島根原子力発電所第2号機 審査資料							
資料番号	NS2-補-024-01 改 02						
提出年月日	2022 年 3 月 16 日						

原子炉建物の地震応答計算書に関する補足説明資料

2022年3月

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

1. 工事計画添付書類に係る補足説明資料

Ⅵ-2-2-2「原子炉建物の地震応答計算書」の記載内容を補足するための資料を以下に示す。 なお、他建物・構築物の地震応答計算書の記載内容を共通的に補足する内容についても、本 資料で代表し説明する。

今回提出範囲:

別紙1 地震応答解析における既工認と今回工認の解析モデル及び手法の比較

- 別紙1-1 原子炉建物の地震応答解析モデルの各種ばねの算定について
- 別紙2 地震応答解析における耐震壁のせん断スケルトン曲線の設定
- 別紙3 地震応答解析における材料物性の不確かさに関する検討
 - 別紙 3-1 建物剛性の不確かさによる建物応答への影響に関する考察
 - 別紙 3-2 材料物性の不確かさを考慮した検討に用いる地震動の選定について
 - 別紙 3-3 材料物性の不確かさを考慮した地震応答解析結果
 - 別紙 3-4 建物剛性と地盤物性の不確かさを考慮した場合の鉄骨造屋根トラスの影響について
 - 別紙 3-5 積雪荷重の考慮による建物応答への影響について
- 別紙4 地震応答解析に用いる鉄筋コンクリート造部の減衰定数に関する検討
 - 別紙 4-1 原子炉建物の基準地震動Ss及び弾性設計用地震動Sdに対する最大応答せん 断ひずみ

別紙4-2 各建物の図面集

別紙5 地震応答解析における原子炉建物の重大事故等時の高温による影響

別紙6 原子炉建物のコンクリート剛性に対する地震観測記録による傾向分析

別紙 6-1 コンクリートの経年劣化の影響について

別紙7 原子炉建物における改造工事に伴う重量増加を反映した地震応答解析 別紙7-1 原子炉建物に対する改造工事の概要

(参考資料1)計算機プログラム(解析コード)の概要

別紙5 地震応答解析における原子炉建物の重大事故等時

の高温による影響

目 次	
今回提出範囲:	
1. 概要	別紙 5-1
2. 原子炉建物の構造概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-2
3. 重大事故等時の温度による影響について ・・・・・・・・・・・・・・・・・・	別紙 5-10
3.1 検討方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-10
3.2 重大事故等時の高温による影響を考慮した原子炉建物の地震応答解析 ・	別紙 5-11
3.2.1 解析条件	別紙 5-11
3.2.2 地震応答解析結果	別紙 5-31
3.3 原子炉建物の地震応答解析による評価に与える影響 ・・・・・・・・	別紙 5-81
3.3.1 検討方法	別紙 5-81
3.3.2 検討結果	別紙 5-81
 機器・配管系の評価に与える影響 	別紙 5-93
5. まとめ ・・・・・・	別紙 5-93
5.1 「原子炉建物の地震応答解析による評価」に与える影響 ・・・・・・	別紙 5-93
5.2 「機器・配管系の評価」に与える影響 ・・・・・・・・・・・・・・・・・	別紙 5-93

1. 概要

本資料は,原子炉格納容器を内包する原子炉建物において,重大事故等により高温状態 が一定期間継続することを踏まえ,熱によるコンクリート部材の剛性低下を考慮した地震 応答解析を実施し,「原子炉建物の地震応答解析による評価」及び「機器・配管系の評価」 に与える影響について,補足説明資料「補足-023-13 地震応答に影響を及ぼす不確かさ要 因の整理」に基づき確認するものである。

2. 原子炉建物の構造概要

原子炉建物は、中央部に地上4階、地下2階建で平面寸法が53.3m*(NS)×53.8m* (EW)の原子炉棟があり、その周囲に地上2階(一部3階)、地下2階建の原子炉建物付 属棟(以下「付属棟」という。)を配置した鉄筋コンクリート造(一部鉄骨鉄筋コンクリー ト造及び鉄骨造)の建物である。

原子炉棟と付属棟は、一体構造で同一基礎スラブ上に設置され、本建物の平面寸法は、 70.0m*(NS)×89.4m*(EW)の矩形を成している。基礎スラブ底面からの高さは 68.2mである。また、原子炉建物は隣接する他の建物と構造的に分離している。

原子炉建物の基礎は厚さ 6.0m のべた基礎で、岩盤に直接設置している。

原子炉棟の中央部には,原子炉圧力容器を収容している原子炉格納容器があり,これらの周囲は鉄筋コンクリート造の原子炉一次遮蔽壁(以下「ドライウェル外側壁」という。) で囲まれている。

原子炉棟の外壁(以下「内部ボックス壁」という。)は基礎スラブ上から屋根面まで連続 しており,壁厚は地下部分で1.9m~2.3m,地上部分では0.45m~2.3m である。また,付属 棟の外壁(以下「外部ボックス壁」という。)の壁厚は地下部分で1.5m~1.9m,地上部分 では0.9m~1.9m である。これらの壁は建物の中心に対してほぼ対称に配置されており,開 口部も少なく,建物は全体として非常に剛性の高い構造となっている。建物に加わる地震 時の水平力はすべてこれらの耐震壁(ドライウェル外側壁,内部ボックス壁及び外部ボッ クス壁)に負担させている。

原子炉建物の概略平面図及び概略断面図を図 2-1 及び図 2-2 に示す。

注記*:建物寸法は壁外面寸法とする。

図 2-1(1) 原子炉建物の概略平面図(EL 1.3m*)

図 2-1(2) 原子炉建物の概略平面図 (EL 8.8m)

図 2-1(3) 原子炉建物の概略平面図(EL 15.3m)

(単位:m)

図 2-1(4) 原子炉建物の概略平面図 (EL 23.8m)

(単位:m)

図 2-1(5) 原子炉建物の概略平面図 (EL 30.5m)

(単位:m)

図 2-1(6) 原子炉建物の概略平面図(EL 34.8m)

図 2-1(7) 原子炉建物の概略平面図 (EL 42.8m)

図 2-1(8) 原子炉建物の概略平面図 (EL 51.7m)

図 2-1(9) 原子炉建物の概略平面図 (EL 63.5m)

- 3. 重大事故等時の温度による影響について
- 3.1 検討方針

原子炉格納容器を内包する原子炉建物において,重大事故等により高温状態が一定時 間継続することを踏まえ,熱によるコンクリート部材の剛性低下を考慮した地震応答解 析を実施し,原子炉建物の地震応答解析による評価及び機器・配管系の評価に与える影 響について確認する。

具体的には、重大事故等における熱の影響を考慮し、原子炉建物のコンクリート部材の剛性を低減させた地震応答解析モデル(以下「SA 時環境考慮モデル」という。)を用いて地震応答解析を実施し、VI-2-2-2「原子炉建物の地震応答計算書」に示す地震応答解析モデル(以下「今回工認モデル」という。)を用いた結果との比較を行う。

さらに、「SA 時環境考慮モデル」の地震応答解析結果が、原子炉建物の地震応答解析 による評価に与える影響を「3.3 原子炉建物の地震応答解析による評価に与える影響」 において、機器・配管系の評価に与える影響を「4. 機器・配管系の評価に与える影響」 において確認することとする。

なお、上述の影響検討は、応答比率を用いた手法により行うことから、応答比率の算 出のための「SA 時環境考慮モデル」を用いた地震応答解析は、位相特性の偏りがなく、 全周期帯において安定した応答を生じさせる基準地震動Ss-Dに対して実施すること とする。

- 3.2 重大事故等時の高温による影響を考慮した原子炉建物の地震応答解析
 - 3.2.1 解析条件
 - (1) 剛性低下率

剛性低下率の評価対象部位は、ドライウェル外側壁、内部ボックス壁,外部ボッ クス壁及びプールガーダとする。

原子炉格納容器については,原子炉格納容器内を高温状態とし,その温度を重大 事故等時の原子炉格納容器壁面温度が最も高くなる格納容器破損モード「雰囲気圧 力・温度による静的負荷(格納容器過圧・過温破損)(残留熱代替除去系を使用する 場合)」及び「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(残留 熱代替除去系を使用しない場合)」の最高温度である181℃に設定した。

原子炉格納容器外の建物内については,原子炉建物原子炉区域内での重大事故等 対処設備の環境温度より,二次格納施設内のうちトーラス室を 120℃に設定し,原 子炉格納容器内及びトーラス室以外の地下階及び地上階を 100℃及び 66℃に設定し た。また,原子炉建物付属棟のうち残留熱代替除去系設置エリアを 66℃に,これ以 外のエリアを 40℃に設定した。

外気温については、屋外での重大事故等対処設備の環境温度より 40℃に設定した。

また,剛性低下率の算出に用いる評価対象部位の温度は,内側と外側の雰囲気温 度の平均値とした。なお,表面温度は環境温度と同一とし,ドライウェル外側壁の 内側表面については格納容器内の温度を用いる。

ここで、100℃以上のコンクリート部材における剛性低下率は、「構造材料の耐火 性ガイドブック((社)日本建築学会、2017 改訂)」(以下「耐火性ガイドブック」 という。)による提案値である、100℃の剛性残存比 0.80 及び 200℃の剛性残存比 0.68 より、線形補間により算出する。また、65℃以下の場合、「発電用原子力設備 規格 コンクリート製原子炉格納容器規格((社)日本機械学会、2003)」(以下 「CCV 規格」という。)の温度制限値に基づき剛性低下しないものとする。65~ 100℃の場合、剛性低下率は「CCV 規格」と「耐火性ガイドブック」のそれぞれで定 める値の線形補間により算出する。

本検討に用いたコンクリート部材の表面温度を表 3-1 に、剛性低下率を表 3-2 に示す。なお、基礎スラブについては、図 3-1 に示す重大事故等時の温度分布のと おり、ドライウェル部及びサプレッションプール部において、表面付近の温度が 100℃を超えるものの、基礎スラブ全体の平均温度としては 65℃を下回ること、さ らに、基礎スラブ内部の温度分布について、65℃を下回る領域の割合が大きいこと から、剛性低下は考慮しないこととした。

部位		EL (m)	雰囲気温度 (℃)
原子炉格納約	容器内	34.8~1.3	181
トーラス	室	15.3~1.3	120
原子炉建物原子炉棟	地上階	63. 5~15. 3	66
(二次格納施設)*	地下階	15.3~1.3	100
原子炉建物付属棟	残留熱代替除去系 設置エリア	8.8~1.3	66
	上記以外	42.8~1.3	40
外気		_	40

