資料1

京都大学複合原子カ科学研究所研究用原子炉(KUR) 標準応答スペクトルに基づく基準地震動Ssによる 地盤の安定性等の評価

・地盤の安定性評価

原子炉建屋入力地震動評価

令和4年7月22日 京都大学複合原子力科学研究所

標準応答スペクトルに基づく基準地震動Ssの評価の方針

- ■2021年4月21日、設置許可基準規則^(※1)及び審査ガイド^(※2)が改正され、 「震源を特定せず策定する地震動」のうち、全国共通に考慮すべき地震動 の策定に際しては、「標準応答スペクトル」を用いることが規定された。 ※1:試験研究の用に供する原子炉等の位置、構造及び設備の基準に関する規則の解釈 ※2:基準地震動及び耐震設計方針に係る審査ガイド
- ■敷地における解放基盤表面はVs1597m/s(Vs700m/s以上)の花崗岩 (GL-181m)に設定している。一方、標準応答スペクトルは地震基盤相当面 (Vs2200m/s以上の地層)で定義されているため、標準応答スペクトルに基 づく基準地震動Ssを評価するため、地震基盤相当面から解放基盤表面まで の増幅特性を考慮する。
- ■増幅特性は、既承認の一次元地盤モデルに基づき、解放基盤表面の下部 (GL-184m)のS波速度Vs2436m/s層(花崗岩)上面を地震基盤相当面として 評価する。

第430回審査会合資料の再掲 ー次元地盤構造モデル(線形計算モデル)

2

標準応答スペクトルに基づく模擬地震波の策定

 ・乱数位相を持つ正弦波の重ね合わせによって策定。なお、模擬地震波作成手法としての観測記録。 の実位相を用いた方法については、地震基盤相当面と解放基盤面との深さの差は3m程度であり、地 震波の増幅は小さく、位相への影響も小さいと考えられることから、乱数位相を持つ正弦波の重ね合 わせ手法で代表させる。

振幅包絡線の経時変化は、Noda et al (2002)による。

・策定された模擬地震波の適合性は、応答スペクトル比(標準応答スペクトル/模擬地震波の応答ス ペクトル)が全周期帯で0.85以上、応答スペクトル強度比(SI比)が1.0以上。

1000

	水平動	鉛直動
周期 (s)	擬似速度	擬似速度
	(cm/s)	(cm/s)
0.02	1.910	1.273
0.03	3.500	2.500
0.04	6.300	4.400
0.06	12.000	7.800
0.09	20.000	13.000
0.15	31.000	19.000
0.30	43.000	26.000
0.60	60.000	35.000
5.00	60.000	35.000

コントロールポイント

(h=0.05) ИШ

擬似速度応答スペクトル

原子力規制委員会(2021)より抜粋 3

標準応答スペクトル

模擬地震波策定のためのNoda et al.(2002)の振幅包絡線の経時 特性(M7、Xeq10km)と模擬地震波の適合性の判定基準

$$E(t) = \begin{cases} (t/t_B)^2 \\ 1 \\ exp[(ln0.1)(t - t_C)(t_D - t_C)] \end{cases}$$

$$M = 7.0$$
, $Xeq = 10km$

	継続時間	振幅包絡線の経時的変化(s)					
	(s)	t _B	t _c	t _D			
水平	29.8	3.7	16.3	29.8			
鉛直	29.8	3.7	16.3	29.8			

振幅包絡形の経時特性(M=7.0、Xeq=10km)

①
$$R(T) = \frac{S_{v_1}(T)}{S_{v_2}(T)} \ge 0.85$$
 (0.02 \le T)

模擬地震波の策定のための判定基準

	継続時間	振幅包絡	線の経時的	的変化(s)
	(s)	t _B	t _c	t _D
水平	28.0	3.3	15.1	28.0
鉛直	28.0	3.3	15.1	28.0

振幅包絡形の経時特性(M=6.9、Xeq=10km)

第440回審査会合資料の再掲

標準応答スペクトル(水平)と模擬地震波の 応答スペクトルの比較(減衰定数5%)

標準応答スペクトル(水平)と模擬地震波の 応答スペクトルの比(最低=0.89 ≧0.85)

