

第53条(多量の放射性物質等を放出する事故の拡大の防止)に係る 計算コード及び有効性評価等に対するコメントへの回答

2022年2月22日

日本原子力研究開発機構 大洗研究所

高速実験炉部

計算コード及び有効性評価等に対するコメントへの回答

【本資料で回答するコメントの一覧】

No. ^{**1}	コメント
257	炉心物質の粘性を考慮した場合のSIMMERによる事象推移の解析結果を説明すること。
259	燃料凝集率と反応度挿入率の評価に関して、燃料物質の分布等を踏まえた定量的な評価について説明すること。
261	 機械的応答過程におけるプラグ応答の評価(プラグ間隙へのナトリウム流入量の評価)に関し、FC 挙動の不確かさがプラグ 応答の評価に与える影響について、今後の有効性評価において説明すること。
262	UTOPにおけるFCIの不確かさの影響評価について、保守的な評価として、最も影響が大きいものを評価していることを説明す ること。また、ULOFと同様に、制御棒下部案内管2カ所でFCIを同時に発生させた場合には、燃料の凝集を阻害するとのこと であるが、当該評価の結果についても説明すること。
280	炉心損傷過程における燃料崩落後の現実的な燃料粒子径及びSIMMERにおける燃料粒子径の設定、並びに燃料粒子径の分布等 が即発臨界超過に与える影響を説明すること。また、燃料粒子径が燃料の流動に与える影響についても定量的に説明するこ と。
281	炉心損傷過程における燃料の崩落の過程について、SIMMERでどのように扱っているのか、崩落する燃料の質量と速度等の挙 動を定量的に説明すること。また、不確かさケース1、2の両者についても定量的に説明すること。
282	燃料の崩落による反応度挿入とスロッシングによる反応度挿入を定量的に説明すること。
283	不確かさケース1、2の両者において、最終的に全炉心の何%がスロッシングに寄与しているのか定量的に説明すること。
284	最終的な即発臨界超過に至るまでの挙動に関して、燃料物質の発熱密度等で説明されてきたが、液面の変化や燃料物質の凝 集等を物理的、視覚的に図示して説明すること。
285	第403回審査会合の機械的応答過程解析の初期スティール質量は、約300kgとなっているが、最終的な即発臨界超過に至るま での炉心におけるスティール質量の変化についても説明すること。
287	FCI現象におけるいわゆるPhase Aに関して次回以降の会合で説明すること。また、ナトリウムと溶融燃料の反応によるナト リウムの蒸気爆発に係るこれまでの議論も含めて説明すること。

No. 287 FCI現象におけるいわゆるPhase Aに関して次回以降の会合で説明すること。また、ナトリウムと溶融燃料の反応によるナトリウムの蒸気爆発に係るこれまでの議論も含めて説明すること。

FCIにおけるPhase A、Phase B

「常陽」のULOF事象推移でのFCIにおけるPhase A (1/4)

「常陽」のULOFの事象推移では、以下のFCIが事象推移に影響を与える。

- (1) 起因過程における燃料破損時のFC|
- ② 遷移過程における炉心内あるいは炉心近 傍でのFCI
- ③ 機械的エネルギー発生過程での上部プレ ナム下部でのFCI
- ④ 再配置過程での下部プレナムへ流出する 際のFCI

機械的エネルギーの解析 (SIMMER-IV) 原子炉容器の構造応答解析 (AUTODYN) ナトリウム噴出量の解析 (PLUG)

噴出ナトリウムの 熱的影響解析 (CONTAIN-LMR)

「常陽」のULOF事象推移でのFCIにおけるPhase A (2/4)

■ ①起因過程における燃料破損時のFCI、②遷移過程における炉心内又は炉心近傍でのFCIでは、溶融燃料そのものが二相状態であるか、又はすぐ近傍に二相の炉心プールが存在するためにPhase Aが問題になることはない。

「常陽」のULOF事象推移でのFCIにおけるPhase A(3/4)

