2. 基本方針

2.1 位置

飛来物防護ネット架構の設置位置を第2.1-1図に示す。

第2.1-1図 飛来物防護ネット架構の設置位置

2.2 構造概要

飛来物防護ネット架構は、添付書類「VI-1-1-1-2-4-2 竜 巻防護対策設備の強度計算の方針」の「2.4 構造設計」にて設定している 構造計画を踏まえた構造とする。飛来物防護ネット架構の全景を第 2.2-1 図に、杭伏図及び概略平面図を第 2.2-2 図に、概略側面図を第 2.2-3 図に 示す。

飛来物防護ネット架構は、竜巻防護対象施設である安全冷却水 B 冷却塔 (以下、「冷却塔」という。)を竜巻による飛来物から防護するために防 護ネット、防護板で覆うものであり、上部構造は、防護ネット、防護板と それを支える支持架構によって構成される。また、上部架構は、柱、大梁、 小梁、トラス柱、鉛直ブレース及び水平ブレースからなるフレーム及び座 屈拘束ブレースによって構成され、平面は、■■■ m(NS 方向)×■■■ m(EW 方 向)であり、地上高さは、■■■ m である。

基礎は,基礎梁及び杭によって構成され,基礎梁は厚さ2.5mの鉄筋コン クリート造であり,支持地盤である鷹架層に場所打ちコンクリート杭(外径 1.0及び1.5m,杭長17m,113本,以下「杭」という。)を介して設置して いる。また,液状化対策として建屋下部の支持地盤以浅の地盤はセメント 系の地盤改良を実施している。

なお, 飛来物防護ネット架構は防護対象となる冷却塔と構造的に分離している。

第2.2-1図 飛来物防護ネット架構の全景

(杭伏図)

(概略平面図)

(単位:mm)

第2.2-2図 飛来物防護ネット架構の杭伏図及び概略平面図

第2.2-3 図 飛来物防護ネット架構の概略側面図

2.3 解析方針

飛来物防護ネット架構の地震応答解析は,添付書類「IV-1-1-5 地震応 答解析の基本方針」に基づいて行う。

第2.3-1図に飛来物防護ネット架構の地震応答解析フローを示す。

地震応答解析は、「3.1 地震応答解析に用いる地震動」及び「3.2 地 震応答解析モデル」において設定した地震応答解析モデルに基づき、「3.3 入力地震動」において設定した入力地震動を用いて実施することとし、「3.4 解析方法」、「3.5 解析条件」及び「3.6 材料物性のばらつき」に基づ き、「4. 解析結果」においては、上部構造、基礎、杭の設計に係る各種 応答値を算出する。

第2.3-1図 飛来物防護ネット架構の地震応答解析フロー

- 2.4 適用規格・基準等
 地震応答解析において適用する規格・基準等を以下に示す。
 - ・建築基準法・同施行令
 - 日本産業規格
 - ・鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築学会,1999)
 - ·建築基礎構造設計指針((社)日本建築学会, 2001改定)
 - ・原子力発電所耐震設計技術指針 JEAG 4601-1987((社)日本電気協会)(以下,「JEAG 4601-1987」という。)
 - ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG 4601・ 補-1984((社)日本電気協会)
 - ・原子力発電所耐震設計技術指針 JEAG 4601-1991 追補版((社)日本電気協会)(以下,「JEAG 4601-1991 追補版」という。)

3. 解析方法

3.1 地震応答解析に用いる地震動

地震応答解析に用いる地震動は,添付書類「Ⅳ-1-1-1 基準地震動 Ss及び弾性設計用地震動 Sd の概要」に示す解放基盤表面レベルで定義された 基準地震動 Ss とする。

基準地震動 Ss の時刻歴加速度波形を第 3.1-1 図~第 3.1-10 図に,加速 度応答スペクトルを第 3.1-11 図~第 3.1-15 図に示す。

なお、本解析においては、水平及び鉛直を同時入力する方針としている が、基準地震動 Ss-C4 は水平方向のみの地震動であるため、工学的に水平 方向の地震動から設定した鉛直方向の評価用地震動(以下、「一関東評価用 地震動(鉛直)」という。)を用いた地震応答解析を実施する。

注記:「H」は水平方向,「V」は鉛直方向を示す。

第3.1-1図 基準地震動 Ss の時刻歴加速度波形

時間(s) (4)Ss-B1(EW)

時間(s) (7)Ss-B2(EW)

第 3.1-3 図 基準地震動 Ss の時刻歴加速度波形

時間(s) (10)Ss-B3(EW)

第 3.1-4 図 基準地震動 Ss の時刻歴加速度波形

414

時間(s) (13)Ss-B4(EW)

第 3.1-5 図 基準地震動 Ss の時刻歴加速度波形

時間(s) (16)Ss-B5(EW)

第 3.1-6 図 基準地震動 Ss の時刻歴加速度波形

416

第 3.1-7 図 基準地震動 Ss の時刻歴加速度波形

(21) Ss-C2 (EW)

第 3.1-8 図 基準地震動 Ss の時刻歴加速度波形

418

(24) Ss-C3 (EW)

第 3.1-9 図 基準地震動 Ss の時刻歴加速度波形

 $(26) S_{s}-C4 (NS)$

時間(秒)

(27)Ss-C4(EW)

(28)一関東評価用地震動(鉛直)

第3.1-10図 基準地震動 Ss の時刻歴加速度波形

第3.1-11図 基準地震動 Ss の加速度応答スペクトル

第3.1-12図 基準地震動 Ss の加速度応答スペクトル

第3.1-13図 基準地震動 Ss の加速度応答スペクトル

第3.1-14図 基準地震動 Ss の加速度応答スペクトル

第3.1-15図 基準地震動 Ss の加速度応答スペクトル

3.2 地震応答解析モデル

地震応答解析モデルは,添付書類「Ⅳ-1-1-5 地震応答解析の基本方針」 に基づき,全応力解析及び有効応力解析それぞれについて設定する。地震 応答解析モデルの設定に用いた使用材料の物性値を第3.2-1表に示す。

		ヤング	せん断	減衰	
	(古田 + + + 火)	係数	弹性係数	定数	儘 去
고 이미	区历内科	Е	G	h	加州
		(N/mm^2)	(N/mm^2)	(%)	
	鉄骨	$2.05 \times$	7.90×	0	
上立楼进	BCP325, G385, SN490B	10^{5}	10^{4}	2	_
上前件垣	座屈拘束ブレース	$2.05 \times$	7.90×	0	
		10^{5}	10^{4}	2	
	鉄筋コンクリート				
甘动	コンクリート:	2.27 \times	0.45×10^{3}	5	
至 诞 朱	Fc=24 (N/mm ²)	$1 0^{ 4}$	9.45 ~ 10	0	
	鉄筋:SD345				
	鉄筋コンクリート				
杭 *	コンクリート:	2.36 \times	0.99×10^{3}	F	
	$Fc=27 (N/mm^2)$	10^{4}	9.02×10^{-5}	Э	_
	鉄筋:SD345				

第3.2-1表 使用材料の物性値

*評価上,保守的な結果を得るため,解析モデルにおいて,杭はモデル化しない。

3.2.1 全応力解析モデル

全応力解析モデルは、地盤との相互作用を考慮した 2 次元 FEM モデルとする。

飛来物防護ネット架構の上部構造は,支持架構,防護ネット及び防護板 で構成され,上部架構は柱,大梁,小梁,トラス柱,鉛直ブレース及び水 平ブレースからなるフレーム及び座屈拘束ブレースから構成される。また, 支持架構により飛来物防護ネット架構を支持する構造である。

上部構造の解析モデルを第 3.2.1-1 図,解析モデルの諸元を第 3.2.1-1 表及び第 3.5.1-1表に示す。

冷却塔及び飛来物防護ネット架構の基礎上端より上部の構造は、質点系 でモデル化する。上部構造の奥行方向は、単位奥行 1m あたりの物性として モデル化する。すなわち、冷却塔及び飛来物防護ネット架構の上部構造の 重量・剛性を、それぞれの基礎面積で規準化し、解析モデルで考慮してい る単位奥行 1m あたりの基礎面積比で係数倍してモデル化する。

上部構造のモデル化においては,線形平面要素でモデル化された基礎上 端に剛梁を配置し,質点系モデルの脚部と結合させる。また,水平・鉛直 同時入力である有効応力解析に対応した質点系モデルを構築する。

質点は節点集中質量要素,柱・梁及びフレーム部分には線形はり要素, 座屈拘束ブレース部分には非線形ばね要素を用いてモデル化する。

地盤は水平成層地盤とし、境界条件が地盤及び飛来物防護ネット架構の 応答に影響を及ぼさないよう十分に広い領域となるようモデル幅は評価対 象施設の5倍以上、モデル高さを評価対象施設の2倍以上とする。地盤定 数は初期地盤の物性値、せん断弾性係数及び減衰定数のひずみ依存特性を 用いた一次元波動論で得られる等価地盤物性値とする。ここで、初期地盤 の地層区分、層厚及び減衰定数については、冷却塔にて設定した直下地盤 物性値を用いる。また、改良地盤の初期地盤物性値及びひずみ依存特性は、 第3.2.1-2表~第3.2.1-5表及び第3.2.1-2図~第3.2.1-4図のとおり設 定する。

全応力解析モデルを第3.2.1-5図に示す。

飛来物防護ネット架構基礎の物性値を第3.2.1-6表に示す。

節点1と節点6のX方向並進自由度を互いに拘束(1)質点系モデル図 (NS断面)

(2) 質点系モデル(EW断面)

