資料1-2

大間原子力発電所 基準津波策定について (コメント回答) (補足説明資料)

2021年12月24日 電源開発株式会社

○「第615回審査会合」及び「第646回審査会合」での資料の誤りに関わる対応を踏まえ、本資料にて過去の審査会合資料を引用する際の 注記を下記のとおりとする。

・右上の注記

再掲:過去の審査会合資料を,そのまま引用する場合 一部修正:過去の審査会合資料の内容を,一部修正する場合

誤りを修正:過去の審査会合資料の誤りを,正しい記載とする場合

・左下の注記

修正した誤りの内容を記載(誤りの修正がある場合)

(余白)

指摘事項(1/6)

本資料でご説明

次回以降ご説明

ご説明済み

No.	項目	指摘時期	コメント内容	該当箇所
S5-12	共通事項	第467回会合(H29.5.12)	津波シミュレーションに用いる海底地形図について、平成8年の深浅測量結果を用いたと記載されているが、 その後の地形変化の状況を確認し、最新の地形にするなど、適切に対応すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-1	共通事項	第446回会合(H29.2.24)	敷地で評価すべきラインに対して最も影響のある波源パラメータを抽出する観点から,評価水位抽出位置を ライン状に設定した津波の水位分布も示すこと。	平成30年3月2日第553回 審査会合でご説明済み
S5-4	日本海東縁部	第446回会合(H29.2.24)	日本海東縁部の波源モデルのパラメータスタディについて、アスペリティ位置については、更に細かく移動させたパラメータスタディを行い、最も影響がある位置となっているかを確認したうえで、敷地に最も影響がある パラメータを抽出していることを説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-3	日本海東縁部	第446回会合(H29.2.24)	日本海東縁部の波源モデル設定において、すべり量を12mと設定した妥当性を確認するため、Moを先に設定してすべり量を算出する等の他の方法による波源モデル設定についても検討し、すべり量の妥当性を説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-27	日本海東縁部	第553回会合(H30.3.2)	日本海東縁部に想定される地震に伴う津波に関して,説明性向上の観点から,日本海沿岸において,大間 地点で最高水位及び最低水位となるケースの計算津波高と,津波痕跡高及び根本ほか(2009)の再現計算 津波高とを比較すること。	平成30年9月21日第627回 審査会合でご説明済み
S5-40		日本海東縁部 第868回会合(2020.6.19)	日本海東縁部に想定される地震に伴う津波の想定波源域の設定,及び基準波源モデルの設定について, 地震調査研究推進本部(2003)や土木学会(2016)等の文献を引用するだけでなく,以下の内容を含めて申請 者の考え方を整理するとともに,資料構成を再整理すること。	2021年4月2日第962回 審査会合でご説明済み
			なお,太平洋側のプレート間地震の検討波源についても同様に適宜修正すること。	2021年7月30日第994回 審査会合でご説明済み
	日本海東縁部		・日本海東縁部の地震は、東西圧縮場という中で起こっている特殊な地震であり変動幅があることを踏まえ、 日本海東縁部の特性について整理。	2021年4月2日第962回 審査会合でご説明済み
			・日本海東縁部に想定される地震の検討に際して、地下構造の考慮と端部設定の根拠、その上で想定波源域を南北340km、東西50kmとし設定した理由。	
			・設定した波源モデルにおいて8ケースの断層面を考えた理由,及び断層傾斜角・傾斜方向設定の考え方。	
			・根本ほか(2009)のアスペリティモデルを採用した理由、及びこのアスペリティモデルであれば保守性を担保できるとした理由、並びに最大すべり量を12mに設定した根拠。	
			・大角ほか(2018)等,前回の審査会合以降の新たな文献を確認のうえ,敷地への影響を踏まえて整理。	
S5-41		日本海東縁部 第868回会合(2020.6.19)	日本海東縁部に想定される地震に伴う津波の,想定波源域を考慮のうえ設定する基準波源モデルを対象に 行う不確かさの検討について,以下を考慮のうえパラメータスタディ実施の要否も含めて整理表を作成のうえ 説明すること。	
	日本海東縁部		・ライズタイムについて、パラメータスタディを実施しない理由。	2021年4月2日第962回 審査会合でご説明済み
			・概略パラスタにおいて、南部のみにアスペリティを配置したケースを実施した理由。	
			・詳細パラスタにおいて, 断層上縁深さ5km以深のケースを実施しない理由。	
S5-49	日本海東縁部	第962回会合(2021.4.2)	想定波源域設定のうち,南北方向の設定について,東西方向と同様に深さ方向も含めたものであるなら,その皆分かるように記載を適正化すること。	2021年7月30日第994回 審査会合でご説明済み

指摘事項(2/6)

本資料でご説明

次回以降ご説明

ご説明済み

No.	項目	指摘時期	コメント内容	該当箇所
S5-50	日本海東縁部	第962回会合(2021.4.2)	設定した傾斜方向・傾斜角の検討パターンのうち、想定波源域からはみ出すパターンについて、津波評価上、 保守側の設定になると記載されている。具体的に何に対して保守側の設定となっているのか、記載を充実さ せること。	2021年7月30日第994回 審査会合でご説明済み
S5-51	日本海東縁部	第994回会合(2021.7.30)	日本海東縁部の波源モデルの傾斜方向・傾斜角のうちパターン6の水位が保守的であるという説明に関して、 例えばパターン5を想定波源域の範囲内で東側に平行移動したケースの追加検討を行うなどにより、パター ン6の保守性を示すこと。	本編資料P.3.1−31, 補足説明 資料P.2.1.1−3, P.2.1.1−4
S5-5	三陸沖から根室沖	第446回会合(H29.2.24)	三陸沖から根室沖の波源モデルのパラメータスタディについて、敷地に最も影響があるパラメータを抽出しているかを確認すること。超大すべり域を南端とする等のパラメータスタディを行い、固有周期との関係も分析して、最も影響がある位置となっているかを説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-6	三陸沖から根室沖	第446回会合(H29.2.24)	三陸沖から根室沖の波源モデルの妥当性について確認する必要がある。北東端については,納沙布断裂 帯が破壊のバリアとの説明であるが,地震学的知見,測地学的知見等のデータを補強し,検討すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-7	三陸沖から根室沖	第446回会合(H29.2.24)	三陸沖から根室沖の波源モデルのうち、大すべり域と超大すべり域のすべり量について、基本すべり量に対してそれぞれ2倍、4倍とした妥当性を説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-8	三陸沖から根室沖	第446回会合(H29.2.24)	三陸沖から根室沖ではM9クラスの地震による津波の知見がないため、波源モデルの妥当性の確認がポイントとなる。ガイドに記載された検討事例や、杉野ほか(2014)のように広域的な津波の再現性が確認された知見を参照し、その妥当性を説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-9	三陸沖から根室沖	第446回会合(H29.2.24)	三陸沖から根室沖の波源モデルについて、分岐断層をどのように反映しているのか説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-28	三陸沖から根室沖	第553回会合(H30.3.2)	三陸沖北部から根室沖に想定されるプレート間地震に伴う津波に関して,事業者が独自に設定した基準波源モデルのパラメータが,東北地方太平洋沖地震の津波痕跡高を再現することを確認する等により,基準波源モデルの設定手順の妥当性を示すこと。	平成30年9月21日第627回 審査会合でご説明済み
S5-29	三陸沖から根室沖	第553回会合(H30.3.2)	基準波源モデルを"選定する妥当性"を説明すること。例えば、三陸沖北部から根室沖に想定されるプレート 間地震に伴う津波の検討の際には、津軽海峡開口部付近の太平洋沿岸において、複数の基準波源モデル による計算津波高と、過去の津波による痕跡高との比較等を示すこと。なお、その際、大すべり域、超大すべ り域の位置関係等が分かるように、波源モデル図を重ねた図も提示すること。	平成30年9月21日第627回 審査会合でご説明済み
S5-30	三陸沖から根室沖	第627回会合(H30.9.21)	「三陸沖から根室沖のプレート間地震に伴う津波」の基準波源モデル策定の手順及び考え方のフロー図において,基準波源モデル①及び②の設定にあたり3.11地震による津波の再現性をどのように反映したのかを示し,基準波源モデル③~⑥との関連性を含め基準波源モデル①及び②の妥当性を説明すること。	2021年2月19日第949回審査 会合でご説明済み
S5-31	三陸沖から根室沖	第627回会合(H30.9.21)	基準波源モデル③,④の策定に関わり、「宮城県沖の大すべり域の破壊特性を考慮した特性化モデル」に対する、3.11地震による津波の再現性確認を、4地点の観測波形等で実施したとしているが、これらによりどのように再現性があると判断したのかを説明すること。	2021年2月19日第949回審査 会合でご説明済み
S5-32	三陸沖から根室沖	第627回会合(H30.9.21)	「三陸沖から根室沖のプレート間地震に伴う津波」に関して、津軽海峡開口部付近の沿岸における計算津波高について、基準波源モデル①及び②と、基準波源モデル⑥とを比較できるように提示し、基準波源モデル ①及び②が大間独自のモデルとして設定されている位置付けを説明すること。	2021年2月19日第949回審査 会合でご説明済み

指摘事項(3/6)

本資料でご説明

次回以降ご説明

ご説明済み

・本資料では、審査会合の指摘事項については、下表のとおり回答する。

No.	項目	指摘時期	コメント内容	該当箇所
S5-33	三陸沖から根室沖	第627回会合(H30.9.21)	「三陸沖から根室沖のプレート間地震に伴う津波」の基準波源モデル⑥に関して,3.11地震の津波に対して 広域の津波特性を考慮した特性化モデルでは1つとなっている大すべり域を,三陸沖から根室沖の波源を設 定する際に2つに分割するとした考え方,妥当性について説明すること。また,合わせて面積比率の考え方 も説明すること。	2021年2月19日第949回審査 会合でご説明済み
S5-34	三陸沖から根室沖	第627回会合(H30.9.21)	「三陸沖から根室沖のプレート間地震に伴う津波」の各基準波源モデルの設定のフローについて、以下のと おり記載の充実、修正等を行い説明すること。 ・基本すべり量と、平均すべり量との関係について、より記載を充実させること。 ・すべり量、すべり角の設定のうち、すべり量の補正に関する記載、及びすべり角に関する記載について、適 切な記載に修正すること。	2021年2月19日第949回審査 会合でご説明済み
S5-35	三陸沖から根室沖	第627回会合(H30.9.21)	「三陸沖から根室沖のプレート間地震に伴う津波」の基準波源モデルの妥当性確認のため、計算津波高と既 往津波高との比較に関して、本資料で着目すべき太平洋側の沿岸から津軽海峡入口の範囲とそれぞれの 津波高を明示すること。また、基準波源モデル①~⑥による計算津波高が、津軽海峡に入る前にどのような 傾向を示すのか、津軽海峡内に入り敷地においてどのような傾向を示すのかを示すこと。	2021年2月19日第949回審査 会合でご説明済み
		陸沖から根室沖 第949回会合(2021.2.19)	三陸沖から根室沖のプレート間地震に伴う津波の基準波源モデルの設定に関して,以下の知見·文献等を 追加し,記載の充実を図ること。	_
S5-43	三陸沖から根室沖		 ・波源モデル③及び④の大すべり域・超大すべり域の設定根拠となる、青森県東方沖及び岩手県沖北部のすべり域に関する知見・文献。 	2021年7日30日第004回
			・波源モデル② [※] の設定根拠の一つとして,北海道東部沿岸等の津波堆積物が高く分布する位置を考慮した 超大すべり域の位置設定の根拠と考え方。	審査会合でご説明済み
			・波源モデル① [※] の大すべり域・超大すべり域の設定根拠となる島弧会合部等の知見・文献,及びパラスタを 実施するにあたり十勝沖・根室沖の超大すべり域の位置を西寄りに固定していることの妥当性。	2021年7月30日第994回 審査会合でご説明済み
S5-44	三陸沖から根室沖	第949回会合(2021.2.19)	基準波源モデル③及び基準波源モデル④の想定津波群とイベント堆積物及び内閣府(2020)の想定津波群 を比較し,基準波源モデル③,④の妥当性を説明すること。	2021年7月30日第994回 審査会合でご説明済み
S5-45	三陸沖から根室沖	第949回会合(2021.2.19)	基準波源モデル① ^{**} ~⑥ ^{**} の概略パラメータスタディ最大ケースを対象に,動的破壊特性の不確かさを考慮した検討を実施し,水位上昇側及び水位下降側の決定ケースが変わらないことを確認すること。	2021年7月30日第994回 審査会合でご説明済み
S5-46	三陸沖から根室沖	第949回会合(2021.2.19)	基準波源モデル① ^{**} ~⑥ ^{**} の概略パラメータスタディ結果について,敷地前面における最大水位上昇量の分 布に加えて,敷地前面における評価水位抽出位置での比較も示すこと。	2021年7月30日第994回 審査会合でご説明済み
S5-47	三陸沖から根室沖	第949回会合(2021.2.19)	基準波源モデル⑤ ^{**} ,⑥ ^{**} について、「津波工学的な観点に基づくモデル」と位置付けされているが、他のモ デルは工学的ではないと誤解を招く恐れがあるので、名称を再考すること。	2021年7月30日第994回 審査会合でご説明済み
S5-48	三陸沖から根室沖	第949回会合(2021.2.19)	内閣府(2020)の津波波源モデルと国内外で発生したM9クラスの巨大地震の断層パラメータ等の比較から、 内閣府(2020)から得られる知見の基準津波への反映方法・位置づけを再整理すること。	2021年7月30日第994回 審査会合でご説明済み

※第962回会合までの「基準波源モデル①」は、今回「基準波源モデル⑤」に呼称を変更。同様に②は⑥、⑤は②、⑥は①に変更。

本資料でご説明

次回以降ご説明

ご説明済み

No.	項目	指摘時期	コメント内容	該当箇所
S5-52	三陸沖から根室沖	第994回会合(2021.7.30)	三陸沖から根室沖のプレート間地震に伴う津波の基準波源モデルのうち、基準波源モデル①-2については、 最大水位上昇量、最大水位下降量ともに、基準波源モデル①-1など他のモデルを下回ること等を踏まえると、 影響検討する過程において確認したモデルという位置付けで十分であると考えられる。基準波源モデル策定 の手順、考え方、想定波源域の設定フロー等について記載の適正化を図ること。	本編資料P.3.2.1-2, P.3.2.1-6, P.3.2.1-27, P.3.2.1-28, P.3.2.1-33, P.3.2.1-34, 補足説明資料P.4.1-2~7
			三陸沖から根室沖のプレート間地震に伴う津波に関して,津軽海峡開口部付近沿岸における想定津波群の 比較図について,以下の適正化を行うこと。 ・大間から大間東岸付近を拡大し提示すること。	本編資料P.3.2.2-15
			・産総研DBに示されているイベント堆積物の分布標高も示すこと。	本編資料P.3.2.2-15
S5-53	三陸沖から根室沖	第994回会合(2021.7.30)	・想定津波群をどのように作成しているのか示すこと。	本編資料P.3.2.1−55, 補足説明資料P.12.1−2~5
			その上で、以下の分析を行うことにより基準波源モデル③~⑥設定の妥当性を示すこと。 ・大間から大間東岸付近では基準波源モデルと内閣府(2020)の波源モデルの津波水位が同等であること。	本編資料P.3.2.2−15~21, P.3.2.2−27~33
			・岩屋付近及び新納屋から六川目付近では内閣府(2020)の波源モデルの水位が高くなっていること。	本編資料P.3.2.2−15~26, P.3.2.2−33
S5-54	三陸沖から根室沖	第994回会合(2021.7.30)	大間敷地において、三陸沖から根室沖のプレート間地震に伴う津波では、上昇側・下降側共に内閣府 (2020)の波源モデルの方が上回っている。地震による津波全体では、上昇側は日本海東縁部が上回るもの の、下降側は内閣府(2020)の波源モデルが上回る結果となっている。このような結果となる要因を分析し説 明すること。	本編資料P.3.5-3~P.3.5-11
S5-55	三陸沖から根室沖	第994回会合(2021.7.30)	内閣府(2020)のすべり量等のモデル化の手法に関する考え方の取扱い,並びに基準波源モデル①~⑥と内 閣府(2020)の波源モデルの津波高を比較することの位置付けについて説明すること。	本編資料P.3.2.2−13, P.3.2.2−16
S5-56	海域活断層	第994回会合(2021.7.30)	隆起再現断層の想定領域を踏まえ、断層長さが最も長くなるように約20kmとして評価すると記載しているが、 内陸地殻内地震の審議結果を踏まえた上で評価すること。	本編資料P.3.4-3, P.3.4-4
S5-10	三陸沖	第446回会合(H29.2.24)	海洋プレート内地震による津波の方が, プレート間地震による津波よりも, 敷地への影響が本当に小さいことを確認したいので, 詳細パラスタを実施すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-11	チリ沖	第446回会合(H29.2.24)	1960年チリ津波の再現モデルについて、K&Cモデルから断層幅とすべり量を修正しているのであれば、修正 内容が分かるように追記すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-26	津波堆積物	第467回会合(H29.5.12)	大間崎東側の後背湿地を,津波堆積物調査対象地点から除く根拠とした調査結果を説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-25	津波堆積物	第467回会合(H29.5.12)	津波堆積物調査のうち,奥戸地点のイベント堆積物を津波堆積物として認定しなかった理由について,どのように層厚を認定したのか等,資料を整理し説明すること。	平成30年3月2日第553回 審査会合でご説明済み

指摘事項(5/6)

本資料でご説明

次回以降ご説明

ご説明済み

No.	項目	指摘時期	コメント内容	該当箇所
S5-24	津波堆積物	第467回会合(H29.5.12)	加瀬他(2016)が実施した奥尻島の津波堆積物調査の結果など、申請以降の最新文献についても、どのような ツールを用いて調査を行ったかのプロセスも含め説明すること。	平成30年3月2日第553回 審査会合でご説明済み
S5-13	陸上の斜面崩壊	第467回会合(H29.5.12)	佐井エリアの地すべりブロック⑥, ⑦, ⑧など, 近接していても別々の地すべりと評価するのであれば, 根拠を 充実させる必要があると考えられる。一塊として評価するか否かも含め, 再度検討し説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-14	陸上の斜面崩壊	第467回会合(H29.5.12)	二層流モデルを陸上に適用する妥当性という観点から, Kawamata et al.(2005)における既往津波の再現性を 説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-15	陸上の斜面崩壊	第467回会合(H29.5.12)	検討対象とする地すべり地形として佐井を選定しているが, 敷地からの距離, 概算体積だけでなく, 地すべり 地形の傾斜角, すべりの進行方向, 水深なども影響すると考えられる。簡易予測式を用いた評価も実施し説 明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-16	陸上の斜面崩壊	第467回会合(H29.5.12)	ニ層流に用いた佐井の崩壊量が過小評価となっていないか確認したいので,崩壊地形の断面をいくつか提示 し,地すべり形状が問題ないことを説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-17	海底地すべり	第467回会合(H29.5.12)	P.38の「海底地すべりに起因する津波の検討フロー」において,海底地すべりを一塊として考慮するか否かを 判断する際に,崩壊時期が区別できたとしても,必ずしも別々にすべるとは限らない。適切な記載を検討する こと。	平成30年6月8日第585回 審査会合でご説明済み
S5-18	海底地すべり	第467回会合(H29.5.12)	検討対象海底地すべり地形の選定について、「地すべり地形の比高・傾斜」、「水深」、「敷地からの距離」等も 比較し整理したうえで、説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-19	海底地すべり	第467回会合(H29.5.12)	Ms-2の崩壊量の算出方法について, どのようなプロセスですべり線を設定したのか, また, 二層流モデルに おけるモデル化も含めて, より明確なフローを作成し説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-20	海底地すべり	第467回会合(H29.5.12)	津軽海峡内の海底地すべり抽出の際,地形の急傾斜部に地すべり地形は無かったことを確認したいので,海 保のM7000シリーズ海底地形データ等の資料を整理のうえ説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-21	海底地すべり	第467回会合(H29.5.12)	海底地すべりのすべり面の設定について、「乱れた地層の下限」、「B層下面」及び「地すべり移動体を確認し 設定」するとしており、それぞれ設定の仕方が違っているが、どれが支配的で、どれが多かったのか、音波探 査記録の反射面等を用いて説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-22	海底地すべり	第467回会合(H29.5.12)	ハワイ付近の大規模な海底地すべりの影響について、説明すること。	平成30年6月8日第585回 審査会合でご説明済み

指摘事項(6/6)

本資料でご説明

次回以降ご説明

ご説明済み

POWER

No.	項目	指摘時期	コメント内容	該当箇所
S5-23	火山現象	第467回会合(H29.5.12)	渡島大島山体崩壊に関し, kinematic landslideモデルのパラメータである水平移動速度Uと比高変位継続時間 Tについて, 二層流モデルの解析値を説明すること。	平成30年6月8日第585回 審査会合でご説明済み
S5-36	波源の組合せ	第627回会合(H30.9.21)	地震による津波と地震以外の要因による津波の組合せに関して,日本海東縁部に想定される地震に伴う津波と,佐井エリアの斜面崩壊に起因する津波とを組合わせることの妥当性,取水口前面位置において,水位時刻歴波形を線形に足し合わせて算出している妥当性を説明すること。	2020年6月19日第868回審査 会合でご説明 次回以降, 再度ご説明
S5-2	共通事項	第446回会合(H29.2.24)	津軽海峡内での津波の伝播では、反射による増幅や山体崩壊による津波等の周期特性による影響を検討 する必要がある。津軽海峡内の固有周期を含めて、津軽海峡内の津波の伝播について分析すること。	平成30年9月21日第627回 審査会合でご説明済み
S5-37	全般事項	第627回会合(H30.9.21)	波源パラメータの設定の記載等において、原論文として引用した土木学会(2002)と、土木学会(2016)とが混 在している。最新の文献である土木学会(2016)に統一するか、あるいは、土木学会(2002)を引用するのであ ればその理由を記載すること。	2020年6月19日第868回審査 会合でご説明済み
S5-38	全般事項	第627回会合(H30.9.21)	防波堤等の有無が津波に与える影響に関して、防波堤が有った方が津波が大きくなるという結論について、 各ケースの検討結果をまとめたうえで説明すること。	2021年7月30日第994回 審査会合でご説明済み
S5-42	全般事項	第868回会合(2020.6.19)	防波堤の有無の影響検討について,防波堤がある場合に水位変動量が最大となるケースの波源と,ない場合に水位変動量が最大となるケースの波源が異なることを踏まえ,ない場合の波源も組合せの対象として採 用すること。	2021年7月30日第994回 審査会合で一部ご説明 次回以降ご説明

