リサイクル燃料備蓄センター設工認
設 2-補-014-04 改 2
2022年6月24日

リサイクル燃料備蓄センター 設計及び工事の計画の変更認可申請書 (補足説明資料)

仮想的大規模津波に対する受入設備 の影響評価に関する補足説明

令和4年6月 リサイクル燃料貯蔵株式会社

1. 目的
2. 設計開発プロセス
2. 1 設計開発へのインプット要求事項の追加
2. 2 既設工認の設計での漂流防止評価
 3 既設工認からの変更点
2. 4 機器,床面及び基礎部の明確化6
3. 工事の方法
3. 1 工事の手順
3. 2 工事上の留意事項
4. 津波に対する受入設備の評価
4. 1 仮置架台
4. 2. 1 波力の計算方法
4.2.1.1 波力の計算方法
4.2.1.2 受圧面積の算出方法
4.2.1.3 波力の算出
4. 2. 2 接続部の評価
4.2.2.1 記号の説明
4.2.2.2 力・応力の計算方法
4. 2. 2. 3 評価方法
4.2.3 コンクリートへの影響評価
4.2.4 設計条件及び機器要目
4. 2. 5 評価結果
4. 3. たて起こし架台
4.3.1 波力の計算方法 ····································
4.3.1.1 波力の計算方法
4.3.1.2 受圧面積の算出方法
4.3.1.3 波力の算出40
4.3.2 接続部の評価 ······42
4.3.2.1 記号の説明43
4.3.2.2 力・応力の計算方法45
4.3.2.3 評価方法
4.3.3 コンクリートへの影響評価
4.3.4 設計条件及び機器要目
4. 3. 5 評価結果
4. 4. 検査架台

 $\exists -1$

4.	4.	1	波力。	の計算方法
4.	4.	1.	. 1	波力の計算方法
4.	4.	1.	. 2	受圧面積の算出方法
4.	4.	1.	. 3	波力の算出
4.	4.	2	検査	架台を構成する部材の評価62
4.	4.	2.	. 1	記号の説明63
4.	4.	2.	. 2	力・応力の計算方法
4.	4.	2.	. 3	評価方法
4.	4.	3	コン	クリートへの影響評価
4.	4.	4	設計	及び機器要目
4.	4.	5	評価	結果

1. 目的

本資料は,設工認申請書において既認可の設計及び工事の方法(平成22年 認可)(以下「既設工認」という。)から変更となる受入設備についてその設計 開発プロセス及び工事の方法について説明するものである。

また,仮想的大規模津波(以下「津波」という。)に対する受入設備の評価 について説明する。

- 2. 設計開発プロセス
- 2.1 設計開発へのインプット要求事項の追加

技術基準規則の改正に従い,新たな要求事項として津波対応を追加する。 受入設備のうち,仮置架台,たて起こし架台及び検査架台は設工認申請書 「別添 I 基本設計方針 1共通項目 1.6 津波による損傷の防止」におい て津波防護基本方針の対象となる設備に対して影響を及ぼさないよう,津波 により漂流しない設計と記載しており,仮置架台及びたて起こし架台につい ては,最も厳しい条件となる金属キャスクが仮置きされた状態において漂流 しない設計と記載している。この津波により漂流しない設計が各架台へのイ ンプット要求事項の追加であり,漂流しない設計として,津波による水流が 水平方向に作用しても各架台について床面への固定状態が維持されることを 確認する。

2.2 既設工認の設計での漂流防止評価

既設工認の設計において床面への固定状態の維持されることの確認として 各架台の基礎部(アンカーボルト)について津波による波力に対して評価し たところ,各架台について床面への固定状態が維持されないことが確認され た。そのため漂流防止として各架台の基礎部等の強化を実施する。 2.3 既設工認からの変更点

既設工認からの変更点について表1に記載する。 また,設工認申請書添付19図面の変更点について表2~4に示す。

設備名	設計変更	要目表	図面
仮置架台	・アンカーボルトの変更及び追加	変更なし	・アンカーボルト本数変更
	・架台ベース部の形状変更		・シアプレートの追加
	・シアプレートの取付		・架台ベース部の形状変更
たて起こ	・アンカーボルトの変更及び追加	たて寸法	・アンカーボルト本数変更
し架台	・シアプレートの取付	の変更	・シアプレートの追加
	・架台ベース部の形状変更		・架台ベース部の形状変更
検査架台	・アンカーボルトの変更	変更なし	変更なし

表1 既設工認からの変更点(漂流防止)

表 2 図面変更前後表(仮置架台)

部材	寸法	数量	材料
シアプレート		4	S M490 A
アンカーボルト		20 (5×4)	S 45 C
仮置架台ベース		1	S M490 A

表3 図面変更前後表(たて起こし架台)

部材	寸法	数量	材料
シアプレート		4	S M490 A
アンカーボルト		16 (4×4)	S 45 C
(ピット側):埋め込みアンカーボルト			
アンカーボルト		16 (4×4)	S 45 C
(ピット逆側): 接着系アンカーボルト			
既設アンカーボルト		16 (4×4)	S 45 C
たて起こし架台ベース部		1	S M490 A

表 4 図面変更前後表(検査架台)

- アンカーボルトの径及び寸法の変更のため図面の変更はなし (既設アンカーボルトを撤去し,新規アンカーボルトを設置する。) 後方振れ止め支持部材*について増設
- *:検査架台の後方支柱と壁の間に取付け、検査架台の振れによる後方支柱と壁との 接触を防止するもの

部材 アンカーボルト

寸法	数量	材料
	16 (4×4)	S 45 C

2. 4 機器,床面及び基礎部の明確化

各架台の機器,床面及び基礎部(アンカーボルト及びシアプレート)について図 1~3 に示す。

図2 たて起こし架台

図3 検査架台

3. 工事の方法

受入設備の漂流防止工事について工事の手順及び工事上の留意事項につい て以下に記載する。

3.1 工事の手順

設工認申請書「別添Ⅲ 1 工事の方法(金属キャスク以外の設備)図1 -1 工事の手順と使用前事業者検査のフロー」に沿って工事を実施する。 工事の手順について以下に記載するとともに設工認申請書記載のフロー図を 基にした工事のフローについて図4に示す。

なお、工事の手順については予定であり、工事の進捗に伴いその手順を変 更する場合がある。

- (1) 機器の取外し・輸送
 - a. 架台の取外し前に以下の作業を実施する。
 - ・必要に応じて周辺をシート等で養生する。
 - b. 架台の取外し
 - ・仮置架台及びたて起こし架台については、架台ベース部から脚部の取外

しを実施する。

- ・仮置架台及びたて起こし架台のベース部及び検査架台の支柱が固定さ れているボルト等を外し、架台を取外しする。改造後は既設架台の位置 に戻すため、現状位置を測定する。
- c. 既設アンカーボルト撤去
 - ・流用しないボルトを撤去(切断)する。
- ・検査架台のアンカーボルトについては既設ボルトに沿ってコアドリルで コンクリートに穿孔を行う。コアドリルは外周部に歯があり、内径が既 設アンカーボルトのサイズと近いため、既設ボルトをガイドとすること で既設ボルトの撤去と新設ボルト下穴の直角度の確保が可能となる。な お、既設アンカーボルト最深部の抜け止め(J型の端末)はコアドリル による切断が可能である。
- d. 輸送・保管
- ・仮置架台及びたて起こし架台の脚部は養生を行い、使用済燃料貯蔵施設にて保管する。
- ・仮置架台及びたて起こし架台のベース部は養生を行い,製作工場に輸送 する。
- (2) 材料入手・加工・組立

以下の手順により工事及び検査を行う。

- ・部品の製作を実施する製作工場は、当事業所指定の材料を材料証明書とともに入手する。
- ・当事業所より提出した製作図を基に部品の製作加工を実施する。
- ・シアプレートは架台の底板部と完全溶け込み溶接を行い、非破壊検査に て溶接部の健全性を確認する。
- ・製作された部品について製作工場にて「構造,強度又は漏えいに係る検 査」及び「機能又は性能に係る検査」を実施する。
- (3) 部品の受入れ
 - ・製作された部品について当事業所にて受入検査を実施する。
- (4) 組立て・据付
 - ・仮置架台,たて起こし架台について床コンクリートのはつり及び新規ア ンカーボルトの打設を実施する。新規アンカーボルトの配置は鉄筋探査 を行い,鉄筋の干渉を受けない位置を予め選定し,図面を作成したうえ で施工を実施する。なお,鉄筋は概ね200mmピッチで格子状に施工され ており,現地にて探査能力を確認している。施工時には図面での施工位 置,施工場所へのケガキをダブルチェックすることで施工ミスを防止す

るとともに、メタルセンサ付きのドリルを使用することで、万が一鉄筋 に接触した場合でも鉄筋の損傷を防止する。

- ・仮置架台,たて起こし架台の設置の際は,アンカーボルトのねじ山を傷 つけないように架台とクレーンフックの間にチェーンブロックを設置 し,4点の吊具でバランスを調整しながら,低速で荷下ろしを行う。
- ・仮置架台、たて起こし架台の床コンクリート施設の際は、シアプレート 部と床面コンクリート間には隙間ができないようにするため、流動性の 高い無収縮モルタルを充填するとともに、気泡、ボイドが発生しないよ う品質管理を行う。接着状況の確認は施工後に行うことは難しいため、 必要に応じて施工時に充填状況を測定する。
- ・検査架台について新規アンカーボルトの配置は鉄筋探査を行い、鉄筋の 干渉を受けない位置を予め選定し、図面を作成したうえで施工を実施す る。万が一、鉄筋探査において鉄筋の位置が不確かな場合は床コンクリ ートのはつり及び新規アンカーボルトの打設を実施する。
- ・製作された仮置架台及びたて起こし架台のベース部を製作工場にて製 作された部品(アンカーボルト)にて床面に固定する。
- ・検査架台の支柱を製作工場にて製作された部品(アンカーボルト)にて
 床面に固定する。
- ・各架台の組立て・据付後に「構造,強度又は漏えいに係る検査」,「機能 又は性能に係る検査」及び「基本設計方針検査」を実施する。
- ・検査の合格をもって完了とする。

※太線部分については「別添Ⅲ 1 工事の方法(金属キャスク以外の設備) 図1-1 工事の手順と使用前事業者検査のフロー」に記載の注記*3について図示したものである。

図4 工事フロー (漂流防止)

3.2 工事上の留意事項

設工認申請書「別添Ⅲ 1 工事の方法(金属キャスク以外の設備)3. 工事上の留意事項」に記載の項目のうち漂流防止工事においての留意事項を 以下に記載する。

- a.設置の工事を行う使用済燃料貯蔵施設の機器等について、周辺資機材及 び環境条件からの悪影響や劣化等を受けないよう、保管・設置エリアを 区画し、シート等で養生を行う。作業環境を維持するために4S(整理, 整頓、清潔、清掃)に努めるとともに、放射線の影響を受けないように する。機器に開口部がある場合には、開口部からの異物の混入がないよ うに養生を行う等の必要な措置を講じる。
- b.工事に当たっては、既設の機器等へ悪影響を与えないよう、現場状況、 作業環境及び作業条件を把握し、作業に潜在する危険性又は有害性や工 事用資機材から想定される影響を確認する。作業開始前にフェンスまた はロープ等による区画及びシート類による養生を行い、作業エリアを設 定し、人と物の出入りを制限する。作業に伴い持ち込む可燃性物品を極 カ少なくする。火花等が発生する作業を行う場合は、作業エリア周辺に 可燃物・危険物がないことを確認し、作業エリアを不燃物又は難燃物で 区画し消火器を設置する。作業に伴い機器・配管等の開口部が発生する 場合には、異物混入防止管理エリアを設定して工具・機材の出入りの管 理を行う等の必要な措置を講じる。
- d. 使用済燃料貯蔵施設の状況に応じて,検査・試験,試運転等の各段階に おける工程を管理する。
- e. 設置又は変更の工事を行う使用済燃料貯蔵施設の機器等について,供用 開始後に必要な機能・性能を発揮できるよう製造から供用開始までの間, 維持する。設置後,長期間経ている機器等については,供用開始前まで に点検を実施する。
- g. 修理の方法は,基本的に「図1-1 工事の手順と使用前事業者検査のフ ロー」の手順により行うこととし,機器等の全部又は一部について,撤 去,切断,切削又は取外しを行い,据付,溶接又は取付け,若しくは同 等の方法により,同等仕様又は性能・強度が改善されたものに取替えを 行う等,機器等の機能維持又は回復を行う。また,機器等の一部撤去, 一部撤去の既設端部について閉止板の取付け若しくは同等の方法によ り適切な処置を実施する。