- ③機械的エネルギー発生過程で上部プレナム下部で発生するFCIでは、即発臨 界超過による出力逸走直後の炉心は溶融した燃料とスティール、それぞれの 蒸気、ナトリウム蒸気、FPガスが混在した二相状態である。
- ■したがって、炉心物質が上部プレナムに噴出してFCIを発生する時も、炉心物 質は二相状態(主に溶融燃料、燃料粒子、溶融スティール、ナトリウム蒸気、 FPガスの混在物)であり、炉心物質とナトリウムの境界面で部分的に液液接 触しても単相圧力波、すなわちPhase Aは発生しない。

「常陽」のULOF事象推移でのFCIにおけるPhase A(4/4)

- ■④再配置過程で溶融炉心物質が制御棒下部案内管等を通して下部プレナムに流出 する際のFCIでは、高温化した制御棒下部案内管の上部はナトリウム蒸気で満たさ れており、制御棒下部案内管を燃料が流下して下方向にあるナトリウムと接触す る際には、このナトリウム蒸気を巻き込んだ二相状態でFCIを生じるため、Phase Aは発生しない。
- 燃料とナトリウムの接触後はPhase Bのナトリウム蒸気圧が発生して炉心物質は逆流し、その後間欠的に流入と逆流を繰り返しながら炉心物質は徐々に下部プレナムへ移行する。

溶融炉心物質が下部プレナムに流出する際のFCIにおける

Phase Aの影響(1/4)

■「常陽」のULOFにおいて発生するFCIに関してはいずれの場合にもPhase Aの発生 は考慮する必要はないと考えられるが、ここでは、敢えて④のFCIにおいて低圧プ レナムのナトリウムプールに単相状態の溶融燃料が浸入してPhase Aが発生する場 合を仮想して、その発生圧力と影響の評価を行う。

溶融炉心物質が下部プレナムに流出する際のFCIにおける

Phase Aの影響(2/4)

- 保守性と簡易化のために、液一液接触界面から低圧プレナム内に広がる3次元的な 圧力波の伝播は考えず、接触界面から下方向に伝播する1次元的な圧力波として解 析を行う。
- 溶融燃料の温度を3,200K、ナトリウムの温度を623.15K(350℃)とする。両者の 液一液接触境界面の接触温度T_iは熱物性のみから定まり、約1,491Kで一定となる。
- ナトリウム側では、境界温度をTiとして熱伝導によって時間とともに温度境界層が 発達していく。このナトリウム側の温度上昇に伴う熱膨張によってナトリウム側 に発生する単相圧力がいわゆるFCIにおけるPhase A圧力である。実際には燃料側 の温度低下に伴う収縮によってナトリウム側の単相圧力は緩和されるが、ここで は保守的に燃料側の収縮は考えない。

溶融炉心物質が下部プレナムに流出する際のFCIにおける

Phase Aの影響(3/4)

- この温度分布からPhase Aの継続時間である約1ms後のナトリウムの熱伸びを求め ると約3×10⁻⁵(m)となる。低圧プレナムの底板(厚み35mm、直径1,730mm)の中 心がこの伸びだけ下向きにたわむとしても底板内の引っ張り応力は100MPa程度で あり、底板の引張強さ(約400MPa)よりも十分に小さく、Phase Aの圧力は構造的 にはほとんど影響を与えない。
- 接触境界面からの圧力波の到達距離に対して、温度浸透距離内の熱伸びによる歪みが均一に分布すると仮定して発生圧力を求めた。

時間(s)

10

Phase Aの影響(4/4)

- SIMMER-IIIを用いてPhase A圧力波の伝播解析を実施。低圧プレナム高さ方向の 1次元を1,000メッシュで分割。Phase A圧力の発生と伝播を適切に解析するために、 加熱面は100メッシュごとに1,2,4µmの微細なメッシュを設定。
- 燃料とナトリウムの液一液接触面で発生 する熱膨張による発生圧力のピーク値は 約94.5MPaと解析される。これは、圧力 波伝播距離がメッシュサイズ1µmとなる 理論的圧力評価値約94.6MPaと整合する。
- 液一液接触面で発生した圧力波は低圧プレナム底面に向かって伝播する。圧力波の到達によって発生する低圧プレナム底面での圧力ピークの発生時刻約90µsは、これは低圧プレナムの高さとナトリウム中の音速から求める到達時刻約87.2µsに近い。
- ■低圧プレナム底面での圧力ピークは約 4.4MPa、その半値幅は約8µsと極めて短 く、その後は約10気圧程度に維持される。 熱膨張が約30µmであることから、僅かな 低圧プレナム周囲の構造物の変形又はナ トリウムの流出によって減圧される。