No.	項目	指摘時期	コメント内容	該当箇所
S5–39	津波堆積物	現地調査(H30.11.15)	津波堆積物ボーリングコアに関して, OM-5のリカバリー孔の深度1.5m付近の砂状の堆積物について, 堆積 物中の礫の状況など再度確認し, イベント堆積物等であるか否か再度検討し説明すること。 また, リカバリー孔についても審査会合資料として説明するとともに, 補足説明資料等で該当データを提示す ること。	2020年6月19日第868回審査 会合でご説明済み

目次	:本日のご説明に対応する範囲 VIII
 「二 洋波堆積物調査(現地調査) 	4-4-3 基準波源モナル562基準波源モナル①~400関連性・・・・ 4.4.3-1
2. 日本海東縁部に想定される地震に伴う津波・・・・・・・・・・・・・・・・・・・・・2.1.1-1	↓ 4-4-4 . 三陸沖から根室沖のブレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討・・・・・・・・・・・・・・・・・2.1.1-1	傾向把握······ 4.4.4−1
2-1-1. 傾斜方向・傾斜角パターン影響検討・・・・・・・・・・・・・・・・・・・・・ 2.1.1-1	15. 千島海溝沿いの海洋プレート内地震に伴う津波・・・・・・・・・・・・・・・・5-1
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認・・・・・ 2.1.2-1	6.チリ沖に想定される地震に伴う津波の影響検討・・・・・・・・・・・・・・・・ 6-1
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波・・・・・・・・・・・・・・・・・・・・・・・・・・・
評価因子影響分析・・・・・ 2.2-1	7-1. 地すべり地形分布図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 ・・・・・・・ 2.3-1	7-2. 二層流モデルの適用性について・・・・・・・・・・・・・・・・・・・・・
2-4. 日本海東縁部に設定された地方自治体による波源モデル・・・・・・ 2.4-1	8. 海底地すべりに起因する津波・・・・・・・・・・・・・・・・・・・・・・・・・・・. 8.1-1
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読・・・・・・・・・・・・・・・・・・
超巨大地震から得られた知見・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-2. 海底地すべり海上音波探査記録・・・・・・・・・・・・・・・・・.8.2-1
3-1. 2011年東北地方太平洋沖地震から得られた知見・・・・・・・・・・・・・・・・・3.1-1	8-3. 海底地すべり地形崩壊量算定・・・・・・・・・・・・・・・・・・・・. 8.3-1
3-2.世界のM9クラスの超巨大地震から得られた知見の整理・・・・・・・3.2-1	8-4. ハワイ付近の海底地すべりの影響について・・・・・・・・・ 8.4-1
3-3. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.3-1	9. 火山現象に起因する津波・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 三陸沖から根室沖のプレート間地震に伴う津波・・・・・・・・・・・・・ 4.1-1	9-1. kinematic landslideモデルによる追加検討・・・・・・・・・・・ 9.1-1
4-1. 検討対象波源域の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・.4.1-1	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討・・・・・・・・・・・・・ 4.2.1-1	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討・・・・・・・・・・・・・・・・・・・・・・・ 4.2.1-1	11. 津軽海峡・発電所専用港湾及び津波の周期特性・・・・・・・・・・・・・・・・・ 11-1
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認・・・・4.2.2-1	11-1. 検討方法・・・・・ 11.1-1
4-2-3 . 分岐断層に関する検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・.4.2.3-1	11-2. 日本海側からの津波に対する検討・・・・・・・・・・・・・・・・・ 11.2-1
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討・・・・・・・・・・・・・・・・・・・ 11.3-1
評価因子影響分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-4. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 11.4-1
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認・・・・ 4.4.1-1	12. その他・・・・・ 12.1-1
4-4-1 . 動的破壊特性の不確かさの影響確認・・・・・・・・・・・・・・・・ 4.4.1-1	12-1. 想定津波群の作成方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4-4-2 . 基準波源モデル①~⑥の水位分布比較・・・・・・・・・・ 4.4.2-1	12-2. 津波の伝播特性について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12.2-1

本資料の位置付け

本補足説明資料は、基準津波の策定に係る主たる考え方及び結果をまとめた本編資料に対し、
 その根拠を補足的に説明する事項(コメント回答を含む)を整理するものである。

(余白)

目次	:本日のご説明に対応する範囲
1. 津波堆積物調査(現地調査)	4-4-3 . 基準波源モデル⑤⑥と基準波源モデル①~④の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 . 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

....

第868回審査会合 資料2-2 P.8再掲

敷地周辺, 十三湖及び鰺ヶ沢町周辺で実施した津波堆積物に係る現地調査及び現地調査の評価についてまとめた。

1. 津波堆積物調査(現地調査)(1/40)

第868回審査会合 資料2-2 P.9再掲

1-3

POWER

大間平地点の調査位置図

1. 津波堆積物調査(現地調査)(2/40)

第868回審査会合 資料2-2 P.10再掲

1. 津波堆積物調査(現地調査)(3/40)

第868回審査会合 資料2-2 P.11再掲

現地調査〔大間平地点〕(3/7): イベント堆積物の観察・分析(分布)(1/2)

・ボーリングコア観察の結果、イベント堆積物Eom①層は、①−①'断面において最も海側(西側)のOM1孔のみで認められ、その分布標高は約1.1mである。

•イベント堆積物Eom①層の分布範囲は海岸付近に限られ、OM1孔より内陸側の同じ湿地堆積物中の同層準には分布せず、Eom① 層の分布範囲は内陸方向には連続しない。

1. 津波堆積物調査(現地調査)(4/40)

現地調査〔大間平地点〕(4/7): イベント堆積物の観察・分析(分布)(2/2)

- ・ボーリングコア観察の結果, イベント堆積物Eom②層は, ②-②'断面において海側(西側)のOM4孔のみで認められ, その分布標 高は約1.1mである。
- イベント堆積物Eom②層の分布範囲はOM4孔より内陸側の同じ湿地堆積物中の同層準には分布せず、Eom②層の分布範囲は内 陸方向には連続しない。
- ・また、放射性炭素年代測定から、イベント堆積物Eom②層はイベント堆積物Eom①層より下位の層準であり、これらは連続しないと 判断される。

1. 津波堆積物調査(現地調査)(7/40)

資料2-2 P.15再掲

第868回審杳会合

イベント堆積物が 認められた地点

イベント堆積物が

断面線位置

認められなかった地点

OM1

Q OM1

▲①'

(補足) 大間平東部後背湿地における海成堆積物調査(1/3) (第42-2 Р.16再掲

<u>ボーリング調査</u>

大間平地点の調査位置図

第868回審査会合

1 - 10

POWER

(補足) 大間平東部後背湿地における海成堆積物調査 (2/3) (第868回審査会合)1-11

POWER

<u>イベント堆積物の観察・分析(分布)</u>

(補足)大間平東部後背湿地における海成堆積物調査(3/3)

第868回審査会合

資料2-2 P.18再掲

-12

1. 津波堆積物調査(現地調査)(8/40)

第868回審査会合 資料2-2 P.19再掲 1-13

<u>現地調査〔奥戸地点〕(1/14): ボーリング調査</u>

■地点選定理由

 砂丘により閉塞された谷底低地(後背湿地,氾濫原)が存在しており,泥炭層や細粒層が分布することが期待され,津波堆積物が残存する 可能性があるため,調査地点として選定した。

■調査内容

•ボーリング調査 14孔(ロータリー式, 孔径86mm), ボーリングコア観察, X線CTスキャン, 放射性炭素年代測定, 珪藻化石分析等

奥戸地点の調査位置図

1. 津波堆積物調査(現地調査)(9/40)

第868回審査会合 資料2-2 P.20再掲

1-14

- OK13孔のイベント堆積物Eok2層は,有機質シルト層に挟在する砂層であり,下面境界は不明瞭である。
- OK13孔のイベント堆積物Eok③層は,有機質粘土層や砂層に挟まれた砂層である。下面境界は明瞭であり,級化構造や葉理が認められる。微量の現世の海水〜 汽水生種の珪藻化石を含む。

1. 津波堆積物調査(現地調査)(10/40)

第868回審査会合 資料2-2 P.21再掲

<u>現地調査〔奥戸地点〕(3/14): イベント堆積物の観察・分析(分布)</u>

●ボーリングコア観察の結果,同層準で連続性のあるイベント堆積物が3層準(Eok①層, Eok②層及びEok③層)で認められた。連続性のあるイベント 堆積物が認められた①−①'断面を以下に示す。このうち分布標高が最も高いものは, Eok①層の約3.8m(OK13孔)である。

・イベント堆積物Eok①層は、海岸付近の湿地堆積物及びその内陸側の氾濫原堆積物の同層準に認められるが、内陸に向かって層厚が厚くなり、粒度が大きくなる傾向が認められる。(P. 1-19参照)

•イベント堆積物Eok②層及びEok③層は,いずれも氾濫原堆積物中に概ね連続して分布し,海岸付近の湿地堆積物やラグーン堆積物の同層準には 分布しない。

1. 津波堆積物調査(現地調査)(21/40)

第868回審査会合 資料2-2 P.32再掲

現地調査〔奥戸地点〕(14/14): イベント堆積物の評価

<u>イベント堆積物の観察・分析結果及び評価</u>

- イベント堆積物Eok①層は、下面境界が明瞭であり、級化構造や 偽礫等が認められるものの、現世の海水~汽水生種の珪藻化石 を含まず、内陸に向かって層厚が厚くなり、粒度が大きくなる傾向 が認められることから、津波堆積物の特徴を有していないと評価 する。
- イベント堆積物Eok②層は、下面境界が不明瞭であり、微量の現 世の海水~汽水生種の珪藻化石を含む。Eok②層は、海岸付近 の湿地堆積物中またはラグーン堆積物中に分布しないことから、 津波堆積物の特徴を有していないと評価する。
- イベント堆積物Eok③層は、下面境界が明瞭であり、級化構造や 葉理等が認められ、微量の現世の海水~汽水生種の珪藻化石を 含む。Eok③層は、海岸付近の湿地堆積物中またはラグーン堆積 物中に分布しないことから、津波堆積物の特徴を有していないと 評価する。

奥戸地点の調査位置図

∇

<u>津波堆積物の可能性の評価</u>

- •奥戸地点のイベント堆積物Eok①層, Eok②層及びEok③層は, いずれも, 津波堆積物の可能性が低いと評価する。
- なお、イベント堆積物Eok①層、Eok②層及びEok③層は、主に内陸側の氾濫原堆積物中に分布することから、河川の洪水等による堆積物と判断される。

1. 津波堆積物調査(現地調査)(22/40)

第868回審査会合 資料2-2 P.33再掲

1-27

現地調査〔五月女萢地点〕(1/5): ボーリング調査

五月女萢地点の調査位置図

1. 津波堆積物調査(現地調査)(23/40)

第868回審査会合 資料2-2 P.34再掲

現地調査〔五月女萢地点〕(2/5): イベント堆積物の観察・分析(層相・珪藻化石)

第868回審査会合 資料2-2 P.35再掲

<u>現地調査〔五月女萢地点〕(3/5): イベント堆積物の観察・分析(分布)(1/2)</u>

ボーリングコア観察の結果,汀線方向の①-①'断面では,同層準で連続性のあるイベント堆積物が3孔の1層準(Ejs①層)で認められた。
 イベント堆積物Ejs①層は,汀線方向の河川に沿って(南北方向)に連続するが,Ejs①層の上位は人工改変を受けているため,上流側に向かう層厚や粒度の変化は不明である。

•イベント堆積物Ejs①層の最も高い分布標高は約2.0m(JS6孔)である。

①-①'断面図

1. 津波堆積物調査(現地調査)(25/40)

<u>現地調査〔五月女萢地点〕(4/5): イベント堆積物の観察・分析(分布)(2/2)</u>

- ・ボーリングコア観察の結果,汀線にほぼ直交する②−②'断面では、同層準で連続性のあるイベント堆積物が3孔の1層準(Ejs①層)で 認められた。
- •イベント堆積物Ejs①層は,内陸方向(東西方向)に連続するが,Ejs①層の上位は人工改変を受けているため,内陸に向かう層厚や粒度の変化は不明である。

1. 津波堆積物調査(現地調査)(26/40)

第868回審査会合 資料2-2 P.37再掲

現地調査〔五月女萢地点〕(5/5): イベント堆積物の評価

1. 津波堆積物調査(現地調査)(27/40)

第868回審査会合 資料2-2 P.38再掲

1-32

現地調査〔前潟地点〕(1/5):ボーリング調査

■地点選定理由

 砂丘により閉塞された砂丘間低地 (後背湿地,氾濫原)が存在しており,泥炭層や細粒層が分布すること が期待され,津波堆積物が残存する可能性があるため,調査地点として選定した。

■調査内容

 ボーリング調査9孔(ロータリー式, 孔径86mm), ボーリングコア観察, X 線CTスキャン, 放射性炭素年代測 定, 珪藻化石分析等

前潟地点の調査位置図

500n

•JSm19-1孔のイベント堆積物Ejsm④層は,有機質粘土層及び砂層に挟在する砂層であり,下面境界が不明瞭である。微量の現世の海水~汽水生種の珪藻化石を含む。

第868回審査会合 1. 津波堆積物調査(現地調査)(29/40) 資料2-2 P.40再掲

1-34 POWER 現地調査〔前潟地点〕(3/5): イベント堆積物の観察・分析(層相・珪藻化石)(2/2) JSm18-1孔 JSm17-1孔 JSm18-1孔 標高(深度) 標高(深度) 標高(深度) -2.53m(1.70m)--4.22m(3.10m) -4.43m(3.60m) - [2/4] 有機質 砂層 シルト層 砂層 · [64/218] 砂~礫層 [イベント堆積物 Eism(5)層] (層厚16cm) 砂~礫層 「イベント堆積物 砂~礫層 Ejsm⑥層] 「イベント堆積物 (層厚26cm) JSm⑦層] (層厚23cm) 砂層 凡例 珪藻化石分析 砂層 砂層 微量の現世の海水~汽水生種を含むもの 現世の海水~汽水生種を含まないもの -3.03m(2.20m) -4.72m(3.60m) [1/200] 現世の海水~汽水生種の個数/総個体数 -4.93m(4.10m)コア写直 コア写真 コア写真

● ボーリングコア観察の結果, 全9孔のうち8孔でイベント堆積物が認められた。このうち, 主なイベント堆積物の特徴は以下のとおり。

- JSm18-1孔のイベント堆積物Ejsm⑤層は、有機質シルト層及び砂層に挟在する砂~礫層であり、下面境界が明瞭である。
- JSm17-1孔のイベント堆積物Ejsm⑥層は、砂層に挟在する砂~礫層である。下面境界が明瞭であり、級化構造が認められ、一部に葉理が認められる。
- |●JSm18-1孔のイベント堆積物Eism⑦層は、砂層に挟在する砂~礫層である。下面境界が明瞭である。

1. 津波堆積物調査(現地調査)(30/40)

第868回審査会合 資料2-2 P.41再掲

現地調査〔前潟地点〕 (4/5): イベント堆積物の観察・分析(分布)

- •ボーリングコア観察の結果,同層準で連続性のあるイベント堆積物が7層準(Ejsm①~⑦層)で認められた。このうち分布標高が最も高いものは, Ejsm①層の約 −1.1m(Jsm17−3孔)である。
- このうち、5層準のイベント堆積物(Ejsm①層、Ejsm③層、Ejsm⑤層、Ejsm⑥層及びEjsm⑦層)は、上流方向(南方向)へ連続し、上流に向かって層厚が薄くなり、粒度が小さくなる傾向が概ね認められる。
- •イベント堆積物Ejsm②層は、河口付近の同層準にイベント堆積物が認められず、連続しない。
- •イベント堆積物Ejsm④層は, JSm19-1~3孔の間で厚い砂層として連続して認められるが, 河口側のJSm18-2孔の同層準では, 層相が大きく異なり, 有機質シ ルト層が卓越し, 連続しない。

1. 津波堆積物調査(現地調査)(31/40)

第868回審査会合 資料2-2 P.42再掲

現地調査〔前潟地点〕(5/5): イベント堆積物の評価

<u>イベント堆積物の観察・分析結果及び評価</u>

- 連続性を認めた7層準のイベント堆積物のうち、5層準(Ejsm①層, Ejsm③層, Ejsm⑤ 層, Ejsm⑥層及びEjsm⑦層)は、下面境界が明瞭であり、上流に向かって層厚が薄く なり、粒度が小さくなる傾向が認められ、微量の現世の海水~汽水生種の珪藻化石 を含むことから、津波堆積物の特徴を有していると評価する。
- •残りの2層準のEjsm②層及びEjsm④層は、下面境界が明瞭であり、微量の現世の 海水~汽水生種の珪藻化石を含む。これらの堆積物は、河口側に連続して分布しな いものの、前潟の分布する砂丘間低地は海岸までの距離が約500mと短く、砂丘の 高さが5m程度と低いことから、津波が砂丘を越えて堆積した可能性は否定できな い。

津波堆積物の可能性の評価

- 前潟地点のイベント堆積物Ejsm①~⑦層の7層は、いずれも、津波堆積物の可能性が高いと評価する。
- ■このうち、分布標高が最も高いものは、Ejsm①層の約-1.1m(JSm17-3孔)であり、最高標高を約-1mと評価する。
- •なお,箕浦(1990)⁽¹⁾でも本調査範囲内で津波堆積物が認められている。

1. 津波堆積物調査(現地調査)(32/40)

第868回審査会合 資料2-2 P.43再掲

現地調査〔鳴沢地点〕(1/5): ボーリング調査

■地点選定理由

 砂丘により閉塞された谷底低地(後背湿地,氾濫原)が存在しており,泥炭層や 細粒層が分布することが期待され,津波堆積物が残存する可能性があるため, 調査地点として選定した。

■調査内容

•ボーリング調査19孔(ロータリー式,孔径86mm),ボーリングコア観察,X線CTス キャン,放射性炭素年代測定,珪藻化石分析等

鳴沢地点の調査位置図

1. 津波堆積物調査(現地調査)(33/40)

資料2-2 P.44再掲

第868回審査会合

1-38

1. 津波堆積物調査(現地調査)(36/40)

第868回審査会合 資料2-2 P.47再掲

<u>現地調査〔鳴沢地点〕(5/5):イベント堆積物の評価</u>

イベント堆積物の観察・分析結果及び評価

- イベント堆積物Enr①層は、下面境界が明瞭であり、微量の現世の海水~汽水生種の珪藻化石を含み、内陸に向かって層厚が薄くなり、粒度が小さくなる傾向が認められることから、津波堆積物の特徴を有していると評価する。
- イベント堆積物Enr②層は、下面境界が明瞭であり、微量の現世の海水~汽水生種の珪藻化石を含み、内陸に向かって層厚が薄くなり、粒度が小さくなる傾向が認められることから、津波堆積物の特徴を有していると評価する。

\bigtriangledown

津波堆積物の可能性の評価

- •鳴沢地点のイベント堆積物Enr①層及びEnr②層は、津波堆積物の可能性が高いと評価する。
- •このうち,分布標高が最も高いものは,Enr②層の約2.3m(NR9 孔)であり,最高標高を約3mと評価する。
- •なお,小岩ほか(2013)⁽²⁾,熊谷ほか(2017)⁽³⁾でも本調査範囲 内で津波堆積物が認められている。

鳴沢地点の調査位置図

(余白)

第868回審査会合 資料2-2 P.49再掲

<u>現地調査〔赤石地点〕(1/4): ボーリング調査</u>

■地点選定理由

- •砂丘により閉塞された谷底低地(後背湿地,氾濫原)が存在しており,泥炭層や細粒層が分布することが期待され,津波堆積物が残存 する可能性があるため,調査地点として選定した。
- ■調査内容
- •ボーリング調査 14孔(ロータリー式, 孔径86mm), ボーリングコア観察, X線CTスキャン, 放射性炭素年代測定, 珪藻化石分析等

赤石地点の調査位置図

1. 津波堆積物調査(現地調査)(38/40)

第868回審査会合 資料2-2 P.50再掲

現地調査〔赤石地点〕(2/4): イベント堆積物の観察・分析(層相・珪藻化石)

現地調査〔赤石地点〕 (3/4): イベント堆積物の観察・分析(分布)

・ ・ボーリングコア観察の結果,同層準で連続性のあるイベント堆積物が1層準(Eak①層)で認められた。

 イベント堆積物Eak①層の分布範囲は河口付近のAK1孔~AK3孔の氾濫原堆積物中に限られ、それより内陸側のボーリング孔の同層準には 分布せず、内陸方向(南東方向)には連続しない。イベント堆積物Eak①層の上位は人工改変を受けているため、内陸に向かう層厚や粒度の変 化は不明である。

・イベント堆積物Eak①層の最も高い分布標高は約1.7m(AK3孔)である。

1. 津波堆積物調査(現地調査)(40/40)

第868回審査会合 資料2-2 P.52再掲

<u>現地調査〔赤石地点〕(4/4):イベント堆積物の評価</u>

赤石地点の調査位置図

目次	:本日のご説明に対応する範囲 2.1.1-1
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 . 基準波源モデル⑤⑥と基準波源モデル①~④の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2−1−1.傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

(余白)

2-1-1. 傾斜方向・傾斜角パターン影響検討(1/2)

OWER コメントNo.S5-51 傾斜方向・傾斜角検討パターン6の保守性確認(1/2) すべり量 断層の傾斜方向・傾斜角の検討のうち、サイトに近い東寄りの東傾斜30°のパターン6が、津波水位 . 12m 評価上、敷地に与える影響が保守側の設定となっていることを確認するために、以下の追加検討を実 : 4m ✓ 概略パラメータスタディの検討結果より津波水位に与える影響が大きいアスペリティ位置cdを対象と して、傾斜パターン1~8の8ケースに、6ケースを加えた14ケースで追加検討した。追加ケースは、 (傾斜角30°のケース(東傾斜6'及び西傾斜3'),並びに傾斜角60°のケース(東傾斜1', 5') 及び西傾斜4', 8')である。ここで、各傾斜パターンの上端位置については、幅50kmの領域の西 端から中央及び中央から東端の中間付近とし、傾斜角30°のケース(6', 3')及び傾斜角60°の ケース(5', 4')の下端部が、幅50kmの想定波源域下端部に位置するように配置した。 例) パターン(のケース

