JY-147-8

国立研究開発法人日本原子力研究開発機構

大洗研究所(南地区)高速実験炉原子炉施設(「常陽」)

第43条(試験用燃料体)

2022年6月28日

国立研究開発法人日本原子力研究開発機構

大洗研究所高速実験炉部

第43条:試験用燃料体

目 次

- 1. 要求事項の整理
- 2. 設置許可申請書における記載
- 3. 設置許可申請書の添付書類における記載
 - 3.1 安全設計方針
 - 3.2 気象等
 - 3.3 設備等
- 4. 要求事項への適合性
 - 4.1 照射燃料集合体の種類及び構造
 - 4.2 熱設計
 - 4.3 機械設計
 - 4.4 炉心の概要
 - 4.5 炉心構成
 - 4.6 標準平衡炉心を用いた核熱設計における保守性の確保
 - 4.7 核設計
 - 4.8 要求事項(試験炉設置許可基準規則第43条)への適合性説明

(別紙)

別紙1:「炉心の変更」に関する基本方針

別紙2 :照射燃料集合体の安全確保の考え方

- 別紙3:照射燃料集合体の構造概要と燃料要素の種類の変更
- 別紙4:照射燃料集合体の仕様設定の考え方
- 別紙5:照射燃料集合体における熱設計基準値、熱的制限値の設定
- 別紙6:照射燃料集合体の燃料設計方針
- 別紙7:照射燃料集合体の熱設計計算式

- 別紙8:照射燃料集合体の熱設計に用いる物性式
- 別紙9:照射燃料集合体の工学的安全係数
- 別紙10:照射燃料集合体の熱設計結果
- 別紙11:クリープ寿命分数和の計算
- 別紙12:照射燃料集合体の機械設計の制限について
- 別紙13:疲労損傷和及び累積損傷和の計算
- 別紙14:燃料溶融時における燃料と被覆管の相互作用による歪

別紙 15:限界照射試験の被覆管開孔時の放出物に対する処置

別紙 16:照射燃料集合体の燃料要素の機械設計結果等の整理

別紙17:照射燃料集合体の機械設計

(添付)

- 添付1 :設置許可申請書における記載
- 添付2 :設置許可申請書の添付書類における記載(安全設計)
- 添付3 :設置許可申請書の添付書類における記載(適合性)
- 添付4 : 設置許可申請書の添付書類における記載(設備等)

試験研究用等原子炉施設の設置許可基準規則の要求事項を明確化するとともに、それら要求に対 する高速実験炉原子炉施設の適合性を示す。

1. 要求事項の整理

「常陽」の炉心は、増殖炉心(以下「MK-I炉心」という。)から照射用炉心(以下「MK-I 炉心」という。)へ変更された後、更に変更を加え、熱出力を140MWとした照射用炉心(以下「MK ーⅢ炉心」という。)に変更された。本申請では、更に変更を加え、熱出力を100MWとした照射用炉 心(以下「MK-IV炉心」という。)を対象とする【「炉心の変更」に関する基本方針:別紙1参照】。 試験炉設置許可基準規則第43条における要求事項等を第1.1表に示す【照射燃料集合体の安全確保 の考え方:別紙2参照】。

第1.1表 試験炉設置許可基準規則第43条における要求事項及び本申請における変更の有無

要求事項	変更
	の有無
1 試験用燃料体は、次に掲げるものでなければならない。	有
一 試験計画の範囲内において、試験用燃料体の健全性を維持できない場合におい	
ても、燃料体の性状又は性能に悪影響を与えないものであること。	
二 設計基準事故時において、試験用燃料体が破損した場合においても、試験研究	
用等原子炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそ	
れがないものであること。	
三 放射性物質の漏えい量を抑制するための措置を講じたものであること。	
四 輸送中又は取扱中において、著しい変形が生じないものであること。	
【解釈】	
 第1号に規定する「試験計画の範囲内において、試験用燃料体の健全性を維 	
持できない場合」とは、試験計画で制限した範囲内で、被覆材の破損あるいは	
燃料棒にあっては燃料材の一部に溶融が生じる場合等をいう。	
 第1号に規定する「燃料体の性状又は性能に悪影響を与えない」とは、試験 	
計画の範囲内で、燃料体の機能及び健全性を阻害しないことをいう。	
・ 第2号に規定する「試験研究用等原子炉を安全に停止するために必要な機能	
及び炉心の冷却機能を損なうおそれがない」とは、燃料の許容設計限界を超え	
ないこと及び試験用燃料体がその許容試験限界を超えないことをいう。なお、	
試験用燃料体の「許容試験限界」とは、試験用燃料体があらかじめ計画した範	
囲内で被覆材の破損又は燃料棒にあっては燃料材の一部溶融等の試験を行う	
ことができる限界をいい、運転時の異常な過渡変化時においても、その損傷に	
より燃料体の健全性を損なうことのないことが要求される。	
 第3号に規定する「放射性物質の漏えい量を抑制するための措置」とは、被 	
覆材の破損による一次冷却材中への核分裂生成物等の放射性物質の放出量を、	
試験用燃料体の破損範囲の限定、破損燃料検出設備による運転監視等により適	
切に制限できる措置をいう。	

2. 設置許可申請書における記載
 添付1参照

設置許可申請書の添付書類における記載
 3.1 安全設計方針

 (1)設計方針
 添付2参照

(2) 適合性

添付3参照

<u>3.2 気象等</u>

該当なし

3.3 設備等

添付4参照

- 4. 要求事項への適合性
 - 4.1 照射燃料集合体の種類及び構造

照射燃料集合体は、設計基準事故時において、照射燃料集合体が破損した場合においても、 原子炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれがないように、 また、輸送中又は取扱中において、著しい変形が生じないように設計する。

照射燃料集合体は、高速増殖炉用燃料の開発及び高速炉用燃料の設計精度の向上に使用する ものであり、構造がそれぞれ異なるA型、B型、C型及びD型照射燃料集合体の4種類から構 成する。なお、一部の照射試験にあっては、炉心燃料集合体の設計方針に定める制限を超え、 又は、超える可能性のある場合がある。これらの照射試験には、燃料要素の被覆管が開孔する 可能性のある条件で照射を行う限界照射試験、照射挙動が不明確な材料を燃料材に用いた燃料 要素を照射する先行試験、及び照射挙動が不明確な材料を被覆材に用いた燃料要素を照射する 基礎試験がある。主要設備を以下に示す【照射燃料集合体の構造概要と燃料要素の種類の変更: 別紙3参照】。

(1)燃料要素

燃料要素の主要仕様を第4.1.1表に示す【照射燃料集合体の仕様設定の考え方:別紙4参照】。燃料要素は、寸法及び組成の異なる、Ⅲ型及びⅣ型特殊燃料要素、Ⅲ型及び Ⅳ型限界照射試験用要素、先行試験用要素、基礎試験用要素、A型用炉心燃料要素(A 型照射燃料集合体に装填するA型用炉心燃料要素(内側)及びA型用炉心燃料要素(外 側)の2種類とする。)及び限界照射試験用補助要素の9種類から構成する。

これらの燃料要素は、燃料部を被覆管に挿入し、その上下に熱遮へい部(燃料部が金 属燃料の燃料要素を除く。)を、上部の熱遮へい部の上にプレナムスプリング等(燃料 部と被覆管との熱伝達を燃料要素内に充填するナトリウムで行うナトリウムボンド型 の燃料要素及び燃料部が振動充填燃料の燃料要素を除く。)を入れ、両端に端栓を溶接 した密封構造とし、内部に不活性ガスを封入する。

(2) 燃料集合体

照射燃料集合体の概略構造を第4.1.1 図に、主要仕様を第4.1.2 表に示す。照射燃料集合体は、炉心燃料集合体と同様に、燃料要素、ラッパ管、ハンドリングヘッド及び エントランスノズル等から構成する。照射燃料集合体の種類は、燃料集合体の中央に試 料部を設けたA型照射燃料集合体、燃料集合体内に数本のコンパートメントを納めた B型及びD型照射燃料集合体、炉心燃料集合体と同様な形状のC型照射燃料集合体の4 種類とする。

コンパートメントは、照射燃料集合体の内部において独自に冷却材流量を設定できる二重の円筒管(α型コンパートメントにおいては、外管に六角管も用いる。)であり、 その種類は装填する燃料要素の種類及び本数並びに構造及び主要寸法等の組合せにより α型、β型、γ型及びδ型コンパートメントの4種類に分類される。なお、α型及び γ型コンパートメントは、燃料要素最大5本をピンタイロッドの周囲に配置し、ワイヤ スペーサ等で燃料要素間を保持する構造とする。β型及びδ型コンパートメントは、燃 料要素1本をシュラウド管に装填し、ワイヤスペーサ等で燃料要素とシュラウド管と の間を保持する構造とする。先行試験用 γ型コンパートメントは、燃料要素1本をシュ ラウド管に装填し、ワイヤスペーサ等で燃料要素とシュラウド管との間を保持し、これ を上部と下部にストレーナを有した管構造である内壁構造容器に装填し、この内壁構 造容器を納めた構造とする。基礎試験用 γ型コンパートメントは、燃料要素1本をシュ ラウド管に装填し、ワイヤスペーサ等で燃料要素とシュラウド管との間を保持し、これ を密封型の管構造である密封構造容器に装填し、この密封構造容器を納めた構造とす る。照射燃料集合体の構造を以下に示す。

(i) A型照射燃料集合体

A型照射燃料集合体は、試料部の周囲に、ワイヤスペーサを巻いたA型用炉心燃料 要素を炉心燃料集合体と同じ燃料要素ピッチで正三角格子状に配置して、全体をラッ パ管に納め、この下部にエントランスノズルを、上部にハンドリングヘッドを配した 構造とする。

試料部は、燃料要素7本のバンドル(正三角格子状に配置した燃料要素の束)を二 重のステンレス鋼の試料部六角管に納めたもの、α型又はβ型コンパートメントをス テンレス鋼の試料部六角管に納めた構造とする。

A型照射燃料集合体は、燃料材が占める体積比率が比較的大きいため、高い中性子 束による照射試験ができる機能を有する。また、コンパートメントを有するものにあ っては、コンパートメントを適宜取り出すことにより照射中の燃料要素の健全性を追 跡確認できる機能を有する。

(ii) B型照射燃料集合体

B型照射燃料集合体は、燃料集合体の中央部に設けたステンレス鋼のタイロッドの まわりに、 γ型コンパートメント6本を配し、全体をラッパ管に納め、この下部にエ ントランスノズルを、上部にハンドリングヘッドを配した構造とする。B型照射燃料 集合体は、ほぼ同一の照射条件下でパラメトリックなデータを得ることができ、また、 コンパートメントを適宜取り出すことにより照射中の燃料要素の健全性を追跡確認 できる機能を有する。

先行試験用 y 型コンパートメント内には内壁構造容器 1 本が納められ、この内壁構 造容器内に先行試験用要素を装填することにより、燃料溶融状態の先行試験用要素の 被覆管が、万一、破損しても、先行試験用要素以外の燃料要素の健全性に影響を与え ない構造とする。

基礎試験用 γ 型コンパートメント内には密封構造容器 1 本が納められ、この密封構 造容器内に基礎試験用要素を装填することにより、基礎試験用要素の被覆管が開孔し ても、基礎試験用要素以外の燃料要素の健全性に影響を与えない構造とする。

(iii) C型照射燃料集合体

C型照射燃料集合体は、燃料要素最大 91 本のバンドルをステンレス鋼の試料部六 角管に納め、これをラッパ管に納め、この下部にエントランスノズルを、上部にハン ドリングヘッドを配した構造とする。C型照射燃料集合体は、同時に多数の照射デー タを得ることができ、燃料要素の健全性を統計的に確認できる機能を有する。

また、照射条件をオンラインで計測するものにあっては、検出器を取り付け、計測 線を炉外に引き出す構造とする。計測線付C型照射燃料集合体は、内側延長管、外側 延長管、ハウジング等の上部構造により炉心上部機構に支持する。上部案内管、外側 延長管及び内側延長管の間隙には、ステンレス鋼、炭化ほう素等の遮へい体を設ける。 計測線付C型照射燃料集合体の試料部は、燃料交換時に回転プラグが回転できるよう に、下部案内管によりガイドして上部案内管に引き上げる。計測線は、照射試験終了 後計測線付C型照射燃料集合体の取り出し時に、内側延長管と外側延長管により切断 し、上部構造と切り離す。計測線付C型照射燃料集合体の概略構造を第4.1.2 図に示 す。

(iv) D型照射燃料集合体

D型照射燃料集合体は、燃料集合体の中央部に設けたステンレス鋼のタイロッドの まわりに、γ型コンパートメント6本、δ型コンパートメント18本、又は、これら2 種類のコンパートメントを混在させて配し、全体をラッパ管に納め、この下部にエン トランスノズルを、上部にハンドリングヘッドを配した構造とする。D型照射燃料集 合体は、ほぼ同一の照射条件下で燃料要素1本ごとに最大18のパラメータを設定し て照射データを得ることができ、また、コンパートメントを適宜取り出すことにより 照射中の燃料要素の健全性を追跡確認できる機能を有する。

1/5)
三要仕様(
要素の主
燃料
.1.1表
第4

		燃料	树		
		燃料	許		
	種類	プルトニウム含有率*1	核分裂性 ^{* 2} プルトニウム富化度	プルトニウム 同位体組成比	ウラン濃縮度
照射燃料集合体 正型特殊燃料要素	プルトニウム・ウラン混合酸化物 焼詰ペレット	32wt%以下	25wt%以下	原子炉殺	26wt%以下
IV型特殊燃料要素	귀틸	千世	25wt%以下	기 臣	24wt%以下
Ⅲ 型限界照射試驗用要素	귀틸	千世	25wt%以下	기 臣	26wt%以下
IV型限界照射試驗用要素	千世	千世	25wt%以下	니	24wt%以下
先行試験用要素	プルトニウムまたは* ^{6 *7} ウランの単体または 混合物の酸化物、炭化物、 蜜化物または金属	(制限なし)	80wt%以下	千 臣	85wt%以下
基礎試験用要素	プルトニウム・ウラン 混合酸化物焼結ペレット、 プルトニウム・ウラン 混合炭化物焼結ペレット、 プルトニウム・ウラン 混合窒化物焼結ペレット 混合窒化物焼結ペレット 混合窒化物焼結ペレット	左欄について、それぞれ 32wt%以下、25wt%以下、 30wt%以下、20wt%以下	左欄について、それぞれ 25wt%以下、20wt%以下、 24wt%以下、16wt%以下	一 回	85wt% LX F
A型用炉心燃料要素(内側)	プルトニウム・ウラン混合酸化物 焼結ペレット	32wt%比下	% 516wt%	- 프	約18wt %
A型用炉心燃料要素(外側)	귀별	귀떹	約21wt%	나 티	約18wt%
限界昭射試験用補助要素	1	1	25wt% 27 F	_1	26wt.% DJ F

	<mark>第 4. 1. 1</mark>	表 燃料要素の主要化	比様(2/5)		
			燃料材		
		燃料部			熟進へい部
	燃料ペレットの初期密度	燃料ペレット(中実)直径	燃料ペレット (中空) 外径/内径	燃料ペレット長さ	種類
照射燃料集合体 II型特殊燃料要素	95%理論密度以下	5. 3~7. 5mm	5.3~7.5mm/約2mm	15mm以下	ウラン酸化物 * 3 焼結ペレット
IV型特殊燃料要素	95%理論密度以下	5. $18 \sim 6.18$ mm	5.18~6.18mm/約2mm	귀恒	千世
III型限界照射試験用要素	95%理論密度以下	5.3~6.6mm	(該当なし)	귀世	千世
IV型限界照射試験用要素	95%理論密度以下	5. $18 \sim 6. 18 \text{mm}$	(該当なし)	귀ഥ	千世
先行試験用要素	95%理論密度以下	4.6 \sim 7.5mm	$4.6\sim7.5$ mm/約2mm	十 臣	ウランの酸化物、*4*6 炭化物、窒化物または金属
基礎試験用要素	95%理論密度以下	4. $6 \sim 7$. 5mm	4. 6~7. 5mm/約2mm	- 프	ウラン酸化物焼結ペレット*4 ウラン炭化物焼結ペレット、 ウラン窒化物焼結ペレット またはウラン金属スラグ
A型用炉心燃料要素(内侧)	約94%理論密度	% 54.6mm	(該当なし)	新5 9 mm	ウラン酸化物 * 3 焼結ペレシト
A型用炉心燃料要素(外側)	約94%理論密度	糸54.6mm	(該当なし)	新匀 9 m m	千厘
限界照射試験用補助要素	95%理論密度以下	5. $3 \sim 6.6 \text{mm}$	(該当なし)	15mm以下	目上

		7 着 倍		その色の部	3品の材料
	材料	外径	肉厚	端栓	ワイヤスペーサ
照射燃料集合体 Ⅲ 型特殊燃料要素	オーステナイト米メテンレス艶	6.4~8.5mm	$0.4\sim 0.7$ mm	オーステナイト糸メテンレス艶	オーステナイト糸ステンレス鍋
IV型特殊燃料要素	高速炉用フェライト系 ステンレス鋼	6.5~7.5mm	$0.56\sim0.76\mathrm{mm}$	高速炉用フェライト系 ステンレス鋼	高速炉用フェライト系 ステンレス鋼
III 型限界照射試驗用要素	オーステナイ ト系 ステンレス鋼	$6.4 \sim 7.5 \text{mm}$	$0.4\sim 0.6$ mm	オーステナイト系 ステンレス鋼	オーステナイト系ステンレス錮
IV型限界照射試驗用要素	高速炉用フェライト系 ステンレス鋼	6. 5~7. 5mm	$0.56\sim0.76\mathrm{mm}$	高速炉用フェライト系 ステンレス鋼	高速炉用フェライト系 ステンレス鋼
先行試験用要素	オーステナイト系 ステンレス鋼または 高速炉用フェライト系 ステンレス鋼(酸化物 分散強化型を含む)	5.4∼8.5mm	0. 3~0. 8mm	オーステナイト系 ステンレス鋼または 高速炉用フェライト系 ステンレス鋼 (酸化物 分散強化型を含む)	メテントメ錮
基礎試驗用要素	ステンレス鋼(クロム又はクロムとはクロムとニッケルを含けるとニッケルを含有させた合金鋼、酸化物物分散強化型を含む)	斗 匡	긔 匝	メデントメ働	斗 国
A型用炉心燃料要素(内側)	オーステナイト系 ステンレス鋼	約5.5mm	糸り0.35mm	オーステナイト系 ステンレス鋼	オーステナイト系ステンレス艶
A型用炉心燃料要素(外側)	귀띹	비	귀밑	귀道	비
限界照射試験用補助要素		$6.4 \sim 7.5 \text{mm}$	$0.4 \sim 0.6$ mm	Ξ	1

	第4.1.1表 燃料要素の主要	仕様 (4/5)	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	の他の部品の材料	
	上部反射体ペレット及び下部反射体ペレット	<i>が</i> レナムスプリング	プレナムスリーブ
照射燃料集合体			
III型特殊燃料要素	オーステナイト系ステンレス鋼	オーステナイト系 ステンレス鋼	メテンレメ艶
IV型特殊燃料要素	高速炉用フェライト系 ステンレス鋼	부 世	斗 匝
<b>Ⅲ</b> 型限界照射試験用要素	オーステナイト系ステンレス鋼	기 世	斗 匣
IV型限界照射試験用要素	高速炉用フェライト系 ステンレス鋼	기 世	년
先行試験用要素	メナンレメ鍋	オーステナイト系 ステンレス錮	년
基礎試験用要素	千世	千世	기
A型用炉心燃料要素(内側)	オーステナイト系ステンレス鋼	SUS304 ステンレス鋼	년
A型用炉心燃料要素(外側)	千世	千世	비
限界照射試驗用補助要素	王臣	オーステナイト米ステンレス舗	千世

43 条-10

燃料要素の主要仕様 (5/5)
第4.1.1表

	燃料ペレット- 被覆管間隙(半径)	ガスプレナム長さ	燃料要素有効長さ (燃料部)	<b>登全素要</b> 体微
照射燃料集合体				
III型特殊燃料要素	0.2mm以下	90cm以下	50cm以下	200cm以下
			(55cm以下 ^{* 5} )	
IV型特殊燃料要素	糸匀 O. 1mm	- [또	기 恒	비
<b>Ⅲ</b> 型限界照射試驗用要素	0. 2mm以下	니 臣	山臣	비
IV型限界照射試驗用要素	糸り0.1mm	니 臣	山市	비
先行試験用要素	0.2mm以下	150cm以下	山市	200cm以下
基礎試験用要素	기 世	귀ഥ	山市	비
A型用炉心燃料要素(内側)	糸り0.1mm	約58cm	귀띹	約154cm
A型用炉心燃料要素(外側)	기世	니 臣	山市	비
限界照射試験用補助要素	0.2mm以下	90cm以下	니 臣	200cm以下

- $Pu/(Pu+^{241}Am+U)_{\circ}$ ••• --*
- 0  $(^{239}Pu^{+^{241}}Pu) / (Pu^{+^{241}}Am^{+}U)$
- ∞ ≈
- 4 *
- 劣化ウラン。 天然ウランまたは劣化ウラン。 MK-Ⅱ炉心から継続して使用する燃料要素の場合。 ഥ *
- 燃料材の他、マイナーアクチニドや核分裂生成物を混入させる場合がある。 ただし、マイナーアクチニド及び核分裂生成物の最大混入割合は20wt%とする。 9 *
- ペレットでない酸化物の場合、O/M比を調整するため、ウラン金属を混入させる場合がある。 ただし、ウラン金属の最大混入割合は10mt%とする。 . .  $\sim$ *

			照射燃料集合体		
	A 型照射线	然料集合体	日里昭記拿人	へ里因記録さん	口里因望秦兰角众床
	バンドク型	コンパートメント型	D.望馬對慾科集百体	○ 単語 地際 ないま 一本	D. 尘馬鬼怒や果口を
ラッパ管					
材料	SUS316相当	SUS316相当	SUS316相当	SUS316相当	SUS316相当
	メデンレメ鑞	メナンレメ鯔	メナンレメ鑞	メアンレス鑞	メアンレス鑞
六角外対辺長さ	約78.5mm	約78.5mm	約78.5mm	約78.5mm ^{* 5}	約78.5mm
ハンドリングヘッド					
材料	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6
	メアンレス鋼	メアンレメ鯔	ステンレス鋼	ステンレス鋼	ステンレス鋼
エントランスノズル					
材料	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6
	メテンレス鋼	ステンレス鋼	ステンレス鋼	ステンレス鋼	ステンレス鋼
<b>试</b> 料部六角管					
材料	ステンレス鋼	ステンレス鋼	(該当なし)	ステンレス鋼	(該当なし)
タイロッド					
個数	<ul><li>(該当なし)</li></ul>	<ul><li>(該当なし)</li></ul>	1本	<ul><li>(該当なし)</li></ul>	1本
材料	<ul><li>(該当なし)</li></ul>	(該当なし)	SUS316相当	<ul><li>(該当なし)</li></ul>	SUS316相当
			メデンレス鯔		ステンレス鯔
コンパートメント					
装填個数	(該当なし)	1本	6本	(該当なし)	6~18本
α型コンパートメント	(該当なし)	最大1本	(該当なし)	(該当なし)	(該当なし)
B型コンパートメント	(該当なし)	最大1本	(該当なし)	(該当なし)	(該当なし)
>型コンパートメント	(該当なし)	(該当なし)	$6\pm^{*1}$	(該当なし)	最大6本*1
8型コンパートメント	<ul><li>(該当なし)</li></ul>	(該当なし)	<ul><li>(該当なし)</li></ul>	<ul><li>(該当なし)</li></ul>	最大18本*1

第4.1.2表 燃料集合体の主要仕様 (1/5)

43 条-12

			照射燃料集合体		
	A 型照射线	<b>然料集合体</b>	D페四针綠約律人休	(期間前時代本)	口型医针绦丝体 么休
	バンドル型	南 イ イ チ イ ー 足 本	D	C.型.照.新燃.种.集合体:-	<b>U</b> 玺思豹怒件集审译
装填燃料要素個数	最大115本	最大113本	最大30本	最大91本	最大30本
II型特殊燃料要素	最大7本	最大5本	最大30本	最大91本	最大30本
IV型特殊燃料要素	最大7本	最大5本	最大30本	最大91本	最大30本
<b>Ⅲ</b> 型限界照射試驗用要素	<ul><li>(該当なし)</li></ul>	最大1本	最大6本	(該当なし)	最大6本
IV型限界照射試驗用要素	<ul><li>(該当なし)</li></ul>	最大1本	最大6本	(該当なし)	最大6本
先行試験用要素	<ul><li>(該当なし)</li></ul>	(該当なし)	最大6本	(該当なし)	(該当なし)
基礎試験用要素	<ul><li>(該当なし)</li></ul>	(該当なし)	最大6本	(該当なし)	(該当なし)
A型用炉心燃料要素(内側)	最大108本	最大108本	<ul><li>(該当なし)</li></ul>	(該当なし)	(該当なし)
A型用炉心燃料要素(外側)	最大108本	最大108本	<ul><li>(該当なし)</li></ul>	(該当なし)	(該当なし)
限界照射試験用補助要素	(該当なし)	(該当なし)	最大18本	(該当なし)	最大18本
燃料要素ピッチ					
III型特殊燃料要素	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$
IV型特殊燃料要素	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6\sim 11{ m mm}$	$6 \sim 11 \mathrm{mm}$
II型限界照射試驗用要素	I	$6\sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	(該当なし)	$6 \sim 11 \mathrm{mm}$
IV型限界照射試驗用要素	1	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	(該当なし)	$6 \sim 11 \mathrm{mm}$
A型用炉心燃料要素(内側)	約6.47mm	糸り6.47mm	<ul><li>(該当なし)</li></ul>	(該当なし)	(該当なし)
A型用炉心燃料要素(外側)	約6.47mm	糸匀6.47mm	<ul><li>(該当なし)</li></ul>	(該当なし)	(該当なし)
限界照射試験用補助要素	(該当なし)	(該当なし)	$6 \sim 11 \mathrm{mm}$	(該当なし)	$6 \sim 11 \mathrm{mm}$
燃料要素配列	正三角格子配列等	正三角格子配列等*4	(該当なし)	正三角格子配列等	(該当なし)
燃料要素間隔保持方式	ワイヤスペーサ型及び グリッドスペーサ型	ワイヤスペーサ型、 グリッドスペーサ型及び シュラウド管型	ワイヤスペーサ型、 グリッドスペーサ型及び シュラウド管型	ワイヤスペーサ型及び グリッドスペーサ型	ワイヤスペーサ型、 グリッドスペーサ型及び シュラウド管型
燃料集合体全長	約297cm	約297cm	約297cm	約297cm ^{* 6}	約297cm

第4.1.2表 燃料集合体の主要仕様(2/5)

		照射燃彩	集合体	
		ーペンコ	トメント	
	る型コンパ	ートメント	るコンパ	ートメント
	ワイヤスペーサ型	グリッドスペーサ型	ワイヤスペーサ型	シュラウド管型
外管				
個数	1本	1本	1本	1本
材料	SUS316相当	SUS316相当	SUS316相当	SUS316相当
	メテンレメ艶	メテンレス鑞	ステンフス鑞	メテンレメ艶
外径	<ul><li>(規定なし)</li></ul>	<ul><li>(規定なし)</li></ul>	約23.1mm	杀匀23.1mm
肉厚	(規定なし)	(規定なし)	約0.55mm	糸匀0.55mm
内管				
個数	$1 \pm$	$1 \pm$	1本	$1 \pm$
材料	SUS316相当	SUS316相当	SUS316相当	SUS316相当
	ステンレス鑞	メテンレス艶	メテンレス鑞	メテンレス艶
内径	(規定なし)	<ul><li>(規定なし)</li></ul>	約14~19mm	約14~19mm
肉厚	(規定なし)	(規定なし)	約0.55mm	糸匀 0. 55mm
ピンタイロッド				
個数	1本または3本	1本または3本	(該当なし)	(該当なし)
材料	SUS316相当	SUS316相当	(該当なし)	(該当なし)
	メデンレメ艶	メテンレメ鍋	(該当なし)	(該当なし)
シュラウド管				
個数	(該当なし)	(該当なし)	1本	$1 \pm$
材料	(該当なし)	(該当なし)	オーステナイト系	オーステナイト系
			ステンレス錮	ステンレス鋼
装填燃料要素個数	最大5本	最大5本	1本	1本
<b>II</b> 型特殊燃料要素	最大5本	最大5本	(該当なし)	<ul><li>(該当なし)</li></ul>
IV型特殊燃料要素	最大5本	最大5本	(該当なし)	(該当なし)
<b>Ⅲ</b> 型限界照射試験用要素	(該当なし)	<ul><li>(該当なし)</li></ul>	最大1本	最大1本
IV型限界照射試驗用要素	(該当なし)	(該当なし)	最大1本	最大1本
<u> </u>	日イケスペーキ型	グリッドスペーキ型	ワイセスペーキ型	シュラウド管型

第4.1.2表 燃料集合体の主要仕様 (3/5)

				# > 11.		
			照射燃料	実合体トメント		
			、「「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」			
	1 1 1 % 日本	天二 : 12 - 50 中田	先行書	.験用	基礎討	験用
	リイヤムヘーサ型	クリツトムヘーケ型	ワイヤスペーサ型	シュラウド管型	ワイヤスペーサ型	シュラウド管型
外資個数	1	¥	1	1本	₩	<u>*</u>
材萃	SUS316相当	SUS316相当	SUS316相当	SUS316相当	SUS316相当	SUS316相当
	ステンレス鋼	メテンレス鋼	ステンレス鋼	ステンレス鋼	ステンレス鋼	メテンレメ鍋
外径	約26.4mm	約26.4mm	約26.4mm	約26.4mm	約26.4mm	約26.4mm
肉厚	新J0.6mm	約0.6mm	举 <b>30.6mm</b>	新J0.6mm	約0.6mm	約0.6mm
内管	<u>*</u>	+	+	*	*	ŧ
回致 ++*i	米早 ジョロンロン	* F ~ 1 ~ 日 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1	14 15 2 1 2 日本	本日 - こうこう	本日 2 1 2 2 1 2	T本 本日 C S I S
43 454	SUS310倍曲 スインレス舗	> 〇 > 3 1 0 伯 ヨスイン フス 舗	SUS3I0伯当 スインレス舗	> □ > 3 I 0 伯当 スインレス錮	SUS310倍曲 スインレス舗	203310倍曲 ス小ンフス舗
内径		////////////////////////////////////	////////////////////////////////////	// / / / / / / / / / / / / / / / / / /	////////////////////////////////////	// / / / / / / / / / / / / / / / / / /
「日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	約0.6mm	*/322: Turn 約0.6mm	がり 2 - 5 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	*/222. 1mm	#J0.6mm	約222. mm 約0. 6mm
ピンタイロッド						
個数	1本または3本	1本または3本	(該当なし)	(該当なし)	(該当なし)	<ul><li>(該当なし)</li></ul>
村本	SUS316相当	SUS316相当	(該当なし)	(該当なし)	(該当なし)	<ul><li>(該当なし)</li></ul>
	メアンレス鋼	ステンレス鋼				
シュラウド管						
個数	( 該 当 な し)	( 該 当 な し)	14	1	<b>1</b> 本	<u>1</u>
杨才称	(該当なし)	(該当なし)	オースケナイト糸メテンレス鋼	オーステナイト糸ステンレス鋼	オーステナイト糸ステンレス舗	オースケナイト米 ステンレス鑑
内壁構造容器または密封構造容器						
—————————————————————————————————————	(該当なし)	(該当なし)	内晓樵诰容器1本*7	内壁構诰容器1本*7	您封權诰容器1本 ^{*7}	您封懂浩容器1本 ^{*7}
材料	(該当なし)	(該当なし)	S U S 3 1 6 相当	SUS316相当	SUS316相当	SUS316相当
			ステンレス鍋	ステンレス鋼	ステンレス鋼	ステンレス鑞
内径	(該当なし)	(該当なし)	13mm以下	13mm以下	13mm以下	13mm以下
肉厚	(該当なし)	(該当なし)	2. 8mm以上	2.8mm以上	2.8ml以上	2.8mm以上
装填燃料要素個数	最大5本*2	最大5本*2	$1^{\pm 2}$	$1^{\pm 2}$	$1^{\pm 2}$	$1^{\pm 2}$
<b>II</b> 型特殊燃料要素	最大5本	最大5本	(該当なし)	(該当なし)	(該当なし)	(該当なし)
IV型特殊燃料要素	最大5本	最大5本	(該当なし)	(該当なし)	(該当なし)	(該当なし)
<b>Ⅲ</b> 型限界照射試験用要素	最大1本*3	最大1本*3	(該当なし)	(該当なし)	( 該 当 な し)	(該当なし)
IV型限界照射試験用要素	最大1本*3	最大1本*3	<ul><li>(該当なし)</li></ul>	(該当なし) (該当なし)	(該当なし) (エエ・・、)	(該当なし) ( <u>…</u> …・・、)
先行試験用要素 ######5555	(該当なし)	(該当なし) (共光・・・)	最大1本	最大1本	<ul><li>(該当なし)</li></ul>	(該当なし)
蜝礎試騻併要素 頣界昭射試驗田補助要素	(該当なし) 車十2米*3	(該当なし) 是十9大*3	<ul><li>(該当なし)</li><li>(該当たし)</li></ul>	(該当なし) (該当たし)	最大1本 (該当た1.)	最大1本 (該当た1.)
			6 1	6	Š S	) 6 1
燃料要素間隔保持方式	ワイヤスペーサ型	グリッドスペーサ型	ワイヤスペーサ型	シュラウド管型	ワイヤスペーサ型	シュラウド管型

第4.1.2表 燃料集合体の主要仕様(4/5)

	照射燃料	集合体
	- ペン Π	トメント
	る 1 2 2	ートメント
	ワイヤスペーサ型	シュラウド管型
外管		
個数	14	1本
材料	SUS316相当	SUS316相当
	メテンレス艶	ステンレス鍧
外径	糸J16.4mm	糸匀 1 6 . 4mm
肉厚	約0.4mm	約0.4mm
内管		
個数	1本	1本
材料	SUS316相当	SUS316相当
	ステンレス艶	ステンレス鋼
内径	約12.8mm	糸5 12.8mm
肉厚	約0.5mm	約0.5mm
シュラウド管		
個数	1本	1本
材料	オーステナイト系	オーステナイト系
	ステンレス鋼	ステンレス鋼
装填燃料要素個数	1本*2	1本*2
<b>Ⅲ</b> 型特殊燃料要素	最大1本	最大1本
IV型特殊燃料要素	最大1本	最大1本
燃料要素間隔保持方式	ワイヤスペーサ型	シュラウド管型
*1 : 照射燃料集合体には、ステンレス 、・…、・	鋼のダミー要素のみを装填し	たコンパートメントを
装理する場官かめる。 全てがダミー要素となる場合は、1	<b>咳燃料物質を含まない試料</b> る	、装埴したダミーコンパ
ートメントとすることができる。		
*2 : 燃料要素を装填しないコンパート,	メントについては、ステンレ	ノス鋼のダミー要素、ま
たは、核燃料物質を含まない試料を決	装填する。	
★3 : 限界照射試験用要素を装填するコ: ★を隔異照射試験田雄単亜素3★と★	ンパートメントにしこんは、11146コンぷートメント	限界照射試験用要素1 ~ 粧植まえ
チョマンドときをにまたまです。		- 父父 ) 90
*5 : 計測線付C型照射燃料集合体の場	<b>含は70mm以下。</b>	
*6 : 計測線付C型照射燃料集合体の場	今は約12m以下。	
*7 : 燃料要素またはダミー要素を装填	しないダミー容器がある。	

燃料集合体の主要仕様 (5/2) 

[18]





〔A型照射燃料集合体-限界照射試験用〕



[B型照射燃料集合体-限界照射試験用]



[B型照射燃料集合体-先行試験用]



[B型照射燃料集合体-基礎試験用]



第4.1.2 図 計測線付C型照射燃料集合体

4.2 熱設計

4.2.1 設計方針

照射燃料集合体の熱設計は、炉心燃料集合体の設計方針に基づいて行う。ただし、試験用要素を装填した照射燃料集合体は、通常運転時及び運転時の異常な過渡変化時において、試験用 要素が計画された範囲内でその健全性を喪失しても、他の燃料要素の健全性に影響を与えないよう、それぞれの燃料要素について以下の方針に基づいて熱設計を行う。

(i) Ⅲ型及びIV型特殊燃料要素

Ⅲ型及びIV型特殊燃料要素の熱設計は、通常運転時及び運転時の異常な過渡変化時 において、燃料ペレットが溶融温度に達することなく、被覆管が機械的に破損せず、 かつ、冷却材が沸騰しないよう、以下の方針に基づいて行う。

- a. 特殊燃料要素が、原子炉内における使用期間中、通常運転時及び運転時の異常 な過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系統、原 子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて 機能することにより、熱設計基準値を超えないよう、かつ、その被覆管のクリー プ寿命分数和と疲労寿命分数和を加えた累積損傷和が設計上の制限値である 1.0 を超えないよう、定格出力時における熱的制限値を設定し、これを満たすこと。
- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。
- c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。
- (ii) Ⅲ型及びIV型限界照射試験用要素

Ⅲ型及びⅣ型限界照射試験用要素は、通常運転時及び運転時の異常な過渡変化時に おいて、被覆管の開孔による炉心への影響を最小限に抑えられるよう、以下の方針に 基づいて設計を行う。

- a. 試験用要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な 過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系統、原子 炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機 能することにより、燃料最高温度が溶融温度に達することなく、かつ、被覆管が 計画された範囲内でその健全性を喪失しても、試験用要素以外の燃料要素の健全 性に影響を与えないよう、定格出力時における熱的制限値を設定し、これを満た すこと。
- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。
- c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。
- (ⅲ) 先行試験用要素

先行試験用要素は、通常運転時及び運転時の異常な過渡変化時において、燃料部の 溶融による炉心への影響を最小限に抑えられるよう、以下の方針に基づいて設計を行 う。

a. 試験用要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な 過渡変化時において、酸化物燃料の燃料部が溶融しても、試験用要素以外の燃料 要素の健全性に影響を与えないよう、定格出力時における燃料部、被覆管及び内 壁構造容器の熱的制限値を設定し、これを満たすこと。

(iv) 基礎試験用要素

基礎試験用要素は、通常運転時及び運転時の異常な過渡変化時において、被覆管の 開孔による炉心への影響を最小限に抑えられるよう、以下の方針に基づいて設計を行 う。

- a. 試験用要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な 過渡変化時において、被覆管が開孔しても、試験用要素以外の燃料要素の健全性 に影響を与えないよう、定格出力時における燃料部、被覆管及び密封構造容器の 熱的制限値を設定し、これを満たすこと。
- (v) A型用炉心燃料要素

A型用炉心燃料要素の熱設計は、通常運転時及び運転時の異常な過渡変化時において、燃料ペレットが溶融温度に達することなく、被覆管が機械的に破損せず、かつ、 冷却材が沸騰しないように、以下の方針に基づいて行う。

- a. A型用炉心燃料要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系統、原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機能することにより、熱設計基準値を超えないよう、かつ、その被覆管のクリープ寿命分数和と疲労寿命分数和を加えた累積損傷和が設計上の制限値である1.0を超えないよう、定格出力時における熱的制限値を設定し、これを満たすこと。
- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。
- c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。
- (vi) 限界照射試験用補助要素

限界照射試験用補助要素は、通常運転時及び運転時の異常な過渡変化時において、 燃料ペレットが溶融温度に達することなく、被覆管が機械的に破損せず、かつ、冷却 材が沸騰しないよう、以下の方針に基づいて設計を行う。

- a. 試験用補助要素が、原子炉内における使用期間中、通常運転時及び運転時の異 常な過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系統、 原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せ て機能することにより、熱設計基準値を超えないよう、かつ、その被覆管のクリ ープ寿命分数和と疲労寿命分数和を加えた累積損傷和が設計上の制限値である 1.0を超えないよう、定格出力時における熱的制限値を設定し、これを満たすこ と。
- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。
- c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。

[26]

照射燃料集合体では、試験目的に応じて、燃料材や被覆材の種類、寸法や燃料材物性を組み 合わせ、所定の照射試験条件を実現する。そのため、設置変更許可申請の段階にあっては、想 定される照射試験を踏まえ、燃料要素の仕様を一定の範囲に限定する。

熱設計基準値及び熱的制限値にあっては、当該仕様の組合せを考慮し、燃料最高温度又は燃料最大溶融割合(径方向断面における溶融割合の最大)、被覆管最高温度(肉厚中心)及び冷却 材最高温度について、熱設計基準値及び熱的制限値を定める。なお、熱設計基準値及び熱的制 限値は、最大値として設定したものであり、「核原料物質、核燃料物質及び原子炉の規制に関す る法律」の第27条に基づく設計及び工事の計画の認可申請の段階にあっては、確定した燃料 要素の仕様を用いて、個別に熱設計基準値及び熱的制限値を設定するため、当該値は、設置変 更許可申請の段階で定めた熱設計基準値及び熱的制限値を下回る場合がある。

熱設計に使用する設計計算手法及び物性定数についても、設置変更許可申請の段階で、代表 的なものを定め、設計及び工事の計画の認可申請の段階において、確定した燃料要素の仕様を 用いて個別に定めるものとする。

また、熱設計に使用する工学的安全係数にあっては、燃料の仕様に依存しない原子炉熱出力の測定誤差等による工学的安全係数を、設置変更許可申請の段階で定め、燃料の仕様に依存するものについては、設計及び工事の計画の認可申請の段階において、確定した燃料要素の仕様を用いて個別に定める。

- 4.2.2 熱設計基準値及び熱的制限値【照射燃料集合体における熱設計基準値、熱的制限値の設 定:別紙5参照】
  - 4.2.2.1 熱設計基準値

照射燃料集合体に装填する燃料要素は、その仕様範囲も考慮し、最高温度となる熱設計基準値を定める。「核原料物質、核燃料物質及び原子炉の規制に関する法律」の第27条に基づく設計及び工事の計画の認可申請の段階にあっては、製作する燃料要素の仕様を踏まえ、最新知見も考慮して個別に熱設計基準値を定める。

- (i) Ⅲ型及びIV型特殊燃料要素
  - a. 燃料最高温度は、2,680℃とする。
  - b. Ⅲ型特殊燃料要素の被覆管最高温度(肉厚中心)は、890℃、Ⅳ型特殊燃料要素の被覆管最高温度(肉厚中心)は、810℃とする。
  - c. 冷却材最高温度は、910℃とする。
- (ii) Ⅲ型及びⅣ型限界照射試験用要素
  - a. 燃料最高温度は、2,680℃とする。
  - b. Ⅲ型限界照射試験用要素の被覆管最高温度(肉厚中心)は、890℃、Ⅳ型限界照 射試験用要素の被覆管最高温度(肉厚中心)は、810℃とする。
  - c. 冷却材最高温度は、910℃とする。
- (ⅲ) 先行試験用要素
  - a. 燃料最高温度は、溶融温度を超えないこととする。ただし、酸化物燃料にあっては、溶融温度を超える設計をする場合があるが、最大溶融割合は、30%とする。
  - b. 被覆管最高温度(肉厚中心)は、急速加熱による破断温度以下とする。

- c. 内壁構造容器最高温度(肉厚中心)は、890℃とする。
- d. 内壁構造容器を冷却する冷却材の最高温度は、910℃とする。
- (iv) 基礎試験用要素
  - a. 燃料最高温度は、溶融温度を超えないこととする。
  - b. 被覆管最高温度(肉厚中心)は、急速加熱による破断温度以下とする。
  - c. 密封構造容器最高温度(肉厚中心)は、890℃とする。
  - d. 密封構造容器を冷却する冷却材の最高温度は、910℃とする。
- (v) A型用炉心燃料要素
  - a. 燃料最高温度は、2,650℃とする。
  - b. 被覆管最高温度(肉厚中心)は、840℃とする。
  - c. 冷却材最高温度は、910℃とする。
- (vi) 限界照射試験用補助要素
  - a. 燃料最高温度は、2,680℃とする。
  - b. 被覆管最高温度(肉厚中心)は、890℃とする。
  - c. 冷却材最高温度は、910℃とする。
- 4.2.2.2 熱的制限值

照射燃料集合体に装填する燃料要素は、その仕様範囲も考慮し、最高温度となる熱的制限値を定める。「核原料物質、核燃料物質及び原子炉の規制に関する法律」の第27条に基づく設計及び工事の計画の認可申請の段階にあっては、製作する燃料要素の仕様を踏まえ、 最新知見も考慮して個別に熱的制限値を定める。

- (i) Ⅲ型及びIV型特殊燃料要素
  - 燃料最高温度 2,540℃
  - 被覆管最高温度(肉厚中心)
    - Ⅲ型特殊燃料要素 700℃
    - Ⅳ型特殊燃料要素 610°C
- (ii) Ⅲ型及びIV型限界照射試験用要素
  - 燃料最高温度 2,540℃
    - ただし、被覆管の開孔時にあっては、2,680℃
  - 被覆管最高温度(肉厚中心)
    - A型照射燃料集合体装填時
      - Ⅲ型限界照射試験用要素 750℃
      - ただし、被覆管の開孔時にあっては、890℃ IV型限界照射試験用要素 660℃
    - ただし、被覆管の開孔時にあっては、810℃ B型照射燃料集合体装填時
      - Ⅲ型限界照射試験用要素 700℃
      - ただし、被覆管の開孔時にあっては、890℃ Ⅳ型限界照射試験用要素 610℃

ただし、被覆管の開孔時にあっては、810℃ D型照射燃料集合体装填時

- Ⅲ型限界照射試験用要素 700℃
- ただし、被覆管の開孔時にあっては、890℃ IV型限界照射試験用要素 610℃
  - ただし、被覆管の開孔時にあっては、810℃
- (ⅲ) 先行試験用要素
  - 燃料最高温度 溶融温度以下
  - ただし、酸化物燃料にあっては、最大溶融割合 20%
  - 被覆管最高温度(肉厚中心) 750℃
  - 内壁構造容器最高温度(肉厚中心) 675℃
- (iv) 基礎試験用要素
  - 燃料最高温度 溶融温度以下
  - 被覆管最高温度(肉厚中心) 750℃
  - 密封構造容器最高温度(肉厚中心) 675℃
- (v) A型用炉心燃料要素燃料最高温度 2,350℃
  - 被覆管最高温度(肉厚中心) 620℃
- (vi) 限界照射試験用補助要素
  - 燃料最高温度 2,540℃
  - ただし、試験用要素の被覆管の開孔時にあっては、2,680℃ 被覆管最高温度(肉厚中心)700℃
    - ただし、試験用要素の被覆管の開孔時にあっては、890℃

#### 4.2.3 計算方法

(1) 設計計算手法

照射燃料集合体の熱設計計算では、以下の(i)~(vii)に示す式を用いる【照射燃 料集合体の熱設計計算式:別紙7参照】。なお、内壁構造容器の温度については、以下 の被覆管と同様に行う。また、先行試験用要素の被覆管温度については、内壁構造容器 の温度から内壁構造容器内の冷却材温度を以下の冷却材温度と同様に計算し、これを冷 却材温度として計算する。密封構造容器の温度については、以下の被覆管と同様に行う。 また、基礎試験用要素の被覆管温度については、密封構造容器の温度から密封構造容器 内の冷却材温度を以下の冷却材温度と同様に計算し、これを冷却材温度として計算する。 照射用実験装置の熱設計は、照射燃料集合体と同様に行うこととし、外側容器の温度に ついては、以下の被覆管と同様に行う。

(i) 冷却材温度

冷却材温度は、以下の式により計算する。

$$T_{Na} = T_{IN} + \frac{1}{W \cdot C_p} \int_0^x ql(x) dx$$
  
ここで  $T_{Na}$ : 冷却材温度 (°C)  
 $q1(x)$ : 線出力密度 (W/cm)  
 $W$ : 冷却材流量 (g/s)  
 $C_P$ : 冷却材比熱 (W · s/g/°C)  
 $T_{IN}$ : 冷却材入口温度 (°C)

x:炉心下端からの距離(軸方向距離)(cm)

(ii) 被覆管表面温度

被覆管表面温度は、以下の式により計算する。

$$T_{Co} = T_{Na} + \frac{D_e}{K_{Na}} \cdot \frac{1}{Nu} \cdot \frac{ql}{\pi d_{Co}}$$
  
ここで T_{Co}: 被覆管表面温度 (°C)  
D_e: 水力等価直径 (cm)  
d_{Co}: 被覆管外径 (cm)  
K_{Na}: 冷却材熱伝導度 (W/cm/°C)  
Nu: ヌセルト数

(iii) 被覆管内面温度

被覆管内面温度は、以下の式により計算する。

$$T_{Ci} = T_{CO} + \frac{\ln(d_{Co}/d_{Ci})}{2\pi K_{C}} \cdot ql$$
  
ここで  $T_{Ci}$ : 被覆管内面温度 (°C)  
 $K_{C}$ : 被覆管熱伝導度 (W/cm/°C)  
 $d_{Ci}$ : 被覆管内径 (cm)

(iv) 燃料表面温度

燃料表面温度は以下の式により計算する。

$$T_{s} = T_{Ci} + \frac{ql}{h_{g} \cdot \pi (d_{P} + d_{Ci})/2}$$
  
ここで T_{s}: 燃料表面温度 (°C)  
 $h_{g}: ギャップ熱伝達率 (W/cm^{2}/°C)$   
 $d_{P}: ペレット直径 (cm)$ 

(v)燃料最高温度

溶融温度に達しない範囲の燃料最高温度は以下の式により計算する。なお、プルトニ ウム・ウラン混合酸化物燃料では、燃料ペレットの相変化及び密度変化を考慮する。

$$\int_{T_s}^{T_p} k \, dT = \frac{ql}{4\pi}$$
ここで  $T_P$ : 燃料最高温度 (°C)  
k: 燃料熱伝導度 (W/cm/°C)

(vi) 燃料溶融半径

先行試験用要素(溶融あり)の燃料溶融半径は、以下の式により計算する。

$$\int_{T_s}^{T_m} k \quad dT = \frac{ql}{4\pi} \left( 1 - \frac{r_m^2}{r_o^2} \right)$$
  
ここで  $r_m : 燃料溶融半径 (cm)$   
 $T_m : 燃料の溶融温度 (°C)$   
 $r_o : 燃料半径 (cm)$ 

(vii) 燃料溶融割合

先行試験用要素(溶融あり)の燃料溶融割合は、以下の式により計算する。

$$V_m = \frac{r_m^2}{r_o^2}$$

ここで Vm:燃料溶融割合

(2)物性定数【照射燃料集合体の熱設計に用いる物性式:別紙8参照】

熱設計計算における物性定数は、第4.2.1表に示す値を使用する。また、先行試験用 要素及び基礎試験用要素の被覆管については、オーステナイト系ステンレス鋼の場合は オーステナイト系ステンレス鋼の、フェライト系ステンレス鋼(マルテンサイト系ステ ンレス鋼及びフェライトーマルテンサイト系ステンレス鋼を含む。)の場合は高速炉用フ ェライト系ステンレス鋼の物性定数を使用する。

4.2.4 出力分布

熱設計計算では、第4.2.2表に示す出力ピーキング係数を使用する。なお、照射燃料集合体の出力ピーキング係数は、炉心燃料集合体のそれを上回ることはない。

4.2.5 冷却材流量配分

照射燃料集合体の冷却材流量配分については、炉心燃料集合体のそれと同様に行うが、必要 に応じて照射燃料集合体等の内部に設ける流量調節機構により行う。

4.2.6 工学的安全係数

熱設計計算における工学的安全係数は、燃料ペレット、被覆管、冷却材等の温度上昇の最大 値を求めるための係数であり、照射燃料集合体にあっては、燃料仕様によらず共通する原子炉 熱出力の測定誤差等を含む。なお、照射燃料集合体にあっては、「核原料物質、核燃料物質及び 原子炉の規制に関する法律」の第27条に基づく設計及び工事の計画の認可申請の段階におい て、製作する燃料要素の仕様を踏まえ、燃料仕様に依存する項目について個別に工学的安全係 数を定める。熱設計計算に用いる照射燃料集合体の工学的安全係数を以下に示す【照射燃料集 合体の工学的安全係数:別紙9参照】。

工学的安全係数

照射燃料集合体 1.05

4.2.7 過出力因子

過出力因子は、運転時の異常な過渡変化時において、燃料ペレットが達し得る最高温度及び ペレット最大溶融割合を求めるための因子である。熱設計計算に用いる過出力因子を以下に示 す。

過出力因子

照射燃料集合体 1.08 ただし、A型用炉心燃料要素については 1.07

4.2.8 熱特性主要目

熱設計計算に用いる熱特性の主要目を第4.2.3表に示す。

4.2.9 評価

照射燃料集合体の定格出力時における燃料最高温度、被覆管最高温度及び冷却材最高温度並びに過出力時における燃料最高温度の評価結果を第4.2.4表に示す【照射燃料集合体の熱設計結果:別紙10参照】。

出典	加藤らの式 【照射燃料集合体の熟設 書に用いる物性式: 別紙8 参照】
物性定数	プルトニウム・ウラン混合酸化物燃料 $\lambda = \frac{1-p}{1+0.5p}, \lambda_0$ $\lambda = \frac{1-p}{(1+0.5p)}, \lambda_0$ $\lambda_0 = \frac{1}{(0.01595 + 2.713x + 0.3583Am + 0.06317Np + (2.493 - 2.625x) \times 10^{-4}T} + \frac{1.541 \times 10^{11}}{T^{2.5}}, \exp\left(-\frac{15220}{T}\right)$ $\lambda_0 := \frac{1}{(0.0150710} \sum_{L2:010} \sum_{L2:00} \sum_$
項目	然料ペレット熱伝導度

第4.2.1表 熟設計計算に使用する物性定数(1/3)

田典	【照射燃料集合体の熱設 計に用いる物性式: 別紙 { 参照】	International Nickel Company PNC-TN9430 90-003
物性定数	炉心燃料集合体の場合 hg=0.70 照射燃料集合体の場合 bg = $\frac{C1 + C2Q}{G_0 - C3D_{pin}Q + C4}$ hg : ギャップ熱伝達率 (W/cm ² /°C) G ₀ : 製造時被覆管内径 (cm) D _{pin} : 製造時被覆管内径 (cm) D _{pin} : 製造時被覆管内径 (cm) C1-C4 は照射試験及び物性値から評価し設定される係数 (W/cm/°C) C1-C4 は照射試験及び物性値から評価し設定される係数 (U/C0) C1-C4 は照射試験及び物性値から評価し設定られる係数 (U/C0) C1-C4 は照射試験及び物性値から評価し設定られる係数 (U/C0) C1-C4 は照射試験及び物性値から評価し設定らんの係数 (U/C0) C1-C4 は照射試験及び物性値から評価し設定られる係数 (U/C0) C1-S * * * * * * * * * * * * * * * * * * *	オーステナイト系ステンレス鋼 K _c =0.132+1.3×10 ⁻⁴ T _c K _c :被覆管熱伝導度 (W/cm/°C) T _c :被覆管漁庭 (°C) 高速炉用フェライト系ステンレス鋼 K _c =(25.475-2.038×10 ⁻² T _c +1.665×10 ⁻⁴ T _c ² -3.040×10 ⁻⁷ T _c ³ +1.727×10 ⁻¹⁰ T _c ⁴ )×10 ⁻² K _c :被覆管熱伝導度 (W/cm/°C) T _c : 被覆管熱伝導度 (W/cm/°C)
項目	ギャップ熱伝達率	被覆管熱伝導度

第4.2.1表 熟設計計算に使用する物性定数 (2/3)

[34]

出典	Dwyer の式	Lyon の式	ANL - 7323	ANL - 7323	ANL - 7323	ANL - 7323	ANL $-7323$
物性定数	$h_{film} = \left(\frac{K_N}{D}\right) Nu$	h _{film} :被覆管表面熱伝達率(cal/cm ² /s/°C) D:水力等価直径(cm) K _N :冷却材熱伝導度(cal/cm/s/°C) Nu:ヌセルト数 Nu=7.0+0.025Pe ^{0.8} Pe:ペクレ数	C _p =0.3433-1.387×10 ⁻⁴ T _N +1.106×10 ⁻⁷ T _N ² C _p : 冷却材比熱 (cal/g/°C) T _N : 冷却材温度 (°C)	<ul> <li>         y = 0.9500-2.298×10⁻⁴T_N-1.461×10⁻⁸T_N²+5.638×10⁻¹²T_N³         y : 冷却材密度 (g/cm³)         T_N: 冷却材温度 (°C) (100°C~1,400°C)     </li> </ul>	$\log \mu = -1.4892 + 220.65 / T_N - 0.4925 \log T_N$ $\mu$ : 冷却材粘性係数 $(g/cm/s)$ T_N: 冷却材温度 $(K)$	K _N =0.93978-3.2505×10 ⁻⁴ T _N +3.6192×10 ⁻⁸ T _N ² K _N : 冷却材熱伝導度(W/cm/°C) T _N : 冷却材温度(°F )	H=1.628393T _N -4.16517×10 ⁻⁴ T _N ² +1.534903×10 ⁻⁷ T _N ³ -554.5873 H: 冷却材エンタルビー(W・s/g) T _N : 冷却材温度(K)
項目	被覆管表面熱伝達率		冷却材比熱	冷却材密度	冷却材粘性係数	冷却材熱伝導度	冷却材エンタルピー

第4.2.1 表 熟設計計算に使用する物性定数 (3/3)

[35]
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- ,, , ,,,,,, - , , , ,,,,				
		標準平衡炉心				
	出力分担 (MW)					
	炉心燃料集合体	95.7				
	照射燃料集合体	1.1				
	その他	3. 2				
出力分布	(反射体、制御棒等)					
	出力ピーキング係数	1.63				
	径方向	1. 33				
	軸方向	1.17				
	局所	1.04				
炉内最大中性	子束(n/cm²/s)					
	0.1MeV以上	2. $9 \times 10^{15}$				
	全中性子束	4. $2 \times 10^{15}$				

第4.2.2表 出力分布及び炉内最大中性子束

第4.2.3 表 熱特性主要目

原子炉熱出力	100	DMW				
1次冷却材全流量	約 2, 7	00t⁄h				
原子炉入口冷却材温度	約 3	50°C				
原子炉出口冷却材温度	約 456℃					
原子炉プレナム最高圧力	約 4kg/cm²[gage](約 0.39MPa[gage]) *1					
燃料要素最大線出力密度	定格出力時	過出力時				
照射燃料集合体 Ⅲ型特殊燃料要素	約 480W/cm 約 520W/cm					
IV型特殊燃料要素	約 500W/cm	約 540W/cm				
Ⅲ型限界照射試験用要素	約 480W/cm 約 520W/cm					
IV型限界照射試驗用要素	約 500W/cm 約 540W/cm					
先行試験用要素	約 1,000W/cm 約 1,080W/cm					
基礎試験用要素	約 600W/cm 約 650W/cm					
A型用炉心燃料要素	約 330W/cm	約 360W/cm				
限界照射試験用補助要素	約 480W/cm	約 520W/cm				

*1:水頭圧を除く。

(1/2)
熱特性解析結果
第4.2.4表

		燃料最高温度		燃料最大約	容融割合
	定格出力時	過出力時	限界照射試験用要素の 被覆管開孔時	定格出力時	過出力時
照射燃料集合体					
II型特殊燃料要素	約2,480°C	約2,590°C		I	I
IV型特殊燃料要素	約2,520°C	約2,630°C		I	Ι
<b>II</b> 型限界照射試驗用要素	約2,430°C	約2,560°C	約2,460°C		Ι
IV型限界照射試驗用要素	約2,520°C	約2,630°C	約2,540°C	I	Ι
先行試験用要素	溶融温度以下*1	溶融温度以下*1	Ι	約20%*2	約30%*2
基礎試験用要素	溶融温度以下	溶融温度以下			Ι
A型用炉心燃料要素	約2,300℃	約2,410℃			Ι
限界照射試験用補助要素	約2,430°C	約2,560°C	約2,580°C	Ι	Ι
		被覆	管最高温度(肉厚中心)*	3	
			定格出力時		
	A型照射燃料集合体	B型照射燃料集合体	C型照射燃料集合体	D型照射燃料集合体	照射用実験装置
	装填時	装填時	装填時	装填時	装填時
照射燃料集合体					
III型特殊燃料要素	約700°C	約 7 0 0 °C	約 7 00°C	約700°C	Ι
IV型特殊燃料要素	約610°C	約610°C	約610°C	約610°C	Ι
<b>II</b> 型限界照射試驗用要素	約750°C	約 700°C		約700°C	Ι
IV型限界照射試驗用要素	約660°C	約610°C		約610°C	I
先行試験用要素		約 750°C		I	I
基礎試験用要素	I	約 750°C			I
A型用炉心燃料要素	620℃以下	I			I
限界照射試験用補助要素	I	約700°C	I	約700°C	I
内壁構造容器	Ι	約675°C	I	I	Ι
密封構造容器	Ι	約675°C	Ι	I	Ι
照射用実験装置					
照射試料キャプセル	I	I	I	I	約750°C
外側容器	I	-	Ι	I	約675°C

	· · · · · · · · · · · · · · · · · · ·	覆管最高温度(肉厚中心			
	限界照	射試験用要素の被覆管の	開孔時		
	A型照射燃料集合体	B型照射燃料集合体	D型照射燃料集合体		
	装填時	装填時	装填時		
照射燃料集合体					
III型限界照射試験用要素	約820°C	約760°C	約760°C		
IV型限界照射試驗用要素	約 700°C	約650°C	約650°C		
限界照射試験用補助要素	-	約810°C	約810°C		
			冷却材最高温度		
			定格出力時		
	A型照射燃料集合体	B型照射燃料集合体	C型照射燃料集合体	D型照射燃料集合体	照射用実験装置
	装 道 時	装填時	装填時	装填時	装填時
照射燃料集合体					
III型特殊燃料要素	約 69 0°C	約690°C	約690°C	約690°C	I
IV型特殊燃料要素	約 600°C	約600°C	約600°C	約600°C	I
III型限界照射試驗用要素	約740°C	約690°C		約690°C	I
IV型限界照射試驗用要素	約 65 0 °C	約600°C		約600°C	I
先行試験用要素	I	約670℃ * 4	Ι	I	I
基礎試験用要素		約670℃ * 5			
A型用炉心燃料要素	約 600°C				I
限界照射試験用補助要素	-	約 690°C	Ι	約690°C	Ι

熱特性解析結果(2/2) 第4.2.4表

> 酸化物燃料を除く。 .. 00 17 17 * * *

酸化物燃料の場合。 内壁構造容器及び密封構造容器にあっては、内壁構造容器または密封構造容器の最高温度。 .. ..

