リサイクル燃料備蓄センター設工認
設 2-補-013-07 改 2
2022 年 7 月 25 日

リサイクル燃料備蓄センター 設計及び工事の計画の変更認可申請書 (補足説明資料)

搬送台車の耐震性

令和4年7月 リサイクル燃料貯蔵株式会社

1. 目的 ·····	·· 1
2. 既設工認(H22認可)からの変更点	·· 1
3. 設計用地震力について	·· 1
4. 計算方法	·· 3
5. 応力評価面 ······	·· 5
6. 金属キャスク取扱い中における影響	·· 7
 6.1 搬送時における緊急停止等の影響······ 	·· 7
6.2 搬送時における地震動の影響・・・・・・・・・・・・・・・・・・	·· 8
6.3 着床時における地震動の影響・・・・・・・・・・・・・・・・・・	· 10
6.3.1 評価の基本方針・・・・・・・・・・・・・・・・・・・・・・・	· 10
6.3.2 評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 10
6.3.3 転倒限界 ······	· 12
6.3.4 転倒評価結果・・・・・・・・・・・・・・・・・・・・・・・・	· 13
 6.3.5 水平2方向の考慮による影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 15
7. 参考文献	· 16

別紙 キャスク転倒評価に適用するエネルギー時間累積評価法について

目次

1. 目的

本資料は,搬送台車の耐震性について補足する資料として,設工認申請書「添付5-6-1 搬送台車の耐震性に関する計算書」(以下「添付5-6-1」という。) の計算方法及び応力評価面について説明する。

また,設工認申請書「添付 11-2 搬送台車の金属キャスクの取扱いに関す る説明書」(以下「添付 11-2」という。)記載の金属キャスク取扱い中におけ る地震動の影響について説明する。

2. 既設工認(H22認可)からの変更点

既設工認(H22認可)で用いている評価方法からの変更点はなく、入力値で ある地震力の変更により発生する応力が変更となる。

3. 設計用地震力について

搬送台車の計算条件として,浮上時には金属キャスク及び貯蔵架台の荷重を搬送台にて 受けるが,着床時には貯蔵架台脚部が床面に接しており,搬送台は荷重を受けない設計で あることから,浮上状態においてのみ評価を行うこととしている。

以下に、浮上状態における各設計用地震力について以下に記載する。

(1) 水平方向

搬送台車が床面と接触している箇所は2個の駆動輪のみであり,地震による水平方向加速度が搬送台車に付加された場合,床面上ですべりが生じ,搬送台車には床面と搬送台車走行車輪間の最大静止摩擦力以上の水平力は加わらない。

搬送台車が浮上状態であるときの摩擦係数は「0.001」と評価している。この数値は参考文献¹⁾の1/3スケールモデルでの試験により算出したものである。エアキャスタに圧縮空気を供給した状態で,加振台により荷重を負荷し, 滑り始めた荷重を摩擦力として摩擦係数を算出している。

このことから,水平方向の地震動に対して評価対象となる地震荷重は,搬送台に付加される荷重の1/1000となり,搬送台への水平方向の地震力は無視できる。

(2) 鉛直方向

耐震重要度分類Bクラスの機器は、その固有周期を算出して剛柔判断を行い、柔構造と判断される場合には、共振のおそれのある施設として、弾性設計用地震動Saに2分の1を乗じたものを用いてその影響を検討しなければならない。しかし、ここでは保守的に浮上状態における固有周期の算出は行わず、鉛直方向弾性設計用地震動Saによる床面の設計用床応答曲線に2分の

