島根原子力発電所第2号機 審査資料		
資料番号	NS2-添 2-003-02 改 01	
提出年月日	2022 年 5 月 26 日	

VI-2-3-2-1 燃料集合体の耐震性についての計算書

2022年5月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

1. 概要
2. 一般事項 ······ 2
2.1 構造計画 ····································
2.2 評価方針 ····································
2.3 適用規格・基準等 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.4 記号の説明 ・・・・・・・・・
2.4.1 9×9燃料 (A型) ······5
2.4.2 9×9燃料(B型) ······7
3. 燃料集合体の地震応答解析
4. 地震時の制御棒挿入性試験検討 · · · · · · · · · · · · · · · · · · ·
5. 地震時の燃料被覆管の応力評価
5.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.2 燃料被覆管の応力評価における評価部位 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
5.3 評価対象燃料の炉内滞在期間と評価に用いる許容応力 ・・・・・・・・・・・・・・・ 15
5.4 スペーサ間及びスペーサ部の燃料被覆管の応力評価 ・・・・・・・・・・・・・・・・・・・・・15
5.4.1 スペーサ間及びスペーサ部の応力評価に用いる地震加速度及び相対変位・・・・・ 15
5.4.2 地震時のスペーサ間及びスペーサ部の応力評価の方法・・・・・・・・・・・・・15
5. 4. 3 <mark>評価結果</mark> · · · · · · · · · · · · · · · · · · ·
5.5 下部端栓溶接部の燃料被覆管の応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
5.5.1 下部端栓溶接部の応力評価に用いる地震加速度及び相対変位・・・・・・・・・・ 17
5.5.2 地震時の下部端栓溶接部の応力評価の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.5.3 下部端栓溶接部の疲労評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.5.4 <mark>評価結果</mark> ····································
5.6 <mark>まとめ</mark> ····································
6. 引用文献 ····································

付録 1	応力計算結果の応力分類処理方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5 <mark>5</mark>

1. 概要

本計算書は、燃料集合体の耐震性について示すものである。

地震時において燃料集合体に要求されるのは、制御棒の挿入機能の確保,崩壊熱除去可能な形 状の維持及び燃料被覆管の閉じ込め機能の維持である。

制御棒の挿入機能の確保については,原子力発電所耐震設計技術指針 重要度分類・許容応力 編 JEAG4601・補-1984((社)日本電気協会)に従って,地震時における制御棒の挿入 性についての検討を行い,基準地震動Ssに対し制御棒の挿入性が確保されることを,VI-2-6-2-1「制御棒の耐震性についての計算書」にて説明する。

崩壊熱除去可能な形状の維持については、VI-2-3-2-2「炉心支持構造物の耐震性についての計 算書」にてその詳細を示すとおり、燃料集合体を支持している炉心支持構造物が耐震設計上の重 要度分類Sクラスで設計され、その支持機能は地震時においても維持されるので、崩壊熱除去可 能な形状は維持されると考えられる。燃料被覆管自体の損傷は必ずしも崩壊熱除去可能な形状の 喪失を意味するわけではないが、ここではVI-2-1-9「機能維持の基本方針」にて設定している構 造強度の設計方針に基づき、燃料被覆管の地震時応力を弾性解析によって求め、燃料被覆管が健 全であり、崩壊熱除去可能な形状が維持されることを確認する。

燃料被覆管の閉じ込め機能の維持については,通常運転時の状態で燃料被覆管に作用する荷重 及び運転時の異常な過渡変化時の状態のうち地震によって引き起こされるおそれのある事象によ って燃料被覆管に作用する荷重と地震力を組み合わせても,燃料被覆管に発生する応力が放射性 物質の閉じ込め機能に影響しないことを確認する。

2. 一般事項

2.1 構造計画

燃料集合体の構造計画を表 2-1 に示す。

計画	の概要	
基礎・支持構造	主体構造	
炉心は最外周部の一部を	9×9燃料(A型)の燃料	燃料集合体 上部格子板
除き十字型制御棒とそれ	集合体*2は74本の燃料棒	
を囲む4体の燃料集合体	と2本のウォータロッド	チャンネル
を1セルとして構成され	を, 9×9燃料(B型)*3	
る。	の燃料集合体は 72 本の燃	
燃料集合体の下部は下部	料棒と1本のウォータチャ	
タイプレートの着座面が	ンネルを,それぞれ9×9	
炉心支持板上の燃料支持	の正方格子に配列して7個	
金具に嵌合して支持さ	のスペーサにより束ね, そ	
れ、上部はセルを構成す	れらの上下端が上部タイプ	
る燃料集合体が上部格子	レート及び下部タイプレー	炉心支持板
板内で水平方向に支持さ	トと嵌合することにより形	
れる。	成される。 9×9燃料(A	
上下部タイプレート,ス	型)の 74 本の燃料棒のう	下が なく ディー 株料支持金具
ペーサ,ウォータロッド	ち,8本は長さの短い部分	ト部タイノレート パリスリエハ
(又はウォータチャンネ	長燃料棒であり、これらは	
ル)及びタイロッドは結	5個のスペーサにより束	
合又は支持により骨格を	ね、部分長燃料棒下部を下	D WF YOY
形成する。燃料集合体の	部タイプレートにねじ留め	
上下方向は, タイロッド	する。	
を下部タイプレートにね	燃料集合体を炉心に装荷す	AT TA
じ留めするとともに上部	る際には、外側にはチャン	
タイプレートにナット留	ネルボックスをはめる。	XX-+
めすることで結合してい		燃料棒
る。4体の燃料集合体の		ウォータロッド
外側にはめたチャンネル		チャンネルボックス
ボックスの外面が制御棒*		
「の通路を構成する。		
		下部タイプレート

表 2-1 燃料集合体の構造計画

注記*1:制御棒の構造計画の詳細は、VI-2-6-2-1「制御棒の耐震性についての計算書」に示す。

*2:9×9燃料(A型)燃料集合体の詳細図を図2-1に示す。

*3:9×9燃料(B型)燃料集合体の詳細図を図2-2に示す。

燃料集合体には9×9燃料(A型)と9×9燃料(B型)があり,9×9燃料(A型)には2 本の太径のウォータロッドがあるが,9×9燃料(B型)は1本の角管のウォータチャンネルが あり,また,9×9燃料(A型)のみに部分長燃料棒が存在するといった違いがある。 2.2 評価方針

地震時において燃料集合体に要求されるのは、制御棒の挿入機能の確保,崩壊熱除去可能な 形状の維持及び燃料被覆管の閉じ込め機能の維持であり、地震時においてチャンネルボックス に要求されるのは、制御棒の挿入機能の確保である。

制御棒の地震時挿入性の評価については、炉心を模擬した実物大の部分モデルによる加振時 制御棒挿入試験結果から挿入機能に支障を与えない燃料集合体の最大相対変位を求め、地震応 答解析から求めた燃料集合体の最大応答相対変位がその燃料集合体の最大相対変位を下回るこ とを確認する。制御棒の地震時挿入性の評価は、VI-2-6-2-1「制御棒の耐震性についての計算 書」に示す。