表 3-1 本検討に用いたコンクリート部材の表面温度

注記*:原子炉格納容器内及びトーラス室を除く。

表 3-2(1) 本検討に用いたコンクリート部材の剛性低下率

			コンクリート	1-1. 10 15 16	1.) Mr 324 Lat. 175 Mat.	解析月	月諸元
	部位	EL (m)	温度 (℃)	マンク保数 剛性低下率 ^{*1}	□ 乙 前 弹 任 保 级 剛 性 低 下 率 ^{*2}	ヤング係数 (×10 ⁴ N/mm ²)	せん断弾性係数 (×10 ³ N/mm ²)
		34.8~30.5		1.00	1.00	2.25	9.38
	OW-13	30.5~23.8		1.00	1.00	2.25	9.38
		23.8~15.3	$40 \sim 70$	1.00	1.00	2.25	9.38
		15.3~8.8		1.00	1.00	2.25	9.38
		8.8~1.3		1.00	1.00	2.25	9.38
		$63.5 \sim 51.7$		1.00	1.00	2.25	9.38
		51.7~42.8	-	1.00	1.00	2.25	9.38
		42.8~34.8		1.00	1.00	2.25	9.38
	TW 11	34.8~30.5	40 2. 110	1.00	1.00	2.25	9.38
	1w-11	30.5~23.8	40 .0 110	1.00	1.00	2.25	9.38
		23.8~15.3		1.00	1.00	2.25	9.38
		15.3~8.8		0.94	0.90	2.12	8.44
		8.8~1.3	-	0.94	0.90	2.12	8.44
		42.8~34.8		0.99	0.99	2.23	9.29
	DW	34.8~30.5		0.77	0.77	1.73	7.22
		30.5~23.8	CC - 150 5	0.77	0.77	1.73	7.22
NS方向		23.8~15.3	$00 \sim 100.5$	0.77	0.77	1.73	7.22
		15.3~10.1		0.74	0.74	1.67	6.94
		10.1~1.3		0.74	0.74	1.67	6.94
		$63.5 \sim 51.7$		1.00	1.00	2.25	9.38
		51.7~42.8		1.00	1.00	2.25	9.38
		42.8~34.8		1.00	1.00	2.25	9.38
	TW O	34.8~30.5	40 110	1.00	1.00	2.25	9.38
	11-3	30.5~23.8	$40 \sim 110$	1.00	1.00	2.25	9.38
		23.8~15.3		1.00	1.00	2.25	9.38
		15.3~8.8		0.94	0.90	2.12	8.44
		8.8~1.3		0.94	0.90	2.12	8.44
		42.8~34.8		1.00	1.00	2.25	9.38
		34.8~30.5		1.00	1.00	2.25	9.38
	OW 1	30.5~23.8	40 4 50	1.00	1.00	2.25	9.38
	0w-1	23.8~15.3	$_{40} \sim 53$	1.00	1.00	2.25	9.38
		15.3~8.8		1.00	1.00	2.25	9.38
		8.8~1.3		1.00	1.00	2.25	9.38

(a) NS方向

注記*1:耐震要素を構成する各部材の断面二次モーメントの重み付け平均により等価な剛性 低下率を算出。

*2:耐震要素を構成する各部材のせん断断面積の重み付け平均により等価な剛性低下率 を算出。

表 3-2(2) 本検討に用いたコンクリート部材の剛性低下率

			コンクリート		a second second	and the more that here were	解析用諸元		
	部位	EL (m)	温度 (℃)			ヤンク係数 剛性低下率 ^{*1}	せん断弾性係数 剛性低下率 ^{*2}	ヤング係数 (×10 ⁴ N/mm ²)	せん断弾性係数 (×10 ³ N/mm ²)
	0W-1	15.3~8.8		40		1.00	1.00	2.25	9.38
	01 1	8.8~1.3		40		1.00	1.00	2.25	9.38
		$63.5 \sim 51.7$				1.00	1.00	2.25	9.38
		51.7~42.8				1.00	1.00	2.25	9.38
		42.8~34.8				1.00	1.00	2.25	9.38
	TW_U	34.8~30.5	40 24	~	110	1.00	1.00	2.25	9.38
	1 1 11	30.5~23.8	40	-	110	1.00	1.00	2.25	9.38
		23.8~15.3				1.00	1.00	2.25	9.38
		15.3~8.8				0.98	0.93	2.21	8.72
		8.8~1.3				0.98	0.93	2.21	8.72
		42.8~34.8				0.99	0.99	2.23	9.29
		34.8~30.5	66 ~		150 5	0.77	0.77	1.73	7.22
	DW	30.5~23.8		\sim		0.77	0.77	1.73	7.22
	μ.	23.8~15.3			100.0	0.77	0.77	1.73	7.22
		15.3~10.1			-	0.74	0.74	1.67	6.94
		10.1~1.3				0.74	0.74	1.67	6.94
EW方向		$63.5 \sim 51.7$	53 ~			1.00	1.00	2.25	9.38
		$51.7 \sim 42.8$				1.00	0.99	2.25	9.29
	IW-D	42.8~34.8		\sim	123.5	1.00	0.99	2.25	9.29
		34.8~30.5				1.00	0.99	2.25	9.29
		30.5~23.8				1.00	0.96	2.25	9.00
		$51.7 \sim 42.8$				1.00	1.00	2.25	9.38
		42.8~34.8				1.00	1.00	2.25	9.38
		34.8~30.5				1.00	1.00	2.25	9.38
	IW-B	30.5~23.8	40	\sim	110	1.00	1.00	2.25	9.38
		23.8~15.3				1.00	0.99	2.25	9.29
		15.3~8.8				0.97	0.86	2.18	8.07
		8.8~1.3				0.96	0.85	2.16	7.97
		34.8~30.5				1.00	1.00	2.25	9.38
		30.5~23.8				1.00	1.00	2.25	9.38
	OW-A	23.8~15.3	40	\sim	83	1.00	1.00	2.25	9.38
		15.3~8.8				0.99	0.98	2.23	9.19
		8.8~1.3				0.99	1.00	2.23	9.38

⁽b) EW方向

注記*1:耐震要素を構成する各部材の断面二次モーメントの重み付け平均により等価な剛性 低下率を算出。

*2:耐震要素を構成する各部材のせん断断面積の重み付け平均により等価な剛性低下率 を算出。

部位		DV.	3	ンクリー	-	1-1. 18 15 ML	解析用諸元
		EL (m)	温度 (℃)		ヤンク係数 剛性低下率*	ヤング係数 (×10 ⁴ N/mm ²)	
		34.8~30.5				1.00	2.25
		30.5~23.8				1.00	2.25
	OW	23.8 \sim 15.3	40	~	83	1.00	2.25
		15.3~8.8				0.99	2.23
		8.8~1.3				1.00	2.25
		$63.5 \sim 51.7$				1.00	2.25
		$51.7 \sim 42.8$	40	~		1.00	2.25
	IW	42.8~34.8				1.00	2.25
		34.8~30.5			110	1.00	2.25
鉛直方向		30.5~23.8			110	1.00	2.25
		23.8 \sim 15.3				1.00	2.25
		15.3~8.8				0.91	2.05
		8.8~1.3				0.90	2.03
		42.8~34.8				0.99	2.23
		34.8~30.5				0.84	1.89
	DW	30.5~23.8	66	~	150 5	0.80	1.80
	ייע	23.8~15.3	00		190.9	0.77	1.73
		15.3~10.1				0.74	1.67
		10.1~1.3				0.74	1.67

表 3-2(3) 本検討に用いたコンクリート部材の剛性低下率

注記*:耐震要素を構成する各部材の軸断面積の重み付け平均により等価な剛性低下率を算 出。

(c) 鉛直方向

	位置	位置 面積 表面		面温度	平均温度	重み付け値	基礎スラブ全体の平均温度
番号	名称	Ai (m²)		(°C)	Ti (℃)	Ai×Ti (m²⋅℃)	T _{基礎平均} =Σ(Ai×Ti)/ΣAi(℃)
0	ドライウェル郊	573 0	上面	181	98.5	56440 5	
Û	トノイウエル印	575.0	下面	16	50.5	50440.5	
0	サプレッシュンプール部	1720 7	上面	120	68 0	117007 6	
2	ップレッジョンフ /V-pp	1720.7	下面	16	08.0	117007.0	
0	国订加1	9919 G	上面	40	00.0	64759 9	
3	向辺部1	2312.0	下面	16	28.0 04752.8		_
	田江立	061 0	上面	100	59.0	55740 G	
4	同辺部2	961.2	下面	16	58.0	55749.6	
	国、田本町の	600 F	上面	66	41.0	00010 5	
6	周辺部3	690.5	下面	16	41.0	28310.5	
	全体	6258.0		_	_	322261.0	51.5

図 3-1 重大事故等時における基礎スラブの温度分布

(2) 解析モデル

ドライウェル外側壁,内部ボックス壁,外部ボックス壁及びプールガーダについ ては剛性低下率を考慮したことにより,「今回工認モデル」に対して諸元を変更した。 重大事故等時の温度による剛性低下を考慮した建物・構築物の物性値を表 3-3 に, 建物・構築物の剛性を表 3-4 に,水平方向の地震応答解析モデルを図 3-2 に,地 盤ばね定数及び減衰係数を表 3-5 に,せん断スケルトン曲線の諸数値を表 3-6 及 び表 3-7 に示す。また,鉛直方向の地震応答解析モデルを図 3-3 に,地盤ばね定 数及び減衰係数を表 3-8 に示す。

なお、重大事故等時の温度による剛性低下に加えて、さらに重大事故等時の水位 条件を考慮した諸元に変更している。ここで、重大事故等時の原子炉格納容器の水 位条件は、格納容器過圧・過温破損(全事故シーケンスのうち、格納容器水位が最 も厳しくなる事故シーケンスを選定)のうち、格納容器過圧・過温破損(残留熱代 替除去系を使用しない場合)(2Pd に到達するまでに操作を実施しなかった場合(大 破断 LOCA 発生時))を考慮し、サプレッションプール水位を 5.049m (EL 7.049m) 及びドライウェル水位を 1.000m (EL 11.100m)とした。

使用材料	ヤング係数 E (N/mm ²)	せん断 弾性係数 G (N/mm ²)	減衰定数 h (%)	備考
鉄筋コンクート コンクリート: Fc=23.5 (N/mm ²) (Fc=240 (kgf/cm ²)) 鉄筋:SD35 (SD345 相当)	表 3-4 に 示す	表 3-4 に 示す	5	_
鉄骨: SS41 (SS400 相当) SM50A (SM490 相当)	2.05 $\times 10^{5}$	7.90×10^4	2	屋根トラス

表 3-3 建物・構築物の物性値(SA時環境考慮モデル)

FI	ヤング係数(×10 ⁴ N/mm ²)							
(m)	OW-13	IW-11	DW	IW-3	OW-1			
63.5~51.7		2.25		2.25				
51.7~42.8		2.25		2.25				
42.8~34.8		2.25	2.23	2.25	2.25			
34.8~30.5	2.25	2.25	1.73	2.25	2.25			
30.5~23.8	2.25	2.25	1.73	2.25	2.25			
23.8~15.3	2.25	2.25	1.73	2.25	2.25			
15.3~10.1(DW) 15.3~8.8	2.25	2.12	1.67	2.12	2.25			
$ \begin{array}{c} 10.1 \sim 1.3 (DW) \\ 8.8 \sim 1.3 \end{array} $	2. 25	2. 12	1.67	2. 12	2. 25			

表 3-4(1) 建物・構築物の剛性(鉄筋コンクリート, SA 時環境考慮モデル) (a) NS方向(ヤング係数)

(b) NS方向(せん断弾性係数)

FI	せん断弾性係数(×10 ³ N/mm ²)								
(m)	OW-13	IW-11	DW	IW-3	OW-1				
63.5~51.7		9.38		9.38					
51.7~42.8		9.38		9.38					
42.8~34.8		9.38	9.29	9.38	9.38				
34.8∼30.5	9.38	9.38	7.22	9.38	9.38				
30.5∼23.8	9.38	9.38	7.22	9.38	9.38				
23.8~15.3	9.38	9.38	7.22	9.38	9.38				
15. 3∼10. 1 (DW) 15. 3∼8. 8	9.38	8.44	6.94	8.44	9.38				
10.1 \sim 1.3(DW) 8.8 \sim 1.3	9. 38	8. 44	6. 94	8. 44	9. 38				

FI	ヤング係数(×10 ⁴ N/mm ²)								
(m)	OW-I	IW-H	DW	IW-D	IW-B	OW-A			
63.5 \sim 51.7		2.25		2.25					
51.7~42.8		2.25		2.25	2.25				
42.8~34.8		2.25	2.23	2.25	2.25				
34. 8∼30. 5		2.25	1.73	2.25	2.25	2.25			
30.5~23.8		2.25	1.73	2.25	2.25	2.25			
23.8~15.3		2.25	1.73		2.25	2.25			
15.3~10.1(DW) 15.3~8.8	2.25	2.21	1.67		2.18	2. 23			
$10.1 \sim 1.3 (DW) \\ 8.8 \sim 1.3$	2.25	2.21	1.67		2.16	2. 23			

