

再処理施設、廃棄物管理施設、MOX燃料加工施設 標準応答スペクトルを考慮した評価について (コメント回答)

No.	コメント日	指摘事項	頁
1	令和4年2月4日 第430回審査会合	正弦波の重ね合わせによる模擬地震波の作成にあたり、振幅包 絡線の設定に用いるMの値については、保守性の観点でM7.0とす ること。	р.5 ~ 7
2	令和4年2月4日 第430回審査会合	正弦波の重ね合わせ及び観測記録の位相を用いる方法による地 震動の大きさに有意な差が無いとした上で、正弦波の重ね合わせ による方法による模擬地震波を代表として扱っていることについて、 考え方を資料に記載すること。	p.8~14

目次

1. 模擬地震波作成の考え方	 4
2. 正弦波の重ね合わせによる方法による模擬地震波の作成	 5
2.1 振幅包絡線の設定条件	 5
2.2 模擬地震波の作成結果	 6
3. 標準応答スペクトルを考慮した地震動の選定	 8
3.1 地震基盤における模擬地震波の比較	 8
3.2 解放基盤表面における地震動の比較	 9
4.基準地震動の策定	 13
(参考)年超過確率の参照	 15

1. 模擬地震波作成の考え方

- 審査ガイドでは、「震源を特定せず策定する地震動による基準地震動は、設定された応答スペクトル(地震動レベル)に対して、地震動の継続時間及び振幅包絡線の経時的変化等の特性が適切に考慮されていることを確認する。また、設定された応答スペクトルに基づいて模擬地震動を作成する場合には、複数の方法(例えば、正弦波の重ね合わせによる位相を用いる方法、実観測記録の位相を用いる方法等)により検討が行われていることを確認する。」とされている。
- ▶ 模擬地震波の作成及び選定のフローを以下の通りとする。

2. 正弦波の重ね合わせによる方法による模擬地震波の作成

2.1 振幅包絡線の設定条件

- ▶ Mw6.5に相当するマグニチュードをM7.0として、振幅包絡線を設定する。
- ▶ 下表に示す通り、第430回審査会合で示したM6.9とした場合とM7.0とした場合の振幅包絡線を比較すると、M7.0とした場合の方が、主要動の継続時間が約0.8秒、全体の継続時間が約1.8秒長くなる。

模擬地震波の振幅包絡線の経時的変化の比較 振幅包絡線の経時変化(s) 主要動継続時間 マグニチュード 継続時間(s) (s) Tb Tc Τd M6.9 3.31 15.06 28.03 11.75 28.03 (前回提示) M7.0 3.72 16.31 29.80 12.59 29.80 (今回提示) 差(M7.0-M6.9) 0.84 1.77

2. 正弦波の重ね合わせによる方法による模擬地震波の作成
2.2 模擬地震波の作成結果(水平方向)

◇作成した模擬地震波

◇作成した模擬地震波の応答スペクトル

◇適合度確認

周期(秒)

	作成結果		
①応答スペクトル比	0.85≧0.85		
②SI比	1.01≧1.0		

$$(1) R = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

 $S_{V1}(T):$ 模擬地震波の応答スペクトル値 $S_{V2}(T):$ 目標とする応答スペクトル値

(2)
$$SIIL = \frac{\int_{0.1}^{2.5} S_{\nu}(T) dt}{\int_{0.1}^{2.5} \bar{S}_{\nu}(T) dt} \ge 1.0$$

- SI :応答スペクトル強さ
- $\underline{Sv}(T)$: 模擬地震波の応答スペクトル
- Sv(T):目標とする応答スペクトル
- *T* : 固有周期

※適合度の判定条件はJEAG4601-2015に基づく

R4.2.4

資料1-1

P10 加除修正

2. 正弦波の重ね合わせによる方法による模擬地震波の作成
2.2 模擬地震波の作成結果(鉛直方向)

◇作成した模擬地震波

時間(s)

◇作成した模擬地震波の応答スペクトル

◇適合度確認

周期(秒)

R4.2.4

資料1-1

P11 加除修正

7

作成結	
①応答スペクトル比	0.86≧0.85
②SI比	1.00≧1.0

(1)
$$R = \frac{S_{V1}(T)}{S_{V2}(T)} \ge 0.85 \quad (0.02 \le T)$$

 $S_{V1}(T):$ 模擬地震波の応答スペクトル値 $S_{V2}(T):$ 目標とする応答スペクトル値

(2)
$$SIIL = \frac{\int_{0.1}^{2.5} S_{\nu}(T) dt}{\int_{0.1}^{2.5} \bar{S}_{\nu}(T) dt} \ge 1.0$$