照射試料キャプセルにあっては、照射試料キャプセルの最高温度。 外側容器にあっては、外側容器の最高温度。

内壁構造容器を冷却する冷却材の値。 密封構造容器を冷却する冷却材の値。 外側容器を冷却する冷却材の値。 .. .. .. * * * 0 5 4

## 4.3 機械設計

- 4.3.1 設計方針【照射燃料集合体の燃料設計方針:別紙6参照】
  - (1)燃料要素

燃料要素は、燃料温度、核分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を 制限することにより、その健全性を確保する。このため、原子炉内における使用期間中、 通常運転時及び運転時の異常な過渡変化時において、以下の方針を満足するように燃 料要素の設計を行う。ただし、試験用要素にあっては、通常運転時及び運転時の異常な 過渡変化時において、計画された範囲でその健全性を喪失しても、他の燃料要素の健全 性に影響を与えないよう、使用する試験用要素に応じて以下の方針を満足するよう設 計する。

- (i) Ⅲ型及びⅣ型特殊燃料要素
  - a. 燃料最高温度は、2,680℃以下となるように設計する【照射燃料集合体の熱設計 計算式:別紙7参照】。
  - b. 被覆管歪は、十分小さくなるように設計する。
  - c. 被覆管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断を生じないように十分低く設計する【クリープ寿命分数和の計算:別紙11参照】。
  - d. 被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec. Ⅲの基準に準拠して設定した値を満たすように設計する【燃料集合体の機械設計の制限について:別紙12参照】。
  - e.累積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命以下 となるように設計する【疲労損傷和及び累積損傷和の計算:別紙13参照】。
- (ii) Ⅲ型及びIV型限界照射試験用要素
  - a. 燃料最高温度は、溶融温度を超えないように設計する。
  - b. 通常運転時及び運転時の異常な過渡変化時において、被覆管が著しく損傷しない よう、定格出力時の被覆管温度を制限する。
  - c.設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したものを 使用する。
  - d. 公称値及び工学的安全係数は、適切な安全余裕を有すること。
- (ⅲ) 先行試験用要素
  - a. 燃料最高温度が溶融温度を超えないように設計する。ただし、酸化物燃料については、燃料溶融割合が 30%を超えないように設計する。
  - b.燃料部と被覆管との相互作用による被覆管の円周方向引張全歪は、第4.3.1回に示すSUS316の破断時の円周方向引張塑性歪の実験データに十分な設計余裕を考慮した3%以内とする【燃料溶融時における燃料と被覆管の相互作用による歪:別紙14参照】。
  - c. 被覆管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断を生 じないように十分低く設計する。
  - d. 被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec. Ⅲの基準に準 拠して設定した値を満たすように設計する。

- e.累積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命以下 となるように設計する。
- (iv) 基礎試験用要素
  - a. 燃料最高温度が溶融温度を超えないように設計する。
  - b. 通常運転時及び運転時の異常な過渡変化時において、被覆管が著しく損傷しない よう、定格出力時の被覆管温度を制限する。
  - c.被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec.Ⅲの基準に準拠して設定した値を満たすように設計する。
- (v) A型用炉心燃料要素
  - a. 炉心燃料集合体の燃料要素の設計方針を満足するよう設計する。
- (vi) 限界照射試験用補助要素
  - a. 燃料最高温度は、2,680℃以下となるように設計する。
  - b. 被覆管歪は、十分小さくなるように設計する。
  - c. 被覆管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断を生 じないように十分低く設計する。
  - d. 被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec. Ⅲの基準に準 拠して設定した値を満たすように設計する。
  - e.累積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命以下 となるように設計する。

照射燃料集合体の燃料設計では、熱設計と同様に、設置変更許可申請の段階で、想定 される照射試験を踏まえ、燃料要素の仕様を一定の範囲に限定し、設計及び工事の計画 の認可申請の段階で、確定した燃料要素の仕様を用いて、制限を設定し、照射燃料集合 体の健全性を確保する。

燃料最高温度にあっては、燃料材が確定している燃料要素について、設置変更許可申 請の段階で制限を定めるが、先行試験用要素及び基礎試験用要素においては、複数の燃 料材を使用するため、設置変更許可申請の段階では、先行試験用要素の酸化物燃料を除 き、「燃料材の一部溶融」を許容しないことを示すため、溶融温度を制限とし、設計及 び工事の計画の認可申請の段階において、確定した燃料要素の材料の種類に応じて個 別に設定する。機械設計に使用する Sm 値や設計疲労曲線についても、同様に、設計及 び工事の計画の認可申請の段階において、確定した燃料要素の仕様を用いて個別に定 める。

(2) 燃料集合体

炉心燃料集合体の設計方針

- (i)燃料集合体の輸送中又は取扱中に受ける通常の荷重に対して、十分な強度を 有するように設計する。
- (ii)原子炉内における使用期間中の通常運転時及び運転時の異常な過渡変化時に おいて、燃料集合体の構成部品にかかる荷重に対する応力計算値は、ASME

Sec. Ⅲの基準に準拠して設定した値を満たすように設計する【燃料集合体の機 械設計の制限について:別紙12参照】。

に準ずる。

ただし、限界照射試験用要素を装填した照射燃料集合体にあっては、コンパートメン トの冷却材出口部は多数の小口径の孔とし、万一、限界照射試験用要素の開孔部から燃 料が放出された場合でも、炉心燃料集合体の冷却を阻害するおそれのある粒径の燃料 粒子が照射燃料集合体の外側へ漏れ出ない構造とする。また、先行試験用要素を装填し た照射燃料集合体にあっては、燃料溶融状態の先行試験用要素の被覆管の破損が生じ た場合でも、内壁構造容器の健全性が確保される構造とするとともに、内壁構造容器の 冷却材出口部を多数の小口径の孔とし、万一、先行試験用要素の被覆管の破損部から燃 料が放出された場合でも、炉心燃料集合体の冷却を阻害するおそれのある粒径の燃料 粒子が照射燃料集合体の外側へ漏れ出ない構造とする。基礎試験用要素を装填した照 射燃料集合体にあっては、基礎試験用要素の被覆管が開孔した場合でも、密封構造容器 の健全性が確保される構造とする。

4.3.2 使用条件

照射燃料集合体の使用条件を第4.3.1表に示す。なお、限界照射試験、先行試験及び基礎試験 においては、燃料要素を除き、照射燃料集合体を構成する部材等を適当な照射期間ごとに交換で きるものとする。また、燃料破損検出系により、燃料要素の被覆管の開孔又は破損が検知された 場合には、原子炉を停止し、当該照射燃料集合体を炉心から取り出すとともに、放射性廃ガス中 の放射性物質の濃度が所定の値を超える場合には、当該廃ガスを貯留タンクに圧入貯蔵するも のとする【限界照射試験の被覆管開孔時の放出物に対する処置:別紙15参照】。

- 4.3.3 解析手法
  - (1)燃料要素

燃料要素の解析は、「4.2.3 計算方法 (1)設計計算手法」及び追補1「3. 原子炉 及び炉心」の追補の「VI.照射燃料集合体に装填する燃料要素の設計」に基づいて行う。 ただし、Ⅲ型及びⅣ型限界照射試験用要素並びに限界照射試験用補助要素の解析にお ける、限界照射試験用要素の被覆管に開孔が生じその開孔部から核分裂生成ガスが放 出された場合の影響は、被覆管表面温度を算出する式において考慮する。

(2) 燃料集合体

炉心燃料集合体の解析に準じて行う。ただし、試験用要素を装填した集合体にあって は、集合体に加わる種々の荷重に対して集合体の各構成要素が十分な強度を有し、その 機能が保持されることについて、有限要素法構造解析コード等を用いて解析を行う。ま た、先行試験用要素又は基礎試験用要素を装填した集合体にあっては、試験用要素を装 填する内壁構造容器又は密封構造容器に加わる種々の荷重に対して、内壁構造容器又 は密封構造容器の機能が保持されることについても解析を行う。

#### 4.3.4 評価

(1) 構成材料

燃料材であるプルトニウム・ウラン混合酸化物焼結ペレット、プルトニウム・ウラン 混合炭化物焼結ペレット及びプルトニウム・ウラン混合窒化物焼結ペレット並びに熱 遮へいペレットの材料であるウラン酸化物焼結ペレット、ウラン炭化物焼結ペレット 及びウラン窒化物焼結ペレットは、炉心の運転温度及び圧力において、被覆管(Ⅲ型特 殊燃料要素にあってはオーステナイト系ステンレス鋼、Ⅳ型特殊燃料要素にあっては 高速炉用フェライト系ステンレス鋼、Ⅲ型限界照射試験用要素にあってはオーステナ イト系ステンレス鋼、Ⅳ型限界照射試験用要素にあっては高速炉用フェライト系ステ ンレス鋼、A型用炉心燃料要素にあってはオーステナイト系ステンレス鋼、限界照射試 験用補助要素にあってはオーステナイト系ステンレス鋼)及び充填ガス(ヘリウム)に 対して化学的に不活性であり、核分裂生成物を保持する能力がある。なお、プルトニウ ム・ウラン混合窒化物焼結ペレットは、照射中にごくわずかがプルトニウムと窒素に分 離するが、その影響は無視できる程度である。また、先行試験用要素及び基礎試験用要 素に装填する燃料材の種類のうち、金属燃料は、照射中にごくわずかが被覆管(ステン レス鋼)と反応する可能性があるが、その影響は無視できる程度である^{(3)~(12)}。

被覆管等に用いているステンレス鋼は、吸収断面積が小さく中性子経済に優れ、燃料 ペレットと被覆管の相互作用及び被覆管の内外圧差による変形に十分耐える強度を有 し、ナトリウム、プルトニウム・ウラン混合酸化物燃料、プルトニウム・ウラン混合炭 化物燃料、プルトニウム・ウラン混合窒化物燃料及び核分裂生成物等に対して高い耐食 性を有し、かつ、高い信頼性を有する材料である。ただし、III型及びIV型限界照射試験 用要素及び基礎試験用要素にあっては、被覆管の強度限界を超えると考えられる厳し い条件下(高燃焼度、高被覆管温度等)で照射を行うため、被覆管が開孔する可能性が ある。

- (2)燃料要素【照射燃料集合体の燃料要素の機械設計結果等の整理:別紙16参照】 原子炉内における使用期間中、通常運転時及び運転時の異常な過渡変化時において、 燃料要素の健全性は以下のように保たれる。
  - (i) Ⅲ型及びⅣ型特殊燃料要素
    - a. 燃料最高温度

Ⅲ型及びIV型特殊燃料要素の燃料最高温度は、定格出力時の最大線出力密度(そ れぞれ480W/cm及び500W/cm)においてそれぞれ約2,480℃及び約2,520℃であ り、また、過出力時の最大線出力密度(それぞれ520W/cm及び540W/cm)におい てそれぞれ約2,590℃及び約2,630℃であり、設計方針を満足する。

b. 被覆管の内圧、応力等

Ⅲ型及びIV型特殊燃料要素の被覆管内圧は、製造時に封入する不活性ガス、燃料 ペレットから放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上 昇するが、ガスプレナムの体積を十分大きくとっているので、最高燃焼度の被覆管 の内圧によるクリープ寿命分数和は、被覆管肉厚が最も薄い場合においても1.0未 満である。

43 条-40

Ⅲ型及びIV型特殊燃料要素の被覆管応力は、燃焼初期においては、被覆管の内圧 と外圧である1次冷却材の運転圧力約3kg/cm²[gage](約0.29MPa[gage])とがほ ぼ等しいので小さい。また、燃焼に伴って核分裂生成ガスの蓄積により内圧が徐々 に上昇するが、通常運転時における一次膜応力の最大値は被覆管の材料のSm値よ り十分小さい。

さらに、照射クリープ、スエリング等によるⅢ型及びⅣ型特殊燃料要素の被覆管 の歪は十分小さく、各種の応力サイクルによる累積疲労サイクルは設計疲労寿命 に比べて十分小さい。

- (ii) Ⅲ型及びIV型限界照射試験用要素
  - a. 燃料最高温度

Ⅲ型及びⅣ型限界照射試験用要素の燃料最高温度は、定格出力時の最大線出力 密度(それぞれ 480W/cm 及び 500W/cm)においてそれぞれ約 2,480℃及び約 2,520℃であり、また、過出力時の最大線出力密度(それぞれ 520W/cm 及び 540W /cm)においてそれぞれ約 2,590℃及び約 2,630℃であり、設計方針を満足する。 一方、被覆管開孔時における燃料最高温度は、2,680℃を超えない。

b. 被覆管の内圧、応力等

Ⅲ型及びIV型限界照射試験用要素は、最高燃焼度に至るまでにクリープ寿命分 数和が1.0を超えるよう設計されるため、被覆管が開孔に至る可能性がある。

(ⅲ) 先行試験用要素

燃料部を溶融させない先行試験用要素について、設計仕様及び設計条件を第4.3.2 表に、設計結果を第4.3.3表に示す。また、燃料部を溶融させる先行試験用要素について、設計仕様及び設計条件を第4.3.4表に、設計結果を第4.3.5表に示す。

a. 燃料最高温度

先行試験用要素の燃料材は、照射挙動が不明確な材料を用いる場合があるが、融 点及び熱伝導度等を安全側に考慮して設計するため、過出力時にあっても、燃料最 高温度が溶融温度を超えない結果となる。また、一部の酸化物燃料にあっては、定 格出力時に、燃料最高温度が溶融温度を超えるよう設計する場合があるが、同様に、 融点及び熱伝導度等を安全側に考慮して設計するため、過出力時にあっても、燃料 溶融割合が 30%を超えない結果となる。

b. 被覆管の内圧、応力等

先行試験用要素の被覆管内圧は、燃料部から放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇するが、ガスプレナムの体積を十分大きくとることにより、被覆管の内圧によるクリープ寿命分数和は、1.0未満である。

先行試験用要素の被覆管応力は、燃焼初期においては小さい。また、燃焼に伴っ て内圧が徐々に上昇するが、通常運転時における一次膜応力は被覆管の材料の Sm 値より小さい。

さらに、各種の応力による累積疲労サイクルは設計疲労寿命に比べて小さい。

c. 被覆管の歪(燃料溶融に伴う燃料と被覆管の相互作用による歪)

酸化物燃料の燃料溶融時に生じる被覆管の歪は、燃料溶融割合が 30%であって

も、3%を超えることはない。

(iv) 基礎試験用要素

基礎試験用要素について、設計仕様及び設計条件を第 4.3.6 表に、設計結果を第 4.3.7 表に示す。

a. 燃料最高温度

基礎試験用要素の燃料最高温度は、定格出力時の最大線出力密度を制限するこ とにより、過出力時にあっても溶融温度を超えることはない。

b. 被覆管の内圧、応力等

基礎試験用要素の被覆管内圧は、燃料部から放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇するが、通常運転時における一次膜応力は被覆 管の材料の Sm 値より小さい。クリープ寿命分数和は、最高燃焼度に至るまでに 1.0 を超えるよう設計することがあるため、この場合は、被覆管が開孔に至る可能性が ある。

(v) A型用炉心燃料要素

炉心燃料集合体の燃料要素の評価結果と同様である。

- (vi) 限界照射試験用補助要素
  - a. 燃料最高温度

限界照射試験用補助要素の燃料最高温度は、定格出力時の最大線出力密度 480 W/cm において約 2,480℃であり、また、過出力時の最大線出力密度 520W/cm に おいて約 2,590℃であり、設計方針を満足する。一方、被覆管開孔時における燃料 最高温度は、2,680℃を超えない。

b. 被覆管の内圧、応力等

限界照射試験用補助要素の被覆管内圧は、製造時に封入する不活性ガス、燃料ペレットから放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇するが、ガスプレナムの体積を十分大きくとっているので、最高燃焼度の被覆管の内圧によるクリープ寿命分数和は、隣接する限界照射試験用要素の被覆管開孔時のクリープ損傷を考慮し、被覆管肉厚が最も薄い場合においても1.0未満である。

限界照射試験用補助要素の被覆管応力は、燃焼初期においては、被覆管の内圧と 外圧である1次冷却材の運転圧力約3kg/cm²[gage](約0.29MPa[gage])とがほぼ 等しいので小さい。また、燃焼に伴って核分裂生成ガスの蓄積により内圧が徐々に 上昇するが、通常運転時における一次膜応力の最大値は被覆管の材料のSm値より 十分小さい。

さらに、照射クリープ、スエリング等による限界照射試験用補助要素の被覆管の 歪は十分小さく、各種の応力サイクルによる累積疲労サイクルは設計疲労寿命に 比べて十分小さい。

(3) 燃料集合体

燃料集合体は、輸送中又は取扱中並びに通常運転時及び運転時の異常な過渡変化時 に種々の荷重が加わるが、これらの荷重に対して十分な強度を有している。

先行試験用要素を装填したB型照射燃料集合体にあっては、燃料溶融状態にある先

行試験用要素の被覆管が破損した際に発生する内壁構造容器内の圧力に対し、内壁構造容器の健全性が確保されることを確認した。

この発生する圧力の評価には、高速炉安全解析コードであり、実験の解析により妥当 性が確認されているSAS3Dを改良したSAS4Aを使用した。

内壁構造容器及び先行試験用要素を円筒形モデルにて、内壁構造容器の内径 13mm、 先行試験用要素の被覆管の外径 8.5mm、燃料ペレットの直径 7.5mm、スミア密度 85% T Dの仕様で、燃料溶融割合を安全側に 40%として発生する圧力を評価した結果、最大 13.2MPa である。

この圧力は、SUS316相当ステンレス鋼の675℃で15,000時間使用した時の許 容応力から求められる内壁構造容器の耐圧 30.6MPaを下回るため、内壁構造容器の健 全性は確保される。

基礎試験用要素を装填したB型照射燃料集合体にあっては、基礎試験用要素の被覆 管の開孔時及び開孔後の継続使用時においても、基礎試験用要素から放出される核分 裂生成ガスの圧力が、最大9.82MPaであり、SUS316相当ステンレス鋼の675℃で 15,000時間使用した時の許容応力から求められる密封構造容器の耐圧30.6MPaを下回 るため、密封構造容器の健全性は確保される。

なお、事故と相まって基礎試験用要素の被覆管が開孔しても、事故時の密封構造容器の到達温度 800℃は、密封構造容器が破損に至る温度 906℃を下回るため、事故時であっても密封構造容器の健全性は確保される【照射燃料集合体の機械設計:別紙 17 参照】。

		燃料最高温度		燃料最大	溶融割合
	定格出力時	過出力時	限界照射試験用要素の 被覆管開孔時	定格出力時	過出力時
照射燃料集合体					
<b>Ⅲ</b> 型特殊燃料要素	$2,540^{\circ}C$	$2,680^{\circ}C$		I	I
IV型特殊燃料要素	2, 540°C	$2,680^{\circ}C$			I
<b>Ⅲ</b> 型限界照射試驗用要素	$2,540^{\circ}C$	$2,680^{\circ}C$	$2,680^{\circ}\mathrm{C}$		I
IV型限界照射試驗用要素	$2,540^{\circ}C$	$2,680^{\circ}C$	$2,680^{\circ}\mathrm{C}$	I	I
先行試験用要素	溶融温度以下*1	溶融温度以下*1	I	$20\% * ^2$	$30\% * ^2$
基礎試験用要素	溶融温度以下	溶融温度以下			I
A型用炉心燃料要素	$2,350^{\circ}\mathrm{C}$	2, 650°C			I
限界照射試験用補助要素	2, 540°C	$2,680^{\circ}C$	$2, 680^{\circ}C$		
		被覆管最高温度	(肉厚中心) *3		
		定格に	出力時		
	A型照射燃料集合体	B型照射燃料集合体	C型照射燃料集合体	D型照射燃料集合体	
	装填時	装填時	装填時	装填時	
照射燃料集合体					
II型特殊燃料要素	700°C	700°C	700°C	700°C	
IV型特殊燃料要素	$610^{\circ}C$	$610^{\circ}C$	$610^{\circ}\text{C}$	610°C	
<b>Ⅲ</b> 型限界照射試験用要素	750°C	700°C		700°C	
IV型限界照射試験用要素	660°C	610°C		610°C	
先行試験用要素		750°C			
基礎試験用要素		750°C			
A型用炉心燃料要素	620°C	I		I	
限界照射試験用補助要素	I	700°C	I	700°C	
内壁構造容器	I	675°C			
密封構造容器		675°C		—	

第4.3.1表 燃料集合体の使用条件(1/3)

		被覆管円周方向	*料集合体 最大引張塑性歪	真時				- 3%	- –	×.	弐料集合体 □ D型照射燃料集合体	<b>其時</b>		0MWd/t 130,000MWd/t	0MWd/t 130,000MWd/t	- 200,000MWd/t	- 200,000MWd/t	-	1		- 130 000Wd/+		
2/3)	享中心) 覆管の開礼時	中心) 等の開利時	(小) 	管の開孔時	体 D型照射线	業項		890	810	I	890	最高燃焼度	体 C型照射线	装垣		130, 00	130, 00	1	1	1			I
<b>斗集合体の使用条件</b> (	被覆管最高温度(肉厚	照射試験用要素の被覆	B型照射燃料集合	装填時		890°C	810°C	Ι	890°C		B型照射燃料集合	装填時		130,000MWd/t	130,000MWd/t	200,000MWd/t	200,000MWd/t	200,000MWd/t	200,000MWd/t		130 000Wd/+		
第4.3.1表 燃料		四日 四	A型照射燃料集合体	装填時		2°08	810°C				A型照射燃料集合体	装填時		130,000MWd/t	130,000MWd/t	150,000MWd/t	150,000MWd/t						
					照射燃料集合体	II型限界照射試驗用要素	IV型限界照射試驗用要素	先行試験用要素	限界照射試験用補助要素				照射燃料集合体	<b>Ⅲ</b> 型特殊燃料要素	IV型特殊燃料要素	<b>Ⅲ</b> 型限界照射試驗用要素	IV型限界照射試験用要素	先行試験用要素	基礎試験用要素	A型用炉心燃料要素	(1) 因 的 学 路 田 站 田 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		

0
の使用条件
燃料集合体
3.1表

	燃料集合体の挿入量	炉心挿入位置	
照射燃料集合体			
A型熊射燃料集合体		炉心燃料領域*4	
	第9 / 1まのとたり	(外側燃料領域*5)	
B型照射燃料集合体	M12: 1: 14X V/ C X0 V	炉心燃料領域*4	
C型照射燃料集合体		炉心燃料領域 ^{*4}	
D型照射燃料集合体		炉心燃料領域 ^{*4}	
		年間照射試験回数	
	限界照射試驗用要素	先行試験用要素	基礎試験用要素
	装填時	装填時	装填時
照射燃料集合体			
A型照射燃料集合体	最大4回	I	I
B型照射燃料集合体	最大1回 ^{*6}	最大14回	最大14回
C型照射燃料集合体		I	I
D型照射燃料集合体	最大1回 ^{*6}	Ι	Ι

燃料集合体の使用条件 (3/3) 第4.3.1表

酸化物燃料を除く。

•••

*

酸化物燃料の場合。 ••

* * *

*

内壁構造容器及び密封構造容器にあっては、内壁構造容器または密封構造容器の最高温度。 ••

制御棒及び後備炉停止制御棒の隣接位置に装荷しないものとする。 •••

• •

A型用炉心燃料要素(外側)装填時。 B型照射燃料集合体とD型照射燃料集合体の合計。 • • - сл сл <del>4</del> сл сл – 1 *

項目	設計仕様及び設計条件
設計仕様	
燃料部	
種類	プルトニウム・ウラン混合酸化物焼結ペレット
プルトニウム含有率	30wt%以下
燃料ペレット外径	7.32mm
燃料ペレット内径	1.8mm
燃料ペレットの初期密度	95%理論密度
被覆管	
種類	高Niオーステナイト系ステンレス鋼(A)
外径	8. 5mm
肉厚	0. 5mm
燃料要素有効長さ(燃料部)	500mm
ガスプレナム長さ	980mm
設計条件 (通常運転時)	
燃料要素最高燃焼度	200, 000MW d 🖊 t
最大線出力密度	450W/cm
燃焼時間	2, 280日
被覆管最高温度(肉厚中心)	700°C

第4.3.2表 先行試験用要素(燃料溶融なし、使用末期)の設計仕様及び設計条件

第4.3.3表 先行試験用要素(燃料溶融なし、使用末期)の設計結果

項目	設計結果	制限値または許容値
燃料最高温度(過出力時)	約2,510℃	2, 680°C
被覆管内圧	約9.02MPa	—
クリープ寿命分数和	約0.2	1
被覆管一次膜応力		
通常運転時	約137.8N/mm ²	158.6N/mm 2
過出力時	約143.3N/mm ²	153.5N/mm 2
累積疲労サイクル	約0.7	1

項目	設計仕様及び設計条件
設計仕様	
燃料部	
種類	プルトニウム・ウラン混合酸化物焼結ペレット
プルトニウム含有率	30wt%以下
燃料ペレット直径	6. 44mm
燃料ペレットの初期密度	95%理論密度
被覆管	
種類	高Niオーステナイト系ステンレス鋼(A)
外径	7. 5mm
肉厚	0.45mm
燃料要素有効長さ(燃料部)	500mm
ガスプレナム長さ	865mm
設計条件 (通常運転時)	
最大線出力密度	640W/cm
被覆管最高温度(肉厚中心)	$650^{\circ}\mathrm{C}$

第4.3.4表 先行試験用要素(燃料溶融あり、使用初期)の設計仕様及び設計条件

第4.3.5表 先行試験用要素(燃料溶融あり、使用初期)の設計結果

項目	設計結果	制限値または許容値
燃料溶融割合(過出力時)	約30%	30%
被覆管一次膜応力		
通常運転時	約6.5N $\checkmark$ mm 2	240.2N/mm 2
過出力時	約6.8N $/$ mm 2	228.4N/mm 2
被覆管の歪(燃料と被覆管の相互作用)	約1%	3%

項目	設計仕様及び設計条件
設計仕様	
燃料部	
種類	プルトニウム・ウラン混合酸化物焼結ペレット
プルトニウム含有率	30wt%以下
燃料ペレット外径	7.32mm
燃料ペレット内径	1.8mm
燃料ペレットの初期密度	95%理論密度
被覆管	
種類	SUS316相当ステンレス鋼
外径	8. 5mm
肉厚	0. 5mm
燃料要素有効長さ (燃料部)	500mm
ガスプレナム長さ	680mm
設計条件 (通常運転時)	
燃料要素最高燃焼度	100, 000MW d 🗡 t
最大線出力密度	450W/cm
燃焼時間	1, 140日
被覆管最高温度(肉厚中心)	700°C

第4.3.6表 基礎試験用要素(使用末期)の設計仕様及び設計条件

第4.3.7表 基礎試験用要素(使用末期)の設計結果

項目	設計結果	制限値または許容値
燃料最高温度(過出力時)	約2,510°C	2, 680°C
被覆管内圧	約7.09MPa	—
クリープ寿命分数和	約2.0	_
被覆管一次膜応力		
通常運転時	約108.2N/mm ²	135.1 N/mm 2
過出力時	約113.0N/mm 2	118.3N/mm 2



第4.3.1図 SUS316の破断時の円周方向塑性歪

2.4 炉心の概要

2.4.1 構造

炉心は、MK-I炉心からMK-I炉心へ変更された後、更に変更を加え、熱出力を140MW としたMK-Ⅲ炉心に変更された。本申請では、更に変更を加え、熱出力を100MWとした MK-Ⅳ炉心を対象とする。MK-Ⅳ炉心の構造等を以下に示す。

(1)構造

炉心は、六角形の燃料集合体及び反射体等を、第4.4.1 図に示すように、蜂の巣状に配列 した構造で、内側燃料領域、外側燃料領域、軸方向反射体領域、半径方向反射体領域、半径 方向遮へい集合体領域及び熱遮へいペレット領域から構成し、全体をほぼ円柱形状とする。

炉心燃料集合体は、内側燃料集合体及び外側燃料集合体から構成する。内側燃料領域は、 炉心第0列から炉心第2列に装荷される内側燃料集合体から構成する。外側燃料領域は、炉 心第3列から炉心第5列に装荷される外側燃料集合体から構成する。炉心燃料集合体の装荷 個数は、照射燃料集合体及び照射用実験装置の核分裂性物質量の変化、装荷位置及び個数の 変化等に対して、必要な反応度を維持するように調整される。また、炉心第3列には、制御 棒4本が、炉心第5列には後備炉停止制御棒2本が配置される。制御棒及び後備炉停止制御 棒の位置を第4.4.1 図に示す。なお、制御棒は、通常運転時において、ほぼ等しい引き抜き 位置にあるように、後備炉停止制御棒は、全引き抜き位置にあるように操作される。

半径方向反射体領域及び半径方向遮へい集合体領域は、燃料集合体装荷位置の外周3層及 び最外周2層に配置される反射体及び遮へい集合体から構成する。反射体は、炉心燃料集合 体の周囲に配置され、半径方向反射体領域を構成し、炉心から漏えいする中性子を散乱反射 し、炉心内の中性子束分布を平坦化するとともに、透過中性子量を低減する遮蔽体としての 役割を有する。反射体は、炉心第5列から炉心第6列に装荷される内側反射体、炉心第6列 から炉心第8列に装荷される外側反射体(A)、及び原子力材料の照射を目的として装荷され る材料照射用反射体から構成する。遮へい集合体は、反射体の外側に配置され、炉心から漏 えいする中性子を吸収し、透過中性子量を低減する遮蔽体としての役割を有する。遮へい集 合体は、炉心第9列から炉心第10列に装荷される。また、炉心第7列には、中性子源1体が 配置され、原子炉の起動時に、炉心に中性子を供給する役割を有する。

また、照射燃料集合体、材料照射用反射体及び照射用実験装置は、それらの装荷により炉 心の核熱特性に過大な影響を与えないように、装荷位置及び装荷個数を決定する。なお、照 射燃料集合体は燃料集合体装荷位置に、材料照射用反射体及び照射用実験装置は、試験の目 的に応じて、燃料集合体装荷位置及び反射体装荷位置に配置される。

炉心は、予想される全ての運転範囲において、原子炉出力の過渡的変化に対し、燃料集合 体の損傷を防止又は緩和するため、燃料温度係数、冷却材温度係数及びナトリウムボイド反 応度等を総合した反応度フィードバックが急速な固有の出力抑制効果を有するとともに、出 力振動が発生した場合にあっても、燃料の許容設計限界を超える状態に至らないように十分 な減衰特性を持ち、又は出力振動を制御し得るように設計する。また、燃料集合体、反射体 及び遮へい集合体並びに炉心構造物等は、通常運転時、運転時の異常な過渡変化時及び設計 基準事故時において、原子炉を安全に停止し、かつ、停止後に炉心の冷却機能を維持できる ように設計する。炉心の主要寸法を以下に示す。 炉心燃料領域高さ
 約 50cm
 炉心燃料領域等価直径(最大)
 約 78cm
 軸方向反射体領域等価厚さ
 上部
 約 30cm
 下部
 約 38cm
 半径方向反射体領域等価厚さ(最小)
 約 24cm
 半径方向遮へい集合体領域等価厚さ
 約 13cm
 炉心構成要素ピッチ
 約 81.5mm

(2) 炉心構成要素の最大挿入量及び装荷位置

燃料集合体の最大個数、炉心燃料領域核分裂性物質量(最大)及び熱遮へいペレット領域 核分裂性物質量(最大)を以下に示す。なお、照射燃料集合体は、炉心燃料領域に装荷する ものとする。燃料集合体の種類毎の最大個数を第4.4.1表に示す。

燃料集合体の最大個数 79 体

炉心燃料集合体の最大個数 79 体

照射燃料集合体の最大個数 4体

炉心燃料領域核分裂性物質量 (最大)

²³⁹Pu+²⁴¹Pu 約150kg

²³⁵U 約100kg

熱遮へいペレット領域核分裂性物質量(最大)

天然ウラン 約 1kg

劣化ウラン 約 50kg

照射燃料集合体の1体当たりの核分裂性物質量は、炉心燃料集合体のそれを超えないもの とする。また、B型、C型及びD型照射燃料集合体のそれぞれの1体当たりの核分裂性物質 量は、A型照射燃料集合体のそれの最大を超えないものとする。なお、照射用実験装置を半 径方向反射体領域に装荷した場合にあっては、炉心燃料領域及び熱遮へいペレット領域の核 分裂性物質量に、半径方向反射体領域の核分裂性物質量を加えても、核分裂性物質の全挿入 量を超えないものとする。

また、材料照射用反射体は、炉心燃料領域又は反射体領域に装荷され、原子力材料(ステンレス鋼又は制御棒用材料等)の照射試験に用いられる。炉心燃料領域に装荷する材料照射 用反射体は最大1体とする。ラッパ管内には、原子力材料の照射用試験片が収納される。

なお、炉心燃料領域に計測線付実験装置を装荷する場合は、材料照射用反射体との合計を 最大1体とする。制御棒用材料を照射する材料照射用反射体の装荷は反射体領域に限る。反 射体領域に装荷する材料照射用反射体及び照射用実験装置(本体設備)は、炉心の6方向の 各領域で最大1体までとする。また、反射体領域に装荷する照射用実験装置(本体設備)の 周囲に設置する照射用実験装置(スペクトル調整設備)は最大6体とする。

なお、照射燃料集合体、材料照射用反射体及び照射用実験装置は、制御棒及び後備炉停止 制御棒の隣接位置に装荷しないものとする。

照射燃料集合体及び炉心燃料領域に装荷する材料照射用反射体の装荷範囲を第4.4.2 図に

[54]

示す。

反射体領域に装荷する材料照射用反射体及び照射用実験装置の装荷範囲を第4.4.3 図に示 す。

燃料集合体	最大個数	備考
炉心燃料集合体	79体	
内側燃料集合体	19体	
外側燃料集合体	60体	
照射燃料集合体	4体	照射用実験装置を炉心燃料領域に装荷する場合にあっては、照射用実験装置との合計
A型照射燃料集合体	4体	
試驗用要素装填時	2体	
B型照射燃料集合体	4体	
先行試験用要素または基礎試験用要素装填時を除く 試験用要素装填時	1体	D型照射燃料集合体の試験用要素装填時との合計
こ型照射燃料集合体	4体	
D型照射燃料集合体	4体	
試験用要素装填時	1体	B型照射燃料集合体の先行試験用要素または基礎試験用要素装填時を除く場合との合計

燃料集合体の種類毎の
第4.4.1表

※ 試験用要素は、照射燃料集合体の燃料要素のうち、II型特殊燃料要素、IV型特殊燃料要素、A型用炉心燃料要素及び限界照射試験用補助要素を除く燃料要素である。



43 条-55





⁴³ 条-57

4.5 炉心構成

「常陽」は、高速炉開発に係る燃料や材料の照射試験を運転目的の一つとしており、炉心は、 炉心燃料集合体だけでなく、照射試料を有する照射燃料集合体等を含む。また、照射燃料集合体 等は、試験目的に応じて装荷位置を変更する。

炉心構成は、運転サイクルにより変動する。一方、設置変更許可段階の炉心設計に当たっては、 運転上の制限又は条件の範囲を定めるため、設計用の代表的な炉心構成の設定を必要とする。設 置変更許可段階における炉心の設計にあたっては、燃料交換による反応度変化及び取り出した炉 心燃料集合体の平均燃焼度がほぼ平衡に達した炉心(以下「標準平衡炉心」という。)を設定する 【炉心構成:第4.4.1 図参照】。

標準平衡炉心は、運転上の制限又は条件の範囲を定めるため、照射燃料集合体、材料照射用反 射体及び照射用実験装置の装荷パターンが、装荷パターンが異なる他の炉心の核熱特性を代表す るものとして選定したものであり、C型照射燃料集合体1体を炉心第3列に、B型照射燃料集合 体2体をそれぞれ1体ずつ炉心第1列と炉心第3列に、材料照射用反射体1体を炉心第1列に装 荷したものとしている。標準平衡炉心の構成要素の内訳を第4.5.1 表に示す。炉心燃料集合体の 交換計画は、炉心燃料集合体について、一様かつ高い燃焼度が得られるように、また、出力分布 の変動が小さくなるように策定する。原子炉の運転サイクルは、約60日間の定格出力運転期間及 び約 19 日間の休止期間(出力上昇及び出力降下期間を含む。)を合計した約 2.5 ヶ月/サイクル を標準とし、出力分布に応じて 5~9 バッチの分散方式で、炉心燃料集合体を交換する。1 サイク ルあたりに取り出す炉心燃料集合体の個数は、平均約10体となる。また、取り出した炉心燃料集 合体の燃焼度は、燃料集合体最高燃焼度を 80,000MWd/t、燃料要素最高燃焼度を 90,000MWd/t と し、平均で約 60,000MWd/t となる。なお、標準平衡炉心は、設置変更許可段階の設計用炉心構成 であり、全て新燃料の状態を仮想し、平衡に至るまで炉心燃料集合体を交換したものである。実 「炉心におけるMK-IV炉心への移行は、燃料仕様がMK-Ⅲ炉心と同じであり、継続使用するこ とを踏まえ、一部内側燃料集合体の脱荷、一部外側燃料集合体の内側反射体への交換等により達 成する。すでに燃焼が進んでいることから、MK-IV炉心は、平衡炉心組成に近い状態から開始 することとなる。

炉心構成要素	装荷数(体)
炉心燃料集合体	内側 17
	外側 58
照射燃料集合体	3
制御棒	4
後備炉停止制御棒	2
反射体	131
材料照射用反射体	1
遮へい集合体	96
中性子源	1

第4.5.1表 標準平衡炉心の構成要素の内訳

4.6 標準平衡炉心を用いた核熱設計における保守性の確保

設置変更許可段階の炉心設計にあっては、標準平衡炉心を用いて、以下の運転上の制限又は条件の範囲を定める。

- · 過剰反応度
- · 反応度制御能力(主炉停止系)/反応度停止余裕(主炉停止系)
- · 最大反応度添加率(主炉停止系)
- · 反応度制御能力(後備炉停止系)/反応度停止余裕(後備炉停止系)
- 反応度係数(ドップラ係数、燃料温度係数、構造材温度係数、冷却材温度係数、炉心支持 板温度係数、ナトリウムボイド係数)

これらの運転上の制限又は条件は、不確かさ・余裕を考慮して評価した核特性範囲の上限値又 は下限値等を使用するものとし、設置変更許可段階では、当該上下限値を保守的に組み合わせた 条件で安全評価を実施し、運転時の異常な過渡変化及び設計基準事故時においても、原子炉冷却 系統、原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機能す ることにより、燃料の許容設計限界(熱設計基準値)を超えないことを確認することで、炉心構 成が運転サイクルで変動する場合にあっても、以下に示す後段規制において、運転上の制限又は 条件の範囲内にあることを確認することで、炉心の安全性を担保することができるものとしてい る。

・「核原料物質、核燃料物質及び原子炉の規制に関する法律」の第27条に基づく設計及び 工事の計画の認可申請の段階にあっては、照射燃料集合体、材料照射用反射体及び照射用実 験装置について、照射試験の目的に応じた装荷位置を決定し、その装荷パターンに応じた原 子炉施設の炉心構成における燃料集合体の装荷個数、過剰反応度、反応度制御能力、反応度 添加率及び反応度停止余裕を運転上の制限又は条件の範囲内になるように設計する。当該照 射燃料集合体等の装荷による核熱特性への影響は、設置変更許可段階での評価結果に包絡さ れるため、運転時の異常な過渡変化及び設計基準事故時においても、原子炉冷却系統、原子 炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機能すること により、燃料の許容設計限界(熱設計基準値)を超えない。

さらに、炉心構成の運用の手続きについては、「核原料物質、核燃料物質及び原子炉の規制に関する法律」の第37条に基づく原子炉施設保安規定に定める。運転段階においても、原子炉施設保安規定に基づき、サイクル運転に先立ち、炉心構成の制限事項(個数、熱的制限値、核的制限値)の遵守や核特性への影響が所定の範囲内であることを評価・確認するため、運転時の異常な過渡変化及び設計基準事故時においても、原子炉冷却系統、原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機能することにより、燃料の許容設計限界(熱設計基準値)を超えない。

4.7 核設計

4.7.1 設計方針(核設計基準)

核設計基準を以下に示す。炉心は、核設計基準を満足するように設計する。なお、核設計計 算手法及び炉定数は、核的モックアップ実験及びMK-Ⅱ炉心やMK-Ⅲ炉心の性能試験の解 析により、それらの精度を確認し、公称値及び不確かさ幅の信頼度を高めるものとし、また、 核設計にあたっては、炉心が、照射用炉心として十分な機能を発揮できることに留意する。

- (1)制御棒は、反応度価値の最も大きな制御棒1本が全引き抜き位置のまま挿入できない場合(以下「ワンロッドスタック時」という。)にあっても、原子炉を未臨界に移行することができ、100℃の体系において、未臨界を維持できること。
- (2)後備炉停止制御棒は、原子炉を未臨界に移行することができ、350℃の体系において、未臨界を維持できること。
- (3) 炉心は、予想される全ての運転範囲において、燃料温度係数、冷却材温度係数及びナ トリウムボイド反応度等を総合した反応度フィードバックが負であること。
- 4.7.2 計算方法

核設計計算には、多群中性子拡散理論及び多群中性子輸送理論を用いるものとし、3次元モ デルを使用する。なお、モデルに使用する炉心寸法及び組成は定格出力時のものを基準とする。 3次元モデルは、Tri-Zモデル及びXYZモデルの2種類とし、主要な核設計計算に使用する。 XYZモデルは、制御棒及び後備炉停止制御棒の反応度価値計算に使用する。モデルの一例とし て、標準平衡炉心の軸方向計算体系を第4.7.1図に示す。なお、炉心最外周には遮へい集合体 を設置しており、炉内燃料貯蔵ラックに装荷した燃料集合体の影響は排除可能である。

核設計計算で使用する主な計算コードを第4.7.1表に示す。また、炉定数は、JFS-3-J3.2R セットを使用する。エネルギー群数は70群を基本とするが、制御棒及び後備炉停止制御棒の 反応度価値計算では、7群縮約定数を使用する。

なお、当該解析手法は、公開コードを用いて、原子力機構が高速炉の標準的な解析手法とし て確立したものである。核設計で用いる計算方法及び炉定数については、MK-Ⅱ炉心やMK -Ⅲ炉心の性能試験等で得られた実験値と計算値を比較することで、その信頼性を確認する。 検証結果を以下に示す。

- ・ 実効増倍率については、MK-Ⅲ炉心の性能試験における実験値が1.0308、計算値が1.0276となった。過剰反応度の評価において、標準平衡炉心(平衡組成)作成時の過剰反応度の計算値を、MK-Ⅲ性能試験に対する計算値と実験値の差を用いて補正(標準平衡炉心の臨界性の判断に使用)している。
- ・ 制御棒反応度価値については、MK-Ⅲ炉心の性能試験における実験値の計算値に 対する比は 1.04 となった。制御棒反応度価値の補正係数の一つとして、MK-Ⅲ性 能試験に対する計算値と実験値の比を使用している。
- ・ 等温温度係数(ドップラ反応度及び熱膨張反応度)については、MK-Ⅲ炉心の性 能試験における実験値の計算値に対する比は 1.04 となった。反応度係数の不確かさ の設定において、MK-Ⅲ性能試験に対する計算値と実験値の比を使用している。

・ 出力分布については、MK−Ⅱ炉心の性能試験における核種毎の核分裂率分布解析 を行った結果、計算値は実験誤差内で一致した。

計算コード	内容	用途
CASUP	1次元格子計算	実効断面積作成
SLAROM	均質格子計算	実効断面積作成
JOINT	インターフェース	断面積縮約
CITATION	拡散及び燃焼計算	一般核特性
PERKY	拡散摂動計算	反応度係数
TRITAC	輸送計算	輸送補正

第4.7.1表 核設計用主要計算コード

0.0	ハンドリングヘッ	ĸ	制 第 章	制後 御備 棒炉	ハン	ドリング・	ヘッド	
5. 0 22. 0	ガスプレナム	│ │ │ ↓ 財	上 部 制 御 前		内側反射体	外側反射体	ガスプレナ	
69. 2 71. 7 87. 0	上部反射体ペレット	1部   月 反 射 体	棒 · · · · · · · · · · · · · · · · · · ·	举汲 <b>汉</b> 本	上 部	上部	<u></u>	
93.0 94.2	インシュレータ	-	]					
144.8	内 外 B C 型 型 照 所 が 射 燃 料 料	── 中央部──	制御棒アダプタ	制御棒アダプター	内側反射体中央部	外側反射体中央部	遮へい体	マトリツクスト則
146.0 148.2								
148.5 167.3 167.5	下部空間部				内	外		
169.8	下部反射体	▶部 前用反射体	制御棒引抜部	制御棒引抜部後備炉停止	側反射体下部	側反射体下部		
202.5	エントランスノズ	1	1		エン	トランフ	ノズル	
▼ Z(cm) 208.5		· •			~~~		/ ///	

# 第4.7.1 図 標準平衡炉心軸方向計算体系

### 4.7.3 運転上の制限又は条件の範囲

各種の核的特性値については、実験値と計算値の比、及び実験値の実験誤差、外挿誤差、制 御棒及び後備炉停止制御棒の配置の非対称性に係る計算誤差等の不確かさを考慮して、最大値 及び最小値を設定し、安全側の評価となる値を用いる。

(1) 最大過剰反応度

最大過剰反応度は、サイクル運転(60日)末期に過剰反応度が零となることを想定し、 燃焼補償用反応度、温度補償用及び出力補償用反応度並びに運転余裕用を積み上げて設 定する。定格出力時における最大過剰反応度は0.020Δk/kとなる。当該反応度は、燃焼 による反応度低下を補償し、これに運転余裕を見込んだものである。また、100℃の体系 から定格出力時の体系における温度及び出力による反応度低下を補償するために必要な 過剰反応度は、計算上の余裕を含めて最大 0.015Δk/k となる。上記より、100℃の体系 における最大過剰反応度は、0.035Δk/k以下となる。標準平衡炉心の過剰反応度の内訳 を第4.7.2表に示す。

第4.7.2表	標準平衡炉心の過剰反応度の内訳	

(単位: Δk/k)

反応度バランス		主炉停止系	後備炉停止系
定格出力時の最大の	過剰反応度	0.020	-
中当	燃焼補償用	0.014	-
<b>ドリ司</b> 代	運転余裕用	0.006	-
温度補償用及び出	力補償用	0.0149	0.0053
	100°C~250°C	0.0057	-
内訳	$250^{\circ}\text{C}\sim350^{\circ}\text{C}$	0.0039	-
	350℃~定格	0.0053	0.0053
ご再日内座の	▲эь	0.035	0.006
別安区応度の	□ ĒT	(0.0349)	(0.0053)
反応度制御能力		0.050	0.014
反応度停止余	≹裕	0.015	0.008

(2) 反応度停止余裕

制御棒は、ワンロッドスタック時にあっても、原子炉を未臨界に移行することができ、 100℃の体系において、未臨界を維持できるものとする。後備炉停止制御棒は、原子炉を 未臨界に移行することができ、350℃の体系において、未臨界を維持できるものとする。 なお、反応度停止余裕の評価に当たっては、保守的な制御棒及び後備炉停止制御棒の挿 入パターンで評価するとともに、反応度価値に補正係数を乗じることで、制御棒及び後 備炉停止制御棒の反応度価値の計算の不確かさ、制御棒及び後備炉停止制御棒の中性子 吸収材の燃焼、炉心構成の変動等を考慮するものとする。上述の評価により、制御棒 4 本挿入時の反応度価値は 0.070 Δ k/k 以上となる。また、反応度停止余裕は 0.015 Δ k/k 以上(ワンロッドスタック時)となる。また、後備炉停止制御棒 2 本挿入時の反応度価 値は 0.014 Δ k/k 以上となり、350℃の体系における反応度停止余裕は 0.008 Δ k/k 以上と なる。

(3)制御棒ストローク曲線

制御棒ストローク曲線を第4.7.2 図に示す。制御棒ストローク曲線に対する炉心構成 の変動及び炉心の燃焼等の影響は小さく、制御棒による最大反応度添加率は約 0.00016 Δk/k/s である。なお、最大反応度添加率の評価に当たっては、保守的な制御棒及び後備 炉停止制御棒の挿入パターンで評価するとともに、反応度価値に補正係数を乗じること で、制御棒の反応度価値の計算の不確かさ、制御棒の中性子吸収材の燃焼、炉心構成の 変動等を考慮する。

なお、燃焼に伴い制御棒の反応度価値の絶対値及び最大変化率は減少し、最大反応度 添加率は、未燃焼時に最大となる。

(4) 反応度係数

反応度係数は、標準平衡炉心における計算値に対して、炉心構成や燃料初期組成、燃焼の影響や実測値に基づく不確かさ等を考慮し、炉心支持板温度係数については±20%、 それ以外については±30%の範囲を制限値として設定する。計算結果を以下に示す。

(i) ドップラ係数

通常運転時及び1次冷却材全喪失時における標準平衡炉心のドップラ係数を第4.7.3 表に示す。第4.7.3表に示すように、ドップラ係数は負となる。

第4.7.3 表 標準平衡炉心のドップラ係数

74 1-		T 11	(177)
HIM	•	I dlz /	dil
<b>=</b> 1 <i>V</i> .		TUN/	ui/

	ドップラ係数	運転上の制限又は条件の範囲
通常運転時	$-2.4 \times 10^{-3}$	$(1, 2, 2, 2) \times 10^{-3}$
1次冷却材全喪失時	$-2.0 \times 10^{-3}$	$= (1.3 \sim 3.3) \times 10^{\circ}$

(ii) 温度係数(ドップラ効果を除く。)

温度係数は、燃料温度係数、構造材温度係数、冷却材温度係数及び炉心支持板温度係 数から構成する。標準平衡炉心の温度係数を第4.7.4表に示す。これらの温度係数は、 燃料ペレット、構造材(被覆管を含む。)、冷却材及び炉心支持板の膨張に起因するもの であり、全て負となる。

## 第4.7.4表 標準平衡炉心の温度係数

(単位:Δk/k/℃)

	温度係数	運転上の制限又は条件の範囲
燃料温度係数	$-3.2 \times 10^{-6}$	$-(2.2\sim 4.2)\times 10^{-6}$
構造材温度係数	$-1.3 \times 10^{-6}$	- $(0.8 \sim 1.7) \times 10^{-6}$
冷却材温度係数	$-9.6 \times 10^{-6}$	- (6.6 $\sim$ 12.5) $\times$ 10 ⁻⁶
炉心支持板温度係数	$-14.2 \times 10^{-6}$	- $(1.1 \sim 1.7) \times 10^{-5}$

(ⅲ) ナトリウムボイド反応度

ナトリウムボイド反応度は、原子炉容器内の全ての場所において負である。標準平衡 炉心の1次冷却材全喪失時の反応度の変化(ナトリウムボイド反応度)は $-0.019\Delta k/k$ となる。運転上の制限又は条件の範囲は、 $-(1.3\sim 2.5) \times 10^{-2}\Delta k/k$ とする。



第4.7.2図 制御棒ストローク曲線

## 4.7.4 出力分布及び最大中性子束

標準平衡炉心の出力分布及び炉内最大中性子束を第4.7.5表に示す。出力分布には、制御棒 の挿入により歪みが生じるため、その評価に当たっては、制御棒の挿入量を考慮する必要があ る。通常運転時における制御棒の挿入量は、そのストロークの 5/13 以下であるため、出力ピ ーキング係数は、制御棒の挿入量を、そのストロークの 5/13 として評価したものである。出 カピーキング係数は、径方向出力ピーキング係数、軸方向出力ピーキング係数及び局所出力ピ ーキング係数に分類し、径方向出力ピーキング係数を燃料集合体当たりの最大出力と平均出力 との比、軸方向出力ピーキング係数を燃料要素の軸方向最大出力密度と平均出力密度との比、 局所出力ピーキング係数を燃料要素当たりの最大出力と平均出力との比と定義する。

		標準平衡炉心
	出力分担(MW)	
	炉心燃料集合体	95.7
	照射燃料集合体	1.1
	その他	3. 2
出力分布	(反射体、制御棒等)	
	出力ピーキング係数	1.63
	径方向	1. 33
	軸方向	1.17
	局所	1.04
炉内最大中性子束(n/cm²/s)		
0.1MeV 以上		2. $9 \times 10^{15}$
全中性子束		4. $2 \times 10^{15}$

第4.7.5表 出力分布及び炉内最大中性子束

4.8 要求事項(試験炉設置許可基準規則第43条)への適合性説明

(試験用燃料体)

第四十三条 試験用燃料体は、次に掲げるものでなければならない。

- 一 試験計画の範囲内において、試験用燃料体の健全性を維持できない場合においても、燃料
   体の性状又は性能に悪影響を与えないものであること。
- 二 設計基準事故時において、試験用燃料体が破損した場合においても、試験研究用等原子炉 を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれがないものであるこ と。

三 放射性物質の漏えい量を抑制するための措置を講じたものであること。

四 輸送中又は取扱中において、著しい変形が生じないものであること。

適合のための設計方針

- 一 照射燃料集合体の熱設計は、炉心燃料集合体の設計方針に基づいて行う。燃料要素は、燃料温度、 核分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を制限することにより、その健全性を 確保する。ただし、試験用要素を装填した照射燃料集合体は、通常運転時及び運転時の異常な過 渡変化時において、試験用要素が計画された範囲内でその健全性を喪失しても、他の燃料要素の 健全性に影響を与えないよう、それぞれの燃料要素について、設計方針を定め、その方針を満足 するよう設計する。燃料集合体は、炉心燃料集合体の設計方針に準ずる。ただし、限界照射試験 用要素を装填した照射燃料集合体にあっては、コンパートメントの冷却材出口部は多数の小口径 の孔とし、万一、限界照射試験用要素の開孔部から燃料が放出された場合でも、炉心燃料集合体 の冷却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造とする。
- 二 照射燃料集合体は、設計基準事故時において、照射燃料集合体が破損した場合においても、原子 炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれがないように設計する。 燃料要素は、燃料温度、核分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を制限するこ とにより、その健全性を確保する。ただし、試験用要素にあっては、通常運転時及び運転時の異 常な過渡変化時において、計画された範囲でその健全性を喪失しても、他の燃料要素の健全性に 影響を与えないよう、使用する試験用要素に応じて設計方針を定め、その方針を満足するよう設 計する。燃料集合体は、炉心燃料集合体の設計方針に準ずる。ただし、限界照射試験用要素を装 填した照射燃料集合体にあっては、コンパートメントの冷却材出口部は多数の小口径の孔とし、 万一、限界照射試験用要素の開孔部から燃料が放出された場合でも、炉心燃料集合体の冷却を阻 害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造とする。先行試験 用要素を装填した照射燃料集合体にあっては、燃料溶融状態の先行試験用要素の被覆管の破損が 生じた場合でも、内壁構造容器の健全性が確保される構造とするとともに、内壁構造容器の冷却 材出口部を多数の小口径の孔とし、万一、先行試験用要素の被覆管の破損部から燃料が放出され た場合でも、炉心燃料集合体の冷却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の 外側へ漏れ出ない構造とする。基礎試験用要素を装填した照射燃料集合体にあっては、基礎試験

用要素の被覆管が開孔した場合でも、密封構造容器の健全性が確保される構造とする。

- 三 燃料要素は、燃料温度、核分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を制限することにより、その健全性を確保する。また、照射燃料集合体の1体当たりの核分裂性物質量は、炉心燃料集合体のそれを超えないものとする。B型、C型及びD型照射燃料集合体のそれぞれの1体当たりの核分裂性物質量は、A型照射燃料集合体のそれの最大を超えないものとする。ただし、試験用要素にあっては、通常運転時及び運転時の異常な過渡変化時において、計画された範囲でその健全性を喪失するものがある。限界照射試験用要素、先行試験用要素及び基礎試験用要素の装填時にあっては、年間照射試験回数を制限するとともに、燃料破損検出系により、燃料要素の被覆管の開孔又は破損が検知された場合には、原子炉を停止し、当該照射燃料集合体を炉心から取り出すとともに、放射性廃ガス中の放射性物質の濃度が所定の値を超える場合には、当該廃ガスを貯留タンクに圧入貯蔵するものとする。
- 四 照射燃料集合体は、輸送中又は取扱中において、著しい変形が生じないように、輸送中又は取扱 中に加わる荷重として、設計上の加速度条件として 6G を設定し、この加速度に基づく荷重により、 燃料要素支持部等に発生する応力を評価し、これが許容応力以下であることを確認することで過 度の変形を防止し、その機能が阻害されることがないように設計する。
「炉心の変更」に関する基本方針

### 1. 概要

「常陽」の炉心は、増殖炉心(以下「MK−I炉心」という。)から照射用炉心(以下「MK−I 炉心」という。)へ変更された後、更に変更を加え、熱出力を140MWとした照射用炉心(以下「MK ーⅢ炉心」という。)に変更された。本申請では、更に変更を加え、熱出力を100MWとした照射用炉 心(以下「MK−Ⅳ炉心」という。)を対象とする。「炉心の変更」に関する基本方針を以下に示す。

2. 「炉心の変更」に関する基本方針

「炉心の変更」は、改正された核原料物質、核燃料物質及び原子炉の規制に関する法律の施行に伴い、「常陽」を「試験研究の用に供する原子炉等の位置、構造及び設備の基準に関する規則」等に適合させるための変更を行うにあたり、原子炉停止系統の信頼性を強化し、安全性を向上させること、 一方で、高速炉燃料材料の開発等のための照射試験に必要な性能を維持することを目的とする(別図 1.1 参照)。

原子炉停止系統は、独立した主炉停止系と後備炉停止系を設けることで信頼性を向上する。それぞ れの原子炉停止系統に要求される停止能力の確保には、最大過剰反応度の削減が必要であり、ここで は、熱出力の低減及び燃料集合体最大装荷個数の削減により、出力補償や燃焼補償に係る過剰反応度 を削減して対応することとした。一方で、照射試験性能として考慮すべき主なパラメータである線出 力と中性子照射量は、熱出力低減により基本的に低下する。必要な線出力又は中性子照射量を確保で きる範囲に維持することも「常陽」の運転目的として肝要である。

熱出力を100MWとしたMK-IV炉心は、これらの要件を満足するものであり、当該炉心に相応する 最大過剰反応度を核的制限値とする。なお、原子炉冷却系統施設の除熱能力は変更しないものとし、 安全裕度を拡大することとしている。

「炉心の変更」に伴って生じる主な変更点等を別図 1.2 に示す。本申請にあっては、MK−Ⅳ炉心 (熱出力 100MW) での核設計や熱設計を実施するとともに、当該設計結果を炉心燃料集合体の機械設 計や被ばく評価、安全評価等に反映する。





## MK-IV 炉心(熱出力100MW)条件として、以下の変更・評価等を実施(最新知見の反映を含む)

#### 【核設計における主な変更点】

- 核的制限值(最大過剰反応度削減に対応)
- 反応度係数(炉心構成の変更に対応)
- ・ 動特性バラメータ (炉心構成の変更に対応)

【熱設計における主な変更点】

- 熱的制限値(熱出力低下に伴う使用期間長期化に対応)
- 線出力密度や集合体冷却材流量(炉心構成の変更に対応)

熱約割限値: 通常運転時及び運転時の異常な過渡変化時において、 原子炉停止系統及び安全保護系等の機能とあいまって熱設 計基準値(燃料の許容設計限界)を超えないよう、かつ、 その被覆管のクリープ寿命分数和と疲労寿命分数和を加え た累積損傷和が設計上の制限値である1.0を超えないよう、 定格出力時における制限値として設定

	MK-III炉心	(140WW)	MK-IV炉心	(100MW)
	熱的 制限値	熱設計 基準値	熟的 制限值	熱設計 基準値
燃料最高温度	2, 530°C	2, 650°C	2. 350°C	2, 650°C
被覆管最高温度 (肉厚中心)	675°C	830°C	620°C	840°C
冷却材最高温度	/	910°C		910°C

【核熱設計結果の反映】

- 炉心燃料集合体の機械設計(使用期間長期化対応を含む)
- 動特性
- 被ばく評価
- 運転時の異常な過渡変化の評価
- ・ 設計基準事故の評価
- 多量の放射性物質等を放出する事故の対策検討・評価



