島根原子力発	電所第2号機 審査資料
資料番号	NS2-添 2-001-14(比)
提出年月日	2021年12月7日

先行審査プラントの記載との比較表 (VI-2-1-14 機器・配管系の計算書作成の方法)

2021 年 12 月 中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現、設備名称の相違(実質的な相違なし)

・・補正時からの変更箇所

先行審査プラントの記載との比較表 (VI-2-1-14 機器・配管系の計算書作成の方法)

果海弗一角	電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	
比較表におい	いて,相違理由を類型化したもの	について以下にまとめて記載する。下記以外の相違について	は、備考欄に相違理由を記載する。	
相違 No.		相違理由		
1)	記載の相違 ・島根2号機では,型式名称	をJEAG4601に記載の名称に合わせる。		
2	記載の相違 ・島根2号機では,他の項目	との整合を考慮して,機能維持評価に用いる評価用加速度を	「機能維持評価用加速度」と記載する。	
3	記載の相違 ・島根2号機では,記号の説	明において,直接許容応力を規定する箇所を参照し「設計・	建設規格 SSB-3121.1(1)に定める値」とする。	
4	記載の充実 ・島根2号機では、記載を充	実させるため,精度は,有効数字6桁以上確保する旨具体的	に記載する。	
(5)	記載の充実 ・島根2号機では,設計上定	める値が小数点以下第1位の場合を考慮して表示桁を具体的	に記載する。	
6	記載の適正化 ・島根2号機では,表現の適	正化のため,剛体,剛構造など用語を適切に使い分ける。		
7	る。	実させるため、機能維持評価用加速度として基準地震動Ss いる設計震度についても同様に記載する。	により定まる加速度又はこれを上回る加速度を設定する	旨具体的に記載
8	記載の充実 ・島根2号機では、記載を充	実させるため,評価に適用する「設計用震度 I 」又は「設計	用震度Ⅱ」を具体的に記載する。	
9	記載の充実 ・島根2号機では、記載を充	実させるため,フォーマットにボルト外径欄を追加し,同欄	にボルトサイズも記載する。	
(10)	記載の相違 ・島根2号機では、機能維持 ある旨記載しない。	評価用加速度として基準地震動Ssにより定まる加速度又は	これを上回る加速度を設定するため、機能維持評価用加	
(11)	記載の充実 ・島根2号機では、記載を充	実させるため,評価諸元を記載する図に,自重の記載を追加	する。	
12)	記載の相違・島根2号機では、他の項目	との整合を考慮して、加振試験により機能維持を確認した加	油度を「燃能確認落加油度」と記載する	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考

比較表にお	いて,相違理由を類型化したものについて以下にまとめて記載する。下記以外の相違については,備考欄に相違理由を記載する。
	記載の相違
13	・島根2号機では、耐震評価フローにおいて、振動試験で固有周期を求める項目を他の項目との整合性を考慮して「固有周期」と記載する。
<u>(14)</u>	記載の充実
(14)	・島根2号機では、記載を充実させるため、壁掛形設備の転倒方向は、5.1項に注記を用いて定義し、注記に合わせた転倒方向を記載する。
15	記載の相違
(15)	・島根2号機では、試験体をハンマ等で強制加振する打振試験を含む表現として「自由振動試験」と記載する。
	記載の相違
16	・島根2号機では、振動試験により固有周期が求められていない設備に対する方針を、物理量に対して主に適用する"同等"を用いて、構造が同等な〇〇〇に対す
	る振動試験より算定された固有周期を使用する旨記載する。
(17)	設計方針の相違
•	・島根2号機では,壁掛形設備の設計用地震力は,設置床上下階のいずれか大きい方を用いる。
(18)	記載の充実
10	・島根2号機では、記載を充実させるため、加振試験により確認した加速度を用いる旨を個別計算書に記載する。
19	記載の相違
	・島根2号機では、評価の諸元となる外形図は、評価単位で記載せず、耐震計算書の最終ページに集約した記載とする。
20	記載の充実
9	・島根2号機では、正面方向及び側面方向転倒に対する評価時の要目のうち、重心からの距離及びボルトの本数をそれぞれの転倒方向に分けて記載する。

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		<u>VI</u> -2-1- <u>14</u> <u>機器・配管系の</u> 計算書作成の方法	
		M 2 1 11 1XIII ILLE INVOIT PETER INVOITA	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			且次	
			添付資料-1 横形ポンプの耐震性についての計算書作成の基本方	・記載の相違
			<u>針</u>	【東海第二,柏崎7】
			添付資料-2 立形ポンプの耐震性についての計算書作成の基本方	島根2号機では,型式
			<u></u>	名称をJEAG460
			添付資料-3 スカート支持たて置円筒形容器の耐震性についての	1に記載の名称に合わ
			計算書作成の基本方針	せる
			添付資料-4 横置一胴円筒形容器の耐震性についての計算書作成	(以下①の相違)
			の基本方針	
			添付資料-5 平底たて置円筒形容器の耐震性についての計算書作	
			成の基本方針	
			添付資料-6 管の耐震性についての計算書作成の基本方針	
			添付資料-7 計装ラックの耐震性についての計算書作成の基本方	
			針	
			添付資料-8 計器スタンションの耐震性についての計算書作成の	
			基本方針	
			添付資料-9 盤の耐震性についての計算書作成の基本方針	

先行審査プラントの記載との比較表(VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-1 横形ポンプの耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			添付資料-1 横形ポンプの耐震性についての計算書作成の基本方	
			針	【東海第二,柏崎7】 ①の相違
				1007怕)建

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <u>規格・</u> 基準等	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位 4. 株/生命度製/年	
		4. 構造強度評価4.1 構造強度評価方法	
		4.2 設計用地震力	
		4.3 計算方法	
		4.4 応力の評価	
		5. 機能維持評価	
		5.1 動的機能維持評価方法	
		6. 耐震計算書のフォーマット	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			1. 概要本資料は、VI-2-1-1「耐震設計の基本方針」に基づき、耐震性に関する説明書が求められている横形ポンプ(耐震重要度分類Sクラス又はSs機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。解析の方針及び減衰定数については、VI-2-1-6「地震応答解析の基本方針」に従うものとする。	・記載の相違 【東海第二,柏崎7】 ①の相違
			なお、本基本方針は横形ブロワ及びファンにも適用する(その場合は、ポンプをブロワ又はファンと読み替える。)。 ただし、本基本方針が適用できない横形ポンプにあっては、個別耐震計算書にその耐震計算方法を含めて記載する。	【東海第二,柏崎7】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		2. 一般事項	
		2.1 評価方針	
		横形ポンプの応力評価は、 <u>M</u> -2-1-9「機能維持の基本方針」にて	・記載の相違
		設定した荷重及び荷重の組合せ並びに許容限界に基づき,「3. 評	【東海第二,柏崎7】
		価部位」にて設定する箇所に作用する設計用地震力による応力等	①の相違
		が許容限界内に収まることを、「4. 構造強度評価」にて示す方法	
		にて確認することで実施する。また、横形ポンプの機能維持評価	・記載の相違
		は、 <u>VI</u> -2-1-9 「機能維持の基本方針」にて設定した動的機器の機	【東海第二,柏崎7】
		能維持の方針に基づき、機能維持評価用加速度が機能確認済加速	①の相違
		度以下であることを、「5. 機能維持評価」にて示す方法にて確認	・記載の相違
		することで実施する。確認結果を「6. 耐震計算書のフォーマッ	【東海第二,柏崎7】
		ト」にて示す。	島根2号機では,他の
			項目との整合を考慮し
		横形ポンプの耐震評価フローを図 2-1 に示す。	て,機能維持評価に用い
			る評価用加速度を「機能
			維持評価用加速度」と記
			載する
			(以下②の相違)
			・記載の相違
			【東海第二,柏崎7】
			島根2号機では,他の
			項目との整合を考慮し
			て,加振試験により機能
			維持を確認した加速度
			を「機能確認済加速度」
			と記載する
			(以下⑫の相違)
			・記載の相違
			【東海第二,柏崎7】
			①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	
東海第二発電所 (2018. 10. 12 版)	相崎刈羽原子力発電所 7 号機 (2020.10.9版)	馬根原子力発電所 2号機 計算モデルの設定 設計用地震力 機能維持評価用加速度 機形ポンプの構造強度評価 機形ポンプの耐震評価フロー 2.2 適用規格・基準等 本評価において適用する規格・基準等を以下に示す。・原子力発電所耐震設計技術指針 重要度分類・許容応力編 J EAG 4601・補 1984((社)日本電気協会)・原子力発電所耐震設計技術指針 JEAG 4601-1987((社)日本電気協会)・原子力発電所耐震設計技術指針 JEAG 4601-1991 追補版((社)日本電気協会)・発電用原子力設備規格 設計・建設規格((社)日本機械学会, 2005/2007)(以下「設計・建設規格」という。)	・記載の相違 【東海第二】 ②の相違 ・記載の相違 【東海第二,柏崎7】 ①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		 記号 ボルトの軸断面積** C1	・記載の相違 【東海第二】 島根 2 号機では,記号 の説明において,直接許 容応力を規定する箇所 を参照し「設計・建設規 格 SSB-3121.1(1)に定 める値」とする (以下③の相違) ・記載の相違 【東海第二】 島根 2 号機では,回転 数(単位 rpm)で示す

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020.10.9版)		島根	原子力発電所	2 号機		備考
			2.4 計算精度	と数値の	丸め方			
			精度は, 有効数	女字6桁以	人上を確保する	0		・記載の充実
			表示する数値の)丸め方は	は表 2-1 に示す	トとおりであ	う る。	【東海第二】
								島根2号機では,記載
				表 2-1	表示する数値	直の丸め方		を充実させるため,精度
			数値の種類	単位	処理桁	処理方法	表示桁	は,有効数字6桁以上確
			震度	_	小数点以下第3位	切上げ	小数点以下第2位	保する旨具体的に記載
			温度	°C		_	整数位	する
			質量長さ	kg	_		整数位**	(以下④の相違)
			面積	mm ²	有効数字5桁目	四捨五入	有効数字 4 桁*2	
			モーメント	N·mm	有効数字 5 桁目	四捨五入	有効数字 4 桁*2	
			力	N	有効数字5桁目	四捨五入	有効数字4桁*2	
			算出応力 許容応力*3	MPa MPa	小数点以下第1位 小数点以下第1位	切上げ切捨て	整数位整数位	
					点以下第1位の場合		g destactions and	記載の充実
			*3:設計·建	設規格 付録	ときは、べき数表示とは料図表に記載され	た温度の中間に		【東海第二】 島根2号機では,設計
			での値と		り補間した値の小数	点以下第1位を	切り捨て、整数位ま	上定める値が小数点以
								下第 1 位の場合を考慮
								して表示桁を具体的に
			3. 評価部位					記載する
			横形ポンプの耐	対震評価は	は「4.1 構造強	食評価方法	ら」 に示す条件に	(以下⑤の相違)
			基づき、耐震評	平価上厳し	くなる基礎ボ	ルト及び取	付ボルトについ	・記載の相違
			て評価を実施す	- る。				【東海第二,柏崎7】 ①の相違
			4. 構造強度割 4.1 構造強度 (1) 横 <u>形</u> ポン	評価方法		ミなブロック	7状をしており,	・記載の相違
			ルトにて固定さ	られている			, 下面が基礎ボ , 固有周期は十	【東海第二,柏崎7】 ①の相違
			分に小さく, 固 (2) ポンプ及	国有周期の び内容物の)計算は省略す の質量は重心に	る。 二集中するも	らのとする。	
			るものとする。				方向から作用す	
			(4) ポンプは る。	基礎ボル	トで基礎に固定	定されてお	り、固定端とす	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			(5) 転倒方向は図 4-1 概要図における軸直角方向及び軸方向について検討し、計算書には計算結果の厳しい方(許容値/発生値の小さい方をいう。)を記載する。 (6) 設計用地震力はVI-2-1-7_設計用床応答スペクトルの作成方針」に基づき設定する。 なお、横形ポンプは剛体として扱うため、設置床面の最大応答加速度の1.2 倍の値を用いて評価する。 (7) 耐震計算に用いる寸法は、公称値を使用する。 原動機取付ポルト ポンプ取付ポルト ポンプ取付ポルト ポンプ取付ポルト ボンブペース 基礎ポルト ボンブペース 基礎ポルト ボンブペース 基礎ポルト ボンブペース 基礎ポルト ボンブペース ま 競 図 4-1 概要図 4.2 設計用地震動S d 又は静的震度」及び「基準地震動S s 」による地震力は、VI-2-1-7」設計用床応答スペクトルの作成方針」に基づき設定する。	・記載の相違 【東海第二,柏崎7】 ①の相違 ・記載の適正化 【東海第二,柏崎7】 島根2号機では,表現 の適正化のため,剛体, 剛構造など用語を適切 に使い分ける (以下⑥の相違)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		4.3 計算方法 4.3.1 応力の計算方法 4.3.1.1 ボルトの計算方法 ボルトの応力は地震による震度,ポンプ振動による震度及びポンプ回転により作用するモーメントによって生じる引張力とせん断力について計算する。	
		版倒方向 $(C_{\rm H}+C_{\rm p})\cdot m_{\rm i}\cdot g$ $(1-C_{\rm p}-C_{\rm v})\cdot m_{\rm i}\cdot g$ $(\ell_{\rm li}\leq\ell_{\rm 2l})$ $(\ell_{\rm li}\leq\ell_{$	
		版例方向 $(C_p + C_v - 1) \cdot m_i \cdot g$ 据付面又は 取付面 $(\ell_{1i} \leq \ell_{2i})$ 可提りを受ける ボルト列 $(\ell_{1i} \leq \ell_{2i})$ 引張りを受ける ボルト列 $(\ell_{1i} \leq \ell_{2i})$ 計算モデル $(軸直角方向転倒-2 (1-C_p-C_v)<0 の場合)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
			・設備構成の相違 【東海第二】 島根2号機では,該当
			する評価対象がない
		転倒方向	
		$(C_{i} + C_{p})$ $m_{i} \cdot g$ $m_{i} \cdot $	
		(化11 ★ 化21) (化11 ≤ 化21) 転倒支点となる 引張りを受ける ボルト列 図 4-3(1) 計算モデル (軸方向転倒-1 (1-C _p -C _v)≥0 の場合)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		版倒方向 $(C_p + C_v - 1) \cdot m_i \cdot g$ $(C_l + C_v) \cdot m_i \cdot g$ $(C_l + C_v) \cdot m_i \cdot g$ $(C_l + C_v) \cdot m_i \cdot g$ $(R_l + C_v) \cdot m_i \cdot g$ $R_l + R_l + R_l + R_l + R_l + R_l$ $R_l + R_l + R_l + R_l$ $R_l +$	
		転倒方向	
		(C _p + C _v - 1) · m _i · g	
		(い場合で(ℓ _{2i} +ℓ _{1i})/ (ℓ _{2i} −ℓ _{1i})<(C _v +C _p)の場合)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
	THE PROPERTY OF THE PROPERTY O	(1) 引張応力 ボルトに対する引張力は最も厳しい条件として、図 4-2 及び図 4 -3 で最外列のボルトを支点とする転倒を考え、これを片側の最 外列のボルトで受けるものとして計算する。 なお、ポンプと原動機のベースが共通である場合の基礎ボルト(i =1) 及び計算モデル図 4-3 の場合のボルト (i=1~4) につい ては、ポンプ回転によるモーメントは作用しない。 引張力 計算モデル図 4-2(1)及び 4-3(1)の場合の引張力 【絶対値和】 「bi= mi・g・(CH+Cp)・hi+Mp-mi・g・(1-Cp-Cv)・ℓ1i nfi・(ℓ1i+ℓ2i) mi・g・(CH・hi+Cv・ℓ1i) = +mi・Cp・g・(hi+ℓ1i)+Mp-mi・g・ℓ1i nfi・(ℓ1i+ℓ2i)	VITS "- V
		計算モデル図 $4-2(2)$ 及び $4-3(2)$ の場合の引張力 【絶対値和】 $F_{bi} = \frac{m_{i} \cdot g \cdot (C_{H}+C_{p}) \cdot h_{i}+M_{p}-m_{i} \cdot g \cdot (1-C_{p}-C_{v}) \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot C_{p} \cdot g \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot C_{p} \cdot g \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot g \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$ $= \frac{+m_{i} \cdot g \cdot C_{p} \cdot (h_{i}+\ell_{2i})+M_{p}-m_{i} \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i}+\ell_{2i})}$	
		計算モデル図 4-3(3) の場合の引張力 [絶対値和] Fbi= mi・g・(CH+Cp)・hi+Mp+mi・g・(l+Cp+Cv)・ℓ1i nfi・(ℓ2i-ℓ1i) mi・g・(CH・hi+Cv・ℓ1i) = +mi・Cp・g・(hi+ℓ1i)+Mp+mi・g・ℓ1i nfi・(ℓ2i-ℓ1i) (4.3.1.1.5)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9版)	島根原子力発電所 2 号機	備考
			[SRSS法] $mi \cdot g \cdot \sqrt{(CH \cdot h_{i})^{2} + (C_{v} \cdot \ell_{1 i})^{2}} + mi \cdot g \cdot C_{p} \cdot (h_{i} + \ell_{1 i}) + M_{p} + mi \cdot g \cdot \ell_{1 i}} + m_{i} \cdot g \cdot \ell_{1 i} \cdot (\ell_{2 i} - \ell_{1 i}) $	
			計算モデル図 $4-3(4)$ の場合の引張力 【絶対値和】 $F_{bi} = \frac{m_i \cdot g \cdot (C_H + C_p) \cdot h_i + M_p + m_i \cdot g \cdot (C_p + C_v - 1) \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{2i} - \ell_{1i})}$ $= \frac{m_i \cdot g \cdot (C_H \cdot h_i + C_v \cdot \ell_{2i})}{m_{fi} \cdot (\ell_{2i} - \ell_{1i})}$ $= \frac{+m_i \cdot C_p \cdot g \cdot (h_i + \ell_{2i}) + M_p - m_i \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{2i} - \ell_{1i})}$ 【SRSS法】 $m_i \cdot g \cdot \sqrt{(C_H \cdot h_i)^2 + (C_v \cdot \ell_{2i})^2}$ $F_{bi} = \frac{+m_i \cdot g \cdot C_p \cdot (h_i + \ell_{2i}) + M_p - m_i \cdot g \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{2i} - \ell_{1i})}$	
			ここで、ポンプ回転により作用するモーメント M_p は次式で求める。 $M_p = \left(\frac{60}{2 \cdot \pi \cdot N}\right) \cdot 10^6 \cdot P \qquad (4.3.1.1.9) \\ (1kW=10^6N \cdot mm/s)$ ただし、ベースが共通でポンプと原動機間に減速機がある場合、ポンプ及び減速機取付ボルト($i=2$ 及び4)における($4.3.1.1.9$) 式中の N はポンプ回転数とする。 また、 C_p はポンプ振動による振幅及び原動機の同期回転数を考慮して定める値で、次式で求める。	 ・記載の相違 【東海第二】 島根2号機では、回転数(単位 rpm)で示す
			$C_p = \frac{\frac{1}{2} \cdot \frac{H_p}{1000} \cdot \left(2 \cdot \pi \cdot \frac{N}{60}\right)^2}{g \cdot 1000}$ (4.3.1.1.10) 引張応力 $\sigma_{bi} = \frac{F_{bi}}{A_{bi}}$ (4.3.1.1.11) ここで、ボルトの軸断面積 A_{bi} は次式により求める。 $A_{bi} = \frac{\pi}{4} \cdot d_{i}^2$ (4.3.1.1.12) ただし、 F_{bi} が負のときボルトには引張力が生じないので、引張 応力の計算は行わない。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12版)	柏崎刈羽原子力発電所 7 号機	(2020. 10. 9 版)	(2) せん断応力 ボルトに対するせん断力はボルト全本数で受けるものとして計算 する。 せん断力 Qbi=(CH+Cp)・mi・g	備考
			許容引張応力 $\frac{\mathbf{F} \mathbf{i}}{f \text{ to i}} \cdot 1.5$ $\frac{\mathbf{F} \mathbf{i}^*}{2} \cdot 1.5$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		5. 機能維持評価	
		5.1 動的機能維持評価方法	
		機能維持評価用加速度と機能確認済加速度との比較により、地震	・記載の相違
		時又は地震後の動的機能維持を評価する。	【東海第二】
		機能維持評価用加速度は、VI-2-1-7「設計用床応答スペクトルの	②の相違
		作成方針」に基づき、基準地震動Ssにより定まる加速度又はこ	・記載の充実
		れを上回る加速度を設定する。	【東海第二,柏崎7】
		機能確認済加速度は, <u>\M</u> -2-1-9 「機能維持の基本方針」による。	島根2号機では,記載
			を充実させるため,機能
		なお、この適用形式を外れる場合は、加振試験等に基づき確認し	維持評価用加速度とし
		た加速度を用いることとし, 個別計算書にその旨を記載する。	て基準地震動Ssによ
		6. 耐震計算書のフォーマット	り定まる加速度又はこ
		横形ポンプの耐震計算書のフォーマットは,以下のとおりである。	れを上回る加速度を設
			定する旨具体的に記載
			する
			また,構造強度評価等
			に用いる設計震度につ
			いても同様に記載する
			(以下⑦の相違)
			・記載の相違
			【東海第二,柏崎7】
			①の相違
		〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマットI 設計基準対象施設としての評価結果	
		フォーマットⅡ 重大事故等対処設備としての評価結果	
		[重大事故等対処設備単独の場合]	
		□ 【里入事故等対処設備単独の場合】 □ フォーマットⅡ 重大事故等対処設備としての評価結果*	
		フォーマットⅡ 単八争収等別処成備としての計価和未	
		注記*:重大事故等対処設備単独の場合は、設計基準対象施設及	
		び重大事故等対処設備に示すフォーマットⅡを使用する	
		ものとする。ただし、評価結果表に記載の章番を「2.」か	
		ら「1.」とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		1	②【『で記事のでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		1.3. 19 19 19 19 19 19 19 1	②記載の相違 【東海第二】 ②の相違 ③記載の充実 【東海第二,柏崎7】 ③記載の元実 【東海第二,柏崎7】 ⑧記載の相違 【東海第二,柏崎7】 島根2号機では、機能 維持評地の大き。といるのは、大きではいるのはである。、大きではいい。 (以下⑩の相違)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		C O O O O O O O O O O O O O O O O O O	②記載の相違 【柏崎7】 島根2号機では,重大 事故等対処設備単独の 場合の注記は6.項に記載しており,改めてフォーマットに記載しない (その他比較結果はフォータット I と省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.3 月別後期	(比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12	版) 柏崎刈羽原子力発電所7号機	(2020. 10. 9版)	島根原子力発電所 2号機	備考
			能 倒 方 向 原動機取付ポルト (所動機取付ポルト) (所動機取付ポルト) (所動機取付ポルト) (所動機取付ポルト) (所動機取付ポルト) (所動機取付ポルト) (所動機取付ポルト) (ボンア取付ポルト)	②記載の充実 【東海第二】 島根2号機では,記載 を充実させるため,評価 諸元を記載する図に,自 重の記載を追加する (以下⑪の相違)
			(1) (1) (2)	

先行審査プラントの記載との比較表 (VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-2 立形ポンプの耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			<u>添付資料-2</u> 立形ポンプの耐震性についての計算書作成の基本方	
			針	【東海第二,柏崎 7】 ①の相違
				①0万怕连

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <u>規格・</u> 基準 <u>等</u>	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位	
		4. 固有値解析及び構造強度評価	
		4.1 固有値解析及び構造強度評価方法	
		4.2 固有周期の計算	
		4.3 設計用地震力	
		4.4 計算方法	
		4.5 応力の評価	
		5. 機能維持評価	
		5.1 動的機能維持評価方法	
		6. 耐震計算書のフォーマット	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		1. 概要本資料は、M-2-1-1「耐震設計の基本方針」に基づき、耐震性に関する説明書が求められている立形ポンプ(耐震重要度分類Sクラス又はSs機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。解析の方針及び減衰定数については、M-2-1-6「地震応答解析の基本方針」に従うものとする。ただし、本基本方針が適用できない立形ポンプにあっては、個別耐震計算書にその耐震計算方法を含めて記載する。	 ・記載の相違 【東海第二,柏崎7】 ①の相違 ・記載の相違 【東海第二,柏崎7】 ①の相違
		2. 一般事項 2.1 評価方針 立形ポンプの応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4.2 固有周期の計算」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「4. 固有値解析及び構造強度評価」にて示す方法にて確認することで実施する。また、立形ポンプの機能維持評価は、VI-2-1-9「機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき、機能維持評価用加速度が機能確認済加速度以下であることを、「5. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。 立形ポンプの耐震評価フローを図 2-1 に示す。	 ・記載の相違 【東海第二,柏崎7】 ①の相違 ・記載の相違 ・記載の相違 ・記載の相違 ・記載のの相違 ・記載ののののである。 ・記載のののである。 ・記載のののである。 ・記載のの相違 ・記載のの相違 ・記載の相違 ・記載のは、 ・

東	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
· · · · · · · · · · · · · · · · · · ·	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機 「麻帆モデル設定 「地震は答称析」 「地震は一体において適用する規格・基準等を以下に示す。 「原子力発電所耐震設計技術指針 重要度分類・許容応力編 J E A G 4 6 0 1 - 1987 ((社) 日本電気協会) 「原子力発電所耐震設計技術指針 J E A G 4 6 0 1 - 1991 追補版 ((社) 日本電気協会) ・原子力発電所耐震設計技術指針 J E A G 4 6 0 1 - 1991 追補版 ((社) 日本電気協会) ・発電用原子力設備規格 設計・建設規格 ((社) 日本機械学会, 2005/2007) (以下「設計・建設規格」という。)	・記載の相違 【東海第二】 島根2号機では,有限 要素法モデルの作成を 含めて「解析モデル設 定」と記載する ・記載の相違 【東海第二,柏崎7】 ②の相違 ・記載の相違 【東海第二,柏崎7】 ① の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	 記号の説明 単位 Abi ボルトの軸断面積*1 Ac バレルケーシング又はコラムパイプの断面積 mm² CH 水平方向設計震度 Cp ポンプ振動による震度 Cv 鉛直方向設計震度 Dc バレルケーシング又はコラムパイプの内径 mm がルトのピッチ円直径*1 di ボルトの呼び径*1 Fi 設計・建設規格 SSB-3121.1(1)に定める値*1 Fi* 設計・建設規格 SSB-3133に定める値*1 Fbi ボルトに作用する引張力(1本当たり)*1 f sbi せん断力のみを受けるボルトの許容せん断応力*1 f toi 引張力のみを受けるボルトの許容引張応力*1 f tsi 引張力とせん断力を同時に受けるボルトの許容引張応力*1 g 重力加速度 (=9,80665) Hp 予想最大両振幅 M 図 4-2 計算モデルによる多質点解析により求められるモーメント N・mm M (2 4-2 計算モデルによる多質点解析により求められるモーメント N・mm M (2 4-2 計算モデルによるを質点解析により求められるモーメント N・mm 	備考 ・記載の相違 【東海第二】 島根 2 号機では, サポート及びサポート取付ボルトの評価が必要な場合は, 個別耐震計算書に記号の説明を記載する・記載の相違 【東海第二】 ③の相違
		g 重力加速度 (=9.80665) m/s² H p 予想最大両振幅 μ m M 図 4-2 計算モデルによる多質点解析により求められるモーメント N・mm M i 図 4-2 計算モデルの ①, ②, ②及び ②を支点とする地震及び N・mm 水平方向のポンプ振動による転倒モーメント*²	

東海第二発電所 (2018. 10. 12 版) 柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
来商用————————————————————————————————————	 高校原子力発電所 2号機 高少	(比較のため,前頁の同表を再掲する) ・記載の相違 【東海第二】 島根2号機では,サポートルの評価が必要な場合は,個別耐震計算書に記号の説明を記載する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		 記号 記号の説明 耳面: 本半方園四有関門** まの、パレルケーシング以はコラムパイブの厚き オーリ回率 カレルケーシング又はコラムパイブの一次一般機能力の最大額 カレルケーシング又はコラムパイブの一次一般機能力の最大額 カレルケーシング又はコラムパイブの一次ではコラムパイプに生じる ない 水平方地地酸によりパレルケーシング又はコラムパイプに生じる ない 水平方地地酸によりパレルケーシング又はコラムパイプに生じる ない パレルケーシング又はコラムパイプの内圧による関方向応力 カロボーバレルケーシング又はコラムパイプの内圧による関方向応力 ボルトに生じるせん解応力** は記*1・Abi, Di, di, Fi, Fi, Fi, Fi, f sbi, f toi, f toi,	・記載の充実 【東海第二】 島根2号機では、水平 方向及び鉛直方の固 有周期を記載。 【東海第二】 島根2号機では、サポート必ず。 一ト及びずがいいとの評価がままます。 る

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)		島根	原子力発電所	2号機		備考
			2.4 計算精度。	と数値の	 丸め方			
			精度は,有効数	(字 6 桁以	(上を確保する。			・記載の充実
			表示する数値の	丸め方は	t表 2-1 に示す	とおりであ	らる。	【東海第二】
					•			4の相違
				表 2-1	表示する数値	直の丸め方		
			数値の種類	単位	処理桁	処理方法	表示桁	
			固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位	
			震度		小数点以下第3位	切上げ	小数点以下第2位	
			温度	℃	_		整数位	
			質量	kg	_		整数位	
			長さ	mm	——————————————————————————————————————	— —	整数位*1	
			面積	mm ²	有効数字5桁目	四捨五入	有効数字 4 桁*2	
			セーメント力	N·mm N	有効数字 5 桁目 有効数字 5 桁目	四捨五入四捨五入	有効数字4桁*2	
			算出応力	MPa	小数点以下第1位	切上げ	整数位	
			許容応力*3	MPa	小数点以下第1位	切捨て	整数位	
					対点以下第1位の場合に			・記載の充実
			*3:設計·建	設規格 付録 , 比例法によ	ときは, べき数表示と	た温度の中間に		【東海第二】 ⑤の相違
							構造強度評価方	
					,		基礎ボルト,取 プについて評価	
			を実施する。ま	た、海水	くポンプのようし	こ, コラム	パイプ端部をサ	・記載の充実
			ポートで水平方	前の支持	fをする場合に <i>l</i>	ュ, サポー	ト取付用基礎ボ	【柏崎7】
			ルトについて評					島根2号機では,コラムパイプ端部をサポー
			4. 固有値解析	ひび構造	強度評価			トで水平方向の支持をする場合の評価部位を
			4.1 固有値解析				H	具体的に記載する
			344444		「及び構造評価し	ご用いる解	析モデルの作成	
			条件を以下に示	す。				【東海第二,柏崎7】
			(1) ポンプは	基礎ボル	トで基礎に固定	定されてお	り、固定端とす	①の相違
			る。					
			(2) ポンプは瓜	原動機も1	含めて多質点モ	デルにてモ	テル化し、軸と	
				.0000			式多質点モデル	
			とする。	. 2 ₹ +2 TB2		, = 1, < / -		
			C y ∅₀					

