H4-CA-231-R00

浜岡原子力発電所 基準津波の策定のうち 歴史記録及び津波堆積物に関する調査について (コメント回答) 2022年4月4日

本資料の説明内容

■ 本日の説明内容は以下に示すとおり。

- 1) 各津波発生要因の津波評価は、「各種パラメータの網羅的検討による方法」によって行うものとし、ここで確認した行政機関による津波評価の波源モデルも含め、個々のパラメータについて科学的根拠を確認して検討した。
- 2) 行政機関による津波評価では、波源設定の考え方の相違点に着目して内容を精査し、「各種パラメータの網羅的検討による方法」とは別の考え方の方法によるものと考えられる行政機関の波源モデルそのものを基準津波の 策定に反映した。

歴史記録及び津波堆積物に関する調査について 第1020回審査会合(2021年12月17日)コメント一覧表

C コメントNo.

項目	No.	レイメロ	該当箇所	
歴史記録及び	1	・文献により示されている遠州灘沿岸域の津波堆積物について、堆積年代を整理して示すこと。	・本編1.2章	C1
津波堆積物に 関する調査	2	・敷地のイベント堆積物が分布する上限標高について、物証に基づき示すこと。	・本編1.3章 ・補足説明資料7章	C2

1 歴史記録及び津波堆積物に関する調査							
1.1 歴史記録に関する文献調査	6						
1.2 津波堆積物に関する文献調査	1 1						
1.3 津波堆積物に関する現地調査	21						
1.3.1 津波堆積物調查							
1.3.2 津波堆積物調查(詳細分析)							
1.4 歴史記録及び津波堆積物から推定される津波高	47						

1 歴史記録及び津波堆積物に関する調査 検討概要

第1020回資料2-3 p.5 一部修正

■以下のフローに従い、敷地周辺の既往津波について調査を行った。 歴史記録に関する調査 津波堆積物に関する調査 ・南海トラフの沿岸域を対象として、津波堆積物に関する調査を行い、津波の発生の時期および規模(津 ・南海トラフの沿岸域を対象として、歴史記録に関す る調査を行い、津波痕跡の整理、検討を実施。 波高、浸水域等)等について検討を実施。 ■歴史記録に関する文献調査 ■津波堆積物に関する文献調査 ■津波堆積物に関する現地調査 \rightarrow 1.3 \rightarrow 1.1 \rightarrow 1.2 ・南海トラフおよび敷地が位置する遠州灘沿岸域 ・南海トラフおよび敷地が位置する遠州灘沿岸域を対 ・巨大津波の見逃しを防ぐため、敷地が位置す を対象として、伝承を含む歴史記録に基づく津 象として、津波堆積物に関する文献調査を実施。 る遠州灘沿岸域の敷地周辺において、自社に 波痕跡の文献調査を実施。 よる津波堆積物調査を実施。 ○国内外の主な科学技術系論文 つ国内外の主な科学技術系論文 データベース等を対象 データベース等を対象 ・津波痕跡データベース ・津波堆積物データベース ・地震調査委員会等のHP ・地震調査委員会等のHP ·J-STAGE ·CINII ·KAKEN ·J-STAGE ·CINII ·KAKEN ·JAIRO ScienceDirect · SpringerLink ·JAIRO ·当社歴史地震調查 AGU Publications ・南海トラフでは、同規模の津波が数百年間隔で繰り ・他機関による遠州灘沿岸域の津波堆積物調 ・南海トラフでは、過去約1,400年間の歴史記 録から、宝永地震(M8.6)の津波の規模が最 返し発生していたことを示す津波堆積物が確認されて 杏と同様、巨大な津波を示す津波堆積物は
 大であるとされ、南海トラフの沿岸域には宝永 確認されなかった。 いる。 ・イベント堆積物の標高は、敷地では約0~4m、 地震を含む多くの津波痕跡が残されている。 ・敷地が位置する遠州灘沿岸域では、3~4m程度の 浜堤を大きく超えて広域に分布する巨大な津波を示 菊川流域では約1~4m未満。 ・敷地が位置する遠州灘沿岸域について、歴史 記録に基び、津波痕跡高は、概ね5~10m。 す津波堆積物は確認されず、津波の規模が時代に よって顕著には変わらない結果が見られている。 ・津波堆積物の標高は、約0~5m。

■歴史記録及び津波堆積物から推定される津波高
 ・実際の津波高は津波堆積物の分布標高よりも高いと考えられることに留意して、歴史記録及び津波堆積物から推定される津波高を検討。
 ・東北沖地震の知見も踏まえて検討した結果、歴史記録及び津波堆積物から推定される津波高は、遠州灘沿岸域において概ね5~10mと評価した。
 ■津波評価結果との比較
 ・基準津波による津波高は、敷地が位置する遠州灘沿岸域の全域において、津波痕跡及び津波堆積物から推定される津波痕跡高を大きく上回っていることを確認した。

- 1 歴史記録及び津波堆積物に関する調査
 - 1.1 歴史記録に関する文献調査
 - 1.2 津波堆積物に関する文献調査
 - 1.3 津波堆積物に関する現地調査
 - 1.3.1 津波堆積物調查
 - 1.3.2 津波堆積物調查(詳細分析)
 - 1.4 歴史記録及び津波堆積物から推定される津波高

南海トラフおよび敷地が位置する遠州灘沿岸域を対象として、伝承を含む歴史記録に基づく津波痕跡の文献調査を実施。

1.1 歴史記録に関する文献調査 **敷地周辺の既往津波**

- 南海トラフの沿岸域を対象として、伝承を含む歴史記録に基づく津波痕跡の文献調査1)を実施。
- その結果、敷地が位置する遠州灘沿岸域では、南海トラフのプレート間地震が他の津波発生要因よりも大きな影響を及ぼしていることを確認した。
- 1) 国内外の津波痕跡に関する主な科学技術系論文データベース等を対象とし、敷地周辺を含む南海トラフの沿岸域の津波高が整理されている文献を抽出。(抽出した文献は章末参照) ・津波痕跡データベース ・地震調査委員会等のHP ・J-STAGE ・CiNii ・KAKEN ・JAIRO ・当社歴史地震調査

津波到	卷生要因	名称	Mj	Mw	敷地周辺の津波高		
		1944年昭和東南海地震	7.9	8.1-8.2			
		1854年安政東海地震	8.4	_			
	南海トラフ	1707年宝永地震	8.6	_	5~10m程度 (
		1605年慶長地震	7.9	_			
		1498年明応地震	8.2-8.4	—			
プレート間	南西諸島 海溝	敷地周辺に影響を及ぼした津波は	確認されていな	SC 12	_		
地震	伊豆· 小笠原海溝	1972年八丈島東方沖地震	7.2	_	0.25m[※] (御前崎市)		
		1952年カムチャツカ地震	_	9.0			
		1960年升地震	—	9.5			
	遠地津波	1964年アラス加地震	—	9.2	0.3~1.9*m (遠州灘沿岸域)		
		1996年ニューギニア島沖地震	_	8.1			
		2010刋地震	_	8.8			
海洋プレー	内地震	2004年紀伊半島南東沖の地震	7.5	0.5m (御前崎市)			
海域の活め 地殻内地震	層による 電	敷地周辺に影響を及ぼした津波は	確認されていな	<i></i>	-		
地すべり		2009年駿河湾の海底地すべり	_	0.36m (御前崎市)			
火山		敷地周辺に影響を及ぼした津波は確認されていない。 -					

兵岡原子力発電所

 \oplus

(海上保安庁「海洋台帳」を基に作成)

日本列島周辺の海底地形

1.1 歴史記録に関する文献調査 南海トラフの沿岸域の津波痕跡高

■南海トラフのプレート間地震について、伝承を含む歴史記録に基づく南海トラフの沿岸域の津波痕跡高の調査結果は以下のとおり。
 ■調査結果から、南海トラフの沿岸域には既往最大の宝永地震^{**}を含む多くの歴史記録に基づく津波痕跡が残されていることを確認した。
 ■また、例えばリアス海岸の志摩・下田周辺で津波痕跡高が大きいなど、各地域の地形的な特徴が津波痕跡高に反映されていると考えられることを確認した。

※過去1,400年間の歴史記録からは、宝永地震(M8.6)の津波の規模が最大であるとされる。(地震調査委員会(2013))

歴史記録による南海トラフの地震履歴

(H

津波痕跡高

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第920回資料1-3

p.8 再掲

1.1 歴史記録に関する文献調査 遠州難沿岸域の津波痕跡高

■南海トラフのプレート間地震について、敷地が位置する遠州灘沿岸域の津波痕跡高の調査結果は以下のとおり。
 ■遠州灘沿岸域の津波痕跡高は概ね5~10mであり、敷地付近の津波痕跡高は御前崎市佐倉(旧浜岡町)における6m。

第920回資料1-3 p.9 再揭

1.1 歴史記録に関する文献調査 調査文献一覧

- 1. 相田勇(1981)「東海道沖におこった歴史津波の数値実験」『地震研究所彙報』Vol.56, pp.367-390。
- 2. 相田勇(1985)「東海地震津波の挙動 その数値実験 」『月刊地球』Vol.7, No.4, pp.204-215。
- 3. 飯田汲事(1981a)「宝永4年10月4日(1707年10月28日)の宝永地震の津波被害」『愛知県津波 被害史』愛知県防災会議地震部会, pp.36-49。
- 4. 飯田汲事(1981b)「嘉永7年(安政元年)11月4日(1854年12月23日)の安政地震の津波被 害」『愛知県津波被害史』愛知県防災会議地震部会, pp.50-78。
- 5. 飯田汲事(1985a)「愛知県及び隣接県被害津波史」『東海地方地震・津波災害誌』飯田汲事教授論 文選集発行会, pp.669-790。
- 6. 飯田汲事(1985b)「歴史地震の研究(4): 慶長9年12月16日(1605年2月3日)の地震及び津波災害について」『愛知工業大学研究報告. B,専門関係論文集』Vol.16, pp.159-164。
- 7. 飯田汲事(1985c)「昭和19年12月7日東南海地震の震害と震度分布」『東海地方地震・津波災害 誌』飯田汲事教授論文選集発行会, pp.449-570。
- 8. 岩瀬浩之,原信彦,田中聡,都司嘉宣,今井健太郎,行谷佑一,今村文彦(2011)「高知県土佐 清水市内における1707年宝永地震の津波痕跡に関する現地調査報告」『津波工学研究報告書』第28号, pp.105-116。
- 9. 蝦名裕一,今井健太郎,大林涼子,柄本邦明,都司嘉宣(2020)「古絵図に基づく安政東海地震の 浜名湖周辺における津波浸水域の分析」『歴史地震』第35号, pp.187-206。
- 10. 気象庁(1945)『昭和十九年十二月七日東南海大地震調査概報』中央気象台。
- 11. 静岡県地震対策課(1986)『安政東海地震津波被害調査報告書(特に伊豆半島東海岸について)』 静岡県地震対策課。
- 12. 都司嘉宣,上田和枝,荒井賢一(1994)「須崎市を襲った歴史津波」『歴史地震』第10号, pp.95-116。
- 13. 都司嘉宣(2006)「小笠原諸島の津波史」『歴史地震』第21号, pp.65-79。
- 14. 都司嘉宣(2012)「第二章古文書から読む大地震・大津波の記憶」『千年に一度の大地震・大津波に備える~古文書・伝承に読む先人の教え~』しずおかの文化新書10。
- 15. 行谷佑一,都司嘉宣(2005)「宝永(1707)・安政東海(1854)地震津波の三重県における詳細 津波浸水高分布」『歴史地震』第20号, pp.33-56。
- 16. 萩原尊禮(1989)『続古地震-実像と虚像』東京大学出版会。
- 17. 萩原尊禮(1995)『古地震探究 海洋地震へのアプローチ』東京大学出版会。
- 18. 羽鳥徳太郎(1975)「明応7年・慶長9年の房総および東海南海道大津波の波源」『地震研究所彙報』 Vol.50, pp.171-185。
- 19. 羽烏徳太郎(1977)「静岡県沿岸における宝永・安政東海地震の津波調査」『静岡県地震対策基礎調査報告書』静岡県地震対策課, pp.14-38。
- 20. 羽鳥徳太郎(1978a)「高知・徳島における慶長・宝永・安政南海道津波の記念碑:1946年南海道津 波の挙動との比較」『地震研究所彙報』Vol.53, pp.423-445。
- 21. 羽鳥徳太郎(1978b)「三重県沿岸における宝永・安政東海地震の津波調査」『地震研究所彙報』 Vol.53, pp.1191-1225。
- 22. 羽鳥徳太郎 (1980a) 「宝永・安政津波の現地調査による波高の検討」『月刊海洋科学』Vol.12, No.7, pp.495-503。
- 23. 羽鳥徳太郎(1980b)「大阪府・和歌山県沿岸における宝永・安政南海道津波の調査」『地震研究所彙報』Vol.55, pp.505-535。
- 24. 羽烏徳太郎(1982)「高知県南西部の宝永・安政南海道津波の調査:久礼・入野・土佐清水の津波の 高さ」『地震研究所彙報』Vol.56, pp.547-570。
- 25. 羽烏徳太郎 (1984) 「関東・伊豆東部沿岸における宝永・安政東海津波の挙動」『地震研究所彙報』 Vol.59, pp.501-518。
- 26. 羽鳥徳太郎(1985a)「東海地方の歴史津波」『月刊地球』Vol.7, No.4, pp.182-191。
- 27. 羽鳥徳太郎 (1985b) 「小笠原父島における津波の挙動」『地震研究所彙報』Vol.60, pp. 97-104。

- 28. 羽鳥徳太郎(1986)「九州東部沿岸における歴史津波の現地調査:1662年寛文・1769年明和日向灘お よび1707年宝永・1854年安政南海道津波」『地震研究所彙報』Vol.60, pp.439-459。
- 29. 羽鳥徳太郎(1988)「瀬戸内海・豊後水道沿岸における宝永(1707)・安政(1854)・昭和(1946) 南海道津波の挙動」『歴史地震』 第4号, pp.37-46。
- 30. 羽鳥徳太郎(1991)「鎌倉における明応(1498)・元禄(1703)・大正(1923)津波の浸水域」『歴史 地震』 第7号, pp.1-7。
- 31. 羽鳥徳太郎(2005)「伊勢湾岸市街地における安政東海津波(1854)の浸水状況」『歴史地震』第20号, pp.57-64。
- 32. 羽鳥徳太郎(2006)「東京湾・浦賀水道沿岸の元禄関東(1703),安政東海(1854)津波とその他の 津波の遡上状況」『歴史地震』第21号, pp.37-45。
- 33. 村上仁士,島田富美男,伊藤禎彦,山本尚明,石塚淳一(1996)「四国における歴史津波(1605慶 長・1707宝永・1854安政)の津波高の再検討」『自然災害科学』Vol.15-1, pp.39-52。
- 34. 矢沼隆,都司嘉宣,今井健太郎,行谷佑一,今村文彦(2011)「静岡県下における1707年宝永地震津 波の痕跡調査」『津波工学研究報告書』第28号, pp.93-103。
- 35. 渡辺偉夫(1998)『日本被害津波総覧(第2版)』東京大学出版会。
- 36. 気象庁(1973)「1972年12月4日八丈島東方沖地震について」『地震予知連絡会会報』第9巻, 3-4, pp.46-50。
- 37. 気象庁(2004) 『2004 年9月5日23 時57 分頃の東海道沖の地震について(第2報)』平成16年9月6日。
- 38. 気象庁(2009)『平成21年8月11日の駿河湾の地震で発表した津波注意報について』 (http://www.data.jma.go.jp/svd/eqev/data/tsunamihyoka/20090811surugawan/index.html)。
- 39. 気象庁(2010)『2010年2月27日15時34分頃にチリ中部沿岸で発生した地震について(第3報)』平成22 年2月28日。
- 40. チリ中部地震津波合同調査グループ(2012)「2010年チリ中部地震津波に関する日本での現地調査の報告」 『津波工学研究報告』第29号, pp.37-54。
- 41. 都司嘉宣,大年邦雄,中野晋,西村裕一,藤間功司,今村文彦,柿沼太郎,中村有吾,今井健太郎, 後藤和久,行谷佑一,鈴木進吾,城下英行,松﨑義孝(2010)「2010年チリ中部地震による日本での津 波被害に関する広域現地調査』『土木学会論文集B2(海岸工学)』Vol.66, No.1, pp.1346-1350。
- 42. 三上貴仁,柴山知也,武若聡, Miguel ESTEBAN,大平幸一郎, Rafael ARANGUIZ, Mauricio VILLAGRAN, Alvaro AYALA(2011)「2010年チリ沖地震津波災害の現地調査」『土木学会論文集B3 (海洋開発)』Vol.67, No.2, pp.I_529-I_534。
- 43. NOAA(2010), "TSUNAMI BULLETIN NUMBER 015", PACIFIC TSUNAMI WARNING CENTER, ISSUED AT 2082z 27 FEB 2010", National Oceanic and Atmospheric Administration, (http://www.prh.noaa.gov/ptwc/messages/pacific/2010/pacific.2010.02.27.202736.txt, http://oldwcatwc.arh.noaa.gov/2010/02/27/725245/15/message725245-15.htm).