別図 1.2 「炉心の変更」に伴って生じる主な変更点等

43 条-別紙 1-2

別紙 2

# 照射燃料集合体の安全確保の考え方

照射燃料集合体の中には、計画的にその健全性を喪失させる(被覆管を開孔させたり、燃料を溶融 させたりする)ものもあれば、計画的な健全性の喪失はないものもあり、様々である。それぞれに対 し、安全を担保する方法について第1表にまとめる。①燃料が溶融したり被覆管が壊れたりする可能 性が低いものは、集合体で安全を担保することとし、②燃料が溶融する可能性は低いものの被覆管が 壊れる可能性が低くないものは、コンパートメントに装填することとし、コンパートメントで安全を 担保する。③燃料が溶融する可能性が低くないもの(その結果、被覆管が壊れる可能性も低くないも の)は、厚肉のキャプセルに装填した上でコンパートメントに収納することとし、キャプセルで安全 を担保する。①にあたる特殊燃料要素・補助要素の安全確保の考え方を第2表に、②及び③にあたる 試験用要素の安全確保の考え方を第3表に示す。

第1表 安全担保の基本方針

	<ol> <li>①燃料:溶融する可能性が低い 被覆管:壊れる可能性が低い</li> </ol>	<ul><li>②燃料:溶融する可能性が低い 被覆管:壊れる可能性が低く</li></ul>	③燃料: <u>溶融する可能性が低く</u> <u>ない</u>
		<u>ない</u>	被覆管: <u>壊れる可能性が低く</u> ない
健喪場に与(項要損他をい項全失合影え第)。素しに与()、大会影え第)。素しに与()、をた他をい 破も響な2	<ul> <li>万一、被覆管が開孔してガス 放出した場合にも他へ影響を 与えない。</li> <li>炉心への装荷体数を制限す る。</li> <li>燃料破損検出系により、燃料 要素の被覆管の開孔又は破損 が検知された場合には、原子 炉を停止し、当該照射燃料集 合体を炉心から取り出す。</li> <li>ラッパ管により冷却材流路が 独立し、健全性を喪失してガ ス放出されたとしても、他の 集合体の燃料に直接影響を与 えない。</li> </ul>	<ul> <li>・万一、開孔した被覆管から燃料粒子放出した場合にも他へ影響を与えない。</li> <li>・炉心への装荷体数を制限する。</li> <li>・燃料破損検出系により、燃料要素の被覆管の開孔又は破損が検知された場合には、原子炉を停止し、当該照射燃料集合体を炉心から取り出す。</li> <li>・コンパートメントに装填する。</li> <li>・コンパートメントの冷却材出口部は多数の小口径の孔とし、万一、限界照射試験用要素の開孔部から燃料が放出された場合でも、炉心燃料集合体の冷却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造とする。</li> </ul>	<ul> <li>・万一、燃料が溶融した状態で 被覆管が破損し、溶融燃料が 放出された場合にも他へ影響 を与えない。</li> <li>・炉心への装荷体数を制限す る。</li> <li>・燃料破損検出系により、燃料 要素の被覆管の開孔又は破損 が検知された場合には、原子 炉を停止し、当該照射燃料集 合体を炉心から取り出す。</li> <li>・厚肉のキャプセル(内壁構造 容器、密封構造容器)に装填 した上で、コンパートメント に収納。</li> <li>・設計基準事故時にも、溶融燃 料とナトリウムの相互作用が 起きたとしても、厚肉のキャ プセルの健全性を確保する。</li> </ul>
安全を担 保する箇	・健全性の喪失・破損が起きて も、 <u>集合体内</u> で収束。	・健全性の喪失・破損が起きて も、 <u>コンパートメント内</u> で収 車	・健全性の喪失・破損が起きて も、 <u>キャプセル内</u> で収束。
i 該当 す る 要素	【Ⅲ型及びⅣ型特殊燃料要素、 A型用炉心燃料要素、限界照射 試験用補助要素】 ・燃料:酸化物のみ ・被覆管:実績ある材料のみ	【Ⅲ型及びⅣ型限界照射試験用 要素】 ・燃料:酸化物のみ ・被覆管:実績ある材料、ただ し開孔させる設計あり	【先行試験用要素】 ・燃料:酸化物を溶融させる設 計あり、酸化物以外も使用 ・被覆管:実績ある材料、ただ し溶融する可能性が低くない ため、被覆管も壊れる可能性 が低くない 【基礎試験用要素】 ・燃料:酸化物以外も使用 ・被覆管:実績がない材料、開 孔させる設計あり

第2表 特殊燃料要素及び補助要素の安全確保の考え方 (1/5)

		(参考)炉心燃料要素	A型用炉心燃料要素	<b>II</b> 型特殊燃料要素	IV型特殊燃料要素	限界照射試験用補助要素
	使用目的	・炉の運転用。	・炉心燃料要素と同一。 油油とすまた、血液に、100	<ul> <li>・大型炉想定燃料仕様(太</li> <li>(本) の株型の計画用</li> </ul>	<ul> <li>開発材料(フェライト系)</li> <li>- ニンニュ細) 地電空操</li> </ul>	・限界照射試験において、
			・装填する集合体が炉心燃	住」の燃料の認識用。	スケノフス調)  彼復官 総 戦し の 計 職田	コンペートメント内の発
			料集合体ではなく、A型	・炉心慾科要素とは土にい	イマン学家人口。	熱バランスをとるために
			照射燃料集合体となる。	法が異なる。	・アレミヤ要素とは彼復には、	、限界照射試験用要素と
					官材料や王に寸法か異な る。	ともに装填する。
主 燃料	斗村	・PuU 混合酸化物焼結ペレ	・PuU 混合酸化物焼結ペレ	・PuU 混合酸化物焼結ペレ	・PuU 混合酸化物焼結ペレ	・PuU 混合酸化物焼結ペレ
蔑		ジト	ット	ジト	ット ト	<i>ب</i> ۲
仕 燃料	<b>斗直径</b>	• 糸寸 4. 6mm	• 約 4.6mm	• 5. $3\sim7$ . 5mm	• 5. $18 \sim 6.18 \text{mm}$	• 5.3~6.6mm
様(《	然料外径/内径)			$(5.3 \sim 7.5 \text{mm}/2 \text{mm})$	$(5. 18 \sim 6. 18 \text{mm}/2 \text{mm})$	
被裂	夏管材料	・SUS316相当ステンレス鋼	・オーステナイト系ステン	・オーステナイト系ステン	・高速炉用フェライト系ス	・オーステナイト茶ステン
		または高 Ni オーステナイ	レス鋼	レメ鋼	アンレス錮	レメ鍋
		ト系ステンレス鋼(A)				
被 ^柔	夏管外径	・ 糸j 5.5mm	・ 糸匀 5. 5mm	• 6. 4~8. 5mm	• 6. 5~7. 5mm	• 6. $4 \sim 7$ . 5mm
被裂	竇管肉厚	・ 糸勺 0.35mm	• 約 0.35mm	• 0. $4 \sim 0.7 \text{mm}$	• 0. $56 \sim 0.76 \text{mm}$	• 0.4~0.6mm
1 th	シロへ手の書す	いなみ辛����:は袮・	・燃料:溶融させない	・燃料:溶融させない	・燃料:溶融させない	いなみを膼索:は減・
可用的	ルε陳至性の喪天	・被覆管:開孔させない	・被覆管:開孔させない	・被覆管:開孔させない	・被覆管:開孔させない	・被覆管:開孔させない
安全性。	を高めるための特	_		・炉心燃料要素と同様の方針	で設計する。	
	)()		(※炉心燃料要素と同一)			
	要素の装填	・集合体にそのまま装填す	・集合体にそのまま装填す	・集合体にそのまま装填する	(A型バンドル型、C型)。	・コンパートメントに装填
		ъ° С	°6	・コンペートメントに装填す	ら(A型コンペートメント	する。
				型、B型、D型)。		
	コンパートメ	ーだ・	ーない	・なし(A型バンドル型、C	型)	・ッ型コンパートメント
集合体の	× >			・ a 型コンズートメント(A・。 型コンズートメント(B	型コンパートメント型) 型、D型)	
構造				・ 8 型コンパートメント (D	型) 一	
	集合体	炉心燃料集合体	• A型照射燃料集合体	・A 型照射燃料集合体 ・B 型照射燃料集合体		・B型照射燃料集合体
				・C型照射燃料集合体		
				・D型照射燃料集合体		

43 条-別紙 2-3

$(\overline{5})$
<u>(</u> 2
丙
'R
₩P
Ñ
-1/
係
潅
11
711
ŦΚ
11/1/
₩Ҟ
更
Ð
百
補
×
N
R
₩₩
шv
ЩH
<u></u>
×
1
斑
苧
<del>-</del>
表
$\sim$
lπD
涶

IV型特殊 限界照射	燃料要素 試験用補	助要素	+に基づき実施するに し、 開きな過渡変化時に の、 の、 の、 、 、 、 、 、 、 、 、 、 、 、 、 、	C燃料要素が破損させ 「を安全に停止するた 「ひの冷却機能を維持 い、ガー、被覆管が開 当該照射燃料集合体 「支援警を与えない構 の切行心の冷却機能
<u> 田</u> 型特殊 ]	燃料要素		「東 「 「 た に た た た た た た た た た た た た た た た た	「 す た た た の、 た を た た た た た た た た た た た た い た の 、 に よ の 、 に よ の 、 に よ の 、 に よ の 、 に よ の 、 に よ の 、 二 が 一 の 、 読 続 絵 部、 及 添 語・、 一 で よ つ 、 酒 一 が 一 一 、 一 の 、 同 、 一 一 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 一 の 、 つ に お ひ 、 つ こ つ 、 つ い つ い っ い 、 つ こ つ 、 つ に お い っ い つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ
A型用炉	心燃料要	素	・・・・んちまに試る場ら合接心が常い部こす悪験設合れ体の燃基運でガとる影計計でてに影素本種もスに。響曲ともい対響	・ 設なめす設孔内造すを第 計いにる計しでとる維「 基こ必。基た収すた特表 弾と要、弾場束るめす
(参考)炉心燃料	要素		・ 運運過い度ガガのをに全よ 置時核とメスス応制よ性う 転見は、なに圧力限のは、ない、 政部に総定す、 及常に料生内覆歪このする がの。 がなががなた。 を特計	・設計構構 たおいた事業 をおいての場合 ででしていたで でした でした。 本を 開 る。
(参考) 第 32 条			第4項 燃料体は、次に掲げるものでなければならな い。 一通常運転時及び運転時の異常な過渡変化時 における試験研究用等原子炉内の圧力、自 面えるものとすること。 「解料」 ・第3項及び第4項第1号の要求は、所要の運転期 間において、通常運転時及び運転時の異常な過渡 解料」 ・第3項及び第4項第1号の要求は、所要の運転期 間において、通常運転時及び運転時の異常な過渡 後代時に、燃料被覆材による放射性物質の閉じ込 め機能、制御棒の挿入性及び冷却可能な形状が確 保されるものであることが求められる。 ・第4項第1号に規定する「圧力、自重、附加荷重 その他の燃料体に加わる負荷に耐える」とは、燃 料材のスエリング、被覆材の中性子照射効果、腐 食等の試験研究用等原子炉施設の使用期間中に生 じ得る原子炉内における種々の変化を考慮して も、燃料体の健全性を失わないことをいう。	第3項 燃料体、減速材及び反射材並びに炉心支持構 造物は、通常運転時、運転時の異常な過渡変 化時及び設計基準事故時において、試験研究 用等原子炉を安全に停止し、かつ、停止後に ならない。 【解釈】 ・第3項及び第4項第1号の要求は、所要の運転期 間において、通常運転時及び運転時の異常な過渡 変化時に、燃料被覆材による放射性物質の閉じ込 め機能、制御棒の挿入性及び冷却可能な形状が確 保されるものであることが求められる。
第 43 条			第1項 試験計画の範囲内において、試験用燃料体の 健全性を維持できない場合においても、燃料 体の性状又は性能に悪影響を与えないもので あること。 【解釈】 ・第1号に規定する「試験計画の範囲内において、 試験用画で制限した範囲内で、被覆材の破損 あるいは燃料棒にあっては燃料材の一部に溶融が 生じる場合等をいう。 ・第1号に規定する「燃料体の性状又は性能に悪影 響を与えない」とは、試験計画の範囲内で、燃料 体の機能及び健全性を阻害しないことをいう。	第2項 設計基準事故時において、試験用燃料体が破 損した場合においても、試験研究用等原子炉 を安全に停止するために必要な機能及び炉心 の冷却機能を損なうおそれがないものである こと。 【解釈】 ・第2号に規定する「試験研究用等原子炉を安全に 停止するために必要な機能及び炉心の冷却機能を 損なうおそれがない」とは、燃料の許容設計限界 を超えないことをいう。なお、試験用燃料体 限界を超えないことをいう。なお、試験用燃料体 の「許容試験限界」とは、試験用燃料体があらか じめ計画した範囲内で被覆材の破損又は燃料棒に あっては燃料材の一部溶融等の試験を行うことが できる限界をいい、運転時の異常な過後変化時に おいても、その損傷により燃料体の健全性を損な うことのないことが要求される。
			許可基準規則への適合	

第2表 特殊燃料要素及び補助要素の安全確保の考え方 (3/5)

ĺ							
	第 43 条	(参考) 第 32 条	(参考)炉心燃料	A型用炉	II型特殊	IV型特殊	限界照射
			要素	心燃料要	燃料要素	燃料要素	試験用補
				素			助要素
計	第3項 放射性物質の漏えい量を抑制するための措置			・照射燃料集は、炉心燃き	合体の1体当 ⁹ 集合体のそ	たりの核分裂れたりの核分裂	性物質量 ものに制限
「玉	を講じたものであること。 【解釈】			する。 ・照射燃料集	合体の装荷本	数を制限する	
筆	・第3号に規定する「放射性物質の漏えい量を抑			·燃料破損検	出来により、	燃料要素の被	覆管の開孔
黙	制するための措置」とは、被覆材の破損による			又は破損がれし、当該照け	) 演知された場 討燃料集合体	命には、原子)を何心から取	「名命正し」
εζ	一次冷却材中への核分裂生成物等の放射性物質 、おいまえ、 お略田藤料体の研構発用の個字			もに、放射	生廃ガス中の	放射性物質の	農度が所定
6	の政山真で、恥歌乃添がtheの版損軸団の1%に、 破損燃料検出設備による運転監視等により適切			の値を超えてて正人貯蔵	る場合には、 する。	当該廃ガスをり	1 第 タンク
適、	に制限できる措置をいう。			・以上により	、放射性物質	の漏えい量を	抑制する。
(II				【第1表】			
	第4項	第44項	・原子炉内におけ	・照射燃料集	合体の設計方	全は炉心燃料	集合体の設
	輸送中又は取扱中において、著しい変形が生	燃料体は、次に掲げるものでなければならな	る使用期間中の	計方針に準	ずる。燃料集	合体の輸送及	び取扱い時
	じないものであること。	い。 1 輸送中立な時時中にない、ア 妻11、蒋男	通常運転時及び	に受ける通	常の荷重に対	・して、十分な	<b>速を有す</b>
			運転時の異常な	るように設	計する。これ	により、輸送	中又は取扱
		を仕しないものとうのこと。	過渡変化時にお	中において	、著しい変形	が生じない。	
			いて、燃料集合	【別紙 6】			
			体の構成部品に				
			かかる荷重に対				
			する応力計算値				
			は、ASME				
			Sec. IIの基準に				
			準拠して設定し				
			た値を満たすよ				
-			らい設計する。				

43 条-別紙 2-5

		(参考)炉心燃料要素	A型用炉心燃料要素	III型特殊燃料要素	IV型特殊燃料要素	限界照射試驗用補助要素
許	主要仕様	- 燃料材や被覆材の材質や-	寸法等を定める。	・燃料材や被覆材の材質やす	-法等を一定の範囲に限定する	。 【別紙 4】
可段階の管理	使用条件	<ul> <li>・燃料最高温度:定格</li> <li>2,350℃、過出力2,650</li> <li>・被覆管最高温度(肉厚中心):定格620℃</li> <li>・最高燃焼度:</li> <li>90,000/Wd/t</li> <li>・挿入量:(内側)最大</li> <li>90,000/Wd/t</li> <li>・挿入量:(内側)最大</li> <li>00,000/Wd/t</li> <li>小のの/Wd/t</li> <li>の00/Wd/t</li> <li>小回(10)</li> <li>小回(10)</li></ul>	<ul> <li>・照射燃料集合体の燃料最高域)を制限する。</li> <li>・燃料破損検出系により、燃料換合体を炉心から取り出 対スを貯留タンクに圧入貯 ガスを貯留タンクに圧入貯</li> </ul>	島温度、被覆管最高温度(肉厚 然料要素の被覆管の開孔又は破 1すとともに、放射性廃ガス中6 (蔵するものとする。【第1表	中心)、最高燃焼度、挿入量 損が検知された場合には、原 の放射性物質の濃度が所定の値	、装荷位置(炉心燃料領行子炉を停止し、当該照射燃直を超える場合には、当該廃
	炉心構成	・ 運転における炉心は、 炉	心構成、核的制限値、熱的制限	<b>寻値、炉心特性の範囲において</b>	構成する。	
	核設計一設計方針	・炉心は、核設計基準を満り	足するように設計する。			
	核設計一計算方法	(主る市用) 算で使用する主)	な計算コードを記載する。			
	熱設計一設計方針	・各要素が、原子炉内にお 胡系統、原子炉停止系統、 設計基準値」)を超えない を加えた累積損傷和が設計 ・設計計算手法及び物性定 ・公称値並びに工学的安全/	ナる使用期間中、通常運転時及 反応度制御系統、計測制御系 よう、かつ、その被覆管のク ・上の制限値である 1.0 を超え 数は、各種の試験研究を通じて 系数は、適切な安全余裕を有す	ξび運転時の異常な過渡変化時 統及び安全保護回路の機能とℓ リープ寿命分数和と疲労寿命5 ないよう、定格出力時におけ で信頼度を確認したものを使用 すること。	に原子炉の運転に支障が生ず キせて機能することにより、燃 }数和(設計疲労寿命に対する 5熟的制限値を設定し、これ すること。	る場合において、原子炉冷 料の許容設計限界(「熱 5累積疲労サイクルの比) を満たすこと。
	熱設計基準値 【別紙 5】	・燃料最高温度:2,620℃ ・被覆管最高温度(肉厚中/ ・冷却材最高温度:910℃	L›):840℃	・燃料最高温度:2,680℃ ・被覆管最高温度(肉厚 中心):890℃	・燃料最高温度:2,680°C ・被覆管最高温度(肉厚 中心):810°C	・燃料最高温度:2,680℃ ・被覆管最高温度(肉厚 中心):890℃
				・ 冷却材最高温度:910℃	・ 冷却材最高温度:910℃	・ 冷却材最高温度: 910℃
	熱的制限値 【別紙 5】	・燃料最高温度:2,350℃ ・被覆管最高温度(肉厚中,	込):620℃	・燃料最高温度 2, 540℃ ・被覆管最高温度(肉厚中	・燃料最高温度 2,540℃ ・被覆管最高温度(肉厚中	・燃料最高温度 2, 540℃ ・被覆管最高温度(肉厚中
				ىكى : 700°C	،كَ، : 610°C	رل، : 700°C
	熱設計一計算方法	<b>ニ 冬い 田 21 黄 桂 00 桂 穏 译 ・</b>	ード又は式を記載する。			

第2表 特殊燃料要素及び補助要素の安全確保の考え方 (4/5)

□ □ 型 特殊 燃料 要素	・燃料最高温度は、2,680℃以下となるように設計する。 被獲管運は、十分小さくなるように設計する。 被獲管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断を生じ ないように十分低く設計する。 被酸管の各部にかかる荷重に対する応力計算値は、ASME Sec. IIIの基準に準拠 して設定した値を満たすように設計する。 ・ 累積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命以下と なるよう設計する。	対して、十分な強度を有するように設計する。 の異常な過渡変化時において、燃料集合体の構成部品にかかる荷重に対する応力計算 2満たすように設計する。	<ul> <li>・許可で定めた範囲にしたがって仕様を決定し、設計仕様が許可に適合していることを確認する。</li> <li>・使用前事業者検査により、当該照射燃料集合体の仕様等を確認・検査する。(材料検査、寸法検査等)</li> </ul>	<ul> <li>・許可で定めた範囲にしたがって仕様条件を決定し、設計条件が許可に適合していることを確認する。</li> </ul>	≠可で定めた方針を満足することを確認する。	<b>ま常な過渡変化時の熱計算を実施し、結果が許可で定めた方針を満足することを確認す</b>	・許可で定めた範囲にしたがって、寸法、材料(Sm 値等)、使用条件を決定し、許可に適合していることを確認する。 可に適合していることを確認する。 ・設計仕様、設計条件のもとでの強度計算結果が許可で定めた方針を満足することを 確認する	3き、サイノル運転に先立ち、炉心構成の制限事項(個数、熱的制限値、核的制限値) 5時定の範囲内であることを評価・確認する。 然料要素の被覆管の開孔又は破損が検知された場合には、原子炉を停止し、当該照射燃 けとともに、放射性廃ガス中の放射性物質の濃度が所定の値を超える場合には、当該廃 減する。
A型用炉心燃料要素	以下となるように設計す よるように設計する。 たるように設計する。 いかる引張応力を拘え、円周 世じないように十分低く設 して設定した値を満たす リープによる累積損傷をも考 ドとなるよう設計する。なお ME Sec. 田に準拠した曲線	取扱中に受ける通常の荷重に対 間中の通常運転時及び運転時の 3基準に準拠して設定した値を	Cいることを確認する。 当該炉心燃料集合体の仕様	ていることを確認する。	<b>ヒり核計算を実施し、結果が許</b>	より通常運転時及び運転時の異	<b>年可の通りであることを確認</b> ど満足することを確認する。	<ul> <li>・原子炉施設保安規定に基づの遵守や核特性への影響が、</li> <li>・燃料破損検出系により、燃料・</li> <li>・燃料・</li> <li>・</li> <li>・</li></ul>
(参考) 炉心燃料要素	・燃料最高温度は、2,650℃ る。 、被覆管内には、被覆管に 方向へのクリープ破断を 計する。 SME Sec 田の基準に ように設計する。 ・累積波労サイクルは、クリ 慮して、設計疲労曲線は、ASI を使用する。	・燃料集合体の輸送中又は、 ・原子炉内における使用期  値は、ASME Sec. 皿の	・設計仕様が許可に適合し、 ・使用前事業者検査により、 等を確認・検査する。	・設計条件が許可に適合して	・許可で定めた設計手法に。	・許可で定めた設計手法に、る。 る。	<ul> <li>・ 寸法や材料、設計条件が計 する。</li> <li>・ 強度計算結果が設計方針</li> </ul>	・原子炉施設保安規定に基 づき、サイクル運転に先 立ち、炉心構成の制限事 頃(個数、熱的制限値、核 的制限値)の遵守や核特 性への影響ぶ所定の範囲 内であることを評価・確
	+ 22 22 然 影	集合体	104				- (機械設計)	使用条件、 心構成、
	燃)計 計 穀機 ( 方設蔵 - 分割) 設蔵 - 針		主要仕様	使用条件	核設計	熱設計	燃料設計	作・使用 いの管理
	許可段階の管理		設工認時	な階の	暂	理		製 殷

第2表 特殊燃料要素及び補助要素の安全確保の考え方 (5/5)

第3表 試験用要素の安全確保の考え方 (1/7)

		<b>Ⅲ</b> 型限界照射試驗用要素	IV型限界照射試験用要素	先行試影	<b>)</b> (利要素	基礎試験用要素
				(酸化物)	(酸化物以外)	
	使用目的	<ul> <li>         ・         Ⅲ型特殊燃料要素仕様     </li> </ul>	・IV型特殊燃料要素仕様	・照射実績の少ない材料を	:燃料材に用いた燃料の試	・照射実績の少ない材料を被覆
		の限界照射 (RTCB) 試験	の限界照射 (RTCB) 試験用	験用。		材に用いた燃料の試験用。
		用。	0	・際件内として酸化物(徐 伊物・金属や伸用	6隅もり肥/、火化物、至	・窓空といま未過こめる既任物の時代が、
				「言文」当面「文言。	- フテナノトズフテン1/2	「2、12112、玉山で、玉崎で有田
				・牧復々に天頃のめる~	「く」」」、ドベーシアへ	人11.0。 - 社園社はオニッドナノーダ コ
				鯔または局速炉用フェウ	マイト米スアンレス鯔(酸	• 伮復的 はる 一 く / / イ ト ボ、 /
				化物分散強化型を含む)	0	エライト系以外も含むステン
						レス鋼全般。
主 燃料	141	・PuU 混合酸化物療結ペレ	・PuU混合酸化物療結ペレ	・PuまたはUの	・PuまたはUの	・PuU 混合酸化物焼結ペレット
I III	,			単体または混合物の	単体または混合物の	・ bnn 混合炭化物焼結ペレット
¥ H		<u>.</u>		酸化物	炭化物、窒化物、金属	・Pun 混合室化物焼結ペレット
∃ ≉						・ bnl 混合金属スラグ
体然为	直径	• 5. 3~6. 6mm	• 5. 18~6. 18mm	• 4. $6\sim 7$ . 5mm		• 4. $6 \sim 7$ . 5mm
<i>後</i> )	(料外径/内径)			$(4. 6 \sim 7. 5 \text{mm}/2 \text{mm})$		$(4. \ 6 \sim 7. \ 5 \text{mm}/2 \text{mm})$
被覆	<b>ē管材料</b>	<ul> <li>オーステナイト系ステ</li> </ul>	・高速炉用フェライト系	<ul><li>・オーステナイト系ステン</li></ul>	レス鋼または高速炉用フ	・ステンレス鍋 (クロム又はクロ
		ソフス錮	スアンレス錮	エライト系ステンレス	3 (酸化物分散強化型を含)	ムとニッケルを含有させた合
				tr)		金鋼、酸化物分散強化型を含
						もい)
被覆	<b>育管外径</b>	• 6. 4~7. 5mm	• 6. 5~7.5mm	• 5.4~8.5mm		• 5.4~8.5mm
被覆	<b></b> 行 管 肉 厚	• 0. $4\sim 0.6$ mm	• 0. $56 \sim 0.76 \text{mm}$	• 0. $3 \sim 0.8 \text{mm}$		• 0. 3~0. 8mm
1771	よ 休 く 山 っ 士 止	・燃料:溶融させない	・燃料:溶融させない	・燃料:溶融させる	・燃料:溶融させない	・燃料:溶融させない
計画的	な健全性の喪失	• 被覆管:開孔させる	• 被覆管:開孔させる	<ul> <li>被覆管:開孔させない</li> </ul>	・被覆管:開孔させない	・ 被覆管:開孔させる
		「年影のイベドイー》へに・	対出口部を多数の小口径の	・厚肉の内壁構造容器に装	<b>寝填してコンペートメント</b>	・厚肉の密封構造容器に装填し
安全性を	5 高めるための特	孔とする。		に納めることで安全性な	「高める。	トコンパートメントに巻める
	徴			・内壁構造容器の冷却材は	日日部を多数の小口径の孔	ことで我全年や言めん。
				とする。		
	要素の装填	・コンパートメントに装填	する。	・内壁構造容器に装填して	い、コンペートメントに懲	・密封構造容器に装填して、コン
				める。		パートメントに納める。
集合体の	コンパートメ	・B型コンペートメント(	A型)	・先行試験用ッ型コンパー	ートメント	・基礎試験用ッ型コンパートメ
構造	۲ ۲	・ッ型コンパートメント(	B 型)			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	集合体	<ul> <li>A型照射燃料集合体</li> </ul>		・B型照射燃料集合体		・B型照射燃料集合体
		<ul> <li>B型照射燃料集合体</li> </ul>				

43 条-別紙 2-8

2/7)
考え方 (
き確保の
(第一) (第一) (第一) (第一) (第一) (第一) (第一) (第一)
3表 試影
箫

基礎試験用要素			
要素	(酸化物以外)	・ 、 、 、 、 、 、 、 、 、 、 、 、 、	これにより、燃料体の性状又は性能に悪影響を与えない。
先行試験用	(酸化物)	・計画的な確全性の海外でした。 参心。 「計画的な確全性の東大トレイ 参心。 「計画的な確全性の東大トレイ 。 動心。 いた、「 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、	
IV型限界照射試験	用要素	(五) (五) (五) (五) (五) (五) (五) (五) (1) (1) (1) (1) (1) (1) (1) (1) (16] (16] (1) (16] (1) (16] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
II型限界照射試験	用要素	・ ・・・・・・ 国を画管る料覆合燃ン教射出ののへりを調査を画管る料覆合燃ン教射出ののへりを引き的開的の。破管に料パの試さ冷燃漏、与表せな孔な破 損のは集一小験れ却料れ燃え、金ガ孔。 出孔原体メ径要場阻子な体い紙性大以繁 系又子をンの素合書がいの。11	
第43条		<ul> <li>第1項</li> <li>第1項</li> <li>熱乳体の健全性を維持できないて、試験用したおいて、</li> <li>においても、然料体の性状又は住きに</li> <li>において、</li> <li>「無別」</li> <li>「第</li> <li>「第</li> <li>「第</li> <li>「第</li> <li>「第</li> <li>「第</li> <li>「</li> <li>「</li> <li>「</li> <li>「</li> <li>「</li> <li>「</li> <li>(</li> <l< td=""><td></td></l<></ul>	
		許可基準規則への適合	

43 条-別紙 2-9

	先 43 ¥	<b>三注波尔派约克顿</b>	IV至收不思为可毁一	<u>  北</u> に  取  戦  田  多	安素	奉碇試験用要素
		用要素	用要素	(酸化物)	(酸化物以外)	
許策	52項	・設計基準事故時に	おいても、計画的	・設計基準事故時においても、	・設計基準事故時にお	・設計基準事故時におい
	計基準事故時において、試験用燃	な開孔以外の燃料。	の溶融や被覆管の	被覆管の破損(燃料粒子放	いても、然料の溶融	ても、計画的な開孔以
₹ ₹	・体が破損した場合においても、試	破損(燃料粒子放1	出)を防止する。	出)を防止する。	や被覆管の破損(燃	外の燃料の溶融や被覆
奉 …	(研究用等原子炉を安全に停止する)	・コンパートメント	の冷却材出口部は	・先行試験用要素の酸化物燃料	料粒子放出)を防止	管の破損(燃料粒子放
準た	めに必要な機能及び炉心の冷却機	多数の小口径の孔、	とし、限界照射試	では、計画的に燃料を溶融さ	する。	出)を防止する。
規能	き損なうおそれがないものである	験用要素の開孔部	から燃料が放出さ	せることがある。万一、燃料	・内壁構诰容器は、ト	・設計基準事故時におい
	رب برج	れた場合でも、炉	心燃料集合体の冷	が溶融状態の先行試験用要素	大学会著の子口谷の	て、万一基礎試験用要
	角军形(	却を阻害するおそ	たのある粒径の燃	の被覆管が破損した場合、何		素の被覆管が破損した
•••	(Minute) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	料約子が照射燃約4	集合体の外側へ漏	らかの原因で溶躍した敷料が	九を持つストレーナ	場合においたも、彼軒
6	オコロに落てしる「そうな」ということが、これまたないでは、	た王ない構治とす。	る。これにより、	内壁構造容器内のナトリウム	を有する構造とし、	構造容器の健全性が確
邂	炉を女王に停止り るにめに必要は機能	画子 戸を 中令に 値	ドゥろために父母	中にお出れた。と、深望家が	万一、先行試験用要	保される構造しよる。
< I	及び炉心の冷却機能を損なうおそれが	た機能及で行うと	手のためため、	レイションであることに目的ない		ドビジョにんこう。
I	ない」とは、燃料の許容設計限界を超	おみとがない		CONFCI // アンドナボト//	米の彼得が彼」の	日本にあっ、ぷし。こ年金に高ーセスややい
	シャンシュ Brist略田家生在がメの許		c.	べき くのほうかい から うち うち うち うちょう ちょう しょう しょう ひょう うちょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	に場合においても、	火山にます。ここのにのに、東京観光のなどに
		▲ 予 1 衣、 別 袱 19, 」	[0]	の、「こうにつく、つたりました」	炉心燃料集合体の冷	治文/a/版明文O.M-「no) 该Hinkeder, Hink、パネ、な
	容試験限界を超えないことをいう。な			回谷谷の渡田にとてて、 43000000000000000000000000000000000000	世や臣重子スカイ	行学機能を損よりやた
	お、試験用燃料体の「許容試験限界」			・内壁構造谷器は、上下に多数		N.D. K.V.
	「「たんいる」 ユニュート 「「「「「「「「「」」」」 「「「「」」」」 「「」」 「」」 「」」 「」			の小口径の孔を持つストレー	のある粒径の燃料粒	【第1表、別紙16】
	こよ、武戦出談社体があっかっしき目			ナを有する構造とし、炉心燃	子が照射燃料集合体	
	した範囲内で被覆材の破損又は燃料棒			料集合体の冷却を阻害するお	の文画へ通る出ない	
	にあっては燃料材の一部溶融等の試験			それのある粒径の燃料粒子が		
	や行 いとう たんせん 国民 かいいい 通信			昭射燃料集合体の外側へ漏れ	構造とする。これに	
	白コントロがへいの安全です。「和牧子」			出たい構造とする。これによ	より、原子炉を安全	
	時の異常な適渡変化時においても、そ			の、原子炉を安全に停止する	に停止するために必	
	の損傷により燃料体の健全性を損なう			ために必要な機能及び行心の	東子経命及でに、	
	ことのないことが要求される。			浄土は総合 おかった よった た		
					合却機能を損な うお	
					それがない。	
				【第 1 表、別湫 16】	【第1表、別紙16】	

(3/7)
確保の考え方
試験用要素の安全
第3表

43 条-別紙 2-10

(4 / 7)
全確保の考え方
試験用要素の安
第3表

	第43条	□ 型限界照射試験 │ IV 型限界照射試験 │	先行試験用	要素	基礎試験用要素
		用要素用要素	(酸化物)	(酸化物以外)	
圳	第3項	・照射燃料集合体の1体当たりの核分	・照射燃料集合体の1体当たりの	核分裂性物質量は、炉心	・照射燃料集合体の1体
	放射性物質の漏えい量を抑制するた	裂性物質量は、炉心燃料集合体のそ	燃料集合体のそれを超えないもの	のに制限する。	当たりの核分裂性物質
r ‡	めの措置を講じたものであること。	れを超えないものに制限する。	・照射燃料集合体の装荷本数を制	限する。	量は、炉心燃料集合体
金:	【解釈】	・照射燃料集合体の装荷本数を制限す	・燃料破損検出系により、燃料要	素の被覆管の開孔又は破	のそれを超えないもの
単	・第3号に規定する「放射性物質の漏え	Å₀	損が検知された場合には、原子小	炉を停止し、当該照射燃	に制限する。
鴺	い量や拍割ナスを必の推躍」とは、被磨	・燃料破損検出系により、燃料要素の	料集合体を炉心から取り出すと。	ともに、放射性廃ガス中	・照射燃料集合体の装荷
Ē		被覆管の開孔又は破損が検知された	の放射性物質の濃度が所定の値	を超える場合には、当該	本数を制限する。
: <	M い破損による   伙倍却肉 中への核ガ殺	場合には、原子炉を停止し、当該照	廃ガスを貯留タンクに圧入貯蔵-	する。	・燃料破損検出系によ
<u>(</u>	生成物等の放射性物質の放出量を、試験	射燃料集合体を炉心から取り出すと	・先行試験においては、先行試験	用要素の被覆管の健全性	り、燃料要素の被覆管
S	用燃料体の破損範囲の限定、破損燃料検	ともに、放射性廃ガス中の放射性物	を確保する設計とする。		の開孔又は破損が検知
逦	出設備による運転監視等により適切に制	質の濃度が所定の値を超える場合に	・以上により 約射性物質の漏ぐ	い量を抑制する。	された場合には、原子
<□	日を開たってり付け目とし、自父にこう	は、当該廃ガスを貯留タンクに圧入			炉を停止し、当該照射
	致くいる指国名 4・ノ。	貯蔵する。			燃料集合体を炉心から
		<ul> <li>被覆管を開孔させる限界照射試験用</li> </ul>			取り出すとともに、放
		要素にあっては、年間放出管理目標			射性廃ガス中の放射性
		値の1%程度に抑制するため、年間試			物質の濃度が所定の値
		験回数を制限する。			を超える場合には、当
		・以上により、放射性物質の漏えい量			該廃ガスを貯留タンク
		を抑制する。			に圧入貯蔵する。
		「日川幼年一日」			・其礎試験においては
		OT MULT			家封構治容器の健全体
					を確保する設計しす
					ペート・シン ※21日4
					質の漏えい量を抑制す
					°℃ °
-	第4項	・照射燃料集合体の設計方針は炉心燃料	<b>長合体の設計方針に準ずる。 燃料集</b>	合体の輸送及び取扱い時に	受ける通常の荷重に対し
	輸送中又は取扱中において、著しい	て、十分な強度を有するように設計する	。これにより、輸送中又は取扱中に	において、著しい変形が生し	じない。
	変形が生じないものであること。	【別紙氏6】			1

43 条-別紙 2-11

第3表 試験用要素の安全確保の考え方 (5/7)

	-	III型限界照射試験用要素	IV型限界照射試験用要素	先行試懸	<b></b> 角田要素	基礎試験用要素
				(酸化物)	(酸化物以外)	
指	主要仕様	・燃料材や被覆材の材質やナ	法等を一定の範囲に限定する。	【別紙 4】		
可段	使用条件	・照射燃料集合体の燃料最高 ・燃料破損検出系により、燃	温度、被覆管最高温度(肉厚 ¹ 钭要素の被覆管の開孔又は破オ	中心)、最高燃焼度、挿入量、 員が検知された場合には、原子	装荷位置(炉心燃料領域)をf 炉を停止し、当該照射燃料集合	制限する。 含体を炉心から取り出すとと
階		もに、放射性廃ガス中の放射・	性物質の濃度が所定の値を超、	える場合には、当該廃ガスを貯	² 留タンクに圧入貯蔵するもの。	とする。【第1表】
0	炉心構成	・運転における炉心は、炉心	構成、核的制限値、熱的制限(	直、炉心特性の範囲において構	詠仗する。	
	核設計一設計方針	・炉心は、核設計基準を満足、	するように設計する。			
理	核設計一計算方法	・核設計計算で使用する主な	計算コードを記載する。			
	熱設計-設計方針	<ul> <li>試験用要素が、原子炉内にま時及び運転時の異常な過渡変が生する場合において、原子が、生する場合において、原子統、反応度制御系統、計測制</li> </ul>	5ける使用期間中、通常運転 5化時に原子炉の運転に支障 -炉冷却系統、原子炉停止系 1個系統及び安全保護回路の	・試験用要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な過	・試験用要素が、原子炉内に おける使用期間中、通常運 転時及び運転時の異常な過	・試験用要素が、原子炉内に おける使用期間中、通常運 転時及び運転時の異常な
		機能と併せて機能することに温度に達することなく、から	こより、燃料最高温度が溶融 2、被覆管が計画された範囲	<b>渡変化時において、曖化物</b> 燃料の燃料部が溶融しても	渡変化時において、試験用 要素以外の燃料要素の健全	過渡変化時において、 後復 管が開孔しても、 試験用要
		内でその健全性を喪失しても素の確全性に影響を与った	、試験用要素以外の燃料要	、試験用要素以外の燃料要	性に影響を与えないよう、	素以外の燃料要素の健全
		素が医生にた影響ですたよう熱的制限値を設定し、これを	キン、たる田ン町にあり。の、満たすこと。	素の健全性に影響を与えなし、トネー会校田市はたち	定格出力時における燃料部 誠麗等みバ内陸繊進会哭	性に影響を与えないよう、一定救用も時においよう、
		・設計計算手法及び物性定数は 信館市な強認したよのな体田	t、各種の試験研究を通じて オストレ	る燃料部、被覆管及び内壁	、欧復国父の写真角垣在命の熱的制限値を設定し、こ	た彼田の町にありる旅行部、被覆管及7%率封構浩察
		□ 横(えて 補助 C/L D いて E/M ・ 公称値並びに工学的安全係数	り つし こ。 枚は、適切な安全余裕を有す	構造容器の熱的制限値を設	たを満たすこと。	器の熱的制限値を設定し、
		ること。		定し、これを満たすこと。		これを満たすこと。
	熱設計基準値	・燃料最高温度:2,680℃	・燃料最高温度:2,680°C	・ 燃料最高温度:最大溶融	• 燃料最高温度:溶融温度	・ 燃料最高温度:溶融温
	【別紙 5】	・谺覆官最高温度(网厚中 心)・800℃	・	割合 30% • 納薯等暑喜温産(肉厚山	を超えない ・ 披薯等暑喜温産(肉厚由	度を超えない • 淋�������� (
		で)、2000 ・ 冷却材最高温度:910℃	・ 治却材最高温度:910°C	いままれ 周囲 (1) : 急速加熱による破	欧援軍政団連次、四年一心):急速加熱による破	▶★● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
				<u> </u>	<u> </u>	破跡温度以下 • 宓封構诰茨哭島真温度
				1	[1] 至 [[[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]] [[1]	世纪時世年111年2月11月11月21日 (肉厚中心):890°C
				・内壁構造容器を冷却する	・内壁構造容器を冷却する	・密封構造容器を冷却する
				冷却材の最高温度:910℃	冷却材の最高温度:910℃	冷却材の最高温度:910°C
	熱的制限値 【別紙5】	・燃料最高温度:2, 240℃ ・被覆管最高温度(肉厚中	・燃料最高温度:2, 240℃ ・被覆管最高温度(肉厚	・燃料最大溶融割合:20% ・被覆管最高温度(肉厚中	・燃料最高温度:溶融温度 以下	・燃料最高温度:溶融温 度以下
		心):750℃(A型装 填)、700℃(B型、D型	中心):660℃(A型装 填)、610℃(B型、D	心):750℃ •内曉權浩容器最高温度(肉	・被覆管最高温度(肉厚中心): 750℃	・被覆管最高温度(肉厚 中心): 750℃
		装填) ままで、計画探(HFA FF5	型装填)	厚中心):675°C	・内壁構造容器最高温度(肉	・密封構造容器最高温度(
		たたし、飲復官の囲れ時にあったけ、	にたし、彼復官の囲む時にあったは、		厚中心):675°C	肉厚中心):675℃
		・燃料最高温度:2,680°C	・燃料最高温度:2,680°C			
		・被覆管最高温度(肉厚中心	・被覆管最高温度(肉厚中			
		) : 890°C	،ك) : 810°C			

第3表 試験用要素の安全確保の考え方 (6/7)

) 30%を超えない 5 第との相互作用に 1周方向引張全歪 6の破断時の円
<ul> <li>・然料容融割合え</li> <li>・然料容融割合え</li> <li>・然料容報割する</li> <li>・然料的な報告</li> <li>・然料的な報告</li> <li>・たる被覆管の日は、SUS31</li> <li>二十分な設計済</li> <li>に十分な設計済</li> <li>い人大・ちち</li> </ul>
<ul> <li>(1)、溶融温度を超えないよう</li> <li>・然料溶融割合え</li> <li>(1)、溶融温度を超えないよう</li> <li>・然料部と被覆着</li> <li>(1)運転時の異常な過渡変化時</li> <li>(2)運転時の異常な過渡変化時</li> <li>(2)運転時の異常な過渡変化時</li> <li>(3)が設置を割除する</li> <li>(1)ご運転時の異常な過渡変化</li> <li>(2)ご運転時の異常な過渡変化</li> <li>(2)ご運転時の異常な過渡変化</li> <li>(3)が以内とする。</li> <li>(2)公均とする。</li> <li>(2)公内とする。</li> <li>(2)公内とする。</li> <li>(2)公内とする。</li> </ul>
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1

43 条-別紙 2-13

(1/
ī (7
オイモ
来の凄
全確(
の狭
要素
、験用
ミ
CJ ₩

箫

			III型限界照射試験用要素	IV型限界照射試験用要素	先行静	、験用要素	基礎試験用要素
					(酸化物)	(酸化物以外)	
慰	主要仕様		・許可で定めた範囲にしたが	って仕様を決定し、設計仕様が	許可に適合していることを	・確認する。	
Н			・使用前事業者検査により、	当該照射燃料集合体の仕様等を	確認・検査する。(材料検	<u>(</u> 查、寸法検査等)	
	使用条件		・許可で定めた範囲にしたが	って仕様条件を決定し、設計条	件が許可に適合しているこ	とを確認する。	
褽	核設計		・許可で定めた設計手法によ	り核計算を実施し、結果が許可	で定めた方針を満足するこ	とを確認する。	
踏	熟設計		・許可で定めた設計手法によ	こり通常運転時及び運転時の異	・仕様に合わせて、熱設	計基準値及び熱的制限値を定	<i></i> める。
0			常な過渡変化時の熱計算をう	<b>実施し、結果が許可で定めた方</b>	・許可で定めた設計手法	により通常運転時及び運転時	<b>りの異常な過渡変化時の熱計</b>
顮			針を満足することを確認する	ړ. د د د	算を実施し、結果が許す	可で定めた方針を満足すること	こを確認する。
理	燃料設計(機械設	設計)	・許可で定めた範囲にしたが	って、寸法、材料(Sm 値等)、	使用条件を決定し、許可は	<b>ご適合していることを確認する</b>	<b>0</b> °
			・設計仕様、設計条件のもと	での強度計算結果が許可で定め、	た方針を満足することを確	認する。	
<b>製</b> 忠 諸	<ul> <li>使用条件</li> <li>心構成、</li> <li>心構成、</li> <li>心構成、</li> <li>の管理</li> <li>制限値</li> </ul>	牛, 秋, 秋 初 の の の の	・特殊試験計画により年間試 ・燃料破損検出系により、燃 とともに、放射性廃ガス中( 【第1表、別紙 15】	験回数を確認する。 料要素の被覆管の開孔又は破損 の放射性物質の濃度が所定の値	(が検知された場合には、J) を超える場合には、当該廃	ぼ子炉を停止し、当該照射燃* ガスを貯留タンクに圧入貯蔵	¥集合体を炉心から取り出す する。

照射燃料集合体の構造概要と燃料要素の種類の変更

A型	B型	C型	D型
・ 試料部の周囲に、ワイヤス	・ 試料部を装填したγ型コン	<ul> <li>燃料要素最大 91 本のバン</li> </ul>	<ul> <li>燃料集合体の中央部に設け</li> </ul>
ペーサを巻いたA型用炉心	パートメント6本を、燃料集	ドルをステンレス鋼の試料	たステンレス鋼のタイロッ
燃料要素を炉心燃料集合体	合体の中央部に設けたステ	部六角管に納めた構造。	ドのまわりに、γ型コンパー
と同じ燃料要素ピッチで正	ンレス鋼のタイロッドのま	(第1図、第3図参照)	トメント6本、δ型コンパー
三角格子状に配置した構造。	わりに配置した構造。		トメント 18 本、又は、混在さ
(第1図、第2図参照)	(第1図、第3図、第4図参照)	<ul> <li>同時に多数の照射データを</li> </ul>	せて配置した構造。
		取得可能。燃料要素の健全性	(第1図、第3図参照)
<ul> <li>試料部は、燃料要素7本の</li> </ul>	・ ほぼ同一の照射条件下でパ	を統計的に確認可能。	
バンドルとし二重のステン	ラメトリックなデータの取		・ ほぼ同一の照射条件下で燃
レス鋼の試料部六角管に納	得が可能。また、コンパート	・ 照射条件をオンライン計測	料要素 1 本ごとに最大 18 の
めた「バンドル型」、α型コン	メントを適宜取り出すこと	するものにあっては、検出器	パラメータを設定して照射
パートメント1本又はβ型コ	により照射中の燃料要素の	を取り付け、計測線を炉外に	データを取得可能。また、コ
ンパートメント1本をステン	健全性を確認可能。	引き出す構造。	ンパートメントを適宜取り
レス鋼の試料部六角管に納		(第5図参照)	出すことにより照射中の燃
めた「コンパートメント型」			料要素の健全性を確認可能。
を使用。			
(第1図、第2図参照)			
<ul> <li>コンパートメント型は、コ</li> </ul>			
ンパートメントを適宜取り			
出すことにより、照射中の燃			
料要素の健全性を確認可能。			
<ul> <li>燃料材が占める体積比率が</li> </ul>			
比較的大きいため、高い中性			
子束による照射試験が可能。			

第1表 照射燃料集合体

※ コンパートメント: 照射燃料集合体の内部において独自に冷却材流量を設定できる二重の円筒管(α型コンパートメントにおいては、外管に六角管も使用)。装填する燃料要素の種類及び本数並びに構造及び主要寸法等の 組合せによりα型、β型、γ型及びδ型コンパートメントの4種類に分類。

せにより	α 至、 p 至、 p 至又 0 0 至ユンバー下アン下の 4 種類に力
α型	ワイヤスペーサ型/グリッドスペーサ型
β型	ワイヤスペーサ型/シュラウド管型
	ワイヤスペーサ型/グリッドスペーサ型
γ型	先行試験用(ワイヤスペーサ型/シュラウド管型)
	基礎試験用(ワイヤスペーサ型/シュラウド管型)
δ型	ワイヤスペーサ型/シュラウド管型

	コンパートメントの種類	Į	装填可能な燃料要素 (燃料要素の本数)	収納可能な 照射燃料集合体 (コンパートメ ントの本数)
α型コンパートメ	ワイヤスペーサ型		Ⅲ型特殊燃料要素(最大5本)	A (最大1本)
ント			Ⅳ型特殊燃料要素(最大5本)	
※ 燃料要素最大				
5 本をピンタイ				
ロッドの周囲に	グリッドスペーサ型		Ⅲ型特殊燃料要素(最大5本)	
配置			IV型特殊燃料要素(最大5本)	
(第1図参照)				
β型コンパートメ	ワイヤスペーサ型		Ⅲ型限界照射試験用要素(最大1本)*1	A (最大1本)
ント			Ⅳ型限界照射試験用要素(最大1本)*1	
※ 燃料要素 1 本				
をシュラウド管	シュラウド管型		Ⅲ型限界照射試験用要素(最大1本)*1	
に装垣			Ⅳ型限界昭射試験用要素(最大1本)*1	
(第1図参照)				
v型コンパートメ	ワイヤスペーサ型		Ⅲ型特殊燃料要素(最大5本)	B (6本)
ント	※ 燃料要素最大5本	をピンタイロッドの	Ⅳ型特殊燃料要素(最大5本)	D (最大6本)
	周囲に配置		Ⅲ型限界昭射試驗田要素(最大1太)*1	
	(第1回参照)		$\mathbf{W}$	
			限界的計畫的田浦的西美 (最大 3 本)	
	ガリッドスペーサ刑		Ⅲ刑性砕燃料更去(昌十5本)	
	クリクトハマ り生 ※ 燃料両妻島十 5 木	たピンタイロッドの	III 生行/休然科安系 (取入5本) IV 刑快码燃料 西麦 (县十5本)	
	※ 旅科安系取入 5 平 国田に町里	セレンタイロットの	IV 空付,你忍科安杀 (取入 5 平) m 刑 四 国 四 针 封 聆 田 西 書 (具十 1 才) *]	
	同囲(に配圓)		Ш空阪芥照別訊駛用安糸(取人 $I + j$ ) 取刑四用四日計驗四冊末(見上 $1 + j$ )*)	
	(弗1凶麥忠)		IV 空限乔庶别 武駛用安奈 (取人 1 本)	
	牛 公計 段 田	티 / 니코 · 이 山田		$\mathbf{D}$ (c $\pm$ )
	光行試験用 ※	リイヤスペーサ型	先行試験用要素(1本)***	B (6本)
	<ul> <li>※ 内壁構造谷器に</li> </ul>			
	燃料要素1本を装			
	填。内壁構造容器1	シュラウド管型	先行試験用要素(1本)* ²	
	本を収納			
	(第1図、第4図参			
	照)			
	基礎試験用	ワイヤスペーサ型	基礎試験用要素(1本)*3	
	※ 密封構造容器に			
	燃料要素 1 本を装			
	填。密封構造容器1	シュラウド管型	基礎試験用要素(1本)*3	
	本を収納			
	(第1図参照)			
δ型コンパートメ	ワイヤスペーサ型		Ⅲ型特殊燃料要素(最大1本)	D (最大 18 本)
ント	(第1図参照)		Ⅳ型特殊燃料要素(最大1本)	
※ 燃料要素 1 本	シュラウド管刑		Ⅲ型特殊燃料要素(最大1本)	1
をシュラウド管	* ニノノ・日王 (		₩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
に装填	(加工区10/27/27)			

第2表 コンパートメント

*1:コンパートメントの冷却材出口部は多数の小口径の孔とし、万一、限界照射試験用要素の開孔部から燃料が放出された場 合でも、炉心燃料集合体の冷却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造とする。

*2:燃料溶融状態の先行試験用要素の被覆管の破損が生じた場合でも、内壁構造容器の健全性が確保される構造とするととも に、内壁構造容器の冷却材出口部を多数の小口径の孔とし、万一、先行試験用要素の被覆管の破損部から燃料が放出され た場合でも、炉心燃料集合体の冷却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造と する。

*3:基礎試験用要素の被覆管が開孔した場合でも、密封構造容器の健全性が確保される構造とする。

第3表 燃料要素

種類*1	装填可能な 照射燃料集合体	燃料要素の主要仕様
I型特殊燃料要素		(削除)
Ⅱ型特殊燃料要素		(削除)
Ⅲ型特殊燃料要素	A、B、C、 D	燃料材: ブルトニウム・ウラン混合酸化物焼結ペレット Pu 含有率: 32wt%以下、Pu 同位体組成比:原子炉級、U 濃縮度: 26wt%以下 燃料ペレット外径: 5.3~7.5 mm/燃料ペレット内径(中空):約2mm 被覆材: オーステナイト系ステンレス鋼 被覆管外径: 6.4~8.5 mm、被覆管肉厚: 0.4~0.7 mm 燃料要素有効長さ: 50 cm 以下* ³ 鼻高燃焼度: 130,000MWd/t
Ⅳ型特殊燃料要素	A、B、C、 D	燃料材:プルトニウム・ウラン混合酸化物焼結ペレット Pu 含有率 32wt%以下、Pu 同位体組成比:原子炉級、U濃縮度:24wt%以下 燃料ペレット外径:5.18~6.18 mm/燃料ペレット内径(中空):約 2mm 被覆材:高速炉用フェライト系ステンレス鋼 被覆管外径:6.5~7.5mm、被覆管肉厚:0.56~0.76mm 燃料要素有効長さ:50cm以下*3 最高燃焼度:130,000MWd/t
I 型限界照射試験用要素		(削除)
Ⅱ型限界照射試験用要素		(削除)
Ⅲ型限界照射試驗用要素	A*², B, D	燃料材: プルトニウム・ウラン混合酸化物焼結ペレット Pu 含有率: 32wt%以下、Pu 同位体組成比: 原子炉級、U 濃縮度: 26wt%以下 燃料ペレット外径: 5.3~6.6 mm 被覆材: オーステナイト系ステンレス鋼 被覆管外径: 6.4~7.5mm、被覆管肉厚: 0.4~0.6mm 燃料要素有効長さ: 50cm以下* ³ 最高燃焼度: 150,000MWd/t (A型)、200,000MWd/t (B型、D型)
IV型限界照射試験用要素	A*²、B、D	燃料材: ブルトニウム・ウラン混合酸化物焼結ペレット Pu 含有率 32wt%以下、Pu 同位体組成比:原子炉級、U 濃縮度: 24wt%以下 燃料ペレット外径: 5.18~6.18 mm 被覆管材: 高速炉用フェライト系ステンレス鋼 被覆管材 2.6.5~7.5mm、被覆管肉厚: 0.56~0.76mm 燃料要素有効長さ: 50cm 以下* ³ 最高燃焼度: 150,000MWd/t (A型)、200,000MWd/t (B型、D型)
炭化物試験用要素		(削除)
窒化物試験用要素		(削除)
高線出力試験用要素		(削除)
<ul><li>FFDL試験用要素</li><li>(スリット付)</li></ul>		(削除)
FFDL試験用要素		(省加全)
(スリットなし) 先行試験用要素	В	燃料材: <u>プルトニウム又はウランの単体</u> 又は混合物の酸化物、 <u>炭化物、窒化物又は金属</u> ^{*4} Pu 同位体組成比:原子炉級 燃料材外径:4.6~7.5 mm/燃料ペレット内径(中空):約 2mm 被覆材:オーステナト系ステンレス鋼または <u>高速炉用フェライト系ステンレス鋼(酸化物分散強化型を 含む)</u> 被覆管外径:5.4~8.5nm、被覆管肉厚:0.3~0.8nm 燃料要素有効長さ:50cm以下 ^{*3} 最高燃焼度:200,000MWd/t
基礎試験用要素	В	<ul> <li>燃料材:プルトニウム・ウラン混合酸化物焼結ペレット、プルトニウム・ウラン混合炭化物焼結ペレット、 ブルトニウム・ウラン混合窒化物焼結ペレット、プルトニウム・ウラン混合金属スラグ</li> <li>Pu 含有率:それぞれ 32wt%以下、25wt%以下、30wt%以下、20wt%以下、Pu 同位体組成比:原子炉級</li> <li>燃料ペレット外径:4.6~7.5 mm/燃料ペレット内径(中空):約 2mm</li> <li>被覆材:ステンレス鋼(クロム又はクロムとニッケルを含有させた合金鋼(クロム含有率 10.5%以上、炭 素含有率 1.2%以下)、酸化物分散強化型を含む)</li> <li>被覆管外径:5.4~8.5mm、被覆管肉厚:0.3~0.8mm</li> <li>燃料要素有効長さ:50cm以下*3</li> <li>最高燃焼度:200,000MWd/t</li> </ul>
A型用炉心燃料要素 (内側)	А	燃料材:プルトニウム・ウラン混合酸化物焼結ペレット Pu 含有率 32wt%以下、Pu 同位体組成比:原子炉級、U 濃縮度:約 18wt% 燃料ペレット外径:約 4.6 mm 被覆材:オーステナイト系ステンレス鋼
A型用炉心燃料要素 (外側)		<i>做獲</i> 管外 全: 約 5.5mm、 破 覆 管 肉 厚: 約 0.7mm 燃料 要素 有 効 長 さ:50cm 以 下 ^{*3} 最高燃焼度:90,000MW d/t
限界照射試験用補助要素	B、D	燃料材:プルトニウム・ウラン混合酸化物焼結ペレット Pu 含有率:32wt%以下、Pu 同位体組成比:原子炉級、U 濃縮度:26wt%以下 燃料ペレット外径:5.3~6.6 mm 被覆材:オーステナイト系ステンレス鋼 被覆管外径:6.4~7.5mm、被覆管肉厚:0.4~0.6mm 燃料要素有効長さ:50cm以下* ³ 最高燃焼度:130,000MW/t

*1: 今夜の無約試験計画寺を留まえ、1 空行体系科委系、Ⅱ空行体系科委系、1 空政が無約試験用委系、Ⅱ空政が無約試験用委系、高級山力試験用委 素、炭化物試験用要素、窒化物試験用要素、FFDL試験用要素を削除。 *2:コンパートメント型を使用。 *3:MK-Ⅱ炉心から継続して使用する燃料要素の場合は 55cm 以下。 *4:試験目的に応じて、マイナーアクチニドや核分裂生成物を混入(≦50wt%)。また、ペレットでない酸化物において、ウラン金属を混入し、0/M 比 を調整可能(≦10wt%)。

※:下線部は、炉心燃料要素(燃料材:プルトニウム・ウラン混合酸化物、被覆材:オーステナイト系ステンレス鋼)と異なる種類の燃料材、被覆材 を用いるもの。



43 条-別紙 3-4

# <u> A 型照射燃料集合体</u>



第2図 A型照射燃料集合体鳥瞰図

# <u> B型照射燃料集合体</u>





D型照射燃料集合体

【 6 型 18 本装填時】

# 第3図 B型、C型、D型照射燃料集合体鳥瞰図



第4図 B型照射燃料集合体(先行試験用)鳥瞰図

[97]



第5図 計測線付C型照射燃料集合体の構造

別添1

### 照射燃料集合体の燃料要素で用いる燃料材、被覆材

照射燃料集合体では、高速増殖炉用燃料の開発のため、新たな燃料材・被覆材の照射挙動の把握を 目的とした試験を実施する。そのため、炉心燃料要素で用いられているプルトニウム・ウラン混合酸 化物燃料以外の燃料材や、オーステナイト系ステンレス鋼以外の被覆材を用いることがある。

ここでは、

燃料材で

- ・プルトニウム・ウラン混合炭化物燃料
- ・プルトニウム・ウラン混合窒化物燃料
- ・ウラン・プルトニウム・ジルコニウム合金(金属燃料)
- 被覆材で
  - ・高速炉用フェライト系ステンレス鋼
- について、それぞれの概要と設計上の考慮を添付1~3に示す。

添付1

プルトニウム・ウラン混合炭化物燃料について

1. 炭化物燃料の概要

プルトニウム・ウラン混合炭化物燃料は、プルトニウム・ウラン混合酸化物燃料に比べて、核分裂 性物質密度が約 30%大きく、かつ 3~5 倍高い熱伝導度を有しており、高速炉燃料として優れた特性 を有している。

ここではプルトニウム・ウラン混合炭化物燃料の主な物性と設計上の考慮について記す。

2. 主な物性

2.1 理論密度

プルトニウム・ウラン混合炭化物燃料は、重元素密度がプルトニウム・ウラン混合酸化物燃料より 高いため、理論密度も高い値を示す^[1]。

UC: 13.63 g/cm³

 $PuC: 13.6 \text{ g/cm}^3$ 

 $U_2C_3$ : 12.88 g/cm³

 $Pu_2C_3$ : 12.7 g/cm³

2.2 融点

第2.2.1 図に UC-PuC 系の液相線及び固相線を示す^[2]。燃料の溶融は固相線温度で始まるので、固 相線から融点を求める。第2.2.1 図より固相線温度は UC の値から PuC の値へ直線的に減少している ため、(Pu, U) C の固相線温度は UC の固相線温度と PuC の固相線温度を直線で結んだ以下の式(第2.2.1 図中の直線の式)から求めることができる。

T = 2517 - 915(y/100)

T:UC-PuC 系の固相線温度(℃)

y:Pu比(%)

プルトニウム含有率約 25%に対して、プルトニウムの再分布について第 2.2.2 図^[3]により 10%増加 を考慮し、上式に使用するプルトニウム含有率(y)を 35%とすると、固相線温度は 2190℃となる。 これに実験の不確かさを 50℃考慮して融点を 2140℃とする。



2.3 熱伝導度

(1) 熱伝導度式

Schmidtによって整理された実験結果から得られた温度依存の熱伝導度幅^[4]及びSteinerの式^[5]から算出された熱伝導度値を第2.3.1図に示す。第2.3.1図から実験の傾向をよく表している Steinerの式をもとに、実験結果の下限値に対し10%程度の裕度をもつよう、また、Stormsによるプ ルトニウム混合比40wt%のデータ^[6]をも包含するよう、補正係数として0.8を乗じて設定した。

 $\langle UC, (Pu, U) C \rangle$ 

$$K = \left( \left( (12.6 + 4.1 \times 10^{-3} (T - 500)) \times 0.8 \right) / 100 \right) \times \left( (1 - (1 - D)) / (1 + (1 - D)) \right)$$
  
K:熱伝導度 (W/cm・C)  
D:燃料理論密度比  
T:燃料温度 (C)



第2.3.1図 プルトニウム・ウラン混合炭化物燃料の熱伝導度

(2) 組織変化の考慮

第2.3.2図に炭化物燃料の組織の模式図を示す。この図においてペレットの理論密度は、ZoneIV は製造時のままであり、ZoneIIIでは製造時のそれより大きく、ZoneIIIはほぼ同等であり、ZoneI は 小さい。このため、熱設計において組織変化にともなう理論密度比の変化によるペレットの熱伝導 度の補正を行った場合、ZoneIVは製造時のペレット熱伝導度と等しく、ZoneIIIでは製造時のペレッ ト熱伝導度より大きく、ZoneIIは製造時のペレット熱伝導度とほぼ同等であり、ZoneI は製造時の 熱伝導度より小さくなる。

酸化物燃料と同様に組織変化(文献[7]によると、組織変化によるペレットの理論密度比は最大 0.95、最小0.72であることから、例としてZoneIVの理論密度比を0.85、ZoneIIIの理論密度比を0.95、 Zone II の理論密度比を0.85、Zone I の理論密度比を0.72と仮定する)が起こるものと仮定し、上記 のペレットの熱伝導度の変化を考慮した場合においては、熱流束が中心部(Zone I)に比べ外周部 (Zone III)の方が大きいことから、外周部のペレット熱伝導度の増加の効果が試料最高温度(ペレ ット中心部)に与える影響が大きく、試料最高温度は組織変化を考慮しない場合に比べ低くなる。 したがって、組織変化の効果を考慮せず熱設計を行えば安全側の評価結果となることから、炭化

物燃料においては組織変化の効果を考慮しない設計を行う。



第2.3.2図 炭化物燃料組織の再編成の模式図

2.4 FP ガス放出挙動

プルトニウム・ウラン混合炭化物燃料は、プルトニウム・ウラン混合酸化物燃料に比べ低い FP ガ ス放出率を示す。

実験結果を第2.4.1 図に示す^[8]。第2.4.1 図から燃焼とともに FP ガス放出率は上昇するが、設計 においては保守的に 50%一定とする。



第2.4.1図 炭化物燃料のFPガス放出率

2.5 スエリング

プルトニウム・ウラン混合炭化物燃料は、核分裂性物質密度がプルトニウム・ウラン混合酸化 物燃料より高いため、スエリングは大きな値を示す^[9]。

燃焼度による被覆管の歪の変化を第2.5.1 図に示す^[10]。第2.5.1 図から約2at%の燃焼度でペレットと被覆管のギャップが完全に埋まったことがわかり、スエリングは約1.5%/at%BUであったと評価されている。設計では保守的に2%/at%BUとする。



2.6 クリープ速度

プルトニウム・ウラン混合炭化物燃料は、プルトニウム・ウラン混合酸化物燃料に比べて、第 2.6.1 図^[11]に示すとおり、クリープ速度は小さい。クリープ速度はドイツで開発された燃料挙動 コード URANUS の式^[12]を採用する。

> $\varepsilon(h^{-1}) = 1.49 \times 10^{10} \cdot \sigma^{2.44} \cdot \exp(-63200/T) + 3.6 \times 10^{-22} \cdot F \cdot \sigma$  $\sigma$ : 実効応力 (MPa)

**T**:温度(K)

F:核分裂率比 (fissions/cm³・s)



3. 被覆管の浸炭

プルトニウム・ウラン混合炭化物燃料は、酸素ポテンシャルが非常に小さいため、プルトニウム・ ウラン混合酸化物燃料のような被覆管腐食は起きず、浸炭が見られる。

EBR-IIで燃焼度 8.6at%まで照射した結果、プルトニウム・ウラン混合酸化物燃料のような被覆管腐食はなく、浸炭は見られず、また、12at%でも浸炭は最大 40 $\mu$ m であった^[13]ことから、保守的に浸炭層を 100 $\mu$ m とし、この浸炭層を減肉とみなす。
#### 参考文献

- [1] Hj. Matzke, Science of Advanced LMFBR Fuels, 1986, p. 62.
- [2] D. C. Fee and C. R. Johnson, ANL-AFP-11.
- [3] H. Kleykamp, "The Chemical State of Irradiated Carbide Fuel Pins," Advanced LMFBR fuels, Topical Meeting Proceedings, Tucson, Arizona, October 10-13, 1977.
- [4] H. E. Schmidt, Germann Report kfk-1111 (1969) PartVII.
- [5] H. Steiner, Germann Report kfk, IMF-229.
- [6] E. K. Storms, US Report LA-9524 (1982).
- [7] H. Blank, et al., "Study of Advanced Fuels in Highly Rated He-Bonded Pins," Proc. European Nuclear Conf., Paris, Aprill 21-25 (1975), p. 380.
- [8] R. J. Herbst and R. W. Stratton, Proc. Int. Conf. on Reliable Fuels for Liquid Metal Reactors, Tucson, Arizona, September 7-11, 1977.
- [9] W. Dinest, "Swelling, densification and creep of (U, Pu)C fuel under irradiation," J. Nucl. Mater., 124 (1984), pp. 153-158.
- [10] H. E. Häfner, "Irradiation devices for the study of creep and swelling in ceramic fuels," J. Nucl. Mater., 65 (1977), pp. 65-71.
- [11] I. Müller-Lyda and W. Dinest, "A measurement of the irradiation-induced creep of mixed carbide nuclear fuel," J. Nucl. Mater., 90 (1980), pp. 232-239.
- [12] T. Preusser, "Modeling of Carbide Fuel Rods," Nucl. Technol., 57 (1982), pp. 343-371.
- [13] T. W. Latimer, et al., Proc. Int. Conf. on Fast Breeder Reactor Fuel Performance, Monterey, California, March 5-8 (1979), pp. 816-826.

