【公開版】

日本原燃株式会社				
資料番号	外外火 19 R <u>3</u>			
提出年月日	令和4年 <u>9</u> 月 <u>8</u> 日			

設工認に係る補足説明資料

外部火災への配慮が必要な施設及び 危険物貯蔵施設等の許容温度及び許容応力の 設定の考え方について

- 1. 文章中の下線は、R2からR3への変更箇所を示す。
- 2. 本資料 (R3) は,2022 年 8 月 23 日のヒアリングでの以下のコメントを踏まえ記載を修正したものである。
- ・別添 4-2 冷却水温度の最高使用温度の考え方及び許可からの変更点について記載を拡充した。
- ・別添 3-1 のステンレス鋼の各パラメータの単位について明記した。
- ・別添 3-1 第 2-3 図について図の説明を追加した。
- ・別添 4-1A 重油について詳細確認を行っている理由について明確にした。

1.	概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	許容温度を設定し影響評価を行う対象施設・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	許容温度の設定の考え方について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4.	許容応力を設定し影響評価を行う対象施設・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
5.	許容応力の設定の考え方について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	別添-1:建屋の許容温度について	
	別添-2:屋外の外部火災防護対象施設の許容温度について	
	別添一3:外部火災防護対象施設等に対して波及的影響を及ぼし得る施	ij
	設の許容温度について	
	別添-4:敷地内の危険物貯蔵施設等の許容温度について	

:商業機密の観点から公開できない箇所

1. 概要

本資料は,再処理施設及び MOX 燃料加工施設の第1回設工認申請のうち, 以下に示す添付書類の補足説明に該当するものである。

- ・再処理施設 添付書類「<u>VI</u>-1-1-1-<u>3</u>-3 外部火災への配慮 が必要な施設の設計方針及び評価方針」
- ・再処理施設 添付書類「 $\underline{\mathbf{W}}$ -1-1-1- $\underline{\mathbf{3}}$ -4 外部火災防護における評価結果」
- ・MOX 燃料加工施設 添付書類「V-1-1-1-3-3 外部火災への配慮が必要な施設の設計方針及び評価方針」
- ・MOX 燃料加工施設 添付書類「V-1-1-1-3-4 外部火災防護における評価結果」

上記添付書類において,外部火災の評価で必要となる外部火災への配慮 が必要な施設及び敷地内の危険物貯蔵施設等の評価において用いる許容温 度及び許容応力並びにそれらの設定根拠について示している。

本資料では、外部火災への配慮が必要な施設のうち、許容温度及び許容 応力を設定し影響評価を行っている外部火災の影響を考慮する施設及び重 大事故等対処設備並びに許容温度を設定し森林火災や近隣の産業施設の火 災からの影響評価を行っている敷地内の危険物貯蔵施設等について補足説 明する。

本資料において示す外部火災への配慮が必要な施設及び危険物貯蔵施設等の許容温度及び許容応力の設定の考え方については、再処理施設及びMOX燃料加工施設の今回申請対象以外の建屋や屋外構築物に対しても適用されるものである。

また,廃棄物管理施設の設工認申請については別途整理するものとする。

2. 許容温度を設定し影響評価を行う対象施設

外部火災の影響評価においては,外部火災の影響を考慮する施設及び重 大事故等対処設備の温度が許容温度以下であることを確認し,必要な安全 機能を損なわないことを確認する。

また,敷地内の危険物貯蔵施設等への森林火災及び近隣の産業施設の火災の影響を考慮しても,貯蔵物の温度が許容温度以下であることを確認し,外部火災防護対象施設等の安全機能を損なわないことを確認する。

以下に、許容温度を設定し影響評価を行う対象を示す。

(1) 外部火災の影響を考慮する施設

- a. 外部火災防護対象施設を収納する建屋
- b. 屋外の外部火災防護対象施設
- c. 建屋内の施設で外気を取り込む外部火災防護対象施設

外外火 19-1

- d. 飛来物防護板から影響を受ける外部火災防護対象施設
- e. 外部火災防護対象施設等に波及的影響を及ぼし得る施設
- f. 使用済燃料収納キャスクを収納する建屋
- (2) 重大事故等対処設備
 - a. 重大事故等対処設備を収納する建屋
 - b. 屋外の重大事故等対処設備
 - c. 可搬型重大事故等対処設備
- (3) 敷地内の危険物貯蔵施設等
- 3. 許容温度の設定の考え方について