るものとする。 方向の地 (6) 耐震計算に用いる寸法は、公称値を使用する。 ける理由を (7) 固有値解析及び地震応答解析に用いる解析コードは「MS ・記載の C NASTRAN」とする。 【東海第3 島根 2 型 ・記載の	二】 号機では,水平 震力のみを受 を記載する 充実 二】 号機では,共通 する解析コー する
 (4) 下部サポートは<u>鉛直方向にスライドできるものとし、水平方</u>向の地震力を受けるものとする。 (5) 地震力はポンプに対して水平方向及び鉛直方向から作用するものとする。 (6) 耐震計算に用いる寸法は、公称値を使用する。 (7) 固有値解析及び地震応答解析に用いる解析コードは「MS C NASTRAN」とする。 (7) 区 NASTRAN」とする。 (6) 財政政策 (1) とする。 (7) 固有値解析及び地震応答解析に用いる解析コードは「MS に取職の対象の地震が必要がある。 (8) 日本の地域の対象がある。 (9) 日本の地域の対象がある。 (1) 東海第二の対象がある。 (1) 東海第二の対象がある。 (1) 東海第二の対象がある。 (1) 東海第二の対象がある。 (2) 東海第二の対象がある。 (3) 日本の対象がある。 (4) 日本の対象がある。 (5) はない対象がある。 (5) はないがある。 (6) 耐震がある。 (7) 固有値解析及び地震など解析に用いる解析コードは「MS に表する。 (5) はない対象がある。 (6) はない対象がある。 (7) 固有値解析及び地震など解析に用いる解析コードは「MS に表する。 (6) はない対象がある。 (7) 固有値解析及び地震など解析に用いる解析コードは「MS に表する。 (7) はない対象がある。 (7) はない対象がある。 (8) はない対象がある。 (8) はない対象がある。 (7) はない対象がある。 (8) はない対象がある。 (8) はない対象がある。 (8) はない対象がある。 (8) はないがある。 (8) はないがある。 (8) はないがある。	二】 号機では,水平 震力のみを受 を記載する 充実 二】 号機では,共通 する解析コー する
 向の地震力を受けるものとする。 (5) 地震力はポンプに対して水平方向及び鉛直方向から作用するものとする。 (6) 耐震計算に用いる寸法は、公称値を使用する。 (7) 固有値解析及び地震応答解析に用いる解析コードは「MS ・記載ののでは、 C NASTRAN」とする。 【東海第二 ・記載のでは、 ・・記載のでは、 	二】 号機では,水平 震力のみを受 を記載する 充実 二】 号機では,共通 する解析コー する
(5) 地震力はポンプに対して水平方向及び鉛直方向から作用するものとする。 (6) 耐震計算に用いる寸法は、公称値を使用する。 (7) 固有値解析及び地震応答解析に用いる解析コードは「MS ・記載のう C NASTRAN」とする。 「東海第二 島根 2 号 ・	号機では,水平震力のみを受を記載する を記載する を実 二】 号機では,共通 する解析コー する
るものとする。 方向の地 (6) 耐震計算に用いる寸法は、公称値を使用する。 ける理由 (7) 固有値解析及び地震応答解析に用いる解析コードは「MS ・記載の C NASTRAN」とする。 【東海第二 島根 2 世 的に使用	震力のみを受 を記載する だ実 二】 号機では, 共通 する解析コー する
(6) 耐震計算に用いる寸法は、公称値を使用する。 ける理由を (7) 固有値解析及び地震応答解析に用いる解析コードは「MS ・記載の C NASTRAN」とする。 【東海第二 島根2号 的に使用	を記載する 充実 二】 号機では,共通 する解析コー する
(7) 固有値解析及び地震応答解析に用いる解析コードは「MS C NASTRAN」とする。 【東海第二 原動機 ボンブ取付ボルト 原動機 前に使用	だ実 二】 号機では, 共通 する解析コー する
C NASTRAN」とする。 【東海第二 扇動機 ボンプ取付ポルト がりに使用	二】 号機では, 共通 する解析コー する
原動機 原動機 原動機 と 原動機 と が に 使用	号機では, 共通 する解析コー する
原動機・ボンフ取付ポルト ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	する解析コー する
	する
『 歌 歌 歌 は ボルト	
	日達
原敷般台取付ポルト ・記載のオポンプ取付ポルト (上) ポンプ	
ポンプ駆付ポルト(下)	
1 人 衣 的	な概要図の相
達 	
X. GE	
下部サポート	
【ピットバレル形立形ポンプ】 【ターボ形立形ポンプ (海水ポンプ)】	
図 4-1 概要図	
4.2 固有周期の計算	
立形ポンプの固有周期について,「4.1 固有値解析及び構造強度 ・記載の材	1違
	二, 柏崎7】
①の相対	
4.3 設計用地震力	
「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」	
による地震力は、 <u>M</u> -2-1-7 <u>「</u> 設計用床応答 <u>スペクトル</u> の作成方針」	
に基づき設定する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		4.4 計算方法	
		4.4.1 応力の計算方法	
		4.4.1.1 ボルトの計算方法	
		4. 4. 1. 1 ボルトの計算方法 *** *** *** *** *** *** *** ***	
		力について計算する。	
		なお、転倒モーメント並びにせん断力は、水平方向には設計震度	
		とポンプ振動による震度の合計を考慮し、鉛直方向には設計震度	
		と自重を考慮した地震応答解析により算出する。	
		(1) 引張応力 ボルトに対する引張力は転倒支点から正比例した力が作用するものとし、最も厳しい条件として転倒支点から最も離れたボルトについて計算する。 引張力 $F_{bi} = \frac{M_{i} - (1 - C_{p} - C_{v}) \cdot m_{i} \cdot g \cdot \frac{D_{i}}{2}}{\frac{3}{8} \cdot n_{fi} \cdot D_{i}} \qquad (4.4.1.1.1)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			ここで、 M_i は地震応答解析により求める。	
			また、C _p はポンプ振動による振幅及び原動機の同期回転数を考慮	
			して定める値で、次式で求める。	
			$C_{p} = \frac{\frac{1}{2} \cdot \frac{H_{p}}{1000} \cdot \left(2 \cdot \pi \cdot \frac{N}{60}\right)^{2}}{g \cdot 1000} \qquad (4.4.1.1.2)$	
			引張応力	
			$\sigma_{b i} = \frac{F_{b i}}{A_{b i}}$ (4. 4. 1. 1. 3)	
			ここで,ボルトの軸断面積Abiは次式により求める。	
			A b i = $\frac{\pi}{4}$ · d i ²	
			ただし、F _{bi} が負のときボルトには引張力が生じないので、引張 応力の計算は行わない。	
			(2) せん断応力	
			ボルトに対するせん断力はボルト全本数で受けるものとして計算	
			する。なお,基礎ボルト (i =1) については,ポンプ回転による	
			モーメントは作用しない。	
			せん断力	
			せん断力は地震応答解析により求めるQbi及びポンプ回転によ	
			り作用するモーメントMpを考慮して求める。	
			せん断応力	
			$\tau \ _{b \ i} = \frac{Q \ _{b \ i} + 2 \cdot M \ _{p} / D \ _{i}}{n \ _{i} \cdot A \ _{b \ i}} \qquad \qquad (4. \ 4. \ 1. \ 1. \ 5)$	
			ここで、ポンプ回転により作用するモーメントM _p は次式で求め	
			る。 (60)	
			$M_{P} = \left(\frac{60}{2 \cdot \pi \cdot N}\right) \cdot 10^{6} \cdot P \qquad (4.4.1.1.6)$	
			$(1kW=10^6 \text{N} \cdot \text{mm/s})$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10	B根原子力発電所 2 号機	備考
		4.4.1.2 バレルケーシング及びコラムパイプの計算方法	
		バレルケーシング及びコラムパイプの応力は次式により求める。	
		(1) 水平方向地震力による応力	
		多質点モデルを用いて応答計算を行い、得られた各部に働くモー	
		メントにより、曲げ応力は以下のようになる。	
		$\sigma = \frac{M}{Z}$ (4. 4. 1. 2. 1)	
		(2) 鉛直方向地震による応力	
		$\sigma_{cv} = \frac{(1+C_v+C_p) \cdot m \cdot g}{A_c} \qquad (4.4.1.2.2)$	
		(3) 内圧による応力	
		$\sigma_{\theta} P = \frac{P_c \cdot D_c}{2 \cdot t} \qquad (4.4.1.2.3)$	
		$\sigma_{zP} = \frac{P_c \cdot D_c}{4 \cdot t} \qquad (4.4.1.2.4)$	
		以上の(1)~(3)の各応力から,一次一般膜応力は	
		$\sigma = \text{Max} \left(\sigma_{\text{cH}} + \sigma_{\text{cv}} + \sigma_{\text{ZP}}, \sigma_{\theta \text{P}} \right) \qquad (4.4.1.2.5)$	
		一次応力は一次一般膜応力と同じになるので省略する。	
			・記載の相違
			【東海第二】
			島根2号機では,サポ
			ート及びサポート取付
			ボルトの評価が必要な
			場合は,個別耐震計算書
			に計算方法を記載する

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		4.5 応力の評価	
		4.5.1 ボルトの応力評価	
		$4.4.1.1$ 項で求めたボルトの引張応力 σ_{bi} は次式より求めた許容	
		引張応力 f_{tsi} 以下であること。ただし、 f_{toi} は下表による。	
		$f_{\text{tsi}} = \min[1.4 \cdot f_{\text{toi}} - 1.6 \cdot \tau_{\text{bi}}, f_{\text{toi}}]$	
		せん断応力 τ b i はせん断力のみを受けるボルトの許容せん断応	
		カ f_{sbi} 以下であること。ただし、 f_{sbi} は下表による。	
		弾性設計用地震動Sd 又は静的震度による 荷重との組合せの場合	
		何里との組合せの場合	
		許容引張応力 $\frac{\mathbf{F} \mathbf{i}}{f \mathbf{t} \mathbf{o} \mathbf{i}} \cdot 1.5$ $\frac{\mathbf{F} \mathbf{i}^*}{2} \cdot 1.5$	
		許容せん断応力 $\frac{\mathrm{F}_{\mathrm{i}}}{1.5\cdot\sqrt{3}}\cdot 1.5$ $\frac{\mathrm{F}_{\mathrm{i}}^*}{1.5\cdot\sqrt{3}}\cdot 1.5$	
		f_{sbi} $1.5 \cdot \sqrt{3}$ $1.5 \cdot \sqrt{3}$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
果海那——完電所 (2018, 10, 12 fg)	作响和初原于力発电所(方統 (2020, 10, 9 版)	### 179年 2 7 7 2 7 7 2 7 7 2 7 7 8 7 2 7 7 8 7 7 7 9 2 7 7 7 9 2 7 9 2 7 7 7 9 2	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		5. 機能維持評価	
		5.1 動的機能維持評価方法	
		機能維持評価用加速度と機能確認済加速度との比較により、地震	・記載の相違
		時又は地震後の動的機能維持を評価する。	【東海第二,柏崎7】
		機能維持評価用加速度は、 <u>VI</u> -2-1-7「設計用床応答 <u>スペクトル</u> の	②の相違
		作成方針」に基づき、基準地震動Ssにより定まる加速度又はこ	・記載の充実
		れを上回る加速度を設定する。なお、水平方向の機能維持評価用	【東海第二,柏崎7】
		加速度はコラム先端(原動機にあっては軸受部)の応答加速度又	⑦の相違
		は設置床の最大応答加速度のいずれか大きい方とする。	・記載の充実
			【東海第二,柏崎7】
		機能確認済加速度は、 \(\mathbb{M} = 2-1-9 \) 「機能維持の基本方針」による。	島根2号機では,水平
		なお,この適用形式を外れる場合は,加振試験等に基づき確認し	方向の機能維持評価用
		た加速度を用いることとし、個別計算書にその旨を記載する。	加速度を具体的に記載
			する。
		6. 耐震計算書のフォーマット	
		立形ポンプの耐震計算書のフォーマットは、以下のとおりである。	・記載の相違
			【東海第二,柏崎7】
			①の相違
		〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマット I 設計基準対象施設としての評価結果	
		フォーマットⅡ 重大事故等対処設備としての評価結果	
		〔重大事故等対処設備単独の場合〕	
		フォーマットⅡ 重大事故等対処設備としての評価結果*	
		注記*:重大事故等対処設備単独の場合は、設計基準対象施設及	
		び重大事故等対処設備に示すフォーマットⅡを使用する	
		ものとする。ただし、評価結果表に記載の章番を「2.」	
		から「1.」とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
			②記載の充実
			【東海第二,柏崎7】
		t (mm) ※ で 第 出	⑦の相違
			B記載の充実
		海 最高使用	【東海第二,柏崎7】
			⑧の相違
		(S)	②記載の充実
			【東海第二】
		ボンブ振動 による際度 (MPa) ・。。。。	⑨の相違
			◎記載の相違
		機動Ss 船間 によって によった。 (2)	【東海第二】
		基準地 (銀) (APa) (A	島根2号機では,予想 両振幅及び回転数は他
			の項目との整合を考慮
		公は静的態度 新能力向 設計態度 Cv= *** Cv= *** (APa) (APa) (して記号を用いて記載
		# # # # # # # # # # # # # # # # # # #	する
		数した。	
		※ 本平方向 ※ 本平方向 ※ 計場域 C = ■	
		(京 (
		(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	
		番	
		フォーマット 設計基準対象施数 1. 設計基準対象施数 1. 設計基準対象施数 1. 設計基準対象施数 1. 設計基準対象施数 1. 表別	
		インクタ インクタ インクタ (大) ト (上) ト (下) ト (上)	
		[フォーマット 1 1 1 1 1 1 1 1 1	
		1.1 1.1 2 1.2 1.3 2 1.3	

東海第二発電所(2018. 10. 12	2版) 柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所	2 号機	備考
果海第二発電所(2018, 10. 12	4 版)	(2020. 10. 9 版)	Ref	1.4.2 ボルドのA/1906/01 2 ボル	(係名) (公記載の相違 【東海第二,柏崎7】 島根2号機では、水平 方向及び鉛直方向の固 有周期を記載する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		1.1.1.4 総労債務債務の計解の計解報 (×9.6.k/元) (×9.6.k/元) (*9.6.k/元) (*9.6.k/	②記載の相違 【東海第二,柏崎7】 ②の相違 ®記載の充実 【東海第二,柏崎7】 ③の相違 ①記載の相違 【東海第二,柏崎7】 ⑩の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機 1.5 その他の機器要目 (1) 節点データ	備考
		26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)			島根原-	子力発	電所 2	号機		備考
		(2)	要素の断面性状	1			NG JC - Vo	MC 25: - 1/4.	
			断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm²)	断面二次 モーメント (mm ⁴)	断面二次 極モーメント (mm ⁴)	
			1				(IIIII /	(IIIII)	
			3						
			4						
			5						
			7						
			8						
			9						
			11						
			12		1			 	
			14						
			15 16						
			17						
			18						
			19						
			21						
			22						
			24						
			25 26						
			27						
			28						
			30						
			31						
			32						
		(3) ばね結合	部の指定					
			ばねの同	両端の節点番号			ばね定数		
			1	15			(N/mm	n)	
			3	17			(N/mm)	
			6	20			(N/mm	n)	
			9	23			(N/mm	1)	
			12	38			(N/mm	n)	
			13	39			(N/mm	n)	
			17	27			(N/mm	n)	
			31	33			(N·mm	/rad)	
							ζ-:		

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		(4) 節点の質量	
		節点番号 質量 (kg)	
		1	
		2	
		3	
		5	
		6	
		7	
		8	
		9	
		10	
		11	
		12	
		13	
		14	
		15	
		16	
		17	
		18	
		19	
		20	
		21	
		22	
		23	
		24	
		25	
		26	
		27 28	
		29	
		30	
		31	
		32	
		33	
		34	
		35	
		36	
		37	
		38	
		39	
		40	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		(5) 材料物性値	②記載の相違【東海第二】島根2号機では、材料番号で識別する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所 (2018.10.12版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	(A) 所能 (A) 所能 (A) 所能 (A) 所能 (A)	備考 (比較結果はフォーマットIと同様であるため、記載を省略する)
		に して の 評 4 本 平 方 向 イン (mm ²) (mm ²	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		1.3 日前日 日本	(比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
			(比較結果はフォーマ
			ットIと同様であるた
		u.,	め、記載を省略する)
		型型	
		(A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		(A)	
		サンド	
		्र स्थ	
		京 <u>即</u>	
		上海 (
		7.7 × 7.7	
		用加	
		少大· 	
		· · · · · · · · · · · · · · · · · · ·	
		方向の	
		, 水平	
		\$ 4	
		100 H	
		(A)	
		(×9.8m/s²) 認済加速度 登子回名加	
		(×9.1 機能確認済 (大これを上)	
		を を ある。 ある。	
		画用加 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
		維持評価用加速度 により定まる加速 でずれか大きい方と 等加速度以下である	
		平価 自 回 回 回 回 回 回 回 回 回 回 回 回 回 回 回 回 回 回	
		2.4.4 動的機能維持の評価結果 株定権持所用加速度* 機能維持評価用加速度* 機能確認 ボンブ 新電方向 水平方向 水平方向 注記*:設計用速度I (基準地震動 S s) により定まる加速度又はこれを又は設置体の長大応答加速度のいずれかみきい方とする。 Xは設置体の長大応答加速度のいずれかみきい方とする。 機能維持評価用加速度はすべて機能確認済加速度以下である。	
		1 1 1 1 1 1 1 1 1 1	
		4 動か では、 では、 では、 では、 では、 では、 では、 では、	
		第	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		2.5 その他の機器要目	
		(1) 節点データ	
		節点番号	
		2	
		3	
		4	
		5	
		7	
		8	
		9	
		10	
		11	
		13	
		14	
		15	
		16	
		17	
		18	
		20	
		21	
		22	
		23	
		24	
		25	
		26 27	
		28	
		29	
		30	
		31	
		32	
		33 34	
		34 35	
		36	
		37	
		38	
		39	
		40	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	(2) 要素の断面性状 断面特性番号	備考
		9 10 11 12 13 14 15 16 17 18 19 20 21	
		(3) ばね結合部の指定 ばねの両端の節点番号 ばね定数 1 15 (N/mm) 3 17 (N/mm) 6 20 (N/mm) 9 23 (N/mm) 12 38 (N/mm) 13 39 (N/mm) 17 27 (N/mm) 31 33 (N・mm/rad)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		(4) 節点の質量	
		節点番号 質量 (kg)	
		1	
		2	
		3	
		4	
		5	
		7	
		8	
		9	
		10	
		11	
		12	
		13	
		14	
		15 16	
		17	
		18	
		19	
		20	
		21	
		22	
		23	
		24 25	
		26	
		27	
		28	
		29	
		30	
		31	
		32	
		33 34	
		35	
		36	
		37	
		38	
		39	
		40	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	B根原子力発電所 2号機	・記載の相違 【東海第二】 島根2号機では、材料 番号で識別する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		SERROTOLIA STORMENTOLIA CENTRALE CENTRA	・記載の相違 【東海第二】 島根 2 号機では, 個別 耐震計算書に適切な形 状を図示するため, 注記 を記載しない

先行審査プラントの記載との比較表(VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-3 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			近山海町 0 カカー1 十世よる黒田佐野帝町の石屋県フェンマの	
			添付資料-3 スカート支持たて置円筒形容器の耐震性についての 計算書作成の基本方針	
			FI 5F E [[/W \(\tau \) \(\tau \) [\) [\(\tau \) [\(\tau \) [\(\tau \) [\(\tau \) [\\ \tau \) [\(\tau \) [\(\tau \) [\(\tau \) [\\ \tau \) [\(\tau \) [\(\tau \) [\\ \tau \) [\\ \tau \) [\(\tau \) [\\ \tau \) [\\ \tau \) [\(\tau \) [\\ \tau \) [\\ \tau \) [\(\tau \) [\\ \tau \) [\	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <u>規格・基準等</u>	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位	
		4. 固有周期 4.1 田有周期の計算方法	
		4.1 固有周期の計算方法	
		5. 構造強度評価5.1 構造強度評価方法	
		5.2 設計用地震力	
		5.3 計算方法	
		5.4 応力の評価	
		6. 耐震計算書のフォーマット	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		1. 概要 本資料は、M-2-1-1「耐震設計の基本方針」に基づき、耐震性に 関する説明書が求められているスカート支持たて置円筒形容器 (耐震重要度分類Sクラス又はSs機能維持の計算を行うもの) が、十分な耐震性を有していることを確認するための耐震計算の 方法について記載したものである。 解析の方針及び減衰定数については、M-2-1-6「地震応答解析の 基本方針」に従うものとする。 ただし、本基本方針が適用できないスカート支持たて置円筒形容	
		器にあっては、個別耐震計算書にその耐震計算方法を含めて記載する。 2. 一般事項 2.1 評価方針 スカート支持たて置円筒形容器の応力評価は、MI-2-1-9 「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」にて示す。 スカート支持たて置円筒形容器の耐震評価フローを図 2-1 に示す。	
		計算モデルの設定 理論式による固有周期 設計用地震力 地震時における応力 スカート支持たて置円筒形容器の構造強度評価 図 2-1 スカート支持たて置円筒形容器の耐震評価フロー	・記載の相違 【東海第二】 島根2号機では、「理 論式による固有周期」と 記載する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.2 適用 <u>規格・基準等</u>	
		本評価において適用する規格・基準等を以下に示す。	
		•原子力発電所耐震設計技術指針 <u>重要度分類・許容応力編 J</u>	
		EAG4601・補-1984 ((社)日本電気協会)	
		·原子力発電所耐震設計技術指針 JEAG4601-1987((社)	
		日本電気協会)	
		·原子力発電所耐震設計技術指針 JEAG4601-1991 追補	
		版((社)日本電気協会)	
		・発電用原子力設備規格 設計・建設規格 <u>((社)</u> 日本機械学会,	
		2005/2007) (以下「設計・建設規格」という。)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		記号	・記載の相違 【東海第二,柏崎7】 島根2号機では,dを 「基礎ボルトの呼び径」 と記載する ・記載の相違 【東海第二】 ③の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	 島根原子力発電所 2号機 記号 記号の説明 単位 N/m Kv 鉛直方向ばね定数 N/m Kv 鉛直方向ばね定数 N/m Kv 鉛直方向ばね定数 N/m Mm 基礎ボルト計算における中立軸の荷重係数 ―― 相のスカート接合点から重心までの距離 mm (図5−2に示す距離) (図5−2に示す距離) (図5−2に示す距離) ℓ 解のスカートを含品から上端支持部までの距離 mm (とs スカートの長さ Ms スカートの長さ Ms スカートの長さ N・mm Ms1 スカートの上端部に作用する転倒モーメント N・mm Ms2 スカートの下端部に作用する転倒モーメント N・mm Ms2 スカートの下端部に作用する転倒モーメント N・mm Ms2 スカートの下端部に作用する転倒モーメント N・mm な器の運転時質量 kg me 容器のスカート接合部から上部の空質量 kg me 容器のスカート接合部から上部の空質量 kg me 容器のスカート接合部から上部の空質量 N・m 基礎ボルトの本数 ―― 日高使用圧力 MPa 以上端の支持部に作用する反力 N・N・N・N・N・N・N・N・N・N・N・N・N・N・N・N・N・N・N・	備考
		Sy 設計・建設規格 付録材料図表 Part5 表8に定める値 MPa Sy(RT) 設計・建設規格 付録材料図表 Part5 表8に定める材料の MPa 40℃における値 基礎ボルトと基礎の縦弾性係数比 — TH 水平方向固有周期 s TV 鉛直方向固有周期 s t 胴板の厚さ mm t 基礎ボルト面積相当板幅 mm ts スカートの厚さ mm X スカート開口部の水平断面における最大円周長さ mm Z 基礎ボルト計算における係数 — α 基礎ボルト計算における中立軸を定める角度 rad δ 荷重Qによる容器の上端での変位量 mm δ 荷重Q による容器の上端での変位量 mm δ 荷重Q による容器の重心での変位量 mm Φ屋底応力に対する安全率 — mm	
		π 円周率 —	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
果神男一発亀所(2018, 10, 12 版)	们啊利初原于刀笼电灯子写成 (2020.10.9 版)	高快県十刀発電所 単位 が 減体の密度(= 比重×10 ** の ** が 減体の密度(= 比重×10 ** の ** が から、 で、 が が が が が が が が が が が が が が が か が か が	少用 考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)		島根原	子力発電所	2 号機		備考
			2.4 計算精度と数	女値の丸と	 め方	_		
			精度は,有効数字	6 桁以上	こを確保する。			・記載の充実
			表示する数値の丸	め方は表	き2-1 に示す	とおりでは	ある。	【東海第二】
								④の相違
			表	₹2-1	表示する数値	[の丸め方		
			数値の種類	単位	処理桁	処理方法	表示桁	
			固有周期	s	小数点以下第4位	四捨五入	小数点以下第3位	
			震度		小数点以下第3位	切上げ	小数点以下第2位	
			最高使用圧力	MPa	_	_	小数点以下第2位	
			温度	℃	_	_	整数位	
			比重		小数点以下第3位	四捨五入	小数点以下第2位	
			質量	kg	_	_	整数位	
			下記以外の長さ	mm	_	_	整数位*1	
			長 胴板の厚さ	mm	_	_	小数点以下第1位	
			スカートの厚さ	mm	_	_	小数点以下第1位	
			面積	mm ²	有効数字 5 桁目	四捨五入	有効数字 4 桁*2	
			モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字 4 桁*2	
			算出応力	MPa	小数点以下第1位	切上げ	整数位	
			許容応力*3		小数点以下第1位	切捨て	整数位	
			注記*1:設計上定める値 *2:絶対値が1000 *3:設計・建設規格 点は、比例法に する。) 以上のとき 各 付録材料[は, べき数表示と 図表に記載された温原	する。 度の中間におけ		・記載の充実【東海第二】⑤の相違
			3. 評価部位					
			スカート支持たて	置円筒形	を容器の耐震 でいる。 では、 では、 では、 では、 では、 では、 では、 では	平価は「5.1	1 構造強度評価	
			方法」に示す条件				さる胴、スカート	
			及び基礎ボルトに	ついて評	呼価を実施する	ó.		
			<u> </u>					

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
果海界	相畸利初原于刀発電所 7	4. 固有周期	(拥)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		ここで、スカートの開口部(図 4-2 参照)による影響を考慮し、 胴及びスカートの断面性能は次のように求める。 胴の断面性能は次式で求める。	
		$I = \frac{\pi}{8} \cdot (D_i + t)^3 \cdot t \qquad (4.1.2)$	
		$A_{e} = \frac{2}{3} \cdot \pi \cdot (D_{i} + t) \cdot t \qquad (4.1.3)$	
		スカートの断面性能は次式で求める。	
		$I_s = \frac{\pi}{8} \cdot (D_s + t_s)^3 \cdot t_s - \frac{1}{4} \cdot (D_s + t_s)^2 \cdot t_s \cdot Y$	
		(4. 1. 4)	
		スカート開口部の水平断面における最大円周長さは次式で求め	
		3.	
		(図 4-2 及び図 4-3 参照)	
		$Y = \sum_{j=1}^{j-1} (D_s + t_s) \cdot \sin^{-1} \left(\frac{D_j}{D_s + t_s} \right) \qquad (4.1.5)$	
		$A_{se} = \frac{2}{3} \cdot \{\pi \cdot (D_s + t_s) - Y\} \cdot t_s$ (4.1.6)	
		したがって、固有周期は次式で求める。	
		$T_{H}=2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{H}}}$ (4.1.7)	
		 ℓs D₁ D₃ <li< td=""><td></td></li<>	
		D s	
		図 4-3 スカート開口部の水平断面における最大円周長さ	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	B根原子力発電所 2号機 b. 下端固定上端支持の場合 重心の位置に水平方向の荷重Qが作用したときに上端の支持部に 生じる反力Q' は、図 4-4に示すように荷重Q及び反力Q' による上端の変位量 8 と 8' が等しいとして求める。	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		したがって、図 4-4 の (3) に示す重心位置での変位量 δ o は図 4-	
		4 の(1)及び(2)の重心位置での変位量の重ね合わせから求めるこ	
		とができ、ばね定数K _H は次式で求める。	
		$K_{H} = \frac{Q}{\delta_{o}} = 1000 \times \left\{ \frac{\ell^{3}}{3 \cdot E \cdot I} + \frac{3 \cdot \ell^{2} \cdot \ell_{s} + 3 \cdot \ell \cdot \ell_{s}^{2} + \ell_{s}^{3}}{3 \cdot E_{s} \cdot I_{s}} \right.$	
		$+ \left(1 - \frac{Q'}{Q}\right) \cdot \left(\frac{\ell}{G \cdot A \cdot e} + \frac{\ell \cdot s}{G \cdot s \cdot A \cdot s \cdot e}\right) - \frac{Q'}{Q} \cdot \left(\frac{2 \cdot \ell^{3} + 3 \cdot \ell^{2} \cdot \ell \cdot r}{6 \cdot E \cdot I}\right)$	
		$+\frac{3 \cdot \ell s^{2} \cdot \ell + \ell s^{3} + 3 \cdot \ell s \cdot \ell^{2} + 3 \cdot \ell s \cdot \ell \cdot \ell r + \frac{3}{2} \cdot \ell s^{2} \cdot \ell r}{3 \cdot E s \cdot I s}$	
		(4. 1. 11)	
		田左周期は(4.1.7)がによりませて	
		固有周期は(4.1.7)式により求める。	
		(3) 鉛直方向固有周期	
		軸方向変形によるばね定数Kvは、次式で求める。	
		$K_{v} = 1000 / \left(\frac{\ell}{E \cdot A} + \frac{\ell_{s}}{E_{s} \cdot A_{s}}\right) \qquad (4.1.12)$	
		$A = \pi \cdot (D_i + t) \cdot t \qquad (4.1.13)$	
		$A_{s} = \{ \tau \cdot (D_{s} + t_{s}) - Y \} \cdot t_{s} \qquad (4.1.14)$	
		したがって, 固有周期T v は次式で求める。	
		$T_{v} = 2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{v}}} \qquad (4.1.15)$	
		$\sqrt{\frac{1}{K_{V}}}$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			5. 構造強度評価	
			5.1 構造強度評価方法	
			4.1 <u>(1)</u> 項 a.~e.のほか,次の条件で計算する。概要図を図 <u>5-1</u>	
			に示す。	
			(1) 地震力は容器に対して水平方向及び鉛直方向から作用する	
			ものとする。	
			Mag Ma	
			5.2 設計用地震力	
			「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」	
			による地震力は, <u>VI</u> -2-1-7 <u>「</u> 設計用床応答 <u>スペクトル</u> の作成方針」	
			に基づき設定する。	
			5.3 計算方法 5.3.1 応力の計算方法	
			5.3.1 応力の計算方法 応力計算における水平方向と鉛直方向の組合せについて,静的地	
			震力を用いる場合は絶対値和を用いる。動的地震力を用いる場合	
			は、絶対値和又はSRSS法を用いる。	
			,,,,,,,	
			5.3.1.1 胴の計算方法	
			(1) 静水頭又は内圧による応力	
			静水頭による場合(鉛直方向地震時を含む。)	
			$\sigma_{\phi_1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{2 \cdot t} \qquad (5.3.1.1.1)$	
			$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_{i} \cdot C_{v}}{2 \cdot t} \qquad (5.3, 1, 1, 2)$	
			$\sigma_{x_1} = 0$ (5. 3. 1. 1. 3)	
		07		