表 3-4(2) 建物・構築物の剛性(鉄筋コンクリート, SA 時環境考慮モデル)(c) EW方向(ヤング係数)

(d) EW方向(せん断弾性係数)

FI		せん断弾性係数(×10 ³ N/mm ²)								
(m)	OW-I	IW-H	DW	IW-D	IW-B	OW-A				
63.5 \sim 51.7		9.38		9.38						
51.7~42.8		9.38		9.29	9.38					
42.8~34.8		9.38	9.29	9.29	9.38					
34.8~30.5		9.38	7.22	9.29	9.38	9.38				
30.5∼23.8		9.38	7.22	9.00	9.38	9.38				
23.8~15.3		9.38	7.22		9.29	9.38				
15.3~10.1(DW) 15.3~8.8	9.38	8.72	6.94		8.07	9.19				
$10.1 \sim 1.3 (DW) \\ 8.8 \sim 1.3$	9. 38	8.72	6.94		7.97	9. 38				

表 3-4(3)	建物・構築物の剛性	(鉄筋コンクリート,	SA 時環境考慮モデル)

FI	ヤング	ゲ係数(×10 ⁴ N	M/mm^2)
(m)	OW	IW	DW
63.5 \sim 51.7		2.25	
51.7~42.8		2.25	
42.8~34.8		2.25	2.23
34.8∼30.5	2.25	2.25	1.89
30.5∼23.8	2.25	2.25	1.80
23.8~15.3	2.25	2.25	1.73
15.3~10.1(DW) 15.3~8.8	2. 23	2. 05	1.67
$10.1 \sim 1.3 (DW) \\ 8.8 \sim 1.3$	2.25	2.03	1.67

(e) 鉛直方向(ヤング係数)

注記*:回転慣性重量(12.32×10⁸kN・m²)

図 3-2(1) 地震応答解析モデル(NS方向, SA 時環境考慮モデル)

注記*1:回転慣性重量(21.01×10⁸kN・m²)

*2:燃料プール壁の回転ばね(2.173×10⁹kN・m/rad)

*3:内部ボックス壁の軸抵抗を考慮した回転ばね(135.2×10⁹kN・m/rad)

図 3-2(2) 地震応答解析モデル(EW方向, SA 時環境考慮モデル)

表 3-5 地盤ばね定数と減衰係数(水平方向, SA 時環境考慮モデル)

ばね 番号	地盤ばね 成分	ばね定数 K c	減衰係数 C c
K1	底面・水平	1.55×10^9 (kN/m)	2.23×10 ⁷ (kN · s/m)
K2	底面・回転	2.13 $ imes$ 10 ¹² (kN·m/rad)	4.21×10 ⁹ (kN · m · s/rad)

(a) NS方向

(b) EW方向

ばね 番号	地盤ばね 成分	ばね定数 K c	減衰係数 C c
K1	底面・水平	1.51×10^9 (kN/m)	2.12×10 ⁷ (kN · s/m)
K2	底面・回転	3.02×10^{12} (kN · m/rad)	8.79×10 ⁹ (kN・m・s/rad)

表 3-6(1) せん断スケルトン曲線 ($\tau - \gamma$ 関係) (NS方向, SA 時環境考慮モデル)

0. 10

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_{1} (×10 ⁻³)	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
34.8~30.5	1.60	2.15	5.40	0.170	0.510	4.00
30.5~23.8	1.68	2.26	5.44	0.179	0.536	4.00
23.8~15.3	1.74	2.35	5.33	0.185	0.556	4.00
15.3~8.8	1.82	2.46	5.35	0.194	0.582	4.00
8.8~1.3	1.86	2.52	5.40	0.199	0.596	4.00

IW-11

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm^2)	$ au_3$ (N/mm ²)	γ_{1} (×10 ⁻³)	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
63.5~51.7	1.69	2.28	5.20	0.180	0. 539	4.00
51.7~42.8	1.73	2.34	5.28	0.185	0.554	4.00
42.8~34.8	1.75	2.36	5.39	0.186	0. 558	4.00
34.8~30.5	1.79	2.41	5.43	0.190	0.571	4.00
30. 5∼23. 8	1.94	2.62	5.23	0.207	0.620	4.00
23.8~15.3	1.96	2.65	5.17	0.209	0.627	4.00
15.3~8.8	2.06	2.78	5.22	0.244	0.732	4.00
8.8~1.3	2.12	2.86	5.25	0.251	0.753	4.00

D	W
ν	¥¥.

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_{1} (×10 ⁻³)	γ_{2} (×10 ⁻³)	γ_{3} $(\times 10^{-3})$
42.8~34.8	1.62	2.19	5.68	0.175	0.524	4.00
34.8~30.5	1.83	2.47	5.56	0.253	0.759	4.00
30. 5∼23. 8	2.05	2.76	5.43	0.284	0.851	4.00
23.8~15.3	2.31	3.12	5.91	0.321	0.962	4.00
15.3~10.1	2.44	3.29	6.34	0.351	1.05	4.00
10.1~1.3	2.35	3.18	5.97	0.339	1.02	4.00

表 3-6(2) せん断スケルトン曲線 (τ-γ関係) (NS方向, SA 時環境考慮モデル) IW-3

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_{3}$ (N/mm ²)	γ_{1} (×10 ⁻³)	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
63.5~51.7	1.68	2.26	5.19	0.179	0.536	4.00
51.7~42.8	1.76	2.37	5.30	0.187	0.561	4.00
42.8~34.8	1.75	2.36	5.39	0.187	0.560	4.00
34.8~30.5	1.91	2.57	5.49	0.203	0.610	4.00
30.5~23.8	1.94	2.62	5.23	0.207	0.620	4.00
23.8~15.3	1.99	2.68	5.20	0.212	0.635	4.00
15.3~8.8	2.04	2.76	5.19	0.242	0.726	4.00
8.8~1.3	2.13	2.87	5.24	0.252	0.757	4.00

OW-1

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_{1} (×10 ⁻³)	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
42.8~34.8	1.63	2.21	5.36	0.174	0.523	4.00
34.8~30.5	1.70	2.29	5.45	0.181	0.543	4.00
30.5~23.8	1.78	2.40	5.59	0.190	0.569	4.00
23.8~15.3	1.84	2.48	5.34	0.196	0.587	4.00
15.3~8.8	1.87	2.52	5.29	0.199	0.597	4.00
8.8~1.3	1.91	2.57	5.36	0.203	0.610	4.00

表 3-7(1) せん断スケルトン曲線 ($\tau - \gamma$ 関係) (EW方向, SA 時環境考慮モデル)

OW-I

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_{3}$ (N/mm ²)	γ_1 $(\times 10^{-3})$	γ_2 $(\times 10^{-3})$	γ_{3} $(\times 10^{-3})$
15.3~8.8	1.58	2.13	5.27	0.168	0.505	4.00
8.8~1.3	1.64	2.22	5.46	0.175	0.526	4.00

IW-H

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_1 $(\times 10^{-3})$	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
63.5~51.7	1.72	2.32	5.26	0.183	0.549	4.00
51.7~42.8	1.77	2.38	5.34	0.188	0.565	4.00
42.8~34.8	1.78	2.40	5.43	0.189	0.568	4.00
34.8~30.5	1.85	2.49	5.40	0.197	0.590	4.00
30.5~23.8	1.91	2.57	5.43	0.203	0.610	4.00
23.8~15.3	1.91	2.58	5.63	0.203	0.610	4.00
15.3~8.8	1.97	2.66	5.36	0.226	0.678	4.00
8.8~1.3	2.05	2.77	5.36	0.235	0.705	4.00

DW

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_1 $(\times 10^{-3})$	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
42.8~34.8	1.62	2.19	5.85	0.175	0.524	4.00
34.8~30.5	1.83	2.47	5.92	0.253	0.759	4.00
30. 5∼23. 8	2.05	2.76	5.71	0.284	0.851	4.00
23.8~15.3	2.31	3.12	6.01	0.321	0.962	4.00
15.3~10.1	2.44	3.29	6.34	0.351	1.05	4.00
10.1~1.3	2.35	3.18	5.97	0.339	1.02	4.00

表 3-7(2) せん断スケルトン曲線 ($\tau - \gamma$ 関係) (EW方向, SA 時環境考慮モデル)

IW-D	
------	--

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_{1} (×10 ⁻³)	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
63.5∼51.7	1.71	2.31	5.25	0.182	0.547	4.00
51.7~42.8				_*		
42.8~34.8	1.81	2.45	5.06	0.195	0.585	4.00
34.8~30.5	1.93	2.61	5.09	0.208	0.625	4.00
30.5~23.8	2.09	2.82	5.37	0.232	0.697	4.00

IW-B

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_{1} (×10 ⁻³)	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
51.7~42.8	1.64	2.21	5.39	0.174	0.523	4.00
42.8~34.8	1.74	2.35	5.47	0.185	0.556	4.00
34.8~30.5	1.74	2.35	5.18	0.185	0.556	4.00
30.5~23.8	1.83	2.47	5.22	0.195	0.584	4.00
23.8~15.3	1.90	2.56	5.43	0.204	0.613	4.00
15.3~8.8	2.00	2.70	5.19	0.248	0.744	4.00
8.8~1.3	2.09	2.82	5.20	0.262	0.786	4.00

OW-A	
	EL

EL (m)	$ au_1$ (N/mm ²)	$ au_2$ (N/mm ²)	$ au_3$ (N/mm ²)	γ_1 $(\times 10^{-3})$	γ_{2} (×10 ⁻³)	γ_{3} (×10 ⁻³)
34.8~30.5	1.62	2.18	5.24	0.172	0.517	4.00
30.5~23.8	1.68	2.27	5.14	0.179	0.538	4.00
23.8~15.3	1.74	2.35	5.39	0.185	0.556	4.00
15.3~8.8	1.85	2.50	5.33	0.202	0.605	4.00
8.8~1.3	1.95	2.64	5.38	0.208	0.625	4.00

注記*:線形部材

注記*: 屋根トラス端部回転拘束ばね(12.04×10⁷kN・m/rad)

図 3-3 地震応答解析モデル(鉛直方向, SA 時環境考慮モデル)

ばね	地盤ばね	ばね定数	減衰係数
番号	成分	K c	C c
K1	底面・鉛直	2.41×10 ⁹ (kN/m)	4.43×10 ⁷ (kN • s/m)

表 3-8 地盤ばね定数と減衰係数(鉛直方向, SA 時環境考慮モデル)

3.2.2 地震応答解析結果

(1) 固有值解析結果

「今回工認モデル」と「SA 時環境考慮モデル」の固有値解析結果(固有周期及び 固有振動数)の比較を表 3-9 に示す。また、「SA 時環境考慮モデル」の刺激関数図 を図 3-4~図 3-6 に示す。

「SA 時環境考慮モデル」の固有周期は、コンクリート剛性を低減させた影響によ り「今回工認モデル」の結果に比べて僅かに大きくなるものの、ほぼ同程度となる ことを確認した。建物と地盤の相互作用を考慮したモデルとなっていることから、 地盤の変形が支配的となる低次のモードでは、建物は剛体的な挙動を示すため、建 物の剛性変化が固有値に及ぼす影響は小さいものと考えられる。

	(a) NS方向							
	固有周期	朝(s)	固有振動数(Hz)					
次数	今回工認モデル	SA 時環境 考慮モデル	今回工認モデル	SA 時環境 考慮モデル				
1	0.220	0.224	4. 55	4. 47				
2	0.099	0.100	10. 10	10.00				
3	0.069	0.070	14. 39	14. 25				
4	0.052	0.053	19. 23	18.95				
5	0.046	0.046	21.71	21. 59				
6	0.043	0.043	23. 28	23. 18				