第 3.2.1-1 図 上部構造の解析モデル

第 3.2.1-1 表 上部構造の解析モデル諸元 (1)NS 断面

節点	位置		質量要素		梁要素	高さ	せん断	断面積	断面2次	有効せん断
	T.M.S.L	水平	鉛直	回転			剛性		モーメント	面積率
						н	G	A	I	EFA
	(m)	(t)	(t)	(t • m²)		(m)	(kN/m^2)	(m ²)	(m ⁴)	(As/A)
6	75.6	1.000E-06	40.64407	0.00000	-	-	-	-	-	-
					-	-	-	-	-	-
1	75.6	48.54333	24.27167	4455.99445						
					11	4.5	7.900E+07	9.071E-02	1.324E+04	1.978E-02
2	71.1	32.74481	16.37240	4455.99445						
					21	5.5	7.900E+07	9.336E-02	1.324E+04	8.723E-03
3	65.6	17.75646	17.75646	0.00000						
					31	5.0	7.900E+07	9.071E-02	1.324E+04	9.051E-03
4	60.6	20.32204	20.32204	0.00000						
					41	5.3	7.900E+07	9.468E-02	1.324E+04	1.217E-02
5	55.3	-	-	-						
					-	-	-	-	-	-
合	計	119.36664	119.36664	-						

※:節点6は,水平自由度を MPC 拘束するために,水平方向に微小質量を定義 ※:ポアソン比は 0.3

(2)EW 断面

節点	位置		質量要素		梁要素	高さ	せん断	断面積	断面2次	有効せん断
	T.M.S.L	水平	鉛直	回転			剛性		モーメント	面積率
						Н	G	А	I	EFA
	(m)	(t)	(t)	(t • m²)		(m)	(kN/m^2)	(m ²)	(m ⁴)	(As/A)
6	75.6	1.000E-06	48.13654	0.00000	-	-	-	-	-	-
					-	-	-	-	-	-
1	75.6	57.49198	28.74599	7604.29372						
					11	4.5	7.900E+07	1.074E-01	1.568E+04	1.781E-02
2	71.1	38.78110	19.39055	7604.29372						
					21	5.5	7.900E+07	1.106E-01	1.568E+04	8.085E-03
3	65.6	21.02975	21.02975	0.00000						
					31	5.0	7.900E+07	1.074E-01	1.568E+04	7.810E-03
4	60.6	24.06827	24.06827	0.00000						
					41	5.3	7.900E+07	1.121E-01	1.568E+04	1.140E-02
5	55.3	-	-	-						
					-	-	-	-	-	-
合	計	141.37110	141.37110	-						

※:節点6は,水平自由度を MPC 拘束するために,水平方向に微小質量を定義 ※:ポアソン比は 0.3

(3) 剛梁の諸元(共通)

質量 密度	ポアソン 比	せん断 弾性係数	断面積	断面 2 次 モーメント	有効せん 断面積率	減衰
(g/cm^3)		(kN/m^2)	(m^{2})	(m^4)		
0.000	0.300	1.000×10^{10}	1.000×10^{0}	1.000×10^{5}	$1.000 imes 10^{\circ}$	5%

標 高 T.M.S.L. [m]	単位体積 重 量 γ _t [kN/m ³]	ポアソン比 V _d	せん断 弾性係数 G (x10 ³ [kN/m ²])	剛性 低下率 G/G ₀ -γ [%]	減衰定数 h-γ [%]
	*1	*1	*1	*	1
37.0	18.34	0.427	865	*	2
36.63 — 9.02 —	18.34	0.427	865	*	3
-25.57	18.14	0.365	1,635	*	3
解放基盤表面 ▼-70.0	16.87	0.393	1,073	*	4
	16.87	0.393	1,073	*	5

第3.2.1-2表 直下地盤の物性値(基本ケース)

*1: T.M.S.L. 37.0 [m] 以浅の改良地盤部は,直下の物性値を採用

*2:第3.2.1-2図に示す粗粒砂岩のひずみ依存特性を設定

*3:第3.2.1-3図に示す細粒砂岩のひずみ依存特性を設定

*4: 第 3.2.1-4 図に示す泥岩(下部層)のひずみ依存特性を設定

*5:解放基盤以深の減衰定数については,泥岩(下部層)の h-γ 曲線におけ る下限値を設定

第 3.2.1-2 図 粗粒砂岩のひずみ依存特性

第 3.2.1-3 図 細粒砂岩のひずみ依存特性

$G/G_0 - \gamma$	$h-\gamma$	備考	
$G/G_0 = \frac{1}{1 + 0.904\gamma^{0.933}}$	$h = \frac{\gamma}{0.412\gamma + 0.0752} + 1.25$	h、γは%の値	

第 3.2.1-4 図 泥岩(下部層)のひずみ依存特性

項目	記号	設定値	単 位	
質量密度*	Q	1.82+0.0028D	g/cm^3	
間 隙 率	п	0.46	-	
基準拘束圧	σ' _{ma}	52.3	kN/m^2	
せん断弾性係数の依存係数	m_G	0.703	_	
基準拘束圧におけるせん断弾	C	1.957×10^{5}	1-N / m 2	
性係数	G _{ma}	1.257×10	KIN/III	
体積弾性係数の依存係数	m_K	0.703	_	
基準拘束圧における体積弾性	V	2.979×10^{5}	$1 \text{ N} / \text{m}^2$	
係数	Λ_{ma}	5.278 ~ 10	KIN/III	
ポアソン比	ν	0.33	-	
粘着力	Cu'	0.000×10^{0}	kN/m^2	
内部摩擦角	Φ_{u}'	39.7	度	
履歷減衰上限值	h _{max}	0.171	-	

第3.2.1-3表 埋戻土の物性値(基本ケース)

※密度は小数第三位(小数第四位以下を四捨五入)で整理.D:深度(m) とし,要素中心深度とする。

第 3.2.1-4 表	埋戻土の物性値(+1)	σ)
-------------	-------------	----

項目	記号	設定値	単 位	
質量密度**	ρ	1.82+0.0028D	g/cm^3	
間 隙 率	п	0.46	_	
基準拘束圧	σ'_{ma}	52.3	kN/m^2	
せん断弾性係数の依存係数	m_G	0.703	_	
基準拘束圧におけるせん断弾	C	1.922×10^{5}	$l_r N / m^2$	
性係数	Uma	1.033 \ 10	KIN7 III	
体積弾性係数の依存係数	m_K	0.703	_	
基準拘束圧における体積弾性	K	4.780×10^{5}	$lz N / m^2$	
係数	n _{ma}	4. 100 × 10	KIV/III	
ポアソン比	ν	0.33	-	
粘着力	Cu'	0.000×10^{0}	kN/m^2	
内部摩擦角	Φ_{u} '	39.7	度	
履歴減衰上限値	h _{max}	0.171	-	

※密度は小数第三位(小数第四位以下を四捨五入)で整理.D:深度(m) とし,要素中心深度とする。

項目	記号	設定値	単 位	
質量密度*	ρ	1.82+0.0028D	g/cm^3	
間 隙 率	п	0.46	-	
基準拘束圧	σ'_{ma}	52.3	kN/m^2	
せん断弾性係数の依存係数	m_G	0.703	_	
基準拘束圧におけるせん断弾	C	0 C01 × 104	1-N / 2	
性係数	G_{ma}	8. 621 × 10 ⁻¹	KIN/ III	
体積弾性係数の依存係数	m_K	0.703	-	
基準拘束圧における体積弾性	V	2.248×10^{5}	$l_r N / m^2$	
係数	Λ_{ma}	2.248 ~ 10	KIN/ III	
ポアソン比	ν	0.33	-	
粘着力	Cu'	0.000×10^{0}	kN/m^2	
内部摩擦角	Фи'	39.7	度	
履歴減衰上限値	h_{max}	0.171	-	

第 3.2.1-5 表 埋戻土の物性値(-1 σ)

※密度は小数第三位(小数第四位以下を四捨五入)で整理. D: 深度(m) とし, 要素中心深度とする。

 $200.\ 000\ \mathrm{m}$

⁽NS 断面)

(EW 断面)第 3.2.1-5 図 全応力解析モデル図

材料	質量密度 (g/cm ³)	動ポアソン比	ヤング係数 (kN/m ²)
飛来物防護ネット架構基礎	2.861	0.200	2.267 \times 10 ⁷

第3.2.1-6表 飛来物防護ネット架構基礎の物性値
3.2.2 有効応力解析モデル

有効応力解析モデルは,原則,全応力解析モデルと同一とする。以下に 全応力解析モデルと異なる条件を示す。

有効応力解析に用いる解析用物性値を第 3.2.2-1 表~第 3.2.2-3 表に, 液状化抵抗曲線を第 3.2.2-1 図に示す。

土の応力-ひずみモデルとして多重せん断モデルを,ひずみ依存特性として双曲線(修正 Hardin-Drnevich)型モデルを採用し,液状化対象層のダイレイタンシー特性には井合モデルを採用する。解析領域の境界部においては,側面に地盤の液状化を考慮するための粘性境界を,底面に半無限性を考慮するための粘性境界を設ける。

地下水位の設定は地表面とする。

項	目	記号	設定値	単 位
質量	密度 ※	ρ	1.82+0.0028D	g/cm ³
間降	<u></u> 泉率	п	0.46	-
基準持	向東圧	σ'_{ma}	52.3	kN/m ²
せん断弾性係	数の依存係数	m _G	0.703	-
基準拘束圧におけ	るせん断弾性係数	Gma	1.257×10^{5}	kN/m ²
体積弾性係数	数の依存係数	m_K	0.703	-
基準拘束圧におい	ける体積弾性係数	K _{ma}	3.278×10^{5}	kN/m ²
ポアン	ノン比	v	0.33	-
粘素	皆力	Cu'	0.000×10^{0}	kN/m ²
内部圍	擎擦角	Фu'	39.7	度
履歴減ま	衰上限值	h _{max}	0.171	-
	変相角	Φ_p	34.0	度
		<i>W</i> 1	10.30	-
液状化特性	液状化	p_1	0.5	-
	パラメータ	<i>p</i> ₂	1.0	-
		c_1	1.81	-
		S_I	0.005	-