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		内圧による場合	
		$\sigma_{\phi 1} = \frac{P_{r} \cdot (D_{i} + 1.2 \cdot t)}{2 \cdot t} \qquad \dots \qquad (5.3.1.1.4)$	
		$\sigma_{\phi 2} = 0 \qquad (5.3.1.1.5)$	
		$\sigma \times 1 = \frac{P \cdot (D \cdot i + 1.2 \cdot t)}{4 \cdot t} \qquad (5.3.1.1.6)$	
		(2) 運転時質量及び鉛直方向地震による応力	
		胴がスカートと接合する点を境界として、上部には胴自身の質量	
		による圧縮応力が、下部には下部の胴自身の質量と内容物の質量	
		による引張応力が生じる。	
		下部の胴について	
		$\sigma_{x2} = \frac{(m_0 - m_e) \cdot g}{\pi \cdot (D_i + t) \cdot t} \qquad (5.3.1.1.7)$	
		$\sigma_{x5} = \frac{(m_0 - m_e) \cdot g \cdot C_v}{\pi \cdot (D_i + t) \cdot t} \qquad (5.3.1.1.8)$	
		上部の胴について	
		$\sigma_{x3} = \frac{m \cdot g}{\pi \cdot (D_i + t) \cdot t} \qquad (5.3.1.1.9)$	
		$\sigma \times_{6} = \frac{m \cdot g \cdot C \cdot v}{\pi \cdot (D_{i} + t) \cdot t} \qquad (5.3.1.1.10)$	
		(3) 水平方向地震による応力	
		水平方向の地震力により胴はスカート接合部で最大となる曲げモ	
		ーメントを受ける。この曲げモーメントによる軸方向応力と地震	
		力によるせん断応力は次のように求める。	
		a. 下端固定の場合	
		$\sigma_{X4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \ell}{\pi \cdot (D_{i} + t_{i})^{2} \cdot t} \qquad (5.3.1.1.11)$	
		$\tau = \frac{2 \cdot \text{CH} \cdot \text{mo} \cdot \text{g}}{\pi \cdot (\text{Di} + \text{t}) \cdot \text{t}} \qquad (5.3.1.1.12)$	
		$\pi \cdot (D i + t) \cdot t$	
		b. 下端固定上端支持の場合	
		$\sigma_{X4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \left \ell - \frac{Q'}{Q} \cdot (\ell + \ell_{T}) \right }{\pi \cdot (D_{i} + t_{j})^{2} \cdot t} \qquad (5.3.1.1.13)$	
		$\tau = \frac{2 \cdot C \mathbf{H} \cdot \mathbf{m} \mathbf{o} \cdot \mathbf{g} \cdot (1 - \frac{\mathbf{Q}'}{\mathbf{Q}})}{\pi \cdot (\mathbf{D} \mathbf{i} + \mathbf{t}) \cdot \mathbf{t}} \qquad (5.3.1.1.14)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			(4) 組合せ応力	
			(1)~(3)によって求めた胴の応力は以下のように組み合わせる。	
			a. 一次一般膜応力	
			(a) 組合せ引張応力	
			$\sigma_{\phi} = \sigma_{\phi 1} + \sigma_{\phi 2} \qquad \cdots \qquad (5.3.1.1.15)$	
			$\sigma \circ t = \frac{1}{2} \cdot \left\{ \sigma \phi + \sigma x t + \sqrt{(\sigma \phi - \sigma x)^2 + 4 \cdot \tau^2} \right\}$	
			(5. 3. 1. 1. 16)	
			ここで、	
			【絶対値和】	
			$\sigma_{x t} = \sigma_{x_1} + \sigma_{x_2} + \sigma_{x_4} + \sigma_{x_5} \qquad (5.3.1.1.17)$	
			[SRSS法] $\sigma_{x} t = \sigma_{x_1} + \sigma_{x_2} + \sqrt{\sigma_{x_4}^2 + \sigma_{x_5}^2}$ (5. 3. 1. 1. 18)	
			(b) 組合せ圧縮応力 σφ=-σφ1-σφ2 ······ (5.3.1.1.19)	
			$0 \ \phi = -0 \ \phi_1 = 0 \ \phi_2 \qquad (5. \ 5. \ 1. \ 1. \ 19)$	
			σ x c が正の値 (圧縮側) のとき, 次の組合せ圧縮応力を求める。	
			$\sigma \circ c = \frac{1}{2} \cdot \left\{ \sigma \phi + \sigma x c + \sqrt{(\sigma \phi - \sigma x c)^2 + 4 \cdot \tau^2} \right\}$	
			(5. 3. 1. 1. 20)	
			ここで、	
			【絶対値和】 $\sigma_{xc} = -\sigma_{x1} + \sigma_{x3} + \sigma_{x4} + \sigma_{x6} \qquad \cdots \qquad (5.3.1.1.21)$	
			【SRSS法】	
			$\sigma \times c = -\sigma \times 1 + \sigma \times 3 + \sqrt{\sigma \times 4^2 + \sigma \times 6^2}$ (5. 3. 1. 1. 22)	
			したがって、胴の組合せ一次一般膜応力の最大値は、絶対値和、	
			SRSS法それぞれに対して、	
			$\sigma_0 = Max$ {組合せ引張 応力 ($\sigma_0 t$), 組合せ圧縮応力 ($\sigma_0 c$)}	
			(5. 3. 1. 1. 23)	
			とする。	
			一次応力は一次一般膜応力と同じ値になるので省略する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版	島根原子力発電所 2号機	備考
		b. 地震動のみによる一次応力と二次応力の和の変動値	
		(a) 組合せ引張応力	
		$\sigma_{2\phi} = \sigma_{\phi 2} \qquad \cdots \qquad (5.3.1.1.24)$	
		$\sigma_{2\mathrm{t}} = \sigma_{2\phi} + \sigma_{2\mathrm{x}\mathrm{t}} + \sqrt{(\sigma_{2\phi} - \sigma_{2\mathrm{x}\mathrm{t}})^{2} + 4ullet$	
		(5, 3, 1, 1, 25)	
		ここで、	
		【絶対値和】	
		$\sigma_{2 \times t} = \sigma_{x 4} + \sigma_{x 5} \qquad (5.3.1.1.26)$	
		【SRSS法】	
		$\sigma_{2x} t = \sqrt{\sigma_{x4}^2 + \sigma_{x5}^2}$ (5. 3. 1. 1. 27)	
		(b) 組合せ圧縮応力	
		$\sigma_{2\phi} = -\sigma_{\phi2} \qquad (5.3.1.1.28)$	
		$\sigma_{2c} = \sigma_{2\phi} + \sigma_{2x} + \sqrt{(\sigma_{2\phi} - \sigma_{2x})^2 + 4 \cdot \tau^2}$	
		$\dots \dots $	
		ここで、	
		【絶対値和】	
		$\sigma_{2 \times c} = \sigma_{\times 4} + \sigma_{\times 6} \qquad \cdots \qquad (5.3.1.1.30)$	
		【SRSS法】	
		$\sigma_{2 \times c} = \sqrt{\sigma_{\times 4}^{2} + \sigma_{\times 6}^{2}}$ (5. 3. 1. 1. 31)	
		したがって、胴の地震動のみによる一次応力と二次応力の和の変	
		動値の最大値は、絶対値和、SRSS法それぞれに対して、	
		$\sigma_2 = Max$ { 組合せ引張応力 (σ_2 t), 組合せ圧縮応力 (σ_2 c)}	
		$\cdots \cdots \cdots \cdots (5. 3. 1. 1. 32)$	
		とする。	
		5.3.1.2 スカートの計算方法	
		(1) 運転時質量及び鉛直方向地震による応力	
		スカート底部に生じる運転時質量及び鉛直方向地震による圧縮応	
		力は次式で求める。	
		$\sigma_{s1} = \frac{m_0 \cdot g}{\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s} \qquad (5.3.1.2.1)$	
		$\sigma_{s3} = \frac{m_0 \cdot g \cdot C_v}{\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s} \qquad (5.3.1.2.2)$	
		$\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	島根原子力発電所 2号機 (2) 水平方向地震による応力 水平方向の地震力によりスカートに作用する曲げモーメントにより生じる軸方向応力及び水平方向地震力によるせん断応力は次のように求める。 a. 下端固定の場合 $\sigma_{s2} = \frac{M_s}{(D_s + t_s) \cdot t_s \cdot \left\{ \frac{\pi}{4} \cdot (D_s + t_s) - \frac{Y}{2} \right\}} $ (5.3.1.2.3) $\tau_s = \frac{2 \cdot C_H \cdot m_o \cdot g}{\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s}$ (5.3.1.2.4) (5.3.1.2.5) (5.3.1.2.6) b. 下端固定上端支持の場合 軸方向応力は (5.3.1.2.3) 式で表されるが、曲げモーメントM s は次のM s $_1$ 又はM s $_2$ のいずれか大きい方の値とする。 $M_{s1} = C_H \cdot m_o \cdot g \cdot \left \ell - \frac{Q'}{Q} \cdot (\ell + \ell_T) \right $ (5.3.1.2.6) $M_{s2} = C_H \cdot m_o \cdot g \cdot \left \ell_s + \ell - \frac{Q'}{Q} \cdot (\ell_s + \ell + \ell_T) \right $ (5.3.1.2.7) $\tau_s = \frac{2 \cdot C_H \cdot m_o \cdot g \cdot (1 - \frac{Q'}{Q})}{\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s}$ (5.3.1.2.8)	備考
		(5. 3. 1. 2. 7)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10.9 版)	島根原子力発電所 2 号機	備考
		5.3.1.3 基礎ボルトの計算方法	
		(1) 引張応力	
		基礎に作用する転倒モーメントM s は下端固定の場合,	
		(5.3.1.2.5) 式を,下端固定上端支持の場合は(5.3.1.2.6) 式	
		又は(5.3.1.2.7)式のいずれか大きい方を用いる。	
		転倒モーメントが作用した場合に生じる基礎ボルトの引張荷重と	
		基礎部の圧縮荷重については、荷重と変位量の釣合い条件を考慮	
		することにより求める (図 5-2 参照)。	
		以下にその手順を示す。	
		a. σ_b 及び σ_c を仮定して基礎ボルトの応力計算における中立	
		軸の荷重係数kを求める。	
		$k = \frac{1}{1 + \frac{\sigma b}{1 + \frac{\sigma b}}{1 + \frac{\sigma b}{1 + \frac{\sigma b}}}{1 + \frac{\sigma b}{1 + \frac{\sigma b}{1 + \frac{\sigma b}}}{1 + \frac{\sigma b}{1 + \frac{\sigma b}}{1 + \frac{\sigma b}{1 + \frac{1 + \frac{\sigma b}}}}{1 + \frac{\sigma b}{1 + \frac{\sigma b}}}}{1 + \frac{\sigma b}{1 + \frac{\sigma b}{1 + $	
		s • σ c	
		1. 其歴ギルしの内力製質におけて由力動が定めて角度。かまめ	
		b. 基礎ボルトの応力計算における中立軸を定める角度 α を求める。	
		` ∂ °	
		$\alpha = \cos^{-1} (1 - 2 \cdot k)$ (5. 3. 1. 3. 2)	
		$\begin{array}{c c} t_1 & F_c \\ \hline \end{array}$	
		ℓ_1 ℓ_2	
		F t e · Dc	
		$z \cdot \mathrm{Dc}$ Fc	
		σ b	
		$(1-k) \cdot D_c$	
		$k \cdot D_{c}$	
		図 5-2 基礎の荷重説明図	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
宋(#宋—光·电//灯(2018, 10, 12 /版)	(中國內利原子力発電所 / 方機		島根原于刀発電所 2号機 c. 各定数 e, z, C t 及び C c を求める。 $e = \frac{1}{2} \cdot \left\{ \frac{(\pi - \alpha) \cdot \cos^2 \alpha + \frac{1}{2} \cdot (\pi - \alpha) + \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha}{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha} \right.$ $\left. + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^2 \alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right\} \qquad (5.3.1.3.3)$ $z = \frac{1}{2} \cdot \left\{ \cos \alpha + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^2 \alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right\} \qquad (5.3.1.3.4)$ $C t = \frac{2 \cdot \left\{ (\pi - \alpha) \cdot \cos \alpha + \sin \alpha \right\}}{1 + \cos \alpha} \qquad (5.3.1.3.5)$ $C c = \frac{2 \cdot (\sin \alpha - \alpha \cdot \cos \alpha)}{1 - \cos \alpha} \qquad (5.3.1.3.6)$ $d. \Delta c = \frac{2 \cdot (\sin \alpha - \alpha \cdot \cos \alpha)}{1 - \cos \alpha} \qquad (5.3.1.3.6)$ $f t = \frac{M_s - (1 - C_v) \cdot m_o \cdot g \cdot z \cdot D_c}{e \cdot D_c} \qquad (5.3.1.3.7)$ $F c = F t + (1 - C_v) \cdot m_o \cdot g \cdot z \cdot D_c \qquad (5.3.1.3.8)$ $C c = \frac{\sqrt{M_s^2 + (C_v \cdot m_o \cdot g \cdot z \cdot D_c)^2}}{e \cdot D_c} - \frac{z}{e} \cdot m_o \cdot g \qquad (5.3.1.3.9)$ $F c = \sqrt{M_s^2 + (C_v \cdot m_o \cdot g \cdot (z - e) \cdot D_c)^2} + (1 - \frac{z}{e}) \cdot m_o \cdot g \qquad (5.3.1.3.9)$	1用 右
			基礎ボルトに引張力が作用しないのは、 α が π に等しくなったときであり、 $(5.3.1.3.3)$ 式及び $(5.3.1.3.4)$ 式において α を π に近づけた場合の値 $e=0.75$ 及び $z=0.25$ を $(5.3.1.3.7)$ 式又は $(5.3.1.3.9)$ 式に代入し、得られる F_t の値によって引張力の有無を次のように判定する。 $F_t \leq 0$ ならば引張力は作用しない。 $F_t > 0$ ならば引張力が作用しているので次の計算を行う。	

$ c_{-} = c_{-} c_{-}$	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	 e. σ_b及びσ_cを求める。 σ_b = 2·Ft / t₁·D_c·Ct (5.3.1.3.11) σ_c = 2·Fc (t₂+s·t₁)·D_c·Cc (5.3.1.3.12) ここで, t₁ = n·Ab / π·D_c (5.3.1.3.13) t₂ = ½·(D_b o - D_b i) - t₁ (5.3.1.3.14) A_b = ¼·d² (5.3.1.3.15) σ_b及びσ_cが a 項にて仮定した値と十分に近似していることを確認する。この場合のσ_b及びσ_cを基礎ボルトと基礎に生じる応力とする。 (2) せん断応力 a. 下端固定の場合 τ_b = CH·m₀·g / n·A_b (5.3.1.3.16) 	備考
			b. 下端固定上端支持の場合	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		ここで、f。は次による。	
		$\frac{Ds + 2 \cdot ts}{2 \cdot ts} \le \frac{1200 \cdot g}{F} \text{のとき}$	
		$f_{c} = F$ (5. 4. 2. 2)	
		$\frac{1200 \cdot g}{F} < \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} < \frac{8000 \cdot g}{F} \emptyset \succeq \tilde{\Xi}$	
		$f_{c} = F \cdot \left[1 - \frac{1}{6800 \cdot g} \cdot \left\{ F - \phi_{1} \left(\frac{8000 \cdot g}{F} \right) \right\} \cdot \left(\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} - \frac{1200 \cdot g}{F} \right) \right]$	
		$\frac{8000 \cdot g}{F} \le \frac{D s + 2 \cdot t s}{2 \cdot t s} \le 800 \text{のとき}$	
		$f_{c} = \phi_{1} \left(\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} \right) \qquad (5.4.2.4)$	
		ただし、 $\phi_1(\mathbf{x})$ は次の関数とする。	
		$\phi_{1}(\mathbf{x}) = 0.6 \cdot \frac{E_{s}}{\mathbf{x}} \left[1 - 0.901 \cdot \left\{ 1 - e_{x} p \left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}} \right) \right\} \right] \dots (5.4.2.5)$	
		また、fbは次による。	
		$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq \frac{1200 \cdot g}{F} \text{O } \geq 8$	
		$f_{b} = F \qquad (5.4.2.6)$ $1200 \cdot g \cdot D \cdot s + 2 \cdot t \cdot s \cdot 9600 \cdot g \qquad (5.4.2.6)$	
		$\frac{1200 \cdot g}{F} < \frac{D \cdot s + 2 \cdot t \cdot s}{2 \cdot t \cdot s} < \frac{9600 \cdot g}{F} \emptyset \succeq \mathring{\Xi}$	
		$f_{b} = F \cdot \left[1 - \frac{1}{8400 \cdot g} \cdot \left\{ F - \phi_{2} \left(\frac{9600 \cdot g}{F} \right) \right\} \cdot \left(\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} - \frac{1200 \cdot g}{F} \right) \right] $ (5. 4. 2. 7)	
		$\frac{9600 \cdot g}{F} \leq \frac{D + 2 \cdot t}{2 \cdot t} \leq 800 \text{のとき}$	
		$f_{b} = \phi_{2} \left(\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} \right) \qquad (5.4.2.8)$	
		ただし、 $\phi_2(\mathbf{x})$ は次の関数とする。	
		$\phi_{2}(\mathbf{x})=0.6 \cdot \frac{\mathbf{E} \text{ s}}{\mathbf{x}} \cdot \left[1-0.731 \cdot \left\{1-\text{ e } \mathbf{x} \text{ p}\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right)\right\}\right] \qquad (5.4.2.9)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所	2 号機	備考
			ηは安全率で次による。		
			$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \le \frac{1200 \cdot g}{F} \text{のとき}$		
			$\eta=1$	(5. 4. 2. 10)	
			$\frac{1200 \cdot g}{F} < \frac{D s + 2 \cdot t s}{2 \cdot t s} < \frac{8000 \cdot g}{F} \emptyset \succeq \mathring{\Xi}$		
			$\eta = 1 + \frac{0.5 \cdot F}{6800 \cdot g} \cdot \left(\frac{D + 2 \cdot t}{2 \cdot t} - \frac{1200 \cdot g}{F} \right)$	(5. 4. 2. 11)	
			$\frac{8000 \cdot g}{F} \leq \frac{D + 2 \cdot t}{2 \cdot t} \qquad \text{OEE}$		
			$F = 2 \cdot t s$ $\eta = 1.5 \qquad \cdots$	(5 4 2 12)	
			η	(0. 1. 2. 12)	
			5.4.3 基礎ボルトの応力評価		
			5.3.1.3 項で求めた基礎ボルトの引張	応力σιは次式より求めた	
			許容引張応力 ƒ t s以下であること。た	だし, ftoは下表による。	
			f ts=Min[1.4 • f to-1.6 • τ b, f to]	(5. 4. 3. 1)	
			せん断応力τιはせん断力のみを受け	る基礎ボルトの許容せん断	
			応力fsb以下であること。ただし、fs	ょ は下表による。	
			弾性設計用地震動 S d 又は静的震度による	基準地震動Ssによる	
			荷重との組合せの場合	荷重との組合せの場合	
			許容引張応力 F/2 • 1.5	$\frac{\mathrm{F}}{2}^* \cdot 1.5$	
			許容せん断応力 $\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		6. 耐震計算書のフォーマット	
		スカート支持たて置円筒形容器の耐震計算書のフォーマットは,	
		以下のとおりである。	
		〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマット I 設計基準対象施設としての評価結果	
		フォーマットⅡ 重大事故等対処設備としての評価結果	
		〔重大事故等対処設備単独の場合〕	
		フォーマットⅡ 重大事故等対処設備としての評価結果*	
		注記*:重大事故等対処設備単独の場合は、設計基準対象施設及	
		び重大事故等対処設備に示すフォーマットⅡを使用する	
		ものとする。ただし、評価結果表に記載の章番を「2.」	
		から「1.」とする。	

東海第二発電所(2018. 10. 12 版) 柏崎刈羽原子	力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		Concentration Concentration Contentration Contentratio	②記載の第二、柏崎7】 ②記東海相のでは、 ③記東海相のでは、 ③記東海相のの戦ののでは、 ③記東ののでは、 ③記東ののでは、 ③記東ののでは、 ④記東ののでは、 ④記東ののでは、 ④記では、 ・は、 ・は、 ・は、 ・は、 ・は、 ・は、 ・は、 ・

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
東海第二発電所 (2018. 10. 12 版)		13	備考 ②記載の相違 【柏崎7】 島根2号機では、留意 事項を記載しない

1.4 結構	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		The column Column	②記載の充実 【東海第二,柏崎7】 ⑦の相違 ⑧記載の充実 【東海第二】 ⑧記載の充実 【東海第二】 ⑨記載の充実 【東海第二】 ⑪記載の充実 【東海第二】 島根2号機では、注記を用いても記載する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		1, 40,540,740,140,140,140,140,140,140,140,140,140,1	②記載の相違 【東海第二、柏崎7】 島根2号機では、重大 事故等対処設備単独の 場合の注記は6.項に記載しており、改めてフォーマットに記載しない (その他比較結果はフォーマット I と省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		(単位: MPa) 書称な力 Sa= Sa= $f t =$ $f t =$ $f t =$ $f t s = *$	
		基準地 第出応力 $\sigma_0 =$ $\sigma_2 =$ $\sigma_3 =$	
		単性設計用地震動 S d 又は静的震度	
		(単位:s) 周期 応力 一次一般膜 一次十二次 組合せ 圧縮と曲げ の組 合 せ (座屈の評価) 引張り せん断	
		2.4 結論 2.4.1 固有周期 方向 TH= 公本方向 TV= 部位方向 TV= 3.4.2 応力 材料 高材 材料 スカート 基礎ボルト すべて許容応力以下である。	
		2.4 結論 2.4.1 国	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		CONTROL CONT	②記載の相違 【東海第二、柏崎7】 島根2号機では、重大 事故等対処設備単独の 場合の注記は6.項に記載しており、改めてフォーマットに記載しない (その他比較結果はフォーマットIと同様であるため、記載を省略する)

先行審査プラントの記載との比較表(VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-4 横置一胴円筒形容器の耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			<u>添付資料-4</u> 横置一胴円筒形容器の耐震性についての計算書作成	
			の基本方針	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9版)	島根原子力発電所 2 号機	備考
			目次	
			1. 概要	
			2. 一般事項	
			2.1 評価方針	
			2.2 適用 <u>規格・基準等</u>	
			2.3 記号の説明	
			2.4 計算精度と数値の丸め方	
			3. 評価部位	
			4. 固有周期 4.1 田有周期の計算方法	
			4.1 固有周期の計算方法 5. 構造強度評価	
			5.1 構造強度評価方法	
			5.2 設計用地震力	
			5.3 計算方法	
			5.4 応力の評価	
			6. 耐震計算書のフォーマット	
			7. 引用文献	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020, 10, 9版)	島根原子力発電所 2号機 1. 概要 本資料は、M-2-1-1 「耐震設計の基本方針」に基づき、耐震性に関する説明書が求められている機置一胴円筒形容器(耐震重要度分類Sクラス又はS。機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。解析の方針及び減衰定数については、M-2-1-6 「地震応答解析の基本方針」に従うものとする。ただし、本基本方針が適用できない横置一胴円筒形容器にあっては、個別耐震計算書にその耐震計算方法を含めて記載する。 2. 一般事項 2.1 評価方針横置一胴円筒形容器の応力評価は、M-2-1-9 「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。横置一胴円筒形容器の耐震評価フローを図2-1に示す。 財算モデル設定 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	備考 ・記載の相違 ・記載の相違 【東海第二】 ・島根2号機では,「理 ・論式による固有周期」と 記載する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.2 適用 <u>規格・</u> 基準等	
		本評価において適用する規格・基準等を以下に示す。	
		・原子力発電所耐震設計技術指針 重要度分類・許容応力編 J	
		EAG4601・補-1984 ((社)日本電気協会)	
		・原子力発電所耐震設計技術指針 <u>JEAG4601-1987((社)</u>	
		<u>日本電気協会)</u>	
		·原子力発電所耐震設計技術指針 JEAG4601-1991 追補	
		版((社)日本電気協会)	
		・発電用原子力設備規格 設計・建設規格 <u>((社)</u> 日本機械学会 <u>,</u>	
		2005/2007) (以下「設計・建設規格」という。)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
			・記載の相違 【東海第二,柏崎7】 島根2号機では,dを 「基礎ボルトの呼び径」 と記載の相違 【東海第二】 ③の相違

記字 記字の類的
###

東海第二発電所(2018. 10. 12 版) 柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
	記号	/ III

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		② 2 (2 長手方向及び鉛直方向地震が作用した場合の脚の周方向一次一 を開いませったのの最大値	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		記号	ביי מוע

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		2.4 計算精度と数値の丸め方	
		精度は,有効数字6桁以上を確保する。	・記載の充実
		表示する数値の丸め方は表 2-1 に示すとおりである。	【東海第二】
			④の相違
		表 2-1 表示する数値の丸め方	
		数値の種類 単位 処理桁 処理方法 表示桁	
		固有周期 s 小数点以下第 4 位 四捨五入 小数点以下第 3 位	
		震度 一 小数点以下第3位 切上げ 小数点以下第2位	
		最高使用圧力 MPa - 小数点以下第 2 位	
		温度 C — 整数位 比重 — 小数点以下第 3 位 四捨五入 小数点以下第 2 位	
		質量 kg - 整数位	
		長 下記以外の長さ mm - 整数位*1	
		さ 胴板の厚さ mm - 小数点以下第1位	
		面積 mm² 有効数字 5 桁目 四捨五入 有効数字 4 桁*² モーメント N·mm 有効数字 5 桁目 四捨五入 有効数字 4 桁*²	
		カ N・mm 有効数子 5 桁目 四括五人 有効数子 4 桁 * 2 カ N 有効数字 5 桁目 四拾五入 有効数字 4 桁 * 2	
		角度 rad 小数点以下第 4 位 四捨五入 小数点以下第 3 位	
		算出応力 MPa 小数点以下第1位 切上げ 整数位	
		許容応力*3 MPa 小数点以下第1位 切捨て 整数位	
		注記*1: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。 *2: 絶対値が1000以上のときは、べき数表示とする。 *3: 設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。 3. 評価部位 横置一胴円筒形容器の耐震評価は「5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる胴、脚及び基礎ボルトについて評価を実施する。	・記載の充実 【東海第二】 ⑤の相違
		 4. 固有周期 4.1 固有周期の計算方法 (1) 計算モデル モデル化に当たっては次の条件で行う。 a. 容器及び内容物の質量は胴の中心軸に集中するものとする。 b. 容器の胴は 2 個の脚で支持され、脚はそれぞれ基礎ボルトで 	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機		島根原子力発電所 2号機 基礎に固定されており、固定端とする。 c. 胴は剛体とし、脚をはりと考え、変形モードは脚の曲げ及びせん断変形を考慮する。 d. 脚が長手方向に変形する場合、脚を基礎に取り付ける基礎ボルトが、脚の変形方向に直角な方向より見て脚1個につき1列の場合は下端を単純支持とする。その他の場合は、固定とする。 e. 第2脚は長手方向にスライドできるものとし、その方向の力はすべて第1脚で受けるものとする。 f. 耐震計算に用いる寸法は、公称値を使用する。本容器の荷重状態及び胴に生じるモーメントを図4-1~図4-4に示す。	
			M ₁ M ₂ M ₂ 第 1 脚 第 2 脚 図 4-2 脚の位置での曲げモーメント	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		CH*(mo-ms1)*g Pe Me 第1脚 第2脚 図 4-3 長手方向荷重による胴の第1脚付根部のモーメント及び	
		図 4-4 横方向荷重による胴の第 1 脚付根部のモーメント	
		本容器は,前記の条件より図 4-5,図 4-6 及び図 4-7 のような 1 質点系振動モデルとして考える。	
		第1脚 下端固定 の場合 図 4-5 長手方向の固有周期計算モデル	
		$\frac{\frac{R_1}{g} + m s_1}{K_c}$	
		図 4-6 横方向の固有周期計算モデル	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		R ₁ g +ms ₁ K _v h ₁ 図 4-7 鉛直方向の固有周期計算モデル	
		(2) 脚の受ける荷重 脚の受ける荷重はモーメントの釣合いより求める。図 $4-1$ において第 1 脚回りのモーメントの釣合いは次式で求める。 $\sum_{i=1}^{1} m_i \cdot g \cdot \ell_i - R_2 \cdot \ell_0 = 0$	
		$R_2 = \sum_{i=1}^{n} m_i \cdot g \cdot \ell_i / \ell_0$ (4.1.2) $R_1 = \sum_{i=1}^{j_1} m_i \cdot g - R_2$ (4.1.3)	
		図 $4-5$ におけるばね定数は次式で求める。 $K\ell = \frac{1000}{\frac{h_1^3}{12 \cdot E_s \cdot I_{sy}} + \frac{h_1}{G_s \cdot A_{s1}}}$ 固有周期は次式で求める。	
		$T_{1}=2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K \ell}} \qquad (4.1.5)$	
		 (4) 横方向の固有周期 図 4-6 におけるばね定数は次式で求める。 Kc= 1000	
		固有周期は次式で求める。 $T_2 = 2 \cdot \pi \cdot \sqrt{\frac{R_1 + m_{s1}}{g}} \qquad (4.1.7)$ ただし、脚の受ける荷重が $R_2 > R_1$ となる場合は、 $R_1 \delta R_2$ に置	
		き換える。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		(5) 鉛直方向の固有周期	
		図 4-7 におけるばね定数は次式で求める。	
		$K_{v} = \frac{1000}{h_{1}} \tag{4.1.8}$	
		As · Es	
		固有周期は次式で求める。	
		$\frac{R_1}{g} + m_{s,1}$	
		$T_{3} = 2 \cdot \pi \cdot \sqrt{\frac{R_{1} + m_{3}}{K_{v}}}$ (4.1.9)	
		ただし、脚の受ける荷重が $R_2 > R_1$ となる場合は、 R_1 を R_2 に置	
		き換える。	
		5.1 構造強度評価方法	
		4.1(1)項 a.~f.のほか,次の条件で計算する。概要図を図 5-1	
		に示す。	
		(1) 地震力は容器に対して水平方向及び鉛直方向から作用する	
		ものとする。ここで、水平方向地震力は胴の長手方向に作用する	
		場合と胴の横方向に作用する場合を考慮する。	
		(2) 第1脚と第2脚は同形状であり、受ける荷重の大きい方の脚	
		についての評価を計算書に記載する。	
		長手方向 当 板 第 2 脚 基礎ポルト 第 1 脚	
		図 5-1 概要図	
		5.2 設計用地震力	
		「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」	
		による地震力は、VI-2-1-7「設計用床応答スペクトルの作成方針」	
		に基づき設定する。	
		5.3 計算方法	
		5.3.1 応力の計算方法	
		応力計算における水平方向と鉛直方向の組合せについて、静的地	
		震力を用いる場合は絶対値和を用いる。動的地震力を用いる場合	
		は、絶対値和又はSRSS法を用いる。	