- 1 歴史記録及び津波堆積物に関する調査
 - 1.1 歴史記録に関する文献調査
 - 1.2 津波堆積物に関する文献調査
 - 1.3 津波堆積物に関する現地調査
 - 1.3.1 津波堆積物調查
 - 1.3.2 津波堆積物調查(詳細分析)
 - 1.4 歴史記録及び津波堆積物から推定される津波高

南海トラフおよび敷地が位置する遠州灘沿岸域を対象として、津波堆積物に関する文献調査を実施。

1.2 津波堆積物に関する文献調査 南海トラフの沿岸域の津波堆積物に関する文献調査

- 内閣府(2012)と同時期に公表された地震調査委員会(2013)では、当時の南海トラフの沿岸域の津波堆積物調査に基づき、宝永地震と同程度の巨大地震が数百年間隔で繰り返し発生しているとされ、最大クラスの地震が発生した証拠は見つからないとされていた。
- その後のGarrett et al. (2016)、南海トラフ広域地震防災研究プロジェクト(2020)によれば、南海トラフの沿岸域の津波堆積物調査が進展し、超長期にわたる津 波堆積物の調査資料が拡充された結果、南海トラフのいずれの地域においても、東北沖を含む国内外の巨大地震の発生領域と同様、同規模の津波が数百年間隔 で繰り返し発生していたことを示す津波堆積物が確認され、最大クラスの津波が発生した証拠は見つかっていないとされている。

・一方、このような仮想最大クラスとは別に、地質記録や歴史記録に基づき"既往最大クラスの津波"を推定することは可能であり(中略)津波堆積学的研究の役割は、確かな物証に基づく"既往最大クラスの津波"を想定することに加え、"仮想最大クラスの津波"を含む既存の想定に対し、規模あるいは再来間隔が過小評価となっていないか、あるいは見落とされているリスクがないかを他分野の研究から独立して検証することだといえる。

第1020回資料2-3

p.12 再掲

1.2 津波堆積物に関する文献調査 南海トラフの沿岸域の津波堆積物に関する文献調査

■ 南海トラフの沿岸域で報告されている津波堆積物調査箇所は以下のとおり。

内閣府(2012)が確認した津波堆積物調査等の箇所		,	2020年時点までに実施されたる	その他の	津波堆積物調査	査に関する文献
○ 津波堆積物調査箇所	No.	箇所名	出典	No.	箇所名	出典
◇ 地殻変動調査箇所	17	宮崎平野	Niwa et al. (2019)	52	潮岬	平川(2013)
2020年時点までに実施されたその他の津波堆積物調査等の箇所	17-1	串間市	南海トラフプロジェクト報告(2020)	53	太地	平川(2013)
● 津波堆積物調査箇所	18	日向市財光寺	南海トラフプロジェクト報告(2018)	53-1	八尺鏡野湿地	南海トラフプロジェクト報告(2020)
(● そのうち、当社による調査箇所)	19	波当津	岡村・松岡(2012)	54	紀伊佐野	小松原ほか(2007)
◆ 地殻変動調査箇所 86-88 01	6 20	六反池	岡村・松岡(2012)	55	阿田和	小松原ほか(2007)
74 121314	21	横尾貝塚	藤原ほか(2010)	56	熊野	平川(2013)
10 75 76-8515 89-0	4 22	荒樫の池	岡村・松岡(2012)	57	志原	小松原ほか(2007)
58~62	23	魚神山の池	岡村・松岡(2012)	58	諏訪池	岡村·松岡(2012)
	24	須川の池	岡村・松岡(2012)	59	大白池	岡村·松岡(2012)
32-40	25	池島	岡村・松岡(2012)	60	海野	小松原ほか(2007)
41-48	26	大深浦の池	岡村・松岡(2012)	61	長島	平川(2013)
22-24 22-24 21 2-5 52 8	27	西片島調整池	岡村・松岡(2012)	62	片上池	小松原ほか(2007)
20 28-30	28	土佐清水市和田	南海トラフプロジェクト報告(2019)	63	コガレ池	南海トラフプロジェクト報告(2019)
19 1 25-27	29	黒潮町下田の口	南海トラフプロジェクト報告(2017)	64	御座岬	平川(2013)
	30	黒潮町入野	南海トラフプロジェクト報告(2018)	65	片田麦崎	平川(2013)
100km	31	興津低地	谷川ほか(2017)	66	国府	小松原ほか(2007)
	32	須崎市池J内	南海トラフプロジェクト報告(2019)	67	船越池	小松原ほか(2007)
•17-1 Geode	× 33	桐間調整池	都司ほか(2003)	68	崎ノ城	平川(2013)
内関府(2012)が確認した津波堆積物調査に関する文南	34	高知市春野町	南海トラフプロジェクト報告(2019)	69	鯨崎灯台	平川(2013)
	35	野見	岡村・松岡(2012)	70	鎧崎	平川(2013)
1	36	宇佐	岡村・松岡(2012)	71	石鏡	平川(2013)
1 1 1 1 1 1 1 1 1 1	37	小松池	岡村・松岡(2012)	72	相差	Garrett et al. (2016)
3 解示池 内閉府(2012)	38	東孕の池	岡村・松岡(2012)	73	菅島	平川(2013)
4 住主池 内閉府 (2012)	39	絶海池	岡村・松岡(2012)	74	津市河芸町	松本(2017)
5 石十池 内閣府 (2012)	40	南国市十市	南海トラフプロジェクト報告(2017)	75	池尻町	阿部・白井(2013)
6 田井ノ浜の池 内閣府(2012)	41	東洋町生見	南海トラフプロジェクト報告(2017)	85	(遠州灘沿岸域)	(p.14参照)
7 浦生田の池 内閣府(2012)	42	海老ケ池	尚村・松尚(2012)	86		Kitamura(2016),
8 古座高校校庭 内閣府(2012)	43	海部郡年岐町		07		Kitamura et al.(2020)
9 須賀利大池 内閣府(2012)	44	思比須の氾	岡村・松岡(2012)	8/		Garrett et al. (2016)
10 尾鷲 内閣府 (2012)	45	田手の氾	回村・松尚(2012) 素海レニフプロジェクレ 起生(2010)	88	有水半野	KItamura(2016) 蒸店(また)(2000)
11 志島 内閣府(2012)	40)		89		膝/尿はか(2009)
12 白須賀 内閣府 (2012)	4/	川肖巾げ島	円/世トフノノロンエクト報告(2016) 図まま 松図(2012)	90		Kildinura(2016)
13 浜名湖湖底北側 内閣府(2012)	48	味可の池 七ヶ自次前池	両小・仏団(2012)	91		Kildinura(2016)
14 横須賀湊跡 内閣府(2012)	49		□□田はか(2002)	92	下田巾帕生沢川 て田士白浜海当	Kildinura(2016)
15 筬川周辺 内閣府(2012)	50		小仏尿はか(2007)	93	<u> </u>	
16 井田 内閣府 (2012)	51		/沢口は小(2008)	94	氾洋	コレイリほハ'(2018)

・南海トラフの沿岸域の津波堆積物調査箇所および文献は、国の調査(内閣府、地震調査委員会、南海トラフ広域地震防災研究プロジェクト等)に基づく。

1.2 津波堆積物に関する文献調査 遠州灘沿岸域の津波堆積物に関する文献調査

C1

- 南海トラフの中でも敷地が位置する遠州灘沿岸域では、津波堆積物調査が密に実施されており、複数の地点で津波堆積物が確認されている。
- 津波堆積物の標高は、約0~5mとなっている。

凡例

 \diamond

	No. 箇所名	文献	調査内容 (地点数)	単積物の 最大標高	堆積物の年代 (太字 は最上位層)		No. 箇所名	文献	調査内容 (地点数)	堆積物の 最大標高	堆積物の年代 (太字 は最上位層)
		熊谷(1999)	トレンチ、 ボーリング(4)	4.3m	1707 , 1605(推定), 1498(推定)年の3層		80 御殿・ 二ノ宮遺跡	藤原ほか(2008)	ボーリング(12) トレンチ	1.4m	1100年頃 を含む2層
12 白須賀	高田ほか(2002)	トレンチ、 ジオスライサー	4.5m	1707 , 1605年~ AD1040~1260で8層		Ĕ F	産総研(宍倉ほか(2012)、 Fujiwara et al. (2020)、藤原・澤井	トレンチ、 ボーリング等(65)	1.2m	1498 , 1096, 887, 684(推定)	
		内閣府(2012)(小松原ほか(2006,2009). Komatsubara et al. (2008))	ジオスライサー(12)	3.3m	1498, 1361(推定)年 の5層	田川低	81 太田川低地	廣内ほか(2014)	ハンドコアラ―、 ジオスライサー(5)	-0.7m	(年代データなし)
FT	76 新居	Fujiwara et al. (2013)	ボーリング等(14)	0.8m	18~19世紀 , 890~1000 年以降の2層	地周辺	也 周 14 横須賀湊跡	内閣府(2012) (蓝原(5007,2000) 蓝原(2008))	ジオスライサー、	1.3m	1707 (推定), 1498(推定)年
公		熊谷(1999)	トレンチ	1.8m	1707年の1層	몓		(膝原はか(2007,2009)、膝原(2008))			の2層
戸 野	77 浜名湖	西仲ほか(1996)	掘削	2.0m	1854or1707年 (推定)の1 層		82 大須賀	内田(2002)	ボーリング(複数)	歴史記録を超える イベントは確認	_
刮 刀	湖口付近	都司ほか(1998)	ピストンコアリング (6)	湖底	1096年(推定)を含む 複数層					されないとされる	
	13 浜名湖	内閣府(2012)(岡村ほか(2000.2009))	ピストンコアリング	湖底	1707 , 1498年の2層	1	83 菊川周辺	松多ほか(2016)	ボーリング(18)	洋波堆積物 報告なし	_
	湖底北側		(3以上)		1,0,1,1,0,0,0,0,0			(当社調査(2013年実施))	ボーリング(6)	1.3参照	—
	78 六間川低地	滕原ほか(2013)、滕原(2013) 、 Sato(2013)	ボーリング(32)	-0.2m	約3300~3400年前の1層	前前	84 新野川周辺	(当社調査(2013年実施))	ボーリング(4)	1.3参照	_
				津波は到達して		旧町	85 敷地周辺	(当社調査(2013年実施))	ボーリング(19)	1.3参照	_
	70、近松亚晖	佐藤はか (2016)	たしょう (2016) ホーリング(7) いないとされる ー		辺		(当社調査(2013年実施))	ボーリング(5)	1.3参照	_	
	/9 浜松平野	産総研(藤原・佐藤(2012)、藤原(2013) 藤原・澤井(2014))	ジオスライサー(16)、 ボーリング(56)	2.0m	9世紀頃 ~3900年前頃で複 数層		15 筬川周辺	内閣府(2012)(Fujiwara et al. (2010))	ボーリング(7)	津波堆積物 報告なし ^{*1}	_

・遠州灘沿岸域の津波堆積物調査地点は、国内外の主な科学技術系論文データベース等を対象として文献を調査し、その調査地点数、位置、堆積物の最大標高は、文献もしくは産総研津波堆積物DBから読み取った。

・大須賀については、文献および産総研津波堆積物DBから調査地点数と位置を読み取れなかったことから、調査範囲を破線で記載した。

*1 内閣府(2012)の地殻変動調査地点であるが、ボーリング調査による検討において津波堆積物は報告されていない。

津波堆積物に関する文献調査 遠州灘沿岸域の津波堆積物に関する文献調査

第1020回資料2-3 p.15 一部修正

■ 南海トラフの沿岸域でも遡上範囲の調査が可能な箇所であるとされる浜松平野と太田川低地では、**産総研等により津波堆積物の内陸側への広がりが重点的・** 継続的に調査されている。(藤原ほか(2012)、藤原(2013)、藤原ほか(2015)、Fujiwara et al. (2020)等) ■津波堆積物調査の結果に基づき、浜松平野と太田川低地では、3~4m程度の浜堤を大きく超えて広域に分布する巨大な津波を示す津波堆積物は確認され ず、津波の規模が時代によって顕著には変わらない結果が見られているとされる。(藤原(2013)、Fujiwara et al. (2020)等)

・このことから、津波は浜堤を越流したのではなく、川沿いを遡上して自然の堤防などが低いところや破堤したところから堤間湿地に溢れ、そこから低地内へ浸水したと考えられる。

1.2 津波堆積物に関する文献調査 遠州難沿岸域における津波堆積物(標高・層厚)

■ 敷地が位置する遠州灘沿岸域では、3~4m程度の浜堤を大きく超えて広域に分布する巨大な津波を示す津波堆積物は確認されず、津波の規模が時代によって 顕著には変わらない結果が見られている。

■ここでは、遠州灘沿岸域における津波堆積物の標高、層厚等を文献もしくは産総研津波堆積物DBから読み取って示す。

津波堆積物標高と堆積物の層厚(津波堆積物が確認された箇所のみ)

	箇所名	文献	調査箇所の 堆積物の 海岸線からの距離 最大標高		堆積物の層厚 (最大標高に位置する 堆積物の層厚)	箇所ごとの 堆積物の 最大標高 ^{*1}		堆積物の 最大標高と層厚の 情報が共にある地点
		熊谷(1999)	約0.2km	4.3m	数10cm			•
	白須賀	高田ほか(2002)	約0.2km	4.5m	約10cm		4 5m	•
近		内閣府(2012)(小松原ほか(2006,2009)、Komatsubara et al. (2008))	約0.3km	3.3m	約10cm		4.511	•
松	新兄	Fujiwara et al. (2013)	約0.3km	0.8m	約10cm		1.0m	•
平	利1/古		約0.8km	1.8m	約30cm		1.8m	•
周	近夕湖湖口台近	西仲ほか(1996)	約0.2km	2.0m	記述なし		2.0m	
辺	· 洪石···································	都司ほか(1998)	湖内	湖底	約15cm		2.011	
	浜名湖湖底北側	岡村ほか(2000,2009)	湖内	湖底	1~3cm		—	
	六間川低地	藤原ほか(2013)、藤原(2013)、Sato (2013)	約3km	-0.2m	約15cm		—	•
	浜松平野	産総研(藤原・佐藤(2012)、藤原(2013)、藤原・澤井(2014))	約2km	2.0m	数mm~25cm		2.0m	•
+	太田川御殿・二ノ宮遺跡	藤原ほか(2008)	約2km	1.4m	約30cm		1.4m	•
岡川	太田川低地	産総研(Fujiwara et al. (2020)、藤原・澤井(2014) 藤原ほか(2012、2015)、宍倉ほか(2012))	約1km	1.2m	約10cm	•	1.2m	•
旧出		廣内ほか(2014)	約0.7km	-0.7m	約10cm			•
周	横須賀湊跡	内閣府(2012)(藤原ほか(2007,2009)、藤原(2008))	約2km	1.3m	約10cm		1.3m	•
辺	大須賀	内田(2002)	記載なし	歴史記録を超えるよう	うなイベントは確認されない		_	
		計7箇所		計11地点				