「常陽」のULOFでのFCIにおけるPhase A

まとめ

- ■「常陽」のULOFにおいて発生するFCIに関してはいずれの場合にもPhase Aの発生は考慮する必要はないと考えられるが、低圧プレナムのナトリウムプールに単相状態の溶融燃料が浸入してPhase Aが発生する場合を敢えて仮想して、その発生圧力と影響の理論的検討と圧力波伝播解析を行った。
- 理論的検討では、液一液接触が発生して1ns以下の極短時間では数100~5,000気圧程度の高い圧力が接触界面から10µm以下の極少の領域で発生することが示されたが、圧力波の伝播とともに急速に低下し、低圧プレナム底面に到達する時点では数~約10気 圧程度の圧力となることが示された。SIMMER-IIIを用いたPhase A圧力伝播の 解析では、低圧プレナム底面でのピーク圧力は約4.4MPa、その半値幅は約8µs程度、 静定圧力は約1MPaとなった。
- 理論的検討と圧力波伝播解析は液一液接触面から圧力波が1次元的に伝播するという 極めて保守的な仮定の元に求めた結果であり、実際の圧力波は液一液接触面から3次 元のほぼ球面状に伝播する。液一液接触面の圧力波を直径3cmの球面からの圧力波と みなせば、その7倍の距離にある低圧プレナム下面に到達した時点における圧力値は 今回の評価値の(1/7)²=約0.02倍、すなわち約1/50程度に緩和される。
- Phase Aが継続する約1msの間に液一液接触面で発生するナトリウムの熱膨張は約30µm 程度であり、低圧プレナム周囲の構造にほとんど影響を与えない。

大規模FCI の発生可能性について

- ■「常陽」MK-IV炉心の燃料インベントリは1トン程度であり(大型軽水炉では100 トン以上)、また、ULOFの事故シーケンスにおいてはそもそも大量の溶融燃料が 冷却材のナトリウムと混合する状況は考えられない。
- 一般に、大規模なFCIが発生するためには、安定膜沸騰条件下で溶融燃料とナト リウムとの大規模な粗混合状態が形成される必要があるとされている。一方、ナトリウム冷却高速炉においては、ナトリウムの熱伝導度が高いために溶融燃料と ナトリウムの接触界面温度は安定膜沸騰の発生条件をはるかに下回り、液-液接 触による局所的なFCIが生じるため、大規模な粗混合状態が形成されることはない。

No. 261 機械的応答過程におけるプラグ応答の評価(プラグ間隙へのナトリウム流入量の評価)に関し、FC|挙動の不確かさがプラグ応答の評価に与える影響について、今後の有効性評価において説明すること。

ULOF(i)とULOF(iii)の機械的応答過程の解析の比較

ULOF(i)とULOF(iii)の不確かさ影響評価ケース(遷移過程における発生エ ネルギーの不確かさの影響)において、初期の燃料及びスティール温度並びに炉 心平均圧力に差はほとんどなく、同程度の初期条件である。発生する機械的エネ ルギーも同程度である。

	ULOF (i)	ULOF (iii)
炉心平均燃料温度(初期値) (℃)	5, 110	5, 130
炉心平均スティール温度(初期値)(℃)	2, 400	2, 310
炉心平均圧力(初期値) (MPa)	13. 1	12. 4
機械的エネルギー(MJ)	3. 6	3.4

ナトリウム噴出量の解析の主要な結果から、プラグの最大変位及びプラグ間隙 部へのナトリウム流入量はULOF(i)の方が大きい。いずれの評価事故シーケン スにおいても間隙の容量には十分に余裕があり、回転プラグ間隙を通じた原子炉 容器内からのナトリウムの噴出は生じない。