応答スペクトル強度(SI)比=1.01 ≧1.0

模擬地震波(水平)の加速度波形(左)と速度波形(右)

地震基盤相当面における標準応答スペクトルに基づく模擬地震波(水平)

第440回審査会合資料の再掲

模擬地震波(鉛直)の加速度波形(左)と速度波形(右)

地震基盤相当面における標準応答スペクトルに基づく模擬地震波(鉛直)

6

鉛直動の加速度波形(左)と速度波形(右)

応答スペクトル(減衰定数5%)

解放基盤表面における基準地震動Ss-10の時刻歴波形と応答スペクトル

第440回審査会合資料の再掲

基準地震動(Ss-1~Ss-10)の応答スペクトル

第440回審査会合資料の再掲

基準地震動Ssの最大加速度

 (cm/s^2)

	基準地震動			NS方向	EW方向	UD方向	
震源を特定して策定す	応答スペクトル法	Ss-1	模擬地震波	94	44	358	
る地展期	断層モデルを用 いた手法	Ss-2	中央構造線断層帯 (モデル1、ケース1)	729	520	215	
		Ss-3	中央構造線断層帯 (モデル1、ケース4)	1053	672	252	
			Ss-4	中央構造線断層帯 (モデル1、ケース5)	673	1644	133
		Ss−5	上町断層帯 (モデル1、ケース1)	767	756	194	
		Ss−6	上町断層帯 (モデル1、ケース4)	709	1184	213	
		Ss−7	上町断層帯 (モデル1、ケース5)	649	674	170	
		Ss-8	上町断層帯 (モデル1、ケース6)	566	683	196	
		Ss-9	上町断層帯 (モデル2、ケース4)	699	1260	293	
震源を特定せず策定す る地震動(標準応答ス ペクトルによる)	応答スペクトル法	Ss-10	模擬地震波	586		391	

支持地盤の安定性評価

支持地盤の安定性評価に用いた2次元地盤モデル(東西、南北断面)、建屋モデル、それ らの各パラメータ(強度や変形特性等)及び解析手法は既承認時と同様とした。また、安定 性評価は既承認時と同様に以下の方法で行った。

1) 支持地盤のすべり

基準地震動Ss-10を用いた動的解析の結果に基づき、基礎地盤の想定すべり線上の せん断抵抗力の和を想定すべり線上のせん断力の和で除して求めたすべり安全率が、 評価基準値1.5を上回ることを確認する。

2) 支持地盤の支持力

地震時における地盤の許容支持応力度が、1)による動的解析で得られた最大鉛直応 力度を上回ることを確認する。

3) 基礎底面の傾斜

基準地震動Ss-10を用いた動的解析の結果に基づき基礎底面両端それぞれの鉛直方 向の変位の差を底面幅で除して求めた原子炉建屋基礎底面の傾斜が評価の目安であ る1/2,000以下であることを確認する。

南北断面 評価結果 すべり安全率 —— :想定すべり面 []は発生時刻(秒)

※ 基準地震動Ss-10の(+,+)は位相反転なし、(-,+)は水平反転、(+,-)は鉛直反転、(-,-)は水平反転かつ鉛直反転を示す

基準地震動	すべり面形状	すべり面 番号	最小すべり 安全率	基準地震動	すべり面形状	すべり面形状 すべり面 番号	
Ss-10(+, +)	原子炉 建屋 	6	3.2 [6.55]	Ss-10(-, +)	原子炉 建 屋 VVVVVVV	6	3.0 [9.32]
Ss-10(+, -)	原子炉 建 屋 	5	3.0 [9.32]	Ss-10(-, -)	原子炉 建 屋 VVVVVVV	5	3.1 [6.55]