4. 津波に対する受入設備の評価

本項は,設工認申請書添付 6-1-6「仮想的大規模津波に対する受入設備の 評価方針」(以下「添付 6-1-6」という。)における計算条件のうち波力の算 出について説明するものである。

また,添付 6-1-6 に記載のない部材の評価方法及び評価結果を示すこと により仮置架台及びたて起こし架台については,各架台が津波による波力に対 して各部の接続状態が維持されることを説明する。検査架台については,検査 架台を構成する主要部材が津波による波力に対して破断しないことを説明す る。

4.1 仮置架台

4.2.1 波力の計算方法

添付 6-1-6 に記載の仮置架台への津波による波力の算出について以下 に記載する。

なお,波力の算出の際には,安全側となるように受圧面積が大きくなる金 属キャスクが設置された状態で算出する。

4.2.1.1 波力の計算方法

港湾の津波避難施設の設計ガイドライン(平成25年10月,国土交通省) に従い,波力を算出する。津波による波力の算出式を以下に示す。また,津 波による水平力について図5に示す。

$Fh = \frac{1}{2} C_D \rho_O |\overrightarrow{u_n}| \overrightarrow{u_n} D\Delta S$

抗力係数 C_D:物体の形状に合わせて引用する。

(円柱:C_D=1, 円柱以外:C_D=2)

津波流速 **ū**_n:評価対象物が水面下に完全に浸水している場合,津波流速 は一様となる。

図5 津波による水平力と脚部の位置

- 4.2.1.2 受圧面積の算出方法
- (1) 受圧面積算出モデル

図6に示す受圧面積算出モデル図に従い,斜線で示した範囲の受圧面積 を算出する。

図6 受圧面積算出モデル図(上:仮置架台,下:金属キャスク)

- (2) 受圧面積の算出
- a. 津波による架台及び金属キャスクにかかる水平力(全体) 各部材の波力を算出するために部材毎に色分けした受圧面積算出モデ ル図を図7に示す。

図7 受圧面積算出モデル図(色分け)

b. 脚部取付部評価時における脚1本当たりにかかる水平力 脚部取付部の評価モデル図を図8に示す。また、脚部取付部評価時の 波力を受ける部材を図9に示す。

図8 脚部取付部の評価モデル図

図9 脚部取付部評価時の波力を受ける部材

枠囲みの内容は商業機密に属するため公開できません。

(3) 受圧面積

受圧面積算出表を表5に示す。

仮置架台				総面積[mm ²]		2.	328×10^{7}
部品番号	高さ	幅	面積	部品番号	高さ	幅	面積
	mm	mm	mm^2	—	mm	mm	mm^2
部品①			1. 585×10^{6}	部品⑨			1.112×10^{5}
部品②			1.257×10^{5}	部品⑪			4.916 $\times 10^{5}$
部品③			3.217×10^{5}	部品⑪			8.775 $\times 10^4$
部品④			8.757 $\times 10^4$	部品①			4. 348×10^5
部品⑤			4. 916×10^5	部品①			3. 447×10^{6}
部品⑥			1.203×10^{5}	部品组			1.206×10^{7}
部品⑦			2.655 $\times 10^{5}$	部品①			3. 412×10^{6}
部品⑧			2. 455×10^5		_		

表 5 受圧面積算出表

4.2.1.3 波力の算出

 (1) 津波による架台及び金属キャスクにかかる水平力(全体): Fh
 4.2.1.2(3)で求めた受圧面積を用いて波力を算出する。各部材にかかる波力を表6に示す。なお,波力を算出する際は部材の形状に応じた, 抗力係数(円柱:1,円柱以外:2)を用いる。

	仮置架台		波力[N]	1.452	2×10^{6}
部品番号	面積	波力	部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①	1.585×10^{6}	1.665×10^{5}	部品⑨	1.112×10^{5}	1.168×10^{4}
部品②	1.257×10^{5}	1.320×10^{4}	部品⑪	4. 916×10^{5}	5. 162×10^4
部品③	3.217×10^{5}	3. 378×10^4	部品创	8.775 $\times 10^{4}$	9. 213×10^{3}
部品④	8.757 $\times 10^4$	9. 195×10^3	部品①	4. 348×10^5	4. 565×10^4
部品5	4. 916×10^5	5. 162×10^4	部品①*1	3. 447×10^{6}	1.810×10^{5}
部品⑥	1.203×10^{5}	1.263×10^{4}	部品④*1	1.206×10^{7}	6. 329×10^5
部品⑦	2.655 $\times 10^{5}$	2.788 $\times 10^4$	部品①*1	3. 412×10^{6}	1.791×10^{5}
部品⑧	2. 455×10^5	2.578 $\times 10^4$			

表6 各部材にかかる波力

*1 円柱形状の部材

(2) 脚部取付部評価時の各部材が受ける波力: Fh₂ 脚部取付部評価時の各部材が受ける波力について表7に示す。

脚部取付部 脚1本当たり 波力[N]			5.978	3×10^{5}		
部品番号	面積	波力	部品番号	面積	波力	
—	mm^2	Ν	—	mm^2	Ν	
部品①			部品⑨			
部品②	—		部品⑪			
部品③			部品①			
部品④	8.757 $\times 10^{4}$	9. 195×10^{3}	部品①			
部品⑤	4.916 $\times 10^{5}$	5. 162×10^4	部品①*1	3. 447×10^{6}	9.049 $\times 10^4$	
部品⑥	1.203×10^{5}	1.263×10^{4}	部品(14)*1	1.206×10^{7}	3. 164×10^5	
部品⑦	2.655 $\times 10^{5}$	2.788 $\times 10^4$	部品①*1	3. 412×10^{6}	8.955 $\times 10^4$	
部品⑧						

表7 各部材にかかる波力

*1 金属キャスクの波力を2本の脚で受けることから、脚1本当たりの波力を 算出する際は波力を1/2とした。 枠囲みの内容は商業機密に属するため公開できません。

4.2.2 接続部の評価

添付 6-1-6において床面との固定部(接着系アンカーボルト及びシアプ レート)及び脚部取付部の計算方法を説明しており,その評価結果について 設工認申請書添付 6-1-7「仮想的大規模津波に対する受入設備の影響評価」 (以下「添付 6-1-7」という。)に記載し,全て許容値以内である。本資料 においては仮置架台の各部材の接続部について津波による波力によって生 じる応力が許容値以下であることを説明する。評価部材を以下に記載し,図 10 に図示する。なお,脚固定ボルト,脚固定ピンに関しては,津波方向に対 して前側脚部と後側脚部の評価(図5参照)を行うこととする。スライド固 定ボルト及び繋ぎ梁締結ボルトは後側脚部の波力の方が明らかに大きい為, 前側脚部の評価は省略する。

・ 脚固定ボルト, 脚固定ピン

・スライド固定ボルト

・繋ぎ梁締結ボルト

図 10 評価部材

記号	説明	単位
$A_{1 \sim 4, 6}$	各ボルトの呼び径、ピン径の断面積	mm^2
A 7	シアプレートによるコンクリートの支圧面積	mm^2
sca	接着系アンカーボルトの有効断面積	mm^2
C _D	抗力係数	
D	津波の方向から見た部材軸直角方向の部材幅	m
d	各ボルト呼び径	mm
E _c	コンクリートのヤング係数	MPa
F b	金属キャスクの浮力	Ν
F _c	コンクリートの設計基準強度	MPa
F	許容応力算出用基準値	MPa
F h	津波による水平力(全体)	Ν
$F h_{1\sim 6}$	各部材を評価する時に算出した波力	Ν
Fh _D	各受圧面積ごとに生じる波力(①:部品番号)	Ν
Fv1	脚1本に生じる垂直荷重	Ν
f t	許容引張応力	MPa
f s	許容せん断応力	MPa
f _b	許容曲げ応力	MPa
f _{t s}	引張力とせん断力を受ける時の許容引張応力	MPa
f _{b s}	曲げ応力とせん断力を受ける時の許容組合応力	MPa
g	重力加速度(=9.80665)	m/s^2
K	複合破壊の場合のせん断耐力の低減係数	
L j	等価モーメント算出時の端部間のボルト長さ	mm
L n	等価モーメント算出時のボルト長さ	mm
L 1~1 3	間隔距離	mm
1 _{се}	アンカーボルトの強度算出用埋め込み深さ	mm
$M_{1}{\sim}9$	各部材に生じるモーメント	N•mm
$M_{m1\sim m6}$	各部材に生じる合成モーメント	N•mm
N j	等価モーメント算出時の各ボルト本数	本
$n_{1\sim4}$	各部材のボルト本数	本
$P_{1\sim6}$	各ボルトに生じる引張力	Ν

4.2.2.1 記号の説明

記号	説明	単位
$P_{11 \sim 13}$	各ボルト列に生じる引張力	Ν
p _a	接着系アンカーボルト1本当たりの許容引張力	Ν
p _{a1}	接着系アンカーボルトの引張強度により決まる場合の	Ν
	接着系アンカーボルト1本当たりの許容引張力	
р _{а2}	定着した躯体と樹脂の付着強度により決まる場合の	Ν
	接着系アンカーボルト1本当たりの許容引張力	
q _{p a}	シアプレート1枚当たりのコンクリート部の許容せん断	Ν
	カ	
$Q_{1\sim4}$	各部材に生じるせん断力	Ν
S	波力算出時の部材軸方向の長さ	m
Su	部材の引張強さ	MPa
Sу	部材の降伏点	MPa
	津波流速	m/s
un		
V	金属キャスクの体積	m^3
W	金属キャスクの重量	Ν
ρο	海水の密度	kg/m^3
$\sigma_1 \sim 6$	各部材に生じる引張応力	MPa
σь	脚部取付部に生じる曲げ応力	MPa
σm	脚部取付部に生じる組合せ応力	MPa
$\tau_1 \sim 5$	各部材に生じるせん断応力	MPa
τ _a	カプセル方式有機系における引張力に対する付着強度	MPa
ѕ Ф ра	接着系アンカーボルト評価時の引張強度	MPa
ϕ_1 , ϕ_2	低減係数	

4.2.2.2 力・応力の計算方法

各応力の計算方法について、以下に記載する。

(1) 脚固定ボルト,脚固定ピンの応力

脚固定ボルトには,荷重受けボルトを各脚部の外側にのみ取り付けている。これにより,前後の脚部で水平力を受ける部材が異なり,後側脚部は脚固定ボルトと脚固定ピンで,前側脚部は脚固定ピンのみで水平力を 受け持つため,後側脚部と前側脚部に分けて評価を行う。

a. 後側脚部

(a) 評価モデル

脚固定ボルト(後側脚部)の評価モデル図を図11に示す。

図11 脚固定ボルト(後側脚部)の評価モデル図

(b) 波力の算出

脚固定ボルト(後側脚部)評価時の波力を受ける部材を図 12 に示し, 各部材が受ける波力を表 8 に示す。

図 12 脚固定ボルト(後側脚部)評価時の波力を受ける部材

脚固定ボル	ト(後側脚部)	脚1本当たり	波力[N]	6. 058×10^5		
部品番号	面積	波力	部品番号	面積	波力	
—	mm^2	Ν		mm^2	Ν	
部品①			部品⑨	—	—	
部品②			部品⑪	—	_	
部品③'*1	7. 568 $\times 10^4$	7.946 $\times 10^3$	部品⑪	—	—	
部品④	8. 757×10^4	9. 195×10^3	部品①			
部品⑤	4. 916×10^5	5. 162×10^4	部品①*2	3. 447×10^{6}	9.049 $\times 10^4$	
部品⑥	1.203×10^{5}	1.263×10^4	部品④*2	1.206×10^{7}	3. 164×10^5	
部品⑦	2. 655×10^5	2. 788×10^4	部品①*2	3. 412×10^{6}	8.955 $\times 10^{4}$	
部品⑧						