*1 標高が0m以上のもので 文献から数値が確認できるもの

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

1.2 津波堆積物に関する文献調査 調査文献一覧

- 1. 阿部朋弥, 白井正明(2013)「愛知県渥美半島の沿岸低地で見出された江戸時代の津波起源と推定されたイベント堆積物」『第四紀研究』Vol.52, No.2, pp.33-42。
- 2. 池谷仙之,和田秀樹,阿久津浩,高橋実(1990)「浜名湖の起源と地史的変遷(湖沼の成因と環境・地質)」『地質学論集』第36号, pp.129-150。
- 3. 内田主税(2002)「遠州灘沿岸,静岡県大須賀町付近における沖積層中のイベント堆積物と古地形環境」『日本地理学会発表要旨集』第61号,135p。
- 4. 岡村眞,松岡裕美,佃栄吉,都司嘉宣(2000)「沿岸湖沼堆積物による過去一万年間の地殻変動と歴史津波モニタリング」『月刊地球/号外』Vol.28, pp.162-168。岡村 眞,松岡裕美,古野北斗(2009)「浜名湖湖底堆積物に記録された2つの地震イベント」『日本地球惑星科学連合2009年大会予稿集』T225-P004。
- 5. 岡村眞・松岡裕美(2012)「津波堆積物からわかる南海地震の繰り返し」『科学』Vol.82, No.2, pp.182-191。
- 6. 岡村行信(2012)「西暦869年貞観津波の復元と東北地方太平洋沖地震の教訓 古地震研究の重要性と研究成果の社会への周知の課題 『シンセオロジー』Vol.5, No.4, pp.234-242。
- 7. 北村晃寿,小林小夏(2014)「静岡平野・伊豆半島南部の中・後期完新世の古津波と古地震の地質学的記録」『地学雑誌』第123巻,第6号, pp.813-834。
- 8. 北村晃寿,川手繋人(2015)「静岡県南伊豆・吉佐美の海岸低地における津波堆積物の有無の調査」『静岡大学地球科学研究報告』第42号, pp.15-23。
- 9. 北村晃寿, 鈴木孝和, 小林小夏(2015)「静岡県焼津平野における津波堆積物の調査」『静岡大学地球科学研究報告』第42号, pp.1-14。
- 10. 北村晃寿,三井雄太,石橋秀巳,森英樹(2018)「伊豆半島南東部静岡県河津町の海岸低地における津波堆積物調査」『静岡大学地球科学研究報告』第45号, pp.1-16。
- 11. 熊谷博之(1999)「浜名湖周辺での東海沖の大地震に伴う津波堆積物の調査」『地学雑誌』第108巻, 第4号, pp.424-432。
- 12. 後藤和久·菅原大助(2021)「津波堆積学の進展」『地質学雑誌』第127号, 第4号, pp.199-214。
- 13. 小松原純子,藤原治,高田圭太,澤井祐紀, Than Tin Aung,鎌滝孝信(2006)「沿岸低地堆積物に記録された歴史時代の津波と高潮:南海トラフ沿岸の例」『活断層・ 古地震研究報告』第6号, pp.107-122。
- 14. 小松原純子,岡村行信,澤井祐紀,宍倉正展,吉見雅行,竿本英貴(2007)「紀伊半島沿岸の津波堆積物調査」『活断層・古地震研究報告』地震調査総合センター, Vol.7, pp.219-230。
- 15. 小松原純子,藤原治,高田圭太,澤井祐紀, Than Tin Aung,鎌滝孝信(2009)「東海道白須賀宿付近の堆積物に記録された歴史時代の津波と高潮」『歴史地震』第24 号,169p。
- 16. 佐竹健治(2013)「第197 回地震予知連絡会 重点検討課題「世界の巨大地震・津波」概要」『地震予知連絡会会報』第89巻, 12-6, pp.414-416。
- 17. 佐藤善輝,藤原治,小野映介(2016)「浜松平野西部における完新世後期の浜堤列の地形発達過程」『第四紀研究』第55巻,第1号, pp.17-35。
- 18. 産業技術総合研究所『津波堆積物データベース』(https://gbank.gsj.jp/tsunami_deposit_db/)。
- 19. 宍倉正展,澤井祐紀,行谷佑一,岡村行信(2010)「平安の人々が見た巨大津波を再現する一西暦869年貞観津波一」『AFERC ニュース』No.16, pp.1-10。
- 20. 宍倉正展(2011)「津波堆積物からみた869 年貞観地震と2011 年東北地方太平洋沖地震について」『日本地震学会ニュースレター』Vol.23, No.3, pp.20-25。
- 21. 宍倉正展,藤原治,澤井祐紀,行谷佑一,谷川晃一朗(2012)「海溝型地震履歴解明の研究」『地質調査総合センター速報 No.59,平成 23 年度沿岸域の地質・活断層 調査研究報告』pp.43-58。
- 22. 宍倉正展,前杢英明,越後智雄,小俣雅志,郡谷順英,渋谷典幸(2013)「南海トラフ沿いの和歌山県串本町で検出された完新世イベント堆積物」『日本地球惑星科学連合 2013年度大会予稿集』SSS31-35。
- 23. 地震調査委員会(2011)『三陸沖から房総沖にかけての地震活動の長期評価(第二版)について』平成23年11月25日。
- 24. 地震調査委員会(2013)『南海トラフの地震活動の長期評価(第二版)について』平成25年5月24日。
- 25. Cisternas, Marco, Brian Atwater,鎌滝孝信,澤井祐樹, 宍倉正展(2006)「1960年チリ地震震源域でくり返し生じた過去の巨大地震」『歴史地震』第21号, pp.87-91。
- 26. 高田圭太,佐竹健治,寒川旭,下川浩一,熊谷博之,後藤健一,原口強(2002)「静岡県西部湖西市における遠州灘沿岸低地の津波堆積物調査(速報)」『活断層・古 地震研究報告』第2号, pp. 235-243。
- 27. 谷川晃一朗, 宍倉正展, 藤原治, 行谷佑一, 松本弾(2017)「高知県四万十町興津における津波堆積物調査(予報)」『活断層・古津波研究報告』地質調査総合センター, No.17, pp.31-38。
- 28. 中央防災会議(2011)『東北地方太平洋沖地震を教訓とした地震・津波対策に関する専門調査会報告』東北地方太平洋沖地震を教訓とした地震・津波対策に関する専門調査会, 平成23年9月28日。
- 29. 都司嘉宣,岡村眞,松岡裕美,村上嘉謙(1998)「浜名湖の湖底堆積物中の津波痕跡調査」『歴史地震』第14巻, pp.101-113。

1.2 津波堆積物に関する文献調査 調査文献一覧

- 31. 都司嘉宣,岡村眞,松岡裕美,行谷佑一(2003)「高知県須崎市桐間池の湖底堆積層中の津波痕跡」『地球惑星科学関連学会2003年合同大会予稿集』1078-006。
- 32. 土隆一(2001)「静岡県地質図」『静岡県の地形と地質 静岡県地質図20万分の1(2001年改訂版)説明書 』内外地図。
- 33. 津波痕跡データベース(http://tsunami-db.irides.tohoku.ac.jp/tsunami/toppage.php)東北大学災害科学国際研究所。
- 34. 内閣府(2012)『南海トラフの巨大地震モデル検討会(中間とりまとめ)』南海トラフの巨大地震モデル検討会,平成23年12月27日。『南海トラフの巨大地震による震度分布・津 波高について(第一次報告)』南海トラフの巨大地震モデル検討会,平成24年3月31日。『南海トラフの巨大地震モデル検討会(第二次報告)津波断層モデル編 – 津波断層モデ ルと津波高・浸水域等について – 』南海トラフの巨大地震モデル検討会,平成24年8月29日。
- 35. 七山太,加賀新,木下博久,横山芳春,佐竹健治,中田高,杉山雄一,佃栄吉(2002)「紀淡海峡,友ヶ島において発見された南海地震津波の痕跡」『月刊海洋号外』第 28号, pp.123-131。
- 36. 南海トラフ広域地震防災研究プロジェクト(2014)『南海トラフ広域地震防災研究プロジェクト平成25年度成果報告書』文部科学省研究開発局,独立行政法人海洋研究開発機構,平成26年5月。
- 37. 南海トラフ広域地震防災研究プロジェクト(2015)『南海トラフ広域地震防災研究プロジェクト平成26年度成果報告書』文部科学省研究開発局,独立行政法人海洋研究開発機構,平成27年5月。
- 38. 南海トラフ広域地震防災研究プロジェクト(2016)『南海トラフ広域地震防災研究プロジェクト平成27年度成果報告書』文部科学省研究開発局,国立研究開発法人海洋研究開発機構,平成28年5月。
- 39. 南海トラフ広域地震防災研究プロジェクト(2017)『南海トラフ広域地震防災研究プロジェクト平成28年度成果報告書』文部科学省研究開発局,国立研究開発法人海洋研究開 発機構,平成29年5月。
- 40. 南海トラフ広域地震防災研究プロジェクト(2018)『南海トラフ広域地震防災研究プロジェクト平成29年度成果報告書』文部科学省研究開発局,国立研究開発法人海洋研究開発機構,平成30年5月。
- 41. 南海トラフ広域地震防災研究プロジェクト(2019)『南海トラフ広域地震防災研究プロジェクト平成30年度成果報告書』文部科学省研究開発局,国立研究開発法人海洋研究開発機構,令和元年5月。
- 42. 南海トラフ広域地震防災研究プロジェクト(2020)『南海トラフ広域地震防災研究プロジェクト令和元年度成果報告書』文部科学省研究開発局,国立研究開発法人海洋研究開 発機構,令和2年5月。
- 43. 西仲秀人, 熊谷博之, 奥田隆, 鳥居龍晴, 高野雅夫, 中村俊夫(1996)「浜名湖周辺の津波堆積物から探る過去の東海沖地震」『名古屋大学加速器質量分析計業績報告書』, Vol.VII, pp.193-203。
- 44. 原口強,鳥居和樹,山崎秀雄,関口秀雄(2008)「和歌山県田辺湾で発見された昭和南海地震津波堆積物」『北淡活断層シンポジウム2008講演要旨集』pp.41-42。
- 45. 平川一臣(2013)『津波堆積物が示す南海トラフの津波履歴,津波挙動(海食急崖,斜面からの証拠)伊良湖水道・菅島,志摩半島,紀伊長島,熊野,潮岬・串本』南海 トラフの巨大地震モデル検討会(第35回)及び首都直下地震モデル検討会(第17回)合同会議参考資料2平川委員提供資料,平成25年3月19日。
- 46. 廣内大助,佐藤善輝,松多信尚,堀和明,清水龍来,遠藤悠,西川由香,安江健一,顔一勤(2014)「静岡県太田川低地の堤間湿地における完新世後期の堆積環境変 化」『愛知工業大学地域防災研究センター年次報告書』Vol.10, pp.43-46。
- 47. 藤野滋弘(2013)「インド洋における過去の巨大地震・津波」『地震予知連絡会会報』第89巻, 12-10, pp.429-431。
- 48. 藤原治,小野映介,佐竹健治,澤井祐紀,海津正倫,矢田俊文,阿部恒平,池田哲哉,岡村行信,佐藤善輝, Than Tin Aung,内田淳一(2007)「静岡県掛川市 南部の横須賀湊跡に見られる1707年宝永地震の痕跡」『活断層・古地震研究報告』No.7, pp. 157-171。
- 49. 藤原治(2008)「静岡県中部沿岸での1707年宝永地震による地殻変動の調査」『活断層研究センターニュース』第80号, pp.1-5。
- 50. 藤原治,小野映介,矢田俊文,海津正倫,鎌滝孝信,内田淳一(2008)「完新世後半における太田川低地南西部の環境変化と津波堆積物」『活断層・古地震研究報告』 No.8, pp.187-202。
- 51. 藤原治, 小野映介, 矢田俊文, 海津正倫, 岡村行信, 佐竹健治, 佐藤善輝, 澤井祐紀, Than Tin Aung (2009) 「歴史と地層記録から確認された 1707 年宝永地震に よる遠州灘沿岸の隆起」『月刊地球』Vol31. No.4, pp.203-210。

第1020回資料2-3

p.18 再掲

1.2 津波堆積物に関する文献調査 調査文献一覧

- 52. 藤原治,町田洋,塩地潤一(2010)「大分県横尾貝塚に見られるアカホヤ噴火に伴う津波堆積物」『第四紀研究』Vol.49, No.1, pp. 23-33。
- 53. 藤原治,青島晃,佐藤善輝,北村晃寿,小野映介,谷川晃一朗(2012)「静岡県磐田市の太田川低地で見られる歴史津波堆積物」『日本第四紀学会講演要旨集』第42巻, pp.46-47。
- 54. 藤原治・佐藤善輝(2012)「静岡県浜松市西部高塚池跡における津波堆積物調査(予察)」『日本地震学会講演予稿集2012年度秋季大会』P2-40。
- 55. 藤原治(2013)「地形・地質記録から見た南海トラフの巨大地震・津波(東海地域の例)」『GSJ地質ニュース』Vol.2, No.7, pp.197-200。
- 56. 藤原治,佐藤善輝,小野映介,海津正倫(2013)「陸上掘削試料による津波堆積物の解析―浜名湖東岸六間川低地にみられる3400年前の津波堆積物を例にして―」『地学 雑誌』第122巻,第2号,pp.308-322。
- 57. 藤原治・澤井祐紀(2014)「静岡県沿岸の古地震・津波堆積物調査」『巨大地震による複合的地質災害に関する調査・研究報告書』産業技術総合研究所地質調査総合センター, Vol.66, pp.39-48。
- 58. 藤原治,北村晃寿,佐藤善輝,青島晃,小野映介,小林小夏,小倉一輝,谷川晃一朗(2015)「静岡県西部の太田川低地で見られる弥生時代中・後期の相対的海水準 上昇」『第四紀研究』第54巻,第1号, pp.11-20。
- 59. 松岡裕美・岡村眞(2012)「津波堆積物から見た南海トラフ沿いの巨大地震履歴」『地震予知連絡会会報』第87巻, 12-2, pp.495-496。
- 60. 松多信尚,佐藤善輝,坂本絵梨,廣内大助,堀和明,川上賢太,米原和哉(2016)「海岸平野の発達過程に基づく南海トラフ巨大地震時の地殻変動のパターンの解明」『第 15回学術研究助成(2015年度)』国土地理協会。
- 61. 松本弾(2017)「三重県津市の海岸低地における津波堆積物掘削調査」『活断層・古地震研究報告』地質調査総合センター, 第17号, pp.15-30。
- 62. 文部科学省(2010)「津波堆積物調査にもとづく地震発生履歴に関する研究」『宮城県沖地震における重点的調査観測総括成果報告書』, pp.152-185。
- 63. Abe, Tomoya, Kazuhisa Goto, Daisuke Sugawara (2012), "Relationship between the maximum extent of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami on the Sendai Plain, Japan", Sedimentary Geology, Vol.282, pp.142-150.
- 64. Fujiwara,Osamu,Kazuomi Hirakawa,Toshiaki Irizuki,Shiro Hasegawa,Yoshitaka Hase,Jun-ichi Uchida,Kohei Abe (2010), "Millennium-scale recurrent uplift inferred from beach deposits bordering the eastern Nankai Trough, Omaezaki area, central Japan",Island Arc,Vol.19,pp.374-388.
- 65. Fujiwara, Osamu, Eisuke Ono, Toshifumi Yata, Masatomo Umitsu, Yoshiki Sato, Vanessa M.A. Heyvaert(2013), "Assessing the impact of 1498 Meio earthquake and tsunami along the Enshu-nada coast, central Japan using coastal geology", Quaternary International, Vol.308-309, pp.4–12.
- 66. Fujiwara, Osamu, Akira Aoshima, Toshiaki Irizuki, Eisuke Ono, Stephen P. Obrochta, Yoshikazu Sampei, Yoshiki Sato, Ayumi Takahashi(2020), "Tsunami deposits refine great earthquake rupture extent and recurrence over the past 1300 years along the Nankai and Tokai fault segments of the Nankai Trough, Japan", Quaternary Science Reviews, Vol.227, Article105999, pp.1-19.
- 67. Garrett, Ed, Osamu Fujiwara, Philip Garrett, Vanessa M.A. Heyvaert, Masanobu Shishikura, Yusuke Yokoyama, Aurélia Hubert-Ferrari, Helmut Brückner, Atsunori Nakamura, Marc De Batist(2016), " A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan", Earth Science Reviews, vol.159, pp.337-357.
- 68. Goto, Kazuhisa, Kohei Hashimoto, Daisuke Sugawara, Hideaki Yanagisawa, Tomoya Abe (2014), "Spatial thickness variability of the 2011 Tohoku-oki tsunami deposits along the coastline of Sendai Bay", Marine Geology, Vol.358, pp.38-48.
- 69. Kitamura, Akihisa(2016), "Examination of the largest-possible tsunamis (Level 2) generated along the Nankai and Suruga troughs during the past 4000 years based on studies of tsunami deposits from the 2011 Tohoku-oki tsunami",Earth and Planetary Science, Vol.3, No.12, pp.1-20.
- 70. Kitamura, Akihisa, Kazuyoshi Yamada, Daisuke Sugawara, Yusuke Yokoyama, Yosuke Miyairi, Hamatome team(2020),"Tsunamis and submarine landslides in Suruga Bay, central Japan, caused by Nankai-Suruga Trough megathrust earthquakes during the last 5000 years", Quaternary Science Reviews, Vol.245, Article.106527, pp.1-23.
- 71. Komatsubara, Junko, Osamu Fujiwara, Keita Takada, Yuki Sawai, Than Tin Aung and Takanobu Kamataki(2008), "Historical tsunamis and storms recorded in a coastal lowland, Shizuoka Prefecture, along the Pacific Coast of Japan", Sedimentology, Vol.55, pp.1703-1716.
- 72. Nakamura, Yugo, Yuichi Nishimura, Purna Sulastya Putra(2012), "Local variation of inundation, sedimentary characteristics, and mineral assemblages of the 2011 Tohoku-oki tsunami on the Misawa coast, Aomori, Japan", Sedimentary Geology, Vol.282, pp.216–227.

- 73. Niwa, Masakazu, Takanobu Kamataki, Hideki Kurosawa, Yoko Saito-Kokubu, Masafumi Ikuta(2019), "Seismic subsidence near the source region of the 1662 Kanbun Hyuganada Sea earthquake: Geochemical, stratigraphical, chronological, and paleontological evidences in Miyazaki Plain, southwest Japan", Island Arc, Vol.29, Issue1, e12341, pp.1-26.
- 74. Pinegina, Tatiana K., Joanne Bourgeois, Lilia I. Bazanova, Ivan V. Melekestsev and Olga A. Braitseva(2003), "A millennial-scale record of Holocene tsunamis on the Kronotskiy Bay coast, Kamchatka, Russia", Quaternary Research, Vol.59, pp.36-47.
- 75. Rajendran, Kusala(2013), "On the recurrence of great subduction zone earthquakes", Current Science, Vol.104, No.7, pp.880–892.
- 76. Sato, Yoshiki(2013), "Late Holocene Geomorphic Development of Coastal Barriers Around Lake Hamana and in Hamamatsu Strand Plain", 九州大学 学位論文.
- 77. Shennan, Ian, Ronald Bruhn, George Plafker(2009), "Multi-segment earthquakes and tsunami potential of the Aleutian megathrust", Quaternary Science Reviews, Vol.28, pp.7-13.

