島根原子力発電所第2号機 審査資料							
資料番号 NS2-添 3-005-38							
提出年月日 2022 年 4 月 4 日							

VI-3-3-3-4-5-1 低圧原子炉代替注水ポンプの強度計算書

2022年4月

中国電力株式会社

まえがき

本計算書は、VI-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」、VI-3-2-8「重大事故等クラス2 ポンプの強度計算方法」及びVI-3-2-12「重大事故等クラス2支持構造物(ポンプ)の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、VI-3-2-1「強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

機器名	新設 する施設	クラスアップするか			条件アップするか			既工認に								
		クラス	施設時	D.B. G.A.	6.4	条件	DB条件 SA条件		おける	施設時の	評価区分	同等性 評価	評価			
		の規定が	r_{y} / 機器 DB SA r_{y}	アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格		区分	クラス			
低圧原子炉代替注水ポン プ	新設	_		_	_	SA-2		_	_	3. 92	66	_	_	設計・建設規格		SA-2

目 次

1.	計	∤算条件 ····				• • • • • • •	 	• • • • • •	 1
1.	1	ポンプ形式					 		 1
1.	2	計算部位 …					 		 1
1.	3	設計条件					 		 2
2.	弱	旗度計算 ····					 		 2
2.	1	ケーシングの	厚さ				 		 2
2.	2	ケーシングの	吸込み及び	吐出口部 分	分の厚さ		 		 2
2.	3	ケーシングの	ボルト穴				 		 3
2.	4	ケーシングカ	バーの厚さ				 		 3
2.	5	ボルトの平均	引張応力				 		 4
2.	6	耐圧部分等の	うち管台に	係るものの)厚さ		 		 5
3.	4	持構造物の強	度計算書				 		 6

1. 計算条件

1.1 ポンプ形式

ターボポンプであって、ケーシングが軸垂直割りで軸対称であるものに相当する。

1.2 計算部位

概要図に強度計算箇所を示す。

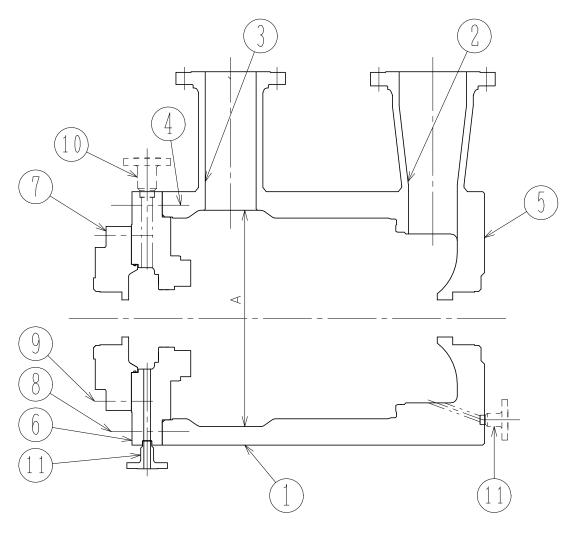


図1-1 概要図

1.3 設計条件

設計条件	
最高使用圧力(MPa)	3. 92
最高使用温度(℃)	66

2. 強度計算

2.1 ケーシングの厚さ

設計·建設規格 PMC-3320

PV FI	HX/901H TIME COL				
計算部位	++米1.	材料		A	
司异印江	17) 141	(MPa)	(MPa)	(mm)	
1		3. 92			

t	t s o	t s
(mm)	(mm)	(mm)
11. 7		

評価: $t \le t$, よって十分である。

2.2 ケーシングの吸込み及び吐出口部分の厚さ

設計・建設規格 PMC-3330

(単位:mm)

計算部位	r i	r m	ℓ	t	$t_{\ell\mathrm{o}}$	t_ℓ
2		201.8	24. 2	11. 7		
3		81. 3	15. 4	11. 7		