表8 脚固定ボルト(後側脚部)評価時の各部材が受ける波力

*1 脚部抑え板(部品③')までの範囲の面積の値をもとに波力を算出した。

*2 金属キャスクの波力を2本の脚で受けることから、脚1本当たりの波力を 算出する際は波力を1/2とした。

(c) 力,応力の計算方法脚1本に生じる水平力Fh₂

 $Fh_3 = \Sigma Fh_{(j)} \cdot \cdot \cdot \exists \exists (2-1)$

金属キャスクに生じる浮力 Fb

 $Fb = V \times \rho_0 \times g \quad \cdot \quad \cdot \quad 式(2-2)$

脚1本に生じる垂直力Fv1

 $Fv_1 = \frac{(W - Fb)}{4} \quad \cdot \quad \cdot \quad \exists (2 - 3)$

水平力による転倒モーメント M₃

 $M_3 = Fh_3 \times L_4 \quad \cdot \quad \cdot \quad 弐(2-4)$

垂直力による転倒モーメント M₄ M₄ = Fv₁×L₅ ・・・ 式(2-5)

水平力と垂直力による合成モーメント M_{m2} M_{m2} = M₃ + M₄ ・・・ 式(2-6) 脚固定ボルト1本にかかる引張力P2

$$P_{2} = \frac{M_{m2}}{\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right)} \cdot \cdot \cdot \exists (2-7)$$
$$\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right) = 4,934$$

脚固定ボルト1本に生じる引張応力σ₂ P₂

$$\sigma_2 = \frac{P_2}{A_2} \quad \cdot \quad \cdot \quad \exists (2-8)$$

引張力とせん断力を受ける脚固定ボルト1本にかかる引張力P3

$$P_{3} = \frac{M_{m2}}{\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right)} \times \frac{L_{6}}{L_{7}} \quad \cdot \quad \cdot \quad \vec{x}(2-9)$$

引張力とせん断力を受ける脚固定ボルト1本に生じる引張応力σ₃

$$\sigma_3 = \frac{P_3}{A_2} \quad \cdot \quad \cdot \quad \vec{x}(2-10)$$

脚固定ボルト1本当たりのせん断力Q2

$$Q_2 = \frac{Fh_3}{n_2} \quad \cdot \quad \cdot \quad \vec{x}(2-11)$$

脚固定ボルト1本当たりのせん断応力 τ₂

$$\tau_2 = \frac{Q_2}{A_2} \quad \cdot \quad \cdot \quad \vec{\pi}(2-12)$$

- b. 前側脚部
- (a) 評価モデル

脚固定ボルト(前側脚部)の評価モデル図を図13に示す。

図13 脚固定ボルト(前側脚部)の評価モデル図

(b) 波力の算出

脚固定ボルト(前側脚部)評価時の波力を受ける部材を図 14 に示し, 表5に各部材が受ける波力を示す。

図 14 脚固定ボルト(前側脚部)評価時の波力を受ける部材

脚固定ボ	ルト(前側脚部)	却1本当たり 波力[N] 1.093×1		3×10^{5}	
部品番号	面積	波力	部品番号	面積	波力
_	mm^2	Ν		mm^2	Ν
部品①	—		部品⑨	—	—
部品②			部品⑪		—
部品③'*1	7. 568 $\times 10^4$	7. 946×10^3	部品⑪	—	—
部品④	8.757 $\times 10^4$	9. 195×10^3	部品①		—
部品⑤	4. 916×10^5	5. 162×10^4	部品①		
部品⑥	1.203×10^{5}	1.263×10^4	部品组		
部品⑦	2. 655×10^5	2. 788 $\times 10^4$	部品①		
部品⑧					

表9 脚固定ボルト(前側脚部)評価時の各部材が受ける波力

*1 脚部抑え板(部品③')までの範囲の面積の値をもとに波力を算出した。

(c) 力,応力の計算方法

脚 1 本に生じる水平力 Fh₃

 $Fh_4 = \Sigma Fh_{\text{i}} \cdot \cdot \cdot \exists \mathbf{X}(2-13)$

金属キャスクに生じる浮力 Fb

 $Fb = V \times \rho_0 \times g \quad \cdot \quad \cdot \quad \exists (2-2)$

脚1本に生じる垂直力 Fv1

 $Fv_1 = \frac{(W - Fb)}{4} \quad \cdot \quad \cdot \quad \exists (2 - 3)$

水平力による転倒モーメント M_5 $M_5 = Fh_4 \times L_4 \cdot \cdot \cdot 式(2-14)$

垂直力による復元モーメント M_4 $M_4 = Fv_1 \times L_5 \cdot \cdot \cdot 式(2-5)$

水平力と垂直力による合成モーメント M_{m3} M_{m3} = M₅ - M₄ ・・・ 式(2-15)

脚固定ボルト1本にかかる引張力P4

$$P_4 = \frac{M_{m3}}{\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right)} \quad \cdot \quad \cdot \quad \vec{x}(2-16)$$

脚固定ボルト1本に生じる引張応力σ4

$$\sigma_4 = \frac{P_4}{A_2} \quad \cdot \quad \cdot \quad \exists (2-17)$$

脚固定ピンに生じるせん断力 Q₃

$$Q_3 = Fh_4 \quad \cdot \quad \cdot \quad 式(2-18)$$

脚固定ピンに生じるせん断応力 τ_3 $\tau_3 = \frac{Q_3}{A_3}$ ・・・ 式(2-19)

- (2) スライド固定ボルトの応力
 - a. 評価モデル
 - スライド固定ボルトの評価モデル図を図15に示す。

図 15 スライド固定ボルトの評価モデル図

b. 波力の算出

スライド固定ボルト評価時の波力を受ける部材を図 16 に示し,各部 材が受ける波力を表 10 に示す。

図 16 スライド固定ボルト評価時の波力を受ける部材

スライド国	固定ボルト 脚	1本当たり	波力[N]	6.404	$\times 10^{5}$
部品番号	面積	波力	部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①			部品⑨	1.112×10^{5}	1.168×10^4
部品②			部品创	4.916 $\times 10^{5}$	5. 162×10^4
部品③			部品创	8.775 $\times 10^4$	9. 213×10^{3}
部品④	—		部品①	4. 348×10^5	4. 565×10^4
部品⑤	—	—	部品①*1	3. 447×10^{6}	9. 049×10^4
部品⑥			部品创*1	1.206×10^{7}	3. 164×10^5
部品⑦			部品①*1	3. 412×10^{6}	8. 955×10^4
部品⑧	2. 455×10^5	2.578 $\times 10^{4}$			

表10 スライド固定ボルト評価時の各部材が受ける波力

*1 金属キャスクの波力を 2本の脚で受けることから,脚 1本当たりの波力を 算出する際は波力を 1/2 とした。

c.力,応力の計算方法

脚1本に生じる水平力Fh₅ Fh₅ = ΣFh_① ・・・ 式(2-20)

金属キャスクに生じる浮力 Fb

 $Fb = V \times \rho_0 \times g \quad \cdot \quad \cdot \quad \exists (2-2)$

脚1本に生じる垂直力Fv1

$$Fv_1 = \frac{(W - Fb)}{4} \quad \cdot \quad \cdot \quad \exists (2 - 3)$$

$$M_6 = Fh_5 \times L_8 \quad \cdot \quad \cdot \quad \exists (2-21)$$

垂直力による転倒モーメント
$$M_4$$

 $M_4 = Fv_1 \times L_5 \cdot \cdot \cdot 式(2-5)$

スライド固定ボルト列に生じる引張力
$$P_{12}$$

 $P_{12} = \frac{M_{m4}}{L_9}$ ・・・ 式(2-23)

スライド固定ボルト1本に生じる引張力 P_5 $P_5 = \frac{P_{12}}{n_3}$ ・・・ 式(2-24)

スライド固定ボルト1本に生じる引張応力 σ_5 $\sigma_5 = \frac{P_5}{A_4}$ ・・・ 式(2-25)

スライド固定ボルト1本当たりのせん断力Q4

$$Q_4 = \frac{Fh_5}{2 \times n_3} \quad \cdot \quad \cdot \quad \vec{x}(2-26)$$

スライド固定ボルト1本当たりのせん断応力 $\tau 4$ $\tau_4 = \frac{Q_4}{A_4}$ ・・・ 式(2-27)

- (3) 繋ぎ梁締結ボルトの応力
- a. 評価モデル 繋ぎ梁締結ボルトの評価モデル図を図 17 に示す。

図17 繋ぎ梁締結ボルトの評価モデル図

b. 波力の算出

繋ぎ梁締結ボルト評価時の波力を受ける部材を図18に示し,各部材が 受ける波力を表7に示す。

朝	ぎ梁締結ボル	~	波力[N]	1.285×10^{6}	
部品番号	部品番号 面積 波		部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①			部品⑨	1.112×10^{5}	1.168×10^4
部品②	1.257×10^{5}	1.320×10^{4}	部品⑪	4.916 $\times 10^{5}$	5. 162×10^4
部品③	3.217×10^{5}	3. 378×10^4	部品①	8.775 $\times 10^4$	9. 213×10^3
部品④	8.757 $\times 10^{4}$	9. 195×10^{3}	部品①	4. 348×10^5	4. 565×10^4
部品⑤	4.916 $\times 10^{5}$	5. 162×10^4	部品①	3. 447×10^{6}	1.810×10^{5}
部品⑥	1.203×10^{5}	1.263×10^{4}	部品组	1.206×10^{7}	6. 329×10^5
部品⑦	2.655 $\times 10^{5}$	2.788 $\times 10^4$	部品①	3. 412×10^{6}	1.791×10^{5}
部品⑧	2. 455×10^5	2. 578 $\times 10^4$			

表 11 繋ぎ梁締結ボルト評価時の各部材が受ける波力

c.力,応力の計算方法

脚1本に生じる水平力Fh₆

$$Fh_6 = \frac{\Sigma Fh_{\text{(j)}}}{2} \quad \cdot \quad \cdot \quad \text{ rt}(2-28)$$

金属キャスクに生じる浮力 Fb

 $Fb = V \times \rho_0 \times g \quad \cdot \quad \cdot \quad \exists (2-2)$

脚1本に生じる垂直力 Fv1

$$Fv_1 = \frac{(W-Fb)}{4}$$
 ・・・ 式(2-3)

水平力による転倒モーメント
$$M_8$$

 $M_8 = Fh_6 \times L_{11}$ ・・・ 式(2-29)

垂直力による転倒モーメント M₄

 $M_4 = Fv_1 \times L_5 \quad \cdot \quad \cdot \quad \vec{x}(2-5)$

水平力と垂直力による合成モーメント M_{m6} $M_{m6} = M_8 + M_4 \cdot \cdot \cdot 式(2-30)$

フランジ位置における曲げモーメント M₉
$$M_9 = M_{m6} \times \frac{L_{12}}{L_2} \cdot \cdot \cdot 式(2-31)$$

フランジの上部ボルト全体にかかる引張力 P13

$$P_{13} = \frac{M_9}{L_{13}}$$
 · · · 式(2-32)

$$P_6 = \frac{P_{13}}{n_4}$$
 · · · $\exists (2-33)$

$$\sigma_6 = \frac{P_6}{A_6} \quad \cdot \quad \cdot \quad \vec{x}(2-34)$$

- 4.2.2.3 評価方法
- (1) 脚固定ボルト,脚固定ピン及びスライド固定ボルトの評価 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005 に従い,許容応力値を算出する。4.2.2.2項の式での求めた脚固定ボ ルト,脚固定ピン及びスライド固定ボルトの評価に生じる応力が許容値以 下であること。