1を乗じたもの(図1)の最大値を設計用地震力としてその影響を評価する。

周期	震度	周期	震度	周期	震度	周期	震度
[s]		[s]		[s]		[s]	
0.050	0. 18	0.092	0.86	0. 287	0.60	0.835	0.35
0.051	0. 18	0.112	0.86	0.318	0.60	0.888	0.32
0.052	0. 18	0.113	0. 81	0. 324	0.57	0.949	0.30
0.053	0.19	0.114	0.95	0.330	0.57	1.000	0.28
0.054	0. 19	0.140	0.95	0. 331	0.57		
0.055	0. 20	0.141	0.84	0.405	0. 57	а 	
0.058	0. 22	0.173	0.84	0.406	0.57		
0.061	0. 22	0.174	0. 81	0.436	0.57		
0.062	0. 23	0.210	0. 81	0.439	0.56		
0.065	0. 23	0.211	0. 78	0.465	0.56		
0.068	0. 27	0. 220	0. 78	0. 484	0.59		
0.072	0. 27	0.227	0. 78	0. 592	0. 59		
0.074	0. 28	0.239	0. 77	0. 624	0.57		
0.076	0. 32	0.243	0. 68	0.660	0.48		
0.078	0.33	0.261	0. 68	0.672	0.46		
0.080	0.37	0.264	0.64	0.706	0.43	- N	
0. 085	0.63	0.277	0.64	0.745	0.40		
0.090	0.70	0.286	0.60	0.787	0.39		

図1 設計用床応答曲線

4. 計算方法

設工認申請書「添付 5-6-1」記載の計算方法の補足について以下に記載する。

なお,()書きで記載の式番号については「添付 5-6-1」記載の式番号を示 す。

(1) 応力評価面②の断面係数:Z

機械工学便覧 基礎編 α3 材料力学の断面二次モーメントの評価式を引 用。

(2) 応力評価面②に作用する曲げ応力: σ b

機械工学便覧 基礎編 α3材料力学の曲げモーメントの評価式を引用。

(3) 応力評価面②に作用する組合せ応力: σ

設計・建設規格 SSB-3121.1の評価式を引用。

設計・建設規格 SSB-3121.1 (SSB・1.18)の式は σx , σy , τxy が生じる 場合の式であるが, 搬送台車においては σb , τ のみ考慮するため

 $\sigma = \sqrt{\sigma_{\rm b}^{2} + 3 \cdot \tau^{2}} \ \varepsilon \not \sim \ \delta_{\circ}$

(4) 「添付 5-6-1」5.2 応力の評価のうち評	汗浴止縮応力 f 。	
-----------------------------	------------	--

	許容圧縮応力 $f_{\rm c}$	許容曲げ応力 ƒ₀	許容せん断応力 f_s	許容組合せ応力 $f_{\rm t}$
計算式	$\frac{F}{1.5}$ • 1.5	$\frac{F}{1.5}$ • 1.5	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F}{1.5}$ • 1.5

設計・建設規格 SSB-3121.1(3)の評価式を引用。

設計・建設規格 SSB-3121.1(3)の式は座屈を考慮した式であるが, 搬送台 車の構造上, 座屈を考慮しないため

$$\begin{split} & \left(\frac{\lambda}{\lambda}\right) \rightarrow 0 \succeq \uparrow_{c} \vartheta \ , \\ & v = 1.5 + \frac{2}{3} \times 0 = 1.5 \\ & f_{c} = \{1 - 0.4 \times 0\} \times \frac{F}{v} = \frac{F}{1.5} \succeq \uparrow_{c} \neg_{c} \Rightarrow \end{split}$$

(5) F値について

「添付 5-6-1」のうち「5.2 応力の評価」のF値について以下に示す。

a. 許容圧縮応力f。

	許容圧縮応力 $f_{\rm c}$	許容曲げ応力 $f_{\rm b}$	許容せん断応力 f_s	許容組合せ応力 $f_{\rm t}$
計算式	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{F}{1.5}$ • 1.5	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F}{1.5}$ • 1.5

ASTM A500B(STKR400 相当)について設計・建設規格 付録材料図表 part5 表 8 より 100℃, 150℃における設計降伏点(Sy)を基に直線補間に て 130℃における設計降伏点(Sy)を算出。

 $S_{y} = \frac{(196 - 182)}{100 - 150} \times (130 - 100) + 196 = 187.6 \rightarrow 187 MPa$

設計・建設規格 付録材料図表 part5 表9より100℃,150℃共に許容 引張強さ(Su)は 373MPa であるため,130℃における許容引張強さ(Su)は 373MPa とした。

設計・建設規格 SSB-3121.1より, F値はSyと0.7Suの小さい値のため Sy =187MPa

0.7Su = 0.7 \times 373 = 261.1 \rightarrow 261MPa

となり、187MPaとなる。

b. 許容曲げ応力f, 許容せん断応力f。及び許容組合せ応力f,

	許容圧縮応力 $f_{\rm c}$	許容曲げ応力 ƒ₀	許容せん断応力 f_s	許容組合せ応力 $f_{\rm t}$
計算式	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{F}}{1.5}$ • 1.5	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F}{1.5}$ • 1.5