第3.2.2-1表 解析用物性値(有効応力解析) (基本ケース)

※密度は小数第三位(小数第四位以下を四捨五入)で整理.D:深度(m) とし,要素中心深度とする。

第	3.2.	2 - 2	表	解析	用物	性値	(有)	劾応	力解	析)

 $(+1 \sigma)$

項目		記号	設定値	単 位
質量	密度 *	ρ	1.82+0.0028D	g/cm ³
間降	<u></u> 泉率	п	0.46	-
基準持	向束圧	σ'_{ma}	52.3	kN/m ²
せん断弾性係	数の依存係数	m_G	0.703	-
基準拘束圧におけ	るせん断弾性係数	G _{ma}	1.833×10^{5}	kN/m ²
体積弾性係数	数の依存係数	m_K	0.703	-
基準拘束圧におけ	ける体積弾性係数	K_{ma}	4.780×10^{5}	kN/m ²
ポアソン比		ν	0.33	-
米占利	盲力	Cu'	0.000×10^{0}	kN/m ²
内部層	摩擦角	Φu '	39.7	度
履歷減す	衰上限值	h _{max}	0.171	-
	変相角	Φ_p	34.0	度
		<i>w</i> ₁	10.30	-
液状化特性	液状化	p_1	0.5	-
	パラメータ	p_2	1.0	-
		c_1	1.81	-
		S_{I}	0.005	-

※密度は小数第三位(小数第四位以下を四捨五入)で整理.D:深度(m) とし,要素中心深度とする。

第 3.2.2-3 表	解析用物性值(有効応力解析)
	(-1 σ)

項目		記号	設定値	単 位
質量	密度 *	ρ	1.82+0.0028D	g/cm ³
間降	 (本	п	0.46	-
基準持	向束圧	σ'_{ma}	52.3	kN/m ²
せん断弾性係	数の依存係数	m_G	0.703	-
基準拘束圧におけ	るせん断弾性係数	G_{ma}	8.621×10^4	kN/m ²
体積弾性係数	数の依存係数	m_K	0.703	-
基準拘束圧におい	ける体積弾性係数	K _{ma}	2.248×10^{5}	kN/m ²
ポアン	ノン比	ν	0.33	-
粘素	 昏力	Cu'	0.000×10^{0}	kN/m ²
内部圍	肇擦角	Фu'	39.7	度
履歴減ま	表上限值	h _{max}	0.171	-
	変相角	Φ_p	34.0	度
		WI	10.30	-
液状化特性	液状化	p_I	0.5	-
	パラメータ	p_2	1.0	-
		c_1	1.81	-
		S_{I}	0.005	-

※密度は小数第三位(小数第四位以下を四捨五入)で整理.D:深度(m) とし,要素中心深度とする。

3.3 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面レベルに想定する基準地震動 Ss とする。地震応答解析は,解析モデル下端レベル(T.M.S.L.-70m)に入力地震動を水平方向及び鉛直方向にそれぞれ入力することで実施する。地震応答解析モデルに入力する地震動の概念図を第 3.3-1 図に示す。

第3.3-1図 地震応答解析モデルに入力する地震動の概念図

3.4 解析方法

飛来物防護ネット架構の地震応答解析は、全応力解析及び有効応力解析 ともに、解析コード「FLIP ROSE Ver7.4.1」を用いる。

全応力解析及び有効応力解析は、添付書類「W-1-1-5 地震応答解析の 基本方針」に記載の解析方法に基づき、時刻歴応答解析により実施する。

なお,解析コードの検証及び妥当性の確認等の概要については,添付書 類「Ⅳ-3 計算機プログラム(解析コード)の概要」に示す。

3.5 解析条件

3.5.1 復元力特性

座屈拘束ブレースに作用する応力-変形関係は,特性確認試験結果をもと にバイリニア型スケルトン曲線とする。

座屈拘束ブレースに作用する応力-変形関係を第3.5.1-1図に示す。

座屈拘束ブレースに作用する応力-変形関係の履歴特性は特性確認試験 結果をもとにノーマルバイリニアスケルトン曲線とする。

座屈拘束ブレースに作用する応力-変形関係の履歴特性を第 3.5.1-2 図 に示す。

座屈拘束ブレースの非線形ばね要素諸元を第3.5.1-1表に示す。

第3.5.1-1図 応力-変形関係(座屈拘束ブレース)

第1剛性(弾性剛性)

②:正側第2剛性

③:負側第2剛性

④:正側第2剛性からの戻りの弾性剛性。2·Q1戻ると③に移る。

⑤:負側第2剛性からの戻りの弾性剛性。2·Q1戻ると②に移る。

第3.5.1-2図 応力-変形関係の履歴特性(座屈拘束ブレース)

第 3.5.1-1 表	非線形ばね要素諸元
(1) NS	断面

節点	位置	ばね要素	せん断	せん断		非線刑	/ばね要素パラ	メータ	
	T.M.S.L		断面積	剛性	降伏ひずみ	降伏変形量	降伏せん断力	2次勾配倍率	2次剛性
			As	Kh	γу	δу	Qу	α1	K1
	(m)		(m ²)	(kN/m)		(m)	(kN)		
6	75.6								
		61	-	2.684E+04	-	-	-	-	-
1	75.6								
		-	-	-	-	-	-	-	-
2	71.1								
		121	3.77E-03	5.411E+04	0.00137	0.007535	407.7381	0.001	5.411E+01
3	65.6								
		131	6.15E-03	9.718E+04	0.00137	0.006850	665.7095	0.001	9.718E+01
4	60.6								
		141	6.82E-03	1.017E+05	0.00137	0.007261	738.0848	0.001	1.017E+02
5	55.3								
合	·計								

(2) EW 断面

節点	位置	ばね要素	せん断	せん断		非線形ばね要素パラメータ			
	T.M.S.L		断面積	剛性	降伏ひずみ	降伏変形量	降伏せん断力	2次勾配倍率	2次剛性
			As	Kh	γу	δу	Qу	α1	K1
	(m)		(m ²)	(kN/m)		(m)	(kN)		
6	75.6								
		61	-	3.179E+04	-	-	-	-	-
1	75.6								
		-	-	-	-	-	-	-	-
2	71.1								
		121	4.46E-03	6.983E+04	0.00138	0.007590	530.0257	0.001	6.983E+01
3	65.6								
		131	7.28E-03	1.220E+05	0.00140	0.007000	854.2606	0.001	1.220E+02
4	60.6								
		141	8.08E-03	1.216E+05	0.00139	0.007367	895.5179	0.001	1.216E+02
5	55.3								
合	ì計								

3.6 材料物性のばらつき

解析においては、「3.2 地震応答解析モデル」に示す物性値及び定数を 基本ケースとし、材料物性のばらつきを考慮する。材料物性のばらつきを 考慮した地震応答解析は、建屋応答への影響の大きい地震動に対して実施 することとし、基本ケースの地震応答解析において応答値(加速度、変位、 せん断力、曲げモーメント及び軸力)が、各層において最大となっている地 震動に対して実施する。

材料物性のばらつきのうち,地盤物性のばらつきについては,支持地盤 及び埋戻土ともに敷地内のボーリング調査結果等に基づき,第3.2.1-3表 に示す地盤の物性値を基本とし,標準偏差±1σの変動幅を考慮する。第 3.6-1表及び第3.6-2表に設定した地盤の初期物性値を示す。

材料物性のばらつきを考慮する解析ケースを,第3.6-3表に示す。

標 高 T.M.S.L. [m]	単位体積 重 量 γ _t [kN/m ³]	ポアソン比 V _d	せん断 弾性係数 G (x10 ³ [kN/m ²])	剛性 低下率 G/G ₀ -γ [%]	減衰定数 h-y [%]		
	*1	*1	*1	*	1		
37.0	18.34	0.421	1,080	*	2		
36.63	18.34	0.421	1,080	*3			
9.02 -25.57	18.14	0.350	1,887	*3			
解放基盤表面 ▼-70.0	16.87	0.381	1,243	*	4		
	16.87	0.381	1,243	*	5		

第3.6-1表 地盤の初期物性値

(地盤物性のばらつきを考慮したケース(+1σ))

*1: T.M.S.L.37.0 [m]以浅の改良地盤部は, 直下の物性値を採用

*2:第3.2.1-2図に示す粗粒砂岩のひずみ依存特性を設定

*3:第3.2.1-3図に示す細粒砂岩のひずみ依存特性を設定

*4: 第3.2.1-4 図に示す泥岩(下部層)のひずみ依存特性を設定

*5:解放基盤以深の減衰定数については,泥岩(下部層)の h-γ 曲線におけ る下限値を設定

(地盤物性のばらつきを考慮したケース(-1σ))							
標 高 T.M.S.L. [m]	単位体積 重 量 γ _t [kN/m ³]	ポアソン比 V _d	せん断 弾性係数 G (x10 ³ [kN/m ²])	剛性 低下率 G/G ₀ -γ [%]	減衰定数 h-γ [%]		
_	*1	*1	*1	:	*1		
37.0	18.34	0.434	673	:	*2		
36.63	18.34	0.434	673	:	*3		
9.02 -25.57	18.14	0.380	1,400		*3		
解放基盤表面 ▼-70.0	16.87	0.404	917	*4			
_	16.87	0.404	917	:	*5		