項目	計算式	式番号
許容応力算出用基準値 F	F=min(0.7Su, 1.2Sy)	式(2-35)
許容引張応力 f_t	$f_t = (F/2) \times 1.5$	式(2-36)
許容せん断応力 fs	$f_s = (F/1.5\sqrt{3}) \times 1.5$	式(2-37)
組合せ時の許容引張応力 f _{ts}	$f_{\rm ts}$ = min(f_t , 1.4f_t - 1.6 τ _2)	式(2-38)

(2) 繋ぎ梁締結ボルトの評価

発電用原子力設備規格 設計・建設規格 JSME S NC1-2005 に従い,許容応力値を算出する。4.2.2.1項の式での求めた繋ぎ梁 締結ボルトに生じる応力が許容値以下であること。

項目	計算式	式番号
許容応力算出用基準値 F	F=min(0.7Su, 1.2Sy)	式(2-39)
許容引張応力 f _t	$f_t = (F/2) \times 1.5$	式(2-40)

枠囲みの内容は商業機密に属するため公開できません。

4.2.3 コンクリートへの影響評価

(1) 接着系アンカーボルト

各種合成構造設計指針・同解説に従い,有効径^{**}を使用し許容応力値を算 出する。添付 6-1-6 の 4.2.2 項の式で求めた接着系アンカーボルトに生 じる力が許容値以下であること。

※:有効径での評価のため有効断面積は、JIS B 1082の値を使用しており、M30の呼び径(φ30)を用いた断面積の評価ではない。

項目	計算式	式番号
接着系アンカーボルトの引張強度	$n = \Phi \vee \pi \vee a$	= (9 - 41)
により決まる場合の許容引張力 p _{a1}	$p_{a1} - \Psi_1 \wedge_s 0_{pa} \wedge_{sc} a$	式(2-41)
定着した躯体と樹脂の付着強度に		\pm (9, 49)
より決まる場合の許容引張力 p _{a2}	$p_{a2} - \Psi_2 \wedge \tau_a \wedge \pi \wedge d_a \wedge I_{ce}$	IL (2-42)
許容引張断力 pa	$p_a = min(p_{a1}, p_{a2})$	式(2-43)

ここで Φ_1 : 低減係数 (=1)

sσ{pa}: 接着系アンカーボルト評価時の引張強度(=464 MPa)

_{sc}a:接着系アンカーボルトの有効断面積(=_____

- Φ_2 : 低減係数 (=2/3)
- τ_a:カプセル方式有機系における引張力に対する付着強度

)

(=8.4 MPa)

d_a:接着系アンカーボルトの径(=

1_{ce}:アンカーボルトの強度算出用埋め込み深さ(=

(2) シアプレート

原子力発電所耐震設計技術規程 JEAC4601-2008 に従い,許容応力 値を算出する。添付 6-1-6 の 4.2.2 項の式で求めたシアプレートに生じ るせん断力が許容値以下であること。

項目	計算式	式番号
許容せん断力 q _{pa}	$q_{pa}=0.5 \times K \times A_7 \times \sqrt{(Ec \times Fc)}$	式(2-44)

ここで K: 複合破壊の場合のせん断耐力の低減係数(=0.8)

Ec:コンクリートのヤング係数 (=25,208 MPa)

※√ (Ec×Fc) ≦880 の場合は√ (Ec×Fc) =880 として計算する。

枠囲みの内容は商業機密に属するため公開できません。

4.2.4 設計条件及び機器要目

(1) 設計条件

機器名称	供用状態	周辺環境温度(℃)	津波流速(m/s)	海水の密度(kg/m ³)
仮置架台	D	45	10	1,050

(2) 機器要目

重量(金属キャスク) 体積(金属キャスク)

W (N)	$V(m^3)$

寸法

33

L_{2} (mm)	L_4 (mm)	L $_5$ (mm)	L_{6} (mm)	L_7 (mm)	L_{8} (mm)	L ₉ (mm)	L _{1 1} (mm)	L_{12} (mm)	L $_{1 \ 3}$ (mm)

A $_2$ (mm ²)	A $_3$ (mm ²)	A $_4$ (mm ²)	A $_6$ (mm ²)	A $_7$ (mm ²)	n 2(個)	n ₃(個)	n 4(個)
706.9							

基準強度

項目		接着系アン	シアプレート	脚固定ボルト,	スライド固	繋ぎ梁締結	コンクリートの
		カーボルト		脚固定ピン	定ボルト	ボルト	設計基準強度
材質		S45C	SM490A (厚さ)	S45C	S45C	S45C	_
強度	引張強さ	632	457	632	632	632	
(MPa)	降伏点	464	296	464	464	464	

 ∞

図 19 仮置架台寸法図

4.2.5 評価結果

	部材	材料	応力・力	算出値	許容値	単位	結果
接着系アンカーボルト (樹脂-コンクリート間破壊)		樹脂-コンクリート	引張	7. 473×10^4	1. 451×10^5	Ν	良
シアプレート (コンクリートの圧縮破壊)		コンクリート	圧縮	3. 629×10^5	6. 336×10^7	Ν	良
	脚固定ボルト	S45C	引張	287	331	MPa	良
後側脚部	脚固定ボルト (荷重受けボルト取付板	S45C	引張	28	190	MPa	良
	(隔重文() 和) 中級自被		せん断	172	255	MPa	良
÷ 加加加立	脚固定ボルト	S 4 E C	引張	35	331	MPa	良
「日」(山山山日	脚固定ピン	5450	せん断	87	255	MPa	良
スライド固定ボルト		SAEC	引張	198	331	MPa	良
		5450	せん断	51	255	MPa	良
繋ぎ梁締結	ボルト	S45C	引張	315	331	MPa	良

- 4.3.たて起こし架台
- 4.3.1 波力の計算方法

添付 6−1−6 に記載のたて起こし架台への津波による波力の算出につい て以下に記載する。

なお,波力の算出の際には,安全側となるように受圧面積が大きくなる金 属キャスクが設置された状態で算出する。

4.3.1.1 波力の計算方法
津波による波力の算出式は4.2.1.1項に従う。
津波による水平力について図 20 に示す。

図 20 津波による水平力と脚部の位置

4.3.1.2 受圧面積の算出方法

(1) 受圧面積算出モデル

図 21 に示す受圧面積算出モデル図に従い,斜線で示した範囲の受圧面 積を算出する。

図 21 受圧面積算出モデル図(上:たて起こし架台,下:金属キャスク)

- (2) 受圧面積の算出
- a. 津波による架台及び金属キャスクにかかる水平力(全体)

各部材の波力を算出するために部材毎に色分けした受圧面積算出モデ ル図を図 22 に示す。

図 22 受圧面積算出モデル図(色分け)

b. 脚部取付部評価時における脚1本当たりにかかる水平力

脚部取付部の評価モデル図を図 23 に示す。また、脚部取付部評価時の 波力を受ける部材について図 24 に示す。

図 23 脚部取付部の評価モデル図

図 24 脚部取付部評価時の波力を受ける部材

枠囲みの内容は商業機密に属するため公開できません。

(3) 受圧面積

受圧面積算出表を表 12 に示す。

たて起こし架台		総面積[]	mm^2]	2.	318×10^{7}		
部品番号	高さ	幅	面積	部品番号	高さ	幅	面積
	mm	mm	mm^2	_	mm	mm	mm^2
部品①			1.585×10^{6}	部品⑨			1.112×10^{5}
部品②			1.257×10^{5}	部品⑪			4. 428×10^5
部品③			3.217×10^{5}	部品⑪			8. 792×10^4
部品④			8.769 $\times 10^4$	部品①			4. 348×10^5
部品⑤			4. 428×10^5	部品①			3. 447×10^{6}
部品⑥			1.203×10^{5}	部品创			1.206×10^{7}
部品⑦			2.655 $\times 10^{5}$	部品①			3. 412×10^{6}
部品⑧			2. 455×10^5				

表 12 受圧面積算出表

4.3.1.3 波力の算出

a. 津波による架台及び金属キャスクにかかる水平力(全体): Fh

4.3.1.2(3)で求めた受圧面積を用いて波力を算出する。各部材に かかる波力を表 13 に示す。なお,波力を算出する際は部材の形状に応じ た,抗力係数(円柱:1,円柱以外:2)を用いる。

たて起こし架台			波力[N]	1. 441	$\times 10^{6}$
部品番号	面積	波力	部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①	1.585×10^{6}	1.665×10^{5}	部品⑨	1.112×10^{5}	1.168×10^{4}
部品②	1.257×10^{5}	1.320×10^{4}	部品⑪	4. 428×10^5	4. 649×10^4
部品③	3.217×10^{5}	3. 378×10^4	部品⑪	8.792 $\times 10^4$	9. 231×10^3
部品④	8.769 $\times 10^4$	9. 207×10^3	部品①	4. 348×10^5	4. 565×10^4
部品⑤	4. 428×10^5	4. 649×10^4	部品①*1	3. 447×10^{6}	1.810×10^{5}
部品⑥	1.203×10^{5}	1.263×10^{4}	部品④*1	1.206×10^{7}	6. 329×10^5
部品⑦	2.655 $\times 10^{5}$	2. 788×10^4	部品①*1	3. 412×10^{6}	1.791×10^{5}
部品⑧	2. 455×10^5	2. 578×10^4			

表13 各部材にかかる波力

*1 円柱形状の部材

b. 脚部取付部評価時の各部材が受ける波力: Fh₂ 脚部取付部評価時の各部材が受ける波力について表 14 に示す。

脚部取付部(脚1本当たり)		波力[N]	5.92	7×10^{5}	
部品番号	面積	波力	部品番号	面積	波力
—	mm^2	Ν	—	mm^2	Ν
部品①			部品⑨		
部品②	—		部品⑪		
部品③	—	—	部品⑪	—	
部品④	8.769 $\times 10^4$	9. 207×10^{3}	部品①		
部品⑤	4. 428×10^5	4. 649×10^4	部品①*1	3. 447×10^{6}	9. 049×10^4
部品⑥	1.203×10^{5}	1.263×10^4	部品④*1	1.206×10^{7}	3. 164×10^5
部品⑦	2.655 $\times 10^{5}$	2.788 $\times 10^4$	部品①*1	3. 412×10^{6}	8.955 $\times 10^4$
部品⑧	_	_		_	

表14 各部材にかかる波力

- *1 金属キャスクの波力を2本の脚で受けることから,脚1本当たりの波力を 算出する際は波力を1/2とした。
 - 4.3.2 アンカーボルトの使い分けについて

たて起こし架台は3種類のアンカーボルトを使用する設計としている。以 下にアンカーボルトの使い分けについて記載する。

・外側(仮置架台側): M30(接着系アンカーボルト)

施工性を考慮し接着系アンカーボルトを採用している。ボルトサイズは、中央アンカーボルトと合わせて、M30としている。

・中央:M30(既設アンカーボルト)

工事の合理性を考え、既設アンカーボルトを流用している。

・内側(キャスク側): M36(埋め込みアンカーボルト)

内側のアンカーボルトは,近くに衝撃吸収材のピットがあり,施工性からは接着系アンカーボルトの方が好ましいが,たて起こし架台のベース部とへり(ピット)の距離が非常に近いため,アンカーボルトの打設位置が限られる。

そのため接着系アンカーボルトとした場合,穴加工をする際に鉄筋を 傷つける可能性が高いため,鉄筋を傷つけない方法としてコンクリート をはつり,埋め込みアンカーボルトを採用した。