前項2. において示した許容温度を設定し影響評価を行う外部火災への配慮が必要な施設及び敷地内の危険物貯蔵施設等について、それぞれ許容温度の設定の考え方を示す。

- (1) 外部火災の影響を考慮する施設
 - a. 外部火災防護対象施設を収納する建屋

外部火災防護対象施設を収納する建屋は、建屋外壁の健全性を維持し、内部への熱の影響を防ぐことで、建屋内の外部火災防護対象施設の安全機能を損なわない設計とする。建屋外壁の健全性を維持する温度として、コンクリートの圧縮強度が、常温時とほぼ同じ強度を維持することができる温度とする。

許容温度の設定根拠の詳細を,別添-1に示す。

b. 屋外の外部火災防護対象施設

安全冷却水 B 冷却塔は、冷却水温度等の上昇による系統への影響、機器の機能喪失の防止及び支持架構等の構造を維持することで、安全機能を維持する設計とする。これに関して、冷却機能に影響を与えない温度を許容温度とする。

安全冷却水 B 冷却塔の許容温度の設定根拠の詳細については、別添-2 に示す。

他の屋外の外部火災防護対象施設については,次回以降に詳細を説明する。

- c. 建屋内の施設で外気を取り込む外部火災防護対象施設 建屋内の施設で外気を取り込む外部火災防護対象施設については, 当該設備の申請に合わせて次回以降に詳細を説明する。
- d. 飛来物防護板から影響を受ける外部火災防護対象施設 飛来物防護板から影響を受ける外部火災防護対象施設については, 次回以降に詳細を説明する。

e. 外部火災防護対象施設等に波及的影響を及ぼし得る施設 外部火災防護対象施設に波及的影響を及ぼし得る施設については, 構造を維持することで倒壊等により波及的影響を及ぼさない温度を許 容温度とする。

外部火災防護対象施設等に波及的影響を及ぼし得る施設の許容温度 の設定根拠の詳細については、別添-3に示す。

f. 使用済燃料収納キャスクを収納する建屋

使用済燃料収納キャスクを収納する建屋については、構造を維持することで倒壊等により使用済燃料収納キャスクに波及的破損を与えない設計とする。建屋の構造を維持する温度として、コンクリートの圧縮強度が、常温時とほぼ同じ強度を維持することができる温度を許容温度とする

許容温度の設定根拠の詳細を, 別添-1に示す。

(2) 重大事故等対処設備

a. 重大事故等対処設備を収納する建屋

重大事故等対処設備を収納する建屋については、建屋外壁の健全性を維持し、内部への熱の影響を防ぐことで、建屋内の重大事故等対処設備の安全機能を損なわない設計とする。建屋外壁の健全性を維持する温度として、コンクリートの圧縮強度が、常温時とほぼ同じ強度を維持することができる温度を許容温度とする。

許容温度の設定根拠の詳細を、別添-1に示す。

b. 屋外の重大事故等対処設備

屋外の重大事故等対処設備については、当該設備の申請に合わせて次回以降に詳細を説明する。

c. 可搬型重大事故等対処設備

可搬型重大事故等対処設備については,当該設備の申請に合わせて 次回以降に詳細を説明する。

(3) 敷地内の危険物貯蔵施設等

敷地内の危険物貯蔵施設等は森林火災及び石油備蓄基地火災の熱影響を考慮しても、火災又は爆発を防止できる設計としていることから、貯蔵容器そのものに許容温度を設定するのではなく、貯蔵する危険物等の種類に応じて内容物に許容温度を設定する。

敷地内の危険物貯蔵施設等に貯蔵された危険物等は、密閉されたタンクやボンベに保管されている上、防火帯や建屋により防護されており、森林火災及び近隣の産業施設の火災による火災源から離隔距離が確保されているため、直接引火することは考えにくいことから、発火点を許容

温度とする。

敷地内の危険物貯蔵施設等の許容温度の設定根拠の詳細については, 別添-4に示す。

4. 許容応力を設定し影響評価を行う対象施設

敷地内の危険物貯蔵施設等の爆発に対しては、人体に影響を与えない爆風圧0.01MPa以下となる危険限界距離以上の離隔距離を確保することで,安全機能を維持する設計とすることを基本としている。