第3.6-2表 地盤の初期物性値

*1:T.M.S.L.37.0 [m]以浅の改良地盤部は,直下の物性値を採用

*2: 第3.2.1-2 図に示す粗粒砂岩のひずみ依存特性を設定

*3:第3.2.1-3図に示す細粒砂岩のひずみ依存特性を設定

*4: 第3.2.1-4 図に示す泥岩(下部層)のひずみ依存特性を設定

*5:解放基盤以深の減衰定数については,泥岩(下層部)の h-γ 曲線におけ る下限値を設定

ケーフ			基準地震動		
No	地盤の物性値	解析ケース	Ss		
NO.			NS 方向	EW 方向	
0	第 3.2.1-2 表	基本ケース	全	波	
			Ss-A	Ss-A	
		世般物性の	Ss-B3	Ss-B3	
1	第 3.6-1 表	地 益 初 住 の ばらつきを考慮した	Ss-B4	Ss-B5	
1			Ss-C1	Ss-C1	
		ク ×(+10)	Ss-C2(EW)	Ss-C2(EW)	
			Ss-C4(EW)		
			Ss-A	Ss-A	
		地般物性の	Ss-B3	Ss-B3	
9	笛 3 6-9 表	地盆物にの	Ss-B4	Ss-B5	
2	77 5.0 2 12	はりつさを 与思しに	Ss-C1	Ss-C1	
		/ // 10/	Ss-C2(EW)	Ss-C2(EW)	
			Ss-C4(EW)		

第 3.6-3 表 材料物性のばらつきを考慮する解析ケース (全応力解析)

(有効応力解析)

ケーフ			基準力	也震動	
No	地盤の物性値	解析ケース	Ss		
NO.			NS 方向	EW 方向	
0	第 3. 2. 1-2 表	基本ケース	全	波	
1	第 3.6-1 表	地盤物性の ばらつきを考慮した ケース(+1g)	Ss-A Ss-B3 Ss-C1 Ss-C2 (NS)	Ss-A Ss-B2 Ss-B3 Ss-B5 Ss-C1 Ss-C2 (NS)	
2	第 3.6-2 表	地盤物性の ばらつきを考慮した ケース(-1σ)	Ss-A Ss-B3 Ss-C1 Ss-C2 (NS)	Ss-A Ss-B2 Ss-B3 Ss-B5 Ss-C1 Ss-C2 (NS)	

4. 解析結果

4.1 固有值解析結果

固有値解析結果(固有周期,固有振動数及び刺激係数)を第4.1-1表に示す。刺激関数図を第4.1-1図~第4.1-4図に示す。

なお、刺激係数は、各次の固有ベクトル(u)に対し、最大振幅が 1.0 となるように規準化した値を示す。

NS 方向								
次数 固有周期 固有 [s]		固有振動数 [Hz]	刺激係数	備考				
1	0.393	2.545	1.232	水平1次				
2	2 0.248 4.031		1.035	鉛直1次				
3	0.146	6.829	0.480	水平2次				
4	0.081	12.36	0.383	水平3次				
5	0.049	20.55	0.184	水平4次				
6	0.042	23.84	1.199	鉛直2次				
	EW 方向							
次数	固有周期 [s]	固有振動数 [Hz]	刺激係数	備考				
1	0.395	2.532	1.239	水平1次				
2	0.248	4.031	1.035	鉛直1次				
3	0.151	6.626	0.519	水平2次				
4	0.080	12.53	0.386	水平3次				
5	0.048	20.89	0.178	水平4次				
6	0.042	23.84	1.199	鉛直2次				

第4.1-1表 固有值解析結果(水平方向)

4.2 全応力解析

4.2.1 地盤の応答結果

全応力解析結果のうち,地盤の最大応答加速度及び最大応答せん断ひ ずみ分布を第4.2.1-1図~第4.2.1-8図に示す。なお,解析結果は代表 として Ss-A 及び Ss-C1 のみを示す。

また,改良地盤の最大平均変位(改良地盤下端(T.M.S.L.37.0m)からの 相対変位)を第4.2.1-9図及び第4.2.1-14図に示す。

第4.2.1-1図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, NS 断面, Ss-A, 全応力解析)

第4.2.1-2図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, NS 断面, Ss-C1, 全応力解析)

第4.2.1-3 図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, EW 断面, Ss-A, 全応力解析)

第4.2.1-4図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, EW 断面, Ss-C1, 全応力解析)

第4.2.1-5 図 地盤の最大せん断ひずみ分布 (基本ケース, NS 断面, Ss-A, 全応力解析)

第4.2.1-6 図 地盤の最大せん断ひずみ分布 (基本ケース, NS 断面, Ss-C1, 全応力解析)

第4.2.1-7図 地盤の最大せん断ひずみ分布 (基本ケース, EW断面, Ss-A, 全応力解析)

第4.2.1-8 図 地盤の最大せん断ひずみ分布 (基本ケース, EW 断面, Ss-C1, 全応力解析)

第 4.2.1-10 図 改良地盤の最大変位 (基本ケース, EW 断面, 全応力解析)

4.2.2 上部構造の応答結果

全応力解析結果のうち,上部構造の最大応答値(加速度,せん断,曲げ モーメント)を第4.2.2-1 図~第4.2.2-24 図に示し,座屈拘束ブレース の荷重-変形曲線図を第4.2.2-25 図~第4.2.2-30 図に示す。

				-		
(ga I)	Ss-C4_ew	1108	1048	1119	920	487
	Ss-C4_ns	1031	911	840	684	419
	Ss-C3_ew	1193	1013	1023	839	358
	Ss-C3_ns	1137	885	1015	662	335
	Ss-C2_y	974	869	827	564	366
	Ss-C2_x	921	691	545	414	296
	Ss-C1_h	1498	1467	1786	1160	754
	Ss-B5_ns	1219	1279	1161	930	403
	Ss-B4_ns	1074	932	1004	824	477
	Ss-B3_ns	1121	679	923	715	443
	Ss-B2_ns	1274	1032	1095	1096	469
	Ss-B1_ns	1084	1037	1134	850	362
	Ss-A_h	1281	1203	1258	1101	574

第4.5.5-1 図 最大応答加速度(基本ケース, NS 方向, 全応力解析)

(kN)	Ss-C4_ew	8025	10384	11140	13056
	Ss-C4_ns	7518	8390	9923	11813
	Ss-C3_ew	8650	1 0002	10806	12884
	Ss-C3_ns	8237	9823	10807	11894
	Ss-C2_y	7118	8351	103.74	11736
	Ss-C2_x	6717	7590	8030	8023
	Ss-C1_h	10602	14183	14493	14865
	Ss-B5_ns	8839	10221	11081	12965
	Ss-B4_ns	78.75	9596	9827	11621
	Ss-B3_ns	8291	9464	10348	11993
	Ss-B2_ns	9159	10943	10982	12705
	Ss-B1_ns	7960	9513	11259	1 269 6
	Ss-A_h	9165	12179	12174	13 000

第4.2.2-3 図 最大応答せん断力(基本ケース, NS 方向, 全応力解析)

Ss-C4_ew	5.77	33.68	37.94	87.99	87.99	143.64	143.64	207.51
Ss-C4_ns	6. 14	31.11	32. 41	78.05	78. 05	126.63	126. 63	185.61
Ss-C3_ew	3. 72	37.37	36. 83	87.44	87.44	140.37	140.37	201.86
Ss-C3_ns	6. 39	37.55	38. 04	90.39	90. 39	137.61	137. 61	189.62
Ss-C2_y	4. 33	32.51	32.99	73.35	73.35	121. 13	121. 13	183. 33
Ss-C2_x	3.91	31. 38	32. 53	73. 78	73. 78	113.53	113.53	155.52
Ss-C1_h	4. 15	48.08	48.60	114.04	114.04	176.86	176. 86	249.84
Ss-B5_ns	4.58	40.87	43.88	92.86	92.86	141.25	141. 25	200.28
Ss-B4_ns	4.75	35. 30	35. 48	83. 54	83. 54	131.40	131.40	184.66
Ss-B3_ns	5.92	37.04	37.55	81.13	81. 13	129.14	129. 14	187.70
Ss-B2_ns	4.80	40.27	40. 26	92.45	92. 45	144.72	144.72	201.26
Ss-B1_ns	5. 04	36.08	36. 33	85.36	85. 36	130.61	130. 61	196.84
Ss-A_h	7. 12	41.73	43.02	97.00	97.00	152.65	152. 65	216.78

最大応答曲げモーメント(基本ケース, NS 方向, 全応力解析) 第 4.2.2-4 図

(ga I)	Ss-C4_ew	1177	1059	1035	918	468
	Ss-C4_ns	1015	886	745	598	400
	Ss-C3_ew	1220	992	1219	963	368
	Ss-C3_ns	1101	780	934	614	320
	Ss-C2_y	931	973	774	536	355
	Ss-C2_x	849	662	490	395	248
	Ss-C1_h	1554	1500	2034	1284	719
	Ss-B5_ew	1368	1283	1 235	795	512
	Ss-B4_ew	1152	1101	1015	795	327
	Ss-B3_ew	1086	893	1054	858	427
	Ss-B2_ew	1186	272	825	736	465
	Ss-B1_ew	1105	883	1130	908	451
	Ss-A_h	1275	1233	1416	1126	534

第4.2.2-2 図 最大応答加速度(基本ケース, EW 方向, 全応力解析)

(kN)	Ss-C4_ew	8513	10575	11645	13289
	Ss-C4_ns	7430	8471	10200	11979
	Ss-C3_ew	8830	1 0640	11959	13377
	Ss-C3_ns	7988	10270	11553	13050
	Ss-C2_y	6760	8440	10423	11635
	Ss-C2_x	6171	7292	7450	7997
	Ss-C1_h	11 001	14132	14325	15043
	Ss-B5_ew	9947	11550	11963	13667
	Ss-B4_ew	82.42	10179	11398	13240
	Ss-B3_ew	7902	9467	10870	12442
	Ss-B2_ew	8669	9582	10454	11978
	Ss-B1_ew	8095	10249	11853	13255
	Ss-A_h	9169	11947	12366	13298

