島根原子力発	電所第2号機 審査資料
資料番号	NS2-添3-013-07
提出年月日	2022年5月30日

VI-3-別添 1-7 原子炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプの強度計算書

2022年5月中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

目 次

1.	櫻	接	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	基	本力	針	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2.	1	位置			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2. 2	2	構造	概	更	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
2. 3	3	評価	i方釒	汁	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
2.	4	適用	規模	各•	基	準	等		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
3.	強	度評	価ラ	方法	Ë																																			7
3.	1	記号	·の;	主義	莨	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•		7
3. 2		評価																																						10
3. 3	3	荷重	[及7	び存	扩重	i(O)	組	合	せ		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
3. 4	4	許容	限身	界	•	•																																		17
3. 5	5	評価	i方测	去	•																																			19
4.	評	価条	件	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
5.	強	度評	価約	吉昇	₹.	•	•			•		•	•	•			•	•		•		•	•		•	•	•	•	•	•	•	•	•		•	•	•		•	33

1. 概要

本資料は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」に示すとおり、原子 炉補機海水ポンプ及び高圧炉心スプレイ補機海水ポンプ(以下「海水ポンプ」という。)が竜巻時 及び竜巻通過後においても、主要な構造部材が構造健全性を保持し、送水機能の維持することを 確認するものである。

2. 基本方針

海水ポンプについて、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」,「4. 荷重及び荷重の組合せ並びに許容限界」及び「5. 強度評価方法」を踏まえ、海水ポンプの「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規格・基準等」を示す。

2.1 位置

VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示すとおり、海水ポンプは屋外の取水槽海水ポンプエリアに設置する。取水槽海水ポンプエリアの位置図を図 2-1 に示す。

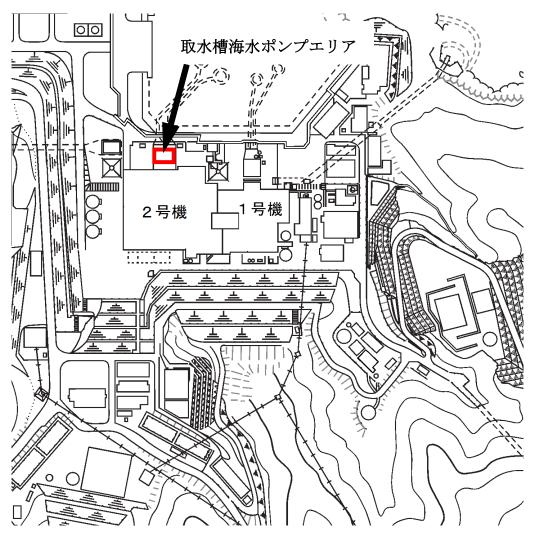
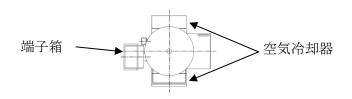



図 2-1 取水槽海水ポンプエリアの位置図

2.2 構造概要

VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて、海水ポンプの構造を設定する。

海水ポンプは、ポンプ据付面から原動機台までのポンプ部と、上部の原動機部からなる鋼製の立形ポンプであり、原子炉補機海水ポンプ(以下「RSWポンプ」という。)は同一設計のポンプを4台、高圧炉心スプレイ補機海水ポンプ(以下「HPSWポンプ」という。)は1台設置している。RSWポンプの概略構造図を図 2-2 に、HPSWポンプの概略構造図を図 2-3 に示す。

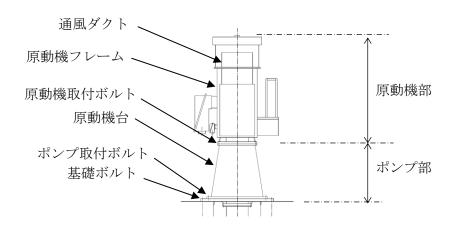


図 2-2 RSWポンプの概略構造図

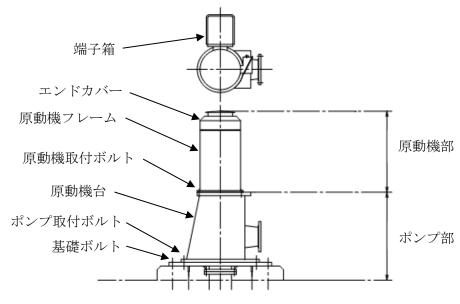


図2-3 HPSWポンプの概略構造図

2.3 評価方針

海水ポンプの強度評価は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」を踏まえ、海水ポンプの評価対象部位に生じる貫入及び応力等が、許容限界に収まることを「3. 強度評価方法」に示す方法により、「4. 評価条件」に示す条件を用いて計算し、その結果を「5. 強度評価結果」に示す。

評価対象部位は、その構造を踏まえ、設計竜巻による荷重とこれに組み合わせる荷重(以下 「設計荷重」という。)の作用方向及び伝達過程を考慮し、選定する。

(1) 衝突評価の評価方針

海水ポンプの衝突評価の方針を以下に、衝突評価フローを図 2-4 に示す。

- ・ 竜巻防護ネットを設置する場合に考慮する飛来物である砂利の貫通限界厚さが、外殻 を構成する部材の厚さ未満であることを確認する。
- ・貫通限界厚さは、「タービンミサイル評価について(昭和52年7月20日原子炉安全専門審査会)」で用いられている式を準用し、VI-3-別添1-1「竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す衝突評価が必要な機器の評価式を用いて、算出する。
- ・許容限界は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に示す、外殻を構成する部材の厚さとする。

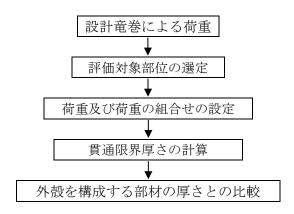


図 2-4 海水ポンプの衝突評価フロー

(2) 構造強度評価の評価方針

海水ポンプの構造強度評価の評価方針を以下に、構造強度評価フローを図2-5に示す。

- ・海水ポンプに対し、常時作用する荷重、設計竜巻による荷重及び運転時に作用する荷 重により生じる応力が許容限界以下であることを確認する。
- ・その部材に対して応力が大きくなる方向から風が当たることを想定する。
- ・設計竜巻による荷重は、水平方向より作用する外荷重という観点で地震荷重と同様なものであるため、原子力発電所耐震設計技術指針 重要度分類・許容応力編(JEAG 4601・補-1984)、原子力発電所耐震設計技術指針(JEAG 4601-1987)及び原子力発電所耐震設計技術指針(JEAG 4601-1991 追補版)(以下「JEAG 4601」という。)における1質点系モデルによる評価方法を準用し、VI-3-別添 1-1

「竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す評価式を用いて、算出する。

・許容限界は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に示す、JEAG4601の許容応力状態ⅢASとする。

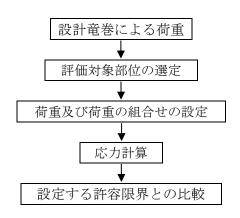


図 2-5 海水ポンプの構造強度評価フロー

(3) 動的機能維持評価の評価方針

海水ポンプは動的機器であるため、構造強度評価に加え、軸受部の動的機能維持評価を 行う。海水ポンプの動的機能維持評価の評価方針を以下に、動的機能維持評価フローを図 2-6 に示す。

- ・ポンプ据付面から上部の受圧面積が大きくなる方向から風が当たることを想定し、設計 計 をの風圧力による荷重を受けた際のフレーム変位により生じる軸受荷重が接触面圧の許容限界以下であることを確認する。
- ・発生荷重は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す評価式を用いて、算出する。
- ・許容限界は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に示す、軸受部の接触面圧の許容荷重とする。