※ 基準地震動Ss-10の(+,+)は位相反転なし、(-,+)は水平反転、(+,-)は鉛直反転、(-,-)は水平反転かつ鉛直反転を示す

評価結果 原子炉建屋基礎地盤の地震時最大鉛直応力度

対象断面	基準地震動	地震時最大 鉛直応力度 (kN/m ²)				
南北断面	Ss-1(+, +)	657 〔T=13.69秒〕				
	Ss-1(+, -)	606 〔T=13.57秒〕				
	Ss-1(-, +)	774 〔T=18.67秒〕				
	Ss-1(-, -)	624 〔T=18.01秒〕				
	Ss-2	429 〔T=19.40秒〕				
	Ss-3	505 〔T=19.41秒〕				
	Ss-4	536 〔T= 7.98秒〕				
	Ss-5	596 〔T=22.08秒〕				
	Ss-6	551 〔T= 8.08秒〕				
	Ss-7	409 〔T= 8.00秒〕				
	Ss-8	436 〔T= 8.44秒〕				
	Ss-9	454 〔T= 7.00秒〕				
	Ss-10(+, +)	527 〔T=11.38秒〕				
	Ss-10(+, -)	536 〔T=13.31秒〕				
	Ss-10(-, +)	532 〔T=12.63秒〕				
	Ss-10(-, -)	508 〔T=14.06秒〕				

対象断面	基準地震動	地震時最大 鉛直応力度 (kN/m ²)
東西断面	Ss-1(+, +)	573 〔T=14.79秒〕
	Ss-1(+, -)	535 〔T=22.08秒〕
	Ss-1(-, +)	543 〔T=22.45秒〕
	Ss-1(-, -)	579 〔T=13.57秒〕
	Ss-2	396 〔T=16.84秒〕
	Ss-3	407 〔T=16.82秒〕
	Ss-4	481 〔T= 7.95秒〕
	Ss-5	414 〔T=24.88秒〕
	Ss-6	471 〔T= 7.03秒〕
	Ss-7	379 〔T= 7.98秒〕
	Ss-8	402 〔T= 8.00秒〕
	Ss-9	458 〔T= 7.03秒〕
	Ss-10(+, +)	493 〔T= 9.49秒〕
	Ss-10(+, -)	498 〔T=17.21秒〕
	Ss-10(-, +)	488 〔T= 9.06秒〕
	Ss-10(-, -)	 〔T=13.31秒〕

※ 基準地震動Ss-10の(+,+)は位相反転なし、(-,+)は水平反転、(+,-)は鉛直反転、(-,-)は水平反転かつ鉛直反転を示す

最大鉛直応力はすべて短期許容応力度(1500kN/m²)以下

評価結果 原子炉建屋基礎の傾斜(1)

対象断面	基準地震動	最大相対変位量 δ _{ΑΥ} -δ _{ΒΥ}	最大傾斜 δ _{ΑΥ} -δ _{ΒΥ} /L
南北断面	Ss-1(+, +)	1.09cm 〔T=18.68秒〕	1/2500
	Ss-1(+, -)	1.34cm 〔T=18.68秒〕	1/2000
	Ss-1(-, +)	1.34cm 〔T=18.68秒〕	1/2000
	Ss-1(-, -)	1.09cm 〔T=18.68秒〕	1/2500
	Ss-2	0.64cm 〔T=19.90秒〕	1/4300
	Ss-3	0.89cm 〔T=19.92秒〕	1/3100
	Ss-4	0.82cm 〔T= 8.01秒〕	1/3400
	Ss-5	0.63cm 〔T=25.32秒〕	1/4400
	Ss-6	0.63cm 〔T=8.58秒〕	1/4400
	Ss-7	0.61cm 〔T= 6.40秒〕	1/4500
	Ss-8	0.60cm 〔T=5.43秒〕	1/4600
	Ss-9	0.80cm 〔T= 7.31秒〕	1/3400
	Ss-10(+, +)	0.61cm 〔T= 6.89秒〕	1/4600
	Ss-10(+, -)	0.61cm 〔T= 6.89秒〕	1/4500
	Ss-10(-, +)	0. 61cm 〔T= 6.89秒〕	1/4500
	Ss-10(-, -)	0. 61cm 〔T= 6.89秒〕	1/4600

※基準地震動Ss-1の(+,+)は位相反転なし、(-,+) は水平反転、(+,-)は鉛直反転、(-,-)は水平反 転かつ鉛直反転を示す。

※最大相対変位量、最大傾斜は各基準地震動にお ける最大値で、〔〕はその発生時刻を示す。

傾斜はすべて目安である1/2000以下

評価結果 原子炉建屋基礎の傾斜(2)