添付 2

プルトニウム・ウラン混合窒化物燃料について

## 1. 概要

プルトニウム・ウラン混合窒化物燃料は、高い重金属元素密度及び高い融点をもち、また優れた熱 伝導度を示す。窒化物燃料は、温度に対応する窒素分圧をとるため、温度に対応する窒素分圧となる までは、高温分解により窒素が乖離するという特徴がある。

ここではプルトニウム・ウラン混合窒化物燃料の主な物性と設計上の考慮について記す。

# 2. 主な物性

### 2.1 理論密度

プルトニウム・ウラン混合窒化物燃料は、重元素密度がプルトニウム・ウラン混合酸化物燃料より 高いため、理論密度も高い値を示す^[1]。

UN: 14.33  $g/cm^3$ 

 $PuN: 14.24 \text{ g/cm}^3$ 

2.2 融点

窒化物燃料は第2.2.1図^{[2][3]}に示すように燃料温度に対応する窒素分圧をとり、この窒素分圧に見 合う窒素は、窒化物燃料の分解によって賄われる。すなわち、燃料温度に対応する窒素分圧となるま では、窒化ウランはウランと窒素に、窒化プルトニウムはプルトニウムと窒素に分解する。ただし、 あらかじめ窒素雰囲気にする等により、実際の窒素分圧が第2.2.1図の燃料温度に対応する窒素分圧 より高い場合は分解しない。

第2.2.1 図の屈曲部が窒化ウラン及び窒化プルトニウムそれぞれの窒化物としての融点であり、屈 曲部より低温側は分解であることから、温度上昇により分解が進行した場合、溶融温度及び溶融温度 に対応する窒素分圧となった後、窒化物として溶融するものと推測される。

燃料温度の熱設計基準値の設定については、別紙5別添3添付2参照。



2.3 熱伝導度

(1) 熱伝導度式

UN について、Matzke により整理された実験結果から得られた温度依存の熱伝導度幅^[1]及び Washington の式から算出された熱伝導度値^[4]を第2.3.1図に、Pu 混合比依存の熱拡散率^[5]を第2.3.2 図に示す。第2.3.1図から Washington の式は UN の実験結果をよく表している。

(Pu, N)N については、この Washington の式に第2.3.2 図から求められる Pu 混合比による熱拡散率の UN 熱拡散率に対する割合を乗ずることにより求めるものとする。

第 2.3.1 図の下限値及び第 2.3.2 図のプルトニウム混合比 40wt% (プルトニウムの再分布として 10wt%増加を考慮)の熱拡散率の割合を考慮し、プルトニウム混合比 50wt%の条件においても適応で きるように定める。

PuN(50%)UN(50%)の熱拡散率/UN(100%)の熱拡散率 = 0.6

<UN>



第2.3.1図 窒化ウランの熱伝導度

⁴³ 条-別紙 3-別添 1-13



第2.3.2図 Pu 混合比依存の熱拡散率

(2) 組織変化の考慮

窒化物燃料についても、炭化物燃料と同様に組織変化が生じにくいことから、組織変化の効果を考 慮しない設計を行う。 2.4 FP ガス放出挙動

プルトニウム・ウラン混合窒化物燃料は、プルトニウム・ウラン混合酸化物燃料に比べ低い FP ガ ス放出率を示す。

実験結果を第2.4.1 図に示す^[6]。第2.4.1 図及び EBR-II で照射した燃料ピン(燃料密度 81~89%理 論密度、線出力 810~1070W/cm、燃焼度 3.6~5.7at%)の FP ガス放出率が、13.4~21.7%であるとい う報告^[7]から、設計においては保守的に 50%一定とする。



第2.4.1図 窒化物燃料のFPガス放出率

2.5 スエリング

プルトニウム・ウラン混合窒化物燃料は、核分裂性物質密度がプルトニウム・ウラン混合酸化 物燃料より高いため、スエリングは大きな値を示す。

燃焼度による被覆管の歪の変化を第2.5.1 図に示す^[7]。第2.5.1 図から約 3at%の燃焼度でペレットと被覆管のギャップが完全に埋まったことがわかり、スエリングは約1.8%/at%BU であったと評価されている。設計では保守的に2%/at%BU とする。



第2.5.1図 窒化物燃料の被覆管歪

2.6 クリープ速度

第2.6.1 図に示すように、窒化物燃料は酸化物燃料よりクリープ速度は小さい。このことから、(Pu, U)N についても (Pu, U)C の式 (URANUS の式^[8])を採用する。

 $\varepsilon(h^{-1}) = 1.49 \times 10^{10} \cdot \sigma^{2.44} \cdot \exp(-63200/T) + 3.6 \times 10^{-22} \cdot F \cdot \sigma$ 

σ: 実効応力 (MPa)

T:温度(K)

F:核分裂率比 (fissions/cm³・s)



第2.6.1図 窒化物燃料ペレットのクリープ

3. 被覆管の窒化

プルトニウム・ウラン混合窒化物燃料は、酸素ポテンシャルが非常に小さいため、プルトニウム・ ウラン混合酸化物燃料のような被覆管腐食は起きず、窒化が見られる。

EBR-IIで SUS316 被覆管の燃料要素を燃焼度 8.7at%まで照射した結果、プルトニウム・ウラン混合酸化物燃料のような被覆管腐食はなく、窒化がまったく見られなかった^[9]。しかし、SUS304 被覆管の燃料要素においては燃焼度 32,100MWd/t まで照射した結果、被覆管内表面がわずかながら窒化したと推察されており^[10]、このことから保守的に窒化層を 100 µm とし、設計においてはこの窒化層を減肉とみなして評価する。

4. 窒化物の分解挙動

(1) 窒化物燃料の分解

窒化物燃料は燃料温度に対応する窒素分圧となるまでは、窒化ウランはウランと窒素に、窒化プル トニウムはプルトニウムと窒素に分解する(2.2 参照)。プルトニウム・ウラン混合窒化物燃料の場 合、窒化プルトニウムが優先的に分解するため^[11]、発生する金属はほぼ全量プルトニウムであると推 定される。

(2) 分解により発生したプルトニウムの挙動

分解により発生したプルトニウム(高温部で発生するため蒸気である)は、大部分が単体として、 もしくは周辺のわずかな窒素と結合し再度窒化物として低温部に存在するものと推測される。すなわ ち、分解によって発生したプルトニウムは、高温部から低温部へ移行する傾向にあると考えらる。ま た、微量ではあるがプルトニウム蒸気としてガスプレナムへ放出されることが考えられる。

分解により発生するプルトニウムの量としては、窒化物燃料の熱設計基準値を窒素分圧が 0.1atm となる窒化プルトニウムの温度とするため、最大で窒素分圧 0.1atm に相当する量となる。窒化物試 験用要素のプレナム体積は最大 4.2cm³であり、0.1atm の窒素量に相当する金属プルトニウムの量は 最大約 26mg と評価される。

なお、この量は過出力時に発生するプルトニウム量であり、定格出力時(通常運転時)のプルトニウム量は約 0.26mg 以下と評価され、多量の質量移行は起こらない。

また、プルトニウム・ウラン混合窒化物燃料の燃料中心温度が約2,500℃と評価される条件下で8時間照射した場合でも、窒化物燃料が分解しているという兆候は認められないと報告されている^[13]。

(3) プルトニウムと被覆管の共存性について

プルトニウムは被覆管の主成分である鉄と約 410℃で、ニッケルと約 450℃で共晶反応を起こす。 したがって、窒化プルトニウムの分解により発生したプルトニウムが高温部から低温部へ移行し、燃 料ペレットの表面に達した後、被覆管と接触した場合、被覆管内面温度が共晶反応温度以上であるこ とから、プルトニウムと被覆管の共晶反応が生じる。

しかし、通常運転時におけるプルトニウムの移行は多量には起こらず、プルトニウム・ウラン混合 窒化物燃料の共晶反応は、金属燃料で発生した共晶反応よりも小規模であると推定され、被覆管の健 全性について問題ないものと考えられる。 5. 被ばく評価への影響

窒化物燃料では、試料温度に相当する燃料蒸気が存在するため、万一、先行試験用要素の被覆管が 破損した場合、放射性物質として核分裂生成ガスに加えて、この蒸気が放出される。放出された燃料 蒸気は冷却材中で速やかに冷却、固化するため、アルゴン廃ガス系への移行率は小さい。

さらに、照射試験中に燃料破損検出設備により試験用要素の被覆管の開孔又は破損が検知された場合には、速やかに廃ガス貯留モードに切り換えるとともに、原子炉を停止し、照射燃料集合体を炉心から取り出すこととしている。

このような制限条件を設けているため、窒化物燃料の破損に伴って大気中へ放出される放射性物質等は十分少なく無視できる程度である。

#### 参考文献

- [1] Hj. Matzke, Science of Advanced LMFBR Fuels, 1986, p. 62.
- [2] W. M. Olson and R. N. R. Mulford, J. Phys. Chem., 67 (1963), pp952-954.
- [3] E. T. Weber, BNWL-842, 1968.
- [4] A. B. G. Washington, TRG-2236 (1973).
- [5] D. L. Keller, BMI-1837 and 1845 (1968).
- [6] A. A. Bauer, et al., "Mixed-Nitride Fuel Irradiation Performance," Proc. on Fast Reactor Fuel Element Technology, 785 (1971).
- [7] A. A. Bauer, et al., Proc. Int. Conf. on Fast Breeder Reactor Fuel Performance, Monterey, California, March 5-8 (1979), pp. 827-841.
- [8] T. Preusser, "Modeling of Carbide Fuel Rods," Nucl. Technol., 57 (1982), pp. 343-371.
- [9] A. A. Bauer, et al., Proc. Topical Meeting on Advanced LMFBR Fuels, Tucson, Arizona, Oct. 10-13 (1977), pp. 299-312.
- [10] A. A. Bauer, et al., Proc. Conf. on Fast Reactor Element Technology, New Orleans, Lousiana, April 13-15 (1971), pp. 785-817.
- [11] A. A. Bauer, "Nitride Fuels: Properties and Potentials," Reactor Tech., 15 (1972), pp. 87-104.
- [12] Y. Suzuki, et al., "Vaporization behavior of uranium-plutonium mixed nitride," J. Nucl. Mater., 188 (1992), pp. 239-243.
- [13] M. Mikailoff, et al., "Irradiation of Mixed Uranium and Plutonium Carbide and Nitride Fuels in the Fast Neutron Loop "MFBS"," CEA-N-1186 (EURFNR-688) (1969).

添付3

ウラン・プルトニウム・ジルコニウム合金(金属燃料)について

1. 概要

金属燃料は、高い増殖率、高い重金属密度等の特長を持ち、射出鋳造・乾式再処理技術の適用によ る経済性向上への期待等がある。照射試験用金属燃料要素の設計では、従来の実績にない液相腐食等 の挙動を考慮する必要がある。

ここではウラン・プルトニウム・ジルコニウム合金の主な物性と設計上の考慮について記す。

2. 主な物性

2.1 融点

燃料スラグは、U, Pu, Zr からなる合金であるため、その融点は、U, Pu, Zr の組成によって決まると 考えられる。U-Pu-Zr 3元系状態図より U-Zr 合金及び U-Pu-Zr 合金の固相線温度が評価されている ^[1]。これらを燃料組成について整理すると、固相線温度を評価する式として(2.1-1)式が得られる^[2]。

$$(2.1-1)$$

 $T = A_0 + A_1 N_{Zr} + A_2 N_{Zr}^2 + A_3 N_{Zr}^3$   $A_0 = 1408 - 1187 N_{Pu} + 967 N_{Pu}^2$   $A_1 = 572 - 732 N_{Pu} + 4960 N_{Pu}^2$   $A_2 = 740 + 3305 N_{Pu} - 29182 N_{Pu}^2$   $A_3 = -624 - 3139 N_{Pu} + 36120 N_{Pu}^2$   $T_m : 融点(K)$   $N_{Zr} : Zr 原子数比(-)$   $N_{Pu} : Pu 原子数比(-)$ 適用範囲:

 $\frac{N_{Pu}}{N_{U}} < 1$ ,  $N_{Zr} < 0.8$  ( $N_U$ : Pu 原子数比(-))

また、U-Pu-Zr 合金については、未照射材の融点測定値^{[3][4][5]}が得られている。これらの測定結果 と(2.1-1)式による固相線温度の評価結果を比較したものが第2.1.1図である。第2.1.1図に示すよ うに、(2.1-1)式による評価結果から25℃差し引くことにより、測定値を包絡することができる。 金属燃料の仕様範囲で最も固相線温度が低くなるのは、プルトニウム混合比 21%、ジルコニウム混 合比9%の場合である。このとき、(2.1-1)式から固相線温度は1089℃と評価される。



第2.1.1図 U-Pu-Zr 合金の融点の実測値と評価結果の比較

43 条-別紙 3-別添 1-23

2.2 熱伝導度

金属燃料は金属であるため、酸化物燃料に比べ高い熱伝導度を持つという特徴があるが、燃焼に伴い、燃料内部に F.P. ガスの生成によるガス気孔が形成されるため、熱伝導度が低下する。そのため、 熱伝導度の評価においては、ガス気孔の形成に伴う熱伝導度の低下を考慮して評価する。

金属燃料の熱伝導度については、未照射のU-Zr合金及びU-Pu-Zr合金の熱伝導度の測定データが、 N_{Pu}/(N_U+N_{Pu})<0.2、N_{Zr}<0.72、T<1173Kの範囲で得られている^{[3][6][7][8][9]}。これらの測定値をフィッ ティングすることにより、未照射材の熱伝導度 $\lambda_0$ が(2.2-1)式で与えられる^[2]。第2.2.1図に熱伝導 度の測定結果と(2.3-1)式による評価結果を比較するが、(2.2-1)式による評価結果は、未照射材の熱 伝導度をよく再現していることが分かる。

 $\lambda_0 = 16.309 + 0.02713 \cdot T - 46.279 \cdot N_{Zr} + 22.985 \cdot N_{Zr}^2 - 53.545 \cdot N_{Pu} \qquad (2.2-1)$ 

λ₀:未照射材のノミナルの熱伝導度(W/mK)

T:温度(K)

N_{Zr}: Zr 原子数比(-)

N_{Pu}:Pu原子数比(-)

一方、照射中の燃料スラグの内部には、F.P.ガスの蓄積によるガス気孔が形成する。ガス気孔の熱 伝導度は金属合金と比較して低いため、燃料スラグ内の実効的な熱伝導度は低下する。ガス気泡の形 成の効果を含めた燃料合金の実効的な熱伝導度として、Bauer と Holland^[10]は、未照射熱伝導度のノ ミナル値λ₀に補正項を乗じる(2.2-2)式を推奨している。

ボンドナトリウムが浸入する前:

$$\lambda_{eff} = \lambda_0 \cdot (1 - P_g)^{(3/2)\varepsilon}$$

$$\lambda_{eff} : 照射時の熱伝導度 (W/mK)$$

$$P_{eff} : Khrister (V/mK)$$

$$(2.2-2)$$

Pg:燃料スラグ内の気泡の体積割合 (-)

$$P_g = \frac{dV/V_0}{1 + dV/V_0}$$

dV/V₀:スエリング量

$$dV/V_0 = \left(\frac{100}{SD}\right) \left(1 + \frac{\Delta L}{L_0}\right) - 1$$

SD:燃料ピンのスミア密度(%)

ε: 気泡形態定数 (ε=1.72)

ボンドナトリウムが浸入した後:

$$\lambda_{eff} = \lambda_0 \cdot \left[ 1 - 3 \cdot \frac{1 - \lambda_{Na}/\lambda_0}{2/\varepsilon + (3 - 2/\varepsilon) \cdot (\lambda_{Na}/\lambda_0)} \cdot \frac{P_{Na}}{1 - P_g} \right] \cdot \left( 1 - P_g \right)^{3/2}$$
(2.2-3)  
 $\lambda_{Na}$ : 照射時の熱伝導度 (W/mK)

適用範囲:

$$\frac{N_{Pu}}{(N_U+N_{Pu})}$$
 < 0.2、 $N_{Zr}$  < 0.72、 $T$  <  $T_m$ 、燃料スミア密度 72%以上

なお、燃焼が進むと燃料スラグ中のガス気孔の成長と拡散が進み、燃料スラグ外部と通じる開気孔 (オープンポア)が形成される。このオープンポアを通じて、燃料スラグ内部にボンドナトリウムが 浸入することにより、熱伝導度が上昇する((2.2-3)式)。

ここでは、燃焼に伴う効果を保守側に評価するため、ナトリウムの燃料スラグへの浸入は考慮せず、 (2.3-2)式のみを用いることとし、燃料スラグ内気泡割合は、スエリングの最大値を全照射期間にわ たって一定に与えるものとする。

第2.2.2 図は、照射後のU-Zr 合金(スミア密度 75%)及びU-Pu-Zr 合金(スミア密度 72%)の断 面観察から得られた相境界位置により評価したスラグ内温度^[11]と(2-2)式の熱伝導度を用いた温度 分布計算結果とを比較したものであるが、(2.2-2)式は実測値に対して十分に保守的である。



第2.2.1図 未照射合金燃料の熱伝導度の実験値と評価結果の比較



第2.2.2 図 燃料スラグ内温度の実測値と計算式の比較

2.3 ボンドナトリウム部熱伝達率

被覆管と燃料スラグの間のギャップにはナトリウムが充填されている。このボンドナトリウム部の 熱伝達率は、ナトリウムの熱伝導のみを考慮して、下式で計算する。

$$H_{G} = \frac{\lambda_{Na}}{G}$$
  
 $\lambda_{Na} = 0.93978 - 3.20505 \times 10^{-4} \cdot T_{c} + 3.6192 \times 10^{-8} \cdot T_{c}^{2}$   
 $G = \frac{(D_{c,max} - D_{f,min})}{2}$   
 $H_{0}: ボンドナトリウム部熱伝達率 (W/m^{2}C)$   
 $\lambda_{Na}: ナトリウム熱伝導度 (W/m^{C})^{[12]}$   
 $G: 製造時ギャップ幅 (m)$   
 $D_{c,max}: 製造仕様上の被覆管許容内直径最大値 (m)$   
 $D_{f,min}: 製造仕様上の燃料スラグ許容外直径最小値 (m)$   
 $T_{c}: 被覆管内表面温度 (F)$   
適用範囲:  
 $T_{c} < 881.4^{C}$ 

照射中には燃料スラグのスエリングによって、被覆管と燃料スラグとの間のギャップが減少してい くが、ボンドナトリウム部熱伝達係数を保守側に評価するため、ギャップ幅は製造時のギャップ幅を 使用することとする。 2.4 スエリング

燃料スラグに核分裂によって生成した固体状 F.P. や気体状 F.P. が蓄積すると燃料スラグがスエリ ングする。燃料スラグのスエリングについては、スミア密度 74%~75%の燃料スラグの軸方向伸びの 測定結果が得られている^{[13][14]}。金属燃料のスエリングは、燃焼初期が大きく、燃焼が進むと飽和す る傾向を示す。第2.4.1 図、第2.4.2 図は燃料スラグの軸方向伸びの測定値を燃焼度に対して整理し たものである。燃料スラグの軸方向伸びはピーク燃焼度 1at%~2at%まで伸びを示すが、さらに燃焼 が進むと飽和する傾向を示している。これは、スエリングが進行することにより、燃料スラグが被覆 管と接触して軸方向の伸びが抑えられると共に、F.P. ガスの放出が開始してガススエリングも抑えら れるためと考えられる。

以上より、燃焼初期(ピーク燃焼度 lat%)で燃料スラグと被覆管とが軸方向の全面にわたってスエ リングすると保守側に仮定すると、スエリング量は次のように表される。

> $dV/V_0 = \left(\frac{100}{SD}\right) \left(1 + \frac{\Delta L}{L_0}\right) - 1$  $dV/V_0 : スエリング量 (-)$ SD : 燃料ピンのスミア密度 (%)

ΔL/L₀:燃料スラグの軸方向伸び(-)

照射試験を計画中の U-20wt%Pu-10wt%Zr 燃料(B型照射燃料集合体(先行試験(その5)用))の 場合、仕様や照射条件が近い第2.4.2 図の U-19wt%-10wt%Zr 燃料のデータを包絡するように軸方向伸 びを4%とすると、上式より次の値が得られる。

> 先行試験用要素(6)(スミア密度77.4%)の場合:dV/V₀=0.344 先行試験用要素(7)(スミア密度74.4%)の場合:dV/V₀=0.398





2.5 クリープ速度

U-Pu-Zr 合金の定常クリープ歪速度を求める式として、組成依存性を考慮しない次の計算式^[15]がある。

 $\varepsilon_{creep} = (0.5 \times 10^4 \cdot \sigma + 6.0 \cdot \sigma^{4.5}) \exp(-26170/T) : U 相の変形が支配的な低温領域$  $<math>\varepsilon_{creep} = (8.0 \times 10^{-2} \cdot \sigma^3) \exp(-14350/T)$  : 固溶体が形成される高温領域  $\varepsilon_{creep} : クリープ歪速度 (/s)$   $\sigma : 応力 (MPa)$ T:温度 (K)

一方、ある応力の下で U-Pu-Zr 合金に 2%のクリープ歪みを生じるのに要した時間を測定した結果 が報告されている^{[3][4][16]}。これらからクリープ歪み速度を求めたもの(実験値)と上式によって計算 される定常クリープ歪み速度との比較を第2.5.1 図に示す。ただし、図の「計算式」では、T≤650℃ で上段の式を、650℃<T で下段の式を用いた。計算式は文献[3]及び[16]のデータと比較的良く一致 する。計算式による U-Pu-Zr 合金のクリープ歪み速度を第2.5.2 図に示す。



第2.5.1図 U-Pu-Zr 合金のクリープ歪み速度の計算式と実験値との比較



第2.5.2 図 計算式による U-Pu-Zr 合金のクリープ歪み速度

3. 被覆管内面腐食について

- 3.1 F.P.による被覆管内面腐食(FCCI)
- (1) F.P.による被覆管内面腐食量(FCCI量)

燃料スラグと被覆管とが接触した際、燃料スラグ外周部に移行した F.P. 元素と被覆管成分の元素との化学的相互作用(FCCI)により、被覆管内面腐食が生じる。

金属燃料要素の被覆管内面腐食量については、Cohen ら^[17]及びPahl ら^[18]により、照射済のU-10wt%Zr 合金及びU-19wt%Pu-10wt%Zr 合金燃料要素(スミア密度約75%、燃焼度~11at%、HT9 製 被覆管)の実測値が得られている。

ここで、FCCIによる被覆管内面腐食は拡散律速に従うものと仮定する。このとき、係数Dの温 度依存性は、第3.1.1図に示すようにアレニウスプロットで表される。測定試料の被覆管内面温 度条件によるばらつきを考慮し、最も腐食が進行している実測値を包絡できるように係数Dを定 めると、FCCIによる内面腐食量を評価する式として、下式が得られる。

1) 照射直後

$$\delta_{FCCI} = \sqrt{D \times \Delta B} \tag{3.1-1}$$

$$D = 1.780 \times 10^9 \times \exp\left(\frac{-12500}{T_c}\right) \tag{3.1-2}$$

δ_{FCCI}:FCCI 量 (μm) ΔB:燃焼度増分 (at%) D:係数 (μm²/at%)

T_c:被覆管伝導度(W/mK)

2)FCCI発生後の増分量

$$\Delta \delta_{FCCI} = \frac{D}{2 \times \delta_{FCCI}} \times \Delta B \tag{3.1-3}$$

Δδ_{FCCI}: FCCI 量増分 (μm)

適用範囲

被覆管内面温度 650℃以下

(3.1-1)~(3.1-3)式による FCCI による被覆管内面腐食量の評価結果と実験結果を比較したもの が第3.1.2 図である。第3.1.3 図は、実際の被覆管内面温度変化^[11]に対して FCCI 量増分を評価し たものであり、この増分形式の評価が十分保守的であることを示している。

被覆管の強度評価では、上記の減肉効果を考慮してその健全性を確認する。







第3.1.2図 FCCIの評価結果と実験値の比較 (U-10wt%Zr, U-20wt%Pu-10wt%Zr, HT9 被覆管)

43 条-別紙 3-別添 1-33



第3.1.3 図 被覆管温度変化に対する FCCI 層厚さの評価結果 (U-19wt%Pu-10wt%Zr, HT9 被覆管, スミア密度 75%)

(2) 被覆管内面腐食量評価における材料仕様の比較

本設計における F.P.による被覆管内面腐食量及び後述する液相腐食量の評価式は、米国におい て取得された HT9 製被覆管の内面腐食データを基に定めている。

高速炉用フェライト系ステンレス鋼とHT9の組成の比較を第3.1.1表に示す。

第3.1.1表に示すとおり、HT9は設置変更許可申請書に記載の高速炉用フェライト系ステンレス 鋼の仕様範囲内である。高速炉用フェライト系ステンレス鋼とHT9は、共に高速炉用として改良 された Fe-12wt%Cr を主成分とするフェライト/マルテンサイト鋼であり、高温強度を高めるため に Mo, W, V, Nb 等が添加されている。

HT9と比較した場合、高速炉用フェライト系ステンレス鋼は、高温強度をより高めるため、W等の微量元素添加量が異なるが、主要な成分であるFe,Cr等は同等である。よって、被覆管内面腐 食において重要となる燃料スラグ成分と被覆管成分の化学的挙動に関しては、高速炉用フェライ ト系ステンレス鋼とHT9は同等と見なすことができる。

以上より、F.P.による被覆管内面腐食量及び液相腐食量の評価式は、米国において取得された HT9 製被覆管の内面腐食データを基に定めることとしている。

							-						
成分 鋼種	С	Si	Mn	Р	S	Ni	Cr	Mo	W	Ν	Nb	V	Fe
高速炉用	0.07		0.30				10.0					0.15	
フェライト系	2	< 0.50	2	≦0.030	≦0.030	≦1.00	2	≦2.00	≦2.50	≦0.10	≦0.25	2	Balance
ステンレス鋼	0.25		1.00				13.0					0.35	
НТ 9 [19]	0.20	0.38	0.59	_	_	0.62	11 95	0.99	0.52	_	_	0.30	Balance
1113	0.20	0.00	0.00			0.02	11.55	0.33	0.02			0.00	(約 84)

第3.1.1表 高速炉用フェライト系ステンレス鋼とHT9の比較

3.2 金属液相による被覆管内面腐食

(1) 液相形成下限温度

金属燃料の液相腐食とは、燃料スラグと被覆管が接触し、その境界面の温度が液相形成下限温 度を超えたとき、燃料スラグ成分と被覆管成分との共晶反応によって境界部に液相が形成し、被 覆管が侵食され、減肉する現象である。

燃料スラグと被覆管の境界面における液相形成の有無に関して、炉外加熱実験^{[17][20]~[25]}が行われている。被覆管の主要元素である Fe と最も低い温度で液相を形成する燃料構成元素は Pu である (Pu-Fe 系の共晶点は約 410℃) ことから、燃料中の Pu 濃度は液相形成を左右する条件の一つであると考えられる。よって、炉外加熱実験の液相形成に関する結果は、照射燃料の加熱試験データも含めて (U+Pu)に対する Pu の原子数割合によって第 3.2.1 図のように整理することができる。

照射済 U-19wt%Pu-10wt%Zr 燃料(~10at%)の炉外加熱試験の結果では、測定誤差も含み、液相 形成下限温度は 650℃~660℃と報告されている。また、Pu 原子数比が高い程、より低い液相形成 下限温度を示すことが第 3.2.1 図により示されるが、先行試験用要素に用いる燃料スラグの Pu 原 子数比(=0.22)より高い U-Pu 合金(=0.25)では 650℃で液相は生じていない。以上より、液相 形成下限温度を 650℃と定める。

 $T_e = 923$  (650°C)

T_e:液相形成下限温度(K)

適用範囲



 $\frac{N_{Pu}}{(N_U + N_{Pu})} < 0.25$ 

第3.2.1 図 液相形成の有無に関する炉外拡散実験結果

43 条-別紙 3-別添 1-36

[134]

(3, 2-1)

(2) 金属液相による被覆管内面腐食量

U-Pu-Zr 合金燃料スラグと被覆管の接触部が液相形成下限温度を超えると、接触界面に形成され る反応層の一部に液相が生じて、被覆管内面が侵食される。この反応層の一部に液相を有するよ うな腐食の速度は、F.P.による被覆管内面腐食に比べて速い。

液相腐食量については、照射済のU-19wt%Pu-10wt%Zr 合金燃料要素(燃焼度~11at%、HT9 製被 覆管)の一部を切り出して、炉外での外部加熱によって一定温度に保持した場合の液晶腐食厚さ が測定されている。この測定結果^{[17][26]}によれば、液相侵食は温度が高いほど進行し、時間と共に 減少する傾向にある。

ここで、金属液相による被覆管内面腐食は拡散律速に従うものと仮定する。このとき、係数 Kliq の温度依存性は、第3.2.2 図に示すようにアレニウスプロットで表される。測定試料の被覆管内 面温度及び燃焼度によるばらつきを考慮し、最も腐食が進行している実測値を包絡できるように 係数 Klig を定めると、金属液相による内面腐食量を評価する式として、下式が得られる。

$$\Delta \delta_{lig} = K_{lig} \times \Delta t^{0.5} \tag{3.2-2}$$

$$K_{liq} = 3.39 \times 10^4 \times \exp\left(\frac{-10500}{T}\right)$$
 (3. 2-3)

 $\Delta \delta_{liq}$ :液相腐食量( $\mu$ m)  $\Delta t$ :時間増分(s)  $K_{liq}$ :液相腐食係数( $\mu$ m/s^{0.5}) T:温度(K)

適用範囲

 $T \ge 923 K$ 

(3.2-2)式の評価結果と実測値の比較を第3.2.3 図に示す。第3.2.3 図より、評価式は実測値を 保守的に評価できることが確認できる。

また、被覆管内面温度が変動する場合に、上記の計算式を適用する際には、これを増分形式で 表した次式で求まる腐食厚さの増分を加算することで腐食厚さを計算する。

$$\Delta \delta_{liq} = \frac{K_{liq}^2}{2\delta_{liq}} \Delta t \tag{3.2-4}$$

 $\delta_{liq}$ : 増分量計算開始時刻までに生じた液相腐食量 ( $\mu$  m) 被覆管の強度評価では、上記の減肉効果を考慮してその健全性を確認する。



第3.2.2 図 液相腐食量計算式の係数 Kliq の温度依存性 (U-19wt%Zr-10wt%Zr, HT9 被覆管, スミア密度 75%)



第3.2.3図 液相腐食量の実測値と評価結果の比較 (U-19wt%Zr-10wt%Zr, HT9 被覆管, スミア密度 75%)

参考文献

- M. Kurata, "Thermodynamic assessment of the Pu-U, Pu-Zr, and Pu-U-Zr systems," Calphad, 23[3-4] (1999), pp. 305-337.
- [2] T. Ogata, "Irradiation Behavior and Thermodynamic Properties of Metallic Fuel," J. Nucl. Sci. Techol., 39 Supplement 3 (2002), pp. 675-681.
- [3] L. R. Kelman, S. Gavage, C. M. Walter, B. Blumenthal, R. J. Duntworth, and H. V. Rhude, Proc. 3rd Int. Conf. on Plutonium, London, Nov. 22-26, 1965, (1967), pp. 458-484.
- [4] D. R. Harbur, et al., LA-4512, Los Alamos Scientific Laboratory (1970).
- [5] L. Leibowitz, et al., "Solidus and liquidus temperatures in the uranium-plutoniumzirconium system," J. Nucl. Mater., 154 (1988), pp. 145-153.
- [6] Y. Takahashi, et al., "Thermophysical properties of uranium-zirconium alloys," J. Nucl. Mater., 154 (1988), pp. 141-144.
- [7] Argonne National Laboratory, Chemical Technology Division Annual Technical Report for 1986, ANL-87-19 (1987).
- [8] Thermophysical Properties of Matter, Thermal Conductivity, Metallic Elements and Alloys I, ed. by Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Desai, IFI/Plenum, New York (1970).
- [9] Argonne National Laboratory, Reactor Development Progress Report, ANL-7230 (1996).
- [10] T. H. Bauer and J.W. Holland, "In-Pile Measurement of the Thermal Conductivity of Irradiated Metallic Fuel," Nucl. Technol. , 110 (1995), pp. 407-421.
- [11] A. M. Yacout, et al., "Average Irradiation Temperature for the Analysis of In-Pile Integral Measurements," Nucl. Technol., 115 (1996), pp. 61-72.
- [12] G. H. Golden, et al., "THERMOPHYSICAL PROPERTIES OF SODIUM," ANL-7323 (1967).
- [13] G. L. Hofman, et al., "Swelling behavior of U-Pu-Zr fuel," Metallurgical Trans., 21A (1990), pp. 517-528.
- [14] D. C. Crawford, et al., Trans. ANS, 71 (1994), p. 178.
- [15] E. E. Gruber and J. M. Kramer, Radiation-Induced Changes in Microstructure: 13th Inernational Symposium (part I) ASTM STP, 955 (1987), 432.
- [16] J. H. Kittel, et al., "Plutonium and plutonium alloys as nuclear fuel materials," Nucl. Eng. and Des., 15 (1971), pp. 373-440.
- [17] A. B. Cohen, et al., "Fuel/cladding compatibility in U-19Pu-10Zr/HT9-clad fuel at elevated temperatures," J. Nucl. Mater., 204 (1993), pp. 244-251.
- [18] R. G. Pahl, et al., "Performance of HT9 clad metallic fuel at high temperature," J. Nucl. Mater., 204 (1993), pp. 141-147.
- [19] M. M. Paxton, et al., "Comparison of the inreactor creep of selected ferritic, solid solution strengthed and precipitation hardened commercial alloys.," J. Nucl. Mater., 80 (1979), pp.144-151.
- [20] 尾形、他、電中研研究報告 T95030 (1996)。
- [21] T. Ogata, et al., "Reactions between U-Zr alloys and Fe at 923 K," J. Nucl. Mater.,

250 (1997), pp. 171-175.

- [22] K. Nakamura, et al., "Reactions of U-Zr alloy with Fe and Fe-Cr alloy," J. Nucl. Mater., 275 (1999), pp. 246-254.
- [23] T. Ogata, et al., "Reactions between U-Pu-Zr Alloys and Fe at 923 K," J. Nucl. Sci. Technol., 37 (2000), pp. 244-252.
- [24] K. Nakamura, et al., "Reactions of Uranium-Plutonium Alloys with Iron," J. Nucl. Sci. Technol., 38 (2001), pp. 112-119.
- [25] D. D. Keiser Jr. and M. C. Petri, "Interdiffusion behavior in U-Pu-Zr fuel versus stainless steel couples," J. Nucl. Mater., 240 (1996), pp. 51-61.
- [26] Integral Fast Reactor Program, Annual Progress Report FY1993, ANL-IFR-244 (1994).

添付 4

高速炉用フェライト系ステンレス鋼について

1. 高速炉用フェライト系ステンレス鋼の概要

一般にフェライト系ステンレス鋼は、12~25%Cr を含有する Fe-Cr 系合金で、体心構造をもっている。また、一般にフェライト系ステンレス鋼は、オーステナイト系ステンレス鋼(面心構造)より熱 伝導率がよく熱膨張率が小さいため熱応力を低減できるほか、耐スエリング性に優れていることが知 られている。

高速炉用フェライト系ステンレス鋼 (PNC-FMS 鋼) は、Fe-12Cr を主成分として合金の高温強度(主 に耐クリープ強度)を改良したフェライト系ステンレス鋼である。高温強度の改良点と、耐スエリン グ性について、以下に示す。

(1) 高温強度の改良

高速炉用フェライト系ステンレス鋼の高温強度を改良した点を JIS 鋼(405、410L)と比較すると、 大きく異なるのは次の点である。

①固溶強化元素として、Mo、Wを添加したこと。

②析出強化元素として、V、Nb を添加したこと。

固溶強化元素、Mo、Wは、高温クリープ強度を左右させる元素であり、Mo単体又はMo+Wとして添加しており、Moを約0.5wt%、Wを約2wt%添加して高温クリープ強度をより向上させている。

析出強化元素、V、Nb は、微量添加することにより高温強度(主にクリープ強度)を向上させる。 これは、V、Nb が、C、N と析出し安定に存在することによる。

また、Cの量は、高温強度、溶接性、加工性を考慮して決められる他、V、NやMo、Wの添加量によって異なってくる。

※SUS316 相当ステンレス鋼(オーステナイト)は、主に 20%冷間加工により高温強度を向上させている他、Nb、Ti 等の元素を微量添加することによりさらに高温強度(主にクリープ強度)を向上させている。

(2) 耐スエリング性

フェライト系ステンレス鋼(体心構造)は、耐スエリング性に優れているが、これは結晶構造上、 オーステナイト系ステンレス鋼(面心構造)に比べ、中性子照射により生じる空孔の移動速度が大き くすばやく消滅できる位置(粒界や析出物など)に動けること、また C や N と空孔が結びつきやすい ことなどから、ことさら多数の転位を導入したり、無理に析出物を作ったりする必要がない。つまり、 フェライト系ステンレス鋼の結晶構造自体がスエリングを抑制している。もちろん、転位や析出物の

存在もある程度スエリング抑制の効果はあるが、それ以上に空孔が自由に動けることの方が大きい。

※SUS316 相当ステンレス鋼(オーステナイト)も、中性子照射により生じる空孔が結晶を動き回り転位や析出物に 当たり消滅するが、空孔が動ける速度が小さいため途中で合体してより大きな空洞となり、それが成長してボイ ドとなりスエリングを発生させる。このため、オーステナイト系ステンレス鋼では、冷間加工を行い多数の転位 を導入し、さらに微細析出物を作ることによって、空孔が転位や析出物に当たり消滅する機会を多くすることに よってスエリングを抑制している。

43 条-別紙 3-別添 1-41

2. 高速炉用フェライト系ステンレス鋼被覆管材料の一般特性

### 2.1 機械的性質

(1) 引張強さ

代表的な高速炉用フェライト系ステンレス鋼の引張強度について、第2.1.1 図に降伏強さ、第2.1.2 図に引張強さ、第2.1.3 図に破断伸びを示す。第2.1.1 図及び第2.1.2 図から高温域では SUS316 相 当ステンレス鋼より低い値を示すが、通常運転時の最高使用温度(610℃)を制限することにより、 その健全性は十分確保される。また、第2.1.4 図、第2.1.5 図に照射により材料の引張強度に与える 影響について示す。



□Na中データ(約2500hr浸漬)

△照射データ(3.7 ~3.9 ×10²²n/cm², E >0.1eMev)



第2.1.1 図 高速炉用フェライト系ステンレス鋼の降伏強さ



第2.1.2図 高速炉用フェライト系ステンレス鋼の引張強さ



第2.1.3 図 高速炉用フェライト系ステンレス鋼の破断伸び

43 条-別紙 3-別添 1-43



第2.1.4図 高照射量条件下における降伏強度



第2.1.5図 高照射量条件下における引張強度

43 条-別紙 3-別添 1-44

(2) クリープ破断強度

代表的なクリープ破断強度を第2.1.6 図~第2.1.8 図に示す。第2.1.6 図は Fe-11~12Cr を主成分 とした材料の大気中におけるデータ、第2.1.7 図は Fe-12Cr を主成分とした材料の大気中及び Na 中 データ、第2.1.8 図は Fe-11Cr を主成分とした材料の炉内クリープ破断データと大気中データとの比 較である。また、第2.1.9 図に高速炉用フェライト系ステンレス鋼と SUS316 相当ステンレス鋼のク リープ破断強度の比較を示す。



第2.1.6図 大気中クリープ破断強度

43 条-別紙 3-別添 1-45


第2.1.7図 大気中及びナトリウム中クリープ破断強度



第2.1.8図 炉内クリープ破断試験(FFTF-MOTA)

43 条-別紙 3-別添 1-46



(3) 急速加熱バースト特性

急速加熱バーストデータは、運転時の異常な過渡変化時において被覆管が機械的に破損しない値と して温度を制限するもので、高速炉用フェライト系ステンレス鋼は未照射及び照射後のデータから保 守側に温度(810℃)を制限している(別紙5参照)。第2.1.10回に国産試作材の急速加熱バースト 試験データ及び米国のHT-9材の未照射及び照射後の急速加熱バースト試験データを示す。第2.1.10 図に示すように国産試作材及びHT-9材のいずれにおいても未照射と照射後の試験データに有意な差 は認められない。



* JOYO 530°C~580°C 3.8×10²²n/cm²(E>0.1Mev) ** FFTF 370°C~620°C 1~16×10²²n/cm²(E>0.1Mev)

第2.1.10図 被覆管急速加熱時の破損温度(高速炉用フェライト系ステンレス鋼)

(4)疲労特性

疲労特性については、国産試作材を用いた高温低サイクル疲労試験を実施しており、第2.1.11 図 に歪範囲-繰り返し数の関係を示す。炉心燃料要素で用いている SUS316 の疲労特性(第32 条その2 別紙10)よりも優れている。



第2.1.11 図 高速炉用フェライト系ステンレス鋼の高温疲労特性

43 条-別紙 3-別添 1-48

2.2 一般特性

燃料要素の設計に用いる材料の物理的性質データを SUS316 相当ステンレス鋼と比較して第 2.2.1 図~第 2.2.6 図に示す。高速炉用フェライト系ステンレス鋼の特徴としては、熱伝導率が SUS316 相 当ステンレス鋼より格段に良く、熱膨張率が小さいことのほかは、SUS316 相当ステンレス鋼とほぼ 同程度、または、それよりも優れた性質を有している。



43 条-別紙 3-別添 1-49

[147]



第2.2.4 図 平均熱膨張率



2.3 環境効果

材料を高温 Na 中及び高中性子束下で使用すると特性が変化する。ここでは、Na 環境効果、照射に 伴い生ずる材料のスエリング、照射クリープ、腐食等について示す。

(1) Na 環境効果

高速炉用フェライト系ステンレス鋼の材料強度に対する Na 環境効果は、500℃以上の高温域での使 用時間の増加に伴い脱炭及び熱時効効果により材料強度が低下する。引張強度については、炉外での 流動 Na 中浸漬試験及び熱時効試験に基づき引張強度の低減係数を求め、その積を Na 環境効果として いる。

①熱時効

試作材を 600℃、650℃、700℃の各温度で 2,570 時間 Ar ガス中に晒した後、受入れ材との強度比 をとって熱時効による強度低減係数とした。熱時効の 25,000 時間への外挿としては、通常用いられ るラーソンミラーパラメータ(LMP)法を用いたが、設計条件の 610℃、25,000 時間の LMP は約 21.5 であるのに対し、当熱時効試験の 2,570 時間 600℃及び 700℃の LMP は第 2.3.1 図に示すように各々 20.4 及び 22.8 となって内挿範囲内にあり、長時間側への外挿は十分妥当と判断される。



第2.3.1図 高速炉用フェライト系ステンレス鋼の熱時効による強度低減係数

②脱炭

フェライト鋼はオーステナイト鋼に比べて添加炭素濃度が高く、NbC 及び VC といった安定な炭化 物形成に消費される炭素量を差し引いても鋼中の固溶炭素濃度(活性度)はオーステナイト鋼よりも 高い。そのため、フェライト鋼では脱炭(鋼材表面の炭素活性度と Na 中に含まれる炭素活性度の差 により、炭素が鋼材表面から Na 中に溶出する現象)が大きくなる。

脱炭については、試作材の流動 Na 中浸漬試験(4m/s、2,570 時間、600℃、650℃、700℃、板厚 2mm、 両面曝露)により、Na 浸漬後の全炭素量分析及び引張試験を行い、平均炭素量の低下割合と引張強度 の低減係数との相関を求め、これを脱炭による強度低減係数とした。この相関図を第2.3.2 図に示す。

一方、全炭素分析から脱炭素行度定数(K)が求まり、これは次のように表される。

#### $K = 0.589 \exp(-30090/RT)$

- K: 脱炭素速度定数 (g/cm²s^{0.5})
- R: 気体定数
- T:絶対温度(K)

また、平均炭素量 (Cm) は被覆管のように片面曝露の場合、次のように表される。

 $C_m = C_o - 100K\sqrt{3600t}/(2\rho h)$ 

Cm: 平均炭素量 (w/o)

Co:初期炭素量 (w/o)

t:時間(h)

ρ:材料密度 (g/cm³)

h:板厚 (cm)

上式から平均炭素量を求め、第2.3.2 図の強度低減定数との相関図から、長時間での脱炭のみによる強度低下を求めた。設計条件での平均炭素量の低下割合は約0.215 であり、Na 中浸漬試験での約0.35 までの内挿範囲内にあるので、本短時間試験結果から長時間の脱炭による強度低下を決定することは妥当と判断される。



第2.3.2図 高速炉用フェライト系ステンレス鋼の脱炭による強度低減係数^[1]

(2) 照射効果

①引張強度

照射材の引張試験のデータは多くないが、EBR-II における HT-9 材の試験から第 2.1.4 図及び第 2.1.5 図に示すような高照射量条件での結果が得られている。

これらのデータから、IV型特殊燃料要素における使用温度(610℃)レベルでは、25×10²²n/cm²の 高照射領域まで引張強度の劣化がないものと判断される。これは、SUS316 相当ステンレス鋼でも同 様の傾向が見られるが、一般に低温側では照射による転位組織の創成により硬化(σ_y、σ_uの上昇) が生じるのに対し、高温側ではスエリングが発生しがたいのと同様に焼鈍効果による硬化が生じにく く、未照射材との強度の相異は小さいとされていることに合致している。

②クリープ破断強度

炉内クリープ破断強度のデータとしては第 2.1.8 図に示す試作材の FFTF-MOTA におけるものがあ り、これによれば 8.2×10²²n/cm²(E>0.1Mev)-まで照射による強度の低下は見られない。これは 500℃ 以上の高温領域ではスエリングが消失するように照射欠陥が焼鈍効果により消失し、照射の効果が表 れないためと考えられ、これは 25×10²²n/cm²程度の高照射領域においても同様と判断される。

FFTF においては、HT-9 材を被覆材とする燃料要素を  $24 \times 10^{22} n/cm^2$ まで 500 本照射(推定内圧応力 は  $10 kgf/mm^2$ ,最高温度  $610 \sim 670^{\circ}$ ) しているが 1 本の破損もないとの報告があり、クリープ破断強 度の照射による劣化はないことの傍証になると考えられる。

設計にあたっては、総合的な安全余裕として大気中クリープ破断強度式に 0.8 の安全係数を乗じる こととしており、照射効果の不確かさはこの余裕の中に吸収されるものと判断する。 (3) スエリング特性

一般にフェライト系ステンレス鋼の、高速中性子照射によるスエリング特性は、オーステナイト系 ステンレス鋼より非常に小さい。米国の HT-9 等のスエリング特性をもとに下記に示す評価式を作成 し、さらに国産試作材を「FFTF」及び「常陽」並びにイオン照射において照射データを取得しており、 評価式が十分安全側であることを確認している。

> $\Delta V/V = R \cdot \phi_t$   $R = \exp(-4.260 - 1.825\beta - 2.176\beta^2 + 0.579\beta^3 - 0.027\beta^4)$   $\beta = (T - 437)/100$  $\Delta V/V : \operatorname{A x } \operatorname{U } \operatorname$

第 2.3.3 図に高速炉用フェライト系ステンレス鋼のスエリングデータと評価式の関係を示す。第 2.3.4 図、第 2.3.5 図に設計に用いた高速炉用フェライト系ステンレス鋼の温度、照射量とスエリン グ量評価カーブを示した。また、SUS316 相当鋼のスエリングデータ評価カーブも比較用として併せ て示した。



第2.3.3 図 高速炉用フェライト系ステンレス鋼のスエリング特性

⁴³ 条-別紙 3-別添 1-56





(4) 炉内クリープ特性

炉内クリープ特性(照射クリープ及び熱クリープ)については、EBR-Ⅱで照射された HT-9 材のデ ータを基に下記に示す評価式を作成し、国産試作材を FFTF-MOTA において照射し、そのデータから十 分安全側であることを確認してある。第2.3.6 図に国産試作材の応力、温度一定の炉内クリープデー タと設計評価式との関係を示した。

(照射クリープ)

 $\varepsilon_{t} = 100 \cdot (B \cdot \phi_{t} \cdot \sigma^{1.3})$   $\varepsilon_{t} : 照射クリープ歪 (%)$   $B : 照射クリープ係数 ((kgf/mm²)^{-1.3} \cdot (10²²n/cm²)⁻¹)$   $\phi_{t} : 中性子照射量 (10²²n/cm², E>0.1MeV)$  $\sigma : 応力 (kgf/mm²)$ 

(熱クリープ)

 $\varepsilon_T = 3.49 \times 10^8 \exp(-4.182 \times 10^4/T) \sigma^2 \cdot t + 3.94 \times 10^8 \exp(-5.435 \times 10^4/T) \sigma^5 \cdot t$   $\varepsilon_T : 熱クリープ歪 (%)$  T : 温度 (°C)  $\sigma : 相当応力 (MPa)$ t : 時間 (s)



第2.3.6図 高速炉用フェライト系ステンレス鋼の炉内クリープ特性(FFTF-MOTA)

(5) 腐食

①Na 腐食(外面腐食)

高速炉用フェライト系ステンレス鋼の Na 腐食量については、試作材の Na 腐食試験データ及び米国の HT-9 材の Na 腐食試験データから「常陽」における使用条件を考慮した Na 腐食速度を設定した。 第2.3.7 図に高速炉用フェライト系ステンレス鋼の Na 腐食速度を示す。



第2.3.7 図 高速炉用フェライト系ステンレス鋼の Na 中腐食

②FCCI (内面腐食)

FCCI データについては、米国において HT-9 材を用いた燃料を約 17at%まで燃焼させたデータが公開されており、これによると SUS316 相当ステンレス鋼により優れた耐食性を示している。この他、 試作材を用いた炉外試験においていくつかのデータを有している。これらのデータから、高速炉用フ ェライト系ステンレス鋼の FCCI は、SUS316 相当ステンレス鋼より優れているものと判断されるが、 ここでは SUS316 相当ステンレス鋼の評価式を用いることとした。第 2.3.8 図に米国 HT-9 材の FCCI データを示す。



第2.3.8図 HT-9の内面腐食量(EBR-Ⅱ照射)

#### 2.4 衝撃特性

フェライト系ステンレス鋼の衝撃特性は、シャルピー衝撃試験をもとに延性一脆性遷移温度(DBTT) を定めている。シャルピー衝撃試験片の形状を第2.4.1 図に、DBTT の概念を第2.4.2 図に示す。炉 内の DBTT は時効効果及び照射効果を見込んでおり、それぞれの効果は温度のみに依存し、時効時間 及び照射量の依存性はないとしている。照射温度500℃付近を境に低温側は照射効果、高温側は時効 効果が DBTT 上昇の要因となっている(第2.4.3 図、第2.4.4 図)。

DBTTの設計式を以下に示す^[2]。

- *K*_t : 弹性応力集中係数
- *T* :照射温度 (℃)
- 適用範囲 :照射温度 350~650℃

照射温度範囲 350℃~650℃において最も高い DBTT を示す照射温度 350℃において、応力集中係数 を横軸に DBTT を整理した結果を第2.4.5 図に示す。応力集中係数を3.0(被覆管最大)とし、被覆管 肉厚最大 0.8mm を考慮して試験片 1mm の値で考えると、最大の DBTT で約 110℃となる。これは運転 期間中の最低温度を下回るので、運転期間中においてその破壊形態が脆性側に遷移することはない。



※括弧内はフルサイズ試験片の値(mm) 第2.4.1図 シャルピー衝撃試験片^[2]



第2.4.2図 吸収エネルギーとシャルピー衝撃試験温度との関係の例^[2]







第2.4.4図 照射による Δ DBTT^[2]

[163]



第2.4.5図 応力集中係数に対する炉内DBTT(試験片1mm)

参考文献

- [2] 上平明弘、鵜飼重治、「高強度フェライト/マルテンサイト鋼 (PNC-FMS)の衝撃特性の評価」、 JNC TN9400 2000-035、2000 年 3 月。

# 別添2

## 「常陽」における燃料照射試験の実績

	試験計画例	試験内容	種類	備考	
	С1Ј (МК-Ш 1~4су)	MK-Ⅱ炉心燃料仕様 燃料照射挙動評価	集合体:C型 要素:I型特殊燃料	昭和 53 年に照射用炉心(集 合体:A~C型、要素:I型 (「常陽」仕様)・Ⅱ型(「も んじゅ」仕様)特燃)の許可 取得	
特殊燃料要素	А1М (МК-Ⅱ 5~8су)	もんじゅ燃料の確性 試験	集合体:A型 要素:Ⅱ型特殊燃料		
	LDP-1 (MK-Ⅱ 21~23cy, 25~27cy,29~33cy)	太径燃料ピン照射試 験	集合体:B型 要素:Ⅲ型特殊燃料	昭和 58 年にⅢ型特殊燃料要 素(大型炉想定燃料仕様)の 許可取得	
	FMS-1 (MK-Ⅱ 25~27cy, 29~33cy)	フェライト鋼被覆管 燃料照射	集合体:B型 要素:Ⅳ型特殊燃料	平成3年にIV型特殊燃料要 素(フェライト鋼被覆管燃料 仕様)の許可取得	
試 験 用 要 素	РТМ-1 (МК-П 23', 24'су)	MOX 燃料の溶融限界 線出力評価	集合体:B型 要素:高線出力試験用	平成2年に高線出力試験用 要素とFFDL 試験用要素(破	
	F3B (МК-П 25'су)	破損燃料模擬試験 (FFDL試験)	集合体 : B型 要素 : FFDL 試験用	損燃料模擬試験用)の許可取 得	
	MN-1 (МК-Ⅱ 29~33су)	窒化物燃料照射試験	集合体:B型 要素:窒化物試験用	平成5年に限界照射試験用	
	МС−1 (МК-Ш 29∼33су)	炭化物燃料照射試験	集合体:B型 要素:炭化物試験用	安系という室に物試験用安系 の許可取得	
	Ат-1 (МК-Ш 3-1',3-2'су)	Am 含有燃料照射、 Np/Am含有燃料照射	集合体:B型 要素:先行試験用	平成 14 年に先行試験用要 素、基礎試験用要素の許可を 取得	

