JY-108-7

FCI 試験のナトリウムの温度条件と粒径の関係

1. FCI 試験の粒径とナトリウム温度の関係

第1表にFCI試験におけるナトリウムプール温度条件と粒子径の中央値を整理したものを示す。FRAG 試験(第1図)^[1]についてはグラフ読取値の内挿で粒子径の中央値を求めた。FARO/TERMOS T1 試験 (第2図)^[2]については「BOTTOM」において質量割合約 30%以下までのデータのみが示されているが、

50%まで外挿した値を用いて、「BOTTOM」「CENTER」「TOP」の平均を求めると約 500μm となる。

第3図に横軸をナトリウムプール温度、縦軸を粒子径の中央値として各試験の条件をプロットしたものを示す。ナトリウムプール温度条件と粒子径の中央値には相関は見られなかった。これらの試験では粒子径は概ね 400~500µm 程度である。FRAG4 試験のみ 270µm と小さな粒径となっている原因は試験レポート^山にも粒径の小さい事への言及や、違いの分析は報告されていない。FRAG4 試験以外の試験では 250℃~690℃の温度範囲にわたって粒径は 400~500µm 程度であることから、有効性評価に用いる粒径の最確値はこの粒径範囲の下限である 400µm、特異的に小さな値を与えている FRAG4 試験の 270µm を不確かさ影響評価における保守的な値として用いることが適切と考えられる。

各試験における粒径は第1図と第2図に示すように数10 µm から数1000 µm までの分布を持ってい る。冷却性評価に用いる代表粒径はこれらの分布の質量中央値を用いた。これは今回デブリの冷却性評価 に用いた Lipinski モデルと同じモデルを採用している MAAP コードの MCCI モデルによる BWR の MCCI デブリ冷却性評価^[3]において、FARO LWR 試験^[4]及び COTELS 試験^[5]で得られた粒径分布の質量 中央値を用いていることに準じたものである。一方、一般に粒径分布の Sauter 平均値は質量中央値より も小さな値を与える。粒径分布の不確かさ影響評価では、その影響も考慮することとして、FRAG4 試験 の粒径の Sauter 平均値である130 µm として冷却性を評価する。

2. デブリベッド冷却評価に対する粒径の影響

評価事故シーケンス ULOF(i)と ULOF(iii)のうち、下部プレナムへの損傷炉心物質の移行量が多い ULOF(iii)ケースの基本ケース(粒径 400µm)に対して、粒径を 130µm として粒径の不確かさの影響評 価を行った。結果を第4図に示す。基本ケースでは、デブリベッド最高温度は約 1,200 秒後に約 640℃ま で上昇し、その後は崩壊熱の減衰と共に低下する。粒径を 130µm とした不確かさ影響評価ケースでは、 デブリベッド最高温度は約 1,900 秒後に約 880℃まで上昇し、その後は崩壊熱の減衰と共に低下する。い ずれのケースにおいても、デブリベッド最高温度はナトリウムの沸点(910℃)以下であり、サブクール 状態を維持しながら、安定冷却に移行する。

参考資料

- T. Y. CHU, "Fragmentation of Molten Core Material by Sodium," Proc. Int. Topi. Mtg. LMFBR Safety and Related Design and Operational Aspects, Lyons, France, July 19-23, 1982, Vol. Ill, p. 487, European Nuclear Society (1982).
- [2] Magallon, D., Hohmann, H. and Schins, H., "Pouring of 100kg-scale molten UO2 into sodium", Nuclear Technology, Vol. 98, No. 1, pp.79-90, 1992.
- [3]「重大事故等対策の有効性評価に係るシビアアクシデント解析コードについて(第5部 MAAP)添付 3 溶融炉心とコンクリートの相互作用について」資料 2-2-9、平成 27 年 10 月.
- [4] D. Magallon, "Characteristics of corium debris bed generated in large-scale fuel-coolant interaction experiments," Nucl. Eng. Des., Vol.236, pp. 1998-2009, 2006.
- [5] M. Kato, et al., "Fuel Coolant Interaction Tests using UO2 Corium under Ex-vessel Conditions," JAERI-Conf 99-005, Proc. of the Workshop on Severe Accident Research (SARJ-98), pp.304-309, Nov. 4-6, Tokyo, Japan, 1998.

第1表 ナトリウムプール温度条件と粒子径の中央値

試験名	ナトリウム温度 [℃]	粒子径の中央値 [µm]	備考
FRAG4	420	276.3	グラフ読取値の内挿
FRAG5	250	420	(第1図)
FRAG6	690	461.5	
FRAG13	500	474	
FARO/TERMOS T1	400	約 500	「BOTTOM」「CENTER」
			「TOP」の平均値(第2図)

第3図 ナトリウムプール温度条件と粒子径の中央値

第4図 ULOF(iii)デブリベッド最高温度の履歴