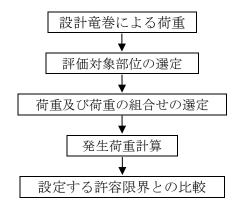


図 2-6 海水ポンプの動的機能維持評価フロー

2.4 適用規格·基準等

適用する規格・基準等を以下に示す。

- ・「タービンミサイル評価について」(昭和52年7月20日 原子炉安全専門審査会)
- ・建築物荷重指針・同解説 ((社) 日本建築学会, 2004 改定)
- •原子力発電所耐震設計技術指針 重要度分類•許容応力編(JEAG4601•補-1984) ((社)日本電気協会)
- ・原子力発電所耐震設計技術指針(JEAG4601-1987)((社)日本電気協会)
- ・原子力発電所耐震設計技術指針(JEAG4601-1991 追補版)((社)日本電気協会)
- ・発電用原子力設備規格(設計・建設規格 JSME S NC1-2005/2007」((社)日本機械学会)(以下「JSME」という。)
- ·新版機械工学便覧(1987年4月 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

(1) 衝突評価の記号の定義

海水ポンプの衝突評価に用いる記号を表 3-1 に示す。

表 3-1 衝突評価に用いる記号

記号	単 位	定義					
d	m	評価において考慮する飛来物が衝突する衝突断面の等価直径					
K	_	鋼板の材質に関する係数					
M	kg	評価において考慮する飛来物の質量					
Т	mm	鋼板の貫通限界厚さ					
V	m/s	評価において考慮する飛来物の飛来速度					

(2) 構造強度評価及び動的機能維持評価の記号の定義 海水ポンプの構造強度評価及び動的機能維持評価に用いる記号を表 3-2 に示す。

表 3-2 構造強度評価及び動的機能維持評価に用いる記号 (1/3)

記号	単 位	定義							
а	mm	部材間の長さ							
a 1	mm	ポンプ据付面からの原動機台上端までの長さ							
a 2	mm	原動機台上端から原動機下部軸受までの長さ							
a 3	mm	原動機台から荷重作用点までの長さ							
A	\mathbf{m}^2	受圧面積(風向に垂直な面に投影した面積)							
A 1	m^2	四角形状の部分の受圧面積							
A 2	\mathbf{m}^2	円形状の部分の受圧面積							
Аь	mm^2	各ボルトの軸断面積							
С	1	建築物荷重指針・同解説により規定される風力係数							
C 1	ı	四角形状の部分に対する建築物荷重指針・同解説により規定され							
C 1		る風力係数 							
C 2	_	円形状の部分に対する建築物荷重指針・同解説により規定される							
		風力係数							
Ср	-	ポンプ振動による震度							
d	mm	回転子コア径							
D	mm	各ボルトのピッチ円直径							
D _m	mm	原動機フレーム外径							
d m	mm	原動機フレーム内径							
D _p	mm	原動機台外径							
d p	mm	原動機台內径							
E	MPa	縦弾性係数							
Еm	MPa	原動機フレームの縦弾性係数							
Ер	MPa	原動機台の縦弾性係数							
Ет'	MPa	回転子の縦弾性係数							

表 3-2 構造強度評価及び動的機能維持評価に用いる記号(2/3)

		造強度評価及び動的機能維持評価に用いる記号 (2/3)
記号	単位	定義
F	MPa	JSME SSB-3121.1(1)により規定される値
Fь	N	各ボルトに対する引張力
f s	MPa	JSME SSB-3131 により規定される供用状態A及びBでの許容 せん断応力
f t	MPa	JSME SSB-3121.1 又は SSB-3131 により規定される供用状態A 及びBでの許容引張応力
F i	N	転倒支点からLiの距離にあるボルトに対する引張力
Fн	N	水平方向に作用する荷重
G	-	ガスト影響係数
g	$\mathrm{m/s^2}$	重力加速度
h	mm	基準面から荷重作用点までの距離
hı'	mm	ポンプ据付面から荷重作用点までの距離
h 2'	mm	原動機下部軸受から荷重作用点までの距離
h 3'	mm	荷重作用点から荷重作用点までの距離
h g	mm	基準面から重心位置までの距離
h w	mm	すみ肉溶接高さ
I	mm^4	断面二次モーメント
I m	mm^4	原動機フレームの断面二次モーメント
I m'	mm^4	回転子の断面二次モーメント
Ιp	mm^4	原動機台の断面二次モーメント
L g	mm	重心からボルト間の距離
L i	mm	転倒支点からボルトの距離
m	kg	質量
M	N • mm	設計竜巻により作用するモーメント
M a	N • mm	設計竜巻により作用するモーメント
Мь	N • mm	設計竜巻により作用するモーメント
Мс	N • mm	設計竜巻により作用するモーメント
Мср	N • mm	ポンプ振動による転倒モーメント
Мр	N • mm	ポンプの回転によるモーメント
N	rpm	回転数(原動機の同期回転数)
n		各ボルトの本数
n f	_	引張力を受ける各ボルトの本数
Qь	N	各ボルトに対するせん断力
Р	kW	原動機出力
Δ P m a x	N/m^2	設計竜巻の <mark>最大</mark> 気圧低下量
q	$\mathrm{N/m^2}$	設計用速度圧
S u	MPa	JSME 付録材料図表 Part5 表 9 にて規定される設計引張強さ
S y	MPa	JSME 付録材料図表 Part5 表 8 にて規定される設計降伏点

表 3-2 構造強度評価及び動的機能維持評価に用いる記号 (3/3)

