島根原子力発	電所第2号機 審査資料
資料番号	NS2-添 1-071 改 01(比)
提出年月日	2022年4月15日

先行審査プラントの記載との比較表 (VI-1-8-4 圧力低減設備その他の安全設備のポンプの有 効吸込水頭に関する説明書)

2022年4月中国電力株式会社

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

・・前回提出時からの変更箇所

先行審査プラントの記載との比較表 (VI-1-8-4 圧力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所第2号機	備考
		<u>∭</u> -1-8-4 圧力低減設備その他の安全設備のポンプの有効吸込水 頭に関する説明書	

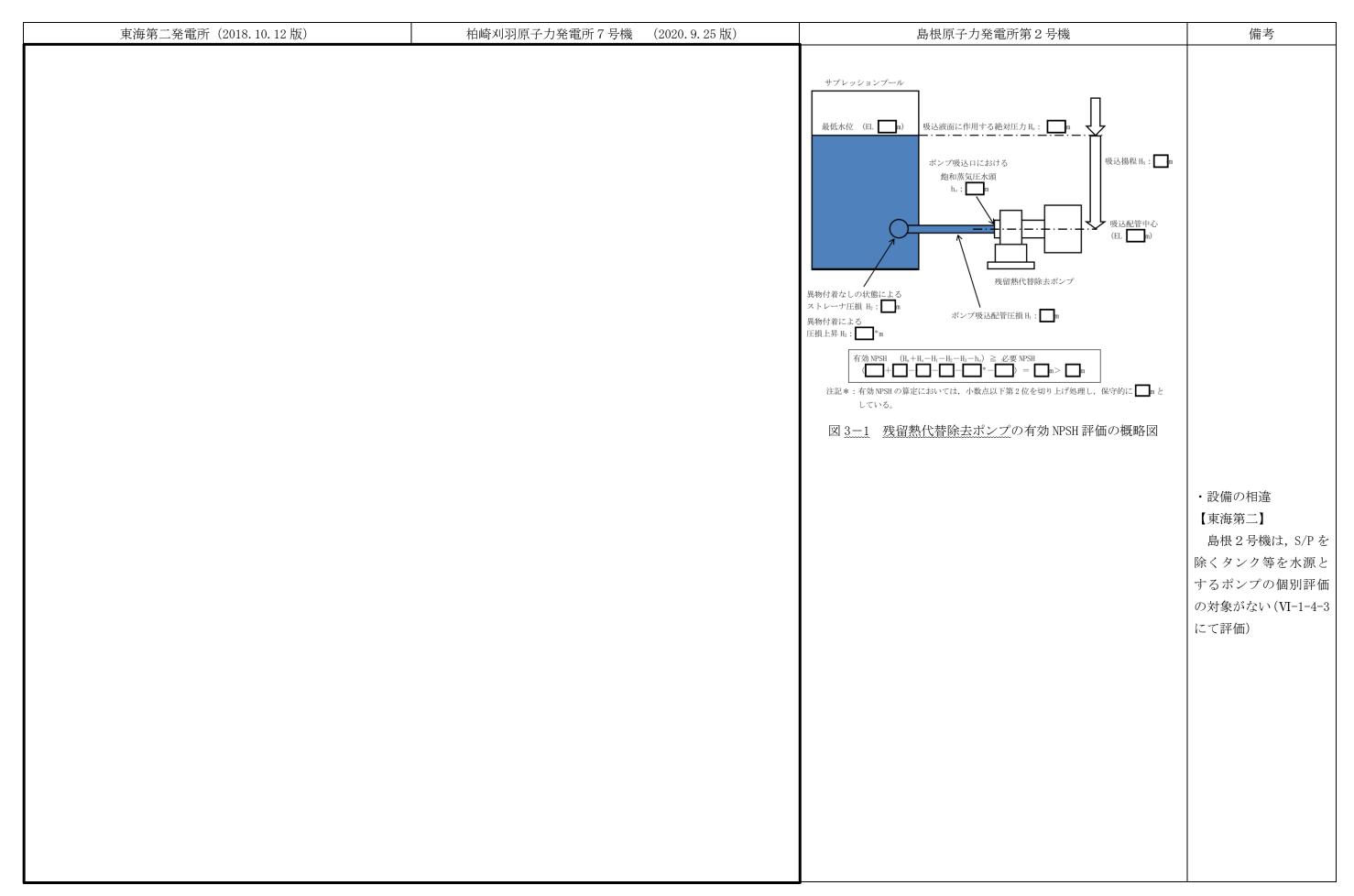
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		目次	
		1. 概要	
		2. 基本方針 · · · · · · · · 2	
		2.1 サプレッションプールを水源とするポンプの有効 NPSH ・・2	
		2.2 サプレッションプールを除くタンク等を水源とするポンプの	
		有効 NPSH · · · · · · · 2	
		3. 評価 3	
		3.1 サプレッションプールを水源とするポンプの評価方針 ・・3	
		3.2 サプレッションプールを除くタンク等を水源とするポンプの	
		評価方針 ・・・・・・・・・・ 3	
		3.3 評価対象ポンプの選定 ・・・・・・・・・・・ 3	
		3.4 評価方法 ・・・・・・・・・・・・・・・ 5	
		3.4.1 サプレッションプールを水源とするポンプの有効 NPSH 評	
		価方法 ・・・・・・・ 5	
		3.4.2 サプレッションプールを除くタンク等を水源とするポンプ	
		の有効 NPSH 評価方法 ・・・・・・・・・・・・ 8	
		3.5 評価結果 ・・・・・・ 8	
		3.5.1 サプレッションプールを水源とするポンプの有効 NPSH 評	
		価結果 8	
			・設備の相違
			【東海第二】
			島根2号機は S/P 水
		別添 1	源を除く水源のポンプ
		重大事故等時における非常用炉心冷却系ストレーナの異物付着に	の評価をVI-1-4-3 で実
		よる圧損上昇評価	施
		1. 概要	
		本資料は、「実用発電用原子炉及びその附属施設の技術基準に	
		関する規則」(以下「技術基準規則」という。)第44条第1項第	
		5号及び第54条第1項第1号並びにそれらの「実用発電用原子	
		炉及びその附属施設の技術基準に関する規則の解釈」により,	
		原子炉格納施設の「圧力低減設備その他の安全設備」のうちサ	
		プレッションプールを水源として原子炉格納容器除熱のために	
		運転するポンプが、原子炉格納容器内の圧力、水位、温度及び	
		配管圧損並びに冷却材中の異物の影響により想定される最も小	
		さい有効吸込水頭(以下「有効 NPSH」という。)において、正	
		常に機能することを説明するとともに、サプレッションプール	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		を除くタンク等を水源として原子炉格納容器冷却のために運転	
		するポンプについても想定される最も小さい有効 NPSH におい	
		て、正常に機能することを説明するものである。	
		また,有効 NPSH 以外の温度,放射線,荷重その他の使用条件	
		に対して有効に機能を発揮することについては, <u>VI-1-1-7</u> 「安	
		全設備及び重大事故等対処設備が使用される条件の下における	
		健全性に関する説明書」に示す。	
		なお、設計基準対象施設に関しては、技術基準規則の要求事	
		項に変更がないため、今回の申請において変更は行わない。	
		今回,新たに重大事故等対処設備として申請する「圧力低減	
		設備その他の安全設備」のうちサプレッションプールを水源と	
		して原子炉格納容器除熱のために運転する残留熱除去ポンプ及	
		び残留熱代替除去ポンプ並びにサプレッションプールを除くタ	
		ンク等を水源として原子炉格納容器冷却のために運転する低圧	
		原子炉代替注水ポンプ及び大量送水車について、想定される最	
		も小さい有効 NPSH において,正常に機能することを説明する。	