対象断面	基準地震動	最大相対変位量 δ _{ΑΥ} -δ _{ΒΥ}	最大傾斜 δ _{ΑΥ} -δ _{ΒΥ} /L
東西断面	Ss-1(+, +)	0.89cm 〔T=18.67秒〕	1/3100
	Ss-1(+, -)	0.91cm 〔T=17.14秒〕	1/3000
	Ss-1(-, +)	0.91cm 〔T=17.14秒〕	1/3000
	Ss-1(-, -)	0.89cm 〔T=18.67秒〕	1/3100
	Ss-2	0.37cm 〔T=18.53秒〕	1/7500
	Ss-3	0.10cm 〔T=18.38秒〕	1/26700
	Ss-4	0.40cm 〔T= 7.94秒〕	1/7000
	Ss-5	0.43cm 〔T=24.90秒〕	1/6500
	Ss-6	0.63cm 〔T=7.07秒〕	1/4400
	Ss-7	0.34cm 〔T= 7.30秒〕	1/8100
	Ss-8	0.26cm 〔T=7.33秒〕	1/10900
	Ss-9	0.54cm 〔T= 7.46秒〕	1/5100
	Ss-10(+, +)	0.59cm 〔T=12.81秒〕	1/4700
	Ss-10(+, -)	0.62cm 〔T= 7.50秒〕	1/4500
	Ss-10(-, +)	0.62cm 〔T= 7.50秒〕	1/4500
	Ss-10(-, -)	0.59cm 〔T=12.81秒〕	1/4700

※基準地震動Ss-1の(+,+)は位相反転なし、(-,+) は水平反転、(+,-)は鉛直反転、(-,-)は水平反 転かつ鉛直反転を示す。

※最大相対変位量、最大傾斜は各基準地震動にお ける最大値で、〔〕はその発生時刻を示す。

傾斜はすべて目安である1/2000以下

地盤の安定性評価における地盤物性値の不確かさ(ばらつき)の 影響評価について

支持地盤の安定性評価における地盤物性値(強度特性)の不確かさ(ばらつき)の影響評価については、次頁及び次々頁に示す通り、既承認時において検討されており、それに従えば今回のSs-10を用いた評価結果はすべり安全率が3.0~3.7と大きく、地盤物性値の不確かさ(ばらつき)の影響はなく、また地震時鉛直応力度は地盤強度の不確かさ(ばらつき)を考慮した短期許容応力度を十分下回っていることを確認している。

第106回審査会合資料(まとめ資料)の再掲

(4) 地盤の安定性検討における地盤物性値(強度特性)の不確かさ(ばらつき)の

影響評価

地盤の安定性評価として実施した基礎地盤のすべり安全率及び基礎地盤の支持力の 評価では、原子炉建屋の支持地盤である粘性土(Dc1層)の平均的な強度特性を用いた。 ここでは、Dc1層の強度特性の不確かさ(ばらつき)を考慮しても地盤の安定性が評価基 準値内に収まることを確認した。

三軸圧縮試験から得られたDc1層のピーク強度の中央値はC=456.5kN/m²、残留強度 の中央値はC=325.0kN/m²であり、最小値(最小モール円)は本資料12頁から中央値の1 割減程度である(ピーク強度C=411.6kN/m²、残留強度C=285.0kN/m²)。

また、Dc1層を含む地層の強度特性(三軸圧縮試験結果)は原子炉建屋極近傍の基盤 まで達するボーリング調査(KB11)によって得られている。本資料11頁に各層の強度特性 を含む物性値を示したが、粘性土に着目した場合、最小のピーク強度はDc5層のC=357.0 kN/m²であり、Dc1層より約2割小さい。

上記本資料11頁及び12頁についてはそれぞれ、参考資料1及び2として末尾に掲載

第106回審査会合資料(まとめ資料)の再掲

以上から、Dc1層の粘着力Cを2割減(ピーク強度:C=365.2kN/m²、残留強度:=260.0 kN/m²)としてすべり安全率や支持力を評価した。

最も小さなすべり安全率(1.9)であったケース(南北断面、Ss-1(+-))についてすべり 安全率を評価した結果、1.6となり、評価基準値である1.5を上回ることを確認した。

一方支持力は、告示式による短期許容応力度を粘着力Cを2割減で再計算した結果、 qa=1270kN/m²となり、地震時最大接地圧772kN/m²を上回ることを確認した。