## 表 これまでに照射試験を実施した試験計画例と種類

照射燃料集合体の仕様設定の考え方

照射燃料集合体では、試験目的に応じて、燃料材や被覆材の種類、寸法や燃料材物性(U濃縮度、 Pu含有率や0/M比)を決定し、これらを組み合わせることで、所定の照射試験条件を実現する。その ため、照射燃料集合体における制限値は、一律に同じ仕様を用いて設定するのではなく、設置変更許 可申請及び「核原料物質、核燃料物質及び原子炉の規制に関する法律」の第27条に基づく設計及び 工事の計画の認可申請の段階において、確定した仕様に応じて、それぞれ段階的に設定する必要があ る。

照射燃料集合体における制限の設定の考え方について、炉心燃料集合体との比較を第1表に示す。 炉心燃料集合体では、設置変更許可申請の段階で燃料材や被覆材の種類、寸法や燃料材物性を決定し、 熱設計基準値や熱的制限値を設定するが、照射燃料集合体では、設置変更許可申請の段階で燃料材や 被覆材の種類、寸法や燃料材物性を一定の範囲に限定し、設工認申請の段階でこれらを決定して、最 新の知見(例:物性式)も踏まえて、熱設計基準値や熱的制限値を設定することが相違点である。た だし、照射燃料集合体は、設工認申請の段階において、炉心燃料集合体と同様に、熱設計基準値や熱 的制限値を満足することを確認することにより健全性を確保できる。設置変更許可申請の段階での仕 様等の制限の考え方を第2表に、設工認申請書で定める仕様等の項目について第3表に記載する。

	炉心燃料集合体	照射燃料集合体	備考
設置変更 許可申請	<ul> <li>・燃料材や被覆材の材質や組成等を決定。</li> <li>・決定された材質・組成等に基づき、Sm値や設計疲労曲線を設定。</li> <li>・被覆管肉厚やプレナム体積等の寸法を決定。</li> <li>・決定された燃料要素仕様を用いて、熱設計基準値及び熱的制限値を設定。</li> <li>・工学的安全係数を、製造公差等に基づき設定。</li> </ul>	<ul> <li>・燃料材や被覆材の材質や組成等を一定の範囲に限定。</li> <li>・被覆管肉厚やプレナム体積等の寸法を一定の範囲に限定。</li> <li>・燃料要素仕様の範囲を考慮し、代表性を有する熱設計基準値及び熱的制限値を設定。</li> <li>・熱出力誤差等に基づき燃料仕様によらない工学的安全係数を設定。</li> </ul>	<ul> <li>・照射燃料集合体の設置 変更許可申請書に記載 する制限の詳細につい て第2表に記載する。</li> </ul>
設工認申請	・装荷可能領域内において、どこに 装荷しても、健全性を確保できる ことを評価。	<ul> <li>・燃料材や被覆材の材質や組成等 を決定。</li> <li>・決定された材質・組成等に基づ き、Sm値や設計疲労曲線を設定。</li> <li>・被覆管肉厚やプレナム体積等の 寸法を決定。</li> <li>・決定された燃料要素仕様を用い て、熱設計基準値及び熱的制限値 を設定。</li> <li>・決定された燃料要素仕様に基づ き、工学的安全係数を個別に設 定。</li> <li>・要求される照射条件に合わせて 装荷位置を設定。</li> <li>・所定の装荷位置において、標準平 衡炉心の核特性を用いて健全性 を確保できることを評価。</li> </ul>	<ul> <li>・照射燃料集合体の設工</li> <li>認申請書に記載する制</li> <li>限の詳細について第3</li> <li>表に記載する。</li> </ul>
製作 • 使用	<ul> <li>・使用前事業者検査により、炉心燃料集合体の制限事項等を確認。</li> <li>・原子炉施設保安規定に基づき、サイクル運転に先立ち、炉心構成の制限事項(個数、熱的制限値、核的制限値)の遵守や核特性への影響が所定の範囲内であることを評価・確認。</li> </ul>	<ul> <li>・使用前事業者検査により、照射燃料集合体の制限事項等を確認。</li> <li>・原子炉施設保安規定に基づき、サイクル運転に先立ち、炉心構成の制限事項(個数、熱的制限値、核的制限値)の遵守や核特性への影響が所定の範囲内であることを評価・確認。</li> </ul>	

		申請書で制限する内容	概要・理由等	説明資料
				記載場所
設計	<b> </b> 方針	燃料要素ごとに設計方針を定める。	基準に適合していることの前提	4. 2. 1
	1	集合体の設計方針を定める。	となる。	4.3.1
燃	燃料材	燃料要素ごとに種類を制限。	熱設計基準値の前提となる。	第4.1.1表
料	Pu 含有率	燃料要素ごとに最大値を設定。	先行試験用要素以外は熱設計基	
要			準値の前提。先行試験用要素は制	
素	Sille follow La		限なし。	
任	U 濃縮度	燃料要素ごとに最大値を設定。		
柡	燃料径	燃料要素ごとに外径及び内径の範囲   を設定。	許可での評価の人力値として使   用する。	
	熱遮蔽部	燃料要素ごとに種類を制限。		
	被覆材	燃料要素ごとに種類を制限。	熱設計基準値の前提となる。	
	被覆管径	燃料要素ごとに外径及び内径の範囲	許可での評価の入力値として使	
		を設定。	用する。	
	被覆管肉厚	燃料要素ごとに範囲を設定。	許可での評価の入力値として使	
			用する。	
	その他部品材	部位ごとに材質を制限。		
	燃料要素有効長	値を記載。	炉心高さと同じ。	
	燃料要素全長 最大値を記載。		構造上の制限として設定。	
集	材料	部位ごとに材質を制限。		第4.1.2表
合	ラッパ管	値を記載。	構造上決まった値。	
体	六角外対辺長さ			
仕	燃料要素	集合体ごとに収納可能な燃料要素の	1 集合体での核分裂性物質量の	
様		種類、最大本数、ピッチ、配列、間隔	装荷量の制限、また構造上の制限	
		保持方式を記載。	として設定。	
			炉心構成の幅に収まるように制	
			限する。	
	集合体全長	値を記載。	構造上決まった値。	
	コンパートメン	集合体ごとに収納可能なコンパート	1 集合体での核分裂性物質量の	
		メントの種類、材質、寸法、最大個数、 を記載。	装填重の制限、また構造上の制限 として設定。	
	内壁構造容器·	それぞれの材質、寸法(管径、肉厚)	許可に記載する評価の入力値と	
	密封構造容器	を記載。	して使用する、最大値として設定	
			が必要。また構造上の制限として	
			設定する。	
使用	月条件	最大燃焼度、装荷位置、試験回数を制	基準(他の要素に影響を与えな	4.3.2
		限。また、燃料破損検出系により燃料	い)に適合していることの前提と	第4.3.1表
		破損を検知した段階で原子炉を停止	なる。	
	t I kila im	することを記載。		
運用	上の管理	運用手続きを保安規定で定めること	燃料要素が健全性を喪失しない	4.2.1
		を記載。運転段階において、保安規定	ように、運転段階の確認事項の記	4. 3. 1
		に基づさ、サイクル理転に先立ら、制	載邓必安。	
		限争項の場可と核特性への影響が所 空の範囲内でなることな評価、確認す		
		たの範囲内でのることを計画・確認9 ることを記載。		
熱設計基準値		燃料要素ごとに最大値を設定。	許可の評価の基準となる。	4. 2. 2. 1
熱的	的制限值	燃料要素ごとに最大値を設定。	許可の評価の入力値として使用	4. 2. 2. 2
丁学	的安全係数	燃料要素の仕様に依存したい値とし		4 2 6
	··· • >>> VIV 3>>>		する。	1. 2. 0
调出	力係数	燃料要素の仕様に依存しない値とし	許可の評価の入力値として使用	4.2.7
		て設定。	する。	
線出	力	燃料要素ごとに最大値を設定。	許可の評価の入力値として使用	第4.2.3表
лясцуу			する。	

「毎40」 思知 窓村 朱 ロ 仲 ク 取 囘 友 文 町 町 甲 明 青 に 山 戦 り つ 町 取 に フィー	第2表	照射燃料集合体の設置変更許可申請書に記載する制限について	-
-----------------------------------------------------------	-----	------------------------------	---

※燃料要素の具体的な仕様設定については別添1に示す。

	項目	設工認申請書で記載する内容	概要・理由等	備考
設計	十方針	許可書に記載の通り。	許可で定めるもので、設工認では	
			許可に従う。	
燃	燃料材	許可の範囲内で組成まで決定して記	試験目的に合わせて設工認段階	
料		載する。	で個別に設定するものである。	
要	Pu 含有率	許可の範囲内で設定して記載。		
素	U濃縮度	許可の範囲内で設定して記載。		
仕	燃料径	許可の範囲内で設定して記載。製造公		
様	,,	差も設定。		
	熱遮蔽部	許可の範囲内で設定して記載。製造公		
		差も設定。		
	被覆材	許可の範囲内で設定して記載。許容応		
		力も設定。		
	被覆管径	許可の範囲内で設定して記載。製造公		
		差も設定。		
	被覆管肉厚	許可の範囲内で設定して記載。製造公		
		差も設定。		
	その他部品材	許可の範囲内で設定して記載。		
	燃料要素有効長	許可の値を記載。製造公差も設定。		
	燃料要素全長	許可の範囲内で設定して記載。		
集	材料	許可の範囲内でそれぞれ設定して記		
合		載。許容応力も設定。		
体	ラッパ管	許可の値を記載。製造公差も設定。		
仕	六角外対辺長さ			
様	燃料要素	許可の範囲内で設定して記載。	試験目的と炉心管理の面から設	
			定する。複数の種類の燃料要素を	
			同一の集合体に装荷する場合も	
			ある (別添1参照)。	
	集合体全長	許可の値を記載。製造公差も設定。		
	コンパートメン	許可の範囲内で設定して記載。		
	Ъ			
	内壁構造容器·	許可の制限。		
	密封構造容器			
使用	月条件			
運用	目上の管理			
熱診	と計基準値	先行試験用要素、基礎試験用要素は燃		
		料材、被覆材にあわせて設定して記		
		載。		
熱的制限値		先行試験用要素、基礎試験用要素は燃		
		料材、被覆材にあわせて設定して記		
		載。		
工学的安全係数		許可に従って記載する。		
過出	台力係数	許可に従って記載する。		
線出	力	許可の範囲内で設定して記載。	試験目的に合わせて設工認段階	
			で個別に設定するものである。	
各種	重物性式	最新知見含めて設定。	試験目的に合わせて設工認段階	
			で個別に設定するものである。	

第3表 照射燃料集合体の設工認申請書に記載する項目について

<mark>別添1</mark>

#### 燃料要素の仕様設定の考え方

特殊燃料要素の仕様設定の考え方を第1表に、限界照射試験用要素の仕様設定の考え方を第2表 に、先行試験用要素及び基礎試験用要素の仕様設定の考え方を第3表に示す。

項目	炉心燃料要素	Ⅲ型特殊燃料 要素	Ⅳ型特殊燃料 要素	仕様設定の考え方
燃料材 種類	PuU 混合酸化物焼 結ペレット	PuU 混合酸化物病	L E結ペレット	炉心燃料要素と同様に制限する。
Pu 含有率 [wt%]	≦32	≦32		炉心燃料要素と同様に制限する。 許可では最も保守的な条件で熱設計基 準値を設定する。
核分裂性 Pu 富 化 度 [wt%]	約 16(内側) 約 21(外側)	≤25		U 濃縮度と併せて線出力密度の調整に 用いる。試験目的によって線出力密度 を変えるため制限しない。ただし Pu 組 成を原子炉級に制限しているため、Pu 含有率の約80%が上限となる。 許可では最大線出力密度を制限する。
Pu 組成	原子炉級	原子炉級		炉心燃料要素と同様に制限する。
U 濃縮度 [wt%]	約 18	$\leq 26$ $\leq 24$		核分裂性Pu富化度と併せて線出力密度 の調整に用いる。 許可では最大線出力密度を制限する。
初 期 密 度 [%TD]	約 94	≤95		試験目的も踏まえて一定の範囲に制限 し、許可では一例での成立性を確認す る。
燃料直径 [mm]	約 4.6	5.3~7.5	5. 18~6. 18	試験目的も踏まえて一定の範囲に制限 し、許可では一例での成立性を確認す る。
ペレット長 さ[mm]	約 9	≤15		燃料の寸法を試験目的に合わせてパラ メータとするため、過去の照射実績を 踏まえて一定の範囲で制限する。

第1表 特殊燃料要素の仕様設定の考え方(1/2)

項目	炉心燃料要素	Ⅲ型特殊燃料 要素	Ⅳ型特殊燃料 要素	仕様設定の考え方
被覆管種類	SUS316 相当ス テンレス鋼また は高 Ni オース テナイト系ステ ンレス鋼(A)	オーステナイ ト系ステンレ ス鋼	高速炉用フェ ライト系ステ ンレス鋼	試験目的に合わせてそれぞれ設定す る。 材質を制限するため、熱設計基準値を 設定する。
被覆管 外径[mm]	約 5.5	6.4~8.5	6.5~7.5	試験目的も踏まえて一定の範囲に制限 し、許可では一例の成立性を確認する。
被覆管 肉厚[mm]	約 0.35	0.4~0.7	0.56~0.76	試験目的も踏まえて一定の範囲に制限 し、許可では最大被覆管径・燃料径に合 わせた条件での成立性を確認する。
燃料-被覆管 直径ギャップ [mm]	約 0.1	≦0.2	約 0.1	試験目的も踏まえて一定の範囲に制限 し、許可では最大被覆管径・燃料径に合 わせた条件での成立性を確認する。
ガスプレナム 長さ[cm]	約 58	≦90		試験する燃料に合わせて燃料要素内の 内圧を変えることができるように範囲 を制限する。
燃 料 有 効 長 [cm]	約 50	≦50 (≦55 ※MK-Ⅱ炉心からの継続 燃料)		炉心燃料領域高さ(MK-IV炉心約50cm) 以下。ただし、照射燃料の場合はMK-Ⅱ 炉心から継続するものがあり、その場 合はMK-Ⅱ炉心の炉心燃料領域高さ(約 55cm)以下に制限する。
燃料要素全長 [cm]	約 154	≦200		試験目的により製造できる燃料要素全 長が変わるため、幅を持たせる必要が ある。ただし、集合体(全長約297cm) に収納できる目安として200cm以下に 制限する。

第1表 特殊燃料要素の仕様設定の考え方(2/2)

項目	炉心燃料要素	Ⅲ型特殊燃料要素	Ⅳ型特殊燃料要素	仕様設定の考え方
燃料材 種類	PuU 混合酸化物焼結 ペレット	PuU 混合酸化物焼結ペレット		特殊燃料要素と同じ。
Pu 含有率 [wt%]	≦32	≦32		特殊燃料要素と同じ。
核分裂性 Pu 富化度[wt%]	約 16(内側) 約 21(外側)	≦25		特殊燃料要素と同じ。
Pu 組成	原子炉級	原子炉級		特殊燃料要素と同じ。
U濃縮度[wt%]	約 18	$\leq 26$	$\leq 24$	特殊燃料要素と同じ。
初 期 密 度 [%TD]	約 94	≦95		特殊燃料要素と同じ。
燃料直径[mm]	約 4.6	5.3~6.6	5. 18~6. 18	試験ニーズも踏まえて、Ⅲ型 では特殊燃料要素より細く 制限。Ⅳ型は特殊燃料要素と 同じ。
ペレット長さ [mm]	約9	≦15		特殊燃料要素と同じ。
被覆管種類	SUS316 相当ステン レス鋼または高 Ni オーステナイト系 ステンレス鋼(A)	オーステナイト系 ステンレス鋼	高速炉用フェライ ト系ステンレス鋼	特殊燃料要素と同じ。
被覆管 外径[mm]	約 5.5	6.4~7.5	6.5~7.5	試験ニーズも踏まえて、Ⅲ型 では特殊燃料要素より細く
被覆管 肉厚[mm]	約 0.35	0.4~0.6	0.56~0.76	制限。Ⅳ型は特殊燃料要素と 同じ。
燃料-被覆管 直径ギャップ [mm]	約 0.1	≦0.2	約 0.1	特殊燃料要素と同じ。
ガスプレナム 長さ[cm]	約 58	≦90		特殊燃料要素と同じ。
燃 料 有 効 長 [cm]	約 50	≦50 (≦55 ※MK-Ⅱ炉心からの継続燃料)		特殊燃料要素と同じ。
燃料要素全長 [cm]	約 154	≦200		特殊燃料要素と同じ。

第2表 限界照射試験用要素の仕様設定の考え方

第3表 先行試験用要素及び基礎試験用要素の仕様設定の考え方(1/2)

項目	炉心燃料要素	先行試験用要素	基礎試験用要素	仕様設定の考え方
燃料材 種類	PuU 混合酸化 物焼結ペレッ ト	Pu または U の単体         体         または混合物の         酸化物、炭化物、         窒化物、金属         (試験目的により MA 等を混入させる)	PuU 混合酸化物 焼結ペレット、 PuU 混合炭化物 焼結ペレット、 PuU 混合窒化物 焼結ペレット、 PuU 混合金属ス ラグ	先行試験用要素は照射挙動が不明確な材 料を燃料材に用いる試験のため、ペレット 以外の形状も幅広く設定する必要がある。 ただし高速炉の燃料開発が目的であるた め、一定の種類に制限する。基礎試験用要 素は、過去の照射実績を考慮した種類に制 限する。
Pu 含有 率[wt%]	≦32	≦100 (Pu 単体)	<ul> <li>≦32 (酸化物)、</li> <li>≦25 (炭化物)、</li> <li>≦30 (窒化物)、</li> <li>≦20 (金属)</li> </ul>	制限値(融点)に影響を及ぼす項目。先行 試験用要素では、照射挙動が不明な材料を 燃料材に用いる試験であり、高 Pu 燃料の 試験も実施する。そのため制限を設けな い。基礎試験用要素は、過去の照射実績を 考慮した範囲に制限する。どちらの要素も 熱設計基準値を溶融温度以下とすること で燃料の健全性を確保する。
核 分 裂 性 Pu 富 化 度 [wt%]	約 16(内側) 約 21(外側)	≦80	<ul> <li>≤25 (酸化物)、</li> <li>≤20 (炭化物)、</li> <li>≤24 (窒化物)、</li> <li>≤16 (金属)</li> </ul>	U 濃縮度と併せて線出力密度の調整に用い る。試験目的によって線出力密度を変える ため制限しない。ただし Pu 組成を原子炉 級に制限しているため、Pu 含有率の約80% が上限となる。
Pu 組成	原子炉級	原子炉級		先行試験用要素は照射挙動が不明確な材 料を燃料材に用いる試験ではあるものの、 高速炉燃料の開発が目的であるため炉心 燃料要素と同様に原子炉級に制限する。基 礎試験用要素も同じく原子炉級に制限す る。
U 濃縮度 [wt%]	約 18	≦85		核分裂性 Pu 富化度と併せて線出力密度の 調整に用いる。試験目的によって線出力密 度を変えるため制限しない。
初 期 密 度[%TD]	約 94	≤95		試験目的に合わせてパラメータとするた め、一定の範囲に制限する。過去の照射実 績を踏まえ、特殊燃料要素と同じ制限とす る。
燃 料 直 径[mm]	約 4.6	4.6~7.5		先行試験用要素、基礎試験用要素とも、燃料の寸法を試験目的に合わせてパラメータとするため。一定の範囲で制限する。過
燃料外径/内径 [mm]	_	4.6~7.5 / 約2		去の照射実績を踏まえ、特殊燃料要素の仕 様範囲に制限する。
ペレッ ト長さ [mm]	約9	≦15		先行試験用要素、基礎試験用要素とも、燃料の寸法を試験目的に合わせてパラメー タとするため、一定の範囲で制限する。過 去の照射実績を踏まえ、特殊燃料要素と同 じ制限とする。

第3表	先行試験用要素及び基礎試験用要素の仕様設定の考え方(2/2)	

項目	炉心燃料要素	先行試験用要素	基礎試験用要素	仕様設定の考え方
被 覆 管 種類	SUS316 相当ス テンレス鋼ま たは高Niオー ステナイト系 ステンレス鋼 (A)	オーステナイト 系ステンレス鋼 または高速炉用 フェライト系ス テンレス鋼(酸 化物分散強化型 を含む)	ステンレス鋼	基礎試験用要素は照射挙動が不明確な材 料を被覆材に用いる試験のため、被覆材は 幅広く設定する必要がある。ただし、高速 炉燃料の開発が目的であり、現実的な被覆 材候補としてステンレス鋼に制限する。先 行試験用要素は、過去の照射実績を踏まえ た範囲で制限する。
被覆管 外 径 [mm]	約 5.5	5. 4~8. 5		先行試験用要素、基礎試験用要素とも、被 覆管寸法を試験目的に合わせてパラメー タとするため、一定の範囲で制限する。外
被覆管 肉 厚 [mm]	約 0.35	0.3~0.8		全、肉厚とも過去の煎剤美績を踏まえ、特殊燃料要素の仕様範囲に制限する。
燃料-被 覆管 直 径 ギ 「mm]	約 0. 1	≦0.2		ギャップも試験目的に合わせてパラメー タとすることがある。ギャップコンダクタ ンスの設定に使用している過去の照射実 績も考慮した範囲に制限する。
ガスプ レナム 長 さ [cm]	約 58	≦150		試験する燃料に合わせて燃料要素内の内 圧を変えることができるように範囲を制 限する。
燃 料 有 効 長 [cm]	約 50	≦50 (≦55 ※MK-Ⅱ炉心からの継続燃料)		炉心燃料領域高さ(MK-Ⅳ炉心約 50cm)以 下。ただし、照射燃料の場合は MK-Ⅱ炉心 から継続するものがあり、その場合は MK- Ⅲ炉心の炉心燃料領域高さ(約 55cm)以下 に制限する。
燃料要 素全長 [cm]	約 154	≦200		試験目的により製造できる燃料要素全長 が変わるため、幅を持たせる必要がある。 ただし、集合体(全長約 297cm)に収納で きる目安として 200cm 以下に制限する。

照射燃料集合体の設工認申請書の内容等

設工認申請例を第1表に示す。製作する集合体ごとに設工認申請する。設工認においては、製作する照射燃料集合体ごとに「〇〇照射燃料集合体の製作」として設工認申請する。集合体を構成する部品すべてが当該設工認申請の範囲となる。

例えば、試験用要素を装填するB型照射燃料集合体を製作する場合、以下を申請対象とし、燃料要素の詳細仕様と強度評価や核熱評価を記載する。なお、照射目的により燃料要素は複数の集合体を乗り継いで使用する場合もある。また、1つの燃料要素について、使用期間中に外側の集合体部材を交換する場合もある。集合体を乗り継ぐ場合にあっても、当該条件を考慮する。

原子炉本体 (2)燃料体 (ii	i)照射燃料集合体	②B型照射燃料集合体のうち、
•「(b)試験用要素」として	○○試験用要素…	○本
•「(b)試験用要素」として	△△試験用要素…	$\triangle 本$
・「(d)燃料要素を除く構成部	『品」で構成される	B型照射燃料集合体…1体

具体的には、「No.187 試験用集合体(B型試験用集合体)の製作」を例として示すように、装填する燃料要素のうち、特殊燃料要素(1)(Ⅱ型)、特殊燃料要素(5)(Ⅲ型)、特殊燃料要素(6)(Ⅲ型)、特殊燃料要素(12)-①~④(FMS-1)の強度評価の妥当性は認可済であることを踏まえ、新たに製作した特殊燃料要素(13)-①(LDP-3)、特殊燃料要素(13)-②(LDP-3)、試験用要素(1)(MC-1)、試験用要素(2)-①(MN-1)、試験用要素(2)-②(MN-1)を対象とした強度計算を実施している。

1 つの燃料要素について、使用期間中に外側の集合体部材を交換する例としては、長期照射中のC 型照射燃料集合体(「No. 151 特殊燃料集合体(C型特殊燃料集合体)の製作(その4))」)が該当し、 「No. 225 照射燃料集合体(C型照射燃料集合体(その4))の一部更新に係るハンドリングヘッド付 ラッパ管の製作」において新たに製作したラッパ管に交換している。

## 第1表 過去の照射試験における許可区分と設工認申請例

設工認申請	許可区分		(之老) 四针针除乱而反	/些土
	燃料集合体	燃料要素	(	111-6
No.151 特殊燃料集合体(C型特殊燃料集合体) の製作(その4))	C型特殊燃 料集合体	Ⅲ型特殊 燃料要素	太径燃料ピンバンドル照射(LDP-2)	C6D
No. 225 照射燃料集合体(C型照射燃料集合体 (その4))の一部更新に係るハンドリ ングヘッド付ラッパ管の製作	C型照射燃 料集合体	Ⅲ型特殊 燃料要素	太径燃料ピンバンドル照射(LDP-2)	C6D のラ ッパ管交 換
No. 187 試験用集合体 (B型試験用集合体)の 製作	B型試験用 集合体	Ⅱ型特殊 燃料要素	PNC316 燃料ピン照射 (MOD(BXM)) 装荷集合体:B3,B6,B7,B8,B9	
		Ⅲ型特殊 燃料要素	<ul> <li>改良オーステナイト鋼燃料ピン照射</li> <li>(AST)</li> <li>(装荷集合体: B3, B6, B7, B8, B9)</li> </ul>	
		Ⅲ型特殊 燃料要素	太径燃料ピン照射 (LDP-1) (装荷集合体: B7, B8, B9)	
		Ⅲ型特殊	太径中空燃料ピン照射 (LDP-3) (法毒集合体・BQ)	В9
		Ⅳ型特殊	(表词楽音体, b9) フェライト鋼被覆燃料照射 (FMS-1)	
		燃料要素 当 化 m 封	(装何集合体:B8, B9)	-
		灰 化 初 武 驗田更表	灰化物燃料照射 (MC-1) (法带集合休·BQ)	
		察化物試	(表间来日本: B5)	-
		験用要素	(装荷集合体:B9)	
No. 244 照射燃料集合体(B型照射燃料集合体 (先行試験(その5)用)の製作)	B型照射燃 料集合体(先 行試験用)	先行試験 用要素	金属燃料照射	B13

照射燃料集合体における熱設計基準値、熱的制限値の設定

1. 照射燃料集合体における熱設計基準値・熱的制限値の設定の考え方

照射燃料集合体に装填する燃料要素(特殊燃料要素及び試験用要素)は、高速炉用燃料開発のため 様々な目的をもって照射されることから、その仕様は広範なものとなっている。そのため、設置変更 許可申請の段階では、その仕様の組み合わせも考慮し、最大値として設定したものであり、「核原料 物質、核燃料物質及び原子炉の規制に関する法律」の第27条に基づく設計及び工事の計画の認可申 請(設工認申請)の段階にあっては、確定した燃料要素の仕様を用いて、個別に熱設計基準値及び熱 的制限値を設定するため、当該値は、設置変更許可申請の段階で定めた熱設計基準値及び熱的制限値 を下回る場合がある。

例えば先行試験用要素の場合、被覆材としてはオーステナイト系ステンレス鋼のほか高速炉用フェ ライト系ステンレス鋼(酸化物分散強化型を含む)も被覆材として仕様に定めており、設置変更許可 申請の段階では最高温度となるオーステナイト系ステンレス鋼を使用した場合の890℃を熱設計基準 値に設定している。フェライト系の被覆材を使用する場合は、設工認申請の段階で熱設計基準値を新 たに設定する。
- 2. 熱設計基準値
  - 2.1 熱設計基準値の設定方針

熱設計基準値は許容設計限界に該当し、燃料の許容設計限界は、原子炉の設計と関連して、 燃料の損傷が安全設計上許容される程度であり、かつ、継続して原子炉施設の運転をすること ができる限界であって、燃料要素の仕様、原子炉の運転状態から定まる燃料要素の使用条件と、 燃料の「故障」の形態等から定められる。

照射燃料集合体に装填される燃料要素についても炉心燃料要素と同じく、燃料の「故障」と して、①被覆管の溶融、②被覆管の過大歪、③被覆管の機械的破損、を想定し、その防止のた め①冷却材の沸騰防止、②燃料ペレットの溶融防止又は溶融割合の制限、③被覆管バーストの 防止、を燃料の許容設計限界とする。

	燃料の「故障」	設定理由	設定する熱設計基準値
1	被覆管の溶融	冷却材の沸騰防止	冷却材温度に係る熱設計基準値
2	被覆管の過大歪	燃料ペレットの溶融防止	燃料温度又は溶融割合に係る
		又は溶融割合の制限	熱設計基準値
3	被覆管の機械的破損	被覆管急速加熱破裂の防止	被覆管温度に係る熱設計基準値

第2.1表 照射燃料集合体に装填する燃料要素の熱設計基準値の設定方針

2.2 燃料最高温度及び溶融割合に係る熱設計基準値

酸化物燃料については、燃料溶融温度を超えないように熱設計基準値を約2,680℃としている (別添1参照)。ただし、酸化物燃料で溶融温度を超える設計をする場合は、燃料溶融した場合 の被覆管歪が3%に抑えられるように、熱設計基準値を溶融割合30%としている(別添2参照)。 酸化物燃料以外の燃料についても酸化物と同様に物性を考慮し、燃料溶融温度を超えないよ うに熱設計基準値を設定する(別添3参照)。

各燃料要素の燃料最高温度に係る熱設計基準値を第2.2表に示す。

燃料要素	熱設計基準値	備考
Ⅲ型特殊燃料要素	2, 680℃	酸化物
IV型特殊燃料要素	2, 680℃	酸化物
Ⅲ型限界照射試験用要素	2, 680°C	酸化物
IV型限界照射試験用要素	2, 680°C	酸化物
<b>七行封殿田亜</b> 志	[燃料溶融なし] 溶融温度以下	酸化物、炭化物、
元11 武阙用安亲	[燃料溶融あり*1]最大溶融割合30%	窒化物、金属
其冰封殿田亜圭	[漆融]] <b>庄</b> ]] 下	酸化物、炭化物、
	俗隴征及以下	窒化物、金属
A型用炉心燃料要素(内側/外側)	2, 650°C*2	酸化物
限界照射試験用補助要素	2, 680°C	酸化物

第2.2表 燃料最高温度に係る熱設計基準値

*1 酸化物燃料のみ

*2 炉心燃料要素と同じ

2.3 被覆管最高温度に係る熱設計基準値

運転時の異常な過渡変化時には、冷却材流量の減少により被覆管の急激な温度上昇を生じる ことがあり、使用末期の高い内圧がかかった被覆管を急速に加熱すると、被覆管がクリープ破 損に至ることがある。このため、炉心燃料要素と同じく、照射済み被覆管の急速加熱バースト 試験の結果に基づいて熱設計基準値を設定している(別添4参照)。

各燃料要素の被覆管最高温度(肉厚中心)に係る熱設計基準値を第2.3表に示す。先行試験用 要素及び基礎試験用要素では、被覆材にオーステナイト系ステンレス鋼もフェライト系ステン レス鋼も使用するため、「急速加熱による破断温度以下」としている。

燃料要素	熱設計基準値	備考
Ⅲ型特殊燃料要素	890°C	オーステナイト系ステンレス鋼
IV型特殊燃料要素	810°C	高速炉用フェライト系ステンレス鋼
Ⅲ型限界照射試験用要素	890°C	オーステナイト系ステンレス鋼
IV型限界照射試験用要素	810°C	高速炉用フェライト系ステンレス鋼
先行試験用要素	急速加熱による 破断温度以下 ^{*1}	オーステナイト系ステンレス鋼 又は 高速炉用フェライト系ステンレス鋼
基礎試験用要素	急速加熱による 破断温度以下*2	ステンレス鋼
A型用炉心燃料要素(内側/外側)	840°C	オーステナイト系ステンレス鋼
限界照射試験用補助要素	890°C	オーステナイト系ステンレス鋼

第2.3表 被覆管最高温度(肉厚中心)に係る熱設計基準値

*1 内壁構造容器(肉厚中心)の熱設計基準値は 890℃ (※内壁構造容器は SUS316 相当ステンレス鋼) *2 密封構造容器(肉厚中心)の熱設計基準値は 890℃ (※密封構造容器は SUS316 相当ステンレス鋼)

# 2.4 冷却材最高温度に係る熱設計基準値

炉心燃料要素と同じく、燃料頂部の冷却材圧力における沸騰温度920℃に安全余裕を見て設定 している(別添5参照)。

各燃料要素の燃料最高温度に係る熱設計基準値を第2.4表に示す。

燃料要素	熱設計基準値
Ⅲ型特殊燃料要素	
IV型特殊燃料要素	
Ⅲ型限界照射試験用要素	
Ⅳ型限界照射試験用要素	010°C
先行試験用要素	910 C
基礎試験用要素	
A型用炉心燃料要素(内側/外側)	
限界照射試験用補助要素	

第2.4表 冷却材最高温度に係る熱設計基準値

## 3. 熱的制限值

3.1 燃料最高温度に係る熱的制限値

通常運転時及び運転時の異常な過渡変化時において、燃料部が溶融温度に達することなく、 被覆管が機械的に破損せず、かつ、冷却材が沸騰しないよう、定格出力時に制限する温度とし て設定している(別添6参照)。

各燃料要素の燃料最高温度に係る熱的制限値を第3.1表に示す。

燃料要素 熱設計基準値 備考 2,540°C Ⅲ型特殊燃料要素 酸化物 Ⅳ型特殊燃料要素 2,540°C 酸化物 Ⅲ型限界照射試験用要素 2,540°C 酸化物 Ⅳ型限界照射試験用要素 2.540°C 酸化物 [燃料溶融なし] 溶融温度以下 酸化物、炭化物、 先行試験用要素 [燃料溶融あり*1] 最大溶融割合20% 窒化物、金属 酸化物、炭化物、 基礎試験用要素 溶融温度以下 窒化物、金属 2,  $350^{\circ}C^{*2}$ A型用炉心燃料要素(内側/外側) 酸化物 限界照射試験用補助要素 2,540°C 酸化物

第3.1表 燃料最高温度に係る熱的制限値

*1 酸化物燃料のみ

*2 炉心燃料要素と同じ

3.2 被覆管最高温度に係る熱的制限値

海外炉の例や使用目的を考慮して設定した燃焼末期の被覆管応力に対して、クリープ破断強 度や引張試験結果から設定している(別添5参照)。

各燃料要素の被覆管最高温度(肉厚中心)に係る熱的制限値を第3.2表に示す。

燃料要素	熱設計基準値	備考	
Ⅲ型特殊燃料要素	700℃	オーステナイト系ステンレス鋼	
IV型特殊燃料要素	610°C	高速炉用フェライト系ステンレス鋼	
	[A型] 750℃、		
Ⅲ刑限累昭射封驗田亜表	被覆管開孔時 890℃	オーフテナイトダフテンレフ鋼	
血至限介层和內蒙用安希	[B, D型] 700℃、		
	被覆管開孔時 890℃		
	[A型] 660℃、		
₩刑限界照射試驗田亜素	被覆管開孔時 810℃	高速炉用フェライト系ステンレス鋼	
11 至限 尔 思 剂 സ 蕨 用 安 希	[B, D型] 610℃、		
	被覆管開孔時 810℃		
		オーステナイト系ステンレス鋼	
先行試験用要素	$750^{\circ}C^{*1}$	又は	
		高速炉用フェライト系ステンレス鋼	
基礎試験用要素	$750^{\circ}\overline{\mathrm{C}^{*2}}$	ステンレス鋼	
A型用炉心燃料要素(内側/外側)	620°C	オーステナイト系ステンレス鋼	
限界照射試験用補助要素	700℃	オーステナイト系ステンレス鋼	

第3.2表 被覆管最高温度(肉厚中心)に係る熱的制限値

*1 内壁構造容器(肉厚中心)の熱設計基準値は 675℃ (※内壁構造容器は SUS316 相当ステンレス鋼)
 *2 密封構造容器(肉厚中心)の熱設計基準値は 675℃ (※密封構造容器は SUS316 相当ステンレス鋼)

許可と設工認における熱設計基準値と熱的制限値の設定例
 設工認における熱設計基準値と熱的制限値の設定例を第4.1表に示す。

試験用要素名	概要	熱設計基準値	熱的制限値
先行試験用要素(4)	酸化物分散強化型フ	燃料:溶融割合30%	燃料:溶融割合20%
【B型照射燃料集合体	エライト鋼被覆管	被覆管:820℃	被覆管:750℃
(先行試験(その3)		冷却材:910℃	
用)】			
先行試験用要素(5)	高Am含有	燃料:溶融割合30%	燃料:溶融割合20%
【B型照射燃料集合体		被覆管:890℃	被覆管:750℃
(先行試験(その4)		冷却材:910℃	
用)】			
先行試験用要素(6)	金属燃料	燃料:1,064℃*	燃料:1,011℃
【B型照射燃料集合体		被覆管:810℃	被覆管:640℃
(先行試験(その5)		冷却材:910℃	
用)】			

第4.1表 設工認における設定例

*別添3-添付3参照

別添1

酸化物燃料(溶融させない場合)の燃料最高温度の熱設計基準値の設定方法

1. 設定の考え方

酸化物燃料の熱設計基準値は、炉心燃料要素と同じく、燃料の仕様範囲、使用条件から想定される Pu含有率、Am含有率、0/M比を考慮して燃料の融点を設定し、その燃料融点に対して設定される。設 定の考え方を第1.1図に示す。



第1.1図 熱設計基準値設定の考え方

2. 融点設定におけるPu含有率及びAm含有率

製造時のPu含有率は最大で32wt%である(許可仕様)。Amについては、試験計画から~2wt%を想定している。

高速炉においては燃料温度が高くまた温度勾配が大きいため組織変化が生じる。また、その際に Pu及びAmが気相や固相を介して移動し、最高温度部である燃料中心部の濃度が高くなる現象「再分 布」が生じる(第2.1図)。Pu含有率、Am含有率が高くなると融点が低下する。

再分布量は、「常陽」で照射した照射試験結果(B8-HAM試験^{[1][2]}、Am-1試験^[3])に基づきPuにつ いては1.3倍、Amについては1.5倍と設定する(第2.2図、第2.3図)。融点の設定においては、再分布 (Pu:1.3倍、Am:1.5倍)を考慮してPu含有率42wt%、Am含有率3wt%とする。

集合体	B8-HAM ^{[4][5]}	Am-1 ^[6]
Pu含有率 (wt%)	29	29
Am含有率 (wt%)	1	3、5
ペレット径 (mm)	5.4	6. 52
ペレット密度(%TD)	85	93
0/M比 (-)	1.99	1.95、1.98
最大線出力(w/cm)	410	450

第2.1表 「常陽」で照射したAm-MOX燃料試験(B8-HAM、Am-1)の燃料仕様



第2.1図 「常陽」で照射されたAm-MOX燃料照射試験の金相写真とPu、Am再分布の例^[3]

43 条-別紙 5-別添 1-2





第2.3図 U、Pu、Amの径方向分布(Am-1試験)^[3]

3. 融点設定における0/M比

0/M比が融点に与える影響は、加藤らの測定結果^[4]では、Pu含有率が11.8%~46%のいずれの組成に おいても0/M=1.7~2.0の範囲で0/M比が低くなるほど固相線温度は上昇する傾向を示した(第3.1 図)。また、Pu0_{1.7}の相を仮定したU0₂-Pu0₂-Am0₂-Pu0_{1.7}系の四元系の理想溶液モデルによりMOX及び Pu0_{2-x}の融点について0/M比依存性を矛盾なく説明できている(第3.2図)。よって、燃料融点の設定 において0/M比は0/M=2.0とする。

0/M比の再分布については、照射済みMOX燃料に対して測定されている^{[5][6]}。0/M比は照射中の温度 勾配により径方向に再分布し、中心部では製造時より大きく低下する(第3.3図、第3.4図)。よっ て、最高温度部である中心部では0/M比は低下するため、融点設定の0/M比を2.00とすることは保守 的である。



第3.1図 固相線温度における0/M比とPu含有率の影響^[4]

43 条-別紙 5-別添 1-4



第3.2図 四元系理想溶液モデルによる評価[4]



- 本実験で求めた酸素ポテンシャルから、Blackburnの関係式を用いて0/M比に換算した値
- 同じくWoodleyの関係式を用いてO/M比に換算した値
- Aitken モデルに基づく計算値

## 第3.3図 「常陽」で照射された燃料の0/M比再分布の測定結果^[5]



第3.4図 海外試験炉で照射された燃料の0/M比再分布の測定結果^[6]

4. 燃料融点の測定方法と測定誤差

燃料融点は、サーマルアレスト法を用いて測定した燃料融点^[4]を使用する。サーマルアレスト法 は、試料が溶融する際の潜熱により昇温速度が停滞若しくは低下する際の熱曲線の変化を読み取る ことで試料の融点を求める方法であり、測定の概要を第4.1図に示す。

サーマルアレスト法において考慮すべき測定誤差は、温度校正の不確かさ及び加熱曲線の読み取 り誤差の二つである。

温度校正時に現れる不確かさは、A1₂0₃、Nb、Mo、Taを用いた標準試料を測定することで温度校正 線を作成しており、温度校正線と標準試料の測定結果との差(第4.2図)から±20℃としている。数 点のデータにおいて±20℃を超えるものがあるが、燃料融点(約2720℃)に近いMo及びTaの温度校 正時の差は、2重容器体系において±20℃の範囲に入っており、燃料融点測定に対する不確かさと して±20℃を適用する。

加熱曲線におけるアレスト開始点及び終了点の読み取り誤差は、当該装置を用いて得られる多く の加熱曲線の分析経験(第4.3図)から固相線評価に係る不確かさを±15℃と評価している。



※プルトニウム (Pu) 含有率が高いMOX燃料の試料に対しては、試料とタングステン (W) 製 試料容器との反応し融点測定結果へ影響があることから、レニウム (Re) 製の内容器内に 試料を収納し、これをW製試料容器に真空封入する方法(2重容器体系)を用いている。

第4.1図 サーマルアレスト法による融点測定装置の概要



第4.2図 温度校正線と標準試料の融点測定値とのばらつき

⁴³ 条-別紙 5-別添 1-7



第4.3図 MOX燃料(Pu:約40wt%、Am:約3wt%、0/M比:2.00)の融点測定時の加熱曲線例

5. 熱設計基準値の設定

燃料融点は、Pu含有率40%、0/M2.0でAmの含有率3%までは融点の低下がほとんど見られていない (第5.1図)。融点が最も低くなる0/M比2.00において、Pu含有率40wt%、Am含有率3.3wt%での平均値 は約2730℃であり、更に仕様範囲での再分布考慮後の最大含有率を超えるPu含有率42.8wt%、Am含 有率3.5wt%においても融点は約2720℃である。これに測定誤差35℃を考慮した下限値は約2,685℃ である。

これより、溶融させない場合の酸化物燃料に対する熱設計基準値を2,680℃と設定する(第5.2図)。



第5.1図 Pu含有率40wt%、0/M比2.00での燃料融点

43 条-別紙 5-別添 1-8



第5.2図 熱設計基準値の設定

参考文献

- [1] JNC-TN9430 2000-002 Am含有燃料照射試験(B8-HAM)のAm再分布挙動
- [2] T. Ozawa, "Analysis of fast reactor fuel irradiation behavior in the MA recycle system" ICONE25-66129
- [3] K. Tanaka et al., Journal of Nuclear Materials 440 (2013) 480-488
- [4] 加藤ら、「高速炉用ウラン・プルトニウム混合酸化物燃料の融点に及ぼす酸素・金属比の影響」、 日本原子力学会和文論文誌、2008年
- [5] 鵜飼他 日本原子力学会「昭和61年年会」,F32
- [6] Henri Bailly et al., "The Nuclear Fuel of Pressurized Water Reactors and Fast Neutron Reactors: Design and Behaviour", Intercept Ltd, 1999, p103

別添2

酸化物燃料(燃料を溶融させる場合)の燃料溶融割合の熱設計基準値の設定方法

1. 燃料を溶融させる場合の熱設計基準値設定の考え方

溶融限界線出力試験では試料の一部を溶融させるため、試料の膨張が大きくなり、被覆管の膨張を 考慮してもギャップを消滅させ、被覆管の歪を生じ、さらに被覆管の破損を生じる可能性がある。そ のため、燃料部と被覆管との相互作用による被覆管の円周方向引張全歪を低く抑えられるように、燃 料溶融割合を熱設計基準値として設定する。

2. 被覆管円周方向引張歪の計算方法

以下を仮定する。

- 1. ペレットは相変化に伴う膨張及び熱膨張を、被覆管は熱膨張を考慮する。照射に伴う中心空孔 の生成、等軸晶及び柱状晶の組織変化による収縮は考慮しない。
- 2. ペレットは、温度分布に沿って径方向に自由膨張するものとする。
- 3. ペレットの相変化に伴う膨張は、溶融先端の試料ペレットを押し上げて軸方向に生じるものと する。
- 4. ペレットは、液相及び固相で非圧縮性とする。

上記に基づき、第1図に示す評価モデルで被覆管円周方向引張全歪を評価する【燃料溶融時における燃料と被覆管の相互作用による歪:別紙14参照】。



43 条-別紙 5-別添 2-1

3. 被覆管円周方向引張歪の制限と熱設計基準値

ステンレス鋼の破断歪の許容値(第2図)より、燃料部と被覆管との相互作用による被覆管の円周 方向引張全歪の制限値は3%以内とする。

上記の制限を守るため、先行試験用要素の仕様範囲とそれに基づく被覆管歪を考慮して、溶融割合 30%を熱設計基準値とする。【照射燃料集合体の燃料要素の機械設計結果等の整理:別紙 16 参照】



第2図 ステンレス鋼の破断歪

別添3

酸化物燃料以外の燃料最高温度の熱設計基準値

先行試験用要素及び基礎試験用要素では、酸化物以外の種類の燃料材を用いることができる。使用 できる燃料の使用範囲が幅広く、設置変更許可申請書においては、溶融させない場合を除き「溶融温 度以下」を熱設計基準値としており(別紙5本文第2.2表)、具体的な数値は設工認において定める としている(別紙5本文4.許可と設工認における熱設計基準値と熱的制限値の設定例)。

ここでは、炭化物燃料、窒化物燃料、金属燃料の具体的な熱設計基準値の設定例について、添付1 ~3に示す。

添付1

炭化物燃料の燃料最高温度の熱設計基準値の設定方法

炭化物燃料の熱設計基準値は、酸化物燃料と同様に、燃料の仕様範囲、使用条件から想定される燃料の融点を設定し、その燃料融点に対し、安全裕度を考慮して設定する。プルトニウム・ウラン混合 炭化物燃料の融点は、プルトニウム含有率に依存する。

UC-PuC系の液相線及び固相線を第1図に示す。固相線温度はUCの値からPuCの値へ直線的に減少しており、(Pu,U)Cの固相線温度はUCの固相線温度とPuCの固相線温度を直線で結んだ以下の式(第1図中の直線の式)から求められる。

$$T = 2517 - 915(y/100)$$

T:UC-PuC 系の固相線温度(℃)

y:Pu比(%)

プルトニウム含有率約 25%に対して、プルトニウムの再分布について第 2 図により 10%増加を考慮 し、上式に使用するプルトニウム含有率(y)を 35%とすると、固相線温度は 2190℃となる。

これに実験の不確かさを50℃考慮して融点を2140℃とし、この融点を熱設計基準値とする。



第1図 UC-PuC 系の融点^[1]



# 参考文献

- [1] D. C. Fee and C. R. Johnson, ANL-AFP-11.
- [2] H. Kleykamp, "The Chemical State of Irradiated Carbide Fuel Pins," Advanced LMFBR fuels, Topical Meeting Proceedings, Tucson, Arizona, October 10-13, 1977.

添付 2

窒化物燃料の燃料最高温度の熱設計基準値の設定方法

プルトニウム・ウラン混合窒化物燃料は、高温で分解し、溶融を示す温度、窒素圧となって溶融す る。燃料温度に対する窒素分圧を第1図に示す^{[1][2]}。第1図の屈曲部がUN及びPuNのそれぞれの窒 化物としての融点であり、屈曲部より低温側では分解温度である。温度上昇により分解が進行した場 合、溶融温度及び溶融温度に対応する窒素分圧となった後、窒化物として溶融すると推測される。第 1図に示すように、この溶融温度についてはPuNが低く、窒素圧についてはUNが低いため、窒化プ ルトニウムが選択的に分解し、窒化物が溶融する際の窒素圧は比較的高圧となる。したがって、UNの 溶融時の窒素圧におけるPuNの分解温度を熱設計基準値とすれば十分安全である。

第2図にPuNの分解温度と窒素分圧の関係を示す^[3]。UN溶解時の窒素圧は約2atmであるが、安全 上、窒化物燃料の分解に伴い試料ペレットから放出される窒素による被覆管内圧の上昇を抑制する観 点から窒素圧を 0.1atm に制限することとし、0.1atm 時の PuN の分解温度を第220から求めると 2440℃である。これに実験値の不確かさ50℃を考慮し、2390℃を熱設計基準値とする。







- [1] W. M. Olson and R. N. R. Mulford, J. Phys. Chem., 67 (1963), pp952-954.
- [2] E. T. Weber, BNWL-842, 1968.
- [3] W. M. Olson and R. N. R. Mulford, J. Phys. Chem., 68 (1964), pp1048-1051.

添付 3

金属燃料の燃料最高温度の熱設計基準値の設定方法

燃料スラグは、U, Pu, Zr からなる合金であるため、その融点は、U, Pu, Zr の組成によって決まると 考えられる。U-Pu-Zr 3 元系状態図より U-Zr 合金及び U-Pu-Zr 合金の固相線温度が評価されている ^[1]。これらを燃料組成について整理すると、固相線温度を評価する式として (1-1)式が得られる^[2]。

$$T = A_0 + A_1 N_{Zr} + A_2 N_{Zr}^2 + A_3 N_{Zr}^3$$
(1-1)  

$$A_0 = 1408 - 1187 N_{Pu} + 967 N_{Pu}^2$$
  

$$A_1 = 572 - 732 N_{Pu} + 4960 N_{Pu}^2$$
  

$$A_2 = 740 + 3305 N_{Pu} - 29182 N_{Pu}^2$$
  

$$A_3 = -624 - 3139 N_{Pu} + 36120 N_{Pu}^2$$
  

$$T_m : 融点(K)$$
  

$$N_{Zr} : Zr 原子数比(-)$$
  

$$N_{Pu} : Pu 原子数比(-)$$
  
適用範囲:

 $\frac{N_{Pu}}{N_{U}} < 1$ ,  $N_{Zr} < 0.8$  ( $N_{U}$ : Pu 原子数比(-))

また、U-Pu-Zr 合金については、未照射材の融点測定値^{[3][4][5]}が得られている。これらの測定結果 と(1-1)式による固相線温度の評価結果を比較したものが第1図である。第1図に示すように、(1-1) 式による評価結果から 25℃差し引くことにより、測定値を包絡することができる。

金属燃料の仕様範囲で最も固相線温度が低くなるのは、プルトニウム混合比 21%、ジルコニウム 混合比 9%の場合である。このとき、(1-1)式から固相線温度は 1089℃と評価される。これに不確か さ 25℃を考慮した 1064℃を金属燃料の熱設計基準値とする。



第1図 U-Pu-Zr 合金の融点の実測値と評価結果の比較

#### 参考文献

- [1] M. Kurata, Calphad, 23[3-4] (1999) 305.
- [2] T. Ogata, J. Nucl. Sci. Techol., Supplement 3 (2002), p. 675.
- [3] L. R. Kelman, S. Gavage, C. M. Walter, B. Blumenthal, R. J. Duntworth, and H. V. Rhude, Proc. 3rd Int. Conf. on Plutonium 1965, (1967), pp. 458-484.
- [4] D. R. Harbur, J. W. Anderson, and W. J. Maraman, LA-4512, Los Alamos Scientific Laboratory (1970).
- [5] L. Leibowitz, E. Veleckis, R. A. Blomquist, and A. D. Pelton, J. Nucl. Mater., 154 (1988), pp. 145-153.

別添4

被覆管最高温度の熱設計基準値の設定方法

1. 熱設計基準値の設定方法

運転時の異常な過渡変化において機械的な負荷により被覆管に貫通性損傷を発生させる可能性が ある損傷モードを検討すると、被覆管温度の急速な上昇によるクリープ破損が支配的である。このた め、「機械的に破損しないこと」に対応する判断基準として、被覆管の急速な温度上昇によるクリー プ破損を防止する条件で代表させることによって、運転時の異常な過渡変化時の系統的な燃料損傷を 防止することとしている。

よって熱設計基準値は、照射済み被覆管の急速加熱バースト試験の結果をもとに、適切な安全余裕 を考慮して設定することとする。

具体的には、まず、被覆管の最高使用条件から"被覆管温度"、使用条件・被覆管材質から設定される応力制限値から"周方向応力"、運転時の異常な過渡変化時の解析結果から"温度上昇率"、を設定する。この設定値と燃料要素被覆管の炉外急速加熱試験データから、破損温度を計算し、破損温度 に対して安全裕度を考慮して熱設計基準値を設定する。

2. 急速加熱バースト試験

急速加熱バースト試験では、数十mmの被覆管試験片に一定内圧を負荷した後、所定の一定加熱速 度で試験片を加熱し、試験片の破損温度等を測定する。試験構成例を第2.1図に示す。

得られた試験結果は破損温度と周方向応力で整理される。



第2.1図 急速加熱バースト試験の試験構成例

43 条-別紙 5-別添 4-1

3. 設定条件

炉心燃料要素における熱設計基準値の設定と同様に、被覆管温度は熱的制限値、温度上昇率 20℃/s とする。周方向応力については、照射試験計画を考慮してオーステナイト系ステンレス鋼は 7.5 kgf/mm²、高速炉用フェライト系ステンレス鋼については 10 kgf/mm²とする。

4. 熱設計基準値の設定

オーステナイト系ステンレス鋼に対する急速加熱バースト試験の結果を第4.1 図に示す。破損限界 温度(約900℃)に安全余裕を考慮して、熱設計基準値を890℃としている。

高速炉用フェライト系ステンレス鋼については、急速加熱バースト試験の結果を第4.2 図に示す。 照射後及び未照射の被覆管の急速加熱バースト試験時の下限値(約850℃)に安全余裕を考慮して、 熱設計基準値を810℃としている。

なお、限界照射試験用要素と基礎試験の熱設計基準値は、被覆管が開孔した場合でも試験用要素以 外の燃料要素の健全性に影響を与えないよう、被覆管の溶融や破砕等の防止を目的に定められたもの であり、上記の他の開孔する可能性のない燃料要素の場合とはその目的が異なる。ただし、被覆管の 溶融や破砕等を防止するためのしきい値に関するデータはなく、このため保守的に通常の開孔する可 能性のない燃料に関する熱設計基準値を準用している。



第4.1図 オーステナイト系ステンレス鋼の破損温度

43 条-別紙 5-別添 4-2



第4.2図 高速炉用フェライト系ステンレス鋼の破損温度

## 冷却材最高温度の熱設計基準値の設定方法

炉内の使用条件から、冷却材の沸点を設定する。炉内の使用条件は第1表に示すとおりであり、炉 内の燃料集合体頂部の冷却材圧力(水頭圧含む)における沸騰温度は第1図より約920℃となる。こ の温度に安全裕度を10℃考慮して、熱設計基準値を910℃とする。

第1表 炉内使用条件			
種類	炉心頂部冷却材圧力(静圧)		
ナトリウム	約0.04N/mm² (約0.4kgf/cm²)		



第1図 ナトリウム沸騰温度



第1図 燃料最高温度の熱的制限値の考え方



第2図 被覆管最高温度の熱的制限値の考え方

別紙6

# 照射燃料集合体の燃料設計方針

照射燃料集合体の燃料設計は、基本的に炉心燃料集合体の燃料設計と同じとする。

特殊燃料要素は、炉心燃料要素と同じく、通常時及び運転時の異常な過渡変化時においてもその健 全性を失うことのない設計であることが求められる。特殊燃料要素の熱・機械設計において、その健 全性を確保するための設計方針は、炉心燃料要素の設計方針と同一とする(第1表)。また、A型炉 心燃料要素と限界照射試験用補助要素も炉心燃料要素と同じである。特殊燃料要素の安全設計におい て、適用する設計条件や使用データの相関及びその考慮の手順を整理した結果を第1図に示す。特殊 燃料要素及びA型炉心燃料要素を装填する照射燃料集合体についても、その健全性を確認するための 設計方針は、炉心燃料集合体の設計方針と同じとする。

第1表 特殊燃料要素及び限界照射試験用補助要素の設計方針

燃料要素	
(i)燃	料最高温度は、2,680℃以下となるように設計する。
(ii) 被	R覆管歪は、十分小さくなるように設計する。
(ⅲ) 被	覆管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断
を	生じないように十分低く設計する。
(iv)被	覆管の各部にかかる荷重に対する応力計算値は、ASME Sec. Ⅲの基準
12	:準拠して設定した値を満たすように設計する。
(v)累	積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命
لل ال	「下となるように設計する。
集合体	
(i)燃	料集合体の輸送中又は取扱中に受ける通常の荷重に対して、十分な強度を
有	するように設計する。
(ii)原	子炉内における使用期間中の通常運転時及び運転時の異常な過渡変化時に
お	らいて、燃料集合体の構成部品にかかる荷重に対する応力計算値は、ASM
E	)Sec. Ⅲの基準に準拠して設定した値を満たすように設計する。

試験用要素の場合、被覆材の破損あるいは被覆内燃料の一部の溶融を伴うものであり、計画的にその健全性を喪失させることがある(第2表)。計画的にその健全性を喪失させる試験用燃料体にあっては、設計基準事故時において、試験用燃料体が破損した場合においても、試験研究用等原子炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれがないものであることが要求されている。そのため、試験用要素を装填する照射燃料集合体においては、以下のような設計が求められる【照射燃料集合体の安全確保の考え方:別紙2参照】。

- ・通常運転時に計画された範囲内で試験用要素の健全性を喪失させる試験を行っても、運転時の異常な過渡変化時において、試験用要素があらかじめ定めた制限を超えない設計とする。
- ・試験用要素の健全性の喪失により原子炉の健全性を損なわない(「許容設計限界」を超えない) 設計とする。
- ・試験用要素の健全性を喪失させても、他の燃料要素の機能及び健全性を阻害しない設計とする。
- ・設計基準事故時に、試験用要素が破損したとしても、原子炉の停止及び炉心の冷却に影響を与え ない設計とする。

・被覆材の破損による1次冷却系中への核分裂生成物等の放射性物質の放出量を、試験用要素の破 損範囲を限定することで制限する設計とする。

このため、試験用要素も基本的に炉心燃料要素と同じ手順で設計するものの、計画的にその健全性を喪失させる場合は以下のように設計する。

限界照射試験用要素を装填した照射燃料集合体にあっては、

- ・被覆管の開孔に係る設計では、クリープ寿命分数和は1を超えるが、被覆管に発生する応力は許 容応力を超えないことを確認する【照射燃料集合体の燃料要素の機械設計結果等の整理:別紙16 参照】。
- ・炉心の冷却を阻害する物のコンパートメント外への放出がないことを確認する【照射燃料集合体の機械設計:別紙17参照】。

先行試験用要素を装填した照射燃料集合体にあっては、

- ・燃料の溶融に係る設計では、燃料溶融割合が通常運転時に熱的制限値(燃料溶融割合の制限)を 超えないこと、及び運転時の異常な過渡変化時に熱設計基準値(燃料溶融割合の制限)を超えな いことを確認する【照射燃料集合体の熱設計結果:別紙10参照】。
- ・設計基準事故時に被覆管が破損しても、内壁構造容器が健全であることを確認するとともに、炉 心の冷却を阻害する物の内壁構造容器外への放出がないことを確認する【照射燃料集合体の機械 設計:別紙17参照】。

基礎試験用要素を装填した照射燃料集合体にあっては、

- ・被覆管の開孔に係る設計では、クリープ寿命分数和は1を超えるが、被覆管に発生する応力は許 容応力を超えないことを確認する【照射燃料集合体の燃料要素の機械設計結果等の整理:別紙16 参照】。
- ・設計基準事故時においても、密封構造容器が健全であることを確認する【照射燃料集合体の機械 設計:別紙17参照】。

試験用要素	健全性喪失
Ⅲ型限界照射試験用要素	被覆管の破損
Ⅳ型限界照射試験用要素	被覆管の破損
先行試験用要素	燃料の溶融 (酸化物燃料の場合)
基礎試験用要素	被覆管の破損

第2表 計画的にその健全性を喪失させる試験用要素



z

集合体流量 合構準炉心流量



43 条-別紙 6-3

照射燃料集合体の熱設計計算式

別紙7

# 1. 燃料要素

照射燃料集合体の燃料要素(特殊燃料要素及び試験用要素)における熱設計計算では、以下の(i) ~(vii)に示す式を用いる。なお、燃料温度は、酸化物燃料の場合その密度変化をモデルに取り入れ て計算する(別添1参照)。また、限界照射試験用要素の被覆管に開孔が生じ、その開孔部から核分 裂生成ガスが放出された場合の影響は、被覆管表面温度を算出する式において考慮する(別添2参 照)。

燃料最高温度が最も高くなるのは照射初期であることから、熱計算では照射初期の条件で計算する。

(i) 冷却材温度

冷却材温度は、以下の式により計算する。

$$T_{Na} = T_{IN} + \frac{1}{W \cdot C_p} \int_0^x ql(x) dx$$
  
ここで  $T_{Na}$ : 冷却材温度 (°C)  
 $ql(x)$ : 線出力密度 (W/cm)  
W: 冷却材流量 (g/s)  
 $C_P$ : 冷却材比熱 (W · s/g/°C)  
 $T_{IN}$ : 冷却材入口温度 (°C)  
x: 炉心下端からの距離 (軸方向距離) (cm)