なお,ボルトサイズは,既設アンカーボルトより強度を高めるために M36 とした。 4.3.3 接続部の評価

添付 6-1-6 において床面との固定部 (アンカーボルト,接着系アンカー ボルト及びシアプレート)及び脚部取付部の計算方法を説明しており,その 評価結果について添付 6-1-7 に記載し,全て許容値以内である。本資料に おいては,たて起こし架台の各部材の接続部について津波による波力によっ て生じる応力が許容値以下であることを説明する。評価部材を以下に記載し, 図 25 に図示する。なお,脚固定ボルト,脚固定ピンに関しては,津波方向 に対して前側脚部と後側脚部の評価 (図 20 参照)を行うこととする。スラ イド固定ボルトは後側脚部の波力の方が明らかに大きい為,前側脚部の評価 は省略する。

・ 脚固定ボルト, 脚固定ピン

・スライド固定ボルト

図 25 評価部材

記号	説明	単位
_{sc} a	接着系アンカーボルトの有効断面積	mm^2
$A_{1\sim6}$	各ボルトの呼び径断面積	mm^2
A 8	シアプレートによるコンクリートの支圧面積	mm^2
A _c	引張力に対するコーン状破壊面の有効技影面積	mm^2
A 0	ボルトナットの支圧面積	mm^2
C _D	抗力係数	
D	津波の方向から見た部材軸直角方向の部材幅	m
E _c	コンクリートのヤング係数	MPa
F b	浮力	Ν
F _c	コンクリートの設計基準強度	MPa
F	許容応力算出用基準値	MPa
F h	津波による水平力(全体)	Ν
$F h_{1\sim 6}$	各部材を評価する時に算出した波力	Ν
Γh _☉	各受圧面積ごとに生じる波力(①:部品番号)	Ν
F v 1	脚1本に生じる垂直荷重	Ν
f _t	許容引張応力	MPa
f s	許容せん断応力	MPa
f _{t s}	引張力とせん断力を受ける時の許容引張応力	MPa
g	重力加速度(=9.80665)	m/s^2
K 1	コーン状破壊する場合の引張耐力の低減係数	
K 2	支圧破壊する場合の引張耐力の低減係数	
К 3	複合破壊の場合のせん断耐力の低減係数	
L j	等価モーメント算出時の各ボルト間隔	mm
L 1~11	間隔距離	mm
1 _{се}	アンカーボルトの強度算出用埋め込み深さ	mm
$M_{1\sim7}$	各部材に生じるモーメント	N • mm
$M_{m1\sim m5}$	各部材に生じる合成モーメント	N•mm
N j	等価モーメント算出時の各ボルト本数	本
n 1~3	各部材のボルト本数	本
$P_{1\sim 8}$	各ボルトに生じる引張力	Ν
p _a	アンカーボルトにおけるコンクリート部の許容引	Ν
	張力	

4.3.3.1 記号の説明

記号	説明	単位
p _{a1}	アンカーボルトのコンクリート躯体がコーン状破	Ν
	壊する場合の許容引張力	
p _{a2}	アンカーボルトのナット部に接するコンクリート	Ν
	部が支圧破壊する場合の許容引張力	
q _{p a}	シアプレート1枚当たりのコンクリート部の許容	Ν
	せん断力	
$Q_{1\sim3}$	各部材に生じるせん断力	Ν
S	波力算出時の部材軸方向の長さ	m
S u	部材の引張強さ	MPa
S y	部材の降伏点	MPa
	津波流速	m/s
un		
V	金属キャスクの体積	m^3
W	金属キャスクの重量	Ν
Ζ	脚部取付部の断面係数	mm^3
$ ho$ $_{0}$	海水の密度	kg/m^3
lpha c	支圧面積と有効投影面積から定まる係数	_
σ _{1~8}	各部材に生じる引張応力	MPa
$ au_{1\sim 5}$	各部材に生じるせん断応力	MPa
au a	カプセル方式有機系における引張力に対する付着	MPa
	強度	
s O pa	接着系アンカーボルト評価時の引張強度	MPa
ϕ_1 , ϕ_2	接着系アンカーボルトの引張耐力の低減係数	

4.3.3.2 力・応力の計算方法

各応力の計算方法について、以下に記載する。

(1) 脚固定ボルト,脚固定ピンの応力

脚固定ボルトには,荷重受けボルトを各脚部の外側にのみ取り付けている。これにより,前後の脚部で水平力を受ける部材が異なり,後側脚部は脚固定ボルトと脚固定ピンで,前側脚部は脚固定ピンのみで水平力を 受け持つため,後側脚部と前側脚部に分けて評価を行う。

a. 後側脚部

(a) 評価モデル

脚固定ボルト(後側脚部)の評価モデル図を図26に示す。

図 26 脚固定ボルト(後側脚部)の評価モデル図

(b) 波力の算出

脚固定ボルト(後側脚部)評価時の波力を受ける部材を図 27 に示し, 各部材が受ける波力を表 15 に示す。

図 27 脚固定ボルト(後側脚部)評価時の波力を受ける部材

脚固定ボルト(脚1本当たり)		波力[N]	6. 006×10^5		
部品番号	面積	波力	部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①			部品⑨		
部品②			部品①		
部品③'*1	7.568 $\times 10^{4}$	7.946 $\times 10^{3}$	部品创		
部品④	8.769 $\times 10^{4}$	9. 207×10^3	部品①		
部品⑤	4. 428×10^5	4. 649×10^4	部品①*2	3. 447×10^{6}	9. 049×10^4
部品⑥	1.203×10^{5}	1.263×10^{4}	部品④*2	1.206×10^{7}	3. 164×10^5
部品⑦	2.655 $\times 10^{5}$	2. 788×10^4	部品①*2	3. 412×10^{6}	8.955 $\times 10^4$
部品⑧					

表 15 脚固定ボルト(後側脚部)評価時の各部材が受ける波力

*1 脚部抑え板(部品③')までの範囲の面積の値をもとに波力を算出した。

*2 金属キャスクの波力を2本の脚で受けることから、脚1本当たりの波力を 算出する際は波力を1/2とした。

(c) 力,応力の計算方法脚1本に生じる水平力 Fh₃

 $Fh_3 = \Sigma Fh_{\odot} \cdot \cdot \cdot \pi (3-1)$

金属キャスクに生じる浮力 Fb

 $Fb = V \times \rho_0 \times g \quad \cdot \quad \cdot \quad 式(3-2)$

脚1本に生じる垂直力Fv1

 $Fv_1 = \frac{(W - Fb)}{4}$ ・・・ 式(3-3) 水平力による転倒モーメント M₄ $M_4 = Fh_3 \times L_6$ ・・・ 式(3-4)

垂直力による復元モーメント M_2 $M_2 = Fv_1 \times L_2 \cdot \cdot \cdot 式(3-5)$

水平力と垂直力による合成モーメント M_{m3} M_{m3} = M₄ - M₂ ・・・ 式(3-6) 脚固定ボルト1本にかかる引張力P5

$$P_{5} = \frac{M_{m3}}{\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right)} \cdot \cdot \cdot \exists (3-7)$$
$$\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right) = 4,934$$

脚固定ボルト1本に生じる引張応力σ₅ P-

$$\sigma_5 = \frac{P_5}{A_4} \quad \cdot \quad \cdot \quad \exists (3-8)$$

引張力とせん断力を受ける脚固定ボルト1本にかかる引張力P。

$$P_{6} = \frac{M_{m3}}{\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right)} \times \frac{L_{7}}{L_{8}} \quad \cdot \quad \cdot \quad \overrightarrow{\pi}(3-9)$$

引張力とせん断力を受ける脚固定ボルト1本に生じる引張応力 σ_6

$$\sigma_6 = \frac{P_6}{A_4} \quad \cdot \quad \cdot \quad \vec{x}(3-10)$$

脚固定ボルト1本当たりのせん断力Q2

$$Q_2 = \frac{Fh_3}{n_2} \quad \cdot \quad \cdot \quad \exists (3-11)$$

脚固定ボルト1本当たりのせん断応力τ2

$$\tau_2 = \frac{Q_2}{A_4} \quad \cdot \quad \cdot \quad \vec{\pi}(3-12)$$

- b. 前側脚部
- (a) 評価モデル

脚固定ボルト(前側脚部)の評価モデル図を図28に示す。

図 28 脚固定ボルト(前側脚部)の評価モデル図

(b) 波力の算出

脚固定ボルト(前側脚部)評価時の波力を受ける部材を図 29 に示し, 表 16 に各部材が受ける波力を示す。

図 29 脚固定ボルト(前側脚部)評価時の波力を受ける部材

脚固定ボルト(脚1本当たり)		波力[N]	1.04	2×10^{5}	
部品番号	面積	波力	部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①			部品9		
部品②			部品⑪		
部品③'*1	7. 568 $\times 10^4$	7.946 $\times 10^{3}$	部品创		
部品④	8.769 $\times 10^4$	9. 207×10^{3}	部品①		
部品⑤	4. 428×10^5	4. 649×10^4	部品①		
部品⑥	1.203×10^{5}	1.263×10^4	部品创		
部品⑦	2. 655×10^5	2. 788×10^4	部品①		
部品⑧					

表 16 脚固定ボルト(前側脚部)評価時の各部材が受ける波力

*1 脚部抑え板(部品③')までの範囲の面積の値をもとに波力を算出した。

- (c) 力,応力の計算方法
 - 脚1本に生じる水平力Fh4

 $Fh_4 = \Sigma Fh_{\odot} \cdot \cdot \cdot \exists (3-13)$

金属キャスクに生じる浮力 Fb

 $Fb = V \times \rho_0 \times g \quad \cdot \quad \cdot \quad \exists (3-2)$

脚1本に生じる垂直力 Fv1

 $Fv_1 = \frac{(W - Fb)}{4} \quad \cdot \quad \cdot \quad \exists (3-3)$

水平力による転倒モーメント M_5 $M_5 = Fh_4 \times L_6$ ・・・ 式(3-14)

垂直力による転倒モーメント M₂

 $M_2 = Fv_1 \times L_2 \quad \cdot \quad \cdot \quad \vec{\texttt{x}}(3-5)$

水平力と垂直力による合成モーメント M_{m4} M_{m4} = M₅ + M₂ ・・・ 式(3-15)

脚固定ボルト1本にかかる引張力P7

$$P_{7} = \frac{M_{m4}}{\sum \left(\frac{Lj}{Ln} \times Lj \times Nj\right)} \quad \cdot \quad \cdot \quad \vec{x}(3-16)$$

脚固定ボルト1本に生じる引張応力σ₇

$$\sigma_7 = \frac{P_7}{A_4} \quad \cdot \quad \cdot \quad \vec{x}(3-17)$$

$$Q_3 = Fh_4 \quad \cdot \quad \cdot \quad \exists (3-18)$$

脚固定ピンに生じるせん断応力 τ₃

$$\tau_3 = \frac{Q_3}{A_5} \quad \cdot \quad \cdot \quad \exists (3-19)$$

- (2) スライド固定ボルトの応力
- (a) 評価モデル

図 30 スライド固定ボルトの評価モデル図

(b) 波力の算出

スライド固定ボルト評価時の波力を受ける部材を図 31 に示し,各部 材が受ける波力を表 13 に示す。

図 31 スライド固定ボルト評価時の波力を受ける部材

スライド固定ボルト(脚1本当たり)		波力[N]	6.35	3×10^{5}	
部品番号	面積	波力	部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①			部品⑨	1.112×10^{5}	1.168×10^4
部品2			部品⑪	4. 428×10^5	4. 649×10^4
部品③			部品创	8.792 $\times 10^{4}$	9. 231×10^3
部品④		_	部品①	4. 348×10^5	4. 565 $\times 10^4$
部品⑤			部品①*1	3. 447×10^{6}	9.049 $\times 10^{4}$
部品⑥			部品创*1	1.206×10^{7}	3. 164×10^{5}
部品⑦			部品15*1	3. 412×10^{6}	8.955 $\times 10^4$
部品⑧	2. 455×10^5	2.578 $\times 10^{4}$			