原子炉建屋入力地震動評価

- 1) 解放基盤表面(GL-181m)で設定された基準地震動Ss-10を一次元地盤構造モデ ルを用いて原子炉建屋基礎盤位置(GL-7m)での入力地震動を評価する。
- 2)解析方法としては、水平動に対しては地盤の非線形特性を考慮した非線形地震応答解析(等価線形解析と時刻歴非線形解析)を用い、鉛直動については線形地震応答解析を用いた。
- 3)入力地震動としては、Ss-10については歪みレベルや結果の保守性から等価線 形解析による結果を採用した。

最大加速度分布

最大せん断歪み分布

応答スペクトル(減衰5%)

最大加速度分布

最大速度分布

最大せん断歪分布

等価線形解析と時刻歴非線形解析結果の比較(水平動)

引用文献

Kagawa, T., Zhao, B., Miyakoshi, K. & Irikura, K., (2004) : Modeling of 3D basin structures for seismic wave simulations based on available information on the target area: case study of the Osaka basin, Bull. Seism. Soc. Am., 94, 1353–1368.

Noda, S., K. Yashiro, K. Takahashi, M. Takenura, S. Ohno, M. Tohdo and T. Watanabe (2002), RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD-NEA Workshop on the Relations between Seismological DATA and Seismic Engineering, Istanbul, 399–408, Oct. 16–18.