	 5.3.1.1 胴の計算方法 (1) 曲げモーメント 図 4-1 に示すように胴を集中荷重を受けるはりとして考える。 図 4-2 において脚付根部における曲げモーメントM₁及びM₂は 	
	(1) 曲げモーメント 図 4-1 に示すように胴を集中荷重を受けるはりとして考える。	
	図 4-1 に示すように胴を集中荷重を受けるはりとして考える。	
	$oxed{oxed}$ 図 $4-2$ において脚付根部における曲げモーメント $oxed{M}_1$ 及び $oxed{M}_2$ は $oxed{oxed}$	
	N/ 5 - 2 5 - 2 - 15	
	次式で求める。	
	$\mathbf{M} 1 = \sum_{i=1}^{j2} \mathbf{m} \mathbf{i} \cdot \mathbf{g} \cdot \left \ell \mathbf{i} \right \qquad \cdots \qquad \cdots \qquad \cdots \qquad (5. 3. 1. 1. 1)$	
	$M_{2} = \sum_{i=j_{1}-j_{3}+1}^{j_{1}} m_{i} \cdot g \cdot \ell_{i} - \ell_{0} \qquad (5.3.1.1.2)$	
	(2) 静水頭又は内圧による応力	
	静水頭による場合(鉛直方向地震時を含む。)	
	$\sigma_{\phi 1} = \frac{\rho' \cdot \mathbf{g} \cdot \mathbf{H} \cdot \mathbf{D}_{i}}{2 \cdot \mathbf{t}} $ (5. 3. 1. 1. 3)	
	$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_{i} \cdot C_{v}}{2 \cdot t} \qquad (5.3.1.1.4)$	
	$\sigma \times 1 = \frac{\rho' \cdot g \cdot H \cdot D_{i}}{4 \cdot t} $ (5. 3. 1. 1. 5)	
	内圧による場合	
	$\sigma_{\phi 1} = \frac{P_{r} \cdot (D_{i} + 1.2 \cdot t)}{2 \cdot t} \qquad (5.3.1.1.6)$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\sigma \times 1 = \frac{P \cdot (D \cdot i + 1.2 \cdot t)}{4 \cdot t} \qquad (5.3.1.1.8)$	
	(3) 運転時質量及び鉛直方向地震により生じる長手方向曲げモ	
	ーメントによる応力	
	(1)で求めた曲げモーメントにより胴の第 1 脚付根部に生じる応	
	力は次のように求める。 引用文献(1)によれば、この曲げモーメントは胴の断面に対して一	
	利用文献(1)によれは、この曲りモーメントは胴の断面に対して一 様に作用するものではなく、脚取付部において円周方向の曲げモ	
	様に作用するものではなく、脚取り部において円周万向の曲りで ーメントに置き換えられ、胴の局部変形を生じさせようとする。	
	長手方向の曲げモーメントによる胴の応力の影響範囲を脚上	
	の点とすると長手方向曲げモーメントに対する胴の有効断面積は	
	図 $5-2$ に $2 \cdot \theta$ で示される円殻である。	
	したがって、運転時質量による応力は次式で求める。	
	$\sigma \times 2 = \frac{M_1}{Z}$ (5. 3. 1. 1. 9)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		また、鉛直方向地震による応力は次式で求める。	
		$\sigma \times 6 = \frac{M_1}{7} \cdot C_V$ (5. 3. 1. 1. 10)	
		ここで、	
		$r_{m} = \frac{D_{i} + t_{e}}{2}$ (5. 3. 1. 1. 11)	
		$Z = r m^{2} \cdot t e \cdot \left\{ \frac{\theta + \sin \theta \cdot \cos \theta - 2 \cdot \sin^{2} \theta / \theta}{(\sin \theta / \theta) - \cos \theta} \right\} \qquad (5.3.1.1.12)$	
		$\left\{\begin{array}{ccc} & & & \\ & & \\ & & \\ & & \\ \end{array}\right. \left. \left(\sin\theta \neq \theta\right) - \cos\theta \right. \qquad \left. \left(5.3.1.1.12\right) \right.$	
		非有効範囲	
		$\frac{\ell_{ m w}}{2}$ 有効範囲	
		- 	
		図 5-2 脚付根部の有効範囲	
		胴の脚付根部に取り付く当板の大きさが	
		周方向範囲 $\theta_{\text{w}} \ge \frac{\theta_{\text{o}}^{*1}}{6}$	
		$0 \text{ w} = \frac{1}{6}$ (5. 5. 1. 1. 15)	
		長手方向範囲 $\ell_{\text{w}} \ge 1.56 \cdot \sqrt{\frac{\text{D i} + \text{t}}{2} \cdot \text{t}} \times 2$ (5.3.1.1.14)	
		である場合, 脚付根部における胴の有効板厚 t 。は胴板の厚さと当	
		板の厚さの合計とする。また, 当板が上記の範囲を満たさない場	
		合、 t 。は胴板の厚さとする。	
		注記*1:引用文献(1)より引用	
		*2:引用文献(3)より引用	
		(4) 運転時質量及び鉛直方向地震による脚付根部の応力	
		脚の受ける荷重が $R_2 > R_1$ となる場合は、 R_1 を R_2 に置き換え	
		る。	
		で。 胴の脚付根部には脚反力による周方向応力及び軸方向応力が生じ	
		る。胴の第1脚付根部に作用する反力は次式で求める。	
		運転時質量による反力は、	
		$P = R_1$ (5. 3. 1. 1. 15)	
		鉛直方向地震による反力は,	
		$P_{e} = C_{v} \cdot R_{1}$ (5. 3. 1. 1. 16)	
		この反力P及びP。により生じる胴の周方向応力及び軸方向応力	
		は、引用文献(2)により次のように求める。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機 脚が胴に及ぼす力の関係を図 5-3 に示す。	備考
		$\gamma = r \text{ m } / t \text{ e}$ (5. 3. 1. 1. 17) $\beta = C_1 / r \text{ m}$ (5. 3. 1. 1. 18) $\beta = C_2 / r \text{ m}$ (5. 3. 1. 1. 19)	
		$\sigma \phi_{3} = \left(\frac{N \phi}{P / r m}\right)^{*} \cdot \left(\frac{P}{r m \cdot t e}\right) \qquad (5. 3. 1. 1. 22)$ $\sigma_{X3} = \left(\frac{N x}{P / r m}\right)^{*} \cdot \left(\frac{P}{r m \cdot t e}\right) \qquad (5. 3. 1. 1. 23)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (20	2020. 10. 9 版)	島根原子力発電所 2号機	備考
			曲げモーメントMeにより生じる応力は次式で求める。	
			一次応力	
			$\sigma_{\phi 4 1 1} = \left\{ \frac{N_{\phi}}{M_{\ell} / (r_{m^2} \cdot \beta)} \right\}^* \cdot \left(\frac{M_{\ell}}{r_{m^2} \cdot \beta \cdot t_{e}} \right) \cdot C_{\ell 1} \dots (5.3.1.1.31)$	
			$\sigma_{X411} = \left\{ \frac{N_X}{M\ell / (r_m^2 \cdot \beta)} \right\}^* \cdot \left(\frac{M\ell}{r_m^2 \cdot \beta \cdot t_e} \right) \cdot C_{\ell 2}$	
			(5. 3. 1. 1. 32)	
			二次応力	
			$\sigma_{\phi 421} = \left\{ \frac{M_{\phi}}{M_{\ell} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{\ell}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \cdots (5.3.1.1.33)$	
			$\sigma_{x 4 2 1} = \left\{ \frac{M x}{M \ell / (r_m \cdot \beta)} \right\}^* \cdot \left(\frac{6 \cdot M \ell}{r_m \cdot \beta \cdot t_e^2} \right) \cdots (5.3.1.1.34)$	
			鉛直荷重 P ℓにより生じる応力は次式で求める。	
			一次応力	
			$\sigma_{\phi 412} = \left(\frac{N_{\phi}}{P_{\ell/r_{m}}}\right)^{*} \cdot \left(\frac{P_{\ell}}{r_{m} \cdot t_{e}}\right) \qquad (5.3.1.1.35)$	
			$\sigma_{x 412} = \left(\frac{N_x}{P_\ell / r_m}\right)^* \cdot \left(\frac{P_\ell}{r_m \cdot t_e}\right) \qquad (5.3.1.1.36)$	
			二次応力	
			$\sigma_{\phi 422} = \left(\frac{M_{\phi}}{P_{\ell}}\right)^* \cdot \left(\frac{6 \cdot P_{\ell}}{t e^2}\right) \qquad (5.3, 1.1.37)$	
			$\sigma_{x 4 2 2} = \left(\frac{M_x}{P_\ell}\right)^* \cdot \left(\frac{6 \cdot P_\ell}{t e^2}\right) \qquad (5.3.1.1.38)$	
			また、水平方向荷重により胴には、次式で求める引張応力が生じ	
			る。	
			$\sigma_{x 413} = \frac{C_H \cdot (m_0 - m_{s1}) \cdot g}{\pi \cdot (D_i + t) \cdot t} \qquad (5.3.1.1.39)$	
			したがって、曲げモーメントMe、鉛直荷重Pe及び水平方向荷重に	
			より生じる胴の応力は次式で求める。	
			一次応力	
			$\sigma_{\phi 41} = \sigma_{\phi 411} + \sigma_{\phi 412} \qquad (5.3.1.1.40)$	
			$\sigma_{x41} = \sigma_{x411} + \sigma_{x412} + \sigma_{x413} \cdots \qquad (5.3.1.1.41)$	
			二次応力	
			$\sigma_{\phi 42} = \sigma_{\phi 421} + \sigma_{\phi 422} \qquad (5.3.1.1.42)$	
			$\sigma_{x42} = \sigma_{x421} + \sigma_{x422} + \cdots $ (5. 3. 1. 1. 43)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		また,長手方向地震が作用した場合,第1脚付根部に生じるせん 断応力は次式で求める。 $\tau = \frac{C_{H} \cdot (m_0 - m_{S1}) \cdot g}{4 \cdot C_2 \cdot t} (5.3.1.1.44)$	
		(6) 横方向地震による脚付根部の応力 脚の受ける荷重が $R_2 > R_1$ となる場合は、 R_1 を R_2 に置き換える。 横方向地震が作用した場合、第 1 脚の付根部に生じる曲げモーメント M_c は次式で求める。	
		$M_{c} = C_{H} \cdot R_{1} \cdot r_{0} \qquad (5.3.1.1.45)$ $r_{0} = \frac{D_{i}}{2} + t_{e} \qquad (5.3.1.1.46)$	
		この曲げモーメントM。により生じる胴の周方向応力及び軸方向 応力は、シェルパラメータγ及びアタッチメントパラメータβに よって引用文献(2)の図より値(以下*を付記するもの)を求める ことにより(5.3.1.1.48)式~(5.3.1.1.51)式で求める。 ここで、シェルパラメータγは(4)と同じであるが、アタッチメン トパラメータβは次式による。ただし、二次応力を求める場合は 更に K_{cj} を乗じた値とする。 $\beta = \sqrt[3]{\beta_1^2 \cdot \beta_2} \qquad (5.3.1.1.47)$ ただし、 $\beta \le 0.5$	
		したがって、応力は次式で求める。 一次応力 $ \sigma_{\phi 5 1} = \left\{ \frac{N_{\phi}}{M_{c} / (r_{m}^{2} \cdot \beta)} \right\}^{*} \cdot \left(\frac{M_{c}}{r_{m}^{2} \cdot \beta \cdot t_{e}} \right) \cdot C_{c 1} $ $ \dots $	
		二次元力 $ \sigma_{\phi 5 2} = \left\{ \frac{M_{\phi}}{M_{c} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{c}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \dots (5.3.1.1.50) $ $ \sigma_{x 5 2} = \left\{ \frac{M_{x}}{M_{c} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{c}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \dots (5.3.1.1.51) $	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		また、横方向地震が作用した場合、第1脚付根部に生じるせん断	
		応力は次式で求める。	
		$\tau c = \frac{C_H \cdot R_1}{4 \cdot C_1 \cdot t} \qquad (5.3.1.1.52)$	
		(7) 組合せ応力	
		$(2) \sim (6)$ によって求めた第 1 脚付根部に生じる胴の応力は以下の	
		ように組み合わせる。	
		a. 一次一般膜応力	
		鉛直方向と長手方向地震が作用した場合	
		$\sigma_{0\ell}=Max$ {周方向応力($\sigma_{0\ell\phi}$),軸方向応力($\sigma_{0\ell x}$)}	
		(5. 3. 1. 1. 53)	
		ここで、	
		$\sigma_{0\ell\phi} = \sigma_{\phi 1} + \sigma_{\phi 2}$ · · · · · · · · · · · · · · · (5. 3. 1. 1. 54) 【絶対値和】	
		$\sigma_{0\ell x} = \sigma_{x_1} + \sigma_{x_2} + \sigma_{x_6} + \sigma_{x_{413}} \cdots \qquad (5.3.1.1.55)$	
		【SRSS法】	
		$\sigma_{0\ell x} = \sigma_{x1} + \sigma_{x2} + \sqrt{\sigma_{x6}^2 + \sigma_{x413}^2} \qquad (5.3.1.1.56)$	
		鉛直方向と横方向地震が作用した場合	
		σοc=Max {周方向応力(σοcφ), 軸方向応力(σοcx)}	
		(5. 3. 1. 1. 57)	
		ここで,	
		$\sigma_{0c\phi} = \sigma_{\phi1} + \sigma_{\phi2}$ ····· (5. 3. 1. 1. 58) 【絶対値和】	
		$\sigma_{0cx} = \sigma_{x1} + \sigma_{x2} + \sigma_{x6}$	
		$\sigma_{0 c x} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 6} $ (5. 3. 1. 1. 60)	
		したがって、胴に生じる一次一般膜応力の最大値は、絶対値和、 SRSS法、それぞれに対して、	
		σ ₀ =Max {長手方向地震時応力(σ _{0ℓ}), 横方向地震時応力(σ ₀ c)} (5.3.1.1.61)	
		とする。	
		b. 一次応力	
		鉛直方向と長手方向地震が作用した場合	
		$\sigma_{1\ell} = \frac{1}{2} \cdot \left\{ (\sigma_{1\ell\phi} + \sigma_{1\ell\mathbf{x}}) + \sqrt{(\sigma_{1\ell\phi} - \sigma_{1\ell\mathbf{x}})^2 + 4 \cdot \tau_{\ell^2}} \right\}$	
		(5. 3. 1. 1. 62)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
東海第二発電所 (2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機 ここで、 【絶対値和】 $\sigma_{1}(\phi) = \sigma_{\phi,1} + \sigma_{\phi,2} + \sigma_{\phi,3} + \sigma_{\phi,4,1} + \sigma_{\phi,7,1}$ (5.3.1.1.63) $\sigma_{1}(x) = \sigma_{x,1} + \sigma_{x,2} + \sigma_{x,3} + \sigma_{x,4,1} + \sigma_{x,6} + \sigma_{x,7,1}$ (5.3.1.1.64) 【SRSS法】 $\sigma_{1}(x) = \sigma_{\phi,1} + \sigma_{\phi,2} + \sigma_{\phi,2,1} + (\sigma_{\phi,2} + \sigma_{\phi,7,1})^{2}$ (5.3.1.1.65) $\sigma_{1}(x) = \sigma_{x,1} + \sigma_{x,2} + \sigma_{x,3} + \sqrt{\sigma_{x,4,1}^{2} + (\sigma_{x,6} + \sigma_{x,7,1})^{2}}$ (5.3.1.1.66) 鉛直方向と横方向地震が作用した場合 $\sigma_{1} = \frac{1}{2} \left\{ (\sigma_{1} \circ \phi + \sigma_{1} \circ x) + \sqrt{(\sigma_{1} \circ \phi - \sigma_{1} \circ x)^{2} + 4 \cdot \tau \circ^{2}} \right\}$ (5.3.1.1.67) ここで、 [絶対値和] $\sigma_{1} = \sigma_{\phi,1} + \sigma_{\phi,2} + \sigma_{\phi,3} + \sigma_{\phi,3,1} + \sigma_{\phi,7,1}$ (5.3.1.1.68) $\sigma_{1} = \sigma_{x,1} + \sigma_{x,2} + \sigma_{x,3} + \sigma_{x,3,1} + \sigma_{x,6} + \sigma_{x,7,1}$ (5.3.1.1.70) $\sigma_{1} = \sigma_{x,1} + \sigma_{x,2} + \sigma_{x,3} + \sqrt{\sigma_{x,3,7}^{2} + (\sigma_{x,6} + \sigma_{x,7,1})^{2}}}$ (5.3.1.1.71) したがつて、胴に生じる一次応力の最大値は、絶対値和、SRS S法、それぞれに対して、 $\sigma_{1} = \max$ (長手力向地震時応力(σ_{1})),機力向地震時応力(σ_{1} 。) (5.3.1.1.72) とする。	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		c. 地震動のみによる一次応力と二次応力の和の変動値	
		鉛直方向と長手方向地震が作用した場合の変動値	
		$\sigma_{2\ell} = (\sigma_{2\ell\phi} + \sigma_{2\ell x}) + \sqrt{(\sigma_{2\ell\phi} - \sigma_{2\ell x})^2 + 4 \cdot \tau_{\ell}^2}$	
		$\cdots \cdots \cdots \cdots \cdots (5. 3. 1. 1. 73)$	
		ここで、	
		【絶対値和】	
		$\sigma_{2\ell\phi} = \sigma_{\phi^2} + \sigma_{\phi^4} + \sigma_{\phi^4} + \sigma_{\phi^7} + \sigma_{\phi^7} + \sigma_{\phi^7} $ (5. 3. 1. 1. 74)	
		$\sigma_{2\ell x} = \sigma_{x41} + \sigma_{x42} + \sigma_{x6} + \sigma_{x71} + \sigma_{x72} \cdots \qquad (5.3.1.1.75)$ [SRSS法]	
		$\sigma_{2\ell\phi} = \sqrt{(\sigma_{\phi2} + \sigma_{\phi71} + \sigma_{\phi72})^2 + (\sigma_{\phi41} + \sigma_{\phi42})^2}$	
		$\sigma_{2\ell x} = \sqrt{(\sigma_{x41} + \sigma_{x42})^2 + (\sigma_{x6} + \sigma_{x71} + \sigma_{x72})^2}$	
		鉛直方向と横方向地震が作用した場合の変動値	
		$\sigma_{2c} = (\sigma_{2c\phi} + \sigma_{2cx}) + \sqrt{(\sigma_{2c\phi} - \sigma_{2cx})^2 + 4 \cdot \tau_{c^2}}$	
		(5. 3. 1. 1. 78)	
		ここで、	
		【絶対値和】 (5.2.1.1.70)	
		$\sigma_{2c\phi} = \sigma_{\phi2} + \sigma_{\phi51} + \sigma_{\phi52} + \sigma_{\phi71} + \sigma_{\phi72} \cdots (5.3.1.1.79)$ $\sigma_{2cx} = \sigma_{x51} + \sigma_{x52} + \sigma_{x6} + \sigma_{x71} + \sigma_{x72} \cdots (5.3.1.1.80)$	
		【SRS法】	
		$\sigma_{2c} \phi = \sqrt{(\sigma_{\phi2} + \sigma_{\phi71} + \sigma_{\phi72})^2 + (\sigma_{\phi51} + \sigma_{\phi52})^2}$	
		(5. 3. 1. 1. 81)	
		$\sigma_{2c} = \sqrt{(\sigma_{x51} + \sigma_{x52})^2 + (\sigma_{x6} + \sigma_{x71} + \sigma_{x72})^2}$	
		········ (5.3.1.1.82)	
		したがって、胴に生じる地震動のみによる一次応力と二次応力の	
		和の変動値の最大値は、絶対値和、SRSS法、それぞれに対し	
		て, (F 7 かかり) 書かかし、 (
		$\sigma_2 = \text{Max}$ {長手方向地震時応力($\sigma_2 \ell$), 横方向地震時応力($\sigma_2 c$)}	
		(5. 3. 1. 1. 83)	
		とする。	
		5.3.1.2 脚の計算方法	
		脚の受ける荷重が $R_2 > R_1$ となる場合は、 R_1 を R_2 に置き換え	
		る。	
		(1) 運転時荷重による応力	
		$\sigma_{s1} = \frac{R_1 + m_{s1} \cdot g}{A_s}$ (5. 3. 1. 2. 1)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		(2) 鉛直方向地震による応力	
		$\sigma_{s4} = \frac{R_1 + m_{s1} \cdot g}{A_s} \cdot C_v$ (5. 3. 1. 2. 2)	
		(3) 長手方向地震による応力	
		曲げ及び圧縮応力は次式で求める。	
		$\sigma_{s2} = \frac{M\ell_1}{Z_{sy}} + \frac{P\ell}{A_s}$ (5. 3. 1. 2. 3)	
		ここで、	
		$\mathbf{M}_{\ell_1} = \frac{1}{2} \cdot \mathbf{C}_{\mathbf{H}} \cdot \mathbf{m}_0 \cdot \mathbf{g} \cdot \mathbf{h}_1 \qquad (5.3.1.2.4)$	
		せん断応力は次式で求める。	
		$\tau_{s2} = \frac{C_H \cdot m_0 \cdot g}{A_{s3}} \qquad (5.3.1.2.5)$	
		(4) 横方向地震による応力	
		曲げ応力は次式で求める。	
		$\sigma_{s3} = \frac{C_{H} \cdot (R_1 + m_{s1} \cdot g) \cdot h_2}{Z_{sx}} \qquad (5.3.1.2.6)$	
		せん断応力は次式で求める。	
		$\tau_{s3} = \frac{C_H \cdot (R_1 + m_{s1} \cdot g)}{A_{s4}}$ (5. 3. 1. 2. 7)	
		(5) 組合せ応力	
		鉛直方向と長手方向地震が作用した場合	
		【絶対値和】 $\sigma_{s\ell} = \sqrt{(\sigma_{s1} + \sigma_{s2} + \sigma_{s4})^2 + 3 \cdot \tau_{s2}^2} \qquad \cdots \qquad (5.3.1.2.8)$ 【SRSS法】	
		$\sigma_{s\ell} = \sqrt{(\sigma_{s1} + \sqrt{\sigma_{s2}^2 + \sigma_{s4}^2})^2 + 3 \cdot \tau_{s2}^2} \cdots (5.3.1.2.9)$	
		鉛直方向と横方向地震が作用した場合	
		【絶対値和】 $\sigma s c = \sqrt{(\sigma s_1 + \sigma s_3 + \sigma s_4)^2 + 3 \cdot \tau s_3^2} \cdots (5.3.1.2.10)$ [SPS 25]	
		[SRSS法] $\sigma_{sc} = \sqrt{(\sigma_{s1} + \sqrt{\sigma_{s3}^2 + \sigma_{s4}^2})^2 + 3 \cdot \tau_{s3}^2} \cdots (5.3.1.2.11)$	
		したがって、脚に生じる最大応力は、絶対値和、SRSS法、それぞれに対して、	
		σ s = Max {長手方向地震時応力(σ s ℓ), 横方向地震時応力(σ s c)} (5.3.1.2.12)	
		とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機 5.3.1.3 基礎ボルトの計算方法 (1) 鉛直方向と長手方向地震が作用した場合 a. 引張応力 長手方向地震が作用した場合に脚底面に作用するモーメントは次式で求める。	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020, 10, 9版)	図 5-5 基礎部に作用する外荷重より生じる荷重の関係 (その 2) 図 5-4 のように脚底面においてボルト位置に圧縮荷重がかかる状況では基礎ボルトに引張力は作用しないため、引張力の評価は行わない。	備考
		の位置 X_n は $X_{n^3} + 3 \cdot (e - \frac{a}{2}) \cdot X_{n^2} - \frac{6 \cdot s \cdot A_b \cdot n_1}{b} \cdot (e + \frac{a}{2} - d_1)$	
		・ $(a-d_1-X_n)=0$ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		となる。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		したがって、基礎ボルトに生じる引張応力は次のようになる。	
		$\sigma_{b1} = \frac{F_b}{n_1 \cdot A_b}$ (5. 3. 1. 3. 8)	
		ここで、基礎ボルトの軸断面積Abは次式により求める。	・記載の充実
		$A b = \frac{\pi}{4} \cdot d^{2} $ (5. 3. 1. 3. 9)	【東海第二】 島根2号機では,基礎
			ボルトの軸断面積の計
		b. せん断応力	算式を記載する
		$\tau_{b1} = \frac{C_H \cdot m_0 \cdot g}{n \cdot A_b} \qquad (5.3.1.3.10)$	
		(2) 鉛直方向と横方向地震が作用した場合	
		脚の受ける荷重が $R_2 > R_1$ となる場合は、 $R_1 \delta R_2$ に置き換える。	
		a. 引張応力	
		(a) 長手方向から見て図 5-6 のように応力を 2 列の基礎ボルト で受ける場合	
		鉛直方向と横方向地震が作用した場合に脚底面に作用するモーメ	
		ントは	
		$M_{c_1} = C_H \cdot (R_1 + m_{s_1} \cdot g) \cdot h_2$	
		(5. 3. 1. 3. 11)	
		鉛直荷重は	
		$P_{s_1} = (1 - C_v) \cdot (R_1 + m_{s_1} \cdot g)$	
		・・・・・・・・・・ (5.3.1.3.12)	
		で求める。 Output Distribution Manual	
		a b	
		図 5-6 基礎部に作用する外荷重より生じる荷重の関係(その3)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機	備考
			(1)と同様にして中立軸の位置X _n を	
			$X_{n^3} + 3 \cdot (e - \frac{b}{2}) \cdot X_{n^2} - \frac{6 \cdot s \cdot A_b \cdot n_2}{a}$	
			$ X_{n}^{3} + 3 \cdot (e - \frac{b}{2}) \cdot X_{n}^{2} - \frac{6 \cdot s \cdot A_{b} \cdot n_{2}}{a} \cdot \left\{ (e + \frac{b}{2} - d_{2}) \cdot (b - X_{n} - d_{2}) + (e + \frac{b}{2} - d_{3}) \cdot (b - X_{n} - d_{3}) \right\} = 0 $	
			$\cdots \cdots \cdots (5. 3. 1. 3. 13)$	
			ただし	
			$e = M_{c_1} / P_{s_1} \cdots (5.3.1.3.14)$	
			より求めると、基礎ボルトに生じる引張力は	
			$F_{b} = \frac{P_{s1} \cdot (e - \frac{b}{2} + \frac{X_{n}}{3}) \cdot (b - X_{n} - d_{2})}{(b - d_{2} - \frac{X_{n}}{3}) \cdot (b - X_{n} - d_{2}) + (b - d_{3} - \frac{X_{n}}{3}) \cdot (b - X_{n} - d_{3})}$	
			$(b-d_2-\frac{X_n}{3})\cdot(b-X_n-d_2)+(b-d_3-\frac{X_n}{3})\cdot(b-X_n-d_3)$	
			(5. 3. 1. 3. 15)	
			となる。	
			したがって、基礎ボルトに生じる引張応力は次のようになる。	
			$\sigma \ b \ 2 = \frac{F \ b}{n \ 2 \cdot A \ b}$ (5. 3. 1. 3. 16)	
			(b) 長手方向から見て応力を1列の基礎ボルトで受ける場合	
			(1)と同様にして引張応力は求められるが、MをMc1、PsをPs	
			1, d ₁ をd ₂ , aをb, bをa及びn ₁ をn ₂ に置き換え, 得られ	
			た基礎ボルトの応力を σ b 2 とする。 b. せん断応力	
			$\tau_{b2} = \frac{C_{H} \cdot (R_1 + m_{s1} \cdot g)}{n \cdot A_b} \qquad (5.3.1.3.17)$	
			(3) 基礎ボルトに生じる最大応力	
			(1)及び(2)より求められた基礎ボルトの応力のうち最大のものを	
			σρ及びτρとする。	
			a. 基礎ボルトの最大引張応力	
			σ _b =Max {長手方向地震時応力(σ _{b1}), 横方向地震時応力(σ _{b2})} ····································	
			b. 基礎ボルトの最大せん断応力	
			 τ b = Max {長手方向地震時応力(τ b 1), 横方向地震時応力(τ b 2)} 	
			(5.3.1.3.19)	

5.4 応力の評価 5.4.1 胴の応力評価 5.3.1.1 項で求めた組合せ応力が胴の最高使用温度における許容応力Sa以下であること。ただし、Saは下表による。 応力の種類 許容応力Sa 成力の種類 基準地震動Ssによる 荷重との組合せの場合	
5.3.1.1 項で求めた組合せ応力が胴の最高使用温度における許容 応力 S a 以下であること。ただし、S a は下表による。	
応力Sa以下であること。ただし、Saは下表による。	
応力の種類 単性設計用地震動Sd 基準地震動Ssによる スは静的震度による 荷重との組合せの場合	
荷重との組合せの場合	
一次一般膜応力 設計降伏点 S y と設計引張強さ 設計引張強さ S u の 0.6倍 S u の 0.6倍のいずれか小さい方の値。ただし、オーステナイト系ステンレス鋼及び高ニッケル合金にあっては許容引張応力 S の 1.2倍の方が大きい場合は、この大きい方の値とする。 上記の 1.5倍の値 一次応力 上記の 1.5倍の値 一次応力と二次 地震動のみによる一次応力と二次応力の和の変動値が設計降伏点 S y の 2倍以下であれば、疲労解析は不要とする。	
5.4.2 脚の応力評価 5.3.1.2 項で求めた脚の組合せ応力が許容引張応力 ft以下であること。 ただし、ft は下表による。	
弾性設計用地震動 S d Y は静的震度による 荷重との組合せの場合 ボタリ張応力 $\frac{F}{1.5} \cdot 1.5$ $\frac{F}{1.5} \cdot 1.5$	
5.4.3 基礎ボルトの応力評価	
$f_{\text{t s}} = \text{Min}[1.4 \cdot f_{\text{t o}} - 1.6 \cdot \tau_{\text{b}}, f_{\text{t o}}]$ (5.4.3.1)	
せん断応力ではせん断力のみ受ける基礎ボルトの許容せん断応	
弾性設計用地震動Sd 又は静的震度による 基準地震動Ssによる 横重との組合せの場合	
荷重との組合せの場合	
	せん断応力 τ $_{b}$ はせん断力のみ受ける基礎ボルトの許容せん断応力 f_{sb} 以下であること。ただし、 f_{sb} は下表による。