第4.2.2-7 図 最大応答せん断力(基本ケース, EW 方向, 全応力解析)
Ss-C4_ew	6.47	36. 51	40. 96 92. 46	92. 46 149. 56	149.56 217.60
Ss-C4_ns	6. 56	32.38	33.58 79.98	79.98	126.88
Ss-C3_ew	3. 97	38.02	40.53 94.77	94. 77 149. 77	149.77 218.12
Ss-C3_ns	7. 05	36. 79	38.84 93.37	93. 37 145. 22	145. 22 207. 94
Ss-C2_y	5.05	30. 33	33.88 75.09	75. 09 125. 42	125. 42 187. 08
Ss-C2_x	3.86	29. 79	31. 89 70. 96	70. 96	107.27
Ss-C1_h	3. 56	49.94	50.37	115.13 178.76	178. 76 252. 69
Ss-B5_ew	6. 72	43.31	42.07 94.93	94. 93 154. 75	154. 75 213. 64
Ss-B4_ew	5.48	35. 22	35. 79 85. 97	85. 97 140. 40	140.40 207.28
Ss-B3_ew	5. 84	35. 73	36.40 83.02	83. 02 132. 54	132. 54 136. 97
Ss-B2_ew	5.96	35.68	37. 54 86. 30	86. 30 138. 16	138. 16 197. 76
Ss-B1_ew	7. 48	36.69	38.89 91.35	91.35 141.90	141. 90 207. 50
Ss-A_h	8. 25	41.97	42.97 98.73	98. 73 156. 06	156. 06 220. 33

最大応答曲げモーメント (基本ケース, EM 方向, 全応力解析) 第 4.2.2-8 図

(ga I)	Ss-C4_ew	1157	1067	1126	606	502
	Ss-C4_ns	•	1	T	T	I
	Ss-C3_ew	•	1	I	I	I
	Ss-C3_ns	•	1	I	I	1
	Ss-C2_y	•	1	1	I	1
	Ss-C2_X	915	772	643	457	311
	Ss-C1_h	1527	1484	1812	12.42	762
	Ss-B5_ns	•	1	I	I	I
	Ss-B4_ns	1155	1023	1179	866	480
	Ss-B3_ns	1142	956	866	722	452
	Ss-B2_ns	•	1	I	I	I
	Ss-B1_ns	•	1	1	I	I
	Ss-A_h	1256	1133	1284	1126	571
—— Ss-A_h Ss-B1_ns 	SS-B3_DS	SIL_FU SC	SS-C1_h SS-C1_h SS-C2_x SS-C2_x SS-C2_y SS-C3_ns SS-C4_ns SS-C4_ns	мр. Н О		
0 1500 + + (aal)	1941/					
		T. M. S. L. 75. 6m				М. К. М. Г. М. К. М. Г.

第4.2.2-9 図 最大応答加速度 (+1 σ 地盤, NS 方向, 全応力解析)

最大応答加速度(NS方向)

(KN)	Ss-C4_ew	8422	9949	108.12	1 30 33
	Ss-C4_ns	1	I	T	1
	Ss-C3_ew	T	I	I	1
	Ss-C3_ns	T	1	T	1
	Ss-C2_y	ı.	1	1	1
	Ss-C2_X	6676	6974	7253	7397
	Ss-C1_h	10796	14085	14261	14689
	Ss-B5_ns		1		1
	Ss-B4_ns	8472	9355	10181	12231
	Ss-B3_ns	8417	938 5 9	10564	12240
	Ss-B2_ns	1	1	1	1
	Ss-B1_ns		1	1	1
	Ss-A_h	8957	11723	11771	13020
	Ss-B5 ns		OS -C+Lew		
0 10000 + (kN)					
	T. M. S. L. 75. Om				T.≣S.L.65.3a

第4.2.2-11 図 最大応答せん断力 (+1 α 地盤, NS 方向, 全応力解析)

最大応答せん断力(NS方向)

(gal)	Ss-C4_ew	ı	1	1		1
	Ss-C4_ns	•	1	T	T	1
	Ss-C3_ew	1	1	T	I	1
	Ss-C3_ns	•		1	-	1
	Ss-C2_y	•	1	1	1	1
	Ss-C2_X	869	741	517	387	300
	Ss-C1_h	1549	1463	2040	1242	712
	Ss-B5_ew	1473	1313	1204	824	495
	Ss-B4_ew	•	1	I	1	1
	v Ss-B3_ew	1129	891	1199	917	391
	w Ss-B2_ew	•	1	1	1	1
	Ss-B1_e	•	1	1	1	1
	Ss-A_h	1285	1285	1195	1048	555
Ss-A_h Ss-B1_ew Ss-B2_ew	SS-BJ_ew	SS-B5 ew		W9_104_6W		
0 1500 + + +	(5 a 1)					
		T. M.S.L. 75.0m		Т. M.S.L. 71. 1m	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	, KS, L 55, 3⊧ T, KS, L

第4.2.2-13 図 最大応答加速度 (+1 σ 地盤, EW 方向, 全応力解析)

最大応答加速度(EW方向)

(KN)	Ss-C4_ew	1	1	1	1
	Ss-C4_ns	I.	1	1	1
	Ss-C3_ew	1	1	1	ı.
	Ss-C3_ns	1	1	1	1
	Ss-C2_y	1	1	1	1
	Ss-C2_X	6349	6950	7 008	7310
	Ss-C1_h	11019	1397	14203	14786
	Ss-B5_ew	10720	11283	12050	13802
	s-84_ew	1	1	1	1
	Ss-B3_ew S	8217	9628	11083	12420
	Ss-B2_ew \$	1	1	1	1
	s-B1_ew 5	1	1	1	1
	Ss-A_h	9212	11843	12123	13219
Ss-A_h Ss-B1_ew Ss-B2_ew Ss-B3_ew	SS-B5 ew	——————————————————————————————————————	SS-C4_ew		
0 10000 + (kN)			-		
	T. M. S. L. 75. Om		T. M.S.L. 71. tm	1. K. S. L. 60. GR K. K. S. L. 60. GR K. K. S. L. 60. GR K. K. S. L. 60. GR	T. M. S. L. 55. 3h

第4.2.2-12図 最大応答せん断力 (+1 α 地盤, EW 方向, 全応力解析)

最大応答せん断力(EW方向)

× 10 ³ kNm)	Ss-C4_ew		1 1	ı ı	ı ı
0	Ss-C4_ns	1 1	ı ı	1 1	1 1
	Ss-C3_ew	1 1	1 1	1 1	1 1
	Ss-G3_ns	1 1	1 1	1 1	1 1
	Ss-C2_y		1 1	ı ı	ı ı
	Ss-C2_X	3.85	32.07	68. 74 68. 74	102.96
	Ss-C1_h	4. 14	48. 91	114.30	177.97
	Ss-B5_ew	5.79 47.17	46.09 91.52	91.52	150. 86 210. 55
	Ss-B4_ew	т т	1 1	ı ı	ı ı
	Ss-B3_ew	5.83 35.78	34.97	85.64	134.92
	Ss-B2_ew	т т	1 1	ı ı	ı .
	Ss-B1_ew		1 1	н н	ı ı
	Ss-A_h	8.48	42.31	97.54	154.00 216.05
	SSTD4_EW SSTB5_EW		Ss-C4_ew		
0 100 ++ (×103k,Nm)					
	, T.M.S.L. 75.0m		T. K.S.L. 71. Tm		T. M.S. L. 55. 3n

最大応答曲げモーメント(EW方向)

(gal)	Ss-C4_ew	1042	1118	118	116	468
	Ss-C4_ns	•	1	I	1	1
	Ss-C3_ew	•	1	T	1	1
	Ss-C3_ns		1	1		1
	Ss-C2_y		1	1		1
	Ss-C2_X	893	591	487	391	247
	Ss-C1_h	1488	1486	1778	1247	744
	Ss-B5_ns			1		1
	Ss-B4_ns	1040	896	1002	802	477
	Ss-B3_ns	1159	1023	1061	744	461
	Ss-B2_ns	•	1	1	1	1
	Ss-B1_ns	•	1	1	1	1
	Ss-A_h	1299	1209	1377	1049	549
Ss-A_h Ss-B1_ns Ss-B2_ns	SS-B3_ns Se-B4_ns	Ss-B5 ns		w9_F0-SC		
0 1500 + +	(Bul)					
		T. M. S. L. 75. 6m		Т. M.S.L. 71. 1m	90 90 90 90 90 90 90 90 90 90 90 90 90 9	T. M.S. L. 55. 3n

第4.2.2-17 図 最大応答加速度 (-1 σ 地盤, NS 方向, 全応力解析)

最大応答加速度(NS方向)

(KN)	Ss-C4_ew	7478	10856	11376	13016
	Ss-C4_ns	1	1	1	1
	Ss-C3_ew	1	1	1	1
	Ss-C3_ns	1	1		1
	Ss-C2_y	1	1	1	1
	Ss-C2_X	6504	7768	8421	8531
	Ss-C1_h	10514	14209	14681	15363
	Ss-B5_ns	1	1	1	1
	Ss-B4_ns	7625	99.44	10305	11849
	ss-B3_ns	8501	9795	10467	12471
	s Ss-B2_ns	1	1	1	1
	Ss-B1_n	1	1	1	1
	Ss-A_h	9299	12463	12496	13037
	Su_tuz Ss−B5 ns				
0 10000 + (kN)					
	т. М. S. L. 75. Өм		T. M.S. L. 71. 1m		

第4.2.2-19 図 最大応答せん断力 (-1 g 地盤, NS 方向, 全応力解析)

最大応答せん断力(NS方向)

最大応答曲げモーメント(NS方向)

([gal])	Ss-C4_ew		1			,	
	Ss-C4_ns	•	1	I	1	1	
	Ss-C3_ew		1	T	1	1	
	Ss-C3_ns			1		1	
	Ss-C2_y	•	1	1	1	1	
	Ss-C2_X	808	530	451	376	239	
	Ss-C1_h	1558	1530	1976	1296	710	
	Ss-B5_ew	1316	1246	1222	890	535	
	Ss-B4_ew		ı	1	ı	1	
	Ss-B3_ew	1059	926	914	83	442	
	Ss-B2_ew	•	1	1	1	1	
	Ss-B1_ew	•	1	1	1	1	
	Ss-A_h	1302	1271	1622	1125	511	
	SS -DS_eW Se-R4 ew	SS-B5 ew		W9_F0-			
0 1500 + + +		÷					
		T. M. S. L. 75. 0m		T. M.S.L. 71. im	90 60 60 60 60 60 60 60 60 60 60 60 60 60	T. K.S. L. B.S. L.	