表 3-9 固有值解析結果

(b) EW方向

	固有周期	期(s)	固有振動数(Hz)		
次数	今回工認モデル	SA 時環境 考慮モデル	今回工認モデル	SA 時環境 考慮モデル	
1	0.203	0.206	4. 94	4.84	
2	0.093	0.094	10.72	10.63	
3	0.067	0.068	14.84	14.65	
4	0.051	0.051	19.63	19. 56	
5	0.050	0.050	20.14	19.89	
6	0.044	0.045	22.60	22. 39	

(c) 鉛直方向

	固有周期	期(s)	固有振動数(Hz)		
次数	今回工認モデル	SA 時環境 考慮モデル	今回工認モデル	SA 時環境 考慮モデル	
1	0.297	0. 298	3. 37	3. 36	
2	0.105	0.109	9.48	9.16	
3	0.084	0.084	11. 92	11.91	
4	0.064	0.067	15.65	14.95	
5	0.053	0.053	18.97	18.90	
6	0.051	0.051	19. 57	19.49	

図 3-4(1) 刺激関数図(NS方向, SA 時環境考慮モデル)

図 3-4(2) 刺激関数図(NS方向, SA 時環境考慮モデル)

図 3-5(1) 刺激関数図(EW方向, SA 時環境考慮モデル)

図 3-5(2) 刺激関数図(EW方向, SA 時環境考慮モデル)

図 3-6(1) 刺激関数図(鉛直方向, SA 時環境考慮モデル)

図 3-6(2) 刺激関数図(鉛直方向, SA 時環境考慮モデル)

(2) 最大応答値及び最大接地圧

基準地震動SsーDによる最大応答値を図 3-7~図 3-17 及び表 3-10~表 3-22 に, せん断スケルトン曲線上に最大応答値をプロットしたものを図 3-18 及び図 3-19 に, 最大接地圧を表 3-23 に示す。「SA 時環境考慮モデル」の最大応答値及び 最大接地圧は,「今回工認モデル」の結果と概ね一致することを確認した。

ここで、「SA 時環境考慮モデル」のドライウェル外側壁(DW 軸)における最大応 答せん断力及び最大応答曲げモーメントについては、低減する傾向が確認できる。 一方、内部ボックス壁(IW 軸)及び外部ボックス壁(OW 軸)における最大応答せん 断力及び最大応答曲げモーメントについては、若干増加する傾向にある。これは、 内部ボックス壁(IW 軸)及び外部ボックス壁(OW 軸)がほとんど剛性低下しておら ずドライウェル外側壁(DW 軸)の剛性低下が大きいため、応力の分配率が「今回工 認モデル」に比べて内部ボックス壁(IW 軸)及び外部ボックス壁(OW 軸)が大きく、 ドライウェル外側壁(DW 軸)が小さくなったためと考えられる。

また,ドライウェル外側壁(DW 軸)における最大応答せん断ひずみについては, ドライウェル外側壁(DW 軸)の剛性低下率が大きいため,全体的にせん断ひずみが 増加する傾向である。内部ボックス壁(IW 軸)及び外部ボックス壁(OW 軸)におけ る最大応答せん断ひずみについては,せん断力の増加に伴いせん断ひずみの増加が 大きくなり,せん断ひずみの比率として算出している応答比率の値が大きくなった ものと考えられる。

			最大応答加速度 (cm/s ²)			
部位	EL (m)	質点 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	2/① 応答比率	
	34.8	1	1018	1065	1.05	
	30.5	2	1020	1040	1.02	
OW-13	23.8	3	858	812	0.95	
	15.3	4	861	881	1.03	
	8.8	5	802	802	1.01	
	63.5	6	2406	2405	1.00	
	51.7	7	1682	1582	0.95	
	42.8	8	1252	1275	1.02	
TW 11	34.8	9	1018	1065	1.05	
10-11	30.5	10	939	1007	1.08	
	23.8	11	858	812	0.95	
	15.3	12	861	881	1.03	
	8.8	13	802	802	1.01	
	42.8	14	1252	1275	1.02	
	34.8	15	1018	1065	1.05	
	30.5	16	939	1007	1.08	
DW	23.8	17	858	812	0.95	
	15.3	18	861	881	1.03	
	10.1	19	937	872	0.94	
	1.3	34	691	692	1.01	
	63.5	20	2406	2405	1.00	
	51.7	21	1760	1684	0.96	
	42.8	22	1252	1275	1.02	
TW 0	34.8	23	1018	1065	1.05	
1W-3	30.5	24	939	1007	1.08	
	23.8	25	858	812	0.95	
	15.3	26	861	881	1.03	
	8.8	27	806	805	1.00	
	42.8	28	1252	1275	1.02	
	34.8	29	1018	1065	1.05	
011	30.5	30	1014	1095	1.09	
0w-1	23.8	31	858	812	0.95	
	15.3	32	861	881	1.03	
	8.8	33	806	805	1.00	

表 3-10 最大応答加速度一覧(基準地震動Ss-D,NS方向)

別紙 5-41 **45**

図 3-8 最大応答変位(基準地震動 Ss-D, NS方向)

			最大応答変位 (mm)				
部位	EL (m)	質点 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率		
	34.8	1	16.120	17.116	1.07		
	30.5	2	14.509	15.460	1.07		
OW-13	23.8	3	11.551	12.358	1.07		
	15.3	4	7.856	8.373	1.07		
	8.8	5	5.190	5.566	1.08		
	63.5	6	25.660	26.544	1.04		
	51.7	7	21.921	22.579	1.04		
	42.8	8	19.161	20.077	1.05		
TW 11	34.8	9	16.120	17.116	1.07		
1W-11	30.5	10	14.381	15.367	1.07		
	23.8	11	11.551	12.358	1.07		
	15.3	12	7.856	8.373	1.07		
	8.8	13	5.190	5.566	1.08		
	42.8	14	19.161	20.077	1.05		
	34.8	15	16.120	17.116	1.07		
	30.5	16	14.381	15.367	1.07		
DW	23.8	17	11.551	12.358	1.07		
	15.3	18	7.856	8.373	1.07		
	10.1	19	4.214	4.712	1.12		
	1.3	34	1.762	1.724	0.98		
	63.5	20	25.660	26.544	1.04		
	51.7	21	22.238	22.818	1.03		
	42.8	22	19.161	20.077	1.05		
TW O	34.8	23	16.120	17.116	1.07		
10-2	30.5	24	14.381	15.367	1.07		
	23.8	25	11.551	12.358	1.07		
	15.3	26	7.856	8.373	1.07		
	8.8	27	5.255	5.596	1.07		
	42.8	28	19.161	20.077	1.05		
	34.8	29	16.120	17.116	1.07		
OW 1	30.5	30	14.532	15.492	1.07		
0w-1	23.8	31	11.551	12. 358	1.07		
	15.3	32	7.856	8.373	1.07		
	8.8	33	5.255	5, 596	1.07		

表 3-11 最大応答変位一覧(基準地震動 S s - D, N S 方向)

別紙 5−43 **47**

0W-1

IW-3

DW

IW-11

0W-13

図 3-9 最大応答せん断力(基準地震動Ss-D,NS方向)

	EL (m)		最大応答せん断力 (×10 ⁴ kN)			
部位		要素番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率	
	34.8~30.5	1	13.97	14.56	1.05	
	30.5~23.8	2	15.38	15.73	1.03	
OW-13	23.8~15.3	3	20.44	20.89	1.03	
	15.3~8.8	4	25.73	26.25	1.03	
	8.8~1.3	5	29.78	30. 58	1.03	
	63.5~51.7	6	5.555	5.493	0.99	
	51.7~42.8	7	10.88	10.85	1.00	
	42.8~34.8	8	13.98	14. 34	1.03	
TW-11	34.8~30.5	9	16.99	17.35	1.03	
1w-11	30.5~23.8	10	24.82	25.42	1.03	
	23.8~15.3	11	29.35	30.11	1.03	
	15.3~8.8	12	37.40	37.04	1.00	
	8.8~1.3	13	40.31	40.31	1.01	
	42.8~34.8	14	6.971	6.350	0.92	
	34.8~30.5	15	6.644	4.978	0.75	
DW	30.5~23.8	16	10.54	8.905	0.85	
Dw	23.8~15.3	17	15.41	12.83	0.84	
	15.3~10.1	18	21.81	20.05	0.92	
	10.1~1.3	19	27.85	25.71	0.93	
	63.5~51.7	20	5.475	5.512	1.01	
	51.7~42.8	21	11.48	11. 47	1.00	
	42.8~34.8	22	14.07	14. 32	1.02	
TW 9	34.8~30.5	23	17.63	17.84	1.02	
1W-3	30.5~23.8	24	24.83	25.43	1.03	
	23.8~15.3	25	31.06	31.87	1.03	
	15.3~8.8	26	37.48	37.26	1.00	
	8.8~1.3	27	40.49	40.35	1.00	
	42.8~34.8	28	10.41	10.68	1.03	
	34.8~30.5	29	14.28	14.63	1.03	
OW 1	30.5~23.8	30	15.71	15.95	1.02	
0w-1	23.8~15.3	31	24.61	25.38	1.04	
	15.3~8.8	32	25.88	26.25	1.02	
	8.8~1.3	33	30.37	31.18	1.03	

表 3-12 最大応答せん断力一覧(基準地震動Ss-D,NS方向)

別紙 5−45 **49**

0W-1

IW-3

Ш

IW-11

0W-13

			最大応答曲げモーメント (×10 ⁵ kN·m)			
部位	EL (m)	要素 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	2/① 応答比率	
	94 Q. 90 F		0.000	0.000	—	
	34.8∼30.5	1	6.009	6.262	1.05	
	30 5~23 8	2	6.009	6.262	1.05	
	30.0 20.0	2	16.28	16.75	1.03	
OW-13	23.8 \sim 15.3	3	16.28	16.75	1.03	
011 20	10.0		33. 51	34.24	1.03	
	15.3~8.8	4	33.51	34.24	1.03	
	10.0 0.0	-	50.08	51.30	1.03	
	8.8~1.3	5	50.08	51.30	1.03	
	0.0 1.0	Ū	72.22	73.68	1.03	
	63 5~51 7	6	0.000	0.000	—	
	03. 5 - 51. 7	0	6.555	6.482	0.99	
	51 70.49 9	7	6.555	6.482	0.99	
	51. 7~42. 8	(16.13	16.12	1.00	
	49.0.94.0	8	16.13	16.12	1.00	
	42.8~34.8		27.30	27.58	1.02	
	34.8~30.5	9	27.30	27.58	1.02	
			34.38	34.97	1.02	
1W-11	30.5~23.8	10	34.38	34.97	1.02	
			49.09	50.16	1.03	
	23.8~15.3	11	49.09	50.16	1.03	
			72.85	72.28	1.00	
	15.3~8.8	12	72.85	72.28	1.00	
			95.54	95.05	1.00	
			95.54	95.05	1.00	
	8.8~1.3	13	125.3	124.9	1.00	
			0.000	0.000	_	
	42.8~34.8	14	5.577	5.080	0.92	
			5.577	5.080	0.92	
	34.8 \sim 30.5	15	7.970	7.090	0.89	
			7.970	7.090	0.89	
	30. 5 \sim 23. 8	16	14.16	11.96	0.85	
DW			14.16	11.96	0.85	
	23.8~15.3	17	24.71	20. 32	0.83	
			24.71	20. 32	0, 83	
	15.3~10.1	18	36.02	30, 03	0.84	
			36. 02	30.03	0.84	
	10.1~1.3	~1.3 19	57.27	50.30	0.88	

表 3-13(1) 最大応答曲げモーメント一覧(基準地震動 Ss-D, NS方向)