崩壊熱除去可能な形状の維持については,燃料集合体を支持している炉心支持構造物の支持 機能が維持され,燃料被覆管の一次応力により構造的に崩壊するような状態となることを防ぐ ことで崩壊熱除去可能な形状は維持されると考えられる。燃料被覆管自体の損傷は必ずしも崩 壊熱除去可能な形状の喪失を意味するわけではないが,保守的に燃料被覆管の地震時応力を弾 性解析で求め,原子力発電所耐震設計技術指針JEAG4601-1991追補版((社)日本電気 協会)に規定されている評価基準に従い許容限界以下であることを確認する。

燃料被覆管の地震時応力は,運転時(通常運転時及び地震によって引き起こされるおそれの ある過渡変化時)に燃料被覆管に作用している荷重と地震力を組み合わせて評価する。また, 運転中に燃料に生じる燃料被覆管の腐食等の照射の影響を考慮して,燃料被覆管の地震時応力 を求める。

燃料被覆管の閉じ込め機能の維持については,運転時と地震時に燃料被覆管に作用する荷重 を組み合わせても,燃料被覆管の応答がおおむね弾性状態にとどまり,燃料被覆管に発生する 応力が許容限界以下であること,地震時の繰返し荷重により燃料被覆管に応力振幅が作用して も疲労破壊しないことを確認する。

地震時の燃料被覆管の耐震評価フローを、図2-3に示す。

崩壊熱除去可能な形状の維持に関する燃料集合体の耐震評価の方法は、平成16年11月9日 付け平成16・08・05原第32号にて認可された工事計画の実績に基づいている。

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針重要度分類・許容応力編 JEAG4601・補-1984 ((社) 日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下「設計・建設規格」という。)

2.4 記号の説明

2.4.1	9×9燃料	(A型)
-------	-------	------

記号	記号の説明	単位
А	スペーサの接触力に基づく応力計算に用いる定数	_
P _c	冷却材圧力	MPa
P _g	燃料棒内压*1	MPa
r 1	燃料被覆管の外半径*2	mm
r ₂	燃料被覆管の内半径*2	mm
r m	燃料被覆管の平均半径*2	mm
t	燃料被覆管の肉厚*2	mm
d	燃料被覆管の楕円度	mm
q _{с г}	燃料被覆管の臨界座屈荷重	MPa
f	スペーサ接触力	Ν
α	燃料被覆管の熱膨張率	$^{\circ}C^{-1}$
Е	燃料被覆管の縦弾性係数	MPa
ν	燃料被覆管のポアソン比	—
Q	スペーサ間距離	mm
δ	水力振動による燃料棒の振幅	mm
T ₀	燃料被覆管の外面温度	°C
Δ T $_1$	燃料被覆管の内外面温度差	°C
Δ T $_2$	燃料被覆管の円周方向温度差	°C
F	膨張スプリング等による軸方向荷重に基づき燃料棒に作用する力	Ν
G h	地震時の水平方向最大加速度	m/s^2
G v	地震時の鉛直方向最大加速度	m/s^2
W r	燃料棒の全質量	kg
W s	スペーサ間距離当たりの燃料棒質量	kg
Ζ	燃料被覆管の断面係数*2	mm ³
L	燃料棒の全長	mm
Y	地震時の燃料集合体の最大変位	mm
$\Delta \sigma$	地震期間中の繰返し荷重による応力振幅(応力強さの振幅)	MPa
Ν	Δ σ に対応するジルカロイの設計疲労曲線の許容サイクル数	旦
n	地震力の繰返し回数	回
Sу	燃料被覆管(ジルカロイ)の降伏応力*3	MPa
S u	燃料被覆管(ジルカロイ)の引張強さ*3	MPa

注記	*	1
----	---	---

: *****2:燃料被覆管の 照射に伴う腐食減肉を考慮。

*3:燃料被覆管の温度及び照射の効果を考慮。

2.4.2 9×9燃料(B型)

記号	記号の説明	単位
P i	燃料棒内圧	MPa
P _o	冷却材圧力	MPa
r _i	燃料被覆管の内半径*1	mm
r _o	燃料被覆管の外半径*2	mm
r m	燃料被覆管の平均半径*2	mm
D _o	燃料被覆管の外径*2	mm
D _i	燃料被覆管の内径*1	mm
t	燃料被覆管の肉厚*2	mm
ν	燃料被覆管のポアソン比	—
E	燃料被覆管の縦弾性係数	MPa
Ι	燃料被覆管の断面二次モーメント	mm^4
ω	燃料被覆管の楕円度	mm
Рсг	燃料被覆管の臨界座屈荷重	MPa
1	スペーサ間距離	mm
А	水力振動による燃料棒の振幅	mm
L	燃料棒の全長	mm
W _o	燃料要素单位長質量*3	kg/mm
W	実際の燃料要素単位長質量	kg/mm
g	重力加速度 <mark>(=9.80665)</mark>	m/s^2
G h	地震時の水平方向最大加速度	m/s^2
G v	地震時の鉛直方向最大加速度	m/s^2
Y	地震時の燃料集合体の最大変位	mm
$C_1 \sim C_7$	定数	_
Т	燃料被覆管温度	°C
ΔΤ	燃料被覆管の内外面温度差	°C
$\Delta~{ m T}_{ m i}$	燃料被覆管の内面周方向最大温度差	°C
Δ T $_{\rm o}$	燃料被覆管の外面周方向最大温度差	°C
δ	燃料被覆管の外径と内径の比	—
lpha r	燃料被覆管の半径方向熱膨張係数	$^{\circ}C^{-1}$
lpha z	燃料被覆管の軸方向熱膨張係数	$^{\circ}C^{-1}$
Р	燃料要素と支持格子の接触力	Ν
N $_1$	燃料体当たりの支持格子数	_
N $_2$	タイロッド燃料要素数	_

記号	記号の説明	
N ₃	標準燃料要素数	-
μ	支持格子-燃料要素間の摩擦係数	—
S	燃料被覆管断面積	mm^2
F i	プレナムスプリング力	Ν
F _e	膨張スプリング力	Ν
Sу	燃料被覆管(ジルカロイ)の降伏応力*4	MPa
S u	燃料被覆管(ジルカロイ)の引張強さ*4	MPa

注記*1:燃料被覆管の *2:燃料被覆管の

, 照射に伴う腐食減肉を考慮。

*3:鉛直地震加速度に基づく応力は、地震時鉛直方向最大加速度を見かけの質量増加として 扱い、燃料要素単位長質量W。で考慮している。

*4:燃料被覆管の温度及び照射の効果を考慮。

図 2-1 9×9 燃料(A型) 燃料集合体の詳細図

図 2-2 9 × 9 燃料(B型) 燃料集合体の詳細図

図 2-3 地震時の燃料被覆管の耐震評価フロー

3. 燃料集合体の地震応答解析

燃料集合体の地震応答解析は原子炉圧力容器内部構造物の一部として実施されており、この詳細はVI-2-2-1「炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の基礎の地震応答計算書」に示されている。

燃料集合体の剛性はチャンネルボックスにより支配され、燃料集合体の質量は燃料タイプによ らずほぼ同等であることから、燃料集合体の地震応答は燃料タイプによらず、この燃料集合体の 地震応答解析結果が適用可能である。設計用地震波としては、基準地震動Ss及び弾性設計用地 震動Sdを適用することとし、設計用地震力はVI-2-1-7「設計用床応答スペクトルの作成方針」 に基づき設定する。

