島根原子力発電所第2号機 審査資料						
資料番号	NS2-補-027-02 改 01					
提出年月日	2022 年 7 月 21 日					

建物ー機器連成解析に関する補足説明資料

2022年7月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

- 1. 建物-機器連成解析における材料物性の不確かさを考慮した 設計用荷重の設定について
- 2. 建物-機器連成解析における解析モデルの設定

1. 建物-機器連成解析における材料物性の不確かさを 考慮した設計用荷重の設定について

目次

1.	概要	1
2.	建物-機器連成解析における材料物性の不確かさの考慮 ・・・・・・・・・・・	5
2.	1 材料物性の不確かさを考慮した解析に用いる入力地震動 ・・・・・・・・・・	6
2.	2 材料物性の不確かさを考慮した設計用荷重の設定 ・・・・・・・・・・・・・・・	6

1. 概要

本資料は、建物-機器連成解析における材料物性の不確かさを考慮した設計用荷重の 設定方法を示すものである。解析モデルとしては、原子炉建物、原子炉格納容器、ガンマ 線遮蔽壁、原子炉圧力容器ペデスタル、原子炉圧力容器、原子炉内部構造物等を連成させ た原子炉本体地震応答解析モデルを設定する(図1-1~図1-3参照)。

なお,本資料が関連する工認図書は以下のとおり。

・「WI-2-2-1 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の基礎の 地震応答計算書」

図1-1 原子炉本体地震応答解析モデル(水平方向(NS方向))(単位:m)

図1-3 原子炉本体地震応答解析モデル(鉛直方向)(単位:m)

2. 建物-機器連成解析における材料物性の不確かさの考慮

建物-機器連成解析における材料物性の不確かさの考慮には、材料物性の不確かさを考慮した 建物-機器連成解析の結果を踏まえる。具体的には、添付書類「VI-2-2-2 原子炉建物の地震応 答計算書」に基づいた材料物性の不確かさを考慮する。

表 2-1 に基本ケース及び材料物性の不確かさを考慮する検討ケースの諸元を示す。

検討ケース	コンクリート 剛性	地盤物性	備考
ケース 1 (工認モデル)	設計基準強度	標準地盤	基本ケース
ケース2 (地盤物性+σ)	設計基準強度	標準地盤+σ (+10%, +20%)	
ケース3 (地盤物性-σ)	設計基準強度	標準地盤-σ (-10%, -20%)	

表 2-1 建物-機器連成解析において材料物性の不確かさを考慮する検討ケース

2.1 材料物性の不確かさを考慮した解析に用いる入力地震動

基本ケース及び材料物性の不確かさを考慮した解析の入力地震動については,全ての弾性設計用地震動Sd及び基準地震動Ssを用いる。

各検討ケースに用いる入力地震動を表 2-2 に示す。

表 2-2 各検討ケースに用いる入力地震動(水平及び鉛直方向)

	基準地震動及び弾性設計用地震動						
検討ケース	Ss-D	Ss-N1	Ss-N2 <mark>*</mark>	Ss-F1	Ss-F2	SJ_1	
	Sd-D	Sd-N1	Sd-N2	Sd-F1	Sd-F2	3u-1	
ケース 1 (基本ケース)	0	0	0	0	0	0	
ケース2 (地盤物性+σ)	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	
ケース3 (地盤物性-σ)	0	0	0	0	0	0	
· ↓ 北淮州雲勈。	c-N2 17 2	000 在自取	[]. 而 如 州 雪	の智祥ダム	(影本面)	の粗測記袋	

・ 基準地震動 Ss-N2 は、2000 年高取県四部地震の質祥タム (監査郎) の観測記録 に基づき策定したものであることから、原子炉本体地震応答解析モデルへの入 力として、Ss, Sd-N2 (NS) を NS, EW 方向入力し、Ss, Sd-N2 (EW) を NS, EW 方向入力す る。

2.2 材料物性の不確かさを考慮した設計用荷重の設定

材料物性の不確かさを考慮したケースの地震応答解析結果を踏まえて,設計用荷重 I を設定 する。設計用荷重 I の設定方法を以下及び図 2-1 に示す。

設計用荷重 I (材料物性の不確かさを考慮した設計用荷重)は、基本ケースの地震応答解析 結果から得られた荷重を1.2倍した値及び材料物性の不確かさを考慮したケース(不確かさケ ース)の地震応答解析結果から得られた荷重を1.0倍した値を包絡して作成する(表 2-3及 び表 2-4)。

図 2-1 設計用荷重 I の作成方法

	福 吉	せん断力(kN)				
名称	棕尚 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	39.400	000	194	109	000	
	37.060	222	184	162	222	
	34. 758	442	368	358	442	
	33.141	3670	3050	2770	3670	
	29 392	4390	3650	3340	4390	
	27.007	14100	12300	11100	14100	
原子炉格納容器	21.901	14800	12900	11700	14800	
	22. 932	15800	13700	12400	15800	
	19.878	16400	14200	12900	16400	
	16.825	17400	15200	13500	17400	
	13.700	17700	15400	13700	17700	
	11.900	18400	16200	14300	18400	
	10.100					
	29.962	3580	3430	2650	3580	
	26.981	4000	4000	2030	4800	
ガンマ線遮蔽壁	24.000	4890	4060	3830	4890	
	21.500	8000	7140	6130	8000	
	19 000	10800	9920	8510	10800	
	15 044	14300	12700	11500	14300	
原子炉圧力容器	10. 944	25700	23600	22300	25700	
ペデスタル	13.022	27700	25600	24600	27700	
	10.100					

表 2-3(1) 設計用荷重 I (せん断力, Sd) (1/4)

			せん断	·力(kN)	
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I
	37. 494	200	210	260	200
	36. 586	328	318	209	328
	35.678	694	673	565	694
	33. 993	2150	2080	1740	2150
	32.567	2430	2240	1980	2430
	31.557	4910	4730	3970	4910
	30, 369	6150	5920	4970	6150
	30.218	6520	6280	5260	6520
	20 101	1830	1700	1570	1830
	29.101	1860	1770	1520	1860
	28. 249	1950	1960	1420	1960
	27.317	2230	2220	1530	2230
原子炉圧力容器	26.687	2750	2720	1930	2750
	25. 414	3320	3260	2440	3320
	25. 131	3560	3480	2690	3560
	24. 419	3870	3770	3020	3870
	23.707	4300	4180	3390	4300
	22.995	4680	4560	3700	4680
	22.283	5160	5020	4080	5160
	21.064	5420	5280	4290	5420
	20.892	5790	5630	4590	5790
	20. 214	6210	6030	/020	6210
	19. 196	0210	0030	4320	0210
	18.250	9920	0000	0010	9520
	15.944	10400	9300	9210	10400

表 2-3(1) 設計用荷重 I (せん断力, Sd) (2/4)

		せん断力(kN)			
名称	標高 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I
	31. 557	67.8	64.0	69.0	69.0
	30. 369	479	409	488	488
気水分離器, スタンドパイプ.	29.181	732	638	735	735
シュラウドヘッド	28.249	810	707	915	915
及び炉心シュラリト 上部胴	27.317	810	707	010	010
	26.687	897	(85	910	910
	25. 414	1260	1110	1230	1260
	25.843	0000	9460	2020	2020
	25.414	2820	2460	3020	3020
	25.131	4170	3590	4400	4400
伝心シュ ラウド	24.419	4170	3590	4380	4380
炉心シュ クラト 中間胴	23 707	4000	3440	4180	4180
	22,005	3760	3220	3940	3940
	22. 995	3550	3110	3730	3730
	22. 283	3480	3100	3650	3650
	21.571				
	21.064	2800	2530	2980	2980
炉心シュラウド	20, 202	6260	5520	6670	6670
下部胴	20.092	6290	5540	6690	6690
	20.214	6360	5540	6740	6740
	19.196				

表 2-3(1) 設計用荷重 I (せん断力, Sd) (3/4)

			せん断	断力(kN)		
名称	標高 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	17.442	150	122	105	150	
制御棒駆動機構	16.345	179	162	135	179	
ハウジング (Ad aul)	15.248	121	109	90.8	121	
	14. 151	6.28	5.75	4. 02	6.28	
	13.054	113	102	84.9	113	
	25.843	0700	0000	0000	0000	
	25. 131	2720	2390	2830	2830	
	24. 419	1950	1740	1990	1990	
燃料集合体	23. 707	719	650	700	719	
	22.995	727	669	757	757	
	22, 283	1960	1750	2000	2000	
	21 571	2720	2360	2750	2750	
	21.571		_	_	_	
	21.071	394	376	258	394	
	20. 892	289	277	186	289	
制御持夺中体	10 525	115	108	70.4	115	
前仰悴条的官	19.535	98.7	93.2	65.1	98.7	
	18.856	282	270	183	282	
	18.178	410	398	267	410	
	17.499		_	_	_	
	17.499	460	444	301	460	
	16.508	68.0	64.6	52.2	68.0	
 前御 (^{(W W W W W W W W W W W W W W W W W}	15.644	43.1	39.2	31.6	43.1	
(內側)	14. 781	9.96	9.07	7.47	9.96	
	13.917	36.5	34.7	27.7	36.5	
	13.054					

表 2-3(1) 設計用荷重 I (せん断力, Sd) (4/4)

	画書	モーメント(kN・m)				
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	39.400	_	_	_	_	
	37.060	519	431	426	519	
	34. 758	1540	1280	1250	1540	
	33.141	7390	6090	5610	7390	
	29.392	23900	19800	18200	23900	
百乙后故如宏明	27.907	44600	37900	34300	44600	
原于炉俗枘谷岙	22.932	119000	102000	92000	119000	
	19.878	167000	144000	130000	167000	
	16.825	217000	187000	169000	217000	
	13.700	271000	234000	212000	271000	
	11.900	303000	262000	236000	303000	
	10.100	336000	291000	262000	336000	
	29.962					
	26.981	10700	10200	7900	10700	
ガンマ線遮蔽壁	24.000	20400	19000	16400	20400	
	21.500	38300	31900	30100	38300	
	19.000	64400	55400	49700	64400	
	15 044	105000	93500	80500	105000	
原子炉圧力容器	15. 944	203000	179000	155000	203000	
ペデスタル	13.022	278000	248000	216000	278000	
	10.100	359000	322000	286000	359000	

表 2-3(2) 設計用荷重 I (モーメント, Sd) (1/4)

			モーメン	ト (kN・m)	
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I
	37. 494	—	—	—	—
	36. 586	298	289	244	298
	35. 678	928	900	757	928
	33. 993	4540	4400	3680	4540
	32. 567	7910	7590	6490	7910
	31.557	12900	12400	10500	12900
	30.369	20200	19400	16300	20200
	30.218	21100	20400	17100	21100
	29.181	20400	19300	16700	20400
	28.249	20800	19100	16900	20800
	27.317	22000	19800	17800	22000
百乙烷厂力宏阳	26.687	23000	20800	18600	23000
原于炉庄刀谷岙	25.414	25900	23400	20900	25900
	25.131	26700	24200	21600	26700
	24.419	29100	26300	23500	29100
	23. 707	31700	28700	25600	31700
	22.995	34500	31700	28000	34500
	22. 283	37500	34900	30500	37500
	21.064	43000	41000	35100	43000
	20.892	43800	41900	35700	43800
	20.214	47100	45700	38500	47100
	19.196	66700	58500	51400	66700
	18.250	75600	66400	58500	75600
	15.944	98500	86800	78600	98500

表 2-3(2) 設計用荷重 I (モーメント, Sd) (2/4)

	<u> </u>					
	標高	モーメント(kN・m)				
名称	EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
気水分離器,	31. 557	_	—	_	_	
	30.369	80.6	76.0	81.9	81.9	
	29. 181	646	556	661	661	
シュラウドヘッド	28.249	1320	1140	1350	1350	
及び炉心シュフワド 上部胴	27.317	2070	1800	2100	2100	
	26.687	2630	2300	2670	2670	
	25.414	4240	3700	4220	4240	
	25.843		—			
	25. 414	1210	1060	1300	1300	
		5180	4580	5490	5490	
	25.131	6330	5540	6720	6720	
炉心シュラウド 中間胴	24. 419	9210	7950	9820	9820	
	23.707	12000	10400	12800	12800	
	22.995	14600	12600	15600	15600	
	22. 283	17100	14900	18300	18300	
	21.064	21300	18600	22700	22700	
	21.571		_	Ι		
	21 064	1420	1280	1510	1510	
炉心シュラウド	21.004	22700	19700	24200	24200	
下部胴	20. 892	23800	20500	25400	25400	
	20.214	28100	24100	29900	29900	
	19. 196	34500	29700	36800	36800	

表 2-3(2) 設計用荷重 I (モーメント, Sd) (3/4)

		モーメント(kN·m)				
名称	標高 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+ o)	ケース3 (地盤物性-σ)	設計用荷重 I	
	17.442	208	188	156	208	
出御枯取動扮#	16.345	13.1	12. 1	10.1	13.1	
前御俸極勤機構ハウジング	15.248	121	110	91.1	121	
(外側)	14. 151	123	111	93.1	123	
	13.054	_	_	_	_	
	25.843	—	—	—		
	25. 131	1940	1700	2020	2020	
	24. 419	3320	2940	3430	3430	
燃料集合体	23.707	3830	3370	3910	3910	
	22.995	3330	2900	3380	3380	
	22. 283	1940	1680	1960	1960	
	21.571	_	_	_	_	
	21.571	_	—	—	_	
	20.892	268	256	176	268	
	20.214	461	443	302	461	
制御棒案内管	19. 535	534	516	349	534	
	18.856	469	453	305	469	
	18.178	278	270	182	278	
	17.499	_		_		
	17.499	—	—	—	-	
	16 500	456	440	298	456	
制御梼馭動機構	10. 508	70.6	63.8	51.9	70.6	
いウジング	15. 644	18.1	16.5	13.9	18.1	
(四側)	14. 781	26.7	25.9	20.5	26.7	
	13.917	31.5	29.9	23.9	31.5	
	13. 054	_	_	_	_	

表 2-3(2) 設計用荷重 I (モーメント, Sd) (4/4)

		軸力(kN)			
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I
	39.400	91.1	83.9	72.3	91.1
	37.060	187	173	149	187
	34.758	631	584	503	631
	33. 141	1010	033	804	1010
	29.392	1620	1520	1220	1620
度之后也在合则	27.907	1630	1040	1320	1630
原子炉格納谷器	22.932	2070	1940	1680	2070
	19.878	2740	2580	2250	2740
	16.825	3170	2980	2630	3170
	13 700	4010	3770	3360	4010
	11 000	4320	4050	3620	4320
	10. 100	5270	4890	4400	5270
	29 962				
	26.001	2170	1880	1610	2170
ゴンション的を改め	20. 981	4670	3990	3460	4670
カンマ緑遮敝壁	24.000	7100	6010	5240	7100
	21.500	9340	7870	6880	9340
	19.000	11800	9940	8670	11800
百子后下力容哭	15.944	21900	18600	16100	21900
ペデスタル	13.022	24000	20600	17600	24000
	10.100				

表 2-3(3) 設計用荷重 I (軸力, Sd) (1/4)

	神子	軸力(kN)				
名称	你向 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	37.494	70 7	60 /	51 8	70.7	
	36. 586	150	101	110	150	
	35.678	153	131	112	153	
	33. 993	493	421	362	493	
	32.567	878	750	644	878	
	31.557	1590	1360	1170	1590	
	30, 369	1950	1670	1430	1950	
	30 218	2040	1750	1500	2040	
	20 181	2160	1840	1580	2160	
	20. 101	2350	2010	1730	2350	
	28. 249	2670	2280	1970	2670	
	27.317	2830	2420	2090	2830	
原子炉圧力容器	26.687	2990	2550	2200	2990	
	25. 414	3200	2740	2360	3200	
	25. 131	3270	2800	2420	3270	
	24. 419	3380	2890	2500	3380	
	23. 707	3510	3000	2590	3510	
	22.995	3610	3090	2670	3610	
	22.283	3760	3210	2780	3760	
	21.064	3850	3300	2850	3850	
	20.892	4040	2460	2000	4040	
	20. 214	4040	0400	2330	4040	
	19. 196	4250	3040	3140	4200	
	18.250	4370	3740	3230	4370	
	15.944	7740	6600	5700	7740	

表 2-3(3) 設計用荷重 I (軸力, Sd) (2/4)

	捕去	軸力(kN)				
名称	標高 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	31. 557	22 1	21 5	15.8	22 1	
	30.369	150	155	10.0	150	
気水分離器,	29. 181	159	155	114	159	
スタンドパイプ, シュラウドヘッド	28, 249	253	245	181	253	
及び炉心シュラウド	97 917	290	281	207	290	
上部胴	21.317	335	325	240	335	
	26.687	420	407	301	420	
	25.414					
	25.843	45.9	44 7	32 9	45.9	
	25.414	510	107	022	510	
	25.131	512	497	366	512	
伝われ ちゅう	24. 419	534	519	382	534	
炉心シュクリト 中間胴	23 707	566	550	405	566	
	23.101	597	580	428	597	
	22.995	628	610	450	628	
	22.283	669	650	479	669	
	21.064					
	21.571	07.8	03 6	71 0	07.8	
	21.064	91.0	55.0	71. 9	91.0	
恒心シュラウド	20.892	805	785	580	805	
アロシュノリト下部胴	20, 214	825	805	595	825	
	10, 106	865	844	625	865	
	19.190	1010	983	734	1010	
	17.419					

表 2-3(3) 設計用荷重 I (軸力, Sd) (3/4)

	神中	軸力(kN)				
名称	棕尚 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	25.843	201	945	010	901	
	25. 131	291	410	212	291	
	24. 419	480	410	355	486	
燃料集合体	23.707	681	574	497	681	
	22.995	873	736	638	873	
	22.283	1070	895	777	1070	
	21 571	1250	1050	915	1250	
	20. 202	1390	1170	1020	1390	
	20. 092	1440	1210	1060	1440	
	20. 214	1490	1260	1100	1490	
制御棒案内管	19. 535	1550	1300	1140	1550	
	18.856	1600	1340	1180	1600	
	18.178	1650	1390	1220	1650	
	17.499		_	_	_	
	17.499	1700	1430	1250	1700	
	16.508	122	113	90.4	122	
制御棒駆動機構 ハウジング	15.644	107	98.3	78.8	107	
(内側)	14. 781	90.7	83.8	67.3	90.7	
	13.917	75.0	60.4	55.7	75.0	
	13.054	75.0	09.4	55.7	75.0	
	17.419	100			100	
	16.345	126	117	93.6	126	
制御棒駆動機構 ハウジング	15.248	107	98.5	79.3	107	
(外側)	14. 151	87.1	80.6	64.9	87.1	
	13.054	67.8	62.7	50.5	67.8	

表 2-3(3) 設計用荷重 I (軸力, Sd) (4/4)

	ばね反力(kN)				
名称	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
原子炉格納容器 スタビライザ	12700	12500	10200	12700	
原子炉圧力容器 スタビライザ	8090	7800	6520	8090	
シヤラグ	15200	14000	11800	15200	
制御棒駆動機構ハウジング レストレントビーム	367	317	273	367	

表 2-3(4) 設計用荷重 I (ばね反力, Sd)

表 2-3(5)	設計用荷重 I	(燃料集合体相対変位,	Sd)	
----------	---------	-------------	-----	--

	相対変位 (mm)				
名称	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
燃料集合体	33. 1	29. 1	33. 9	33. 9	

		せん断力(kN)				
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	39.400	322	363	261	363	
	37.060	649	679	523	679	
	34. 758	4680	4140	3830	4680	
	33. 141	5370	4700	4460	5370	
	29.392	23400	20500	20700	23400	
百子后枚劾穷哭	27.907	24400	21400	21600	24400	
	22.932	25600	22500	22700	25600	
	19.878	25000	22300	22200	25000	
	16.825	20400	24500	24700	28500	
	13.700	28500	24300	24700	28500	
	11.900	29200	25000	25300	29200	
	10.100	31300	26400	27000	31300	
	29.962					
	26.981	6980	6440	5860	6980	
ガンマ線遮蔽壁	24.000	7480	6730	6170	7480	
	21.500	12600	12000	10900	12600	
	19,000	17400	16900	15900	17400	
	15 944	22800	21800	20800	22800	
原子炉圧力容器	13 022	40400	38600	35400	40400	
ペデスタル	10.100	46400	41400	39300	46400	
	10.100					

表 2-4(1) 設計用荷重 I (せん断力, Ss) (1/4)

		せん断力(kN)				
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	37.494	615	EQC	E49	615	
	36. 586	1000	10.40	1140	013	
	35.678	1290	1240	1140	1290	
	33. 993	3910	3750	3480	3910	
	32.567	4420	4210	3790	4420	
	31.557	8700	8380	7680	8700	
	30.369	10700	10300	9490	10700	
	30 218	11300	11000	10100	11300	
	20 181	3460	3250	2660	3460	
	20.101	2950	2900	2070	2950	
	20. 249	2990	2910	2470	2990	
	27.317	3320	3200	2670	3320	
原子炉圧力容器	26.687	4050	3860	3510	4050	
	25.414	5730	5400	4700	5730	
	25. 131	6490	6060	5250	6490	
	24. 419	7480	6920	5980	7480	
	23.707	8450	7790	6710	8450	
	22.995	9220	8500	7280	9220	
	22.283	10200	9350	7990	10200	
	21.064	10700	9830	8370	10700	
	20.892	11300	10500	8890	11300	
	20.214	12000	11200	9470	12000	
	19.196	12300	11700	11600	12000	
	18.250	12000	19000	12000	12000	
	15.944	13800	12900	12900	19900	

表 2-4(1) 設計用荷重 I (せん断力, Ss) (2/4)

		せん断力(kN)			
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I
	31. 557	105	89. 8	88. 4	105
	30.369	737	630	588	737
気水分離器, スタンドパイプ	29. 181	1140	050	004	1140
シュラウドヘッド	28.249	1140	969	904	1140
及び炉心シュラウド 上部胴	27.317	1250	1070	995	1250
	26.687	1350	1160	1080	1350
	25. 414	2150	1850	1650	2150
	25.843				
	25.414	2850	2380	3210	3210
	25, 131	4570	3830	4610	4610
	24 419	4630	3890	4580	4630
炉心シュラウド 中間胴	00 707	4580	3860	4360	4580
	23. 707	4480	3830	4070	4480
	22.995	4630	3990	3950	4630
	22.283	4900	4200	4030	4900
	21.064				
	21.571	3030	2890	3160	3160
	21.064	6970	5930	6680	6970
炉心シュラウド 下部胴	20.892	0970	5930	6600	0970
	20.214	6980	5950	6690	6980
	19.196	6940	5920	6720	6940