 記号単位 皮養 Sy(RT) MPa JSME 付録材料図表 Part5表8にて規定される40℃の設計降伏点 W N 自重 W' N たわみ量及び発生荷重計算において設計竜巻による風圧を面それぞれのWT2の合計の複合荷重 W" N 発生荷重 WM N 設計竜巻による飛来物の衝撃荷重 WP N 設計竜巻による気圧差による荷重 WT1, WT2 N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 WW 別 設計竜巻による風圧力による荷重 W 放計 で								
Sy(RT) MPa 設計降伏点 W N 自重 W' N たわみ量及び発生荷重計算において設計竜巻による風圧を面それぞれのWT2の合計の複合荷重 W" N 発生荷重 WM N 設計竜巻による飛来物の衝撃荷重 WP N 設計竜巻による気圧差による荷重 WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による風圧力による荷重 Ww N 設計竜巻による風圧力による荷重								
W N 自重 W' N たわみ量及び発生荷重計算において設計竜巻による風圧を面それぞれのWT2の合計の複合荷重 W" N 発生荷重 WM N 設計竜巻による飛来物の衝撃荷重 WP N 設計竜巻による気圧差による荷重 WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 Ww N 設計竜巻による風圧力による荷重	ご受ける							
W' N たわみ量及び発生荷重計算において設計竜巻による風圧を面それぞれのWT2の合計の複合荷重 W" N 発生荷重 WM N 設計竜巻による飛来物の衝撃荷重 WP N 設計竜巻による気圧差による荷重 WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 Ww N 設計竜巻による風圧力による荷重	ご受ける							
W N 面それぞれのWT2の合計の複合荷重 W" N 発生荷重 WM N 設計竜巻による飛来物の衝撃荷重 WP N 設計竜巻による気圧差による荷重 WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 Ww N 設計竜巻による風圧力による荷重	を受ける							
面それぞれのWT2の合計の複合荷重 W" N 発生荷重 WM N 設計竜巻による飛来物の衝撃荷重 WP N 設計竜巻による気圧差による荷重 WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 WW N 設計竜巻による風圧力による荷重								
WM N 設計竜巻による飛来物の衝撃荷重 WP N 設計竜巻による気圧差による荷重 WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 WW N 設計竜巻による風圧力による荷重								
WP N 設計竜巻による気圧差による荷重 WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 WW N 設計竜巻による風圧力による荷重								
WT N 設計竜巻による複合荷重 WT1, WT2 N 設計竜巻による複合荷重 Ww N 設計竜巻による風圧力による荷重								
WT1, WT2 N 設計竜巻による複合荷重 WW N 設計竜巻による風圧力による荷重								
Ww N 設計竜巻による風圧力による荷重								
v 満重作用占から評価対象部位までの距離								
A								
x' 評価対象部位から支点までの距離								
x a' mm ポンプグランド部から原動機下部軸受部までの距離								
хь' mm 原動機下部軸受部から原動機上部軸受部までの距離								
y mm たわみ量								
yı mm ポンプ据付面から原動機台上端部のたわみ量								
y2 mm 原動機台上端部から原動機下部軸受部のたわみ量	原動機台上端部から原動機下部軸受部のたわみ量							
y3 mm 原動機台上端部から荷重作用点のたわみ量	原動機台上端部から荷重作用点のたわみ量							
y4 mm 荷重作用点のたわみ量	荷重作用点のたわみ量							
y ₅ mm 荷重作用点から原動機上部軸受部のたわみ量								
y a mm 原動機下部案内軸受部のたわみ量								
yь mm 原動機上部案内軸のたわみ量								
σь MPa 各ボルトに生じる引張応力								
σw MPa 原動機フレームに生じる引張応力								
τ MPa 各ボルトに生じるせん断応力								
θ rad 傾斜								
θ1 rad ポンプ据付面から原動機台上端部の傾斜								
θ ₃ rad 原動機台上端部から荷重作用点の傾斜								
θ 4 rad 荷重作用点の傾斜								
δ mm フレーム変位量								
δ a mm ポンプ据付面から原動機下部軸受部までのフレーム変位量	<u> </u>							
δ _b mm 原動機下部軸受部から電動機上部軸受部までのフレーム図	5位 畳							

3.2 評価対象部位

海水ポンプの評価対象部位は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に従い、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向及び伝達過程を考慮し、選定する。

(1) 衝突評価の評価対象部位

飛来物の衝突により、海水ポンプに衝撃荷重が作用し貫入する可能性があるため、貫入 により機能を喪失する可能性がある箇所を評価対象部位として選定する。

海水ポンプ地上部の全方向からの飛来物を考慮し、貫入により機能を喪失する可能性がある部位のうち、最薄部として、RSWポンプはスペースヒータ端子箱、HPSWポンプは防滴カバーを選定する。

海水ポンプの衝突評価における評価対象部位を図3-1及び図3-2に示す。

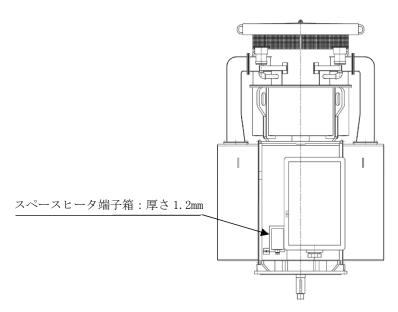


図3-1 RSWポンプの評価対象部位

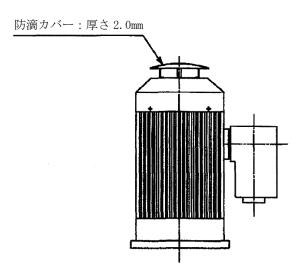


図3-2 HPSWポンプの評価対象部位

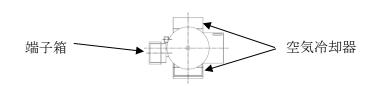
(2) 構造強度評価の評価対象部位

a. ポンプ部

ポンプ部について,原動機部等に作用する設計竜巻による荷重は,原動機フレーム及 び原動機台に作用する。このため,ポンプ部及び原動機部を固定しているボルトに作用 する。荷重を受ける各部位のうち,支持断面積の小さな部位に大きな応力が生じるため, 以下の部位を評価対象部位として選定する。

- ・原動機取付ボルト
- ・ ポンプ取付ボルト
- 基礎ボルト

b. 原動機部


原動機部について,原動機部等に作用する設計竜巻による荷重は,原動機フレーム及び付属品に作用する。このため,付属品を固定する以下の部位を評価対象部位として選定する。

RSWポンプ

- ・原動機フレーム
- ・端子箱取付ボルト
- ・通風ダクト取付ボルト
- ・空気冷却器取付ボルト

HPSWポンプ

- ・原動機フレーム
- ・端子箱取付ボルト
- エンドカバー取付ボルト

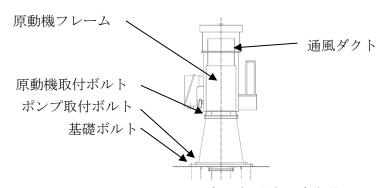


図 3-3 RSWポンプの評価対象部位

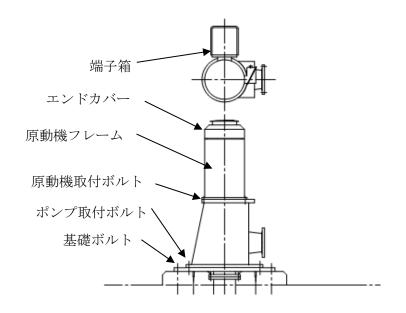


図3-4 HPSWポンプの評価対象部位

(3) 動的機能維持評価の評価対象部位

ポンプ据付面より上部が設計竜巻による荷重を受けた際に、原動機フレーム等が変位することにより軸と軸受が接触した場合に動的機能維持が困難となるため、以下の部位を動的機能維持評価の評価対象部位として選定する。

- 原動機下部軸受部
- 原動機上部軸受部

海水ポンプの評価対象部位を図3-5及び図3-6に示す。

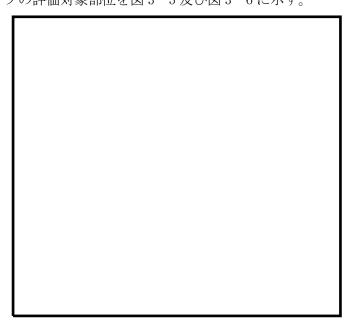


図 3-5 RSWポンプの評価対象部位

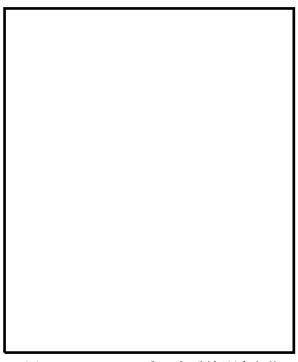


図3-6 HPSWポンプの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」にて示す荷重及び荷重の組合せを用いる。

(1) 衝突評価の荷重及び荷重の組合せ

衝突評価において考慮する飛来物として, 竜巻防護ネット (ネットの網目寸法 40(mm))をすり抜ける砂利を設定し,砂利の衝撃荷重を考慮する。

衝突評価においては、評価対象部位に砂利が衝突した際に跳ね返らず、貫入するものとして評価する。砂利の諸元を表 3-3、海水ポンプの衝突評価に用いる荷重を表 3-4 に示す。