応答解析は、時刻歴応答解析法を適用して建屋のNS及びEWの水平方向並びに鉛直方向について、基本ケースの他に材料物性の不確かさ等を考慮した解析も実施している。

地震時に燃料集合体に要求される制御棒挿入性,崩壊熱除去可能な形状維持及び燃料被覆管の 閉じ込め機能の維持の評価においては,基本ケースの最大応答相対変位及び最大応答加速度に対 し,材料物性の不確かさ等を考慮した最大応答相対変位35.0mm(Ss),33.9mm(Sd),最大水 平加速度40.2m/s²(Ss),38.9m/s²(Sd)及び最大鉛直加速度15.1m/s²(Ss),7.6m/s²(S d)を用いる。また,下部端栓溶接部の応力評価では,水平地震加速度として下部端栓溶接部直 上の下部タイプレートースペーサ間の燃料棒に作用する水平加速度の最大値21.7m/s²(Ss), 21.6m/s²(Sd)を用いる。 4. 地震時の制御棒挿入性試験検討

地震時における制御棒挿入性についての検討方法は、3章で設定した最大応答相対変位35.0mm が、制御棒挿入性試験にて確認された挿入機能に支障を与えない最大燃料集合体変位を下回るこ とを確認する。

VI-2-6-2-1「制御棒の耐震性についての計算書」にその詳細を示すとおり制御棒挿入機能は確保される。

- 5. 地震時の燃料被覆管の応力評価
- 5.1 荷重の組合せ及び許容応力状態

地震時に燃料集合体に要求される崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機 能の維持に関する燃料被覆管の応力評価は,表5-1及び表5-2に示す荷重の組合せにより燃 料被覆管に発生する応力を弾性解析で求める。表5-1及び表5-2の地震荷重Sd*及びSs 以外の荷重については,通常運転時及び地震によって引き起こされるおそれのある過渡事象と して炉心出力が上昇する(出力過渡)事象及び炉心圧力が上昇する(圧力過渡)事象において 燃料集合体に作用する荷重を考慮する。また,地震荷重Sd*は,弾性設計用地震動Sdによる 地震力又は静的地震力のいずれか大きい方の地震荷重であるが,本評価では静的地震力より大 きい弾性設計用地震動Sdによる地震力が対象となる。表5-1及び表5-2のそれぞれの評価 で対象とする応力分類について,せん断歪エネルギ説(von Mises 理論)に基づく相当応力を 計算し,当該の許容応力に対する比(設計比)を評価する。

(1) 崩壊熱除去可能な形状の維持に関する応力評価

崩壊熱除去可能な形状の維持に関する応力評価では、表 5-1 に示すように、原子力発 電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)に基づき一 次応力を対象として、許容応力0.7・Suに対する設計比を評価する。崩壊熱除去可能な 形状の維持に用いる手法は、平成16年11月9日付け平成16・08・05原第32号にて認可 された工事計画の実績に基づいている。

(2) 燃料被覆管の閉じ込め機能の維持に関する応力評価

燃料被覆管の閉じ込め機能の維持に関する応力評価では、表 5-2 に基づき、静的地震 力より大きい弾性設計用地震動Sdにおける荷重条件に対して燃料被覆管がおおむね弾性 状態にとどまること、基準地震動Ssにおける荷重条件に対して破断延性限界に余裕を有 していることを確認するため、一次応力+二次応力を対象として、許容応力として弾性設 計用地震動Sdに対してSy、基準地震動Ssに対してSuを適用し、設計比を評価す る。

5.2 燃料被覆管の応力評価における評価部位

地震時の崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持に関する燃料被 覆管の応力評価では、2.1 節に記載した燃料集合体内の燃料棒の構造より、スペーサ間及びス ペーサ部、並びに下部端栓溶接部(閉じ込め機能維持の評価のみ)について評価を行う。ここ で、スペーサ間及びスペーサ部では、ジルカロイ-2 製の燃料被覆管の内面にジルコニウムが内 張り(ジルコニウムライナ)されているが、

としており、ジルカロイ-2 部が応力評価の対象となる。また、下部端栓の材料は燃料被覆管と同じジルカロイ-2 であり、下部端栓と燃料被覆管の突合せ部は溶加材を用いない TIG 溶接により溶接されており、ジルカロイ-2 部が応力評価の対象となる。 5.3 評価対象燃料の炉内滞在期間と評価に用いる許容応力

炉内には炉内滞在期間の異なる種々の燃料が混在しているが、地震時の燃料被覆管応力評価 では、それらの燃料から炉内滞在期間が0年、2.2年、8.0年の燃料で代表させて、それぞれ寿 命初期、寿命中期、寿命末期として、燃料棒熱・機械設計解析により個々の応力評価部位の解 析条件を設定する。また、応力評価の対象であるジルカロイ-2の許容応力には、個々の応力評 価部位における燃料被覆管の温度及び照射の影響を考慮して、図5-1から図5-6の設計値を 用いる。

- 5.4 スペーサ間及びスペーサ部の燃料被覆管の応力評価
- 5.4.1 スペーサ間及びスペーサ部の応力評価に用いる地震加速度及び相対変位

地震時におけるスペーサ間及びスペーサ部の応力評価では,燃料集合体の相対変位(閉じ 込め機能維持の評価のみ),燃料集合体に作用する水平地震加速度及び鉛直地震加速度とし て,3章で設定した35.0mm,40.2m/s²及び15.1m/s²(Ss)並びに33.9mm,38.9m/s²及び 7.6m/s²(Sd)を用いる。

崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持に関するスペーサ間 及びスペーサ部の応力評価に用いる地震加速度及び燃料集合体の相対変位等の解析条件を 表 5-3(1)及び表 5-4(1),スペーサ間及びスペーサ部の応力評価に用いる数値又は数式を 表 5-3(2)及び表 5-4(2)に示す。

5.4.2 地震時のスペーサ間及びスペーサ部の応力評価の方法

地震時におけるスペーサ間及びスペーサ部の応力評価に用いる解析コードは9×9型(A型)については「FURST」, 9×9型(B型)については「BSPAN2」により実施する。

なお,評価に用いる解析コードの検証及び妥当性確認等の概要については, VI-5「計算機 プログラム(解析コード)の概要」に示す。

地震時のスペーサ間及びスペーサ部の応力評価のフローを図 5-7に,その詳細を以下に 示す。

(1) 応力の計算

応力計算は、以下の(2)に示すように、通常運転時及び地震によって引き起こされるお それのある過渡時の応力に地震により発生する応力を加え合せて三軸方向(半径方向,円 周方向及び軸方向)について解析し、それらより相当応力を計算する。

(2) 発生応力

通常運転時及び過渡時並びに地震時に発生する応力として,表 5-5 を考慮する。 燃料被覆管に発生する各応力については,燃料被覆管を厚肉円筒と見なし,複数のスペ ーサで支持された燃料棒を梁と見なして個々の応力の計算式を設定している。燃料被覆管 に発生する応力の計算式を表 5-6 及び表 5-8,燃料被覆管に発生する応力の模式図を図 5-8 及び図 5-9 に示す。また、地震時の崩壊熱除去可能な形状の維持及び燃料被覆管の 閉じ込め機能の維持に関するスペーサ間及びスペーサ部の地震時の応力評価における応力 の組合せを、表 5-7 及び表 5-9 に示す。