第4.2.2-21 図 最大応答加速度 (-1σ 地盤, EW 方向, 全応力解析)

最大応答加速度(EW方向)

0 10000 + Sc (kN) Sc 					
N N N N N					
s-A_h s-B1_ew s-B2_ew t-B3_ew	SS-B4_ew SS-B5_ew	——————————————————————————————————————			
	Ss-A_h	9335	12213	12623	13420
	Ss-B1_ew S	1	1	1	
	s-B2_ew Ss	1	I	1	1
	-B3_ew Ss-B			0774	
	4_ew Ss-B5.	9461		. 1204	1365
	ew Ss-C1_	11030	1 14141	0 14451	4 15297
	1 Ss-C2_X	2883	7291	7715	7906
	Ss-C2_y	1	1	1	1
	Ss-C3_ns	1	1	1	1
	Ss-C3_ew S				
	s-C4_ns	1	1	1	1
	Ň		1	1	

第4.2.2-23図 最大応答せん断力 (-1σ 地盤, EW 方向, 全応力解析)

(×10 ³ kMm)	Ss-C4_ew			1 1	1 1
	Ss-C4_ns	1 1	1 1	1 1	1 1
	Ss-C3_ew	1 1		1 1	т т
	Ss-C3_ns	т т	н н	т т	т т
	Ss-C2_y	1 1		1 1	т т
	Ss-C2_X	4.01	28.62	68. 25 104. 88	104.88
	Ss-C1_h	4. 08 50. 41	51. 18	114.26	177.38
	Ss-B5_ew	6.75	40.66	98.13 158.33	158. 33 222. 32
	Ss-B4_ew	1 1	н н	н н	т т
	Ss-B3_ew	5.07	35.78	82.93	135. 05 199. 89
	Ss-B2_ew	1 1	т т	н н	т т
	Ss-B1_ew	1 1	н н	т т	т т
	Ss-A_h	7.46	43. 59	100. 48 158. 26	158. 26 225. 28
	OSTD4_EW Ss-B5_ew				
$\begin{array}{c} 0 & 100 \\ + & - \\ (\times 10^3 \text{kNm}) \end{array}$	•				
	T.M.S.L.75.0m		T. #S. L. 71. im	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T.M.S.L.55.24

最大応答曲げモーメント(EW方向)

第4.2.2-25図 座屈拘束ブレースの荷重-変形曲線(基本ケース,NS方向,全応力解析)

第4.2.2-26図 座屈拘束ブレースの荷重-変形曲線 (基本ケース, EW方向, 全応力解析)

第4.2.2-27図 座屈拘束ブレースの荷重-変形曲線 (+1σ地盤, NS方向, 全応力解析)

第4.2.2-28図 座屈拘束ブレースの荷重-変形曲線 (+1σ地盤, EW方向, 全応力解析)

第4.2.2-29図 座屈拘束ブレースの荷重-変形曲線 (-1σ地盤, NS方向, 全応力解析)

第4.2.2-30図 座屈拘束ブレースの荷重-変形曲線 (-1σ地盤, EW方向, 全応力解析)

4.3 有効応力解析

4.3.1 地盤の応答結果

有効応力解析結果のうち,地盤の最大応答加速度,最大応答せん断ひ ずみ及び最終時刻における過剰間隙水圧比を第4.3.1-1図~第4.3.1-12 図に示す。なお,解析結果は代表として Ss-A 及び Ss-C1 のみを示す。

また,改良地盤の最大平均変位(改良地盤下端(T.M.S.L.37.0m)からの 相対変位)を第4.3.1-13 図及び第4.3.1-18 図に示す。

第4.3.1-1図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, NS 断面, Ss-A, 有効応力解析)

第4.3.1-2図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, NS 断面, Ss-C1, 有効応力解析)

第4.3.1-3 図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, EW 断面, Ss-A, 有効応力解析)

第4.3.1-4 図 地盤の最大応答加速度分布(単位 m/s²) (基本ケース, EW 断面, Ss-C1, 有効応力解析)

第4.3.1-5 図 地盤の最大せん断ひずみ分布 (基本ケース, NS 断面, Ss-A, 有効応力解析)

第4.3.1-6 図 地盤の最大せん断ひずみ分布 (基本ケース, NS 断面, Ss-C1, 有効応力解析)

第4.3.1-7図 地盤の最大せん断ひずみ分布 (基本ケース, EW断面, Ss-A, 有効応力解析)

第 4.3.1-8 図 地盤の最大応答加速度 (基本ケース, EW 断面, Ss-C1, 有効応力解析)

第4.3.1-9図 地盤の過剰間隙水圧比分布 (基本ケース, NS 断面, Ss-A, 有効応力解析)

第4.3.1-10図 地盤の過剰間隙水圧比分布 (基本ケース, NS断面, Ss-C1, 有効応力解析)

第4.3.1-11図 地盤の過剰間隙水圧比分布 (基本ケース, EW断面, Ss-A, 有効応力解析)

第 4.3.1-12 図 地盤の過剰間隙水圧比分布 (基本ケース, EW 断面, Ss-C1, 有効応力解析)

※:各レベルでの節点変位の平均値

第4.3.1-14図 改良地盤の最大変位 (基本ケース, EW 断面, 有効応力解析)

(+1σ地盤, EW 断面, 有効応力解析)

(-1σ地盤, EW断面, 有効応力解析)

4.3.2 上部構造の応答結果

有効応力解析結果のうち、上部構造の最大応答値(加速度、せん断、曲 げモーメント)を第4.3.2-1 図~第4.3.2-24 図に示し、座屈拘束ブレー スの荷重-変形曲線図を第4.3.2-25 図~第4.3.2-30 図に示す。

_						
(gal)	Ss-C4_ew	1167	1046	1004	98 6	571
	Ss-C4_ns	1079	942	888	759	458
	Ss-C3_ew	1195	1054	1067	852	373
	Ss-C3_ns	1085	826	1121	688	379
	Ss-C2_y	1005	108	830	529	370
	Ss-C2_x	971	624	592	471	328
	Ss-C1_h	1475	1476	1823	1198	753
	Ss-B5_ns	1330	1278	1317	948	475
	Ss-B4_ns	1115	<i>L</i> 66	979	843	484
	Ss-B3_ns	1258	1006	1262	979	5 08
	Ss-B2_ns	1284	1029	1086	1069	497
	Ss-B1_ns	1177	1023	1033	826	372
Ī	Ss-A_h	1386	1223	1633	1169	660

第4.3.2-1 図 最大応答加速度(基本ケース, NS 方向, 有効応力解析)

Ss-C4_ew	8514	62601	11496	13126
Ss-C4_ns	7896	8779	10143	11989
Ss-C3_ew	8693	9827	1 0601	12175
Ss-C3_ns	7864	10020	11057	12503
Ss-C2_y	7359	8632	10505	11928
Ss-C2_x	7080	78.49	8308	86.21
Ss-C1_h	10417	14230	14626	15048
Ss-B5_ns	9613	10388	11395	13004
Ss-B4_ns	8037	10271	1 0288	11462
Ss-B3_ns	9252	10221	10886	12484
Ss-B2_ns	9222	11273	11337	12754
Ss-B1_ns	8641	1 005 7	11328	13041
Ss-A_h	9880	12955	12793	13217

第4.3.2-2 図 最大応答せん断力(基本ケース, NS 方向, 有効応力解析)
(×10°kNm) Ss-C4_ew	6.53	35. 62	41. 27	93. 31	93. 31 150. 12	150. 12
Ss-C4_ns	7. 23	31. 70	34.93	82.35	82.35 131.92	131. 92 189. 35
Ss-C3_ew	4.14	36. 83	36.67	85.43	85.43 136.51	136.51 194.70
Ss-C3_ns	7.47	35. 79	39. 11	90.40	90.40 137.98	137.98 192.17
Ss-C2_y	4.95	33.87	35.35	80.14	80. 14 125. 22	125. 22 188. 43
Ss-C2_x	4.48	32. 93	33. 37. 60	75.98	75. 98 117. 52	117.52 161.85
Ss-C1_h	4. 22	47.50	48. 13	113.80	113.80	177.96 251.37
Ss-B5_ns	4.89	44.68	47.96	94.71	94. 71 142. 91	142.91 204.34
Ss-B4_ns	5.22	35. 89	38. 54	85.42	85. 42 133. 38	133. 38 190. 03
Ss-B3_ns	6.32	41.05	41.57	89.74	89. 74 140. 70	140. 70 199. 56
Ss-B2_ns	5.85	40. 60	40. 73	93.65	93. 65 146. 94	146.94 207.19
Ss-B1_ns	5. 75	38.90	39. 05	89.45	89. 45 136. 12	136. 12 201. 18
Ss-A_h	8.13	45.22	46.59	104.04	104. 04 158. 10	158. 10 226. 41

