を形成するため,耐火性能へ の影響はない。防護ネットの飛来物防護機能は喪失するが別紙-2 に記載のとおり,復旧までの期間中に竜巻の影響を考慮する必要は ない。

No	材質	板厚	必要離隔距離	備考
		28mm	Om	
2		13mm	4 m	火炎の至近にあるため、離
3		20mm	1 m	隔距離に関わらず耐火被覆
4		18mm	3 m	を施工
5		13mm	4 m	
6		10mm	6 m	
$\overline{\mathcal{O}}$		13mm	$4\mathrm{m}$	
8		18mm	3 m	
9	炭素鋼	10mm	6 m	
10		9mm	7 m	
1		$12\mathrm{mm}$	$4\mathrm{m}$	必要離隔距離を満足しない
12		9mm	7 m	部材に耐火被覆を施工
13		8mm	8 m	
14		10mm	6 m	
15		9mm	7 m	
16		13mm	4 m	
(17)		10mm	6 m	

第4-1表 構成部材と必要離隔距離の関係

第4-1図 飛来物防護ネット(1/4) 全体図

外外火 04-別紙 3-11

第4-1図 飛来物防護ネット(2/4) A-A 及び B-B 断面

第4-1図 飛来物防護ネット(4/4) D-D, E-E, H-H 及び I-I 断面

外外火 04-別紙 3-14

^{₩3} Ŧ b

第 4-2 図 飛来物防護ネット 防護板の耐火被覆施工範囲図

第 4-3 図 人員開口部周辺の塗装状況

第 4-4 図 防護ネット取付金物周辺の耐火被覆施工範囲図

第4-5図 防護ネット(車両用扉ネット)周辺の耐火被覆施工範囲図

- * 全ての竜巻防護対策設備を構成する部材を調査した結果から,最小 板厚 6mmの耐火試験を実施している。 第 4-6 図 t6mm炭素鋼 耐火被覆厚 2mmの耐火試験結果
- (2) 構造強度の評価

航空機墜落火災によって、支持架構が熱せられ鋼材の温度が 450℃となり、鋼材の有効降伏応力度が低下した場合においても、 飛来物防護ネットの支持架構が必要な構造強度を維持されること を、以下の方法にて確認する。

<確認方法>

 ・ 常温時の部材に生じる単位面積あたりに生じる応力度と、高 温状態を想定し常温時の鋼材の許容応力を 2/3 倍した値の比 率を算出する。

<評価条件>

- ・荷重条件は,耐震強度計算などで設定している,固定荷重,積 雪荷重*1及び風荷重*2を組み合わせて評価する。
 - *1 積雪高さ 190cm ×0.35 倍
 - *2 基準風速 34m/s
- 鋼材が450℃時の許容応力は常温時の2/3とする。
- ・ 座屈拘束ブレースは、地震力のような大きな水平荷重が支持 架構に作用した際に、塑性変形することでその他の支持架構 部材に作用する地震荷重を低減させるものである。本強度評 価で想定する水平荷重は地震荷重と比べて相対的に小さいた め、同ブレースにわずかな塑性変形しか発生しないことか ら、評価対象外とする。

上記の内容に基づき実施した評価結果を第4-2表に示す。

その結果,常温時の最大応力度比に対し,航空機墜落火災による 温度上昇によって,別添-5で示したとおり鋼材の有効降伏応力度 が2/3に低下した場合であっても飛来物防護ネットの支持架構は, 応力度比が1を下回っており,必要な構造強度が維持されているこ とを確認した。

部位最大応力度比 (常温)最大応力度比* (450℃)柱0.350.53大はり0.240.36			
柱0.350.53大はり0.240.36	部位	最大応力度比 (常温)	最大応力度比* (450℃)
大はり 0.24 0.36	柱	0.35	0.53
	大はり	0.24	0.36
小はり 0.37 0.55	小はり	0.37	0.55
トラス柱 0.29 0.43	トラス柱	0.29	0.43
鉛直ブレース 0.28 0.42	鉛直ブレース	0.28	0.42
水平ブレース 0.14 0.21	水平ブレース	0.14	0.21

第4-2表 飛来物防護ネットの評価結果

注記 * 引張, 圧縮, 曲げ, せん断の許容応力度を 2/3 倍した際の応力度比を算出

以上