211-3

波源モデル

✓ 結果は以下のとおりであり、追加ケースを含めても最大水位上昇ケースは、パターン6であることを 確認した。なお、最大水位下降ケースは、パターン7であることを確認した。

※2:断層下端が想定波源域下端の西端にある断層パターン

施した。

2-1-1. 傾斜方向・傾斜角パターン影響検討(2/2)

コメントNo.S5-51

<u>傾斜角・傾斜角検討パターン6の保守性確認(2/2)</u>

- 断層の傾斜方向・傾斜角の検討のうち、サイトに近い東寄りの東傾斜30°のパターン6が、津波水位評価上、敷地に与える影響が保守側の設定となっていることを確認するために、傾斜角及び傾斜方向ごとに分析、整理した。その結果は、以下のとおり。
- ✓ 最大水位上昇量は、傾斜角30°の波源では、東傾斜の場合パターン6、西傾斜の場合パターン7が最も大きく、傾斜角 60°の波源では、東傾斜の場合パターン5'、西傾斜の場合パターン8が最も大きく、全てサイトに近い東寄りのパタ ーンである。
- ✓ 傾斜角30°と傾斜角60°では傾斜角30°の最大水位変動量が大きい。
- ✓ 最大水位上昇量は波源が敷地に近づく東に移動するほど大きくなる傾向があり、想定波源域で断層下端を最も東に移動 させたパターン6'(30°)やパターン5'(60°)を含む想定波源域内に入る波源に比べて、想定波源域を断層下部 が東側にはみ出したパターン6の最大水位上昇量が大きい。
- 以上より、敷地に近い東寄りに位置し、上昇させる水の量が傾斜角60°よりも多い傾向にある傾斜角30°のパターン6
 は、津波水位評価上、敷地に与える影響が保守側の設定となっている。

目次	:本日のご説明に対応する範囲 2.1.2-1
	4-4-3 . 基準波源モナル(5)(6)と基準波源モナル(1)~(4)の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸冲から根室沖のフレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	"你们把握"。 "你们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9.火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3.分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1.動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認

<u>DCRC-26の北側断層と上縁深さのパラスタケースとの比較</u>

第994回審査会合 資料3-1 P.2.2-80再掲 212 - 2

OWER

- 上縁深さのパラスタ検討範囲(Okm~5km)の妥当性について、上縁深さが顕著に大きく10kmと設定されている高橋ほか (1995)⁽⁵⁾のDCRC-26モデル(1993年北海道南西沖地震津波の再現モデル)の北側断層配置と上縁深さのパラスタ断層配置 とを比較し検討する。
- 両ケースの断層配置比較は下表のとおりであり、パラスタケースで考慮する断層下端の最深部は海面下25km, DCRC-26モデルの北側断層の断層下端深さは海面下24.34kmである。
- 以上から、パラスタケースで考慮する深さ方向の範囲は、DCRC-26モデルの北側断層の断層下端深さを包絡していることが 確認できたため、本検討における上縁深さのパラスタ検討範囲(Okm~5km)は妥当であると判断する。

目 次

ſ

日次	····································
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル56と基準波源モデル1~4の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

2-2.日本海東縁部に想定される地震に伴う津波の評価因子影響分析(1/9)

<u>検討方針</u>

第994回審査会合 資料3-1 P.2.2-68再掲

- 日本海東縁部に想定される地震に伴う津波の検討で実施したパラメータスタディについて、敷地への影響が最も大きくなるケースを網羅的に検討していることを確認するため、概略パラメータスタディ評価因子及び詳細パラメータスタディ評価因子のそれぞれが津波水位に与える影響について分析する。
- 分析は、概略パラメータスタディが津波水位に対して支配的因子で行われていること、 詳細パラメータスタディが津波水位に対して従属的因子で行われていることを確認す ることにより実施する。
- さらにその上で、津波水位に最も影響を与える因子の変動に対する津波伝播への影響
 についても比較検討を実施する。

	.2 4
<u> 第994回審査会合</u> 資料3-1 P.2.2-70再掲	VER

- 詳細パラメータスタディ因子(走向)が津波水位に与える影響について分析した。
- 走向を変化させたケースは基準ケースに比べ敷地の最大水位変動量が小さくなる。また,その水位の変動幅(上昇側:1.06m, 下降側:0.06m)は概略パラメータスタディの変動幅(上昇側:3.42m,下降側:1.39m)に比べて小さい。

走向変化ケース(例示)

項目	項目		ケース数	
走向	断層を南北に2分割し,分割した断層が独立し 連動する 基準(概略パラスタケース),基準±10°	3		
アスペリティ数及び位置	概略パラスタケース,アスペリティを南北に2 分割し,片方を固定して,もう片方を移動(北 方及び南方へ約10km~40km(約10kmピッチ))	9	計 36	
上縁深さ	Okm,1km(基準:概略パラスタケース),2km, 3km,4km,5km	6		

 $\cap \cap$

詳細パラメータスタディ

2-2.日本海東縁部に想定される地震に伴う津波の評価因子影響分析(4/9) 2.2-5 第994回審査会合 資料3-1 P.2.2-71再掲 2.2-71再掲

- 詳細パラメータスタディ因子(アスペリティ数及び位置)が津波水位に与える影響について分析した。
- アスペリティを2個としたケースは、アスペリティを1個に集中させた基準ケースに比べ敷地の水位変動量が小さくなる。
 また、その水位の変動幅(上昇側:1.76m、下降側:0.77m)は概略パラメータスタディの変動幅(上昇側:3.42m、下降側:
 1.39m)に比べて小さい。

50

100 km

詳細パラメータスタディ アスペリティ数及び位置の変化ケース (例示:南側を南方へ移動)

項目	変動範囲		ス数
走向	断層を南北に2分割し,分割した断層が独立し 連動する 基準(概略パラスタケース),基準±10°	3	
アスペリティ数及び位置	概略パラスタケース,アスペリティを南北に2 分割し,片方を固定して,もう片方を移動(北 方及び南方へ約10km~40km(約10kmピッチ))	9	計 36
上縁深さ	Okm, 1 km(基準:概略パラスタケース), 2 km, 3 km, 4 km, 5 km	6	

詳細パラメータスタディ

アスペリティ数と位置の影響

• 上縁深さを変化させたケースの水位の変動幅(上昇側:0.53m, 下降側:0.03m)は他のパラメータスタディに比べて小さい。

詳細パラメータスタディ 上縁深さ変化ケース(例示)

項目 変動範囲 ケース数 断層を南北に2分割し、分割した断層が独立し 走向 連動する 3 基準(概略パラスタケース),基準±10° 概略パラスタケース、アスペリティを南北に2 計 分割し、片方を固定して、もう片方を移動(北 アスペリティ数及び位置 36 9 方及び南方へ約10km~40km(約10kmt^ッッチ)) Okm, 1km (基準: 概略パラスタケース), 2km, 上縁深さ 6 3 km. 4 km. 5 km

詳細パラメータスタディ

上縁深さの影響

2-2.日本海東縁部に想定される地震に伴う津波の評価因子影響分析(6/9)

パラメータスタディ評価因子の分析: まとめ

第994回審査会合 資料3-1 P.2.2-73再掲

- 概略パラメータスタディ評価因子及び詳細パラメータスタディ評価因子のそれぞれが津波水位に与える影響について分析した結果は以下のとおり。
 - ▶ 概略パラメータスタディ因子である「アスペリティの位置」が、津波水位に与える影響が最も大きい。
 - ▶ 詳細パラメータスタディ因子である「走向」,「アスペリティ数及び位置」及び「上縁深さ」は,概略パラメータスタディ因子に比べて津波水位への影響は小さい。
- 概略パラメータスタディは津波水位に対して支配的因子で行われていること、詳細パラメータスタディは従属的因子で行われていることが確認できた。

	評価因子	水位の変動幅(m)		(# +	
NJX-XXXT1		上昇側	下降側	頒考	
概略 パラメータスタディ	東西方向位置・傾斜角及び 傾斜方向パターン	1.89	0. 40	_	
	アスペリティ位置	<u>3. 42</u>	<u>1. 39</u>	_	
詳細 パラメータスタディ	走向	1.06	0. 06	基準ケース(概略パラスタケース) の水位変動量を上回るケースは無い	
	アスペリティ数及び位置	1. 76	0. 77	基準ケース(概略パラスタケース) の水位変動量を上回るケースは無い	
	上縁深さ	0. 53	0. 03		

パラメータスタディ変動幅一覧

東西方向位置・傾斜角・傾斜方向はパターン6

スナップショット⊿s=2500m領域(地震発生~20分後)

注: 概略パラメータスタディケース 東西方向位置・傾斜角・傾斜方向はパターン6

4

スナップショット⊿s=278m領域(地震発生20分後~50分後)

注: 概略パラメータスタディケース 東西方向位置・傾斜角・傾斜方向はパターン6

 \mathcal{L}

: 本日のご説明に対応する範囲 2.3-1

1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル⑤⑥と基準波源モデル①~④の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3.2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 . 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1.動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

(余白)

2-3.日本海東縁部に想定される地震に伴う津波の妥当性確認(1/2)

23 - 3

2-3.日本海東縁部に想定される地震に伴う津波の妥当性確認(2/2)

<u>(参考)日本海東縁部の地震に伴う津波の妥当性確認:既往津波高&計算津波高</u>

第994回審査会合 資料3-1 P.2.2-78再掲

沿岸区分 地点		既往最大	計算 (根本ほか(2	計算津波高(m)		
			津波高[*] (m)	1983年日本海中部地震の 再現モデルによる津波	1993年北海道南西沖地震の 再現モデルによる津波	日本海東縁部に想定される 地震に伴う津波 (上昇側最大ケース)
		江差	2.89	1.15	2.36	7.37
	法政治成功	上ノ国	2.43	1.37	2.47	6.64
	/手牲/毋吠?下	館浜	2.19	1.89	2.53	9.32
北海道		松前	3.50	3.56	1.21	8.81
北海坦		吉岡	1.03	1.76	0.87	5.23
		福島	1.20	2.46	2.04	9.69
		木古内	1.45	0.89	0.67	3.89
		函館	2.00	0.47	0.41	2.21
		大間	0.75	0.52	0.63	2.18
		奥戸	0.85	0.53	0.66	3.04
	津軽海峡内	佐井	0.65	0.77	0.50	1.95
	/++±/4×///	牛滝	1.35	0.76	0.55	2.26
		九艘泊	0.35	0.23	0.25	1.02
		宇田	0.96	0.60	0.51	1.89
		奥平部	1.45	0.82	0.52	2.09
		今別	1.45	1.08	0.95	4.64
青森		四枚橋	1.65	0.99	0.86	3.28
		鐇泊	2.00	1.44	0.80	3.66
		竜飛	4.45	1.86	0.68	4.21
		小泊	5.59	5.22	3.62	12.67
		下前	1.83	2.10	1.30	5.30
	津軽海峡外	脇元	2.66	2.61	1.77	7.57
		+=	7.10	3.08	1.30	7.08
			3.82	3.22	1.23	6.50
		鰺ヶ沢	4.06	4.39	1.38	8.07

※:各地点における既往津波高の最大値

目次	:本日のご説明に対応する範囲 2.4-1
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 三陸沖から根室沖のフレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	如此,我们们的"你们们的"。 ————————————————————————————————————
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2.世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1.動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 . 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

日本海東縁部に想定される地震に伴う津波の波源設定に関わり、地方自治体による波源モデル等について情報を整理し、それらの津波による敷地への影響について検討した。

2.4 - 32-4. 日本海東縁部に設定された地方自治体による波源モデル(1/10) 第994回審查会合 資料3-2 P.2-3再掲 日本海東縁部に想定される地震に伴う津波の波源設定に関わり、地方自治体による波源モデル等について情報を整理した。 ✓ 日本海東縁部における既往最大の地震は、1993年北海道南西沖地震(断層長さ131km, Mw7.84)である。 ✓ 既往最大規模相当を想定した自治体は、北海道・青森県。

✓ 既往最大を上回る地震規模を想定した自治体は、秋田県・山形県・新潟県・石川県・福井県・鳥取県・島根県である。

✓ 最も地震規模が大きいモデルは、秋田県の断層長さ350km、Mw8.69である。

地方自治体の想定地震

				136°E 140°E 144°E
白ン什么	最大規	模の地震	相实估罢	0 50 100 130 200 km
日后体石	断層長さ	マグニチュード	泡足位直	過去の意意モデルが知られていない想定意意味 46"N
北海道(2013) ⁽⁷⁾	—	(M7.8)	北海道南西沖など	M7.882 (0.006~0.19
青森県(2015) ⁽⁸⁾	_	Mw7.9	青森県西方沖	
秋田県(2013) ⁽⁹⁾	350km	Mw8.69	青森県西方沖~佐渡島北方沖	44"N 北海道西方沖 M7.5前後(ほぼ08)
山形県(2012) (10)	—	マク゛ニチュート゛ 8. 5	佐渡島北方沖	M7.807 BK (12(20k)
新潟県(2016) (11)	—	Mw8.09	秋田県沖~新潟県北部沖	42'N
富山県(2012) (12)	—	—	_	青森県西方沖 M7.7前後(ほぼ0%)
石川県(2012) (13)	167km	Mw7.99	佐渡島北方沖	40°N 任渡島北方沖
福井県(2012) (14)	167km	Mw7.99	佐渡島北方沖	秋田県沖 M7.5程度(3年現度に下)
鳥取県(2012) (15)	222km	Mw8.16	佐渡島北方沖	Шля (д. р. н.
島根県(2012) (16)	223km	Mw8.01	佐渡島北方沖	38°N 新潟県北部沖 M7.5前後(ほぼの)
山口県(2015) (17)	—	—	_	E)
(参考) 既往最大の地震	131km	Mw7.84	1993年北海道南西沖地震	地震調査研究推進本部(2003) ⁽¹⁸⁾ 想定地震の震源域・規模

部加筆 地辰嗣宜妍九推進平即(2003)

2-4. 日本海東縁部に設定された地方自治体による波源モデル(2/10)

<u>北海道(2013)</u>(7)

地震調査研究推進本部(2003)⁽¹⁸⁾等を活用して最大M7.8の地震を想定している。

	想定地震一覧	
地震モデル	位置づけ	
①北海道北西沖の地震(沖側)	地震空白域で今後発生する危険性のあるモデル	N
②北海道北西沖の地震(沿岸側)	地震空白域で今後発生する危険性のあるモデル	N
③留萌沖の地震	地震空白域で今後発生する危険性のあるモデル	N
④神威岬沖の地震	既往の地震津波を再現するモデルおよび地震空白域で 今後発生する危険性のあるモデル	N
⑤北海道南西沖地震	既往の地震津波を再現するモデル	N
⑥青森県西方沖の地震	既往の地震津波を再現するモデルおよび地震空白域で 今後発生する危険性のあるモデル	N
	北海道(2013) ⁽⁷⁾ に一部	。 旧争

2.4 - 4

POWER

想定地震位置図 北海道(2013) (7)

<u>青森県(2015)</u>⁽⁸⁾

2-4. 日本海東縁部に設定された地方自治体による波源モデル(3/10)

2.4-5

POWER

<u>秋田県(2013)⁽⁹⁾</u>

• 単独地震として3領域を設定した上で、さらに連動地震として3領域同時破壊を想定した断層長さ350km, Mw8.69の地震を想定している。

秋田県の波源モデルのパラメータ

区分	ID	震源、想定地震	関連震源	想定した ³ 断層長さし(km)	也震規模 3かにわ-ト MI	備約	時期 あ(**)	すべり角 入(°)	 断層モデル 上端深さ Hs(km) 	断層 モデル長さ Leadel (km)	断層 モデル幅 Wender(km)	断層 モデル面積 Sector (km ²)	断層モデル 下端深さ Hd(km)	地震モーメント Ma(Nm)	モーメント マク ニチュート Mw	平均 すべり量 Decedat (m)	備考
	1	海域A	日本海中部	130	7.9	東傾斜	35	90	0	130	50	6, 500	29	6.85E+20	7.82	3.0	
単独地	2	海域B	佐渡島北方沖、秋田県 沖、山形県沖	140	7.9	東傾斜	35	90	o	140	54	7, 560	31	8. 59E+20	7. 89	3, 2	小断層を2km×2km でモデル化
展	3	海域C	新潟県北部沖、山形県沖	80	7.5	西倾斜	55	90	0	80	32	2, 560	26	1.69E+20	7.42	1.9	
- 20	4	海域A+海域B	新潟県北部沖、山形県沖	270	8.5	東傾斜	20	90	0	270	105	28, 350	36	6.24E+21	8.46	6,3	
運動地震	5	海域B+海域C	佐渡島北方沖、秋田県 沖、山形県沖	220	8.3	東傾斜	20	90	0	220	85	18, 700	29	3.34E+21	8.28	5.1	小断層を5km×5km でモデル化
HOL	6	海域A+海域B+海域C	新潟県北部沖、山形県沖	350	8.7	東傾斜	20	90	0	350	135	47, 250	46	1.34E+22	8.69	8, 1	

秋田県(2013)⁽⁹⁾に一部加筆

山形県(2012) (10)

地震調査研究推進本部(2003) ⁽¹⁸⁾ が示す佐渡島北方沖の空白域にマグニチュード
 8.5の地震を想定している。

想定震源域及び地震規模

想定震源域	想定地震規模
「長期評価佐渡島北方沖」の空白域(下図「B」)	マグニチュード8.5
「長期評価秋田県沖」の空白域(下図「C」)	マグニチュード8.0

山形県(2012) (10) に一部加筆

波源モデル位置図 秋田県(2013) (9)

波源位置図 山形県(2012) (10) に一部加筆

2-4. 日本海東縁部に設定された地方自治体による波源モデル(4/10)

2.4-6

OWER

<u>新潟県(2016)</u>(11)

第994回審査会合 資料3-2 P.2-6再掲

 ・ 地震調査研究推進本部(2003)⁽¹⁸⁾を参照し、佐渡島北方沖地震として最大Mw7.80を設定し、さらに3連動地震として Mw8.09の地震を想定している。

• 海域活断層による津波のみ想定しており、日本海東縁部の地震による津波は想定していない。

想定地震位置図 富山県(2012) (12)

友族	規模	國占	走向	倾斜角	滑り角	断層上端	長さ	幅	滑り量
11.14	(M)	915.655	(度)	(度)	(度)	深さ(km)	(km)	(km)	(m)
呉羽山断層帯の地震	7.4	北緯 36, 872° 東経 137, 343°	210	45	90	0.1	35	22	2.9m (実測値)
糸魚川沖地震	7.2	北緯 37,002° 東経 137,556°	約 41 度 (平均走向)	30	90	0.1	28	44	2.2m (標準算式)
能登半島沖地震	7.2	北緯 37.531° 東経 137.463°	約 103 度 (平均走向)	30	90	0.1	28	44	2.2m (標準算式)
(参考) 糸魚川沖地震 【断層が連動する場合】	8.0	北線 37,002° 東経 137,556°	約58度 (平均走向)	30	90	0.1	84	44	6,6m (標準算式)
(参考) 呉羽山断層帯 の地震 【滑り量標準算式】	7.4	北緯 36.872° 東経 137.343°	210	45	90	0.1	35	22	1.4m (標準算式)

相定地震パラメーク

注1:滑り量の「標準算式」は、地震調査研究推進本部等で使用されている方法で、地震の モーメント(規模)と断層面積から求めるものである。

注2:呉羽山断層帯の滑り量の「実測値」は、平成7、8年度に実施した富山県の活断層調査

結果より設定した。

富山県(2012) (12)

2-4. 日本海東縁部に設定された地方自治体による波源モデル(5/10)

<u>石川県(2012)</u>⁽¹³⁾

 徳山ほか(2001)⁽¹⁹⁾「日本周辺海域の第四紀 地質構造図」が示す活断層を基に、Mw7.99の地 震を想定している。

第994回審査会合						
資料3-2	P. 2−7再掲					

想定地震パラメータ

断層名		1 日本海東縁部	2 能登半島 東方沖	3 能登半島 北方沖	4 石川県西方沖
想定 マグニチュード	Mw	7.99	7.58	7.66	7.44
気象庁 マグニチュード	Mj	8.54	8.03	8.13	7.85
気象庁 マグニチュード	Mj	8.54	8.02	8.13	7.85
断層長(km)	L	167	82	95	65
幅(km)	W	17.32	17.32	17.32	17.32
地震モーメント (N・m)	Мо	1.22E+21	2.95E+20	3.89E+20	1.82E+20
すべり量(m)	D	12.01	5.94	6.76	4.62
上縁深さ(km)	d	0	0	0	0
傾斜角	δ	60	60	60	60
すべり角	λ	90	90	90	90

石川県(2012) (13) に一部加筆

:波源として選定した断層

福井県(2012) (14)

 徳山ほか(2001)⁽¹⁹⁾「日本周辺海域の第四紀地質構造図」が示す活断層を基に, Mw7.99の地震を想定している。

想定地震パラメータ

	マク゛ニチュート゛	地震により隆起する地盤							
選定波源	Mw	すべり量	長さ	、幅					
①野坂,B及び大陸棚外縁断層	7.28	3.73m	長さ49km	幅 17.32 k m					
②越前堆列付近断層	7.44	4.62m	長さ65km	幅 17.32 k m					
③若狭海丘列付近断層	7.63	6.43m	長さ90km	幅 17.32 k m					
④佐渡島北方沖断層	7.99	12.01m	長さ167km	幅 17.32 k m					

 ④ 弦速島北方沖断層

 ④ 弦速島北方沖断層

 佐波島西方沖断層

 佐波島西方沖断層

 ③ 若銀海丘列付近 断層

 ● 20 加速列付近 断層

 ● 20 加速列前

 ● 20 小振 単 10 小振

 ● 20 小振 単 10 小振

 ● 20 小振 単 10 小振 一 10 加速

 ● 20 小振 単 10 小振

 ● 20 小振 単 10 小振

 ● 20 小振 単 10 小振

想定地震位置図 福井県(2012) (14) に一部加筆

2-4. 日本海東縁部に設定された地方自治体による波源モデル(6/10)