表 2-4(1) 設計用荷重 I (せん断力, Ss) (3/4)

		せん断力(kN)				
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	17.442	949	215	250	949	
制御棒駆動機構	16. 345	343	313	230	343	
ハウジング (外側)	15.248	231	210	169	231	
	14. 151	10.4	9.56	7.19	10.4	
	13.054	215	196	158	215	
	25.843	2670	2320	2960	2960	
	25. 131	1900	1660	2040	2040	
	24. 419	719	613	701	719	
燃料集合体	23. 707	735	634	800	800	
	22.995	1010	1000	809	809	
	22. 283	1910	1660	2060	2060	
	21.571	2650	2280	2820	2820	
	21.571		_		_	
	20.892	909	954	538	954	
	20.214	664	705	389	705	
制御榛案内管	19, 535	256	277	148	277	
	18 856	228	234	136	234	
	18 178	649	686	381	686	
	17,400	952	1020	559	1020	
	17.499	_	_	—	_	
	17.499	1060	1140	626	1140	
	16.508	139	130	105	139	
前仰徑船期候伸	15.644	85.0	78.6	63.4	85.0	
(内側)	14.781	19.4	17.3	13.9	19.4	
	13.917	74.0	69.5	55.4	74.0	
	13.054					

表 2-4(1) 設計用荷重 I (せん断力, Ss) (4/4)

		(1) ((1))((1))((1))((1))((1))((1))((1))				
名称	標高 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	39.400	—	_	_	_	
	37.060	754	848	609	848	
	34. 758	2250	2400	1820	2400	
	33. 141	9280	7900	7630	9280	
	29.392	29400	25500	24200	29400	
百乙后故如宏职	27.907	56600	49800	45100	56600	
原于炉格納谷奋	22.932	178000	154000	152000	178000	
	19.878	255000	222000	221000	255000	
	16.825	333000	293000	292000	333000	
	13.700	417000	369000	368000	417000	
	11.900	468000	413000	412000	468000	
	10.100	523000	460000	458000	523000	
	29.962	—	—		-	
	26.981	20800	19200	17500	20800	
ガンマ線遮蔽壁	24.000	39900	36100	31700	39900	
	21.500	57500	51700	47200	57500	
	19.000	94400	89100	77100	94400	
	15 044	161000	152000	136000	161000	
原子炉圧力容器	10. 944	289000	276000	252000	289000	
ペデスタル	13.022	399000	384000	349000	399000	
	10.100	528000	502000	454000	528000	

表 2-4(2) 設計用荷重 I (モーメント, Ss) (1/4)

		モーメント(kN・m)			
名称	標高 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+ o)	ケース3 (地盤物性-σ)	設計用荷重 I
	37. 494	—	—	—	—
	36. 586	558	533	493	558
	35.678	1730	1650	1530	1730
	33. 993	8320	7970	7390	8320
	32. 567	14700	14000	12800	14700
	31.557	23400	22500	20600	23400
	30.369	36100	34700	31900	36100
	30.218	37800	36400	33400	37800
	29.181	36900	35500	31600	36900
	28.249	37200	35800	31100	37200
	27.317	38800	37500	31900	38800
百乙烷厂力宏职	26.687	40200	39100	32700	40200
原于炉庄刀谷奋	25.414	44700	43900	36800	44700
	25.131	46100	45400	38200	46100
	24.419	49800	49400	41900	49800
	23.707	54200	53900	46100	54200
	22.995	59600	58800	50800	59600
	22. 283	65400	64300	55900	65400
	21.064	76100	75100	65500	76100
	20.892	77700	76700	66900	77700
	20. 214	84200	83200	72900	84200
	19.196	94400	93500	82500	94400
	18.250	105000	101000	91000	105000
	15.944	135000	129000	117000	135000

表 2-4(2) 設計用荷重 I (モーメント, Ss) (2/4)

		モーメント(kN・m)				
名称	標高 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	31.557	_	—	-	—	
	30. 369	125	107	105	125	
気水分離器,	29. 181	972	834	799	972	
シュラウドヘッド	28.249	2030	1740	1620	2030	
及び炉心シュフリド 上部胴	27.317	3200	2730	2530	3200	
	26.687	4040	3460	3210	4040	
	25.414	6640	5640	5300	6640	
	25.843	-				
	25. 414	1220	1020	1380	1380	
		7080	6070	5990	7080	
	25. 131	8120	6980	7120	8120	
炉心シュラウド 中間胴	24. 419	11400	9390	10400	11400	
	23.707	14600	12000	13500	14600	
	22.995	17800	14700	16300	17800	
	22. 283	20900	17300	19000	20900	
	21.064	26300	22300	23500	26300	
	21.571	_	_	_	_	
炉心シュラウド	21 064	1540	1460	1600	1600	
	21.004	27500	22900	25000	27500	
下部胴	20.892	28700	23900	26100	28700	
	20.214	33400	27900	30600	33400	
	19.196	40500	33900	37400	40500	

表 2-4(2) 設計用荷重 I (モーメント, Ss) (3/4)

		モーメント(kN・m)			
名称	標高 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+ o)	ケース3 (地盤物性-σ)	設計用荷重 I
	17.442	397	363	290	397
圳细摆取動搬提	16.345	24.7	23.0	18.6	24.7
同仰季極勤機構 ハウジング	15.248	232	212	170	232
(外側)	14. 151	236	215	174	236
	13.054	_	_	_	—
	25.843	_	_	—	—
	25. 131	1900	1650	2110	2110
	24. 419	3240	2830	3560	3560
燃料集合体	23.707	3730	3250	4040	4040
	22.995	3240	2810	3470	3470
	22. 283	1890	1630	2010	2010
	21.571	—	-	_	—
	21.571	—			_
	20.892	617	648	366	648
	20.214	1070	1130	629	1130
制御棒案内管	19. 535	1240	1320	730	1320
	18.856	1090	1160	638	1160
	18.178	646	690	380	690
	17.499	—	_	_	_
	17.499	_			_
	16 509	1050	1130	620	1130
圳细摆职新桃井	10. 508	139	128	104	139
の中学が多いの世	15.644	34.1	31.7	25.6	34.1
(四側)	14. 781	54.2	52.0	40.9	54.2
	13. 917	63.9	60.0	47.8	63.9
	13. 054	_	_	_	_

表 2-4(2) 設計用荷重 I (モーメント, Ss) (4/4)

			<u>里 (110)</u> , 2 2 軸力	(kN)	
名称	標局 EL(m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I
	39.400	181	160	134	181
	37.060	371	328	275	371
	34.758	1260	1110	934	1260
	33.141	2010	1770	1500	2010
	29.392	3270	2890	2460	3270
原子炉格納容器	27.907	4170	3670	3150	4170
	22.932	5550	4860	4210	5550
	19.878	6450	5630	4910	6450
	16.825	8190	7110	6260	8190
	13.700	8820	7620	6740	8820
	11.900	10800	9170	8180	10800
	10.100				
	29.962	4350	3860	3270	4350
	26.981	9330	8260	7000	9330
ガンマ線遮蔽壁	24.000	14100	12500	10600	14100
	21.500	18500	16400	13900	18500
	19.000	23400	20700	17600	23400
原子炉圧力容器	15.944	43200	38600	32600	43200
ペデスタル	13.022	47500	42400	35700	47500
	10.100				

表 2-4(3) 設計用荷重 I (軸力, S s) (1/4)

	 插 古	軸力(kN)				
名称	伝向 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	37. 494	130	125	105	130	
	36. 586	201	071	007	201	
	35.678	301	271	227	301	
	33. 993	968	872	730	968	
	32. 567	1730	1560	1300	1730	
	31.557	3120	2810	2360	3120	
	30, 369	3820	3450	2890	3820	
	30 218	4010	3620	3030	4010	
	20 191	4230	3820	3200	4230	
	29.101	4610	4160	3480	4610	
	28. 249	5250	4740	3970	5250	
	27.317	5560	5030	4210	5560	
原子炉圧力容器	26.687	5870	5310	4450	5870	
	25. 414	6290	5690	4770	6290	
	25. 131	6440	5820	4880	6440	
	24. 419	6650	6010	5040	6650	
	23. 707	6900	6250	5240	6900	
	22.995	7110	6430	5390	7110	
	22.283	7390	6690	5610	7390	
	21.064	7590	6870	5760	7590	
	20.892	7560	7800	5700	7580	
	20.214	7950	7200	6030	7950	
	19. 196	8370	7580	6350	8370	
	18.250	8600	7800	6530	8600	
	15.944	15300	13800	11600	15300	

表 2-4(3) 設計用荷重 I (軸力, Ss) (2/4)

	捕吉	軸力(kN)				
名称	標高 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	31. 557	19 1	40. 2	91 7	19 1	
	30. 369	43. 4	40. 2	31.7	43. 4	
気水分離器,	29. 181	312	290	228	312	
スタンドバイフ, シュラウドヘッド	28.249	495	460	362	495	
及び炉心シュラウド	27.317	568	527	415	568	
上市別門	26 687	658	610	481	658	
	20.007	823	764	602	823	
	25. 414					
	20. 645	90.4	83.9	66.2	90.4	
	25.414	1010	932	733	1010	
	25.131	1050	973	766	1050	
炉心シュラウド 中間明	24. 419	1110	1040	811	1110	
中间加	23.707	1180	1090	856	1180	
	22.995	1240	1150	900	1240	
	22. 283	1220	1990	060	1220	
	21.064	1320	1220	900	1320	
炉心シュラウド 下部胴	21. 571	102	177	146	102	
	21.064	193	1//	140	193	
	20.892	1590	1480	1170	1590	
	20.214	1630	1520	1200	1630	
	19. 196	1710	1590	1260	1710	
	17.419	1990	1850	1480	1990	

表 2-4(3) 設計用荷重 I (軸力, S s) (3/4)

	 描 古	軸力(kN)				
名称	棕尚 EL (m)	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
	25.843	E76	E01	499	E76	
	25. 131	005	301	428	005	
	24. 419	965	840	(17	965	
燃料集合体	23. 707	1350	1180	1010	1350	
	22.995	1740	1510	1290	1740	
	22, 283	2110	1840	1570	2110	
	21 571	2480	2170	1850	2480	
	21.071	2750	2410	2050	2750	
	20. 892	2860	2500	2140	2860	
	20. 214	2970	2600	2220	2970	
制御棒案内管	19.535	3070	2690	2300	3070	
	18.856	3180	2790	2380	3180	
	18.178	3280	2880	2450	3280	
	17.499	_				
	17.499	3370	2960	2520	3370	
	16. 508	241	218	182	241	
制御棒駆動機構	15.644	210	100	150	210	
(内側)	14. 781	170	162	135	170	
	13.917	179	105	130	179	
	13.054	149	135	113	149	
	17.419					
	16.345	248	225	188	248	
制御棒駆動機構 ハウジング	15.248	211	191	159	211	
(外側)	14 151	173	156	130	173	
	13 054	134	122	102	134	
	10.004					

表 2-4(3) 設計用荷重 I (軸力, Ss) (4/4)

	ばね反力(kN)				
名称	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
原子炉格納容器 スタビライザ	21800	22600	20500	22600	
原子炉圧力容器 スタビライザ	13100	13200	12600	13200	
シヤラグ	34200	31600	27400	34200	
制御棒駆動機構ハウジング レストレントビーム	681	621	510	681	

表 2-4(4) 設計用荷重 I (ばね反力, Ss)

	相対変位(mm)				
名称	ケース1 (基本ケース)	ケース2 (地盤物性+σ)	ケース3 (地盤物性-σ)	設計用荷重 I	
燃料集合体	32. 3	28. 1	35. 0	35.0	
2. 建物-機器連成解析における解析モデルの設定

2. 水平方向地震応答解析モデル	5
2.1 既工認同様の水平方向地震応答解析モデルの設定 ・・・・・・・・・・・・・・・・	5
2.1.1 質点位置	5
2.1.2 質点質量 ······	8
2.1.3 断面剛性(断面二次モーメント及び有効せん断断面積)	8
2.1.4 構造物間ばね定数	10
2.1.5 材料物性値(縦弾性係数, ポアソン比) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
2.2 既工認の地震応答解析モデルからの設定変更及びその <mark>影響</mark> 確認	29
2.2.1 既工認の地震応答解析モデルからの設定変更	29
2.2.1.1 水平方向地震応答解析モデルの統合	29
2.2.1.2 構造物間ばね定数の算定方法の変更	31
2.2.1.2.1 原子炉格納容器スタビライザ:K4 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
2.2.1.2.2 原子炉圧力容器スタビライザ:K₅ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
2.2.2 既工認と今回工認の地震応答解析モデルの比較による <mark>影響</mark> 確認	<mark>61</mark>
3. 鉛直方向地震応答解析モデル	<mark>139</mark>
 3.1 鉛直方向地震応答解析モデルの扱い 	<mark>139</mark>
3.2 鉛直方向地震応答解析モデルの設定	<mark>141</mark>
3.2.1 質点位置	<mark>143</mark>
3.2.2 質点質量 ·····	<mark>146</mark>
3.2.3 ばね定数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<mark>147</mark>
3.3 球殻部を考慮したばね定数に関する影響検討 ・・・・・・・・・・・・・・・・・・	<mark>148</mark>
3.3.1 モデル化の方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<mark>148</mark>
3.3.2 ばね定数及び固有値解析結果の比較	<mark>153</mark>
3.3.3 地震応答解析結果の比較	<mark>158</mark>
3.3.4 設備評価への影響確認	<mark>186</mark>
3.3.4.1 最大応答加速度及び軸力を用いて耐震評価を実施する設備 ・・・・・・	<mark>186</mark>
3.3.4.2 床応答スペクトルを用いて耐震評価を実施する設備 ・・・・・・・・	<mark>188</mark>
4. 建物と機器の相互作用を考慮した地震応答解析モデルに係る <mark>影響</mark> 確認 ······	<mark>189</mark>

1

1. 概要 ······

1. 概要

原子炉建物,原子炉格納容器,ガンマ線遮蔽壁,原子炉圧力容器ペデスタル,原子炉圧力容器,原子炉内部構造物等を連成させた原子炉本体地震応答解析モデルは,VI-2-1-6 「地震応 答解析の基本方針」に記載の方針に基づいて設定されている。設定内容は,VI-2-2-1 「炉心, 原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の基礎の地震応答計算書」に示すとお りである。

ここで、今回工認の地震応答解析モデルは、既工認のモデル諸元を適用することを基本とす るが、以下の変更及び追加を行っている。

本資料では,水平方向及び鉛直方向の原子炉本体地震応答解析モデルについて,設定内容の 詳細及びその妥当性を示すものである。

水平方向

- ・精緻に地震応答解析を実施する観点から、地震応答解析への影響が比較的大きく、先行 プラントにて精緻にばね定数を算定した実績のある原子炉格納容器スタビライザ及び 原子炉圧力容器スタビライザのばね定数算定方法を変更
- ・既工認のように設計進捗に応じたモデルの使い分けの必要がないこと及び実機に合わせて構造物をモデル化できることから、原子炉格納容器-原子炉圧力容器モデルと原子炉圧力容器-炉内構造物モデルを統合し、原子炉格納容器-原子炉圧力容器-炉内構造物モデルに変更

鉛直方向

・鉛直方向応答を適切に評価する観点から、鉛直方向地震応答解析モデルを追加

今回工認での水平方向の地震応答解析モデルを図 1-1 及び図 1-2 に,鉛直方向の地震応 答解析モデルを図 1-3 に示す。

図 1-1 原子炉本体地震応答解析モデル(水平方向(NS方向))(単位:m)

制御棒駆動機構ハウジング

√ ا لآ

レストレント

1

ラテラルレストレン

 \mathbf{K}_7

シュラウドサポー

 ${
m K}_8$

з **41**

2. 水平方向地震応答解析モデル

本章では、水平方向地震応答解析モデルに関して、既工認同様の設定を行っている事項及び 既工認から設定を変更している事項について説明する。

2.1 既工認同様の水平方向地震応答解析モデルの設定

2.1.1 質点位置

解析モデルの質点位置は、各構造物の振動性状を適切に評価できるよう配慮するとともに、 部材の剛性が変化する位置、構造的に不連続となる位置、応力評価点等を考慮して設定する。 原子炉格納容器、ガンマ線遮蔽壁及び原子炉圧力容器ペデスタルの質点位置と実機構造の関係 を図 2.1.1-1 に、原子炉圧力容器及び炉内構造物系の質点位置と実機構造の関係を図 2.1.1 -2 に示す。

図 2.1.1-1 水平方向の原子炉本体地震応答解析モデルの質点位置と実機構造の関係 (原子炉格納容器,ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

凡例	 ● 質点 	1	- V - 112				設定根拠	上部格子板位置			等間隔に分割			炉心支持板位置	炉心支持板位置			等間隔に分割			制御捧案内管下端	ハウジング上端	原子炉压力容器底部		等間隔に分割		ハウジング下端	
							標高 EL(m)	25.843	25, 131	24.419	23. 707	22. 995	22. 283	21.571	21.571	20.892	20.214	19. 535	18.856	18.178	17.499	17.499	16.508	15.644	14.781	13.917	13.054	
							資金	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	
							構造物			Ϋ́	竹集会	□検					重御	禘実	≤ 管				く制	ワジン	、グ(内侧)	
設定根拠	気水分離器頂部	気水分離器中央	スタンドバイプ頂部	スタン ドパイ プ中央	シュラウドヘッド 鏡板頂部	炉心シュラウド上部胴 上端	炉心シュラウド上部胴 下端				燃料集合体と同一標高				炉心シュラウド中間胴 下端	炉心支持板位置	炉心シュラウド下部胴 上端	質点番号121と同一標高	質点番号81と同一標高	炉心シュラウド下部胴 下端		設定根拠	制御棒貫通孔スタブ チューブ位置		等間隔に分割		ハウジング下端	
標高 EL(m)	31.557	30.369	29.181	28.249	27.317	26.687	25.414	25.843	25.414	25.131	24.419	23.707	22.995	22.283	21.064	21.571	21.064	20.892	20.214	19.196		標高 EL(m)	17.442	16.345	15.248	14. 151	13.054	
筆号	88	89	06	16	92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107		質点 番号	108	109	110	111	112	
構造物		気	不分離	き略							1	臣令今	n IV	ウド								構造物		へ り ジ 制 御 神	ノング	、 (外 (機 構	重)	
編高 BL (m) 3L (m)	01.494	燃料交換ペローズ 36.366 63人		33.993	19	スタビライザ 32.567		30,369 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	29.181	28.249	27.317	26.687 72.8 as a set of the set o		24.419 74 0.97 21.5 115 24.419 $24.$	23.707	22.995 <u>777 177 110</u> 22.283 <u>555 555 555 555 555 555 555 555 555 5</u>	21.571	シュラウドサポート 20.802 <u>800 800 105 111 11 11 11 11 11 11 11 11 11 11 11 1</u>	19 106 82 107 9123 19.535	18.250 0.125 0.125 0.170	126.127 10.117 499	町町中金型086時 17.442 50.108 87.138 レフォレントナーム 16.94K 87.138		110 0 1200 14.781	14.151		創御幕照動機構で ウジング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
設定根拠	1 原子炉圧力容器頂部	5 等間隔に分割	3 フランジと上鏡板の 3 取合い部	 フランジと胴板の 取合い部 	7 主蒸気用ノズル位置	7 質点番号88位置と合わせて いる	 質点番号89位置と合わせて 	3 スタビライザブラケット 3 位置	[質点番号90と同一標高) 質点番号91と同一標高	7 質点番号92と同一標高	7 質点番号93と同一標高	1 質点番号94と同一標高			 			1 (質点番号104と同一標高	2 [質点番号121と同一標高	1 再緒禮水出口田 ノズル位置	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1) トとの接続位置 1) 古地スカート面如	、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	11日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1	、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	チューブ位置 原子炉圧力容器底部	
標高 EL (m)	37.49	36.58	35.67	33, 99	32.56	31.55	30.36	30.21	29.18	28.24	27.31	26.68	25.41	25.13	24.41	23.70	22.99	22.28	21.06	20.89.	20.91	19 19	81	15.94	18	07 P1	16.50	
a 御舟 御	61	62	63	64	65	99	67	68	69	70	71	72	73	74	75	76	77	78	79	80	2	6	s s	28 7	i is	8	87	j
構造物										囲	《十岁	"王力	容器											支持スカー		王士	て容器	

図 2.1.1-2 水平方向の原子炉本体地震応答解析モデルの質点位置と実機構造の関係(原子炉圧力容器及び炉内構造物系)

2.1.2 質点質量

質点質量は,各構造物の連続する2質点間の質量の1/2を各質点に加え,2質点間の付加物 等の質量も考慮する。なお,質量は定格運転時質量を使用する。

2.1.3 断面剛性(断面二次モーメント及び有効せん断断面積)

各構造物の連続する質点間の梁は,等価な曲げ及びせん断剛性を有するようモデル化する。 円筒形またはそれに準ずる構造物について,断面二次モーメント及び有効せん断断面積は下式 により算定する。なお,算定に際しては,公称寸法を使用し,原則として部材中央の断面で評 価する。

断面二次モーメント: $I = \frac{\pi}{64} (D_o^4 - D_i^4)$

有効せん断断面積 : $A_s = \frac{\pi}{4} (D_o^2 - D_i^2) / K_s$

ここで,

D_o:外径 (m) D_i:内径 (m) K_s:せん断係数(-)

断面剛性(断面二次モーメント及び有効せん断断面積)の算定例を以下に示す。

(1) 原子炉圧力容器胴板(NS方向の質点番号:71-72, EW方向の質点番号:72-73)