		ULOF (i)	ULOF (iii)
	プラグの最大変位 (mm)	9. 3	5. 7
プラグ間隙部へ	大回転プラグ(間隙容量517kg)	185	80
のナトリウム流	小回転プラグ(間隙容量 315kg)	29	5
入量 (kg)	炉心上部機構(間隙容量111kg)	31	6

ULOF(i)とULOF(iii)のプラグ応答の比較

- CDA気泡と体積の圧力履歴:最初の圧力ピークの値とその幅は、おおむね同じであるが、2回 目の圧力ピーク値とその幅はULOF(i)の方が大きく、気泡体積が再度増加する。
- プラグ下面に作用する圧力
 ULOF(i)では2回目の圧力ピークに由来する、0.19秒時点のピークが最大
 ULOF(iii)では最初の圧力ピークに由来する、0.1秒時点のピークが最大
- プラグ下面に作用する圧力レベルの相違→大回転プラグ変位の大きさの相違 ULOF(i):7.5(mm) / ULOF(iii):5.0(mm)
- 大回転プラグの浮上に要する圧力は2.75E+5(Pa)(絶対圧)である。ULOF(iii)に比べて ULOF(i)の方がこのレベル以上の圧力が維持される時間が長い。

以下の理由によりULOF(i)の方がナトリウム流入量が顕著となったと言える。 ① プラグ下面に作用するピーク圧力及びプラグ変位がULOF(i)の方が大きい。 ② プラグの浮上している時間がULOF(i)の方が長い。

プラグ下面の圧力の最大値とナトリウム流入量の関係

- ULOF(i)とULOF(iii)のプラグ下面の最大圧力の違いは、上部プレナム下部での FCI挙動の違いによる。
- プラグ間隙へのナトリウム流入量はプラグ下面の最大圧力が増加するに従って増加する。
- プラグ下面の最大圧力に影響する上部プレナム下部でのFCI 挙動に関する不確かさ影響の評価が必要と考えられる。
- THINA試験の検証解析によって、上部プレナム下面におけるFCIにSIMMERを適用 することの妥当性を確認しているが、原子炉容器規模への外挿性に関して不確かさ影 響を確認する解析が必要と考えられる。

ULOF(i)とULOF(iii)のCDA気泡成長挙動の違い

- 150ms以後のULOF(i)とULOF(iii)のカバーガス圧力の違いは、CDA気泡の圧力と体積の違いによる。
- この違いは、ULOF(i)ではULOF(iii)に比べて、上部プレナムに放出された燃料が炉容器 壁側、すなわちUISの下部よりも外側に放出されたため、100msで一旦収縮を始めたCDA気泡 内で再度FCIが発生したことによると考えられる。

ULOF (i) とULOF (iii) のCDA気泡成長挙動の違い

- ULOF(i)では、50ms~60msの間、UIS下部近傍の気相の速度ベクトルは主として上方及び径方 向外側を向いているが、ULOF(iii)ではULOF(i)に対してUIS下面でのFCIによって下方向への 流速が強く発生し、炉心物質の上部プレナムへの分散が抑制されている。
- この原因は、ULOF(iii)ではCDA気泡成長挙動の違いのため、UIS下面により多くのナトリウム が残存し、FCIを促進したことにある。

- ULOF(i)とULOF(iii)の不確かさ影響評価ケース(遷移過程における発生エネル ギーの不確かさの影響)プラグ下面の最大圧力の違いは、上部プレナム下部でのFCI 挙動の違いによる。
- FCI挙動の基本ケースに対するFCI挙動の不確かさの影響の評価として、上部プレナム 下部への炉心物質の放出パターンに影響を与えることを目的として、即発臨界超過直 後の炉心内の物質配位を組み替えたパラメータ解析を実施した。

■ パラメータ解析の対象は炉心平均燃料温度の高いULOF(iii)とした。

- 最も大きな機械的エネルギーとプラグ下面圧力の最大値を与えたケースはケースBである。
- ケースBでは、基本ケースに対して炉心の外側と内側の集合体を入れ替えたことにより、より高圧な炉心外側の溶融炉心物質が相対的に先行して上部プレナムへと排出され、その結果集合体出口における溶融炉心物質と液体ナトリウムとの混合が顕著となったためと考えられる。