敷地内の危険物貯蔵施設等に隣接し、危険限界距離以上の離隔距離を確保できない外部火災への配慮が必要な施設については、爆風圧による荷重が許容応力以下であり影響を受けないことを確認する。

以下に, 許容応力を設定し影響評価を行う対象を示す。

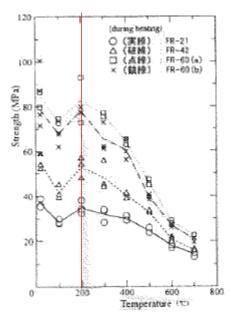
なお、敷地内の危険物貯蔵施設等に隣接しており、危険限界距離以上の 離隔距離を確保できない敷地内の危険物貯蔵施設等はないことから、影響 評価対象施設はない。

- (1) 外部火災の影響を考慮する施設
 - a. 外部火災防護対象施設を収納する建屋
- 5. 許容応力の設定の考え方について
 - (1) 外部火災の影響を考慮する施設
 - a. 外部火災防護対象施設を収納する建屋

危険限界距離以上の離隔距離を確保できない外部火災防護対象施設 を収納する建屋の許容応力の設定の考え方については、当該施設の申 請に合わせて次回以降に詳細を説明する。

別添 - 1 建屋の許容温度について

1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	建屋の許容温度について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1


1. はじめに

本資料は、補足説明資料「外外火 19 外部火災への配慮が必要な施設及び危険物貯蔵施 設等の許容温度及び許容応力の設定<u>の考え方</u>について」における建屋の許容温度について 説明する。

2. 建屋の許容温度について

建屋の許容温度である、コンクリートの圧縮強度が常温時とほぼ同じ強度を維持する ことができる温度を考慮する。

文献 [1]に基づき,温度変化によるコンクリートの圧縮強度の低下を第2-1図に示す。温度変化によるコンクリートの圧縮強度の低下については、常温から100℃でやや圧縮強度が低下しているものの、200℃では常温とほぼ同じ強度まで回復し、その後温度の上昇とともに圧縮強度が低下する。これらのことから構造維持する温度として200℃を許容温度とすることは妥当である。

出典:高温度における高強度コンクリートの力学的特性に関する基礎的研究(日本建築学会構造系論文集 第515 号 163-168 1999 年1 月)

第2-1図 温度変化によるコンクリート圧縮強度の低下

[1] 高温度における高強度コンクリートの力学的特性に関する基礎的研究 (日本建築学会構造系論文集 第515 号 163-168 1999 年1 月)