- *SI* :応答スペクトル強さ
- $\underline{Sv}(T)$: 模擬地震波の応答スペクトル
- Sv(T):目標とする応答スペクトル
- T : 固有周期

※適合度の判定条件はJEAG4601-2015に基づく

3. 標準応答スペクトルを考慮した地震動の選定 3.1 地震基盤における模擬地震波の比較

R4.2.4 資料1一1 P16 加除修正

- 正弦波の重ね合わせによる方法及び観測記録の位相を用いる方法に基づき作成した模擬地震波の応答スペクトルの比較を以下に示す。
- 正弦波の重ね合わせによる方法及び観測記録の位相を用いる方法に基づく模擬地震波の地震基盤における応答スペクトルは、標準応答スペクトルに適合するよう作成していることから、有意な差は見られない。

水平方向

鉛直方向

両方法に基づく模擬地震波の応答スペクトル

3.標準応答スペクトルを考慮した地震動の選定 3.2解放基盤表面における地震動の比較[①応答スペクトル] R4.2.4 資料1一1 P19 加除修正

- ▶ 地震基盤における模擬地震波に対して、一次元波動論により、深部地盤モデルを用いて解放基盤表面までの地震波の伝播特性を反映し、解放基盤表面における標準応答スペクトルを考慮した地震動を設定した。
- 正弦波の重ね合わせによる方法及び観測記録の位相を用いる方法に基づく模擬地震波の解放基盤表面における応答 スペクトルを比較した結果、両方法による地震動には有意な差は見られない。

- 3.標準応答スペクトルを考慮した地震動の選定 3.2 解放基盤表面における地震動の比較[②加速度時刻歴波形]
 - 正弦波の重ね合わせによる方法及び観測記録の位相を用いる方法に基づく、解放基盤表面における地震動の加速度時刻歴波形を以下に示す。

R4.2.4

資料1-1

P18 加除修正

- ▶ 最大加速度は、水平方向・鉛直方向ともに正弦波の重ね合わせによる方法で作成した地震動の方が大きい。
- 加速度時刻歴波形を比較すると、正弦波の重ね合わせによる方法で作成した地震動の方が、比較的振幅の大きい波 が繰り返し現れる傾向にある。

3.標準応答スペクトルを考慮した地震動の選定 3.2 解放基盤表面における地震動の比較[③CAV値](1/2)

- ▶ 閾値を超える振幅の大きい波を多く含む地震波ほどCAV値は大きくなることから、時刻歴波形の特徴を定量化できる指標として、CAV値による比較を行う。
- ▶ 本検討では、閾値を水平方向:300Gal、鉛直方向200Galとして検討を実施。
- ▶ CAV値(標準化CAV値)は、加速度時刻歴の時々刻々の変化を1秒区間ごとに確認し、その区間内の最大値がある閾値を超過した場合にそのCAVi値(=[1秒区間内の加速度振幅の絶対値×時間刻み]の和、単位:G・秒)を累積していくもの。

$$CAV = CAVi + \int_{i}^{i+1} ABS[a(t)]dt$$

3.標準応答スペクトルを考慮した地震動の選定 3.2 解放基盤表面における地震動の比較[③CAV値](2/2)

算出したCAV値は、正弦波の重ね合わせによる方法が、観測記録の位相を用いる方法より大きい。

観測記録の位相を用いる方法(NS方向)

観測記録の位相を用いる方法(EW方向)

12

観測記録の位相を用いる方法(UD方向)

4. 基準地震動の策定

- 両方法による模擬地震波の解放基盤表面における応答スペクトルに有意な差は見られず、加速度時刻歴波形及びCAV値の比較から、正弦波の重ね合わせによる方法の方が振幅の大きい波の繰り返しが多いことから、標準応答スペクトルを考慮した地震動は、正弦波の重ね合わせによる方法で作成した地震動とする。
- ▶ 標準応答スペクトルを考慮した地震動は、基準地震動Ss−Aを一部の周期帯で上回ることから、基準地震動Ss−C5として採用する。