		なお,原子炉格納施設のうち「圧力低減設備の他の安全設備」	
		として使用するほう酸水注入ポンプ及び <u>高圧原子炉代替注水ポ</u>	
		ンプについては、溶融炉心の原子炉格納容器下部への落下の遅	
		延又は防止を目的として,原子炉圧力容器への注水に使用する	
		ため、VI-1-4-3「非常用炉心冷却設備その他原子炉注水設備の	
		ポンプの有効吸込水頭に関する説明書」にて評価する。	
		2. 基本方針	
		2.1 サプレッションプールを水源とするポンプの有効 NPSH	
		重大事故等時において、原子炉格納施設の「圧力低減設備そ	
		の他の安全設備」のうちサプレッションプールを水源として原	
		子炉格納容器除熱のために運転するポンプは、想定される原子	
		炉格納容器内の圧力,水位,温度及び配管圧損並びに冷却材中	
		の異物の影響によるろ過装置の性能評価により想定される最も	
		小さい有効 NPSH において,正常に機能する設計とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		2.2 サプレッションプールを除くタンク等を水源とするポンプ	
		の有効 NPSH	
		重大事故等時において,原子炉格納施設の「圧力低減設備そ	
		の他の安全設備」 <u>のうち</u> サプレッションプールを除くタンク等	
		を水源として原子炉格納容器冷却等のために運転するポンプ	
		は、各水源タンク等の圧力、水位、温度及び配管圧損により想	
		定される最も小さい有効 NPSH において, 正常に機能する設計と	
		する。	
		これらのポンプは, <mark>ろ過された水を使用する</mark> 異物管理された	
		低圧原子炉代替注水槽,輪谷貯水槽(西1)又は輪谷貯水槽(西	
		2)を水源とするため、異物の影響については考慮不要とする。	
		また, 海から取水する可能性のある大量送水車の付属品であ	・記載構成の相違
		る水中ポンプには、吸込口に異物混入防止のフィルタを設置す	【柏崎7】
		ることにより、各水源タンク等内への異物混入を防止する設計	島根2号機は, VI
		とする。万一,ポンプの吸込口のフィルタが詰まった場合は,	-1-4-3 及び本説明書の
		ポンプの起動停止によるフィルタ閉塞の回復及びポンプの吊り	双方に、ポンプ吸込口お
		上げによるフィルタ清掃が短時間で可能である。	よび移送先に対する異
			物混入防止方針を記載
			・設備の相違
			【東海第二】
			島根2号機は可搬ポ
			ンプ (大量送水車) を運
			転する場合,付属品であ
			る水中ポンプを使用
			(島根2号機は,ポンプ
			吸込口および移送先に
			対する異物混入防止方
			針をまとめて記載)
		3. 評価	
		3. 評価 3.1 サプレッションプールを水源とするポンプの評価方針	
		重大事故等時において、サプレッションプールを水源とする	
		量人事政事時において、サフレッションノールを水源とする ポンプは、原子炉格納容器内の圧力、水位、水源の温度及び配	
		管圧損並びに冷却材中の異物により想定される最も小さい有効	
		ILL担业のに行却材中の異物により想定される最も小さい有効 NPSH が必要吸込水頭(以下「必要 NPSH」という。)を上回るこ	
		トアSh か必要吸込小頭(以下「必要 NPSh」という。)を上回ることを評価する。	
		そのうち,原子炉冷却材喪失事故(以下「LOCA」という。)等	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		時の対応によりサプレッションプールを水源として、原子炉格	
		納容器除熱のために運転する場合,運転に係る最も厳しい初期	
		条件は原子炉冷却材配管の両端破断による大破断 LOCA を想定	
		するが、破断形態は設計基準事故と同等であるため、保温材の	
		破損影響範囲及び配管破断による保温材等の異物発生量は設計	
		基準事故時より拡大することはない。	
		ただし,炉心損傷を伴う重大事故等時においては,原子炉格	
		納容器内の p H制御のために注入する水酸化ナトリウム水溶液	
		と原子炉格納容器内構造物等との化学反応により新たに発生す	
		る異物(以下「化学影響生成異物」という。)が想定されるため,	
		化学影響生成異物の想定発生量が最大となる事象を抽出して有	
		効 NPSH を評価する。	