表17 スライド固定ボルト評価時の各部材が受ける波力

*1 金属キャスクの波力を2本の脚で受けることから、脚1本当たりの波力を 算出する際は波力を1/2とした。

(c) 力,応力の計算方法

脚1本に生じる水平力 Fh₅ Fh₅ = ΣFh_① ・・・ 式(3-20)

金属キャスクに生じる浮力 Fb

 $Fb = V \times \rho_0 \times g \quad \cdot \quad \cdot \quad \vec{x}(3-2)$

脚1本に生じる垂直力 Fv1

$$Fv_1 = \frac{(W - Fb)}{4} \quad \cdot \quad \cdot \quad \exists (3-3)$$

垂直力による復元モーメント M_2 $M_2 = Fv_1 \times L_2 \cdot \cdot \cdot \quad 式(3-5)$

スライド固定ボルト列に生じる引張力
$$P_{11}$$

 $P_{11} = \frac{M_{m5}}{L_{10}}$ ・・・ 式(3-23)

スライド固定ボルト1本に生じる引張力 P_8 $P_8 = \frac{P_{l_1}}{n_3} \cdot \cdot \cdot 式(3-24)$

スライド固定ボルト1本に生じる引張応力
$$\sigma_8$$

 $\sigma_8 = \frac{P_8}{A_6}$ ・・・ 式(3-25)

スライド固定ボルト1本当たりのせん断力Q4

$$Q_4 = \frac{Fh_5}{2 \times n_3} \quad \cdot \quad \cdot \quad \vec{x}(3-26)$$

スライド固定ボルト1本当たりのせん断応力 τ_4 $\tau_4 = \frac{Q_4}{A_6}$ ・・・ 式(3-27)

- 4.3.3.3 評価方法
- (1) 脚固定ボルト,脚固定ピン及びスライド固定ボルトの評価 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005 に従い,許容応力値を算出する。4.3.2.2項の式での求めた脚固定 ボルト,脚固定ピン及びスライド固定ボルトの評価に生じる応力が許容値 以下であること。

項目	計算式	式番号
許容応力算出用基準値 F	F=min(0.7Su, 1.2Sy)	式(3-28)
許容引張応力 ft	$f_t = (F/2) \times 1.5$	式(3-29)
「許容せん断応力 f _s	$f_s = (F/1.5\sqrt{3}) \times 1.5$	式(3-30)
組合せ時の許容引張応力 f _{ts}	$f_{ts} = min(f_t, 1.4f_t - 1.6\tau_2)$	式(3-31)

4.3.4 コンクリートへの影響評価

(1) アンカーボルト

原子力発電所耐震設計技術規程 JEAC4601-2008 に従い,許容応力 値を算出する。添付 6-1-6 の 4.2.2 項の式で求めたアンカーボルトに生 じる引張力が許容値以下であること。

項目	計算式	式番号
コンクリートのコーン破壊 p _{a1}	$p_{a1}=0.31 \times K_1 \times A_c \sqrt{F}$	式(3-32)
コンクリートの耐力(圧縮破壊) p _{p2}	$p_{a2}=K_2 \times \alpha_c \times A_0 \times Fc$	式(3-33)
許容引張力 pa	$p_a = min(p_{a1}, p_{a2})$	式(3-34)

ここで K₁: コーン状破壊する場合の引張耐力の低減係数(=0.6)

K₂:支圧破壊する場合の引張耐力の低減係数(=0.75)

α。:支圧面積と有効投影面積から定まる係数(=10)

 $\alpha_{c} = \sqrt{(A_{c}/A_{0})} \quad \alpha_{c} > 10 \text{ Obs} \quad \alpha_{c} = 10$

(2) 接着系アンカーボルト

各種合成構造設計指針・同解説に従い,有効径^{**}を使用し許容力値を算出 する。添付 6-1-6 の 4.2.2 項の式で求めた接着系アンカーボルトに生じ る力が許容値以下であること。

※:有効径での評価のため有効断面積は,JIS B 1082の値を使用しており,M30の呼び径(φ30)を用いた断面積の評価ではない。

項目	計算式	式番号
接着系アンカーボルトの引張強度	n = A × n × n	±* (2_25)
により決まる場合の許容引張力 p _{a1}	$p_{a1} - \Psi_1 \wedge_s 0_{pa} \wedge_{sc} a$	IC (3-33)
定着した躯体と樹脂の付着強度に		\pm (2, 2C)
より決まる場合の許容引張力 p _{a2}	$p_{a2} = \Psi_2 \times \tau_a \times \pi \times d_a \times I_{ce}$	IL (3-30)
許容引張断力 pa	$p_a = min(p_{a1}, p_{a2})$	式(3-37)

ここで Φ₁:低減係数 (=1)

sσ{pa}: 接着系アンカーボルト評価時の引張強度(=464 MPa)

_{sc}a:接着系アンカーボルトの有効断面積(=

- Φ_2 : 低減係数 (=2/3)
- τ_a: カプセル方式有機系における引張力に対する付着強度

(=8.71 MPa)

d_a:接着系アンカーボルトの径(=

1_{ce}:アンカーボルトの強度算出用埋め込み深さ(=

(3) シアプレート

原子力発電所耐震設計技術規程 JEAC4601-2008 に従い,許容応力 値を算出する。添付 6-1-6 の 4.2.2 項の式で求めたシアプレートに生じ るせん断力が許容値以下であること。

項目	計算式	式番号
許容せん断力 q _{pa}	$q_{pa}=0.5 \times K_3 \times A_8 \sqrt{(Ec \times Fc)}$	式(3-38)

ここで K₃: 複合破壊の場合のせん断耐力の低減係数(=0.8)

Ec:コンクリートのヤング係数 (=25,210 MPa)

※√ (Ec×Fc) ≦880 の場合は√ (Ec×Fc) =880 として計算する。

4.3.5 設計条件及び機器要目

(1) 設計条件

機器名称	供用状態	周辺環境温度(℃)	津波流速(m/s)	海水の密度(kg/m³)
たて起こし架台	D	45	10	1,050

(2) 機器要目

重量(金属キャスク) 体積(金属キャスク)

W (N)	$V(m^3)$

寸法

L $_2$ (mm)	L_{6} (mm)	L_7 (mm)	L_{8} (mm)	L ₉ (mm)	L_{10} (mm)

$A_4 (mm^2)$	A $_5$ (mm ²)	A $_6$ (mm ²)	A $_8$ (mm ²)	A_{C} (mm ²)	$A_0 (mm^2)$	n 2(個)	n 3(個)

基準強度

百日		アンカーボ	接着系アン	S. TTLA	脚固定ボルト,	スライド固	コンクリートの
-	- 供日	ルト	カーボルト	5770-7	/ アフレート 脚固定ピン		設計基準強度
7	材質	S45C	S45C	SM490A (厚さ)	S45C	S45C	
強度	引張強さ	632	632	457	632	632	
(MPa)	降伏点	464	464	296	464	464	

•

•

図 32 たて起こし架台寸法図

4.3.6 評価結果

	部材	材料	応力・力	算出値	許容値	単位	結果
アンカーボル	ト	コンクリート	引張	$1 802 \times 10^{5}$	2 487×10^5	N	良
(コーン破壊)		JUL	1.002/(10	2.1017(10	1	ц
接着系アンカ	カーボルト	樹脂-コンクリート	日龍	7 664 $\times 10^4$	1.504×10^{5}	N	良
(樹脂-コンク	フリート間破壊)		1) T JIK	1.001/10	1. 504×10	1	K
シアプレート		コンクリート	口嫔	$7,207 \times 10^{5}$	4.875×10^{7}	N	白
(コンクリー	-トの圧縮破壊)		//1日	1.207 ~ 10	4.075 \ 10	IN	R
	脚固定ボルト	S45C	引張	224	331	MPa	良
後側期郭	脚固定ボルト		引張	22	192	MPa	良
(コンクリー後側脚部前側脚部	(荷重受けボルト取付板	S45C	计人断	170	255	MDo	白
	締結部)		しん肉	170	200	MIFA	R
音节 但们 时 间 交位	脚固定ボルト	S45C	引張	76	331	MPa	良
们可小机间们们	脚固定ピン	S45C	せん断	83	255	MPa	良
フライド田台	マモルト	S45C	引張	163	331	MPa	良
		5450	せん断	50	255	MPa	良
			曲げ	136	319	MPa	良
脚部取付部		SM490A	せん断	18	184	MPa	良
			組合せ	140	319	MPa	良

- 4. 4. 検査架台
- 4.4.1 波力の計算方法
 添付 6-1-6 に記載の検査架台への津波による波力の算出について以下に記載する。
- 4.4.1.1 波力の計算方法
 津波による波力の算出式は4.2.1.1項に従う。
 津波による水平力について図 33 に示す。

図 33 津波による水平力

- 4.4.1.2 受圧面積の算出方法
- (1) 受圧面積算出モデル

図 34 に示す受圧面積算出モデル図に従い、受圧面積を算出する。

図 34 受圧面積算出モデル図

(2) 受圧面積の算出

各部材の波力を算出するために部材毎に色分けした受圧面積算出モデル図を図 35 に示す。

図 35 受圧面積算出モデル図(色分け)

枠囲みの内容は商業機密に属するため公開できません。

(3) 受圧面積

受圧面積算出表を表 18 に示す。

検査架台			総面積[mm ²]			1.154×10^{7}			
部品番号	高さ	幅	数量	面積	部品番号	高さ	幅	数量	面積
—	mm	mm	個	mm^2	—	mm	mm	個	mm^2
部品①			2	2. 452×10^{6}	部品⑪			2	1. 405×10^{5}
部品②			2	2. 135×10^{6}	部品创			4	5. 308×10^5
部品③			2	6.800 $\times 10^{5}$	部品①			2	7. 500 $\times 10^{5}$
部品④			6	1.065×10^{6}	部品①			17	7.650 $\times 10^{5}$
部品⑤			12	4. 606×10^5	部品创			1	1.985×10^{5}
部品⑥			1	2.723 $\times 10^{5}$	部品①			1	1.103×10^{6}
部品⑦			1	1.952×10^{5}	部品16			3	9. 170×10^4
部品⑧			1	7. 337×10^4	部品①			2	7. 596 $\times 10^4$
部品⑨			1	1.505×10^{5}	部品18			2	4. 000×10^{5}

表 18 受圧面積算出表

4.4.1.3 波力の算出

(1) 津波による架台にかかる水平力(全体): Fh

4.4.1.2(3)で求めた受圧面積を用いて波力を算出する。各部材にかかる波力 を表 19 に示す。なお、波力を算出する際は部材の形状に応じた、抗力係数(円柱 : 1,円柱以外 : 2)を用いる。

	検査架台		波力[N]	1.123×10^{6}	
部品番号	面積	波力	部品番号	面積	波力
	mm^2	Ν		mm^2	Ν
部品①	2. 452×10^{6}	2. 575×10^5	部品⑪	1.405×10^{5}	1.476×10^{4}
部品②	2. 135×10^{6}	2. 242×10^5	部品创	5. 308×10^5	5. 574×10^4
部品③	6.800 $\times 10^{5}$	7. 140×10^4	部品①	7.500 $\times 10^{5}$	7.875×10^4
部品④*1	1.065×10^{6}	5. 591 $\times 10^{4}$	部品①	7.650 $\times 10^{5}$	8.033 $ imes$ 10 ⁴
部品⑤*1	4. 606×10^5	2. 418×10^4	部品创	1.985×10^{5}	2. 084×10^4
部品⑥	2. 723×10^5	2.859 $\times 10^4$	部品①	1.103×10^{6}	1.158×10^{5}
部品⑦	1.952×10^5	2. 049×10^4	部品16*1	9. 170×10^4	4.814 $\times 10^3$
部品⑧	7.337 $\times 10^4$	7.704 $\times 10^3$	部品①*1	7. 596 $\times 10^4$	3. 988 $\times 10^3$
部品⑨	1.505×10^{5}	1. 580×10^4	部品18	4. 000×10^{5}	4. 200×10^4