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (202	0.10.9版) 島根原子力発電所 2号機	備考
		6. 耐震計算書のフォーマット 横置一胴円筒形容器の耐震計算書のフォーマットは、以下のとりである。	60
		〔設計基準対象施設及び重大事故等対処設備の場合〕 フォーマットⅠ 設計基準対象施設としての評価結果 フォーマットⅡ 重大事故等対処設備としての評価結果	
		〔重大事故等対処設備単独の場合〕 フォーマットⅡ 重大事故等対処設備としての評価結果*	
		注記*:重大事故等対処設備単独の場合は、設計基準対象施設 び重大事故等対処設備に示すフォーマットIIを使用す ものとする。ただし、評価結果表に記載の章番を「2. から「1.」とする。	3
		7. 引用文献 (1) Stresses in Large Horizontal Cylindrical Pressur Vessels on Two Saddle Supports, Welding Research Supplement Sep. 1951. (2) Wichman, K.R. et al.:Local Stresses in Spherical and	,
		Cylindrical Shells due to External Loadings, Welding Researd Council bulletin, March 1979 revision of WRC bulletin 107 August 1965. (3) 日本産業規格 JIS B 8278(2003)「サドル支持	h /
		横置圧力容器」	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
		Comparison Com	②記載の充実 【東海第二、柏崎7】 ③の相違 ③記載の充実 【東海第二】 ①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		No. Co. Co.	②記載の充実 【東海第二】 ③の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
75.19.77 (2010. 10. 12 lgt)		17	NH 2-2

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		Color Right-Order Right-	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		開放と当放の材料が異なる場合、当板の材料名及び許容は力を記載する。 1.4.2	
		1.4.1 総額 (株方)の 下下 = (株方)の 下下 = (株方)の 下下 = (株方)の 下下 = (株方)の 下下 = (株方)の 下下 = (はた: 10-a) (はた: 1	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		COUNTRY COUN	②記載の充実 【東海第二、柏崎7】 ③記載の充実 【東海第二】 ①の相違

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	19 19 19 19 19 19 19 19	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
(AVII) 10.12 度()	11HPRQ (2020) 1 7 7 7 FE/1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Comparison	VHI ~7

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10.9 版)	島根原子力発電所 2号機	備考
		1. C = - v > p R E × E × E × E × E × E × E × E × E × E	②記載の相違 【東海第二,柏崎7】 島根2号機では,重大 事故等対処設備単独の 場合の注記は6.項に記載しており,改めてフォーマットに記載しない (その他比較結果はであるため,記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		No. No.	(比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	1.	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		(1992年76日)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		開放と当版の材料が異なる場合、当板の材料名及び評容応力を記載する。 2.4.2 応力 材料	
		2.4 結論 2.4 結論 2.4.1 固有周期 (単位:s) (単位:s) 長手方向 (下=	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		1	(比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018, 10, 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	100 10	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		(1)	

先行審査プラントの記載との比較表(VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-5 平底たて置円筒形容器の耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			<u>添付資料-5</u> 平底たて置円筒形容器の耐震性についての計算書作	
			成の基本方針	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用規格・基準等	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位	
		4. 固有周期 4.1 因有周期 6.1 因为1.1	
		4.1 固有周期の計算方法 5. 構造強度評価	
		5. 構造强度評価 5.1 構造強度評価方法	
		5.2 設計用地震力	
		5.3 計算方法	
		5.4 応力の評価	
		6. 耐震計算書のフォーマット	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		1. 概要本資料は、M-2-1-1「耐震設計の基本方針」に基づき、耐震性に関する説明書が求められている平底たて置円筒形容器(耐震重要度分類Sクラス又はSs機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算方法について記載したものである。解析の方針及び減衰定数については、MI-2-1-6「地震応答解析の基本方針」に従うものとする。ただし、本基本方針が適用されない平底たて置円筒形容器にあっては、個別耐震計算書にその耐震計算方法を含めて記載する。	
		2. 一般事項 2.1 評価方針 平底たて置円筒形容器の応力評価は、M-2-1-9 「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。 平底たて置円筒形容器の耐震評価フローを図 2-1 に示す。 計算モデル設定 理論式による固有周期 設計用地震力 地震時における応力 平底たて置円筒形容器の構造強度評価 図 2-1 平底たて置円筒形容器の耐震評価フロー	・記載の相違 【東海第二】 島根2号機では,「理 論式による固有周期」と 記載する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.2 適用 <u>規格・</u> 基準等	
		本評価において適用する規格・基準等を以下に示す。	
		・原子力発電所耐震設計技術指針 重要度分類・許容応力編 J	
		EAG4601・補-1984 ((社)日本電気協会)	
		・原子力発電所耐震設計技術指針 <u>JEAG4601-1987((社)</u>	
		<u>日本電気協会)</u>	
		·原子力発電所耐震設計技術指針 JEAG4601-1991 追補	
		版((社)日本電気協会)	
		・発電用原子力設備規格 設計・建設規格 <u>((社)</u> 日本機械学会 <u>,</u>	
		2005/2007) (以下「設計・建設規格」という。)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
果海外—完電所(2018, 10, 12 加)	相响州初原下刀笼电灯 7 万械 (2020, 10. 9 版)	 記号の説明 正号の説明 正母の説明 本	・記載の相違 【東海第二, 柏崎7】 島根2号機では, dを 「基礎ボルトの呼び径」 と記載の相違 【東海第二】 ③の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		記号 記号の説明	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		2.4 計算精度と数値の丸め方	
		精度は,有効数字6桁以上を確保する。	・記載の充実
		表示する数値の丸め方は表 2-1 に示すとおりである。	【東海第二】
			④の相違
		表 2-1 表示する数値の丸め方	
		数値の種類 単位 処理桁 処理方法 表示桁	
		固有周期 s 小数点以下第 4 位 四捨五入 小数点以下第 3 位	
		震度 一 小数点以下第3位 切上げ 小数点以下第2位	
		温度	
		比重 一 小数点以下第 3 位 四捨五入 小数点以下第 2 位	
		質量 kg — 整数位	
		長 下記以外の長さ mm - 整数位*1	
		さ 胴板の厚さ mm - 小数点以下第1位	
		面積 mm ² 有効数字 5 桁目 四捨五入 有効数字 4 桁* ²	
		モーメント N·mm 有効数字 5 桁目 四捨五入 有効数字 4 桁*2	
		算出応力 MPa 小数点以下第1位 切上げ 整数位	
		許容応力*3 MPa 小数点以下第1位 切捨て 整数位	・記載の充実
		*2:絶対値が1000以上のときは、べき数表示とする。 *3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。	【東海第二】 ⑤の相違
		3. 評価部位	
		平底たて置円筒形容器の耐震評価は「5.1 構造強度評価方法」に	
		示す条件に基づき、耐震評価上厳しくなる胴及び基礎ボルトにつ	
		いて評価を実施する。	
		4. 固有周期4.1 固有周期の計算方法(1) 計算モデル	
		モデル化に当たっては次の条件で行う。 a. 容器及び内容物の質量は重心に集中するものとする。	
		b. 容器は胴下端のベースプレートを円周上等ピッチの多数の基	
		礎ボルトで基礎に固定されており,固定端とする。	
		c. 胴をはりと考え、変形モードは曲げ及びせん断変形を考慮す	
		る。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		d. 耐震計算に用いる寸法は,公称値を使用する。	
		本容器は、前記の条件より図 4-1 に示すような下端固定の 1 質点	
		系振動モデルとして考える。	
		$C_{H} \cdot m_{0} \cdot g$ $(1+C_{V}) \cdot m_{0} \cdot g$ ℓ_{g}	
		図 4-1 固有周期の計算モデル	
		(2) 水平方向固有周期	
		曲げ及びせん断変形によるばね定数KHは次式で求める。	
		$K_{H} = \frac{1000}{\frac{\ell_{g}^{3}}{3 \cdot E \cdot I} + \frac{\ell_{g}}{G \cdot A_{e}}} \qquad (4.1.1)$	
		ここで、胴の断面性能は次のように求める。	
		$I = \frac{\pi}{8} \cdot (D_i + t)^3 \cdot t \qquad (4.1.2)$	
		$A_{e} = \frac{2}{3} \cdot \pi \cdot (D_{i} + t) \cdot t \qquad (4.1.3)$	
		したがって、固有周期T _H は次式で求める。	
		$T_{H}=2 \cdot \pi \sqrt{\frac{m_{0}}{K_{H}}} \qquad (4.1.4)$	
		(3) 鉛直方向固有周期	
		軸方向変形によるばね定数Kvは次式で求める。	
		$K_{V} = \frac{1000}{\frac{\ell_{g}}{A \cdot E}} \qquad (4.1.5)$	
		ここで、胴の断面性能は次のように求める。	
		$A = \pi \cdot (D_i + t) \cdot t \tag{4.1.6}$	
		したがって、固有周期Tvは次式で求める。	
		$T_{v} = 2 \cdot \pi \cdot \sqrt{\frac{m e}{K_{v}}} \qquad (4.1.7)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2	2020. 10. 9 版)	島根原子力発電所 2号機	備考
			(2) 運転時質量及び鉛直方向地震による応力	
			胴がベースプレートと接合する点には、胴自身の質量による圧縮	
			応力と鉛直方向地震による軸方向応力が生じる。	
			$\sigma \times 2 = \frac{\text{me} \cdot g}{\pi \cdot (D_i + t) \cdot t} \qquad (5.3.1.1.4)$	
			$\sigma_{X3} = \frac{\text{me} \cdot \text{g} \cdot \text{C v}}{\pi \cdot (\text{D i} + \text{t}) \cdot \text{t}} \qquad (5.3.1.1.5)$	
			$\frac{3}{\pi} \cdot (D_i + t) \cdot t \tag{5.3.1.1.5}$	
			(3) 水平方向地震による応力	
			水平方向の地震力により胴はベースプレート接合部で最大となる	
			曲げモーメントを受ける。この曲げモーメントによる軸方向応力	
			と地震力によるせん断応力は次のように求める。	
			$\sigma_{X4} = \frac{4 \cdot \text{CH} \cdot \text{m}_0 \cdot \text{g} \cdot \ell_g}{\pi \cdot (\text{D}_i + \text{t})^2 \cdot \text{t}} $ (5.3.1.1.6)	
			$\tau = \frac{2 \cdot C \cdot H \cdot m_0 \cdot g}{\pi \cdot (D_i + t) \cdot t} $ (5. 3. 1. 1. 7)	
			(4) 組合せ応力	
			(1)~(3)によって求めた胴の応力は以下のように組み合わせる。	
			a. 一次一般膜応力	
			(a) 組合せ引張応力	
			$\sigma \phi = \sigma \phi_1 + \sigma \phi_2 \qquad (5.3.1.1.8)$	
			$\sigma \circ t = \frac{1}{2} \cdot \left\{ \sigma \phi + \sigma x t + \sqrt{(\sigma \phi - \sigma x t)^2 + 4 \cdot \tau^2} \right\}$	
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
			ここで、	
			【絶対値和】	
			$\sigma \times t = \sigma \times_1 - \sigma \times_2 + \sigma \times_3 + \sigma \times_4 \qquad (5.3.1.1.10)$ 【SRSS法】	
			$\sigma_{x t} = \sigma_{x_1} - \sigma_{x_2} + \sqrt{\sigma_{x_3}^2 + \sigma_{x_4}^2} \qquad (5.3.1.1.11)$	
			$0 \times t - 0 \times 1 - 0 \times 2 + \sqrt{0 \times 3} + 0 \times 4$ (3.3.1.1.11)	
			(b) 組合せ圧縮応力	
			$\sigma \phi = -\sigma \phi_1 - \sigma \phi_2 \qquad (5.3.1.1.12)$ $\sigma \phi = -\sigma \phi_1 - \sigma \phi_2 \qquad (5.3.1.1.12)$	
			$\sigma \times c$ が正の値(圧縮側)のとき、次の組合せ圧縮応力を求める。	
			$\sigma \circ c = \frac{1}{2} \cdot \left\{ \sigma \phi + \sigma \times c + \sqrt{(\sigma \phi - \sigma \times c)^2 + 4 \cdot \tau^2} \right\}$	
			(5, 3, 1, 1, 13)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		ここで、	
		【絶対値和】	
		$\sigma \times c = -\sigma \times 1 + \sigma \times 2 + \sigma \times 3 + \sigma \times 4 \qquad \cdots \qquad (5.3.1.1.14)$ [SRSS法]	
		$\sigma \times c = -\sigma \times 1 + \sigma \times 2 + \sqrt{\sigma \times 3^2 + \sigma \times 4^2} $ (5. 3. 1. 1. 15)	
		したがって、胴の組合せ一次一般膜応力の最大値は、絶対値和、	
		SRSS法それぞれに対して,	
		σ ₀ =Max {組合せ引張応力 (σ ₀ t), 組合せ圧縮応力 (σ ₀ c)} (5.3.1.1.16)	
		とする。	
		一次応力は一次一般膜応力と同じ値になるので省略する。	
		b. 地震動のみによる一次応力と二次応力の和の変動値	
		(a) 組合せ引張応力	
		$\sigma_{2\phi} = \sigma_{\phi2} \qquad \cdots \qquad (5.3.1.1.17)$	
		$\sigma_{2 t} = \sigma_{2 \phi} + \sigma_{2 x t} + \sqrt{(\sigma_{2 \phi} - \sigma_{2 x t})^{2} + 4 \cdot \tau^{2}} $	
		(5. 5. 1. 1. 18) ====================================	
		【絶対値和】 σ _{2 x t} = σ _{x 3} + σ _{x 4} ····· (5. 3. 1. 1. 19)	
		【SRSS法】	
		$\sigma_{2 \times t} = \sqrt{\sigma_{3}^{2} + \sigma_{34}^{2}}$ (5. 3. 1. 1. 20)	
		(b) 組合せ圧縮応力	
		$\sigma_{2\phi} = -\sigma_{\phi2} \qquad (5.3.1.1.21)$	
		$\sigma_{2c} = \sigma_{2\phi} + \sigma_{2xc} + \sqrt{(\sigma_{2\phi} - \sigma_{2xc})^2 + 4 \cdot \tau^2}$	
		$\cdots \cdots \cdots \cdots (5.3.1.1.22)$	
		ここで、	
		【絶対値和】	
		$\sigma_{2 \times c} = \sigma_{3} + \sigma_{4}$	
		$\sigma_{2 \times c} = \sqrt{\sigma_{\times 3}^2 + \sigma_{\times 4}^2}$ (5. 3. 1. 1. 24)	
		したがって、胴の地震動のみによる一次応力と二次応力の和の変	
		動値の最大値は、絶対値和、SRSS法それぞれに対して、	
		σ ₂ =Max {組合せ引張応力(σ _{2t}),組合せ圧縮応力(σ _{2c})} (5.3.1.1.25)	
		とする。 (5. 3. 1. 1. 25)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		5.3.1.2 基礎ボルトの計算方法 (1) 引張応力 転倒モーメントが作用した場合に生じる基礎ボルトの引張荷重と 基礎部の圧縮荷重については、荷重と変位量の釣合い条件を考慮 することにより求める(図 5-2 参照)。 以下にその手順を示す。	
		t_1 F_t q_2 $e \cdot D_c$ $e \cdot D_c$ F_c g_1 g_2 g_3 g_4 g_4 g_5 g_5 g_6 g_6 g_7 g_8 g_8 g_8 g_9 $g_$	
		図 5-2 基礎の荷重説明図	
		a. σ_b 及び σ_c を仮定して基礎ボルトの応力計算における中立 軸の荷重係数 k を求める。 $k = \frac{1}{1 + \frac{\sigma_b}{s \cdot \sigma_c}} \qquad (5.3.1.2.1)$	
		b. 基礎ボルトの応力計算における中立軸を定める角度 α を求める。 $\alpha = \cos^{-1}\left(1-2 \cdot \mathbf{k}\right) \qquad (5.3.1.2.2)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		c. 各定数 e , z , C _t 及び C _c を求める。	
		$\mathbf{e} = \frac{1}{2} \cdot \left\{ \frac{(\pi - \alpha) \cdot \cos^2 \alpha + \frac{1}{2} \cdot (\pi - \alpha) + \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha}{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha} \right.$	
		$+\frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^{2} \alpha}{\sin \alpha - \alpha \cdot \cos \alpha}$ $\left. \begin{array}{c} \vdots \\ \vdots $	
		$\mathbf{z} = \frac{1}{2} \cdot \left(\cos \alpha + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^{2} \alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right) $ $(5. 3. 1. 2. 4)$	
		$C t = \frac{2 \cdot \{ (\pi - \alpha) \cdot \cos \alpha + \sin \alpha \}}{1 + \cos \alpha} $ $C c = \frac{2 \cdot (\sin \alpha - \alpha \cdot \cos \alpha)}{1 - \cos \alpha} $ $(5.3.1.2.5)$ $(5.3.1.2.6)$	
		d. 各定数を用いてF _t 及びF _c を求める。	
		【絶対値和】	
		$F_{t} = \frac{M_{s} - (1 - C_{v}) \cdot m_{0} \cdot g \cdot z \cdot D_{c}}{e \cdot D_{c}}$	
		$\cdots \cdots (5.3.1.2.7)$	
		$F_{c} = F_{t} + (1 - C_{v}) \cdot m_{0} \cdot g \qquad (5.3.1.2.8)$ $[C \cap C \cap V]$	
		$[SRSS法]$ $F_{t} = \frac{\sqrt{M_{s}^{2} + (C_{v} \cdot m_{0} \cdot g \cdot z \cdot D_{c})^{2}}}{e \cdot D_{c}} - \frac{z}{e} \cdot m_{0} \cdot g$	
		$ \frac{1}{\sqrt{Ms^2 + (C_{\text{Y}} \cdot m_0 \cdot g \cdot (z - e) \cdot D_{\text{C}})^2}} \qquad (5.3.1.2.9) $	
		$F_{c} = \frac{\sqrt{M_{s}^{2} + (C_{v} \cdot m_{0} \cdot g \cdot (z - e) \cdot D_{c})^{2}}}{e \cdot D_{c}} + (1 - \frac{z}{e}) \cdot m_{0} \cdot g$ $\cdots \cdots \cdots \cdots \cdots \cdots \cdots (5.3.1.2.10)$	
		ここで、	
		$M_s = C_H \cdot m_0 \cdot g \cdot \ell_g \qquad (5.3.1.2.11)$	
		基礎ボルトに引張力が作用しないのは, αがπに等しくなったと	
		きであり、(5.3.1.2.3) 式及び(5.3.1.2.4) 式においてαをπに	
		近づけた場合の値 $e = 0.75$ 及び $z = 0.25$ を $(5.3.1.2.7)$ 式又は $(5.3.1.2.9)$ 式に代入し、得られる F_t の値によって引張力の有	
		無を次のように判定する。	
		F _t ≤0ならば引張力は作用しない。	
		F _t >0 ならば引張力が作用しているので次の計算を行う。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
果海第一発電所 (2018. 10. 12 版)	相喻刈羽原子刀発電所 7 亏機 (2020.10.9 版)	e. σ _b 及びσ _c を求める。 σ _b = 2·Ft / t·D _c ·Ct / t·D _c ·Ct / t·+ s·ti)·D _c ·Cc / (t·+ s·ti)·D _c	・記載の充実 【東海第二】

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			(2) 圧縮膜応力(圧縮応力と曲げによる圧縮側応力の組合せ)は	
			次式を満足すること。	
			(座屈の評価)	
			$\frac{\eta \cdot (\sigma_{x2} + \sigma_{x3})}{f_c} + \frac{\eta \cdot \sigma_{x4}}{f_b} \le 1 \qquad (5.4.1.1)$	
			ここで、f _c は次による。	
			$\frac{D i + 2 \cdot t}{2 \cdot t} \le \frac{1200 \cdot g}{F} \emptyset \ge \tilde{\epsilon}$	
			$f_{c} = F$ (5. 4. 1. 2)	
			$\frac{1200 \cdot \mathbf{g}}{\mathbf{F}} < \frac{\mathbf{D} \cdot \mathbf{i} + 2 \cdot \mathbf{t}}{2 \cdot \mathbf{t}} < \frac{8000 \cdot \mathbf{g}}{\mathbf{F}} \circlearrowleft \succeq \overset{*}{\succeq} $ $f_{c} = \mathbf{F} \cdot \left[1 - \frac{1}{6800 \cdot \mathbf{g}} \cdot \left\{ \mathbf{F} - \phi \cdot \left[\frac{8000 \cdot \mathbf{g}}{\mathbf{F}} \right] \right\} \cdot \left(\frac{\mathbf{D} \cdot \mathbf{i} + 2 \cdot \mathbf{t}}{2 \cdot \mathbf{t}} - \frac{1200 \cdot \mathbf{g}}{\mathbf{F}} \right) \right]$	
			(5. 4. 1. 3)	
			$\frac{8000 \cdot g}{F} \le \frac{D \cdot +2 \cdot t}{2 \cdot t} \le 800 \text{のとき}$	
			$f_{c} = \phi \left(\frac{D_{i} + 2 \cdot t}{2 \cdot t} \right) \qquad (5.4.1.4)$	
			ただし、 $\phi_1(\mathbf{x})$ は次の関数とする。	
			ただし、 $\phi_1(\mathbf{x})$ は次の関数とする。 $\phi_1(\mathbf{x}) = 0.6 \cdot \frac{E}{\mathbf{x}} \cdot \left[1 - 0.901 \cdot \left\{ 1 - \exp\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right) \right\} \right]$	
			(5. 4. 1. 5)	
			また, f b は次による。	
			$\frac{D_{i} + 2 \cdot t}{2 \cdot t} \leq \frac{1200 \cdot g}{F} \emptyset \geq \tilde{\Xi}$	
			$f_{b} = F \qquad (5.4.1.6)$ $1200 \cdot g = D_{i} + 2 \cdot t = 9600 \cdot g \qquad (5.4.1.6)$	
			$\frac{1200 \cdot g}{F} < \frac{D_{i} + 2 \cdot t}{2 \cdot t} < \frac{9600 \cdot g}{F} \emptyset \succeq \stackrel{*}{\approx}$ $f_{b} = F \cdot \left[1 - \frac{1}{8400 \cdot g} \cdot \left\{F - \phi_{2} \left(\frac{9600 \cdot g}{F}\right)\right\} \cdot \left(\frac{D_{i} + 2 \cdot t}{2 \cdot t} - \frac{1200 \cdot g}{F}\right)\right]$	
			(5. 4. 1. 7)	
			$\frac{9600 \cdot g}{F} \le \frac{D_{i} + 2 \cdot t}{2 \cdot t} \le 800 \text{のとき}$	
			$f = 2 \cdot t$ $f_b = \phi \left(\frac{\text{D i} + 2 \cdot t}{2 \cdot t} \right) \qquad (5.4.1.8)$	
			ただし、 $\phi_2(\mathbf{x})$ は次の関数とする。	
			$\phi_{2} (\mathbf{x}) = 0.6 \cdot \frac{\mathbf{E}}{\mathbf{x}} \cdot \left[1 - 0.731 \cdot \left\{ 1 - \exp\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right) \right\} \right]$	
			(5. 4. 1. 9)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		ηは安全率で次による。	
		$\frac{D_{i}+2 \cdot t}{2 \cdot t} \leq \frac{1200 \cdot g}{F} \text{のとき}$	
		$\eta = 1 \qquad (5. 4. 1. 10)$	
		$\frac{1200 \cdot g}{F} < \frac{D_{i} + 2 \cdot t}{2 \cdot t} < \frac{8000 \cdot g}{F} \text{のとき}$	
		$\eta = 1 + \frac{0.5 \cdot F}{6800 \cdot g} \cdot \left(\frac{D_{i} + 2 \cdot t}{2 \cdot t} - \frac{1200 \cdot g}{F} \right) \dots \tag{5.4.1.11}$	
		$\frac{8000 \cdot g}{F} \leq \frac{D_i + 2 \cdot t}{2 \cdot t} \text{のとき}$ $\eta = 1.5 \qquad (5.4.1.12)$	
		$\eta = 1.5$	
		5.4.2 基礎ボルトの応力評価	
		5.3.1.2 項で求めた基礎ボルトの引張応力σβは次式より求めた	
		許容引張応力 $f_{t,s}$ 以下であること。ただし、 $f_{t,s}$ は下表による。	
		$f_{t s} = Min[1.4 \cdot f_{t o} - 1.6 \cdot \tau_{b}, f_{t o}]$ (5.4.2.1)	
		せん断応力τ βはせん断力のみを受ける基礎ボルトの許容せん断	
		応力 f_{sb} 以下であること。ただし、 f_{sb} は下表による。	
		弾性設計用地震動Sd 基準地震動Ssによる	
		又は静的震度による 荷重との組合せの場合	
		許容引張応力 $\frac{\mathrm{F}}{2} \cdot 1.5$ $\frac{\mathrm{F}^*}{2} \cdot 1.5$	
		f t o 2	
		許容せん断応力 $\frac{\mathrm{F}}{f_{\mathrm{s}\mathrm{b}}}$ $\frac{\mathrm{F}}{1.5\cdot\sqrt{3}}\cdot1.5$ $\frac{\mathrm{F}^*}{1.5\cdot\sqrt{3}}\cdot1.5$	
		1.5 • \sqrt{3}	

備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		C ○ ○ の	②記載の充実 【東海第二、柏崎7】 ⑦の相違 ③記載の充実 【東海第二】 ③の相違 ①記載の充実 【東海相違 ①記載の充実 【東海第二】 ①記載の充実 【東海第二】 島根2号機では、基礎に作用する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.1	10.9版) 島根原子力発電所 2号機	備考
		(1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (1	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			1.3.1	(比較のため,前頁の同表を再掲する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所 (2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	1,4.2 応力	備考
		1.4 結論 1.4.1 固有関則 (単位:s 方向 固有周期 水平方向 TH= 鈴鹿方向 TV=	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		1. ○ ○ ○ (②記載の相違 【東海第二、柏崎7】 島根2号機では、重大 事故等対処設備単独の 場合の注記は6. 項にフォーマットに記載しない (その他比較結果はフォーマット I と省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9版)	島根原子力発電所 2 号機	備考
来傳第一元电灯(2010.10.12版)	作品的人对对外工力光电内(方位)		2.3.1 開発((()) (()) (()) (()) (()) (()) (()) ((比較のため,前頁の同表を再掲する)

先行審査プラントの記載との比較表 (VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針)

	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
適性妄訂さ 等の関連性についての性質素的成の基本方針		•			
<u>1841党科-0</u> 管の貿易性についての計算専作金の基本方引					
<u>定ご性し</u> 質のお意体とついての計算具で成の基本分針					
流性会社 6 受力情認性についてが計算工作成の本木分計					
<u> 巻勺寮料 6</u> 智の前屋性についての計画書作成の基本方針					
総付款医-5 皆の前雲性についての計算事件或の基本方針					
適性受料を 習の耐点性についての計算書物及の基本方針					
遊行遊程-6 堂の都場件についての計算者作成の基本方針					
<u>添けさ社。</u> 首の商労性についての計算書作成の基本力針					
経 <u>分験料・</u> 管の前責性についての計算事件成の基本方針					
				がけ真竹 0 目の間接ほに 3v・(の可昇音下成の基本ガギ	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <u>規格・基準等</u>	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位	
		4. 固有周期	
		4.1 固有周期の計算方法	
		5. 構造強度評価	
		5.1 構造強度評価方法	
		5.2 荷重の組合せ及び許容応力	
		5.3 設計用地震力	
		5.4 計算方法	
		5.5 応力の評価	
		6. 機能維持評価	
		6.1 動的機能維持評価方法	
		7. 耐震計算書のフォーマット	

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
果神界一発電所(2018.10.12 版)	伯崎对初原十刀発電所 7 芳酸 (2020.10.9 版)	1. 概要本資料は、VI-2-1-1「耐震設計の基本方針」に基づき、耐震性に関する説明書が求められている管(耐震重要度分類Sクラス又はSs機能維持の計算を行うもの)並びに管に取り付く支持構造物及び弁が十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。 解析の方針及び減衰定数については、VI-2-1-6「地震応答解析の基本方針」に従うものとする。 2. 一般事項 2.1 評価方針管及び管に取り付く支持構造物の応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。また、管に取り付く弁の機能維持評価は、VI-2-1-9「機能維持の基本方針」にて設定した動的機能	・記載の相違 【東海第二】 島根2号機では, 応力 評価の対象が管及び管 に取り付く支持構造物 であることを踏まえた

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		解析モデル設定	・記載の相違 【東海第二】 島根2号機では、「解 析モデル設定」及び「解 析による固有周期」と記 載する ・記載の相違 【東海第二】 ②の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.3 記号の説明	
		記号の説明単位	
		B1, B2, 設計・建設規格 PPB-3810 に規定する応力係数 (一次応力の B2b, B2r 計算に使用するもの)	
		C2, C2b, 設計・建設規格 PPB-3810 に規定する応力係数(一次十二次	
		C2r 応力の計算に使用するもの)	
		Do 管の外径 mm 設計・建設規格 付録材料図表 Part6 表 1 に規定する縦弾性	
		設計・建設規格 付嫁材料図衣 Partb 衣 1 に規定する軟弾性 B MPa MPa	
		応力係数で設計・建設規格 PPC-3810 に規定する値又は 1.33	
		のいずれか大きい方の値	
		i 2 応力係数で設計・建設規格 PPC-3810 に規定する値又は 1.0 のいずれか大きい方の値	
		K2, K2b, 設計・建設規格 PPB-3810 に規定する応力係数 (ピーク応力	
		K2r の計算に使用するもの)	
		管の機械的荷重(自重その他の長期的荷重に限る。)により生 じるモーメント	
		耐震性についての計算:管の機械的荷重(地震を含めた短期	
		Mb 的荷重)により生じるモーメント	
		Mb* 地震による慣性力により生じるモーメントの全振幅 N·nm	
		耐震性についての計算:管台又は突合せ溶接式ティーに接続 Mbp される分岐管の機械的荷重(地震による慣性力を含む。)によ N・mm	
		り生じるモーメント	
		耐震性についての計算:管台又は突合せ溶接式ティーに接続	
		Mbs される分岐管の地震による慣性力と相対変位により生じるモーメントの全振幅	
		耐震性についての計算:地震による相対変位により生じるモ N・mm	
		ーメントの全振幅	
		耐震性についての計算:管の機械的荷重(地震による慣性力を含む。)により生じるモーメント N·mm	
		耐震性についての計算:管の地震による慣性力と相対変位に	
		Mis より生じるモーメントの全振幅 N・mm	
		耐震性についての計算:管台又は突合せ溶接式ティーに接続 Mrp される主管の機械的荷重(地震による慣性力を含む。)により N·mm	
		Mrp される主管の機械的荷重(地震による慣性力を含む。) により N·mm 生じるモーメント ***	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機 備考
ACIDATE TO REDITI (COLOR DOLLAR)	THE PROPERTY AND THE PROPERTY OF THE PROPERTY	 記号
		記号