		また,評価に <u>あ</u> たっては,平成19年5月23日付け平成19・	
		<u>04・27 原第 14 号</u> にて認可された工事計画の <u>添付書類 Ⅳ-7「</u> 非	
		常用炉心冷却設備のポンプの有効吸込水頭に関する説明書」を	
		参考に、「非常用炉心冷却設備又は格納容器熱除去設備に係るろ	
		過装置の性能評価等について(内規)」(平成 20・02・12 原院第	
		5号(平成20年2月27日原子力安全・保安院制定))に準拠し	
		評価を行う。	
		3.2 サプレッションプールを除くタンク等を水源とするポンプ の評価方針	
		重大事故等時において、サプレッションプールを除くタンク	
		等を水源とするポンプは、それぞれの水源の圧力、水位、温度	
		及び配管圧損により想定される最も小さい有効 NPSH が必要	
		NPSHを上回ることを評価する。	
		эм сын в с с ситри / в о	
		3.3 評価対象ポンプの選定	
		重大事故等時の対応において,原子炉格納施設のうち「圧力	
		低減設備その他の安全設備」として原子炉格納容器除熱又は冷	
		却のために使用するポンプを以下に示す。	
		・残留熱除去ポンプ*(水源:サプレッションプール)	
		・残留熱代替除去ポンプ(水源:サプレッションプール)	
		・低圧原子炉代替注水ポンプ*(水源:低圧原子炉代替注水槽)	
		・大量送水車*(水源:輪谷貯水槽(西1),輪谷貯水槽(西2)	
		又は海)	
		<u> </u>	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		注記*:原子炉冷却系統施設のうち「非常用炉心冷却設備その他	
		原子炉注水設備」と兼用するポンプを示す。	
		複数の水源を想定するポンプの評価に <u>あ</u> たっては、評価条件	・評価方針の相違
		が最も厳しくなる水源を想定する。	【東海第二,柏崎 7】
		「非常用炉心冷却設備その他原子炉注水設備」と兼用するポ	島根2号機の大量送
		ンプのうち、残留熱除去ポンプは、「圧力低減設備その他の安全	水車は,「圧力低減設備
		設備」として使用する場合の有効 NPSH 評価条件が,設計基準事	その他の安全設備」とし
		放時に「非常用炉心冷却設備その他原子炉注水設備」として原	ての評価条件の方が保
		子炉圧力容器に注水する場合の有効 NPSH 評価条件に包絡され	守的なため,本説明書に
		るため、VI-1-4-3「非常用炉心冷却設備その他原子炉注水設備	て説明
		のポンプの有効吸込水頭に関する説明書」にて有効 NPSH を評価	
		する。	
		「非常用炉心冷却設備その他原子炉注水設備」と兼用するポ	・評価方針の相違
		ンプのうち、低圧原子炉代替注水ポンプは、「圧力低減設備その	【東海第二】
		他の安全設備」として使用する場合の有効 NPSH 評価条件が、「非	島根 2 号機の低圧原
		常用炉心冷却設備その他原子炉注水設備」として原子炉圧力容	子炉代替注水ポンプは,
		器に注水する場合の有効 NPSH 評価条件に包絡されるため、VI	「非常用炉心冷却設備
		-1-4-3「非常用炉心冷却設備その他原子炉注水設備のポンプの	その他原子炉注水設備」
		有効吸込水頭に関する説明書」にて有効 NPSH を評価する。	としての評価条件の方
			が保守的なため、VI
			-1-4-3 にて説明
		大量送水車の付属品である水中ポンプは、空気を吸い込まな	
		い水位を確保するように沈めて運転するポンプであり、必要	
		NPSH に変わる条件として運転必要最低水位(水中ポンプ内に空	
		気を吸い込まず、ポンプが正常に機能するための最低吸込高さ)	
		を確保するように設置することで、キャビテーションを防止す	
		る設計であることから、評価対象外とする。	
		また、大量送水車は、付属品である水中ポンプにより、大量	
		送水車の必要 NPSH を上回る押込水頭が大量送水車の吸込側に	
		かかるように設計されており、大量送水車の有効 NPSH は十分確	
		保されることから、評価対象外とする。	
		海水取水時に下流側に設置する大量送水車(送水用)は、上	
		流側に設置する大量送水車(海水取水用)により、下流側に設置する大量に対している。	
		置する大量送水車の必要 NPSH を上回る押込水頭が大量送水車	
		<u>の吸込側にかかるように設計されており、下流側に設置する大</u>	