原子炉圧力容器胴板の断面剛性は,部材の諸元を用いて,以下のとおり算定する。原子炉圧 力容器胴板の構造概要を図 2.1.3-1 に示す。

図 2.1.3-1 原子炉圧力容器胴板(NS方向の質点番号 71-72)の構造概要

2.1.4 構造物間ばね定数

各構造物間を接続する各機器を等価なばねでモデル化する。ばね定数の設定に際しては、ば ねとしてモデル化する機器の形状を考慮して、材料力学の梁の公式、文献等による理論式又は FEM解析によりばね定数を算定する。ばね定数の数値一覧を表 2.1.4-1 に、ばね定数の算 定方法の詳細を以下に示す。

記号	名称	ばね定数
К 1	ウェルシールベローズ	
K 2	シヤラグ	
К з	燃料交換ベローズ	
K	制御棒駆動機構ハウジング	$7.16 \times 10^5 \text{ kN/m}$
IX 6	レストレントビーム	7.10×10 KN/III
V	制御棒駆動機構ハウジング	
K 7	ラテラルレストレント	
K 8	シュラウドサポート	

表 2.1.4-1 各機器のばね定数

- (1) ウェルシールベローズ: K₁
 - a. ウェルシールベローズの構造

ウェルシールベローズは、燃料取換時にバルクヘッドプレート上部へ水張りを 行う際に、原子炉格納容器と原子炉建物の間を接続するためのステンレス製の構 造物であり、原子炉格納容器と原子炉建物との相対変位を吸収できるよう蛇腹構 造となっている。ウェルシールベローズの構造概要を図 2.1.4-1 に示す。

図 2.1.4-1 ウェルシールベローズの構造概要

b. ウェルシールベローズのばね定数算定方法 ウェルシールベローズのばね定数は,文献から導出される計算式の組合せにより 算定する。

3

(a) 1山当たりの鉛直方向ばね定数^[1]: K_v

$$K_{v} = \frac{E \cdot \pi \cdot D_{m} \cdot t}{24 \cdot \left\{ \frac{a^{3}}{12} + r \left(\frac{\pi \cdot a}{4} + \frac{\pi \cdot r}{2} + 2 \cdot a \cdot r \right) \right\}}$$

(b) 水平方向変位 1mm(単位長さ:Y)に対する鉛直方向変位:δ_y

$$\delta_{y} = \frac{2 \cdot D_{m} \cdot Y}{n^{2} \cdot P}$$

11

49

$$\mathbf{K}_{1} = \frac{\mathbf{K}_{\mathbf{v}} \cdot \mathbf{D}_{\mathbf{m}} \cdot \boldsymbol{\delta}_{\mathbf{y}}}{2 \cdot \mathbf{L}}$$

c. ウェルシールベローズのばね定数算定結果 ウェルシールベローズのばね定数の算定結果を表 2.1.4-2 に示す。

表 2.1.4-2 ウェルシールベローズのばね定数

機器	記号	ばね定数
ウェルシールベローズ	K_1	

参考文献

- [1]:配管技術(1967)
- [2]: Expansion Joint Manufacturers Association 「STANDARD OF THE EXPANSION JOINT MANUFACTURERS ASSOCIATION, 5th edition」 Table III

- (2) シヤラグ: K₂
 - a. シヤラグの構造

シャラグは、ドライウェル上部に周方向に8箇所設置され、原子炉格納容器外側 のメイルシャラグが原子炉建物側のフィメイルシャラグと嵌め合う構造となって おり、水平方向のうち原子炉格納容器周方向の変位を拘束し、径方向変位は拘束し ない構造である(図 2.1.4-2 参照)。

図 2.1.4-2 シヤラグ概要図

 b. ばね定数の算定方法 シャラグのばね定数は、せん断荷重から求めた荷重-変位の関係により算定する。 せん断力(F)を受ける際のせん断変形の式から求める荷重-変位関係より、図
 2.1.4-3 に示すメイルシャラグ及びフィメイルシャラグの各部に対するシャラグ 1 基分のばね定数(k)を算定する。

$$\nu = \frac{1}{G} \int_0^x \left(\frac{\kappa \cdot F}{A} \right) dx = \frac{\kappa \cdot F}{G} \left(\frac{l_1}{A_1} + \frac{l_2}{A_2} + \frac{l_3}{A_3} \right)$$
$$k = \frac{F}{\nu} = \frac{G}{\kappa} \left(\frac{l_1}{A_1} + \frac{l_2}{A_2} + \frac{l_3}{A_3} \right)^{-1}$$

よって、シヤラグ8基全体のばね定数(K)は円周状にシヤラグが配置されている ことから、次のとおりとなる。

$K = 4 \cdot k$

ここで、
 ν : せん断ひずみ
 G : せん断弾性係数
 κ : 断面の形状係数

¹³ 51

A₃ :メイルシヤラグの断面積(=a₃h)

図 2.1.4-3 シャラグばね定数算定概念図

c. シャラグのばね定数算定結果 シャラグのばね定数の算定結果を表 2.1.4-3 に示す。

 機器
 記号
 ばね定数

 シャラグ
 K2

表 2.1.4-3 シャラグのばね定数

52

- (3) 燃料交換ベローズ: K3
 - a. 燃料交換ベローズの構造

燃料交換ベローズは、燃料取替時にバルクヘッドプレート上部へ水張りを行う際 に、原子炉圧力容器と原子炉格納容器の間を接続するためのステンレス製の構造物 であり、運転時の原子炉圧力容器と原子炉格納容器との熱移動量を吸収できるよう 蛇腹構造となっている。燃料交換ベローズの構造概要を図2.1.4-4に示す。

図 2.1.4-4 燃料交換ベローズの構造概要

- b. 燃料交換ベローズのばね定数算定方法 燃料交換ベローズのばね定数K₃は,文献から導出される計算式の組合せにより 算定する。
 - (a) 1山当たりの鉛直方向ばね定数^[1]:K_v

$$K_{v} = \frac{E \cdot \pi \cdot D_{m} \cdot t^{3}}{24 \cdot \left\{ \frac{a^{3}}{12} + r \left(\frac{\pi \cdot a^{2}}{4} + \frac{\pi \cdot r^{2}}{2} + 2 \cdot a \cdot r \right) \right\}}$$

(b) 水平方向変位 1mm(単位長さ:Y)に対する鉛直方向変位:δ_y

$$\delta_y = \frac{\mathbf{D}_{\mathbf{m}} \cdot \mathbf{Y}}{2 \cdot \mathbf{n} \cdot \mathbf{A}}$$

53

(c) 径方向ばね定数^[2]K₃

$$K_{3} = \frac{K_{v} \cdot D_{m} \cdot \delta_{y}}{2 \cdot L}$$
ここで、
$$A : ベローズ中心間距離 = (mm)$$

$$E : 縦弾性係数 = (mm) (MPa)$$

$$D_{m} : 平均径 = (mm)$$

$$L : 長さ = (mm)$$

$$Y : 単位長さ = (mm)$$

$$t : 板厚 = (mm)$$

$$a : 円板部の長さ = (mm)$$

$$n : 山の個数 = (mm)$$

$$f(mm) = (mm)$$

c. 燃料交換ベローズのばね定数算定結果
 燃料交換ベローズのばね定数の算定結果を表 2.1.4-4 に示す。

表 2.1.4-4 燃料交換ベローズのばね定数

機器	記号	ばね定数
燃料交換ベローズ	K_3	

参考文献

[1]:配管技術(1967)

[2]: Expansion Joint Manufacturers Association 「STANDARD OF THE EXPANSION JOINT MANUFACTURERS ASSOCIATION, 5th edition」 Table III

- (4) 制御棒駆動機構ハウジングレストレントビーム: K₆
 - a. 制御棒駆動機構ハウジングレストレントビームの構造
 制御棒駆動機構ハウジングレストレントビーム(以下「CRDハウジングレストレントビーム」という。)は、8箇所のブラケットで原子炉圧力容器ペデスタルと
 溶接により固定された構造物であり、構成部材としてはレストレントビーム、サポート、ブラケットからなる。

CRDハウジングレストレントビームは,制御棒駆動機構ハウジングの水平方向 地震荷重を受けるが,CRDハウジングレストレントビームは制御棒駆動機構ハウ ジングを接触のみで支持しているため,圧縮方向の荷重は伝達するが引張方向の荷 重は伝達しない構造である。

CRDハウジングレストレントビームの構造を図 2.1.4-5 に示す。

- b. CRDハウジングレストレントビームのばね定数算定方法 CRDハウジングレストレントビームのばね定数は、FEM解析により算定する。
- c. 計算方法

計算機コード「SAP-IV」により,各部材ごとに断面積,断面二次モーメント, 重量等を与える梁要素モデルで解析する。

- d. 計算条件
- (a) 解析モデル

解析モデルの概要を図 2.1.4-6 に示す。

解析モデルはCRDハウジングレストレントビームの対称性を考慮し,180°の 範囲をモデル化する。

図 2.1.4-6 解析モデルの概要

(b) 各構成部材の材質及び材料物性

解析に用いる各構成部材の材質及び材料物性を表 2.1.4-5 に示す。

2(BI II I)		1 M V O II I I II II	
構成部材	材質	縦弾性係数E (MPa)	ポアソン比ぃ
レストレントビーム	SS400	$1.92 imes 10^5$	0.30
サポート	SM400A	1.92×10^{5}	0.30
ブラケット	SM400A	1.92×10^{5}	0.30

表 2.1.4-5 各構成部材の材質及び材料物性

(c) 荷重条件

制御棒駆動機構ハウジング全水平荷重Wを分配して,制御棒駆動機構ハウジン グの列ごとの荷重Wiを設定し,それらの荷重Wiを制御棒駆動機構ハウジング 列上の最も近い節点に負荷する。

荷重Wiは列ごとの制御棒駆動機構ハウジング本数に応じた比例配分により, 次のとおり算定する。

$$W_{i} = \frac{W \cdot n_{i}}{\sum n_{i}} \quad (n : x_{i}, i : M_{i})$$

(d) 境界条件

CRDハウジングレストレントビームと原子炉圧力容器ペデスタルは溶接に て固定されていることから境界条件は固定とする。また,180°の範囲をモデル 化していることから,対称性を考慮した拘束条件とする。 e. 解析結果

ばね定数は、全水平荷重Wを最大変位量δで割ることにより求める。ばね定数を 以下に示す。

また,変形前(荷重付与前)及び変形後のモデル形状を図2.1.4-7に示す。

ばね定数:
$$K = \frac{W}{\delta} = 7.16 \times 10^{5} [kN/m]$$

図 2.1.4-7 変形前後のモデル形状

f. CRDハウジングレストレントビームのばね定数算定結果

CRDハウジングレストレントビームのばね定数の算定結果を表 2.1.4-6 に示す。

	• · · · • • · · •	
機器	記号	ばね定数
CRDハウジングレストレントビーム	${ m K}_6$	$7.16 imes 10^5$ kN/m

表 2.1.4-6 CRDハウジングレストレントビームのばね定数

- (5) 制御棒駆動機構ハウジングラテラルレストレント: K7
 - a. 制御棒駆動機構ハウジングラテラルレストレントの構造

制御棒駆動機構ハウジングラテラルレストレントは,制御棒駆動機構ハウジング の下端フランジにボルト締結にて設置された構造物であり,ヘッドボルト,ベース からなる。

制御棒駆動機構ハウジングラテラルレストレントは地震時に制御棒駆動機構ハ ウジングを水平方向に支持し,制御棒駆動機構ハウジングレストレントビームへ荷 重を伝達する。隣り合う制御棒駆動機構ハウジングは制御棒駆動機構ハウジングラ テラルレストレントを介して互いに接触しているため,圧縮方向の荷重は伝達する が,引張方向の荷重は伝達しない構造である。

制御棒駆動機構ハウジングラテラルレストレントの構造概要を図 2.1.4-8 に示す。

図 2.1.4-8 制御棒駆動機構ハウジングラテラルレストレントの構造概要

b. 制御棒駆動機構ハウジングラテラルレストレントのばね定数算定方法

(a) 全体でのばね定数の算定方法
 制御棒駆動機構ハウジング(内側)と制御駆動機構ハウジング(外側)は、それぞれ最短部材の中心部と最長部材の最外部の制御駆動機構ハウジングを代表

としてモデル化する。ラテラルレストレントを介した荷重伝達をモデル化する ため、制御棒駆動機構ハウジング(内側)と制御棒駆動機構ハウジング(外側) 間は、ラテラルレストレントの剛性を考慮したばねで接続する。ここで、ばね定 数の設定で考慮するラテラルレストレントについては、最も設置個数が多く、ば ね定数が小さくなるよう、中心部と最外周部間のラテラルレストレントを考慮 することとする。(図 2.1.4-8 中の______で囲んだ範囲)

また,制御棒駆動機構ハウジング(内側)は, 本分の制御棒駆動機構ハウジングの重量,断面剛性をモデル化しているため,制御棒駆動機構ハウジングラテラルレストレント全体のばね定数K₇は図 2.1.4-9 に示すとおり中央 1 列の直列ばねが 個あるものとし,直列ばねのばね定数を 倍することで算定する。

図 2.1.4-9 全体のばね定数算定イメージ

図 2.1.4-8 中の で囲んだ中央 1 列には、制御棒駆動機構ハウジン グ間のラテラルレストレント 個と制御棒駆動機構ハウジング/レストレント ビーム間のラテラルレストレント 個が直列に接続されているため、中央 1 列 の直列ばねのばね定数K及び全体のばね定数K₇は以下の式に基づき算定する。

(b) 制御棒駆動機構ハウジング間及び制御棒駆動機構ハウジング/レストレント ビーム間のラテラルレストレントばね定数算定方法 制御棒駆動機構ハウジング間及び制御棒駆動機構ハウジング/レストレント ビーム間のラテラルレストレントのばね定数KAは、以下の式に基づき算定する。

$$K_{A} = \frac{1}{\left(\frac{1}{K_{P1}}\right) + \left(\frac{1}{K_{P2}}\right) + \left(\frac{1}{K_{P3}}\right) + \left(\frac{1}{K_{P4}}\right)}$$
$$K_{Pi} = \frac{A_{i} \cdot E_{i}}{1_{i}}, \quad i = 1 \sim 4$$

ここで,各記号は以下の記号の説明及び図2.1.4-10に示す制御棒駆動機構ハ ウジング間及び制御棒駆動機構ハウジング/レストレントビーム間のラテラルレ ストレントの構成部材構造図による。

- K_{Pi} :制御棒駆動機構ハウジングラテラルレストレントの構成部材の ばね定数
- A_i:制御棒駆動機構ハウジングラテラルレストレントの構成部材の 断面積
- :制御棒駆動機構ハウジングラテラルレストレントの構成部材の 長さ
- B₁, B₂:制御棒駆動機構ハウジングラテラルレストレントの構成部材の 高さ
- φ₁, φ₂:制御棒駆動機構ハウジングラテラルレストレントの構成部材の 直径
- t :制御棒駆動機構ハウジングラテラルレストレントの構成部材の 幅
- E_i: :制御棒駆動機構ハウジングラテラルレストレントの構造部材の
 縦弾性係数= (MPa)

図 2.1.4-10 制御棒駆動機構ハウジング間及び制御棒駆動機構ハウジング/レストレントビ ーム間のラテラルレストレントの構成部材構造図

c. 制御棒駆動機構ハウジングラテラルレストレントのばね定数算定結果 以上より算定した構成部材及び全体のばね定数の算定結果を表 2.1.4-7 に示す。

Г

	記号	ばね定数 (kN/m)
制御棒駆動機構ハウジング間及び制御棒駆動		
機構ハウジング/レストレントビーム間のラ	K _A	
テラルレストレントのばね定数		
制御棒駆動機構ハウジングラテラルレストレ	IZ.	
ント全体のばね定数	K 7	

表 2.1.4-7 制御棒駆動機構ハウジングラテラルレストレントのばね定数

(6) シュラウドサポート (回転ばね): K₈

a. シュラウドサポートの構造

シュラウドサポートは、シュラウドサポートシリンダ、シュラウドサポートプレ ート及びシュラウドサポートレグからなる溶接構造物である。シュラウドサポート レグ下端及びシュラウドサポートプレート外周が原子炉圧力容器に溶接されてお り、シュラウドサポートシリンダを介して炉心シュラウドを支持する。

シュラウドサポートの構造概要を図 2.1.4-11 に示す。

図 2.1.4-11 シュラウドサポートの構造概要

- b. シュラウドサポートのばね定数算定方法
- (a) 全体でのばね定数算定方法

シュラウドサポート全体でのばね定数K₈は、シュラウドサポートシリンダ、 シュラウドサポートレグ及びシュラウドサポートプレートの回転ばね定数を算 定し、以下のとおり組み合わせて算定する。図 2.1.4-12 にばね全体の模式図 を示す。

$$K_{8} = \frac{1}{\frac{1}{K_{MA1}} + \frac{1}{K_{MA2}}} + K_{MB}$$

ここで,

K_{MA1}:シュラウドサポートシリンダのばね定数 K_{MA2}:シュラウドサポートレグのばね定数 K_{MB} :シュラウドサポートプレートのばね定数

62

図 2.1.4-12 全体ばねの模式図

- (b) 構成部材のばね定数算定方法
 - イ. シュラウドサポートシリンダ: K_{MA1}

シュラウドサポートシリンダのばね定数K_{MA1}は,以下の式に基づき算定する。

$$\mathbf{K}_{\mathrm{MA}1} = \frac{\mathbf{R}_{\mathrm{m}}^{2} \cdot \mathbf{A}_{1} \cdot \mathbf{E}}{2 \, \mathbf{L}_{1}}$$

ロ. シュラウドサポートレグ: K_{MA2}
 シュラウドサポートレグのばね定数K_{MA2}は、以下の式に基づき算定する。

$$K_{MA2} = \frac{R_m^2 \cdot A_2 \cdot E}{2L_2}$$

ハ. シュラウドサポートプレート: K_{MB}
 シュラウドサポートプレートのばね定数K_{MB}は、以下の式^[1]に基づき算定する。

$$\mathbf{K}_{\mathrm{MB}} = \frac{\pi \cdot \mathbf{R}_{\mathrm{m}^{2}} \cdot \mathbf{E} \cdot \mathbf{t}_{3}^{3}}{3 \, \mathrm{C}_{2} \cdot \mathrm{D}_{\circ}^{2} \cdot \left(1 - \nu^{2}\right)}$$

ここで、以下の各記号は図 2.1.4-13 に示す原子炉圧力容器断面図による。

²⁶ 64 c. シュラウドサポートのばね定数算定結果
 以上より算定した構成部材及び全体のばね定数の算定結果を表 2.1.4-8 に示す。

	記号	ばね定数 (kN・m/rad)
シュラウドサポートシリンダのばね定数	K _{MA1}	
シュラウドサポートレグのばね定数	K _{MA2}	
シュラウドサポートプレートのばね定数	K _{MB}	
シュラウドサポートのばね定数	K 8	

表 2.1.4-8 シュラウドサポートのばね定数

参考文献

[1] : Roark [FORMULAS for STRESS and STRAIN, 4th edition] Table X No.20

2.1.5 材料物性値(縦弾性係数,ポアソン比)

大型機器, 炉内構造物系の材料物性値(縦弾性係数, ポアソン比)は, 適用する規格・基準等に基づき, 表 2.1.5-1 に示す値を使用する。また, 原子炉建物の材料物性値(縦弾性係数, ポアソン比)は, VI-2-2-2「原子炉建物の地震応答計算書」に基づき, 表 2.1.5-2 に示す値を使用する。

	名称	縦弾性係数 (MPa)	ポアソン比	出典
原子炉格納容器			0.30	(縦弾性係数及びポアソン比) 1973年 鋼構造設計基準
ガンマ線遮蔽壁			0.30	
原子炉圧力容器ペ	デスタル		0.30	
	上部(質点61~70間)*		0.30	(縦弾性係数)
原子炉圧力容器	下部(質点70~83間)*		0.30	昭和55年 告示501号
	支持スカート		0.30	(ポアソン比)
気水分離器			0.30	1973年 鋼構造設計基準
スタンドパイプ		_	0.30	
炉心シュラウド		_	0.30	
燃料集合体			0.40	試験,文献に基づく メーカ採用値
制御棒案内管			0.30	(縦弾性係数) 昭和55年 告示501号
制御棒駆動機構ハ	ウジング		0. 30	(ポアソン比) 1973年 鋼構造設計基準

表 2.1.5-1 解析に用いる物性値(水平方向)

注記*:質点番号は代表してNS方向の地震応答解析モデルのものを示す。

表 2.1.5-2 原子炉建物の物性値

名称	縦弾性係数 (MPa)	ポアソン比	出典
原子炉建物(建物,基礎スラブ)	2. 25×10^4	0. 20	鉄筋コンクリート構造計算規準 ・同解説-許容応力度設計法- ((社)日本建築学会, 1999改定)
原子炉建物(屋根トラス部)	2. 05×10^5	0. 30	鋼構造設計規準-許容応力度 設計法- ((社)日本建築学会, 2005改定)

2.2 既工認の地震応答解析モデルからの設定変更及びその<mark>影響</mark>確認

2.2.1 既工認の地震応答解析モデルからの設定変更

2.2.1.1 水平方向地震応答解析モデルの統合

水平方向の原子炉本体地震応答解析モデルについて,既工認では建設工程の関係上,原子炉 格納容器-原子炉圧力容器モデル(以下「PCV-RPVモデル」という。)と原子炉圧力容 器-炉内構造物モデル(以下「RPV-Rinモデル」という。)の2種類のモデルを用いて いた。しかし,今回工認では既工認のように設計進捗に応じたモデルの使い分けの必要がない こと及び実機に合わせて構造体をモデル化できることから,RPV-Rinモデルに原子炉格 納容器を追加した原子炉格納容器-原子炉圧力容器-炉内構造物モデル(以下「PCV-RP V-Rinモデル」という。)を水平方向の原子炉本体地震応答解析モデルとする。既工認及 び今回工認の原子炉本体地震応答解析モデルを表 2.2.1.1-1に示す。

今回工認で用いるPCV-RPV-Rinモデルの質点位置,質点質量,断面剛性は,既工 認のモデル諸元を適用することを基本とするため,既工認のPCV-RPVモデル(炉内構造 物は原子炉圧力容器の付加質量として考慮)及びRPV-Rinモデル(原子炉格納容器は原 子炉建物の付加質量として考慮)と同等である。そのため,PCV-RPV-Rinモデルを 採用することによる地震応答への影響は十分小さい。