評価: $t_\ell \ge t$, よって十分である。

2.3 ケーシングのボルト穴

設計·建設規格 PMC-3340

(単位:mm)

P TP / C	19 47 7 E 1 H						() ===/
計算部位	d bm	a	a s o	a s	X	X s o	X s
4	36. 0	72. 0			18. 0		

評価: $a \ s \ge a$, よって十分である。 評価: $X \ s \ge X$, よって十分である。

2.4 ケーシングカバーの厚さ

設計・建設規格 PMC-3410

司 答如	L. Loled	Р	S	平村	仮形
計算部位	材料	(MPa)	(MPa)	d (mm)	K
5		3. 92			
6		3. 92			
7		3. 92			

t (mm)	t s o (mm)	t s (mm)
67. 4		
52. 7		
38. 5		

評価: $t_s \ge t$, よって十分である。

2.5 ボルトの平均引張応力

設計・建設規格 PMC-3510

<u> </u>	px/ytth Time					
計算部位	材料	P (MPa)	Sь (MPa)	d ь (mm)	n	A b $(exttt{mm}^2)$
8		3. 92				
9		3. 92				

ガスケット材料	ガスケット厚さ	ガスケット	G s	G	D g
カスケット物料	(mm)	座面形状	(mm)	(mm)	(mm)
セルフシール					
ガスケット (ゴム)		_	_	_	
セルフシール					
ガスケット (ゴム)	_		_	_	

Н	Нр	Wm 1	Wm 2	W	σ
(N)	(N)	(N)	(N)	(N)	(MPa)
	_		0		93
	_		0		59

評価: $\sigma \leq S_b$, よって十分である。

2.6 耐圧部分等のうち管台に係るものの厚さ

設計•建設規格 PMC-3610

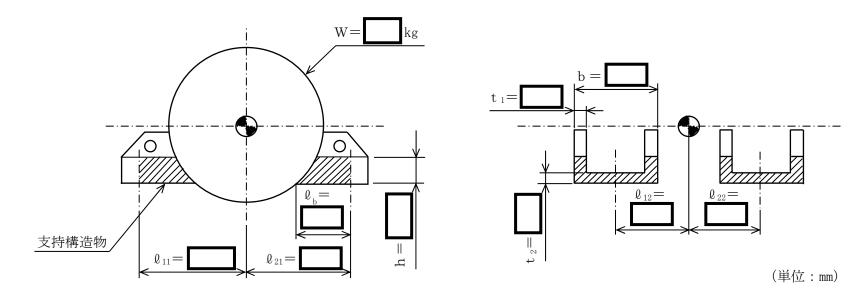
計算部位	材料	P	S	D _o
		(MPa)	(MPa)	(mm)
10		3. 92		
11)		3. 92		

継手の種類	放射線透過試験の有無	η
継手無し	_	1.00
継手無し	_	1.00

t	t s o	t s
(mm)	(mm)	(mm)
1.0		
0.7		

評価: $t_s \ge t$, よって十分である。

3. 支持構造物の強度計算書


「低圧原子炉代替注水ポンプ 支持構造物(凹形)」

(1) 一次せん断応力評価

種類	脚本数	材料	最高 使用温度 (°C)	F値 (MPa)	鉛直荷重 F _c (N)	断面積 A _s (mm²)	一次せん断応力 σ _s (MPa)	許容せん断応力 f _s (MPa)	評価
取付ラグ	4		66						計算応力は,許容応力以下であるため,取付ラグの強度は問題ない。

(2) 一次曲げ応力評価

種類	脚本数	材料	最高 使用温度 (°C)	F値 (MPa)	鉛直荷重 F。 (N)	曲げモーメント M (N·mm)	断面係数 Z (mm³)	一次曲げ応力 σ _ь (MPa)	許容曲げ応力 f _b (MPa)	評価
取付ラグ	4		66							計算応力は,許容応力以下であるため, 取付ラグの強度は問題ない。

低圧原子炉代替注水ポンプ 支持構造物の強度計算説明図