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.4 計算精度と数値の丸め方	
		精度は,有効数字6桁以上を確保する。	・記載の充実
		表示する数値の丸め方は表 2-1 に示すとおりである。	【東海第二】
			④の相違
		表 2-1 表示する数値の丸め方	
		項目 数値の種類 単位 処理桁 処理方法 表示桁	・記載の充実
		島瞰図 寸法 mm 小数点第1位 四捨五入 整数位	【東海第二,柏崎7】
		変位量 mm 小数点第2位 四捨五入 小数点第1位 圧力 MPa 小数点第3位 四捨五入 小数点第2位*1	島根2号機では,計算
		温度	荷重及び反力,モーメン
		厚さ mm 小数点第2位 四捨五入 小数点第1位	ト並びに許容荷重に対
		縦弾性係数 MPa 小数点第1位 四捨五入 整数位 背量 kg 小数点第1位 四捨五入 整数位	して,必要に応じて小数
		単位長さ質量 kg/m 小数点第1位 四捨五入 整数位 ばね定数 N/mm 有効桁数3桁 四捨五入 有効桁数2桁	点第1位表示とする
		回転ばね定数 N·mm/rad 有効桁数3桁 四捨五入 有効桁数2桁 方向余弦 一 小数点第5位 四捨五入 小数点第4位	・記載の充実
		許容応力*2 MPa 小数点第1位 切捨て 整数位	【東海第二,柏崎7】
		減衰定数 % — 小数点第1位 固有周期 s 小数点第4位 四捨五入 小数点第3位	 島根2号機では,支持
		震度	 構造物の評価に用いる
		計算応力 MPa 小数点第1位 切上げ 整数位	 反力及びモーメントに
		許容応力*2 MPa 小数点第1位 切捨て 整数位 解析結果 計算荷重及び反力 kN 小数点第1位 切上げ 整数位**3	ついても数値の丸め方
		及び評価 モーメント kN·m 小数点第1位 切上げ 整数位*3 許容荷重 kN 小数点第1位 切捨て 整数位*3	を示す
		疲労累積係数 一 小数点第5位 切上げ 小数点第4位	・記載の相違
		機能維持評価用 加速度 ×9.8m/s² 小数点第2位 切上げ 小数点第1位	【東海第二】
		機能確認済加速度 ×9.8m/s ²	②の相違
		*2:設計・建設規格 付録材料図表に記載された温度の中間における許容応力は、比例法	(a) (b) (b) (c)
		により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。 *3:必要に応じて小数点第1位表示とする。	
		3. 評価部位	
		管の耐震評価については,「5.1 構造強度評価方法」に示す条件	
		に基づき一次応力評価,一次+二次応力評価及び疲労評価を実施	
		する。	
		管に取り付く支持構造物の耐震評価については, 「5.1 構造強度	
		<u>評価方法」</u> に基づき、種類及び型式に区分して評価を実施する。	
		管に取り付く弁の耐震評価については,「6.1 動的機能維持評価	
		方法」に基づき、動的機能維持要求弁に対する動的機能維持評価	
		を実施し、計算により求めた機能維持評価用加速度が機能確認済	・記載の相違
		加速度以下であることを確認する。	【東海第二】
			②の相違
			l

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12版)	柏崎刈羽原子力発電所 7 号機	(2020. 10. 9版)	島根原子力発電所 2号機 4. 固有周期 4.1 固有周期の計算方法 管の固有周期の計算は三次元多質点系はりモデルによる解析により実施する。配管系の解析モデルの作成に当たっては、以下を考慮する。 (1) 配管系は三次元多質点系はりモデルとし、曲げ、せん断、ねじり及び軸力に対する剛性を考慮する。 (2) 弁等の偏心質量がある場合には、その影響を評価できるモデル化を行う。また、弁の剛性を考慮したモデル化を行う。	備考 ・記載の相違 【東海第二】 島根2号機では,解析 コードは個別耐震計算 書に記載する
			じり及び軸力に対する剛性を考慮する。 (2) 弁等の偏心質量がある場合には、その影響を評価できるモデ	・記載の相違【東海第二】島根2号機では,ハ

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		(7) 配管系の質量は、配管自体の質量の他に弁等の集中質量、保	
		温材等の付加質量及び管内流体の質量を考慮するものとする。	
		(8) 耐震計算に用いる寸法は、公称値を使用する。	
		5. 構造強度評価	
		5.1 構造強度評価方法	
		(1) 管の構造強度評価は,「4.1 固有周期の計算方法」に基づき	
		作成した解析モデルによる地震応答解析を行い、得られたモーメ	
		ント等から「5.4 計算方法」に記載した方法で実施する。配管系	・記載の充実
		の動的解析手法としては、スペクトルモーダル解析法を用いる。	【東海第二】
		評価に当たっては、以下の荷重を考慮する。	島根2号機では,動的
		a. 内圧	解析手法としてスペク
		b. 機械的荷重(自重その他の長期的荷重)	トルモーダル解析を用
		c. 機械的荷重(逃がし弁又は安全弁の吹出し反力及びその他の	いる旨を明記する
		短期的荷重)	
		d. 地震荷重(基準地震動Ss, 弾性設計用地震動Sd及び静的	
		震度による慣性力及び相対変位)	
		(2) 管に取り付く支持構造物の構造強度評価は、 <u>₩</u> -2-1-12 <u>「</u> 配	
		管及び支持構造物の耐震計算について」に基づき,以下に示す種	
		類及び型式に区分して実施する。	
			・記載の相違
			【東海第二】
			島根2号機では,解析
			コードは個別耐震計算
		a. オイルスナッバ	書に記載する
		b. メカニカルスナッバ	
		c. ロッドレストレイント	
		d. スプリングハンガ	
		e. コンスタントハンガ	
		f. リジットハンガ	・記載の相違
		g レストレイント	【東海第二,柏崎7】
		<u>h.</u> アンカ	島根2号機では、リジ
		上記の支持構造物のうち、a.~fについては、 <u>M</u> -2-1-12「配管及	ットハンガについても
		び支持構造物の耐震計算について」において,種 <mark>類</mark> 及び型式単位	種類及び型式単位に設
		に設定した許容荷重に対する応力評価を実施し、計算応力が許容	定した許容荷重に対す
		応力以下であることを確認していることから、荷重確認による評	る応力評価を行うこと
		価を実施し、計算荷重が許容荷重以下であることを確認する。な	を踏まえた記載とする

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 10. 9 版)		島根原	子力発電所	2 号機		備考
						についての計算の 性についての計算に		
			5.2 荷重の組			7 # 5 0 M A N D o		
			耐震性について 力を表 5-1~ā			る荷重の組合せ及び	少計谷心	
				表 5-	-1 荷重の組		_	・記載の相違 【東海第二,柏崎7】
			施設分類*1	設備 原子炉冷却材 圧力バウンダリ	管クラス	荷重の組合せ*2 許容が 力状能 IL+Sd IIL+Sd IIIAS IVL (L) +Sd*3 IL+Ss IVAS	1 6	VI-2-1-9「機能維持の 基本方針」及び申請対象 設備による相違
			改計基準 対象施設	上記を除く設備	クラス 2 管 クラス 3 管 クラス 4 管 火力技術基準適用の管	IV _L (L) + S d * 4	5	
			重大事故等	原子炉冷却材圧力バウンダリ	重大事故等クラス2管	I L + S s II L + S s IVAS		
			対処設備	原子炉格納容器バウンダリ	重大事故等クラス2管 重大事故等クラス2管 重大事故等クラス3管		5	
			対処設備 *2: I L, II L, V, V (() 用してい。 *3: E C C S S S S S : E C C S S S S : 原子炉格 イミングか 力の組合せ *6: 原子炉格 を適用する。 *8: 原子炉冷 事故等時	の荷重の組合せをは 「VL(L)、VL、VL)、VL)、V(L L)に る状態、(L L)に 等(非常用炉心冷が 等(非常用炉心冷が 遅くなる可能性が を考慮する。 内容器過圧・過温値 も、 のは のは のは のは のは のは のは のは のは のは	考慮する。 VL(L)、VL(LL)に おいて作用する荷重を は更に長期的に荷重が作 却系及びそれに関連す 却系及びそれに関連す は、事象の進展によって あることから、保守的 抜損(残留熱代替除去系 サ及び原子炉格納容器 を詳細に評価しないこ	VL+Ss** VAS 明は設計基準対象施設及び重 まそれぞれ、運転状態I,II,IN 示す。なお、(L) は長期的に行用している状態を示す。 る系統)のみにおいて考慮する る系統)以外において考慮する こは、重大事故等時の最大荷重な 以生のでは、重大事故等時の最大荷重な を使用しない場合)における行	大事故等 7(L), 苛重が作 。 。 の発生タ S d 地震 時重条件 を しも重大	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		表 5-2 許容応力(クラス 1 管及び重大事故等クラス 2 管であっ	・記載の相違
		てクラス1管)	【東海第二,柏崎7】
		許容応力 一次一般 一次応力 一次十二次応力 状態 膜応力 (曲げ応力を含む) 一次十二次応力	VI-2-1-9「機能維持の
		2.25・Sm ただし,ねじりによる応力 が0.55・Smを超える場合 け 曲げとわじりによる広	基本方針」及び申請対象 設備による相違
		カについて 1.8・Smとする。 3・Sm*** のみによる疲労累積 係数と運転状態 I, II における疲労累積係数のみによる応力 振幅について評価 する。	
		WAS 2・Sm*1 が0.73・Smを超える場合	
		(1.5・Sm) の 0.8 倍の値とする。 *2:3・Smを超える場合は弾塑性解析を行う。この場合、設計・建設規格PVB-3300 (同PVB-3313を除く) 又はPPB-3536(1), (2), (4)及び(5)の簡易弾塑性解析を用いる。 *3:許容応力状態VASは許容応力状態IVASの許容限界を使用し、許容応力状態IVASとして評価を実施する。	
		表 5-3 許容応力 (「クラス1管及び重大事故等クラス2管であってクラス1管」を除く管で耐震重要度分類Sクラス及びSs機	
		能維持対象)	
		許容応力 一次一般 一次応力 一次十二次 一次十二次	
		状態 膜応力 (曲げ応力を含む) 応力 十ピーク応力	
		V _A S ^{*3} 0.6 ⋅ S u *1 0.9 ⋅ S u	
		注記*Ⅰ: 軸力による全断面平均応力については、許容応力状態ⅢASの一次一般膜応力の許容値の 0.8 倍の値とする。 *2:2・Syを超える場合は弾塑性解析を行う。この場合、設計・建設規格PPB-3536(1)、 (2)、(4)及び(5)(ただし、Smは2/3・Syと読み替える。)の簡易弾塑性解析を用いる。	
		*3: 許容応力状態VASは許容応力状態IVASの許容限界を使用し、許容応力状態IVASとして評価を実施する。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		5.3 設計用地震力	
		設計用地震力は、 <u>VI</u> -2-1-7「設計用床応答スペクトルの作成方針」	
		に基づき策定した設計用床応答スペクトルを用いる。また、減衰	・記載の相違
		定数は火エー2-1-6 「地震応答解析の基本方針」に記載の減衰定数を	【東海第二,柏崎7】
		用いる。なお、設計用床応答スペクトルは配管系の重心レベル上	島根2号機では、「設
		階の設計用床応答スペクトルを適用する。ただし、設計用床応答	計用床応答スペクトル」
		スペクトルの運用において合理性が示される場合には、その方法	と記載する
		を採用できるものとする。	・設計方針の相違
			【柏崎7】
			島根2号機では,配管
			系の重心レベル上階の
			設計用床応答スペクト
			ルを適用する
		5.4 計算方法	
		(1) クラス1管及び重大事故等クラス2管であってクラス1管	
		a. 一次応力	
		(a) 管台及び突合せ溶接式ティー	
		$S_{p r m} = B_1 \cdot P \cdot D_0 / (2 \cdot t) + B_{2b} \cdot M_{bp} / Z_{b} + B_{2r} \cdot M_{rp} / Z_{r}$	
		(b) (a)以外の管	
		$S_{p r m} = B_1 \cdot P \cdot D_0 / (2 \cdot t) + B_2 \cdot M_{i p} / Z_i$	
		b. 一次+二次応力	
		(a) 管台及び突合せ溶接式ティー	
		$S_n = C_2 b \cdot M b s / Z b + C_2 r \cdot M r s / Z r$	
		(b) (a)以外の管	
		$S_n = C_2 \cdot M_i s / Z_i$	
		c. ピーク応力	
		(a) 管台及び突合せ溶接式ティー	
		$S_p = K_2 b \cdot C_2 b \cdot M_b s / Z_b + K_2 r \cdot C_2 r \cdot M_r s / Z_r$	
		(b) (a)以外の管	
		$S_p = K_2 \cdot C_2 \cdot M_i s / Z_i$	
		d. 繰返しピーク応力強さ	
		S ℓ = K e · S p / 2	
		Ke: 次の計算式により計算した値	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		イ. S _n <3・Smの場合	
		$K_{e} = 1$	
		ы С >2 С. <mark>Ф</mark> ИА	
		ロ. S _n ≧3・Sm <mark>の</mark> 場合 (イ) K <b<sub>0の場合</b<sub>	
		i. $S_n/(3 \cdot S_m) < [(q+A_0/K-1)]$	
		$-\sqrt{\{(q+A_0/K-1)^2-4\cdot A_0\cdot (q-1)\}}]/(2\cdot A_0)$ の場合	
		$K_e = K_e^* = 1 + A_0 \cdot \{S_n / (3 \cdot S_m) - 1 / K\}$	
		ii. $S_n/(3 \cdot S_m) \ge [(q+A_0/K-1)]$	
		$-\sqrt{(q+A_0/K-1)^2-4\cdot A_0\cdot (q-1)}]/(2\cdot A_0)$ の場合	
		$K_{e} = K_{e}' = 1 + (q - 1) \cdot (1 - 3 \cdot S_{m} / S_{n})$	
		(ロ) K≧B ₀ の場合	
		i . S n / (3・S m) < [(q -1) - √{(A ₀ ・(1-1/K)・(q-1)}] / a の場合	
		$K_{e} = K_{e}^{**} = a \cdot S_{n} / (3 \cdot S_{m}) + A_{0} \cdot (1 - 1/K) + 1 - a$	
		ii. S n / (3・S m) ≧ [(q −1) − √{(A₀・(1−1/K)・(q−1)}] / a の場合	
		$K_{e} = K_{e}' = 1 + (q - 1) \cdot (1 - 3 \cdot S_{m} / S_{n})$	
		ここで,	
		$K = S_p / S_n$,	
		$a = A_0 \cdot (1 - 1/K) + (q - 1) - 2 \cdot \sqrt{\{(A_0 \cdot (1 - 1/K) \cdot (q - 1))\}}$	
		$a = H_0 = (1 - 1)/H_0 + (q - 1)/2 - \sqrt{(H_0 = (1 - 1)/H_0)} - (q - 1)/2$	
		q, A ₀ , B ₀ : 下表に掲げる材料の種類に応じ, それぞれの同表	
		に掲げる値	
		低合金鋼 3.1 1.0 1.25	
		マルテンサイト系ステンレス鋼 3.1 1.0 1.25	
		炭素鋼 3.1 0.66 2.59	
		オーステナイト系ステンレス鋼3.10.72.15高ニッケル合金3.10.72.15	
		$S_n \ge 3 \cdot S_m$ の場合, $5.4(1) d. p.$ に関わらず, 次の計算式により計算した値を用いてもよい。	
		K e = ε e p ∕ ε e	
			-

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			e. 疲労累積係数	
			Σ (n i / N i) \leq 1.0	
			(2) (1)を除く管	
			a. 一次応力	
			$S_{prm} = P \cdot D_0 / (4 \cdot t) + 0.75 \cdot i_1 \cdot (M_a + M_b) / Z$	
			b. 一次十二次応力	
			$S_n = (0.75 \cdot i_1 \cdot M_b^* + i_2 \cdot M_c) / Z$	
			c. ピーク応力	・記載の充実
			(1)c.に同じ。	【東海第二,柏崎7】
			d. 繰返しピーク応力強さ	島根2号機では,クラ
			(1) d. に同じ。	ス1管及び重大事故等
			ただし、 K_e の計算においては、 $Sm ext{ } 2 / 3 \cdot S$ y に読み替える	クラス2管であってク
			ものとする。	ラス1管以外の管につ
			e. 疲労累積係数	いてもピーク応力,繰返
			(1) e. に同じ。	しピーク応力強さ及び
				疲労累積係数の計算方
			5.5 応力の評価	法を記載する
			5.4 項で求めた応力及び疲労累積係数が 5.2 項に示す許容値以下	
			であることを確認する。	
			6. 機能維持評価	
			6.1 動的機能維持評価方法	
			配管系の地震応答解析から得られた弁の機能維持評価用加速度と	・記載の相違
			機能確認済加速度との比較により、地震時又は地震後の動的機能	【東海第二】
			維持を評価する。	②の相違
			機能確認済加速度は、 <u>W</u> -2-1-9「機能維持の基本方針」に <u>基づき</u>	
			設定する。	・設計方針の相違
			なお、機能維持評価用加速度が機能確認済加速度を超過する場合	島根2号機では,機能
			は詳細評価を実施し、機能維持評価用加速度が動作機能確認済加	維持評価用加速度が機
			速度以下かつ計算応力が許容応力以下であることを確認する。	能確認済加速度を超過
				する場合は,計算応力が
				許容応力以下であるこ
			7. 耐震計算書のフォーマット	と及び機能維持評価用
			管の耐震計算書のフォーマットは,以下のとおりである。	加速度が動作機能確認
				済加速度以下であるこ
				とを確認する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
	·	(1) 概要	
		本資料及びVI-2-1-12「配管及び支持構造物の耐震計算について」	
		に基づき,管,支持構造物及び弁の耐震性についての計算を実施	
		した結果を示す旨を記載する。	
		なお、支持構造物は強度計算及び耐震性についての計算の基本式	
		が同一であることから、強度計算を耐震性についての計算に含め	
		て実施している旨を記載する。	
		また、評価結果の記載方法は以下とする旨を記載する。	
		a. 管	
		工事計画記載範囲の管のうち、各応力区分における最大応力評価	
		点の評価結果を解析モデル単位に記載する。また、各応力区分に	
		おける最大応力評価点の許容値/発生値(以下「裕度」という。)	
		が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価	
		結果を記載する。各応力区分における代表モデルの選定結果及び	
		全モデルの評価結果についても記載する。	
		b. 支持構造物	
		工事計画記載範囲の支持点のうち、種類及び型式単位に反力が最	
		大となる支持点の評価結果を代表として記載する。	
		- 	
		C. 弁	
		評価結果を記載する対象弁は、工認主要弁かつ動的機能維持要求	== +b = le >+.
		弁とし、機能確認済加速度の機能維持評価用加速度に対する裕度	
		が最小となる動的機能維持要求弁を代表として、弁型式別に評価	
		結果を記載する。	②の相違
		(2) 概略系統図及び鳥瞰図	
		a. 概略系統図	
		工事計画記載範囲の系統の概略を示した図面を添付する。 概略系	・記載の充実
		統図の記号凡例を下表に示す。	【東海第二,柏崎7】
		記号 一 (十組) 丁東弘岡和幹笠田の郊のされ、米お弘管寺和幹笠田の郊(五十東竹笠牡加和	島根2号機では, 概略
		(太線) 工事計画記載範囲の管のうち,当該計算書記載範囲の管(重大事故等対処設備)	系統図の記号凡例を記
		(太破線) 工事計画記載範囲の管のうち,当該計算書記載範囲の管(設計基準対象施設)	載する
		(細線) 工事計画記載範囲の管のうち,当該系統の管であって他計算書記載範囲の管 (破線) 工事計画記載範囲外の管,又は工事計画記載範囲の管のうち他系統の管であ	
		(破縁) 工事計画記載範囲外の官、又は工事計画記載範囲の官のすら他示頼の官であって系統の概略を示すために表記する管	
		(00-0-00 鳥瞰図番号 (代表モデル)	
		○○○○ 鳥瞰図番号 (代表モデル以外) アンカ	
		0 / / / /	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
		b. 鳥瞰図 評価結果記載の解析モデルの解析モデル図を添付する。 なお、設計基準対象施設と重大事故等対処設備の兼用範囲を含む 解析モデルについては、設計基準対象施設に該当する範囲を示した島瞰図に た島瞰図と重大事故等対処設備に該当する範囲を示した島瞰図に 分けて添付する。鳥瞰図の記号見例を下表に示す。	・記載の相違 【東海第二, 柏崎7】 島根第二, 柏崎7】 島根 対外 と 動 に 大 東海 に ま 神 が と と か を か ま が ま が ま が ま が ま が ま が ま が ま が ま が ま

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		(4)解析結果及び評価 本項目記載内容及び記載フォーマットを FORMAT 耐-8~耐-13 に示す。	
		・FORMAT 耐-1: 荷重の組合せ及び許容応力 本計算書において考慮する荷重の組合せ及び許容応力状態を下表	
		に示す。	
		注記*1: DBは設計基準対象施設、SAは重大事故等対処設備を示す。 *2:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/防止」は常設耐震重要重大事故防止設備,「常設/防止 (DB拡張)」は常設重大事故防止設備 (設計基準拡張),「常設/緩和」は常設重大事故緩和設備を示す。 *3: 運転状態の添字上は荷重,(L)は荷重が長期間作用している状態、(LL)は(L)より更に長期的に荷重が作用している状態を示す。 *4: 許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。 *5: 許容応力状態VASは許容応力状態IVASの許容限界を使用し,許容応力状態IVASとして評価を実施する。	
		設計条件 鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と 対応する評価点番号を示す。	
		鳥瞰図番号	
		 ・FORMAT 耐-3: 配管の付加質量、フランジ部の質量、弁部の質量 鳥瞰図番号 	
		注:配管の付加質量は、保温等の配管に付加される質量を示す。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		・FORMAT 耐ー4:	
		弁部の寸法	
		鳥瞰図番号	
		評価点 外径(mm) 厚さ(mm) 長さ(mm)	
		・FORMAT 耐ー5:	
		支持点及び貫通部ばね定数	
		鳥瞰図番号	
		支持点番号 各軸方向ばね定数(N/mm)* 各軸回り回転ばね定数(N·mm/rad)*	
		X Y Z X Y Z	
		** **	
		注:支持点番号における**印は斜め拘束を示す。また、下段は方向余弦を示す。	
		注記*:拘束のない方向については「一」と記載する。	
		・FORMAT 耐−6:	
		材料及び許容応力	
		使用する材料の最高使用温度での許容応力を下表に示す。	
		材料 最高使用温度	
		注記*:評価に使用しない許容応力については「一」と記載する。	
		• FORMAT 耐一7:	
		設計用地震力	
		本計算書において考慮する設計用地震力の算出に用いる設計用床	
		応答スペクトルを下表に示す。	【東海第二,柏崎7】
		なお, <u>設計</u> 用床応答 <u>スペクトル</u> は, <u>VI</u> -2-1-7 <u>「</u> 設計用床応答 <u>スペ</u>	島根2号機では、「設
		<u>クトル</u> の作成方針」に基づき策定したものを用いる。また、減衰	計用床応答スペクトル」
		定数は <u>VI</u> -2-1-6 「地震応答解析の基本方針」に記載の減衰定数を	と記載する
		用いる。	
		鳥瞰図 建物·構築物 標高 減衰定数(%)	
		DEPT	

及び移行機関	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)			島根原	子力発電	電所 2	号機		備考
### ### ### ### ### #################	東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機	(2020. 10. 9版)	固有周期及 鳥瞰図番号 適用するは モード*1 1次 2次 ・・・・ 8次	をび設計 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	震度	設計用地震動 及び静的震度 平震度* ²	助 S d 度 応答鉛直 震度* ²	応答水	平震度*3 応答鉛 震度*	 ・設計方針の相違 【東海第二,柏崎7】 島根2号機では, 0.050s未満のモードに対する扱いを注記で示す ・記載の充実
				動的震 静的	度*** 「ラス及び 0.050 の場合 静 0.050 の場合 応 0.050 の は、答 4 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	的震度」 欄 を	を削除したものである。 一口る震度を記るできます。 一口を震度を記るできます。 一口を表現を記るできます。 一口を表現を記述を表現しています。 一口を表現しています。 一定をある。 一定をもる。 一定をもる。 一定をも。 一。 一。 一。 一。 一。 一。 一。 一。 一。 一。 一。 一。 一。	のを使用す 0.020 s 以 適用する。な 地震動 S d) S s)又はこ。 な なはこれを上 変	 	性設計用地震動S d が に対して 国有周期が 0.050s 未活 上回る設計用床応答 2 設計用床応答 2 設計用床応答 3 次 で設計用 震度 I アンドウス で ステ向	での相違 ・記載の充実 【東海第二,柏崎7】 島根2号機では、評価 に適用する「設計用床応 答スペクトルI」で表示では 「設計用床応答スペークを表示である。・記載の充実 【東海第二,柏崎7】 ⑧の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	・ FORMAT 前一10-1:	備考 ・記載の相違 ・記載の相二、柏崎 7 】 ・記載の相二、機 2 号 ラス 1 機 ス 2 管 場 IV A S とを する ま 2 管 の ス 1 大 あ 合 は とを む ま 2 管 の ス 1 で 方 本 とを で 応 1 で ト と よ か の ま と ま で で 応 1 で ト と よ よ も で で で な 1 で ト と よ よ も で で で で な 1 で ト と よ よ も で で で で で で で で で で で で で で で で で

東海第二発電所(2018. 10. 12 版)	—————————————————————————————————————	島根原子力発電所 2 号機 備考
東海第二発電所(2018. 10. 12版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	島根原子力発電所 2号機

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
			・記載の相違
			【東海第二,柏崎7】
			島根2号機では,重大
			事故等クラス2管であ
			ってクラス1管の応力
			評価結果はクラス1管
			と同一のフォーマット により示す
			によりかり
			・記載の相違
			【東海第二,柏崎7】
			島根2号機では,重大
			事故等クラス2管であ
			ってクラス2以下の管
			の応力評価結果は,クラ
			ス2以下の管と同一の
			フォーマットにより示
			す
		<u> </u>	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		注:評価対象がない場合はすべての欄に「—」と記載する。	

フォーマットにより示

1			
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		・FORMAT 耐ー12: 弁の動的機能維持の評価結果 下表に示すとおり機能維持評価用加速度が動作機能確認済加速度以下力か計算応力が許容応力以下である。 機能維持評価用加速度が動作機能確認済 加速度 加速度 加速度 加速度 加速度 加速度 加速度 (×9.8m/s²) (×9	・記載の相違 【東海第二,柏崎7】 ②の相違 ・設計方針の相違 島根2号機では,機能 維持評価に関連を超力が 事では、計算にある い下を必し、計算にある をでは、計算にある がでいた。 ととで機能を がいまでで がいまで がいまで がいまで がいまで がいまで がいまで がいま
		・FORMAT 耐-13-1: 代表モデルの選定結果及び全モデルの評価結果 代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力 分類ごとに裕度最小のモデルを選定して鳥瞰図、計算条件及び評価結果を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。 クラス1管(又は重大事故等クラス2管であってクラス1管) ***********************************	・記載の相違 【東海第二,柏崎7】 島根2号機では,重大の一方では、変に、変に、変に、変に、変に、変に、変に、変に、変に、変に、変に、変に、変に、

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所 (2018, 10, 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機 ・FORMAT 耐ー13-2: 代表モデルの選定結果及び全モデルの評価結果 代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力 分類ごとに裕度最小のモデルを選定して鳥瞰図、計算条件及び評価結果を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。 クラス2以下の管(又は重大事故等クラス2管であってクラス2以下の管)	・記載の相違 ・記載の相違、柏崎は、質での大力をは、大事での大力をは、一点をできるは、一点をできまれば、ででの大力をできません。 ・記載の相違、名のでは、一点ででの大力をは、ないでは、一点ででの大力をは、ででのクラフスをできまれば、ででのクラフスをできません。 ・記載を表するでは、一点ででのから、一点では、一点では、一点では、一点では、一点では、一点では、一点では、一点では

: FORMAT における先行審査プラントの記載との主な相違点

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
			・記載の相違
			【東海第二】
			申請対象設備による
			相違

先行審査プラントの記載との比較表 (VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-7 計装ラックの耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機	備考
			<u>添付資料-7</u> 計装ラックの耐震性についての計算書作成の基本方	
			針	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <u>規格·</u> 基準 等	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位	
		4. 固有周期	
		5. 構造強度評価	
		5.1 構造強度評価方法	
		5.2 設計用地震力	
		5.3 計算方法	
		5.4 応力の評価	
		6. 機能維持評価	
		6.1 電気的機能維持評価方法	
		7. 耐震計算書のフォーマット	
		7.1 直立形計装ラックの耐震計算書のフォーマット	
		7.2 壁掛形計装ラックの耐震計算書のフォーマット	

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機	備考
			1. 概要 本資料は、M-2-1-1「耐震設計の基本方針」に基づき、耐震性に 関する説明書が求められている計装ラック(耐震重要度分類Sクラス又はSs機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。 解析の方針及び減衰定数については、M-2-1-6「地震応答解析の基本方針」に従うものとする。 ただし、本基本方針が適用できない計装ラックにあっては、個別	
			耐震計算書にその耐震計算方法を含めて記載する。 2. 一般事項 2.1 評価方針 計装ラックの応力評価は、MI-2-1-9 「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで	
			実施する。また、計装ラックの機能維持評価は、 <u>VI-2-1-9</u> 「機能維持の基本方針」にて設定した電気的機能維持の方針に基づき、機能維持評価用加速度が機能確認済加速度以下であることを、「6.機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7. 耐震計算書のフォーマット」に示す。 計装ラックの耐震評価フローを図 2-1 に示す。	 ・記載の相違 【東海第二,柏崎7】 ②の相違 ・記載の相違 【東海第二,柏崎7】 ①の相違
			超有周期	・記載の相違 【東海第二】 島根2号機では,耐震 評価フローにおいて,振 動試験で固有周期を求 める項目を他の項目と の整合性を考慮して「固 有周期」と記載する (以下⑬の相違) ・記載の相違 【東海第二】 ②の相違

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.2 適用規格・基準等	
		本評価において適用する規格・基準等を以下に示す。	
		·原子力発電所耐震設計技術指針 <u>重要度分類・許容応力編 J</u>	
		EAG4601・補-1984((社)日本電気協会)	
		·原子力発電所耐震設計技術指針 JEAG4601-1987((社)	
		日本電気協会)	
		·原子力発電所耐震設計技術指針 JEAG4601-1991 追補	
		版((社)日本電気協会)	
		· 発電用原子力設備規格 <u>設計・建設規格((社)</u> 日本機械学会,	
		2005/2007) (以下「設計・建設規格」という。)	