ASTM A36(SS400 相当)について設計・建設規格 付録材料図表 part5 表8より100℃,150℃における設計降伏点(Sy)を基に直線補間にて130℃ における設計降伏点(Sy)を算出。

 $S_y = \frac{(221 - 207)}{100 - 150} \times (130 - 100) + 221 = 212.6 \rightarrow 212MPa$

設計・建設規格 付録材料図表 part5 表9より100℃,150℃共に許容 引張強さ(Su)は 373MPa であるため,130℃における許容引張強さ(Su)は 373MPa とした。

設計・建設規格 SSB-3121.1より, F値はSyと0.7Suの小さい値のため Sy =212MPa 0.7Su = 0.7×373 = 261.1 → 261MPa となり, 212MPaとなる。

5. 応力評価面

「添付 5-6-1」に記載の応力評価面について以下に記載し、「添付 5-6-1」 記載の第 3-2 図 搬送台車のモデル図及び応力評価面を図 2 に示す。

(1) 評価面① (搬送台 (中央部))

搬送台の主要部材である角形鋼管について角形鋼管1個あたりに発生する 応力について評価を行う。

- (2) 評価面②(搬送台(端部))
 - ・搬送台の主要部材である搬送台プレートについて評価を行う
 - ・金属キャスク及び貯蔵架台の荷重と搬送台車下面に作用する圧縮空気によ る等分布荷重がつりあった状態とする
 - ・貯蔵架台が積載されない範囲は搬送台下面に圧縮空気による等分布荷重の み作用する

以上を計算条件としているため、貯蔵架台が積載されない範囲と貯蔵架台

が積載される範囲の境界において最も発生応力が大きくなる。

また,貯蔵架台が積載されない範囲は搬送台前方のほうが長くなることから,搬送台車前方の搬送台(端部)を評価面とする。

応力評価面	評価部位
①-①'	搬送台(中央部)
2-2'	搬送台(端部)

図2 応力評価面

(「添付5-6-1」記載 第3-2図 搬送台車のモデル図及び応力評価面)

- 6. 金属キャスク取扱い中における影響
- 6.1 搬送時における緊急停止等の影響

設工認申請書「添付 11-2」において搬送時における緊急停止等の影響として以下を記載している。

【添付 11-2 抜粋】

3.1 搬送時における緊急停止等の影響 搬送台車の緊急停止時の安定性確認試験(1)において,定格速度 10m/分での直進走行から緊急停止したときの金属キャスク上部に 発生する加速度の最大値は,装置進行方向で 0.55m/s²(約 0.06 G)であることを確認している。この加速度は,金属キャスクの転 倒限界加速度の 5.6m/s2 より小さく,基準地震動Ssによる床面 の加速度の 1/10 以下である。3.2 に示すとおり地震時に金属キャス クは転倒に至らないことから,加速度の小さい本事象においても, 転倒に至ることはない。

本試験は,動力源である圧縮空気の供給が停止した状態と同じ挙 動であり,問題なく金属キャスクが安全な状態に保持されているこ とを確認している。

本項では搬送時における緊急停止等の影響について金属キャスクの転倒限界加速度と緊急停止時の加速度の比較について説明する。

(1) 金属キャスクの転倒限界加速度について

金属キャスクの静的な転倒評価として金属キャスクが転倒に至る限界加 速度(転倒限界加速度)は、剛体の底部における端部から重心位置までの長 さと剛体の底面から重心までの高さにより求めることができる。計算の結果、 転倒限界加速度は、5.6m/s²である。

なお,計算については搬送台車の緊急停止時の安定性確認試験で使用した 金属キャスク及び貯蔵架台について算出したものである。

(2) 搬送時における緊急停止の加速度と転倒限界加速度の比較

搬送台車の緊急停止時の安定性確認試験において,定格速度10m/分での 直進走行から緊急停止したときの金属キャスク上部に発生する加速度の最 大値は,装置進行方向で0.55m/s²であり,金属キャスクの転倒限界加速度 の5.6m/s²より小さいことから緊急停止時に金属キャスクは転倒すること はなく,停止することができる。 6.2 搬送時における地震動の影響