(3) 設計比の評価

設計比の評価では、燃料被覆管温度、燃料棒内圧、炉心条件、燃料棒寸法及び許容応力の統計的分布を考慮し、モンテカルロ法により統計評価を行う。ここで、燃料被覆管温度及び燃料棒内圧については、9×9型(A型)は燃料棒熱・機械設計コード「PRIM E」(引用文献(1),(2)参照)、9×9型(B型)は燃料棒熱・機設計コード「CARO」 (引用文献(3)参照)による解析結果をそれぞれ用いる。

なお,燃料被覆管温度及び燃料棒内圧の評価に用いる解析コードの検証及び妥当性確認 等の概要については, VI-5「計算機プログラム(解析コード)の概要」に示す。

モンテカルロ法による評価では、1回の試行ごとに乱数を用い、統計的分布に従い設定 される入力条件から1つの設計比が得られる。この試行を繰り返すことにより設計比の統 計的分布を求め、設計比の95%確率上限値が1以下であることをもって、燃料集合体の 耐震性を確認する。

5.4.3 評価結果

崩壊熱除去可能な形状及び燃料被覆管の閉じ込め機能が維持されることを確認するため, 通常運転時及び地震によって引き起こされるおそれのある過渡変化時に燃料被覆管に作用 する荷重に加えて,地震時における水平地震加速度,燃料集合体相対変位(燃料被覆管の閉 じ込め機能の維持の評価のみに使用)及び鉛直地震加速度を考慮した燃料被覆管応力評価 を実施する。

(1) 崩壊熱除去可能な形状の維持に関する応力評価

VI-2-3-2-2「炉心支持構造物の耐震性についての計算書」にてその詳細を示すとおり, 燃料集合体を支持している炉心支持構造物は,地震時にもその支持機能は維持されるの で,崩壊熱除去可能な形状は維持されると考えられる。崩壊熱除去可能な形状の維持につ いてはさらに,基準地震動Ss及び弾性設計用地震動Sdによる地震力並びに静的地震力 に対し崩壊熱除去可能な形状が維持されることを確認するため,燃料被覆管の地震時応力 を弾性解析によって求めた結果,設計比の95%確率上限値が1を下回る結果を得た。

地震時の崩壊熱除去可能な形状の維持に関する応力評価の結果を,表 5-10 及び表 5-11 に示す。

(2) 燃料被覆管の閉じ込め機能の維持に関する応力評価

燃料被覆管の閉じ込め機能が維持されることを確認するため、基準地震動Ssによる地 震力に対して許容応力をSu,弾性設計用地震動Sdによる地震力に対して許容応力をS

RO

yとして燃料被覆管の地震時応力を弾性解析によってそれぞれ求めた結果,設計比の 95%確率上限値が1を下回る結果を得た。

地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価の結果を,表 5-12 及び表 5-13 に示す。

- 5.5 下部端栓溶接部の燃料被覆管の応力評価
- 5.5.1 下部端栓溶接部の応力評価に用いる地震加速度及び相対変位

地震時における下部端栓溶接部の応力評価では、燃料集合体相対変位、燃料集合体に作用 する水平地震加速度及び鉛直地震加速度として、3 章で設定した 35.0mm、21.7m/s²及び 15.1m/s²(Ss)並びに 33.9mm、21.6m/s²及び 7.6m/s²(Sd)を用いる。なお、水平地震 加速度 21.7m/s²(Ss)及び 21.6m/s²(Sd)は、下部端栓溶接部直上の下部タイプレート ースペーサ間の燃料棒に作用する水平加速度である。

5.5.2 地震時の下部端栓溶接部の応力評価の方法

地震時における下部端栓溶接部の応力評価は,端栓溶接部の形状が複雑なため有限要素 法による汎用の解析コード「ANSYS」を用いて発生応力を評価し,許容応力として弾性 設計用地震動SdではSy,基準地震動SsではSuに対する相当応力の比(設計比)を評 価する。

なお,評価に用いる解析コードの検証及び妥当性確認等の概要については, VI-5「計算機 プログラム(解析コード)の概要」に示す。

地震時の下部端栓溶接部の応力評価のフローを、図 5-10に示す。

(1) 下部端栓溶接部の応力評価モデル

下部端栓溶接部の応力評価では,最初に下部端栓溶接部近傍の下部端栓,燃料被覆管及 びペレットをモデル化し,有限要素法を用いた熱解析により下部端栓溶接部近傍での温度 分布を評価する。

次に,熱解析で得られた下部端栓溶接部近傍の温度分布を読み込み,熱膨張差による熱応力の分布,運転時及び地震時の荷重条件に基づき発生する応力分布を有限要素法を用いた機械解析により評価する。機械解析では,

を用いた発生応力が大きくなる解析モデルを用いている。 熱解析モデル及び機械解析モデルを,それぞれ図 5-11から図 5-13に示す。

(2) 下部端栓溶接部の熱解析での入力データ
 通常運転時及び過渡時における下部端栓溶接部近傍の温度分布を評価するため、表 5-14の項目を考慮している。

なお、解析モデル上下端は断熱の境界条件とし、ペレットー下部端栓接触面には熱抵抗

17

がないものとして,上記の保守側の入力と合わせて,下部端栓溶接部近傍の温度分布による熱応力が大きくなるような解析を実施する。

(3) 下部端栓溶接部の応力評価で考慮する荷重

通常運転時及び過渡時並びに地震時に下部端栓溶接部に作用する荷重として,表 5-15 を考慮する。なお地震時には,水平地震加速度,燃料集合体の相対変位及び鉛直地震加速 度により発生する軸方向荷重が反転することを考慮して,軸方向の引張応力及び圧縮応力 の絶対値が個々に大きくなるように組合わせた解析を実施する。

(4) 設計比の評価

設計比の評価では、燃料被覆管温度、燃料棒内圧、炉心条件、燃料棒寸法及び許容応力の統計的分布を考慮し、それぞれの95%確率上/下限値に基づき解析結果が保守側となるように設定した入力値を用いて決定論的評価を実施する。ここで、燃料被覆管温度及び燃料棒内圧については、9×9型(A型)は燃料棒熱・機械設計コード「PRIME」 (引用文献(1)、(2)参照)、9×9型(B型)は燃料棒熱・機械設計コード「CARO」

(引用文献(3)参照) による解析結果をそれぞれ用いる。

応力計算は,厳しい条件となる過渡時の炉心条件に地震による荷重を加え合せて,下部 端栓溶接部に発生する三軸方向(半径方向,円周方向及び軸方向)の応力を解析し,それ らより相当応力を計算する。また,燃料被覆管の閉じ込め機能の維持に関する評価では, 一次応力+二次応力を対象としているが,解析コード「ANSYS」での有限要素法によ る端栓溶接部の応力解析においては,応力集中によるピーク応力を含む結果となってい る。

このため,付録1に示す応力分類処理方法に従って,全発生応力から一次応力+二次応 力を分類する。

燃料被覆管の閉じ込め機能の維持に関する評価で要求されている許容応力は,弾性設計 用地震動Sdに対してSy,基準地震動Ssに対してSuであるが,それぞれの許容応力 について下部端栓溶接部の温度及び照射の影響を考慮した保守側の95%確率下限値を用 いる。

5.5.3 下部端栓溶接部の疲労評価

5.5.2項の有限要素法を用いた解析コード「ANSYS」で得られる応力集中によるピー ク応力を含む下部端栓溶接部の応力強さに基づき,地震期間中に負荷される繰返し荷重に よる燃料被覆管の疲労評価を実施する。疲労評価は一次+二次+ピーク応力を評価対象と するため、ピーク応力が発生する下部端栓溶接部を評価対象部位とする。