表19 各部材にかかる波力

*1 円柱形状の部材

4.4.2 検査架台を構成する部材の評価

添付 6-1-6 において床面との固定部として接着系アンカーボルトの計算方法を説明 しており、その評価結果について添付 6-1-7 に記載し、全て許容値以内である。

なお,検査架台の評価については,3方向を壁で囲われているため,正面から津波が到 来する場合を検討している。検査架台が波力を正面から受けたとき,検査架台は後方の 壁との間に,後方振れ止め支持部材及び支柱サポートがあるため,検査架台は転倒する ことはなく,ボルトに引張荷重はかからない。

また,検査架台にはシアプレートがないため,せん断荷重はボルトで受けることとし 接着系アンカーボルトの評価をせん断荷重に対する評価のみを行っている。そのため引 張荷重に対する評価を行っているたて起こし架台と評価方法が異なる。

本資料においては検査架台を構成する主要部材が津波による波力によって破断しないことを説明する。評価部材を以下に記載し,図36に示す。

- ・支柱
- ・支柱間繋ぎ梁
- ・後方振れ止め支持部材

記号	説明	単位
A_2	支柱の断面積	mm^2
$A_{3\sim4}$	支柱間繋ぎ梁の断面積	mm^2
A $_5$	後方振れ止め支持部材の断面積	mm^2
_{sc} a	接着系アンカーボルトの断面積	mm^2
C _D	抗力係数	
D	津波の方向から見た部材軸直角方向の部材幅	m
F	許容応力算出用基準値	MPa
F h	津波による水平力(全体)	Ν
$F h_{1 \sim 8}$	各部材を評価した時に算出した波力	Ν
f _b	許容曲げ応力	MPa
f _c	許容圧縮応力	MPa
$L_{1\sim 8}$	間隔距離	mm
$M_{1\sim4}$	支柱1本に生じる曲げモーメント	N•mm
Q _a	接着系アンカーボルト1本当たりの許容せん断力	Ν
q _{a1}	接着系アンカーボルトのせん断強度により決まる場合の	Ν
	接着系アンカーボルト1本当たりの許容せん断力	
Q a 2	定着した躯体の支圧強度により決まる場合の	Ν
	接着系アンカーボルト1本当たりの許容せん断力	
S	波力算出時の部材軸方向の長さ	m
S u	部材の引張強さ	MPa
S y	部材の降伏点	MPa
>	津波流速	m/s
u n		
W	検査架台の重量	Ν
Z	支柱の断面係数	mm^3
ρ_0	海水の密度	kg/m^3
$\sigma_{1\sim4}$	支柱に生じる曲げ応力	MPa
σ c 1 ~ c 4	各部材に生じる圧縮応力	MPa
с <mark>О</mark> q а	コンクリートの支圧強度	MPa
ѕ О да	接着系アンカーボルトのせん断強度	MPa
$\phi_1, \phi_2,$	低減係数	
λ	圧縮材の有効細長比	

4.4.2.1 記号の説明

記号	説明	単位
Λ	限界細長比	
υ	安全率	

4. 4. 2. 2 力・応力の計算方法

各応力の計算方法について、以下に記載する。

- (1) 支柱
 - a. 圧縮応力

支柱の圧縮応力 σ c1

$$\sigma_{c1} = \frac{W}{A_2 \times 4} \quad \cdot \quad \cdot \quad \vec{x}(4-1)$$

支柱1本当たりに生じる水平力 Fh_j

$$Fh_{j} = \frac{\Sigma Fh_{j}}{2} \quad \cdot \quad \cdot \quad \vec{x}(4-2)$$

- b. 曲げ応力
- (a) 前方支柱
- i. 評価モデル

前方支柱の各支点間における評価モデル図を図37に示す。

図 37 脚固定ボルト(後側脚部)の評価モデル図

ii. 波力の算出

前方支柱評価時の各支点間が波力を受ける部材を図 38 に示す。各支点間の波 力を算出する際は,表 19 で求めた波力に対して,各範囲における発生力を求め るために,長さ比もしくは個数比(表中では割合と表記)を乗じて算出する。 各支点間の波力ついて表 20~22 に示す。

図 38 前方支柱評価時の各支点間が波力を受ける部材

地面-下段床の支柱				波力[N]	2. 263×10^5		
部品番号	面積	割合	波力	部品番号	面積	割合	波力
	mm^2		Ν		mm^2		Ν
部品①	2. 452×10^{6}	0.34	8.820 $\times 10^{4}$	部品⑪	1.405×10^{5}	0.50	7.379×10^{3}
部品②	2. 135×10^{6}			部品⑪	5. 308×10^{5}		
部品③	6.800 $\times 10^{5}$			部品①	7.500 $\times 10^{5}$		
部品④	1.065×10^{6}			部品①	7.650 $\times 10^{5}$		_
部品⑤	4. 606×10^5	—		部品组	1.985×10^{5}	0.96	1.995×10^{4}
部品⑥	2.723 $\times 10^{5}$			部品①	1.103×10^{6}	0.96	1.108×10^{5}
部品⑦	1.952×10^{5}			部品16	9. 170×10^4		_
部品⑧	7.337 $\times 10^{4}$	—		部品①	7.596 $\times 10^{4}$	—	_
部品9	1.505×10^{5}			部品18	4.000 $\times 10^{5}$		

表 20 地面-下段床の支柱にかかる波力

下段床-上段床の支柱				波力[N]	2.031×10^{5}		
部品番号	面積	割合	波力	部品番号	面積	割合	波力
	mm^2		Ν	_	mm^2		Ν
部品①	2. 452×10^{6}	0.46	1.176×10^{5}	部品⑪	1. 405×10^5	0.50	7.379 $\times 10^{3}$
部品②	2. 135×10^{6}	0		部品创	5. 308×10^5	0.50	2.787 $\times 10^{4}$
部品③	6.800 $\times 10^{5}$	0		部品①	7. 500×10^5	0	
部品④	1.065×10^{6}	0		部品①	7.650 $\times 10^{5}$	0	
部品⑤	4.606 $\times 10^{5}$	0		部品组	1.985×10^{5}	0.04	8.925 $\times 10^{2}$
部品⑥	2.723 $\times 10^5$	1	2.859 $\times 10^4$	部品15	1.103×10^{6}	0.04	4. 957×10^{3}
部品⑦	1.952×10^{5}	0		部品低	9. 170×10^4	0	
部品⑧	7.337 $\times 10^{4}$	0		部品①	7. 596 $\times 10^4$	0	
部品⑨	1. 505×10^5	1	1.580×10^{4}	部品18	4. 000×10^5	0	

表 21 下段床-上段床の支柱にかかる波力

表 22 上段床-先端の支柱にかかる波力

上段床-先端の支柱				波力[N]	5. 166×10^4		
部品番号	面積	割合	波力	部品番号	面積	割合	波力
—	mm^2		Ν	—	mm^2	—	Ν
部品①	2. 452×10^{6}	0.20	5. 166×10^4	部品⑪	1. 405×10^5	0	—
部品②	2. 135×10^{6}	0	—	部品⑪	5. 308×10^5	0	—
部品③	6. 800×10^5	0	—	部品12	7. 500×10^5	0	—
部品④	1.065×10^{6}	0	—	部品①	7.650 $\times 10^{5}$	0	—
部品⑤	4. 606×10^5	0	—	部品组	1.985×10^{5}	0	—
部品⑥	2. 723×10^5	0	—	部品15	1.103×10^{6}	0	—
部品⑦	1.952×10^{5}	0		部品16	9. 170×10^4	0	—
部品⑧	7. 337×10^4	0		部品①	7. 596 $\times 10^4$	0	
部品9	1.505×10^{5}	0		部品(15)	4. 000×10^{5}	0	

(b) 後方支柱

i. 評価モデル

上段床が昇降するため、後方支柱に上段床が受ける波力がかかる場合の評価を する必要がある。後方支柱の各支点間における評価モデル図を図 39 に示す。

図 39 後方支柱の各支点間における評価モデル図

ii. 波力の算出

後方支柱評価時の各支点間が波力を受ける部材を図 40 に示す。各支点間の波力 を算出する際は,表 19 で求めた波力に対して,長さ比もしくは個数比(表中では 割合と表記)を掛けて算出する。支点間の波力ついて表 23 に示す。

図 40 後方支柱評価時の各支点間が波力を受ける部材

+ 井井井子 10 し印片の大井					0.150×105		
文社サホート①-上段床の文社			波刀[N]	$3.153 \times 10^{\circ}$			
部品番号	面積	割合	波力	部品番号	面積	割合	波力
	mm^2		Ν		mm^2		Ν
部品①	2. 452×10^{6}	0.14	3. 570 $\times 10^4$	部品⑪	1.405×10^{5}	0	
部品②	2. 135×10^{6}	0.50	1.121×10^{5}	部品⑪	5. 308×10^{5}	0.50	2.787 $\times 10^{4}$
部品③	6.800 $\times 10^{5}$	1	7. 140×10^4	部品①	7.500 $\times 10^{5}$	0	
部品④	1.065×10^{6}	0.50	2.795 $\times 10^4$	部品①	7.650 $\times 10^{5}$	0	
部品⑤	4. 606×10^5	0.50	1.209×10^{4}	部品创	1.985×10^{5}	0	
部品⑥	2. 723×10^5	0		部品①	1.103×10^{6}	0	
部品⑦	1.952×10^{5}	1	2. 049×10^4	部品16	9. 170×10^4	0	
部品⑧	7.337 $\times 10^4$	1	7.704 $\times 10^{3}$	部品①	7.596 $\times 10^4$	0	
部品⑨	1.505×10^{5}	0		部品18	4.000 $\times 10^{5}$	0	

表 23 支柱サポート①-上段床の支柱にかかる波力

$$\sigma_{c1} = \frac{W}{A_2 \times 4} \quad \cdot \quad \cdot \quad \neq (4-3)$$

支柱1本あたりに生じる水平力 Fhj

$$Fh_{j} = \frac{\Sigma Fh_{j}}{2} \cdot \cdot \cdot \pi t(4-4)$$

支柱に生じる最大曲げモーメント M_j

$$M_{j} = \frac{Fh_{j} \cdot L_{j}}{4} \quad (両端支持はりの場合) \quad \cdot \cdot \cdot \quad 式(4-5)$$
$$M_{j} = Fh_{j} \cdot L_{j} \quad (片持ちはりの場合) \quad \cdot \cdot \cdot \quad 式(4-6)$$

支柱の曲げ応力 σ յ

$$\sigma_{j} = \frac{M_{j}}{Z} \quad \cdot \quad \cdot \quad \exists (4-7)$$
- (2) 支柱間繋ぎ梁
 - a. 圧縮応力
 - (a) 前方支柱
 - i. 評価モデル

支柱間繋ぎ梁の各支点間における評価モデル図を図41に示す。

図 41 支柱間繋ぎ梁の各支点間における評価モデル図

ii. 波力の算出

支柱間繋ぎ梁評価時の各支点間が波力を受ける部材を図 42 に示す。各支点間 の波力を算出する際は、表 19 で求めた波力に対して、長さ比もしくは個数比(表 中では割合と表記)を掛けて算出する。

各支点間の波力ついて表 24~25 に示す。

図 42 支柱間繋ぎ梁評価時の各支点間が波力を受ける部材

下段支柱間繋ぎ梁			波力[N]	7. 706×10^{5}			
部品番号	面積	割合	波力	部品番号	面積	割合	波力
	mm^2		Ν		mm^2		Ν
部品①	2. 452×10^{6}	0.80	2.058 $\times 10^{5}$	部品⑪	1.405×10^{5}	1	1.476×10^{4}
部品②	2. 135×10^{6}	0.50	1.121×10^{5}	部品⑪	5. 308×10^5	0.5	2.787 $\times 10^4$
部品③	6.800 $\times 10^{5}$	0		部品①	7.500 $\times 10^{5}$	0.98	7.718 $\times 10^{4}$
部品④	1.065×10^{6}	0.50	2.795 $\times 10^4$	部品①	7.650 $\times 10^{5}$	1	8.033 $\times 10^{4}$
部品⑤	4. 606×10^5	0.50	1.209×10^4	部品组	1.985×10^{5}	1	2. 084×10^4
部品⑥	2.723 $\times 10^{5}$	1	2.859 $\times 10^{4}$	部品①	1.103×10^{6}	1	1.158×10^{5}
部品⑦	1.952×10^{5}	0		部品低	9. 170×10^4	0	
部品⑧	7. 337×10^4	0		部品①	7.596 $\times 10^4$	0	
部品9	1.505×10^{5}	1	1.580×10^{4}	部品18	4.000 $\times 10^{5}$	0.75	3. 150×10^4