鳥取県(2012)⁽¹⁵⁾

 地震調査研究推進本部(2003)⁽¹⁸⁾を参照し、佐渡島北方沖の領域に最大 Mw8.16の地震を想定している。

			想定	E地震/	パラン	メータ					
相合肥屋		Mar	緯度	経度	深さ	走向	傾斜	すべり角	長さ(連動)	幅	すべり量
忠正断唐		INIW	(度)	(度)	(km)	(度)	(度)	(度)	(km)	(km)	(m)
鳥取沖東部断層(北上がり)		7.30	35.75	134.46	0	262	90	40	51.0	15.00	4.24
鳥取沖東部断層(南上がり)		7.30	35.69	133.89	0	82	90	40	51.0	15.00	4.24
鳥取沖西部断層(北上がり)		7.05	35.65	133.75	0	255	90	40	33.0	15.00	2.74
鳥取沖西部断層(南上がり)		7.05	35.58	133.39	0	75	90	40	33.0	15.00	2.74
隠岐東方断層		7.38	36.55	134.03	0	78	60	90	58.2	17.32	4.19
		7. 77	36.40	132.67	0	11	60	90	31.0	17.32	8.23
隠岐北西方の断層			36.68	132.74	0	334	60	90	35.9 (114)	17.32	8.23
			36.97	132.57	0	4	60	90	46.8	17.32	8.23
	[(古茶ナ)	7.85	38.95	138.41	0	20	45	90	131.1	21.21	7.71
	[(泉洛ち)	7.85	38.95	138.41	0	20	60	90	131.1	17.32	9.44
佐渡島北方沖(バターク1)		7.85	40.06	138.93	0	200	45	90	131.1	21.21	7.71
	₩(四洛ち)	7 85	40 06	138 93	0	200	60	90	131.1	17 32	9 44
	[(古英士)	8.16	38.36	138.15	0	12.9	45	90	222.2	21.21	13.06
佐渡島北方沖(パターン2)	[(東洛ち)	8.16	38.36	138.15	0	12.9	60	90	222.2	17.32	16.00
		8.16	40.31	138.73	0	193.3	45	90	222.2	21.21	13.06
	₩(四洛ち)	8 16	40 31	138 73	0	193 3	60	90	222 2	17 32	16.00
							自用	▶厘(20	12) (15)	- <u>-</u> =	和筆

扇取県(2012)

島根県(2012)⁽¹⁶⁾

• 地震調査研究推進本部(2003) (18) を参照し, 佐渡島北方沖の領域に最大 Mw8.01の地震を想定している。

島根県(2012)⁽¹⁶⁾に一部加筆

神中能展			緯度	経度	深さ	走向	傾斜	すべり角	長さ	幅	すべり量
想走町層	Mj	M # 22 4	(度)	(度)	(km)	(度)	(度)	(度)	(km)	(km)	(m)
佐渡島北方沖の地震 ⁺⁺²	7.85	7.85	38. 9498	138. 4131	0.0	20	60	90	131.1	17.3	9.4
【参考】佐渡島北方 沖の地震 (M8.01) ^{曲3}	8.01	8.01	38. 3584	138. 1383	0.0	20	60	90	222.7	17.3	9.5
出雲市沖合の地震 (断層北傾斜)	7.5	6.9	35. 5879	132.8784	3.0	267	45	90	38.4	17.0	3.2%1
出雲市沖合の地震 (断層南傾斜)	7.5	6.9	35. 5690	132. 4544	3, 0	87	45	90	38. 4	17.0	3.2※1
浜田市沖合の地震	7.3	6.8	35. 1888	132. 2491	3.0	232	45	90	27.0	17.0	2.4%1
隠岐北西沖の地震	7.4	6.9	36.9606	132. 5336	3.0	154	45	-90	36.0	17.0	2.8※1

※1:すべり量は、Mから松田式により算出 (logD=0.6M-4.0)

※2:中国電力想定モデル(2008)¹⁾に基づき設定

※3:佐渡北方沖の最大規模の地震として設定

※4:津波震源としてのMw(武村式Mw=0.78*Mj+1.08により算出)

第994回審査会合

2.4 - 8

OWER

2-4. 日本海東縁部に設定された地方自治体による波源モデル(7/10)

<u>山口県(2015)</u>⁽¹⁷⁾

第994回審査会合 資料3-2 P.2-9再掲

• 海域活断層による津波のみ想定しており、日本海東縁部の地震による津波は想定していない。

2.4-9

POWER

2-4. 日本海東縁部に設定された地方自治体による波源モデル(8/10)

POWER

=122.6km

18° 17' 36. 8" N

138" 5'14.9"E

14 *

20 *

90 *

350 km

135 km

47.250 km²

4.73E+14 cm2

8.7

3. 50E+10 N/m2

3. 50E+11 dyne/cm

811 cm 8.1 m

0 km

秋田県の波源モデルによる影響検討

- 日本海東縁部の地震に関する地方自治体の 津波想定モデルのうち.津軽海峡前面海域 を含み、既往最大規模に比べ大きい規模の 波源を想定したものは秋田県の波源モデル である。
- 当該モデルを用いて数値シミュレーション を行い、敷地における津波水位を評価した。
- その結果、想定している日本海東縁部の地 震による津波水位が、秋田県の波源モデル による津波水位を上回ることを確認した。

[136°E 想定農業域 (136°E 約4鉄道の分布から推定した登み集中帯(1 ・ 主要び運新層(現件, 2002b) (2005)	町村, 2002 5)
46°N		Y
44°N	1940.8.2 神威岬沖(積丹半島沖)地震 Getate(1986) 0+10-10-10-10-10-10-10-10-10-10-10-10-10-1	
42" N	1993.7.12 北海道南西沖地震 Tarisha st al (1995)	5
	1983.5.26 日本海中部地震 和1993.5.26 日本海中部地震 Selec(1983) 5elec(1983)	
40"N	海域8 35 海域2 海域2 海域2 月1833.12.7 庄内冲地1 980(1989) 東部勝軍ぞ年。 海域2 月1833.12.7 庄内冲地1	
38"N		150 200 km

Me= 4 - D-5 1. 34E+29 dyne-cm 1, 34E+22 Nn モーメントマグニチュー Filu Mm=(logMg=16.1)/1.5 Mg:dyne=cm 8, 69 【海域 A+B+C、大すべり域(面積比 20%)を断層中央から 15km 北側に配置】

秋田県の波源モデル

第994回審査会合

資料3-2 P.2-10再掲

地中の上端における南端

海城4、海城8、海城(の連動

3.50×10¹¹dyne-cmと仮定

 $\log D_{model} = 10^{-10.2} \times (\mu 5)^{0.1}$

Sunda;)=Lunada;) × Wanada;

logS=#-4.07

東傾斜

逆断用

設定方法

W/L=0.38を摘要し、5kmメッシュでモデル化

5:km

巨視的賞源パラメータ

新聞モデル原点

意向の

傾斜角る

TRUMY

断層モデル上端深さ

断層モデル長さLandat

新層モデル編Wanda

断層モデル面積Sag

マグニチュード単

平均すべり量Dante

地震モーメントル

剛性率µ

秋田県の波源モデルによる最大水位変動量

波源	敷地における 最大水位 上昇量	取水ロスクリーン 室前面 における最大水位 下降量				
秋田県の 波源モデル	2. 27m	—2. 22m				
日本海東縁部 に想定される 地震	5.85m	—3.78m				

秋田県の波源モデルのパラメータ

IX 41	10	100 100 . All 10 to 000	10 X = X	想定した	地震規模	10	间角	すべり角	新聞モデル 上端穿さ	新聞 モデル長さ	断層 モデル幅	断局 モデル面積	断層モデル 下端浸さ	地震モーバント	-+->>+ 70" =+1-+"	学均 すべり量	備新
	14	All and All All All All		断履長さL(ke)	₹9 271-1 M)		5(")	102	Hs(km)	Leeder (km)	Wmodel (km)	Smoder (km ²)	Hd (km)	Mo (Nm)	Mw	Danstei (m)	101.4
	1	海域A	日本海中部	130	7.9	東傾斜	35	90	0	130	50	6, 500	29	6.85E+20	7.82	3.0	·
単独地の	2	海域B	佐遭島北方沖、秋田県 沖、山形県沖	140	7.9	康倾斜	35	90	0	140	54	7, 560	31	8. 59E+20	7.89	3, 2	小断層を2km×2km でモデル化
100	3	海域C	新潟県北部沖、山形県沖	80	7.5	西倾斜	55	90	0	80	32	2, 560	26	1. 69E+20	7.42	1. 9	
	4	海域A+海域B	新潟県北部沖、山形県沖	270	8.5	東傾斜	20	90	0	270	105	28, 350	36	6. 24E+21	8,46	6.3	9 L
単動地	5	海域B+海域C	佐渡島北方沖。 秋田県 沖、山形県沖	220	8.3	東傾斜	20	90	0	220	85	18, 700	29	3. 34E+21	8, 28	5.1	小断層を5km×5km でモデル化
146	6	海域A+海域B+海域(新潟県北部沖。山形県沖	350	8.7	東傾斜	20	90	0	350	135	47,250	46	1, 34E+22	B. 69	8. 1	

: 対象波源モデル

秋田県(2013) ⁽⁹⁾に一部加筆

日次	:本日のご説明に対応する範囲 3-1
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル56と基準波源モデル1~4の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2.世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

第994回審査会合 資料3-2 P.3-2再掲 POWER

- 以下の手順により、三陸沖から根室沖のプレート間地震に伴う津波に対する安全評価のための波源モデルを検討する。
- 大間原子力発電所の安全評価上想定する、最新の科学的知見に基づく巨視的波源特性、微視的波源特性及び合理的な不確かさの考慮の検討の基礎とするため、2011年東北地方太平洋沖地震及び世界のプレート境界で発生しているM9クラスの巨大地震に係る知見(地震学的・地質学的・測地学的知見)を収集・分析し、その科学的・技術的知見に基づき検討した。

日次	
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル(5)(6)と基準波源モデル(1)~(4)の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のブレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3.2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1. 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

3-1.2011年東北地方太平洋沖地震から得られた知見(1/17)

3.1-2

第994回審査会合 資料3-2 P.3.1-2再掲

<u> 固着域に関する分析(1/7): 蓄積される歪みの量</u>

宮城県沖の固着域と2011年東北地方太平洋沖地震発生域の関係

b, Coupling distribution before the earthquake and recent seismicity along the Japan trench. The colour shading and contours indicate the degree of interplate coupling between the subducting Pacific plate and the overriding Okhotsk plate, estimated from GPS data recorded between April 2000 and March 2001⁴. The degree of coupling is expressed as the backslip rate³⁰, which is a slip deficit from the relative plate velocity. The stars mark the epicentres of large ($M \ge 6.8$) earthquakes that have occurred since 1923. The epicentres of the mainshock, a foreshock and earthquakes with $M \ge 7.4$ are marked by yellow stars and labelled with their magnitudes and/or times of occurrence. The orange area is the source area of the M = 7.6 1994 earthquake²⁰. The dashed line shows the northeastern limit of the subducted Philippine Sea plate²¹ (PHS). The Okhotsk plate overrides the Pacific plate south of this limit. The grey rectangle represents a fault patch to estimate the backslip rate.

2000年4月~2001年3月のすべり欠損分布と1923 年以降に発生したM6.8以上の地震の震央位置 Ozawa et al. (2011)⁽²²⁾

東北地方太平洋沖地震の地震時のすべり量の分布 地震調査研究推進本部(2019)⁽²⁰⁾に一部加筆 GPS観測データによるすべり欠損速度分布の 分析結果から、2011年東北地方太平洋沖地 震前は、宮城県沖にすべり欠損が大きな箇 所(固着が強い領域)が認められたとされ ている。

Ozawa et al. (2011) ⁽²²⁾ による

 東北地方太平洋沖地震の大きなすべりは宮 城県沖の海溝寄りで発生したとされている。
 地震調査研究推進本部(2019)⁽²⁰⁾による

以上から、すべりの不均質性が認められ、宮 城県沖の固着が強い領域の位置と、地震で大 きなすべりが発生した領域の位置は整合的で あり、この領域の強い固着の破壊により、複 数の領域に破壊が伝播し、巨大地震が発生し たと考えられる。

3-1.2011年東北地方太平洋沖地震から得られた知見(2/17)

第994回審査会合 資料3-2 P.3.1-3再掲

固着域に関する分析(2/7):蓄積される歪みの量

2011年東北地方太平洋沖地震後の応力状態

<u>■地震学的見地</u>

陸のプレートの応力場の変化 Hasegawa et al. (2012) ⁽²³⁾に一部加筆

<u>■地球物理学的見地</u>

3-1.2011年東北地方太平洋沖地震から得られた知見(3/17)

第994回審査会合 資料3-2 P.3.1-4再掲

スーパーサイクル

400

500

<u> 固着域に関する分析(3/7) : 蓄積される歪みの量</u>

スーパーサイクル

日本海溝沿いの各領域における固有地震と2011年型地震のすべり量と発生間隔

地震調査委員会の領	固有地震の発生	固有地震のすべ	すべり残し	2011 年の	2011 年型の
域 Regions	間隔 Characteristic interval,	り量 Characteristic coseismic slip,	速度 Slip Deficit, S=8 - d/R	すべり量 2011 slip, D(m)	発生間隔 Supercycle interval,
宮城沖 Miyagi-oki	37	2 (m)	2.6	17	660
三陸沖南部海溝寄り Southern Sanriku	105	4	4.2	30	720
津波地震 Tsunami earthquakes	530	6	6.9	45	660

佐竹(2011)⁽²⁵⁾に一部加筆

佐竹(2011)⁽²⁵⁾に一部加筆

 ・ <u>固有地震の発生間隔及びすべり量</u>から算出される<u>固有地震のすべり残し速度と</u>, 2011年東北地方太平洋沖地震のすべり量 から, 固有地震のすべり残しがプレート間の固着として蓄積され,より長い間隔で超巨大地震として解放されると考えると, 宮城県沖や三陸沖には従来の地震サイクルの上に,より長い周期のサイクル「スーパーサイクル」があるとされている。 佐竹(2011)⁽²⁵⁾による

3-1.2011年東北地方太平洋沖地震から得られた知見(4/17)

第994回審査会合 資料3-2 P.3.1-5再掲

<u> 固着域に関する分析(4/7): 蓄積される歪みの量</u>

過去の巨大地震の発生サイクルと規模の比較

 東北沖津波の浸水域
 最も内陸で見つかうた 貞観津波の堆積物

 38°14'

 貞観津波の浸水域

 山台湾

 山台湾

 山台湾

 山台湾

 山台湾

 0
 1

140°58'

140°56'

仙台平野における貞観津波(869年)と2011年東北地方太平洋 沖地震に伴う津波の浸水域の比較 菅原ほか(2013)⁽²⁷⁾

 仙台平野等においては、貞観津波(869年)と2011年東北地方太平洋沖地震の浸水域や津波堆積物の到達限界は殆ど重なる とされている。

菅原ほか(2013)⁽²⁷⁾,行谷ほか(2010)⁽²⁸⁾, 宍倉ほか(2012)⁽²⁹⁾による

以上から、過去にも同じ海域で2011年東北地方太平洋沖地震と同等規模の津波を発生させる地震が発生していたと推定される。

3-1.2011年東北地方太平洋沖地震から得られた知見(5/17)

<u> 固着域に関する分析(5/7): 蓄積される歪みの量</u>

ダイナミックオーバーシュート

第994回審査会合 資料3-2 P.3.1-6再掲

- Ide et al. (2011) ⁽³⁰⁾は, 3.11地震の地震波の解析に基づき, 以下の見解が示されている。
 - ✓ 3.11地震は、①浅部の比較的静かなすべり、②深部における高周波を放射する破壊の2つの破壊モードからなる。
 - ✓ このうち、①のすべりは地震以前に蓄えられていたひずみを解放するだけではなく、さらにすべり過ぎたことが、地震 直後に陸側プレート内で正断層地震が発生したことから推定される。これがダイナミックオーバーシュート(動的過剰 すべり)と呼ばれる現象である。
 - ✓ 浅部のダイナミックオーバーシュートは、それに先立つ深部のエネルギッシュな破壊により励起された。深部側の破壊 が存在しなければ、巨大な津波は発生しなかった。

(左図) コンター:総すべり量の分布,0309:前震(Mw7.3)のメカニズム,MS:本震のメカニズム, 0312及び0314:余震(それぞれMw6.5,Mw6.1)のメカニズム,青点:前震の震央,赤点:余震の震央, グラフ:地震モーメントの放出速度の推移

(右図)すべり速度分布のスナップショット

Ide et al. (2011) ⁽³⁰⁾

時間毎の破壊過程の模式図 井出(2011)⁽³¹⁾

3-1.2011年東北地方太平洋沖地震から得られた知見(6/17)

固着域に関する分析(6/7):蓄積される歪みの量

ダイナミックオーバーシュート

第994回審査会合 資料3-2 P.3.1-7再掲

- 3.11地震で大きなすべりを生じた要因について、長谷川(2015)⁽³²⁾は、「①プレート境界最浅部は剛性率が小さい付加体であり、この付加体の幅は宮城県沖が最も狭いとともに(Tsuru et al. (2002)⁽³³⁾)、②海底地震計による余震分布(Obana et al. (2013)⁽³⁴⁾、下図)等から、海溝軸から陸側に少なくとも30~35km程度までは固着は強くないと考えられる。したがって、宮城県沖の大きなすべりは、本震による断層面での食い違いに伴う弾性的な静的応答のみでなく、その他の非弾性的な応答や動的応答も含まれたものであることを示唆する。」とされている。
- また、文部科学省(2014)⁽³⁵⁾は、「3.11地震の際に大きく滑った海溝軸近傍のプレート境界で、本震の前後ともに小 地震の活動が見られないことは、そこで自発的な震源核形成が起こらないことを示唆する。」とされている。

Fig. 1. Bathymetric map showing the locations of ocean bottom seismographs (OBSs) used in this study and total slip distribution larger than 10 m of the 2011 Tohoku-Oki earthquake (Yagi and Fukahata, 2011). The star is the initial rupture location of the Tohoku-Oki earthquake (Chu et al., 2011). The open diamonds and the open squares are the location of short-period OBS (SPOBS) and broad-band OBS (BBOBS), respectively, used in this work. The BBOBS with uncorrected clock is indicated by the solid square. The red dashed rectangle indicates the grid-search area for the hypocenter locations. The red solid line is the survey line for the crustal structure (Ito et al., 2005; Kodaira et al., 2012) and the differential topography (Fujiwara et al., 2011). The dotted line indicates the axis of the Japan Trench.

海底地震計の設置位置と3.11地震のすべり分布 Obana et al. (2013)⁽³⁴⁾

Fig. 2. Hypocenters and error ellipsoids of the earthquakes. Earthquakes within the red dotted rectangle on the map were projected onto the P-wave velocity model used for locating earthquakes (Ito et al., 2005). The top of the oceanic crust is indicated by the dotted line on the cross section. Symbols are the same as Fig. 1.

3.11地震の余震分布とP波速度構造の関係 Obana et al. (2013)⁽³⁴⁾ 3-1.2011年東北地方太平洋沖地震から得られた知見(7/17)

第994回審査会合 資料3-2 P.3.1-8再掲

<u>固着域に関する分析(7/7):まとめ</u>

破壊伝播の検討(1/6):波源領域

資料3-2 P.3.1-9再掲

3.1-9

142° 42° 40° 岩手県沖南部 🦯 破壊伝播 宮城県沖 38" 福島県沖 破壊伝播 36° 茨城県沖 34° Slip(m) 2. Tummuntum 10 20 30 40 50 60 70 80~ 東北地方太平洋沖地震の地震時のすべり量の分布 地震調査研究推進本部(2019) (20) に一部加筆

144°

146°

 ・2011年東北地方太平洋沖地震のすべり量の大きい領域は、宮城県沖の海溝寄りに位置し、その大きい応力変化量が周辺 のセグメントとの構造境界を超えて、北方向には岩手県沖南部へと、南方向には茨城県沖へと破壊の伝播を引き起こし たものと考えられるとされている。 地震調査研究推進本部(2019)⁽²⁰⁾による

3-1.2011年東北地方太平洋沖地震から得られた知見(9/17)

第994回審査会合

資料3-2 P.3.1-10再掲

<u>破壊伝播の検討(2/6):波源領域</u> 岩手県沖南部の固着度に関する分析(1/2)

Figure 1. (a) Seismicity from the NEIC catalog around Japan from 1973 to 2011 prior to the 11 March 2011 Tohoku-Oki earthquake with $m_b \ge 5.5$. Hypocentral depths are indicated by the color scale, and symbol size increases with seismic magnitude. The magenta rectangular region indicates the SLSR. The black rectangle indicates the zoomed-in region in Figure 1b. (b) Map showing the location of the Sanriku low-seismicity region (SLSR), and schematic rupture zone of historic large earthquakes along the northeast Honshu coast [*ERC*, 1998] with blue dotted ellipsoidal shapes and a gray dotted shape for the 1896 tsunami earthquake source area [*Tanioka and Satake*, 1996] updip of the SLSR, respectively. Slip contours of 1, 10, 20, 30, 40, and 50 m for 2011 Tohoku-Oki rupture model of *Yue and Lay* [2011] are shown along with a red star for the USGS/NEIC epicentral location. The darkly dotted ellipse indicates the approximate location of the 896 Jogan tsunami source region [*Minoura et al.*, 2001]. The dashed curve indicates the position of the trench.

1973年~2011年におけるM5.5以上の震源分布と低地震活動領域 (SLSR)の位置 Ye et al. (2012) ⁽³⁶⁾

Figure 12. Schematic map of the Japan megathrust fault showing the distribution of rupture zone of historic large events and the 2011 Tohoku earthquake (large blue regions), and aftershocks (small blue regions) along the megathrust from Japan Trench. We plot the southern end of the 1896 rupture zone as extending to about 30°N, north of the aseismic zone seen in Figure 2e, consistent with the southern extent of the tsunami model of *Aida* [1977] and the region of strong inundation on the Iwate coast indicated by *Hatori* [1974]. The convergence velocity of the Pacific Plate is indicated by a yellow arrow. The magenta region highlights the SLSR on the megathrust. The SLSR is largely aseismic, but does have modest-size patches of seismogenic regions downdip, including the off-Kamaishi repeater zone. The shallower portion of the SLSR is almost devoid of moderate-size thrust events, but seismic activity is high in the 1896 rupture zone zone region further updip.