	第二	221	今回工認
	$P C V - R P V \mp \vec{j} h$	RPV-Rinモデル	$P C V - R P V - R i n \mp \vec{j} h$
モデル化範囲	・原子炉建物 ・原子炉格納容器 ・ガンマ線遮蔽壁 ・原子炉圧力容器ペデスタル ・原子炉圧力容器(炉内構造物を付加質量 として考慮)	 ・原子炉建物(原子炉格納容器を付加質量として考慮) ・ガンマ線遮蔽壁 ・ガンマ線遮蔽壁 ・原子炉圧力容器ペデスタル ・原子炉圧力容器 ・原子炉圧力容器 ・原子炉圧力容器 ・「子炉圧力容器 ・「子が一方の ・「子が ・「 ・「 ・「 ・ ・	 ・原子炉建物 ・原子炉格約容器 ・ガンマ線遮蔽壁 ・原子炉圧力容器ペデスタル ・原子炉圧力容器 ・原子炉圧力容器 ・原子炉圧力容器 ・原子炉圧力容器 ・原子炉圧力容器 ・原子炉圧力容器 ・「テレンュラウド, 燃料集合体, 制御棒案 内管) ・制御棒駆動機構ハウジング
離 デ シ ろ い い の の で で し ろ の で ろ ろ の の で ろ う の の ろ う の の ろ う の の ろ う の の ろ う の の の の			10 the first service of the fi

表 2. 2. 1. 1-1 既工認及び今回工認における地震応答解析モデル

³⁰ 68

2.2.1.2 構造物間ばね定数の算定方法の変更

今回工認では解析モデルを最新化して精緻に地震応答解析を実施するため、先行プラントにおいて適用実績のあるモデル化手法を参照し、原子炉格納容器スタビライザ及び原子炉圧力容器スタビライザのばね定数を精緻化する。精緻化したばね定数の数値一覧を表2.2.1.2-1に、ばね定数の算定方法の詳細を以下に示す。

表 2.2.1.2-1 各機器のばね定数

記号	名称	ばね定数
K_4	原子炉格納容器スタビライザ	$3.50 imes10^6$ kN/m
K $_5$	原子炉圧力容器スタビライザ	$6.80 imes 10^6$ kN/m

- 2.2.1.2.1 原子炉格納容器スタビライザ:K4
 - (1) 原子炉格納容器スタビライザの構造

原子炉格納容器スタビライザはガンマ線遮蔽壁外側上部に溶接で固定されたトラ ス状の構造物であり、多角形配置のシヤラグを介してガンマ線遮蔽壁に作用する水 平地震荷重を原子炉格納容器に伝達する機能を有する。原子炉格納容器スタビライ ザの概略図を図 2.2.1.2.1-1に示す。原子炉格納容器スタビライザの構成部材と しては、円筒形状のパイプ、ガンマ線遮蔽壁との取り合い部であるガセットプレー ト、原子炉格納容器との取り合い部である内側シヤラグ(内側メイルシヤラグ、内 側フィメイルシヤラグ)からなる。ガセットプレートとガンマ線遮蔽壁の取付け部 及び内側シヤラグの構造を図 2.2.1.2.1-2に示す。

原子炉格納容器スタビライザ構造図 図 2.2.1.2.1-1 原子炉格納容器スタビライザ概略図

32

70

(2) 既工認と今回工認での変更点

原子炉格納容器スタビライザばね定数について,既工認からの変更点を表 2.2.1.2.1-1に示す。既工認では,原子炉格納容器スタビライザの剛性に最も大き く寄与するパイプをモデル化対象として,1対のトラス(パイプ2本)の荷重-変 位関係によりばね定数を算定していた。今回工認では,取り合い部であるガセット プレート及び内側シヤラグについてもモデル化対象に含め,最新の許認可手法に合 わせて全体系モデルによるFEM解析を適用し,より実現象に即したばね定数を算 定する。

全体系モデルによるFEM解析手法は,東海第二の新規制工認において原子炉格 納容器スタビライザのばね定数算定にて適用実績があり,また,大間1号炉建設工 認において同様な多角形配置の構造物である制御棒駆動機構ハウジングレストレン トビームのばね定数算定にて適用実績がある。

	既工認	今回工認
計算 方法	手計算 (1対のトラス(パイプ2本)の荷重-変 位関係により算定)	FEM解析 (取り合い部のガセットプレート及び内 側シヤラグを含めてモデル化した全体 モデルの荷重-変位関係により算定)
評価 モデル	荷重	強制変位
ばね 定数	5. $30 \times 10^{6} (\text{kN/m})$	$3.50 \times 10^6 (\text{kN/m})$

表 2.2.1.2.1-1 原子炉格納容器スタビライザのばね定数算出方法の変更点

- (3) 既工認におけるばね定数算定方法
 - a. 計算モデルの範囲

既工認におけるばね定数算定のモデル化範囲を図2.2.1.2.1-3 に示す。原子炉 格納容器スタビライザのうち、1対のトラス(パイプ2本)についてモデル化し、 パイプの断面剛性を設定したトラスでの荷重-変位関係からばね定数を算定する。

図 2.2.1.2.1-3 既工認におけるばね定数算定のモデル化範囲

b. 算定方法

既工認におけるばね定数算定モデルを図2.2.1.2.1-4に示す。1対のトラス(パ イプ2本)において,水平方向荷重による変位量δが生じた際の荷重及び変位の算 定式は以下となる。

$$\delta_{1} = \delta \text{ s i n } \theta$$

$$F = \sigma \cdot A = E \cdot \frac{\delta_{1}}{L} \cdot A$$

$$W = 2 \cdot F \cdot \text{ s i n } \theta$$

ここで,

- δ : トラスの荷重方向の変位
- **δ**₁ : トラスの長さ方向の変位
- θ :パイプ角度
- W:1対のトラスに生じる荷重
- F :パイプに生じる荷重
- E :縦弾性係数
- L :パイプの長さ
- A :パイプの断面積

上記の式より,1対のトラス(パイプ2本)における荷重-変位関係の式は以下 となる。

W=2 • E
$$\cdot \frac{\delta_1}{L}$$
 • A • s i n $\theta = 2 \cdot \frac{EA}{L}$ • s i n² θ • δ

よって、1対のトラス(パイプ2本)におけるばね定数(K_P)は以下となる。

$$K_{P} = \frac{W}{\delta} = 2 \cdot \frac{EA}{L} \cdot s i n^{2}\theta$$

以上より,原子炉格納容器スタビライザ全体でのばね定数(K)は以下となる。

$$\mathbf{K} = 4 \mathbf{K}_{\mathbf{P}} = 4 \cdot 2 \cdot \frac{\mathbf{E} \mathbf{A}}{\mathbf{L}} \cdot \mathbf{s} \text{ i } \mathbf{n}^{2} \theta = 8 \cdot \frac{\mathbf{E} \mathbf{A}}{\mathbf{L}} \cdot \mathbf{s} \text{ i } \mathbf{n}^{2} \theta$$

図 2.2.1.2.1-4 既工認におけるばね定数算定モデル

- (4) 今回工認におけるばね定数算定方法
 - a. 解析モデルの範囲

今回工認におけるばね定数算定のモデル化範囲を図 2.2.1.2.1-5 に示す。原子 炉格納容器スタビライザの構成部材であるパイプ,ガセットプレート及び内側シヤ ラグを 360°全体でモデル化する。

なお、今回評価に用いるFEM解析には「MSC NASTRAN Ver.2005」を使用する。

図 2.2.1.2.1-5 今回工認におけるばね定数算定のモデル化範囲

b. 解析モデル

解析モデルの諸元を表 2.2.1.2.1-2 に,解析モデル図を図 2.2.1.2.1-6 に示 す。パイプは断面剛性を考慮したは梁要素,ガセットプレート及び内側シヤラグは シェル要素によりモデル化する。

節点数	要素数	使用要素タイプ		
		パイプ	梁要素	
19, 336	18, 768	ガセットプレート		
		内側シヤラグ	ンエル安奈	

表 2.2.1.2.1-2 FEM解析モデルの諸元

拡大図

図 2.2.1.2.1-6 原子炉格納容器スタビライザ解析モデル

c. 解析条件

解析モデルの境界条件及び負荷条件を図 2.2.1.2.1-7 に示す。ガンマ線遮蔽壁 とガセットプレートの境界条件はモデル中心と剛体結合として定義し,剛体結合さ れたモデル中心に強制変位を対角の位置にある内側シヤラグを結んだ線上に負荷 する。なお、周方向に等間隔で設置された原子炉格納容器スタビライザ8基で荷重 を負担するため、ばね定数は強制変位を負荷する方向によらず一定の値となる。内 側シヤラグと原子炉格納容器との境界条件は、内側メイルシヤラグが内側フィメイ ルシヤラグと嵌め合い構造となっていることから、円筒座標系のR方向及び鉛直方 向(Z方向)は拘束せず、θ方向を拘束する。

原子炉格納容器スタビライザの各構成部材の材質及び材料物性を表 2.2.1.2.1 -3に示す。縦弾性係数は, JSME2005/2007 年版における原子炉格納容器スタビラ イザ通常運転温度(57℃)の値を用いる。

図 2.2.1.2.1-7 境界条件及び負荷条件

表	2.	2.	1.2.	1	-3	各構成部材の材質及び材料物性	Ė
---	----	----	------	---	----	----------------	---

構成部材	材質	縦弾性係数 E (MPa)	ポアソン比ぃ
パイプ	STS410	2. 01×10^5	0.30
ガセットプレート	SM400B	2. 01×10^5	0. 30
内側シヤラグ	SGV480	2. 01×10^5	0. 30

d. 解析結果

強制変位を負荷させた際の変形図を図 2.2.1.2.1-8 に示す。この図では変形前の形状を赤線,変形後の形状を黒線で示す。荷重は、剛体結合されたモデル中心の反力として算定する。この解析結果から得た荷重-変位関係から、原子炉格納容器スタビライザのばね定数を 3.50×10⁶ [kN/m]と設定する。

図 2.2.1.2.1-8 変形図

e. 原子炉格納容器スタビライザのばね定数算定結果 原子炉格納容器スタビライザのばね定数の算定結果を表 2.2.1.2.1-4 に示す。

表 2.2.1.2.1-4 原子炉格納容器スタビライザのばね定数

機器	記号	ばね定数
原子炉格納容器スタビライザ	K_4	3.50 \times 10 ⁶ kN/m

- f. ばね定数低下に係る要因の考察
- (a) 要因の考察

既工認と比べて今回工認(FEM解析)のばね定数が低下した要因を考察する ため、部材の剛性の考慮有無や結合方法等を変更した参考モデル(I-1,2及 びⅡ)を用いてばね定数を算定した。

要因の考察に用いた解析モデルの概要を表 2.2.1.2.1-5 に示す。また,各解 析モデルにより算定されたばね定数を図 2.2.1.2.1-9 に示す。

モデル名称	参考モデル I - 1	参考モデルⅠ-2	参考モデルⅡ	今回工認モデル
モデル概要	既工認のトラス1対モデ ルをFEMモデルで再現し たモデル	トラス1対について,ガ セットプレート及び内側 シヤラグを剛体として考 慮し,パイプの曲げ及び せん断剛性を考慮したモ デル	トラス1対について,パ イプの曲げ及びせん断剛 性に加え,ガセットプ レート及び内側シヤラグ の剛性を考慮したモデル	全トラスについて,パイ プの曲げ及びせん断剛性 と,ガセットプレート及 び内側シヤラグの剛性を 考慮したモデル
ガセットプレート /内側シヤラグ	-	剛体	剛性考慮	剛性考慮
パイプとの取り合 い部	ピン結合	剛結合	剛結合	剛結合
パイプ	軸変形を考慮 (長さ L=3749mm)	軸変形,曲げ,せん断を 考慮 (長さ L=2574.1mm)	軸変形, 曲げ, せん断を 考慮 (長さ L=2574.1mm)	軸変形, 曲げ, せん断を 考慮 (長さ L=2574.1mm)
解析モデル図	ガセットブレート 内側シヤラグ 位置 ハイブ 強制変位方向 バイブ取り合い部:ビン結合 内側シヤラグ位置:0方向拘束	内側シヤラグ (刷体) ガセットブレート (刷体) ・パイブ取り合い部: 刷結合 内側シヤラグ: 6方向拘束	内側シヤラグ (例性考慮) ガセットブレー (例性考慮) バイブ 取り合い部: 剛結合 内側シヤラグ: θ方向拘束	焼削変位方向 休イブ取り合い部:剛結合 内側シヤラグ:0方向拘束

表 2.2.1.2.1-5 解析モデルの概要

《解析結果の考察》

- ・既工認と参考モデルI-1の比較・考察 参考モデルI-1により算定されたばね定数は既工認と同値であるため、 FEM解析モデルは既工認の計算モデルと同等である。
- ② 参考モデル I-1と参考モデル I-2の比較・考察

参考モデル I-2 では、ガセットプレート及び内側シヤラグを剛体として モデル化したことによりパイプ長が短くなったため、ばね定数の値が参考モ デル I-1より大きくなる。

- ③ 参考モデルI-2と参考モデルⅡの比較・考察
 参考モデルⅡでは、ガセットプレート及び内側シヤラグに剛性を考慮する
 ことにより、ばね定数の値が参考モデルI-2より小さくなる。
- ④ 参考モデルIIと今回工認モデルの比較・考察
 本来ガセットプレートは隣り合うパイプの荷重を受け持つこととなるが

(図 2.2.1.2.1-10 (b) 参照),参考モデルⅡでは,1対のトラスのみの荷 重を受け持つモデル化を行っており(図 2.2.1.2.1-10 (a) 参照),隣り合 うパイプからの荷重を考慮していない。これに対し、今回工認モデルでは隣 り合うパイプからの荷重も考慮されることから、ガセットプレートの変形が 大きくなり、ばね定数の値が参考モデルⅡより小さくなる。

原子炉格納容器スタビライザを構成する各部材の剛性を考慮することにより, 現実的なばね定数を算定した。その中でも,ガセットプレート及び内側シャラグ の剛性を考慮したことが,ばね定数低下に大きく寄与している。

[単位:×10⁶kN/m]

項目	既工認	参考モデル I-1	参考モデル I-2	参考モデル Ⅱ	今回工認 モデル
トラス1対	1.3	1.3	1.9	1.0	
全体 (トラス8対)	5.3	5.3	7.7	3.9	3.5

図 2.2.1.2.1-9 各解析モデルにより算定されたばね定数

図 2.2.1.2.1-10 参考モデル Ⅱと今回工認モデルの荷重伝達

(5) 今回工認におけるばね定数の妥当性

(4) f. 項より, 今回工認モデルには, パイプの曲げ及びせん断剛性, ガセットプレート及び内側シヤラグの剛性と隣り合うパイプからの荷重も考慮されており, 実現象をより精緻に模擬したモデルとなっている。また, 既工認のばね定数から低下することは, (4) f. 項の考察よりモデルの変更内容と整合しており, 今回工認におけるばね定数は妥当であると考える。

2.2.1.2.2 原子炉圧力容器スタビライザ:K₅

(1) 原子炉圧力容器スタビライザの構造

原子炉圧力容器スタビライザは、ガンマ線遮蔽壁頂部に円周状に8箇所設置さ れ、原子炉圧力容器付属構造物であるスタビライザブラケットをあらかじめ初期締 付荷重を与えたサラバネを介して両側から挟み込む構造であり、サラバネを介して 原子炉圧力容器の水平地震荷重をガンマ線遮蔽壁へ伝達する機能を有する。原子炉 圧力容器スタビライザの概略図を図 2.2.1.2.2-1 に、構造図を図 2.2.1.2.2-2 に 示す。

原子炉建物全体模式図

原子炉格納容器平面図

図 2.2.1.2.2-1 原子炉圧力容器スタビライザ概略図

原子炉圧力容器スタビライザ分解図

原子炉圧力容器スタビライザ平面図

図 2.2.1.2.2-2 原子炉圧力容器スタビライザ構造図

45

(2) 既工認と今回工認での変更点

原子炉圧力容器スタビライザのばね定数について,既工認からの変更点を表 2.2.1.2.2-1 に示す。既工認では,原子炉圧力容器スタビライザの剛性に大きく寄 与するロッド,サラバネのみ剛性を考慮しているが,今回工認では最新の許認可手法 に合わせてガンマ線遮蔽壁ブラケット,スリーブ等の剛性を追加で考慮し,より実現 象に即したばね定数を算定する。

なお,上記ばね定数算定方法は大間1号炉建設工認,島根3号炉建設工認及び東海 第二,柏崎刈羽7号炉及び女川2号炉の新規制工認において適用実績がある。

表 2.2.1.2.2-1 原子炉圧力容器スタビライザばね定数算定方法の変更点

(3) 既工認におけるばね定数算定方法 既工認では、サラバネ及びロッドを主たる支持部材と考え、図2.2.1.2.2-3に示 すとおりばね定数算定モデルを設定した。

原子炉圧力容器スタビライザ1基の片側分のばね定数(K_{1half})は、サラバネ(K_s)及びロッド(K_R)の直列ばねとして、以下の式に基づき算定する。

K 1 h a 1 f = $\frac{K \, S \cdot K R}{K \, S + K R}$

原子炉圧力容器スタビライザ1基の両側分のばね定数(K_{1ambi})は片側分のばね 定数(K_{1half})の並列ばねとして、以下の式に基づき算定する。

K_{1 amb i} = K_{1 h a l f} + K_{1 h a l f} = $\frac{2 \cdot K_{s} \cdot K_{R}}{K_{s} + K_{R}}$

原子炉圧力容器スタビライザ8基分の全体でのばね定数(K₅)を荷重-変位の 関係から算定する。図2.2.1.2.2-4のとおり原子炉圧力容器スタビライザに強制変 位 x を負荷した場合に強制変位と同じ方向に生じる全体荷重Wを算定する。

90°及び270°の位置に設置された原子炉圧力容器スタビライザに生じる荷重を W_1 ,45°,135°,225°及び315°の位置に設置された原子炉圧力容器スタビライザに生じる荷重を $W_{2'}$ とし、荷重 $W_{2'}$ の強制変位xと同じ方向の分力を W_2 とす

る。

強制変位 $x を 負荷したときの45^{\circ}$, 135[°], 225[°]及び315[°]の位置に設置された原 子炉圧力容器スタビライザに生じる接線方向の変位は $x \cdot \cos \alpha$ であることから,荷 重 $W_{2'}$ は以下のとおりとなる。

 $W_{2} = K_{1 a m b i} \cdot x \cdot \cos \alpha$

図2.2.1.2.2-4内の拡大図の関係から強制変位 x と同じ方向の分力W 2 は以下の とおりとなる。

 $W_2 = W_2 \cos \alpha = K_{1 \text{ a m b i}} \cdot x \cdot \cos^2 \alpha$ したがって、原子炉圧力容器スタビライザ全体のばね定数(K₅)は以下のとお りとなる。 W=2 · W₁+4 · W₂=2 · (K_{1 a m b i} · x)+4 · (K_{1 a m b i} · x · cos² α) $= 4 \cdot K_{1 a m b i} \cdot x$ $K_{5} = \frac{W}{x} = 4 K_{1 \text{ a m b i}} = 4 \cdot \frac{2 \cdot K_{\text{S}} \cdot K_{\text{R}}}{K_{\text{S}} + K_{\text{R}}} = \frac{8 \cdot K_{\text{S}} \cdot K_{\text{R}}}{K_{\text{S}} + K_{\text{R}}}$ スリー P/2 荷重 K1half K1half Ks \mathbf{Ks} Kr K_R \/\/\-_^\/\/\/ 六角ナッ 荷重 P/2

図 2.2.1.2.2-3 既工認におけるばね定数算定モデル

図 2.2.1.2.2-4 水平荷重の分配

- (4) 今回工認におけるばね定数算定方法
 - a. 原子炉圧力容器スタビライザのばね定数算定方法

今回工認においては、サラバネ及びロッドの他に原子炉圧力容器からの外力の支持 に寄与する部材を剛性を考慮する対象として追加する。今回工認におけるばね定数算 定モデルを図 2.2.1.2.2-5 に示す。サラバネ(K_s)及びロッド(K_R)に加え、ガセ ット(K_G)、ヨーク(引張方向K_{YT}, 圧縮方向K_{YC})、スリーブ(K_{SL})、六角ナット (K_H)、ワッシャ(K_w)について、原子炉圧力容器スタビライザ1基の片側分のばね 定数(K_{1half})は、サラバネ(K_s)及びロッド(K_R)に加え、ガセット(K_G)、ヨー ク(引張方向K_{YT}, 圧縮方向K_{YC})、スリーブ(K_{SL})、六角ナット(K_H)、ワッシャ (K_w)の直列ばねとして、以下の式に基づき算定する。なお、縦弾性係数は「発電用 原子力設備規格 設計・建設規格(2005 年版(2007 年追補版を含む))(以下「JSME2005 /2007 年版」という。)における原子炉圧力容器スタビライザ最高使用温度(302℃) の値を用いる。

また,原子炉圧力容器スタビライザ1基の両側分のばね定数($K_{1 ambi}$)は片側 分のばね定数の並列ばね及びガンマ線遮蔽壁ブラケット(K_B),シム(K_{SM})の直 列ばねとして,以下の式に基づき算定する。

1 K 1 a m b i =_____ $\frac{1}{K_{1 h a l f (T)} + K_{1 h a l f (C)}} + \frac{1}{K_{B}} + \frac{1}{K_{SM}}$ 8基分全体でのばね定数は次式のように表される。 K₅=4K_{1 a m b i} =---1 1 $\overline{K_{1 h a l f (T)} + K_{1 h a l f (C)}} + \overline{K_B}^{+} \overline{K_{SM}}$ ここで、 K₅:原子炉圧力容器スタビライザ8基分のばね定数 K_{1 ambi}: : 原子炉圧力容器スタビライザ1基分のばね定数 K_{1half}:原子炉圧力容器スタビライザ1基分(片側分)のばね定数 Ks : サラバネのばね定数 KR : ロッドのばね定数 K_G : ガセットのばね定数 K_{VT} :ヨークのばね定数(引張方向) K_{YC} :ヨークのばね定数(圧縮方向) K_{SL} : スリーブのばね定数 Кн : 六角ナットのばね定数 Kw : ワッシャのばね定数 K_B :ガンマ線遮蔽壁ブラケットのばね定数 K_{SM} :シムのばね定数