東海第二発電所(2018.10.12版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	 記号の説明 記号の説明 単位 Abi ボルトの軸断面積*1 CH 水平方向設計震度 CV 鉛直方向設計震度 di ボルトの呼び径*1 Fi 設計・建設規格 SSB-3121.1(1)に定める値*1 MPa Fi* 設計・建設規格 SSB-3133に定める値*1 Fbi ボルトに作用する引張力(1本当たり)*1 Fbii 鉛直方向地震及び壁掛取付面に対し左右方向の水平方向地震によりボルトに作用する引張力(1本当たり)(壁掛形)*1 Fb2i 鉛直方向地震及び壁掛取付面に対し前後方向の水平方向地震によりボルトに作用する引張力(1本当たり)(壁掛形)*1 	備考 ・記載の相違 【東海第二】 ③の相違
		f_{sbi} 世ん断力のみを受けるボルトの許容せん断応力*1 f_{toi} 引張力のみを受けるボルトの許容引張応力*1 f_{tsi} 引張力とせん断力を同時に受けるボルトの許容引張応力*1 g 重力加速度 (=9.80665) h_i 据付面又は取付面から重心までの距離*2 ℓ_{1i} 重心とボルト間の水平方向距離(直立形)*1.*3 ℓ_{2i} 重心とボルト間の鉛直方向距離(壁掛形)*1 ℓ_{2i} 重心とボルト間の鉛直方向距離(壁掛形)*1 ℓ_{2i} 重心とボルト間の鉛直方向距離(壁掛形)*1 ℓ_{2i} 重心とボルト間の鉛で方向距離(壁掛形)*1 ℓ_{3i} た側ボルトと下側ボルト間の鉛直方向距離(壁掛形)*1 ℓ_{3i} た側ボルトと右側ボルト間のか平方向距離(壁掛形)*1 ℓ_{3i} だ側ボルトと右側ボルト間の水平方向距離(壁掛形)*1 ℓ_{3i} だ側ボルトと右側ボルト間の水平方向距離(壁掛形)*1 ℓ_{3i} だ側ボルトと右側ボルト間の水平方向距離(壁掛形)*1 ℓ_{3i} だ側ボルトの本数*1 ℓ_{3i} がようのな数*1 ℓ_{3i} 評価上引張力を受けるとして期待するボルトの本数(直立形)*1	・記載の充実 【東海第二】 島根 2 号機では, 据付 面(主に基礎ボルト取付 位置を示す) 及び取付面 (主に取付ボルト取付 位置を示す) の両者を示
		n f v i 評価上引張力を受けるとして期待するホルトの本数 (側面方向) (壁掛形) *1 n f H i 評価上引張力を受けるとして期待するボルトの本数 (正面方向) (壁掛形) *1 Q b i ボルトに作用するせん断力*1 N Q b i ボルトに作用するせん断力 (壁掛形) *1 N Q b 2 i 鉛直方向地震によりボルトに作用するせん断力 (壁掛形) *1 N Su i 設計・建設規格 付録材料図表 Part5 表 9 に定める値*1 MPa Sy i 設計・建設規格 付録材料図表 Part5 表 8 に定める値*1 MPa Sy i (R T) 設計・建設規格 付録材料図表 Part5 表 8 に定める植*1 MPa 40℃における値*1 π 円周率	す記載とする ・記載の充実 【柏崎7】 島根2号機では,記載 を充実させるため,壁掛 形設備の転倒方向は, 5.1 項に注記を用いて 定義し,注記に合わせた
		注記*1: Abi, di, Fi, Fi*, Fbi, Fbii, Fbii, Fbii, fbii, ftoi, ftsi, lii, lii, lii, lii, lii, lii, lii, l	転倒方向を記載する(以下⑭の相違)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機 備考
		2.4 計算精度と数値の丸め方
		精度は,有効数字6桁以上を確保する。 ・記載の充実
		表示する数値の丸め方は表 2-1 に示すとおりである。 【東海第二】
		④の相違
		表 2-1 表示する数値の丸め方
		数値の種類 単位 処理桁 処理方法 表示桁
		固有周期 s 小数点以下第 4 位 四捨五入 小数点以下第 3 位
		震度 一 小数点以下第3位 切上げ 小数点以下第2位 温度 ℃ 一 整数位
		質量 kg — 整数位
		長さ mm - 整数位***
		面積 mm² 有効数字 5 桁目 四捨五入 有効数字 4 桁*² 力 N 有効数字 5 桁目 四捨五入 有効数字 4 桁*²
		算出応力 MPa 小数点以下第1位 切上げ 整数位
		許容応力*3 MPa 小数点以下第1位 切捨て 整数位 ・記載の充実
		注記*1: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。 *2: 絶対値が1000以上のときは、べき数表示とする。 【東海第二】
		*3: 設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び 5の相違
		降伏点は, 比例法により補間した値の小数点以下第1位を切り捨て, 整数位ま
		での値とする。
		3. 評価部位
		計装ラックの耐震評価は「5.1 構造強度評価方法」に示す条件に
		基づき、耐震評価上厳しくなる基礎ボルト及び取付ボルトについ
		て評価を実施する。
		4. 固有周期
		計装ラックの固有周期は、振動試験(加振試験又は自由振動試験)・記載の相違
		にて求める。なお、振動試験により固有周期が求められていない【東海第二】
		計装ラックについては、構造が同等な計装ラックに対する振動試 島根2号機では、試
		験より算定された固有周期を使用する。 体をハンマ等で強制
		振する打振試験を含
		5. 構造強度評価 表現として「自由振動
		5.1 構造強度評価方法 験」と記載する
		(1) 計装ラックの質量は重心に集中しているものとする。 (以下⑮の相違)
		(2) 地震力は計装ラックに対して、水平方向及び鉛直方向から作 ・記載の相違
		用するものとする。
		「用りるものとりる。
		おり、固定端とする。 試験により固有周期
		(4) チャンネルベースは基礎ボルト又は埋込金物で基礎と固定 求められていない設
		されており、固定端とする。 に対する方針を、物理

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機	備考
			(5) 床面据付の計装ラックの転倒方向は,図 5-1 概要図(直立	に対して主に適用する"
			形)における長辺方向及び短辺方向について検討し、計算書には	同等"を用いて、構造が
			計算結果の厳しい方(許容値/発生値の小さい方をいう。)を記載	同等な○○○に対する
			する。壁掛形の計装ラック*については,図 5-2 概要図 (壁掛形)	振動試験より算定され
			における正面方向及び側面方向について検討し、計算書には計算	た固有周期を使用する
			結果の厳しい方を記載する。	旨記載する
			(6) 計装ラックの重心位置については、転倒方向を考慮して、計	(以下⑯の相違)
			算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行	
			うものとする。	
			(7) 耐震計算に用いる寸法は,公称値を使用する。	
			注記*:壁掛形の計装ラックの転倒方向は、計装ラックを正面よ	・記載の充実
			り見て左右に転倒する場合を「正面方向転倒」,前方に転	【東海第二】
			倒する場合を「側面方向転倒」という。	⑭の相違
			計装ラック 正面 側面	・記載の相違
				【東海第二,柏崎7】
			取付ポルト	基礎ボルト及び据付
				ボルトを評価する代表
			基礎ボルト	的な概要図の相違
			基礎 777	
			基礎 77/7/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	
			\	
			図 5-1 概要図(直立形)	
			and the second s	
			上面 側面 壁 上	
			基礎ポルト 計装ラック	
			基礎ボルト 取付ボルト	
			チャンネルベース	
			図 5-2 概要図(壁掛形)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			5.2 設計用地震力	
			「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」	
			による地震力は, <u>VI</u> -2-1-7「設計用床応答 <u>スペクトル</u> の作成方針」	
			に基づき設定する。なお、壁掛形の計装ラックの設計用地震力に	
			ついては,設置床上下階のいずれか大きい方を用いる。	・設計方針の相違
				【東海第二】
			5.3 計算方法	島根2号機では,壁掛
			5.3.1 応力の計算方法	形設備の設計用地震力
			5.3.1.1 ボルトの計算方法	は,設置床上下階のいず
			ボルトの応力は、地震による震度により作用するモーメントによ	れか大きい方を用いる
			って生じる引張力とせん断力について計算する。計算モデルは、	(以下⑰の相違)
			取付ボルトの場合を示す。	・記載の充実
				【東海第二】
				島根2号機では、計算
				モデルは, 取付ボルトの
				場合を示す旨を記載す
				る
				・記載の相違
				【東海第二】
			転倒方向 !	島根2号機では、転倒
			ф ф ф ф	の支点及び引張りを受
			$m_2 \cdot C_H \cdot g$	けるボルトについて, 基
			取付ボルト m ₂ ·(1-C _V)·g	礎ボルト及び取付ボル
			★ 加2 (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	トを総称して「ボルト」
			7777 転倒支点となる ゆ り張りを受ける	と記載する
			/////////////////////////////////////	
			$\begin{array}{c c} \ell_{12} & \ell_{22} \\ \hline \end{array} \qquad \qquad (\ell_{12} \leq \ell_{22}) \qquad \begin{array}{c} \ell_{12} \\ \hline \end{array} \qquad \begin{array}{c} \ell_{12} \\ \hline \end{array}$	 (比較結果は上記2件
			チャンネルベース	の記載の相違と同様で
			図 5-3(1) 計算モデル	あるため, 以降図 5-
			(直立形 短辺方向転倒 <u>−1</u> (1−C _V)≧0 の場合)	4(1)までの比較は省略
				する)
				1 つ <i>り</i>

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10.9 版)	島根原子力発電所 2 号機	備考
		転倒支点となる 引張りを受ける ボルト列 ボルト列	
		転倒支点となる ボルト列 ポルト列	
		m ₂ ·C _H ·g	
		取付ボルト m ₂ ·(1-C _v)·g	
		転倒支点	
		$\begin{array}{c c} \hline & \ell_{12} \\ \hline & \ell_{22} \end{array} \qquad \begin{array}{c} \ell_{12} \leq \ell_{22} \end{array}$	
		チャンネルベース	
		図 5-3(3) 計算モデル	
		(直立形 長辺方向転倒 <u>1</u> (1-C _V)≥0の場合)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		 転倒方向 引張りを受ける ボルト列 転倒支点となる ボルト列 転倒支点 取付ボルト チャンネルベース (ℓ12 ≤ ℓ22) 図 5-3(4) 計算モデル (直立形 長辺方向転倒-2(1-C_V)<0 の場合) 	

: 各図における先行審査プラントの記載との主な相違点

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10.9 版)	島根原子力発電所 2 号機	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		壁 <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u>	
		転倒支点となる ボルト列 m ₂ ・C _H ・g	
		♥ m ₂ ・(I+C _V)・g 図「 4(1) 計算では、(BHIK) アエナウギ(図の担合)	
		図 5-4(1) 計算モデル (壁掛形 正面方向転倒の場合) ***********************************	・記載の相違 【東海第二】 島根2号機では,転倒 の支点及び引張りを表 を表 がいたびでででででででででででででででででででででででででででででででででででで

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		計算モデル図 $5-3(2)$ 及び図 $5-3(4)$ の場合の引張力 $F_{bi} = \frac{m_{i} \cdot g \cdot C_{H} \cdot h_{i} - m_{i} \cdot g \cdot (1 - C_{V}) \cdot \ell_{2i}}{n_{fi} \cdot (\ell_{1i} + \ell_{2i})} $ (5. 3, 1. 1, 2)	
		計算モデル図 5-4(1)及び図 5-4(2)の場合の引張力	
		$F_{b i i} = \frac{m_{i} \cdot (1 + C_{v}) \cdot h_{i} \cdot g}{n_{f v i} \cdot \ell_{2 i}} + \frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g}{n_{f H i} \cdot \ell_{3 i}} $ $ (5. 3. 1. 1. 3)$	
		$F_{b2i} = \frac{m_i \cdot (1+C_V) \cdot h_i \cdot g + m_i \cdot C_H \cdot \ell_{1i} \cdot g}{n_{fVi} \cdot \ell_{2i}} $ $ (5. 3. 1. 1. 4)$	
		$F_{bi} = Max(F_{bii}, F_{b2i})$ (5. 3. 1. 1. 5)	
		引張応力	
		$\sigma_{b i} = \frac{F_{b i}}{A_{b i}}$ (5. 3. 1. 1. 6)	
		ここで、ボルトの軸断面積 A_{bi} は次式により求める。	
		A b i = $\frac{\pi}{4}$ · d i ²	
		ただし、F _{bi} が負のときボルトには引張力が生じないので、引張 応力の計算は行わない。	
		(2) せん断応力	
		ボルトに対するせん断力は、ボルト全本数で受けるものとして計算する。	
		せん断力	
		a. 直立形の場合 Qbi=mi·g·CH	
		b. 壁掛形の場合	
		$Q_{b i i} = m_i \cdot C_H \cdot g \qquad (5.3.1.1.9)$	
		$Q_{b2i} = m_{i} \cdot (1 + C_{V}) \cdot g \qquad (5.3.1.1.10)$ $Q_{bi} = \sqrt{(Q_{b1i})^{2} + (Q_{b2i})^{2}} \qquad (5.3.1.1.11)$	
		(0.0.1.1.11)	
		せん断応力	
		$\tau_{b i} = \frac{Q_{b i}}{n_{i} \cdot A_{b i}}$ (5. 3. 1. 1. 12)	

		引張応力 f _{tsi} 以 f _{tsi=Min[1.4·f_t} せん断応力 τ _{bi} は	たボルトの引張応力 σ 下であること。ただし。 oi-1.6・τьi, f t oi] ・・ t, せん断力のみを受け ること。ただし、f s b i	biは次式より求めた許容 ftoiは下表による。 (5.4.1.1) けるボルトの許容せん断応 は下表による。	記載の相違
		5.3.1.1 項で求め 引張応力 f t s i 以「 f t s i = Min[1.4·f t せん断応力 τ b i は	たボルトの引張応力 σ 下であること。ただし。 oi-1.6・τьi, f t oi] ・・ t, せん断力のみを受け ること。ただし、f s b i	ftoiは下表による。 (5.4.1.1) けるボルトの許容せん断応	
		引張応力 f _{tsi} 以 f _{tsi=Min[1.4·f_t} せん断応力 τ _{bi} は	下であること。ただし。 。i − 1.6・τь i , f t o i] ··· t,せん断力のみを受け ること。ただし,f _{s b i}	ftoiは下表による。 (5.4.1.1) けるボルトの許容せん断応	
		f t s i = Min[1.4·f t せん断応力τ b i は	oi-1.6・tbi,ftoi] ・・ は, せん断力のみを受け ること。ただし,f _{sbi}	(5.4.1.1)	記載の相違
		せん断応力τ _{bi} は	t, せん断力のみを受け ること。ただし, f _{sbi}	けるボルトの許容せん断応	記載の相違
			ること。ただし,ƒsbi		記載の相違
		力ƒѕы以下である		は下表による。	・記載の相違
			※44-50-31、田地電新で1		F= 1/2 - 1E ~
			弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動Ssによる 荷重との組合せの場合	【柏崎7】 島根2号機では,他の
		許容引張応力 ftoi	Fi 2 · 1.5	F i* 2 · 1.5	項目との整合を考慮して,評価項目を記載しな
		許容せん断応力 f s b i	$\frac{\mathrm{F} \; \mathrm{i}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F_{i}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	V.
		6. 機能維持評価 6.1 電気的機能約	推持評価方法		
				夏度との比較により, 地震	
			気的機能維持を評価す		【東海第二】
				計用床応答スペクトルの	②の相違
				より定まる加速度又はこ	・記載の充実
		れを上回る加速度	****	É持の基本方針」に基づき	【東海第二,柏崎7】 ⑦の相違
				こととし、個別計算書に	
		その旨を記載する	300000000000000000000000000000000000000		『東海第二』
			0		島根2号機では、記載
					を充実させるため,加振
					試験により確認した加
		7. 耐震計算書の	フォーマット		速度を用いる旨を個別
		7.1 直立形計装き	ラックの耐震計算書のご	フォーマット	計算書に記載する
		直立形計装ラック	の耐震計算書のフォー	-マットは,以下のとおり	(以下⑱の相違)
		である。			
		〔設計基準対象施	設及び重大事故等対処	設備の場合〕	
		フォーマットI	設計基準対象施設とし	ての評価結果	
		フォーマットⅡ	重大事故等対処設備と	しての評価結果	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			[重大事故等対処設備単独の場合]	
			フォーマットⅡ 重大事故等対処設備としての評価結果*	
			7.2 壁掛形計装ラックの耐震計算書のフォーマット	
			壁掛形計装ラックの耐震計算書のフォーマットは、以下のとおりです。	
			である。 〔設計基準対象施設及び重大事故等対処設備の場合〕	
			フォーマットⅢ 設計基準対象施設としての評価結果	
			フォーマットM 設計基準対象施設としての評価結果 フォーマットN 重大事故等対処設備としての評価結果	
			フオーマットIV 里入事収等別処設備としての計価指示	
			〔重大事故等対処設備単独の場合〕	
			フォーマットIV 重大事故等対処設備としての評価結果*	
			注記*:重大事故等対処設備単独の場合は、設計基準対象施設及	
			び重大事故等対処設備に示すフォーマットⅡ及びⅣを使	・記載の充実
			用するものとする。ただし、評価結果表に記載の章番を	【東海第二】
			「2.」から「1.」とする。	島根2号機では,壁掛
				形における重大事故等
				対処設備単独の場合を
				想定し,フォーマットIV
				を追加する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		1. (20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	②記載の充実 【東海第二,柏崎7】 島根2号機では、計装 ラッとのでは、計装 ラッとのでは、計算ではいる。 のでは、一部では、一部では、一部では、一部では、一部では、一部では、一部では、一部

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
		1.5.1 (1992-19)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10.9 版)	島根原子力発電所 2 号機	備考
			・記載の相違
			【東海第二】
			島根2号機では,評価
			の諸元となる外形図は,
			評価単位で記載せず,耐
			震計算書の最終ページ
			に集約した記載とする
			(以下⑲の相違)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020, 10, 9 版)	注語的機度	備考 ②記載の相違 【東海第二、柏崎7】 島根2号機では、重大 事故等対処設備単独の 場合の注記は7.項に記載しない (そのでおり、記載しない (そのであり、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		(6世紀 27年) (7年2年) (②記載の充実 【東海第二】 島根2号機では,評価を行う正転倒方向を記載する ③記載の充実 【東海第二】 島根2号機では,基礎ボルトので記載の充実 【東海第二】 ①の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)		1	備考 大家 大家 大家 大家 大家 大家 大家 大家 大家 大家
		2. 機器要目 (kg) 2. 機器要目 (kg) (i=1) (kg) 取付ボルト (i=2) (mm) 取付ボルト (i=1) (kg) 取付ボルト (i=1) (mm) 取付ボルト (i=1) (mm) 取付ボルト (i=2) (mm) 取付ボルト (i=2) (mm) 取付ボルト (i=2) (mm) 取付ボルト (i=2) (mm) 下段は関面方式 下段は関面方式 下段は関面方式 下段は関面方式 下段は関面方式 下段は関面方式	
		1.1 2 2 2 2 2 2 2 2 2	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		1.2 計算数数	(比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
			・記載の相違
			【東海第二】
			⑲の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		2. 他子が中の (1.7 a - v - v) F VV (2.8 m 計) 2 y 2 y 2 m 大 を 体 等 対 数 数 数 後 と して の 計	②記載の相違 【東海第二,柏崎7】 島根2号機では,重大 事故等対処設備単独の 場合の注記は7.項に記載しており、改めてフォーマットに記載しない (その他比較結果はフォーマット記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018, 10, 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	19 19 19 19 19 19 19 19	備考(比較結果はフォーマットIと同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(比較結果はフォーマットⅡと同様であるため、記載を省略する)
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	

先行審査プラントの記載との比較表 (VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-8 計器スタンションの耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
-				
			<u>添付資料-8</u> 計器スタンションの耐震性についての計算書作成の	
			基本方針	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <u>規格・</u> 基準等	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位	
		4. 固有周期	
		5. 構造強度評価	
		5.1 構造強度評価方法	
		5.2 設計用地震力	
		5.3 計算方法	
		5.4 応力の評価	
		6. 機能維持評価	
		6.1 電気的機能維持評価方法	
		7. 耐震計算書のフォーマット	
		7.1 直立形計装スタンションの耐震計算書のフォーマット	
		7.2 壁掛形計装スタンションの耐震計算書のフォーマット	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 ((2020. 10. 9 版)	島根原子力発電所 2号機	備考
			1. 概要 本資料は、M-2-1-1「耐震設計の基本方針」に基づき、耐震性に関する説明書が求められている計器スタンション(耐震重要度分類 Sクラス又はSs機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。 解析の方針及び減衰定数については、M-2-1-6「地震応答解析の基本方針」に従うものとする。 ただし、本基本方針が適用できない計器スタンションにあっては、個別耐震計算書にその耐震計算方法を含めて記載する。 2. 一般事項	
			2.1 評価方針 計器スタンションの応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。また、計器スタンションの機能維持評価は、VI-2-1-9「機能維持の基本方針」にて設定した電気的機能維持の方針に基づき、機能維持評価用加速度が機能確認済加速度以下であることを、「6. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7. 耐震計算書のフォーマット」に示す。	 ・記載の相違 【東海第二,柏崎7】 ②の相違 ・記載の相違 【東海第二,柏崎7】
			計器スタンションの耐震評価フローを図 2-1 に示す。	②の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9版)	島根原子力発電所 2 号機 固有周期	・記載の相違 【東海第二】 ③の相違 ・記載の相違 【東海相違 【東海相違 【東海明神二】 島根2号機では,固有 周期を理論式で求め 周期を理論式で求め事 で説明する
		2005/2007) (以下「設計・建設規格」という。)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2 号機	備考
東海第二発電所 (2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	 島根原子力発電所 2号機 2.3 記号の説明 2.3 記号の説明 Ab ボルトの軸断面積 C11 水平方向設計費度 d ボルトの呼び経 F 設計・建設規格 SSB-3121.1(1) に定める値 F* 設計・建設規格 SSB-3121.1(1) に定める値 F おルトに作用する引張力 (1本当たり) (健排形) F b 対応力に作用する引張力 (1本当たり) (健排形) F b 対応力に作用する引張力 (1本当たり) (健排形) F b 対応力に作用する引張力 (1本当たり) (健排形) f t o 引張力のみを受けるボルトの許容は人間応力 f t o 引張力のみを受けるボルトの許容引張応力 f t o 引張力とせん断力を同時に受けるボルトの許容引張応力 g 成力加速度 (-9,80665) h 1 取付面から重心までの距離 h 2 取付面から重心までの距離 (壁排形) f t o 配とボルト間の水平方向距離* f o 配とボルト間の水平方向距離* f o 配とディルトのの距離 (壁排形) f o 配とデルト間の距離 (壁排形) f o 配とデルト間の距離 (壁排形) f o 配とデルトの企業 (壁排形) f o 配とデルト間の距離 (壁排形) f o 配とデルト間の距離 (壁排形) f o 配とリ張力を受けるとして期待するボルトの本数 (側面方向) (壁排形) f o に上引張力を受けるとして期待するボルトの本数 (側面方向) (壁排形) g o ボルトに作用するせん断力 g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 g o がルトに作用するせん断力 g o がルトに作用するせん断力 g o がルトに作用するせん断力 g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 g o がルトに作用するせん断力 g o がルトに作用するせん断力 g o がルトに作用するせん断力 g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 (壁排形) g o がルトに作用するせん断力 (壁が料を) g o がルトに作用するせん断力 (壁形形) g o がルトに作用するせん断力 (壁形形) g o が が が が が が が が が が が が が が か に作用する が が が が が が が が が が が が が が が が が が が	単位 備考 「

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
	•	2.4 計算精度と数値の丸め方	
		精度は,有効数字6桁以上を確保する。	・記載の充実
		表示する数値の丸め方は表 2-1 に示すとおりである。	【東海第二】
			④の相違
		表 2-1 表示する数値の丸め方	
		数値の種類 単位 処理桁 処理方法 表示桁	
		固有周期 s 小数点以下第 4 位 四捨五入 小数点以下第 3 位	
		震度 - 小数点以下第 3 位 切上げ 小数点以下第 2 位 温度 ℃ - 整数位	
		質量 kg — 整数位	
		長さ mm 一 整数位**1 面積 mm² 有効数字 5 桁目 四捨五入 有効数字 4 桁*²	
		カ N 有効数字 5 桁目 四捨五入 有効数字 4 桁*2	
		算出応力 MPa 小数点以下第1位 切上げ 整数位 許容応力*3 MPa 小数点以下第1位 切捨て 整数位	
		注記*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。	・記載の充実
		*2: 絶対値が1000以上のときは、べき数表示とする。 *3: 設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び	【東海第二】
		降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。	⑤の相違
		での祖とする。	
		3. 評価部位	
		計器スタンションの耐震評価は「5.1 構造強度評価方法」に示す	
		条件に基づき、耐震評価上厳しくなる基礎ボルトについて評価を	
		実施する。	
		4. 固有周期	
		計器スタンションの固有周期は、振動試験(加振試験又は自由振	・記載の相違
		動試験) にて求める。なお、振動試験により固有周期が求められ	【東海第二】
		ていない計器スタンションについては、構造が同等な計器スタン	⑤の相違
		ションに対する振動試験より算定された固有周期を使用する。	・記載の相違
			【東海第二,柏崎7】
			⑯の相違
		5. 構造強度評価	・記載の相違
		5.1 構造強度評価方法	【東海第二】
		(1) 計器スタンションの質量は重心に集中しているものとする。	
		(2) 地震力は計器スタンションに対して,水平方向及び鉛直方向	
		から作用するものとする。	場合は,個別耐震計算書
		(3) 計器スタンションは基礎ボルトで床面及び壁面に固定され	で説明する
		ており、固定端とする。	
		(4) 転倒方向*は,図5-1 概要図(直立形)における正面方向及	
		び側面方向並びに図 5-2 概要図 (壁掛形) における正面方向及び	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020.10.9版)	島根原子力発電所 2 号機	備考
			側面方向について検討し、計算書には計算結果の厳しい方(許容	
			値/発生値の小さい方をいう。) を記載する。	
			(5) 計器スタンションの重心位置については、転倒方向を考慮し	
			て、計算条件が厳しくなる位置に重心位置を設定して耐震性の計	
			算を行うものとする。	
			(6) 耐震計算に用いる寸法は,公称値を使用する。	
			注記*:計器スタンションの転倒方向は、計器スタンションを正	・記載の充実
			面より見て左右に転倒する場合を「正面方向転倒」,前方	【東海第二】
			又は後方に転倒する場合を「側面方向転倒」という。	⑭の相違
			¥m	・記載の相違
			- +	【東海第二】
				代表的な概要図の相
				違
			正面	
			検出器 計器取付ボルト 取付板取付ボルト 取付板	
			図 5-1 概要図 (直立形)	
			平面 ————————————————————————————————————	
			正面 側面 基礎ボルト	
			検出器	
			取付板取付ボルト 取付板取付ボルト	
			基礎 (壁面)	
			図 5-2 概要図(壁掛形)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			5.2 設計用地震力 「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は、VI-2-1-7「設計用床応答スペクトルの作成方針」に基づき設定する。なお、壁掛形の計器スタンションの設計用地震力については、設置床上下階のいずれか大きい方を用いる。 5.3 計算方法 5.3.1 応力の計算方法 5.3.1 ボルトの計算方法 ボルトの応力は、地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。	・設計方針の相違 【東海第二】 ⑪の相違
			転倒方向 転倒方向 転倒支点となる 引張りを受ける ボルト列 ボルト列	・記載の充実 【東海第二】 島根2号機では,評価 部位である基礎ボルト を計算モデルに図示す る ・記載の相違 【東海第二】 島根2号機では,直立 形の転倒方向を「正面方 向」又は「側面方向」と
			m·(Cv-l)・g	記載する (比較結果は上記記載 の相違と同様であるため、以降図5-5(2)まで の比較は省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		転倒方向 m·CH·g 転倒支点となる ボルト列 ボルト列 基礎ボルト (ℓ ₁ ≤ ℓ ₂) 図 5-4(1) 計算モデル (直立形 側面方向転倒-1(1-C _V) ≥ 0 の場合)	
		転倒方向 m·(Cv-l)·g 引張りを受ける ボルト列 m·C _H ·g 転倒支点 にしょう をしまる ボルト列 ボルト列 図 5-4(2) 計算モデル (直立形 側面方向転倒-1(1-C _V)<0の場合)	
		転倒支点となる ボルト列 ボルト列 ボルト列 ボルト列 ボルト列 は ℓ_1 ($\ell_1 \le \ell_2$) 図 $5-4$ (3) 計算モデル (直立形 側面方向転倒 -3 重心位置が両端のボルトの間にない場合で $(\ell_2 + \ell_1)$ ℓ_2 ($\ell_2 - \ell_1$) ℓ_2 ℓ_2 ℓ_2 ℓ_2 ℓ_2 ℓ_2 ℓ_3 ℓ_4 ℓ_2 ℓ_2 ℓ_3 ℓ_4 ℓ_2 ℓ_4 ℓ_2 ℓ_4 ℓ_2 ℓ_4 ℓ_2 ℓ_4	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		転倒方向 $m \cdot (Cv-1) \cdot g$	
		転倒支点 基礎ボルト 転倒支点となる ボルト列 m・CH・g m・(1+Cv)・g	
		図 5-5(1) 計算モデル (壁掛形 <u>正面</u> 方向転倒の場合)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		引張りを受ける ボルト列 転倒支点となる ボルト列 図 5-5(2) 計算モデル	
		(壁掛形 側面方向転倒の場合)	
		(1) 引張応力 ボルトに対する引張力は、最も厳しい条件として、図 5-3、図 5 -4 及び図 5-5 で最外列のボルトを支点とする転倒を考え、これ を片側の最外列のボルトで受けるものとして計算する。	
		引張力 計算モデル図 $5-3(1)$ 及び $5-4(1)$ の場合の引張力 $F_b = \frac{m \cdot g \cdot C_H \cdot h_1 - m \cdot g \cdot (1 - C_V) \cdot \ell_1}{(\ell_1 + \ell_2)} \dots (5.3.1.1.1)$	
		計算モデル図 $5-3(2)$ 及び $5-4(2)$ の場合の引張力 $F_b = \frac{m \cdot g \cdot C_H \cdot h_1 - m \cdot g \cdot (1 - C_V) \cdot \ell_2}{n_f \cdot (\ell_1 + \ell_2)} \dots (5.3.1.1.1)$	
		計算モデル図 $5-4(3)$ の場合の引張力 $F_b = \frac{m \cdot g \cdot C_H \cdot h_1 + m \cdot g \cdot (1 + C_V) \cdot \ell_1}{n_f \cdot (\ell_2 - \ell_1)} \dots (5.3.1.1.3)$	
		計算モデル図 $5-4(4)$ の場合の引張力 $F_b = \frac{m \cdot g \cdot C_H \cdot h_1 - m \cdot g \cdot (1 - C_V) \cdot \ell_2}{n_f \cdot (\ell_2 - \ell_1)} \dots (5.3.1.1.4)$	
		計算モデル図 $5-5(1)$ の場合の引張力 $F_{b_1} = m \cdot g \cdot \left(\frac{C_H \cdot h_2}{n_{fH} \cdot \ell_a} + \frac{(1+C_V) \cdot h_2}{n_{fV} \cdot \ell_b} \right) \cdots (5.3.1.1.5)$ 計算モデル図 $5-5(2)$ の場合の引張力	
		$F_{b2} = m \cdot g \cdot \left(\frac{C_H \cdot \ell_3 + (1 + C_V) \cdot h_2}{n_{fV} \cdot \ell_b} \right) \qquad (5.3.1.1.6)$ $F_b = \text{Max} (F_{b1}, F_{b2}) \qquad (5.3.1.1.7)$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		引張応力	
		$\sigma_b = \frac{F_b}{A_b} \cdots (5.3.1.1.8)$	
		ここで、ボルトの軸断面積Abは次式により求める。	
		$A_b = \frac{\pi}{4} \cdot d^2$ (5. 3. 1. 1. 9)	
		ただし, F b が負のときボルトには引張力が生じないので, 引張応	
		力の計算は行わない。	
		(2) せん断応力	
		ボルトに対するせん断力は、ボルト全本数で受けるものとして計	
		算する。 せん断力	
		a. 直立形の場合	
		$Q_{b} = m \cdot g \cdot C_{H} \cdot \cdots \cdot (5.3.1.1.10)$	
		b. 壁掛形の場合	
		$Q_{b1} = m \cdot g \cdot C_H \cdot \cdots \cdot (5.3.1.1.11)$	
		$Q_{b2} = m \cdot g \cdot (1 + C_{V}) \cdot \dots \cdot (5.3.1.1.12)$ $Q_{b} = \sqrt{(Q_{b1})^{2} + (Q_{b2})^{2}} \cdot \dots \cdot (5.3.1.1.13)$	
		せん断応力	
		$\tau_{b} = \frac{Q_{b}}{n \cdot A_{b}} (5.3.1.1.14)$	
		5.4 応力の評価	
		5.4.1 ボルトの応力評価	
		5.3.1.1 項で求めたボルトの引張応力σιは次式より求めた許容	
		引張応力 f_t 。以下であること。ただし、 f_t 。は下表による。	
		$f_{\text{t s}} = \text{Min}[1.4 \cdot f_{\text{t o}} - 1.6 \cdot \tau_{\text{b}}, f_{\text{t o}}] \cdot $	
		せん断応力 τ ι は, せん断力のみを受けるボルトの許容せん断応力	
		fsb以下であること。	
		ただし、fsbは下表による。	
		弾性設計用地震動S d 又は静的震度による 荷重との組合せの場合	
		荷重との組合せの場合 ドカル $\frac{F}{2} \cdot 1.5$ $\frac{F}{2} \cdot 1.5$	
		710	
		許容せん断応力 $\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$ $\frac{\mathrm{F}^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		6. 機能維持評価	
		6.1 電気的機能維持評価方法	
		機能維持評価用加速度と機能確認済加速度との比較により、地震	・記載の相違
		時又は地震後の電気的機能維持を評価する。	【東海第二】
		機能維持評価用加速度は、 <u>W</u> -2-1-7「設計用床応答 <u>スペクトル</u> の	②の相違
		作成方針」に基づき,基準地震動Ssにより定まる加速度又はこ	・記載の充実
		れを上回る加速度を設定する。	【東海第二,柏崎7】
		機能確認済加速度は, <u>\M</u> -2-1-9 <u>「</u> 機能維持の基本方針」に基づき	⑦の相違
		加振試験により確認した加速度を用いることとし、個別計算書に	・記載の充実
		その旨を記載する。	【東海第二】
			⑱の相違
		7. 耐震計算書のフォーマット	
		7.1 直立形計器スタンションの耐震計算書のフォーマット	
		直立形計器スタンションの耐震計算書のフォーマットは、以下の	
		とおりである。	
		〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマットI 設計基準対象施設としての評価結果	
		フォーマットⅡ 重大事故等対処設備としての評価結果	
		〔重大事故等対処設備単独の場合〕	
		フォーマットⅡ 重大事故等対処設備としての評価結果*	
		7.2 壁掛形計器スタンションの耐震計算書のフォーマット	
		壁掛形計器スタンションの耐震計算書のフォーマットは、以下の	
		とおりである。	
		〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマットⅢ 設計基準対象施設としての評価結果	
		フォーマットIV 重大事故等対処設備としての評価結果	
		〔重大事故等対処設備単独の場合〕	
		フォーマットIV 重大事故等対処設備としての評価結果*	
		注記*:重大事故等対処設備単独の場合は,設計基準対象施設及	
		び重大事故等対処設備に示すフォーマットⅡ及びIVを使	
		用するものとする。ただし、評価結果表に記載の章番を	
		「2.」から「1.」とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		1 日本	②記載の充実 【東海第二, 柏崎7】 島根2号機では,計器 スタれては取付けらい。 「記載する。」 「記載のままます。」 「記載のままます。」 「記載のままます。」 「記載のままます。」 「記載のままます。」 「記載のままます。」 「記載のまままます。」 「記載のままます。」 「記載のままます。」 「記載のままます。」 「記載のままます。」 「記載をしている。」 「記載は、、、。直面方では、、。」 「記載する。」 「記述する。 「記述する。 「記述。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述す。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述する。 「記述す。 「記述。 「記述。 「記述す。 「記述。 「記述。 「記述。 「記述。 「記述。 「記述。 「記述。 「記述