表 3-3 砂利の諸元

飛来物	d (m)	K	M (kg)	V (m/s)			
	(m)	()	(Kg)	水平方向	鉛直方向		
砂利	0.04	1	0. 2	54	36		

表 3-4 海水ポンプの衝突評価に用いる荷重

施設分類	施設名称	評価対象部位	荷重
屋外の外部事象	RSWポンプ用原動機	スペースヒータ端子箱	飛来物による衝撃荷重
防護対象施設	HPSWポンプ用原動機	防滴カバー	飛木物による関挙何里

(2) 構造強度評価及び動的機能維持評価の荷重及び荷重の組合せ

a. 荷重の設定

構造強度評価及び動的機能維持評価に用いる荷重は、以下の荷重を用いる。

(a) 常時作用する荷重

常時作用する荷重として、自重を考慮する。

自重は以下のとおり計算する。

 $W = m \cdot q$

(b) 設計竜巻による荷重

風圧力による荷重及び気圧差による荷重を考慮する。竜巻防護ネット及び竜巻防護 鋼板等による風圧力の低減はないものとして保守的な評価を行う。また、竜巻防護ネットをすり抜ける砂利による衝撃荷重は砂利自体の質量が小さく、衝突時間が極めて 短いことから、機器へ作用する荷重は構造強度に影響を与えないので設計竜巻による 荷重と組み合わせる荷重に衝撃荷重を考慮しない。

イ. 風圧力による荷重(Ww)

風圧力による荷重は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の 方針」の「4.1(3) c. (a) 風圧力による荷重(Ww)」に示す式に従い、算出する。

 $W_w = q \cdot G \cdot C \cdot A$

口. 気圧差による荷重(W_P)

気圧差による荷重は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.1(3) c. (b) 気圧差による荷重 (W_P)」に示す式に従い、算出する。

$$W_P = \Delta P_{max} \cdot A$$

ハ. 荷重の組合せ

設計竜巻による複合荷重 $W_T(W_{T1},W_{T2})$ は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.1(2) 荷重の組合せ」に示す式に従い、算出する。なお、海水ポンプは気圧差が生じ難い構造であるため、複合荷重の選定において、 W_{T2} としては気圧差を考慮するが、 W_{T1} の評価は実施しない。

 $W_{T2} = W_W + 0.5W_P + W_M$

(c) 運転時に作用する荷重

運転時に作用する荷重としては、鉛直下向きに作用するポンプスラスト荷重を考慮する。

b. 荷重の組合せ

構造強度評価及び動的機能維持評価に用いる荷重の組合せは、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」にて設定している荷重の組合せを踏まえ、海水ポンプの評価対象部位ごとに設定する。

ポンプスラスト荷重が作用する評価対象部位は全て鉛直方向に取り付けられており、 ポンプスラスト荷重は鉛直方向下向きに作用し抗力となるため、それぞれの構造強度評価を行う際の荷重としては保守的に考慮しない。海水ポンプの構造強度評価及び動的機能維持評価にて考慮する荷重の組合せを表 3-5 に示す。

表 3-5 荷重の組合せ

施設分類	施設名称		衣 3-5 位	荷重	
旭权刀規	旭以右你		Ē	評価対象部位	①自重
			121,000	原動機取付ボルト	
			ポンプ部	ポンプ取付ボルト	②風圧力による荷重
				基礎ボルト	③気圧差による荷重
		抽		原動機フレーム	①風圧力による荷重
		構造強度評		7,17,17,1	②気圧差による荷重
		強			①自重
		没		端子箱取付ボルト	②風圧力による荷重
		価	原動機部		③気圧差による荷重
	RSWポンプ			 通風ダクト取付ボルト	①風圧力による荷重
	105 11 11 1				②気圧差による荷重
				 空気冷却器取付ボルト	①風圧力による荷重
				主义(市)和奋权门 か/レト	②気圧差による荷重
		動			①風圧力による荷重
		的機	原動機上部	軸受部	②気圧差による荷重
		的機能			じ八工圧による同宝
		維			①風圧力による荷重
屋外の外部		持評	原動機下部	軸受部	②気圧差による荷重
事象防護対		価			● 八工工に S J 円 宝
象施設				原動機取付ボルト	①自重
			ポンプ部	ポンプ取付ボルト	②風圧力による荷重
				基礎ボルト	③気圧差による荷重
		構		□ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	①風圧力による荷重
		構造強度評		原動機フレーム	②気圧差による荷重
		度			①自重
		評価	原動機部	端子箱取付ボルト	②風圧力による荷重
					③気圧差による荷重
	HPSWポンプ				①風圧力による荷重
				エンドカバー取付ボルト	②気圧差による荷重
		± 1		ı	
		動的	原動機上部	軸受部	①風圧力による荷重
		機能	1/1/2/1/X-T-HA	I H / H P	②気圧差による荷重
		能維			
		持	E ALVIO	±1 전 전	①風圧力による荷重
		評価	原動機下部	押文	②気圧差による荷重
		ІЩ			

3.4 許容限界

海水ポンプの許容限界は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に従い、「3.2 評価対象部位」にて設定した部位における機能損傷モードを考慮し、外殻を構成する部材の厚さ、JEAG4601に基づく許容応力状態ⅢASの許容応力及び軸受の接触面圧の許容荷重を用いる。

(1) 衝突評価における許容限界

衝突評価における許容限界は、飛来物による衝撃荷重に対し、外殻を構成する部材が、機能喪失に至る可能性のある変形を生じないことを計算により確認するため、外殻を構成する部材の厚さを許容限界とする。海水ポンプの許容限界を表 3-6 に示す。

表 3-6 海水ポンプの許容限界

施設名称	外殻を構成する部材の厚さ
RSWポンプ	1.2mm (スペースヒータ端子箱)
HPSWポンプ	2.0mm (防滴カバー)

(2) 構造強度評価における許容限界

構造強度評価における許容限界は,JEAG4601を準用し,「クラス2,3支持構造物」の許容限界を適用し,許容応力状態 III_AS から算出した許容応力とする。材料の設計降伏点はJSME付録材料図表 Part5表8より,設計引張強さはJSME付録材料図表 Part5表9により算出した値を用いる。周囲環境温度がJSME付録材料図表 Part5表8及び表9記載の中間の値の場合は,比例法を用いて計算し,小数点第1位以下を切り捨てた値を用いるものとする。海水ポンプの許容限界を表 3-7,許容応力を表 3-8 及び表 3-9 に示す。

表 3-7 海水ポンプの許容限界

評価対象部位	許容応力状態	応力の	種類	許容限界
			引張	$1.5 \cdot f_{ m t}$
ボルト	Ⅲ AS	一次応力	せん断	$1.5 \cdot f_{ m s}$
			組合せ	$Min\{1.5 \cdot f_t, (2.1 \cdot f_t-1.6 \cdot \tau)\}$
原動機フレーム	III AS	一次応力	引張	1.5 • f _t

表 3-8 RSWポンプの許容応力

評価対象	材料	温度条件	S y	S u	$S_y(RT)$	F	$1.5 \cdot f_{\mathrm{t}}$	$1.5 \cdot f_{\rm s}$
部位	, , , ,	(\mathcal{C})	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
原動機 取付ボルト	SUS304	50	198	504	205	205	153	118
ポンプ 取付ボルト	SUS304	40	205	520	205	205	153	118
基礎ボルト	SUS304	50	198	504	205	205	153	118
原動機 フレーム	SM400A	50	<mark>231</mark>	<mark>394</mark>	_	103	102	
端子箱 取付ボルト	SUS304	95	173	446	205	205	153	118
通風ダクト 取付ボルト	SUS304	50	198	504	205	205	153	118
空気冷却器 取付ボルト	SUS304	95	173	446	205	205	153	118