最大応答鉛直加速度

(ga I)	Ss-C4_ew	1195	1184	1022	872	496
	Ss-C4_ns	1049	920	761	648	414
	Ss-C3_ew	1250	1096	1089	962	394
	Ss-C3_ns	1086	767	1032	664	349
	Ss-C2_y	964	876	741	489	357
	Ss-C2_x	876	597	525	440	276
	Ss-C1_h	1539	1504	2035	1229	707
	Ss-B5_ew	1361	1318	1313	933	529
	Ss-B4_ew	1137	986	1161	875	384
	Ss-B3_ew	1127	933	1048	973	446
	Ss-B2_ew	1386	89.2	1007	923	519
	Ss-B1_ew	1220	1006	1092	954	505
ĺ	Ss-A_h	1380	1239	1708	1090	577

Ss-C4_ew	8747	11134	121 00	13450
Ss-C4_ns	7719	8977	10441	12336
Ss-C3_ew	9068	1 0850	11424	1 3335
Ss-C3_ns	7954	10425	11517	13147
Ss-C2_y	7059	8587	10413	11603
Ss-C2_x	6429	7532	7933	8194
Ss-C1_h	10879	14136	14414	15092
Ss-B5_ew	9869	11847	12087	13961
Ss-B4_ew	8118	1 093 7	11661	13235
Ss-B3_ew	8265	10504	11579	13158
Ss-B2_ew	10086	10508	10908	13091
Ss-B1_ew	0068	10475	1 205 4	13612
Ss-A_h	9892	12785	12707	13734

第4.3.2-6 図 最大応答せん断力(基本ケース, EW 方向, 有効応力解析)

Ss-C4_ew	7.54	43. 19 96. 35	96. 35 155. 91	155.91
Ss-C4_ns	7. 35	35. 29 83. 52	83.52	133.11
Ss-C3_ew	4.78 38.38	41.31 96.14	96. 14 152. 92	152.92
Ss-C3_ns	8. 60 35. 93	40. 76 93. 21	93. 21 145. 58	145.58
Ss-C2_y	5.83	33.52 77.87	77.87	129. 09
Ss-C2_x	4. 36 30. 70	32. 73 73. 14	73. 14	111.02
Ss-C1_h	3. 78	49.78	114. 24	178. 19 251. 96
Ss-B5_ew	8. 02 42. 48	42.20 96.59	96. 59 156. 32	156. 32 221. 34
Ss-B4_ew	5.96 36.10	39.95 92.28	92. 28 149. 82	149.82
Ss-B3_ew	6. 56 36. 30	37. 81 91. 38	91.38	147. 03
Ss-B2_ew	7.26	41. 34	91. 69	208.10
Ss-B1_ew	8. 67 39. 70	40.92	94.37	214.52
Ss-A_h	9. 56 45. 36	47.00	103. 71	163. 29

最大応答曲げモーメント (基本ケース, EW 方向, 有効応力解析) 第4.3.2-7 図

方向, ΕW (標準地盤, 最大応答鉛直加速度 X 2 - 8

	Ss-C4	1	ı	1	1	1
	Ss-C4_ns	•	1	1	1	1
	Ss-C3_ew	•	1	1	1	1
	Ss-C3_ns	•	1	1	1	1
	< Ss-C2_Y	1038	834	904	88 68	356
	h Ss-C2_)	•	1	1	1	1
	s Ss-C1_H	1487	1479	1774	1212	767
	IS SS-B5_n	•	1	1	1	1
	18 Ss-B4_n	1	1	I	1	1
	ns Ss-B3_r	1247	1013	1174	817	495
	ns Ss-B2_	1	1	1		1
	h Ss-B1_	1	1	1		1
	Ss-A	134	1219	1672	1202	663
00 Ss-BL_h Ss_BL_ns Ss_22_ns	Ss-B3_ns Ss-B4 ns	su_fu su		₹ 1 1 1 2 2 2		
0 1500	(gal) Ss-B3_ns	su 28-85				

第4.3.2-9 図 最大応答加速度 (+1 σ 地盤, NS 方向, 有効応力解析)

(KN)	Ss-C4_ew	1	1	1	1
	Ss-G4_ns		1		1
	Ss-G3_ew		1		1
	Ss-G3_ns		1		1
	Ss-62_y	7551	8612	10546	12303
	Ss-C2_X		1		ı.
	Ss-C1_h	10551	14284	14493	14861
	Ss-B5_ns		1		1
	Ss-B4_ns		1		1
	Ss-B3_ns	9161	9728	10649	12465
	Ss-B2_ns		1		1
	Ss-B1_ns		1		1
	Ss-A_h	9764	12527	12355	13142
	Ss-B4_ns Ss-B5_ns Ss-C2_ns Ss-C2_ns Ss-C2_ns Ss-C2_ns				
10000					*****
0 +					
	L 75, 6m	L 71. im	بة ي ح	ы 8 9 9	L 56. 3
	. T. M.S.	T. M.S. I	T. M.S. I	T. K.S.I	T. M.S. I

第4.3.2-10 図 最大応答せん断力 (+1 α 地盤, NS 方向, 有効応力解析)

最大応答せん断力(NS方向)

最大応答曲げモーメント(NS方向)

有劾応力解析) (+1 o 地盤, NS 方向, 最大応答鉛直加速度 **4.3.2−12** ⊠

最大応答加速度(UD方向)

(ga I)	Ss-C4_ew		1	1	1	1	
	s-C4_ns	•	1	1	1		
	s-C3_ew S			1	1		
	s-03_ns			1	1		
	Ss-C2_y S	979	965	761	29 6	365	
	Ss-C2_X \$		1	T	1	1	
	s-01_h	1515	1476	1973	1281	669	
	-B5_ew S	1470	1340	1260	906	519	
	-B4_ew S8	•		1	1		
	-B3_ew Ss	1187	696	1012	875	453	
	-B2_ew Ss	1393	66 8	6 6	928	531	
	-B1_ew Ss		1	1	1	1	
	s-A_h Ss	1358	1291	1589	1136	616	
	Ss-B4 our	we galaxies		Ma_40_80			
0 1500 + + + + + + + + + + + + + + + + + + +	1841						
		т. M. S. L. 75. 6m		T. M.S. L. 71. In M.S. L. 71. In		T. M.S. L. 55, 3h	

第4.3.2-13 図 最大応答加速度 (+1 σ 地盤, EW 方向, 有効応力解析)

最大応答加速度(EW方向)

(KN)	Ss-C4_ew	1	1	1	1
	Ss-C4_ns	ı	1	1	1
	Ss-C3_ew	1	1	1	1
	Ss-C3_ns	1	1	1	1
	Ss-C2_y	7128	8439	10404	11567
	Ss-C2_X	I	1	1	1
	Ss-C1_h	10754	13982	14274	148 59
	Ss-B5_ew	10674	11772	1 2082	13968
	Ss-B4_ew	1	1	1	1
	Ss-B3_ew	8643	10446	11294	13156
	Ss-B2_ew	10167	10077	10591	12333
	Ss-B1_ew	1	1	1	1
	Ss-A_h	9712	12.686	12658	13436
	os b≠_ew Ss−B5 ew		SsC4ew		
0 10000 + + + + + + + + + + + + + + + + + +					
	т. М. S. L. 75. Өм		. 1. K. S. L. 71. 1抽	н со	T. M. S. L. 66. 3h

第4.3.2-14図 最大応答せん断力 (+1 o 地盤, EW 方向, 有効応力解析)

最大応答せん断力(EW方向)

有劾応力解析) EW 方向, 最大応答曲げモーメント(+1 α 地盤, X 4.3.2-15

最大応答曲げモーメント(EW方向)

有劾応力解析) EW 方向, (+1 σ 地盤, 最大応答鉛直加速度 4.3.2-16 🗵

最大応答加速度(UD方向)

(ga I)	Ss-C4_ew		1	1		1
	Ss-C4_ns	•	1	1	1	1
	Ss-C3_ew	•	1	1	1	1
	Ss-C3_ns	•	1	1	1	I
	Ss-C2_y	1040	726	745	572	349
	Ss-C2_X	•	1	1	1	1
	Ss-C1_h	1487	1509	1848	1261	754
	s Ss-B5_ns	•	I	1	1	I
	s Ss-B4_n	•	1	1	1	1
	s Ss-B3_n	1282	1081	1710	1219	520
	s Ss-B2_n	•	1	1	1	1
	Ss-B1_n	•	1			1
	Ss-A_h	1349	1221	1666	1110	909
Ss-A_h Ss-B1_ns Ss-B2_ns	Ss-B3_ns Ss-B4_ns	Ss-B5 ns	——————————————————————————————————————			
0 1500 + + +	(Bal)					
		T. M. S. L. 75. 6m		. т. ж . S. L. 71. 1m	т ж. S. L. 65. 69. 69. 	T. M.S.L. 66. ân

第4.3.2-17 図 最大応答加速度 (-1 σ 地盤, NS 方向, 有効応力解析)

最大応答加速度(NS方向)