(ii) 被覆管表面温度

被覆管表面温度は、以下の式により計算する。

$$T_{Co} = T_{Na} + \frac{D_e}{K_{Na}} \cdot \frac{1}{Nu} \cdot \frac{ql}{\pi d_{Co}}$$
  
ここで  $T_{Co}$ : 被覆管表面温度 (°C)  
 $D_e$ : 水力等価直径 (cm)  
 $d_{Co}$ : 被覆管外径 (cm)  
 $K_{Na}$ : 冷却材熱伝導度 (W/cm/°C)  
Nu: ヌセルト数

(ⅲ) 被覆管内面温度

被覆管内面温度は、以下の式により計算する。

$$T_{Ci} = T_{Co} + \frac{\ln(d_{Co}/d_{Ci})}{2\pi K_{C}} \cdot ql$$
  
ここで  $T_{Ci}$ : 被覆管内面温度 (°C)  
 $K_{C}$ : 被覆管熱伝導度 (W/cm/°C)  
 $d_{Ci}$ : 被覆管内径 (cm)

(iv) 燃料表面温度

燃料表面温度は以下の式により計算する。

$$T_{s} = T_{Ci} + \frac{ql}{h_{g} \cdot \pi (d_{P} + d_{Ci})/2}$$
  
ここで  $T_{s}$ : 燃料表面温度 (℃)

43 条-別紙 7-1

(v)燃料最高温度

溶融温度に達しない範囲の燃料最高温度は以下の式により計算する。なお、プルトニウム・ ウラン混合酸化物燃料では、燃料ペレットの相変化及び密度変化を考慮する(別添1参照)。

$$\int_{T_s}^{T_p} k \, dT = \frac{ql}{4\pi}$$
  
ここで  $T_p$ : 燃料最高温度 (°C)  
k: 燃料熱伝導度 (W/cm/°C)

(vi) 燃料溶融半径

先行試験用要素(溶融あり)の燃料溶融半径は、以下の式により計算する。

$$\int_{T_s}^{T_m} k \quad dT = \frac{ql}{4\pi} \left( 1 - \frac{r_m^2}{r_o^2} \right)$$

ここで rm:燃料溶融半径 (cm)

Tm:燃料の溶融温度(℃)

r_o:燃料半径 (cm)

(vii) 燃料溶融割合

先行試験用要素(溶融あり)の燃料溶融割合は、以下の式により計算する。

$$V_m = \frac{r_m^2}{r_o^2}$$

ここで Vm:燃料溶融割合
2. 集合体

(1) 内壁構造容器

内壁構造容器の計算モデルを第2.1 図に示す。冷却材は内壁構造容器の内外を流れるため、内壁構 造容器外側の流れによる熱移動と内壁構造容器内側の流れによる熱移動を考慮する必要がある。この ため、内壁構造容器より内側の温度については、単純な一次元熱伝達ではなく、軸方向の熱伝達を考 慮した熱バランス式を収束計算によって計算する。



第2.1図 計算モデル

内壁構造容器内側の冷却材温度を内壁構造容器内側冷却材の流れによる温度上昇から計算すると、

$$T_{in}(i) = T_{in}(i-1) + \frac{Q_i}{W_i \cdot Cp_i}$$

 $Q_i = Q - Q_{cap}$ 

となる。ここで、

*Qi* : キャプセルより中(キャプセル内部 Na、被覆管、ペレット等)の発熱

*Q* : キャプセルの全発熱量

Qcap :キャプセル自身の発熱とキャプセル外へ出る熱量の和

*Cp*_i : キャプセル内側冷却材 Na 比熱

*i* : 軸方向ノード

である。

一方、内壁構造容器自身の熱量及び内壁構造容器外へ出る熱量による内壁構造容器外側冷却材温度 との差分から計算すると、

$$T_{in}(i) = T_{out}(i) + \frac{Q_{cap}}{\lambda_{cap}}$$
$$T_{out}(i) = T_{out}(i+1) + \frac{Q}{W_0 \cdot Cp_0}$$

$$\lambda_{cap} = \frac{1}{\left\{\frac{1}{\pi d_{capo}h_{capo}} + \frac{\log\left(\frac{d_{capo}}{d_{capi}}\right)}{2\pi K_{SUS}} + \frac{\log\left(\frac{d_{capi}}{d_{so}}\right)}{2\pi K_{Na}} + \frac{\log\left(\frac{d_{so}}{d_{si}}\right)}{2\pi K_{SUS}} + \frac{1}{\pi d_{si}h_{si}}\right\}}$$

$$h_{capo} = \frac{K_{Nao}Nu_o}{De_o}, h_{si} = \frac{K_{Nai}Nu_i}{De_i}$$

$$bcao_o = constant constant$$

である。

上に示した2つの式は共に内壁構造容器内側の冷却材温度を算出するものであり、両者が同一にな るように収束計算する。

内壁構造容器内側の冷却材温度を計算した後、各部位の温度を計算する。各部位の温度は、「1. 燃料要素」に示す計算式と同じであり、内壁構造容器の温度については被覆管と同様である。

(2) 密封構造容器

密封構造容器においても(1)の内壁構造容器と同様に計算する。

密封構造容器では冷却材は密封構造容器の外側しか流れないため、密封構造容器の計算においては 密封構造容器内側冷却材の流量を0とする。

別添1

プルトニウム・ウラン混合酸化物燃料における 燃料ペレットの相変化及び密度変化の考慮について

プルトニウム・ウラン混合酸化物燃料におけるペレット内組織変化は、3領域(未変化、等軸晶、 柱状晶)モデルとした。

3領域モデルにおいてペレット中心温度及び各領域半径を算出する式を以下に示す。

a)未変化領域

$$\int_{T_s}^{T_2} k(\rho_3, T) \, dT = \frac{Q}{4\pi} \left( 1 - \frac{r_2^2}{r_3^2} \right)$$

b) 等軸晶領域

$$\int_{T_2}^{T_1} k(\rho_2, T) \, dT = \frac{Q}{4\pi} \left[ \frac{r_2^2}{r_3^2} \left\{ \frac{\rho_2}{\rho_3} \left( 1 - \frac{r_1^2}{r_2^2} \right) + 2 \left( 1 - \frac{\rho_2}{\rho_3} \right) \ln \frac{r_2}{r_1} \right\} \right]$$

c)柱状晶領域

$$\int_{T_1}^{T_0} k(\rho_1, T) \, dT = \frac{Q}{4\pi} \left[ \frac{r_0^2}{r_3^2} \left\{ \frac{\rho_1}{\rho_3} \left( \frac{r_1^2}{r_0^2} - 1 - 2\ln\frac{r_1}{r_0} \right) \right\} \right]$$

 $T_S: ペレット表面温度(\mathbb{C})$ T2:未変化-等軸晶領域境界温度(1400℃) *T*₁:等軸晶-柱状晶領域境界温度(1700℃)  $T_{\theta}$ : ペレット最高温度(°C) 中心空孔 *Q*:線出力(W/cm) *k(ρ_i,T)*:ペレット熱伝導度(W/cm・℃) *ρ*3: 製造時ペレット密度(0.95) *ρ*₂:等軸晶領域のペレット密度(0.97) ρ₁: 柱状晶領域のペレット密度(0.99) *r*3: 製造時ペレット外半径(cm) 柱状晶領域 r2:未変化-等軸晶境界半径(cm) r1:等軸晶-柱状晶境界半径(cm) 等軸晶領域 未変化領域 *r*₀: 中心ボイド半径(cm) r_i: 製造時ペレット内半径(cm)

⁴³ 条-別紙 7-別添 1-1

また、質量保存式より、

$$\rho_3(r_3^2 - r_i^2) = \rho_1(r_1^2 - r_0^2) + \rho_2(r_2^2 - r_1^2) + \rho_3(r_3^2 - r_2^2)$$

である。

限界照射試験用要素の被覆管開孔時 における評価について

限界照射試験用要素の被覆管開孔時には、次の二つの影響が考えられる。一つは、限界照射試験用 要素に蓄積されていた FP ガスが冷却材中へ放出されることにより FP ガスと冷却材の二相流が形成 され、圧力損失が増大する影響で、この影響により冷却材流量が減少する。もう一つは、限界照射試 験用要素の開孔が隣接する限界照射試験用補助要素と対面する箇所に生じた場合に、限界照射試験用 要素から放出された FP ガスが隣接する限界照射試験用補助要素に吹き付ける影響で、この影響によ り限界照射試験用補助要素の除熱性能が局所的に低下する。

限界照射試験用要素及び限界照射試験用補助要素の熱設計では、別紙7本文記載の熱設計計算手法 に基づいて評価するが、被覆管開孔時の温度計算においては上記の影響を考慮する。

二相流形成では、限界照射試験用要素及び限界照射試験用補助要素を冷却する冷却材流量を、一律に 15%減少させて評価する。FP ガスインピンジメント効果については、被覆管表面熱伝達率を一律に 1 W/cm²℃として評価する(添付1参照)。

添付1

限界照射試験用要素の被覆管開孔時における限界照射試験用補助要素の 温度評価に用いるフィルム熱伝達率について

#### 1. 概要

限界照射試験用要素の被覆管が開孔した場合、限界照射試験用要素のガスプレナム内に蓄積された 核分裂ガスが開孔部から放出され、開孔部に対面する限界照射試験用補助要素へ吹きつけることによ り熱的な影響を受けるおそれがある。すなわち、放出された核分裂生成ガスは、第1図に示すように スプレー状となって限界照射試験用補助要素の被覆管の表面に吹きつけ、冷却材の除熱能力を低下さ せる可能性がある。このため、熱設計においては、核分裂生成ガスの吹きつけによる影響を、限界照 射試験用補助要の被覆管表面温度計算の際に使用する被覆管表面と冷却材との間のフィルム熱伝達 率の変化として捉え、この値として模擬実験の結果を基に、通常の単相流状態での値より低い 1.0 W/cm²℃が用いられている。ここでは、フィルム熱伝達率の設定根拠について説明する。



第1図 核分裂生成ガスジェット衝突モデル

2. フィルム熱伝達率の設定根拠

ガスジェットが衝突している領域のフィルム熱伝達率は、米国アルゴンヌ国立研究所で行われたガ ス放出模擬実験において得られたデータを基に設定されている。この実験は、炉外ナトリウムループ に3本のヒータピンを有する試験領域を設け、ピン束部の間隙に挿入したガス噴出孔からアルゴンガ スを噴出させ、そのガスジェットが衝突したヒータピンの表面温度を測定したものである。

実験パラメータとしては、噴出ガス内圧、ガス噴出孔の口径、ヒータピンの熱流束、アルゴンガス 温度等ガスジェット衝突面での熱伝達特性に寄与する項目を選定している。これら実験のパラメータ 条件と試験用補助要素の設計値との関係は、第1表に示すとおりであり、実験条件はほぼ限界照射試 験用補助要素の設計値と適合している。

このガス放出模擬実験により得られたガスジェット衝突面でのフィルム熱伝達率を、ガス圧力にっいてまとめた結果を第2図に示す。本実験結果から、最小値である1.0 W/cm²℃をフィルム熱伝達率として設定している。

項目	ガス放出模擬実験装置	限界照射試験用補助要素
ヒータピンの外径 (mm)	5.84	6.4~7.5
ピン配列間隔 (mm)	7.6	9. 1
発熱部長さ (cm)	60	55
全流路断面積(cm ² )	1.48	$2.06 \sim 2.27$
噴出ガス	アルゴン	核分裂生成ガス
噴出ガス温度(℃)	510, 720	705
ヒータピン熱流束(W/cm)	25, 126, 250	$196 \sim 239$
冷却材流量(g/s)	40, 138, 184, 230	$56 \sim 86$

第1表 ガス放出模擬実験装置による実験と限界照射試験用補助要素の主要パラメータの比較



第2図 核分裂生成ガス放出模擬実験によるガスジェット衝突面での熱伝達率データ

43 条-別紙 7-別添 2-4

[223]

照射燃料集合体の熱設計に用いる物性式

本申請における照射燃料集合体の熱設計で使用する物性定数のうち、酸化物燃料のペレット熱伝導 度式、及びギャップ熱伝達率設定式について別添1及び別添2に示す。

なお、先行試験と基礎試験においては照射挙動が不明確な材料を燃料材や被覆材に用いる試験であ り、物性式を設工認段階において最新知見をもとに個別に設定することがある。

#### 酸化物燃料の熱伝導度式

MOX 燃料の熱伝導度は、燃料組成(Pu、Am等)、酸素対金属比(Oxygen to Metal ratio: 0/M 比) 及びペレット密度に大きく依存することが知られている。森本らは燃料組成(Am、Pu、Np)、0/M比及 びペレット密度をパラメータとしてレーザーフラッシュ法を用いた測定結果[1][2][3][4]に基づき、以下 の MOX 燃料熱伝導度式を提案している^[5]。

 $\lambda_0 = \frac{1}{0.01595 + 2.713 \cdot x + 0.3583 \cdot Am + 0.06317 \cdot Np + (2.493 - 2.625 \cdot x) \times 10^{-4} \cdot T}$  $+\frac{1.541 \times 10^{11}}{T^{2.5}}exp\left(-\frac{15220}{T}\right)$ • • • (1)  $\lambda = \frac{1-p}{1+0.5p} \cdot \lambda_0$ · · · (2) **λ**₀ : 100%TD における熱伝導度 (W/m/K) :気孔率 p での熱伝導度(W/m/K) λ :気孔率( $p=1 - \rho$ 、 $\rho$  :密度) p x :2.00-0/M (-) 0/M :化学量論比(-) Am : Am 含有率 (-) *Np* :Np 含有率 (-) T :温度 (K) ここで、密度 ρ については、温度領域毎で以下のように設定している。

$$\rho = 0.99$$
(柱状晶領域)
  
1,900°C  $\leq T$ 
  
1,000°C  $\leq T$ 
  
1,000°C  $\leq T$ 

$$\rho = 0.97$$
 (等軸面領域) 1,400 C  $\ge 1 < 1,900$  C

ρ=燃料ペレット初期密度(不変化領域)  $T < 1,400^{\circ} C$ 

上記式で評価される熱伝導度の温度依存性を第1図に、ペレット密度による熱伝導度の変化を第2 図に示す。なお、Pu含有率については、高速炉 MOX 燃料の仕様範囲(20-40wt%)においては熱伝導度 への影響がほとんどないことから^[4]、上記の式においては Pu 含有率の依存項はない。





[227]

参考文献

- K. Morimoto et al., "Evaluation of thermal conductivity of (U, Pu, Am)O_{2-x}," Trans. Am. Nucl. Soc. 97 (2007) 618-619.
- [2] K. Morimoto et al., "Thermal conductivity of (U, Pu, Np)O₂ solid solutions," J. Nucl. Mater. 389 (2009) 179-185.
- [3] K. Morimoto et al., "Thermal conductivities of hypostoichiometric (U, Pu, Am)O_{2-x} oxide," J. Nucl. Mater. 374 (2008) 378-385.
- [4] 森本他,日本原子力学会「2010年春の年会」,L21.
- [5] M. Kato et al., "Physical Properties and Irradiation Behavior Analysis of Np- and Am-Bearing MOX Fuels," J.Nucl.Sci.Technol. 48 (2011) 646-653.

ギャップ熱伝達率設定式について

1. ギャップ熱伝達率について

ギャップ熱伝達率は、燃料溶融試験等の燃料中心温度が特定される照射試験により評価される。第 1 図に燃料溶融試験の場合のギャップ熱伝達率の評価体系の概念を示すが、燃料中心温度は融点で特 定され^{*1}、その位置の局所線出力と燃料の熱伝導度からペレット外表面温度が求まる。一方、冷却材 側から求めた被覆管内面温度との差によりギャップ部の上昇温度が求まり、その温度からギャップ熱 伝達率は評価される。この様にギャップ熱伝達率の評価においては、燃料熱伝導度を用いて温度評価 を行うことから、熱設計計算で用いる燃料熱伝導度とギャップ熱伝達率はセットで取り扱う必要があ る。

以上を踏まえ、照射期間中、燃料最高温度の熱設計基準値に対する余裕が最も小さくなる照射初期 のギャップ熱伝達率の評価モデルについて「常陽」照射試験データに基づき説明するとともに、「常 陽」MK-IV燃料設計用の照射初期のギャップ熱伝達率の設定について、以下に示す。

2. MK-IV炉心燃料設計用のギャップ熱伝達率の設定

「常陽」では、燃料溶融照射試験である B5D 試験^[1]及び熱電対を用いた計測線付照射試験において 直接的に燃料中心温度を測定した INTA 試験^[2]が行われており、ギャップ熱伝達率を評価している。 INTA 試験及び B5D 試験での燃料条件等について第 1 表に示す。これらの照射試験データに基づいて 評価したギャップ熱伝達率を第 2 図に示した。ここで、燃料温度計算に用いる熱伝導度式については、 熱設計と同一の式を用いる必要があり、【別添 1】で説明した熱伝導度式を用いた。

第2図では、横軸に製造時ギャップ幅をとっており、ギャップ熱伝達率と製造時ギャップ幅の関係 を示している。この両者には相関があり、ギャップ幅が小さいほどギャップ熱伝達率が増加する傾向 があることが分かる。また、ペレットと被覆管のギャップ幅は燃料要素の線出力密度の増加に伴って 両者の熱膨張量の差等によっても縮小するため、線出力密度が増加するとギャップ熱伝達率は大きく なる傾向がある。この様にギャップ熱伝達率は、線出力、製造時直径ギャップ幅等に関し依存性があ り、これらの依存性を考慮した評価モデルを策定する。一般的なガス熱伝達率のモデル^[3]をベースに 以下の評価式を策定し、INTA 試験及び B5D 試験から評価したギャップ熱伝達率の測定値に基づき、 各係数(*C1*から *C4*)の最適な組み合わせを求め、ギャップ熱伝達率評価モデルとした^[4]。

$$hg = \frac{C1 + C2 \cdot Q}{G_0 - C3 \cdot D_{pin} \cdot Q + C4}$$

*hg*: ギャップ熱伝達率 (W/cm²/℃)

 $G_0$ :製造時直径ギャップ幅 (cm)

^{*1} 溶融が生じた燃料カラム中、燃料の溶融が正に開始する軸方向位置では、燃料ペレットの中心温度は融点で特定される。

Dpin:製造時被覆管内径 (cm)

*Q*:線出力(W/cm)

C1~C4は照射試験及び物性値から評価し設定される係数で、以下の通り。

C1: ギャップ部のガス熱伝導度に由来する係数 (W/cm/℃)

*C2*:燃料ペレットの熱膨張係数に由来する係数(1/℃)

C3:燃料ペレットの熱膨張係数に由来する係数(cm/W)

C4:温度ジャンプ距離に由来する係数(cm)

3. 熱設計計算方法の妥当性について

2.において設定したギャップ熱伝達率を用いて、INTA 試験及び B5D 試験の試験燃料要素の燃料中 心温度の計算を行い、計算値と測定値を比較することで、本熱設計計算方法の妥当性を確認する。こ こで、計算はノミナル条件と不確かさを考慮したホットスポット条件で行った。ホットスポット条件 で考慮する工学的安全係数としては、ギャップ熱伝達率誤差及びペレット熱伝導度誤差の係数を考慮 することとした。ノミナル条件での燃料中心温度の測定値と計算値の比較を第3回に、ホットスポッ ト条件で測定値と計算値の比較を第4回に示した。

ノミナル条件での燃料中心温度の測定値と計算値の差について、第3図に示すように計測値と計算 値が比較的よい一致を示している。また、ホットスポット条件では、第4図に示すように、計算値が 測定値を上回る保守的な評価となっていることが分かる。

以上の結果より、このギャップ熱伝達を含む熱設計計算方法は、燃料中心温度を保守的に評価し燃 料溶融防止の観点で妥当性を有する。

項目		INTA-1	INTA-2	B5D-2
試験種別		計測線付試験	計測線付試験	燃料溶融試験
照	射時期	1985年~1986年	1991 年	1992 年
被覆管	外径 mm	6.5	7.5	7.5
仕様	肉厚 mm	0.47	0.40	0.40
	外径 mm	5.39	6.50~6.56	6.45~6.56
燃料ペレ ット仕様	ギャップ幅 mm	0.17	0.11~0.21	0.13~0.24
	0/M比	1.94	1.95~1.96	1.96~1.98
	密度%TD	86	90~95	91~95
	Pu 含有率 wt%	29.6	18.9	19.4~19.5
	形状	中空	中空	中実
照射開始時点の Am 含有率 wt%		約 0.34	約 0.62	約 0.66
照射期間 EFPD		約 220	約7	約 0.16
最高線出力 W/cm		約 280	約 320	約 700

### 第1表 「常陽」で実施された熱的性能に係る照射試験実績



第1図 燃料溶融照射試験によるギャップ熱伝達率評価の概念図



第2図 ギャップ熱伝達率とギャップ幅の関係(B5D 試験、INTA 試験)



第3図 燃料中心温度の測定値と計算値(ノミナル温度)の比較(B5D 試験、INTA 試験)



(B5D 試験、INTA 試験)

43 条-別紙 8-別添 2-5

参考文献

- M. Inoue et al., "Power-to-melts of Uranium-Plutonium Oxide Fuel Pins at a Beginningof-life Condition in the Experimental Fast Reactor JOYO", J. Nucl. Mater. 323 (2003) 108.
- [2] 関根他,「「常陽」照射試験における照射条件評価精度の向上」, JNC TN9400 99-017, 核燃料サ イクル研究開発機構,平成 11 年.
- [3] A. M. Ross and R. L. Stoute, "Heat Transfer Coefficient between UO $_2$  and Zircaloy-2, AECL-1552, 1962.
- [4] Y. Ikusawa et al., "Oxygen potential and self-irradiation effects on fuel temperature in Am-MOX", GIF 2018 Symposium Proceedings, pp. 321-327.

照射燃料集合体の工学的安全係数

照射燃料集合体においても、工学的安全係数は炉心燃料集合体と同様に設定する。ただし、照射用 燃料集合体に装荷される燃料要素(特殊燃料要素及び試験用燃料要素)は、試験ごとに要素の寸法、 材料等の仕様が異なる。そのため、炉心燃料要素のように一律に設定することができない。

また、燃料製造の観点からは、炉心燃料要素と照射燃料集合体に装填される燃料要素には以下のような違いがある。

 ・炉心燃料
 : 検査で合格した製造ロットで構成されている。
 ・照射燃料集合体に装填される燃料要素: 炉心燃料と同様に検査で合格した製造ロットで構成 されているが、試験評価のために基本的には燃料ペレットの充填位置も含め管理している
 なお、個別の考慮で、炉心燃料要素では、熱設計は
 。一方、照射燃料集合体に装填される
 燃料要素(特殊燃料要素及び試験用要素)の熱設計では、
 。なお、照射燃料集合体に装填される燃料要素は、燃料ペレットの
 充填位置も含め管理する。
 設置変更許可申請書には、工学的安全係数で考慮する項目のうち、燃料要素の仕様によらず共通す

る を考慮した 1.05 のみを記載する。その他の燃料要素仕様に係る項目については、個別に考慮 する。

43 条-別紙 9-1



別紙 10

# 照射燃料集合体の熱設計結果

1. 燃料要素

1.1 計算条件

各要素の寸法等条件を第1.1表に、最大線出力密度を第1.2表に示す。組織未変化時理論密度(初期密度)は許可仕様範囲の中で最大値、ペレット直径・被覆管外径も許可仕様範囲の中で最大値としている。また、過出力因子は1.08である。

	Ⅲ型特殊燃料要素	IV型特殊燃料要素	先行試験用要素	先行試験用要素	
燃料種別	Ⅲ型限界照射試験用要素	Ⅳ型限界照射試験用	基礎試験用要素	(	
	限界照射試験用補助要素	要素	要素 (溶融なし)		
組織未変化時	05	05	05	95	
理論密度[%]	95	95	95		
ペレット直径	7 50	6 19	7 99	6 44	
[mm]	7.50	0.18	1.32	6.44	
直径ギャップ	0.90	0.90	0.18	0.16	
[mm]	0.20	0.20	0.18	0.10	
被覆管外径	9 E	7 5	9 F	7 5	
[mm]	8. 0	(. ð	8. 9	1.5	
被覆管肉厚	0.4	0.56	0 5	0.45	
[mm]	0.4	0.00	0.5	0.45	
0/M比	1.97	1.97	1.97	1.97	
Am 含有率[%]	0	0	2.0	2.0	
被覆管材質	オーステナイト	フェライト	オーステナイト	オーステナイト	

第1.1表 照射燃料の寸法等条件

第1.2表 最大線出力密度(軸方向最大)

燃料種別	Ⅲ型特殊燃料要素     Ⅳ型特       燃料種別     Ⅲ型限界照射試験用要素     Ⅳ型限       限界照射試験用補助要素     Ⅳ型限		先行試験用要素 基礎試験用要素 (溶融なし)	先行試験用要素 (溶融あり)
定格出力時 [W/cm]	台力時 cm] 約 480 約 500		約 450	約 640
過出力時 [W/cm]	約 520	約 540	約 490	約 700

### 1.2 熱設計結果

各燃料要素の熱設計結果を第1.3表に示す。いずれも、定格時においては熱的制限値、運転時の異常な過渡変化時(過出力時、被覆管開孔時)には熱設計基準値を下回っている。

出力等条件	燃料種別	燃料最高温度 [℃]	燃料最大溶融 割合[%]	制限值
	Ⅲ型特殊燃料要素	2476.1		
	Ⅳ型特殊燃料要素、Ⅳ型限界照射			
	試験用要素	2519.4		
定格出力	Ⅲ型限界照射試験用要素、			2540°C
(100MW)	限界照射試験用補助要素	<mark>2425. 6</mark>		
	先行試験用要素、基礎試験用要素			
	(溶融なし)	2392.1		
	先行試験用要素(溶融あり)		17.0	20%
	Ⅲ型特殊燃料要素	2586.5		
	IV型特殊燃料要素、IV型限界照射			
	試験用要素	2625.5		
温山力	Ⅲ型限界照射試験用要素、			2680°C
「二」」	<mark>限界照射試験用補助要素</mark>	<mark>2558. 5</mark>		
	先行試験用要素、基礎試験用要素			
	(溶融なし)	2500.1		
	先行試験用要素(溶融あり)		25.3	30%
試験用要素	Ⅲ型限界照射試験用要素	<mark>2454. 7</mark>		
の被覆管	IV型限界照射試験用要素	2536.0		2680°C
開孔時	限界照射試験用補助要素	<mark>2571. 7</mark>		

第1.3表 燃料要素の最高温度

2. 集合体

定格出力時における内壁構造容器(先行試験用)及び密封構造容器(基礎試験用)の容器胴の最高 温度を算出する。また、運転時の異常な過渡変化時に到達しうる最高温度についても評価する。密封 構造容器の容器胴の最高温度については、基礎試験用要素の被覆管の開孔後についても評価する。

先行試験用γ型コンパートメントは、コンパートメントオリフィスの径を最大とした時の流量は少 なくとも 400g/s となる。定格出力時の熱設計は、最大線出力密度の条件であっても、必要な冷却材 流量を確保して設計するため、第2.1 図及び第2.1 表に示すとおり、内壁構造容器及び密封構造容器 の最高温度は熱的制限値を超えることはない。また、運転時の異常な過渡変化時に到達しうる、内壁 構造容器及び密封構造容器の最高温度は第2.1 表に示すとおり、熱設計基準値を超えることはない。

基礎試験用 y 型コンパートメントについても同様であり、定格出力時の熱設計は、最大線出力密度 の条件であっても、必要な冷却材流量を確保して設計するため、第 2.2 図及び第 2.1 表に示すとお り、密封構造容器の最高温度は熱的制限値を超えることはなく、また、運転時の異常な過渡変化時に 到達しうる密封構造容器の最高温度は、第 2.1 表に示すとおり熱設計基準値を超えることはない。

	定格出力	熱的制限値	運転時の異常な	熱設計基準値
			過渡変化時	
被覆管	約 750℃	750°C	約 870℃	890°C
内壁構造容器	約 675℃	675°C	約 770℃	890°C
密封構造容器	約 675℃	675°C	約 770℃	890°C

第2.1表 容器胴の最高温度

	被覆管最高温度(肉厚中心)*3				
	定格出力時				
	A型照射燃料集合体 装填時	B型照射燃料集合体 装填時	C型照射燃料集合体 装填時	D型照射燃料集合体 装填時	照射用実験装置 装填時
照射燃料集合体					
内壁構造容器	-	約675℃	-	-	-
密封構造容器	—	約675℃	_	-	_

*3 : 内壁構造容器及び密封構造容器にあっては、内壁構造容器または密封構造容器の最高温度。

(添八第3.5.4 表は定格出力時のみ)







第2.2図 最高温度と冷却材流量の関係(基礎試験用)

43 条-別紙 10-4

別紙 11

# クリープ寿命分数和の計算

クリープ寿命分数和の評価式を以下に示す。当該式は、被覆管にかかる応力が、燃焼進行とともに 単調増加することを考慮したものであり、被覆管温度及び応力で定まるクリープ破断時間(t_r)に対 する使用時間(Δt_i)の比の総和が1を超えないことにより、クリープ破損が防止されることを確認 する。

$$\text{CDF} = \sum_{i=1}^{n} \left( \frac{\Delta t_i}{t_{ri}} \right)$$

CDF : クリープ寿命分数和
 i 燃料要素の使用期間をn個に分割したときの第i番目の区間
 Δt_i : 第i区間の時間長さ
 t_{ri} : 第i区間の条件(被覆管温度、応力)で定まるクリープ破断時間

クリープ破断時間( $t_r$ )は、大気中、ナトリウム中、炉内のクリープ破断試験データに基づき評価 式を策定するとともに、保守性を考慮した設計応力強さにより求める。すなわち、大気中のクリープ 強度の下限評価値( $S_R$ )に対し、その強度を保守側に 0.8 倍して設定した強度( $S_t$ ;  $S_t=0.8 \times S_R$ )を 用いる。このことは、破断時間に対して約2倍以上の安全余裕を有することに対応する。この $S_t$ に対 し、ナトリウム中・炉中での強度低減効果(環境効果)を考慮した強度( $S_t^*$ )を設定し、上記評価式 のクリープ破断時間( $t_r$ )を算出する。

運転中被覆管にかかる応力としては、主に燃焼で生じる核分裂生成物ガス(以下、FP ガス)、初期 封入ガス、燃料ペレット内の蒸発性不純物ガスから成るガス内圧であり、燃焼進行に伴う FP ガス量 の増加により内圧は上昇していく。この内圧による被覆管円周方向のクリープ破断を生じないように するため、クリープ寿命分数和を評価する。被覆管の周方向応力の算出においては、被覆管の肉厚は 最も薄くなる場合を想定する必要があり、製造公差、核分裂生成物(FP)による内面腐食及び冷却材 ナトリウムによる外面腐食による減肉量も考慮する。 照射燃料集合体の機械設計の制限について

1. 照射燃料集合体の機械設計において想定する破損様式

照射燃料集合体の機械設計においても、炉心燃料集合体と同様、ASME Sec. Ⅲを参考に使用期間中の燃料集合体の構造健全性の保証を目的として、使用材料の特性を考慮し、以下の破損様式を防止するために制限を設ける。

- ① 一次応力による引張破断
- ② 一次応力によるクリープ破断
- ③ 一次及び二次応力による過大な塑性変形
- ④ 一次及び二次応力による過大なクリープ変形
- ⑤ 疲労破損
- ⑥ クリープ疲労破損
- ⑦ 座屈

ただし、照射燃料集合体の場合、試験目的に応じて計画された範囲でその健全性を喪失させる試験 を行うことがある。そのため、上記の破損様式のうち、破損を前提とすることもある。また、短時間 の照射試験のため、長期荷重による破損を考慮する必要がないものもある。この場合、2.2項の制限 のうち、該当の制限については当該集合体の設計において考慮しない。

#### 2. 燃料集合体の構造設計方針

1. で示した破損様式の防止のための燃料集合体の構造設計方針を以下に記す。

ただし、照射燃料集合体の場合、試験目的に応じて計画された範囲でその健全性を喪失させる試験 を行うことがあり、計画的に被覆管をクリープ破損させることがある。また、短時間の照射試験のた め、長期荷重による破損を考慮する必要がないことがある。この場合、2.2項の制限のうち、該当の 制限については当該集合体の設計において考慮しない。

- 2.1 使用記号
  - **B** :使用分数の制限値(1.0)
  - D : 累積クリープ疲労損傷制限値
  - D_c : 累積クリープ損傷係数
  - *D*_f : 累積疲労損傷係数
  - *i* : 負荷サイクル数
  - *N_{di}*: 負荷サイクル*i*に対する許容繰り返し数
  - *n_i* : 負荷サイクル*i*の回数
  - *P_b* : 一次曲げ応力強さ
  - $P_L$ :一次局部膜応力強さ(一次一般膜応力強さ $P_m$ を含む)
  - *Pm* : 一次一般膜応力強さ
  - **Q** : 二次応力
  - S_m :設計応力強さ(別添1参照)
  - S_a:使用期間中の最高及び最低温度のそれぞれに対して定める設計降伏点の平均値
  - t_i: 全寿命のうち、平均温度T_iにおいて一次一般膜応力強さが(P_m)_iである負荷サイクルiの累積持続時間
  - $t_{mi}$  : 温度 $T_i$ 、応力強さ $(P_m)_i$ に対する許容時間
- 2.2 制限
  - (1) 一次応力による引張破断

一次応力強さによる引張破断については、次式を用いて構造健全性を評価する。延性破 断防止の観点から一次一般膜応力強さに対して制限を設け、塑性崩壊防止の観点から一次 曲げ応力を加えた全一次応力強さに対して制限を設ける。

a. 一次一般膜応力に対する制限

$$P_m \leq S_m$$

b. 一次膜応力+一次曲げ応力強さに対する制限

$$P_L + P_b \le 1.5S_m$$

(2) 一次応力によるクリープ破断【クリープ寿命分数和の計算:別紙11参照】 一次応力によるクリープ破断については、次式を用いて評価する。

$$\sum_{i} \frac{t_i}{t_{mi}} \le B$$

- (3)一次及び二次応力による過大な塑性変形と一次及び二次応力による過大なクリープ変形 進行性ひずみ防止及び疲労評価の観点から、以下の制限を設ける。
  - a. クリープ温度未満

$$P_L + P_b + Q \le 3S_m$$

b. クリープ温度以上

$$P_L + P_b + Q \le S_q$$

(4) 疲労破損【疲労損傷和及び累積損傷和の計算:別紙13参照】 疲労評価については、次式を用いて評価する。

$$\sum_{i} \frac{n_i}{N_{d_i}} \le 1.0$$

(5) クリープ疲労破損【疲労損傷和及び累積損傷和の計算:別紙13参照】 次式の線形損傷則で評価する。D_fの算出でクリープの影響を考慮する。

$$D_f + D_c \le D$$

累積クリープ疲労損傷係数の制限値Dは第2.1図を用いる。



第2.1図 累積クリープ疲労損傷係数の制限値

(6) 座屈

ラッパ管では完全な塑性曲げ崩壊挙動を示し、大変形効果による形状不安定現象である 曲げ座屈は生じにくく、崩壊の方が先に生じる。また被覆管の場合、ラッパ管より厚肉で あるので曲げ座屈はさらに生じにくく、崩壊点以下では曲げ座屈は生じない。

したがって、ラッパ管及び被覆管に対して通常運転時及び運転時の異常な過渡変化時に おける一次膜応力+一次曲げ応力の制限を満足していれば、座屈は生じず塑性崩壊も防止 される。

プレナムスリーブの座屈は、プレナムスリーブにかかる圧縮荷重をオイラー座屈荷重に よって制限する。

#### 3. 燃料要素の耐震設計方針

地震時については、地震という交番する短期荷重が負荷された状態であり、1.の7項目の破損様 式のうち、一次応力による引張破断、疲労破損又はクリープ疲労破損を防止すれば燃料被覆管の閉じ 込め機能は維持できる。

3.1 使用記号

- *P_b* : 一次曲げ応力強さ
- *P*_L : 一次局部膜応力強さ(一次一般膜応力強さ*P*_mを含む)
- *Pm* : 一次一般膜応力強さ
- *S_u*:設計引張強さ
- *Sy* : 設計降伏点
- 3.2 制限
  - (1) 一次応力による引張破断

「実用発電用原子炉の燃料体に対する地震の影響の考慮について」(平成 29 年 2 月 15 日 原子力規制庁)の燃料被覆管の閉じ込め機能が維持できることの判断基準を参考に、 燃料要素被覆管について以下の制限を設ける。

a. 地震以外の荷重+弾性設計用地震動 Sd による地震力

$$P_L + P_b \le S_y$$

b. 地震以外の荷重+基準地震動 Ss による地震力

$$P_L + P_b \le S_u$$

(2)疲労破損又はクリープ疲労破損2.2(5)項のクリープ疲労破損の制限を満足することとする。

設計応力強さ (Sm) の設定について

1. 概要

照射燃料集合体の設計応力強さ(Sm)設定は、基本的に炉心燃料集合体の燃料設計と同じとする。 なお、照射燃料集合体においては照射挙動が不明確な材料を燃料材や被覆材に用いる試験もあり、 物性式を設工認段階において最新知見をもとに個別に設定することがある。

### 2. 設計応力強さ(Sm)の設定

炉心燃料集合体における S_mの設定と同様、材料の設計降伏強さ(Sy)と設計引張強さ(Su)の両者 を考慮して決められる。設計応力強さ(S_m)は以下の方法にしたがって作成した。

$$S_m = \min\left(\frac{1}{2}S_u^{RT}, \frac{3}{4}S_y^{RT}, \frac{1}{2}S_u^{HT}, \frac{3}{4}S_y^{HT}\right)$$
  
 $S_u^{RT}$ :室温での規格引張強さ  
 $S_y^{RT}$ :室温での規格降伏点  
 $S_u^{HT}$ :当該温度における設計引張強さ  
 $S_y^{HT}$ :当該温度における設計降伏点


(2) 高 Ni オーステナイト系ステンレス鋼(A)



43 条-別紙 12-別添 1-2



別紙 13

# 疲労損傷和及び累積損傷和の計算

疲労損傷和(D_f)は、以下の式により評価する。当該式は、使用期間中の原子炉起動・停止や運転時の異常な過渡事象等の出力変動に伴う負荷サイクルによる多数回の繰返し歪みの発生回数に対し、 温度や歪み範囲等に依存する材料特有の許容繰返し数との比の総和として、疲労損傷和(D_f)を定義 する。

疲労損傷和 
$$D_f = \sum_i \frac{n_i}{Nd_i}$$

ここで、

Nd_i: 負荷サイクルiに対する許容繰返し数

n_i: 負荷サイクル i の回数である。

累積疲労サイクルに係る評価では、上記疲労損傷和 ( $D_f$ ) に、被覆管が高温下で使用されることに よるクリープ寿命分数和 ( $D_c$ ) を考慮し、累積損傷和 ( $D_f+D_c$ ) が 1.0 以下となることを確認する。

疲労損傷和の許容繰返し数(Nd)は、評価した最大歪を用いて疲労線図により算出する。

SUS316 相当ステンレス鋼及び高 Ni オーステナイト系ステンレス鋼(A)について、ASME Code Case N-47 の 316 ステンレス鋼弾性解析用疲労線図を準用するものとする。SUS316 相当ステンレス鋼及び 高 Ni オーステナイト系ステンレス鋼(A)の疲労損傷評価に用いる疲労線図を第1図に示す。

高速炉用フェライト系ステンレス鋼については、2.25Cr-1Mo 鋼の疲労線図を 50℃嵩上げしたもの を準用する。高速用フェライト系ステンレス鋼の疲労損傷評価に用いる疲労線図を第2図に示す。



第2図 疲労線図(高速炉用フェライト系ステンレス鋼)

43 条-別紙 13-2

燃料溶融時における燃料と被覆管の相互作用による歪

<u>別紙 14</u>

### 1. 概要

燃料の一部溶融を伴う試験(溶融限界線出力試験)時には、燃料の一部を溶融させるため燃料の膨 張が大きくなり、被覆管の膨張を考慮してもギャップを消滅させ、被覆管の歪を生じ、さらに被覆管 の破損を生じる可能性がある。そのため、燃料と被覆管の相互作用による被覆管の円周方向引張全歪 を 3%以内に抑えることとしている。

- 2. 計算方法
- 2.1 計算条件

計算条件は以下とする。計算モデルを第1図に示す。

- 1. 燃料ペレットは相変化に伴う膨張及び熱膨張を、被覆管は熱膨張を考慮する。照射に伴う中心 空孔の生成、等軸晶及び柱状晶の組織変化による収縮は考慮しない。
- 2. 燃料ペレットは、温度分布に沿って径方向に自由膨張するものとする。
- 3. 燃料ペレットの相変化に伴う膨張は、溶融先端の燃料ペレットを押し上げて軸方向に生じるものとする。
- 4. 燃料ペレットは、液相及び固相で非圧縮性とする。



第1図 被覆管歪の計算モデル

43 条-別紙 14-1

## 2.2 計算式

前項に基づき、被覆管歪を以下の式で計算する。

(1) 燃料の膨張

溶融発生時の燃料ペレット膨張量は、次式により計算する。

$$\Delta r_{f} = ( 固相内部の内面の膨張量) + ( 固相部の厚みの膨張量)$$
$$= r_{m} \cdot \alpha_{f}(T_{m}) \cdot (T_{m} - T_{o}) + \int_{r_{m}}^{r_{s}} \alpha_{f} (T_{f}(r)) \cdot (T_{f}(r) - T_{o}) dr$$

ここで、

 $\Delta r_f$ : 燃料ペレット外半径の膨張量(mm) $r_m$ : 燃料ペレット溶融半径(mm) $r_s$ : 燃料ペレット製造時外半径(mm) $\alpha_f(T)$ : 燃料ペレットの熱膨張係数(/℃) $T_f(r)$ : 燃料ペレットの径方向温度分布(℃) $T_m$ : 燃料の融点(℃) $T_o$ : 室温(20℃)

である。

(2) 被覆管内半径及び外半径の熱膨張

被覆管内半径及び外半径は、各々次式により計算する。

 $\Delta r_{ci} = r_{ci} \cdot \alpha_c(T_c) \cdot (T_c - T_o)$   $\Delta r_{co} = r_{co} \cdot \alpha_c(T_c) \cdot (T_c - T_o)$ ここで、  $\Delta r_{ci}$  : 被覆管内半径の増加量 (mm)  $\Delta r_{co}$  : 被覆管内半径の増加量 (mm)  $r_{ci}$  : 被覆管内半径 (mm)  $r_{co}$  : 被覆管外半径 (mm)  $r_{co}$  : 被覆管外半径 (mm)  $\alpha_c(T)$  : 被覆管の熱膨張係数 (/°C)  $T_c$  : 被覆管温度 (°C)

である。

(3) 被覆管歪量

溶融発生時の被覆管歪量は、以下の式で計算する。

$$\varepsilon = \frac{(膨張した燃料と膨張した被覆管のオーバーラップ量)}{(膨張した被覆管の外半径)}$$
$$= \frac{\Delta r_f - \Delta r_{ci} - \Delta G}{r_{co} + \Delta r_{co}}$$

ここで、

*ε* : 被覆管歪 (−)

 $\Delta G$  : 被覆管と燃料との間のギャップ (mm)

である。

3. 評価モデルの保守性

なお、被覆管歪については以下に示すような保守性が見込まれる。

・温度分布計算における保守性

燃料ペレットの膨張量計算に用いる燃料の径方向温度分布は、熱計算の計算手法で計算され る。この中で用いるギャップ熱伝達率の物性値は、実験データを基に保守的に設定されている ことから、燃料ペレットの表面温度が高めに評価される。このため、燃料ペレットの熱膨張量 も過大に評価される。これに対し、被覆管の温度評価は燃料ペレットの径方向温度分布評価に 比べて誤差は小さい。

・自由膨張モデルの保守性

燃料ペレットは、温度分布に沿って径方向に自由膨張するものとしている。このように燃料 ペレットが径方向に自由膨張するには、ペレットにクラック等が十分生じていることが必要で あるが、EBR-IIでの Power to Melt(溶融限界線出力)試験の照射後試験結果によれば、ペレ ットが径方向に自由膨張するに足るクラック等は観察されていない。この場合、ペレットの膨 張はペレットの最外周の熱膨張量に拘束されるため、ペレットの膨張量は減少する。したがっ て、クラック等が発生した場合には、発生しない場合に比べて膨張量は大きくなる。

・非圧縮モデルの保守性

燃料ペレットは、液相及び固相で非圧縮性としている。これに対し、プルトニウム・ウラン 混合酸化物焼結ペレットは、高温下で比較的容易にクリープダウンすることが知られており、 膨張したペレットは被覆管の拘束力によってある程度圧縮されるものと考えられる。したがっ て、被覆管の歪の発生に寄与するペレットの膨張量は減少することとなる。

以上のように、被覆管歪モデルは、燃料の膨張量 $\Delta r_p$ を過大評価し、その結果被覆管歪量 $\varepsilon$ も過大に評価することから、保守的な評価であると言える。

<mark>別紙 15</mark>

限界照射試験の被覆管開孔時の放出物に対する処置

限界照射試験では、被覆管の限界を確認するため限界照射試験用要素の被覆管が開孔するよう設計 することがある。限界照射試験用要素の被覆管が開孔した場合、開孔部から燃料粒子が放出されるお それがあるため、炉心燃料集合体の冷却を阻害するおそれのある粒径の燃料粒子がコンパートメント の外側へ放出されないようにコンパートメントを設計する【照射燃料集合体の機械設計:別紙17参 照】。しかし、ストレーナ孔径より小さな粒径の燃料粒子・核分裂生成物(FP)等は、コンパートメ ント外へ流出する可能性がある。

被覆管開孔時の燃料粒子・FP 等の流れを第1図に示す。

流出した燃料粒子・核分裂生成物等の一部は、1次冷却系の冷却材の流速が遅くなる部分で沈降す ると考えられる。また、一部は1次冷却材純化系のコールドトラッププレフィルタ及びコールドトラ ップにて除去される。

揮発性 FP は、カバーガスを通じて廃ガスとともに排気筒から大気放散される。そのため、年間の 試験回数を制限することで、環境への放射性物質の放出量を低く抑える。最大回数実施時(A型4回 /年、B型1回/年)の放出量の評価結果を第1表に示す。限界照射試験時の被覆管開孔時の放出量 は、年間の希ガス及びよう素の放出管理目標値の1%程度であり、低く抑えられている。

	限界照射試験時の被覆管開孔時	(参考)年間の希ガス及びよう
	(A型4回、B型1回/年)	素の放出管理目標値
希ガス	約 8.3×10 ¹² Bq/y	6. $2 \times 10^{14}$ Bq/y
よう素	約 1.0×10 ⁷ Bq/y	8.9 $\times 10^8$ Bq/y

第1表 限界照射試験時の被覆管開孔時の放出量評価結果



第1図 限界照射試験時の燃料粒子・FP 等の流れ

照射燃料集合体の燃料要素の機械設計結果等の整理

1. 設置変更許可書に記載する照射試験用燃料要素の評価仕様の選定方針

照射燃料集合体に装填する燃料要素(特殊燃料要素及び試験用要素)は、高速炉用燃料開発のため 様々な目的をもって照射されることから、その仕様は広範なものとなっており、燃料要素の評価につ いては、評価仕様として代表的な燃料要素をとりあげて、設計方針に定められている基準への適合性 の評価を行っている。

この評価仕様の選定方針としては、直近の計画値のうち評価上最も厳しくなる値を用いることとし ている。しかしながら、選定される評価仕様は、燃料要素の仕様範囲すべてを包絡するものではない、 実際に照射する燃料要素が目的に応じて設置変更許可申請書の設計方針に定められている基準に適 合しているかどうかについては、設工認段階において設計結果の確認を行う。

#### 2. Ⅲ型及びIV型特殊燃料要素

Ⅲ型及びIV型特殊燃料要素の被覆管内圧は、製造時に封入する不活性ガス、燃料ペレットから放出 される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇する。

照射燃料集合体に装填される燃料要素は、その試験目的に合わせて個々に仕様が決定される。ここでは、燃料ペレットから放出される核分裂生成ガスが最大となるよう、第2.1表及び第2.2表の設計 仕様のように、ペレット径を最大(III型 7.5mm、IV型 6.18mm)、初期密度最大(95%TD)、燃料要素有 効長さ最長(550mm)とし、第2.3表及び第2.4表のように燃焼度を許可上最大(軸方向平均で要素 最大130,000MWd/t)の条件で設計する。

項目	仕様	備考
ペレット直径	7.5mms	最大、中実ペレット
初期密度	95%TD	最大
0/M 比	1.97	
プルトニウム含有比	30wt%	
被覆管種類	SUS316 相当ステンレス鋼	
被覆管外径	8. 5mm	最大
被覆管肉厚	0. 4mm	最小
燃料要素有効長さ	550mm	最長
ガスプレナム長さ	900mm	最長

第2.1表 Ⅲ型特殊燃料要素の設計仕様

項目	仕様	備考
ペレット直径	6.18mm	最大、中実ペレット
初期密度	95%TD	最大
0/M 比	1.97	
プルトニウム含有比	30wt%	
被覆管種類	高速炉用フェライト鋼	
被覆管外径	7.5mm	最大
被覆管肉厚	0. 56mm	最小
燃料要素有効長さ	550mm	最長
ガスプレナム長さ	800mm	最長

第2.2表 IV型特殊燃料要素の設計仕様

第2.3表 Ⅲ型特殊燃料要素の設計条件

項目	条件	備考
燃料要素最高燃焼度	130,000MWd/t	最大
最大線出力密度	480W/cm	
燃焼時間	1,060 日	
被覆管最高温度 (通常運転時、肉厚中心)	700°C	熱的制限値

第2.4表 IV型特殊燃料要素の設計条件

項目	条件	備考
燃料要素最高燃焼度	130,000MWd/t	最大
最大線出力密度	500W/cm	
燃燒時間	940 日	
被覆管最高温度	610°C	渤 齿 地 山 山 山 山 山 山 山 山 山 山 山 山 山
(通常運転時、肉厚中心)		

Ⅲ型特殊燃料要素評価結果を第2.5表に、Ⅳ型特殊燃料要素の評価結果を第2.6表に示す。被覆管 応力はⅢ型特殊燃料要素で、Ⅳ型特殊燃料要素でそれぞれである。燃料ペレットから放出される核分 裂生成ガスが最大となるような条件においても、ペレット仕様に合わせてガスプレナムの体積や被覆 管肉厚を適切に設定することで、内圧によるクリープ寿命分数和や運転時の異常な過渡変化時の一次 膜応力を制限値以下に設定することが可能となる。

Ⅲ型及びⅣ型特殊燃料要素の被覆管内圧は、製造時に封入する不活性ガス、燃料ペレットから放出 される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇するが、ガスプレナムの体積を十分 大きくとっているので、最高燃焼度の被覆管の内圧によるクリープ寿命分数和は、被覆管肉厚が最も 薄い場合においても1.0未満である。 Ⅲ型及びⅣ型特殊燃料要素の被覆管応力は、燃焼初期においては、被覆管の内圧と外圧である1次 冷却材の運転圧力約3kg/cm²[gage](約0.29MPa[gage])とがほぼ等しいので小さい。また、燃焼に 伴って核分裂生成ガスの蓄積により内圧が徐々に上昇するが、過出力時においても一次膜応力の最大 値は被覆管の材料のSm値より十分小さい。

さらに、照射クリープ、スエリング等によるⅢ型及びⅣ型特殊燃料要素の被覆管の歪は十分小さく、 各種の応力サイクルによる累積疲労サイクルは設計疲労寿命に比べて十分小さい。

項目	結果	備考	
燃料最高温度(過出力時)	約 2,590℃	熱設計基準値:2,680℃	
被覆管内圧	約7.2MPa (73 kgf/cm²)		
クリープ寿命分数和	0.81	制限值:1	
被覆管一次膜応力(過出力	$\frac{1}{2}$ 72N/mm ² (7.4 haf/mm ² )	Sm /开,约 111N/mm² (11 41-a/mm²)	
時)	示り / 511/ mm (/.4 Kg1/ mm)	Sm /ш : жу IIIN/ mm (II.4Kg/ mm )	

第2.5表 Ⅲ型特殊燃料要素の設計結果

第2.6表 IV型特殊燃料要素の設計結果

項目	結果	備考
燃料最高温度(過出力時)	約 2,630℃	熱設計基準値:2,680℃
被覆管内圧	約7.4MPa (75 kgf/cm²)	
クリープ寿命分数和	0.1	制限值:1
被覆管一次膜応力(過出力	約 69N/mm² (7 kgf/mm²)	$c_{1} = \frac{1}{2} \frac{1}$
時)		Sm 仙:示J 139N/mm ⁻ (14.2Kg/mm ⁻ )

### 3. Ⅲ型及びIV型限界照射試験用要素

Ⅲ型及びⅣ型限界照射試験用要素は、最高燃焼度に至るまでにクリープ寿命分数和が 1.0 を超える よう設計されるため、被覆管が開孔に至る可能性がある。

## 4. 先行試験用要素

先行試験用要素では、被覆管の外側に内壁構造容器を設けることで、燃料材に照射挙動が不明確な 材料を用いることができる。仕様範囲も広く、さまざまな照射が可能となるため、代表的な仕様にお いて設計が可能であることを示す。

設計仕様を、燃料部を溶融させない先行試験用要素について第4.1表に、燃料部を溶融させる先行 試験用要素について第4.2表に示す。また、設計条件を、燃料部を溶融させない先行試験用要素につ いて第4.3表に、燃料部を溶融させる先行試験用要素について第4.4表に示す。

<mark>項目</mark>	仕様	<mark>備考</mark>
燃料材種類	<mark>酸化物ペレット</mark>	
<mark>ペレット外径</mark>	<mark>7.32 mm</mark>	
<mark>ペレット内径</mark>	<mark>1.8 mm</mark>	<mark>中空ペレット</mark>
初期密度	<mark>95%TD</mark>	<mark>最大</mark>
<mark>0/M 比</mark>	<mark>1. 97</mark>	
<mark>プルトニウム含有比</mark>	<mark>30wt%</mark>	
<u> 地要比我</u>	高 Ni オーステナイト系ステンレ	
	<mark>ス鋼(A)</mark>	
被覆管外径	<mark>8. 5mm</mark>	<mark>最大</mark>
被覆管肉厚	<mark>0. 5mm</mark>	
燃料要素有効長さ	<mark>500mm</mark>	<mark>最長</mark>
<mark>ガスプレナム長さ</mark>	<mark>980mm</mark>	<mark>最長</mark>

## 第4.1表 先行試験用要素(溶融なし)の設計仕様

### 第4.2表 先行試験用要素(溶融あり)の設計仕様

項目	仕様	<mark>備考</mark>
燃料材種類	<mark>酸化物ペレット</mark>	
<mark>ペレット直径</mark>	<mark>6.44mm</mark>	<mark>中実ペレット</mark>
初期密度	<mark>95%TD</mark>	<mark>最大</mark>
<mark>0/M 比</mark>	<mark>1. 97</mark>	
<mark>プルトニウム含有比</mark>	<mark>30wt%</mark>	
<u> 地                                   </u>	高 Ni オーステナイト系ステンレ	
1次復化性积	<mark>ス鋼(A)</mark>	
<mark>被覆管外径</mark>	<mark>7. 5mm</mark>	
被覆管肉厚	<mark>0. 45mm</mark>	
<mark>燃料要素有効長さ</mark>	<mark>500mm</mark>	<mark>最長</mark>
<mark>ガスプレナム長さ</mark>	680mm	

## 第4.3表 先行試験用要素(溶融なし)の設計条件

<mark>項目</mark>	条件	<mark>備考</mark>
燃料要素最高燃焼度	<mark>200,000MWd/t</mark>	
<mark>最大線出力密度</mark>	450W/cm	
燃焼時間	<mark>2,280 日</mark>	
被覆管最高温度	700°C	
(通常運転時、肉厚中心)		

## 第4.4表 先行試験用要素(溶融あり)の設計条件

項目	条件	<mark>備考</mark>
<mark>最大線出力密度</mark>	<mark>640W/cm</mark>	
<mark>燃焼時間</mark>	<mark>2,280 日</mark>	
被覆管最高温度	CE0°C	
(通常運転時、肉厚中心)		

設計結果を、燃料部を溶融させない先行試験用要素について第4.5表に、燃料部を溶融させる先行 試験用要素について第4.6表に示す。

被覆管内内圧は、燃料部から放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇 するが、ガスプレナムの体積を十分大きくとることにより、被覆管の内圧によるクリープ寿命分数和 は、1.0未満とできる。

第4.5表 先行試験用要素(溶融なし)設計結果

項目	結果	<mark>備考</mark>
燃料最高温度(過出力時)	約 2,510℃	<mark>熱設計基準値 : 溶融温度 2. 680℃</mark>
被覆管内圧	約 9.02MPa(92.0kgf/cm²)	
<mark>クリープ寿命分数和</mark>	<mark>約 0.2</mark>	<mark>制限值:1</mark>
被覆管一次膜応力(過出力 時)	約 143.3N/mm ² (14.7kgf/mm ² )	<mark>Sm 値:153.5N/mm²</mark>

## 第4.6表 先行試験用要素(溶融あり)の設計結果

項目	結果	備考
燃料溶融割合(過出力時)	<mark>約 30%</mark>	<mark>熱設計基準值:30%</mark>
被覆管一次膜応力(過出力 時)	約 6.8N/mm ² (0.70kgf/mm ² )	<mark>Sm 値:228. 4N/mm²</mark>

## 5. 基礎試験用要素

基礎試験用要素では、被覆管の外側に密封構造容器を設けることで、被覆材に照射挙動が不明確な 材料を用いることができる。仕様範囲も広く、さまざまな照射が可能となるため、代表的な仕様にお いて設計が可能であることを示す。

基礎試験用要素について、設計仕様及び設計条件を第5.1表及び第5.2表に示す。

項目	仕様	<mark>備考</mark>
燃料材種類	<mark>酸化物ペレット</mark>	
<mark>ペレット外径</mark>	<mark>7. 32mm</mark>	
<mark>ペレット内径</mark>	<mark>1.8 mm</mark>	<mark>中空ペレット</mark>
初期密度	<mark>95%TD</mark>	<mark>最大</mark>
<mark>0/M 比</mark>	<mark>1. 97</mark>	
<mark>プルトニウム含有比</mark>	<mark>30wt%</mark>	
被覆材種類	<mark>SUS316 相当ステンレス鋼</mark>	
被覆管外径	<mark>8. 5mm</mark>	<mark>最大</mark>
被覆管肉厚	<mark>0.5mm</mark>	
<mark>燃料要素有効長さ</mark>	500mm	<mark>最長</mark>
ガスプレナム長さ	<mark>680mm</mark>	

第5.1表 基礎試験用要素の設計仕様

### 第5.2表 基礎試験用要素の設計条件

項目	条件	備考
燃料要素最高燃焼度	<mark>100,000MWd/t</mark>	
<mark>最大線出力密度</mark>	<mark>450W/cm</mark>	
<mark>燃焼時間</mark>	<mark>1,140 日</mark>	
<mark>被覆管最高温度</mark>	700°C	
(通常運転時、肉厚中心)		

## 設計結果を第5.3表に示す。

クリープ寿命分数和は、最高燃焼度に至るまでに 1.0 を超えるよう設計することがあるため、被覆 管開孔に至る可能性がある。ただし、その場合でも通常運転時及び過出力時における一次膜応力は被 覆管の材料の Sm 値より小さくなるように設計する。

項目	結果	備考
燃料最高温度(過出力時)	約 2,510℃	熱設計基準値:溶融温度2.680℃
被覆管内圧	約7.09MPa(72.2kgf/cm ² )	
クリープ寿命分数和	<mark>約 2.0</mark>	(1を超えるように設計)
<mark>被覆管一次膜応力(過出力</mark>	$\frac{113 \text{ ON}/\text{mm}^2}{11 \text{ 6k} \text{ af}/\text{mm}^2}$	
<mark>時)</mark>	, 110. 01/ min (11. 0Kg1/ min )	

# <mark>第 5.3 表 基礎試験用要素の設計結果</mark>



1. 概要

別紙本文で実施しているクリープ強度評価について、計算の詳細を記す。ここでは、溶融させない 場合の先行試験用要素(別紙本文4.)を例に記載している。また、燃料要素の仕様の組み合わせに よっては設計を満足しないような設計も可能であり、仕様の検討例についても記す。

#### 2. クリープ寿命分数和の計算

別紙本文で実施しているクリープ強度評価について、計算の詳細を記す。 先行試験用要素(溶融なし)の設計仕様・設計条件を第2.1表に示す。

第2.1表 先行試験用要素(溶融なし)の設計仕様・設計条件

項目	值
燃料材種類	PuU 混合酸化物燃料
Pu含有率[wt%]	30
ペレット外径/内径[mm]	7.32 / 1.8
燃料-被覆管直径ギャップ[mm]	0. 18
初期理論密度[%TD]	95
0/M比	1. 97
被覆管種類	高 Ni オーステナイト系ステンレス鋼(A)
被覆管外径[mm]	8.5
被覆管肉厚[mm]	0. 5
プレナム長さ[mm]	980
最大線出力密度[W/cm]	450
燃焼時間[日]	2, 280
被覆管最高温度[℃]	700
蒸発性不純物量[μL/g]	150
水分[ppm]	30