表 3-9 HPSWポンプの許容応力

評価対象	材料	温度条件	Sу	S u	S y (R T)	F	$1.5 \cdot f_{ m t}$	$1.5 \cdot f_{ m s}$
部位	例杆	(\mathcal{C})	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
原動機 取付ボルト	SUS304	50	198	504	205	205	153	118
ポンプ 取付ボルト	SUS304	40	205	520	205	205	153	118
基礎ボルト	SUS304	50	198	504	205	205	153	118
原動機 フレーム	SS400	50	211	394	_	211	95	_
端子箱 取付ボルト	SS400	50	211	394	_	211	158	122
エンド カバー 取付ボルト	SS400	50	211	394	_	211	_	122

(3) 動的機能維持評価における許容限界

動的機能維持評価における許容限界は、設計荷重により原動機フレームが変形する場合においても海水ポンプの運転継続が可能であるように、軸受の接触面圧の許容荷重を許容限界とする。軸受の接触面圧の許容荷重を表 3-10 に示す。

表 3-10 軸受の接触面圧の許容荷重

77 77 77 77 77 77 77 77 77 77 77 77 77						
施設名称	評価対象部位	許容荷重 (N)				
RSWポンプ	原動機上部軸受部					
K S W M Z J	原動機下部軸受部					
HPSWポンプ	原動機上部軸受部					
UL 2 W W Z Z	原動機下部軸受部					

3.5 評価方法

海水ポンプの強度評価は、VI-3-別添 1-1「竜巻への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」にて設定している強度評価が必要な機器の評価式を用いる。

(1) 衝突評価の評価方法

飛来物が外部事象防護対象施設に衝突する場合の貫通限界厚さを,「タービンミサイル評価について(昭和52年7月20日原子炉安全専門審査会)」で用いられているBRL式を用いて算出する。

$$T^{\frac{3}{2}} = \frac{0.5 \cdot M \cdot v^2}{1.4396 \times 10^9 \cdot K^2 \cdot d^{\frac{3}{2}}}$$

- (2) 構造強度評価及び動的機能維持評価の評価方法
 - a. 計算モデル

(a) 構造強度評価

計算モデルは1質点系モデルとし、ポンプ部は全高の1/2の位置に、原動機部は重心位置に複合荷重が作用することとする。また、設計竜巻による風荷重はそれぞれの評価対象部位に対して発生応力が大きくなる方向から当たるものとする。ポンプ部及び原動機部の応力の計算モデル図を図3-7及び図3-8に示す。

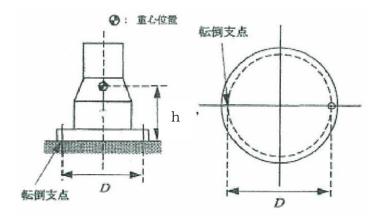


図3-7 応力の計算モデル図 (ポンプ部)

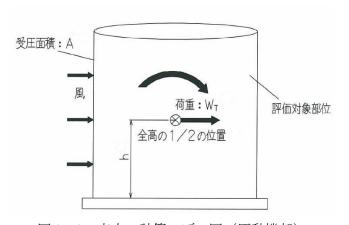


図3-8 応力の計算モデル図 (原動機部)

(b) 動的機能維持評価

原動機フレームのたわみ量計算においては、ポンプ据付面から原動機台上端まで(ポンプ部)と、原動機台上端から原動機上部軸受部まで(原動機部)の片持ち梁と考える。ポンプ部については、ポンプ部の断面性能は原動機台が最も小さいことから、原動機台の断面性能を一様に有する単純円筒形モデルとして評価する。原動機部については、原動機フレームの断面性能を用いて評価する。このため、計算モデルは違う断面性能の一軸中空形モデルとして考え、荷重は全高の半分の位置に作用することとする。たわみ量計算モデル図を図 3-9 に示す。

ポンプ据付面より上部の静止体(原動機フレーム等)は、水平方向の複合荷重により、ポンプ据付面を固定端として一方向に変形する。一方、回転体(ポンプ軸及び原動機軸)は、風荷重を受けないため、変形せず、原動機上部から鉛直方向に吊り下げられた状態を維持する。原動機フレーム等の変形により、軸受反力が許容荷重を超えないことを確認する。

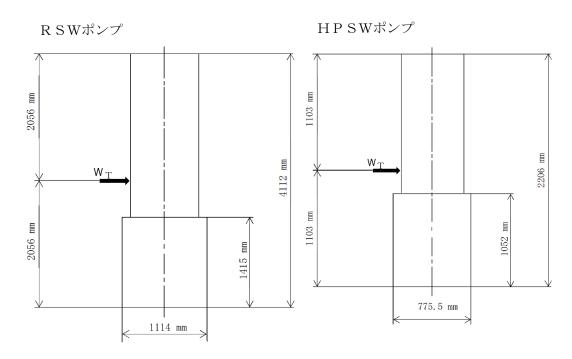


図3-9 海水ポンプのたわみ量計算モデル図

b. 計算方法

(a) 応力の算出

イ. ポンプ部 (ボルト部)

ポンプ部(ボルト部)の応力算出方法を以下に、原動機取付ボルト、ポンプ取付ボルト及び基礎ボルトの各ボルト間寸法の配置図を図 3-10~図 3-12 に示す。

(イ) 設計竜巻により作用するモーメントM

 $M = W_T \cdot h$

(ロ) 引張応力 σ b t

$$F_b = \frac{W_T \cdot h + M_{C_p} + ((m \cdot g \cdot D)/2) \cdot (C_p - 1)}{3/8 \cdot D \cdot n_f}$$

ただし、 $Fb \leq 0$ ならば引張力は発生しない。

F_b>0 ならば引張力は作用しているので,以下の引張応力の計算を行う。

$$\sigma_{b} = \frac{F_{b}}{A_{b}}$$

(ハ) せん断応力 τ

$$\tau = \frac{W_T}{A_b \cdot n}$$

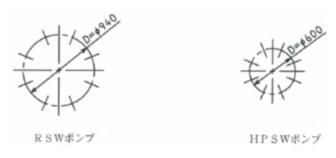


図 3-10 原動機取付ボルトの配置図

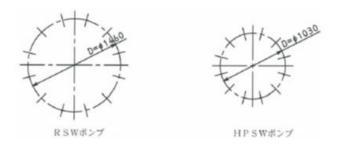


図3-11 ポンプ取付ボルトの配置図

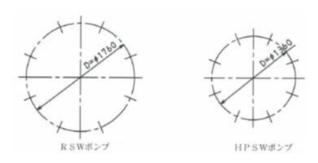


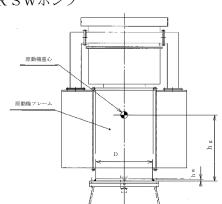
図 3-12 基礎ボルトの配置図

口. 原動機部

(イ) 原動機フレーム

原動機フレームの応力算出方法を以下に、原動機フレーム取付部の詳細図を図 3-13に示す。

• 引張応力


設計竜巻により作用する転倒モーメントM

$$M=W_T \cdot h_g$$

引張応力σw

$$\sigma_{\mathbf{w}} = \frac{5.66 \cdot \mathbf{M}}{\pi \cdot \mathbf{h}_{\mathbf{w}} \cdot \mathbf{D}^2}$$