既往地震の震源概略図 Ye et al. (2012)⁽³⁶⁾

 過去の地震発生履歴、すべり欠損分布及び2011年東北地方太平洋沖地震後の余震分布等の分析から、岩手県沖南部には非地震 性のすべりにより歪みが解放される低地震活動領域(SLSR (Sanriku low-seismicity region))が存在するとされている。

Ye et al. (2012) ⁽³⁶⁾ による

 ・ 岩手県沖南部については、過去の地震発生履歴から、蓄積されている歪みを地震としてはほとんど解放しておらず、さらに、
 1989年、1992年、1994年の三陸沖の地震の後に非地震性のすべりが起こったことから、岩手県沖南部で蓄積される歪みは小さ
 く、カップリング(固着)は周辺の領域に比べると弱いと考えられるとされている。

地震調査研究推進本部(2012⁽³⁷⁾, 2019⁽²⁰⁾)による」

3-1.2011年東北地方太平洋沖地震から得られた知見(10/17)

第994回審査会合

資料3-2 P.3.1-11再掲

<u>破壊伝播の検討(3/6):波源領域</u> 岩手県沖南部の固着度に関する分析(2/2)

Fig. 1. Hypocenters of mainshock and aftershocks in a 24-hour period for the 2011 Tohoku earthquake (black circles) and aftershock areas for $M \ge 7$ earthquakes since 1926 (green lines, Uchida *et al.*, 2009). Hypocenter data are from the Japan Meteorological Agency. Red dashed line shows down-dip limit of the Philippine Sea Plate (Uchida *et al.*, 2009). Thick pink line shows the western limit of interplate earthquake distribution from Igarashi *et al.* (2001) and Uchida *et al.* (2009).

2011年東北地方太平洋沖地震後24時間 の地震分布(黒丸)と1926年以降に発生 したM7以上の余震域(緑線)の関係 Uchida and Matsuzawa (2011)⁽³⁸⁾

ig. 2. Interplate coupling coefficient estimated from small repeating earthquakes for the period from 1993 to March 2007 (color). Distribution of small repeating earthquakes (black dots) and coseismic slip area (contours, linuma *et al.* (2011)) are also shown in this figure. Bold lines denote the down-dip limit of interplate earthquakes (Igarashi *et al.*, 2009): Uchida *et al.*, 2009) and the trench axis. Dashed bold line denotes northeastern limit of the Philippine Sea plate (Uchida *et al.*, 2009). To degree by 0.3 degree windows that have three or smaller repeating earthquake. Stars marked by M, F and A indicate the hypocenter of the 2005 Miyagi-oki earthquake (M 7.2), the M 7.3 earthquake on March 9, 2011 and the largest aftershock on March 11, 2011 (M 7.7), respectively.

1993年~2007年における微小繰り返し地震 データから推定されるカップリング率 Uchida and Matsuzawa (2011)⁽³⁸⁾

Fig. 4. Schematic figure showing the distribution of the hierarchical structured asperities at Tohoku. The circles show asperities that have internal structures. The arrows indicate aseismic slip. The dashed bold line shows the NE limit of the Philippine Sea plate and the dashed thin line shows the down-dip limit of the interplate earthquake. The area between the down-dip limit and the Japan trench has both seismic and aseismic slip.

アスペリティの階層構造の模式図 Uchida and Matsuzawa (2011)⁽³⁸⁾

 微小繰り返し地震データ等を用いた2011年東北地方太平洋沖地震の震源域におけるカップリング率およびアスペリティの階 層構造に関する分析結果から、岩手県沖南部のカップリング(固着)は、福島県沖、茨城県沖のカップリング(固着)より も弱く、本震の破壊伝播を防ぐ領域であるとされている。
 Uchida and Matsuzawa (2011) ⁽³⁸⁾ による

以上から、2011年東北太平洋沖地震の破壊は、蓄積される歪みの量が小さい岩手県沖南部で消滅し、一方、蓄積される歪み の量が岩手県沖南部よりも大きい宮城県沖、福島県沖、茨城県沖には伝播したことから、蓄積される歪みの量が小さい領域 が破壊伝播の境界に関係したと考えられる。

プレート上面における微小繰り返し地震と低角逆断層地震のすべり方向 Uchida et al. (2009)⁽³⁹⁾に一部加筆

太平洋プレート上面のプレート間カップリング模式図 Uchida et al. (2009)⁽³⁹⁾

40°

- ・ 房総沖の相模トラフ周辺では、陸側のプレートの下にフィリピン海プレートが、更に下方には太平洋プレートが沈み込み、茨城県から千葉県沿岸の南東方向に向かってフィリピン海プレートの北東端が太平洋プレートに接しているとされている。
- 地震学的見地から、太平洋プレートの上盤側をなすプレートの違いによって、フィリピン海プレートの北東境界を境に カップリング(固着)が異なり、房総沖で蓄積される歪みの量は茨城県沖よりも小さいとされている。

Uchida et al. (2009) ⁽³⁹⁾ による

3-1.2011年東北地方太平洋沖地震から得られた知見(12/17)

3.1-13

2011年東北地方太平洋沖地震の余震分布(3月12日-19日)と プレート境界面の位置関係 Shinohara et al. (2011) ⁽⁴⁰⁾ に一部加筆

 2011年東北地方太平洋沖地震の余震分布に関する分析から、フィリピン海プレート北東境界の位置と2011年東北地方太平 洋沖地震の破壊域南端が一致している。フィリピン海プレートは、破壊伝播のバリアとして作用する重要な役割を果たす 可能性があるとされている。

以上から、テクトニクス的背景から茨城県沖と房総沖の間に2011年東北地方太平洋沖地震の破壊伝播を防ぐ構造境界(破壊のバリア)が存在したと考えられる。

◎蓄積される歪みの量が小さい領域や構造境界が、2011年東北地方太平洋沖 地震の破壊伝播の境界と対応づけられる。

内閣府(2012)⁽⁴¹⁾では、2011年東北地方太平洋沖地震の津波断層モデルにおける大きなすべり領域の割合を以下のとおり整理されている。

①平均すべり量の2倍以上の面積比は、全体面積の18%程度である(下表参照)。

②平均すべり量の4倍程度の面積比は、全体面積の約5%である。

参考文献	м	大きなす (平均×1	べり領域 5倍以上)	大きなすべり領域 (平均×2倍以上)		
		割合(%)	個数	割合(%)	個数	
①Fujii et al. (2011)		23	1	18	1	
②今村ほか(2011)		20	2	20	2	
③内閣府検討モデル(参考資料)	9.0	25	2	17	2	
④津波高+地殻変動を合わ せたインバージョン結果		26	1	15	1	
平均	-	24%	1.5個	18%	1.5個	

2011年東北地方太平洋沖地震の津波断層モデルにおける大きなすべり領域の割合

内閣府(2012)⁽⁴¹⁾に一部加筆
3-1.2011年東北地方太平洋沖地震から得られた知見(15/17)

<u>大すべり域・超大すべり域の検討(2/4):内閣府(2012)⁽⁴¹⁾関連の知見(2/2)</u>

第994回審査会合 資料3-2 P.3.1-16再掲

審査資料の再チェックを行い、「各研究機関の波源モデルのすべり分布特性表中の一部 記載の誤り」を修正(100,000km²を110,000km²に, 107,000km²を110,667km²に修正)した。

	JNESモデル	藤井・佐竹 44枚モデル (Ver6.2)	藤井・佐竹 55枚モデル (Ver8.0)	平均
波源面積(km ²)	112, 000	110, 000	110, 000	110, 667
モーメントマク゛ニチュート゛ Mw	9. 11	9.00	9. 02	9. 04
平均すべり量(m)	11. 40	8. 02	9. 49	9.64
平均すべり量の2倍 以上の面積比	12.10%	18. 20%	18. 20%	16. 17%
平均すべり量の4倍 以上の面積比	6. 30%	2. 30%	2. 30%	3. 63%

各研究機関の波源モデルのすべり分布特性表

- 各研究機関において、2011年東北地方太平洋沖地震に伴う津波を良好に再 現するインバージョンモデルが提案されている。
- これらインバージョンモデルの全体の波源域面積における平均すべり量に 比べて大きいすべり量を有する面積の割合は、内閣府(2012)⁽⁴¹⁾とおおむ ね整合的である。

Aftershocks within one day located by JMA (solid circles) and the locations of OBP gauges (squares), GPS wave gauges (diamonds), and coastal tide or wave gauges (triangles)

(b)

3-1.2011年東北地方太平洋沖地震から得られた知見(16/17)

大すべり域・超大すべり域の検討(3/4):杉野ほか(2014)⁽⁴³⁾の知見

第994回審査会合 資料3-2 P.3.1-17再掲

3.1-17

POWER

杉野ほか(2014)⁽⁴³⁾では、プレート間地震による津波に係る特性化波源モデル(Mw8.9~)のすべり分布について以下のとおり提案されている。

・大すべり域:すべり量は平均すべり量の1.4倍,全体面積の25%程度

・超大すべり域:すべり量は平均すべり量の3倍,全体面積の15%程度

微視的波源特性に係る波源領域内の空間的すべり分布の設定方法
 杉野ほか(2014)⁽⁴³⁾

表5 東北地震津波の特性化波源モデルの各諸元

杉野ほか(2014) (43)

<u>大すべり域・超大すべり域の検討(4/4):まとめ</u>

・内閣府(2012)⁽⁴¹⁾の知見
 ✓ 2011年東北地方太平洋沖地震の津波断層モデルにおける大きなすべり領域の割合について、平均すべり量の2倍以上の面積比は全体面積の18%程度、平均すべり量の4倍程度の面積比は全体面積の約5%と整理されている。
 ✓ また、これは、その他各研究機関の波源モデル(P.3.1-16参照)のすべり分布 特性とも整合的である。

 ・杉野ほか(2014)⁽⁴³⁾の知見
 ✓ プレート間地震による津波に係る特性化波源モデル(Mw8.9~)のすべり分布について 以下のとおり提案されている。
 ▶ 大すべり域:すべり量は平均すべり量の1.4倍,全体面積の25%程度
 ▶ 超大すべり域:すべり量は平均すべり量の3倍,全体面積の15%程度

3.1-18

POWER

第994回審査会合 資料3-2 P.3.1-18再掲

目次	····································
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル(5)(6)と基準波源モデル(1)~(4)の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3.2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2.世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1. 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(1/20)

<u> 固着域に関する分析(1/9)</u>

第994回審査会合 資料3-2 P.3.2-2再掲

POWER

地震学的・地質学的見地からの検討

沈み込み帯	チリ	カスケード	アラスカ・ アリューシャン	カムチャツカ	スマトラ〜 アンダマン
地震学的・地質学的 見地	 ・過去にM9クラスの巨大地震が発生(=1960年, M9.5) ・約300年間隔で繰り返し発生している。 宍倉(2013)⁽⁴⁴⁾ 	 ・過去にM9クラス の巨大地震が発生 (=1700年, M9.0) ・約500年間隔で繰り 返し発生している。 佐竹(2013)⁽²¹⁾ 	 過去にM9クラスの巨 大地震が発生 (=1964年, M9.2) 約600~1000年間隔で繰 り返し発生している。 Shennan et al.(2007)⁽⁴⁵⁾ 	 ・過去にM9クラ スの巨大地震が 発生 (=1952年, M9.0) ・約100~400年間 隔で繰り返し発 生している。 谷岡(2013)⁽⁴⁶⁾ 	 過去にM9クラス の巨大地震が発生 (=2004年, M9.1) 約500年間隔で繰り 返し発生している。 Rajendran (2013) ⁽⁴⁷⁾
震源域	60° 30° -30° -60° 60°	1952 Kan M9.0 2004 Sumatra M9.1 M9 120	hethatka 1964 Alaska Ny9.2 1700年カス Ny9.0 1 0 1960 1960 1960 1960 1960 1960 1960	アード アード アード アード 1000000000000000000000000000000000000	

地震発生履歴,津波堆積物調査等の知見収集の結果,世界のプレート境界面では複数の領域を震源域とするM9クラスの巨大地震が,数百年間隔で繰り返し発生している。

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(2/20)

第994回審査会合 資料3-2 P.3.2-3再掲

<u> 固着域に関する分析(2/9): 蓄積される歪みの量・すべり量</u>

世界のプレート境界面で発生したM9クラスの巨大地震の歪みの蓄積量

	チリ	カスケード	アラスカ・ アリューシャン	カムチャツカ	スマトラ~ アンダマン	備考
平均発生間隔	約300年 ⁽⁴⁴⁾	約500年 ⁽²¹⁾	約600~1000年 ⁽⁴⁵⁾	約100~400年 ⁽⁴⁶⁾	約500年 ⁽⁴⁷⁾	地震学的・地質学的知見から得られる平均発生間隔
既往地震の 最大すべり量	25~30m(1960年) ⁽⁴⁸⁾	19m(1700年) ⁽⁴⁹⁾	22m(1964年) ⁽⁵⁰⁾	11.4m(1952年) ⁽⁵¹⁾	23m(2004年) ⁽⁵²⁾	地震学的・地質学的知見から得られる最大すべり量
	•	•		•		
	$\mathbf{\hat{v}}$	$\mathbf{\hat{v}}$	$\mathbf{\hat{v}}$	$\mathbf{\hat{v}}$	$\mathbf{\hat{v}}$	調和的な関係がある
歪みの蓄積量	385年間で 24~29m	500年間で 16~19m	600年間で 20~24m 1,000年間で 33~40m	100年間で 3~4m 400年間で 14~17m	500年間で 4~22m	<u>調和的な関係がある</u> プレートテクトニクス、地震学的・測地学的知見等 から算出される歪みの蓄積量

 プレート境界毎にM9クラスの巨大地震の平均発生間隔・既往地震の最大すべり量の関係と、各プレートの沈み込み速度・ カップリング係数から算定される歪みの蓄積量とを比較した結果、両者には調和的な関係があり、M9クラスの巨大地震を 発生させる歪みの蓄積量には限度があると考えられる。

3.2-6 3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(5/20) OWER **固着域に関する分析(5/9):蓄積される歪みの量・すべり量** 第994回審査会合 資料3-2 P.3.2-6再掲 アラスカ・アリューシャン 【平均発生間隔(A)】 【1964年のすべり量分布(B)】 【歪みの蓄積量(C)】 ・ 泥炭とシルトの組(peat-silt couplets)に ・ 最大すべり量22m よる地震時の地殻変動量の推定から、1964年 · 平均すべり量8.6m ①プレートの沈み込み速度:5.5-6.6cm/年(McCaffrev. 2008) ⁽⁵³⁾ の地震を除けば、約600年間隔(推定誤差を ②カップリング係数:0.5~0.72(地震学的) 考慮すると最小で180年間隔)で巨大地震が 0.62(測地学的) (Scholz and Campos, 2012) ⁽⁵⁴⁾ 発生。 ③歪みの蓄積量:①(5.5-6.6cm/年)×600年 or 1000年 最大は1964年とその前のイベントとの間隔で ×②(=0.6とする)=<u>20~24m(600年)</u> 約1,000年となる。 33~40m(1000年) 138°W 158°W 4 66°N G 860±60B G 940±60BF G 890+40BP G 955±40BP ALASKA 600年間で20~24m F 1540±40BP 歪みの蓄積量 1000年間で33~40m E 2120+50BP E 2140±47BP D 2425±35BP D 2560+408P D 2490+408P 約600年 C 2530±40BP B 2710±408P 最大で1000年 A 3040+408P Prince William A 3020±40BP (900頃) (1964)Sound[®] Asperity 時間 A 2930±40BP A 3010±40BP 7 3220+40BP Y 3490+408P "Kodiak" Asperity 600 yr recurrence 56°N 4000 3000 2000 1000 Slip in meters Calibrated date, vr BP Figure 15 - Calibration of radiocarbon samples taken from the top of the peat layers 0-5 5-10 10-15 15-20 20-25 submerged following co-seismic subsidence. Diatom analysis shows peat Z, peat B and Peat C (open histograms) do not record co-seismic submergence. All dates from in situ plant macrofossils or tree stumps rooted in a peat laver. Calibrations based on OxCal v3.10 (Reime et al., 2004) (Ramsey, 2001). Shaded areas indicate 95% probability age range of great earthquakes ~900, ~1500, ~2100, ~2500, ~3200 and ~3800 cal yr BP. Johnson et al. (1996) (50) Shennan et al. (2007) (45)

3.2-7 3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(6/20) OWER 固着域に関する分析(6/9):蓄積される歪みの量・すべり量 第994回審査会合

カムチャツカ

【平均発生間隔(A)】 津波堆積物調査の結果から、調査地点で 大きなばらつきがあるものの100年~400 年に1回は5mを超える津波が発生して いる。

資料3-2 P.3.2-7再掲

3.2-8 3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(7/20) POWER **固着域に関する分析(7/9):蓄積される歪みの量・すべり量** 第994回審査会合 資料3-2 P.3.2-8再掲 スマトラ~アンダマン 【平均発生間隔(A)】 【2004のすべり量分布(B)】 【歪みの蓄積量(C)】

(1)プレートの沈み込み速度: 1.6-4.4cm/年(McCaffrey, 2008) ⁽⁵³⁾

・最大すべり量23m

津波堆積物調査の結果から、2004年の地

 ・ 平均すべり量8.8m 震発生領域では、約500年間隔で巨大地 震が発生している。 ②カップリング係数:0.5~0.83(地震学的) 1.0 (測地学的) (Scholz and Campos, 2012) ⁽⁵⁴⁾ 16 98 100° 102' 104'E 15'N Thailand ③歪みの蓄積量:①(1.6-4.4cm/年)×500年 (2) 6291 1679 (?) 14 ×② (=0.5~1.0とする) = 4 ~22m 1941 (7.7) Andamar Islands 12 Andaman 1861 (7.9) 4∼22m 歪みの蓄積量 004 15th 1047 (7.5) 10 1947/ Z 約500年 Nicobar atitude, 8 2004 (9. Malaysi Islands 1500 2004 1061 (8.5) 時間 6 935 (T.T) 1797 (8.4) 1797 (8. 2 57 cmbie INDIAN OCEAN <16th 17th 18th 19th 20th> 15 20 century AD slip, m Figure 9. (Right) Seismotectonic setting of the Sumatra-Andaman subduction zone showing rupture areas (shaded) of significant earthquake 92 90 94 96 98 (Left) Their spatial and temporal rupture estimates. Faults marked on the overriding plate are EMF, WAF, SFS and ASR (from Natawidpja¹⁵). His-torical earlinguike ruptures are diaded in grey (from refs 18, 53 and 55); the 2004 and 2005 ruptures are in ref and yellow respectively (from Chilels et al.⁶⁵). EMF Sestern Margin Faulty WAF, West Andmana Fault, ASA, Andmana Spectradio Faiber SFS. Stimmars Pault System longitude, E Tanioka et al. (2006) (52) Rajendran (2013) (47)

• 1900年ナリ地辰焼候(NW9.5)の地辰の间で、焼槟の小さな地辰が完全しており、1900年ナリ地辰焼槟の地辰を5 のスーパーサイクルが存在すると考えられる。

◎世界のM9クラスの巨大地震は、数百年間隔で繰り返し発生しており、固着域で蓄積される歪みの量(すべり量)には限度があると考えられる。

◎チリ沖では、1960年チリ地震規模(Mw9.5)の地震を引き起こす約300年間 隔のスーパーサイクルが存在すると考えられる。

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(10/20) ^{3.2-11}

破壊伝播の検討(1/7):波源領域

チリ沖(北端)

(a) 主要なM8以上の沈み込み地震のセグメント (b) Arauco半島の位置と主要な歴史地震の領域の関係

Valdivia沖に位置する1960年チリ地震の発生領 域とConcepcion沖の既往地震発生領域とは別領 域であり、これら領域の境界は、Arauco半島の 沖合とほぼ一致する。

Arauco半島沿いの地殻構造の縦断面図

Arauco半島には東西方向に背斜軸が存在する。

第994回審査会合 資料3-2 P.3.2-11再掲

地震構造モデル

Arauco半島以南の地震構造モデルを Intra-arc strike-slip, 以北の地震構 造モデルをForearc & Back-arc thrustingに区分しており, Arauco半島 を挟んで運動形態が異なる。

Melnick et al. (2009)⁽⁵⁵⁾に一部加筆

・「チリ沖で約300年間隔で繰り返し発生させるM9クラスの巨大地震領域の北端は、Arauco半島の地下構造が不連続な位置と一致している」とされている。

Melnick et al. (2009) ⁽⁵⁵⁾ による

• 1960年チリ地震の南端は、主要な断裂帯及びプレート境界が破壊伝播のバリアとなっている可能性がある。

「2004年スマトラ〜アンダマン地震の発生領域と2005年の地震の発生領域の境界部の地下構造について、P波速度構造による分析から、当該範囲には厚い海洋性地殻が存在し、これが破壊伝播のバリアとして作用する可能性がある」とされている。
 Tang et al. (2013)⁽⁵⁸⁾による

測線位置 Tang et al.(2013)⁽⁵⁸⁾

Figure 4. Cartoon illustrating the segmentation of the 2004–2005 megathrust rupture in the Sumatra subduction zone around Simeulue Island. The accretionary complex removed for simplicity. CRZ: coseismic rupture zone; SP: Sunda plate. Other labels same as in Figures 2 and 3.

2004年と2005年の地震の境界部における 地下構造の模式図 Tang et al. (2013)⁽⁵⁸⁾

P波速度構造 Tang et al. (2013)⁽⁵⁸⁾

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(13/20) ^{3.2-14}

POWER 第994回審査会合

資料3-2 P.3.2-14再掲

<u>破壊伝播の検討(4/7):波源領域</u>

アラスカ・アリューシャン

Fig. 2. Map of southern Alaska illustrating slab seismicity (>50 km depth; Alaska Earthquake Information Center catalog) and locations of transects shown in Fig. 3. Additional symbols are the same as in Fig. 1. Note the northeastward increase in the gap between slab seismicity and the trench as well as the paucity of seismicity deeper than 50 km along the northeastern edge of the slab.