(KN)	Ss-C4_ew	1		ı	
	Ss-C4_ns	1	1	1	1
	Ss-G3_ew		1	1	1
	Ss-G3_ns		1	1	1
	Ss-62_y	7588	9170	10219	11323
	Ss-C2_X		1	1	ı.
	Ss-C1_h	10497	14321	14833	15479
	Ss-B5_ns		1	1	ı.
	Ss-B4_ns		1	1	ı.
	Ss-B3_ns	9427	11449	11251	12826
	Ss-B2_ns			ı	ı
	Ss-B1_ns		1	1	1
	Ss-A_h	9610	13089	13181	13446
	ST_P4_INS S=B5_INS (1) S=C1 M_SS=C2 M_SS=C2 Y_2S=C2 M_SS=C2 V_2S=C2	Ss-C3_ns Ss-C3_ew Ss-C4_ns Ss-C4_ew			
0 10000 + + + + + + + + + + + + + + + + + +					
	T. M.S. L. 75. 6m	. T. K.S. L. 71. 1m	. T. K.S. L. 66. 6h	. T. M. S. L. 60, 6h	T. M.S. L. 55. 3a

第4.3.2-18 図 最大応答せん断力 (-1 α 地盤, NS 方向, 有効応力解析)

最大応答せん断力(NS方向)

最大応答曲げモーメント(NS方向)

第4.3.2-20 図 最大応答鉛直加速度 (-1 α 地盤, NS 方向, 有効応力解析)

最大応答加速度(UD方向)

(gal)	Ss-C4_ew	•	1	1		I.	
	s-C4_ns	•	ı	1	1	1	
	s-C3_ew (1		1	
	s-C3_ns S		1	1	1	1	
	s-02_y S	989	723	669	229	343	
	s-c2_x S	,		1		1	
	s-01_h S	1562	1544	1970	12.45	715	
	-B5_ew St	1329	311	1247	972	543	
	-B4_ew Ss-	-		1	1	1	
	-B3_ew Ss-	111	668	33	88	435	
	82_ew Ss-	309 1	920	99	168	98	
	B1_ew Ss-	-				1	
	-A_h Ss-	388	291	725	220	57	
Ss-A_h Ss-B1_ew Ss-B2_ew		os bilew Ss-B5 ew	——————————————————————————————————————	₩9_₽J-82			
0 1500 + + (231)	1841			-			:
		т. M.S.L. 75. 6m		T. M.S.L. 71. Im	ар а	1. M. S. L. 56. 39	

第4.3.2-21 図 最大応答加速度 (-1 σ 地盤, EW 方向, 有効応力解析)

最大応答加速度(EW方向)

(KN)	Ss-C4_ew	1	1	1	1
	Ss-C4_ns	ı.	T	1	1
	Ss-C3_ew	1	T	1	1
	Ss-C3_ns	1	I	1	1
	Ss-C2_y	7216	878.2	10251	11370
	Ss-C2_X	1	I	1	1
	Ss-C1_h	11044	14247	14566	15352
	Ss-B5_ew	9554	12062	12166	13849
	s-B4_ew	1	1	1	1
	ss-B3_ew {	8175	10324	11473	13184
	ss-B2_ew (9574	10881	11225	13165
	s-B1_ew S	1	1	1	1
	Ss-A_h S	8 6 6	13004	13025	13608
	SS-B5 ew	——————————————————————————————————————	w=-64-00		
0 10000 + (kN)					
	т. М. S. L. 75. Өм		- T.N.S.L.71. 油	ер срада 1 ж 2 г. с 60 ср 1 ж 2 г. с 60	т. м. S. L. 56. Эл

第4.3.2-22 図 最大応答せん断力 (-1 α 地盤, EW 方向, 有効応力解析)

最大応答せん断力(EW方向)

EW 方向,有效応力解析) 最大応答曲げモーメント(-1α 地盤, X 第 4.3.2-23

最大応答曲げモーメント(EW方向)

最大応答加速度(UD方向)

第4.3.2-25 図 座屈拘束ブレースの荷重-変形曲線 (基本ケース,NS 方向,有効応力解析)

第4.3.2-26 図 座屈拘束ブレースの荷重-変形曲線 (基本ケース, EW 方向, 有効応力解析)

第4.3.2-27図 座屈拘束ブレースの荷重-変形曲線 (+1σ地盤, NS方向, 有効応力解析)

第4.3.2-28図 座屈拘束ブレースの荷重-変形曲線 (+1σ地盤, EW方向,有効応力解析)

第4.3.2-29図 座屈拘束ブレースの荷重-変形曲線 (-1σ地盤, NS方向, 有効応力解析)

第4.3.2-30図 座屈拘束ブレースの荷重-変形曲線 (-1σ地盤, EW方向,有効応力解析)

<u> 別添 10</u>

<u>飛来物防護ネット(再処理設備本体用 安全冷却水</u> <u>系冷却塔B)の耐震計算(上部架構,基礎梁,杭,</u> <u>その他)について</u>

1 概要
2 基本方針
2. 金平方町 2
2.2 備這概要 · · · · · · · · · · · · · · · · · · ·
2.3 評価方針
2.4 適用規格·基準等 ······ 9
3. 地震応答解析による評価方法
3.1 評価方針
3.2 評価方法
 応力解析による評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1 評価対象部位及び評価方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 14
4.2 荷重及び荷重の組合せ
4.2.1 上部架構
<u></u>
<u>——</u> 1.200 — — — — — — — — — — — — — — — — — —
<u>·····</u> // 13 <u>····································</u>
4.4.1 上部条柄 · · · · · · · · · · · · · · · · · · ·
<u>4.4.2</u> 基礎梁····································
<u>4.4.3</u> 杭 ······ 35
5. 評価結果
5.1 地震応答解析による評価結果 ····· 41
5.2 応力解析による評価結果 44
<u>5.2.1</u> 上部架構の評価結果 ······ 44
<u>5.2.2</u> 基礎梁の評価結果 ······ 50
<u>5.2.3</u> 杭の評価結果 ······ 51
5.3 液状化の影響因子に対する評価······60

1. 概要

本資料は,屋外に設置される安全上重要な施設である竜巻防護対象施設を 防護するための設備である飛来物防護ネット(再処理設備本体用 安全冷却 水系冷却塔B)(以下,「飛来物防護ネット架構」という。)が基準地震動Ss により安全冷却水B冷却塔(以下,「冷却塔」という。)に対して波及的影響 を及ぼさないことを確認するものである。

2. 基本方針

2.1 位置

飛来物防護ネット架構の設置位置を第2.1-1図に示す。

第2.1-1図 飛来物防護ネット架構の設置位置

2.2 構造概要

飛来物防護ネット架構は、添付書類「<u>VI-1-1-1-2-4-2</u> 竜 <u>巻防護対策設備の強度計算の方針</u>」の「<u>2.4</u>構造設計」にて設定している 構造計画を踏まえた構造とする。飛来物防護ネット架構の全景を第 2.2-1 図に、杭伏図及び概略平面図を第 2.2-2 図に、概略側面図を第 2.2-3 図に 示す。

飛来物防護ネット架構は、竜巻防護対象施設である冷却塔を竜巻による 飛来物から防護するために防護ネット、防護板で覆うものであり、飛来物 防護ネット架構は、防護ネット、防護板とそれらを支える上部架構及び基 礎によって構成される。また、上部架構は、柱、大梁、小梁、トラス柱、 鉛直ブレース及び水平ブレースからなるフレーム及び座屈拘束ブレースに よって構成され、平面は、■■■ (NS 方向) ×■■■ (EW 方向)であり、地 上高さは、■■■ m である。

基礎は,基礎梁及び杭によって構成され,基礎梁は厚さ2.5mの鉄筋コン クリート造であり,支持地盤である鷹架層に場所打ちコンクリート杭(外 径1.0及び1.5m,杭長17m,113本,以下「杭」という。)を介して設置 している。また,液状化対策として建屋下部の支持地盤以浅の地盤はセメ ント系の地盤改良を実施している。

なお,飛来物防護ネット架構は防護対象となる冷却塔と構造的に分離している。

第2.2-1図 飛来物防護ネット架構の全景

(杭伏図)

(概略平面図)

第 2.2-2 図 飛来物防護ネット架構の杭伏図及び概略平面図 (単位:mm)

2.3 評価方針

飛来物防護ネット架構の安全機能を有する施設としての地震時の評価に おいては、基準地震動Ssによる地震力に対する評価(以下、「Ss地震時に 対する評価」という。)は添付書類「飛来物防護ネット(再処理設備本体 用 安全冷却水系冷却塔B)の地震応答計算書」の結果を踏まえたものとす る。飛来物防護ネット架構の評価は、添付書類「IV-2-1-4-1 波及的影響 を及ぼすおそれのある下位クラス施設の耐震評価方針」に基づき、地震応 答解析及び応力解析により施設の損傷、転倒及び落下の観点及び相対変位 の観点で冷却塔への波及的影響の評価を行う。評価にあたっては地盤物性 のばらつきを考慮する。

飛来物防護ネット架構の構造評価フローをに示す。

第2.3-1図 飛来物防護ネット架構の耐震評価フロー

2.4 適用規格·基準等

飛来物防護ネット架構の評価において,適用する規格・基準等を以下に 示す。

- ・建築基準法・同施行令・同告示
- ・平成12年5月31日建設省告示第1454号「Eの数値を算出する方法並びに V₀及び風力係数の数値を定める件」
- 日本産業規格
- ・鋼構造設計規準((社)日本建築学会,1973)(以下,「S規準」という。)
- ・鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法-
 - ((社)日本建築学会、1999)(以下、「RC規準」という。)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説
 - ((社)日本建築学会, 2005) (以下, 「RC-N規準」という。)
- · 建築基礎構造設計指針

((社)日本建築学会,2001) (以下,「基礎指針」という。)

- ・原子力発電所耐震設計技術指針 JEAG4601-1987 ((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・ 補-1984

((社)日本電気協会)

・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)

(以下,「JEAG4601」と記載しているものは上記3指針を指す。)

・2015年版建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所)(以下,「構造関係技術 基準解説書」という。)