設工認申請書「添付 11-2」において搬送時における地震動の影響として以 下を記載している。

【添付 11-2 抜粋】

3.2 搬送時における地震動の影響

移送時は搬送台車下部より圧縮空気を吹き出して浮上している こと、また、搬送台車を搬送するための駆動輪を有することにより 免震効果がある。この効果は、加振台による、搬送台車の浮上状態 における地震時の挙動確認試験⁽¹⁾において、加振台の水平加速度 610Gal に対して、金属キャスク上部の水平加速度が 1/2 程度に低 減されていることにより確認している。

また,加振台の水平加速度 610Gal 以上に対しては,駆動輪が加 振台に設置した床上を滑り始め,免震の効果がより大きくなるた め,金属キャスク上部の水平加速度は 400Gal 未満の推移で概ね飽 和状態となり,加振台の水平加速度に対する金属キャスク上部の水 平加速度の比が小さくなることを確認している。

以上に示すとおり,移送時には免震効果があることから,地震時 に金属キャスクは転倒には至らない。

本項では移送時における免震効果について説明する。

移送時の搬送台車においては,使用済燃料を収納した金属キャスクを固定し た貯蔵架台を圧縮空気により浮上させており,圧縮空気による摩擦力は極めて 小さいことから,地震動は接地している搬送台車の駆動輪を介し金属キャスク に入力されることになる。

地震時の挙動確認試験(参考文献¹⁾)では1/3スケールモデルにて着床状態 及び浮上状態における耐震試験が行われている。

試験にて加振台の水平加速度 610Gal に対し,金属キャスク上部の水平加 速度は1/2 倍程度に低減されていることを確認しているが,610Gal 以上の加 振台の水平加速度に対し,金属キャスク上部の水平加速度は 400Gal 未満の 推移で概ね飽和状態となり,加振台の水平加速度に対する金属キャスク上部の 水平加速度の比が小さくなることを確認している。これは加振台の水平加速度 が一定の加速度以上になることで駆動輪が加振台に設置した床上を滑り始め, 免震の効果がより大きくなるためであると考察される。従って,浮上時に金属 キャスクを転倒に至らしめる加振台の水平加速度を試験により有意に算定す ることは困難である。

また,試験においては,前記の免震効果を確認する過程で,十分大きな加振 台の水平加速度に対し金属キャスクが転倒に至らないことを確認している。

この試験における入力地震動(図2)及び金属キャスク上部の水平加速度(図 3)を示す。図2と図3の比較から入力地震動に対して、金属キャスク上部の 水平加速度が 1/2 程度に低減されていることから搬送台車での移送時は免振 効果があることを確認している。

図2 入力地震動

図3 浮上時キャスク上部水平加速度時刻歴波形

6.3 着床時における地震動の影響

設工認申請書「添付 11-2」において搬送時における地震動の影響として以 下を記載している。

【添付 11-2 抜粋】

3.3 着床時における地震動の影響 着床時における基準地震動S_s-Hの地震動での転倒評価をエネ ルギ時間累積評価法によりエネルギの累積量の比較を行った結果, 各地震動より求めた等価速度の最大値は 1.97m/s であり,転倒限 界速度の 2.75m/sより小さいため,金属キャスクは転倒に至らな いことを確認している。また,水平2方向の地震力を想定した場合 についても,設備が有する耐震性に影響のないことを確認した。

本項では,搬送台車搬送中着床時の金属キャスク転倒解析評価について説明 するものである。

6.3.1 評価の基本方針

搬送台車は,貯蔵架台に固縛された金属キャスクを貯蔵区域の所定の位置 へ移送する際に使用する。搬送台車は,エアキャスタに圧縮空気を供給し, 床面とエアキャスタの間に薄い空気膜(約0.1mm)を形成させることで摩擦 力を大幅に低減させ,小さな駆動力で重量物の搬送を可能にするものである。

搬送台車による浮上状態では,圧縮空気の層により搬送台車へ地震荷重が 伝達されないため金属キャスクが地震により転倒する可能性はない。一方, 搬送中(非固定)での着床状態では,金属キャスクに対し地震力の方向が正負 に繰返し作用(交番)することにより金属キャスク及び貯蔵架台は一体で傾 き,脚部が交互に浮き上がる事象(ロッキング振動)が発生する。ここで, ロッキング振動による金属キャスク及び貯蔵架台の傾きが転倒限界となる角 度を超えると,転倒に至ることとなる。転倒予測に関しては,エネルギー時 間累積評価法³⁾という,地震より授与されるエネルギを見積り,求めたエネ ルギに等価な速度を,転倒限界速度と比較することで転倒有無を予測する手 法を適用した。