燃料被覆管の疲労限界に対する設計基準は、累積損傷の法則(Minerの仮説)及びLanger-0[´]Donnellの考え方に基づく。

燃料装荷から取出しまでの炉内滞在期間を8年とした炉内滞在期間中に燃料被覆管に作 用する温度,圧力及び出力の予測サイクルによる疲労に加え,地震動による繰返し荷重を考

RO

慮し,疲労累積係数が1.0以下であることを確認する。 地震時の下部端栓溶接部の疲労評価のフローを,図5-14に示す。

(1) 地震期間中の繰返し荷重による応力振幅

地震期間中に下部端栓溶接部に負荷されるピーク応力を含む応力振幅(Δσ)の評価に おいては,作用方向が反転する地震の繰返し荷重により三軸方向の応力成分の大小関係が 大きく変化するため主応力の方向が有意に変化する。このため、9×9燃料(A型)につ いては,日本産業規格JISB8266「圧力容器の構造-特定規格附属書8(規 定)圧力容器の応力解析及び疲労解析」の3.2.1 a)2)の主応力方向が変動する場合の応 力強さ振幅の算出手法に基づき,応力強さの振幅を評価する。9×9燃料(B型)につい ては,延性材料に対する評価においてよく一致することが知られているせん断歪エネルギ 説(von Mises 理論)に基づき,燃料被覆管の相当応力の振幅を評価する。

(2) ジルカロイの設計疲労曲線

燃料被覆管の疲労評価に用いるジルカロイの設計疲労曲線(引用文献(4)参照)を、図 5-15に示す。(1)の方法で評価された地震期間中の繰返し荷重による応力振幅(主応力 の方向が変化する場合の応力強さの振幅、 $\Delta \sigma$)を、図 5-15と対比することにより、許 容サイクル数(N)を求める。

(3) 地震力の繰返し回数に基づく疲労累積係数の評価

地震力の繰返し回数(n)を(2)で求めた許容サイクル数(N)で除すことにより、地 震力が繰り返された場合の疲労累積係数を評価する。なお、地震力の繰返し回数(n)に は、150回(Ss)及び300回(Sd)を用いる。

5.5.4 評価結果

燃料被覆管の閉じ込め機能が維持されることを確認するため,基準地震動Ssによる地 震力に対して許容応力をSu,弾性設計用地震動Sdによる地震力に対して許容応力をS yとして下部端栓溶接部の地震時応力を解析コード「ANSYS」で求めた結果,それぞれ 設計比が1を下回る結果を得た。

地震時における下部端栓溶接部の応力評価の結果を、表 5-16 及び表 5-17 に示す。

燃料被覆管の閉じ込め機能が維持されることを確認するため,基準地震動Ss又は弾性 設計用地震動Sdによる地震力がそれぞれ繰り返された場合の応力振幅と繰返し回数より 疲労累積係数を評価した結果,地震動による疲労累積係数増分を加えても疲労累積係数は1 を下回る結果を得た。

地震時における下部端栓溶接部の疲労評価の結果を、表 5-18 及び表 5-19 に示す。

5.6 まとめ

通常運転時及び地震によって引き起こされるおそれのある過渡変化時に燃料被覆管に作用す る荷重に加えて,水平地震加速度,燃料集合体の相対変位(閉じ込め機能維持の評価のみ)及 び鉛直地震加速度を考慮した燃料被覆管応力評価を実施した。

その結果,崩壊熱除去可能な形状の維持に関する燃料被覆管の設計比が最大となるのは寿命 初期で,その値は9×9燃料(A型)で0.40,9×9燃料(B型)で0.44であり,設計比が1 を下回っていることから,地震時にも崩壊熱除去可能な形状は維持されることを確認した。

地震時の燃料被覆管の閉じ込め機能の維持に関する燃料被覆管の設計比が最大となるのは寿 命初期であり、スペーサ間及びスペーサ部では9×9燃料(A型)で0.80、9×9燃料(B型) で0.79、下部端栓溶接部では9×9燃料(A型)で0.72、9×9燃料(B型)で0.69で、設 計比は1を下回っている。また、地震時の繰返し荷重に基づく燃料被覆管の疲労累積係数は9 ×9燃料(A型)で0.002(Ss)及び0.003(Sd)、9×9燃料(B型)で0.005(Ss)及 び0.005(Sd)であり、燃料の全寿命を通した疲労累積係数(9×9燃料(A型)で約0.003、 9×9燃料(B型)で約0.006、引用文献(5)、(6)参照)に付加しても1を下回っている。こ れらの結果より、地震時の燃料被覆管の閉じ込め機能が維持されることを確認した。

表 5-1 崩壊熱除去可能な形状維持の評価で考慮する荷重の組合せ及び許容限界

荷重の組合せ	許容応力	許容限界	
	状態	一次応力	
$D+P+M+S d^*$	III _A S		
D+P+M+S s	IV _A S	$0.7 \cdot S u^{+1} + 2$	

注記*1: せん断ひずみエネルギ説に基づく相当応力に対して評価する。

*2:使用温度及び照射の効果を考慮して許容値を設定する。

表 5-2 閉じ込め機能維持の評価で考慮する荷重の組合せ及び許容限界

荷重の組合せ	許容応力	許容限界 <mark>*4</mark>	
	状態	一次+二次応力	一次+二次+ピーク応力
$D+P+M+S d^*$	III _A S	S y *1, *2	Sd又はSs地震動のみによる*3
D+P+M+S s	IV _A S	S u *1, *2	疲労解析を行い,運転状態Ⅰ,Ⅱ
			における累積疲労係数との和が
			1.0以下であること。

注記*1: せん断ひずみエネルギ説に基づく相当応力に対して評価する。

*2:使用温度及び照射の効果を考慮して許容値を設定する。

*3:運転時の異常な過渡変化時として,運転状態Ⅲの制御棒引抜きについても考慮する。

*4:「実用発電用原子炉の燃料体に対する地震の影響の考慮について(平成 29 年 2 月 15
 日,原子力規制庁)」に基づき許容限界を設定する。

表 5-3(1) スペーサ間及びスペーサ部の応力評価に用いる解析条件

解析条件
寿命初期/中期/末期
スペーサ間/スペーサ部
FURST
基準地震動Ss/弾性設計用地震動Sd
40.2 (S s) /38.9 (S d)
15.1 (S s) /7.6 (S d)
35.0 (S s) /33.9 (S d)

(9×9燃料 (A型))

注記<mark>*1:VI-2-1-7「設計用床応答スペクトルの作成方針」に基づき設定。設計用震度</mark> I (基準地震動(Ss,Sd))を上回る設計震度。

*2: VI-2-2-1「炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の 基礎の地震応答計算書」に記載の値を燃料被覆管の閉じ込め機能の維持に関 する評価にのみ使用する。