	基本ケース	ケースA	ケースB	ケースC
炉心平均燃料温度(℃)	4200			
プラグ下面圧力の最大値(Pa)	1.03E+6	3.24E+5	1.35E+6	9.95E+5
プラグ下面圧力のピーク時刻(s)	0.127	0.380	0.125	0.135
機械的エネルギーの最大値(MJ)	2.565	0.91	2.858	2.43
機械的エネルギーのピーク時刻(s)	0.340	0.380	0.115	0.145
圧力源の最大膨張体積(m³)	6.35	4.36	6.79	6.50
圧力源の最大膨張時刻(s)	0.35	0.38	0.128	0.149
1. 6E+06		1. 6E+06		-24

- ULOF(i)とULOF(iii)の基本ケースのうち炉心平均燃料温度の高いULOF(iii)に対して、FCI挙動の不確かさが機械的エネルギー発生に与える影響の評価を行うことを目的として、機械的エネルギー解析の初期状態における炉心内の物質配位を組み替えたパラメータ解析を実施した。
- その結果、上部プレナム下部におけるFCIの挙動が大きく影響される結果となった。 ただし、基本ケースの機械的エネルギー約2.6MJ、プラグ下面圧力の最大値約1.03MPa に対して、パラメータ解析ケースの中で最大となった値は、それぞれ約2.9MJ、約 1.35MPaであり、遷移過程におけるエネルギー発生の不確かさ影響評価ケースの約 3.4MJ、約1.8MPaを超えない。

No. 262 UTOPにおけるFCIの不確かさの影響評価について、保守的な評価として、最も影響が大きいものを評価していることを説明すること。 また、ULOFと同様に、制御棒下部案内管2カ所でFCIを同時に発生させた場合には、燃料の凝集を阻害するとのことであるが、当該評価の結果についても説明すること。

UTOPの格納容器破損防止措置の有効性評価 遷移過程の解析手法及び解析体系

- 1. 計算コード SIMMER-IV
- 2. 基本ケース解析体系の概要

3次元直交座標(流体力学メッシュ:21×19×67) で全炉心の崩壊挙動を解析する。

鉛直方向は低圧プレナムからカバーガス領域までを、 径方向は内側炉心から遮へい集合体までをモデル化す る。

S | MMER-IV計算体系: 炉心鉛直断面図

● 基本ケースでは約71.2sの水平断面図左下(青丸)炉心下部のFCIで吹き上げられた炉心物質が約71.6sの水平断面図上部の炉心下部で発生したFCIによって水平断面図右下の炉心下部に集中することで、即発臨界を超過した。

UTOPの格納容器破損防止措置の有効性評価 FCIの不確かさの影響評価(2/2)

71.73**秒**

ガス 構造材

ペレット液体燃料

液体スティール

スティール粒子 制御材粒子

燃料チャンク 燃料クラスト

キャビティー 制御棒

ナトリウム 燃料粒子

- 基本ケースでは約71.2sの水平断面 図左下(青丸)炉心下部のFCIで吹 き上げられた炉心物質が約71.6sの 水平断面図上部のFCIによって水平 断面図右下の炉心下部に集中する ことで、即発臨界を超過。
- この燃料集中を加速する水平断面 図左上(赤丸)の炉心下部で約 80atm程度のFCIを強制的に発生さ せる。時間は上図の矢印で示す 70.93~71.73sまで0.1s間隔とする。
- 水平断面図の左上(赤○)に右下 (黄○)も加えてFCIの同時2カ所 発生を仮定して炉心中心領域に燃 料を集中させるケースも実施した。

FCI 時刻(s)	1カ所FCI	2カ所FCI	
基本ケース	約 2, 820		
70. 93	約2,750	約3,300	
71. 03	約 2,950	_	
71. 13	約3,600	約3, 415	
71. 23	約2,840	約3,028	
71. 33	約3,410	-	
71. 43	約2,830	約3,030	
71. 53	約3,060	約3,090	
71. 63	約3, 190	_	
71. 73	約2,750	約3,030	
不確かさの影響評 価ケース(燃料ス ロッシング)	約 4, 300		