6.3.2 評価条件

(1) 地震動

評価を実施する地震動を表1に示す。

地震動名	最大加速度 (Gal)	備考
Ss-AH	600	
Ss-B1H	620	EW 方向
Ss-B2H1	450	ダム軸方向
Ss-B2H2	490	上下流方向
Ss-B3H1	430	NS 方向
Ss-B3H2	400	EW 方向
Ss-B4H1	540	NS 方向
Ss-B4H2	500	EW 方向

表1 転倒評価を実施する地震動一覧

(2) 方向

建屋地震応答のうち、NS方向及びEW方向

- (3)金属キャスクの型式BWR大型キャスク(タイプ2A)
 - (4) 解析諸元

ロッキング振動においては、金属キャスクと架台が一体で振動することか ら、金属キャスクと貯蔵架台の重心位置と重量を考慮し、表2の諸元で評価 を実施することとする。ここで、金属キャスクは、三次蓋を取り付けた状態 と取り付けていない状態があるが、重心位置が高く保守的評価となる三次蓋 有の状態を考慮することとする。

金属キャスク型式	三次蓋 の有無	貯蔵架台下面か らの重心位置 (mm)	金属キャスク及び 貯蔵架台質量(kg)	貯蔵架台 幅寸法 (mm)
BWR 大型キャスク	有	2,712	135, 200	0.000
(タイプ2A)	無	2,671	133, 300	3,000

表2 転倒評価の解析諸元

(5) 評価手法

エネルギー時間累積評価法を適用し,表1に示す基準地震動Ssを入力として求めたエネルギに対し,等価な速度を算定する。この値が,転倒限界速度以下となることにより,金属キャスクが転倒しないことを確認する。

評価手法のエネルギー時間累積評価法は,既認可(H22)と同一の評価方法である。他の原子力事業者での適用実績はないがその適用性について,実験及び非線形応答解析結果との比較により確認³⁾されている。

エネルギー時間累積評価法を別紙1に示す。

(6) 評価手法の妥当性について

エネルギー時間累積法については実験にてその適応性が確認されている。 参考文献³⁾の実験では最大 600Gal となっており、基準地震動 S_sを下回 っているが、600Gal 以上の加速度にて適用性が確保できることを確認して いる。

また,転倒をエネルギー評価で検討した他の実験データとして参考文献⁴⁾ があり,参考文献⁴⁾の実験では最大 1030.1Gal にて振動台試験を実施し, 試験結果と評価手法の適用性が確認されている。参考文献⁴⁾で提案されてい るウィンドウエネルギースペクトル法は,エネルギー時間累積評価法での評 価が同等の評価結果となることが確認⁵⁾されている。

(7) 評価における振動数の差による加速度の差に対する考慮

基礎に固定されていない剛体のロッキング,転倒予測に関しては,これまでに修正エネルギースペクトル法による予測法が提案されている。修正エネルギースペクトル法では、ロッキング現象による周期の変動幅を考慮した評価法であるが、長い継続時間をもつ地震波(長周期)を対象とする評価の際には、過度のエネルギを算定する評価となることが明らかである。

設工認申請において用いているエネルギー時間累積法では,前述の修正エ ネルギースペクトル法の課題を解決するため,蓄積される内部エネルギが得 られる実効的な時間幅を設定し,その時間内で算出されるエネルギースペク トル法によるエネルギを内部エネルギとして転倒を予測する手法である。

評価における振動数の差による加速度の差は,修正エネルギースペクトル 法及びエネルギー時間累積法においてロッキング現象による周期の変動を 考慮することにより,評価手法として考慮済みである。

6.3.3 転倒限界

転倒限界の考え方については,参考文献²⁾の転倒限界速度に基づき式(2)に て速度の限界値を設定する。表2の諸元に基づく転倒限界速度は2.75m/sである。

$$V_{Ereq} = \sqrt{g \cdot (\sqrt{B^2 + H^2} - H)}$$

ここで、A:地動の加速度

- V:地動の速度
- D:地動の変位
- a:剛体の対角線の長さの半分
- α:剛体の対角線が底辺となす角
- B:剛体の幅 (=2b)
- H: 剛体の高さ(=2h)
- g:重力加速度
- (参考文献²⁾より参照)