1 歴史記録及び津波堆積物に関する調査

- 1.1 歴史記録に関する文献調査
- 1.2 津波堆積物に関する文献調査

1.3 津波堆積物に関する現地調査

- 1.3.1 津波堆積物調查
- 1.3.2 津波堆積物調查(詳細分析)
- 1.4 歴史記録及び津波堆積物から推定される津波高

巨大津波の見逃しを防ぐため、敷地が位置する遠州灘沿岸域の敷地周辺において、自社による津波堆積物調査を実施。

1.3 津波堆積物に関する現地調査 調査の全体概要

- 従来は、遠州灘沿岸域では、3~4m程度の浜堤を大きく超えて広域に分布する巨大な津波を示す津波堆積物は確認されず、津波の規模が時代によって顕著には変わらない結果が見られていることを踏まえ、巨大津波の見逃しを防ぐために、敷地周辺の津波堆積物調査において、主にコア観察によって津波起因の可能性が否定できない地層を、海陸起源の判別をコア観察以外の 手法では行うことなく、保守的にイベント堆積物と評価していた。(1.3.1 津波堆積物調査)
- 今回、敷地のイベント堆積物が分布する上限標高について物証に基づき示すこととのコメントを踏まえ、<u>敷地のイベント堆積物を検討対象</u>とした<u>詳細分析(追加ボーリング、CT画像観察、放射性炭素年代分析等)を実施し、面的な分布の把握、地層区分やイベント堆積物の連続性について精査</u>を行い、さらに、海から連続しない可能性があるイベント堆積物については、海陸起源の判別に有効とされるCNS分析によって供給源を精確に把握して、海起源のイベント堆積物が分布する上限標高を評価した。(1.3.2 津波堆積物調査(詳細分析))

1 歴史記録及び津波堆積物に関する調査

- 1.1 歴史記録に関する文献調査
- 1.2 津波堆積物に関する文献調査

1.3 津波堆積物に関する現地調査

- 1.3.1 津波堆積物調查
- 1.3.2 津波堆積物調查(詳細分析)
- 1.4 歴史記録及び津波堆積物から推定される津波高

巨大津波の見逃しを防ぐため、敷地が位置する遠州灘沿岸域の敷地周辺において、自社による津波堆積物調査を実施。

1.3.1 津波堆積物調査

■ 津波堆積物に関する文献調査の結果によると、敷地が位置する遠州灘沿岸域では、南海トラフの沿岸域でも遡上範囲の調査が可能な箇所である浜松平野と太田川低地において重点的に調査が実施され、この結果に基づき、浜松平野と太田川低地では、3~4m程度の浜堤を大きく超えて広域に分布する巨大な津波を示す津波堆積物は確認されず、津波の規模が時代によって顕著には変わらない結果が見られている。(藤原(2013)等)

津波堆積物に関する現地調査

遠州灘沿岸域では、3~4m程度の浜堤を大きく超えて広域に分布する巨大な津波を示す津波堆積物は確認されず、津波の規模が時代によって顕著には変わらない 結果が見られている(藤原(2013)等)が、巨大津波の見逃しを防ぐため、遠州灘沿岸域の敷地周辺において、津波堆積物の残存の可能性がある箇所を選定し、 津波堆積物調査を実施した。

1 ボーリング調査地点

 ・過去の海岸線や河口位置等の古環境の変遷を踏まえ、津波堆積物が識別しやすく、残存・保存されやすい泥層が分布すると推定される地点、計34地点を 選定し、ボーリング調査を実施。

2 調査·評価方法

○ボーリング調査および試料観察

 ・ボーリング調査を実施し、採取した試料の観察により、泥質堆積物および風成砂層中の上下の地層と異なる層相の地層(砂礫・偽礫等の混入や腐植等の 挟在等)について、津波堆積物に見られる特徴(層相(構造の乱れ、削り込み、押引き構造の有無等)、平面的な分布、供給源(地層の成因を含 む))を踏まえて津波起因の可能性が否定できない堆積物(イベント堆積物)*1を津波堆積物と評価した。

○試料の分析*2

・採取した試料の放射性炭素(14C)年代測定を実施。

・放射性炭素年代測定は、イベント堆積物の年代を特定することを目的として、イベント堆積物の上下の腐植質層や植物片、木片を対象に行った。また、イベント堆積物の陸側延長上の地層が、イベント堆積物と同層準であることの確認を目的とした年代測定も行った。

*1 ここでは津波起因の可能性が否定できない堆積物をイベント堆積物と定義した。

*2 一部試料において珪藻分析による評価も試みたが、多くの試料で相良層に含まれる種が確認され、その種の中に現生の海成種と同じ種が含まれているため、その試料が海起源か陸起源かの 判別が困難であったことから、津波堆積物の評価に珪藻分析結果を用いていない。

1.3.1 津波堆積物調査 調査箇所の選定

- 藤原(2013)では、「・津波堆積物から津波の規模(遡上距離)を推定するには、堆積物の内陸側への広がりを追跡する必要がある。・古津波の遡上距離の 推定を試みた例は浜名湖東岸等があるが、小規模な谷地形に沿った調査である。・南海トラフ沿岸の低地は一般に規模が小さい上に農耕や市街地化などのため 調査適地が少ないが、浜松平野と太田川低地は平野部での遡上距離の調査が可能な稀な例である。」として浜松平野と太田川低地で重点的に調査を進めて いるとされる。
- そこで、津波堆積物に関する現地調査の調査箇所は、遠州灘沿岸域の海岸低地のうち、規模は小さいものの他機関による津波堆積物調査が実施されておらず 敷地に近い菊川、新野川、筬川流域を選定した。また、敷地の既存ボーリングにおいて泥層が確認されていた敷地東側・西側についても選定した。なお、地質図・ 地形図等に基づき、津波堆積物認定の障害となる河川の影響が及ぶ範囲(侵食場)を除くよう留意した。

(土(2001)を基に作成)

遠州灘沿岸域の津波堆積物調査地点および地質図

1.3.1 津波堆積物調査 ボーリング調査地点

- 第981回資料1-3 p.24 再掲
- 各調査箇所のボーリング調査地点は、現地踏査、既存のボーリング調査等に基づき、過去の海岸線や河口位置等の古環境の変遷を踏まえて津波堆積物が識別しやすく、残存・保存されやすい泥層が分布すると推定される地点を選定した。
- 菊川・新野川流域では、海や河川の影響が及んでいない浜堤の背後の内湾成、湖沼成〜湿地成の堆積物を対象とし、筬川流域では浜堤の背後や浜堤間の 内湾成〜湿地成の堆積物を対象とした。

1.3.1 津波堆積物調査 敷地のボーリング調査地点(発電所開発前地形に投影)

- 敷地の西側および東側は、発電所開発前の地形図や既存のボーリング調査から内湾成~湿地成の堆積物が確認されていることから、かつて内湾やその奥には湿地 が広がっていたと考えられる。
- ■敷地のボーリング調査地点は、まずこの内湾成〜湿地成の堆積物が分布すると推定される地点を選定し、次に津波の遡上高さを確認するため、谷沿いに標高を 上げ順に調査を実施した。

敷地のボーリング調査地点(発電所開発前の地形図に投影)

第920回資料1-3

p.25 再掲

1.3.1 津波堆積物調査 ボーリング試料の観察・分析の方法

- 第981回資料1-3 p.26 再掲
- ボーリング調査を実施し、採取した試料の観察により、泥質堆積物および風成砂層中の上下の地層と異なる層相の地層(砂礫・偽礫等の混入や腐植等の挟在等)について、津波堆 積物に見られる特徴(層相(構造の乱れ、削り込み、押引き構造の有無等)、平面的な分布、供給源(地層の成因を含む))を踏まえて津波起因の可能性が否定できない堆積 物(イベント堆積物)を津波堆積物と評価した。
- 採取した試料の放射性炭素(14C)年代測定を実施した。
- なお、イベント堆積物は津波起因の可能性が否定できない堆積物であって、高潮や洪水、土石流など津波以外の要因も考えられる。

1.3.1 津波堆積物調査 イベント堆積物に関する評価結果

第1020回資料2-3 p.27 再掲

上下の地層と異なる層相の地層等について、津波堆積物に見られる特徴を踏まえ、層相(構造の乱れ、削り込み、押引き構造の有無等)、平面的な分布、供給源(地層の 成因を含む)の各項目を検討し、津波起因の可能性を総合的に評価し、イベント堆積物を認定した。以下にその結果を示す。

各地層のイベント堆積物の認定に係る根拠の詳細は補足説明資料2章を参照

海

河川

崩れ

植牛

注入

Х

れる。

(イベント堆積 調査地点 地 削り込み等

層 No.

K1-① K1-②

K1-③

K2-① K4-①

K4-(2)

K4-3) W9-(2)

W14-(5)

W14-6) W14-⑦

W15-④

W15-6

W18-3

E1-④

E2-①

E2-②

E3-(2)

E4-②

E4-③

E5-(2)

E6-6)

E6-⑦

E6-®

E7-①

E7-3)

E13-①

E16-①

E17-2

有

有

有

有

有

有

有 有 海

有 海

有 海

有 海

有 海

有 海

有 海

菊川

敷地西側

敷地東側

責物の	とした	こ地層)		(1/	バント堆積	物でな	いとし	た地層	層)			
津波	堆積	物に					津沢	8堆積	物に				
見ら	れる	時徴	,				見	ううしょう うちょう うちょう うちょう うちょう うちょう うちょう うちょう	1				
削り入す等く層相(構造の乱れ、	平面的な分布	成因を含む)	イベント堆積物		調査地点	地 層 No.	削り込み等) 層相(構造の乱れ、	平面的な分布	成因を含む)	イベント堆積物			
<u>有</u> 友	有有	海	0		菊川	K3-①	無	-*1	-*1	×			
<u>行</u> 右	行右	<u>一</u> 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	$\overline{0}$,	N1-1)	有	毎	河川	X			
<u>日</u> 右	右	海	$\overline{\circ}$		新	N1-2	有	有	河川	X			
<u>日</u> 右	有		$\overline{\bigcirc}$		野	N1-3	有	有	河川	X			
<u> </u>	石	海	$\overline{\bigcirc}$		/11	N2-①	有	有	河川	X			
有	右	海	$\overline{\bigcirc}$			W9-3	有	有	崩れ	×			
<u>。</u> 有	石		$\overline{\bigcirc}$		敷	W15-3	有	無	崩れ	X			
有	有	海	$\overline{\bigcirc}$		地	W15-5	有	有	崩れ	X			
有	有	海	$\overline{\bigcirc}$		個	W15-⑦	有	有	崩れ	X			
有	有	海	$\overline{\bigcirc}$		100	W19-3	有	無	崩れ	X			
有	有	海	\overline{O}			E3-3	有	有	崩れ	X			
有	有	海	\overline{O}		重行	E4-④	有	有	崩れ	×			
有	有	海	\bigcirc		が地	E7-②	有	無	崩れ	×			
有	有	海	\overline{O}		東	E12-1	有	無	崩れ	X			
有	有	海	0		側	E16-②	有	無	崩れ	×			
有	有	海	0			E17-①	有	無	崩れ	×			
有	有	海	0		<i>m</i> ~	01-3	有	有	崩れ	×			
有	有	海	0		成川	01-④	有	無	崩れ	×			
有	有	海	0		/11	02-1)	有	有	崩れ	×			
有	有	海	0		* 1	K3-①は「上 ⁻	下の地層の	と異なる	る層相の地	t			
有	有	海	\bigcirc		層」ではないことから、連続性と供給源につ								

いては、評価していない。

泥質堆積物中の地層

		津波 見ら	物に 持徴		
調査地点	地 層 No.	削り込み等)	平面的な分布*2	成因を含む)	イベント堆積物
邮	W9-1	有	有	植生	×
が加	W14-④	無	有	植生	×
西	W15-2	無	有	植生	×
側	W18-2	有	有	植生	×
	E1-3	無	有	植生	×
敷	E3-①	無	有	植生	×
地	E4-①	無	有	植生	×
吊側	E5-①	無	有	植生	×
1/1	E6-3	無	有	植生	×

地層境界付近の砂泥互層

砂の供給により沼地が干上がり砂丘に覆わ れる過程で形成されることから、地層境界 に沿って平面的な分布が認められると考え られる。

		」 冒	0)1[[ジ間中	川山方以何		
		讀物に 持徴	進積 れる ³	津 波 見ら			
	イベント堆積物	成因を含む)	平面的な分布	削り込み等)	地 層 No.	調査地点	
	×	植生	無	有	N3-①		
	×	植生	無	無	N3-2	新	
検討項目	\times	植生	無	有	N3-3	野	
	\times	植生	無	有	N4-①	川[
屋田 (堪準の利わ	\times	植生	無	有	N4-2		
間伯(伊迫の乱れ 削り込み等)	×	植生	有	無	W14-①		
	×	植生	無	有	W14-2		
	\times	植生	無	無	W14-3	敷	
亚面的か分布	×	植生	有	無	W15-①	也 无	
上面のないい	\times	植生	有	無	W18-①	側	
	\times	植生	無	無	W19-①		
	\times	植生	無	無	W19-2		
	\times	植生	無	無	E1-①		
	\times	植生	無	無	E1-2	邮行	
	\times	植生	無	無	E6-①	<u>就</u> 地	
	\times	植生	無	有	E6-2	東	
供給源(地層の	\times	植生	無	有	E6-④	倁	
成因を含む)	\times	注入	無	有	E6-5		
	\times	植生	無	無	01-①		
	\times	植生	無	無	01-2	筬	
	\times	植生	無	無	04-①	Ш	
	\times	植生	無	無	05-①		
イベント堆積物							

	記号の凡例										
	記号	津波堆積物に見られる特徴を 踏まえた検討結果									
~	有	構造の乱れ、削り込み(傾斜した境界面を 含む)、押引き構造等が認められる。									
	無	上記が認められない。									
	有	2地点以上で連続的に分布が認められる (海側まで連続しないものも有と表記)。									
	無	連続的な分布が認められない。									

と判断される。

円礫等から海起源と判断される(下記に当

粗砂、淘汰の悪い砂礫等であり、河成砂礫

相良層群の泥含礫等であり、基盤岩等の

風成砂層中に狭在する泥質層であり、砂丘

を覆う植生もしくは局所的な水たまりでできた

堆積層の上下の境界面に火炎状の乱れが

あり、液状化により砂が注入したものと判断さ

津波起因の可能性が否定できないことから、

津波以外の成因であると考えられることから、

再堆積(崩れ)と判断される。

腐植層・シルト層と判断される。

イベント堆積物ではないと評価

イベント堆積物と評価

てはまらず否定できないものも含む)。

1.3.1 津波堆積物調査 調査結果(イベント堆積物の有無)

第920回資料1-3 p.28 再掲

■ 津波堆積物調査の結果は以下のとおり。

・菊川流域の海側の調査地点において、約2千年前以降と約3千年前以前と推定されるイベント堆積物を確認した。

・敷地において、約6千年前と推定されるイベント堆積物を確認した。

・新野川流域および筬川流域では、いずれの調査地点においてもイベント堆積物は確認されなかった。

敷地周辺の津波堆積物調査結果

1.3.1 津波堆積物調査 評価結果(菊川流域)

- 菊川流域の調査地点におけるイベント堆積物は、海に近い調査地点の現標高約1~4mにかけて分布。
- イベント堆積物の内陸への広がりから、菊川河口に近い菊川4,1,2付近には津波が浸入しているものの、河口から離れた菊川3,6,5までは津波は達していな いと考えられる。また、菊川6,5では最近の層準まで保存されており、歴史時代の津波も少なくとも菊川6,5までは達していないと考えられる。

1.3.1 津波堆積物調査 評価結果(敷地西側)

■ 高海面期には、敷地西側の低地沿いには内湾とその奥には湿地が広がっていたと考えられる。津波は、この内湾から湿地とこれに繋がる谷沿いに浸入したものと考えられる。堆積当時の地形が、現在と異なり、海から近く津波が集まりやすい谷地形であったことが、堆積物の分布標高や厚さに影響を与えていると考えられる。

1.3.1 津波堆積物調査 評価結果(敷地東側)

推定される津波の浸入方向

- 断面線

ボーリング調査地点

標高10m

(1962年の標高)