			最大応答曲げモーメント (×10 ⁵ kN·m)			
部位	EL (m)	要素 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率	
	63.5~51.7	20	0.000 6.461	0.000 6.504		
	51.7~42.8	21	6. 461 16. 49	6. 504 16. 60	1.01 1.01	
	42.8~34.8	22	16. 49 27. 74	16.60 28.05	1.01 1.02	
	34.8~30.5	23	27.74 35.08	28. 05 35. 65	1.02 1.02	
IW-3	30. 5~23. 8	24	35. 08 49. 79	35. 65 50. 82	1.02 1.03	
	23.8~15.3	25	49. 79 74. 84	50. 82 74. 30	1.03 1.00	
	15.3~8.8	26	74. 84 97. 61	74. 30 97. 25	1.00 1.00	
	8.8~1.3	27	97.61 127.5	97.25 127.1	1.00 1.00	
	42.8~34.8	28	0.000 8.331	0.000 8.541	 1. 03	
	34.8~30.5	29	8. 331 14. 30	8. 541 14. 83	1.03 1.04	
	30. 5~23. 8	30	14. 30 24. 46	14. 83 25. 38	1.04 1.04	
OW-1	23.8~15.3	31	24. 46 44. 93	25. 38 45. 36	1.04 1.01	
	15.3~8.8	32	44. 93 61. 10	45.36 62.05	1.01 1.02	
	8.8~1.3	33	61. 10 83. 88	62. 05 85. 37	1.02 1.02	

表 3-13(2) 最大応答曲げモーメント一覧(基準地震動 Ss-D, NS方向)

			最大応答加速度(cm/s ²)				
部位	EL (m)	質点 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率		
OW-I	15.3	1	839	851	1.02		
	8.8	2	826	828	1.01		
	63.5	3	2700	2668	0.99		
	51.7	4	1789	1797	1.01		
	42.8	5	1373	1354	0.99		
TW II	34.8	6	1128	1102	0.98		
1 W-H	30.5	7	1218	1190	0.98		
	23.8	8	867	895	1.04		
	15.3	9	839	851	1.02		
	8.8	10	826	828	1.01		
	42.8	11	1373	1354	0.99		
	34.8	12	1128	1102	0.98		
	30.5	13	1155	1182	1.03		
DW	23.8	14	867	895	1.04		
	15.3	15	839	851	1.02		
	10.1	16	942	991	1.06		
	1.3	34	765	766	1.01		
	63.5	17	2700	2668	0.99		
	51.7	18	1717	1697	0.99		
IW-D	42.8	19	1373	1354	0.99		
	34.8	20	1128	1102	0.98		
	30.5	21	1155	1182	1.03		
	51.7	22	1717	1697	0.99		
	42.8	23	1373	1354	0.99		
	34.8	24	1128	1102	0.98		
IW-B	30.5	25	1036	1067	1.03		
	23.8	26	867	895	1.04		
	15.3	27	839	851	1.02		
	8.8	28	844	845	1.01		
	34.8	29	1128	1102	0.98		
	30.5	30	1084	1054	0.98		
OW-A	23.8	31	867	895	1.04		
	15.3	32	839	851	1.02		
	8.8	33	844	845	1.01		

表 3-14 最大応答加速度一覧(基準地震動Ss-D, EW方向)

別紙 5−50 **54**

図 3-12 最大応答変位(基準地震動Ss-D, EW方向)

			最大応答変位 (mm)				
部位	EL (m)	質点 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	2/① 応答比率		
OW-I	15.3	1	6.021	6.649	1.11		
0w-1	8.8	2	3.722	3.954	1.07		
	63.5	3	23.615	24.052	1.02		
	51.7	4	20.211	20.610	1.02		
	42.8	5	16.789	17.406	1.04		
TW II	34.8	6	14.686	15.349	1.05		
1w-H	30.5	7	13.582	14.219	1.05		
	23.8	8	10.499	11.114	1.06		
	15.3	9	6.021	6.649	1.11		
	8.8	10	3.722	3.954	1.07		
	42.8	11	16.789	17.406	1.04		
	34.8	12	14.686	15.349	1.05		
	30.5	13	13.661	14.405	1.06		
DW	23.8	14	10.499	11.114	1.06		
	15.3	15	6.021	6.649	1.11		
	10.1	16	3.844	4.199	1.10		
	1.3	34	1.803	1.799	1.00		
	63.5	17	23.615	24.052	1.02		
	51.7	18	20.607	21.031	1.03		
IW-D	42.8	19	16.789	17.406	1.04		
	34.8	20	14.686	15.349	1.05		
	30.5	21	13.661	14.405	1.06		
	51.7	22	20.607	21.031	1.03		
	42.8	23	16.789	17.406	1.04		
	34.8	24	14.686	15.349	1.05		
IW-B	30.5	25	13.258	13.909	1.05		
	23.8	26	10.499	11.114	1.06		
	15.3	27	6.021	6.649	1.11		
	8.8	28	4.318	4.666	1.09		
	34.8	29	14.686	15.349	1.05		
	30.5	30	13.013	13.698	1.06		
OW-A	23.8	31	10.499	11.114	1.06		
	15.3	32	6.021	6.649	1.11		
	8.8	33	4.318	4.666	1.09		

表 3-15 最大応答変位一覧(基準地震動 S s - D, EW方向)

別紙 5-52

			最大応答せん断力 (×10 ⁴ kN)			
部位	EL (m)	要素 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率	
OW T	15.3~8.8	1	24.90	26.35	1.06	
0w-1	8.8~1.3	2	23.64	24.12	1.03	
	63.5~51.7	3	6.511	6. 396	0.99	
	51.7~42.8	4	10.49	10.05	0.96	
	42.8~34.8	5	16.22	16.06	1.00	
TW II	34.8~30.5	6	23.88	23.98	1.01	
1 - 1	30.5~23.8	7	27.96	28.02	1.01	
	23.8~15.3	8	47.13	46.87	1.00	
	15.3~8.8	9	49.21	49.78	1.02	
	8.8~1.3	10	57.25	57.99	1.02	
	42.8~34.8	11	7.566	7.407	0.98	
	34.8~30.5	12	3. 105	1.915	0.62	
DW	30.5~23.8	13	15.36	13.40	0.88	
Dw	23.8~15.3	14	18.60	17.15	0.93	
	15.3~10.1	15	17.94	16.42	0.92	
	10.1~1.3	16	23.06	20.55	0.90	
	63.5~51.7	17	5.807	5.805	1.00	
	51.7~42.8	18	2. 437	2. 217	0.91	
IW-D	42.8~34.8	19	9.965	9.685	0.98	
	34.8~30.5	20	13.00	12.05	0.93	
	30.5~23.8	21	15.76	15.73	1.00	
	51.7~42.8	22	11.36	11. 32	1.00	
	42.8~34.8	23	13.82	13.89	1.01	
	34.8~30.5	24	25.07	25. 33	1.02	
IW-B	30.5~23.8	25	29.02	29. 22	1.01	
	23.8~15.3	26	37.18	36.90	1.00	
	15.3~8.8	27	37.69	37.98	1.01	
	8.8~1.3	28	42.62	42.57	1.00	
	34.8~30.5	29	15.13	15.17	1.01	
	30.5~23.8	30	17.09	17.03	1.00	
OW-A	23.8~15.3	31	30. 99	30.63	0.99	
	15.3~8.8	32	26.85	27.80	1.04	
	8.8~1.3	33	30. 21	31.45	1.05	

表 3-16 最大応答せん断力一覧(基準地震動Ss-D, EW方向)

別紙 5-54 **58**

			最大応答曲げモーメント (×10 ⁵ kN·m)			
部位	EL (m)	要素 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率	
OW-I -	15.3~8.8	1	0.000 16.18	0.000 17.12	 1.06	
	8.8~1.3	2	16. 18 33. 73	17. 12 35. 20	1.06 1.05	
	63.5~51.7	3	0. 000 7. 682	0. 000 7. 548	0.99	
	51.7~42.8	4	7.682 17.02	7. 548 16. 49	0. 99 0. 97	
	42.8~34.8	5	18. 14 30. 02	17.68 30.38	0.98 1.02	
IW-H	34.8~30.5	6	32. 58 42. 70	32. 77 42. 30	1.01 1.00	
	30.5~23.8	7	42.70 61.01	42.30 60.59	1.00 1.00	
	23.8~15.3	8	61. 01 100. 8	60. 59 100. 2	1.00 1.00	
	15.3~8.8	9	100. 8 131. 6	100. 2 131. 3	1.00 1.00	
	8.8~1.3	10	131. 6 173. 4	131. 3 174. 1	1.00 1.01	
	42.8~34.8	11	3. 770 3. 415	3. 710 3. 249	0. 99 0. 96	
	34.8~30.5	12	3. 805 3. 767	4. 503 4. 288	1.19 1.14	
5.00	30.5~23.8	13	3. 767 8. 014	4. 288 5. 835	1.14 0.73	
DW	23.8~15.3	14	8. 014 23. 52	5. 835 19. 38	0.73 0.83	
	15.3~10.1	15	23. 52 32. 31	19.38 26.92	0.83 0.84	
	10.1~1.3	16	32. 31 51. 89	26. 92 44. 97	0.84 0.87	

表 3-17(1) 最大応答曲げモーメント一覧(基準地震動Ss-D, EW方向)

			最大応答曲げモーメント (×10 ⁵ kN·m)			
部位	EL (m)	要素 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率	
	63.5~51.7	17	0.000 6.853	0.000 6.850	 1.00	
	51.7~42.8	18	6.853 9.022	6. 850 8. 823	1.00 0.98	
IW-D	42.8~34.8	19	9.819	9. 638	0.99	
	34.8~30.5	20	18.19	18.40	1.02	
	30.5~23.8	21	23. 73	23.36	0.99	
	51.7~42.8	22	0.000	0.000		
	42.8~34.8	23	10.11	10.08	1.00	
	34.8~30.5	24	20.16	20.50	1. 02	
IW-B	30.5~23.8	25	30.60	30.71	1.01	
	23.8~15.3	26	49.89	50.07	1.01	
	15.3~8.8	27	81.44	81.38	1.00	
	8.8~1.3	28	139.0 139.0	138.7	1.00	
	34.8~30.5	29	170. 0 0. 000	169. 4 0. 000	1.00	
	30 5~23 8	30	6. 505 6. 505	6. 525 6. 525	1.01 1.01	
OW 1	00.0.15.0	00	17.92 17.92	17.92 17.92	1.00 1.00	
Ow-A	23.8~15.3	31	44. 26 44. 26	43. 94 43. 94	1.00	
	15.3~8.8	32	61.67 61.67	61.96	1.01	
	8.8~1.3	33	83. 82	84.93	1.02	

表 3-17(2) 最大応答曲げモーメント一覧(基準地震動Ss-D, EW方向)

図 3-15 最大応答加速度(基準地震動 Ss-D,鉛直方向)

			最大応答加速度 (cm/s ²)				
部位	EL* (m)	質点 番号	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率		
	34.8	1	968	961	1.00		
	30.5	2	912	903	0.99		
OW	23.8	3	798	784	0.99		
Ow	15.3	4	640	624	0.98		
	8.8	5	615	602	0. 98		
	1.3	6	567	562	1.00		
	63.5	7	1363	1371	1.01		
	51.7	8	1259	1260	1.01		
	42.8	9	1158	1150	1.00		
	34.8	10	1028	1011	0.99		
IW	30.5	11	947	930	0.99		
	23.8	12	825	805	0.98		
	15.3	13	695	676	0.98		
	8.8	14	627	613	0.98		
	1.3	15	567	562	1.00		
	42.8	17	1335	1469	1.11		
	34.8	18	1295	1435	1.11		
	30.5	19	1257	1390	1.11		
DW	23.8	20	1125	1258	1.12		
	15.3	21	853	976	1.15		
	10.1	22	679	752	1.11		
	1.3	23	567	562	1.00		
	0.00	7	1363	1371	1.01		
	4.00	24	2484	2143	0.87		
屋根	8.00	25	2969	2435	0.83		
トラス	11.75	26	2088	1902	0.92		
	15.50	27	2239	2115	0.95		
	19.25	28	3931	3256	0.83		