アラスカ南部における深さ50km以上のスラブ地震の平面分布

Finzel et al. (2011) ⁽⁵⁹⁾ に一部加筆

Fig. 3. Cross-sections showing changes in seismicity (within ~50 km of each transect) between eastern, central, and western transects across southern Alaska (Alaska Earthquake Information Center catalog). Locations of transects shown on Fig. 2. Note that seismicity from all depths is shown and transects are aligned parallel with present-day plate motions. DF–Denali fault; TR–Transition fault; see Fig. 1 for additional abbreviations. Default depths of 10 km and 33 km are assigned for events with poorly constrained depths in oceanic and continental areas, respectively.

アラスカ南部における深さ50km以上のスラブ地震の断面分布

Finzel et al. (2011) ⁽⁵⁹⁾ に一部加筆

・「アラスカ南部では、太平洋プレートが北米プレートに北〜北西方向に沈み込んでおり(〜51mm/年), 会合部ではYakutatマイク ロプレートが形成されている」とされている。 Finzel et al. (2011) ⁽⁵⁹⁾による

・「深さ50km以上のスラブ内地震の分布から、沈み込んだYakutatマイクロプレートの範囲を推定するとともに、その地震分布から、 プレートの沈み込み形状が西から東へフラットに遷移する特徴があるとしている」とされている。 Finzel et al. (2011) ⁽⁵⁹⁾ にょる

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(14/20) ^{3.2-15}

<u>破壊伝播の検討(5/7):波源領域</u>

アラスカ・アリューシャン

Figure 1. Tectonic setting in south-central Alaska (USA) with volcanoes (red triangles), Wadati-Benioff zone seismicity >30 km depth (black dots), A.D. 1964 rupture patch (Plafker et al., 1994a), subducted Yakutat terrane (Eberhart-Phillips et al., 2006), Wrangell volcanic field (WVF), and observed tectonic tremor activity (green circles). Dashed box refers to map in Figure 2. Velocity vectors are taken from Elliott et al. (2010). Previously proposed slab tear (Fuis et al., 2008) and Wrangell slab (Stephens et al., 1984) are drawn as a light blue triangle and dashed purple lines, respectively.

アラスカ南部のテクトニクス的背景と 1964年アラスカ地震の破壊領域等の関係

Wech (2016) ⁽⁶⁰⁾ に一部加筆

POWER

第994回審査会合 資料3-2 P.3.2-15再掲

Figure 4. Schematic along-strike cross section of potential configuration of Pacific plate, Yakutat terrane, North America plate, and Wrangell slab. Intraslab seismicity is limited to Pacific plate. Tremor occurs at the Yakutat–North America interface. Wrangell slab is an obliquely subducting extension of the Yakutat microplate causing Wrangell volcanism.

> 太平洋プレート, Yakutat terrane, 北米プレート等の模式図 Wech (2016) ⁽⁶⁰⁾

ほぼ海洋性のマイクロプレートであるYakutat terrane(テレイン:周囲と地質形成の過程が異なる地殻の層)は部分的に太平洋プレートと結合し,アラスカ・アリュ ーシャン沈み込み帯の端部で太平洋プレートに乗り上げている。

・「アラスカ南部のテクトニクス的背景,火山の配列,微小地震分布等から島弧会合部の地下構造を推定し,同会合部がM9クラスの1964年アラスカ地震の破壊領域の端部(北東端)になっていることを示している」とされている。 Wech (2016) ⁶⁰⁾ による

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(15/20) ^{3.2-16}

POWER

第994回審査会合 資料3-2 P.3.2-16再掲

<u>破壊伝播の検討(6/7):波源領域</u>

Figure 1. Map of the western Gulf of Alaska ocean basin and the Alaska convergent margin. Dashed lines enclose aftershock areas of the 1938, 1946, and 1964 great earthquakes. The Prince William and Kodiak ruptures are separated to emphasize the two main asperities of the 1964 event. The width of the Kodiak margin from the trench to the volcanic are narrows southwest from the Kenai Peninsula to one-third this width at Sanak Island. The wider subducted plate is ~10 m.y. old beneath the northeastern volcanoes, whereas in the southwest it is only ~3.5 m.y. old. Large arrow indicates convergence vector at 64 mm/yr. S prefix is given to seismic lines and original cruise line numbers. Seismic data of lines 1237 and 1235 were acquired by RV Ewing; seismic data of lines 111, 71, and 63 were acquired by RV Lee. Field data for both is archived at the US Geological Survey in Menlo Park, California, USA. M Is—Middleton Island; K SMT—Kodiak Seamount; C Is—Chirikof Island; T Is—Trinity Islands; SEM Is—Senaid Island; SHU Is—Shumagin Islands; S Is—Sanak Island; AMTJ—Amatuli Trough; AB—Albatross Bank; PZ—general area of the Pamplona zone.

アラスカのテクトニクス的背景と既往地震の破壊領域の関係 Huene et al. (2012) ⁽⁶¹⁾

Figure 3. Summary of coseismic land motion, inferred segment ruptures, and selected features of subducting lower-plate relief that may influence earthquake rupture on Kodiak Island, Alaska (von Huene et al., 2012). A: A.D. 1964 (observations from Plafker, 1969). B: A.D. 1788. C: A.D. 1440-1620. **Relative ground motions** are inferred from sediment stratigraphy and microfossil analyses where present (see Fig. 2B) and from Sitkinak Island (Briggs et al., 2014). Extent of Kodiak segment (solid outline) is from von Huene et al. (2012); dashed line for the 1788 rupture indicates alternative interpretation (e.g., Briggs et al., 2014) of historical documentary evidence.

1964年アラスカ地震の震源域における既往地震の発生領域 Shennan et al. (2014)⁽⁶²⁾

- ・「M9クラスの1964年アラスカ地震の破壊領域の端部と, Patton-Murray ridge, Aja Fracture Zoneの沈み込み部は一致すること から, これらプレート境界面の起伏が破壊のバリアとして作用する可能性がある」とされている。 Huene et al. (2012) ⁽⁶¹⁾による
- ・なお,「Patton-Murray ridge, Aja Fracture Zoneの沈み込み部は,既往地震(A.D.1440-1620, A.D.1788)の端部とも一致している」とされている。 Shennan et al. (2014)⁽⁶²⁾による

◎チリ沖,スマトラ島沖及びアラスカ・アリューシャンを対象とした検討から,構造境界が,世界のM9クラスの地震の破壊伝播の境界と対応づけられる。

内閣府(2012)⁽⁴¹⁾では、世界の巨大地震の津波断層モデルにおける大きなすべり領域の割合を以下のとおり整理されている。
 平均すべり量の2倍以上の面積比は、全体面積の20%程度である。

地震名・参考文献	M*	大きなす (平均×1	べり領域 .5倍以上)	大きなすべり領域 <u>(平均×2倍以上)</u>	
		割合(%)	個数	割合(%)	個数
1960年チリ地震 Fujii and Satake(投稿中)	9.5	30	3	19	2
1964年アラスカ地震 Johnson and Satake(1996)	9.2	30	2	25	1
2004年スマトラ島沖地震 Fujii and Satake(2007)	9. 1	18	1	18	1
1952年カムチャツカ地震 Johnson and Satake(1999)	9.0	33	2	25	3
2010年チリ地震 Fujii and Satake(投稿中)	8.8	22	3	11	2
平均	÷	27%	2.2個	20%	1.8個

M9以上の既往地震の津波断層モデルにおける大きなすべり領域の割合

※マグニチュードはUSGSによる

内閣府(2012)(41)に一部加筆

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(18/20) ^{3.2-19}

POWER

第994回審査会合 資料3-2 P.3.2-19再掲

<u>大すべり域・超大すべり域の検討(2/4)</u>

	1960年チリ Fujii and Satake (2013) ⁽⁴⁸⁾	1700年カスケード Satake et al. (2003) ⁽⁴⁹⁾	1964年アラスカ・ アリューシャン Johnson et al. (1996) ⁽⁵⁰⁾	1952年カムチャツカ Johnson and Satake (1999) ⁽⁵¹⁾	2004年スマトラ Tanioka et al. (2006) ⁽⁵²⁾
平均すべり量 (A)	11m	14m	8. 6m	3. 2m	8.8m
最大すべり量 (B)	25~30m	19m	22m	11.4m	23m
最大すべり量/平均すべり量 (B) / (A)	2. 3~2. 7	1.4	2. 6	3. 6	2.6

 世界の巨大地震の津波断層モデルにおける各研究機関の主な波源モデルのすべり分布特性を整理した結果、最大すべり量と 平均すべり量との比は1.4~3.6程度である。

3-2. 世界のM9クラスの超巨大地震から得られた知見の整理(19/20) ^{3.2-20}

<u>大すべり域・超大すべり域の検討(3/4)</u>

	1960年チリ Fujii and Satake (2013) ⁽⁴⁸⁾	1700年カスケード Satake et al. (2003) ⁽⁴⁹⁾	1964年アラスカ・ アリューシャン Johnson et al. (1996) ⁽⁵⁰⁾	1952年カムチャツカ Johnson and Satake (1999) ⁽⁵¹⁾	2004年スマトラ Tanioka et al. (2006) ⁽⁵²⁾
平均すべり量の2倍 以上の面積比	19%	*	25%	25%	14%

※Satake et al (2003)⁽⁴⁹⁾では、平均すべり量及び最大すべり量については言 及されているが、すべりの面積比については言及されていないため不明。

POWER

第994回審査会合 資料3-2 P.3.2-20再掲

世界の巨大地震の津波断層モデルにおける各研究機関の主な波源モデルのすべり分布特性を整理した結果、全体の波源域面積に対する平均すべり量の2倍以上の面積比は14%~25%である。

POWER

第994回審査会合 資料3-2 P.3.2-21再掲

<u>大すべり域・超大すべり域の検討(4/4):まとめ</u>

- ・内閣府(2012)⁽⁴¹⁾では、世界の巨大地震の津波断層モデルにおける大きなすべり 領域の割合について、平均すべり量の2倍以上の面積比は全体面積の20%程度と 整理されている。
- ・また、各研究機関の主な波源モデルのすべり分布特性を整理した結果、最大すべり量と平均すべり量の比は1.4~3.6程度であり、全体の波源域面積に対する平均すべり量の2倍以上の面積比は14%~25%である。

(余白)

日次	:本日のご説明に対応する範囲 3.3-1
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 . 基準波源モデル⑤⑥と基準波源モデル①~④の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3.2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3−3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

3-3. まとめ

第994回審査会合 資料3-2 P.3.3-2再掲

・超大すべり域」に係る知見は整合的であり、基準波源モデルはこれらの知見を参照して設定する。

日次	····································
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル56と基準波源モデル1~4の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2.世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
- - 4−1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1.動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

検討方針

 敷地付近における津波水位評価位置である汀線沿いの最大水位上昇量を比較すると、専用港湾内を除いて「岩手県沖北部から十勝沖・根室沖の広域の津波特性を考慮した特性化モデル」の方が「十勝沖・根室沖から色丹島沖及び択捉島沖の広域の 津波特性を考慮した特性化モデル」に比べ最大水位上昇量が大きい。

41-2

POWER

コメントNo.S5-52

② 一方,敷地における津波水位評価位置である取水ロスクリーン室前面においては、港湾内での増幅の影響により、「十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル」(最大水位上昇量2.19m)の方が「岩手県沖北部から十勝沖・根室沖の広域の津波特性を考慮した特性化モデル」(最大水位上昇量1.76m)に比べ最大水位上昇量が大きい。

上記を踏まえ,超大すべり域が2つのモデルを対象とした想定波源域は「岩手県沖北部から十勝沖・根室沖」とし,「十勝沖根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル」は影響確認用波源として位置付けた(本編資料P.3.2.1-33参照)。

 ここでは、影響確認用波源として位置付けた「十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化 モデル」を対象に概略パラメータスタディを行い、「岩手県沖北部から十勝沖・根室沖の広域の津波特性を考慮した特性化モ デル」に対し保守性を考慮した基準波源モデル①と比較を行う。

概略パラメータスタディ				
モデル	変動範囲	ケース数		
十勝沖・根室沖 から色丹島沖及 び択捉島沖の広 域の津波特性を 考慮した特性化 モデル	十勝沖及び根室沖の超大すべり域に対し,基準を10kmピッチで移動。移動範囲 は,東方へ10km (E1)~150km (E15),西方へ10km(W1),20km (W2)。	18		

+勝沖・根室沖から色丹島沖及び択捉島沖の 広域の津波特性を考慮した特性化モデル

 概略パラメータスタディとして、超大すべり域の位置の不確かさの考慮のため、「十勝沖・根室沖から色丹島沖及び択捉島 沖の広域の津波特性を考慮した特性化モデル」に対して、位置のパラメータスタディ(18パターン)を実施した。

4-1. 検討対象波源域の選定(4/6)

<u>概略パラメータスタディ:検討結果</u> く十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル>

「十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル」に対する概略パラメ ٠ ータスタディの結果は以下のとおりである。

概略パラメータスタディ結果一覧

基準波源 モデル	アスペリティの 位置	最大水位 上昇量	最大水位 下降量
	東方へ150km	1.48m	— 1.32m
	東方へ140km	1. 44m	—1.33m
	東方へ130km	1.39m	—1.37m
	東方へ120km	1.33m	— 1.40m
	東方へ110km	1.36m	—1.54m
上勝油・坦安	東方へ100km	1.46m	—1.58m
一勝戸・根里 沖から色丹島	東方へ90km	1.55m	—1.58m
沖及び択捉島	東方へ80km	1. 44m	—1.64m
沖の広域の津	東方へ70km	1.46m	—1.68m
波特性を考慮	東方へ60km	1.52m	—1.64m
した特性化モ	東方へ50km	1.70m	— 1.55m
テル	東方へ40km	1.92m	—1.41m
	東方へ30km	2. 06m	—1.38m
	東方へ20km	2. 02m	—1.33m
	東方へ10km	2. 07m	— 1.34m
	基準位置	2. 19m	—1.39m
	西方へ10km	2. 07m	—1.61m
	西方へ20km	2. 20m	— 1. 95m

:基準配置のアスペリティ位置

: 概略パラスタ 最大水位上昇ケース

第994回審査会合

資料3-1 P.2.3.1-110一部修正

4-1. 検討対象波源域の選定(5/6)

第994回審査会合

資料3-1 P.2.3.1-110一部修正

4.1-6

コメントNo.S5-52

<u>概略パラメータスタディ:検討結果</u>

<u><十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデルと基準波源モデル①との比較></u>

- 「十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル」に対する概略パラメータスタディと「岩手県沖北部から十勝沖・根室沖の広域の津波特性を考慮した特性化モデル」に対し保守性を考慮した基準波源モデル①に対する概略パラスタ(本編資料P.3.2.1-104, P.3.2.1-108参照)の結果は以下のとおりである。
- 「十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル」を影響確認用波源として位置付け、概略パラスタを行い、「岩手県沖北部から十勝沖・根室沖の広域の津波特性を考慮した特性化モデル」に対し保守性を考慮した基準波源モデル①と比較を行った結果、基準波源モデル①の方が、上昇側、下降側共に敷地に与える影響が大きい。

概略パラメータスタディ結果一覧

<十勝沖・根室沖から色丹島沖及び択捉島沖>

<岩手県沖北部から十勝沖・根室沖>

基準波源 モデル	アスペリティの 位置	最大水位 上昇量	最大水位 下降量
	東方へ150km	1.48m	— 1.32m
	東方へ140km	1.44m	—1.33m
	東方へ130km	1.39m	—1.37m
	東方へ120km	1.33m	— 1.40m
	東方へ110km	1.36m	—1.54m
上勝油,坦安	東方へ100km	1.46m	—1.58m
山からの日島	東方へ90km	1.55m	—1.58m
沖及び択捉島	東方へ80km	1.44m	—1.64m
沖の広域の津	東方へ70km	1.46m	—1.68m
波特性を考慮	東方へ60km	1.52m	—1.64m
した特性化モ	東方へ50km	1.70m	—1.55m
テル	東方へ40km	1.92m	—1.41m
	東方へ30km	2. 06m	—1.38m
	東方へ20km	2. 02m	—1.33m
	東方へ10km	2. 07m	—1.34m
	基準位置	2.19m	—1.39m
	西方へ10km	2. 07m	—1.61m
	西方へ20km	2. 20m	— 1.95m

基準波源	アスペリティの 位置		最大水位 上	最大水位
	AI	TN	エナ里	里神口
基準波源 モデル ①	北方へ 約20km	東方へ10km	2.43m	— 2.07m
		基準位置	2.49m	— 1.88m
		西方へ10km	2. 55m	— 1.80m
		西方へ20km	2.53m	— 1.92m
	北方へ 約10km	東方へ10km	2. 30m	— 2. OOm
		基準位置	2. 39m	— 1.97m
		西方へ10km	2. 50m	— 2. 04m
		西方へ20km	2.51m	— 2.15m
	基準位置	東方へ10km	2.15m	— 1.96m
		基準位置	2. 26m	— 1.92m
		西方へ10km	2. 30m	— 1.95m
		西方へ20km	2. 29m	— 2. O3m
	南方へ 約10km	東方へ10km	2. 06m	— 2. 05m
		基準位置	2.17m	— 1.92m
		西方へ10km	2. 07m	— 2. 00m
		西方へ20km	2. 22m	— 2. 07m

: 概略パラスタ 最大水位上昇ケース

: 概略パラスタ 最大水位下降ケース

- 念のため、「十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル」を影響確認用波源として位置付け、概略パラメータスタディを行い、「岩手県沖北部から十勝沖・根室沖の広域の津波特性を考慮した特性化モデル」に対し保守性を考慮した基準波源モデル①に対する概略パラメータスタディの結果との比較を行った。
- その結果、「岩手県沖北部から十勝沖・根室沖の広域の津波特性を考慮した特性化モデル」に対し保守性を考慮した基準波源モデル①の方が、「十勝沖・根室沖から色丹島沖及び択捉島沖を検討対象波源域とする十勝沖・根室沖から色丹島沖及び択捉島沖の広域の津波特性を考慮した特性化モデル」に比べ、上昇側、下降側共に敷地に与える影響が大きいことを確認した。

(余白)

日次	:本日のご説明に対応する範囲 4.2.1-1		
	POWER		
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル56と基準波源モデル1~4の関連性		
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の		
2-1. 波源モデルのパラメータに関する検討	傾向把握		
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波		
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討		
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波		
評価因子影響分析	7-1. 地すべり地形分布図		
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について		
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波		
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読		
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録		
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定		
3-2.世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について		
3-3. まとめ	9. 火山現象に起因する津波		
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討		
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討		
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認		
4−2−1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性		
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法		
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討		
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討		
評価因子影響分析	11-4. まとめ		
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他		
4-4-1. 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法		
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について		

 ・波源モデル設定の妥当性確認に関連し、世界のM9クラスの超巨大地震のライズタイムに関する知見を踏まえ、三陸沖から根室沖のプレート間地震に伴う津波の検討に関し、ライズタイムが津波水位に与える影響について検討を実施した。

第994回審査会合

資料3-2 P.4.3-2再掲

4.2.1-2

POWER

4-2-1. ライズタイムの影響検討(2/6)

による55枚モデル及び杉野ほか(2013)(42)モデルのライズタイム※は以下のとおりである。

世界のM9クラスの超巨大地震のライズタイム:3.11地震

• 3.11地震に伴う津波の再現モデルのうち、津波波形等をインバージョンした内閣府(2012)モデル⁽⁴¹⁾、Satake et al.(2013)⁽⁶³⁾

第994回審査会合

資料3-2 P.4.3-3再掲

4.2.1 - 3

POWER

4-2-1. ライズタイムの影響検討(3/6)

<u>世界のM9クラスの巨大地震のライズタイム:2004年スマトラ〜アンダマン地震</u>

- Fujii and Satake(2007)⁽⁶⁴⁾では、2004年スマトラ〜アンダマン地震を対象として、破壊伝播速度(0.5km/s~3.0km/s)、ラ イズタイム(60s~180s)を変化させた津波波形のインバージョン解析を実施して、2004年スマトラ〜アンダマン地震の再現 モデルを策定している。
- 検討の結果,破壊伝播速度を1.0km/s, ライズタイム[※]を180sとした場合に,最も観測結果が一致しているとしている。 ※各断層ブロックの破壊開始から破壊終了までの時間。

 Table 4

 Variance Reductions (%) for Three Different Inversions with Different Rupture Velocities and Rise Times

V	Tide Gauge Data			Satellite Altimeter Data			TG+SA Data		
(km/sec)	1 min	2 min	3 min	1 min	2 min	3 min	1 min	2 min	3 min
0.5	23.1	20.8	18.8	27.8	29.5	31.0	22.0	20.1	18.3
1.0	32.8	33.4	34.2	33.8	36.4	38.2	29.8	31.0	32.1
1.5	29.3	29.5	29.8	31.1	33.8	35.5	26.8	27.3	27.8
2.0	30.2	29.9	29.7	29.7	32.3	34.2	27.2	27.3	27.4
2.5	28.4	28.2	28.3	28.4	30.6	32.9	25.0	25.2	25.6
3.0	28.5	28.4	28.5	27.4	29.7	31.9	24.9	25.2	25.6

Figure 7. Slip distribution estimated by inversion of tide gauge (TG) data. Rupture velocity is 1.0 (left), 1.5 (center) and 2.0 (right) km/sec. Rise time for each subfault is 3 min.

Star shows the mainshock epicenter. Circles indicate aftershocks within one day after the mainshock.