東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	島根原子力発電所第2号機	備考
			量送水車の有効 NPSH は十分確保されることから評価対象外と	
			<u>する。</u>	
			したがって,本資料では,以下のポンプの重大事故等時の有	
			効 NPSH を評価する。	
			残留熱代替除去ポンプ (水源:サプレッションプール)	
			$(150 \text{m}^3/\text{h})$	・設備の相違
				【東海第二,柏崎 7】
			3.4 評価方法	
			3.4.1 サプレッションプールを水源とするポンプの有効 NPSH 評	
			価方法	
			「3.3 評価対象ポンプの選定」により選定した残留熱代替除	
			去ポンプの有効 NPSH 評価ついては, 重大事故等時の各事象のう	
			ち,個別評価が必要な事象を抽出し,その事象について最も小	
			さい有効 NPSH が必要 NPSH を上回ることを評価する。	
			サプレッションプール吸込ストレーナへの異物付着による影	
			饗に関する具体的な評価手順及び評価内容については,別添 1	
			「重大事故等時における非常用炉心冷却系ストレーナの異物付	
			着による圧損上昇評価」に示す。	
			(1) 有効 NPSH 評価事象の抽出	
			重大事故等時の各事象におけるサプレッションプール吸込ス	
			トレーナの圧損に影響する評価条件を比較し,「3.3 評価対象	
			ポンプの選定」で選定した <u>残留熱代替除去ポンプ(<mark>B-</mark></u> 残留熱除	
			去系ストレーナを兼用)に対して,有効 NPSH の個別評価が必要	
			な事象を以下のとおり抽出する。表 3-1 に設計基準事故時と重	
			大事故等時における各事象の評価条件の比較結果を示す。	
			a. 重大事故等時の各事象におけるポンプ運転状態	
			重大事故等時における各事象 (表 <u>3.—1.</u> の a から <u>1.</u>) のうち,	
			a, b, c, d, e, f及びgの事象については,評価対象ポン	
			プによるサプレッションプールを水源とした原子炉格納容器	
			<u>冷却</u> に期待しないため個別評価対象外とする。	
			b. 有効 NPSH 評価条件及び発生異物量の影響	
				(島根2号機は,残留熱
				除去ポンプに関する評
				価の扱いを「3.3 評価
				対象ポンプの選定」に記