記号	単位	数値又は数式	特記事項
А	—		
P _c	MPa		圧力過渡時の冷却材圧力
P _g	MPa		燃料棒熱・機械設計解析結果
r ₁	mm	r 2+ t	
r ₂	mm		
r m	mm	(r ₁ +r ₂) /2	
t	mm		照射に伴う腐食減肉を考慮
d	mm		
q _{cr}	MPa		
f	Ν		
0	$^{\circ}$ C ⁻¹		
α	C		
Е	MPa		
ν	—		
l	mm		
δ	mm		
T 0	°C		燃料棒熱・機械設計解析結果
ΔT_1	°C		燃料棒熱・機械設計解析結果
ΔT_2	C		
F	Ν		
Wr	kø		
Ws	kg		
Z	mm ³	π (r ₁ ⁴ -r ₂ ⁴) / (4r ₁)	
L	mm	· - 2, · · · 2/	
S v	MPa	図 5-1 参照*1	燃料被覆管の温度及び照射の効果を考慮
S u	MPa	図 5-2 参照*1	燃料被覆管の温度及び照射の効果を考慮

表 5-3(2) スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 (9×9燃料(A型))

注記*1:統計分布を考慮。

*2:寿命初期,寿命中期及び寿命末期の値。

表 5-4(1) スペーサ間及びスペーサ部の応力評価に用いる解析条件

解析条件	
寿命初期/中期/末期	
スペーサ間/スペーサ部	
BSPAN2	
基準地震動S s /弾性設計用地震動S d	
40.2 (S s) /38.9 (S d)	
15.1 (S s) /7.6 (S d)	
35.0 (S s) /33.9 (S d)	

(9×9燃料 (B型))

注記<mark>*1:VI-2-1-7「設計用床応答スペクトルの作成方針」に基づき設定。設計用震度</mark> Ⅰ (基準地震動(Ss,Sd))を上回る設計震度。

*2: VI-2-2-1「炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の 基礎の地震応答計算書」に記載の値を燃料被覆管の閉じ込め機能の維持に関 する評価にのみ使用する。

記号	単位	数値又は数式	特記事項
D	MDo		燃料棒熱・機械設計解析結果
Гі	мга		
Ро	MPa		圧力過渡時の冷却材圧力
r _i	mm	D _i /2	
r _o	mm	D _o /2	
r _m	mm	$(r_{i} + r_{o})/2$	
D o	mm	D _i +2 t	
D _i	mm		
t	mm		照射に伴う腐食減肉を考慮
ν			
Е	MPa		
Ι	mm^4	$\pi (D_{o}^{4}-D_{i}^{4}) / 64$	
ω	mm		
Рсг	MPa		
1	mm		
А	mm		
L	mm		
W o	kg/mm		鉛直加速度を見かけの質量増加として考慮
W	kg/mm		
g	m/s^2	9. 80665	
C_1			
C_2	_		
С 3	_		
C_4	_		
C 5	—		
C 6			
C 7			
Т	°C		
ΔΤ	°C		
Δ T $_{\rm i}$	°C		

表 5-4(2) スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 (9×9燃料(B型))(1/2)

記号	単位	数値又は数式	特記事項
ΔTο	°C		
δ		D _o /D _i	
αr	$^{\circ}C^{-1}$		
α_z	$^{\circ}C^{-1}$		
Р	Ν		
\mathbf{N}_1			
N_2	_		
N_3			
μ			
S	mm^2	π (r _o ² -r _i ²)	
F i	Ν		
F _e	Ν		
S y	MPa	図 5-4 参照*1	燃料被覆管の温度及び照射の効果を考慮
S u	MPa	図 5-4 参照*1	燃料被覆管の温度及び照射の効果を考慮

表 5-4(2) スペーサ間及びスペーサ部の応力評価に用いる数値又は数式

(9×9燃料(B型))(2/2)

注記*1:統計分布を考慮。

*2:寿命初期,寿命中期及び寿命末期の値。

· · · · · · · · · · · · · · · · · · ·			
考慮する応力	スペーサ間	スペーサ部	条件
内外圧力差に基づく応力	0	0	
水力振動に基づく応力	0	\bigcirc^{*1}	
楕円度に基づく応力	0	0	
スペーサの接触力に基づく応力		0	这些话书中
半径方向温度差に基づく熱応力	0	0	週 吊 連 転 可
円周方向温度差に基づく熱応力	0	0	及い迴役时
膨張スプリング等による軸方向荷重に基づく応力	0	0	
ウォータチャンネルと燃料被覆管の熱膨張差によ る応力	\bigcirc^{*2}	\bigcirc^{*2}	
燃料棒のたわみに基づく応力	0	0	
チャンネルボックスのたわみに基づく応力	0	0	地震時
鉛直方向地震加速度に基づく応力	0	0	

表 5-5 燃料被覆管に発生する応力

注記*1:9×9燃料(A型)の場合に考慮。

*2:9×9燃料(B型)の場合に考慮。

表 5-6(1) スペーサ間及びスペーサ部の応力の計算式(通常運転時及び過渡時)

応力の種類	応力の成分	外面	内面
(1)内外圧力	半径方向		
差に基づく	田周方向		
応力	1 1/10/2010		
(一次応力)	軸方向		
(2)水力振動	半径方向		
に基づく応	円周方向		
力 (一次応力)	軸方向		
(3) 楕円度に	半径方向		
基づく応力 (一次応力)	円周方向		
	軸方向		
(4) スペーサ	半径方向		
の接触力に 基づく応力	円周方向		
(二次応力)	軸方向		
(5)半径方向	半径方向		
温度差に基 づく熱応力	円周方向		
(二次応力)	軸方向		
(6)円周方向	半径方向		
温度差に基	円周方向		
づく熱応力 (二次応力)	軸方向		

9×9燃料(A型)(1/2)

表 5-6(1) スペーサ間及びスペーサ部の応力の計算式(通常運転時及び過渡時)

(ά×	Q 欧彩	(Δ 开り))	(2/2)
	9 ^	9 123 124	(A空)	(Z/Z)

応力の種類	応力の成分	外面	内面
(7)膨張スプ	半径方向		
リング等に	円周方向		
よる軸方向			
荷重に基づ	軸方向		
く応力			
(一次応力)			

表 5-6(2) スペーサ間及びスペーサ部の応力の計算式(地震時)

応力の種類	応力の成分	外面	内面
(8)スペーサ間での燃料棒の	半径方向		
たわみに基づく応力	円周方向		
(一次応力)	軸方向		
(9)スペーサ部での燃料棒の	半径方向		
たわみに基づく応力	円周方向		
(一次応力)	軸方向		
(10)チャンネルボックスの	半径方向		
たわみに基づく応力	円周方向		
(二次応力)	軸方向		
(11)鉛直地震加速度に基づ	半径方向		
く応力	円周方向		
(一次応力)	軸方向		

(9×9燃料(A型))

表 5-7 スペーサ間及びスペーサ部の地震時の応力評価における応力の組合せ

解析分類	評価位置	応力分類	応力組合せ*	
崩壊熱除去可能	スペーサ間		(1) + (2) + (3) + (7) + (8) + (11)	
な形状の維持	な形状の維持 スペーサ部 一次応力		(1) + (2) + (3) + (7) + (9) + (11)	
閉じ込め機能の	スペーサ間	一次応力	(1) + (2) + (3) + (5) + (6) + (7) + (8) + (10) + (11)	
維持	スペーサ部	+二次応力	(1) + (2) + (3) + (4) + (5) + (6) + (7) + (9) + (10) + (11)	

(9×9燃料 (A型))

注記*:表5-6の応力の種類を示す各番号の応力の組合せを示す。

表 5-8(1) スペーサ間及びスペーサ部の応力の計算式(通常運転時及び過渡時)