図 2.2.1.2.2-5 今回工認におけるばね定数算定モデル

b. 各部材のばね定数算定方法

(a) サラバネ

メーカ試験結果よりサラバネ1枚あたりのばね定数は, [N/mm]である。

原子炉圧力容器スタビライザの片側にサラバネは並列ばねになるように 重ねているため、片側全体のばね定数は以下の式に基づき算定する。

(b) ロッド

ロッドの概略図を図 2.2.1.2.2-6 に示す。ロッドの軸方向ばね定数は,以下の 式に基づき算定する。

50

$$A_{R1}$$
 A_{R2}
ここで,
 A_{R1} : 丸棒部断面積 = (mm²)
 A_{R2} : ねじ部断面積 = (mm²)
 L_{R1} : 丸棒部長さ = (mm)
 L_{R2} : 丸棒部長さ = (mm)
 L_{R2} : 丸棒部先端~スリーブの六角ナット側端面の距離 = (mm)
E : 縦弾性係数 = (MPa)

図 2.2.1.2.2-6 ロッド概略図

(c) ガセット

 $K_{R} = \frac{E}{\frac{L_{R1}}{L_{R1}} + \frac{L_{R2}}{L_{R2}}}$

ガセットは、図 2.2.1.2.2-7 に示す計算モデルを用いて、サラバネからの荷重 を受けた際のガセットの荷重-変位関係からFEM解析により算定する。

図 2.2.1.2.2-7 ガセットの構造

(d) ヨーク

ヨークのばね定数は、図 2.2.1.2.2-8のとおり分割した①~④のそれぞれのば ね定数を計算し,直列ばねとして引張ばね定数(K_{YT})と圧縮ばね定数(K_{YC}) を算定する。

図 2.2.1.2.2-8 ヨークのばね定数算定のための計算モデル分割

ア. 引張

 $L_{\rm YTE}$

 $K_{\,Y\,B}$

ヨークの引張によるばね定数は、以下の式に基づき算定する。

$$K_{YT} = \frac{1}{\frac{1}{K_{YS1}} + \frac{1}{K_{YTE}} + \frac{2}{K_{YB}} + \frac{2}{K_{YS2}}}$$

ここで、

$$K_{YS1} : ①及び②のねじ部のせん断によるばね定数(=\frac{A_{YS1} \cdot G_Y}{R_Y})$$

$$A_{YS1} : ①及び②のねじ穴側面積 = (mm2)$$

$$R_Y : ねじ穴半径 = (mm)$$

$$G_Y : せん断弾性係数 = (mm)$$

$$K_{YTE} : ③及び④の引張りによるばね定数(=\frac{A_{YTE} \cdot E}{L_{YTE}})$$

$$A_{YTE} : ③及び④の断面積 = (mm2)$$

$$L_{YTE} : ③及び④の長さ = (mm)$$

 (mm^4) Ι : 断面二次モーメント (MPa) : 縦弾性係数 Е

:①及び②の曲げによるばね定数

: ③及び④の長さ

図 2.2.1.2.2-9 ①及び②の曲げによるばね定数計算モデル

ヨークの圧縮によるばね定数は、以下の式に基づき算定する。

 $K_{YC} = K_{YS1}$

イ. 圧縮

(e) スリーブ

スリーブの概略図を図 2.2.1.2.2-10 に示す。スリーブの軸方向ばね定数は, 以下の式に基づき算定する。

図 2.2.1.2.2-10 スリーブ概略図

(f) 六角ナット

六角ナットの概略図を図 2.2.1.2.2-11 に示す。六角ナットのせん断によるば ね定数は、以下の式に基づき算定する。

$$\mathbf{K}_{\mathrm{H}} = \frac{\mathbf{A}_{\mathrm{H}} \cdot \mathbf{G}_{\mathrm{H}}}{\mathbf{R}_{\mathrm{H}}}$$

ここで,

A _H	:ねじ穴側面積	=	(mm^2)
R _H	: 穴の半径	= (mm)	
G _H	: せん断弾性係数	=	(MPa)

図 2.2.1.2.2-11 六角ナット概略図

(g) ワッシャ

ワッシャの概略図を図 2.2.1.2.2-12 に示す。ワッシャの軸方向ばね定数は,以下の式に基づき算定する。

$$K_{W} = \frac{A_{W} \cdot E}{L_{W}}$$

ここで,

図 2.2.1.2.2-12 ワッシャ概略図

(h) ガンマ線遮蔽壁ブラケット

ガンマ線遮蔽壁ブラケットの概略図を図 2.2.1.2.2-13 に示す。ガンマ線遮蔽壁 ブラケットによるばね定数は、以下の式に基づき算定する。

$$K_{B} = \frac{A_{B} \cdot G_{B}}{L_{B}}$$

図 2.2.1.2.2-13 ガンマ線遮蔽壁ブラケット概略図

(i) シム

シムの概略図を図 2.2.1.2.2-14 に示す。シムの軸方向ばね定数は,以下の式に 基づき算定する。

$$\mathbf{K}_{\mathrm{SM}} = \frac{\mathbf{A}_{\mathrm{SM}} \cdot \mathbf{E}}{\mathbf{t}_{\mathrm{SM}}}$$

ここで, A_{SM} : 断面積 = (mm²) t_{SM} : 厚さ = (mm) E : 縦弾性係数 = (MPa)

図 2.2.1.2.2-14 シム概略図

56

c. 原子炉圧力容器スタビライザのばね定数算定結果

各部材のばね定数並びに原子炉圧力容器スタビライザ1基及び全体のばね定数の 算定結果を表 2.2.1.2.2-2 に示す。

表 2.2.1.2.2-2 原子炉圧力容器スタビライザのばね定数

* 10 10 10 20			
	[単位	:	kN/m]

原子炉圧力容器スタビライザの部材	既工認	今回工認
サラバネ(Ks)	1.78 $\times 10^{6}$ *	2. 32×10^{6}
ロッド (K _R)	3.69×10^{6}	3.33×10^{6}
ガセット(K _G)	_	3.28×10^{7}
ヨークのばね定数(引張方向)(K _{YT})	_	4. 31×10^{6}
ヨークのばね定数(圧縮方向)(K _{YC})	_	6. 73×10^7
スリーブのばね定数 (Ksl)	_	7. 10×10^7
六角ナットのばね定数 (K _H)	_	3.95×10^{7}
ワッシャのばね定数 (K _w)	_	5.81 $\times 10^{8}$
ガンマ線遮蔽壁ブラケット (K _B)	_	8.77 $\times 10^{6}$
シムのばね定数(K _{sM})	_	2.84 $\times 10^{8}$
原子炉圧力容器スタビライザ1基分のばね定数	9 40 \(106	1 70 \(106
(K _{1 a m b i})	2. 40×10^{-5}	1. 70×10^{-5}
原子炉圧力容器スタビライザ全体のばね定数	0.61×10^{6}	6.80×10^{6}
(K ₅)	9.01~10	0.00 \ 10

<mark>注記*:</mark>計画時の枚数(片側 枚)から算定している。

(5) FEM解析によるばね定数算出

(4)で示したとおり,原子炉圧力容器スタビライザのばね定数は計算式を用いて算 定している。本項では,実機を模擬したFEMモデルにより原子炉圧力容器スタビ ライザのばね定数を算定し,(4)c.により得られたばね定数との比較を行う。

a. 計算方法

<mark>計算機コード「ABAQUS」により,部材ごとの形状,材料物性値等を設定し</mark> た3次元シェルモデルで解析する。

(a) 解析モデル

解析モデルの概要を図 2.2.1.2.2-15 に示す。なお,解析モデルにおいて,ヨ ークはシム及びロッドのみに接続されており,ロッドはヨーク及び六角ナットの みに接続されている。その他の部材については,隣り合う部材同士で接続されて いる。図 2.2.1.2.2-15 において,図中の記号は(4) c. における各部材のばね定数

b. 計算条件

算定における項目の記号に対応している。なお,(4)c. ではばね定数の算出対象と してブラケットは含まれていないが,本項ではブラケットを含む解析モデルによ りばね定数を算定する。

(b) 各構成部材の材質及び材料物性

解析に用いる各構成部材の材質及び材料物性は(4)c.と同様とする。ただし、サラ バネ、六角ナット及びロッドのねじ部のせん断によるばね定数については形状によ るモデル化が困難であるため、(4)c.と同じばね定数になるように縦弾性係数を調整 して設定する。該当箇所を図2.2.1.2.2-16に、設定した縦弾性係数を表 2.2.1.2.2-3に示す。

縦弾性係数E
作成可加 (MPa)
サラバネ 2.71×10 ⁴
ロッドのねじ部 2.00×10 ⁶
六角ナット 1.86×10 ⁵

(c) 境界条件及び荷重条件

ガンマ線遮蔽壁ブラケットはガンマ線遮蔽壁に溶接で固定されていることから, 端面は全方向拘束として,下面は鉛直方向拘束とする。ばね定数算定にあたって は,原子炉圧力容器スタビライザブラケットから原子炉圧力容器スタビライザが荷 重を受けることを想定し,シムに強制変位を負荷する。境界条件及び荷重条件を図 2.2.1.2.2-17に示す。

図 2.2.1.2.2-17 境界条件及び荷重条件

図 2.2.1.2.2-18 変更前後のモデル形状

d. FEMモデルによるばね定数算定結果

<mark>原子炉圧力容器スタビライザにおいて,今回工認で考慮するばね定数及びFEM</mark> モデルによるばね定数の算定結果の比較を表 2. 2. 1. 2. 2-4 に示す。

表 2. 2. 1. 2. 2-4 に示すとおり,実機を想定したFEMモデルより算定したばね定 数と今回工認のばね定数が同等であることが確認された。

表 2.2.1.2.2-4 原子炉圧力容器スタビライザのばね定数

	ばね定数(一基分)		
機器	人同工初	FEMモデルによる	
	今回上認	算定結果	
原子炉圧力容器スタビライザ	1.70×10^6 kN/m	1.51×10^6 kN/m	

(6) 今回工認におけるばね定数の妥当性

(4)に示すとおり,既工認と比べて今回工認のばね定数が小さくなっているが,今 回工認ではガセット,ヨーク,スリーブ,六角ナット,ワッシャ,ガンマ線遮蔽壁ブ ラケット,シムの剛性を考慮しており,直列ばね成分が増えたことにより全体のばね 定数が低下したことが要因であると考えられることから,算定方法の変更内容と整合 している。また,(5)に示すとおり,実機を想定したFEMモデルより算定したばね 定数と今回工認のばね定数が同等であることが確認された。したがって,今回工認に おけるばね定数は妥当であると考える。 2.2.2 既工認と今回工認の地震応答解析モデルの比較による影響確認

原子炉本体地震応答解析モデルを既工認から変更することに伴い,地震応答への影響を確認 する。具体的には、PCV-RPV-Rinモデルの導入及び原子炉格納容器スタビライザ・ 原子炉圧力容器スタビライザのばね定数の精緻化による地震応答への影響を固有値解析及び 地震応答解析により確認する。今回工認の原子炉本体地震応答解析モデルと比較する影響検討 モデルの概要を表 2.2.2-1 に、それらを用いた比較ケースの概要を表 2.2.2-2 に示す。

比較ケース1は、PCV-RPVモデルをPCV-RPV-Rinモデルに変更したこと による地震応答への影響を確認することを目的として、表2.2.2-1に示す影響検討モデル1 と今回工認の原子炉本体地震応答解析モデルの固有値解析結果及び地震応答解析結果を比較 する。影響検討モデル1の原子炉格納容器スタビライザ及び原子炉圧力容器スタビライザの ばね定数には精緻化した値を適用する。影響検討モデル1のモデル図を図2.2.2-1及び図 2.2.2-2に示す。

比較ケース 2 は、原子炉格納容器スタビライザ及び原子炉圧力容器スタビライザのばね定数を精緻化したことによる地震応答への影響を確認することを目的として、表 2.2.2-1 に示す影響検討モデル 2 と今回工認の原子炉本体地震応答解析モデルの固有値解析結果及び地震応答解析結果を比較する。原子炉格納容器スタビライザ及び原子炉圧力容器スタビライザのばね定数について、影響検討モデル 2 には既工認時の値を適用し、今回工認の原子炉本体地震応答解析モデルには精緻化した値を適用する。影響検討モデル 2 のモデル図を図 2.2.2-3 及び図 2.2.2-4 に示す。

比較ケース3は、原子炉圧力容器スタビライザのばね定数の算定方法をFEM に変更したこ とによる地震応答への影響を確認することを目的として、表2.2.2-1に示す影響検討モデル 3と今回工認の原子炉本体地震応答解析モデルの固有値解析結果及び地震応答解析結果を比 較する。原子炉圧力容器スタビライザのばね定数について、影響検討モデル3にはFEMから算 定した値を適用し、今回工認の原子炉本体地震応答解析モデルには精緻化した値を適用する。 影響検討モデル3のモデル図を図2.2.2-5及び図2.2.2-6に示す。

なお,本検討における地震応答解析では,設備評価に支配的な基準地震動Ss-Dを用いる。

影響検討		モデル	111. In		
モデル	解析モデル	スタビライザ ばね定数	その他	備考	
1	PCV-RPVモデル	精緻化值	既工認と同じ	—	
2	PCV-RPV-Rin モデル	既工認と同じ	既工認と同じ	_	
3	<mark>PCV-RPV-Rin</mark> モデル	 原子炉圧力容器 スタビライザ: FEM 算定値 原子炉格納容器 スタビライザ: 精緻化値 	<mark>既工認と同じ</mark>	-	
_	PCV-RPV-Rin モデル	精緻化値	既工認と同じ	今回工認 モデル	

表 2.2.2-1 影響検討モデルの概要

表 2.2.2-2 比較ケースの概要

			•		
比較 ケース	比較対象モデル		比較結果		
		比較目的	固有値解析	地震応答解析	
1	・影響検討モデル 1 ・今回工認モデル	PCV-RPVモ デルをPCV-R PV-Rinモデ ルに変更にしたこ とによる地震応答 への影響確認	表 2. 2. 2-3 ~ 表 2. 2. 2-4 図 2. 2. 2-7	表 2. 2. 2-5 ~ 表 2. 2. 2-6	
2	・影響検討モデル 2 ・今回工認モデル	原子炉格納容器 スタビライザ及 び原子炉圧力容 器スタビライザ のばね定数を精 徴化したことに よる地震応答へ の影響確認	表 2. 2. 2-7 ~ 表 2. 2. 2-8 図 2. 2. 2- <mark>8</mark>	表 2. 2. 2-9 ~ 表 2. 2. 2-10	
3	・影響検討モデル 3 ・今回工認モデル	原子炉圧力容器 スタビライザの ばね定数の算定 方法をFEMモデル に変更したこと による地震応答 への影響確認	表 2. 2. 2-13 ~ 表 2. 2. 2-14 図 2. 2. 2-13	表 2. 2. 2-15 ~ 表 2. 2. 2-16	

図 2.2.2-1 影響検討モデル1(NS方向)

図 2.2.2-2 影響検討モデル1(EW方向)

2.2.2-3 影響検討モデル2(NS方向)(単位:m)

X

⁶⁵ 103

2.2.2-4 影響検討モデル2(EW方向)(単位:m)

X

66 **104**

図 2. 2. 2-5 影響検討モデル 3 (NS方向)(単位:m)

図 2. 2. 2-6 影響検討モデル 3 (EW方向) (単位:m)

⁶⁸ 106

- a. 検討結果(比較ケース1)
 - (1) 固有周期及び刺激係数

表 2. 2. 2-3~表 2. 2. 2-4 に示す固有値解析結果及び図 2. 2. 2-5(1/24)~図 2. 2. 2-5(24/24)に示す刺激関数図から,影響検討モデル 1 と今回工認モデルにおける固有周 期の変動は小さく(最大 4%変動),各刺激関数の変形状態は一致していることが確認 できた。

(2) 主要機器の地震荷重

表 2.2.2-5~表 2.2.2-6 に示す地震応答解析結果(基準地震動Ss-D入力時)から,各部位の荷重が概ね一致している(最大 10%変動)ことがわかる。したがって, PCV-RPVモデルをPCV-RPV-Rinモデルに変更したことによる地震応 答への影響は軽微である。

 影響検討モデル1 		②今回工認モデル		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
1	0.219	1	0.219	1.00	原子炉建物
_	_	2	0.202	_	燃料集合体
		3	0.135	Ι	炉心シュラウド
2	0.113	4	0.110	0.97	原子炉圧力容器
3	0.098	5	0.098	1.00	原子炉建物
4	0.069	6	0.069	1.00	原子炉建物
		7	0.066	Ι	制御棒案内管
5	0.058	8	0.057	0.98	原子炉圧力容器
6	0.052	9	0.052	1.00	原子炉建物
_	_	10	0.050	_	燃料集合体

表 2.2.2-3 固有値解析結果(比較ケース 1, NS方向)

①影響検討モデル1		②今回工認モデル		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
_	_	1	0.204	—	燃料集合体
1	0.202	2	0.200	0. 99	原子炉建物
_	_	3	0. 135	_	炉心シュラウド
2	0.113	4	0.109	0.96	原子炉圧力容器
3	0.093	5	0.093	1.00	原子炉建物
4	0.067	6	0.067	1.00	原子炉建物
_	_	7	0.066	—	制御棒案内管
5	0.058	8	0.057	0.98	原子炉圧力容器
6	0.051	9	0.051	1.00	原子炉建物
_	_	10	0.050	_	燃料集合体

表 2.2.2-4 固有値解析結果(比較ケース 1, EW方向)

000000

:影響検討モデル1

_ ė

ノノノトロ・固収がナリカ後

1 原子伊穂物 2 原子伊格納容器 3 ガンマ線運破墜及び原子炉圧力容器ペデスタル 4 原子炉圧力容器

⁷³ 111

1 原子伊建物 2 原子伊格納容器 3 ガンマ線運破墜及び原子炉圧力容器ペデスタル 4 原子炉圧力容器

刺激係数 固有周期(s);0.202

⁷⁸ 116

⁷⁹ 117

プラント名:島根原子力発電所第2号機

1 原子伊建物 2 原子伊格納容器 3 ガンマ線遮蔽弦の原子炉圧力容器ペデスタル 4 原子炉圧力容器

刺激係数 固有周期(s);0.067

:影響検討モデル1

1 原子伊建物 2 原子炉格納容器 3 ガンマ線遮蔽墜及び原子炉圧力容器ペデスタル 4 原子炉圧力容器

1 原子炉建物 2 原子炉格納容器

:影響検討モデル1

主 西	荷重	①影響検討	②今回工認	比率
工女队佣了印匠	何里	モデル1	モデル	(2/1)
原子炉圧力容器	せん断力(kN)	12200	11500	0.94
支持スカート基部	モーメント(kN・m)	120000	112000	0.93
原子炉格納容器基部	せん断力(kN)	23400	23200	0.99
	モーメント(kN・m)	428000	426000	1.00
ガンマ線 遮蔽壁基部	せん断力(kN)	18600	18400	0.99
	モーメント(kN・m)	140000	134000	0.96
原子炉圧力容器	せん断力(kN)	40400	38600	0.96
ペデスタル基部	モーメント(kN・m)	459000	435000	0.95
原子炉圧力容器 スタビライザ	反力(kN)	12000	10800	0.90
原子炉格納容器 スタビライザ	反力(kN)	19300	18100	0.94
シャラグ	反力(kN)	28900	28400	0.98

表 2.2.2-5 主要設備の地震応答解析結果(比較ケース 1, NS方向,基準地震動Ss-D)

応答値は有効数字4桁目を四捨五入

主要設備・部位	荷重	 ①影響検討 モデル1 	②今回工認 モデル	比率 (②/①)
原子炉圧力容器	せん断力(kN)	11800	11100	0.94
支持スカート基部	モーメント(kN・m)	112000	102000	0.91
原子炉格納容器基部	せん断力(kN)	26700	24900	0.93
	モーメント(kN・m)	465000	428000	0.92
ガンマ線	せん断力(kN)	20200	19000	0.94
遮蔽壁基部	モーメント(kN・m)	143000	133000	0.93
原子炉圧力容器	せん断力(kN)	39500	37100	0.94
ペデスタル基部	モーメント(kN・m)	464000	439000	0.95
原子炉圧力容器 スタビライザ	反力(kN)	11200	10900	0.97
原子炉格納容器 スタビライザ	反力(kN)	17300	18100	1.05
シャラグ	反力(kN)	24800	25300	1.02

表 2.2.2-6 主要設備の地震応答解析結果(比較ケース 1, EW方向,基準地震動 Ss-D)

応答値は有効数字4桁目を四捨五入

- b. 検討結果(比較ケース2)
- (1) 固有周期及び刺激関数

表 2.2.2-7~表 2.2.2-8 に示す固有値解析結果より,今回工認モデルは影響検討モ デル 2 に対し,原子炉圧力容器の応答が卓越する振動モードで固有周期が長くなる(最 大 9%)が,その他の振動モードの固有周期の変動は小さいことが確認できた。また, 図 2.2.2-6 (1/40) ~図 2.2.2-6 (40/40) に示す刺激関数図より,両モデルの刺激 関数が概ね一致することが確認できた。

(2) 原子炉格納容器スタビライザ及び原子炉圧力容器スタビライザの反力

表 2.2.2-9~表 2.2.2-10 に示す地震応答解析結果より,原子炉格納容器スタビラ イザ及び原子炉圧力容器スタビライザのばね定数を変更したことにより,原子炉格納容 器スタビライザ,原子炉圧力容器スタビライザ及びシヤラグの荷重が比較的大きく変動 した。最も大きく変動したのは原子炉格納容器スタビライザであり,今回工認モデルは, 影響検討モデル2に対しばね反力が 36%減少した。

この要因として,原子炉格納容器スタビライザ及び原子炉圧力容器スタビライザのば ね定数が低下したことにより,これらが分担する荷重が小さくなったと考えられる。

(3)原子炉圧力容器支持スカート基部,ガンマ線遮蔽壁基部,原子炉圧力容器ペデスタル 基部,シヤラグの地震荷重

原子炉圧力容器支持スカート基部,ガンマ線遮蔽壁基部,原子炉圧力容器ペデスタル 基部,シヤラグでは,影響検討モデル2(①)と今回工認モデル(②)の荷重の大小関 係(比率(②/①))がNS方向とEW方向で異なり,NS方向の荷重は②の方が大きく なる(比率(②/①)が1より大きい)のに対し,EW方向の荷重は②の方が小さくな った(比率(②/①)が1より小さい)。