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所第2号機	備考
				載)
			重大事故等時における各事象(表 3-1 の a から 1) のうち,	
			h及びkの事象については,残留熱代替除去ポンプを原子炉	
			格納容器除熱に使用するが、kの事象については、hの事象	
			の評価に包絡される。	
			i, j及びlの事象について <mark>は</mark> , 残留熱代替除去ポンプを	・評価方針の相違
			原子炉格納容器除熱に使用するが、 <u>j及び1の事象について</u> は, iの事象の評価に包絡される。また, iの事象では,原	・評価方針の相違 【東海第二,柏崎 7】
			子炉冷却材配管の破断が生じず、保温材等の異物発生は想定	島根2号機において
			されないが、原子炉格納容器内の温度が高く推移する。	も,iの事象は原子炉冷
				却材配管の破断が生じ
			以上より,残留熱代替除去ポンプについて, <mark>大破断 LOCA によ</mark>	ず保温材等の異物発生
			り保温材等の異物発生が想定される「h 雰囲気圧力・温度によ	が想定されないが、水源
			る静的負荷(格納容器過圧・過温破損)」の事象 <mark>及び原子炉格納</mark>	の圧力,温度等はhの事
			容器内の温度が高く推移する「i 高圧溶融物放出/格納容器雰	
			囲気直接加熱」の事象を保守的に組み合わせることにより、有	ため、h及びiの事象を
			効 NPSH の評価を実施する。	保守的に組み合わせて 評価している
			(2) 有効 NPSH 評価条件	
			有効 NPSH 評価について, 以下の各条件を考慮した上で評価す	
			る。	
			a. 事故後の原子炉格納容器圧力, サプレッションプール水の	
			温度	
			各事象における水源の温度及び圧力は、事故後の経過時間	
			とともに変化するが、サプレッションチェンバの圧力は常にサプレッションプール水温の釣却蒸気圧な扱うる	
			サプレッションプール水温の飽和蒸気圧 <u>を超える</u> 。 サプレッションプールを水源として有効 NPSH を評価する	
			ときは、評価条件を保守的に設定するという観点より、保守	・評価条件の相違
			性を十分考慮した背圧及び水源の温度を設定する。	【東海第二】
				島根2号機は,背圧を
				考慮した評価条件を設
				定
			b. サプレッションプールの水位	
			サプレッションプールの水位は,重大事故等時に想定され	
			るサプレッションプールの最低水位を考慮する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所第2号機	備考
		c. ストレーナの異物付着による圧損上昇	
		ストレーナの異物付着による圧損上昇を考慮する。詳細に	
		ついては,別添 1 <u>「重大事故等時における非常用炉心冷却系</u>	
		ストレーナの異物付着による圧損上昇評価」に示す。	
		なお、ストレーナの異物付着による圧損上昇は、残留熱代	
		替除去ポンプ運転時の通水流量(150m³/h)に対して,有効 NPSH	
		評価上保守的な評価となるように, 通水流量を上回る流量	・評価条件の差異
		<u>(</u> m³/h) を用いた評価を実施する。	【東海第二】
			島根2号機は、残留熱
			代替除去系の通水流量を上回る流量にて評価
			を工凹る伽里にて評価
		│	
		ポンプの有効 NPSH 算定に必要な配管圧損については、配管	
		の径、長さ、形状及び弁類の仕様並びに原子炉格納容器除熱	
		時におけるポンプの最大流量により評価した値を用いる。	
		表 3-1 設計基準事故時と重大事故等時における各事象の評価条	
		件の比較結果(設計基準事故時を基準)	
		重大事項等における各事象 (有効性評価の事故シーケンスグループ) 選転をする (本源の圧力、温度等) 破断形態 保温材等 化学影響	
		(有効性評価の事故シーケンスグループ)	
		b 高圧注水・減圧機能喪失 - 無 - -	
		位 信 協 が な c 全交流動力電源喪失 一 無 一 が な d 崩壊熱除去機能喪失 一 無 一	
		場合 f LOCA 時往水機能喪失 — 無 22計基準 f LOCA 時往水機能喪失 — 中小破断 22計基準	
		g 格納容器バイバス ― 無 ― ―	
		雰囲気圧力・温度による静的負荷 (格納容器) RHAR (開別評価を実施** 大破断 事故時と同等	
		ディー・ 毎日東山東川教 化学影響 よ 1 原子伊正丁寿経路外の RHAR RHAR: i の事象に包絡 無 一 生成異物の みなり。 みたり。 2 本株 2 本株	
		k	
		I 相互作用	
		分,DHAD,形以JAM /A>≠F/△ + ユ² ン →°	
		注:RHAR:残留熱代替除去ポンプ	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9	9. 25 版) 島根原子力発電所第 2 号機	備考
		注記*1:サプレッションプールを水源として,原子炉格納容器除	
		熱に使用するポンプを示す。	
		*2: <mark>原子炉格納容器内の温度が高く推移するiの事象を保守</mark>	・評価方針の相違
		的に組み合わせて評価する。	【東海第二,柏崎 7】
		*3:自主対策設備であるpH制御装置よりサプレッションプ	島根 2 号機 <mark>の場合</mark> , 水
		<u>ール</u> 内に水酸化ナトリウムが注入され,水質がアルカリ	源の圧力,温度等はhの
		性になることで,原子炉格納容器内の Al, Si, Zn, Fe を	事象より i の事象の方
		含有した構造材との化学反応により溶出したものが保守	が <mark>高く推移する</mark> ため, <mark>h</mark>
		的に全析出すると仮定する。	及び i の事象を保守的
			に組み合わせて評価し
			<mark>ている</mark>
			(島根2号機は,残留熱
			除去ポンプに関する評
			価の扱いを「3.3 評価
			対象ポンプの選定」に記
			載し、VI-1-4-3で評価)
		3.4.2 サプレッションプールを除くタンク等を水源とするポン	
		プの有効 NPSH 評価方法	
		「3.3 評価対象ポンプの選定」により、評価対象となるポン	・評価方針の相違
		<u>プはない。</u>	【東海第二】
			島根2号機の低圧原
			子炉代替注水ポンプは、
			「非常用炉心冷却設備
			その他原子炉注水設備」
			としての評価条件の方
			が保守的なため、VI
			-1-4-3 にて説明