第2.1表の設計仕様・設計条件のもとで照射初期から燃焼速度一定として計算する。また、内圧に よる応力算出に用いる被覆管肉厚はナトリウムによる外面腐食及び FP による内面腐食を考慮する。 FP ガス放出率は第2.1 図に示す設計式を用いる。

計算ステップをムt=720h(76ステップ)として計算した結果を、燃料要素内のガス発生量について

[272]

別添1

は第2.2表に、被覆管肉厚については第2.2図に示す。



第2.1図 FP 放出率の設計式

項目	値
燃料要素内ガスモル量 (プレナム内初期ガスを含む)	4.9×10 ⁻² mol(使用末期)
初期ガスモル量	$1.5 \times 10^{-3}$ mol
蒸発性不純物ガスモル量	$1.8 \times 10^{-3}$ mol

第2.2表 ガス発生量の計算結果



第2.2図 被覆管肉厚の計算結果

ガスプレナム体積は、被覆管内径 7.5mm とプレナム長さ 980mm より、上部プレナム体積: 29g/cm³、 下部プレナム体積: 7.5g/cm³として、被覆管内圧を評価する。被覆管内圧は使用末期で 92kgf/cm²と なる(内圧の時刻歴を第2.3図に示す)。



第2.3図 被覆管内圧の計算結果

第2.2 図の被覆管肉厚の計算結果と第2.3 図の被覆管内圧の計算結果より、被覆管の1次膜応力を 計算すると、使用末期で14.1kgf/mm²となる。第2.4 図に被覆管一次膜応力の計算結果を示す。



クリープ破断時間は、ラーソン・ミラー・パラメータで整理した以下の式を用いる。

 $LMP = 27.121 - 3.898 \log \sigma_r$  ( $\sigma_r < 10.5 \text{kgf/mm}^2$ )

 $= 42.208 - 45.286 \log \sigma_r + 37.655 (\log \sigma_r)^2 - 11.353 (\log \sigma_r)^3 \ (\sigma_r \ge 10.5 \text{kgf/mm}^2)$  $LMP = T(18.91 + \log 3t_r) \times 10^{-3}$ 

```
 σ : 応力
 LMP : ラーソン・ミラー・パラメータ
 t<sub>r</sub> : 破断時間
 T : 温度
```

43 条-別紙 16-別添 1-3

クリープ寿命分数和は、第4図の各ステップにおける被覆管一次膜応力と上記式から計算される破 断時間を許容時間とし、この許容時間と計算ステップ(Δt_i=720h, i=1~76)から以下の式で計算す る【クリープ寿命分数和の計算:別紙11参照】。クリープ寿命分数和の計算結果を第2.5図に示す。

*i*:負荷サイクル数

 $\Delta t_i$ : 全寿命のうち、平均温度 $T_i$ において一次一般膜応力強さが $(\sigma_r)_i$ である負荷サイクルiの累積持続時間

 $t_{ri}$ :温度 $T_i$ 、応力強さ $(\sigma_r)_i$ に対する許容時間



第2.5図 クリープ寿命分数和の計算結果

3. 仕様の検討

前項のクリープ寿命分数和の計算で用いた第2.1表の設計仕様・設計条件(プレナム体積を除く) をもとに、設計が成立する/成立しない仕様を検討する

第2.1表の設計仕様・設計条件のもとで FP ガス発生量(発生した FP ガスのみ、プレナム内の初期 ガスを含まない)の計算結果を第3.1図に示す。また、第2.1表より水分及び蒸発性不純物モル量 は、0.00184mo1/ピンとなる。



第3.1図 FP ガス発生量の計算結果

初期封入ガスが1気圧として、プレナム体積が異なる2つのケースを考える。プレナム体積をそれ ぞれ上部プレナムのみの①30cm³、②40cm³として内圧を検討した結果を第3.1表に示す。

	弗 3.1 オ	交 的庄仲討結未	
		プレナム	プレナム
		ケース①	ケース2
プレナム体積[cm ³ ]		30	40
プレナム温度	€[°C]	675	
使用初期	ガスモル数	0.00200	0.00251
	[mo1/ピン]	0.00309	0.00551
	内圧	0 90	7 05
	$[kgf/cm^2]$	8.28	7.05
使用末期	ガスモル数	0.0405	0.0400
	[mo1/ビン]	0.0495	0.0499
	内圧	100	101
	$[kgf/cm^2]$	133	101

内耳栓针结里 **竺** 0 1 丰

43 条-別紙 16-別添 1-5

第 3.1 表で検討した 2 ケースの内圧に対して、被覆管仕様を検討する。ここでは、被覆管肉厚を (1)0.3mm、(2)0.45mmの2種類とした。それぞれの肉厚で被覆管応力を計算すると、第 3.2 表のとお りとなる。

	被覆管肉厚	1 次膜応力 [N/mm ² ]	
	[mm]	プレナムケース①	プレナムケース②
被覆管ケース(1)	0.3	167.6	126.5
被覆管ケース(2)	0.45	113.9	86.0

第3.2表 被覆管応力(仕様末期)の検討結果

ここで被覆材種類として、炉心燃料要素で使われる SUS316 相当ステンレス鋼 (PNC316) と高 Ni オ ーステナイト系ステンレス鋼(A)の2種類に対して、設計の成立性を評価する。それぞれの設計許容 応力は第3.3表に示すとおりであり、これより設計の成立/不成立の評価結果は第3.4表のとおりと なる。この場合、プレナムケース①では設計は成立せず、プレナムケース②では「PNC316、0.3mm」の ケース以外は成立する。このように、仕様範囲の中でもペレット径、被覆管肉厚などの組合せによっ ては設計は成立しないが、プレナム体積、被覆管肉厚などを適切に設定することで設計を成立させる ことができる。

第3.3表 設計許容応力

被覆材種類	Sm [N/mm ² ]
SUS316 相当ステンレス鋼 (PNC316)	112.6
高 Ni オーステナイト系ステンレス鋼(A) (PNC1520)	126.8

第3.4表 各ケースの設計成立性

被覆材種類、肉厚[mm]	プレナムケース①	プレナムケース②
PNC316、 0.3	×	×
PNC316、0.45	×	0
PNC1520, 0.3	×	0
PNC1520, 0.45	×	0

<mark>別紙 17</mark>

# <mark>照射燃料集合体の機械設計</mark>

1. 照射燃料集合体の機械設計の方針

照射燃料集合体の集合体の機械設計は、基本的に炉心燃料集合体の集合体の機械設計と同じとする。 ただし、試験用要素の場合、被覆材の破損あるいは被覆内燃料の一部の溶融を伴うものであり、計画 的にその健全性を喪失させることがある(第1表)。計画的にその健全性を喪失させる試験用燃料体 にあっては、設計基準事故時において、試験用燃料体が破損した場合においても、試験研究用等原子 炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれがないものであることが 要求されている。そのため、計画的にその健全性を喪失させる試験用要素を装填する集合体において は、以下のように設計する。

- ・限界照射試験用要素を装填した照射燃料集合体にあっては、炉心の冷却を阻害する物のコンパー トメント外への放出がないことを確認する。
- ・先行試験用要素を装填した照射燃料集合体にあっては、設計基準事故時に被覆管が破損しても、
  内壁構造容器が健全であることを確認するとともに、炉心の冷却を阻害する物の内壁構造容器外
  への放出がないことを確認する。
- ・基礎試験用要素を装填した照射燃料集合体にあっては、設計基準事故時においても、密封構造容 器が健全であることを確認する。

試験用要素	健全性喪失
Ⅲ型限界照射試験用要素	被覆管の破損
Ⅳ型限界照射試験用要素	被覆管の破損
先行試験用要素	燃料の溶融 (酸化物燃料の場合)
基礎試験用要素	被覆管の破損

第1表 計画的にその健全性を喪失させる試験用要素

別添1

限界照射試験用要素を装填した照射燃料集合体の 燃料粒子等のコンパートメント外への放出防止策

コンパートメントにストレーナを設置し、冷却材出口部を多数の小口径の孔とする。ストレーナ孔 径を炉心燃料要素の冷却材流路を確保するワイヤスペーサ径より小さいものとしているため、炉心燃 料集合体の冷却を阻害するおそれのある粒径の燃料粒子がコンパートメントの外側へ放出されない 構造である。



第1図 A型限界照射試験用β型コンパートメントの例

43 条-別紙 17-別添 1-1

先行試験用要素の内壁構造容器の健全性

#### 1. 概要

先行試験において、先行試験用要素の被覆管が破損した場合、先行試験用要素内の核分裂生成ガス が内壁構造容器内のナトリウム中へ放出され、内壁構造容器内で圧力が生じるほか、燃料材が酸化物 燃料の場合、燃料部が溶融していることがあるため、何らかの原因により、この溶融した燃料が内壁 構造容器内のナトリウム中に放出されると、溶融燃料とナトリウムの相互作用(Molten Fuel Coolant Interaction: MFCI)により圧力が生じる(第1図)。炭化物燃料、窒化物燃料及び金属燃料につ いては、燃料部の最高温度を溶融温度以下に制限しているため、MFCIによる圧力は発生しない。 この発生圧力が内壁構造容器の耐圧を下回ることをもって、内壁構造容器の健全性を確認する。ま

た、炉心の冷却を阻害する物が内壁構造容器外へ放出されない構造であることを確認する。

2. MFCIによる発生圧力

2.1 評価方法

MFCIの圧力評価には、高速炉安全解析コードで、MFCIの他、冷却材沸騰や溶融した燃料材 及び被覆材の移動挙動等、核・熱流力挙動を解析するSAS4Aコードを用いた。

解析条件を第1表に、解析モデルを第2図に示す。保守的な評価とするため、燃料径が最大の条件 で、最大溶融割合は熱設計基準値の30%を上回る40%に設定し、破損位置は最大溶融位置近傍とした。 また、溶融燃料放出の際に被覆管破損孔部で生じる圧力損失はゼロとした。

項目		值
燃料仕様	ペレット直径	7.5 mm
	ペレット密度	95 %TD
	スミア密度	85 %TD
	被覆管外径	8.5 mm
集合体仕様	内壁構造容器材質	SUS316 相当ステンレス鋼
	内壁構造容器内径	13 mm
	内壁構造容器肉厚	2.8 mm
照射条件	燃料溶融割合	40 %
	燃焼度	50 GWd/t

第1表 解析条件



第1図 溶融燃料放出によるMFCIの発生



第2図 SAS4A解析モデル

2.2 評価結果

MFCIによる発生圧力を計算した結果、最大で13.2MPaとなる。

この圧力は、に示すとおり、SUS316 相当ステンレス鋼の 675℃で 15,000 時間使用した時の許容応 力から求められる、運転時の異常な過渡変化時の内壁構造容器の耐圧 30.6MPa を超えないため、内壁 構造容器の健全性は確保される。

3. 炉心の冷却を阻害する物の内壁構造容器外への放出防止

内壁構造容器は、上下部に多数の小口径の孔をもつストレーナを有する構造とし、その孔の直径は、 炉心燃料要素の冷却材流路を確保するワイヤスペーサの直径より小さいものとしているため、炉心燃 料集合体の冷却材流路を閉塞するような燃料粒子等が内壁構造容器から放出されることはない。した がって、内壁構造容器は、その健全性が確保されることにより、炉心の冷却を阻害する物が内壁構造 容器外へ放出されない構造である。 基礎試験用要素の密封構造容器の健全性

#### 1. 概要

基礎試験においては、基礎試験用要素の被覆管が開孔した場合、基礎試験用要素内に蓄積している 核分裂生成ガスが、密封構造容器内に放出されることにより、密封構造容器に内圧が発生するが、燃 料部は溶融していないため、溶融燃料とナトリウムの相互作用により発生する圧力はない。したがっ て、基礎試験用要素内に蓄積している核分裂生成ガスの放出により発生する圧力が、密封構造容器の 耐圧を下回ることをもって、密封構造容器の健全性を確保する。

2. 事故時の健全性

事故と相まって基礎試験用要素の被覆管が開孔した場合の密封構造容器の健全性は、第1表に示す とおり、事故時の密封構造容器の到達温度が、破損に至る温度を超えないため、事故時の密封構造容 器の健全性は確保される。

密封構造容器は、密封構造であるため、その健全性が確保されることにより、燃料粒子等が密封構 造容器外へ放出されない構造である。

項目	評価条件・結果
急速加熱開始温度	675 ℃
温度上昇率	20 °C/s
急速加熱開始時応力	89.2 N/mm ²
破損に至る温度	906 ℃
到達温度	800 °C

第1表 密封構造容器の健全性評価

添付1 設置許可申請書における記載

- 5. 試験研究用等原子炉及びその附属施設の位置、構造及び設備
  - ハ. 原子炉本体の構造及び設備

原子炉本体は、燃料体(試験用燃料体を含む。)、反射材、制御材、炉心構造物及び原子 炉容器等から構成する。原子炉容器の上部には回転プラグを、原子炉容器の外側には遮へ いグラファイト及び生体遮へい体を放射線遮蔽体として設ける。

(2) 燃料体

燃料集合体は、炉心燃料集合体及び照射燃料集合体から構成する。炉心燃料集合体 は、通常運転時及び運転時の異常な過渡変化時における原子炉内の圧力、自重、附加 荷重その他の炉心燃料集合体に加わる負荷に耐え、かつ、輸送中又は取扱中におい て、著しい変形を生じないように設計する。照射燃料集合体は、設計基準事故時にお いて、照射燃料集合体が破損した場合においても、原子炉を安全に停止するために必 要な機能及び炉心の冷却機能を損なうおそれがないように、また、輸送中又は取扱中 において、著しい変形が生じないように、さらに、放射性物質の漏えい量を抑制する ための措置を講じることができるように設計する。

炉心燃料集合体は、核分裂性プルトニウム富化度等が異なる内側燃料集合体と外側 燃料集合体の2種類から構成する。照射燃料集合体は、高速増殖炉用燃料の開発及び 高速炉用燃料の設計精度の向上のための試験に使用するものであり、構造がそれぞれ 異なるA型、B型、C型及びD型照射燃料集合体の4種類から構成する。

(i) 燃料材の種類

炉心燃料集合体の燃料ペレット部及び熱遮へいペレット部、照射燃料集合体の燃 料部及び熱遮へい部の燃料材の種類は第3表のとおりである。

(ii) 被覆材の種類

炉心燃料集合体及び照射燃料集合体の被覆材(被覆管)の種類(材料)は第3表 のとおりである。

- (iii) 燃料要素の構造
  - b. 照射燃料集合体

照射燃料集合体の燃料要素は、III型及びIV型特殊燃料要素、III型及びIV型限界 照射試験用要素、先行試験用要素、基礎試験用要素、A型用炉心燃料要素(A型 照射燃料集合体に装填するA型用炉心燃料要素(内側)及びA型用炉心燃料要素 (外側)の2種類とする。)及び限界照射試験用補助要素の9種類から構成す る。

これらの燃料要素は、円筒形のステンレス鋼の被覆管に燃料部及び熱遮へい部等を挿入し、その被覆管の両端を密封した構造とする。

- (iv) 燃料集合体の構造
  - b. 照射燃料集合体

照射燃料集合体は、炉心燃料集合体と同様に、燃料要素、ステンレス鋼の六角 形のラッパ管、ハンドリングヘッド及びエントランスノズル等から構成する。照 射燃料集合体の種類は、燃料集合体の中央に試料部を設けたA型照射燃料集合 体、燃料集合体内に数本のコンパートメントを納めたB型及びD型照射燃料集合 体、炉心燃料集合体と同様な形状のC型照射燃料集合体の4種類とする。

コンパートメントは、照射燃料集合体の内部において独自に冷却材流量を設定 できる二重の円筒管(α型コンパートメントにおいては、外管に六角管も用い る。) であり、その種類は装填する燃料要素の種類及び本数並びに構造及び主要 寸法等の組合せにより  $\alpha$ 型、  $\beta$ 型、  $\gamma$ 型及び  $\delta$ 型コンパートメントの 4 種類に分 類される。なお、α 型及び γ 型コンパートメントは、燃料要素最大 5 本をピン タイロッドの周囲に配置し、ワイヤスペーサ等で燃料要素間を保持する構造とす る。β型及びδ型コンパートメントは、燃料要素1本をシュラウド管に装填 し、ワイヤスペーサ等で燃料要素とシュラウド管との間を保持する構造とする。 先行試験用 γ 型コンパートメントは、燃料要素1本をシュラウド管に装填し、 ワイヤスペーサ等で燃料要素とシュラウド管との間を保持し、これを上部と下部 にストレーナを有した管構造である内壁構造容器に装填し、この内壁構造容器を 納めた構造とする。基礎試験用 γ 型コンパートメントは、燃料要素1本をシュ ラウド管に装填し、ワイヤスペーサ等で燃料要素とシュラウド管との間を保持 し、これを密封型の管構造である密封構造容器に装填し、この密封構造容器を納 めた構造とする。照射燃料集合体の構造を以下に示す。また、主要仕様を第4表 に示す。

(a) A型照射燃料集合体

A型照射燃料集合体は、試料部の周囲に、スパイラルワイヤを巻いたA型 用炉心燃料要素を炉心燃料集合体と同じ燃料要素ピッチで正三角格子状に配 置して、全体をラッパ管に納め、この下部にエントランスノズルを、上部に ハンドリングヘッドを配した構造とする。

試料部は、燃料要素7本のバンドル(正三角格子状に配置した燃料要素の 束)を二重のステンレス鋼の試料部六角管に納めたもの、α型又はβ型コン パートメントをステンレス鋼の試料部六角管に納めた構造とする。

(b) B型照射燃料集合体

B型照射燃料集合体は、燃料集合体の中央部に設けたステンレス鋼のタイ ロッドのまわりに、γ型コンパートメント6本を配し、全体をラッパ管に納 め、この下部にエントランスノズルを、上部にハンドリングヘッドを配した 構造とする。

先行試験用γ型コンパートメント内には内壁構造容器1本が納められ、この内壁構造容器内に先行試験用要素を装填することにより、燃料溶融状態の 先行試験用要素の被覆管が、万一、破損しても、先行試験用要素以外の燃料 要素の健全性に影響を与えない構造とする。 基礎試験用γ型コンパートメント内には密封構造容器1本が納められ、こ の密封構造容器内に基礎試験用要素を装填することにより、基礎試験用要素 の被覆管が開孔しても、基礎試験用要素以外の燃料要素の健全性に影響を与 えない構造とする。

(c) C型照射燃料集合体

C型照射燃料集合体は、燃料要素最大 91 本のバンドルをステンレス鋼の 試料部六角管に納め、これをラッパ管に納め、この下部にエントランスノズ ルを、上部にハンドリングヘッドを配した構造とする。

また、照射条件をオンラインで計測するものにあっては、検出器を取り付 け、計測線を炉外に引き出す構造とする。

(d) D型照射燃料集合体

D型照射燃料集合体は、燃料集合体の中央部に設けたステンレス鋼のタイ ロッドのまわりに、γ型コンパートメント6本、δ型コンパートメント18 本、又は、これら2種類のコンパートメントを混在させて配し、全体をラッ パ管に納め、この下部にエントランスノズルを、上部にハンドリングヘッド を配した構造とする。

(v) 最高燃焼度

b. 照射燃料集合体

燃料要素最高燃焼度は、下記のとおりとする。

- Ⅲ型及びⅣ型特殊燃料要素 130,000Wd/t
  Ⅲ型及びⅣ型限界照射試験用要素
  ▲型照射燃料集合体装填時 200,000Wd/t
  B型照射燃料集合体装填時 200,000Wd/t
  D型照射燃料集合体装填時 200,000Wd/t
  先行試験用要素 200,000Wd/t
  基礎試験用要素 200,000Wd/t
  A型用炉心燃料要素 90,000Wd/t
- 限界照射試験用補助要素 130,000MWd/t
|            | 燃料要素 | 有効長さ      | 燃料部                              | 50cm以下* 5           |                 | 비                |        | 上回             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 비                |        |        | 귀恒             |             |             |         |           |      | 니트                   |              |            |              |            |             |            |            |
|------------|------|-----------|----------------------------------|---------------------|-----------------|------------------|--------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|--------|----------------|-------------|-------------|---------|-----------|------|----------------------|--------------|------------|--------------|------------|-------------|------------|------------|
|            |      |           | 肉厚(mm)                           | $0.4 \sim 0.7$      |                 | $0.56 \sim 0.76$ |        | $0.4 \sim 0.6$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.56 \sim 0.76$ |        |        | $0.3 \sim 0.8$ |             |             |         |           |      | 년<br>년               |              |            |              |            |             |            |            |
|            | 被覆管  |           | 外径(mm)                           | $6.4 \sim 8.5$      |                 | $6.5 \sim 7.5$   |        | $6.4 \sim 7.5$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $6.5 \sim 7.5$   |        |        | $5.4 \sim 8.5$ |             |             |         |           |      | 기티                   |              |            |              |            |             |            |            |
|            |      |           | 材料                               | オーステナイト系            | メナンレメ響          | 高速炉用<br>フェライト系   | ステンレス鋼 | オーステナイト系       | メナンレス鯔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 高速炉用             | フェライト系 | ステンレス鋼 | オーステナイト系       | ステンレス鋼または   | 高速炉用フェライト   | 系ステンレス鋼 | (酸化物分散強化型 | を含む) | ステンレス鋼               |              |            |              |            |             |            |            |
| <i>(</i> ) |      | 堤い〜運祥     | 種類                               | ウラン酸化物*3<br>h+/+ 。, | 焼結ヘレット          | 丁世               |        | 日日             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 귀恒               |        |        | ウランの*4*6       | 酸化物、炭化物、    | 窒化物または金属    |         |           |      | ウラン酸化物 ^{*4} | 焼結ペレット、      | ウラン炭化物     | 焼結ペフシト、      | ウラン窒化物     | 焼結ペレット、     | またはウラン金属   | スラゲ        |
|            |      |           | ウラン<br>濃縮度                       | 26wt%以下             |                 | 24wt%以下          |        | 26wt %以下       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24wt%以下          |        |        | I              |             |             |         |           |      | Ι                    |              |            |              |            |             |            |            |
| メドシーメ      |      |           | プルトニウム<br>同位体組成比                 | 原子炉級                |                 | 귀⊫               |        | 日日             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 日回               |        |        | 二回             |             |             |         |           |      | 귀恒                   |              |            |              |            |             |            |            |
|            | 燃料材  | <b>約部</b> | 核分裂性プルト<br>ニウム富化度 ^{* 2} | I                   |                 | I                |        | I              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I                |        |        | I              |             |             |         |           |      | Ι                    |              |            |              |            |             |            |            |
|            |      | 燉         | プルトニウム<br>含有率*1                  | 32wt%以下             |                 | 니                |        | 山上             | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 비                |        |        | I              |             |             |         |           |      | 左欄にしいて、              | それぞれ         | 32wt %以下、  | 25wt %以下、    | 30wt %以下、  | 20wt%以下     |            |            |
|            |      |           | 種類                               |                     | 随合酸合物<br>焼結ペワシト | 귀世               |        | 日日             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 日回               |        |        | プルトニウムまたは*6*7  | ウランの単体または混合 | 物の酸化物、炭化物、蜜 | 化物または金属 |           |      | プルトニウム・ウラン           | 混合酸化物焼結ペレット、 | プルトニウム・ウラン | 混合炭化物焼結ペレット、 | プルトニウム・ウラン | 混合蜜化物焼結ペレット | またはプルトニウム・ | ウラン混合金属スラグ |
|            | 通日   | /         | 集合体                              | 照射燃料集合体<br>田型特殊燃料要素 |                 | IV型特殊燃料要素        |        | II型限界照射試験用要素   | and a second secon | IV型限界照射試験用要素     |        |        | 先行試験用要素        |             |             |         |           |      | 基礎試験用要素              |              |            |              |            |             |            |            |

第3表 燃料要素の主要仕様 (2/3)

項目			燃料材				後	<b>衷覆管</b>		燃料要素
			燃料部			熟進へい部				有効長さ
/	铺箱	アクニイルト	核分裂性プルト	プルトニウム	イビイ	铺箱	材料	外径(mm)	肉厚 (mm)	汕苹作乐初州
/	1年7月	含有率*1	ニウム富化度*2	同位体組成比	濃縮度	132.754				
(内側)	プルトニウム・ウラン	32wt%以下	約16wt%	原子炉級	約18wt%	ウラン酸化物*3	オーステナイト系	約5.5	約0.35	50cm以下*5
	混合酸化物					焼結ペワシア	ステンレス鋼			
	焼結ペレット									
(外側)	日日	山下	約21wt%	日日	日日	日上	二回	기밀	비	기미
要素	山市	기밀	Ι	비	26wt%以下	기밀	기르	$6.4 \sim 7.5$	$0.4 \sim 0.6$	비

(3/3)
燃料要素の主要仕様
第3表

.. .. .. .. .. .. .. * * * * * * * * - 0 0 4 0 0 7

Pu/(Put²⁴¹Am+U)。 ⁽²⁸⁹Put³⁴¹Pu)/(Put³⁴¹Am+U)。 劣化ウラン。 天然ウランまたは劣化ウラン。 MK ー II 炉心から継続して使用する燃料要素の場合は、55cm以下とする。 燃料材の他、マイナーアクチニドや核分裂生成物を混入させる場合は、55cm以下とする。 燃料材の他、マイナーアクチニドや核分裂生成物を混入させる場合は、55cm以下とする。

添付2 設置許可申請書の添付書類における記載(安全設計)

添付書類八

- 1. 安全設計の考え方
  - 1.1 安全設計の方針
    - 1.1.2 炉心等の設計に関する基本方針

原子炉施設は、原子炉固有の出力抑制特性を有するとともに、原子炉の反応度を制御する ことにより核分裂の連鎖反応を制御できる能力を有するものとし、かつ、炉心は、通常運転 時又は運転時の異常な過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却 系統、原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機 能することにより燃料の許容設計限界を超えないものとする。

(3)燃料集合体、反射体及び遮へい集合体並びに炉心構造物等は、通常運転時、運転時の異常な過渡変化時及び設計基準事故時において、原子炉を安全に停止し、かつ、停止後に炉心の冷却機能を維持できるように設計する。

添付3 設置許可申請書の添付書類における記載(適合性)

添付書類八

- 1. 安全設計の考え方
  - 1.8 「設置許可基準規則」への適合 原子炉施設は、「設置許可基準規則」に適合するように設計する。各条文に対する適合のた めの設計方針は次のとおりである。

(試験用燃料体)

第四十三条 試験用燃料体は、次に掲げるものでなければならない。

- 一 試験計画の範囲内において、試験用燃料体の健全性を維持できない場合においても、燃料体の性状又は性能に悪影響を与えないものであること。
- 二 設計基準事故時において、試験用燃料体が破損した場合においても、試験研究用等原子 炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれがないものであ ること。

三 放射性物質の漏えい量を抑制するための措置を講じたものであること。

四 輸送中又は取扱中において、著しい変形が生じないものであること。

適合のための設計方針

- 一 照射燃料集合体の熱設計は、炉心燃料集合体の設計方針に基づいて行う。燃料要素は、燃料温度、 核分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を制限することにより、その健全性を 確保する。ただし、試験用要素を装填した照射燃料集合体は、通常運転時及び運転時の異常な過 渡変化時において、試験用要素が計画された範囲内でその健全性を喪失しても、他の燃料要素の 健全性に影響を与えないよう、それぞれの燃料要素について、設計方針を定め、その方針を満足 するよう設計する。燃料集合体は、炉心燃料集合体の設計方針に準ずる。ただし、限界照射試験 用要素を装填した照射燃料集合体にあっては、コンパートメントの冷却材出口部は多数の小口径 の孔とし、万一、限界照射試験用要素の開孔部から燃料が放出された場合でも、炉心燃料集合体 の冷却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造とする。
- 二 照射燃料集合体は、設計基準事故時において、照射燃料集合体が破損した場合においても、原子 炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれがないように、また、 輸送中又は取扱中において、著しい変形が生じないように設計する。燃料要素は、燃料温度、核 分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を制限することにより、その健全性を確 保する。ただし、試験用要素にあっては、通常運転時及び運転時の異常な過渡変化時において、 計画された範囲でその健全性を喪失しても、他の燃料要素の健全性に影響を与えないよう、使用 する試験用要素に応じて設計方針を定め、その方針を満足するよう設計する。燃料集合体は、炉 心燃料集合体の設計方針に準ずる。ただし、限界照射試験用要素を装填した照射燃料集合体にあ っては、コンパートメントの冷却材出口部は多数の小口径の孔とし、万一、限界照射試験用要素 の開孔部から燃料が放出された場合でも、炉心燃料集合体の冷却を阻害するおそれのある粒径の 燃料粒子が照射燃料集合体の外側へ漏れ出ない構造とする。先行試験用要素を装填した照射燃料 集合体にあっては、燃料溶融状態の先行試験用要素の被覆管の破損が生じた場合でも、内壁構造 容器の健全性が確保される構造とするとともに、内壁構造容器の冷却材出口部を多数の小口径の 孔とし、万一、先行試験用要素の被覆管の破損部から燃料が放出された場合でも、炉心燃料集合 体の冷却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造とす る。基礎試験用要素を装填した照射燃料集合体にあっては、基礎試験用要素の被覆管が開孔した

場合でも、密封構造容器の健全性が確保される構造とする。

- 三 燃料要素は、燃料温度、核分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を制限することにより、その健全性を確保する。また、照射燃料集合体の1体当たりの核分裂性物質量は、炉心燃料集合体のそれを超えないものとする。B型、C型及びD型照射燃料集合体のそれぞれの1体当たりの核分裂性物質量は、A型照射燃料集合体のそれの最大を超えないものとする。ただし、試験用要素にあっては、通常運転時及び運転時の異常な過渡変化時において、計画された範囲でその健全性を喪失するものがある。限界照射試験用要素、先行試験用要素及び基礎試験用要素の装填時にあっては、年間照射試験回数を制限するとともに、燃料破損検出系により、燃料要素の被覆管の開孔又は破損が検知された場合には、原子炉を停止し、当該照射燃料集合体を炉心から取り出すとともに、放射性廃ガス中の放射性物質の濃度が所定の値を超える場合には、当該廃ガスを貯留タンクに圧入貯蔵するものとする。
- 四 照射燃料集合体は、輸送中又は取扱中において、著しい変形が生じないように、輸送中又は取扱 中に加わる荷重として、設計上の加速度条件として 6G を設定し、この加速度に基づく荷重により、 燃料要素支持部等に発生する応力を評価し、これが許容応力以下であることを確認することで過 度の変形を防止し、その機能が阻害されることがないように設計する。

添付書類八の以下の項目参照 3. 原子炉本体 添付4 設置許可申請書の添付書類における記載(設備等)

添付書類八

3. 原子炉本体

### 3.5 熱設計

- 3.5.1 設計方針
  - (2) 照射燃料集合体

照射燃料集合体の熱設計は、炉心燃料集合体の設計方針に基づいて行う。ただし、試 験用要素を装填した照射燃料集合体は、通常運転時及び運転時の異常な過渡変化時にお いて、試験用要素が計画された範囲内でその健全性を喪失しても、他の燃料要素の健全 性に影響を与えないよう、それぞれの燃料要素について以下の方針に基づいて熱設計を 行う。

(i) Ⅲ型及びⅣ型特殊燃料要素

Ⅲ型及びIV型特殊燃料要素の熱設計は、通常運転時及び運転時の異常な過渡変化時 において、燃料ペレットが溶融温度に達することなく、被覆管が機械的に破損せず、 かつ、冷却材が沸騰しないよう、以下の方針に基づいて行う。

- a. 特殊燃料要素が、原子炉内における使用期間中、通常運転時及び運転時の異常 な過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系統、原 子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて 機能することにより、熱設計基準値を超えないよう、かつ、その被覆管のクリー プ寿命分数和と疲労寿命分数和を加えた累積損傷和が設計上の制限値である1.0 を超えないよう、定格出力時における熱的制限値を設定し、これを満たすこと。
- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。
- c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。
- (ii) Ⅲ型及びIV型限界照射試験用要素

Ⅲ型及びⅣ型限界照射試験用要素は、通常運転時及び運転時の異常な過渡変化時に おいて、被覆管の開孔による炉心への影響を最小限に抑えられるよう、以下の方針に 基づいて設計を行う。

- a. 試験用要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な 過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系統、原子 炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機 能することにより、燃料最高温度が溶融温度に達することなく、かつ、被覆管が 計画された範囲内でその健全性を喪失しても、試験用要素以外の燃料要素の健全 性に影響を与えないよう、定格出力時における熱的制限値を設定し、これを満た すこと。
- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。

#### 43 条-添付 4-1

c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。

(ⅲ) 先行試験用要素

先行試験用要素は、通常運転時及び運転時の異常な過渡変化時において、燃料部の 溶融による炉心への影響を最小限に抑えられるよう、以下の方針に基づいて設計を行 う。

- a. 試験用要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な 過渡変化時において、酸化物燃料の燃料部が溶融しても、試験用要素以外の燃料 要素の健全性に影響を与えないよう、定格出力時における燃料部、被覆管及び内 壁構造容器の熱的制限値を設定し、これを満たすこと。
- (iv) 基礎試験用要素

基礎試験用要素は、通常運転時及び運転時の異常な過渡変化時において、被覆管の 開孔による炉心への影響を最小限に抑えられるよう、以下の方針に基づいて設計を行 う。

- a. 試験用要素が、原子炉内における使用期間中、通常運転時及び運転時の異常な 過渡変化時において、被覆管が開孔しても、試験用要素以外の燃料要素の健全性 に影響を与えないよう、定格出力時における燃料部、被覆管及び密封構造容器の 熱的制限値を設定し、これを満たすこと。
- (v) A型用炉心燃料要素

A型用炉心燃料要素の熱設計は、通常運転時及び運転時の異常な過渡変化時において、燃料ペレットが溶融温度に達することなく、被覆管が機械的に破損せず、かつ、 冷却材が沸騰しないように、以下の方針に基づいて行う。

- a. A型用炉心燃料要素が、原子炉内における使用期間中、通常運転時及び運転時 の異常な過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系 統、原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と 併せて機能することにより、熱設計基準値を超えないよう、かつ、その被覆管の クリープ寿命分数和と疲労寿命分数和を加えた累積損傷和が設計上の制限値で ある1.0を超えないよう、定格出力時における熱的制限値を設定し、これを満た すこと。
- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。
- c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。
- (vi) 限界照射試験用補助要素

限界照射試験用補助要素は、通常運転時及び運転時の異常な過渡変化時において、 燃料ペレットが溶融温度に達することなく、被覆管が機械的に破損せず、かつ、冷却 材が沸騰しないよう、以下の方針に基づいて設計を行う。

a. 試験用補助要素が、原子炉内における使用期間中、通常運転時及び運転時の異 常な過渡変化時に原子炉の運転に支障が生ずる場合において、原子炉冷却系統、 原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せ て機能することにより、熱設計基準値を超えないよう、かつ、その被覆管のクリ ープ寿命分数和と疲労寿命分数和を加えた累積損傷和が設計上の制限値である 1.0を超えないよう、定格出力時における熱的制限値を設定し、これを満たすこ と。

- b. 設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したもの を使用すること。
- c. 公称値並びに工学的安全係数は、適切な安全余裕を有すること。

照射燃料集合体では、試験目的に応じて、燃料材や被覆材の種類、寸法や燃料材物性を組み 合わせ、所定の照射試験条件を実現する。そのため、設置変更許可申請の段階にあっては、想 定される照射試験を踏まえ、燃料要素の仕様を一定の範囲に限定する。

熱設計基準値及び熱的制限値にあっては、当該仕様の組合せを考慮し、燃料最高温度又は燃 料最大溶融割合(径方向断面における溶融割合の最大)、被覆管最高温度(肉厚中心)及び冷却 材最高温度について、熱設計基準値及び熱的制限値を定める。なお、熱設計基準値及び熱的制 限値は、最大値として設定したものであり、「核原料物質、核燃料物質及び原子炉の規制に関す る法律」の第27条に基づく設計及び工事の計画の認可申請の段階にあっては、確定した燃料 要素の仕様を用いて、個別に熱設計基準値及び熱的制限値を設定するため、当該値は、設置変 更許可申請の段階で定めた熱設計基準値及び熱的制限値を下回る場合がある。

熱設計に使用する設計計算手法及び物性定数についても、設置変更許可申請の段階で、代表 的なものを定め、設計及び工事の計画の認可申請の段階において、確定した燃料要素の仕様を 用いて個別に定めるものとする。

また、熱設計に使用する工学的安全係数にあっては、燃料の仕様に依存しない原子炉熱出力の測定誤差等による工学的安全係数を、設置変更許可申請の段階で定め、燃料の仕様に依存するものについては、設計及び工事の計画の認可申請の段階において、確定した燃料要素の仕様を用いて個別に定める。

3.5.2 熱設計基準値及び熱的制限値

3.5.2.1 熱設計基準値

(2) 照射燃料集合体

照射燃料集合体に装填する燃料要素は、その仕様範囲も考慮し、最高温度となる熱設計基準値を定める。「核原料物質、核燃料物質及び原子炉の規制に関する法律」の第27条に基づく設計及び工事の計画の認可申請の段階にあっては、製作する燃料要素の仕様を踏まえ、最新知見も考慮して個別に熱設計基準値を定める。

- (i) Ⅲ型及びⅣ型特殊燃料要素
  - a. 燃料最高温度は、2,680℃とする。
  - b. Ⅲ型特殊燃料要素の被覆管最高温度(肉厚中心)は、890℃、Ⅳ型特殊燃料要素の被覆管最高温度(肉厚中心)は、810℃とする。
  - c. 冷却材最高温度は、910℃とする。
- (ii) Ⅲ型及びIV型限界照射試験用要素
  - a. 燃料最高温度は、2,680℃とする。

43 条-添付 4-3

- b. Ⅲ型限界照射試験用要素の被覆管最高温度(肉厚中心)は、890℃、Ⅳ型限界照 射試験用要素の被覆管最高温度(肉厚中心)は、810℃とする。
- c. 冷却材最高温度は、910℃とする。
- (ⅲ) 先行試験用要素
  - a. 燃料最高温度は、溶融温度を超えないこととする。ただし、酸化物燃料にあっては、溶融温度を超える設計をする場合があるが、最大溶融割合は、30%とする。
  - b. 被覆管最高温度(肉厚中心)は、890℃とする。
  - c. 内壁構造容器最高温度(肉厚中心)は、890℃とする。
  - d. 内壁構造容器を冷却する冷却材の最高温度は、910℃とする。
- (iv) 基礎試験用要素
  - a. 燃料最高温度は、溶融温度を超えないこととする。
  - b. 被覆管最高温度(肉厚中心)は、890℃とする。
  - c. 密封構造容器最高温度(肉厚中心)は、890℃とする。
  - d. 密封構造容器を冷却する冷却材の最高温度は、910℃とする。
- (v) A型用炉心燃料要素
  - a. 燃料最高温度は、2,650℃とする。
  - b. 被覆管最高温度(肉厚中心)は、840℃とする。
  - c. 冷却材最高温度は、910℃とする。
- (vi) 限界照射試験用補助要素
  - a. 燃料最高温度は、2,680℃とする。
  - b. 被覆管最高温度(肉厚中心)は、890℃とする。
  - c. 冷却材最高温度は、910℃とする。
- 3.5.2.2 熱的制限值
  - (2) 照射燃料集合体

照射燃料集合体に装填する燃料要素は、その仕様範囲も考慮し、最高温度となる熱的制限値を定める。「核原料物質、核燃料物質及び原子炉の規制に関する法律」の第27条に基づく設計及び工事の計画の認可申請の段階にあっては、製作する燃料要素の仕様を踏まえ、 最新知見も考慮して個別に熱的制限値を定める。

- (i) Ⅲ型及びⅣ型特殊燃料要素
  - 燃料最高温度 2,540℃

被覆管最高温度(肉厚中心)

- Ⅲ型特殊燃料要素 700℃
- Ⅳ型特殊燃料要素 610℃
- (ii) Ⅲ型及びIV型限界照射試験用要素
  - 燃料最高温度 2,540℃
    - ただし、被覆管の開孔時にあっては、2,680℃
  - 被覆管最高温度(肉厚中心)
    - A型照射燃料集合体装填時

Ⅲ型限界照射試験用要素 750℃

ただし、被覆管の開孔時にあっては、890℃ Ⅳ型限界照射試験用要素 660℃

ただし、被覆管の開孔時にあっては、810℃ B型照射燃料集合体装填時

Ⅲ型限界照射試験用要素 700℃

ただし、被覆管の開孔時にあっては、890℃ Ⅳ型限界照射試験用要素 610℃

ただし、被覆管の開孔時にあっては、810℃ D型照射燃料集合体装填時

Ⅲ型限界照射試験用要素 700℃

ただし、被覆管の開孔時にあっては、890℃

Ⅳ型限界照射試験用要素 610°C

ただし、被覆管の開孔時にあっては、810℃

(ⅲ) 先行試験用要素

燃料最高温度 溶融温度以下

ただし、酸化物燃料にあっては、最大溶融割合 20%

被覆管最高温度(肉厚中心) 750℃

内壁構造容器最高温度(肉厚中心) 675℃

(iv) 基礎試験用要素

燃料最高温度 溶融温度以下 被覆管最高温度(肉厚中心) 750℃ 密封構造容器最高温度(肉厚中心) 675℃

- (v) A型用炉心燃料要素
   燃料最高温度 2,350℃
   被覆管最高温度(肉厚中心) 620℃
- (vi) 限界照射試験用補助要素
  - 燃料最高温度 2,540℃
    - ただし、試験用要素の被覆管の開孔時にあっては、2,680℃
  - 被覆管最高温度(肉厚中心)700℃

ただし、試験用要素の被覆管の開孔時にあっては、890℃

# 3.5.3 計算方法

(1) 設計計算手法

照射燃料集合体の熱設計計算では、以下の(i)~(vii)に示す式を用いる。なお、内 壁構造容器の温度については、以下の被覆管と同様に行う。また、先行試験用要素の被 覆管温度については、内壁構造容器の温度から内壁構造容器内の冷却材温度を以下の冷 却材温度と同様に計算し、これを冷却材温度として計算する。密封構造容器の温度につ いては、以下の被覆管と同様に行う。また、基礎試験用要素の被覆管温度については、 密封構造容器の温度から密封構造容器内の冷却材温度を以下の冷却材温度と同様に計算 し、これを冷却材温度として計算する。照射用実験装置の熱設計は、照射燃料集合体と 同様に行うこととし、外側容器の温度については、以下の被覆管と同様に行う。また、 照射試料キャプセル温度については、外側容器の温度から外側容器内の冷却材温度を以 下の冷却材温度と同様に計算し、これを冷却材温度として計算する。照射物の温度につ いては、以下の燃料最高温度と同様に計算する。

(i) 冷却材温度

冷却材温度は、以下の式により計算する。

$$T_{Na} = T_{IN} + \frac{1}{W \cdot C_p} \int_0^x ql(x) dx$$
  
ここで  $T_{Na}$ : 冷却材温度 (°C)  
 $q1(x)$ : 線出力密度 (W/cm)  
 $W$ : 冷却材流量 (g/s)  
 $C_p$ : 冷却材比熱 (W・s/g/°C)  
 $T_{IN}$ : 冷却材入口温度 (°C)

x:炉心下端からの距離(軸方向距離)(cm)

(ii) 被覆管表面温度

被覆管表面温度は、以下の式により計算する。

$$T_{Co} = T_{Na} + \frac{D_e}{K_{Na}} \cdot \frac{1}{Nu} \cdot \frac{ql}{\pi d_{Co}}$$
  
ここで T_{Co}: 被覆管表面温度 (°C)  
D_e: 水力等価直径 (cm)  
d_{Co}: 被覆管外径 (cm)  
K_{Na}: 冷却材熱伝導度 (W/cm/°C)  
Nu: ヌセルト数

(iii) 被覆管内面温度

被覆管内面温度は、以下の式により計算する。

$$T_{Ci} = T_{CO} + \frac{\ln(d_{Co}/d_{Ci})}{2\pi K_{C}} \cdot ql$$
  
ここで  $T_{Ci}$ :被覆管内面温度 (°C)  
 $K_{C}$ :被覆管熱伝導度 (W/cm/°C)  
 $d_{Ci}$ :被覆管内径 (cm)

(iv) 燃料表面温度

燃料表面温度は以下の式により計算する。

$$T_{s} = T_{Ci} + \frac{ql}{h_{g} \cdot \pi (d_{P} + d_{Ci})/2}$$
  
ここで T_s: 燃料表面温度 (°C)  
 $h_{g}: ギャップ熱伝達率 (W/cm2/°C)$   
 $d_{P}: ^{\sim} \nu \gamma$ ト直径 (cm)

(v)燃料最高温度

溶融温度に達しない範囲の燃料最高温度は以下の式により計算する。なお、プルトニ ウム・ウラン混合酸化物燃料では、燃料ペレットの相変化及び密度変化を考慮する。

$$\int_{T_s}^{T_p} k \, dT = \frac{ql}{4\pi}$$

ここで T_P:燃料最高温度 (℃)

k:燃料熱伝導度(W/cm/℃)

(vi) 燃料溶融半径

先行試験用要素(溶融あり)の燃料溶融半径は、以下の式により計算する。

$$\int_{T_s}^{T_m} k \quad dT = \frac{ql}{4\pi} \left( 1 - \frac{r_m^2}{r_o^2} \right)$$
  
ここで  $r_m : 燃料溶融半径 (cm)$   
 $T_m : 燃料の溶融温度 (°C)$   
 $r_o : 燃料半径 (cm)$ 

(vii) 燃料溶融割合

先行試験用要素(溶融あり)の燃料溶融割合は、以下の式により計算する。

$$V_m = \frac{r_m^2}{r_o^2}$$

ここで Vm:燃料溶融割合

(2)物性定数

熱設計計算における物性定数は、第3.5.1 表に示す値を使用する。また、先行試験用 要素及び基礎試験用要素の被覆管については、オーステナイト系ステンレス鋼の場合は オーステナイト系ステンレス鋼の、フェライト系ステンレス鋼(マルテンサイト系ステ ンレス鋼及びフェライトーマルテンサイト系ステンレス鋼を含む。)の場合は高速炉用フ ェライト系ステンレス鋼の物性定数を使用する。

3.5.4 出力分布

熱設計計算では、第3.4.5表に示す出力ピーキング係数を使用する。なお、照射燃料集合体 及び照射用実験装置の出力ピーキング係数は、炉心燃料集合体のそれを上回ることはない。

3.5.5 冷却材流量配分

照射燃料集合体の冷却材流量配分については、炉心燃料集合体のそれと同様に行うが、必要 に応じて照射燃料集合体等の内部に設ける流量調節機構により行う。

3.5.6 工学的安全係数

熱設計計算における工学的安全係数は、燃料ペレット、被覆管、冷却材等の温度上昇の最大 値を求めるための係数であり、炉心燃料集合体にあっては、製作公差、物性定数のばらつき、

[300]

出力分布の不確かさ、冷却材の温度及び流量等の変動、原子炉熱出力の測定誤差等を含み、照 射燃料集合体にあっては、燃料仕様によらず共通する原子炉熱出力の測定誤差等を含む⁽³⁾。な お、照射燃料集合体にあっては、「核原料物質、核燃料物質及び原子炉の規制に関する法律」の 第 27 条に基づく設計及び工事の計画の認可申請の段階において、製作する燃料要素の仕様を 踏まえ、燃料仕様に依存する項目について個別に工学的安全係数を定める。熱設計計算に用い る炉心燃料集合体及び照射燃料集合体の工学的安全係数を以下に示す。

## 工学的安全係数

照射燃料集合体 1.05

3.5.7 過出力因子

過出力因子は、運転時の異常な過渡変化時において、燃料ペレットが達し得る最高温度及び ペレット最大溶融割合を求めるための因子である。熱設計計算に用いる過出力因子を以下に示 す。

#### 過出力因子

照射燃料集合体 1.08

ただし、A型用炉心燃料要素については 1.07

3.5.8 熱特性主要目

熱設計計算に用いる熱特性の主要目を第3.5.3表に示す。

3.5.9 評価

炉心燃料集合体及び照射燃料集合体の定格出力時における燃料最高温度、被覆管最高温度及 び冷却材最高温度並びに過出力時における燃料最高温度の評価結果を第3.5.4表に示す。

- 3.5.10 参考文献
  - (3) 池上哲雄他、「(XIV) ホットスポットファクターの見直し」、日本原子力学会昭和59年 度炉物理・炉工学分科会予稿集A53 (1984)
  - (4) M. Kato et al., "Physical Properties and Irradiation Behavior Analysis of Npand Am-Bearing MOX Fuels", J. Nucl. Sci. Technol., 48:4, 646-653 (2011)
  - (5) "Mechanical and Physical Properties of the Austenitic Chromium-Nickel Stainless Steels at Elevated Temperatures", The International Nickel Company (1963)
  - (6) 捕政敏他、「高速炉用フェライト系ステンレス鋼燃料被覆管物性及び特性評価(「常陽」 IV型特殊燃料要素用被覆管)」、PNC-TN9430 90-003 (1990)
  - (7) O.E.Dwyer et al., At. Energy Rev. 4, 3 (1966)
  - (8) R.N.Lyon, "Chem. Eng. Progr.", 47,75/79 (1951)
  - (9) G. H. Golden et al., "THERMOPHYSICAL PROPERTIES OF SODIUM", ANL-7323 (1967)

出典	加藤らの式(4)	
物性定数	プルトニウム・ウラン混合酸化物燃料 $\lambda = rac{1-p}{1+0.5p} \cdot \lambda_0$	$\lambda_{0} = \frac{1}{0.01595 + 2.713x + 0.3533m + 0.06317Np + (2.493 - 2.625x) \times 10^{-4}T} + \frac{1.541 \times 10^{11}}{T^{2.5}} \cdot \exp\left(-\frac{15220}{T}\right)$ $\lambda : (5.11 \times p) (C.5817 \otimes M \times (- \cup -) + M \otimes G \oplus \oplus \oplus (M - M - K))$ $\lambda_{0} : 100\% (TD (C.5817 \otimes M \oplus G \oplus \oplus (M - M - K)))$ $p : (5.11 \times ())$ $p : (5.11 \times ())$ p : (5.10 - 0/M - 0/M : ()) An : An Che M = () h : Np : Np Che M = () h : () = () p : (-
項目	燃料ペレット熱伝導度	

第3.5.1表 熟設計計算に使用する物性定数(1/3)

	第3.5.1 表 熟設計計算に使用する物性定数 (2/3)	
項目	物性定数	出典
ギャップ熱伝達率	照射燃料集合体の場合 $ \frac{C1+C2Q}{G_0-C3D_{pin}Q+C4} $ hg = $\frac{C1+C2Q}{G_0-C3D_{pin}Q+C4}$ hg : ギャップ熱伝達率 (W/cm ² /°C) G_0: 製造時被覆管内径 (cm) D_{pin}: 製造時被覆管内径 (cm) Q: 線出力 (W/cm) C1~C4 (I照射試験及び物性値から評価し設定される係数で、以下の通り。 C1~C4 (I照射試験及び物性値から評価し設定される係数で、以下の通り。 C1~C4 (I照射試験及び物性値から評価し設定される係数 (W/cm/°C) C2: 燃料ペレットの熟膨張係数に由来する係数 (U/°C) C3: 燃料ペレットの熱膨張係数に由来する係数 (U/°C) C4: 温度ジャンプ距離に由来する係数 (cm/W) C4: 温度ジャンプ距離に由来する係数 (cm/W)	
被覆管熱伝導度	オーステナイト系ステンレス鋼 K _c =0.132+1.3×10 ⁻⁴ T _c K _c :被覆管熱伝導度 (W/cm/℃) T _c :被覆管温度 (℃) 高速炉用フェライト系ステンレス鋼 K _c =(25.475-2.038×10 ⁻² T _c +1.665×10 ⁻⁴ T _c ² -3.040×10 ⁻⁷ T _c ³ +1.727×10 ⁻¹⁰ T _c ⁴ )×10 ⁻² K _c :被覆管熱伝導度 (W/cm/℃) T _c :被覆管温度 (℃)	International Nickel Company ⁽⁵⁾ PNC-TN9430 90-003 ⁽⁶⁾

出典	Dwyer の式 ⁽⁷⁾	Lyon の式 ⁽⁸⁾	ANL - 7323 ⁽⁹⁾	ANL - 7323 ⁽⁹⁾	ANL $-$ 7323 ⁽⁹⁾	ANL $-$ 7323 ⁽⁹⁾	ANL $- 7323^{(9)}$
物性定数	$h_{film} = \left[\frac{K_N}{D}\right] Nu$	h _{film} :被覆管表面熱伝達率 (cal/cm ² /s/°C) D:水力等価直径 (cm) K _N :冷却材熱伝導度 (cal/cm/s/°C) Nu:ヌセルト数 Nu=7.0+0.025Pe ^{0.8} Pe:ペクレ数	C _P =0.3433-1.387×10 ⁻⁴ T _N +1.106×10 ⁻⁷ T _N ² C _P : 冷却材比熱(ca1/g/°C) T _N : 冷却材温度(°C)	$\gamma = 0.9500 - 2.298 \times 10^{-4} T_N - 1.461 \times 10^{-8} T_N^2 + 5.638 \times 10^{-12} T_N^3$ $\gamma : 冷却材密度 (g/cm^3)$ $T_N : 冷却材温度 (°C) (100°C ~ 1,400°C)$	$\log \mu = -1.4892 + 220.65 / T_N - 0.4925 \log T_N$ $\mu$ : 冷却材粘性係数 (g/cm/s) T_N : 冷却材温度 (K)	K _N =0.93978-3.2505×10 ⁻⁴ T _N +3.6192×10 ⁻⁸ T _N ² K _N : 冷却材熟伝導度 (W/cm/°C) T _N : 冷却材温度 (°F )	H=1.628393T _N -4.16517×10 ⁻⁴ T _N ² +1.534903×10 ⁻⁷ T _N ³ -554.5873 H: 冷却材エンタルビ ^e ー(W・s/g) T _N : 冷却材温度(K)
項目	被覆管表面熱伝達率		冷却材比熱	冷却材密度	冷却材粘性係数	冷却材熱伝導度	冷却材エンタルピー

第3.5.1表 熟設計計算に使用する物性定数 (3/3)

原子炉熱出力	100	DMW
1次冷却材全流量	約 2, 7	00t⁄h
原子炉入口冷却材温度	約3	50°C
原子炉出口冷却材温度	約4	56°C
原子炉プレナム最高圧力	約 4kg/cm²[gage] (糸	勺0.39MPa[gage]) *1
燃料要素最大線出力密度	定格出力時	過出力時
照射燃料集合体 Ⅲ型特殊燃料要素	約 480W/cm	約 520W/cm
IV型特殊燃料要素	約 500W/cm	約 540W/cm
Ⅲ型限界照射試験用要素	約 480W/cm	約 520W/cm
Ⅳ型限界照射試験用要素	約 500W/cm	約 540W/cm
先行試験用要素	約 1,000W/cm	約 1,080W/cm
基礎試験用要素	約 600W/cm	約 650W/cm
A型用炉心燃料要素	約 330W/cm	約 360W/cm
限界照射試験用補助要素	約 480W/cm	約 520W/cm

第3.5.3表 熱特性主要目

*1:水頭圧を除く。

	第3.	5.4表 熱特性解析結果	<b>₹</b> (2/3)		
		燃料最高温度		燃料最大	容融割合
	定格出力時	過出力時	限界照射試験用要素の 被覆管開孔時	定格出力時	過出力時
照射燃料集合体 III型犇殊姚料要素	統1.2 480°C	約12, 590°C	I	Ι	I
TV型特殊然料要素	約2,520℃	約2,630°C	Ι	I	I
<b>II</b> 型限界照射試験用要素	約2,430°C	約2,560°C	約2,460°C	Ι	Ι
IV型限界照射試験用要素	約2,520°C	約2,630°C	約2,540℃	I	Ι
先行試験用要素	溶融温度以下*1	溶融温度以下*1	Ι	約20% ^{*2}	約30%*2
基礎試験用要素	溶融温度以下	溶融温度以下	Ι		
A型用炉心燃料要素	約2, 300°C	約2,410°C	Ι	Ι	Ι
限界照射試験用補助要素	約2,430°C	約2,560°C	約2,580°C		Ι
		被覆	管最高温度(肉厚中心);	× 3	
			定格出力時		
	A型照射燃料集合体 ^{批适吐}	B型照射燃料集合体 ^{批堵曲}	C型照射燃料集合体 ^{壮适性}	D 型照射燃料集合体 ^{注适 由}	照射用実験装置 ^{社は時}
昭射帙料隹合休	衣供尽	衣供时	衣供可	衣供局	衣供局
Ⅲ型特殊然料要素	約700°C	約700°C	約700°C	約700°C	Ι
IV型特殊燃料要素	約610°C	約610°C	約610°C	約610°C	I
III型限界照射試驗用要素	約750°C	約 700°C		約700°C	
IV型限界照射試験用要素	約660°C	約610°C	I	約610°C	I
先行試験用要素		約 750°C	Ι	I	Ι
基礎試験用要素		約 750°C	Ι	Ι	Ι
A型用炉心燃料要素	620℃以下	I			
限界照射試験用補助要素		約700°C	Ι	約700°C	Ι
内壁構造容器		約675°C	Ι	I	Ι
密封構造容器	Ι	約675°C	-	Ι	Ι
照射用実験装置					
照射試料キャプセル	I	I	Ι	I	約 750°C
外側容器	Ι	Ι	Ι	Ι	約 67 5°C

	第3.1	5.4表 熱特性解析結	果 (3/3)		
	一	覆管最高温度(肉厚中心	()		
	限界照	射試験用要素の被覆管の	開孔時		
	A型照射燃料集合体 装填時	B型照射燃料集合体 装填時	D型照射燃料集合体 装填時		
照射燃料集合体					
III型限界照射試験用要素	約820°C	約760°C	約760°C		
IV型限界照射試験用要素	約700℃	約650°C	約650°C		
限界照射試験用補助要素	-	約810°C	約810°C		
			冷却材最高温度		
			定格出力時		
	A型照射燃料集合体	B型照射燃料集合体	C型照射燃料集合体	D型照射燃料集合体	照射用実験装置
	装填時	装填時	装填時	装填時	装填時
照射燃料集合体					
III型特殊燃料要素	約690°C	約690°C	約690°C	約690°C	I
IV型特殊燃料要素	約600°C	約600°C	約600°C	約600℃	I
II型限界照射試験用要素	約740°C	約690°C		約690°C	Ι
IV型限界照射試験用要素	約650°C	約600°C		約600℃	Ι
先行試験用要素	I	約670°C * 4	Ι	I	I
基礎試験用要素		約670°C * 5			I
A型用炉心燃料要素	約 600℃				
限界照射試験用補助要素	—	約690°C	-	約690℃	-
照射用実験装置	I	I	I	I	約670℃ * ⁶

.. .. .. 00 10 17 * * *

酸化物燃料を除く。 酸化物燃料の場合。 内壁構造容器及び密封構造容器にあっては、内壁構造容器または密封構造容器の最高温度。 原射試料キャプセルにあっては、照射試料キャプセルの最高温度。 外側容器にあっては、外側容器の最高温度。 内壁構造容器を治却する治却材の値。 密封構造容器を冷却する冷却材の値。

- .. .. ..
- * * * 4 10 0

3.7 燃料集合体

3.7.1 概要

燃料集合体は、炉心燃料集合体及び照射燃料集合体から構成する。炉心燃料集合体は、通常 運転時及び運転時の異常な過渡変化時における原子炉内の圧力、自重、附加荷重その他の炉心 燃料集合体に加わる負荷に耐え、かつ、輸送中又は取扱中において、著しい変形を生じないよ うに設計する。照射燃料集合体は、設計基準事故時において、照射燃料集合体が破損した場合 においても、原子炉を安全に停止するために必要な機能及び炉心の冷却機能を損なうおそれが ないように、また、輸送中又は取扱中において、著しい変形が生じないように設計する。

炉心燃料集合体は、核分裂性プルトニウム富化度等が異なる内側燃料集合体と外側燃料集合 体の2種類から構成する。照射燃料集合体は、高速増殖炉用燃料の開発及び高速炉用燃料の設 計精度の向上に使用するものであり、構造がそれぞれ異なるA型、B型、C型及びD型照射燃 料集合体の4種類から構成する。なお、一部の照射試験にあっては、炉心燃料集合体の設計方 針に定める制限を超え、又は、超える可能性のある場合がある。これらの照射試験には、燃料 要素の被覆管が開孔する可能性のある条件で照射を行う限界照射試験、照射挙動が不明確な材 料を燃料材に用いた燃料要素を照射する先行試験、及び照射挙動が不明確な材料を被覆材に用 いた燃料要素を照射する基礎試験がある。

- 3.7.3 照射燃料集合体
  - 3.7.3.1 設計方針
    - (1)燃料要素

燃料要素は、燃料温度、核分裂生成ガスによる内部ガス圧、被覆管の応力及び歪等を 制限することにより、その健全性を確保する。このため、原子炉内における使用期間中、 通常運転時及び運転時の異常な過渡変化時において、以下の方針を満足するように燃 料要素の設計を行う。ただし、試験用要素にあっては、通常運転時及び運転時の異常な 過渡変化時において、計画された範囲でその健全性を喪失しても、他の燃料要素の健全 性に影響を与えないよう、使用する試験用要素に応じて以下の方針を満足するよう設 計する。