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		s 計容応力 s = * b = * s - * b = *	②記載の相違【東海第二】②の相違③記載の充実【東海第二,柏崎7】⑦の相違②記載の充実
		基準地 (算出応力 (p) = =	【東海第二,柏崎7】 ⑧の相違 ①記載の相違 【東海第二,柏崎7】 ⑩の相違 ⑤記載の相違
		# 本本語 * * * * * * * * * * * * * * * * * *	【東海第二】 ⑲の相違
		弾性設計用地震動 S	
		本 応力 引張り	
		ボルトの応力 材 材料 ボルト 応力以下である。 電気的機能維持の評価結果 部用農度1 (基準地震動 S 価用加速度はすべて機能確	
		1.4 結論 1.4.1 ボルトの応力	

東海第二発電所(2018. 10. 12 版) 柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
度海第二発電所 (2018. 10. 12 版) 柏崎州羽原子力発電所 7 号機 (2020. 10. 9 版)	1	備考 ②記載の相違 【東海第二、柏崎7】 島根2号機では、重大 事故等対処設備が変にできる。 場合の注記は7. 項に記載しない (その他比較結果はできるとめ、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.1.1 年本	②記載の充実 【東海第二,柏崎7】 ①の相違 ⑧記載の相違 【東海第二】 島根2号機では,直立 形の転倒方向を「正面方向」と 記載する (その他比較結果はフォーカーで あるか、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		1	②記載の充実【東海第二】②の相違(その他比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2	2 号機	備考
		(単位: MPa) 計容な力 fts= * fsb= -1.6・てb,fto]		(比較結果はフォーマット I と同様であるため, 記載を省略する)
		基準地震動 S 第出応力 σ $b=$ f t t $s=Min[1.4 \cdot f_{t,o}-1.(×9.8m/s^2)]$	加速度 - 2。	
		4 文は静的震度 計容応力 t s = * s b = 注記*	度* 機能確認済加速度 れを上回る加速度とする。	
		弾性設計用地震動 S d X は静的 度度 第一位 な S は S は S は S は S は S に	機能維持評価用加速度** り定まる加速度又はこれ。 度以下である。	
		応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.1向 5.16 5.16 5.16 6.16 6.16 6.16 6.16 6.16	
		な変し 評価結晶	水平方向 鉛直方向 基準地震動Ss すべて機能確認	
		1.4 結論 1.4.1 ボルトの応力 部材	株能権持済価値を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
			②記載の相違 【東海第二、柏崎7】 島根2号機では、重大 事故等対処設備単独の 場合の注記は7.項に記載しており、改めてフォーマットに記載しない (その他比較結果はフォーマット記載を省略する)

先行審査プラントの記載との比較表 (VI-2-1-14 機器・配管系の計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9	版) 島根原子力発電所 2 号機	備考
		添付資料-9 盤の耐震性についての計算書作成の基本方針	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		目次	
		1. 概要	
		2. 一般事項	
		2.1 評価方針	
		2.2 適用 <u>規格・</u> 基準 <u>等</u>	
		2.3 記号の説明	
		2.4 計算精度と数値の丸め方	
		3. 評価部位	
		4. 固有周期	
		5. 構造強度評価	
		5.1 構造強度評価方法	
		5.2 設計用地震力	
		5.3 計算方法	
		5.4 応力の評価	
		6. 機能維持評価	
		6.1 電気的機能維持評価方法	
		7. 耐震計算書のフォーマット	
		7.1 直立形盤の耐震計算書のフォーマット	
		7.2 壁掛形盤の耐震計算書のフォーマット	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機	備考
			1. 概要	
			本 <u>資料</u> は, <u>VI</u> -2-1-1 <u></u> 「耐震設計の基本方針」に基づき,耐震性に	
			関する説明書が求められている盤(耐震重要度分類Sクラス又は	
			Ss機能維持の計算を行うもの)が、十分な耐震性を有している	
			ことを確認するための耐震計算の方法について記載したものであ	
			る。	
			解析の方針及び減衰定数については, \(\frac{\fmathbf{M}}{1}-2-1-6	
			基本方針」に従うものとする。	
			ただし,本基本方針が適用できない盤にあっては,個別耐震計算	
			書にその耐震計算方法を含めて記載する。	
			2. 一般事項	
			2.1 評価方針	
			盤の応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した	
			荷重及び荷重の組合せ並びに許容限界に基づき,「3. 評価部位」	
			にて設定する箇所において,「4. 固有周期」で算出した固有周期	
			に基づく設計用地震力による応力等が許容限界内に収まること	
			を、「5. 構造強度評価」にて示す方法にて確認することで実施す	
			る。また、盤の機能維持評価は、 <u>VI</u> -2-1-9「機能維持の基本方針」	
			にて設定した電気的機能維持の方針に基づき、機能維持評価用加	・記載の相違
			速度が機能確認済加速度以下であることを,「6.機能維持評価」	【東海第二,柏崎7】
			にて示す方法にて確認することで実施する。確認結果を「7. 耐	②の相違
			震計算書のフォーマット」に示す。	記載の相違
				【東海第二】
			盤の耐震評価フローを図 2-1 に示す。	②の相違
				・記載の相違
			固有周期	【東海第二】
			設計用地震力	③の相違
			成訂用地展列	
			<u> </u>	・記載の相違
			地震時における応力機能維持評価用加速度	【東海第二】
				②の相違
			盤の構造強度評価 器具の電気的機能維持評価	
			図 2-1 盤の耐震評価フロー	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.2 適用規格·基準等	
		本評価において適用する規格・基準等を以下に示す。	
		・原子力発電所耐震設計技術指針 <u>重要度分類・許容応力編 J E</u>	
		AG4601・補-1984((社)日本電気協会)	
		・原子力発電所耐震設計技術指針 <u>JEAG4601-1987((社)</u>	
		<u>日本電気協会)</u>	
		·原子力発電所耐震設計技術指針 JEAG4601-1991 追補	
		版((社)日本電気協会)	
		·発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,	
		2005/2007) (以下「設計・建設規格」という。)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	 島根原子力発電所 2号機 2.3 記号の説明 正号の説明 正号の説明 正号の説明 正号の説明 正子の極新面積** C1 米平方向設計費度 C2 第近方の設計費度 C5 第近方の設計費度 C6 第近方の設計費度 C7 第近十の設計費度 E7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	備考 ・記載の相違 【東海第二】 ③の相違 ・記載の相違 【東海第二】 島根2号機では,miを「盤の質量」と記載する ・記載の充実 【東海第二,柏崎7】 ④の相違
		注記*1: Abi, di, Fi, Fi*, Fbi, Fbii, Fb2i, fsbi, ftoi, ftsi, ℓ1i, ℓ2i, ℓ3i, ni, nfi, nfvi, nfHi, Qbi, Qb1i, Qb2i, Sui, Syi, Syi (RT), σbi及びτbiの添字iの意味は、以下のとおりとする。 i = 1: 基礎ポルト i = 2: 取付ポルト	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		2.4 計算精度と数値の丸め方	
		精度は,有効数字6桁以上を確保する。	・記載の充実
		表示する数値の丸め方は表 2-1 に示すとおりである。	【東海第二】
			④の相違
		表 2-1 表示する数値の丸め方	
		数値の種類 単位 処理桁 処理方法 表示桁	
		固有周期 s 小数点以下第4位 四捨五入 小数点以下第3位 震度 - 小数点以下第3位 切上げ 小数点以下第2位	
		温度 ℃ — 整数位	
		質量 kg - 整数位 長さ mm - 整数位***	
		長さ mm 一 整数位** 面積 mm² 有効数字 5 桁目 四捨五入 有効数字 4 桁*²	
		カ N 有効数字 5 桁目 四捨五入 有効数字 4 桁*2	
		算出応力 MPa 小数点以下第1位 切上げ 整数位 許容応力*3 MPa 小数点以下第1位 切捨て 整数位	
		生記*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。	・記載の充実
		*2:絶対値が1000以上のときは、べき数表示とする。 *3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び	【東海第二】
		降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位ま	⑤の相違
		での値とする。	
		To free less ()	
		3. 評価部位	
		盤の耐震評価は「5.1 構造強度評価方法」に示す条件に基づき、	
		耐震評価上厳しくなる基礎ボルト及び取付ボルトについて評価を	
		実施する。	
		4. 固有周期	
		盤の固有周期は、振動試験(加振試験又は自由振動試験)にて求	・記載の相違
		める。なお、振動試験により固有周期が求められていない盤につ	【東海第二】
		いては、構造が同等な盤に対する振動試験より算定された固有周	15の相違
		期を使用する。	・記載の相違
			【東海第二,柏崎7】
			⑯の相違
		5. 構造強度評価	
		5.1 構造強度評価方法	
		(1) 盤の質量は重心に集中しているものとする。	
		(2) 地震力は盤に対して、水平方向及び鉛直方向から作用するも	
		のとする。	
		(3) 盤は取付ボルトでチャンネルベースに固定されており、固定	
		端とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020.10.9版)	島根原子力発電所 2 号機	備考
			(4) チャンネルベースは基礎ボルト又は埋込金物で基礎に固定	
			されており、固定端とする。	
			(5) 床面据付の盤の転倒方向は,図 5-1 概要図(直立形)にお	
			ける長辺方向及び短辺方向について検討し、計算書には計算結果	
			の厳しい方(許容値/発生値の小さい方をいう。)を記載する。壁	
			掛形の盤*については、図 5-2 概要図(壁掛形)における正面方	
			向及び側面方向について検討し、計算書には計算結果の厳しい方	
			を記載する。	
			(6) 盤の重心位置については、転倒方向を考慮して、計算条件が	
			厳しくなる位置に重心位置を設定して耐震性の計算を行うものと	
			する。	
			(7) 耐震計算に用いる寸法は,公称値を使用する。	
			注記*:壁掛形の盤の転倒方向は、盤を正面より見て左右に転倒	・記載の充実
			する場合を「正面方向転倒」,前方に転倒する場合を「側	【東海第二】
			面方向転倒」という。	⑭の相違
			Int T	・記載の相違
			正面(側面	【東海第二、柏崎7】
			盤	基礎ボルト及び据付
				ボルトを評価する代表
			取付ボルト	的な概要図の相違
				NO SECTION INC.
			基礎 /// // // // // // // 基礎ボルト チャンネルベース	
			図 5-1 概要図(直立形)	
			上面	
			壁	
			<u>'</u>	
			整 和	
			取付ボルト	
			チャンネルベース	
			図 5-2 概要図(壁掛形)	

東海第二発電所(2018. 10. 12 版) 柏崎刈羽原子力発電所 7 岩	子機	(2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			5.2 設計用地震動 S d 又は静的震度」及び「基準地震動 S s J による地震力は、M-2-1-7「設計用床応答スペクトルの作成方針」に基づき設定する。なお、壁掛形の盤の設計用地震力については、設置床上下階のいずれか大きい方を用いる。 5.3 計算方法 5.3.1 応力の計算方法 5.3.1 ボルトの計算方法 ボルトの応力は、地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。計算モデルは、取付ボルトの場合を示す。 「根側文点となる ボルト列 ポルト列 マルト列 ローロック ロー・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス	・設計 (では、) ・設計 (では、) ・設計 (では、) ・設計 (では、) ・記 (本) (を) (を) (を) (を) (を) (を) (を) (を) (を) (を

東海第二発電所(2018. 10. 12 版) 柏崎刈羽原子力勢	発電所 7 号機 (2020. 10. 9 版) 島根原子力発電所 2 号	号機 備考
東海第二発電所 (2018. 10. 12 版) 柏崎刈羽原子力3	高根原子力発電所 2 3	To (取りを受ける ボルト列 To (取りを受ける To (取りを受ける To (取りを受ける To (取りを (知りを (取りを (知りを (知り

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
東海第二発電所(2018. 10. 12 版)	柏岭刈羽原子力発電所7号機 (2020, 10.9版)	島根原子力発電所 2号機 ((*)	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
果得用一轮电灯 (2018. 10.12 版)	(上崎) (2020、10、9 版)	局機原子力発電所 2 号機 (1 - Cv)	/ / / / / / / / / / / / / / / / / / /

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所 (2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機 転倒方向 取付ボルト 取付ボルト 図 5 - 4 (2) 計算モデル (直立形 短辺方向転倒(1-C _v)<0 の場合)	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所 (2018, 10, 12 版)	相畸刈剁原子力発電所で号機 (2020.10.9版)	届限原子万発電所 2 号機 ((1) ((1) ((1) ((1) ((1) ((1) ((1) ((1	備考

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		(t)	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		要 (を) (1 + Cv) ・ g (2 5 - 5 (1) 計算モデル (壁掛形 正面方向転倒の場合) (3 2 ボルト列 (4 3 2 ボルト列 (5 3 2 ボルト列 (5 3 2 ボルト列 (5 3 2 ボルト列 (5 3 2 3 2 3 3 3 2 3 3 3 2 3	・記載の相違 【東海第二】 島根2号機では,転倒 の支点及び引張りを受 けるボルトについて,基 礎ボルト及び取付ボルトを総称して「ボルト」 と記載する

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020. 10. 9 版)	島根原子力発電所 2号機	備考
			(1) 引張応力	
			ボルトに対する引張力は、最も厳しい条件として図5-3、図5-4	
			及び図 5-5 で最外列のボルトを支点とする転倒を考え,これを片	
			側の最外列のボルトで受けるものとして計算する。	
			⊒1⊒€ 1 3	
			引張力 計算モデル図 5-3(1), 5-3(3), 5-4(1)及び 5-4(3)の場合の引	
			(計算モデル図 5-3(1), 5-3(3), 5-4(1) 及い 5-4(3) の場合の5 張力	
			$F_{bi} = \frac{m_i \cdot C_H \cdot h_i \cdot g - m_i \cdot (1 - C_V) \cdot \ell_{1i} \cdot g}{n_{fi} \cdot (\ell_{1i} + \ell_{2i})} \cdot \dots (5.3.1.1.1)$	
			計算モデル図 5-3(2), 5-3(4), 5-4(2)及び 5-4(4)の場合の引	
			張力	
			$F_{bi} = \frac{m_i \cdot C_H \cdot h_i \cdot g - m_i \cdot (1 - C_V) \cdot \ell_{2i} \cdot g}{n_{fi} \cdot (\ell_{1i} + \ell_{2i})} \cdot \cdots (5.3.1.1.2)$	
			計算モデル図 5-5(1)及び 5-5(2)の場合の引張力	
			$F_{b i i} = \frac{m_i \cdot (1 + C_V) \cdot h_i \cdot g}{n_{f V i} \cdot \ell_{2 i}} + \frac{m_i \cdot C_H \cdot h_i \cdot g}{n_{f H i} \cdot \ell_{3 i}} \cdot \dots (5.3.1.1.3)$	
			$F_{b2i} = \frac{m_i \cdot (1+C_V) \cdot h_i \cdot g + m_i \cdot C_H \cdot \ell_{1i} \cdot g}{n_{fVi} \cdot \ell_{2i}} \cdots (5.3.1.1.4)$	
			$F_{bi} = Max (F_{b1i}, F_{b2i})$ (5. 3. 1. 1. 5)	
			引張応力	
			$\sigma_{b i} = \frac{F_{b i}}{A_{b i}}$ (5. 3. 1. 1. 6)	
			ここで,ボルトの軸断面積Abiは次式により求める。	
			Ab $i = \frac{\pi}{4} \cdot d i^2$ (5. 3. 1. 1. 7)	
			ただし、F b i が負のときボルトには引張力が生じないので、引張	
			応力の計算は行わない。	
			(2) せん断応力	
			ボルトに対するせん断力は、ボルト全本数で受けるものとして計	
			算する。	
			せん断力	
			a. ベンチ形,直立形の場合	
			$Q_{b i} = m_i \cdot C_H \cdot g$ (5. 3. 1. 1. 8)	

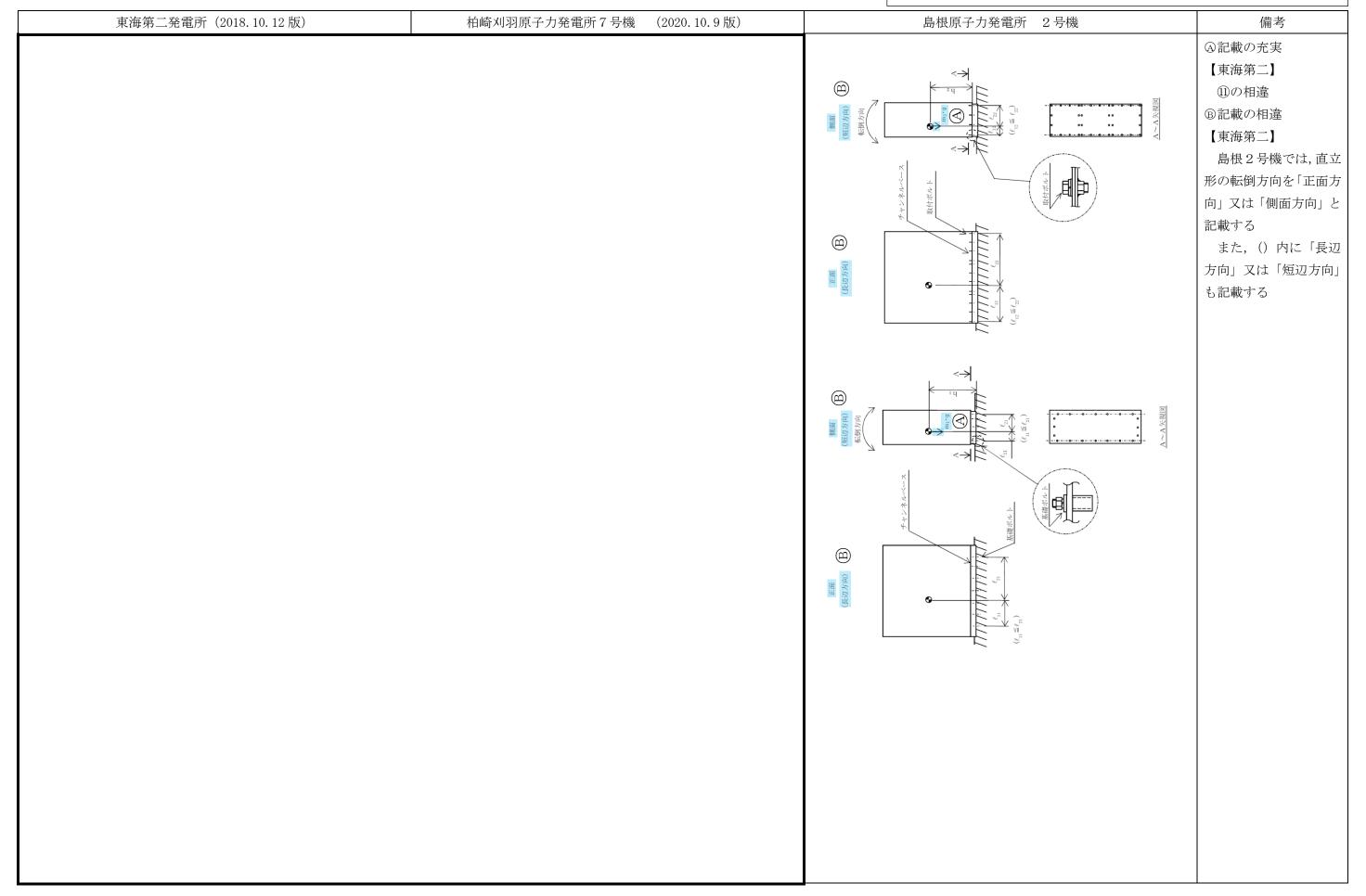
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2号機	備考
		b. 壁掛形の場合	
		$Q_{b \ 1 \ i} = m_i \cdot C_H \cdot g$ (5. 3. 1. 1. 9)	
		$Q_{b2} i = m_i \cdot (1 + C_V) \cdot g$ (5. 3. 1. 1. 10)	
		$Q_{b i} = \sqrt{(Q_{b 1 i})^2 + (Q_{b 2 i})^2} \cdots \cdots (5.3.1.1.11)$	
		せん断応力	
		$\tau_{bi} = \frac{Q_{bi}}{} \dots \dots$	
		$\frac{tbi - \frac{ni\bulletAbi}{ni\bulletAbi}$	
		5.4 応力の評価	
		5.4.1 ボルトの応力評価	
		5.3.1 項で求めたボルトの引張応力 σ b i は次式より求めた許容引	
		張応力 f_{tsi} 以下であること。ただし、 f_{toi} は下表による。	
		$f_{\text{tsi}} = \text{Min}[1.4 \cdot f_{\text{toi}} - 1.6 \cdot \tau_{\text{bi}}, f_{\text{toi}}]$	
		せん断応力τьiは, せん断力のみを受けるボルトの許容せん断応	
		力 f s b i 以下であること。ただし,f s b i は下表による。	
		弾性設計用地震動Sd 基準地震動Ssによる	
		又は静的震度による 荷重との組合せの場合	
		許容引張応力 $\frac{F_i}{2} \cdot 1.5$ $\frac{F_i^*}{2} \cdot 1.5$	
		J t o i	
		許容せん断応力 $\frac{\mathbf{F}_{i}}{f_{\text{sb} i}} \cdot 1.5$ $\frac{\mathbf{F}_{i}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	
		6. 機能維持評価	
		6.1 電気的機能維持評価方法	
		機能維持評価用加速度と機能確認済加速度との比較により、地震	・記載の相違
		時又は地震後の電気的機能維持を評価する。	【東海第二】
		機能維持評価用加速度は、 <u>VI</u> -2-1-7「設計用床応答スペクトルの	②の相違
		作成方針」に基づき, <u>基準地震動Ssにより定まる加速度又はこれを上回る加速度を</u> 設定する。	・記載の充実 【東海第二,柏崎 7】
		<u> </u>	【果御弟二,相崎 / 】 ⑦の相違
		加振試験により確認した加速度を用いることとし、個別計算書に	・記載の充実
		その旨を記載する。	【東海第二】
			18の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		7. 耐震計算書のフォーマット	
		7.1 直立形盤の耐震計算書のフォーマット	
		直立形盤の耐震計算書のフォーマットは、以下のとおりである。	
		〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマット I 設計基準対象施設としての評価結果	
		フォーマットⅡ 重大事故等対処設備としての評価結果	
		〔重大事故等対処設備単独の場合〕	
		フォーマットⅡ 重大事故等対処設備としての評価結果*	
		7.2 壁掛形盤の耐震計算書のフォーマット	
		壁掛形盤の耐震計算書のフォーマットは、以下のとおりである。	
		〔設計基準対象施設及び重大事故等対処設備の場合〕	
		フォーマットⅢ 設計基準対象施設としての評価結果	
		フォーマットIV 重大事故等対処設備としての評価結果	
		〔重大事故等対処設備単独の場合〕	
		フォーマットIV 重大事故等対処設備としての評価結果*	
		注記*:重大事故等対処設備単独の場合は、設計基準対象施設及	
		び重大事故等対処設備に示すフォーマットⅡ及びⅣを使	
		用するものとする。ただし、評価結果表に記載の章番を	
		「2.」から「1.」とする。	

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		1.	②記載の充実 【東海第二,柏崎7】 島根2号機では,盤番 号を()内に記載する ⑧記載の充実 【東海第二,柏崎7】 ⑧の相違 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

:フォーマットにおける先行審査プラントの記載との主な相違点

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
		1.3 年 日本	②記載の相違 【東海第二】 ②の相違 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・


:フォーマットにおける先行審査プラントの記載との主な相違点

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020.10.9 版)	島根原子力発電所 2号機	備考
			・記載の相違
			【東海第二】
			⑲の相違

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機	(2020.10.9版)	島	,根原子力発電所	2号機		備考
			1. 直立形盤の重大事故等対処設備としての評価結果】 対処設備 (m)	(amr) n i Syi Sui (MPa) (MPa)	(MPa)	注記*:各ポルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し、 下段は長辺方向転倒に対する評価時の要目を示す。	②記載の相違 【柏崎7】 島根2号機では,重大 事故等対処は7.項に記載してフォーマットに記載しない (その他比較結果は同様と省略する)

: フォーマットにおける先行審査プラントの記載との主な相違点

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		1974	(比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020. 10. 9 版)	島根原子力発電所 2 号機	備考
			②記載の充実 【東海第二】 ②の相違 (その他比較結果はフォーマットIと同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所 7 号機 (2020, 10, 9 版)	1.4 1.5 1.	備考 (比較結果はフォーマットIと同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)				島根原子力発電所	2 号機				備考
]								②記載の相違 【柏崎 7 】
			周囲環境温度 (°C)							島根2号機では,重大
			= =	01 *						事故等対処設備単独の場合の注記は7.項に記
		4		C v = *						載しており, 改めてフォ
		1 1	五十五 子方向 大震度	2.8			學			ーマットに記載しない
		-	以 本報	Сн=		拉	基準地震動 S s			(その他比較結果はフ
		Tollow All Addition Co.	高 恒 漢			上	弾性設計用地震動 S d 又は静的震度			ォーマットⅢと同様で あるため、記載を省略す
		सं	D C C C C C C C C C C C C C C C C C C C		計震度 Sui (MPa)				长	る)
		III Te lee lee any any	水生以正 水平 水平方向 設計震度		を上国る設置	*	r 1 (MPa)		m時の要目を示	
		()	船直方向		S y i (MPa)	(±	F 1 (MPa)		こ対する評価 示す。	
		進	水平方向		。 拒較動 S s n i		n fHi*		面方向転倒時の要目を対	
		握のエコネ	恒恒				n fvi		ルトの機器要目における上段は正面方向転倒 下段は側面方向転倒に対する評価時の要目を	
		等対処設備と	据付場所及び床面高さ (m) 〇〇建物	######################################	(mm) (M) (M)	£3.	(mm)		 要目におけ 方向転倒に	
		重大事故4		EL (EL	h i d (mm)	(2 2 i a	(mm)		ボルトの機器 下段は側面	
		屋掛形盤の設備	設備分類		m i (kg)	£1 1 **	(mm)		注記*:各ソ	
		[フォーマットIV 壁 2. 重大事故等対処設化 2.1 設計条件	機器名称		2 機器要目 部材 指離ボルト (i=1) (i=2)		*		(2=2)	
		2. 単大 2.1 誤	蠡		2.2 機器要目 部材 基礎ポルト (i=1) 取付ポルト (i=2)		部材	基礎ボルト (i=1) 取付ボルト		

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2 号機	備考
		2.3 年度 2.5 年	(比較結果はフォーマット I と同様であるため、記載を省略する)

東海第二発電所(2018. 10. 12 版)	柏崎刈羽原子力発電所7号機 (2020.10.9版)	島根原子力発電所 2号機	備考
		[∰] ////////////////////////////////////	(比較結果はフォーマットⅡと同様であるため,記載を省略する)
		語が向 基礎がカト 単位がなる	
		がインストンストンストンストンストンストンストンストンストンストンストンストンストン	
		7+#	