$(9 \land 9 \land 8) \land 7 (1/2)$	(9	Х	9 燃料	(B型)	(1/2)
-------------------------------------	----	---	------	------	-------

応力の種類	応力の成分	内面	外面
(1)冷却材外圧及び燃料要素内	円周方向		
圧によって生じ	半径方向		
る応力 (一次応力)	軸方向		
(2)燃料被覆管楕円度による曲げ応力	円周方向		
(一次応力)	半径方向		
	軸方向		
(3)水力振動に	円周方向		
よる応力	半径方向		
(一次応力)	軸方向		
(4) 支持格子保持力による応力	円周方向		
(二次応力)	半径方向		
	軸方向		
(5)燃料被覆管 径方向温度勾配	円周方向		
による応力	半径方向		
(二次応力)	軸方向		

表 5-8(1) スペーサ間及びスペーサ部の応力の計算式(通常運転時及び過渡時)

応力の種類	応力の成分	内面	外面
(6)燃料被覆管			
周方向温度勾配	円周方向		
による応力			
(二次応力)	半径方向		
	軸方向		
(7)ウォータチ	円周方向		
ャンネルと燃料	半径方向		
被覆管の熱膨張			
差による応力	軸方向		
(二次応力)			
(8) 膨張スプリ	円周方向		
ング及びプレナ	半径方向		
ムスプリングに			
よる応力			
(二次応力)			
	軸方向		

(9×9燃料(B型)(2/2))

表 5-8(2) スペーサ間及びスペーサ部の応力の計算式(地震時)

応力の種類	応力の成分	内面	外面
(9)支持格子間たわ	円周方向		
みによる応力	半径方向		
(一次応力)	軸方向		
(10)チャンネルボッ	円周方向		
クスのたわみに基づ	半径方向		
く応力	書十百		
(二次応力)	甲田 ノフ [円]		

(9×9燃料 (B型))

表 5-9 スペーサ間及びスペーサ部の地震時の応力評価における応力の組合せ

(9×9燃料 (B型))

解析分類	評価位置	応力分類	応力組合せ*
崩壞熱除去可能	スペーサ間		(1) + (2) + (3) + (9)
な形状の維持	スペーサ部	一伙応力	(1) + (2) + (9)
閉じ込め機能の	スペーサ間	一次応力	(1) + (2) + (3) + (5) + (6) + (7) + (8) + (9) + (10)
維持	スペーサ部	+二次応力	(1) + (2) + (4) + (5) + (6) + (7) + (8) + (9) + (10)

注記*:表 5-8 の応力の種類を示す各番号の応力の組合せを示す。

表 5-10 地震時の崩壊熱除去可能な形状の維持に関する応力評価結果

				スペーサ間	スペーサ部
地震動	許容応力	運転条件*	寿命時期	(設計比)	(設計比)
				一次応力	一次応力
甘淮山震乱			寿命初期	0.40	0.38
基準 地 展 期	0.7S u	圧力過渡	寿命中期	0.24	0.23
55			寿命末期	0.25	0.24

9×9燃料(A型)

注記*:解析対象が一次応力であるため出力過渡時に大きくなる熱応力が影響しないので圧力過 渡のみを評価対象とした。

表 5-11 地震時の崩壊熱除去可能な形状の維持に関する応力評価結果

		運転条件*		スペーサ間	スペーサ部
地震動	許容応力 運転		寿命時期	(設計比)	(設計比)
				一次応力	一次応力
基準地震動 S s		圧力過渡	寿命初期	0.44	0.44
	0.7Su		寿命中期	0.33	0.33
			寿命末期	0.31	0.31

9×9燃料 (B型)

注記*:解析対象が一次応力であるため出力過渡時に大きくなる熱応力が影響しないので圧力過 渡のみを評価対象とした。 表 5-12 地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価結果

				スペーサ間	スペーサ部
山寺も	許容	運転		(設計比)	(設計比)
·	応力	条件	<i></i>	一次応力+	一次応力+
				二次応力	二次応力
			寿命初期	0.46	0.42
		圧力過渡	寿命中期	0.28	0.26
基準地震動	Su		寿命末期	0.24	0.24
S s		出力過渡	寿命初期	0.45	0.37
			寿命中期	0.29	0.27
			寿命末期	0.25	0.23
			寿命初期	0.80	0.77
аж кд∋дэт од		圧力過渡	寿命中期	0.30	0.27
弾性設計用 地震動 Sd	S		寿命末期	0.26	0.25
	ЗУ		寿命初期	0.77	0.67
		出力過渡	寿命中期	0.32	0.30
			寿命末期	0.27	0.25

9×9燃料(A型)

表 5-13 地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価結果

				スペーサ間	スペーサ部
山寺主	許容	運転	主人吐田	(設計比)	(設計比)
地晨動	応力	条件	对印时别	一次応力+	一次応力+
				二次応力	二次応力
			寿命初期	0.48	0.48
		圧力過渡	寿命中期	0.34	0.31
基準地震動	Su		寿命末期	0.30	0.28
S s		出力過渡	寿命初期	0.48	0.46
			寿命中期	0.36	0.33
			寿命末期	0.29	0.27
			寿命初期	0.76	0.79
弾性設計用 地震動 S d		圧力過渡	寿命中期	0.36	0.33
	S		寿命末期	0.31	0.29
	ЗУ		寿命初期	0.74	0.74
		出力過渡	寿命中期	0.39	0.35
			寿命末期	0.30	0.27

9×9燃料(B型)

衣 5 ⁻¹⁴ 「 印 端 性 俗 按 印 の 熟 辨 例 く 写 慮 り る 頃 日
考慮する項目
ペレットの発熱
ジルカロイ部材のγ発熱*
ペレットー被覆管ギャップ熱伝達係数
被覆管表面熱伝達係数
ペレット及びジルカロイ部材の熱伝導率

表 5-14 下部端栓溶接部の熱解析で考慮する項目

注記*:9×9燃料(A型)の場合に考慮。

表 5-15	下部端栓溶接部の	応力評価`	で考慮する荷重	Ē

考慮する荷重	条件	
下部端栓及び被覆管部における温度分布(熱解析結果を読み込む)		
燃料棒内圧		
冷却材圧力		
内外圧力差による軸方向荷重(軸方向応力)	通常運転時及び過渡時	
膨張スプリング等による軸方向荷重(軸方向応力)*1		
被覆管周方向温度差及び端栓取付角公差による初期曲がりに基づく 曲げ荷重(曲げ応力)*1		
燃料棒のたわみに基づく曲げ荷重(曲げ応力)		
チャンネルボックスのたわみに基づく曲げ荷重(曲げ応力)	地震時	
鉛直地震加速度に基づく軸方向荷重(軸方向応力)*2		

注記*1:9×9燃料(A型)の場合に考慮。

*2:9×9燃料(B型)の場合,鉛直方向地震加速度は地震時にかかる荷重への質量増加と して考慮。

(9×9燃料 (A型))					
				下部端栓溶接部	
山口を手	新安内市			(設計比)	
地展期	计谷心力	運転余件	寿仰时别	一次応力+	
				二次応力	
			寿命初期	0.40	
基準地震動	S u	圧力過渡	寿命中期	0.31	
Ss			寿命末期	0.26	
弾性設計用			寿命初期	0.72	
地震動	Sу	圧力過渡	寿命中期	0.34	
S d			寿命末期	0.26	