- (i) Ⅲ型及びIV型特殊燃料要素
  - a. 燃料最高温度は、2,680℃以下となるように設計する。
  - b. 被覆管歪は、十分小さくなるように設計する。
  - c. 被覆管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断を生 じないように十分低く設計する。
  - d. 被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec. Ⅲの基準に準拠して設定した値を満たすように設計する。
  - e.累積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命以下 となるように設計する。
- (ii) Ⅲ型及びIV型限界照射試験用要素
  - a. 燃料最高温度は、溶融温度を超えないように設計する。
  - b. 通常運転時及び運転時の異常な過渡変化時において、被覆管が著しく損傷しない

よう、定格出力時の被覆管温度を制限する。

- c.設計計算手法及び物性定数は、各種の試験研究を通じて信頼度を確認したものを 使用する。
- d. 公称値及び工学的安全係数は、適切な安全余裕を有すること。
- (ⅲ) 先行試験用要素
  - a. 燃料最高温度が溶融温度を超えないように設計する。ただし、酸化物燃料については、燃料溶融割合が 30%を超えないように設計する。
  - b. 燃料部と被覆管との相互作用による被覆管の円周方向引張全歪は、第3.7.3 図に 示すSUS316の破断時の円周方向引張塑性歪の実験データに十分な設計余裕 を考慮した3%以内とする。
  - c. 被覆管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断を生 じないように十分低く設計する。
  - d. 被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec. Ⅲの基準に準 拠して設定した値を満たすように設計する。
  - e.累積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命以下 となるように設計する。
- (iv) 基礎試験用要素
  - a. 燃料最高温度が溶融温度を超えないように設計する。
  - b. 通常運転時及び運転時の異常な過渡変化時において、被覆管が著しく損傷しない よう、定格出力時の被覆管温度を制限する。
  - c.被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec.Ⅲの基準に準拠して設定した値を満たすように設計する。
- (v) A型用炉心燃料要素
  - a. 炉心燃料集合体の燃料要素の設計方針を満足するよう設計する。
- (vi) 限界照射試験用補助要素
  - a. 燃料最高温度は、2,680℃以下となるように設計する。
  - b. 被覆管歪は、十分小さくなるように設計する。
  - c. 被覆管内圧は、被覆管にかかる引張応力を抑え、円周方向へのクリープ破断を生 じないように十分低く設計する。
  - d. 被覆管の各部にかかる荷重に対する応力計算値は、ASME Sec. Ⅲの基準に準 拠して設定した値を満たすように設計する。
  - e.累積疲労サイクルは、クリープによる累積損傷をも考慮して、設計疲労寿命以下 となるように設計する。
- (2) 燃料集合体

炉心燃料集合体の設計方針に準ずる。ただし、限界照射試験用要素を装填した照射燃 料集合体にあっては、コンパートメントの冷却材出口部は多数の小口径の孔とし、万一、 限界照射試験用要素の開孔部から燃料が放出された場合でも、炉心燃料集合体の冷却 を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造と する。また、先行試験用要素を装填した照射燃料集合体にあっては、燃料溶融状態の先 行試験用要素の被覆管の破損が生じた場合でも、内壁構造容器の健全性が確保される 構造とするとともに、内壁構造容器の冷却材出口部を多数の小口径の孔とし、万一、先 行試験用要素の被覆管の破損部から燃料が放出された場合でも、炉心燃料集合体の冷 却を阻害するおそれのある粒径の燃料粒子が照射燃料集合体の外側へ漏れ出ない構造 とする。基礎試験用要素を装填した照射燃料集合体にあっては、基礎試験用要素の被覆 管が開孔した場合でも、密封構造容器の健全性が確保される構造とする。

3.7.3.2 使用条件

照射燃料集合体の使用条件を第3.7.1表に示す。なお、限界照射試験、先行試験及び基礎 試験においては、燃料要素を除き、照射燃料集合体を構成する部材等を適当な照射期間ごと に交換できるものとする。また、燃料破損検出系により、燃料要素の被覆管の開孔又は破損 が検知された場合には、原子炉を停止し、当該照射燃料集合体を炉心から取り出すとともに、 放射性廃ガス中の放射性物質の濃度が所定の値を超える場合には、当該廃ガスを貯留タン クに圧入貯蔵するものとする。

- 3.7.3.3 解析手法
  - (1)燃料要素

燃料要素の解析は、「3.5.3 計算方法 (1)設計計算手法」及び追補1「3. 原子炉 及び炉心」の追補の「VI.照射燃料集合体に装填する燃料要素の設計」に基づいて行う。 ただし、Ⅲ型及びⅣ型限界照射試験用要素並びに限界照射試験用補助要素の解析にお ける、限界照射試験用要素の被覆管に開孔が生じその開孔部から核分裂生成ガスが放 出された場合の影響は、被覆管表面温度を算出する式において考慮する。

(2) 燃料集合体

炉心燃料集合体の解析に準じて行う。ただし、試験用要素を装填した集合体にあって は、集合体に加わる種々の荷重に対して集合体の各構成要素が十分な強度を有し、その 機能が保持されることについて、有限要素法構造解析コード等を用いて解析を行う。ま た、先行試験用要素又は基礎試験用要素を装填した集合体にあっては、試験用要素を装 填する内壁構造容器又は密封構造容器に加わる種々の荷重に対して、内壁構造容器又 は密封構造容器の機能が保持されることについても解析を行う。

- 3.7.3.4 主要設備
  - (1) 燃料要素

燃料要素の主要仕様を第3.7.2表に示す。燃料要素は、寸法及び組成の異なる、Ⅲ型 及びⅣ型特殊燃料要素、Ⅲ型及びⅣ型限界照射試験用要素、先行試験用要素、基礎試験 用要素、A型用炉心燃料要素(A型照射燃料集合体に装填するA型用炉心燃料要素(内 側)及びA型用炉心燃料要素(外側)の2種類とする。)及び限界照射試験用補助要素 の9種類から構成する。

これらの燃料要素は、燃料部を被覆管に挿入し、その上下に熱遮へい部(燃料部が金

属燃料の燃料要素を除く。)を、上部の熱遮へい部の上にプレナムスプリング等(燃料 部と被覆管との熱伝達を燃料要素内に充填するナトリウムで行うナトリウムボンド型 の燃料要素及び燃料部が振動充填燃料の燃料要素を除く。)を入れ、両端に端栓を溶接 した密封構造とし、内部に不活性ガスを封入する。

(2) 燃料集合体

照射燃料集合体の概略構造を第3.7.4 図に、主要仕様を第3.7.3 表に示す。照射燃 料集合体は、炉心燃料集合体と同様に、燃料要素、ラッパ管、ハンドリングヘッド及び エントランスノズル等から構成する。照射燃料集合体の種類は、燃料集合体の中央に試 料部を設けたA型照射燃料集合体、燃料集合体内に数本のコンパートメントを納めた B型及びD型照射燃料集合体、炉心燃料集合体と同様な形状のC型照射燃料集合体の4 種類とする。

コンパートメントは、照射燃料集合体の内部において独自に冷却材流量を設定できる二重の円筒管( $\alpha$ 型コンパートメントにおいては、外管に六角管も用いる。)であり、 その種類は装填する燃料要素の種類及び本数並びに構造及び主要寸法等の組合せにより  $\alpha$ 型、 $\beta$ 型、 $\gamma$ 型及び  $\delta$ 型コンパートメントの4種類に分類される。なお、 $\alpha$ 型及び  $\gamma$ 型コンパートメントは、燃料要素最大5本をピンタイロッドの周囲に配置し、ワイヤ スペーサ等で燃料要素間を保持する構造とする。 $\beta$ 型及び  $\delta$ 型コンパートメントは、燃 料要素1本をシュラウド管に装填し、ワイヤスペーサ等で燃料要素とシュラウド管と の間を保持する構造とする。先行試験用  $\gamma$ 型コンパートメントは、燃料要素1本をシュ ラウド管に装填し、ワイヤスペーサ等で燃料要素とシュラウド管との間を保持し、これ を上部と下部にストレーナを有した管構造である内壁構造容器に装填し、この内壁構 造容器を納めた構造とする。基礎試験用  $\gamma$ 型コンパートメントは、燃料要素1本をシュ ラウド管に装填し、ワイヤスペーサ等で燃料要素とシュラウド管との間を保持し、これ を密封型の管構造である密封構造容器に装填し、この密封構造容器を納めた構造とする。

(i) A型照射燃料集合体

A型照射燃料集合体は、試料部の周囲に、ワイヤスペーサを巻いたA型用炉心燃料 要素を炉心燃料集合体と同じ燃料要素ピッチで正三角格子状に配置して、全体をラッ パ管に納め、この下部にエントランスノズルを、上部にハンドリングヘッドを配した 構造とする。

試料部は、燃料要素7本のバンドル(正三角格子状に配置した燃料要素の束)を二 重のステンレス鋼の試料部六角管に納めたもの、α型又はβ型コンパートメントをス テンレス鋼の試料部六角管に納めた構造とする。

A型照射燃料集合体は、燃料材が占める体積比率が比較的大きいため、高い中性子 束による照射試験ができる機能を有する。また、コンパートメントを有するものにあ っては、コンパートメントを適宜取り出すことにより照射中の燃料要素の健全性を追 跡確認できる機能を有する。

(ii) B型照射燃料集合体

B型照射燃料集合体は、燃料集合体の中央部に設けたステンレス鋼のタイロッドの

まわりに、γ型コンパートメント6本を配し、全体をラッパ管に納め、この下部にエ ントランスノズルを、上部にハンドリングヘッドを配した構造とする。B型照射燃料 集合体は、ほぼ同一の照射条件下でパラメトリックなデータを得ることができ、また、 コンパートメントを適宜取り出すことにより照射中の燃料要素の健全性を追跡確認 できる機能を有する。

先行試験用 γ 型コンパートメント内には内壁構造容器 1 本が納められ、この内壁構 造容器内に先行試験用要素を装填することにより、燃料溶融状態の先行試験用要素の 被覆管が、万一、破損しても、先行試験用要素以外の燃料要素の健全性に影響を与え ない構造とする。

基礎試験用γ型コンパートメント内には密封構造容器1本が納められ、この密封構 造容器内に基礎試験用要素を装填することにより、基礎試験用要素の被覆管が開孔し ても、基礎試験用要素以外の燃料要素の健全性に影響を与えない構造とする。

(iii) C型照射燃料集合体

C型照射燃料集合体は、燃料要素最大 91 本のバンドルをステンレス鋼の試料部六 角管に納め、これをラッパ管に納め、この下部にエントランスノズルを、上部にハン ドリングヘッドを配した構造とする。C型照射燃料集合体は、同時に多数の照射デー タを得ることができ、燃料要素の健全性を統計的に確認できる機能を有する。

また、照射条件をオンラインで計測するものにあっては、検出器を取り付け、計測 線を炉外に引き出す構造とする。計測線付C型照射燃料集合体は、内側延長管、外側 延長管、ハウジング等の上部構造により炉心上部機構に支持する。上部案内管、外側 延長管及び内側延長管の間隙には、ステンレス鋼、炭化ほう素等の遮へい体を設ける。 計測線付C型照射燃料集合体の試料部は、燃料交換時に回転プラグが回転できるよう に、下部案内管によりガイドして上部案内管に引き上げる。計測線は、照射試験終了 後計測線付C型照射燃料集合体の取り出し時に、内側延長管と外側延長管により切断 し、上部構造と切り離す。計測線付C型照射燃料集合体の概略構造を第3.7.5 図に示 す。

(iv) D型照射燃料集合体⁽²⁾

D型照射燃料集合体は、燃料集合体の中央部に設けたステンレス鋼のタイロッドの まわりに、γ型コンパートメント6本、δ型コンパートメント18本、又は、これら2 種類のコンパートメントを混在させて配し、全体をラッパ管に納め、この下部にエン トランスノズルを、上部にハンドリングヘッドを配した構造とする。D型照射燃料集 合体は、ほぼ同一の照射条件下で燃料要素1本ごとに最大18のパラメータを設定し て照射データを得ることができ、また、コンパートメントを適宜取り出すことにより 照射中の燃料要素の健全性を追跡確認できる機能を有する。

- 3.7.3.5 評価
  - (1) 構成材料

燃料材であるプルトニウム・ウラン混合酸化物焼結ペレット、プルトニウム・ウラン 混合炭化物焼結ペレット及びプルトニウム・ウラン混合窒化物焼結ペレット並びに熱 遮へいペレットの材料であるウラン酸化物焼結ペレット、ウラン炭化物焼結ペレット 及びウラン窒化物焼結ペレットは、炉心の運転温度及び圧力において、被覆管(III型特 殊燃料要素にあってはオーステナイト系ステンレス鋼、IV型特殊燃料要素にあっては 高速炉用フェライト系ステンレス鋼、III型限界照射試験用要素にあってはオーステナ イト系ステンレス鋼、IV型限界照射試験用要素にあっては高速炉用フェライト系ステ ンレス鋼、A型用炉心燃料要素にあってはオーステナイト系ステンレス鋼、限界照射試 験用補助要素にあってはオーステナイト系ステンレス鋼)及び充填ガス(ヘリウム)に 対して化学的に不活性であり、核分裂生成物を保持する能力がある。なお、プルトニウ ム・ウラン混合窒化物焼結ペレットは、照射中にごくわずかがプルトニウムと窒素に分 離するが、その影響は無視できる程度である。また、先行試験用要素及び基礎試験用要 素に装填する燃料材の種類のうち、金属燃料は、照射中にごくわずかが被覆管(ステン レス鋼)と反応する可能性があるが、その影響は無視できる程度である^{(3)~(12)}。

被覆管等に用いているステンレス鋼は、吸収断面積が小さく中性子経済に優れ、燃料 ペレットと被覆管の相互作用及び被覆管の内外圧差による変形に十分耐える強度を有 し、ナトリウム、プルトニウム・ウラン混合酸化物燃料、プルトニウム・ウラン混合炭 化物燃料、プルトニウム・ウラン混合窒化物燃料及び核分裂生成物等に対して高い耐食 性を有し、かつ、高い信頼性を有する材料である。ただし、III型及びIV型限界照射試験 用要素及び基礎試験用要素にあっては、被覆管の強度限界を超えると考えられる厳し い条件下(高燃焼度、高被覆管温度等)で照射を行うため、被覆管が開孔する可能性が ある。

(2) 燃料要素

原子炉内における使用期間中、通常運転時及び運転時の異常な過渡変化時において、 燃料要素の健全性は以下のように保たれる。

- (i) Ⅲ型及びⅣ型特殊燃料要素
  - a. 燃料最高温度

Ⅲ型及びIV型特殊燃料要素の燃料最高温度は、定格出力時の最大線出力密度(そ れぞれ 480W/cm 及び 500W/cm)においてそれぞれ約 2,480℃及び約 2,520℃であ り、また、過出力時の最大線出力密度(それぞれ 520W/cm 及び 540W/cm)におい てそれぞれ約 2,590℃及び約 2,630℃であり、設計方針を満足する。

b. 被覆管の内圧、応力等

Ⅲ型及びIV型特殊燃料要素の被覆管内圧は、製造時に封入する不活性ガス、燃料 ペレットから放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上 昇するが、ガスプレナムの体積を十分大きくとっているので、最高燃焼度の被覆管 の内圧によるクリープ寿命分数和は、被覆管肉厚が最も薄い場合においても1.0未 満である。

Ⅲ型及びⅣ型特殊燃料要素の被覆管応力は、燃焼初期においては、被覆管の内圧 と外圧である1次冷却材の運転圧力約3kg/cm²[gage](約0.29MPa[gage])とがほ ぼ等しいので小さい。また、燃焼に伴って核分裂生成ガスの蓄積により内圧が徐々 に上昇するが、通常運転時における一次膜応力の最大値は被覆管の材料のSm値よ

#### 43 条-添付 4-20

り十分小さい。

さらに、照射クリープ、スエリング等によるⅢ型及びⅣ型特殊燃料要素の被覆管 の歪は十分小さく、各種の応力サイクルによる累積疲労サイクルは設計疲労寿命 に比べて十分小さい。

- (ii) Ⅲ型及びIV型限界照射試験用要素
  - a. 燃料最高温度

Ⅲ型及びIV型限界照射試験用要素の燃料最高温度は、定格出力時の最大線出力 密度(それぞれ 480W/cm 及び 500W/cm)においてそれぞれ約 2,480℃及び約 2,520℃であり、また、過出力時の最大線出力密度(それぞれ 520W/cm 及び 540W /cm)においてそれぞれ約 2,590℃及び約 2,630℃であり、設計方針を満足する。 一方、被覆管開孔時における燃料最高温度は、2,680℃を超えない。

b. 被覆管の内圧、応力等

Ⅲ型及びIV型限界照射試験用要素は、最高燃焼度に至るまでにクリープ寿命分 数和が1.0を超えるよう設計されるため、被覆管が開孔に至る可能性がある。

(iii)先行試験用要素

燃料部を溶融させない先行試験用要素について、設計仕様及び設計条件を第3.7.4 表に、設計結果を第3.7.5表に示す。また、燃料部を溶融させる先行試験用要素について、設計仕様及び設計条件を第3.7.6表に、設計結果を第3.7.7表に示す。

a. 燃料最高温度

先行試験用要素の燃料材は、照射挙動が不明確な材料を用いる場合があるが、融 点及び熱伝導度等を安全側に考慮して設計するため、過出力時にあっても、燃料最 高温度が溶融温度を超えない結果となる。また、一部の酸化物燃料にあっては、定 格出力時に、燃料最高温度が溶融温度を超えるよう設計する場合があるが、同様に、 融点及び熱伝導度等を安全側に考慮して設計するため、過出力時にあっても、燃料 溶融割合が 30%を超えない結果となる。

b. 被覆管の内圧、応力等

先行試験用要素の被覆管内圧は、燃料部から放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇するが、ガスプレナムの体積を十分大きくとることにより、被覆管の内圧によるクリープ寿命分数和は、1.0未満である。

先行試験用要素の被覆管応力は、燃焼初期においては小さい。また、燃焼に伴っ て内圧が徐々に上昇するが、通常運転時における一次膜応力は被覆管の材料の Sm 値より小さい。

さらに、各種の応力による累積疲労サイクルは設計疲労寿命に比べて小さい。

c. 被覆管の歪(燃料溶融に伴う燃料と被覆管の相互作用による歪)

酸化物燃料の燃料溶融時に生じる被覆管の歪は、燃料溶融割合が 30%であって も、3%を超えることはない。

(iv) 基礎試験用要素

基礎試験用要素について、設計仕様及び設計条件を第 3.7.8 表に、設計結果を第 3.7.9 表に示す。

a. 燃料最高温度

基礎試験用要素の燃料最高温度は、定格出力時の最大線出力密度を制限することにより、過出力時にあっても溶融温度を超えることはない。

b. 被覆管の内圧、応力等

基礎試験用要素の被覆管内圧は、燃料部から放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇するが、通常運転時における一次膜応力は被覆 管の材料の Sm 値より小さい。クリープ寿命分数和は、最高燃焼度に至るまでに 1.0 を超えるよう設計することがあるため、この場合は、被覆管が開孔に至る可能性が ある。

(v) A型用炉心燃料要素

炉心燃料集合体の燃料要素の評価結果と同様である。

- (vi) 限界照射試験用補助要素
  - a. 燃料最高温度

限界照射試験用補助要素の燃料最高温度は、定格出力時の最大線出力密度 480 W/cm において約 2,480℃であり、また、過出力時の最大線出力密度 520W/cm に おいて約 2,590℃であり、設計方針を満足する。一方、被覆管開孔時における燃料 最高温度は、2,680℃を超えない。

b. 被覆管の内圧、応力等

限界照射試験用補助要素の被覆管内圧は、製造時に封入する不活性ガス、燃料ペ レットから放出される核分裂生成ガス等によって生じ、燃焼とともに徐々に上昇 するが、ガスプレナムの体積を十分大きくとっているので、最高燃焼度の被覆管の 内圧によるクリープ寿命分数和は、隣接する限界照射試験用要素の被覆管開孔時 のクリープ損傷を考慮し、被覆管肉厚が最も薄い場合においても1.0未満である。

限界照射試験用補助要素の被覆管応力は、燃焼初期においては、被覆管の内圧と 外圧である1次冷却材の運転圧力約3kg/cm²[gage](約0.29MPa[gage])とがほぼ 等しいので小さい。また、燃焼に伴って核分裂生成ガスの蓄積により内圧が徐々に 上昇するが、通常運転時における一次膜応力の最大値は被覆管の材料のSm値より 十分小さい。

さらに、照射クリープ、スエリング等による限界照射試験用補助要素の被覆管の 歪は十分小さく、各種の応力サイクルによる累積疲労サイクルは設計疲労寿命に 比べて十分小さい。

(3) 燃料集合体

燃料集合体は、輸送中又は取扱中並びに通常運転時及び運転時の異常な過渡変化時 に種々の荷重が加わるが、これらの荷重に対して十分な強度を有している。

先行試験用要素を装填したB型照射燃料集合体にあっては、燃料溶融状態にある先 行試験用要素の被覆管が破損した際に発生する内壁構造容器内の圧力に対し、内壁構 造容器の健全性が確保されることを確認した。

この発生する圧力の評価には、高速炉安全解析コードであり、実験の解析により妥当 性が確認されているSAS3Dを改良したSAS4A^{(13)~(17)}を使用した。

#### 43 条-添付 4-22

[315]

内壁構造容器及び先行試験用要素を円筒形モデルにて、内壁構造容器の内径 13mm、 先行試験用要素の被覆管の外径 8.5mm、燃料ペレットの直径 7.5mm、スミア密度 85% T Dの仕様で、燃料溶融割合を安全側に 40%として発生する圧力を評価した結果、最大 13.2MPa である。

この圧力は、SUS316相当ステンレス鋼の675℃で15,000時間使用した時の許 容応力から求められる内壁構造容器の耐圧 30.6MPa を下回るため、内壁構造容器の健 全性は確保される。

基礎試験用要素を装填したB型照射燃料集合体にあっては、基礎試験用要素の被覆 管の開孔時及び開孔後の継続使用時においても、基礎試験用要素から放出される核分 裂生成ガスの圧力が、最大9.82MPaであり、SUS316相当ステンレス鋼の675℃で 15,000時間使用した時の許容応力から求められる密封構造容器の耐圧30.6MPaを下回 るため、密封構造容器の健全性は確保される。

なお、事故と相まって基礎試験用要素の被覆管が開孔しても、事故時の密封構造容器の到達温度 800℃は、密封構造容器が破損に至る温度 906℃を下回るため、事故時であっても密封構造容器の健全性は確保される。

- 3.7.4 参考文献
  - (2) 核燃料サイクル開発機構、「D型照射リグの設計報告書」、JNC TN9410 99-010(1999)
  - (3) 尾形 他, 電力中央研究所 研究報告 T95030 (1996)
  - (4) T. Ogata et al., J. Nucl. Mater. 250 (1997) 171.
  - (5) K. Nakamura et al., J. Nucl. Mater. 275 (1999) 246.
  - (6) T. Ogata et al., J. Nucl. Sci. Technol., 37 (2000) 244.
  - (7) K. Nakamura et al., J. Nucl. Sci. Technol., 38 (2001) 112.
  - (8) D.D. Keiser Jr. and M.C. Petri, J. Nucl. Mater. 240 (1996) 51.
  - (9) A.B. Cohen, H. Tsai and L.A. Neimark, J. Nucl. Mater. 204 (1993) 244.
  - (10) Integral Fast Reactor Program, Annual Progress Report FY 1993, ANL-IFR-244.
  - (11) H. Tsai, Y.Y. Liu, D. Wang and J.M. Kramer, Proc. Int. Conf. Fast Reactor and Related Fuel Cycles, Kyoto (Atomic Energy Society of Japan, 1991).
  - (12) H. Tsai, Proc. Int. Fast Reactor Safety Meeting, Snowbird, 1990, vol. II (American Nuclear Society, 1990).
  - (13) 丹羽元,小山和也,高速炉安全解析コード SAS4A の導入整備と試計算に基づく改良検
     証計画 ZN9410 86-024, 1986 年 3 月
  - (14) 川田賢一, SAS4A コードによる CABRI-2 E3 試験解析 ZN9410 93-185, 1993 年 8 月
  - (15) 久保重信, SAS4A による CABRI-Ⅱ E7 試験解析 ZN9410 94-280, 1994 年 10 月
  - (16) 川田賢一, 佐藤一憲, 丹羽元, "CABRI-2 炉内試験総合評価(2): 破損後物質移動モデルの改良と適用", 日本原子力学会 1993 年秋の大会 1993 年 10 月 9~11 日 神戸商船大学, 予稿集 p109
  - (17) 佐藤一憲, "CABRI-2 炉内試験総合評価(3):単相冷却材中での破損後挙動",日本原子 力学会 1994 年春の年会 1994 年 3 月 29~31 日 筑波大学,予稿集 p367

## 43 条-添付 4-23

	第3.7.1	表 燃料集合体の使用	条件 (2/4)		
		燃料最高温度		燃料最大容	<b>融割合</b>
	定格出力時	過出力時	限界照射試験用要素の 被覆管開孔時	定格出力時	過出力時
照射燃料集合体					
III型特殊燃料要素	2, 540°C	$2, 680^{\circ}C$			
IV型特殊燃料要素	2, 540°C	$2, 680^{\circ}C$			
<b>Ⅲ</b> 型限界照射試驗用要素	$2, 540^{\circ}C$	$2, 680^{\circ}C$	$2,680^{\circ}\mathrm{C}$	I	Ι
IV型限界照射試驗用要素	2, 540°C	2, 680°C	$2,680^{\circ}\mathrm{C}$	I	Ι
先行試験用要素	溶融温度以下*1	溶融温度以下*1	I	$20\% * ^{2}$	$30\%^{*2}$
基礎試験用要素	溶融温度以下	溶融温度以下			Ι
A型用炉心燃料要素	2, 350°C	2, 650°C			
限界照射試験用補助要素	2, 540°C	$2, 680^{\circ}C$	$2,680^{\circ}\mathrm{C}$		
		被覆管最高温度	(肉厚中心) * ³		
		定格に	出力時		
	A 型照射燃料集合体 基谊時	B 型照射燃料集合体 基谊時	C型照射燃料集合体 些谊時	D型照射燃料集合体 基谊時	
照射燃料集合体					
<b>Ⅲ</b> 型特殊燃料要素	700°C	700°C	700°C	700°C	
IV型特殊燃料要素	$610^{\circ}\text{C}$	$610^{\circ}$ C	610°C	610°C	
<b>II</b> 型限界照射試験用要素	750°C	700°C		700°C	
IV型限界照射試驗用要素	660°C	610°C		610°C	
先行試験用要素		750°C		I	
基礎試験用要素	l	750°C		I	
A型用炉心燃料要素	$620^{\circ}\mathrm{C}$	I		I	
限界照射試験用補助要素	l	700°C		700°C	
内壁構造容器	ļ	675°C			
密封構造容器		675°C			

	用3.1.1女	宣体の使用条件 (3/4)		
	段	(獨管最高温度(肉厚中心)		
	[] [] [] [] [] [] [] [] [] [] [] [] [] [	(射試験用要素の被覆管の)	<b></b>	被覆管円周方向
	A型照射燃料集合体	B型照射燃料集合体	D型照射燃料集合体	最大引張塑性歪
	装填時	装填時	装填時	
照射燃料集合体				
<b>Ⅲ</b> 型限界照射試驗用要素	890°C	2°068	200%	I
IV型限界照射試驗用要素	810°C	810°C	810°C	I
先行試験用要素		I		3%
限界照射試験用補助要素		890°C	890°C	—
		最高悠	<b>然焼度</b>	
	A型照射燃料集合体	B型照射燃料集合体	C型照射燃料集合体	D型照射燃料集合体
	装填時	装填時	装填時	装填時
照射燃料集合体				
<b>Ⅲ</b> 型特殊燃料要素	130,000 $MMd/t$	130,000MWd/t	130,000MWd/t	130,000MWd/t
IV型特殊燃料要素	130,000Wd/t	130,000Wd/t	130,000MWd/t	130,000MWd/t
<b>Ⅲ</b> 型限界照射試驗用要素	150,000MWd/t	200,000MWd/t	I	200,000MWd/t
IV型限界照射試驗用要素	150,000MWd/t	200,000MWd/t	I	200,000MWd/t
先行試験用要素		200,000MWd/t	I	I
基礎試験用要素		200,000WWd/t		I
A型用炉心燃料要素	90,000MWd/t	I	I	I
限界照射試験用補助要素		130,000Wd/t		130,000Wd/t

第3.7.1表 燃料集合体の使用条件 (3/4)

# 43 条-添付 4-25

[318]

照射燃料集合体         燃料集合体の挿入量         师心挿入位置           周型照射燃料集合体         「空照射燃料集合体         「小側燃料領域*4           B型照射燃料集合体         第2.4.1表のとおり         「小側燃料領域*4           C型照射燃料集合体         「小個燃料領域*4         「小個燃料領域*4           D型照射燃料集合体         「四三照射影開要素         「小個燃料領域*4           D型照射燃料集合体         「四三照射試験用要素         先行試験用要素           配射燃料集合体         「東大4回         「最大4回           B型照射燃料集合体         「最大4回         「最大4回           C型照射燃料集合体         「最大4回         「日*6」           C型照射燃料集合体         「最大4回         「最大4回           C型照射燃料集合体         「最大4回         「日*6」           C型照射燃料集合体         「日*6」         「日				
<ul> <li>照射燃料集合体</li> <li>A型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>C型照射燃料集合体</li> <li>C型照射燃料集合体</li> <li>D型照射燃料集合体</li> <li>D型照射燃料集合体</li> <li>A型照射燃料集合体</li> <li>A型照射燃料集合体</li> <li>A型照射燃料集合体</li> <li>A型照射燃料集合体</li> <li>A型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>C型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>C型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>C型照射燃料集合体</li> <li>A型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>C型照射燃料集合体</li> <li>B型照射燃料集合体</li> <li>B型</li> <li>B型</li> <li>B型</li> <li>B型</li> <li>B</li> <!--</th--><th></th><th>燃料集合体の挿入量</th><th>炉心挿入位置</th><th></th></ul>		燃料集合体の挿入量	炉心挿入位置	
A型照射燃料集合体         炉心燃料領域* ⁴ B型照射燃料集合体         第2.4.1表のとおり         (外側燃料領域* ⁴ )           D型照射燃料集合体         「小側燃料領域* ⁴ D型照射燃料集合体         「小個燃料領域* ⁴ D型照射燃料集合体         「小個燃料領域* ⁴ A型照射燃料集合体         「小個燃料領域* ⁴ A型照射燃料集合体         「「小小燃料領域* ⁴ B型照射燃料集合体         「最大1回           B型照射燃料集合体         「最大1回           B型照射燃料集合体         「最大1回           C型照射燃料集合体         「最大1回	【射燃料集合体			
B型照射燃料集合体     第2.4.1表のとおり     (外側燃料領域*5)       C型照射燃料集合体     原心燃料領域*4     「「小働燃料領域*4       D型照射燃料集合体     「「小働燃料領域*4     「「小働燃料領域*4       B型照射燃料集合体     「「小働、料前」     「「小小燃料領域*4       B型照射燃料集合体     「「「「」」」     「「」」       B型照射燃料集合体     「「」」     「「」」       C型照射燃料集合体     「「」」     「」」       B型照射燃料集合体     「「」」     「」」       C型照射燃料集合体     「     「」」」       B型照射燃料集合体     「     「」       C型照射燃料集合体     「     「」       B型照射燃料集合体     「     「」	A型照射燃料集合体		炉心燃料領域 ^{*4}	
B型照射燃料集合体         第4.4.1370 C 40 %         炉心燃料領域*4           C型照射燃料集合体         原心燃料領域*4         炉心燃料領域*4           D型照射燃料集合体         原界照射就解用要素         先行試験用要素           瓶射燃料集合体         最大4回         -           B型照射燃料集合体         最大1回         -           C型照射燃料集合体         最大1回         -           C型照射燃料集合体         最大1回         -		年 1 1 年 6 1 2 2 1	(外側燃料領域*5)	
C型照射燃料集合体     炉心燃料領域*4       D型照射燃料集合体     「「小燃料領域*4       D型照射燃料集合体     「「小燃料領域*4       A型照射燃料集合体     「「小、「「」」」       B型照射燃料集合体     「「」」」       B型照射燃料集合体     「「」」」       C型照射燃料集合体     「「」」」       C型照射燃料集合体     「「」」」	B型照射燃料集合体	<u> 第2:4:1次</u> いこわり	炉心燃料領域 ^{*4}	
D型照射燃料集合体         炉心燃料領域*4           D型照射燃料集合体         年間照射試験回数           照射燃料集合体         東東時           A型照射燃料集合体         最大4回           B型照射燃料集合体         最大1回*6           L型照射燃料集合体         東大1回*6	C型照射燃料集合体		炉心燃料領域*4	
用目標         年間照射試験回数           照射燃料集合体         原界照射試験用要素         先行試験用要素           A型照射燃料集合体         最大4回         一           B型照射燃料集合体         最大1回*6         最大14回           C型照射燃料集合体         一         一	D型照射燃料集合体		炉心燃料領域*4	
限界照射試験用要素     先行試験用要素       照射燃料集合体     装填時       A型照射燃料集合体     最大4回       B型照射燃料集合体     最大1回*6       C型照射燃料集合体     一			年間照射試験回数	
照射燃料集合体     装填時     装填時       A型照射燃料集合体     最大4回     -       B型照射燃料集合体     最大1回*6     最大14回       C型照射燃料集合体     -     -		限界照射試験用要素	先行試験用要素	基礎試験用要素
照射燃料集合体     最大4回     -       A型照射燃料集合体     最大1回*6     最大14回       B型照射燃料集合体     -     -		装填時	装填時	装填時
A型照射燃料集合体         最大4回         一           B型照射燃料集合体         最大1回*6         最大14回           C型照射燃料集合体         一         一	(射燃料集合体			
B型照射燃料集合体         最大1回*6         最大14回           C型照射燃料集合体         -         -	A型照射燃料集合体	最大4回	Ι	Ι
C型照射燃料集合体 – – – – – – –	B型照射燃料集合体	最大1回*6	最大14回	最大14回
	C型照射燃料集合体		Ι	Ι
D型照射燃料集合体	D型照射燃料集合体	最大1回*6	Ι	Ι

燃料集合体の使用条件 (4/4) 第3.7.1表

> .. * * * * * * 0 0 **4** 0 0 1

••

酸化物燃料を除く。 酸化物燃料の場合。 内壁構造容器及び密封構造容器にあっては、内壁構造容器または密封構造容器の最高温度。 ••

制御棒及び後備炉停止制御棒の隣接位置に装荷しないものとする。 A型用炉心燃料要素(外側)装填時。 B型照射燃料集合体とD型照射燃料集合体の合計。

..

..

	77.0.77 次/1.77	文光シー大女王/ダ (7 ) 第19	44		
		然 Material	M An		
		燃料	·晋(		
	種類	プルトニウム含有率*1	核分裂性 ^{* 2} プルトニウム富化度	プルトニウム 同位体組成比	ウラン濃縮度
照射燃料集合体					
II型特殊燃料要素	プルトニウム・	32wt %以下	25wt%以下	原子炉級	26wt%以下
	ウラン混合酸化物焼結ペレット				
IV型特殊燃料要素	千世	千世	25wt%以下	기匝	24wt%以下
III型限界照射試驗用要素	千世	구별	25wt%LX下	니 匝	26wt%以下
IV型限界照射試驗用要素	千世	구별	25wt%以下	귀멸	24wt%以下
先行試験用要素	プルトニウムまたは*6*7 ウランの単体または 混合物の酸化物、炭化物、 窒化物または金属	(制限なし)	80wt%以下	土庫	85wt%以下
基礎試験用要素	プルトニウム・ウラン 混合酸化物焼結ペレット、 プルトニウム・ウラン 混合炭化物焼結ペレット、 プルトニウム・ウラン 混合蜜化物焼結ペレット またはプルトニウム・ウラン 混合金属スカイ	左欄について、それぞれ 32wt%以下、25wt%以下、 30wt%以下、20wt%以下	左欄について、それぞれ 25wt%以下、20wt%以下、 24wt%以下、16wt%以下 24wt%以下、16wt%以下	<u> </u> 世	85wt%WT
A型用炉心燃料要素(内側)	プルトニウム・ウラン混合酸化物 焼詰ペレット	32wt%以下	<i>¥</i> 516wt%	비	約18wt %
A型用炉心燃料要素(外側)	子国	千世	約21wt %	기별	約18wt%
限界照射試験用補助要素	日上	目上	25wt%以下	国上	26wt%以下

第3.7.2表 燃料要素の主要仕様 (2/6)

43 条-添付 4-27

			燃料材		
		燃料部			熟通へい部
	燃料ペレットの初期密度	燃料ペレット(中実)直径	燃料ペレット(中空) 外径/内径	燃料ペレット長さ	種類
照射燃料集合体 Ⅲ型特殊燃料要素	95%理論密度以下	5. 3~7. 5mm	5. 3∼7. 5mm∕ %j2mm	15㎜以下	ウラン酸化物 ^{*3} 焼結ペレット
IV型特殊燃料要素	95%理論密度以下	5. $18 \sim 6. 18 \text{mm}$	$5.18 \sim 6.18$ mm $/ 約2$ mm	山上	子国
<b>Ⅲ</b> 型限界照射試験用要素	95%理論密度以下	$5.3\sim 6.6$ mm	(該当なし)	山上	王国
IV型限界照射試験用要素	95%理論密度以下	$5.18 \sim 6.18 \text{mm}$	(該当なし)	山上	十回
先行試験用要素	95%理論密度以下	4. $6 \sim 7$ . 5mm	4. 6 $\sim$ 7. 5 $mm$ /約2 $mm$	기 트	ウランの酸化物、*4*6 炭化物、蜜化物または金属
基礎試験用要素	95%理論密度以下	$4.6 \sim 7.5$ mm	4. 6∼7. 5mm∕ ∜92mm	斗 追	ウラン酸化物焼結ペレット*4 ウラン炭化物焼結ペレット、 ウラン蜜化物焼結ペレット、 またはウラン金属スラグ
A型用炉心燃料要素(内侧)	約94%理論密度	桊约 4. 6mm	(該当なし)	新5 9mm	ウラン酸化物 * 3 焼結ペレット
A型用炉心燃料要素(外側)	約94%理論密度	<b>※</b> 54.6mm	(該当なし)	条匀 9mm	日上
限界照射試験用補助要素	95%理論密度以下	$5.3\sim 6.6$ mm	(該当なし)	15mm以下	同上

(3/6)
燃料要素の主要仕様
第3.7.2表

	一	覆管		その他の部	3品の材料
	材料	外径	肉厚	端栓	ワイヤスペーサ
照射燃料集合体 Ⅲ型特殊燃料要素	オーステナイト系ステンレス鋼	6.4~8.5mm	$0.4\sim 0.7$ mm	オーステナイト系 ステンレス錮	オーステナイト メテンレス鑑
IV型特殊燃料要素	高速炉用フェライト系 ステンレス鋼	6. 5~7.5mm	$0.56\sim 0.76$ mm	高速炉用フェライト系 ステンレス鋼	高速炉用フェライト系 ステンレス鋼
III 型限界照射試驗用要素	オーステナイト系 ステンレス鋼	6.4~7.5mm	$0.4\sim 0.6$ mm	オーステナイト系 ステンレス鋼	オーステナイト系 ステンレス錮
IV型限界照射試驗用要素	高速炉用フェライト系 ステンレス鋼	6. 5~7. 5mm	$0.56 \sim 0.76 \text{mm}$	高速炉用フェライト系 ステンレス鋼	高速炉用フェライト系 ステンレス鋼
先行試験用要素	オーステナイト系 ステンレス鋼または 高速炉用フェライト系 ステンレス鋼 (酸化物 分散強化型を含む)	5. 4~8. 5mm	0. 3 ~ 0. 8mm	オーステナイト系 ステンレス鋼または 高速炉用フェライト系 ステンレス鋼 (酸化物 分散強化型を含む)	メナントメ響
基礎試験用要素	ステンレス鋼 (クロム又はクロム又はクロムとコッケルを含はクロムとコッケルを含有させた合金鋼、酸化物物分散強化型を含む)	十 匣	년 편	メデントメ鑞	上面
A型用炉心燃料要素(内側)	オーステナイト系 ステンレス鋼	約5.5mm	約0.35mm	オーステナイト系ステンレス鋼	オーステナイト系 ステンレス錮
A型用炉心燃料要素(外側)	千世	기비	귀멸	千世	귀世
限界照射試験用補助要素	同上	6. $4 \sim 7$ . 5mm	$0.4 \sim 0.6 \mathrm{mm}$	同上	同上

第3.7	7.2表 燃料要素の主要仕様	; (5 <i>/</i> 6)	
	02	の他の部品の材料	
	上部反射体ペレット及び 下部反射体ペレット	プレナムスプリング	プレナムスリーブ
1. 一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、			
<b>II</b> 型特殊燃料要素	オーステナイト※メテンレス鑑	オーステナイト系 ステンレス鋼	メテンレス艶
IV型特殊燃料要素	高速炉用フェライト系 ステンレス鋼	千 世	土国
<b>Ⅲ</b> 型限界照射試驗用要素	オーステナイト派メナンレン的	千 世	土国
IV型限界照射試験用要素	高速炉用フェライト茶 ステンレス鋼	귀틸	千世
先行試験用要素	ステンレス鋼	オーステナイト系 ステンレス鋼	귀 臣
基礎試験用要素	千世	귀띹	귀朣
A型用炉心燃料要素(内側)	オーステナイト糸メナンレス艶	SUS304 ステンレス鋼	千世
A型用炉心燃料要素(外側)	구별	귀世	비
限界照射試験用補助要素	同上	オーステナイト系 ステンレス鋼	日日

9
Ľ
制画表の主画仕様
<b>秋</b>
の兼
1
------------------
照射燃料集合体
<b>Ⅲ</b> 型特殊燃料要素
IV型特殊燃料要素
III 型限界照射試驗用要素
IV型限界照射試驗用要素
先行試験用要素
基礎試驗用要素
A型用炉心燃料要素(内側)
A型用炉心燃料要素(外側)
限界照射試驗用補助要素

(6/6) 第379表

> $Pu/(Pu+^{241}Am+U)_{\circ}$ ..

.. .. * * * * * * 6 5 7 7 3 7 3 7 1

۲ *

劣化ウラン。
天然ウランまたは劣化ウラン。
天然ウランまたは劣化ウラン。
MK-II炉心心心継続して使用する燃料要素の場合。
燃料材の他、マイナーアクチニドや核分裂生成物を混入させる場合がある。
ただし、マイナーアクチニド及び核分裂生成物の最大混入割合は50wt%とする。
ただし、マイナーアクチニド及び核分裂生成物の最大混入割合は50wt%とする。
ペレットでない酸化物の場合、O/M比を調整するため、ウラン金属を混入させる場合がある。
ただし、ウラン金属の最大混入割合は10wt%とする。

	第3.	7.3表 燃料集合体の主動	要仕様(2/6)		
			照射燃料集合体		
	A型照射%	然料集合体	口型四位拿近个个	「里田仁斎されく子	て期日生産され
	バンドク型	コンパートメント型	D 望思别慾科集宣体	し望馬對慾科集宣体	口望原對慾科集官体
ラッパ管					
材料	SUS316相当	SUS316相当	SUS316相当	SUS316相当	SUS316相当
	メナンフス艶	メアンフス鑞	メナンレメ艶	メナンレメ鯔	メナンレメ艶
六角外対辺長さ	举578.5mm	約78.5mm	約78.5mm	約78.5mm ^{* 5}	約78.5mm
ハンドリングヘッド					
材料	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6
	メテンレス鍋	ステンレス鍋	メテンレメ鑞	ステンレス鯔	メデンレメ鑞
エントランスノズル					
材料	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6	S U S 3 1 6
	メアンレメ鍋	ステンレス鍋	メテンレメ艶	ステンレス鑞	メテンレメ艶
<b>试</b> 料部六角管					
材料	ステンレス艶	ステンレス鋼	(該当なし)	ステンレス鯔	(該当なし)
タイロッド					
個数	(該当なし)	(該当なし)	1本	(該当なし)	$1 \pm$
材料	(該当なし)	(該当なし)	SUS316相当	(該当なし)	SUS316相当
			ステンレス鍋		ステンレス鋼
ーンパートメント					
装填個数	(該当なし)	1本	6本	(該当なし)	$6\!\sim\!18\!\pm$
a 型 コ ン ペー ト メ ン ト	(該当なし)	最大1本	(該当なし)	(該当なし)	(該当なし)
β型コンペートメント	(該当なし)	最大1本	(該当なし)	(該当なし)	(該当なし)
> 型コンペートメント	(該当なし)	(該当なし)	$6\pm^{*1}$	(該当なし)	最大6本*1
8型コンパートメント	(該当なし)	(該当なし)	(該当なし)	(該当なし)	最大18本*1

(9) 5 半十一十 6 Ŧ < ۲ ۲ 1

## 43 条-添付 4-32

[325]

	54.0.	1. J. 双	ざ仕(球 くっく ひ)		
			照射燃料集合体		
	A型照射版	<b>然料集合体</b>	日里居主命		て里居堂拳道命令子
	バンドル型	コンパートメント型	D至思知慾祥未可体	C 型 照 射 燃 朴 果 合 体 「	D 至思約際程乗宣体
装填燃料要素個数	最大115本	最大113本	最大30本	最大91本	最大30本
<b>Ⅲ</b> 型特殊燃料要素	最大7本	最大5本	最大30本	最大91本	最大30本
IV型特殊燃料要素	最大7本	最大5本	最大30本	最大91本	最大30本
III型限界照射試験用要素	(該当なし)	最大1本	最大6本	(該当なし)	最大6本
IV型限界照射試験用要素	(該当なし)	最大1本	最大6本	(該当なし)	最大6本
先行試験用要素	(該当なし)	(該当なし)	最大6本	(該当なし)	(該当なし)
基礎試験用要素	<ul><li>(該当なし)</li></ul>	(該当なし)	最大6本	(該当なし)	(該当なし)
A型用炉心燃料要素(内侧)	最大108本	最大108本	(該当なし)	(該当なし)	(該当なし)
A型用炉心燃料要素(外側)	最大108本	最大108本	(該当なし)	(該当なし)	(該当なし)
限界照射試験用補助要素	(該当なし)	(該当なし)	最大18本	(該当なし)	最大18本
燃料要素ピッチ					
III型特殊燃料要素	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6\sim 11 \mathrm{mm}$	$6\sim 11 \mathrm{mm}$
IV型特殊燃料要素	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$
II型限界照射試験用要素	I	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	(該当なし)	$6\sim 11 \mathrm{mm}$
IV型限界照射試驗用要素	I	$6 \sim 11 \mathrm{mm}$	$6 \sim 11 \mathrm{mm}$	(該当なし)	$6\sim 11 \mathrm{mm}$
A型用炉心燃料要素(内侧)	糸56.47mm	糸56.47mm	(該当なし)	(該当なし)	(該当なし)
A型用炉心燃料要素(外側)	約6.47mm	糸5 6. 47mm	(該当なし)	(該当なし)	(該当なし)
限界照射試験用補助要素	(該当なし)	(該当なし)	$6 \sim 11 \mathrm{mm}$	(該当なし)	$6\sim 11 \mathrm{mm}$
燃料要素配列	正三角格子配列等	正三角格子配列等*4	(該当なし)	正三角格子配列等	(該当なし)
燃料要素間隔保持方式	ワイヤスペーサ型及び グリッドスペーサ型	ワイヤスペーサ型、 グリッドスペーサ型及び 	ワイヤスペーサ型、 グリッドスペーサ型及び	ワイヤスペーサ型及び グリッドスペーサ型	ワイヤスペーサ型、 グリッドスペーサ型及び
		シュフワド管型	シュフワド管型		シュフワド管型
燃料集合体全長	糸5 297 cm	糸匀 297 c m	糸5 297 cm	約297cm ^{* 6}	糸5 297 c m

第3.7.3表 燃料集合体の主要仕様(3/6)

43 条-添付 4-33

	第3.7.3表 燃料	集合体の主要仕様(4/6			
		照射燃料	<b> </b> 集合体		_
		ーパンロ	トメント		
	a 型コンパ	ートメント	B型コンパ	ートメント	_
	ワイヤスペーサ型	グリッドスペーサ型	ワイヤスペーサ型	シュラウド管型	_
外管					_
個数	1本	$1 \pm$	1本	1本	_
材料	SUS316相当	SUS316相当	SUS316相当	SUS316相当	_
	メナンレメ艶	メテンレメ艶	メテンフス鑞	メテンフス艶	_
外径	(規定なし)	<ul><li>(規定なし)</li></ul>	約23.1mm	約23.1mm	_
肉厚	(規定なし)	(規定なし)	約0.55mm	約10.55mm	_
内管					_
個数	1本	$1\pm$	1本	$1\pm$	_
材料	SUS316相当	SUS316相当	SUS316相当	SUS316相当	_
	メナンレメ鑞	メテンレス鑞	メナンレス鋼	メナンレス鑞	_
内径	(規定なし)	<ul><li>(規定なし)</li></ul>	約14~19mm	約14~19mm	_
肉厚	(規定なし)	(規定なし)	糸つ0.55mm	約0.55mm	_
ピンダイロッド					
個数	1本または3本	1本または3本	(該当なし)	(該当なし)	_
材料	SUS316相当	SUS316相当	(該当なし)	(該当なし)	_
	メテンレメ鑞	メテンレメ鋼	(該当なし)	(該当なし)	_
シュラウド管					
個数	(該当なし)	(該当なし)	1本	1本	_
材料	(該当なし)	(該当なし)	オーステナイト系	オーステナイト系	_
			ステンレス鯔	ステンレス鋼	_
装填燃料要素個数	最大5本	最大5本	1本	1本	_
III型特殊燃料要素	最大5本	最大5本	(該当なし)	(該当なし)	_
IV型特殊燃料要素	最大5本	最大5本	(該当なし)	(該当なし)	_
<b>Ⅲ</b> 型限界照射試験用要素	(該当なし)	<ul><li>(該当なし)</li></ul>	最大1本	最大1本	_
IV型限界照射試驗用要素	(該当なし)	(該当なし)	最大1本	最大1本	
燃料要素間隔保持方式	ワイヤスペーサ型	グリッドスペーサ型	ワイヤスペーサ型	シュラウド管型	

		710. 1. U.X. M. M.	米口子シエメニネ (12/0)	准公休		
			正光然をロンパー	東口体トメント		
			。「型」、	- トメント		
	副キーペィネイロ	再キリペトン … = そ	先行款	験用	<b>虐殺</b>	験用
	シュトベーン主	イッシーン・イン・シー	ワイヤスペーサ型	シュラウド管型	ワイヤスペーサ型	シュラウド管型
外管	*	*	+	*	+	*
	米早。「マッロッ	米早ットでつけつ	米早ットゥッロッ	米早ららいい	米早ットでつける	米早ットロッコン
	o C o o I o 年回 スインフス鶴	○○○○I Q 伯Ⅲ ス小ン▽ス鶴	っしつう T O 伯当 スインレス錮	っつうっ T o 伯田 スインレス鶴	o ⊂ o o T o 曲曲 スポントス艶	っしつう T O 仲田 スインレス鶴
M. 22	ACDC Ann		「 「 、 、 、 、 、 、 、 、 、 、 、 、 、			
人民の人間の人間の人間の人間の人間の人間の人間の人間の人間の人間の人間の人間の人間の	かり 20. 5mm	**2.5.0. 6mm	#9.20. 王mm 約0.6mm	m.0.200. 王mm 約0. 6mm	がり2.0. mm	*220. mm
内管						
個数	1本	$1^{\pm}$	1本	1本	1本	1本
材料	SUS316相当	SUS316相当	SUS316相当	SUS316相当	SUS316相当	SUS316相当
	メテンレス鋼	メデンレメ鑞	ステンレス鋼	メテンレス鋼	ステンレス鋼	メテンレス鋼
内径		約22.4mm	約22.4mm	約 22.4mm	約22.4mm	約22.4mm
肉厚	新J 0. 6mm	<b>※</b> 3 0. 6mm	※J0.6mm	举习0.6mm	举30.6mm	举习0.6mm
ピンタイロッド						
個数	1本または3本	1本または3本	<ul><li>(該当なし)</li></ul>	<ul><li>(該当なし)</li></ul>	(該当なし)	(該当なし)
材料	S U S 3 1 6 相当 マテンLマ魯	S U S 3 1 6 相当 ユザンじィ鏑	(該当なし)	(該当なし)	(該当なし)	(該当なし)
	くしてく当時	ベットワス調				
シュラウド管						
値数 社が	( 該 当 な し) 、 、 、 、 、 、 、 、	<ul><li>(該当なし)</li><li>(共光ます)</li></ul>			1 1 1 1 1 1 1	
	(成目ぶし)	(該国なし)	ムーインシューボメインフス鑑	ムーインシューボスメナンフス鑑	ューイショードボステンシントン第	ムーインシューボスメナンフス館
内曉權治容器主たは恋封權浩容器						
	(『お光記)	(北谷宗教)	内磨擂	内陸撞	您 牡ـ 雄 法 尔 昭 1 木 * 7	您 牡 捕 兰 尔 贴 1 木 * 7
加水	(影出な))	(二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、	S11231641千 S1123164出	こまにつきます。 2112316417	111231641千	112316祖子
	() 6. T ()	6 6 6	いいい いい こう 正一 メインレス 鬱	メインレス艶	いいいい この 正 1 メイン レス 艶	メインレス圏
内径	(該当なし)	<ul><li>(該当なし)</li></ul>	13mm以下	13mm以下	13mm以下	13mm以下
肉厚	(該当なし)	<ul><li>(該当なし)</li></ul>	2.8mm以上	2.8mm以上	2.8mm以上	2.8mm以上
装填燃料要素個数	最大5本*2	最大5本*2	$1^{\pm 2}$	$1^{\pm 2}$	$1^{\pm 2}$	1本*2
<b>Ⅲ</b> 型特殊燃料要素	最大5本	最大5本	(該当なし)	(該当なし)	(該当なし)	(該当なし)
IV型特殊燃料要素	最大5本	最大5本	(該当なし)	(該当なし)	(該当なし)	(該当なし)
<b>II</b> 型限界照射試験用要素	最大1本*3	最大1本*3	(該当なし)	(該当なし)	(該当なし)	(該当なし)
IV型限界照射試験用要素	最大1本*3	最大1本*3	( 該 当 な し)	(該当なし)	( 該 当 な し) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( )) ( )) ( )) ( )) ( )) (	( 該 当 な し) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( )) ( )) ( )) ( )) ( )) (
先行試験用要素	<ul><li>(該当なし)</li></ul>	<ul><li>(該当なし)</li></ul>	最大1本	最大1本	(該当なし)	(該当なし)
基礎試験用要素 限界昭射試驗田緒助要素	(該当なし) 見十3★*3	(談当なし) 亘十º★*3	(該当なし) (該当たし)	(該当なし) (該当たし)	最大1本 (該当か1.)	最大1本 (該当 <u>か</u> 1.)
	版 Yo 4	長へら全		() & T & ()	Σ Σ S S S S S S S S S S S S S	「 、 一 、 、 、 、 、 、 、 、 、 、 、 、 、
燃料要素間隔保持方式	ワイヤスペーサ型	グリッドスペーサ型	ワイヤスペーサ型	シュラウド管型	ワイヤスペーサ型	シュラウド管型

第3.7.3表 燃料集合体の主要仕様(5/6)

43 条-添付 4-35

第3.7.3表 燃料	集合体の主要仕様(6/6	(
	照射燃彩	<b> </b> 集合体
	ーペン Π	トメント
	8型コンペ	ートメント
	ワイヤスペーサ型	シュラウド管型
外管		
個数	1本	$1 \pm$
材料	SUS316相当	SUS316相当
	メナンレメ艶	メナンレメ鯔
外径	約 16.4mm	糸匀 16.4mm
肉厚	糸J 0. 4mm	糸り0.4mm
内管		
個数	$1 \pm$	1本
材料	SUS316相当	SUS316相当
	メテンレメ쁿	ステンレス鋼
内径	約12.8mm	約12.8mm
肉厚	終J 0. 5 mm	糸JO. 5mm
シュラウド管		
個数	1本	$1 \pm$
材料	オーステナイト系	オーステナイト系
	メデンレメ鑞	ステンレス鍋
装填燃料要素個数	1本*2	1本*2
<b>II</b> 型特殊燃料要素	最大1本	最大1本
IV型特殊燃料要素	最大1本	最大1本
燃料要素間隔保持方式	ワイヤスペーサ型	シュラウド管型
*1 : 照射燃料集合体には、ステンレス ************************************	、鋼のダミー要素のみを装填し	したコンパートメントを
渋現り 0 场亡ひめ 0。 全 イ が ダ ミ 一 要 素 と た ろ 場 合 は .	核燃料物質を含またい試料す	~ 壊埴したダミーコンパ
ートメントとすることができる。		
*2 : 燃料要素を装填しないコンパート	・メントについては、ステン1	ノス鋼のダミー要素、ま
たは、核燃料物質を含まない試料を	、装填する。	
*3 : 限界照射試験用要素を装填するコ	いンパートメントについては、	限界照射試験用要素1
本を限界照射試験用補助要素3本と∮	共に1本のコンパートメントに	< 装填する。
*4 : コンパートメント内を除く。		
*5 : 計測線付C型照射燃料集合体の場	∮合は70mm以下。	
* 6 : 計測線付C型照射燃料集合体の場	∮合は約12m以下。	
*7 : 燃料要素またはダミー要素を装填	しないダミー容器がある。	

43 条-添付 4-36

[329]

項目	設計仕様及び設計条件	
設計仕様		
燃料部		
種類	プルトニウム・ウラン混合酸化物焼結ペレット	
プルトニウム含有率	30wt%以下	
燃料ペレット外径	7.32mm	
燃料ペレット内径	1.8mm	
燃料ペレットの初期密度	95%理論密度	
被覆管		
種類	高Niオーステナイト系ステンレス鋼(A)	
外径	8. 5mm	
肉厚	0. 5mm	
燃料要素有効長さ(燃料部)	500mm	
ガスプレナム長さ	980mm	
設計条件 (通常運転時)		
燃料要素最高燃焼度	200, 000MW d 🗡 t	
最大線出力密度	450W/cm	
燃焼時間	2, 280日	
被覆管最高温度(肉厚中心)	700°C	

第3.7.4表 先行試験用要素(燃料溶融なし、使用末期)の設計仕様及び設計条件

第3.7.5表 先行試験用要素(溶融なし、使用末期)の設計結果

項目	設計結果	制限値または許容値
燃料最高温度(過出力時)	約2,510℃	2, 680°C
被覆管内圧	約9.02MPa	—
クリープ寿命分数和	約0.2	1
被覆管一次膜応力		
通常運転時	約137.8N/mm ²	158.6N/mm 2
過出力時	約143.3N/mm ²	153.5N/mm 2
累積疲労サイクル	約0.7	1

項目	設計仕様及び設計条件	
設計仕様		
燃料部		
種類	プルトニウム・ウラン混合酸化物焼結ペレット	
プルトニウム含有率	30wt%以下	
燃料ペレット直径	6.44mm	
燃料ペレットの初期密度	95%理論密度	
被覆管		
種類	高Niオーステナイト系ステンレス鋼(A)	
外径	7.5mm	
肉厚	0. 45mm	
燃料要素有効長さ(燃料部)	500mm	
ガスプレナム長さ	865mm	
設計条件 (通常運転時)		
最大線出力密度	640W/cm	
被覆管最高温度(肉厚中心)	$650^{\circ}\mathrm{C}$	

第3.7.6表 先行試験用要素(燃料溶融あり、使用初期)の設計仕様及び設計条件

第3.7.7表 先行試験用要素(溶融あり、使用初期)の設計結果

項目	設計結果	制限値または許容値
燃料溶融割合(過出力時)	約30%	30%
被覆管一次膜応力		
通常運転時	約6.5 $N$ /mm 2	240. $2$ N $/$ mm 2
過出力時	約6.8N $/$ mm 2	228.4N/mm 2
被覆管の歪(燃料と被覆管の相互作用)	約1%	3%

項目	設計仕様及び設計条件	
設計仕様		
燃料部		
種類	プルトニウム・ウラン混合酸化物焼結ペレット	
プルトニウム含有率	30wt%以下	
燃料ペレット外径	7.32mm	
燃料ペレット内径	1.8mm	
燃料ペレットの初期密度	95%理論密度	
被覆管		
種類	SUS316相当ステンレス鋼	
外径	8. 5mm	
肉厚	0. 5mm	
燃料要素有効長さ (燃料部)	500mm	
ガスプレナム長さ	680mm	
設計条件 (通常運転時)		
燃料要素最高燃焼度	100, 000MW d $\diagup$ t	
最大線出力密度	450W/cm	
燃焼時間	1, 140日	
被覆管最高温度(肉厚中心)	700°C	

第3.7.8表 基礎試験用要素(使用末期)の設計仕様及び設計条件

第3.7.9表 基礎試験用要素(使用末期)の設計結果

項目	設計結果	制限値または許容値
燃料最高温度(過出力時)	約2,510℃	2, 680°C
被覆管内圧	約7.09MPa	—
クリープ寿命分数和	約2.0	—
被覆管一次膜応力		
通常運転時	約108.2N/mm ²	135.1N/mm 2
過出力時	約113.0N/mm ²	118.3N/mm 2



第3.7.3図 SUS316の破断時の円周方向塑性歪



43 条-添付 4-41



[〔]A型照射燃料集合体-限界照射試験用〕



[B型照射燃料集合体-限界照射試験用]

43 条-添付 4-43



〔B型照射燃料集合体-先行試験用〕



[[]B型照射燃料集合体-基礎試験用]



第3.7.5 図 計測線付C型照射燃料集合体

[339]