表 3-18 最大応答加速度一覧(基準地震動 S s - D, 鉛直方向)

注記*:屋根トラスはIW軸からの距離を示す。

図 3-16 最大応答変位(基準地震動 S s - D, 鉛直方向)

	EL* (m)	質点 番号	最大応答変位 (mm)				
部位			① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率		
	34.8	1	1.633	1.651	1.02		
	30.5	2	1.581	1.599	1.02		
OW	23.8	3	1.441	1.460	1.02		
Ow	15.3	4	1.193	1.207	1.02		
	8.8	5	1.023	1.028	1.01		
	1.3	6	0.787	0.784	1.00		
	63.5	7	3.299	3. 451	1.05		
	51.7	8	3. 121	3.269	1.05		
	42.8	9	2.914	3.060	1.05		
	34.8	10	2.569	2.700	1.06		
IW	30.5	11	2.350	2.470	1.06		
	23.8	12	1.980	2.085	1.06		
	15.3	13	1.501	1.587	1.06		
	8.8	14	1.172	1.218	1.04		
	1.3	15	0.787	0.784	1.00		
	42.8	17	3.381	4.050	1.20		
	34.8	18	3.303	4.000	1.22		
	30.5	19	3.171	3.866	1.22		
DW	23.8	20	2.808	3. 435	1.23		
	15.3	21	2.072	2.502	1.21		
	10.1	22	1.518	1.734	1.15		
	1.3	23	0.787	0.784	1.00		
	0.00	7	3.299	3. 451	1.05		
	4.00	24	12.954	12.782	0.99		
屋根	8.00	25	23.829	23.696	1.00		
トラス	11.75	26	32.087	32.357	1.01		
	15.50	27	37.228	37.335	1.01		
	19.25	28	40.408	39.689	0.99		

表 3-19 最大応答変位一覧(基準地震動 S s - D, 鉛直方向)

注記*:屋根トラスはIW軸からの距離を示す。

図 3-17 最大応答軸力(基準地震動Ss-D,鉛直方向)

部位	EL (m)	要素 番号	最大応答軸力 (×10 ⁴ kN)		
			① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率
OW	34.8~30.5	1	9. 237	9. 513	1.03
	30.5~23.8	2	14.99	15.04	1.01
	23.8~15.3	3	27. 57	27.97	1.02
	15.3~8.8	4	40. 52	41.66	1.03
	8.8~1.3	5	50.46	51.90	1.03
	63.5~51.7	6	5. 173	4.939	0.96
	51.7~42.8	7	13.80	13.92	1.01
	42.8~34.8	8	30. 77	32.12	1.05
тw	34.8~30.5	9	46.67	48.64	1.05
TW	30.5~23.8	10	56.68	59.00	1.05
	23.8~15.3	11	68.86	71.69	1.05
	15.3~8.8	12	77.47	78.60	1.02
	8.8~1.3	13	83. 82	84.19	1.01
	42.8~34.8	15	4.718	3. 573	0.76
DW	34.8~30.5	16	12.15	10.20	0.84
	30.5~23.8	17	22.57	20.98	0.93
	23.8~15.3	18	27.77	25.74	0.93
	15.3~10.1	19	33.00	31.73	0.97
	10.1~1.3	20	39.49	39.40	1.00

表 3-20 最大応答軸力一覧(基準地震動 S s - D, 鉛直方向)

	EL (m)	要素 番号	最大応答せん断ひずみ (×10 ⁻³)		
部位			① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率
OW-13	34.8~30.5	1	0.2804	0.3188	1.14
	30.5~23.8	2	0.3490	0.3729	1.07
	23.8~15.3	3	0.3561	0.3944	1.11
	15.3~8.8	4	0.3644	0.3899	1.07
	8.8~1.3	5	0.4061	0.4612	1.14
	63.5~51.7	6	0.2680	0.2869	1.08
	51.7~42.8	7	0.2930	0.3040	1.04
	42.8~34.8	8	0.3243	0.3569	1.11
TW_11	34.8~30.5	9	0.3159	0.3445	1.10
1W-11	30.5~23.8	10	0.3239	0.3574	1.11
	23.8~15.3	11	0.3552	0.3928	1.11
	15.3~8.8	12	0.3634	0.3877	1.07
	8.8~1.3	13	0.4047	0.4593	1.14
	42.8~34.8	14	0.1147	0.1055	0.92
DW	34.8~30.5	15	0.1386	0.1349	0.98
	30.5~23.8	16	0.1561	0.1713	1.10
	23.8~15.3	17	0.2176	0.2354	1.09
	15.3~10.1	18	0.6092	0.6052	1.00
	10.1~1.3	19	0.1966	0.2453	1.25
IW-3	63.5~51.7	20	0.2349	0.2538	1.09
	51.7~42.8	21	0.3614	0.3675	1.02
	42.8~34.8	22	0.3267	0.3593	1.10
	34.8~30.5	23	0.3160	0.3444	1.10
	30.5~23.8	24	0.3241	0.3576	1.11
	23.8~15.3	25	0.3552	0.3927	1.11
	15.3~8.8	26	0.3551	0.3830	1.08
	8.8~1.3	27	0.4134	0.4632	1.13
OW-1	42.8~34.8	28	0. 3303	0.3629	1.10
	34.8~30.5	29	0.2589	0.2860	1.11
	30.5~23.8	30	0. 3368	0.3634	1.08
	23.8~15.3	31	0.3459	0.3839	1.11
	15.3~8.8	32	0.3505	0.3790	1.09
	8.8~1.3	33	0.4126	0.4625	1.13

表 3-21 最大応答せん断ひずみ一覧(基準地震動Ss-D,NS方向)

部位	EL (m)	要素 番号	最大応答せん断ひずみ (×10 ⁻³)		
			① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率
OW-I	15.3~8.8	1	0.3244	0.3792	1.17
	8.8~1.3	2	0.2259	0.2590	1.15
	63.5~51.7	3	0.2930	0.2794	0.96
	51.7~42.8	4	0.3683	0.3434	0.94
	42.8~34.8	5	0.1858	0.1839	1.00
тw_ц	34.8~30.5	6	0.1807	0.1814	1.01
IW-H	30.5~23.8	7	0.3895	0.3963	1.02
	23.8~15.3	8	0.4768	0.4717	0.99
	15.3~8.8	9	0.3117	0.3658	1.18
	8.8~1.3	10	0.2212	0.2546	1.16
	42.8~34.8	11	0.0818	0.0809	0.99
	34.8~30.5	12	0.0648	0.0519	0.81
DW	30.5~23.8	13	0.2548	0.2578	1.02
DW	23.8~15.3	14	0.3473	0.3249	0.94
	15.3~10.1	15	0.2870	0.3296	1.15
	10.1~1.3	16	0.1628	0.1961	1.21
	63.5~51.7	17	0.2345	0.2287	0.98
TWD	42.8~34.8	19	0.1681	0.1649	0.99
IW-D	34.8~30.5	20	0.1718	0.1607	0.94
	30.5~23.8	21	0.3868	0.4087	1.06
	51.7~42.8	22	0.4576	0.4208	0.92
	42.8~34.8	23	0.2009	0.1970	0.99
	34.8~30.5	24	0.2615	0.2642	1.02
IW-B	30.5~23.8	25	0.3507	0.3585	1.03
	23.8~15.3	26	0.4806	0.4751	0.99
	15.3~8.8	27	0.2181	0.2645	1.22
	8.8~1.3	28	0.3033	0.3510	1.16
OW-A	34.8~30.5	29	0.3246	0.3174	0.98
	30.5~23.8	30	0.3151	0. 3290	1.05
	23.8~15.3	31	0. 4814	0. 4766	0. 99
	15.3~8.8	32	0.2180	0.2648	1.22
	8.8~1.3	33	0.3028	0.3506	1.16

表 3-22 最大応答せん断ひずみ一覧(基準地震動Ss-D, EW方向)

図 3-18(1) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D,NS方向)

図 3-18(2) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D,NS方向)

図 3-18(3) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D,NS方向)

図 3-18(4) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D,NS方向)

図 3-18(5) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D,NS方向)

図 3-18(6) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D,NS方向)

図 3-18(7) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D,NS方向)

図 3-19(1) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D, EW方向)

図 3-19(2) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D, EW方向)

図 3-19(3) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D, EW方向)

図 3-19(5) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D, EW方向)

図 3-19(6) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D, EW方向)

図 3-19(7) せん断スケルトン曲線上の最大応答値 (基準地震動Ss-D, EW方向)

	最大	大接地圧(×10 ³ kN/	′m ²)
方向	① 今回工認モデル (Ss-D)	② SA時環境考慮 モデル(Ss-D)	②/① 応答比率
NS方向	2.013	1.867	0.93
EW方向	1.382	1.364	0. 99

表 3-23 最大接地圧(基準地震動 S s - D)

3.3 原子炉建物の地震応答解析による評価に与える影響

「3.2 重大事故等時の高温による影響を考慮した原子炉建物の地震応答解析」の地震 応答解析結果を踏まえ,重大事故等時の熱によるコンクリート部材の剛性低下が,原子 炉建物の地震応答解析による評価に与える影響について確認する。

3.3.1 検討方法

検討は、以下のとおり、保守的な評価とする。

せん断ひずみの検討では、材料物性の不確かさを考慮した基準地震動Ss-D~ Ss-N2に対する最大応答せん断ひずみの包絡値に、基準地震動Ss-Dに対す る「今回工認モデル」と「SA時環境考慮モデル」の応答比率(「SA時環境考慮モデ ル」/「今回工認モデル」)を乗じた値が許容限界を超えないことを確認する。

接地圧の検討では、材料物性の不確かさを考慮した基準地震動Ss-D~Ss-N2に対する最大接地圧の包絡値に、基準地震動Ss-Dに対する「今回工認モデル」と「SA時環境考慮モデル」の応答比率(「SA時環境考慮モデル」/「今回工認 モデル」)の最大値を乗じた値が許容限界を超えないことを確認する。

また,基準地震動Ss-Dに対する床応答スペクトルについて,「今回工認モデル」 と「SA時環境考慮モデル」の比較を行う。

- 3.3.2 検討結果
 - (1) せん断ひずみの検討結果

追而

(2) 接地圧の検討結果

(3) 床応答スペクトルの検討結果

地震応答解析モデルの全質点の床応答スペクトルについて、「SA 時環境考慮モデル」と「今回工認モデル」の比較結果を図 3-20~図 3-22 に示す。床応答スペクトルの比較を行った結果、全体的な傾向として、「SA 時環境考慮モデル」の応答と「今回工認モデル」の応答が概ね同等であることを確認した。

別紙 5-82 **86**

図 3-20(3) 床応答スペクトルの比較(基準地震動Ss-D,NS方向,h=5%)

別紙 5-85 **89**

別紙 5-86 **90**

図 3-21(3) 床応答スペクトルの比較(基準地震動Ss-D, EW方向, h=5%)

別紙 5-88 **92**

別紙 5-89 **93**

図 3-22(3) 床応答スペクトルの比較(基準地震動Ss-D,鉛直方向,h=5%)

別紙 5-90 **94**

図 3-22(4) 床応答スペクトルの比較(基準地震動Ss-D,鉛直方向,h=5%)

別紙 5-91 **95**

図 3-22(5) 床応答スペクトルの比較(基準地震動Ss-D,鉛直方向, h=5%)

別紙6 原子炉建物のコンクリート剛性に対する地震観測 記録による傾向分析

目 次

1.	検	計の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-1
2.	解	折手法の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-2
3.	評	価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-4
3	. 1	評価対象地震	別紙 6-4
3	. 2	伝達関数の算定条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-7
3	. 3	評価結果	別紙 6-9
4.	ま	とめ	別紙 6-13