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所第2号機	備考
		3.5 評価結果 3.5.1 サプレッションプールを水源とするポンプの有効 NPSH 評価結果 (1) 残留熱代替除去ポンプの有効 NPSH 評価結果 a. 有効 NPSH の算定結果 残留熱代替除去ポンプの有効 NPSH 算定結果を表 3-2 に示す。また,有効 NPSH 評価の概略図を図 3-1 に示す。	・記載位置の差異 【東海第二】 表 3-2 下にて比較
		表 3-2 残留熱代替除去ポンプの有効 NPSH 算定結果 (単位:m)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考

先行審査プラントの記載との比較表 (VI-1-8-4-別添 1 重大事故等時における非常用炉心冷却系ストレーナの異物付着による圧損上昇評価)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		 <u>M</u> -1-8-4-別添1 重大事故等時における非常用炉心冷却系ストレ	
		一ナの異物付着による圧損上昇評価	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.9.25 版)	島根原子力発電所第2号機	備考
		目 次	
		1. 非常用炉心冷却系ストレーナの異物付着による圧損上昇の評	
		価方法・・・・・・・・・・・・・・・・・・・・・・・ 1	
		2. 非常用炉心冷却系ストレーナの異物付着量の評価・・・・・・ 3	
		2.1 保温材の破損量評価・・・・・・・・・・・ 3	
		2.2 破損保温材の ECCS 水源への移行量評価・・・・・・・ 3	
		2.3 破損保温材以外の異物の ECCS 水源への移行量評価・・・・・ 4	
		3. 非常用炉心冷却系ストレーナの異物付着量による圧損上昇の	
		評価・・・・・・ 5	
		3.1 ストレーナの異物付着による圧損上昇評価に用いる流量・5	
		3.2 試験装置の概要・・・・・・・・・・・ 5	
		3.3 試験条件・・・・・・・・・・・・・・・・・・・・・・・ 6	
		3.4 異物付着による圧損上昇の評価・・・・・・・・・ 8	
		3.5 試験結果······ 12	
		4. 非常用炉心冷却系ストレーナの異物付着による圧損上昇の評	
		価結果····· 12	
		1. 非常用炉心冷却系ストレーナの異物付着による圧損上昇の評価方法 重大事故等時の評価においては、原子炉格納容器内の冷却材配管の両端破断による原子炉冷却材喪失事象を想定し、配管破断時に破断口周囲の保温材等が破断口から流出した冷却材により破損し、破損した保温材等がドライウェル(以下「D/W」という。)から ECCS 水源であるサプレッションプール(以下「S/P」という。)へ流入し、残留熱代替除去ポンプの吸込流により非常用炉心冷却系ストレーナに付着するという事象シナリオに沿って、「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第5号(平成 20 年 2 月 27 日原子力安全・保安院制定))(以下「内規」という。)に準拠し非常用炉心治却系ストレーナの圧損上昇の評価を行う。具体的な評価の手順を図 1-1 に示す。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		(1) 保温材の破損量評価 原子炉格納容器内の冷却材配管の破断による破損影響範囲(以下 「201」という。) 内の保温材の破損量を評価する。(設計基準事故時の評価結果と同様) (2) 破損保温材の ECCS 水源への移行量評価 破損保温材量を基に、ECCS水源への移行量を評価する。 (設計基準事故時の評価結果と同様) (3) 破損保温材以外の展予炉格納容器内の異物(塗装、堆積異物、その他異物及び化学影響生成異物*)の ECCS 水源への移行量を評価する。 を評価する。 (4) 異物付着による圧損上昇の評価 a. NIREG/CR-6808 式を用いて、金属反射型保温材による圧損上昇値を算出する。 繊維質、粒子異物及び化学影響生成異物による圧損上昇は、保守的な評価となるよう。以下のb. 及びc. のいずれか大きと値を採用する。 b. NEDO-32721 式を用いて(金属反射型保温材を含む実機ブラントの異物条件等を模擬して得られた圧損試験結果等を代入)、異物による圧損上昇値については、圧損試験で得られた値を直接用いる。 c. NEDO-32721 式を用いて(金属反射型保温材及び化学影響生成異物を含む実機ブラントの異物条件等を模擬して得られた正損上昇値を算出する。 また。化学影響生成異物による圧損上昇値を算出する。 さた、NEDO-32721 式を用いて(金属反射型保温材及び化学影響生成異物を含む実機ブラントの異物条件等を模擬して得られた圧損試験結果等を代入)、異物による圧損上昇値を算出する。 注記*:化学影響生成異物は、「Evaluation of Post-Accident Chemical Effects in Containment Sump Fluids to Support GSI-191」(Westinghouse WCAP-16530-NP (以下「WCAP」という。)) に基づいて算出する。	(化学影響生成異物の 圧損上昇値の取扱いに ついて、評価結果を踏ま えた手順ではなく、全体 像を示している)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)		島根原子力発			備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 9. 25 版)	2.1 保留	冷却量では、	ナの異物付着量 管所は、ZOI 内の と、スロI と、スロI と、スロII と	で評価 こいる原子炉格納容の保温材を評価する。 は、設計基準事故 この評価 こいる原子が損量を評価する。 は、設計基準事故 このには、設計基準事故 このには、設計基準事故 このには、対した。 このには、対した	・実機条件の相違 【東海第二】 ・設備の差異 【東海第二,柏崎7】 島根2号機は一ライトライトを 温として子炉格納容器 内で使用
				('	%)		
			金属反射型保証		10	$ m m^2$ $ m m^3$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島村	· 艮原子力発電所	新第2号機 「第2号機		備考
			2.3 破損保温材以外の異物の ECCS 水源への移行量評価				
			重大事故等時におり	いて考慮する。	異物の種類, 5	量及び ECCS 水源	
			への移行量を表 2-3				
			ついては、異物管理				
			掃、点検を実施する				
			新、	/この), ドリス兄がり	衣用 3 に小り1	但を用いる。	
					/B > B		
			表 2-3 重大事故等時			異物の種類,重	
			及び ECCS 水液	原への移行量			
			異物の種類	異物量	移行割合(%)	移行量	
			耐DBA仕様塗装(ジェット破損)	39 kg	100	39 kg	
			非DBA仕樣塗装	kg	100	kg	
			堆 スラッジ 積上	89 kg	100	89 kg	
			精 異 物 生	23 kg 68 kg	100	23 kg 68 kg	
			その他異物	m ²	100	m ²	
			耐DBA仕様塗装 (SA時考慮*1)	kg	100	kg	
			化学影響生成異物	kg*2	100	kg	
			注記*1:重大事故等時	において百子		担 度が ト見 する	
					が他が存品で き生を考慮する		
			*2:化学影響生成	く美物は、WUAI	? に基づい (身	⊉四する。	
			3. 非常用炉心冷却系	ストレーナの。	異物付者量に	よる圧損上昇の	
			評価				
			発生が想定される。	異物量による	圧損上昇を以	下に示す圧損試	
			験結果より算出し、	VI-1-8-4 「圧	力低減設備その	の他の安全設備	
			のポンプの有効吸込	水頭に関する	説明書」で評価	価対象ポンプに	
			選定した残留熱代替	除去ポンプが	重大事故等に	対処するために	
			必要な機能を有効に	発揮できるこ	とを確認する。)	
			┃ ┃ 3.1 ストレーナの異物	7付着による圧	三損上昇評価に	用いる流量	
			ストレーナの異物				
			心冷却系ストレーナ			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			な評価となるように、				・評価条件の差異
			<u>る流量</u> とする。 <u>非常</u>	用光心何却杀。	人 トレーナを	囲 廻りる派重を	【東海第二】
			表 3-1 に示す。				島根2号機は,残留熱
							代替除去系の通水流量
							を上回る流量にて評価