- No. 280 炉心損傷過程における燃料崩落後の現実的な燃料粒子径及びSIMMER における燃料粒子径の設定、並びに燃料粒子径の分布等が即発臨界 超過に与える影響を説明すること。また、燃料粒子径が燃料の流動 に与える影響についても定量的に説明すること。
- No. 281 炉心損傷過程における燃料の崩落の過程について、SIMMERでどのように扱っているのか、崩落する燃料の質量と速度等の挙動を定量的に説明すること。また、不確かさケース1、2の両者についても定量的に説明すること。
- No. 282 燃料の崩落による反応度挿入とスロッシングによる反応度挿入を定 量的に説明すること。
- No. 283 不確かさケース1、2の両者において、最終的に全炉心の何%がス ロッシングに寄与しているのか定量的に説明すること。
- No. 285 第403回審査会合の機械的応答過程解析の初期スティール質量は、 約300kgとなっているが、最終的な即発臨界超過に至るまでの炉心に おけるスティール質量の変化についても説明すること。

燃料粒子(ペレット)の落下挙動

- ■「常陽」はほぼ全炉心でボイド反応度が負であるため、損傷領域の拡大の過程では冷却材が沸騰しても炉出力が増加せず、炉心の損傷進展が緩慢となる。
- このため、燃料の損傷は冷却材の沸騰とドライアウトに続いて被覆管が溶融した後に、燃料ペレットが落下する。流路に放出された燃料ペレットは未破損の燃料 ピン束の上にデブリベッド状に堆積して、その間隙を溶融スティールが満たす。 堆積する際の空隙率の最小値は30%としている。
- ■「常陽」の遷移過程解析では出力過渡による固体クラッキングを想定し、被覆管溶融による燃料ピン破損時に燃料ペレットが直径1mmに割れるとの想定を用いている。また、燃料ペレットのほとんどは即発臨界超過による出力逸走の直前までほぼ未溶融のままである。
- 被覆管溶融によって破損した直後の燃料は、その位置の周囲の流体の流速、圧力 勾配、構造との摩擦、及び重力に従って運動を始める*1。

*1: 沸騰領域拡大後に燃料ピンが緩慢に崩壊する「常陽」では、沸騰拡大後の燃料崩壊前にプレナムガスが放 出されてしまうため、プレナムガス圧駆動による加速は生じない。

燃料粒子(ペレット)の落下挙動

■ 不確かさ影響評価ケース2(燃料スロッシング)

燃料粒子(ペレット)の落下挙動の反応度変化への影響

- SIMMERコードでは、空間依存動特性モデルによって炉心全体の物質と温度の空間 分布から反応度変化を求めている。個々の燃料の挙動による反応度を分離して評 価することは難しい。
- 「常陽」の遷移過程において初期の数十秒間は被覆管の溶融によって破損した燃料ピンの燃料ペレットが炉心下部へ凝集する一方で、他所では局所的なFCIやFP ガス圧の発生で多次元的な流動が生起されている。この過程でのこれらの燃料の 動きを反映した空間依存動特性モデルによって計算された反応度挿入率は高々数 \$/s程度である。
- 一方、遷移過程における放出エネルギーは炉心物質全体のスロッシングによる燃料集中に支配される。SIMMERによる「常陽」遷移過程解析では、燃料ペレットと溶融スティールからなる炉心物質の粘性を粒径分布や粒子の体積率にかかわらずゼロとして、スロッシングによる燃料集中を保守的に解析しているため、粒径分布が炉心物質の流動性すなわちスロッシングによる放出エネルギーに与える影響は無い。

■基本ケース(不確かさ影響評価ケース1)、不確かさ影響評価ケース2について 遷移過程における燃料成分の質量の時間変化を示す。

※ケース2の遷移過程解析開始時点における炉心内燃料質量が基本ケース(ケース1)に比べて多いのは、制御 棒下部案内管を燃料集合体に置き換えているためである。

1200

1000

200

0

93

93.5

94

時間(s)

94.5

95

95.5

基本ケース(不確かさ影響評価ケース1)