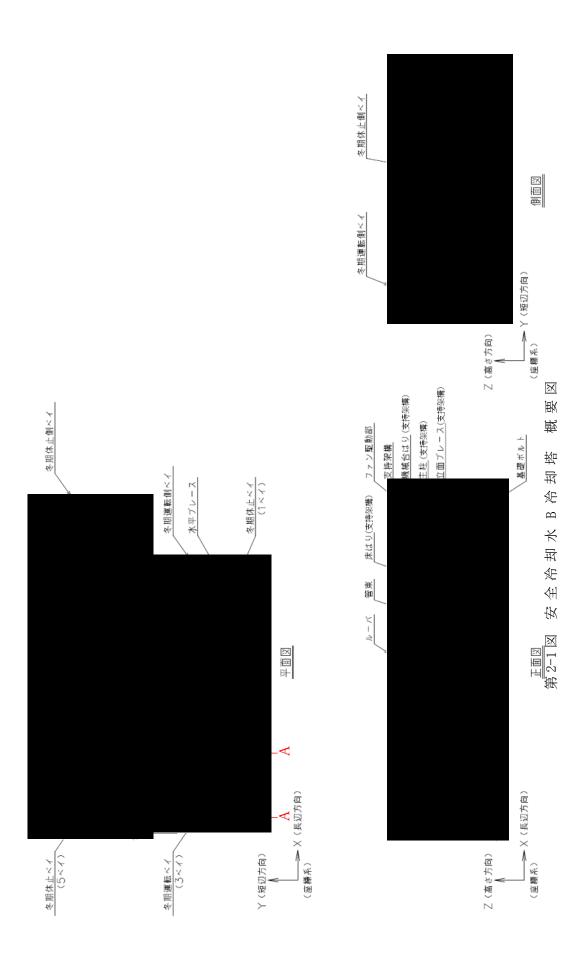
別添-2

屋外の外部火災防護対象施設の許容温度について

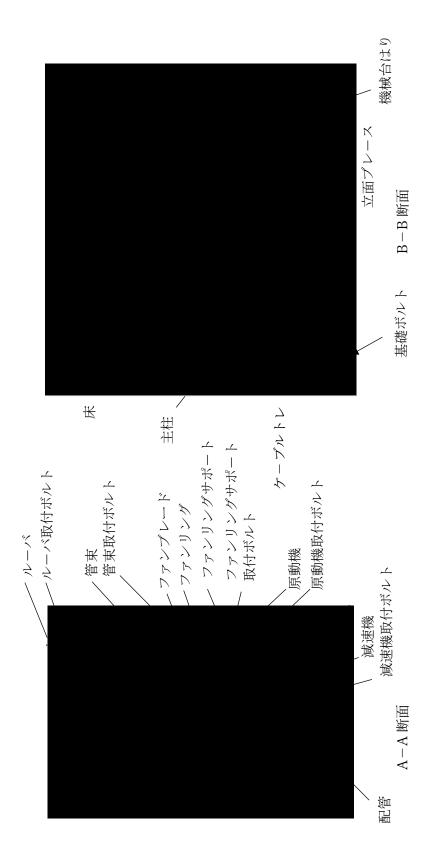
1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	屋外の外部火災防護対象施設の許容温度について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1

1. はじめに

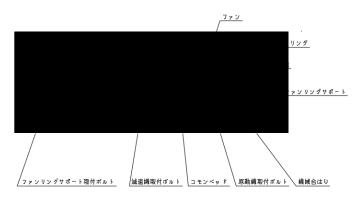
本資料は、補足説明資料「外外火 19 外部火災への配慮が必要な施設及び危険物貯蔵 施設等の許容温度及び許容応力の設定の考え方について」における冷却塔の許容温度に ついて説明する。


2. 屋外の外部火災防護対象施設の許容温度について

(1) 安全冷却水B冷却塔


安全冷却水 B 冷却塔に対し、外部火災の影響評価が必要な対象を第 2-1 表に示す。 また、安全冷却水 B 冷却塔の概要図を第 2-1 図に、安全冷却水 B 冷却塔の断面概要図 を第 2-2 図に、ファン駆動部の構造図を第 2-3 図に示す。安全冷却水系(再処理施設本 体用)を構成する機器及び部位の詳細については、補足説明資料 「外外火 04 航空 機墜落による火災の防護設計について」に示す。

第 2-1 表 安全冷却水 B 冷却塔の評価対象


機器	部位	外部火災の影響
冷却水 (配管の内部流体)		配管出口温度の冷却水温度上昇により,冷却機能の低下が想定される。
管束・配管	チューブサポート	チューブサポートの温度上昇による強度低下により変形した場合, 伝熱管の損傷が想定される。
	管束フレーム	管束フレームの温度上昇による強度低下により変形した場合, 伝熱管の損傷が想定される。
	ボルト類	ボルト強度低下による破損により、管束・配管の損傷が想定される。
	ファンリング	ファンリングの変形により、ファンブレードの故障が想定される。
	ファンブレード	ファンブレードの損傷による冷却機能への影響が想定される。
	減速機	減速機の損傷による冷却機能への影響が想定される。
フ	原動機	原動機の損傷による冷却機能への影響が想定される。
アン駆	ファンリングサポ ート	ファンリングサポートの強度低下により,ファンリングの変形 及びファンブレードの破損が想定される。
動部	ボルト類	ボルト強度低下による破損により、ファンリングの変形及びファンブレードの破損が想定される。
	コモンベッド	コモンベッドの変形により、減速機及び原動機の故障が想定される。
	ケーブルトレイ	ケーブルトレイの破損により、ケーブルの断線等の故障が想定される。
	主柱	支持架構の強度低下により、冷却塔の倒壊等の影響が想定され
	床はり	<u> వ</u> .
) 持	機械台はり	
支持架構	立面ブレース	
1114	水平ブレース	
	基礎ボルト	