2004年スマトラ~アンダマン沖地震の津波インバージョン結果 (Fujii and Satake(2007)⁽⁶⁴⁾に一部加筆)

4-2-1. ライズタイムの影響検討(4/6)

<u>パラメータスタディ(1/3):検討範囲の設定</u>

- ライズタイムが津波評価に与える影響を把握するために、ライズタイムに対するパラメータスタディを実施した。
- パラメータスタディの検討範囲は、国内外で発生した巨大地震のライズタイムに関する知見収集結果等を踏まえ以下のとおり設定した。

第994回審査会合

資料3-2 P.4.3-5再掲

421-5

POWER

国内外で発生した巨大地震のライズタイム

地震	ライズタイム	備考
3.11地震	210s~300s	大きなすべりが生じた領域における破 壊開始から破壊終了までの時間
2004年スマトラ~アンダマン地震	180s	各断層ブロックの破壊開始から破壊終 了までの時間
三陸沖から根室沖のプレート間地震 (基準津波の策定で検討)	60s	内閣府(2012) ⁽⁴¹⁾ より設定

パラメータスタディ範囲の設定

基本ケース	パラメータスタディ範囲 (追加検討ケース)
60s	90s, 120s, 180s, 300s

4-2-1. ライズタイムの影響検討(5/6)

パラメータスタディ(2/3):検討対象ケース

• パラメータスタディの対象ケースは、三陸沖から根室沖のプレート間地震に伴う津波のうち、最大水位上昇ケース及び最 大水位下降ケースとした。

パラメータスタディ範囲の設定

第994回審査会合

資料3-2 P.4.3-6再掲

4.2.1-6

POWER

<u>パラメータスタディ(3/3):検討結果</u>

- ライズタイムが敷地の津波評価に与える影響検討結果は以下のとおり。
- 上昇側, 下降側共, ライズタイムが長いケースの水位変動量は, 基本ケース(60s)の水位変動量に比べ小さくなることを 確認した。

パラメータスタディ範囲の設定

項目	基本ケース	変動範囲	ケース数
ライズタイム	60s	90s, 120s, 180s, 300s	5

第994回審査会合

資料3-2 P.4.3-7再掲

4.2.1-7

POWER

ライズタイムの影響検討結果

評価 区分	タイプ	アスペリティ の位置	破壊伝播 速度	破壊 開始点	ライズ タイム	最大水位 上昇量	最大水位 下降量	】	Qm	
	基					60s	3.69m	—2.39m		
 上 	準波	S1を 北方へ 10km移動			90s	3.62m	—2.35m			
	源モ		2. Okm/s	d	120s	3. 50m	—2.28m			
	デル				180s	3.18m	—2.16m			
	6				300s	2.44m	— 1.89m		-2. 24	
	基	南方へ			60s	3. 47m	—3.53m	48 ※73へ リティの位置:S1を北方へ10km移動 *** ※73へ リティの位置:南方へ40km移動 リ 1 基準波源モデル⑥ -1 基準波源モデル③		
_¬	準波				90s	3. 47m	—3.43m	□ 】	: a	
下 降 側	源モ		2.0km/s	а	120s	3. 42m	—3.31m	$ \begin{bmatrix} 60 & 90 & 120 & 180 & 300 & 60 & 90 & 120 & 180 \\ = 4 \vec{z} \vec{z} \vec{z} \vec{z} \vec{z} \vec{z} \vec{z} \vec{z}$	300	
	デル				180s	3. 27m	— 3. 00m			
3					300s	3. 02m	-2.24m	ライズタイムの影響		

:最大水位上昇ケース

:最大水位下降ケース

(余白)

日次	····································
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル56と基準波源モデル1~4の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2.世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1.動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(1/23)

POWER 第994回審査会合 資料3-2 P.4.1-2再掲

4.2.2-2

3.11地震による津波等の再現確認

三陸沖から根室沖のプレート間地震に伴う津波の基準波源モデル設定手順の妥当性を示すことを目的として、東北地方 太平洋沖地震(以下「3.11地震」という。)による津波等の再現性を確認した。

【検討概要】

(① 3.11地震発生海域を対象に、M9クラスの超 巨大地震から得られた知見(3章参照)を参 照した2つの特性化波源モデル ^{※1} を作成する。	1) 3.11地震における広域の津波 特性を考慮した特性化モデル (P.4.2.2-3~P.4.2.2-7参照)	2)3.11地震における宮城県沖の 破壊特性を考慮した特性化モデル (P.4.2.2-13~P.4.2.2-15参照)					
 ② 上記①の1)、2)のモデルを用いて、右記のデ ータを対象として再現計算を行い広域の津波 痕跡高、観測波形等の再現性が良好であるこ 	▼ 3.11地震の広域(青森県北部~ 茨城県南部)の津波痕跡高 (P.4.2.2-8~P.4.2.2-11参照)	▼ 3.11地震の震源付近の地殻変動量 及び宮城県の沖合の観測波形 ^{※2} (P.4.2.2-16~P.4.2.2-20参照)					
とを確認する。 ③ 上記で再現性が確認された3.11地震の特性化波源モデル設定の考え方を、三陸沖から根室沖のプレート間地震に伴う 津波の基準波源モデルの設定に反映する。(P.4.2.2-25参照) 							
、 							

※2:「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」に対し、保守性を考慮することを目的として 「すべり量強調モデル」及び「分岐断層や海底地すべり等が存在する可能性を考慮したモデル」を検討する。 これらモデルが保守的設定となっていることについても確認する。(P.4.2.2-21~P.4.2.2-24参照) 4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(2/23)

<u>3.11地震における広域の津波特性を考慮した特性化モデルによる再現性確認(1/9)</u>

検討方針

• 「3.11地震における広域の津波特性を考慮した特性化モデル」(P.4.2.2-25参照)が,広域の津波特性(津波痕跡高) を適切に考慮しているかを確認するため,「3.11地震における広域の津波特性を考慮した特性化モデル」による計算津 波高と青森県北部~茨城県南部における3.11地震の津波痕跡高とを比較する。

※ 3.11 地震における広域の津波特性を考慮した特性化モデルの設定方法及びパラメータはP.4.2.2-4~P.4.2.2-7参照。

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(3/23)

<u>3.11地震における広域の津波特性を考慮した特性化モデルによる再現性確認(2/9)</u>

巨視的波源特性:想定波源域の設定

3.11地震における広域の津波特性を考慮した特

性化モデル

「3.11地震における広域の津波特性を考慮した特性化モデル」の波源域は、各機関等で提案されている3.11地震に伴う津波の再現モデルのうち、津波波形等のインバージョン解析により作成した内閣府(2012)⁽⁴¹⁾モデル、Satake et al. (2013)⁽⁶³⁾による55枚モデル及び杉野ほか(2013)⁽⁴²⁾モデルの波源域を参照して、各機関の再現モデルの波源域をおおむね包絡するように設定した。

9 13

129, 034km²

;	波	源均	或(のと	上較
7	汳	源 ¹	或(のと	上較

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(4/23)

<u>3.11地震における広域の津波特性を考慮した特性化モデルによる再現性確認(3/9)</u>

微視的波源特性:大すべり域・超大すべり域のすべり分布位置の設定

「3.11地震における広域の津波特性を考慮した特性化モデル」の大すべり域・超大すべり域のすべり分布位置については、
 3.11地震及び世界のM9クラスの超巨大地震に係る最新の科学的・技術的知見に基づく、各領域の固着等に関する分析結果
 を踏まえて設定した。

Figure 2 | Distribution of total deviations and the result of a two-source

inversion. The red and purple contours represent the distributions of the forward slip by the very long-term transient event and the backslip by the northern source, which were obtained through the two-source inversion of the total deviations (pink arrows). The black arrows denote synthetic deviations computed for the inversion result. The co-seismic slip distribution of the 2011 Tohoku earthquake⁸ is also displayed with the epicentre (white star) and Japan Trench (dark green line). The black bar at the bottom right denotes 100 km.

Backslip

OBS -

SYN ->

5 cm

Forward slip

100km

3.11 地震のすべり分布及び

長期的な非地震性すべり発生領域

Yokota and Koketsu (2015)⁽⁶⁵⁾に一部加筆

Ye et al. (2012) (36)

142 143

141

139 140

869

Tsunami Source

100 km

144 145 146

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(5/23)

<u>3.11地震における広域の津波特性を考慮した特性化モデルによる再現性確認(4/9)</u>

微視的波源特性:大すべり域

・超大すべり域の設定

• 「3.11地震における広域の津波特性を考慮した特性化モデル」の大すべり域・超大すべり域のすべり量及び面積比率については、杉野ほか(2014)⁽⁴³⁾を参考に設定した。

▶ 大すべり域:津波断層の平均すべり量の1.4倍,全体面積の40%程度(超大すべり域を含む)

▶ 超大すべり域:津波断層の平均すべり量の<u>3倍</u>,全体面積の<u>15%程度</u>

微視的波源特性に係る波源領域内の空間的すべり分布の設定方法
 杉野ほか(2014)⁽⁴³⁾

東北地方太平洋沖地震津波合同調査グループ(2012)

※:津波特性を把握するために十分な痕跡数を確保する観点から,海岸線沿い から1,000m以内,信頼度Aのデータ(総数:2,686)を用いる。 4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(8/23)

<u>3.11地震における広域の津波特性を考慮した特性化モデルによる再現性確認(7/9)</u>

• 再現性を確認する数値シミュレーションの主な計算条件は以下のとおり。

領域項目	A領域	B領域	C領域	D領域	E領域		
計算格子間隔⊿s	2. 5 k m	833m (2500/3)	278m (2500/9)	93m (2500/27)	31m (2500/81)		
計算時間間隔⊿t			0.1秒				
基礎方程式	線形長波式		非線形長波式	式(浅水理論)			
沖合境界条件					转続		
陸側境界条件	完全反射条件	完全反 (海底露b	射条件 出を考慮)	小谷ほか (1998) ⁽⁶⁶⁾ の 遡上境界条件			
外力条件	波源モデルを用 海面上に与える。	いてMansinha and	Smylie(1971) ⁽⁶⁷⁾ の	方法により計算さ	れる海底面変位る		
海底摩擦	考慮しない	マニ	ニングの粗度係数 (土木学会(2	: n = 0.03m ⁻¹ 016) ⁽⁴⁾ より)	^{1/3} s		
水平渦動粘性係数	考慮しない						
潮位条件	T.P0.40m(地震発生時の潮位)						
計算時間			津波発生後4時間				

主な計算条件

注:海域地形モデル A領域:ETP0 B領域~E領域:M7000シリーズ

計算領域とその水深及び格子分割

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(9/23)

<u>3.11地震における広域の津波特性を考慮した特性化モデルによる再現性確認(8/9)</u>

再現性の確認結果

• 「3.11地震における広域の津波特性を考慮した特性化モデル」による計算津波高と青森県北部~茨城県南部における3.11地 震の津波痕跡高とを比較した結果, K=0.99, κ=1.40であり再現性は良好であることを確認した。

【痕跡高の再現性の確認結果】

	К	к	n
3.11地震における広域の津波 特性を考慮した特性化モデル	0. 99	1. 40	2, 686

※:再現性の目安0.95<K<1.05, κ<1.45(土木学会(2016)⁽⁴⁾)

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(10/23)

3.11地震における広域の津波特性を考慮した特性化モデルによる再現性確認(9/9)

422-11

POWER

第994回審査会合

まとめ

• 「3.11地震における広域の津波特性を考慮した特性化モデル」は、青森県北部~茨城県南部における3.11地震の津波 痕跡高を良好に再現することができるモデルであり、広域の津波特性(津波痕跡高)を適切に考慮できるモデルであ ることを確認した。

(余白)

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(11/23)

4.2.2-13 **POWER** 第994回審査会合 資料3-2 P.4.1-13再掲

3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(1/8)

検討方針

- 「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」(P.4.2.2-14参照)※が、大すべり域の破壊特性を適切に考慮しているかを確認するために、杉野ほか(2013)⁽⁴²⁾を参考に、破壊特性が表れる震源域の地殻変動量(プレート境界の破壊)及び沖合の観測波形(津波伝播)について、3.11地震の実現象とシミュレーション結果とを比較しモデルの妥当性を示す。
- ここで、地震モーメントの設定方法の違いによる影響を確認するために、大すべり域、超大すべり域を設定することに伴う地震モーメントの補正を、波源モデルの全領域のすべり量で行っている「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」※と「背景領域により地震モーメントを補正した特性化モデル(内閣府(2012)⁽⁴¹⁾に基づくモデル)」
 ※とを比較して前者の妥当性を示す。

※各特性化波源モデルの設定方法及びパラメータはP.4.2.2-14, P.4.2.2-15参照。

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(12/23)

<u>3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(2/8)</u>

4.2.2-14 **POWER** 第994回審査会合 資料3-2 P.4.1-14再掲

特性化波源モデルの設定方法

- (1) 巨視的波源特性:想定波源域の設定
- •大すべり域の破壊特性(地震特性)を特性化波源モデルに反映する観点から,想定波源域は地震調査研究推進本部 (2019)⁽²⁰⁾による「東北地方太平洋沖型の地震」の想定波源域と同様に,岩手県沖南部~茨城県沖に設定した。
- (2) 微視的波源特性:大すべり域・超大すべり域の設定
- 世界のM9クラスの超巨大地震の解析事例の調査に基づき大すべり域・超大すべり域のすべり量及び全体面積に占める 面積比率を示している内閣府(2012)⁽⁴¹⁾を参照した。(P. 3. 1-18, P. 3. 2-21参照)
- ▶ 大すべり域:津波断層の平均すべり量の2倍,全体面積の20%程度(超大すべり域を含む)
- ▶ 超大すべり域:津波断層の平均すべり量の4倍,全体面積の5%程度
- 大すべり域・超大すべり域の配置及び面積は、震源の全体的な破壊の動きをとらえていると考えられる長周期観測地震動に基づいて推定された震源モデル(Wu et al. (2012)⁽⁶⁸⁾)のすべり分布を参考に設定した。

(全域で地震モーメントを補正した特性化波源モデル)

(内閣府(2012)⁽⁴¹⁾に基づくモデル)

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(14/23)

<u>3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(4/8)</u>

3.11地震の地殻変動量(地球物理学的知見)

3.11地震の震源付近の地殻変動量として、Fujiwara et al. (2011)⁽⁶⁹⁾では、3.11地震前後の海底地形データの比較から、宮城県沖の海溝軸付近において、水平方向に50~56m、上下方向(水平変位に伴う鉛直変位も含む)に11m(σ=8.53)~16m(σ=9.35)の変位が生じたとされている。

Fig. 1. Changes in sea-floor elevation between bathymetric data before and after the 2011 Tohoku-Oki earthquake. (A) Location map with bathymetric survey track shown as yellow line. Coseismic horizontal displacement is estimated over the landward slope indicated by solid portion of yellow line. Cross shows the epicenter. (B) Multibeam bathymetry collected in 2011. Red triangles mark the trench axis; the blue triangle marks the landward slope break. Change in sea-floor elevation by subtracting the 1999 bathymetric data from the 2011 data (C), the 2004 data from the 2011 data (D), and the 1999 data from the 2014 data (E). The yellow star marks location of probable submarine landslide.

調査位置図(Fujiwara et al. (2011)⁽⁶⁹⁾)

陸側斜面及び海側斜面の地震時の変位

Table S1.

Estimated coseismic displacements caused by the 11 March 2011 Tohoku-Oki Earthquake in the outermost landward slope area, off Miyagi in the Tohoku district.

		Seaward Slope				
Years	Horizontal Displacement		Seafloor	Vertical	Additional	Seafloor
	Distance	Direction	(Fig. 1)	Displacement	Uplift	Elevation
2011-1999	56 m	113°	+16 m (σ=9.35)	+10 m (σ=7.50)	+6 m	±0 m (σ=5.32)
2011-2004	50 m	117°	+11 m (σ=8.53)	+7 m (σ=7.22)	+4 m	± 0 m (σ =8.42)
2004-1999	20 m	235°	±0 m (σ=7.44)	+1 m (σ=7.26)	-1 m	±0 m (σ=8.17)

Fig. S1.

Contour maps showing standard deviations (~variances) of depth differences between different surveys for given shifted locations. (A) Comparison between 1999 and 2011 data, (B) comparison between 2004 and 2011 data, and (C) comparison between 2004 and 1999 data, respectively. Red and blue contours show standard deviations of the landward slope and the seaward slopes, respectively. Crosses indicate the minimum peaks of the standard deviations. Arrows show vectors of horizontal shifts from landward to seaward. (D) Schematic cross-section showing coseismic displacement. A sum of a vertical displacement and an additional uplift for a sloping seafloor correspond the observed seafloor elevation changes shown in Fig. 1. The inset is for illustrative purposes (not to scale). (E) Bathymetric cross section at the trench. Red and black indicate 2011 and 1999 data.

地震時変位の概略断面図(図:(D))

4.2.2-16

POWER

第994回審査会合 資料3-2 P.4.1-16再掲

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(16/23)

<u>3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(6/8)</u>

地殻変動量(プレート境界の破壊)の比較

「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」の最大鉛直変位は12m程度(右図)であり、3.11地震による震源付近の最大鉛直変位(12m, P.4.2.2-17参照)と整合的であることを確認した。

4.2.2-18

POWER

第994回審査会合 資料3-2 P.4.1-18再掲

• 一方,「背景領域により地震モーメントを補正した特性化モデル」の最大鉛直変位は16m程度(右図)であり, 3.11地震 による震源付近の最大鉛直変位(12m, P.4.2.2-17参照)に比べて大きく,整合性はやや劣ることを確認した。

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(17/23)

3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(7/8)

大船渡

鮎川

180

沖合の観測波形(津波伝播)の比較

- 「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」による計算波形は、大すべり域周辺沿岸海域の観測波形 に見られる津波特性(津波水位、周期、津波の到達時間)と整合的であることを確認した。
- 一方、「背景領域により地震モーメントを補正した特性化モデル」は、周期、津波の到達時間の整合性は良いものの、津波 水位は相対的に大きく、整合性はやや劣ることを確認した。

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(18/23)

<u>3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(8/8)</u>

まとめ

- 「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」は、3.11地震の大すべり域の地殻変動量(プレート境界の破壊)及び沖合の観測波形(津波伝播)について整合的に説明できるモデルであり、大すべり域の破壊特性を適切に考慮できるモデルであることを確認した。
- 一方,「背景領域により地震モーメントを補正した特性化モデル」では、3.11地震の大すべり域の地殻変動量(プレート境界の破壊)及び沖合いの観測波形(津波伝播)は相対的に大きく,整合性はやや劣ることを確認した。
- 以上より,「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」の設定は妥当であると判断する。

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(19/23)

<u>(補足)3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(1/4)</u>

検討方針

第994回審査会合 資料3-2 P.4.1-21再掲

- •「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」に対し、更なる保守性を考慮することを目的として、以下の2つの波源モデルを設定し、これらのモデルが「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」に対して保守的設定となっていることを確認する。これにより「3.11地震における宮城県沖の破壊特性を考慮した特性化モデルを参考に設定した特性化モデル」に対し、「基準波源モデル③」及び「基準波源モデル④」が保守的設定となっていることを確認する(本編資料P.3.2.1-6参照)。
 - (1) すべりの不確かさを踏まえ、超大すべり域等のすべり量を割り増した波源モデル(以下、「すべり量強調モデル」という。)を設定した。すべり量の割り増しは、背景的領域にすべり量が小さな領域として、基本すべり域のすべり量の半分のすべり量を全体面積の50%に対して考慮し設定した。
 - (2) (1)の波源モデルに対し、分岐断層や海底地すべりの影響を考慮した特性化波源モデル(以下、「分岐断層や海底地す べり等が存在する可能性を考慮したモデル」という。)を設定した。

		(1)すべり量 強調モデル 【モデル化後の値】	備 考 【設計値】	 (2)分岐断層や海底地すべり 等が存在する可能性を 考慮したモデル 【モデル化後の値】 	備 考 【設計値】
ŧ	ニーメントマク゛ニチュート゛ Mw	9. 04	9. 02	9.04	9.02
Ī	面積 S (km²)	107, 357	—	107, 357	_
3	平均応力降下量 ⊿σ (MPa)	3. 11	3	3. 17	3
Ĩ	剛性率 μ (N/m²)	5. 0 × 10 ¹⁰	_	5. 0 × 10 ¹⁰	_
地震モーメントMo (N・m)		4. 49 × 10 ²²	4. 33 × 10 ²²	4. 58 × 10 ²²	4. 33 × 10 ²²
3	平均すべり量 D (m)	8. 37	8.07	8. 53	8.07
	基本すべり域(m) (面積及び面積比率)	7. 69 (27, 680km², 25. 8%)	7. 69 (32, 207km², 30%)	7.34 (31,800km²,29.6%)	7. 34 (32, 207km², 30%)
す	背景領域(m) (面積及び面積比率)	3. 84 (57, 485km², 53. 5%)	3. 84 (53, 678km², 50%)	3. 67 (50, 682km², 47. 2%)	3. 67 (53, 678km², 50%)
べり量	大すべり域 (m) (面積及び面積比率)	15.37 (14,114km²,13.2%)	15. 37 (16, 104km², 15%)	14. 67 (13, 143km², 12. 2%)	14.67 (10,736km²,10%)
≝	中間大すべり域 (m) (面積及び面積比率)			22. 01 (5, 531km², 5. 2%)	22.01 (5,368km²,5%)
	超大すべり域 (m) (面積及び面積比率)	30. 74 (8, 078km², 7. 5%)	30.74 (5,368km², 5%)	29. 35 (6, 201km ² , 5. 8%)	29.35 (5,368km ² ,5%)
-	ライズタイム τ (s)	60	_	60	_

各波源モデルのパラメータ

(1)すべり量強調モデル

(2)分岐断層や海底地すべり等 が存在する可能性を考慮した モデル

「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」(P.4.2.2-15参照),「(1)すべり量強調モデル」及び「(2)分岐断層や海底地すべり等が存在する可能性を考慮したモデル」(P.4.2.2-21参照)の地殻変動量を比較した結果,「(1)すべり量強調モデル」及び「(2)分岐断層や海底地すべり等が存在する可能性を考慮したモデル」の最大鉛直変動量は、「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」による最大鉛直変位(12m, P.4.2.2-17参照)を上回ることを確認した。

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(21/23)

(補足) 3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(3/4) ^{第994回審査会合} 資料3-2 P.4.1-23再掲

沖合の観測波形(津波伝播)の比較

 「(1)すべり量強調モデル」及び「(2)分岐断層や海底地すべり等が存在する可能性を考慮したモデル」(P.4.2.2-21参照)の計算津 波波形と3.11地震の大すべり域周辺沿岸海域の観測波形を比較した結果、これらの計算津波波形は観測波形に比べ相対的に大きいことを確認した(左図及び中央図参照)。

422-23

POWER

• 一方, 「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」の計算波形と3.11地震の大すべり域周辺沿岸海域の観測波 形とは整合的である(右図参照)。

4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認(22/23)

POWER

(補足) 3.11地震における宮城県沖の破壊特性を考慮した特性化モデルによる再現性確認(4/4) ^{第994回審査会合} ^{資料3-2} P.4.1-24再掲