■ 過去の谷地形に沿って実施した敷地東側の調査地点におけるイベント堆積物は、現標高約-3~13mにかけて分布。 ■ 高海面期には、海岸沿いに伸びる尾根の背後には内湾とその奥には湿地が広がっていたと考えられる。津波は、この内湾から湿地とこれに繋がる谷沿いに浸入したもの と考えられる。
堆積当時の地形が、現在と異なり、海から近く津波が集まりやすい谷地形であったことが、
堆積物の分布標高や厚さに影響を与えていると考えられる。 →F NE← →SW W← T.P.(m)T.P.(m) 凡例 盛土 風成砂層 40m <u>*****</u> 40m 泥質堆積物 and the 相良層 32.24 イベント堆積物 Style . 30.70 30.70 - 30.6 30m 30m 28.20 27.74 ・地層境界の標高を黒字、イベント 26.54 75 25.34 26.23 堆積物の標高を赤字で示す。 #Atted U23.84 ・図中に示す年代測定結果は、 14C 年代に基づいて較正された年 20m 20m WHE? W.M. 19.03 代値である。 ・calBCは紀元前(暦年較正済)を、 15.04 14.41 14.12 calADは西暦(暦年較正済)を表 13.8 12.5 12.2 12.79 12.85 12.80 3790calBC-3661calBC(腐 10m 10m ・図中に年代測定結果とともに測 3639calBC-3520calBC(腐 定に用いた試料を記号で示す。記 3347calBC-3091calBC(木) 5m 5m 🗲 BC-4519calBC (B) \3638calBC-3384calBC(植) 号の凡例は以下の通り 4312calBC-4052calBC(植) 3656calBC-3530calBC(腐) 5312calBC-5079calBC(腐 206 (腐):腐植質シルト 3629calBC-3375calBC(植) 4041calBC-3956calBC(腐) 0m 0m (木):木片(植):植物片 3907calBC-3704calBC(腐) 100n -2.31 -3.14 -4.26 -4.66 縄文海進期(約6千年前) の海水面高さ イベント堆積物が確認された地点 【調査結果】 が確認されなかった地点 0: ・イベント堆積物は、現標高約-3~13mにかけて分布。 ・風成砂層直下のイベント堆積物は連続性を有して分布し、これらは上部および下部試料の放射性炭素年代測定(14C)により、 約6千年前の堆積物であると推定。 敷地6 ・杉山ほか(1988)によると、調査地点に近い筬川低地:浜岡町雨垂の海成層上限高度は、現標高で5.6~6mとされる。 敷地10 【評価】 敷地1 敷地7 ・発電所開発前の地形図およびボーリング調査結果から、高海面期には、海岸沿いに伸びる尾根の背後には内湾とその奥には 敷地4 湿地が広がっていたと考えられ、津波は、この内湾から湿地とこれに繋がる谷沿いに浸入したものと考えられる。 敷地2 敷地12 敷地3 海成層上限高度とイベント堆積物の年代から、イベント堆積物堆積時の海面からの高さは、現在よりも5.6~6m程度低かった と推定される。 **数地13** 海から近く、津波が集まりやすい谷地形であったことが、津波の遡上高さや堆積物の厚さに影響を与えていると考えられる。 敷地16 ・ 敷地3,4には海成礫からなるイベント堆積物が認められる。敷地3のイベント堆積物が厚いが、敷地1,2では海成礫が認められ 凡例 ないことから局所的な堆積であったと考えられる。また、海成礫は、敷地3の南側の尾根の鞍部から浸入した津波によって堆積 標高40m 国土地理院撮影の空中写真(1962年撮影) 100m 0 したものと考えられる。 標高30m CB62-7 C23-8、9、10(1:10,000)より図化 標高20m

・山谷の大きな位置関係は、基盤が反映されたものであり、発電所開発前(1962年)とイベント堆積物の堆積時(縄文海進期)とで概ね変わらないと考えられる。 ・各地点のボーリングコア写真は補足説明資料に掲載

1 歴史記録及び津波堆積物に関する調査

- 1.1 歴史記録に関する文献調査
- 1.2 津波堆積物に関する文献調査

1.3 津波堆積物に関する現地調査

- 1.3.1 津波堆積物調查
- 1.3.2 津波堆積物調查(詳細分析)
- 1.4 歴史記録及び津波堆積物から推定される津波高

■ 敷地のイベント堆積物が分布する上限標高について物証に基づき示すこととのコメントを踏まえ、<u>敷地のイベント堆積物を検討対象とした詳細分析(追加ボーリング、CT画像観察、放射性炭</u> 素年代分析等)を実施し、地層区分やイベント堆積物の連続性について精査し、海から連続しない可能性があるイベント堆積物については、海陸起源の判別に有効とされるCNS分析によって 供給源を精確に把握することによって、海起源のイベント堆積物が分布する上限標高を評価した。

1.3.2 津波堆積物調査 (詳細分析) 敷地のイベント堆積物を検討対象とした詳細分析

割地のイベント堆積物が分布する上限標高について物証に基づき示すこととのコメントを踏まえ、敷地のイベント堆積物を検討対象とした詳細分析(追加ボーリング、CT画像観察、放射性炭素年代分析等)を実施する。

調査目	的	追加調査項目	(参考)従来の評価
②平面的な分布に関するデータ拡充	面的な分布の把握	追加ボーリング調査 (従来、イベント堆積物が分布すると していた範囲の端部周辺で実施)	• 谷に沿って線上に調査を実施
	地層区分やイベント堆積物の連続性の精査	CT画像観察 放射性炭素年代分析(顕微鏡下 で試料採取)等 (上位のイベント堆積物を対象)	 ・地質断面図では、泥層、シルト層を主体とする地層を 一括で泥質堆積物として区分 ・風成砂直下のイベント堆積物は連続すると仮定して、 保守的に評価 ・放射性炭素年代分析用の試料を目視によって採取
③供給源に関するデータ拡充	海陸起源判別の高精度化	CNS分析 (堆積環境(海成、陸成、淡水 成)の判別に有効とされている)	 ・ 観察のみでは海陸起源が判別が困難な地層は津波 起因が否定できないとして、保守的にイベント堆積物 と評価 ・ このため高潮や洪水、土石流など津波以外を要因と するイベント堆積物も含まれていると考えられる。

【試料の分析及び上限標高の評価】

- 追加ボーリング調査結果、既往の層相観察結果、放射性炭素年代分析結果等を踏まえて、従来一括して区分していた泥質堆積物を細区分する。
- さらに、海起源のイベント堆積物(敷地値西側ではW9-②、敷地東側ではE3-②)を起点として、イベント堆積物の連続性を詳細分析(CT画像観察、放射性炭素年代分析等)結果をもとに精査する。
- 海起源のイベント堆積物から連続していることが確認できるイベント堆積物を、津波起因の可能性が否定できない堆積物(海起源のイベント堆積物*1)と評価する。
- 海から連続しない可能性があるイベント堆積物(コア観察以外の手法では海陸起源の判別を行うことなく保守的に評価していたイベント堆積物) については、海陸起源の判別に有効とされるCNS分析により供給源を精確に把握することによって、海起源と判別されるイベント堆積物を津波起因の可能性が否定 できない堆積物(海起源のイベント堆積物*1)と評価する。
- 敷地西側及び敷地東側で評価された海起源のイベント堆積物の分布範囲を把握し、その最大標高を海起源のイベント堆積物が分布する上限標高として評価する。

*1 今回の検討においても高潮と津波との判別は困難であるため、高潮など津波以外の海起源の堆積物も含めて評価する。

1.3.2 津波堆積物調査(詳細分析) ボーリング調査

- ■イベント堆積物の面的な分布の把握するために、敷地西側及び敷地東側において、従来、イベント堆積物が分布するとしていた範囲の端部周辺で追加ボーリング 調査を実施した。
- ■敷地西側では、敷地18から谷沿いに標高が上がる方向に敷地21を、敷地19から谷を横断するように敷地20を追加した。
- ■敷地東側では、敷地17から谷沿いに標高が上がる方向に敷地22を、谷を横断するように敷地23と敷地24を追加した。

1.3.2 津波堆積物調査(詳細分析) 評価結果

C2

<敷地西側>

- 追加ボーリング調査結果、放射性炭素年代分析結果、CT画像観察及び既往の層相観察結果を踏まえて、従来一括して区分していた泥質堆積物について細区分するとともに、 砂や貝化石を含むことから海起源のイベント堆積物であるW9-②を起点として、CT画像観察及び放射性炭素年代分析結果に基づいて、イベント堆積物の連続性を精査した。
 ■ さらに、イベント堆積物の供給源を精確に把握するため、海陸起源の判別に有効とされるCNS分析を実施した。
- 【調査結果】
 - 層相観察結果、放射性炭素年代分析結果等から、敷地西側の地層を下位より基盤(相良層群)、礫層・含礫シルト層、シルト層(湖沼・内湾成・偽礫を含む)、腐植質シ ルト層、風成砂層に区分した。
 - CT画像観察によって貝化石が認められないことや層相が異なって見えることが確認されたこと、また、放射性炭素年代分析による堆積年代が異なることから、W15-④より陸側の イベント堆積物はW9-②とは連続しない可能性が考えられる。
 - また、W15-④より陸側のイベント堆積物は、コア観察以外の手法では海陸起源の判別を行うことなく保守的に評価していたイベント堆積物であることから、海陸起源の判別に有効とされるCNS分析を実施した。その結果、いずれのイベント堆積物も陸起源の堆積物であることが確認された。
 - イベント堆積物ではないと評価していたW19-③や敷地20及び敷地21の追加ボーリングで得られた泥質堆積物もCNS分析結果では陸起源の堆積物であることが確認された。
 - なお、貝化石を含むことから海起源のイベント堆積物であるW9-②や内湾堆積物をCNS分析した結果、海起源の堆積物と判別されることを確認した。
- 【評 価】
 - 貝化石を含むことから海起源のイベント堆積物と判断されるW9-②を津波堆積物と評価し、その他のイベント堆積物は陸起源のイベント堆積物であると評価する。
 - W9-②は現標高5.5m程度に分布し、W9-②が堆積した時期は、5500~6500年前頃と評価される。

<敷地東側>

追加ボーリング調査結果、放射性炭素年代分析結果、CT画像観察結果及び既往の層相観察結果を踏まえて、従来一括して評価していた泥質堆積物について細区分するとともに、海成礫を含むことから海起源のイベント堆積物であるE3-②を起点として、CT画像観察及び放射性炭素年代分析結果に基づいて、イベント堆積物の連続性を精査した。
 さらに、イベント堆積物の供給源を精確に把握するため、海陸起源の判別に有効とされるCNS分析を実施した。

【調査結果】

- 層相観察結果、放射性炭素年代分析結果等から、敷地西側の地層を基盤(相良層群)、礫層・含礫シルト層、礫層(海成礫)、シルト層(湿地・湖沼・内湾成・偽礫を 含む)、腐植質シルト層、風成砂層に区分した。
- CT画像観察から、E3-②に特徴的な海成礫は、E4-②、E2-①-1に連続しており、敷地6より陸側のイベント堆積物には海成礫が連続していないことを確認した。また、放射性 炭素年代分析結果から、E3-②、E4-②およびE2-①-1は連続しており、E6-⑥より陸側のイベント堆積物は連続していない可能性が考えられる。なお、E2-①は、CT 画像から 確認される海成礫の分布深度及びE3-②からの連続性を考慮し、E-②-1とE2-①-2に区分を見直した。
- また、E6-⑥より陸側のイベント堆積物は、コア観察以外の手法では海陸起源の判別を行うことなく保守的に評価していたイベント堆積物であることから、海陸起源の判別に有効 とされるCNS分析を実施した。その結果、いずれのイベント堆積物も陸起源の堆積物であることが確認された。
- イベント堆積物ではないと評価していたE12-①や敷地22、敷地23及び敷地24の追加ボーリングで得られた泥質堆積物もCNS分析結果では陸起源の堆積物であることが確認 された。
- なお、内湾堆積物をCNS分析した結果、海起源の堆積物と判別されることを確認した。
- 【評価】
 - 海成の円礫を含むことから海起源のイベント堆積物と判断されるE3-②、E4-②、E2-①-1を津波堆積物と評価し、その他のイベント堆積物は陸起源のイベント堆積物であると評価する。
 - これらのイベント堆積物は現標高0~8.1m程度に分布し、これらのイベント堆積物が堆積した時期は、6000~6700年前頃と評価される。

1.3.2 津波堆積物調査(詳細分析) 評価結果(敷地西側)

1.3.2 津波堆積物調査(詳細分析) 評価結果(敷地東側)(1/2)

1.3.2 津波堆積物調査 (詳細分析) 評価結果(敷地東側)(2/2)

1.3.2 津波堆積物調査 (詳細分析) 詳細分析結果を踏まえた総合評価結果

■ 敷地のイベント堆積物を検討対象として、詳細分析(追加ボーリング、CNS分析等)によって分布範囲、海陸起源に関するデータを拡充し、海起源と判別され るイベント堆積物を分布範囲を含めて精確に把握した。

■ ②平面的な分布に関する検討においては、海起源のイベント堆積物(敷地値西側ではW9-②、敷地東側ではE3-②)を起点として、イベント堆積物の連続性を 詳細分析(CT画像観察、放射性炭素年代分析等)結果をもとに精査した。

■ 以下に、その結果を示す。

調査地点	地 層 No.	(既往評価)		地 層 No.	①層相(構造の乱れ、	(今回 ②平 (CT画像観察)	詳回 的 (放射性炭素 析)	(CNS分析) (CNS分析)	海起源のイベント堆積物詳細分析結果を踏まえた	備考	検討項目 層相(構造の乱れ、 削り込み等)	記号有無	津波堆積物に見られる特徴を 踏まえた検討結果 構造の乱れ、削り込み(傾斜した境界面を 含む)、押引き構造等が認められる。		
	W9-2	0		W9-2	有	赾]」点	海 ^{※1}	0	※1 貝化石含む			津波起因の可能性が否定できないことから、		
[W15-④	0		W15-④	有	異	異	陸	×		イベント堆積物		イベント堆積物と評価		
敫	W14-5)	0		W14-5	有	異	異	陸	×		(既任評価)	×	津波以外の成因であると考えられることから、 イベント堆積物ではないと評価		
- 地	W18-3	0		W18-3	有	異	異	陸	×			同	海側のW9-②あるいはE3-②と層相が同じ		
側	W19-3	×		W19-3	有	異	同	陸	×		CT画像観察	異	海側のW9-②あるいはE3-②と層相が異なる。		
	-	-				W20 W21	無	 	-	 陸	× ×		故创作崇美在代公坛	同	海側のW9-②あるいはE4-②と堆積年代 が重なる。
	E2-①	0						E2-①-1	有	同	同	海 ^{※2}	0	※2 海成礫含む	放射性灰系中代分析
	E3-(2)	\bigcirc		E2-(1)-2				<u> </u>	×	※2 海武磁合む		海	CNS分析の結果海起源と判別される。		
	E4-2	0		V [E3-(2) E4-(2)		日		一 <u></u> 海 ^{※2}	\bigcirc	※2 海成礫含む ※2 海成礫含む	<u>む</u> CNS分析 む	陸	CNS分析の結果陸起源あるいは淡水起源 と判別される。	
	E6-@	0		E6-6	有	異	同	陸	×		詳細分析結果を踏まえた	0	津波起因の可能性が否定できないことから、 海起源のイベント堆積物と評価		
敫	E/-(1)	0		E7-1	有		同	陸	×		海起源のイベント堆積物	~	陸起源の堆積物であることから、海起源の		
也	E12-①	×		E12-1	有	異	異	陸	×			^	イベント堆積物ではないと評価		
俞	E13-①	0		E13-①	有	異	同	陸	×						
	E16-①	0		E16-①	有	異	異	陸	×						
	E17-2	0		E17-2	有		同	陸	×						
	-	-		E22	有	異	-	陸	×						
	-	-		E23	無	異	-	陸	×						
	-	-		E24	無	異	-	陸	×						

1.3.2 津波堆積物調査(詳細分析) 敷地周辺における縄文海進期の海面の現高度の評価

■ 杉山ほか(1988)によると、菊川低地および筬川低地は縄文海進のピーク時に内湾の中央部や湾口部は完全に埋没しなかったとされ、低地縁辺部及び上流部の 海成層上限高度を以て縄文海進期の海面高度とみなすと、縄文海進期の海面の現高度は、菊川低地で海抜5.1m、筬川低地では海抜5.5~6m程度 となるとされている。

■ この評価は、当社が実施した完新世段斤の降起評価に基づく検討等に基づく評価※とも概ね整合している。

※ 詳細は補足説明資料4章を参照

③筬川低地南部,中央部

浜岡町玄保

海抜約0m

筬川流域

(第HIII)

筬川4

(竈川5

筬川2 Tatinia N

④筬川低地南部,東縁部

御前崎町堀野新田

海抜2.9m

⑥御前崎台地南縁

おまえざき荘の南

海抜約10m

(杉山ほか(1988)を基に作成)

×

菊川低地中部, 東縁部 小笠町下平川

海抜5.1m

新野川12

新野川3

新野川4

敷地東側

筬川

菊川流域

菊川6

菊川2

菊川15

新野川流域

新野川1

敷地西側

新野川

浜岡原子力発電所

⑤ 筬川低地南部,西縁部

浜岡町雨垂

海抜5.5-6m

第981回資料1-3 p.32 再掲

御前崎周辺における海成層上限高度と縄文海進期の海面高度

標高

内湾の中央部・湾口部

敷地周辺の縄文海進期の海面高度を現標高で5m程度と評価した。

1.3.2 津波堆積物調査 (詳細分析) 評価結果一覧(堆積当時の標高)