HPSWポンプ

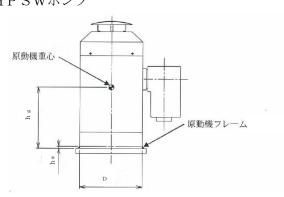


図 3-13 原動機フレーム取付部詳細図

(ロ) 端子箱取付ボルト

端子箱取付ボルトの応力算出方法を以下に、端子箱取付ボルト部の詳細図を図3-14に示す。

・引張応力 設計竜巻により作用するモーメントM

 $M=W_T \cdot L_g$

· 引張応力 σ ь

$$F_b = \frac{M + W \cdot h_g}{L_1 \cdot n_f}$$

$$\sigma_b = \frac{F_b}{A_b}$$

・せん断応力 τ

$$\tau = \frac{F_H}{A_b \cdot n}$$

ここで,

$$F_H = \sqrt{W_T^2 + W^2}$$

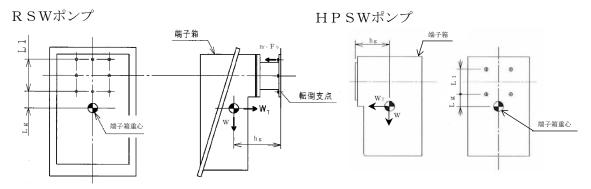


図 3-14 端子箱取付ボルト部詳細図

(ハ) 通風ダクト取付ボルト部及び空気冷却器取付ボルト部

通風ダクト取付ボルト部及び空気冷却器取付ボルト部の応力算出方法を以下に, 詳細図を図3-15及び図3-16に示す。

• 引張応力

設計竜巻によって生じる転倒荷重が、通風ダクト等に作用した際の各取付ボルトに生じる際の引張応力を算出し評価する。なお、通風ダクトは上部軸受ブラケットとの接続もあるが、空気冷却器とのみ接続されているとして、評価する。(評価上厳しい条件)

設計竜巻により作用するモーメントM

$$M=W_T \cdot h_g$$

· 引張応力 σ ь

$$\begin{split} M &= \sum_{i=1}^8 F_i \cdot L_i \quad \cdot \quad \cdot \quad (3.1) \\ \frac{F_i}{L_i} &= - 定 \cdot \quad \cdot \quad (3.2) \end{split}$$

$$(3.1)$$
 (3.2) 式より、
$$F_b = \frac{F_1}{n_f} = \frac{M}{n_f \cdot \sum_{i=1}^{8} L_i^2} L_1$$
 よって、
$$\sigma_b = \frac{F_b}{A_b}$$
・せん断応力 τ

$$\tau \ = \frac{W_T}{A_b \cdot n}$$

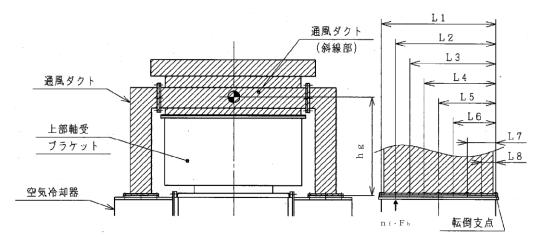


図3-15 通風ダクト取付ボルト部の詳細図

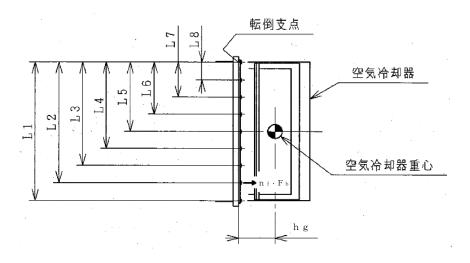


図 3-16 空気冷却器取付ボルト部の詳細図

(二) エンドカバー取付ボルト部

竜巻によって生じる転倒荷重が、エンドカバーに作用した際の取付ボルトに生じる引張応力を算出し評価する。

(i) ポンプ回転によるモーメント

$$M_{\rm p} = \frac{60}{2 \cdot \pi \cdot N} \cdot 10^6 \cdot P$$

(ii) せん断応力

$$\tau = \frac{W_T + 2 \cdot \frac{M_p}{D}}{n \cdot A_b}$$

(b) 発生荷重の計算

イ. たわみ量の計算

たわみ量の算出において、竜巻による風圧力を受ける面(原動機台、原動機フレーム、端子箱、通風ダクト及び空気冷却器)のそれぞれの W_{T2} の合計を複合荷重W

とする。

 $W' = \sum W_{T2}$

各部位の受圧部図を図3-17及び図3-18に示す。

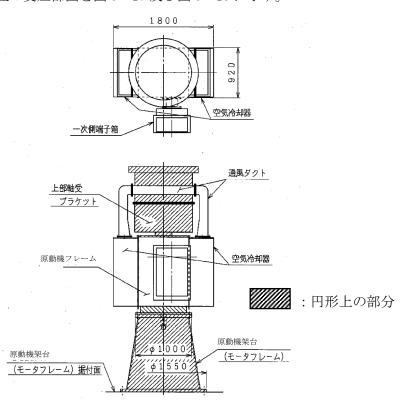


図 3-17 R SWポンプの受圧部図

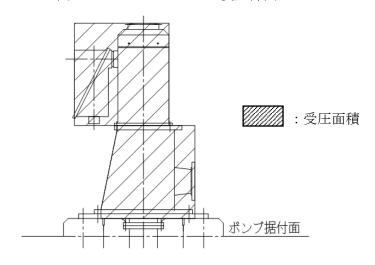


図3-18 HPSWポンプの受圧面積図

以下のミオソテスの方法より各評価対象部位のたわみ量 y と傾斜 θ を算出する。なお、荷重は高さの半分の位置に作用することとする。

ミオソテスの方法

$$y = \frac{M \cdot a^{2}}{2 \cdot E \cdot I} + \frac{W' \cdot a^{3}}{3 \cdot E \cdot I}$$

$$\theta = \frac{M \cdot a}{E \cdot I} + \frac{W' \cdot a^2}{2 \cdot E \cdot I}$$

$$M = W' \cdot h'$$

(イ) 原動機下部軸受部

・ポンプ据付面から原動機台上端部のたわみ量 y 1, 傾斜 θ 1

$$y_{1} = \frac{M_{a} \cdot a_{1}^{2}}{2 \cdot E_{p} \cdot I_{p}} + \frac{W' \cdot a_{1}^{3}}{3 \cdot E_{p} \cdot I_{p}}$$

$$\theta_{1} = \frac{M_{a} \cdot a_{1}}{E_{p} \cdot I_{p}} + \frac{W' \cdot a_{1}^{2}}{2 \cdot E_{p} \cdot I_{p}}$$

$$M_a = W' \cdot h_1'$$

ここで、原動機台の断面図を図3-19に示す。

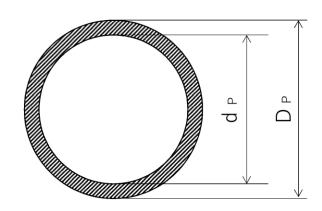


図 3-19 原動機台の断面図

円筒形であるため、断面二次モーメントは以下のとおり算出する。

$$I_{p} = \frac{\pi (D_{p}^{4} - d_{p}^{4})}{64}$$

・原動機台上端部から原動機下部軸受部のたわみ量 y 2

$$y_2 = \frac{M_b \cdot a_2^2}{2 \cdot E_m \cdot I_m} + \frac{W' \cdot a_2^3}{3 \cdot E_m \cdot I_m}$$