別紙 6-1 コンクリートの経年劣化の影響について

1. 検討の概要

原子炉建物のコンクリート剛性に関する傾向分析として,原子炉建物の地震観測記録を用 いた検討を行った。具体的には,建物を等価1質点系モデルに置換した場合の1次固有振動 数に着目し,経年及び観測地震動による建物全体系の剛性(コンクリート剛性)への影響と いう観点で分析を行った。この分析による1次固有振動数の変化から,原子炉建物全体の平 均的な剛性の変化を推定することができる。 2. 解析手法の概要

原子炉建物の1次固有振動数を評価するための伝達関数の概念図を図2-1に示す。 基礎スラブ上の水平動の加速度記録に加えて,基礎スラブ両端部の鉛直動の加速度記録を 用いることにより,基礎スラブを剛体とみなして基礎スラブの回転動を算定し,基礎固定条 件の伝達関数を評価することができる。また,基礎スラブ上の水平動の加速度記録を入力と して用いる場合には,基礎スラブの水平方向のみを固定条件としたスウェイ固定条件の伝達 関数を評価することができる。

スウェイばね(剛) スウェイばね(剛) $\ddot{x}_0 + \ddot{\theta} H$ \ddot{x}_0 ロッキン<u>グ</u>ばね D ロッキングばね(剛) v v θH θH т т Η Н Κ K ł ł x_0 x_0 θH

図 2-2 にスウェイ固定の場合の固有振動数評価の概念図を示す。

図 2-1 伝達関数の概念図

θ:基礎の回転動

m: 質点の質量*K*: 質点系の剛性

H:基礎下面からの質点の高さ

基礎固定時

x₀:基礎下面の水平動(変位)

y:質点の水平動(変位)

スウェイ固定時

x: 質点の弾性応答(変位)

- ② ARX 法により固有振動数を求める。

図 2-2 固有振動数評価の概念図(スウェイ固定)

3. 評価結果

3.1 評価対象地震

原子炉建物では多数の地震が観測されている。評価対象地震は,原子炉建物で1989年 3月から2011年8月までの約22年間に観測された108地震記録のうち,スウェイ固定条 件又は基礎固定条件のいずれかで評価可能であった91地震記録とした。

評価対象地震を表 3-1 に示す。

		田樹	当れ	震央	最大加速度	度 (cm/s²)
No.	地震名	况俣	休さ	距離	基礎スラブ上	(EL 1.3m)
		М	(km)	(km)	NS	EW
1	1989 03 18 05 18 阜取県西部	3.6	14	38	0.4	0.6
2	1989 09 08 20·19 鳥根・広島県培	4.2	15	75	0.5	0.7
3	1989 10 27 07:41 阜取県西部	5.3	13	46	4.2	5.9
4	1989 11 02 04:57 良取俱西郊	5.5	15	10	4.7	7.8
т	(1980.11.02.05.10.自取目西郊)	(35)	(13)	(45)	(03)	(0.4)
-	(1909.11.02.03:10 局取県西部)	(3.5)	(13)	(43)	(0.3)	(0.4)
э	1969.11.10 01:34 局取県西部	4.0	15	44	0.7	1.3
-	(1989.11.11 16:01 局取県四部)	(4.1)	(14)	(45)	(0.6)	(0.8)
6	1990.01.20 01:26 島根・広島県現	4.4	14	(13)	0.4	0.5
-	(1990.04.01 09:12 鳥取県西部)	(4.6)	(14)	(46)	(0.9)	(1.4)
-	(1990.04.12 05:51 福井県西部)	(6.1)	(368)	(240)	(0.5)	(0.4)
7	1990.09.29 07:57 兵庫県南西部	5.4	11	132	1.4	1.1
8	1990.11.21 10:44 鳥取県西部	5.1	14	42	1.9	3.1
9	1990.11.21 10:46 鳥取県西部	4.8	12	43	0.9	1.2
10	1990.11.23 19:33 鳥取県西部	5.2	14	44	2.8	3.7
-	(1990.12.01 20:23 鳥取県西部)	(5.1)	(12)	(42)	(1.4)	(2.1)
-	(1990.12.01 22:41 鳥取県西部)	(3.7)	(12)	(43)	(0.4)	(0.6)
11	1991.08.27 23:59 鳥取県西部	4.7	13	41	1.5	2.4
12	1991.08.28 10:29 鳥取県西部	5.9	13	29	10.9	26.2
-	(1991.08.28 10:29 鳥取県西部(No.12の後続の地震動))	(5.9)	(13)	(29)	(1.9)	(4.9)
-	(平成7年(1995年) 兵庫県南部地震)	(7.3)	(16)	(213)	-	-
13	1996.04.01 22:52 鳥取県西部	4.2	12	37	0.4	0.5
14	1996.06.15 11:10 鳥取県西部	4.7	11	47	0.4	0.4
	(1996 10 19 23:44 日向灘)	(69)	(34)	(425)	-	-
-	(1996.12.03.07.17 日向灘)	(6.7)	(38)	(435)		-
15	1997 06 25 18:50 山口県	6.6	8	172	3.5	33
16	1007.08.23.08.35 自取目而郊	4.2	12	172	0.4	0.6
17	1997.00.23 00.33 局极宗四即	4.2	10	47	0.4	0.0
17	1997.09.02 02:07 局取県四部	4.2	15	47	0.5	0.4
18	1997.09.04 05:12 烏取県四部	4.5	12	46	0.7	0.7
19	1997.09.04 05:15 局取県四部	5.5	9	46	1.9	3.2
20	1998.05.23 04:49 伊子澳	5.4	86	229	1.4	0.9
21	1998.07.26 02:02 島根・広島県境	3.3	7	66	0.2	0.3
22	2000.06.07 06:16 北陸地方北西冲	6.2	21	272	0.9	0.9
23	2000.07.17 08:00 鳥取県西部	4.4	16	43	0.9	1.3
24	平成12年(2000年) 鳥取県西部地震	7.3	9	43	28.4	31.1
25	2000.10.06 13:32 鳥取県西部	3.9	12	38	0.5	0.7
26	2000.10.06 13:34 鳥取県西部	4.0	13	45	1.6	2.5
27	2000.10.06 13:36 鳥取県西部	4.2	16	43	1.1	1.8
-	(2000.10.06 13:43 鳥取県西部)	(3.9)	(13)	(44)	(0.4)	(0.6)
28	2000.10.06 13:45 鳥取県西部	4.5	15	43	1.0	1.6
29	2000.10.06 13:51 鳥取県西部	3.8	12	53	0.5	0.7
30	2000.10.06 14:36 鳥取県西部	4.4	9	54	0.4	0.8
31	2000.10.06 14:43 鳥取県西部	4.2	8	38	0.4	0.8
32	2000.10.06 14:52 鳥取県西部	4.5	8	34	0.6	0.9
33	2000.10.06 15:06 鳥取県西部	2.8	6	40	0.3	0.5
34	2000.10.06 19:57 鳥取県西部	3.6	13	43	0.7	1.2
35	2000.10.06 21:28 鳥取県西部	3.8	7	38	0.5	0.8
36	2000.10.06 23:13 鳥取県西部	4.2	7	38	0.5	0.9
37	2000.10.07 03:58 鳥取県西部	3.6	9	37	0.5	0.9
38	2000.10.07 04:59 鳥取県西部	4.7	6	43	0.8	1.2
39	2000.10.07 06:22 鳥取県西部	4.1	8	39	0.6	0.9
40	2000.10.07 06:38 鳥取県西部	4.4	8	33	0.9	0.9
41	2000 10 07 07:49 自取退两部	3.8	12	41	0.5	0.9
12	2000.10.07 01.17 户时间而部	3.0	10	21	0.3	0.0
44	2000.10.07 10.02 自取目而郊	J.0 4.2	0	24	0.0	1.4
43	2000.10.07 12:03 局积示凹即 2000 10 07 10:22 自取坦莱姆	4.3	<i>у</i> 0	34 20	0.0	1.4
44	2000.10.07 10:32 局取県西部	4.0	ð 10	58 50	0.5	0.7
45	2000.10.08 10:23 局取県西部	3.J	10	53	0.4	0.7
46	2000.10.08 13:17 局取県西部	5.6	7	46	4.1	7.3
47	2000.10.08 20:51 鳥取県西部	5.2	8	34	1.3	1.6
48	2000.10.08 20:59 鳥取県西部	4.2	8	34	0.6	1.1
49	2000.10.10 17:19 鳥取県西部	3.4	11	33	0.6	0.8

表 3-1(1) ARX 法による伝達関数の評価対象地震

注:()は観測記録の乱れが大きく,評価対象地震動として採用するには適切でない 地震記録を表す。

		坦樹	巡さ	震央	最大加速度	度 (cm/s²)
No.	地震名	/元1天 M	(1)	距離	基礎スラブ上	(EL 1.3m)
		IVI	(km)	(km)	NS	EW
50	2000.10.10 21:57 鳥取県西部	4.4	10	34	1.1	0.9
-	(2000.10.13 13:21 鳥取県西部)	(3.4)	(12)	(42)	(0.6)	(1.0)
51	2000.10.17 22:16 鳥取県西部	4.5	11	54	0.5	1.3
-	(2000.10.18 08:05 鳥取県西部)	(3.7)	(10)	(32)	(0.2)	(0.6)
52	2000.10.22 09:06 鳥取県西部	3.1	12	25	0.6	0.8
53	2000.11.03 12:37 鳥取県西部	3.3	13	25	0.6	0.7
54	2000.11.03 16:33 鳥取県西部	4.6	9	33	1.3	1.6
55	2000.12.07 23:09 鳥取県西部	4.3	11	32	1.1	1.6
56	2000.12.19 06:18 鳥取県西部	4.0	11	32	1.0	1.1
57	2000.12.20 10:04 鳥取県西部	3.6	12	32	0.6	1.3
58	2000.12.20 21:22 鳥取県西部	3.4	11	32	0.5	1.0
59	2001.01.12 07:59 鳥取県西部	0.2	6	42	0.3	0.5
60	2001.01.12 08:00 兵庫県北部	5.6	11	136	2.9	1.9
61	2001.01.22 13:20 鳥取県西部	3.6	11	32	0.4	0.5
62	2001.01.24 00:03 兵庫県北部	4.4	10	135	1.0	0.8
63	2001.02.11 09:17 鳥取県西部	4.5	11	30	1.4	1.1
64	平成13年(2001年) 芸予地震	6.7	46	158	6.7	5.6
65	2001.08.26 14:23 鳥取県西部	3.7	11	30	0.7	0.8
66	2001.10.08 11:23 鳥取県西部	3.9	8	39	0.4	0.4
67	2002.01.24 16:08 鳥取県西部	4.8	9	35	1.0	0.9
68	2002.03.06 07:12 鳥取県西部	4.6	15	41	1.2	1.9
69	2002.09.16 10:10 鳥取県東部	5.5	10	70	5.1	2.0
70	2002.10.23 06:22 島根・広島県境	4.0	11	52	0.3	0.5
71	2004.09.05 19:07 紀伊半島南東沖	7.1	38	447	0.3	0.5
72	2004.09.05 19:07 紀伊半島南東沖(No.71の後続の地震動)	7.1	38	447	0.6	0.7
73	2004.09.05 23:57 紀伊半島南東沖	7.4	44	465	0.3	0.4
74	2004.09.05 23:57 紀伊半島南東沖(No.73の後続の地震動)	7.4	44	465	0.8	1.0
75	2005.03.20 10:53 九州地方北西沖	7.0	9	327	0.9	1.0
76	2006.06.12 05:01 大分県北部	6.2	145	303	1.0	1.1
77	2006.11.26 12:58 島根・広島県境	3.5	9	44	0.2	0.6
78	平成19年(2007年) 能登半島地震	6.9	11	380	0.5	0.4
79	2007.04.05 09:05 鳥取県西部	3.4	9	44	0.2	0.5
80	2007.04.26 09:02 愛媛県北東部	5.3	39	190	0.7	0.8
81	2007.05.13 08:13 島根・広島県境	4.6	9	61	0.3	0.5
82	2007.10.14 03:07 鳥取県西部	3.7	11	22	0.5	0.6
83	2007.10.14 23:38 鳥取県西部	3.5	11	22	0.3	0.4
84	2007.11.10 01:47 山陰地方西部沖	4.3	18	102	0.4	0.4
-	(2008.05.02 12:23 島根・広島県境)	(4.0)	(9)	(41)	(0.3)	(0.5)
85	2008.11.23 13:56 鳥取県西部	3.3	12	31	0.4	0.7
86	2008.12.22 22:24 鳥取県西部	3.6	8	37	0.2	0.4
-	(2009.06.25 23:03 大分県北部)	(4.7)	(12)	(309)	(0.2)	(0.2)
-	(2009.06.25 23:07 大分県北部)	(2.0)	(11)	(309)	(0.2)	(0.2)
87	2011.04.29 12:56 隠岐島近海	4.0	16	58	0.4	0.4
88	2011.04.29 13:00 隠岐島近海	3.9	17	58	0.6	0.7
89	2011.06.04 01:57 島根・広島県境	5.2	11	57	1.5	2.0
90	2011.06.04 02:03 島根・広島県境	3.7	10	57	0.4	0.3
91	2011.07.05 19:18 和歌山県中部	5.5	7	267	0.5	0.5
-	(2011.08.12 07:53 山陰地方東部沖)	(2.5)	(16)	(23)	(0.4)	(0.4)