6.3.4 転倒評価結果

搬送台車搬送中着床時の金属キャスク転倒評価結果を表3に示す。

評価の結果,各地震動より求めた等価速度の最大値が転倒限界速度より小さい値となっており,評価を実施した全ケースで転倒しない結果となることを確認した。

なお,表3を参考として角度換算した結果を表4に示す。算定にあたっては, 等価速度より求めた運動エネルギが重心位置の位置エネルギの増加量と等し いと仮定し,重心位置の高さ方向の変位量より応答角度を換算した。

地震動名	方向	等価速度 _{ov} V _E ' 最大値* (m/s)	転倒限界速度 (m/s)	評価結果
Ss-AH	NS	1.97		非転倒
	EW	1.95		非転倒
Ss-B1H	NS	1.08		非転倒
	EW	1.07		非転倒
Ss-B2H1	NS	0.71		非転倒
	EW	0.70		非転倒
Ss-B2H2	NS	1.42		非転倒
	EW	1.41		非転倒
Ss-B3H1	NS	1.53	2.10	非転倒
	EW	1.53		非転倒
Ss-B3H2	NS	1.05		非転倒
	EW	1.04		非転倒
Ss-B4H1	NS	1.18	-	非転倒
	EW	1.18		非転倒
Ss-B4H2	NS	0.69		非転倒
	EW	0.69		非転倒

表3 搬送台車搬送中着床時の金属キャスクの転倒評価結果

地震動名	方向	浮き上がり角度 (°)	転倒限界角度 (°)	評価結果
Ss-AH	NS	9		非転倒
	EW	9		非転倒
Ss-B1H	NS	3		非転倒
	EW	3		非転倒
Ss-B2H1	NS	1	1 1 5 5	非転倒
	EW	1		非転倒
Ss-B2H2	NS	5		非転倒
	EW	5		非転倒
Ss-B3H1	NS	5	21	非転倒
	EW	5		非転倒
Ss-B3H2	NS	3		非転倒
	EW	3		非転倒
Ss-B4H1	NS	3	-	非転倒
	EW	3		非転倒
Ss-B4H2	NS	1		非転倒
	EW	1		非転倒

表4 搬送台車搬送中着床時の金属キャスクの転倒評価結果(角度)

6.3.5 水平2方向の考慮による影響評価

搬送台車搬送中着床時の金属キャスク転倒評価における水平2方向を考慮 した際の影響評価については、参考文献⁴に掲載の実験において、同様の転倒 評価に対し、水平1方向加振時は1方向加振時と同程度の応答速度になる旨が 報告されており、これは、水平2方向入力時のエネルギが金属キャスクの並進 運動(滑りや跳躍)に変換されると考えられるためであり、水平2方向を考慮 した場合でも、金属キャスクが転倒しない結果となることを確認した。 7. 参考文献

- 1) 川本敦史:使用済燃料中間貯蔵施設に係る技術開発:平成17年度火力原子力 発電大会論文集,社団法人 火力原子力発電技術協会,(2006)
- 2)秋山宏他:エネルギースペクトルを用いた剛体の転倒予測:日本建築学会構 造系論文集, 第488号
- 3) 中川正紀他:エネルギー累積評価に基づく地震時ロッキング転倒応答の評価:日本原子力学会 2008 年春の年会
- 4) 川口昇平他: 搬送中の貯蔵架台付き金属キャスクの長周期地震動に対する地 震時安定性評価: 土木学会論文集 A1(構造・地震工学)(2012), 第 68 号
- 5) 奥村和枝他: 貯蔵架台付き金属キャスクの地震による転倒評価手法の設計適 用性:日本原子力学会 2010 年秋の大会

別紙

キャスク転倒評価に適用するエネルギー時間累積評価法について

基礎に固定されていない剛体のロッキング振動に対する転倒予測に関して は、既往知見として、秋山他によりエネルギースペクトル法による予測法²⁾が 提案されている。剛体のロッキング振動においては、応答により地震から授 与されたエネルギと、ロッキング振動による床版との衝突現象等によるエネ ルギの逸散とのバランスによって、剛体がもっている内部エネルギが定まる。 この内部エネルギが転倒に至るエネルギを超えることがない場合には、剛体 の転倒は発生しない。