4. 基準地震動の策定

金十元成为以取八加还及										
基準地震動			最大加速度(cm/s²)							
			EW方向	UD方向						
Ss-A	応答スペクトルに基づく手法による基準地震動	700		467						
S s – B 1	出戸西方断層による地震 (短周期レベルの不確かさケース)[破壊開始点2]	410	487	341						
S s – B 2	出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点1]	429	445	350						
S s – B 3	出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点2]	443	449	406						
S s – B 4	出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3]	538	433	325						
S s – B 5	出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点4]	457	482	370						
震源を特定せず策定する地震動										
S s – C 1	2004年北海道留萌支庁南部地震(K-NET港町)	620		320						
S s - C 5	標準応答スペクトルを考慮した地震動	621		413						
S s – C 2	2008年岩手・宮城内陸地震(栗駒ダム[右岸地山])	450 ^{× 1}	490 ^{% 2}	320						
S s – C 3	2008年岩手・宮城内陸地震(K i K-net金ヶ崎)	430	400	300						
S s – C 4	2008年岩手・宮城内陸地震(K i K-netー関東)	540	500	_						
	Lて策定する地 S s - A S s - B 1 S s - B 2 S s - B 3 S s - B 3 S s - B 4 S s - B 5 る地震動 S s - C 1 S s - C 5 S s - C 2 S s - C 3 S s - C 4	基準地震動 LCT策定する地震動 Ss-A 応答スペクトルに基づく手法による基準地震動 Ss-B1 出戸西方断層による地震 (短周期レベルの不確かさケース)[破壊開始点2] Ss-B2 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点1] Ss-B3 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点2] Ss-B4 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点4] Summa Ss-C1 Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点4] Summa Ss-C1 2004年北海道留萌支庁南部地震(K-NET港町) Ss-C2 2008年岩手・宮城内陸地震(KiK-Netate)) Ss-C3 2008年岩手・宮城内陸地震(KiK-netate) Ss-C4 2008年岩手・宮城内陸地震(KiK-netag東)	基準地震動 最大加 N S方向 LCT策定する地震動 高答スペクトルに基づく手法による基準地震動 70 Ss-A 応答スペクトルに基づく手法による基準地震動 70 Ss-B1 出戸西方断層による地震 (短周期レベルの不確かさケース)[破壊開始点2] 410 Ss-B2 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点1] 429 Ss-B3 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点2] 443 Ss-B4 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] 538 Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] 538 Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] 538 Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] 538 Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重畳させたケース)[破壊開始点3] 538 Ss-C1 2004年北海道留萌支庁南部地震 (K-NET港町) 62 Ss-C2 2008年岩手・宮城内陸地震 (KiK-NeT港町)) 62 Ss-C3 2008年岩手・宮城内陸地震 (KiK-net金ヶ崎) 430 Ss-C4 2008年岩手・宮城内陸地震 (KiK-net-Bap) 540	基準地震動 最大加速度(orr NS方向 EW方向 CC策定する地震動 700 Ss-A 応答スペクトルに基づく手法による基準地震動 700 Ss-B1 出戸西方断層による地震 (短周期レベルの不確かさケース)[破壊開始点2] 410 487 Ss-B2 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重量させたケース)[破壊開始点1] 429 445 Ss-B3 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重量させたケース)[破壊開始点2] 443 449 Ss-B3 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重量させたケース)[破壊開始点3] 538 433 Ss-B4 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重量させたケース)[破壊開始点3] 538 433 Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重量させたケース)[破壊開始点3] 538 433 Ss-B5 出戸西方断層による地震 (短周期レベルと断層傾斜角の不確かさを重量させたケース)[破壊開始点4] 457 482 Summa 538 433 Ss-C1 2004年北海道留萌支庁南部地震 (K - N E T港町) 620 Ss-C2 2008年岩手・宮城内陸地震 (栗駒ダム[右岸地山]) 450 ^{※1} 490 ^{※2} Ss-C3 2008年岩手・宮城内陸地震 (K i K - n e t 金ヶ崎) 430 400 Ss-C4 2008年岩手・宮城内陸地震 (K i K - n e t 一間南) 540 500						

基準地震動の最大加速度

※1:ダム軸方向,※2:上下流方向

(参考)年超過確率の参照

- ▶ 基準地震動Ss-C1~C5の応答スペクトルを、既許可で評価した内陸地殻内地震の領域震源モデルによる一様ハザード スペクトルと比較する。
- ▶ 震源を特定せず策定する地震動Ss-C1~C5の年超過確率は10⁻⁴~10⁻⁶程度である。

参考文献

- Noda,S., K.Takahashi, M.Takemura, S.Ohno, M.Tohdo and T.Watanabe (2002) : OECD-NEA Workshop on the Relations between Seismological Data and Seismic Engineering Analysis, Istanbul, Oct.16–18.
- 一般社団法人日本電気協会:原子力発電所耐震設計技術指針 JEAG 4601-2015.
- 水谷浩之,西村功,敦賀隆史,荻原実,柏崎琢也,真下貢(2008):平成19年新潟県中越沖地震による柏崎刈羽原子力発 電所の観測記録に基づく揺れの強さ指標の比較(最大加速度振幅,SI値及び累積絶対速度CAV値),日本建築学会大会 学術講演梗概集,21508,2008年9月.