不確かさ影響評価ケース2

■ペレット

燃料粒子

クラスト

■蒸気

■ 溶融燃料

■燃料チャンク

全炉心スティール量の時間変化およびその要因

■ 基本ケース(不確かさ影響評価ケース1)、不確かさ影響評価ケース2について 遷移過程における炉心から周囲構造へのスティール流出量の時間変化を示す。 ※ケース2では制御棒下部案内管を燃料集合体に置き換えているため、初期のスティール量が少なくなっている。

■ 遷移過程で炉心損傷が進展するとともに、炉心の上下へスティールが移行していくが、これは下図に示すように炉心内で溶融したスティールが重力およびナトリウム蒸気の流れなどによって炉心上下のピン束へ浸入して固化するためである。

No. 257 炉心物質の粘性を考慮した場合のSIMMERによる事象推移の解析結果 を説明すること。

「常陽」ULOF遷移過程基本ケースの炉心状態

- 常陽」は、ほぼ全炉心でボイド反応度が負で あるため、損傷領域の拡大の過程で原子炉出 力が増加せず、炉心の損傷進展が緩慢となる。
- 全炉心規模に損傷が拡大する遷移過程においても、最後の即発臨界超過による出力逸走の 直前まで炉心は固体の燃料粒子のデブリベッドの間隙を溶融したスティールが占め、固体 粒子の体積割合は約0.8前後である。
- この様な炉心物質の実効的な粘性は、極めて 大きく(下図)、現実には炉心物質はほとん ど流動できない。

「常陽」ULOF遷移過程の現実的な事象推移

No. 284 最終的な即発臨界超過に至るまでの挙動に関して、燃料物質の発熱 密度等で説明されてきたが、液面の変化や燃料物質の凝集等を物理 的、視覚的に図示して説明すること。

ULOFの格納容器破損防止措置の有効性評価 ー基本ケースにおける即発臨界超過挙動-

ULOFの格納容器破損防止措置の有効性評価 ー基本ケースにおける即発臨界超過挙動ー

90 —反応度(\$) (5) 即発臨界超過直前(131.9s)までの燃料の発熱密 1 60 ---反応度挿入率 (\$/s) 反応度挿入率 (\$/s) 4 2 度の空間分布の時間変化を示す。 30 0 $(\mathbf{1})$ (\$) (3) 反応度(0 ■ 燃料が全体として水平断面左下から右上へ移動し、 -2 -30 揺れ戻って再度左下に集中した時点で即発臨界を -3 -60 超過する。 -90 131.2 131.4 131.6 131.8 131 132 **1**131.3s **3**131.6s **2**131.4s **4**131.8s **(5)131.9s** 11 3F 1F 1F 11 17 11 11 46 1F 1 11 TF TF TF 11 11 11 11 45 11 1 11 1F 1F 1F 11 11 11 11 11 11 11 -direction ガス 構造材 <u>na tha anna</u> ngonnanan ペレット 10 11 12 13 14 15 x-direction 液体燃料 液体スティール ナトリウム 燃料粒子 スティール粒子 制御材粒子

> 10 11 12 13 14 x-direction

10 11 12 13 14

燃料チャンク 燃料クラスト キャビティー

制御棒

ULOFの格納容器破損防止措置の有効性評価 ー基本ケースにおける即発臨界超過挙動-

- 即発臨界超過直前(131.9s)までの燃料の発熱密 度の空間分布の時間変化を示す。
- 燃料が全体として水平断面左下から右上へ移動し、 揺れ戻って再度左下に集中した時点で即発臨界を 超過する。

8 9 10 11 12 13 14 15 x-direction

1131. 3s

2131.4s

9 10 11 12 13 14 -direction DOWX

9 10 11 12 13 14 1 x-direction IXM9X

	ゴス
00022 [1447319] IK(J=28)	構造材
	ペレット
	液体燃料
	液体スティール
	が判断了
	2007年4月11日
	スティール粒子
	制御材粒子
	燃料チャンク
	燃料クラスト
9 10 11 12 13 14 15 16 x-direction	キャビティー

制御棒

x-direction IKMAK

• •

. .