図 2.2.2-9~図 2.2.2-10 に原子炉格納容器スタビライザ及び原子炉圧力容器スタ ビライザが接続するガンマ線遮蔽壁頂部における影響検討モデル2と今回工認モデルの 基準地震動の床応答スペクトルを示す。また,表2.2.2-11 に影響検討モデル2(①) と今回工認モデル(②)における,原子炉圧力容器の振動が卓越する振動モードのうち, 最も低次である第4次モードの固有周期と床応答スペクトル及びその比率(②/①)を 示す。NS方向はスタビライザばね定数の変更に伴い応答加速度が大きくなるが,EW 方向は小さくなっており、上述した各荷重の大小関係と一致する。

図 2.2.2-9~図 2.2.2-10 に示したガンマ線遮蔽壁頂部における床応答スペクトル に関して,影響検討モデル2と今回工認モデルの固有周期0.1秒付近の震度のピーク値 の大小関係がNS方向とEW方向で逆転している理由を以下に考察する。

原子炉圧力容器と原子炉建物の振動がそれぞれ卓越する第4次モードと第5次モー ドの固有周期とその差分を表2.2.2-12に示す。ばね定数変更によりNS方向,EW方 向共に第4次モードと第5次モードの固有周期の差が大きくなっており,今回工認モデ ルの方が応答が低減することが予想される。

一方,原子炉建物 EL10.100m の質点(原子炉圧力容器ペデスタルの基部と接続される

質点)の床応答スペクトル(図 2.2.2-11~図 2.2.2-12 参照)を確認すると,原子炉 圧力容器の振動が卓越する第4次モードの震度は,NS方向では影響検討モデル2の方 が小さいが,EW方向では今回工認モデルの方が小さい。第4次モードでは,原子炉圧 力容器と共にガンマ線遮蔽壁の振動も卓越するため,この傾向は,ガンマ線遮蔽壁の振 動に寄与する成分の大小関係を示していると考えることができる。

以上より,第4次モードと第5次モードの固有周期の近接関係からはNS方向,EW 方向共に今回工認モデルの方が応答が低減されることが予想されたが,ガンマ線遮蔽壁 の入力地震動成分においては,NS方向のみ今回工認モデルの方が大きくなる傾向を示 しているため,ガンマ線遮蔽壁頂部の床応答スペクトルの傾向がNS方向とEW方向で 異なったと考える。

この傾向が原子炉圧力容器支持スカート基部, ガンマ線遮蔽壁基部, 原子炉圧力容器 ペデスタル基部, シヤラグの荷重の傾向にも表れているものと考える。

(4) 炉心シュラウド下部胴下端, 燃料集合体の地震荷重

炉心シュラウド下部胴下端のせん断力及びモーメント,燃料集合体の変位はスタビ ライザばね定数の変更前後で応答の差分が10%以下であり,他主要設備と比較して変化 が小さい。この理由は,表2.2.2-7及び表2.2.2-8に示した固有値解析結果にて炉心 シュラウド及び燃料集合体の固有周期がばね定数変更前後で変わらないことからもわ かるとおり,ばね定数変更がそれら設備の応答特性に大きく影響しないためと考えられ る。

以上の考察のとおり、ばね定数の変更に対して妥当な結果が得られていると考える。

①影響検討モデル2		②今回工認モデル		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
1	0.219	1	0.219	1.00	原子炉建物
2	0.202	2	0.202	1.00	燃料集合体
3	0.135	3	0.135	1.00	炉心シュラウド
4	0.102	4	0.110	1.08	原子炉圧力容器
5	0.095	5	0.098	1.03	原子炉建物
6	0.069	6	0.069	1.00	原子炉建物
7	0.066	7	0.066	1.00	制御棒案内管
8	0.056	8	0.057	1.02	原子炉圧力容器
9	0.052	9	0.052	1.00	原子炉建物
10	0.050	10	0.050	1.00	燃料集合体

表 2.2.2-7 固有値解析結果(比較ケース 2, NS方向)

表 2.2.2-8 固有値解析結果(比較ケース 2, EW方向)

①影響検討モデル2		②今回工認モデル		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
1	0.204	1	0.204	1.00	燃料集合体
2	0.200	2	0.200	1.00	原子炉建物
3	0.135	3	0.135	1.00	炉心シュラウド
4	0.100	4	0.109	1.09	原子炉圧力容器
5	0.091	5	0.093	1.02	原子炉建物
6	0.067	6	0.067	1.00	原子炉建物
7	0.066	7	0.066	1.00	制御棒案内管
8	0.055	8	0.057	1.04	原子炉圧力容器
9	0.051	9	0.051	1.00	原子炉建物
10	0.050	10	0.050	1.00	燃料集合体

⁸⁸ 126

⁸⁹ 127

⁹⁰ 128

⁹¹ 129

プラント名:島根原子力発電所第2号機

⁹² 130

⁹³ 131

⁹⁴ 132

⁹⁵ 133

⁹⁶ 134

⁹⁷ 135

:影響検討モデル2

¹⁰¹ 139

¹⁰²

3 ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル 4 原子炉圧力容器 5 気水分離器、スタンドパイプ、 シュラウドへッド及び炉心シュラウド上部開 固有周期(s);0.067 刺激係数 2 原子炉格納容器 1 原子炉建物

¹⁰³ 141

:今回工認モデル

3 ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル 4 原子伊圧力容器 5 気水分離器、スタンドバイプ、 シュラウドヘッド及び炉心シュラウド上部開 1 原子炉建物 2 原子炉格納容器

固有周期(s);0.066 刺激係数

¹⁰⁴ 142

Ξ

œ cee c

> 4 æ

10COPPE

cececce

6

9

000000

ć ---

21. -21. 0.

¹⁰⁵ 143

プラント名:島根原子力発電所第2号機

1 原子炉建物

¹⁰⁷ 145

:今回工認モデル

主要設備・部位	荷重	 ①影響検討 モデル2 	②今回工認 モデル	比率 (②/①)
炉心シュラウド	せん断力(kN)	5500	5780	1.05
下部胴下端	モーメント(kN・m)	31300	33700	1.08
原子炉圧力容器	せん断力(kN)	9610	11500	1.20
支持スカート基部	モーメント(kN・m)	93800	112000	1.19
百乙后故如家兕甘如	せん断力(kN)	23500	23200	0.99
原于炉格納谷츎基部	モーメント(kN・m)	426000	426000	1.00
ガンマ線 遮蔽壁基部	せん断力(kN)	16200	18400	1.14
	モーメント(kN・m)	106000	134000	1.26
原子炉圧力容器	せん断力(kN)	32600	38600	1.18
ペデスタル基部	モーメント(kN・m)	369000	435000	1.18
原子炉圧力容器 スタビライザ	反力(kN)	11900	10800	0.91
原子炉格納容器 スタビライザ	反力(kN)	19200	18100	0.94
シヤラグ	反力(kN)	21600	28400	1.31
燃料集合体	変位(mm)	21.9	22.6	1.03

表 2.2.2-9 主要設備の地震応答解析結果(比較ケース 2, NS方向,基準地震動Ss-D)

応答値は有効数字4桁目を四捨五入

主要設備・部位	荷重	 ①影響検討 モデル2 	②今回工認モデル	比率 <mark>(</mark> ②/① <mark>)</mark>
炉心シュラウド	せん断力(kN)	5270	5700	1.08
下部胴下端	モーメント(kN・m)	31900	30400	0.95
原子炉圧力容器	せん断力(kN)	11600	11100	0.96
支持スカート基部	モーメント(kN・m)	107000	102000	0.95
百乙后故如家兕其如	せん断力(kN)	24800	24900	1.00
原于炉格納谷츎基部	モーメント(kN・m)	431000	428000	0.99
ガンマ線	せん断力(kN)	23300	19000	0.82
遮蔽壁基部	モーメント(kN・m)	137000	133000	0.97
原子炉圧力容器	せん断力(kN)	42900	37100	0.86
ペデスタル基部	モーメント(kN・m)	462000	439000	0.95
原子炉圧力容器 スタビライザ	原子炉圧力容器 スタビライザ 反力(kN)		10900	0.68
原子炉格納容器 スタビライザ	反力(kN)	28100	18100	0.64
シヤラグ	反力(kN)	33700	25300	0.75
燃料集合体	変位(mm)	25.1	26.9	1.07

表 2.2.2-10 主要設備の地震応答解析結果(比較ケース 2, EW方向,基準地震動 Ss-D)

応答値は有効数字4桁目を四捨五入

図 2.2.2-9 ガンマ線遮蔽壁頂部(質点番号 53)における床応答スペクトル (NS方向,基準地震動Ss-D,減衰定数 1.0%)

図 2.2.2-10 ガンマ線遮蔽壁頂部(質点番号 54)における床応答スペクトル (EW方向,基準地震動Ss-D,減衰定数 1.0%)

	NS方向(貿	[点番号 53)	EW方向(質点番号 54)		
	① <mark>影</mark> 響検討 モデル 2	<mark>②</mark> 今回工認 モデル	① <mark>影</mark> 響検討 モデル 2	<mark>②</mark> 今回工認 モデル	
固有周期 <mark>(s)</mark>	0. 102	0. 110	0. 100	0. 109	
加速度 (G)	27.8	32.0	39. 7	30.4	
加速度の比率 (②/①)	1. 15		0.7	7	

表 2.2.2-11 ガンマ線遮蔽壁頂部における原子炉圧力容器の振動が卓越する 第4次モードの固有周期と床応答加速度

表 2.2.2-12 原子炉圧力容器の振動が卓越する第4次モードと原子炉建物の 振動が卓越する第5次モードの固有周期とその差分

	N S	方向	EW方向		
	影響検討 モデル 2	今回工認 モデル	影響検討 モデル 2	今回工認 モデル	
 ①第4次モード (原子炉圧力容器)の 固有周期(s) 	0.102	0.110	0.100	0.109	
②第5次モード(原子炉建物)の固有周期(s)	0.095	0.098	0. 091	0. 093	
固有周期の差分 (①-②)	0.007	0.012	0.009	0.016	

	甘油山市主日	T D	
	本中地辰知い	S D.	$1/1\sqrt{2}$ $\lambda = \pi \sqrt{1} \sqrt{1}$

c. 検討結果(比較ケース 3)

(1) 固有周期及び刺激関数

表 2.2.2-13~表 2.2.2-14 に示す固有値解析結果より,今回工認モデルは影響検討 モデル 3 に対し,原子炉圧力容器の応答が卓越する振動モードの固有周期が短くなる (最大 2%)が,その他の振動モードの固有周期は変動しないことが確認できた。また, 図 2.2.2-11 (1/40) ~ 図 2.2.2-11 (40/40) に示す刺激関数図より,両モデルの刺激 関数が概ね一致することが確認できた。

(2) 主要機器の地震荷重

表2.2.2-15~表2.2.2-16に示す地震応答解析結果より,各部位の荷重が概ね一致 している(最大3%変動)ことが確認できた。荷重においても,今回工認モデルは影響検 討モデル3に対し,原子炉格納容器スタビライザ,原子炉圧力容器スタビライザ及びシ ヤラグの各々2~3%の増加となっており,大きな変動がないことを確認した。

ばね定数の増減と荷重の関係は,原子炉圧力容器スタビライザのばね定数が増加した ことにより,原子炉圧力容器スタビライザ及びこれに繋がる一連のばねの反力が大きく なっており,比較ケース2の検討結果と同様の傾向となっている。

以上の結果より,FEMで算定したばね定数を考慮しても影響は軽微であることを確認 した。

①影響	響検討モデル3 ②今回工認モデル		回工認モデル	固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
1	0.219	1	0.219	1.00	原子炉建物
2	0.202	2	0.202	1.00	燃料集合体
3	0.135	3	0.135	1.00	炉心シュラウド
4	0.110	4	0.110	1.00	原子炉圧力容器
5	0.098	5	0.098	1.00	原子炉建物
6	0.069	6	0.069	1.00	原子炉建物
7	0.066	7	0.066	1.00	制御棒案内管
8	0.058	8	0.057	0.98	原子炉圧力容器
9	0.052	9	0.052	1.00	原子炉建物
10	0.050	10	0.050	1.00	燃料集合体

表 2. 2. 2-13 固有値解析結果(比較ケース 3, NS方向)

表 2. 2. 2-14 固有値解析結果(比較ケース 3, EW方向)

①影判	警検討モデル3	②今回工認モデル		②今回工認モデル		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)			
1	0.204	1	0.204	1.00	燃料集合体		
2	0.200	2	0.200	1.00	原子炉建物		
3	0.135	3	0.135	1.00	炉心シュラウド		
4	0.110	4	0.109	0.99	原子炉圧力容器		
5	0.093	5	0.093	1.00	原子炉建物		
6	0.067	6	0.067	1.00	原子炉建物		
7	0.066	7	0.066	1.00	制御棒案内管		
8	0.058	8	0.057	0.98	原子炉圧力容器		
9	0.051	9	0.051	1.00	原子炉建物		
10	0.050	10	0.050	1.00	燃料集合体		

¹¹⁷ 155

¹¹⁸ 156

プラント名:島根原子力発電所第2号機

121 159

¹²³ 161

プラント名:島根原子力発電所第2号機

¹²⁴ 162

プラント名:島根原子力発電所第2号機

¹²⁵ 163

¹²⁶ 164

128 **166**

-21.

6 炉心シュラウド中間胴	7 炉心シュラウド下部胴	8 制御棒駆動機構、ウジング(外側)	9 燃料集合体	10 制御棒案内管	11 制御棒駆動機構ハウジング(内側)	; 1.510	
1 原子炉建物	2 原子炉格納容器	3 ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル	4 原子炉圧力容器	5 気水分離器,スタンドパイプ,	シュラウドヘッド及び炉心シュラウド上部胴	固有周期(s) ; 0.109 刺激係数	1 1

図 2. 2. 2-13 (27/40) 刺激関数(第4次モード, EW方向)

図 2. 2. 2-13 (28/40) 刺激関数(第4次モード, EW方向)

:今回工認モデル

¹³¹ 169

プラント名:島根原子力発電所第2号機

表 2. 2. 2-15 主要設備の地震応答解析結果 (比較ケース 3, NS方向, 基準地震動Ss-D)						
十 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	古	①影響検討	②今回工認	比率		
土安設備・即位	何里	モデル3	モデル	(2/1)		
炉心シュラウド	せん断力(kN)	5780	5780	1.00		
下部胴下端	モーメント(kN・m)	33700	33700	1.00		
RPV支持	せん断力(kN)	11600	11500	0.99		
スカート基部	モーメント(kN・m)	114000	112000	0.98		
DCV甘如	せん断力(kN)	23200	23200	1.00		
PCV基部	モーメント(kN・m)	426000	426000	1.00		
ガンマ線	せん断力(kN)	17900	18400	1.03		
遮蔽壁基部	モーメント(kN・m)	132000	134000	1.02		
R P V	せん断力(kN)	38700	38600	1.00		
ペデスタル基部	モーメント(kN・m)	433000	435000	1.00		
RPVスタビライザ	反力(kN)	10700	10800	1.01		
PCVスタビライザ	反力(kN)	17900	18100	1.01		
シヤラグ	反力(kN)	28000	28400	1.01		
燃料集合体	変位(mm)	22.7	22.6	1.00		

応答値は有効数字4桁目を四捨五入

表 2.2.2-16 主要設備の	り地震応答解析結果(比	較ケース 3, E V	V方向,基準地震	動Ss-D)
十 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	古	①影響検討	②今回工認	比率
土安苡浦。即位	111 里	モデル3	モデル	(2/1)
炉心シュラウド	せん断力(kN)	5680	5700	1.00
下部胴下端	モーメント(kN・m)	30300	30400	1.00
RPV支持	せん断力(kN)	11000	11100	1.01
スカート基部	モーメント(kN・m)	102000	102000	1.00
DCV甘如	せん断力(kN)	24900	24900	1.00
PCV基部	モーメント(kN・m)	428000	428000	1.00
ガンマ線	せん断力(kN)	18900	19000	1.01
遮蔽壁基部	モーメント(kN・m)	131000	133000	1.02
R P V	せん断力(kN)	36400	37100	1.02
ペデスタル基部	モーメント(kN・m)	435000	439000	1.01
RPVスタビライザ	反力(kN)	10700	10900	1.02
PCVスタビライザ	反力(kN)	17500	18100	1.03
シャラグ	反力(kN)	24800	25300	1.02
燃料集合体	変位(mm)	26.9	26.9	1.00

応答値は有効数字4桁目を四捨五入

- 3. 鉛直方向地震応答解析モデル 本章では,鉛直方向地震応答解析モデルに関して,今回工認での設定内容について説明する。
- 3.1 鉛直方向地震応答解析モデルの扱い

既工認においては,動的地震動を水平方向に対してのみ考慮していたことに対して,今回工 認では,鉛直方向の動的地震動が導入されたことから,鉛直方向応答を適切に評価する観点で, 水平方向地震応答解析モデルとは別に鉛直方向地震応答解析モデル(図 3.1-1 参照)を追加 する。鉛直方向地震応答解析モデルについては,鉛直方向の各応力評価点における軸力を算定 するため,水平方向のPCV-RPV-Rinモデルをベースに新たに作成した梁質点系モデ ルを適用する。

3.2 鉛直方向地震応答解析モデルの設定

新たに作成する鉛直方向地震応答解析モデルは、水平方向地震応答解析モデルとの整合を図 ることを基本とし、上下方向の自由度のみを有する集中質量質点と軸圧縮引張りばねで構成さ れる。ここで、水平方向地震応答解析モデルでばねとして考慮している設備は、表 3.2-1 に 示す理由により鉛直方向の振動特性には影響を与えないことから、鉛直方向地震応答解析モデ ルではばねとしてモデル化しない。なお、燃料集合体は、下部を燃料支持金具に、上部を上部 格子板に支持され、鉛直方向には拘束されていない。今回工認における設計用地震力は、VI-2-1-7「設計用床応答スペクトルの作成方針」に示すとおり、鉛直方向最大応答震度が 1G を 超えており燃料集合体の浮上りが生じる可能性がある。燃料集合体の浮上り評価では NS2 補 足-027-10-11「制御棒の挿入性評価について」に記載のとおり、水平及び鉛直方向加速度によ る浮上り量は小さく、浮上りによる燃料支持金具からの離脱の影響がないことから、鉛直方向 加速度が制御棒挿入評価に影響を与えないことを確認している。

記号	名称	ばねとしてモデル化しない理由
К 1	ウェルシールベローズ	鉛直方向地震応答解析モデルにてモデル化して いるその他構造物の剛性に対して無視できる程 度に小さい値であるため,モデル化しない。
K 2	シヤラグ	鉛直方向荷重を受け持たない構造であるため, モデル化しない。
К з	燃料交換ベローズ	鉛直方向地震応答解析モデルにてモデル化して いるその他構造物の剛性に対して無視できる程 度に小さい値であるため,モデル化しない。
K 4	原子炉格納容器スタビライザ	鉛直方向荷重を受け持たない構造であるため, モデル化しない。
K 5	原子炉圧力容器スタビライザ	鉛直方向荷重を受け持たない構造であるため, モデル化しない。
К 6	制御棒駆動機構ハウジング レストレントビーム	鉛直方向荷重を受け持たない構造であるため, モデル化しない。
K 7	制御棒駆動機構ハウジング ラテラルレストレント	鉛直方向荷重を受け持たない構造であるため, モデル化しない。
К 8	シュラウドサポート	水平方向地震応答解析モデルでは,水平方向の 荷重を受けたシュラウドサポートプレート,レ グ及びシリンダによる回転振動を考慮するため に回転ばねに置換していたが,鉛直方向ではシ ュラウドの荷重はシリンダ及びレグを介して原 子炉圧力容器下部鏡板に伝達されることから, 鉛直方向地震応答解析モデルでは回転ばねでは なく,シュラウドサポートレグ及びシリンダを 軸ばねとしてモデル化する。

表 3.2-1 鉛直方向地震応答解析モデルではばねとしてモデル化しない設備
3.2.1 質点位置

原子炉格納容器,ガンマ線遮蔽壁及び原子炉圧力容器ペデスタルの質点位置と実機構造の関係を図3.2.1-1に,原子炉圧力容器及び炉内構造物系の質点位置と実機構造の関係を図3.2.1 -2に示す。

図 3.2.1-1 鉛直方向地震応答解析モデルの質点位置と実機構造の関係 (原子炉格納容器,ガンマ線遮蔽壁及び原子炉圧力容器ペデスタル)