第1020回資料2-3
p.33 一部修正

	調杏	イベント堆積物							調杏			イベント	>堆積物	積物											
	调 <u>且</u> 地点	有無	分布標高	年代	堆積	当時の標高			调 <u>且</u> 地点	有無	分布標高	年代	堆積	しちまたの標高											
		有	約4.1m	約2千年前以降	約4.1m未満				8	魚	—	—	_												
	1	有	約3.4m	約3千年前以前	約3.4m未満		i i	i	-			9	有	約5.5m	約6千年前	海面付近									
		有	約1.5m	約3千年前以前	約1.5m未満						一元	14 無	無	-	_	-									
	2	有	約1.9m	約4千年前以前	約1.9m未満			側	<u>15</u>	無	-	_	-												
菊川	3	無	—	—	_	約1~4m			<u>18</u>	無	-	_	_												
流域		有	約3.6m	約2千年前以降	約3.6m未満	天満			19	無	—	_	_												
	4	有	約2.8m	約3千年前以前	約2.8m未満	(・確認されたイベント堆積物の 年代は縄文海進期より新し			1	有	約4.8m	約6千年前	海面付近												
		有	約1.4m	約3千年前以前	約1.4m未満	いものであることから、イベント 堆積物の堆積当時の標高 は、現在の分布標高よりも 低かったと推定。)			2	有	約8.1m [※]	約6千年前	約3.1m [※]	約0~4m [※]											
	5	無	_	—	_				3	有	約6.1m	約6千年前	海面付近	(・調査箇所に近い地点の海											
	6	無	—	—	_														敷地		4	有	約4.7m	約6千年前	海面付近
	1	無	無 –			_			5	有	約3.1m	約6千年前	海面付近	を、5m程度と評価。 ・確認されたイベント堆積物の 年代は縄文海准期のもので											
新									<u>6</u>	無	—	_	_	中代は縄文海運動のもので あることから、イベント堆積物 の推積当時の標高は現在											
野川				_	-			東側	<u>7</u>	無	—	—	_	の分布標高よりも5m程度 低かったと推定。)											
流域	4												10	無		_									
									11	無	_	_	_												
	1 2 5	無							12	無	-	-	_												
筬										<u>13</u>	無	-	_	-											
川流			-	_	_	-	-			<u>16</u>	無	-	-	-											
域									<u>17</u>	無	_	_	_												
										Dボーリン しは、従	ング地点は、詳 来コア観察に	羊細分析結果を踏まえて よりE2-①としていたイベ	、海起源のイベン ント堆積物の範囲	ト堆積物はないと評価した地。 を、詳細分析結果(CT画像											
1) 杉山ほか(1988)									察結果) から確 ある	認される海反	战礫の分布深度及びE3	-②からの連続性な	を考慮し、E2-①-1として見直											

1.3.2 津波堆積物調査 (詳細分析) 評価結果一覧 (イベント堆積物の層厚)

■イベント堆積物の厚さをコア観察結果から下表のとおり整理して示す。

箇所			菊川流域																
ボーリングサ	山点		菊川1	菊川2	菊川4	敷地9	<u>敷地14</u>	<u>敷地15</u>	<u>敷地18</u>	敷地1	敷地2	敷地3	敷地4	敷地5	<u>敷地6</u>	<u>敷地7</u>	<u>敷地13</u>	<u>敷地16</u>	<u> 敷地17</u>
海岸線からの距離(m)		2,780	3,040	2,520	860	1,000	1,000	1,000	460	400	440	460	310	590	560	510	500	490	
	分布標高(m)		4.1未満	1.9未満	3.6未満	海面付近				海面付近	3.0	海面付近	海面付近	海面付近					
		引き波	—	0.26	—	—				-	—	0.19	0.12	0.35					
イベント		混濁	-	0.34	—	-				—	-	2.34	0.28	0.44					
堆積物① (上位)	· 層厚 (m)	押し波	-	0.31	—	0.08				–	–	0.47	0.40	0.21					
		(混在)	0.32	—	0.51	0.52				0.25	0.25 [*]	_	-	-					
		計	0.32	0.91	0.51	0.60				0.25	0.25 [%]	3.00	0.80	1.00					
	分布標高(m)		3.4未満		2.8未満														
		引き波	0.22		0.23														
イベント	層厚	混濁	—		—														
堆積初② (中位)	(m)	押し波	0.76		—														
		(混在)	—		0.54														
		計	0.98		0.77														
	分布標高	(m)	1.5未満		1.4未満														
		引き波	0.24		0.29														
ボーリング地兵 海岸線からの イベント (上位) イベント ((イベント (イベント (イベント (イベント (イベント (((混濁	—		—														
		押し波	-		0.26														
	()	(混在)	0.51		_														
		計	0.75		0.55														

・ 抽出したイベント堆積物については、堆積物の厚さの評価のため、小松原(2012)、藤原(2007)、澤井(2012)を参考として、以下の観点から「引き波」「混濁」「押し波」の各構造の観察も試みた。 判断が出来ない範囲は「混在」とした。なお、イベント堆積物の厚さは、保守的に泥層中に砂、礫を含む範囲全体を認定した。

「引き波」:砂・礫と上流の泥などが混じり、泥を礫状に含む。葉理がみられる。

「混濁」 : 葉理がみられず、シルトと砂が混じった状態。流れが停滞している。

「押し波」:砂・礫主体の部分で下流の堆積物や削り込みがみられる。葉理がみられる。

・ 下線部のボーリング地点は、詳細分析結果を踏まえて、海起源のイベント堆積物はないと評価した地点。

・ ※の数値は、従来コア観察によりE2-①としていたイベント堆積物の範囲を、詳細分析結果(CT画像観察結果)から確認される海成礫の分布深度及びE3-②からの連続性を考慮し、E2-①-1として見直したものである。

1.3.2 津波堆積物調査 (詳細分析) 勢地周辺の津波堆積物調査結果

第1020回資料2-3 p.35 一部修正

C2

■ 敷地周辺において津波堆積物の残存の可能性がある箇所を選定し、自社による津波堆積物調査を実施した。

■ 敷地の津波堆積物については、上限標高を物証をもって示すために端部付近の追加ボーリング、試料分析を加え、より詳細な評価を行った。

■ その結果、確認したイベント堆積物の堆積当時の標高は、敷地では約0~4m、菊川流域では約1~4m未満であり、歴史記録に基づく痕跡高と同程度である。

■ また、イベント堆積物は、海岸近く(敷地西側、東側)あるいは比較的規模の大きな河口の近く(菊川4,1,2)で確認され、浜堤の背後にあるなど 小さな津波では浸入し難いと考えられる地点では確認されなかった。これは、浜堤を超えて内陸側へ広い分布を持つ津波堆積物は確認されず歴史記録よりも

広域に分布する巨大な津波の痕跡は確認されないとする遠州灘沿岸域における他機関の津波堆積物調査結果と整合的である。

以上より、敷地周辺の津波堆積物調査の結果、確認したイベント堆積物の高さは**歴史記録に基づく痕跡高と同程度であり**、他機関による遠州灘沿岸域の津波堆 積物調査と同様、**巨大な津波を示すイベント堆積物は確認されなかった。**

1.3 津波堆積物に関する現地調査 (参考)南海トラフで確認されているイベント堆積物の年代

■ 南海トラフでは、約6千年前~現在まで幅広い年代のイベント堆積物が複数の地点において確認されている。

■ これらの調査結果を踏まえ、Garrett et al. (2016)、南海トラフ広域地震防災研究プロジェクト(2020)等は、南海トラフのいずれの地域においても、東北沖を含む 国内外の巨大地震の発生領域と同様、同規模の津波が数百年間隔で繰り返し発生していたことを示す津波堆積物が確認され、最大クラスの津波が発生した証拠 は見つかっていないとしている。

南海トラフにおいて約6千年前の津波堆積物が確認された地点

(Garret et al. (2016)を基に作成)

OKitamura et al.(2016)

・著者ならびに他の研究者の先行研究を総括し、静岡県沿岸地域の過去4,000年間の津波堆積物分布を調べた結果、この地域において(最大クラスの津波等の)レベル2の津波の発生を示す地質学的証拠はないと している。

OGarret et al. (2016)

・南海トラフの過去地震に関する地質データ(湖沼や低地の津波堆積物の他、海岸段丘や生物相、海中・湖水内のタービダイト、液状化痕を含む)について、70以上の地点に関する75文献を分析。

・現在のところ、違った地震や津波の相対的な規模を模索する研究は少数あるものの、1707年宝永地震より大きな地震規模と広い浸水域を持つ地震が発生したとする地質学的証拠は見つかっていない。

○南海トラフ広域地震防災研究プロジェクト(2020)

・このような地質痕跡が示す低頻度の地震や津波の規模については、マグニチュード9クラス(最大クラス)だったのかどうか、琉球海溝沿いの地震と連動したのかどうかについて、各地での調査結果からはそのような事象を示 す証拠は見つかっていない。

1 歴史記録及び津波堆積物に関する調査

- 1.1 歴史記録に関する文献調査
- 1.2 津波堆積物に関する文献調査
- 1.3 津波堆積物に関する現地調査
 - 1.3.1 津波堆積物調查
 - 1.3.2 津波堆積物調查(詳細分析)

1.4 歴史記録及び津波堆積物から推定される津波高

1.4 歴史記録及び津波堆積物から推定される津波高 勢地周辺の津波痕跡高

遠州灘沿岸域における津波痕跡高の調査結果のまとめ

ここでは、実際の津波高は津波堆積物の分布標高よりも高いと考えられることに留意して、歴史記録及び津波堆積物から推定される津波高を検討する。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

第1020回資料2-3

p.37 一部修正

1.4 歴史記録及び津波堆積物から推定される津波高 第981回資料1-3 東北沖地震等による最大遡上高と津波堆積物の分布標高の関係

■ Abe et al. (2012)は、東北沖地震等による海岸線からの浸水距離と津波堆積物の分布距離とを比較し、浸水距離が2.5km未満の測線に おいては浸水域と津波堆積物の分布域は概ね一致し、浸水距離が2.5km以上の測線においては両者に乖離が見られるとしている。 ■ また、Abe et al. (2012)による比較結果によると、津波の最大遡上高と津波堆積物の分布標高の差は約0~2m。

Fig. 1. Map showing the study area and locations of each transect (based on the pretsunami 10 m DEM data provided by GSI), measured points of flow height by TETJSG (2011). The solid red line shows transects with more than several sites. The dashed red line shows transects with the measurement of the inundation distance and the maximum extent of the sand

Transects A and N are adopted from Goto et al. (2011, accepted for publication-b).

調査測線

Fig. 5. Relationship between the inundation distance (km) and the maximum extent of the sand (km) based on data from previous studies including Jaffe et al. (2006), Apotsos et al. (2011), Morton et al. (2011), and MacInnes (personal communication) (green), previous studies on 2011 Tohoku-oki tsunami including Goto et al. (2011, accepted for publication-a, accepted for publication-b, in press), and Chagué-Goff et al. (submitted for publication) (red) and this study (blue). The dashed line at 3 km shows the maximum extent of the Jogan tsunami sand (≥0.5 cm) estimated by Sugawara et al. (2010).

各測線における浸水距離と津波堆積物の分布距離の関係

東北沖地震による浸水域と津波堆積物の分布域の関係

最大溯上高と津波堆積物の分布標高の関係

		堆積物の分布標高(m)							
測線	最大遡上高(m)	砂層及び泥層	0.5cm以上 [※] の砂層						
А	2.6	2.2	0.9						
В	3.1	1.7	1.4						
Е	1.3	1.1	0.6						
F	5.2	4.4	4.4						
Ι	1.8	1.4	0.9						
L	8.0	データなし	データなし						
М	6.9	5.4	5.4						
Ν	データなし	1.2	データなし						
S	4.0	2.2	2.2						

※過去の津波堆積物調査から貞観津波の痕跡として確認されている最小層厚

(Abe et al. (2012)を基に作成)

Abe et al. (2012)

・ 仙台平野において、東北沖地震による海岸線からの浸水距離と津波堆積物の分布距離とを比較した結果、0.5cm以上の砂層について、海岸線からの浸水距離が2.5km未満の測線においては浸水域と津波堆積物 の分布域は概ね一致し、浸水距離が2.5km以上の測線においては浸水域と津波堆積物の分布域に乖離が見られる。

・ 浸水距離が2.5km未満の測線において浸水域と津波堆積物の分布域は概ね一致していることは、より小さい津波が発生している地域における既往の研究結果と一致している。

p.38 再掲

1.4 歴史記録及び津波堆積物から推定される津波高 内閣府、国土交通省ほかによる最大遡上高と津波堆積物の分布標高の検討

■ 内閣府(2012)および国土交通省ほか(2014)では、東北沖地震等の津波高と津波堆積物の分布標高の分析結果等に基づき、津波堆積物地点の標高に2m の高さを加えたものを過去地震の津波高と評価している。

図Ⅲ.17 過去地震の津波高(図Ⅲ.3に津波堆積物調査地点の標高に 2m の高さを 便宜的に加えたものを追加

(内閣府(2012)) 内閣府(2012)による南海トラフの沿岸域における 津波堆積物の分布標高から推定された津波高の評価

				他奶麥動量			調泰地	占の位置
地域	地点	津波の年代	現在の津波堆積物 基底標高	 (12.5万年前以降の 平均隆起速度) 	地 殻変動補正後の 津波堆積物	津波の推定波高 (堆積物基底+2m)	(地図から	読み取り
			(m)	(m/ky)	基地 標尚 (m)	(m)	緯度	経度
	島牧村大平川	AD1993	7.4	0.8		9.4	42.7237	140.072
渡島半島西岸	せたな町後志利別川	AD1741%	2.6	0.5		4.6%	42.4153	139.842
	せたな町水垂	AD1993	7.0	0.5		9.0	42.3520	139. 785
	奥尻島ワサビヤチ川	11~130	4.4	0.6	3.9	5.9	42.0673	139.449
	奥尻島-1(貝取澗)	AD1741%	7.3	0.6		4.6%	42.0661	139. 438
奥尻島	奥尻島−2	AD1993	9.9	0.6		11.9	42.0720	139. 42
	奥尻島-3	AD1993	5.0	0.6		7.0	42.0776	139. 42
	奥尻島−4	AD1993	4.9	1.0		6.9	42.1570	139. 413
	乙部町姫川	AD1741%	1.8	0.2		4.6%	41.9736	140.14
演良米良市岸	江差町五厘沢	130	5.1	0.2	4.9	6.9	41.9500	140.14
波动十两凶序	上ノ国町大安在浜	AD1741%	6.9	0.3		4.6%	41.8003	140.07
	上ノ国町ラスタッペ岬北方	11~130	12.0	0.3	11.5	13.5	41.6938	140.01
西津軽	小泊	AD1983	4. 7	0.3		6.7	41.1365	140. 28
	湖油町由屋林	1. 1ka	14.0(遡上点)	0.0	13. 1	13.1	40.7323	139. 995
白神山地沿岸	冰海町局店町		8.5(堆積物)	0.0	7.6	9.6		
	深浦町椿山	AD1983	4.7	0.7		6.7	40.5947	139.86
男鹿半島	船川	150	4.5	0.9	4.1 6.1		39.8615	139.77
	飛島①	AD1833	4.8	0.5		6.8	39.2054	139.54
山形沖飛島	飛島⑤	12~130	4.6	0.5	4.2	6.2	39.1872	139.54
	飛島⑥	AD1833	7.8	0.5		9.8	39.1849	139.54
14 30	大野亀	1833/1762	4.9	0.6		6.9	38.3190	138.46
推護	春日崎	1833/1762	4.1	0.6		6.1	38.0170	138. 22

〇津波水位の推定

○津波水位の推定 ①津波建構物の基底の構高を柱状図より読み取り。 ②濃支の津波については、津波進積物蒸底の構高を、12.5万年前から現在までの平均隆起速度から、津波発生時の標高に補正。 津波の相定波高は、速水価の中央値とした。 ③津波の相定波高は、浸水高さを2mとして津波堆積物蒸店標高(現在及び地位変動補正値)から算定した。 ⑦深調可島層物也点は、洋波堆積物による注波波波高性定値(出始変動補正値)な5元=9.62m)と選上高(法检変動補正値13.12m)の中間値とした。 ※1741年の津波は渡島大島の噴火に伴う山体崩壊によるもので、海域活断層を波源とするものではないが参考値として示した。

国土交通省ほか(2014)による日本海沿岸域における (国土交通省ほか(2014)) 津波堆積物の分布標高から推定された津波高の評価

内閣府「南海トラフの巨大地震モデル検討会」 第5回検討会議事録

・それぞれの同じ時代の津波においても、そのほんの少しの場所の違い、あるいは形状の違い、流れの違い。原因がはっきりわからないところはあるのですが、層厚だけから浸水深を見るのはなかなか難しい のかもしれないという複雑さを示されている資料だそうでございます。

・先ほど紹介されたもので図6ですか。これは●●さんが今、投稿中の論文だということですが、私たちも大体こういうようなイメージを持っているんですけれども、やはり広域的に広がるところで津波堆積物 の分布域と高さの関係をもう少し幅広く集めていくと、やはり津波堆積物の限界のところでは、高さ1mとか2mとか、そういうイメージというのはかなり一致するのかなと。

1.4 歴史記録及び津波堆積物から推定される津波高 遠州灘沿岸域における最大遡上高と津波堆積物の分布標高の関係

■ 東北沖地震等による津波の最大遡上高と津波堆積物の分布標高の差が約0~2mであることを踏まえると、遠州灘沿岸域の津波堆積物の分布標高から 推定される津波高は以下のとおり。津波堆積物から推定される遠州灘沿岸域の津波高は、歴史記録に基づく痕跡高と同程度であることを確認した。

最大遡上高と津波堆積物の分布標高の関係を踏まえて推定される津波高

1.4 歴史記録及び津波堆積物から推定される津波高 東北沖地震による津波堆積物の厚さと地形的特徴の関係

■ Nakamura et al.(2012)は、三沢海岸を対象として、東北沖地震による津波堆積物の特徴を分析し、東北沖地震の津波堆積物の厚さなどの特徴は、 浸水深ではなく、主に海岸付近の地形と津波堆積物の供給源の有無が影響している。

Nakamura et al. (2012)

・三沢海岸(青森県)において、東北沖地震による浸水高の調査と津波堆積物調査を実施した。

・調査の結果、津波高は、北部の測線では平均4~5m程度、南部の測線では最大で10mであった。

 ・一方、津波堆積物は、砂丘が海岸線に存在し低地が比較的広い北部の測線では特に砂丘の陸側に厚く堆積し陸側に向かうほど薄くなるもののほぼ浸水限界まで堆積が認められたのに対し、コンクリート堤防が 海岸線に存在し低地が比較的狭い南部の測線では薄くまばらに堆積していた。
 ・東北沖地震の津波堆積物の特徴は、浸水深ではなく、主に海岸付近の地形と津波堆積物の供給源の有無が影響していると考えられる。

第920回資料1-3

p.41 再掲

1.4 歴史記録及び津波堆積物から推定される津波高 東北沖地震による津波堆積物の厚さと浸水深の関係

 ■ Goto et al.(2014)は、仙台平野において、東北沖地震による津波堆積物の厚さと浸水深の関係について分析し、津波堆積物の厚さを浸水深で除した堆積物 濃度について全域での対数平均値は2%であるとし、この結果は津波による浮遊砂上限濃度を平均約2%と仮定できることを示すとしている。
 ⇒ Goto et al.(2014)の結果は、津波堆積物の厚さと浸水深との比率が広域的には約2%となることを示したものであるが、津波堆積物の厚さに大きな影響を与える と考えられる局所的な地形の影響を検討しておらず、個別地点の津波堆積物の厚さから当該地点の津波高を推定できることを示したものではないと考えられる。

第920回資料1-3

p.42 再掲

Fig. 1. (a) Topographic map at Sendai Plain (post-tsunami 5 m DEM data). (b) Interpolated flow depth data (m) of 100 m grid. (c) Sediment thickness data (m) obtained from Miyagi Prefecture/Midori-net Miyagi. (d) Interpolated sediment thickness data (cm) for a 50 m grid.