6

ULOFの格納容器破損防止措置の有効性評価 ー基本ケースにおける即発臨界超過挙動-

90 (5) ——反応度(\$) **即発臨界超過直前**(131.9s)までの燃料の発熱密 1 60 ---反応度挿入率 (\$/s) 00 200⁻0 反応度挿入率 (\$/s) 4 2 度の空間分布の時間変化を示す。 0 1 反応度(\$) ■ 燃料が全体として水平断面左下から右上へ移動し、 -2 揺れ戻って再度左下に集中した時点で即発臨界を -3 -60 超過する。 -90 131.2 131.8 131 131.4 131.6 132 間 (s) 77F 1131. 3s **2131.4s 3**131.6s **4**131.8s (5)131.9s 11 11 11 17 17 11 17 in in an ir ir in an ' n n in ar ir ar a ar - in a 11 11 11 11 11 11 **17 * 11** 11 1 11 11 11 11 11 11 **1**7 10 11 12 y-direction JKMAK ug 11 12 y-direction JKMAK 10 11 12 13 y-direction JOMAX y-direction 10 11 12 y=direction JKMAK ガス 構造材 NNANJI ペレット 11111.1 161151 AAAAAAA 液体燃料 8 9 10 11 12 13 14 15 × direction 液体スティール ナトリウム 燃料粒子 11 II II II IF 🛓 🛈 100 million av 🕇 (86) 101 w w w 1 W II W II W 🕇 🕅 スティール粒子 制御材粒子 燃料チャンク

u-direction

40

燃料クラスト

キャビティー 制御棒

No. 259 燃料凝集率と反応度挿入率の評価に関して、燃料物質の分布等を踏まえた定量的な評価について説明すること。

■ 燃料凝集量(Coagulation)

$$C = \frac{R_{C0}}{R_c} \quad R_c = \int_{core} \overline{\rho}_f |\vec{r}_G| dV \Big/ \int_{core} \overline{\rho}_f dV$$

Cはcoagulation、 $\overline{\rho}_f$ は燃料の巨視的密度、 \hat{r}_G は重心からの位置ベクトル、 R_c は重心からの距離の燃料密度による重み付き平均、 R_{c0} は遷移過程解析開 始時点での R_c

■ 燃料凝集率

$$V_c = -\int_{core} \overline{\rho}_f \vec{e}_G \cdot \vec{v}_f dV \Big/ \int_{core} \overline{\rho}_f dV$$

 V_c は燃料凝集率、 $\overline{\rho}_f$ は燃料の巨視的密度、 \vec{e}_G は中性子束中心に向かう単位 ベクトル、 \vec{v}_f は燃料の流速ベクトル

■ 燃料凝集に寄与する燃料質量の割合

燃料凝集率を求める際に、各地点で中性子束中心に向かう流速が正である 燃料質量を全炉心について積算した値の炉心インベントリに対する割合を、 燃料凝集に寄与する燃料質量の割合とする。 燃料凝集量の評価

不確かさの影響評価ケース1 (FCI)

燃料凝集率の評価

不確かさの影響評価ケース1 (FCI)

即発臨界超過時の各物理量

ケース	燃料凝集量の時 間変化率	燃料凝集率	凝集に寄与す る燃料質量の 割合	反応度挿入率	炉心平均燃料 温度の最高値
基本	約 0.15(1/s)	約 0.084 (m/s)	給 了32%	約 30\$/s	約3, 700℃
不確かさの影響 評価ケース1 (FCIの不確か さ)	約0.27(1/s)	約 0.136 (m/s)	約43%	約 50\$/s	約 4, 070℃
不確かさの影響 評価ケース2 (燃料スロッシ ング挙動)	約0.30(1/s)	約 0. 162 (m/s)	給 955%	約 80\$/s	約 5, 110℃

- 燃料の重心からの距離を燃料の巨視的密度分布で重み付き平均した値の初期値からの変化割合の逆数として燃料の凝集量(Coagulation)の時間変化率、燃料凝集率及び凝集に寄与する燃料 質量の割合を評価し、SIMMERによるULOF(i)遷移過程解析の基本ケースと不確かさの 影響評価ケース1及び2を対象として即発臨界を超過する際の反応度挿入率と比較した。
- これらの物理量と反応度挿入率の増減の傾向は定性的に整合することから、即発臨界を超過する状態での反応度の挿入は、主に燃料の凝集によるものであることが確認された。