144

凡例	9 質点	軸ばね	——————————————————————————————————————				主根拠	開			1			這			1			ド下緒	影	器底部		1		器	
		_	"				設	上部格子板位			等間隔に分害	1		炉心支持板位			等間隔に分害	1		制御棒案内管	ハウジング上	原子炉圧力を		等間隔に分害		ハウジングT	
							標高 EL(m)	25.843	25, 131	24.419	23.707	22, 995	22. 283	21.571	20.892	20.214	19. 535	18.856	18.178	17.499	17.499	16.508	15.644	14.781	13.917	13.054	
							資 御 市 史	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	
							構造物			慭	<u>幸</u> 乗∢	百谷				1-M	司御様	案内				く + 単 (ワジン	/ グ (歌動様	(内側)	
設定根拠	気水分離器頂部	気水分離器中央	スタン ドパイ プ頂部	スタンドパイプ中央	シュラウドヘッド 鏡板頂部	炉心シュラウド上部胴 上端	炉心シュラウド上部胴 下端				燃料集合体と同一標高				炉心シュラウド中間胴 下端	炉心支持板位置	炉心シュラウド下部胴 上端	質点番号121と同一標高	質点番号81と同一標高	炉心シュラウド下部胴 下描	設定根拠	制御棒貫通孔スタブ チューブ位置		等間隔に分割		ハウジング下端	
標高 EL(m)	31.557	30, 369	29. 181	28.249	27.317	26.687	25.414	25.843	25.414	25, 131	24.419	23.707	22.995	22. 283	21.064	21.571	21.064	20.892	20.214	19.196	標高 EL(m)	17.419	16.345	15.248	14.151	13.054	
質点 番号	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	06	16	92	質点 番号	93	113	114	115	116	
構造物		发士	不分離	嘂							Line of the second s	ل بَ الْح	. rl 1N	₽×							構造物		く ク ゞ 更 御 拝	アンメ	∧ (休 副機權	(夏)	
										л							,	_	1	1	1	10	1	Ì	1		
EL (m) 37.494	36.586 50	35.678	26	33.993	23	32.56/		30.269 55 4 74 30.218 56 5 74	29.181	28.249 58 76 76	27.317	26.687	25.131 617 730 81 95 95 14		23.707 64 84 97	22.993 65 85 22.283 65 99	21.571 00 88 31.064 07 87 89 100	20.892 68 90 101 20.214 20.214 102	19.196 70 91 91 91 91 92 92 92 10.4 10.4	18.250 71 8 105	93	17.419 108 16.345 108	15.944 $72^{$		14.191	13.054 b 112	
編曲 一般定根拠 BL (m) 87.494	原子伊圧力容器頂部 36.586 50 50 8	韓間隔に分割 35.678	フランジと上職務の 取合い時	フランジと調査の 33.993 33.993 33.993	主業気用ノズル位置	電点番号88位置と合わせて いろ いろ の11111 0 0 0 0	領点番号89位置と合わせて 31.901 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	スタビライザブラケット 30.369 20218 20.369 44 位置 56	質点番号90と同一標高 29.181 29.181 75 75	質点番号91と同一編高 28.249 58.248 58.2480 58.248 58.248 58.288 58.288 58.2888 58.2888 58.2488 58.288 58.288 58.288 5888 58.2888 58.2888 5888	■ 27.317 - 27.317 - 27.317 - 27.317 - 27.317 - 25.9 - 27.317 -	26.687	質点番号94と同一漂高 25.414 <u>617.778 81 95 18</u>			22.395 65 10 85 1		20.892	■103 ■104と同一編函 19.196 - 104と回一編函 19.196 - 104	質点番号121と同一標高 18.250	再編輯水田ロ用ノズル位置 93 8 106:107	シュラウドサポートプレー トとの被線位置 16.345 16.345	15.948 15.944 11.3 11.3 支持スカート頂部 15.948 72 11.3 109	支持スカート基部 1114 4 110 114 110 110 1110 1110 1110	制御棒貫通孔 <i>スタブ</i> 14.151 14.151 1115 1111 4111 4111 4111	原子炉圧力容器底部 13.054 51.054 51.055555555555555555555555555555555555	
標高 設定供拠 EL (m) EL (m) 設定供拠 B7.404	37.494 原子炉圧力容器顶部 36.586 50 50 8	36.586 等閒隔に分割 35.678	35.678 アランジと上級数の	33.993 フランジと調板の 33.993 33.993 52	32.567 主蒸気用ノズル位置	31.557 賞点番号88位置と合わせて 31.557 賞人の名 23.057 53.257 53.257 53.257 53.257 53.257 53.257 53.257 54.257 54.257 557 557 557 557 557 557 557 557 557	30.369 慣点番号39位置と合わせて 31.997 54 30.369 いる いる 1.05	30.218 スタビライザブラケット 30.369 30.218 255 74 74 30.218 位置 556 74	29.181 [資点番号90と同一標高 29.181	28.249 汽点带号91と同一漂洒 28.249 58.248 58.2480 58.2480 58.2480 58.2480 58.2480 58.2480 58.2488 58.2488 58.2488 58.2488 58.2488 58.2488 58.2488 58.2488 58.24888 58	27.317 資点番号92と同一標高 27.317 59 600 78 600 77	26.687 慣点番号93と同一環境 25.643 25.845 25.843 25.845 25.855 25	25.414 質点番号94と同一漂高 25.414		23.707 04 04 04 097 051 051 051 051 051 051 051 051 051 051	22.399 65 65 65 85 23.707 数料集合体と同一漂高 22.283 65 65 69 99	22.995 21.671 001 00 31.064 007 057 059 00 01 100	20.892 20.892 20.892 20.992 20	21.064 慣点番号104と同一議高 19.196 19.196 10.3 10.4	20.892 賢点番号121と同一標高 18.250 71 6 105	20.214 再確環水出ロ用ノズル位置	19.196 シュラウドサポートプレー 17.419 108 19.196 トとの装縮位置 16.345 16.345	18.250 支持スカート頂部 15.944 100 15.948 100 15.9	15.944 支持スカート基部 15.944 2持スカート基部 10.000 11.00 1	17.419 制御梯貫通孔スタブ 14.181 11.15 11.15	16.508 原子炉圧力容器底部 13.054 3.0554 5.000 116 112 116 112 116 112 116 112 116 112 116 112 116 112 115 115 115 115 115 115 115 115 115	
第点 標高 設定板拠 BLL(m) 第7.49(m) 第7.49(m) 第7.49(m) 第7.49(m)	49 37.494 原子炉圧力容器頂部 36.586 50 8	50 36.586 \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$35.678	21 35.678 取合い部 27アンジと上鏡板の	52 33.993 アランジと開放の 33.993 33.993 33.993 55.5	53 32.567 主業気用ノズル位置 23 25.55 主業気用ノズル位置 25 25 25 25 25 25 25 25 25 25 25 25 25	54 31.657 第点番号88位置と合わせて 32.067 37.067 0.1.657 10.557 0.1.557 0.1.557	55 30.369 資品番号89位置と合わせて 31.991 54 1	56 30.218 スタビライザプラケット 30.369 55.5 74	57 29.181 質点番号90と同一標高 29.181	58 28.249 質点報告91と同一額或 28.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.249 58.248 58.249 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.248 58.2488 58.2488 58.248 58.248 58.248 58.248 58.248	59 27.317 寬点載号92と同一編站 27.317 59 60 78 60 78	60 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 26.687 <th 26.687<="" td="" th<=""><td>61 25.414 質点番号94と同一標高 25.414 <u>25.414 570 81 95 95 14 14 15 750 81 15 750 81 15 15 15 15 15 15 15 15 15 15 15 15 15</u></td><td>24.419</td><td>c3 24.419 23.707 c4.419 97 91 c3 24.419 64.42 68 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98<td>64 23.707 燃料集合体と同一標高 22.288 65 6 6 6 99 1</td><td>65 22.995 21.000 21.000 20 20 20 20 20 20 20 20 20 20 20 20</td><td>66 22.283 20.892 66 22.283 20.214 68 66 7 67</td><td>67 21.064 質点番号104と同一擴高 19.196 19.196 22 20.00 10.103</td><td>68 20.892 寬点番号121と同一續漸 18.250 71 4 13.250 18.25 19.25 19.25 19.25 18.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25</td><td>69 20.214 再循環水出口用ノズル位置 93 93 94 106.107</td><td>70 19.196 シュラウドサポートプレー 17.419 108 16 トとの被網位置 16.345 16.345 16.345</td><td>71 18.250 支持スカート頂部 15.948 72 113 113 15 15.948 72 109 109 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 114 113 114 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 <</td><td>72 15.944 支持スカート基部 11.4 11.0</td><td>93 17.419 時間棒貫通孔スタブ 14.181 1115 1115</td><td>108 16.508 原子炉圧力容器底部 13.054 13.054 116 112</td></td></th>	<td>61 25.414 質点番号94と同一標高 25.414 <u>25.414 570 81 95 95 14 14 15 750 81 15 750 81 15 15 15 15 15 15 15 15 15 15 15 15 15</u></td> <td>24.419</td> <td>c3 24.419 23.707 c4.419 97 91 c3 24.419 64.42 68 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98<td>64 23.707 燃料集合体と同一標高 22.288 65 6 6 6 99 1</td><td>65 22.995 21.000 21.000 20 20 20 20 20 20 20 20 20 20 20 20</td><td>66 22.283 20.892 66 22.283 20.214 68 66 7 67</td><td>67 21.064 質点番号104と同一擴高 19.196 19.196 22 20.00 10.103</td><td>68 20.892 寬点番号121と同一續漸 18.250 71 4 13.250 18.25 19.25 19.25 19.25 18.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25</td><td>69 20.214 再循環水出口用ノズル位置 93 93 94 106.107</td><td>70 19.196 シュラウドサポートプレー 17.419 108 16 トとの被網位置 16.345 16.345 16.345</td><td>71 18.250 支持スカート頂部 15.948 72 113 113 15 15.948 72 109 109 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 114 113 114 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 <</td><td>72 15.944 支持スカート基部 11.4 11.0</td><td>93 17.419 時間棒貫通孔スタブ 14.181 1115 1115</td><td>108 16.508 原子炉圧力容器底部 13.054 13.054 116 112</td></td>	61 25.414 質点番号94と同一標高 25.414 <u>25.414 570 81 95 95 14 14 15 750 81 15 750 81 15 15 15 15 15 15 15 15 15 15 15 15 15</u>	24.419	c3 24.419 23.707 c4.419 97 91 c3 24.419 64.42 68 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 <td>64 23.707 燃料集合体と同一標高 22.288 65 6 6 6 99 1</td> <td>65 22.995 21.000 21.000 20 20 20 20 20 20 20 20 20 20 20 20</td> <td>66 22.283 20.892 66 22.283 20.214 68 66 7 67</td> <td>67 21.064 質点番号104と同一擴高 19.196 19.196 22 20.00 10.103</td> <td>68 20.892 寬点番号121と同一續漸 18.250 71 4 13.250 18.25 19.25 19.25 19.25 18.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25</td> <td>69 20.214 再循環水出口用ノズル位置 93 93 94 106.107</td> <td>70 19.196 シュラウドサポートプレー 17.419 108 16 トとの被網位置 16.345 16.345 16.345</td> <td>71 18.250 支持スカート頂部 15.948 72 113 113 15 15.948 72 109 109 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 114 113 114 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 <</td> <td>72 15.944 支持スカート基部 11.4 11.0</td> <td>93 17.419 時間棒貫通孔スタブ 14.181 1115 1115</td> <td>108 16.508 原子炉圧力容器底部 13.054 13.054 116 112</td>	64 23.707 燃料集合体と同一標高 22.288 65 6 6 6 99 1	65 22.995 21.000 21.000 20 20 20 20 20 20 20 20 20 20 20 20	66 22.283 20.892 66 22.283 20.214 68 66 7 67	67 21.064 質点番号104と同一擴高 19.196 19.196 22 20.00 10.103	68 20.892 寬点番号121と同一續漸 18.250 71 4 13.250 18.25 19.25 19.25 19.25 18.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25	69 20.214 再循環水出口用ノズル位置 93 93 94 106.107	70 19.196 シュラウドサポートプレー 17.419 108 16 トとの被網位置 16.345 16.345 16.345	71 18.250 支持スカート頂部 15.948 72 113 113 15 15.948 72 109 109 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 114 113 114 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 <	72 15.944 支持スカート基部 11.4 11.0	93 17.419 時間棒貫通孔スタブ 14.181 1115 1115	108 16.508 原子炉圧力容器底部 13.054 13.054 116 112

(原子炉圧力容器及び炉内構造物系)

図3.2.1-2 鉛直方向地震応答解析モデルの質点位置と実機構造の関係

¹⁴⁵ 183

3.2.2 質点質量

鉛直方向地震応答解析モデルの質点質量算定の基本方針は,水平方向地震応答解析モデルと 同様とするが,一部の質点においては設定方法が異なっており,例として原子炉圧力容器胴板 の算定方法を以下に示す。

鉛直方向の質点質量	=	
	=	+
	=	(t)

(1) 原子炉圧力容器胴板(質点番号:59)

表 3.2.2-1 原子炉圧力容器胴板の質点質量算定結果

	水平方向	鉛直方向	
	地震応答	地震応答	備考
	解析モデル	解析モデル	
所上平日	71 (NS方向)	50	
員尽留方	72 (EW方向)	59	
標高 EL(m)	27.	317	
本体質量(t)			
炉水質量(t)			
質点質量(t)			

3.2.3 ばね定数

鉛直方向地震応答解析モデルの断面剛性算定の基本方針は、円筒形又はそれに準ずる構造物 について、下式により全断面を用いてばね定数を算定している。

$$K = \frac{AE}{L}$$

ここで,

A:断面積(m²)

E:縦弾性係数(MPa)

L:部材長(m)

ばね定数の算定例を以下に示す。

(1)原子炉圧力容器胴板(質点番号:59-60)

原子炉圧力容器胴板の断面剛性は,部材の諸元を用いて,全断面によるばね定数を以 下のとおり算定する。

A =
$$(m^2)$$

E = (MPa)
L = 0. 630 (m)

3.3 球殻部を考慮したばね定数に関する影響検討

今回工認の鉛直方向地震応答解析モデルにおける原子炉格納容器,原子炉圧力容器下部鏡板 及びシュラウドヘッドについて,実機は球殻形状であるものの,3.2項に示す円筒形構造の考 え方を準用してばね定数を算定する。そこで,本項では原子炉格納容器,原子炉圧力容器下鏡 及びシュラウドヘッドの球殻部について,実際の形状を考慮したばね定数を設定した場合の地 震応答を算定し,設備評価へ及ぼす影響を確認する。

3.3.1 モデル化の方針

地震応答解析モデルの球殻部において,今回工認モデルのモデル化方針と,影響確認用モデルのモデル化方針を以下に示す。

(1) 今回工認の地震応答解析モデル

今回工認の球殻部のばね定数は、3.2項に示す円筒形構造の考え方を準用して、下 式によりばね定数を算定している。ばね定数の算定には質点間の中心位置における断 面積を用いる。

$$K = \frac{AE}{L}$$

- (2) 影響確認用の地震応答解析モデル 影響確認用の地震応答解析モデルは、薄肉シェルの理論式^[1]より球殻部のばね定数 を算定する。
 - a. 原子炉格納容器

原子炉格納容器において球殻形状となっている範囲と地震応答解析モデルの関係 を図3.3.1-1に示す。軸ばね要素のモデル化範囲に対応する球殻形状に応じてシェ ルの理論式を以下のとおり使い分ける。

質点番号:29-30

$$\Delta y = \frac{\rho R^2}{E} \left[\sin^2 \theta + (1+\nu) \ln \frac{2}{1+\cos \theta} \right]$$
$$P = 2\pi R^2 (1-\cos \theta) t \rho$$
$$K = \frac{P}{\Delta y}$$
$$= \frac{2\pi (1-\cos \theta) t E}{\sin^2 \theta + (1+\nu) \ln \frac{2}{1+\cos \theta}}$$

質点番号: 32-35及び38-40

$$\begin{split} \Delta \mathbf{y} &= \frac{\mathbf{P} \left(1+\nu\right)}{2 \pi \mathbf{E} \mathbf{t}} \left[\ln\left(\tan\frac{\theta}{2}\right) - \ln\left(\tan\frac{\theta}{2}\right) \right] \\ \mathbf{K} &= \frac{\mathbf{P}}{\Delta \mathbf{y}} \\ &= \frac{\mathbf{P}}{\frac{\mathbf{P} \left(1+\nu\right)}{2 \pi \mathbf{E} \mathbf{t}} \left[\ln\left(\tan\frac{\theta}{2}\right) - \ln\left(\tan\frac{\theta}{2}\right) \right]} \\ &= \frac{2 \pi \mathbf{E} \mathbf{t}}{1+\nu} \times \frac{1}{\ln\left(\tan\frac{\theta}{2}\right) - \ln\left(\tan\frac{\theta}{2}\right)} \\ &= \frac{2 \pi \mathbf{E} \mathbf{t}}{1+\nu} \times \frac{1}{\ln\left(\frac{\sin\theta}{1+\cos\theta}\right) - \ln\left(\frac{\sin\theta}{1+\cos\theta}_{0}\right)} \\ &= \frac{2 \pi \mathbf{E} \mathbf{t}}{1+\nu} \times \frac{1}{\ln\left(\frac{\mathbf{r}}{\mathbf{R}}\right) - \ln\left(\frac{\sin\theta}{1+\cos\theta}_{0}\right)} \\ &= \frac{2 \pi \mathbf{E} \mathbf{t}}{1+\nu} \times \frac{1}{\ln\left(\frac{\mathbf{r}}{\mathbf{R}}\right) - \ln\left(\frac{\mathbf{r}'}{\mathbf{R}'}\right)} \\ &= \frac{2 \pi \mathbf{E} \mathbf{t}}{1+\nu} \times \frac{1}{\ln\left(\frac{\mathbf{r}}{\mathbf{R}+\mathbf{x}_{1}}\right) - \ln\left(\frac{\mathbf{r}'}{\mathbf{R}'+\mathbf{x}_{2}}\right)} \end{split}$$

θο

 \mathbf{x}_1

r

X

θ

R

r'

R

質点の位置関係

b. シュラウドヘッド (質点番号:77-78)

シュラウドヘッドの剛性評価においては、スタンドパイプの貫通孔による剛性低下の効果を、物性値を補正することにより模擬する^[2]。

スタンドパイプ貫通孔の配置

η	0.333	0.5	0.7	1.0
E*/E	0.311	0.529	0.79	1.0
ν*	0.363	0.319	0.308	0.3

出典:[2]

150

ここで,

- η :リガメント効率
- P :スタンドパイプ間隔(mm)
- D :スタンドパイプ外径(mm)
- E*:補正後の縦弾性係数(MPa)
- E:補正前の縦弾性係数(MPa)
- v*:補正後のポアソン比

以下のシェルの理論式により剛性を算定する。

c. 原子炉圧力容器下部鏡板(シュラウドサポート取付位置~原子炉圧力容器下端) (質点番号:93-108)

貫通孔部は補強されているため,貫通孔による剛性低下は考慮しない。 以下のシェルの理論式により剛性を算定する。

d. 原子炉圧力容器下部鏡板(シュラウドサポート取付部~原子炉圧力容器スカート付 根位置)(質点番号:71-93) 以下のシェルの理論式により剛性を算定する。 $\Delta y = \frac{P(1+\nu)}{2\pi E t} \left[ln \left(tan \frac{\theta}{2} \right) - ln \left(tan \frac{\theta}{2} \right) \right]$

$$K = \frac{P}{\Delta y}$$

$$= \frac{P}{\frac{P(1+\nu)}{2\pi E t} \left[\ln\left(\tan\frac{\theta}{2}\right) - \ln\left(\tan\frac{\theta}{2}\right) \right]}$$

$$= \frac{2\pi E t}{1+\nu} \times \frac{1}{\ln\left(\tan\frac{\theta}{2}\right) - \ln\left(\tan\frac{\theta}{2}\right)}$$

$$= \frac{2\pi E t}{1+\nu} \times \frac{1}{\ln\left(\frac{\sin\theta}{1+\cos\theta}\right) - \ln\left(\frac{\sin\theta}{1+\cos\theta}\right)}$$

$$= \frac{2\pi E t}{1+\nu} \times \frac{1}{\ln\left(\frac{r}{R}\right) - \ln\left(\frac{r'}{R'}\right)}$$

$$= \frac{2\pi E t}{1+\nu} \times \frac{1}{\ln\left(\frac{r}{R+x_1}\right) - \ln\left(\frac{r'}{R'+x_2}\right)}$$

参考文献

- [1] : Roark [FORMURAS OF STRESS AND STRAIN, 6th edition]
- [2]: T.SLOT 他「Effective Elastic Constants for Thick Perforated Plates With Square and Triangular Penetration Patterns」Journal of Engineering for Industry('71/11)

3.3.2 ばね定数及び固有値解析結果の比較

ばね定数の比較を表 3.3.2-1 に示す。シェルの理論式でばね定数を設定した鉛直方向影響 検討モデルにおいて,ばね定数が低下する傾向となっている。特に,原子炉格納容器の質点番 号 29-30 間,シュラウドヘッド,原子炉圧力容器下部鏡板の質点番号 93-108 間において,ば ね定数がより大きく低下する傾向となっている。

原子炉格納容器,原子炉圧力容器及び炉心シュラウドの振動が卓越する振動モードの固有周期を表3.3.2-2~表3.3.2-4に、その振動モード図を図3.3.2-1~図3.3.2-6に示す。これらより、ばね定数の設定方法の違いによる固有周期の差異は0.003秒程度であり、振動性状に与える影響は小さい。

構造物名	質点	番号	1	今回工認モデル 	 ②鉛直方向影響 検討モデル ばね定数 	ばね定数 の比率 の/①
				(kN/m)	(kN/m)	
	29	30				0.23
	32	33				0.46
百乙后故如穷兕	33	34				0.67
亦了 / 竹科1 谷 砧	34	35				0.74
	38	39				0.77
	39	40				0.75
百工后工力宏架下碚	71	93				0.42
/// 」 // / 二 / J 谷 奋 干 現	93	108				0.14
シュラウドヘッド	77	78				0.03

表3.3.2-1 今回工認モデルと鉛直方向影響確認モデルのばね定数

表 3.3.2-2 今回工認モデルと鉛直方向影響検討モデルでの原子炉格納容器の 固有値解析結果

ĺ)今回工認モデル	②鉛直	国方向影響検討モデル
次数	固有周期(s)	次数	固有周期(s)
12	0.032	12	0.035

表 3.3.2-3 今回工認モデルと鉛直方向影響検討モデルでの原子炉圧力容器の 固有値解析結果

ĺ)今回工認モデル	②鉛直	重方向影響検討モデル
次数	固有周期(s)	次数	固有周期(s)
14	0.028	14	0.029

表 3.3.2-4 今回工認モデルと鉛直方向影響検討モデルでの炉心シュラウドの 固有値解析結果

(])今回工認モデル	②鉛直	重方向影響検討モデル
次数	固有周期(s)	次数	固有周期(s)
18	0.020	16	0.022

¹⁵⁵ 193

3.3.3 地震応答解析結果の比較

今回工認モデルと鉛直方向影響検討モデルに対して,設備評価に支配的な基準地震動 Ss-Dを入力波とする地震応答解析を実施した。今回工認モデルの応答と比較するため,加 速度の応答分布の比較図を図3.3.3-1~図3.3.3-4に,軸力の応答分布の比較図を図3.3.3 -5~図3.3.3-8に,床応答スペクトルの比較図(減衰定数2.0%)を図3.3.3-9~図3.3.3 -27に示す。

原子炉格納容器では,全体的に鉛直方向影響検討モデルでより大きな加速度及び軸力が得ら れており,最上部では25%増加している。また,床応答スペクトルについて,固有周期によっ ては最大で30%程度増加している。