浸水深と堆積物厚さの分布

仙台平野における東北沖地震による浸水深と津波堆積物厚さの関係

Goto et al. (2014)

- ・東北沖地震の直後、仙台平野の浸水域全域における計1,300地点の津波堆積物の厚さのデータ(10ha格子(約316m間隔))が収集された。
- ・このデータセットを用いて分析した結果、津波堆積物厚さと浸水深はいずれも、海岸線からの浸水距離との相関があること、海岸線付近を除き標高との相関がないことを確認した。
- ・また、各地点の津波堆積物の厚さを浸水深で除した堆積物濃度の頻度分布は、対数正規分布とよく一致しており、その平均値は2%であった。このことは、津波による流れの中の上限砂濃度を平均で約2%と仮定 できることを示している。ただし、この分析結果は、平野が非常に平坦で低く、それゆえ比較的単純な浸水過程をたどる仙台平野でのみ適応できる可能性がある。

1.4 歴史記録及び津波堆積物から推定される津波高 遠州灘沿岸域における津波堆積物の厚さと浸水深の関係

- 津波堆積物の厚さと浸水深との関係について、Goto et al.(2014)による仙台平野の分析結果と、遠州灘沿岸域の調査結果(当社の調査結果を含む)との 比較を試みた。ここで、遠州灘沿岸域における津波高を10mと仮定した。
- その結果、遠州灘沿岸域の調査結果は河口や谷地形に浸入したものである(藤原(2013))など仙台平野の津波の浸水過程(Goto et al.(2014))とは異 なると考えられること、津波堆積物の厚さは主に海岸付近の地形と津波堆積物の供給源の有無が影響していると考えられること(Nakamura et al.(2012))を 踏まえると異なる地域・イベントの調査結果を単純に比較することは難しいと考えられるが、遠州灘沿岸域における津波堆積物の厚さと浸水深との関係は、Goto et al.(2014)による東北沖地震の分析結果の範囲内にあることを確認した。

- 調査地点(菊川および敷地)について記載した。
- ・仙台平野での津波堆積物調査は約10ha格子(約316m間隔)で実施されていることを踏まえ、津波堆積物に関する現地調査結果については調査地点ごとに集約しその平均値を表示した。
- ・海岸線からの距離:現在の海岸線からの距離に基づく。
- ・津波堆積物の厚さ: 仙台平野では引き波がほとんど観測されなかったとされる (Goto et al.(2014))ことを踏まえ、当社の調査結果についてはイベント堆積物のうち引き波により堆積したものを除く層厚とした。 ・堆積物地点の浸水深さ: 歴史記録に基づき遠州灘沿岸域の津波高を10mと仮定して、イベント堆積物の標高に基づき算定した。

遠州灘沿岸域における浸水深と堆積物厚さの関係

藤原(2015)

- 津波堆積物は、大局的に見れば海側から陸側へ細粒化・薄層化するが、その途中で局所的に増減することも珍しくない。このような局所的な変化が起きる原因は、著者の経験からは大きく3つに分けられ る。一つは材料となる物質の供給量に関すること。もう一つは堆積物を溜める空間(地形)の特徴に関すること。最後は津波堆積物が作る大型のベッドフォームに関することである。単純化すれば物質供 給が多く、堆積物を溜める空間が深いほど津波堆積物は厚くなる。
- Goto et al. (2014)の「2%ルール」が他の地域でも当てはまる訳ではない。地形や堆積物供給の条件などが地域毎に異なるからである。直感的には、ほかの条件が同じなら津波堆積物が厚いほど相対 的に津波が大きかったと思えてしまう。しかし、海岸の地形発達による見かけの津波規模の違いや、津波堆積物の層厚が諸条件によって大きく変化することを考えると、そう単純にはいかないことがわかる。

1.4 歴史記録及び津波堆積物から推定される津波高 歴史記録及び津波堆積物から推定される津波高のまとめ

第1020回資料2-3

p.44 一部修正

1.4 歴史記録及び津波堆積物から推定される津波高 (参考)津波評価結果との比較

- 歴史記録および津波堆積物から推定される遠州灘沿岸域の津波高は、概ね5~10m。
- 内閣府の最大クラスの津波による海岸線での津波高は、歴史記録及び津波堆積物から推定される津波高(概ね5~10m)を、遠州灘沿岸域の全域において 2~3倍程度上回っている。

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

- 相田勇(1981)「東海道沖におこった歴史津波の数値実験」『地震研究所彙報』Vol.56, pp.367-390。
- 相田勇(1985)「東海地震津波の挙動 その数値実験 」『月刊地球』Vol.7, No.4, pp.204-215。
- 阿部朋弥, 白井正明(2013)「愛知県渥美半島の沿岸低地で見出された江戸時代の津波起源と推定されたイベント堆積物」『第四紀研究』Vol.52, No.2, pp.33-42。
- 飯田汲事(1981a)「宝永4年10月4日(1707年10月28日)の宝永地震の津波被害」『愛知県被害津波史』愛知県防災会議地震部会, pp.36-49。
- 飯田汲事(1981b)「嘉永7年(安政元年)11月4日(1854年12月23日)の安政地震の津波被害」『愛知県被害津波史』愛知県防災会議地震部会, pp.50-78。
- 飯田汲事(1985a)「愛知県及び隣接県被害津波史」『東海地方地震・津波災害誌』飯田汲事教授論文選集発行会, pp.669-790。
- 飯田汲事(1985b)「歴史地震の研究 (4):慶長 9年12月16日(1605年2月3日)の地震及び津波災害について」『愛知工業大学研究報告. B, 専門関係 論文集』Vol.16, pp.159-164。
- 飯田汲事(1985c)「昭和19年12月7日東南海地震の震害と震度分布」『東海地方地震・津波災害誌』飯田汲事教授論文選集発行会, pp.449-570。
- 池谷仙之,和田秀樹,阿久津浩,高橋実(1990)「浜名湖の起源と地史的変遷(湖沼の成因と環境・地質)」『地質学論集』第36号, pp.129-150。
- 岩瀬浩之,原信彦,田中聡,都司嘉宣,今井健太郎,行谷佑一,今村文彦(2011)「高知県土佐清水市内における1707年宝永地震の津波痕跡に関する現地調査報告」『津波工学研究報告』第28号, pp.105-116。
- 内田主税(2002)「遠州灘沿岸,静岡県大須賀町付近における沖積層中のイベント堆積物と古地形環境」『日本地理学会発表要旨集』第61号,135p。
- 蝦名裕一,今井健太郎,大林涼子,柄本邦明,都司嘉宣(2020)「古絵図に基づく安政東海地震の浜名湖周辺における津波浸水域の分析」『歴史地 震』第35号, pp.187-206。
- 岡村眞, 松岡裕美, 佃栄吉, 都司嘉宣(2000)「沿岸湖沼堆積物による過去一万年間の地殻変動と歴史津波モニタリング」『月刊地球/号外』Vol.28, pp.162-168。
- 岡村眞, 松岡裕美, 古野北斗(2009)「浜名湖湖底堆積物に記録された2つの地震イベント」『日本地球惑星科学連合2009年大会予稿集』T225-P004。
- 岡村眞・松岡裕美(2012)「津波堆積物からわかる南海地震の繰り返し」『科学』Vol.82, No.2, pp.182-191。
- 岡村行信(2012)「西暦869年貞観津波の復元と東北地方太平洋沖地震の教訓−古地震研究の重要性と研究成果の社会への周知の課題−」『シンセオロ ジー』Vol.5, No.4, pp.234-242。
- 鹿島薫,米倉伸之,池田安隆,熊木洋太,宮崎隆,長澤良太(1983)「御前崎周辺地域の完新世海水準変化」『日本第四紀学会講演要旨集』No. 13, pp. 126-127。
- 鹿島薫,長澤良太,宮崎隆(1985)「静岡県菊川平野における完新世の海水準変動に関する資料」『第四紀研究』Vol. 24, pp. 45-50。
- 気象庁(1945)『昭和十九年十二月七日東南海大地震調査概報』中央気象台。
- 気象庁(1973)「1972年12月4日八丈島東方沖地震について」『地震予知連絡会会報』第9巻, 3-4, pp.46-50。
- 気象庁(2004) 『2004 年9月5日23 時57 分頃の東海道沖の地震について(第2報)』平成16年9月6日。
- 気象庁(2009)『平成21年8月11日の駿河湾の地震で発表した津波注意報について』

(http://www.data.jma.go.jp/svd/eqev/data/tsunamihyoka/20090811suruga-wan/index.html)。

● 気象庁(2010)『2010年2月27日15時34分頃にチリ中部沿岸で発生した地震について(第3報)』平成22年2月28日。

- 北村晃寿,小林小夏(2014)「静岡平野・伊豆半島南部の中・後期完新世の古津波と古地震の地質学的記録」『地学雑誌』第123巻,第6号, pp.813-834。
- 北村晃寿,川手繋人(2015)「静岡県南伊豆・吉佐美の海岸低地における津波堆積物の有無の調査」『静岡大学地球科学研究報告』第42号, pp.15-23。
- 北村晃寿, 鈴木孝和, 小林小夏(2015)「静岡県焼津平野における津波堆積物の調査」『静岡大学地球科学研究報告』第42号, pp.1-14。
- 北村晃寿,三井雄太,石橋秀巳,森英樹(2018)「伊豆半島南東部静岡県河津町の海岸低地における津波堆積物調査」『静岡大学地球科学研究報告』第45号, pp.1-16。
- 熊谷博之(1999)「浜名湖周辺での東海沖の大地震に伴う津波堆積物の調査」『地学雑誌』第108巻, 第4号, pp.424-432。
- 国土交通省, 内閣府, 文部科学省(2014)『日本海における大規模地震に関する調査検討会報告』平成26年9月。
- 国土地理院『2万5千分の1地形図』『5万の分の1地形図』。
- 後藤和久・菅原大助(2021)「津波堆積学の進展」『地質学雑誌』第127号, 第4号, pp.199-214。
- 小松原純子,藤原治,高田圭太,澤井祐紀, Than Tin Aung,鎌滝孝信(2006)「沿岸低地堆積物に記録された歴史時代の津波と高潮:南海トラフ沿 岸の例」『活断層・古地震研究報告』第6号, pp.107-122。
- 小松原純子,岡村行信,澤井祐紀,宍倉正展,吉見雅行,竿本英貴(2007)「紀伊半島沿岸の津波堆積物調査」『活断層・古地震研究報告』地震調 査総合センター, Vol.7, pp.219-230。
- 小松原純子,藤原治,高田圭太,澤井祐紀, Than Tin Aung,鎌滝孝信(2009)「東海道白須賀宿付近の堆積物に記録された歴史時代の津波と高 潮」『歴史地震』第24号,169p。
- ●小松原純子(2012)「浅海域および沿岸低地に堆積した津波堆積物の識別基準」『堆積学研究』第71巻, 第2号, pp.119-127。
- 佐竹健治(2013)「第197 回地震予知連絡会 重点検討課題「世界の巨大地震・津波」概要」『地震予知連絡会会報』第89巻, 12-6, pp.414-416。
- 佐藤善輝,藤原治,小野映介(2016)「浜松平野西部における完新世後期の浜堤列の地形発達過程」『第四紀研究』第55巻,第1号, pp.17-35。
- 澤井祐紀(2012)「地層中に存在する古津波堆積物の調査」『地質学雑誌』第118巻, 第9号, pp.535-558。
- 産業技術総合研究所『津波堆積物データベース』(https://gbank.gsj.jp/tsunami_deposit_db/)。
- 宍倉正展,澤井祐紀,行谷佑一,岡村行信(2010)「平安の人々が見た巨大津波を再現する─西暦869 年貞観津波─」『AFERC ニュース』No.16, pp.1-10。
- 宍倉正展(2011)「津波堆積物からみた869 年貞観地震と2011 年東北地方太平洋沖地震について」『日本地震学会ニュースレター』Vol.23, No.3, pp.20-25。
- 宍倉正展,藤原治,澤井祐紀,行谷佑一,谷川晃一朗(2012)「海溝型地震履歴解明の研究」『地質調査総合センター速報 No.59, 平成 23 年度沿 岸域の地質・活断層調査研究報告』pp.43-58。
- 宍倉正展,前杢英明,越後智雄,小俣雅志,郡谷順英,渋谷典幸(2013)「南海トラフ沿いの和歌山県串本町で検出された完新世イベント堆積物」『日本地球惑星科学連合2013年度大会予稿集』SSS31-35。
- 地震調査委員会(2011)『三陸沖から房総沖にかけての地震活動の長期評価(第二版)について』平成23年11月25日。
- 地震調査委員会(2013)『南海トラフの地震活動の長期評価(第二版)について』平成25年5月24日。
- 静岡県(1986)『安政東海地震津波被害調査報告書(特に伊豆半島東海岸について)』静岡県地震対策課。

- Cisternas, Marco, Brian Atwater, 鎌滝孝信, 澤井祐樹, 宍倉正展(2006)「1960 年チリ地震震源域でくり返し生じた過去の巨大地震」『歴史地震』第21 号, pp.87-91。
- 杉山雄一,寒川旭,下川浩一,水野清秀(1988) 『地域地質研究報告 5万分の1地質図幅 御前崎地域の地質』地質調査所。
- 高田圭太,佐竹健治,寒川旭,下川浩一,熊谷博之,後藤健一,原口強(2002)「静岡県西部湖西市における遠州灘沿岸低地の津波堆積物調査 (速報)」『活断層・古地震研究報告』第2号, pp. 235-243。
- 谷川晃一朗, 宍倉正展, 藤原治, 行谷佑一, 松本弾(2017)「高知県四万十町興津における津波堆積物調査(予報)」『活断層・古津波研究報告』 地質調査総合センター, No.17, pp.31-38。
- 中央防災会議(2011)『東北地方太平洋沖地震を教訓とした地震・津波対策に関する専門調査会報告』東北地方太平洋沖地震を教訓とした地震・津波対策に関する専門調査会,平成23年9月28日。
- チリ中部地震津波合同調査グループ(2012)「2010年チリ中部地震津波に関する日本での現地調査の報告」『津波工学研究報告』第29号, pp.37-54。
- ●都司嘉宣,上田和枝,荒井賢一(1994)「須崎市を襲った歴史津波」『歴史地震』第10号, pp.95-115。
- 都司嘉宣,岡村眞,松岡裕美,村上嘉謙(1998)「浜名湖の湖底堆積物中の津波痕跡調査」『歴史地震』第14巻, pp.101-113。
- 都司嘉宣, 岡村眞, 松岡裕美, 後藤智子, 韓世燮(2002)「三重県尾鷲市大池, および紀伊長島町諏訪池の湖底堆積層中の歴史・先史津波痕跡について」『月刊地球』第24巻, 第10号, pp.743-747。
- 都司嘉宣,岡村眞,松岡裕美,行谷佑一(2003)「高知県須崎市桐間池の湖底堆積層中の津波痕跡」『地球惑星科学関連学会2003年合同大会予稿 集』1078-006。
- 都司嘉宣(2006)「小笠原諸島の津波史」『歴史地震』第21号, pp.65-79。
- 都司嘉宣,大年邦雄,中野晋,西村裕一,藤間功司,今村文彦,柿沼太郎,中村有吾,今井健太郎,後藤和久,行谷佑一,鈴木進吾,城下英行,松﨑義孝(2010)「2010年チリ中部地震による日本での津波被害に関する広域現地調査」『土木学会論文集B2(海岸工学)』Vol.66, No.1, pp.1346-1350。
- 都司嘉宣(2012)「第二章 古文書から読む大地震・大津波の記憶」『千年に一度の大地震・大津波に備える~古文書・伝承に読む先人の教え~』しずおかの 文化新書10。
- 土隆一(2001)「静岡県地質図」『静岡県の地形と地質 静岡県地質図20万分の1(2001年改訂版)説明書 』内外地図。
- 津波痕跡データベース(http://tsunami-db.irides.tohoku.ac.jp/tsunami/toppage.php)東北大学災害科学国際研究所。
- 内閣府(2012)『南海トラフの巨大地震モデル検討会(中間どりまとめ)』南海トラフの巨大地震モデル検討会,平成23年12月27日。『南海トラフの巨大地震による震度分布・津波高について(第一次報告)』南海トラフの巨大地震モデル検討会,平成24年3月31日。『南海トラフの巨大地震モデル検討会(第二次報告)津波断層モデル編 津波断層モデルと津波高・浸水域等について 』南海トラフの巨大地震モデル検討会,平成24年8月29日。
- 長澤良太,宮崎隆,鹿島薫,青木哲哉,大庭正八(1983)「静岡県菊川低地の完新統 完新世高位海水準の一資料 」『日本第四紀学会講演要旨 集』,No.13, pp.128-129。
- 七山太,加賀新,木下博久,横山芳春,佐竹健治,中田高,杉山雄一,佃栄吉(2002)「紀淡海峡,友ヶ島において発見された南海地震津波の痕跡」『月刊海洋号外』第28号, pp.123-131。
- 行谷佑一・都司嘉宣(2005)「宝永(1707)・安政東海(1854)地震津波の三重県における詳細津波浸水高分布」『歴史地震』第20号, pp.33-56。