修正エネルギースペクトル法は、1質点系の応答より得られるエネルギース ペクトルに基づき、地震から授与されたエネルギを見積る手法である。この 際、ロッキング振動は脚部が浮き上がり着床する時間を振幅とみなした場合 の振動特性を有するため、構造物そのものの持つ固有周期に比べ長周期の挙 動であり、転倒角度が大きくなるほど固有振動数は長周期になる。参考文献 ²⁾において、図1のような剛体ではロッキング振動に影響のある周期は、以下 式(1)にて示されるT₀~T₁の範囲を変動するものと提案されている。このため、 式(1)よりエネルギースペクトルのうち、剛体がロッキングする周期T₀~T₁の 地震動のエネルギが転倒に用いられたと仮定してエネルギを見積り、エネル ギに等価な速度として算出する。(式(2)(3)参照。)

$$T_0 = 0.05 \sqrt{a}$$

 $T_1 = 0.5 \sqrt{a}$ (1)
 $T_0 \sim T_1$:剛体のロッキング周期
 $a: 剛体の対角線の長さの半分$
 $(=\sqrt{b^2 + h^2})$
 $h: 剛体の高さの1/2 (重心位置)$

- b: 剛体の幅の1/2(重心位置)
- α:剛体の対角線が底辺となす角
- θ:浮き上がり角度

修正エネルギースペクトルにおける転倒エネルギ 。 VE

$${}_{ov}V_{E}(a) = \sqrt{\int_{T_{0}}^{T_{1}} f(T)(V_{E0}(T))^{2} dT}$$
(2)

$$\Box \Box \heartsuit f(T) = -\frac{2}{(T_1 - T_0)^2} (T - T_1)$$
 (3)

 $T_0 = 0.05\sqrt{a}$ $T_1 = 0.5\sqrt{a}$ V_{E0} : 地震波のエネルギースペクトル f(T): 確率密度

修正エネルギースペクトル法は,地震継続全時間値にわたるエネルギを累積 する評価法であり,観測波に比べて非常に長い継続時間を持つ人工地震波を対 象とする評価を適用する場合には,過度に保守的な評価となる。これに対し, 今回評価に適用したエネルギー時間累積評価法は,エネルギを累積する地震動 の時間幅を実効的な時間 Δt の範囲とし,設定した時間幅でのエネルギの増分 を累積する方法である。(式(4)(5)参照。)ここで,試験の結果より時間幅 Δ tをT₁に設定することで,適切なエネルギを見積もることが可能であることを 確認した。

エネルギー時間累積評価法における転倒エネルギ(等価速度)_{ov}V_E'

$$_{ov}V_{E}(a) = \sqrt{\int_{T_{0}}^{T_{1}} f(T)(V_{E0}(T))^{2} dT}$$
 (4)
ここで、
 $V'_{E0}(T,t) = \sqrt{(V_{E0}(T,t))^{2} - (V_{E0}(T,t-\Delta t))^{2}}$ (5)
とする。
 V_{E0} ':時間幅Δtを考慮した地震波のエネルギースペクトル
 t :時間

エネルギー時間累積評価法による転倒予測の妥当性を確認するため、入力地 震動の最大加速度に対するロッキング応答角度の関係を、実験結果と各評価手 法による結果との比較として図1に示す。図1のケース1はエネルギー時間累 積評価法での時間幅 $\Delta t \in T_1/2$ 、ケース2は時間幅 $\Delta t \in T_1$ とした場合の結果 である。図1の結果は試験結果との比較のため、エネルギー等価速度を角度に 変換した結果で示している。試験との比較により、エネルギー時間累積評価法 (ケース2)の評価結果が転倒評価に適用する応答角度を適切に評価できるこ とを確認している。 なお、図1は加振波における試験と予測式の関係を整理したものであり、ケ ース1及びケース2の曲線は試験に用いた加振波を比例倍することにより加 速度が大きくなった場合の転倒角度を概算したものである。地震動によりロッ キング周期の範囲にあるエネルギは異なるため、この曲線の傾向は地震動によ り相違する。

図1 入力加速度とロッキング応答角度の関係(参考文献³⁾参照。)