$$M_b = W' \cdot h_2$$

ここで、原動機フレームの断面図を図3-20に示す

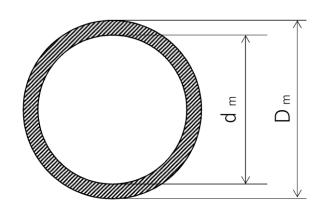


図3-20 原動機フレームの断面図

円筒形であるため、断面二次モーメントは以下のとおり算出する。

$$I_{m} = \frac{\pi (D_{m}^{4} - d_{m}^{4})}{6.4}$$

よって、原動機下部軸受部のたわみ量は $y_a = y_1 + y_2$

(口) 原動機上部軸受部

・原動機台上端部から荷重作用点のたわみ量y3, 傾斜 θ3

$$\mathbf{y}_{3} = \frac{\mathbf{M}_{c} \cdot \mathbf{a}_{3}^{2}}{2 \cdot \mathbf{E}_{m} \cdot \mathbf{I}_{m}} + \frac{\mathbf{W}' \cdot \mathbf{a}_{3}^{3}}{3 \cdot \mathbf{E}_{m} \cdot \mathbf{I}_{m}}$$

$$\theta_{3} = \frac{\mathbf{M}_{c} \cdot \mathbf{a}_{3}}{\mathbf{E}_{m} \cdot \mathbf{I}_{m}} + \frac{\mathbf{W}' \cdot \mathbf{a}_{3}^{2}}{2 \cdot \mathbf{E}_{m} \cdot \mathbf{I}_{m}}$$

$$M_c = W' \cdot h_3$$

よって、荷重作用点のたわみ量 y_4 、傾斜 θ_4

$$y_4 = y_1 + y_3$$

$$\theta_4 = \theta_1 + \theta_3$$

荷重作用点から原動機上部軸受部のたわみ量 y 5

$$y_5 = x \cdot \sin(\theta_4)$$

以上より, 原動機上部軸受部のたわみ量は

$$y_{b} = y_{4} + y_{5}$$

ロ. 発生荷重の算出

軸受部において,フレーム変位により作用する軸受反力と軸受許容荷重を比較し, 発生荷重が許容荷重より小さいことを確認する。発生荷重W"は次式より計算する。

δ =評価対象部位の変位量 - 支点の変位量

また,発生荷重は

$$\delta = \frac{W" \cdot x^{3}}{3 \cdot E \cdot I}$$

より

$$W" = \frac{3 \cdot E \cdot I \cdot \delta}{x^{3}}$$

(イ) 原動機下部軸受部の発生荷重

W" =
$$\frac{3 \cdot E_{m} \cdot I_{m} \cdot \delta_{a}}{x_{a}}$$

ここで、 $\delta_a = y_a$

回転子(原動機部)の断面図を図3-21に示す。

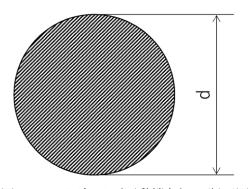


図 3-21 回転子(原動機部)の断面図

回転子の断面二次モーメントは以下のとおり算出する。

$$I_{m} = \frac{\pi d^{4}}{64}$$

(ロ) 原動機上部軸受部の発生荷重

$$W" = \frac{3 \cdot E_{m}' \cdot I_{m}' \cdot \delta_{b}}{x_{b}'}$$

$$\stackrel{\sim}{\sim}$$
 $\stackrel{\sim}{\sim}$ $\stackrel{\sim}$

4. 評価条件

(1) 構造強度評価の評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-9 に示す。

表 4-1 評価条件

	• • •		
q	G	ΔΡ <mark>max</mark>	W_{M}
$(\mathrm{N/m^2})$	(-)	(N/m^2)	(N)
5189	1.0	7500	

表 4-2 評価条件(原動機取付ボルト)

施設名称	С	h	Mc p	m	D	Ср
	(-)	(mm)	(N • mm)	(kg)	(mm)	(-)
RSWポンプ	1.2	1348. 5	2744820	6400	940	0.06
HPSWポンプ	1.2	577	271304	963	600	0.06

施設名称	$A_{ m b}$ (mm 2)	n f (-)	n (-)	A (<mark>m²</mark>)	ボルト サイズ
RSWポンプ	453	8	8	5. 6	M24
HPSWポンプ	315	8	8	1. 23	M20

表 4-3 評価条件(ポンプ取付ボルト)

歩 乳 夕 升	С	h	Мср	m	D	Ср
施設名称	(-)	(mm)	(N • mm)	(kg)	(mm)	(-)
RSWポンプ	1. 2	2091	7662173	16600	1460	0.06
HPSWポンプ	1. 2	1103	1169919	4933	1030	0.06

施設名称	Аь (mm²)	n f (-)	n (-)	A (m²)	ボルト サイズ
RSWポンプ	1018	12	12	7. 62	M36
HPSWポンプ	707	12	12	2. 25	M30

表 4-4 評価条件(基礎ボルト)

施設名称	С	h	Мср	m	D	Ср
旭 放 名 你	(-)	(mm)	(N • mm)	(kg)	(mm)	(-)
RSWポンプ	1. 2	2091	7372672	17730	1760	0.06
HPSWポンプ	1. 2	1103	1276651	5525	1360	0.06

施設名称	$A_{ m b}$ (mm 2)	n f (-)	n (-)	A (<mark>m²</mark>)	ボルト サイズ
RSWポンプ	1018	8	8	7. 62	M36
HPSWポンプ	707	8	8	2. 25	M30

表 4-5 評価条件(原動機フレーム)

施設名称	C ₁ (-)	C ₂ (-)	h g (mm)	A ₁ (m ²)	A ₂ (m ²)
RSWポンプ	2.4	1. 2	1025	2. 793	1. 269
HPSWポンプ	1.2	-	458	1. 23	-

施設名称	D (mm)	h w (mm)
RSWポンプ	820	10
HPSWポンプ	500	6

表 4-6 評価条件 (端子箱の取付ボルト)

施設名称	C ₁	h g	L 1	L g	A1
	(-)	(mm)	(mm)	(mm)	(m^2)
RSWポンプ	2. 1	356	250	124	0. 6593
HPSWポンプ	2. 4	210. 5	170	140	0.43

施設名称	Аь (mm²)	n f (-)	n (-)	m (kg)	ボルト サイズ
RSWポンプ	113. 1	3	8	144	M12
HPSWポンプ	201. 1	2	4	80	M16

表 4-7 評価条件(通風ダクトの取付ボルト)

ſ	C ₁	C 2	A1	A_2	h g	L 1
	(-)	(-)	(m^2)	(m^2)	(mm)	(mm)
	2.4	1. 2	0. 5256	0. 5495	788	850

L 2	L 3	L 4	L 5	L 6	L 7
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
743	637	531	425	319	213

L8	Аь	n f	n	ボルト
(mm)	(mm ²)	(-)	(-)	サイズ
107	78. 5	4	40	M10

表 4-8 評価条件(空気冷却器の取付ボルト)

C 1	C 2	A 1	A 2	h g	L 1
(-)	(-)	(m^2)	(m^2)	(mm)	(mm)
2. 1	1. 2	0. 5657	0	273	890
L 2	L 3	L 4	L 5	L 6	L 7
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
775	665	555	445	335	225
L 8	Аь	n f	n	ボルト サイズ	
(mm)	(mm^2)	(-)	(-)	サイズ	
115	78. 5	2	40	M10	

表 4-9 評価条件 (エンドカバーの取付ボルト)