外外火 19-別添 2-2

第 2-2 図 安全冷却水 B 冷却塔 断面概要図

第2-3図 ファン駆動部構造図

a. 冷却水温度の最高使用温度

冷却水温度については、外部火災による短期的な温度上昇に対し、安全機能を損な わないことを確認する。外部火災で想定する1日以下の短期的な温度上昇に対し,冷 却水温度は、設備の健全性を維持するため耐圧強度設計で考慮している温度以下で あること及び公衆安全の観点から貯蔵している溶液が沸騰しないことが必要である。

冷却水温度は,「V-1 主な容器及び管の耐圧強度及び耐食性に関する設計の基本 方針」に記載される最高使用温度 ℃により,各設備の設計を行っている。

これに対し、冷却水温度を■℃と設定し、実際の伝熱面積により貯槽の温度を評価 したとしても, 貯槽の温度は沸点に至ることはなく, 貯槽の崩壊熱を除去できる温度 であることを確認した。以上のことから冷却水温度について ℃を許容温度として 評価することは妥当である。

なお,事業指定(変更許可)において,通常運転時の冷却塔出口温度として設定した ■℃については,設計において必要な伝熱面積を有する事の確認を行うために設定 した温度であり、長期的な熱バランスを確認するための数値であることから、短期的 な温度上昇に対する安全評価に用いるのに適切な、■℃を許容温度とする。

b. 機能を維持するために必要な機器の最高使用温度

機能を維持するために必要な機器については、運転性能を維持するためにメーカ が定めた仕様である耐久温度又は使用可能温度を許容温度とする。外部火災は短期 的な温度上昇であることに対して、メーカ仕様は長期的な使用環境を考慮したもの であることから、この温度を許容温度とすることは妥当である。

また、メーカ仕様以外の許容温度として、原動機の運転中及び鋼材については、以 下のとおり許容温度を設定する。

(a) 原動機の運転中の許容温度

安全冷却水 B 冷却塔に使用される原動機の は, Cの耐熱を有している。

設計上考慮される運転時中の の温度上昇は,

℃以下では の損傷は考えにくい。

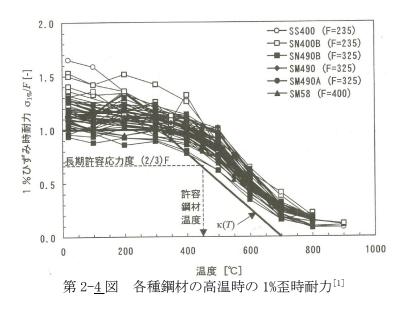
よって、短期的な温度上昇に対して、原動機の許容温度は ■℃とすることは 妥当である。

(b) 鋼材の許容温度

ファンリング,ファンリングサポート,コモンベッド,ケーブルトレイといっ た鋼材については、構造を維持することが必要であることから、鋼材の高温時に おける有効降伏応力度に関する文献[1]に基づき, を許容温度とする。

c. 支持架構の構造強度を維持する温度

支持架構については主に鋼材で構成されており、構造を維持するため、鋼材の高温 時における有効降伏応力度に関する文献□に基づき鋼材の強度が維持される 325℃ を許容温度とする。


外外火 19-別添 2-5

鋼材の高温時における有効降伏応力度に関する文献^[1]については, 再処理施設で使用される鋼材へ適用可能であることから, これに基づき許容温度を設定することは妥当である。

安全冷却水系(再処理設備本体用)に該当する安全冷却水 B 冷却塔及び安全冷却水系(安全冷却水 B 冷却塔周りの配管)以外の施設の許容温度については,各施設の申請に合わせて次回以降に詳細を説明する。

参考 再処理施設で使用される鋼材への適用性について

屋外の外部火災防護対象施設等を構成する支持構造物の主要部材である炭素鋼については、SS400、SN490B等の材質から構成される。これら各種鋼材の高温時の1%歪時耐力の測定結果を第2-3図に示す。これら部材についても、以下の測定結果から、文献[1]を再処理施設で使用される鋼材に適用することは可能である。

[1] 建築火災のメカニズムと火災安全設計,日本建築センター

別添-3

外部火災防護対象施設等に対して 波及的影響を及ぼし得る施設の許容温度について

1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	波及的影響を及ぼし得る施設の許容温度について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1

1. はじめに

本資料は、補足説明資料「外外火 19 外部火災への配慮が必要な施設及び危険物貯蔵施設等の許容温度及び許容応力の設定<u>の考え方</u>について」における外部火災防護対象施設等に対して波及的影響を及ぼし得る施設(以下、「波及的影響を及ぼし得る施設」という。)の許容温度について説明する。