解析用物性值

平成28年2月5日 審査会合資料一部修正

第106回審査会合資料(まとめ資料)の再掲

原子炉建屋基礎地盤安定性評価における解析用物性値は以下のとおりである。

			物理特性		静的変	形特性			動的変形特性			ピーク	闺度(※2)	残留強度(※2)	
			単位体積重量	代表N值	静弾性係数 (※3)	静ポアソン比	ひずみ依存特性	初期せん断剛性	G/G₀~γ	h∼γ	動ポアソン比	粘着力	内部摩擦角	粘着力	内部摩擦角
		\geq	(kN/m ³)		(kN/m ²)			(kN/m ²)				(kN/m ²)	(度)	(kN/m ²)	(度)
1	表土(一部崖錐・盛土含む)	F	16.9	2	1400	0.495	S-1	55835.58	$G/G_0=1/(1+5.77\gamma^{0.791})$	h=γ/(0.0679γ+0.00529)+1.99	0.451	21.5	24.2	20.4	24.1
2	第1粘性土層	Dc1	17.5	40	28000	0.495	D-1	235142.22	G/G ₀ =1/(1+3.58γ ^{0.809})	h=y/(0.144y+0.00724)+1.03	0.472	456.5	0.0	325.0	0.0
3	第1砂質土層	Ds1	16.0	44	30800	0.495	S-5	375908.18	$G/G_0=1/(1+4.92\gamma^{0.902})$	h=γ/(0.061γ+0.0123)+0.0225	0.451	143.5	35.7	0.0	36.5
4	第2粘性土層	Dc2	18.1	53	37100	0.495	D-2	295309.82	G/G ₀ =1/(1+3.23y ^{0.802})	h=γ/(0.206γ+0.0136)+2.19	0.465	743.7	0.0	504.2	0.0
5	第2砂質土層	Ds2	18.4	69	48300	0.495	S-2	282462.37	G/G ₀ =1/(1+18.315γ ^{1.126})	h=y/(0.0561y+0.0125)+1.03	0.405	38.7	33.3	1.3	29.3
6	第3粘性土層	Dc3	18.7	55	38500	0.495	D-3	318983.01	$G/G_0=1/(1+5.23\gamma^{0.794})$	h=q/(0.0974q+0.0077)+1.42	0.469	817.0	0.0	711.7	0.0
7	第3砂質土層	Ds3	19.3	106	74200	0.495	S-2	472529.36	G/G ₀ =1/(1+18.315γ ^{1.126})	h=y/(0.0561y+0.0125)+1.03	0.447	(38.7)	(33.3)	(1.3)	(29.3)
8	第4粘性土層	Dc4	18.6	83	58100	0.495	D-4	384076.11	G/G ₀ =1/(1+3.29γ ^{0.666})	h=γ/(0.173γ+0.0210)+4.48	0.420	459.7	0.0	333.3	0.0
9	第4砂質土層	Ds4	18.6	129	90300	0.495	S-3	436993.26	G/G ₀ =1/(1+6.10γ ^{0.896})	h=y/(0.0747y+0.0138)+1.70	0.460	43.9	32.7	0.0	28.6
10	第5粘性土層	Dc5	19.6	93	65100	0.495	D-5	493683.00	G/G ₀ =1/(1+3.99γ ^{0.740})	h=γ/(0.0759γ+0.0305)+3.50	0.437	357.0	0.0	216.7	0.0
11	第5砂質土層	Ds5	19.6	176	123200	0.495	S-4	604589.74	$G/G_0=1/(1+5.87\gamma^{0.895})$	h=γ/(0.0595γ+0.00761)+1.01	0.445	48.2	34.5	0.0	33.3
12	第6粘性土層	Dc6	19.5	129	90300	0.495	D-6	545979.72	G/G ₀ =1/(1+2.83y ^{0.743})	h=γ/(0.176γ+0.0121)+2.55	0.455	708.8	0.0	402.2	0.0
13	第6砂質土層	Ds6	19.4	-	35000	0.495	S-4	633744.08	$G/G_0=1/(1+5.87\gamma^{0.895})$	h=γ/(0.0595γ+0.00761)+1.01	0.448	(48.2)	(34.5)	(0.0)	(33.3)
14	第7粘性土層	Dc7	19.5	-	35000	0.495	D-6	621351.79	G/G ₀ =1/(1+2.83y ^{0.743})	h=γ/(0.176γ+0.0121)+2.55	0.448	(708.8)	(0.0)	(402.2)	(0.0)
15	第7砂質土層	Ds7	19.5	-	35000	0.495	S-6	584134.03	$G/G_0=1/(1+18.762\gamma^{1.0856})$	h=y/(0.0646y+0.0051)+1.65	0.456	108.7	29.9	0.0	29.9
16	第8粘性土層	Dc8	19.6	_	35000	0.495	D-6	624538.21	G/G ₀ =1/(1+2.83y ^{0.743})	h=γ/(0.176γ+0.0121)+2.55	0.448	(708.8)	(0.0)	(402.2)	(0.0)
17	第8砂質土層	Ds8	19.5	-	35000	0.495	S-7	630275.94	G/G ₀ =1/(1+5.42γ ^{0.946})	h=y/(0.0607y+0.0125)+1.73	0.449	(108.7)	(29.9)	(0.0)	(29.9)
18	第1礫質土層(※1)	Dg1	20.5	-	35000	0.495	S-7	679176.89	G/G ₀ =1/(1+5.42γ ^{0.946})	h=q/(0.0607q+0.0125)+1.73	0.457	(108.7)	(29.9)	(0.0)	(29.9)
19	第9粘性土層	Dc9	19.1	_	35000	0.495	D-9	691839.27	G/G ₀ =1/(1+3.76γ ^{0.800})	h=γ/(0.0809γ+0.0170)+1.97	0.445	602.0	0.0	353.0	0.0
20	第10砂質土層	Ds9	20.1	-	35000	0.495	S-8	992873.37	$G/G_0=1/(1+19.342\gamma^{1.1086})$	h=γ/(0.0703γ+0.00783)+4.28	0.435	5.1	32.5	0.0	26.8
21	第10粘性土層	Dc10	19.1	-	35000	0.495	D-9	691839.27	G/G ₀ =1/(1+3.76γ ^{0.800})	h=γ/(0.0809γ+0.0170)+1.97	(0.445)	(602.0)	(0.0)	(353.0)	(0.0)
22	花崗岩(DH級)	Gr	21.3	-	35000	0.495	S-9	2064753.25	$G/G_0=1/(1+20.40\gamma^{0.813})$	h=γ/(0.0838γ+0.00313)+3.11	0.419	642.9	36.4	91.2	35.2
23	花崗岩	Gr	23.6	-	35000	0.495	線形	6137636.44	線形	3.00%	0.370	-	-	-	-

※1:この層には第9砂質土層も含まれる。

※2:()は上位の類似層の値を採用。

※3:E=700N(kN/m²)より算出。N値のない材料については、N値=50を適用。

平成28年2月5日 審査会合資料再掲

23