表 24 下段支柱間繋ぎ梁にかかる波力

上段支柱間繋ぎ梁				波力[N]	4. 640×10^5		
部品番号	面積	割合	波力	部品番号	面積	割合	波力
	mm^2		Ν		mm^2		Ν
部品①	2. 452×10^{6}	0.66	1.693×10^{5}	部品⑪	1.405×10^{5}	0.50	7.379 $\times 10^{3}$
部品②	2. 135×10^{6}	0.25	5.604 $\times 10^{4}$	部品⑪	5. 308×10^{5}	0.50	2.787 $\times 10^{4}$
部品③	6.800 $\times 10^{5}$	0		部品①	7.500 $\times 10^{5}$	0.58	4. 568 $\times 10^4$
部品④	1.065×10^{6}	0.25	1.398×10^{4}	部品①	7.650 $\times 10^{5}$	0.59	4. 725×10^4
部品⑤	4.606 $\times 10^{5}$	0.25	6. 046×10^{3}	部品创	1.985×10^{5}	0.04	8.925 $\times 10^{2}$
部品⑥	2.723 $\times 10^{5}$	1	2.859 $\times 10^4$	部品①	1.103×10^{6}	0.04	4.957 $\times 10^{3}$
部品⑦	1.952×10^{5}	0		部品16	9. 170×10^4	1	4.814×10^{3}
部品⑧	7.337 $\times 10^4$	0		部品①	7. 596 $\times 10^4$	1	3. 988 $\times 10^3$
部品9	1.505×10^{5}	1	1.580×10^{4}	部品18	4.000 $\times 10^{5}$	0.75	3. 150×10^4

表 25 上段支柱間繋ぎ梁にかかる波力

(c) 力,応力の計算方法

支柱間繋ぎ梁1本当たりに生じる水平力Fh_j

$$Fh_j = \frac{\Sigma Fh_{(j)}}{2}$$
 ・・・ 式(4-8)

支柱間繋ぎ梁の圧縮応力 σ с. j

$$\sigma_{cj} = \frac{Fh_j}{A_j} \cdot \cdot \cdot \exists t(4-9)$$

- (3) 後方振れ止め支持部材
 - a. 圧縮応力
 - (a) 評価モデル

後方振れ止め支持部材の各支点間における評価モデル図を図43に示す。

図 43 後方振れ止め支持部材の各支点間における評価モデル図

(b) 波力の算出

後方振れ止め支持部材評価時の各支点間が波力を受ける部材を図44に示す。各 支点間の波力を算出する際は,表19で求めた波力に対して,長さ比もしくは個数 比(表中では割合と表記)を掛けて算出する。なお,支柱サポートは,後方振れ止 め支持部材より断面積が大きく,発生応力が小さいため計算を省略する。表26に 後方振れ止め支持部材にかかる波力を示す。

図 44 後方振れ止め支持部材評価時の各支点間が波力を受ける部材

後方振れ止め支持部材			波力[N]	7. 436×10^5			
部品番号	面積	割合	波力	部品番号	面積	割合	波力
	mm^2		Ν		mm^2		Ν
部品①	2. 452×10^{6}	0.66	1.693×10^{5}	部品⑪	1.405×10^{5}	0.50	7.379 $\times 10^{3}$
部品②	2. 135×10^{6}	0.75	1.681×10^{5}	部品⑪	5. 308×10^{5}	1	5. 574×10^4
部品③	6.800 $\times 10^{5}$	1	7.140 $\times 10^{4}$	部品①	7.500 $\times 10^{5}$	0.58	4. 568×10^4
部品④	1.065×10^{6}	0.75	4. 193×10^4	部品①	7.650 $\times 10^{5}$	0.59	4. 725×10^4
部品⑤	4. 606×10^5	0.75	1.814×10^{4}	部品创	1.985×10^{5}	0.04	8. 925×10^2
部品⑥	2.723 $\times 10^{5}$	1	2.859 $\times 10^{4}$	部品①	1.103×10^{6}	0.04	4. 957×10^{3}
部品⑦	1.952×10^{5}	1	2. 049×10^4	部品低	9. 170×10^4	1	4.814 $\times 10^{3}$
部品⑧	7.337×10^{4}	1	7.704 $\times 10^{3}$	部品①	7.596 $\times 10^4$	1	3.988×10^{3}
部品⑨	1.505×10^{5}	1	1.580×10^{4}	部品(18)	4.000 $\times 10^{5}$	0.75	3. 150×10^4

表 26 後方振れ止め支持部材にかかる波力

(c) 力,応力の計算方法

後方振れ止め支持部材1本当たりに生じる水平力Fh₉

$$Fh_8 = \frac{\Sigma Fh_{\odot}}{2} \quad \cdot \quad \cdot \quad \exists (4-10)$$

後方振れ止め支持部材の圧縮応力σ_。

$$\sigma_{c4} = \frac{Fh_9}{A_5} \quad \cdot \quad \cdot \quad \vec{x}(4-11)$$

4.4.2.3 評価方法

(1) 支柱の評価

発電用原子力設備規格 設計・建設規格 JSME S NC1-2005 に従い,許 容応力値を算出する。4.4.2.2項の式での求めた支柱に生じる応力が許容応力 以下であること。

項目	計算式	式番号
許容応力算出用基準値 F	F=min(0.7Su, 1.2Sy)	式(4-12)
許容曲げ応力 f _b	$f_{b} = (F/1.5) \times 1.5$	式(4-13)
許容圧縮応力 f。	$f_c = \{1-0.4 (\lambda / \Lambda)^2\} \times (F/\upsilon) \times 1.5$	式(4-14)
	$\sigma_{\rm c}/f_{\rm c}$ + $\sigma_{\rm p}/f_{\rm b} \leq 1$	
組合せ応力	かつ	式(4-15)
	$(\sigma_{\rm p} - \sigma_{\rm c}) / f_{\rm b} \leq 1$	

ここでん: 圧縮材の有効細長比

前方支柱(地面 - 下段床支柱=27.2) (下段床 - 上段床支柱=36.2) (上段床 - 先端=15.9)

後方支柱(支柱サポート①-上段床=11.0)

Λ:限界細長比 (=115.4)

v:安全率

前方支柱(地面 - 下段床支柱=1.537) (下段床 - 上段床支柱=1.566)

(上段床 - 先端=1.513)

後方支柱(支柱サポート①-上段床=1.506)

(2) 支柱間繋ぎ梁の評価

発電用原子力設備規格 設計・建設規格 JSME S NC1-2005 に従い,許 容応力値を算出する。4.4.3.3項の式での求めた支柱に生じる応力が許容応力 以下であること。

項目	計算式	式番号
許容応力算出用基準値 F	F=min(0.7Su, 1.2Sy)	式(4-16)
許容圧縮応力 f。	f_c={1-0.4(λ / Λ) ² } × (F/ υ) ×1.5	式(4-17)

ここでλ: 圧縮材の有効細長比

下段支柱間繋ぎ梁(=59.3)

上段支柱間繋ぎ梁(=62.2)

Λ:限界細長比

下段支柱間繋ぎ梁(=115.4)

上段支柱間繋ぎ梁(=111.3)

い:安全率

下段支柱間繋ぎ梁(=1.676)

上段支柱間繋ぎ梁(=1.708)

(3) 後方振れ止め支持部材の評価

発電用原子力設備規格 設計・建設規格 JSME S NC1-2005 に従い,許 容応力値を算出する。4.4.3.3項の式での求めた支柱に生じる応力が許容応力 以下であること。

計算式		
7Su, 1.2Sy)	式(4-18)	
Λ) ² }×(F/\upsilon)×1.5	式(4-19)	
	7Su, 1.2Sy) $(\Lambda)^{2} \times (F/\upsilon) \times 1.5$	

ここでん: 圧縮材の有効細長比(=1.9)

Λ:限界細長比(=111.3)

υ:安全率 (=1.500)

4.4.3 コンクリートへの影響評価

(1) 接着系アンカーボルト

各種合成構造設計指針・同解説に従い,許容力値を算出する。設工認申請書添付 6-1-6「仮想的大規模津波に対する受入設備の評価方針」5.2.2 項の式で求めた接着系ア ンカーボルトに生じる力が許容値以下であること。

項目	計算式	式番号
接着系アンカーボルトのせん断強度により	$a = \Phi \times a \times a$	⇒ (1-20)
決まる場合の許容せん断力q _{al}	$\mathbf{q}_{a1} - \mathbf{\Psi}_{1} \wedge_{s} 0_{qa} \wedge_{sc} \mathbf{a}$	FC (4-20)
定着した躯体の支圧強度により決まる場合		$\pm (4.91)$
の接着系アンカーボルトの許容せん断力 q _{a2}	$\mathbf{q}_{a2} - \Psi_2 \wedge_c 0_{qa} \wedge_{sc} \mathbf{a}$	FL (4-21)
接着系アンカーボルトの許容せん断力q。	$q_a = min(q_{a1}, q_{a2})$	式(4-22)

ここで Φ₁: 低減係数 (=1)

sσ{ga}: 接着系アンカーボルト評価時の引張強度(=324.8 MPa)

_{sc}a:接着系アンカーボルトの有効断面積(=)

 Φ_2 : 低減係数 (=2/3)

cσ{ga}: コンクリートの支圧強度 (=456 MPa)

4.4.4 設計及び機器要目

(1) 設計条件

機器名称	供用状態	周辺環境温度(℃)	津波流速(m/s)	海水の密度(kg/m ³)
検査架台	D	45	10	1,050

(2) 機器要目

重量

W (N)	

寸法

L_{2} (mm)	L_{3} (mm)	L_4 (mm)	L $_5$ (mm)

$A_2 (mm^2)$	A $_3$ (mm ²)	A $_4$ (mm ²)	A $_5$ (mm ²)	$Z (mm^3)$
				3. 990 $\times 10^{5}$

基準強度

項目		接着系アンカーボ	まけ	支柱間繋ぎ梁		後方振れ止め支持
	供口	ルト	又任	下段	上段	部材
	材質	S45C	STKR400	STKR400	SS400	SS400
強度	引張強さ	632	381	381	381	381
(MPa)	降伏点	464	207	207	231	231

図 45 検査架台寸法図

79

4.4.5 評価結果

部材		材料	応力・力	算出値	許容値	単位	結果
接着系アンカーボルト		コンクリート	せん断	7.017×10^4	1.705×10^{5}	Ν	良
前方支柱	地面-下段床	STKR400	曲げ	149	248	MPa	良
			圧縮	5	237	MPa	良
			組合せ	0.62 / 0.58	≦1		良
	下段床-上段床		曲げ	179	248	MPa	良
			圧縮	5	228	MPa	良
			組合せ	0.74 / 0.70	≦1		良
	上段床先端		曲げ	80	248	MPa	良
			圧縮	5	244	MPa	良
			組合せ	0.34 / 030	≦1		良
後方支柱	支柱サポート①-上段床	STKR400	曲げ	84	248	MPa	良
			圧縮	5	246	MPa	良
			組合せ	0.36 / 032	≤ 1		良
支柱間繋ぎ梁	下段床	STKR400	圧縮	45	198	MPa	良
	上段床	SS400	圧縮	75	205	MPa	良
後方振れ止め支持部材		SS400		122	266	MPa	良