2. 波及的影響を及ぼし得る施設の許容温度について

波及的影響を及ぼし得る施設については,一時的に強度が低下しても構造を維持することで倒壊等により波及的影響を及ぼさない温度を許容温度とする。

許容温度を設定する対象としては,再処理施設において用いられる炭素鋼及びステンレス鋼とする。

炭素鋼の許容温度は,一時的に強度が低下しても構造を維持する温度として,文献^{[1][2]}に基づき,鋼材の有効降伏応力度が 2/3 まで低下した際の温度とする。

なお、ステンレス鋼については、竜巻防護対策設備の飛来物防護ネットの防護板(鋼板)に使用される部材であり、支持鋼材ではないが、構造を維持する鋼材強度以上の強度を確保することとし、炭素鋼と同様に有効降伏応力度の低下が 2/3 となる温度を許容温度とする。ステンレス鋼の炭素鋼の有効降伏応力度が 2/3 となる 425℃付近の温度による有効降伏応力度の変化は、発電用原子力設備規格^[3]に基づき、以下のとおり評価できる。

ここで、文献 $^{[2]}$ の考え方と同様に、高温時の耐力として 1%ひずみを考慮し、有効降伏応力度を評価した結果を第 2-3 図に示す。本結果から、有効降伏応力度が 2/3 となる温度は 525 $^{\circ}$ $^{\circ}$ である。

よって、ステンレス鋼に対して炭素鋼の許容温度の450℃を適用することは妥当である。

315°C≦T≦650°C

$$\sigma \leq \sigma_{\rho}$$

$$\varepsilon_e = \frac{\sigma}{E} \cdots (\sharp 2.1 - 1)$$

$$\varepsilon_{
ho} = 0 \quad \cdots \quad (\pm 2.1-2)$$

 $\sigma \geq \sigma_{\alpha}$

$$\varepsilon_e = \frac{\sigma}{E} \cdots \ (\stackrel{}{\operatorname{dl}} 2.1-3)$$

$$\varepsilon_p = \left(\frac{\sigma - \sigma_p}{K}\right)^{\frac{1}{m}} \cdots ($$
 $\rightleftharpoons 2. 1-4)$

 $K=4.34501\times10^{2}-1.75473\times10^{-1}T$: (MPa)

 $m=0.279395+7.749\times10^{-5}T$

 $\sigma_{o} = \sigma_{v} - K(0.002)^{m} : (MPa)$

ε_e: 弾性ひずみ (mm/mm)

ε_p: 塑性ひずみ (mm/mm)

σ:応力<u>(MPa)</u>

外外火 19-別添 3-1

σ_ρ: 塑性応力(MPa)

σ_y:設計降伏応力(MPa)

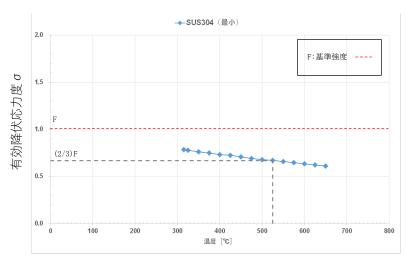
(降伏応力を確認するため σ_y は、第 2-1 図の設計降伏点 S_y とする。)

E:縦弾性係数(MPa)(第2-2図参照)

T : 温度<u>(℃)</u>

	温度 ℃	SUS304	SUS316	316FR鋼 板、鍛鋼品	SUS321 伝熱管	2%Cr-1Mo鋼 (NT) 板	2½Cr-1Mo鋼 (NT) 伝熱管	改良9Cr- 1Mo鋼 板、鍛鋼品
	-30~40	205	205	205	205	315	205	414
	65	184	189	186		293	197	403
<u>σ</u> _y	75		_	182	185		_	401
<u> </u>	100	170	176	172	173	282	192	396
	125	161	168	163	_	276	190	393
	150	154	161	156	156	. 271	187	390
	175	148	154	149	_	267	186	387
	200	144	148	143	143	263	185	385
	225	139	144	137	138	260	185	384
	250	135	139	133	133	258	185	382
	275	132	136	129	130	256	185	380
	300	129	132	126	127	253	185	377
	325	126	129	123	125	251	185	374
	350	123	127	121	123	248	185	369
	375	121	125	119	121	245	185	364
	400	118	123	118	120	240	184	357
	425	117	122	116	119	234	184	349
	450	114	119	115	119	228	178	338
	475	111	117	114	119	222	174	326
	500	109	116	114	119	213	170	312
	525	108	114	113	118	206	166	295
	550	106	112	112	117	196	162	275
	575	104	111	111	115	_	-	253
	600	102	109	110	114	_	-	227
	625	100	107	108	112	_	_	199
	650	98	105	106	110		_	166
				II-	13-77			