表 5-16 地震時の下部端栓溶接部の応力評価結果

注記*:下部端栓溶接部の燃料棒の出力は低く,出力過渡時に発生する応力は圧力過渡時の 応力より小さいため,圧力過渡時のみを評価対象とした。

(9×9燃料 (B型))					
地震動				下部端栓溶接部	
	新宏内书) 军亡久仲*	主人吐胡	(設計比)	
	計谷応力	連転未任	<i>并</i> 仰时别	一次応力+	
				二次応力	
甘滋山香新			寿命初期	0.40	
基準地震動 S s	S u	圧力過渡	寿命中期	0.37	
			寿命末期	0.35	
弾性設計用			寿命初期	0.69	
地震動	S y	圧力過渡	寿命中期	0.56	
S d			寿命末期	0.52	

表 5-17 地震時の下部端栓溶接部の応力評価結果

注記*:下部端栓溶接部の燃料棒の出力は低く,出力過渡時に発生する応力は圧力過渡時 の応力より小さいため,圧力過渡時のみを評価対象とした。

地震動	寿命時期	応力振幅	許容	地震荷重の	疲労係数の			
		(MPa)	サイクル数	繰返し回数	増分*			
基準地震動 S s	寿命初期	71	6. 4×10^4	150	0.00234			
	寿命中期	70	7.0 $\times 10^{4}$	150	0.00214			
	寿命末期	71	6. 4×10^4	150	0.00234			
弾性設計用 地震動	寿命初期	66	1.2×10^{5}	300	0.00250			
	寿命中期	66	1.2×10^{5}	300	0.00250			
S d	寿命末期	66	1.2×10^5	300	0.00250			

表 5-18 地震時の下部端栓溶接部の疲労評価結果 (9×9燃料(A型))

注記*:燃料の全寿命を通した疲労累積係数(約0.003,引用文献(5)参照)を付加しても1を下回っている。

表 5-19	地震時の下部端栓溶接部の疲労評価結果
表 5-19	地震時の下部端栓溶接部の波方評価結果

地震動	寿命時期	応力振幅	許容	地震荷重の	疲労係数の
		(MPa)	サイクル数	繰返し回数	增分*
基準地震動 S s	寿命初期	87	2.8 $\times 10^4$	150	0.00532
	寿命中期	85	3. 0×10^4	150	0.00496
	寿命末期	84	3. 2×10^4	150	0.00476
弾性設計用 地震動	寿命初期	73	6.6×10 ⁴	300	0.00458
	寿命中期	71	7. 2×10^4	300	0.00416
S d	寿命末期	71	7.6×10 ⁴	300	0.00393

(9×9燃料 (B型))

注記*:燃料の全寿命を通した疲労累積係数(約0.006,引用文献(6)参照)を付加しても1を下回 っている。

図 5-2 ジルカロイ−2 引張強さの設計値(公称値*)(9×9燃料(A型))

注記*:データ分布上の公称値を示す。

図 5-3 ジルカロイ-2 降伏応力及び引張強さの設計値(95%確率下限値)

(9×9燃料(A型)下部端栓溶接部)

(9×9燃料(B型)スペーサ間及びスペーサ部)

図 5-5 ジルカロイー2 引張強さの設計値(公称値*)

(9×9燃料(B型)スペーサ間及びスペーサ部)

注記*:データ分布上の公称値を示す。

図 5-6 ジルカロイ−2 降伏応力及び引張強さの設計値(95%確率下限値) <mark>(9×9燃料(B型)下部端栓溶接部)</mark>

図 5-7 地震時のスペーサ間及びスペーサ部の応力評価のフロー

図 5-10 地震時の下部端栓溶接部の応力評価のフロー

図 5-13 下部端栓溶接部の応力評価における熱・機械解析モデル(9×9燃料(B型))

図 5-1<mark>5</mark> ジルカロイの設計疲労曲線*

注記*:ジルカロイ設計疲労曲線は、引用文献(4)に基づき、ジルカロイ-2の未照射材及び照射材 についての疲労試験結果をベースに、ジルカロイ-4等の機械特性及び疲労特性がジルカロ イ-2とほぼ同等であることを確認し、がジルカロイ-2、3及び4共通の設計曲線として設 定したものである。Langer-0´Donnel1は、設計曲線を保守側に見積もるため、未照射材 及び照射材それぞれについて応力を1/2、サイクル数を1/20とし、未照射材及び照射材の 両者の包絡線をLanger-0´Donnel1の設計疲労曲線としている。

- 6. 引用文献
- (1)「沸騰水型原子力発電所 燃料の設計手法について」,株式会社日立製作所,HLR-033訂1, 平成10年2月
- (2)「沸騰水型原子力発電所 燃料の設計手法について」,株式会社東芝,TLR-045改訂1,平成 10年1月
- (3)「沸騰水型軽水炉用燃料の設計手法について」,原子燃料工業株式会社,NLR-14,昭和62年 12月
- (4) W. J. O'Donnell and B. F. Langer, "Fatigue Design Basis for Zircaloy Components", Nuclear Science and Engineering, 20, 1-12(1964)
- (5) 島根原子力発電所第2号機「燃料体設計認可申請書」(GNF燃設認第30号, 平成21年1月7日認可)
- (6)島根原子力発電所第2号機「燃料体設計認可申請書」(20原燃東 第805号, 平成21年3月27日認可)

燃料被覆管下部端栓溶接部は、切欠き形状を含む複雑な形状(付図-1 参照)であるため有限要 素法を用いた解析コード「ANSYS」により発生応力を求めており、算出される応力値には(一 次応力+二次応力+ピーク応力)の全応力成分が含まれる(付図-2参照)。ピーク応力は、応力集 中又は局部熱応力により、一次応力又は二次応力に付加される応力の増加分として定義されており、 その特徴は、それによって大きな変形は起こらないが、それが繰り返されると疲労破壊の原因とな ることがあるとされている(「設計・建設規格」参照)。原子力発電所耐震設計技術指針 重要度分 類・許容応力編JEAG4601・補-1984((社)日本電気協会)においてもピーク応力は疲労破壊 が対象とされている。よって、解析コード「ANSYS」の計算モデル中のメッシュ要素の節点で の応力解析結果から、下記に示す応力分類処理を行い、一次応力+二次応力及びピーク応力を求め る。

- (1) 応力評価断面として、付図-1に示す端栓-被覆管溶接面を選択する。
- (2) (1)で選んだ応力評価断面に対して、断面内の全ての節点の応力を積分し、断面平均応力(膜応力)及び断面内での曲げの釣合いが等価となる曲げ応力の等価直線成分を求める。この膜応力と曲げ応力の等価直線成分を合計したものを一次応力+二次応力とする(付図-2参照)。
- (3) 応力評価断面における応力分布と(2)で求めた一次応力+二次応力(膜応力と曲げ応力の等価 直線成分の合計)との差をピーク応力とする(付図-2参照)。

応力が最も厳しい条件となるのはピーク応力の方向と正味の曲げモーメントの方向が一致するケ ースであり、下部端栓溶接部の応力解析では燃料被覆管内面位置が該当する。よって、付図-2 に 示すように、設計比の評価には燃料被覆管内面位置での応力を用いる。

付図-1 下部端栓部の有限要素法による応力解析体系の模式図

付図-2 応力分布と応力分類処理結果の模式図