原子炉圧力容器では,全体的に鉛直方向影響検討モデルでより大きな加速度及び軸力が得ら れているが,増分は最大で4%である。また,応答スペクトルの増分は10%以下であり,影響は 小さい。

原子炉圧力容器下部鏡板では,加速度及び軸力が鉛直方向影響検討モデルで最大 5%増加している。また,床応答スペクトルは固有周期によっては最大 15%程度増加している。

炉内構造物系について、気水分離器、スタンドパイプ、シュラウドヘッド及び炉心シュラウ ド上部胴では、全体的に鉛直方向影響検討モデルでより小さな加速度及び軸力が得られてい る。また、上部格子板及び炉心支持板の床応答スペクトルについて、固有周期によっては増加 している箇所があるが、増分は10%以下であり、影響は小さい。

	光 ^像 ()	\Box/\Box	1.25	66 F	I. 22	1.21	1.20		1.14	1.12		1.09	1.09	1.08	1.06	1.04	1.01		
	②鉛直方向 [14] [14] [14] [14] [14] [14] [14] [14]	影響傾討七アル	10.4	c C F	10. 2	10.1	9.90		9.24	9.01		8.39	8.12	7.83	7.50	7.24	6.94		立:m/s ²
	①今回工認モデル		8. 38	C	o. Jo	8.30	8. 22		8.08	8.01		7.70	7.46	7.26	7.08	6.99	6.90		(注) ①及び②の単(
原子炉格納容器	今回工認モデル ××②鉛直方向影響検討モデル		×-	* *		-×		****	```×. — 0		·····	 -0	X, 	*-	 ·*	· · · · · · · · · · · · · · · · · · ·	4 0 6 4 1 1 1 0 1 2 0 1 2 0		·1 最大応答加速度(鉛直方向)
	0.0	EL (m)	39.400	37.060 - 基準地震動 S s		34. 758	33.141		29.392 -	27.907		 22. 932 -	19.878 -	16.825 -	13.700 -	11.900	10.100	5	图3.3.3-

¹⁵⁹ 197

(法)	1 2/D	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.03	1.03	1.03	1.02	1.02	1.02	1.01	1.01	1.01	1.00	1.00	1.00	0.99	0.99	0.98	1.00			
②鉛直方向	影響検討モデ	9.42	9.42	9.41	9.39	9.34	9.27	9.17	9.15	9.05	8.96	8.85	8.77	8.61	8.57	8.47	8.37	8.27	8.17	7.99	7.96	7.85	7.68	7.55	7.39			1- 1- 5 1- 1- 2
①今回て認チデル		9.05	9.05	9.04	9.03	8.98	8.93	8.85	8.83	8.76	8.70	8.63	8.58	8.47	8.44	8.37	8.29	8.21	8.14	8.01	7.99	7.91	7.77	7.67	7.39			
メ②鉛直方向影響検討モデル		×0		-×	*				@*-		- *.				**	*	<u>ب</u>	÷ Č	∞~	*		A			 	8.0 12.0	加速度(m/s²)	
			甘淮县南部公司口	<u> 年</u> 本 中 加 の る こ し																					-	4.0		
	EL (m)	37.494	36. 586	35.678 -	33. 993	32.567	31.557	30 360	30.218	29.181	28.249	27.317	26.687	95 414	25. 131 -	24.419	23.707	22.995	22.283 -	01 DEA	20.892	20.214 -	19.196 -	18.250	T C L	15. 944 0.0		

原子炉圧力容器

¹⁶¹ 199

	● ● ①今回工認モデル メー・・・・・ ②鉛直方向影響検討モデル	①今回工瓢モデル	②鉛直方向) 玉
EL (m)			影響検討モデル	2/0
31. 557		10.2	9.75	0.96
<mark>罪</mark>	<mark>售地震動Ss−D</mark>			
30, 369 -	 	10.2	9.74	0.95
		(c t	
29. 181	-*	10.2	9. 72	0.95
28.249 -	0 .×	10.1	9.68	0.96
27.317 -		10.0	9.62	0.96
	_	9.96	9.02	0.91
100.02)			
25.414		9.81	8.95	0.91
0.0	4.0 8.0 12.0 加速度(m/ <i>s</i> ²)			
	図3 3 3-4	 (注) ①及び②の単作	寸:m/s ²	
			. m. f	

気水分離器、スタンドパイプ、シュラウドヘッド及び炉心シュラウド上部胴

比率 2/①	1.24	1.23	1.22	1.22	1.19	1.18	1.15	1.14	1.11	1.10	1.09			
②鉛直方向 影響検討モデル	187	380	1280	2030	3250	4100	5330	6110	7560	8110	9800			立: kN
①今回工認モデル	151	309	1050	1670	2720	3470	4620	5380	6820	7340	8950			(注) ①及び②の単位
Θ ● ● ①今回工認モデル ××②鉛直方向影響検討モデル (m)	400 6 5 5 - D 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		141		.392			- 828 -	.825 			0.0 4.0 8.0 12.0	軸力(×10 ³ kN)	図3.3.3-5 最大応答軸力(鉛直方向)

原子炉格納容器

¹⁶³ 201

¢	●①今回工認モデル ★★②鉛直方向影響検討モデル	①今回工認モデル	②鉛直方向	光 () 子
EL (m)			影響検討モデル	(2)/U
37.494 👸				
36 586 b		103	106	1.03
35.678	基準地震動 S s - D	223	229	1.03
] 		717	730	1 03
33. 993				
		1280	1320	1.03
32. 567		2310	2380	1.03
	∮	2830	2920	1.03
30.369 30.218 =		2970	3060	1.03
101		3140	3230	1.03
29. 181 -		3420	3520	1.03
28.249 -		3900	4010	1.03
27.317		4140	4250	1.03
26.687	<u> </u>			
95 414		4370	4480	1.03
25.131		4680	4800	1.03
24.419		4800	4920	1.03
23.707	<u></u>	4950	5080	1.03
22.995		5150	5270	1.02
22. 283 -	- A	5300	5430	1.02
21.064		5520	5650	1.02
20.892 F		5670	5800	1.02
20.214 -		5950	6080	1.02
19.196 -		6270	6410	1.02
18. 250	×9	6450	6590	1.02
	<u> </u>			
		11600	11800	1.02
15.944				
0.0	4.0 8.0 12.0			
	軸力(×10 ^{3kN)}			
	図3.3.3-6 最大応答軸力(鉛直方向)	(注) 山及び20単(立: kN	

原子炉圧力容器

¹⁶⁵ 203

<u>気水分離器, ></u>	<u> スタンドパイプ、シュ</u>	- ラウドヘッド及	び炉心シュラウド上部肌			
5	・一の①今回工認そう	デジレ メ米 (②鉛直方向影響検討モデル	①今回工瓢モデル	②鉛直方向	子(》 》
EL (m)					影響検討モデル	2/(I)
31. 557 9	[≇] 地震動Ss−D	-		- 90 6	ری در در	0.98
30. 369	¢-				1.	
				260	253	0.97
29.181	, 					
	<u>,</u>			412	402	0.98
28. 249 -	<u></u>			473	461	0.97
27.317 -		&		548	535 535	0.98
26.687 -		¥				
				686	663	0.97
25.414 0.0	4.0	×	12.0			
			軸力(×10 ² kN)			
	図3.3.3-8 最	:大応答軸力(鉛	直方向)	(注) ①及び②の単	位:kN	

¹⁶⁶ 204

(原子炉格納容器(質点29)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点29)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-9 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点30)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点30)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-10 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点31)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点31)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-11 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点32)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点32)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-12 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点33)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点33)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-13 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点34)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点34)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-14 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点35)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点35)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-15 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点36)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点36)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-16 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点37)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点37)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-17 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点38)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点38)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-18 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉格納容器(質点39)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉格納容器(質点 39)の床応答スペクトルの比較,基準地震動Ss-D) 図 3.3.3-19 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉圧力容器(質点53)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉圧力容器(質点 53)の床応答スペクトルの比較,基準地震動 Ss-D) 図 3.3.3-20 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉圧力容器(質点57)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉圧力容器(質点 57)の床応答スペクトルの比較,基準地震動 Ss-D) 図 3.3.3-21 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉圧力容器(質点59)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉圧力容器(質点 59)の床応答スペクトルの比較,基準地震動Ss-D) 図 3.3.3-22 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉圧力容器(質点64)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉圧力容器(質点64)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-23 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉圧力容器(質点71)の床応答スペクトルの比較,基準地震動Ss-D)

(原子炉圧力容器(質点71)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-24 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(原子炉圧力容器下鏡(質点 71,93,108)の床応答スペクトルの比較<mark>,基準地震動Ss-</mark> D)

D) 図 3. 3. 3-25 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(上部格子板位置(質点80)の床応答スペクトルの比較,基準地震動Ss-D)

(上部格子板位置(質点80)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-26 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

(炉心支持板位置(質点88)の床応答スペクトルの比較,基準地震動Ss-D)

(炉心支持板位置(質点88)の床応答スペクトルの比較,基準地震動Ss-D) 図3.3.3-27 今回工認モデル及び鉛直方向影響検討モデルの床応答スペクトル

3.3.4 設備評価への影響確認

3.3.3項に示す評価結果より、今回工認モデルに対する鉛直方向影響検討モデルの応答の増加率は原子炉格納容器で特に大きくなっている。ここでは、比較的大きな影響が確認された原子炉格納容器上部について影響評価を実施する。

3.3.4.1 最大応答加速度及び軸力を用いて耐震評価を実施する設備

最大応答加速度及び軸力においては,原子炉格納容器上部で今回工認モデルに対する鉛直方 向影響検討モデルの応答の増加率が20%以上となっている。当該部位の応答を耐震評価に使用 する設備を代表して,ドライウェルに対する影響検討を実施する。なお,ドライウェル以外で 当該部位の応答を使用する設備は,シヤラグ及び配管貫通部がある。ただし,シヤラグについ ては水平方向地震荷重による応力が支配的であり,また配管貫通部については配管反力による 応力が支配的であることから,鉛直方向影響検討モデルの応答増加による耐震性への影響は小 さいものと考えられる。

VI-2-9-2-1「ドライウェルの耐震性についての計算書」より、ドライウェルの応力評価点を 図 3.3.4.1−1 に示す。図 3.3.1−1 及び図 3.3.4.1−1 より、今回工認モデルに対する鉛直方 向影響検討モデルの応答の増加率が 20%以上となっている質点 29~33 の最大応答加速度及び 軸力を適用する位置にある応力評価点は P 1 ~ P 3 である。応力評価点 P 1 ~ P 3 についての 耐震評価結果を表 3.3.4.1−1 に示す。なお、表 3.3.4.1−1 には裕度が小さい重大事故等対処 設備としての評価結果を示している。

表3.3.4.1-1に示すとおり、応力評価点P1~P3については、最小裕度でも1.6以上となっており、今回工認モデルに対する鉛直方向影響検討モデルの最大比率である1.25と比較しても十分に大きな裕度を有していることから、ドライウェルの耐震性への影響が無いことを確認した。

図 3.3.4.1-1 ドライウェルの応力評価点

評価部位		応力分類	算出応力 (MPa)	許容応力 (MPa)	裕度
	ドライウェル上ふた	一次膜応力+一次曲げ応力	177	379	2.14
Ρ1	球形部とナックル部 の接合部	一次+二次応力	10	393	39. 3
DO	円筒部とナックル部	一次膜応力+一次曲げ応力	168	379	2.25
P 2	の接合部	一次+二次応力	47	393	8.36
ЪŶ	ナックル部と球形部	一次膜応力+一次曲げ応力	301	490	1.62
Р3	の接合部	一次+二次応力	51	501	9.82

表 3.3.4.1-1 ドライウェル応力評価点 P1~P3の耐震評価結果(SA条件)

3.3.4.2 床応答スペクトルを用いて耐震評価を実施する設備

原子炉格納容器の鉛直方向の床応答スペクトルを使用して耐震評価を行う設備のうち,制御 棒駆動機構搬出ハッチ,所員用エアロック及び電気配線貫通部に対する影響検討を実施する。

VI-2-9-2-8「制御棒駆動機構搬出ハッチの耐震性についての計算書」, VI-2-9-2-10「所員用 エアロックの耐震性についての計算書」及びVI-2-9-2-12「電気配線貫通部の耐震性について の計算書」より,各設備の鉛直方向固有周期における床応答スペクトルの①応答倍率(=(鉛 直方向影響検討モデル)/(今回工認モデル))と,耐震評価に用いている鉛直方向震度を比 較したものを表 3.3.4.2-1に示す。各設備の鉛直方向固有周期における応答倍率は,最大で も 1.04 であり,影響は軽微である。今回工認における制御棒駆動機構搬出ハッチ,所員用エ アロック及び電気配線貫通部の耐震評価は,表 3.3.4.2-1に記載の②鉛直方向設計用床応答 スペクトル I からさらに余裕を持たせた震度(=③設計に適用する震度)を用いて評価を実施 しており,その④比率(=(③設計に適用する震度)/(②鉛直方向設計用床応答スペクトル I))は①応答倍率を上回っている。以上により,制御棒駆動機構搬出ハッチ,所員用エアロ ック及び電気配線貫通部は,鉛直方向影響検討モデルを考慮した場合でも耐震評価への影響が ないことを確認した。

設備名称	鉛直方向 固有周期 (s)	 ①応答 倍率* 	 ②鉛直方向設計 用床応答スペ クトル I 	 ③設計に適用 する震度 	④比率 (③/②)
制御棒駆動機構 搬出ハッチ	0.069	<mark>1.01</mark>	3. 75	5. 25	1.40
所員用 エアロック	0.057	<mark>1.04</mark>	4. 37	4. 81	1.10
電気配線貫通部	0.172	1.01	2.84	3. 69	1.30

表 3.3.4.2-1 床応答スペクトルの応答倍率と鉛直方向震度の比較

注記*:応答倍率=(鉛直方向影響検討モデル)/(今回工認モデル)

4. 建物と機器の相互作用を考慮した地震応答解析モデルに係る<mark>影響</mark>確認

原子炉本体地震応答解析モデルにおいて考慮する機器の質量は,原子炉建物地震応答解析モ デルにおいては1次遮蔽壁の質点質量として考慮する。したがって,原子炉建物地震応答解析 モデルの固有値及び地震応答に対して,原子炉本体地震応答解析モデルにおける建物部分(1 次遮蔽壁)の固有値及び地震応答を比較することによって,建物と機器の相互作用を考慮した 地震応答解析モデルに係る設定(原子炉建物側との接続)の影響が確認できると考えられる。

原子炉建物地震応答解析モデルはVI-2-2-2「原子炉建物の地震応答計算書」に記載する解析 モデルを用いる。水平方向の原子炉建物地震応答解析モデルを図4-1及び図4-2に,鉛直方 向の原子炉建物地震応答解析モデルを図4-3に示す。

図 4-1 原子炉建物地震応答解析モデル(水平方向(NS方向))

図 4-2 原子炉建物地震応答解析モデル(水平方向(EW方向))

図 4-3 原子炉建物地震応答解析モデル(鉛直方向)

a. 固有値解析結果の比較

原子炉建物地震応答解析モデルと原子炉本体地震応答解析モデルによる固有値解析結果の 比較を表 4-1から表 4-3に示す。原子炉本体地震応答解析モデルの固有値解析においては, 原子炉建物地震応答解析モデルの振動モードに加えて,機器が卓越する振動モードとして,原 子炉建物地震応答解析モデルでは発生しない振動モードが発生する。表 4-1~表 4-3の「卓 越部位」の欄には,原子炉建物地震応答解析モデルで発生する振動モードの場合は「原子炉建 物」,機器が卓越する振動モードの場合は機器名称を記載する。

表 4-1 から表 4-3 に示すとおり,原子炉建物地震応答解析モデルによる固有周期は,原子 炉本体地震応答解析モデルで算定された原子炉建物部分の固有周期と概ね整合している。

①原子炉建物地震 応答解析モデル*1		②原子炉本体地震 応答解析モデル ^{*2}		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
1	0. 220	1	0.219	1.00	原子炉建物
_	_	2	0.202	—	燃料集合体
_	—	3	0. 135	—	炉心シュラウド
_	_	4	0.110	_	原子炉圧力容器
2	0.099	5	0.098	0.99	原子炉建物
3	0.069	6	0.069	1.00	原子炉建物
_	_	7	0.066	_	制御棒案内管
_	—	8	0.057	—	原子炉圧力容器
4	0.052	9	0.052	1.00	原子炉建物
—	_	10	0.050	_	燃料集合体

表 4-1 原子炉本体地震応答解析モデルに対する固有値比較(NS方向)

注記*1: VI-2-2-2「原子炉建物の地震応答計算書」に記載の値

*2: VI-2-2-1「炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本 体の基礎の地震応答計算書」に記載の値

 ①原子炉建物地震 応答解析モデル*1 		②原子炉本体地震 応答解析モデル*2		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
—	_	1	0.204	—	燃料集合体
1	0.203	2	0.200	0.99	原子炉建物
_	_	3	0.135	—	炉心シュラウド
_	_	4	0.109	_	原子炉圧力容器
2	0.093	5	0.093	1.00	原子炉建物
3	0.067	6	0.067	1.00	原子炉建物
_		7	0.066	_	制御棒案内管
_	_	8	0.057	_	原子炉圧力容器
4	0.051	9	0.051	1.00	原子炉建物
_	_	10	0.050	_	燃料集合体

表 4-2 原子炉本体地震応答解析モデルに対する固有値比較(EW方向)

注記*1: VI-2-2-2「原子炉建物の地震応答計算書」に記載の値

*2: VI-2-2-1「炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本 体の基礎の地震応答計算書」に記載の値

 ①原子炉建物地震 応答解析モデル*1 		②原子炉本体地震 応答解析モデル*2		固有周期 の比率	卓越部位
次数	固有周期(s)	次数	固有周期(s)	(2/1)	
1	0. 297	1	0. 297	1.00	原子炉建物 (屋根トラス)
2	0.105	2	0. 106	1.01	原子炉建物
3	0.084	3	0.084	1.00	原子炉建物 (屋根トラス)
4	0.064	4	0.064	1.00	原子炉建物
5	0.053	5	0. 053	1.00	原子炉建物 (屋根トラス)
6	0.051	6	0.051	1.00	原子炉建物 (屋根トラス)

表 4-3 原子炉本体地震応答解析モデルに対する固有値比較(鉛直方向)

注記*1: VI-2-2-2「原子炉建物の地震応答計算書」に記載の値

*2: VI-2-2-1「炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本 体の基礎の地震応答計算書」に記載の値

b. 床応答スペクトルの比較

原子炉建物地震応答解析モデルと原子炉本体地震応答解析モデルにおける原子炉建物(1次 遮蔽壁)の床応答スペクトルを比較した。床応答スペクトルを比較する質点番号を表4-4に, 比較結果を図4-4に示す。なお,床応答スペクトルの作成には設備評価に支配的な基準地震 動Ss-Dを用い,減衰定数は2.0%とした。図4-4に示すとおり,床応答スペクトルは2つ のモデルにおいて概ね一致していることから,建物と機器の相互作用を考慮した地震応答解析 モデルに係る設定(原子炉建物側との接続)は妥当であると考えられる。

				-
方向	標高	質点		
	(EL (m))	原子炉建物地震	原子炉本体地震	送番号
		応答解析モデル	応答解析モデル	
	42.800	14	17	図 4-4 (1/21)
	34.800	15	18	⊠ 4-4 (2/21)
	30.500	16	19	⊠ 4-4 (3/21)
NS	23.800	17	21	図 4-4 (4/21)
	15.300	18	22	⊠ 4-4 (5/21)
	10.100	19	23	図 4-4 (6/21)
	1.300	34	24	図 4-4 (7/21)
	42.800	11	14	図 4-4 (8/21)
	34.800	12	15	図 4-4 (9/21)
	30.500	13	16	図 4-4 (10/21)
EW	23.800	14	18	図 4-4 (11/21)
	15.300	15	19	図 4-4 (12/21)
	10.100	16	20	図 4-4 (13/21)
	1.300	34	21	図 4-4 (14/21)
	42.800	<mark>17</mark>	17	図 4-4 (15/21)
	34.800	<mark>18</mark>	18	図 4-4 (16/21)
	30.500	<mark>19</mark>	19	図 4-4 (17/21)
鉛直	23.800	<mark>20</mark>	20	図 4-4 (18/21)
	15.300	<mark>21</mark>	21	図 4-4 (19/21)
	10.100	22	22	図 4-4 (20/21)
	1.300	<mark>15</mark>	15	図 4-4 (21/21)

表 4-4 床応答スペクトルを比較する質点番号

図 4-4(1/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 14,原子炉本体地震応答解析モデル:質点 17)

図 4-4(2/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 15,原子炉本体地震応答解析モデル:質点 18)

図 4-4(3/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 16,原子炉本体地震応答解析モデル:質点 19)

図 4-4(4/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 17,原子炉本体地震応答解析モデル:質点 21)

図 4-4(5/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 18,原子炉本体地震応答解析モデル:質点 22)

図 4-4(6/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 19,原子炉本体地震応答解析モデル:質点 23)

図 4-4(7/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 34,原子炉本体地震応答解析モデル:質点 24)

図 4-4(8/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点11,原子炉本体地震応答解析モデル:質点14)

図 4-4(9/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点12,原子炉本体地震応答解析モデル:質点15)

図 4-4(10/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点13,原子炉本体地震応答解析モデル:質点16)

図 4-4(11/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 14,原子炉本体地震応答解析モデル:質点 18)

図 4-4(12/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 15,原子炉本体地震応答解析モデル:質点 19)

図 4-4(13/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 16,原子炉本体地震応答解析モデル:質点 20)

図 4-4(14/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 34,原子炉本体地震応答解析モデル:質点 21)

図 4-4(15/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 17,原子炉本体地震応答解析モデル:質点 17)

図 4-4(16/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 18,原子炉本体地震応答解析モデル:質点 18)

図 4-4(17/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 19,原子炉本体地震応答解析モデル:質点 19)

図 4-4(18/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 20,原子炉本体地震応答解析モデル:質点 20)

図 4-4(19/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 21,原子炉本体地震応答解析モデル:質点 21)

図 4-4(20/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 22, 原子炉本体地震応答解析モデル:質点 22)

図 4-4(21/21) 原子炉建物の床応答スペクトル (原子炉建物地震応答解析モデル:質点 15,原子炉本体地震応答解析モデル:質点 15)