出典:発電用原子力設備規格 設計・建設規格(2013年追補) [3]


第 2-1 図 発電用原子力設備規格 設計・建設規格 (2013 年追補) の SUS304 の設計降伏点 σ_y

外外火 19-別添 3-2

表 添付 13-I-15	材料の縦弾性係数	\boldsymbol{E}	(×1×10 ³ MPa)
--------------	----------	------------------	---------------------------

	温度 ℃	SUS304, SUS316, 316FR鋼および SUS321	2%Cr-1Mo鋼(NT)	改良9Cr-1Mo鋼
<u>E</u>	-75	201	217	220
브	. 25	195	210	213
	100	189	206	208
	150	186	202	205
	200	183	199	201
	250	179	196	198
	300	176	192	195
	350	172	188	191
	400	169	184	187
	450	165	180	183
	500	160	175	179
	550	156	169	174
	600	151	—	168
	650	146	· -	161

第2-2 図 発電用原子力設備規格 設計・建設規格(2013年追補)の SUS304 の縦弾性係数 E

第2-3図 ステンレス鋼の高温時の有効降伏応力度

- [1] 2001 年版 耐火性能検証法の解説及び計算例とその解説,国土交通省住宅局 建築指導課他
- [2] 建築火災のメカニズムと火災安全設計,日本建築センター
- [3] 発電用原子力設備規格 設計・建設規格(2013年追補)<第Ⅱ編 高速炉規格>

別添-4

敷地内の危険物貯蔵施設等の許容温度について

1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	敷地内の危険物貯蔵施設等の許容温度について・・・・・・・・・・・・・・・	1

1. はじめに

本資料は、補足説明資料「外外火 19 外部火災への配慮が必要な施設及び危険物貯蔵施設等の許容温度及び許容応力の設定<u>の考え方</u>について」における敷地内の危険物貯蔵施設等の許容温度について説明する。

2. 敷地内の危険物貯蔵施設等の許容温度について

敷地内の危険物貯蔵施設等の許容温度については、メーカが作成する SDS に記載される発火点に基づき、許容温度を考慮する。タンク等により保管された危険物等は、直接火炎にさらされないことから、発火点を許容温度とすることは妥当である。

なお,事業指定(変更許可)において,軽油等を包絡するよう危険物の許容温度を 200℃ として設定しているが,屋外の危険物貯蔵施設が全て A 重油であることから, 240℃を 許容温度とする。

a. A 重油の許容温度の設定及び根拠について

A 重油を内包する危険物貯蔵施設等については、許容温度 240℃を評価において用いる。この設定根拠を以下に示す。

- ・危険物取扱主任者に関連する文献 [1] において、重油の発火点は 250 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 250 $^{\circ}$ $^{\circ}$ と記載されており、また、新石油事典 [2] においては重油の発火点が約 250 $^{\circ}$ とされている。
- ・燃料油類の発火点の測定試験は、加熱炉内の試料を加熱していき、自然に発火が確認された最低温度を発火点とするという手順で行うものであり、数値の丸め処理を行い SDS^[3]には約240℃と記載しているが、第2-1表に示す SDS に記載される発火点の測定試験結果は240℃を超えている。
- ・以上より、一般的に A 重油を含む重油の発火点の下限値が 250℃であること及び参照した A 重油の発火点の測定試験結果が 240℃を超えていることから、240℃を A 重油の許容温度として用いることは妥当である。

第 2-1 表 SDS^[3]に記載の発火点の測定試験結果

- [1] 危険物取扱主任者試験対策本 第3石油類 重油の性質 (発火点 250℃~380℃と記載)
- [2] 新石油事典 初版(1982年11月20日) 朝倉書店発行 (P874表10.11.2石油製品類の燃焼特性の一例にて 重油 発火点約250℃)
- [3] JX 日鉱日石エネルギー. ENEOS A 重油. 安全データシート. 2012-12-10.