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.9.25版)	島根原子力発電所第2号機	備考
		表 3-1 非常用炉心冷却系ストレーナを通過する流量	
		(単位:m³/h)	
		系統設備	
		残留熱代替除去ポンプ *	
		注記*:残留熱代替除去ポンプ運転時の通水流量は 150 m³/h であ	
		るが,保守的に圧損を評価する観点から通水流量を上回	
		る流量 m³/h として評価する。	
		3.2 試験装置の概要	
		重大事故等時の圧損評価に使用した試験装置の概要を図3-1	
		に示す。	
		試験 用ストレーナ	
		流量計	
		差圧計	
		ポンプ	
		図 3-1 圧損試験装置の概要図	
		3.3 試験条件 (1) 試験のスケーリング比	
		(1) 試験のスケーリング比は、試験用ストレーナ1個当たり	
		の表面積(m ²)と実機ストレーナ1個当たりの基準表面	
		積(m²)の比率から, とした。	
		圧損試験で考慮するストレーナ基準表面積は、下記の式で算	
		出する。	
		ストレーナ基準表面積=	
		(有効表面積) - (その他異物付着面積) ÷ (ストレーナ台	
		数) ×0.75	
		$=$ $\div 2$ (個) $\times 0.75$ (内規) $=$ m^2	
		(2) 試験の異物物量	
		圧損試験に用いる異物量を表 3-2 に示す。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所第2号機	備考
			表 3-2 圧損試験に用いる異物量	
			試験に用いる 異物量の計算	
			金属反射型保温材	
			The control	
			#DBA仕様塗装	
			推積 スラッジ 89 kg L kg	
			異物 錆片 23 kg kg 塵土 68 kg kg	
			その他異物	
			耐DBA仕樣塗装 (SA時考慮**) kg 化学影響生成異物 kg	
			注記*1:圧損試験において非 DBA 塗装の模擬材料として使用する	
			シリコンカーバイド粉末と、非 DBA 仕様塗装の体積が等価となるよう密度比()で補正する。	
			*2:繊維質保温材は、D/W内の高エネルギ配管の両端破断を	
			想定した時の最大の ZOI を設定し,S/P への移行量評価	
			を実施して想定物量を評価する。また,実機の D/W 内で	
			は、繊維質保温材を撤廃しているため、圧損評価条件と	
			しては繊維質ゼロとする。ただし、NEDO-32721 式を適	
			用する場合は繊維質ゼロでは評価できないため、繊維質	
			ゼロ相当として繊維質厚さを 0.3 mm (薄膜効果の発生	
			開始量 3 mm の 10 分の 1) として試験を実施した。	
			*3:その他異物のステッカー類については、ストレーナ表面	
			積からステッカー類の総表面積の 75%分を差し引いて	
			考慮しているため、試験には投入していない。	
			*4: 重大事故等時において原子炉格納容器内温度が上昇する	
			ことから、塗装片の追加発生を考慮する。	
			*5:化学影響生成異物は,WCAP に基づいて算出する。	

(2) 水の気料

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 9. 25 版)	島根原子力発電所第2号機		備考
			表 3-3 金属反射型保温材	の諸元及び圧損上昇	
				重大事故等時	
				残留熱代替除去ポンプ	
			ギャップ厚さ Kt(m)		
			表面積 Afoil (m²) (両面の合計値)	*1	
			圧損上昇(m)	*2	37 /m // //
			注記 *1 :表 2-2 破損保温材の ECC	S 水源への移行量	・評価条件の相違 【東海第二,柏崎 7】
			*2:金属反射型保温材による圧	損上昇結果は小数点以下第3	島根2号機は,既工事
			位を四捨五入した結果を示	す。	計画における評価では 金属反射型保温材なし
			(2) 繊維質,粒子状異物及び化学影	響生成異物による圧損上昇	
			NEDO-32721 にて示される評価式 	に基づき算出する。	**************************************
			$hdebris = \frac{\mu \cdot U \cdot t}{\rho \cdot g \cdot d^2} \cdot K_h + h_c$		・算出方法の相違 【柏崎 7】
			= × × ×	+	化学影響生成異物に よる圧損上昇値につい
			× 9. 80665 × (ては,保守的な評価とな
			=+= であり,式中の記号の意味は以 ⁻	(m) Fのとおりである	るよう,図1-1の(4)の うちb.及びc.のいず
			Hdebris : 圧力損失(m)	1 42 43 9 (87 8)	れか大きい値を採用す
			μ : 水の粘性係数=	(Pa·s)	ることとし,島根2号機
			U :側面の接近流速(m/s)	·	は, b. (圧損試験で得
			$=\frac{Q}{Q}$		られた値を直接用いる)
			$\pi \cdot D \cdot L$		により算出している
			$=\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	(m/s)	
			ここで,		
			Q : 流量 = (m³/s	s)	
			D : 外径 = (m) L : 圧損評価長さ =	(m)	
			t :側面の異物の厚さ	(m)	
			$\underline{\hspace{0.1cm}}$ $\frac{V_{ ext{debris}}}{}$		
			$\pi\cdot D\cdot L$		
			$=\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	(m)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
来(時分一)た(股) (2010. 10. 12 /版)			VHI **7