С	A	N	Р	D	n
(-)	(mm^2)	(rpm)	(kw)	(mm)	(-)
1. 2	0. 1	1200	75	497	2

Аь	ボルト
(mm^2)	サイズ
50. 27	M8

(2) 動的機能維持評価の評価条件

「3. 強度評価方法」に用いる評価条件を表 4-10~表 4-14 に示す。

表 4-10 評価条件(たわみ量の算出)

q	G	Δ P <mark>max</mark>	W_{M}	温度
(N/m^2)	(-)	(Pa)	(N)	(℃)
5189	1.0	7500		50

表 4-11 評価条件 (原動機下部軸受部 (たわみ量の算出))

施設名称	変位量計算	hı'	h 2'	a 1	a 2
旭 放 名	モデルの材質	(mm)	(mm)	(mm)	(mm)
RSWポンプ	SM400A	641	491	1415	150
	SM400B	041			
HPSWポンプ	SS400	F.1	99. 5	1050	150 5
	SM400B	51	99. 5	1052	150. 5

松乳友轮	Ер	Ιp	Ет	Ιm
施設名称	(MPa)	(mm^4)	(MPa)	(mm^4)
RSWポンプ	201000	9.799×10^9	201000	3.837×10^9
HPSWポンプ	201000	2.429×10^9	201000	5.480×10^{8}

表 4-12 評価条件 (原動機下部軸受部 (発生荷重の算出))

+/-=n h 14-	発生荷重計算	Em'	I m'	X a	δа
施設名称	モデルの材質	(MPa)	(mm^4)	(mm)	(mm)
RSWポンプ	S25C	201000	2.485×10^7	1565	0.06
HPSWポンプ	S35C	200000	1.553×10^6	1202.5	0.021

表 4-13 評価条件(原動機上部軸受部(たわみ量の算出))

施設名称	変位量計算	hз'	a 3	Ет	Ιm
	モデルの材質	(mm)	(mm)	(MPa)	(mm^4)
RSWポンプ	SM400A	0	641	201000	3.837×10^9
HPSWポンプ	SS400	0	51	201000	5. 480×10^8

表 4-14 評価条件 (原動機上部軸受部 (発生荷重の算出))

施設名称	発生荷重計算	Ет,	I m'	хь,	δь
-	モデルの材質	(MPa)	(mm^4)	(mm)	(mm)
RSWポンプ	S25C	201000	2.485×10^7	1657	0. 113
HPSWポンプ	S35C	200000	1.553×10^6	762. 5	0.023

5. 強度評価結果

(1) 衝突評価結果

竜巻発生時の砂利の貫通限界厚さを表 5-1 に示す。砂利の貫通限界厚さ (1.0 mm) と海水ポンプの外殻を構成する部材の厚さとの比較を表 5-2 に示す。砂利の貫通限界厚さは,海水ポンプの外殻を構成する部材の厚さ未満である。

表 5-1 砂利の貫通限界厚さ

X · I · · · · · · · · · · · · · · · · ·			
	Т		
飛来物	(mn	1)	
	水平方向	鉛直方向	
砂利	1.0	1.0	

表 5-2 外部事象防護対象施設の衝突評価結果(砂利)

外部事象防護対象施設	T (mm)	外殻を構成する部材の厚さ (mm)	結果
RSWポンプ (スペースヒータ端子箱)	1. 0	1.2	貫通しない
HPSWポンプ (防滴カバー)	1.0	2. 0	貫通しない

(2) 構造強度評価結果

a. 原動機取付ボルト

竜巻発生時の構造強度評価結果を表 5-3 に示す。

原動機取付ボルトに発生する応力は、許容応力以下である。

表 5-3 評価結果 (原動機取付ボルト)

+h-=n h ±h-	卡	複合荷重WT2による応力	許容応力
施設名称	応力分類	(MPa)	(MPa)
	引張	40	153
RSWポンプ	せん断	16	118
	組合せ	40	153
	引張	9	153
HPSWポンプ	せん断	5	118
	組合せ	9	153

b. ポンプ取付ボルト

竜巻発生時の構造強度評価結果を表 5-4 に示す。 ポンプ取付ボルトに発生する応力は、許容応力以下である。

表 5-4 評価結果 (ポンプ取付ボルト)

施設名称	応力分類	複合荷重WT2による応力 (MPa)	許容応力 (MPa)
	引張	9	153
RSWポンプ	せん断	7	118
	組合せ	9	153
	引張	1	153
HPSWポンプ	せん断	3	118
	組合せ	1	153

c. 基礎ボルト

竜巻発生時の構造強度評価結果を表 5-5 に示す。 基礎ボルトに発生する応力は、許容応力以下である。

表 5-5 評価結果(基礎ボルト)

施設名称	応力分類	複合荷重WT2による応力	許容応力
旭政石你	心刀刀規	(MPa)	(MPa)
	引張	5	153
RSWポンプ	せん断	10	118
	組合せ	5	153
	引張	_	153
HPSWポンプ	せん断	4	118
	組合せ	_	153

d. 原動機フレーム

竜巻発生時の構造強度評価結果を表 5-6 に示す。 原動機フレームに発生する応力は、許容応力以下である。

表 5-6 評価結果 (原動機フレーム)

施設名称	応力分類	複合荷重WT2による応力 (MPa)	許容応力 (MPa)
RSWポンプ	引張	16	102
HPSWポンプ	りが	7	95

e. 端子箱の取付ボルト

竜巻発生時の構造強度評価結果を表 5-7 に示す。 端子箱の取付ボルトに発生する応力は、許容応力以下である。

表 5-7 評価結果 (端子箱の取付ボルト)

施設名称	応力分類	複合荷重WT2による応力 (MPa)	許容応力 (MPa)
	引張	20	153
RSWポンプ	せん断	11	118
	組合せ	20	153
	引張	17	158
HPSWポンプ	せん断	9	122
	組合せ	17	158

f. 通風ダクトの取付ボルト

竜巻発生時の構造強度評価結果を表 5-8 に示す。

通風ダクトの取付ボルトに発生する応力は、許容応力以下である。

表 5-8 評価結果 (通風ダクトの取付ボルト)

応力分類	複合荷重W T2 による応力	許容応力
心力分類	(MPa)	(MPa)
引張	12	153
せん断	5	118
組合せ	12	153

g. 空気冷却器の取付ボルト

竜巻発生時の構造強度評価結果を表 5-9 に示す。

空気冷却器の取付ボルトに発生する応力は、許容応力以下である。

表 5-9 評価結果 (空気冷却器の取付ボルト)

応力分類	複合荷重WT2による応力 (MPa)	許容応力 (MPa)
引張	5	153
せん断	3	118
組合せ	5	153

h. エンドカバーの取付ボルト

竜巻発生時の構造強度評価結果を表 5-10 に示す。

エンドカバーの取付ボルトに発生する応力は、許容応力以下である。

表 5-10 評価結果 (エンドカバーの取付ボルト)

応力分類	複合荷重WT2による応力 (MPa)	許容応力 (MPa)
せん断	34	122

(3) 動的機能維持評価結果

a. 原動機下部軸受部

竜巻発生時の動的機能維持評価結果を表 5-11 に示す。 原動機下部軸受部の発生荷重は、許容荷重以下である。

表 5-11 評価結果 (原動機下部軸受部)

施設名称	発生荷重 (N)	許容荷重 (N)
RSWポンプ	235	
HPSWポンプ	12	

b. 原動機上部軸受部

竜巻発生時の動的機能維持評価結果を表 5-12 に示す。 原動機上部軸受部の発生荷重は、許容荷重以下である。

表 5-12 評価結果 (原動機上部軸受部)

施設名称	発生荷重 (N)	許容荷重 (N)
RSWポンプ	373	
HPSWポンプ	48	