表 3-1(2) ARX 法による伝達関数の評価対象地震

注:()は観測記録の乱れが大きく,評価対象地震動として採用するには適切でない

地震記録を表す。

3.2 伝達関数の算定条件

表 3-2 及び図 3-1 に伝達関数の算定に用いた地震計を示す。等価高さ位置の波形は EL 42.8m と EL 15.3m の記録を用いて線形補間により算定した。

チャンネル番号・	供 孝			
NS 成分	EW 成分	加方		
CH. 58 • NS • EL 42.8m	CH. 59 • EW • EL 42.8m	出力 y。算定用		
CH. 60 • NS • EL 42.8m	CH.61 • EW • EL 42.8m	EL 42.8mの記録の平均値と		
CH. 54 • NS • EL 15.3m	CH.55 • EW • EL 15.3m	EL 15.3mの記録の平均値の		
CH. 56 • NS • EL 15.3m	CH.57 • EW • EL 15.3m	線形補間により算定		
CH. 41 • NS • EL 1.3m	CH.42 • EW • EL 1.3m	入力 y ₀ 算定用		
CH. 45 • NS • EL 1.3m	CH.46 • EW • EL 1.3m	記録の平均化により算定		
CH.39 • UD • EL 1.3m	CH.38 • UD • EL 1.3m			
CH. 40 • UD • EL 1.3m	CH.39 • UD • EL 1.3m	回転動 0 管空田		
CH. 44 • UD • EL 1.3m	CH. 43 • UD • EL 1.3m	回戦期 0 异足用		
CH. 47 • UD • EL 1.3m	CH.44 • UD • EL 1.3m			

表 3-2 伝達関数の算定に用いた地震計

4F(EL 42.8m)

1F(EL 15.3m)

図 3-1 伝達関数の算定に用いた地震計配置図(原子炉建物)

3.3 評価結果

1 次固有振動数の地震時系列上の変化を図 3-2 に,時間軸上の変化を図 3-3 に示す。 これらの図には,スウェイ固定条件及び基礎固定条件における 1 次固有振動数の変化を 重ねて表示している。スウェイ固定条件での 1 次固有振動数はロッキングの影響が含ま れるため,基礎固定条件の場合よりもやや低い振動数(平均的に 0.5Hz 程度)となってい るが,両者の振動数の変化の傾向は,ほぼ同様となっている。なお,図には参考として, 原子炉建物の今回工認で使用している地震応答解析モデル(以下「今回工認モデル」とい う。)をスウェイ固定と基礎固定とした場合の 1 次固有振動数及び基礎スラブ上の観測記 録の水平最大加速度も併記している。また,ARX 法(同定結果)とフーリエ解析による伝 達関数(観測結果)の比較例として,平成 12 年 (2000 年)鳥取県西部地震及び平成 13 年 (2001 年) 芸予地震の結果を図 3-4 に示す。

図 3-2 及び図 3-3 より,1 次固有振動数は長期間に渡ってほぼ一定になっており,経 年による剛性低下はみられない。

その箇所は線で結んでいない。 ースは除外し. ARX 法で適切に評価できないケ 2 щ :地震記録の精度に 迕

図 3-2 1 次固有振動数の評価結果(地震時系列)

別紙 6-10

108

図 3-3 1 次固有振動数の評価結果(時間軸)

黒線:フーリエ解析による伝達関数
 赤線:ARX 法による伝達関数
 青線:ARX 法による固有振動数位置

(左:NS成分,右:EW成分,上段:振幅比,下段:位相)

(a) 平成12年(2000年) 鳥取県西部地震

黒線:フーリエ解析による伝達関数
 赤線:ARX 法による伝達関数
 青線:ARX 法による固有振動数位置

(左:NS成分,右:EW成分,上段:振幅比,下段:位相)

(b) 平成13年(2001年) 芸予地震

図 3-4 ARX 法(同定結果)とフーリエ解析による伝達関数(観測結果)の比較結果

4. まとめ

原子炉建物を対象に,地震観測記録を用いて1次固有振動数を算定し,その経年変化の分析を行った。その結果,1次固有振動数は長期間に渡ってほぼ一定になっており,経年による剛性低下はみられなかった。

別紙 6-1 コンクリートの経年劣化の影響について

1.	はじめに	別紙 6-1-1
2.	コンクリートの使用材料について ・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-1-2
3.	コンクリート構造物の点検及び管理について ・・・・・・・・・・・・	別紙 6-1-3

1. はじめに

島根原子力発電所では,発電所を構成する建物・構築物,系統及び機器の信頼性を確保す るため,その使用前段階,使用期間中及び起動試験期間中に実施する施設管理*に関する基 本事項を定めて施設管理を行っている。

施設管理のうち,建物・構築物の点検においては,建物・構築物を構成する部位毎に点検 項目を定めて,所定の機能を発揮し得る状態にあることを定期的に確認しており,その点検 項目の一つとしてコンクリート構造物に発生するひび割れの状況を確認することとしてい る。

ひび割れは、「進行性のないもの」及び「進行性のもの」の大きく二つに分類でき、進行 性のないものは、乾燥収縮によるもの、セメントの水和熱によるもの、施工に関わるものな どがあり、進行性のものは、アルカリ骨材反応、凍結融解、コンクリートの中性化、塩分浸 透、疲労によるものなどがある。

進行性のないひび割れのうち,乾燥収縮によるものは,それ自体が構造安全性に影響を及 ぼすものではないが,他の劣化要因と複合し,進行性のひび割れに変化する可能性があるた め,島根原子力発電所では,進行性の有無に関係なくひび割れの点検を行い,経年的なひび 割れの進展がないことを確認している。

注記*:施設管理とは,原子炉施設の保全のために行う設計,工事,巡視,点検,検査 その他の施設の管理をいう。 2. コンクリートの使用材料について

一般に、コンクリート構造物のひび割れの原因の多くは、材料・調合に関係しており、特 に調合とひび割れとの関連は大きく、構造物のおかれる環境、施工時期及び施工方法などを 十分勘案した上で、適切な調合設計を行うことがひび割れ対策上重要であるとされている。

ここでは、原子炉建物等におけるコンクリートの使用材料を表 2-1 に、代表的なコンク リートの調合を表 2-2 に示す。

原子炉建物等のコンクリートに用いている粗骨材の種類は、安山岩及び玄武岩である。 乾燥収縮に影響を及ぼすとされている粗骨材の吸水率は1%程度であり、「建築工事標準仕 様書・同解説 JASS5N 原子力発電所施設における鉄筋コンクリート工事((社)日 本建築学会)」(以下「JASS5N」という。)に規定されている2.0%を大きく下回ってい る。

また,原子炉建物等の調合において設定している水セメント比は,53%程度であり,「J ASS5N」に規定されている水セメント比の最大値 60%よりも小さく耐久性を高めた調 合としている。

材料		種類	
セメント		フライアッシュB種	
	細骨材	山砂,川砂	
骨材	粗骨材	安山岩, 玄武岩	
		(吸水率:0.68~1.34%)	

表 2-1 原子炉建物等におけるコンクリートの使用材料

表 2-2 原子炉建物等における代表的なコンクリートの調合

	粗骨材の	水セメント比	調合				
調合符号	最大寸法	W/C		(kgf	7/m ³)		打設箇所
	(mm)	(%)	セメント	水	細骨材	粗骨材	
240-10-40	40	53.0	311	165	748	1063	基礎スラブ
240-12-40	40	52.7	317	167	730	1080	躯体
240-12-20	20	53.0	332	176	781	1011	躯体
240-15-20	20	53.0	347	184	748	1011	躯体

3. コンクリート構造物の点検及び管理について

島根原子力発電所の建物・構築物におけるコンクリート構造物のひび割れの点検及び管理 については、日本建築学会「原子力施設における建築物の維持管理指針・同解説」を参考に、 「島根原子力発電所原子力発電所土木建築関係設備点検手順書」により、図 3-1 に示すフ ローに基づき実施している。

島根原子力発電所では,建設以降大きな地震を経験しておらず,これまでの点検において, 構造上の影響が懸念されるひび割れは発生していない。

なお,構造上の影響が懸念されないひび割れについても,継続的に監視し,必要により計 画的に補修することとしている。

図 3-1 ひび割れの点検及び管理方法 (「島根原子力発電所土木建築関係設備点検手順書」の抜粋)

(参考資料1)計算機プログラム(解析コード)の概要

目 次

1.	はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	参 1-1
2.	使用状況一覧	参 1-2
3.	解析コードの概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	参 1-3

1. はじめに

本資料は、補足説明資料「補足-024-01 原子炉建物の地震応答解析に関する補足説明資料」において使用した計算機プログラム(解析コード)について説明するものである。

本解析コードを使用した補足説明資料を示す使用状況一覧,解析コードの概要を以降に 記載する。

2. 使用状況一覧

	使用補足説明資料	バージョン
別紙 6	原子炉建物のコンクリート剛性に対する地震観測記録に よる傾向分析	Ver. 1. 0

3. 解析コードの概要

コード名 項目	ARX
使用目的	システム同定
開発機関	鹿島建設株式会社
開発時期	2011 年
使用したバージョン	Ver. 1. 0
コードの概要	本解析コードは,建物の地震観測記録を用いて,ARX (Auto-Regressi ve with eXogenous) によるシステム同定を適用し,建物の固有振動 数及び減衰定数を評価するために開発された。 本解析コードは,多数の原子炉建屋に対してシステム同定を行った使 用実績を有する。
検証 (Verification) 及び 妥当性確認 (Validation)	 【検証(Verification)】 本解析コードの検証内容は以下のとおりである。 ・数値シミュレーション解析により、本解析コードによる同定結果 は理論値に一致することを確認している。 ・動作環境を満足する計算機にインストールし適用している。 【妥当性確認(Validation)】 本解析コードの妥当性確認内容は以下のとおりである。 ・本解析コードは、多数の原子炉建屋を含む建物の固有振動数及び 減衰定数のシステム同定に使用実績を有しており、妥当性は十分 に確認されている。 ・本工事計画において使用する Ver.1.0 は、他プラントの既工事計 画において使用されているもとの同じであることを確認してい る。 ・本工事計画における用途及び適用範囲が上述の妥当性確認の範囲 内であることを確認している。