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		f2 : 異物の層の圧縮を表す係数	
		$=0.2197+0.23 \frac{\mu \cdot U}{\rho \cdot g \cdot d^2}, \text{for } \frac{\mu \cdot U}{\rho \cdot g \cdot d^2} < 3.393$	
		$=1, \text{for } \frac{\mu \cdot U}{\rho \cdot g \cdot d^2} \ge 3.393$	
		$\frac{\mu \cdot \mathbf{U}}{\rho \cdot \mathbf{g} \cdot \mathbf{d}^2} = \frac{\mathbf{x} \cdot \mathbf{g} \cdot \mathbf{g}}{\mathbf{x} \cdot \mathbf{g} \cdot \mathbf{g} \cdot \mathbf{g}} = \frac{\mathbf{y} \cdot \mathbf{g} \cdot \mathbf{g}}{\mathbf{x} \cdot \mathbf{g} \cdot \mathbf{g}}$	
		= 3.393 したがって、	
		f2= f3 : 繊維質異物と粒子状異物の比率(Mc/Mf)を表す係数	
		$=1 + 0.15 \cdot (M_{c}/M_{f})$	
		ここで、	
		Mc : 粒子状異物の質量(kg)	
		Mf :繊維質異物の質量(kg)	
		実機のデブリ条件を用いた実験によりデブリ特性の全て	
		を包括するため,Mc/Mf=□となり f3=□	
		f4 : 形状効果を表す係数	
		$=0.1558+6.525 \cdot (t/D)$, for $t/D < 0.27$	
		=2.0157-0.3467 • (t/D), for $0.27 < t/D < 1.8$	
		t/D > 1.8の場合,	
		f4=1.4 を保守的に使用する。	
		t/D=	
		したがって,	
		f4=	
		hc : 圧損試験で得られた化学影響生成異物による圧損	・算出方法の相違
		<u>上昇値</u> 	【柏崎 7】
		$\underline{\mathbf{h}_{c}} = \underline{\mathbf{h}_{1}} = \underline{\mathbf{h}_{1}}$	島根2号機の化学影
		=	響生成異物による圧損
		<u>ここで、</u>	上昇値については、保守
		h1:A100H 投入直前の圧損	的な評価となるよう,図
		h2: A100H 投入後の静定圧損 繊維質, 粒子異物及び化学影響生成異物による圧損上昇につ	1-1 の(4)のうちb. 及
			び c . のいずれか大きい 値を採用することとし,
		保守的な評価となるよう,圧損上昇値が大きくなるb. により	温を採用することとし、 島根2号機は、b.(圧
		第出している。	最低2万機は、D. (圧 損試験で得られた値を
		<mark>弄山している。</mark>	1月10次へ行り40万世で

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		・図 1-1(4) b. による算出	直接用いる)により算出
		化学影響生成異物 (A100H) 投入前の異物 (繊維質, 粒子状	している
		異物)を考慮した d 値から算出した圧損(hdebris(1))に,	
		圧損試験で得られた化学影響生成異物による圧損上昇分	
		(hc) を加えた圧損 (hdebris)	
		$\frac{\text{hdebris} = \text{hdebris}(1) + \text{hc}}{\text{hc}} = \frac{\text{hdebris}(1) + \text{hc}}{\text{hc}}$	
		・図 1-1(4) c. による算出	
		d 値から算出した圧損(hdebris(all))	
		$\frac{\text{hdebris}(\text{all})}{\text{hdebris}}$	
		<u></u>	
			 ・記載位置の相違
			【東海第二】
			島根2号機は3.4(2)
			に記載
		3.5 試験結果	
		「3.3 試験条件」にて示した条件において圧損試験を実施し	
		たところ, 「3.4 異物付着による圧損上昇の評価」の(1), (2)	
		に示したとおり、金属反射型保温材の付着による圧損上昇は	
		m (m),繊維質異物,粒子状異物及び化学影	
		響生成異物の付着による圧損上昇は mとなり、これら	
		を加算した圧損上昇の最大値は m程度であった。	
		と/H界 レに圧浪工丌シン拟八胆は L L 性皮(α)ソに。	
		以上より、重大事故等時において想定される異物の量を考慮	
		しても、残留熱代替除去ポンプが重大事故等時に対処するため	
		に必要な機能を有効に発揮できることを確認した。	
		て心女は1次間で日かに元半くでることを推応した。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 9. 25 版)	島根原子力発電所第2号機	備考
		4. 非常用炉心冷却系ストレーナの異物付着による圧損上昇の評	
		価結果	
		「3.4 異物付着による圧損上昇の評価」による,金属反射型	
		保温材,繊維質,粒子状の異物及び化学影響生成異物による圧	
		損値を合計した結果, <u>非常用炉心冷却系</u> ストレーナの異物付着	
		による圧損値は表 4-1 に示すとおりである。	
		表4-1 金属反射型保温材,繊維質,粒子状の異物及び化学影響	
		生成異物の付着による圧損上昇の評価結果	
		(単位:m)	
		圧損値	
		重大事故等時	
		7D 7734 // 447/ 1 100	
		残留熱代替除去ポンプ	
		金属反射型保温材による圧損上昇 *	
		繊維質, 粒子状の異物及び化学影響 ***	
		生成異物による圧損上昇	
		승計 *	
		注記*:各異物による圧損上昇結果は小数点以下第3位を四捨五入	
		した結果を示し,合計値は小数点以下第3位を切り上げ処	
		理した結果を示す。	