- 南海トラフ広域地震防災研究プロジェクト(2014)『南海トラフ広域地震防災研究プロジェクト平成25年度 成果報告書』文部科学省研究開発局,独立行政 法人海洋研究開発機構,平成26年5月。
- 南海トラフ広域地震防災研究プロジェクト(2015)『南海トラフ広域地震防災研究プロジェクト平成26年度 成果報告書』文部科学省研究開発局,独立行政 法人海洋研究開発機構,平成27年5月。
- 南海トラフ広域地震防災研究プロジェクト(2016)『南海トラフ広域地震防災研究プロジェクト平成27年度 成果報告書』文部科学省研究開発局,国立研究 開発法人海洋研究開発機構,平成28年5月。
- 南海トラフ広域地震防災研究プロジェクト(2017)『南海トラフ広域地震防災研究プロジェクト平成28年度 成果報告書』文部科学省研究開発局,国立研究 開発法人海洋研究開発機構,平成29年5月。
- 南海トラフ広域地震防災研究プロジェクト(2018)『南海トラフ広域地震防災研究プロジェクト平成29年度 成果報告書』文部科学省研究開発局,国立研究 開発法人海洋研究開発機構,平成30年5月。
- 南海トラフ広域地震防災研究プロジェクト(2019)『南海トラフ広域地震防災研究プロジェクト平成30年度 成果報告書』文部科学省研究開発局,国立研究 開発法人海洋研究開発機構,令和元年5月。
- 南海トラフ広域地震防災研究プロジェクト(2020)『南海トラフ広域地震防災研究プロジェクト令和元年度 成果報告書』文部科学省研究開発局,国立研究 開発法人海洋研究開発機構,令和2年5月。
- 西仲秀人, 熊谷博之, 奥田隆, 鳥居龍晴, 高野雅夫, 中村俊夫(1996)「浜名湖周辺の津波堆積物から探る過去の東海沖地震」『名古屋大学加速 器質量分析計業績報告書』, Vol.Ⅲ, pp.193-203。
- 萩原尊禮(1989)『続古地震-実像と虚像』東京大学出版会。
- 萩原尊禮(1995)『古地震探究 海洋地震へのアプローチ』東京大学出版会。
- 羽鳥徳太郎(1975)「明応7年・慶長9年の房総および東海南海道大津波の波源」『地震研究所彙報』Vol.50, pp.171-185。
- 羽鳥徳太郎(1977)「静岡県沿岸における宝永・安政東海地震の津波調査」『静岡県地震対策基礎調査報告書 第2次調査・津波第1報 』静岡県地震 対策課, pp.14-38。
- 羽鳥徳太郎(1978a)「高知・徳島における慶長・宝永・安政南海道津波の記念碑 1946年南海道津波の挙動との比較 」『地震研究所彙報』Vol.53, pp.423-445。
- 羽鳥徳太郎(1978b)「三重県沿岸における宝永・安政東海地震の津波調査」『地震研究所彙報』Vol.53, pp.1191-1225。
- 羽鳥徳太郎(1980a)「宝永・安政津波の現地調査による波高の検討」『月刊海洋科学』Vol.12, No.7, pp.495-503。
- 羽鳥徳太郎(1980b)「大阪府・和歌山県沿岸における宝永・安政南海道津波の調査」『地震研究所彙報』Vol.55, pp.505-535。
- 羽鳥徳太郎(1982)「高知県南西部の宝永・安政南海道津波の調査 久礼・入野・土佐清水の津波の高さ」『地震研究所彙報』Vol.56, pp.547-570。
- 羽鳥徳太郎(1984)「関東・伊豆東部沿岸における宝永・安政東海津波の挙動」『地震研究所彙報』Vol.59, pp.501-518。
- 羽鳥徳太郎(1985a)「東海地方の歴史津波」『月刊地球』Vol.7, No.4, pp.182-191。
- 羽鳥徳太郎(1985b)「小笠原父島における津波の挙動」『地震研究所彙報』Vol.60, pp.97-104。
- 羽鳥徳太郎(1986)「九州東部沿岸における歴史津波の現地調査 1662年寛文・1769年明和日向灘および1707年宝永・1854年安政南海道津波 」『地 震研究所彙報』Vol.60, pp.439-459。

- 羽鳥徳太郎(1988)「瀬戸内海・豊後水道沿岸における宝永(1707)・安政(1854)・昭和(1946)南海道津波の挙動」『歴史地震』 第4号, pp.37-46。
- 羽鳥徳太郎(1991)「鎌倉における明応(1498)・元禄(1703)・大正(1923)津波の浸水域」『歴史地震』 第7号, pp.1-10。
- 羽鳥徳太郎(2005)「伊勢湾岸市街地における安政東海津波(1854)の浸水状況」『歴史地震』 第20号, pp.57-64。
- 羽鳥徳太郎(2006)「東京湾・浦賀水道沿岸の元禄関東(1703),安政東海(1854)津波とその他の津波の遡上状況」『歴史地震』 第21号, pp.37-45。
- 原口強,鳥居和樹,山崎秀雄,関口秀雄(2008)「和歌山県田辺湾で発見された昭和南海地震津波堆積物」『北淡活断層シンポジウム2008講演要旨 集』pp.41-42。
- 平川一臣(2013)『津波堆積物が示す南海トラフの津波履歴,津波挙動(海食急崖,斜面からの証拠)伊良湖水道・菅島,志摩半島,紀伊長島,熊野,潮岬・串本』南海トラフの巨大地震モデル検討会(第35回)及び首都直下地震モデル検討会(第17回)合同会議参考資料2平川委員提供資料,平成25年3月19日。
- 廣内大助,佐藤善輝,松多信尚,堀和明,清水龍来,遠藤悠,西川由香,安江健一,顔一勤(2014)「静岡県太田川低地の堤間湿地における完新 世後期の堆積環境変化」『愛知工業大学地域防災研究センター年次報告書』Vol.10, pp.43-46。
- 藤野滋弘(2013)「インド洋における過去の巨大地震・津波」『地震予知連絡会会報』第89巻, 12-10, pp.429-431。
- 藤原治,小野映介,佐竹健治,澤井祐紀,海津正倫,矢田俊文,阿部恒平,池田哲哉,岡村行信,佐藤善輝, Than Tin Aung,内田淳一 (2007)「静岡県掛川市南部の横須賀湊跡に見られる1707年宝永地震の痕跡」『活断層・古地震研究報告』No.7, pp. 157-171。
- 藤原治(2007)「地震津波堆積物:最近20年間のおもな進展と残された課題」『第四紀研究』Vol.46, No.6, pp.451-462。
- ●藤原治(2008)「静岡県中部沿岸での1707年宝永地震による地殻変動の調査」『活断層研究センターニュース』第80号, pp.1-5。
- 藤原治,小野映介,矢田俊文,海津正倫,鎌滝孝信,内田淳一(2008)「完新世後半における太田川低地南西部の環境変化と津波堆積物」『活断層・ 古地震研究報告』No.8, pp.187-202。
- 藤原治,小野映介,矢田俊文,海津正倫,岡村行信,佐竹健治,佐藤善輝,澤井祐紀, Than Tin Aung (2009)「歴史と地層記録から確認された 1707 年宝永地震による遠州灘沿岸の隆起」『月刊地球』Vol31, No.4, pp.203-210。
- ●藤原治,町田洋,塩地潤一(2010)「大分県横尾貝塚に見られるアカホヤ噴火に伴う津波堆積物」『第四紀研究』Vol.49, No.1, pp. 23-33。
- 藤原治, 青島晃, 佐藤善輝, 北村晃寿, 小野映介, 谷川晃一朗(2012)「静岡県磐田市の太田川低地で見られる歴史津波堆積物」『日本第四紀学会 講演要旨集』第42巻, pp.46-47。
- 藤原治・佐藤善輝(2012)「静岡県浜松市西部高塚池跡における津波堆積物調査(予察)」『日本地震学会講演予稿集2012年度秋季大会』P2-40。
- ●藤原治(2013)「地形・地質記録から見た南海トラフの巨大地震・津波(東海地域の例)」『GSJ地質ニュース』Vol.2, No.7, pp.197-200。
- 藤原治,佐藤善輝,小野映介,海津正倫(2013)「陸上掘削試料による津波堆積物の解析—浜名湖東岸六間川低地にみられる3400年前の津波堆積物 を例にして—」『地学雑誌』第122巻,第2号,pp.308-322。
- 藤原治・澤井祐紀(2014)「静岡県沿岸の古地震・津波堆積物調査」『巨大地震による複合的地質災害に関する調査・研究報告書』産業技術総合研究所 地質調査総合センター, Vol.66, pp.39–48。
- 藤原治,北村晃寿,佐藤善輝,青島晃,小野映介,小林小夏,小倉一輝,谷川晃一朗(2015)「静岡県西部の太田川低地で見られる弥生時代中・ 後期の相対的海水準上昇」『第四紀研究』第54巻,第1号, pp.11-20。

豕ぞて畝

- ●藤原治(2015)『津波堆積物の科学』東京大学出版会、2015年11月。
- 松岡裕美・岡村眞(2012)「津波堆積物から見た南海トラフ沿いの巨大地震履歴」『地震予知連絡会会報』第87巻, 12-2, pp.495-496。
- 松多信尚, 佐藤善輝, 坂本絵梨, 廣内大助, 堀 和明, 川上賢太, 米原和哉(2016)「海岸平野の発達過程に基づく南海トラフ巨大地震時の地殻変動のパターンの解明」『第15回学術研究助成(2015年度)』国土地理協会。
- 松本弾(2017)「三重県津市の海岸低地における津波堆積物掘削調査」『活断層・古地震研究報告』地質調査総合センター, 第17号, pp.15-30。
- 三上貴仁,柴山知也,武若聡, Miguel ESTEBAN,大平幸一郎, Rafael ARANGUIZ, Mauricio VILLAGRAN, Alvaro AYALA(2011)「2010年チリ沖 地震津波災害の現地調査」『土木学会論文集B3(海洋開発)』Vol.67, No.2, pp.I 529-I 534。
- 村上仁士,島田富美男,伊藤禎彦,山本尚明,石塚淳一(1996)「四国における歴史津波(1605慶長・1707宝永・1854安政)の津波高の再検討」 『自然災害科学』Vol.15-1, pp.39-52。
- 文部科学省(2010)「津波堆積物調査にもとづく地震発生履歴に関する研究」『宮城県沖地震における重点的調査観測総括成果報告書』, pp.152-185。
- 矢沼隆,都司嘉宣,今井健太郎,行谷佑一,今村文彦(2011)「静岡県下における1707年宝永地震津波の痕跡調査」『津波工学研究報告』第28号, pp.93-103。
- 渡辺偉夫(1998)『日本被害津波総覧(第2版)』東京大学出版会。

- Abe, Tomoya, Kazuhisa Goto, Daisuke Sugawara (2012), "Relationship between the maximum extent of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami on the Sendai Plain, Japan", Sedimentary Geology, Vol.282, pp.142-150.
- Fujiwara, Osamu, Kazuomi Hirakawa, Toshiaki Irizuki, Shiro Hasegawa, Yoshitaka Hase, Jun-ichi Uchida, Kohei Abe (2010), "Millennium-scale recurrent uplift inferred from beach deposits bordering the eastern Nankai Trough, Omaezaki area, central Japan", Island Arc, Vol. 19, pp. 374-388.
- Fujiwara, Osamu, Eisuke Ono, Toshifumi Yata, Masatomo Umitsu, Yoshiki Sato, Vanessa M.A. Heyvaert(2013), "Assessing the impact of 1498 Meio earthquake and tsunami along the Enshu-nada coast, central Japan using coastal geology", Quaternary International, Vol.308-309, pp.4–12.
- Fujiwara, Osamu, Akira Aoshima, Toshiaki Irizuki, Eisuke Ono, Stephen P. Obrochta, Yoshikazu Sampei, Yoshiki Sato, Ayumi Takahashi(2020), "Tsunami deposits refine great earthquake rupture extent and recurrence over the past 1300 years along the Nankai and Tokai fault segments of the Nankai Trough, Japan", Quaternary Science Reviews, Vol.227, Article105999, pp.1-19.
- Garrett, Ed, Osamu Fujiwara, Philip Garrett, Vanessa M.A. Heyvaert, Masanobu Shishikura, Yusuke Yokoyama, Aurélia Hubert-Ferrari, Helmut Brückner, Atsunori Nakamura, Marc De Batist(2016), " A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan", Earth Science Reviews, vol.159, pp.337-357.
- Goto, Kazuhisa, Kohei Hashimoto, Daisuke Sugawara, Hideaki Yanagisawa, Tomoya Abe (2014), "Spatial thickness variability of the 2011 Tohokuoki tsunami deposits along the coastline of Sendai Bay", Marine Geology, Vol.358, pp.38-48.
- Kitamura, Akihisa(2016), "Examination of the largest-possible tsunamis (Level 2) generated along the Nankai and Suruga troughs during the past 4000 years based on studies of tsunami deposits from the 2011 Tohoku-oki tsunami", Earth and Planetary Science, Vol.3, No.12, pp.1-20.
- Kitamura, Akihisa, Kazuyoshi Yamada, Daisuke Sugawara, Yusuke Yokoyama, Yosuke Miyairi, Hamatome team(2020), "Tsunamis and submarine landslides in Suruga Bay, central Japan, caused by Nankai-Suruga Trough megathrust earthquakes during the last 5000 years", Quaternary Science Reviews, Vol.245, Article.106527, pp.1-23.
- Komatsubara, Junko, Osamu Fujiwara, Keita Takada, Yuki Sawai, Than Tin Aung and Takanobu Kamataki(2008), "Historical tsunamis and storms recorded in a coastal lowland, Shizuoka Prefecture, along the Pacific Coast of Japan", Sedimentology, Vol.55, pp.1703-1716.
- Nakamura, Yugo, Yuichi Nishimura, Purna Sulastya Putra(2012), "Local variation of inundation, sedimentary characteristics, and mineral assemblages of the 2011 Tohoku-oki tsunami on the Misawa coast, Aomori, Japan", Sedimentary Geology, Vol.282, pp.216–227.
- Niwa, Masakazu, Takanobu Kamataki, Hideki Kurosawa, Yoko Saito-Kokubu, Masafumi Ikuta(2019), "Seismic subsidence near the source region of the 1662 Kanbun Hyuganada Sea earthquake: Geochemical, stratigraphical, chronological, and paleontological evidences in Miyazaki Plain, southwest Japan", Island Arc, Vol.29, Issue1, e12341, pp.1-26.
- NOAA(2010), "TSUNAMI BULLETIN NUMBER 015", PACIFIC TSUNAMI WARNING CENTER, ISSUED AT 2082z 27 FEB 2010", National Oceanic and Atmospheric Administration, (http://www.prh.noaa.gov/ptwc/messages/pacific/2010/pacific.2010.02.27.202736.txt, http://oldwcatwc.arh.noaa.gov/2010/02/27/725245/15/message725245-15.htm).
- Pinegina, Tatiana K., Joanne Bourgeois, Lilia I. Bazanova, Ivan V. Melekestsev and Olga A. Braitseva(2003), "A millennial-scale record of Holocene tsunamis on the Kronotskiy Bay coast, Kamchatka, Russia", Quaternary Research, Vol.59, pp.36-47.
- Rajendran, Kusala(2013), "On the recurrence of great subduction zone earthquakes", Current Science, Vol.104, No.7, pp.880–892.

- Sato, Yoshiki(2013), "Late Holocene Geomorphic Development of Coastal Barriers Around Lake Hamana and in Hamamatsu Strand Plain", 九州大 学学位論文.
- Shennan, Ian, Ronald Bruhn, George Plafker(2009), "Multi-segment earthquakes and tsunami potential of the Aleutian megathrust", Quaternary Science Reviews, Vol.28, pp.7-13.