まとめ

- 「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」は、3.11地震の大すべり域の地殻変動量(プレート境界の破壊)及び沖合いの観測波形(津波伝播)について整合的に説明できるモデルであり、大すべり域の破壊特性を適切に考慮できるモデルであることを確認した。
- 一方,「(1)すべり量強調モデル」及び「(2)分岐断層や海底地すべり等が存在する可能性を考慮したモデル」の地殻変動量(プレート境界の破壊)及び沖合の観測波形(津波伝播)は,「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」を上回ることを確認した。
- したがって、「(1)すべり量強調モデル」及び「(2)分岐断層や海底地すべり等が存在する可能性を考慮したモデル」は、「3.11地震における宮城県沖の破壊特性を考慮した特性化モデル」に対して保守的設定となっていることを確認した。

資料3-2 P.4.1-25再掲

(参考) 3.11地震・津波の知見を反映したすべり領域の配置: 3.11地震による津波等の再現性

基準波源モデルの設定手順の妥当性を示すことを目的とし、3.11地震による津波等の再現性を踏まえた以下の検討を 行い、すべり領域の配置を設定する。

【ステップ1】3.11地震の発生海域に、3.11地震の津波痕跡高等を再現できる特性化波源モデルを設定する。

【ステップ2】 【ステップ1】で設定した特性化波源モデル設定の考え方を、三陸沖から根室沖のプレート間地震に伴う 津波の波源モデルに反映し、特性化モデルを設定する。

(余白)

日次	:本日のご説明に対応する範囲 4.2.3-1
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル56と基準波源モデル1~4の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

基準波源モデル⑤⑥が分岐断層の影響も考慮されたモデルとなっていることを確認するため,分 岐断層に関する検討を実施した。

第994回審査会合

資料3-2 P.4.2-2再掲

4.2.3-2

POWER

4-2-3. 分岐断層に関する検討(2/5)

<u>分岐断層に関する知見の整理(1/3):分岐断層の分布</u>

- 南海トラフの地下構造は、フィリピン海プレートが日本列島の下に沈み込み、付加体※が発達しているとされている。
 ※海洋プレートが陸側のプレートの下に沈み込む際に海洋底堆積物が陸側に押しつけられ、くさび状に堆積物が厚くなっている場所。
- 紀伊半島沖熊野灘付近における付加体の底面にはプレート境界断層とそこから枝分かれする分岐断層が存在する。また、同分岐断層は、たとえば1944年の東南海地震時に津波を引き起こした要因と考えられているとされている。

JAMSTEC (2007)⁽⁷⁰⁾, (2011)⁽⁷¹⁾ による

一方,日本海溝沿い及び千島海溝沿いについては,南海トラフのように海底下の地質構造と関連付けた津波を発生させ る分岐断層の存在を示す文献は確認されない。

地質構造図 三次元反射法音波探査による地質構造

黒枠:調査範囲 赤枠:右図(図化範囲(矢印は視線方向))

※「ただし, 最新の調査によるとこの部分ではプレート境界が滑ったとする報告があり, 分岐 断層によるものではない可能性もあることを付け加えておく。」とも記載されている。

<u>分岐断層に関する知見の整理(2/3):津波波源モデル</u>

 杉野ほか(2013)⁽⁴²⁾では、3.11地震に伴う津波の沖合い観測波形に見られた短周期と長周期の異なる性質の波形のうち、 短周期波形の発生要因として分岐断層の可能性を考慮して津波波源モデルを設定している[※]。

> > 津波波源モデルの小断層の配置

杉野ほか(2013)(42)より

4-2-3. 分岐断層に関する検討(4/5)

<u>分岐断層に関する知見の整理(3/3):波源特性</u>

Ý・奥村・後藤(2013)⁽⁷²⁾による南海トラフの熊野灘外縁部に認められる分岐断層に係る断層破壊シミュレーション^{※1},並びに同シミュレーションから得られる地殻変動の最終変位を波源の初期波形とした津波伝播シミュレーション^{※2}から,分岐断層に伴う特性は以下のとおり整理される。

▶ 分岐断層破壊シナリオに伴う津波は、プレート境界破壊シナリオに伴う津波よりも周期(波長)が短い。

 これは、分岐断層破壊シナリオの方が、周期特性が比較的顕著に現れる海溝沿いにおける隆起域の距離が短い(断層幅が 狭い)ためと考えられる。

奥村・後藤(2013)(72)に一部加筆

4-2-3. 分岐断層に関する検討(5/5)

<u>分岐断層の影響考慮</u>

・基準波源モデル⑤及び基準波源モデル⑥の波源域地殻変動量は以下の図に示すとおりであり、基準波源モデル⑥では、下記のとおり基準波源モデル⑤に比べて、分岐断層の影響をより反映したモデルとなっている。
 ✓ 基準波源モデル⑤及び基準波源モデル⑥共に超大すべり域が浅部に設定されていることから、奥村・後藤(2013)⁽⁷²⁾の分岐断層破壊シナリオに伴う地殻変動(浅部で短波長成分が卓越)に類似する形の地殻変動が考慮されている。
 ✓ さらに、基準波源モデル⑥は基準波源モデル⑤に比べ、海溝軸付近の短波長の隆起量がより強調されている。

第994回審査会合

資料3-2 P.4.2-6再掲

4.2.3-6

POWER

日次	····································
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 . 基準波源モデル⑤⑥と基準波源モデル①~④の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

(余白)

/	
•	三陸沖から根室沖のプレート間地震に伴う津波の検討で実施したパラメータスタディに
	ついて、敷地への影響が最も大きくなるケースを網羅的に検討していることを確認する
	ため、概略パラメータスタディ評価因子及び詳細パラメータスタディ評価因子のそれぞ
	れが津波水位に与える影響について分析する。
٠	分析は、概略パラメータスタディが津波水位に対して支配的因子で行われていること、
	詳細パラメータスタディが津波水位に対して従属的因子で行われていることを確認する
	ことにより実施する。
٠	なお、本検討の検討対象ケースは以下のとおりとした。
	▶概略パラメータスタディ評価因子の分析
	✓アスペリティ位置の変動範囲を広く考慮(変動範囲約240km,本編資料P.3.2.1-125
	参照)した基準波源モデル⑥
	▶ 詳細パラメータスタディ評価因子の分析
	✓ 最大水位上昇ケースとなる基準波源モデル⑥
	✓ 最大水位下降ケースとなる基準波源モデル③
•	さらにその上で, 津波水位に最も影響を与える因子の変動に対する津波伝播への影響に

ついても比較検討を実施する。

概略パラメータスタディ

項目 変動範囲		ケース 数	
アスペリティの位置	基準, 北方へ40km(N1), 80km(N2), 200km(N3), 南方へ40km(S1) S1を北方へ10km, 20km, 30km移動	11	計 11

アスペリティの位置の影響

h

а

С

破壊開始点の位置

上昇側 (基準波源モデル⑥)

破壊開始点の位置

詳細パラメータスタディ

上昇側 (基準波源モデル⑥)

е

а

Ь

h

破壊開始点の位置の影響

d

IJ	目	変動範囲		ケース数
破壊	上昇側	大すべり域深部下端(プレート境界面深度20km)の 南端,北端,超大すべり域背後及び日本海溝と千島 海溝の境界上 大すべり域中央部	5	
開始息	下降側	大すべり域(プレート境界面深度20km)の南端, 北 端及び中央部 超大すべり域中央部	4	計 16(上昇側) 13(下降側)
破壊危	云播速度	1.0km/s, 2.0km/s, 2.5km/s, ∞ ^{※1} (基準:概略パラスタケース) ※1:∞は全域同時に破壊開始	4	

下降側

(基準波源モデル③)

	項目	変動範囲		ケース数	7	
破壊開始	上昇側	大すべり域深部下端(プレート境界 面深度20km)の南端,北端,超大す べり域背後及び日本海溝と千島海溝 の境界上 大すべり域中央部	5	⊒ ∔	(LL) = 1 6 5 4 3	
点	下降側	大すべり域(プレート境界面深度20 km)の南端,北端及び中央部 超大すべり域中央部	4	16(上昇側) 13(下降側)	ペ 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 77 3 3 3 77 77 3 3 3 77 77 7 77 7	۶^° J
破壊	寝伝播速 度	1.0km/s, 2.0km/s, 2.5km/s, ∞ ^{※1} (基準:概略パラスタケース) ※1:∞は全域同時に破壊開始	4		全域同時 破壞開始 ※全域同 	時砚

詳細パラメータスタディ

破壊伝播速度の影響

4-3. 三陸沖から根室沖のプレート間地震に伴う津波の評価因子影響:	分析(5/10) 4.3-7
<u>パラメータスタディ評価因子の分析:まとめ</u>	第994回審査会合 資料3-1 P. 2. 3. 1-148再揭
 概略パラメータスタディ評価因子及び詳細パラメータスタディ評価因子のそれぞれが津波: て分析した結果は以下のとおり。 	水位に与える影響につい
▶ 概略パラメータスタディ因子である「アスペリティの位置」が、津波水位に与える影響	響が最も大きい。
▶ 詳細パラメータスタディ因子である「破壊開始点」及び「破壊伝播速度」は、概略パー べて津波水位への影響は小さい。	ラメータスタディ因子に比

概略パラメータスタディは津波水位に対して支配的因子で行われていること、詳細パラメータスタディは従属的因子で行われていることが確認できた。

パニュークマクディ	討体ロフ	水位の変動	勆幅(m)	/# *
//////////	計11四〇十	上昇側	下降側	加方
概略 パラメータスタディ	アスペリティの位置	<u>2. 23</u>	<u>1. 73</u>	_
詳細	破壞開始点	0. 23	0. 42	_
パラメータスタディ	破壊伝播速度	0. 58	0. 11	

パラメータスタディ変動幅一覧

S1配置に対する各配置のパワースペクトル比

4.3 - 8

S1配置に対する各配置のパワースペクトル比

注:基準波源モデル⑥(概略パラメータスタディケース)

スナップショット⊿s=2500m領域(地震発生~40分後)

注:基準波源モデル⑥(概略パラメータスタディケース)

スナップショット⊿s=278m領域(地震発生40分後~70分後)

日次	:本日のご説明に対応する範囲 4.4.1-1
	POWER
1. 津波堆積物調査(現地調査)	4-4-3 基準波源モデル56と基準波源モデル1~4の関連性
2. 日本海東縁部に想定される地震に伴う津波	4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の
2-1. 波源モデルのパラメータに関する検討	傾向把握
2-1-1. 傾斜方向・傾斜角パターン影響検討	5. 千島海溝沿いの海洋プレート内地震に伴う津波
2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認	6. チリ沖に想定される地震に伴う津波の影響検討
2-2. 日本海東縁部に想定される地震に伴う津波の	7. 陸上の斜面崩壊に起因する津波
評価因子影響分析	7-1. 地すべり地形分布図
2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認	7-2. 二層流モデルの適用性について
2-4. 日本海東縁部に設定された地方自治体による波源モデル	8. 海底地すべりに起因する津波
3. 2011年東北地方太平洋沖地震を始めとするM9クラスの	8-1. 急傾斜部を対象とした地形判読
超巨大地震から得られた知見	8-2. 海底地すべり海上音波探査記録
3-1. 2011年東北地方太平洋沖地震から得られた知見	8-3. 海底地すべり地形崩壊量算定
3-2. 世界のM9クラスの超巨大地震から得られた知見の整理	8-4. ハワイ付近の海底地すべりの影響について
3-3. まとめ	9. 火山現象に起因する津波
4. 三陸沖から根室沖のプレート間地震に伴う津波	9-1. kinematic landslideモデルによる追加検討
4-1. 検討対象波源域の選定	10. 津波発生要因の組合せに関する検討
4-2. 波源モデルのパラメータに関する検討	10-1. 線形足し合せ水位評価地点の妥当性確認
4-2-1 . ライズタイムの影響検討	11. 津軽海峡・発電所専用港湾及び津波の周期特性
4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認	11-1. 検討方法
4-2-3 . 分岐断層に関する検討	11-2. 日本海側からの津波に対する検討
4-3. 三陸沖から根室沖のプレート間地震に伴う津波の	11-3. 太平洋側からの津波に対する検討
評価因子影響分析	11-4. まとめ
4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認	12. その他
4-4-1 . 動的破壊特性の不確かさの影響確認	12-1. 想定津波群の作成方法
4-4-2 基準波源モデル①~⑥の水位分布比較	12-2. 津波の伝播特性について

第994回審査会合 資料3-2 P.4.4-2再掲 のWER

<u>検討方針</u>

- 本編資料では、基準波源モデル①~⑥を、3.11地震・津波の再現性を考慮した基準波源モデル(基準波源モデル①~④) 及び津軽海峡内及び大間専用港湾に特化した津波挙動を考慮した基準波源モデル(基準波源モデル⑤⑥)のそれぞれの 概略パラメータスタディ最大ケースを対象に、詳細パラメータスタディを実施し、敷地への影響が最も大きくなるケースを抽出 した。
- ここでは、基準波源モデル①~⑥のそれぞれの概略パラメータスタディ最大ケース(全ケース)を対象に詳細パラメータスタディを実施し、本編資料で抽出した敷地への影響が最も大きくなるケースの妥当性を示す。

三陸沖から根室沖のプレート間地震に伴う津波検討結果

(本編資料P.3.2.1-135参照)

モデル	パラメータスタディ	敷地における 最大水位上昇量	取水ロスクリーン室前面における 最大水位下降量
3.11地震・津波の再現性等を 考慮した基準波源モデル (基準波源モデル①②③④)	概略パラメータスタディ	3.62m	— 3. 49m
	詳細パラメータスタディ	3.62m	ー3.53m (基準波源モデル③)
津軽海峡内及び大間専用港湾 に特化した津波挙動を考慮し	概略パラメータスタディ	3.59m	—2.94m
た基準波源モデル (基準波源モデル56)	詳細パラメータスタディ	3.69m (基準波源モデル⑥)	—3.11m

4-4-1. 動的破壊特性の不確かさの影響確認(2/14)

<u>基準波源モデル①:概略パラメータスタディ</u>

基準波源モデル①に対する概略パラメータスタディの結果は以下のとおりである。(詳細は、本編資料P.3.2.1-104参照)

概略パラメータスタディ結果一覧

第994回審査会合

資料3-2 P.4.4-3-部修正

4.4.1 - 3

POWER

基準波源	アスペリティの 位置		最大水位	最大水位
モナル	AI	TN	上升重	「院重
		東方へ約10km	2. 43m	— 2. 07m
	北方へ	基準位置	2. 49m	—1.88m
	約20km	西方へ約10km	2. 55m	— 1.80m
		西方へ約20km	2. 53m	—1.92m
		東方へ約10km	2. 30m	-2.00m
	北方へ	基準位置	2. 39m	— 1.97m
++) <u>+</u>)+) 	約10km	西方へ約10km	2. 50m	—2.04m
基準波源 エ ニ リ		西方へ約20km	2.51m	—2.15m
モナル		東方へ約10km	2.15m	—1.96m
U	甘進佔學	基準位置	2. 26m	—1.92m
	奉华世直	西方へ約10km	2. 30m	— 1.95m
		西方へ約20km	2. 29m	— 2. O3m
	東方へ	東方へ約10km	2. 06m	— 2. 05m
	南方へ	基準位置	2.17m	— 1.92m
	約10km	西方へ約10km	2. 07m	-2.00m
		西方へ約20km	2. 22m	<u>-2.</u> 07m

概略パラスタ 最大水位上昇ケース

: 概略パラスタ 最大水位下降ケース

4-4-1. 動的破壊特性の不確かさの影響確認(3/14)

第994回審査会合 資料3-2 P.4.4-4一部修正 POWER

100

1. #fl

基準波源モデル① 概略パラスタ最大ケース (代表として上昇側最大ケースを例示)

200 km

すべり量 (m) 25.38 11.84 2.79

基準波源モデル①:詳細パラメータスタディ(1/2)

検討ケース

 基準波源モデル①の概略パラメータスタディの最大ケースに対し、以下に示す破壊開始点、破壊伝播速度及びライズタイム を組合せた検討を実施した。

項目	変動範囲	備考
破壊開始点	 <u>青森県東方沖及び岩手県沖北部</u> ✓プレート境界面深度20kmを基本として、大す べり域の「南端:a」、「中央部:c」(超大すべ り域深部下端に相当)、不確かさ考慮として、 「超大すべり域中央部:d」に1箇所配置 <u>十勝沖及び根室沖</u> ✓プレート境界面深度20kmを基本として、大す べり域の「北端:e」、「中央部:f」(超大すべ り域深部下端に相当)、不確かさ考慮として、 「超大すべり域中央部:g」に1箇所配置 <u>日本海溝と千島海溝の境界上:b</u> 計7箇所 	右図のとおり設定
破壊伝播速度	 1.0km/s 2.0km/s 2.5km/s ∞※(基準:概略パラスタケース) ※∞は全域同時に破壊開始 	 1. 0km/s: Fujii and Satake (2007) ⁽⁶⁴⁾ による2004年インド洋 津波を再現する最適値 2. 0km/s: Satake et al. (2013) ⁽⁶³⁾ による2011年東北地方太平 洋沖地震再現モデル 2. 5km/s: 内閣府(2012) ⁽⁴¹⁾の南海 トラフ大地震モデル
ライズタイム	・60s(基準:概略パラスタケース)	世界のM9クラスの超巨大地震から 得られたライズタイムに関する知見 及びそれらを踏まえた影響検討を考 慮して60秒固定とした。 (「4-2-1.ライズタイムの影響 検討」参照)

詳細パラメータスタディ

4-4-1. 動的破壊特性の不確かさの影響確認(4/14)

(余白)

4-4-1. 動的破壊特性の不確かさの影響確認(5/14)

概略パラメータスタディ結果一覧

基準波源モデル	アスペリティの 位置	最大水位 上昇量	最大水位 下降量
	北方へ50km	2. 98m	—2. 22m
	北方へ40km	3.18m	—2.24m
	北方へ30km	3. 43m	— 2. 70m
	北方へ20km	3. 49m	—2.81m
	北方へ10km	3.50m	— 2. 90m
基準波源モデル②	基準位置	3.52m	— 3. 01m
	南方へ10km	3.48m	— 2. 95m
	南方へ20km	3.50m	— 3. 01m
	南方へ30km	3.55m	— 3.01m
	南方へ40km	3.62m	— 3. 04m
	南方へ50km	3.57m	— 2. 93m
	北方へ50km	3.08m	—2.33m
	北方へ40km	3.15m	—2.63m
	北方へ30km	3. 22m	— 2. 92m
	北方へ20km	3. 29m	— 3. 09m
	北方へ10km	3. 29m	— 3. 24m
基準波源モデル③	基準位置	3.33m	— 3.36m
	南方へ10km	3.50m	— 3. 43m
	南方へ20km	3.57m	— 3. 41m
	南方へ30km	3.56m	— 3. 44m
	南方へ40km	3.50m	— 3. 49m
	南方へ50km	3.34m	— 3.28m
	北方へ50km	3.17m	— 3.36m
	北方へ40km	3.34m	— 3.35m
		3.48m	— 3. 37m
基準波源モデル④	北方へ20km	3. 55m	— 3. 47m
Ī		3.57m [*]	—3.38m
Ì	基準位置	3.57m*	—3.24m
	南方へ10km	3.57m [*]	—3.26m

概略パラスタ 最大水位上昇ケース

概略パラスタ 最大水位下降ケース

閒了: Ν N

106 204 80 最大水位上昇ケース 基準波源モデル(4) ・アスペリティ位置:南方へ10km移動 Ν

5th

<u>基準波源モデル②~④:詳細パラメータスタディ</u>

検討ケース

• 基準波源モデル②~④に対し、以下に示す破壊開始点、破壊伝播速度及びライズタイムを組合せた検討を実施した。

項目	変動範囲	備考
破壊開始点	✓プレート境界面深度20kmを基本として、大すべり域の「南端:a」、「北端:b」、「中央部:c」(超大すべり域深部下端に相当)の3箇所配置 ✓不確かさ考慮として、「超大すべり域中央部:d」に1箇所配置	右図のとおり設定
破壊伝播速度	・1.0km/s ・2.0km/s ・2.5km/s ・∞ [※] (基準:概略パラスタケース) ※∞は全域同時に破壊開始	 1.0km/s:Fujii and Satake (2007)⁽⁶⁴⁾による2004年 インド洋津波を再現する最 適値 2.0km/s:Satake et al. (2013)⁽⁶³⁾ による2011年東北地方太平 洋沖地震再現モデル 2.5km/s:内閣府(2012)⁽⁴¹⁾の南 海トラフ大地震モデル
ライズタイム	・60s(基準:概略パラスタケース)	世界のM9クラスの超巨大地震から 得られたライズタイムに関する知見 及びそれらを踏まえた影響検討を考 慮して60秒固定とした。 (「4-2-1.ライズタイムの影 響検討」参照)

詳細パラメータスタディ

基準波源モデル2~④ 概略パラスタ最大ケース (代表として基準波源モデル2の 上昇側最大ケースを例示)

<u> 基準波源モデル②:詳細パラメータスタディ</u>

検討結果

基準波源モデル②に対する詳細パラメータスタディの結果は以下のとおりである。

詳細パラメータスタディ結果一覧

上昇側および下降側

カイプ	アスペリティ	ライズ	破壊伝播	破壊	最大水位	最大水位
317	の位置	タイム	速度	開始点	上昇量	下降量
				а	3. 22m	— 2.89m
			1 Okm/s	b	3.10m	—2.48m
			T. UKIII/ S	С	3.12m	—2.83m
				d	3.36m	—2.38m
基				а	3. 48m	—2.99m
~ 準 波	基準配置を	60s	2.0km/s	b	3.37m	—2.68m
源于	南方へ			С	3. 31m	—2.86m
デ	40km			d	3. 53m	—2.33m
2			2.5km/s	а	3. 50m	— 3. OOm
				b	3. 39m	—2.74m
				С	3. 39m	—2.86m
				d	3.56m	—2.48m
		_	∞	-	3.62m	— 3. 04m

- - - - - - - - - - - - ス

:下降側最大ケース

4-4-1. 動的破壊特性の不確かさの影響確認(8/14)

第994回審査会合 資料3-2 P.4.4-10再揭 POWER

<u> 基準波源モデル③ : 詳細パラメータスタディ</u>

検討結果

基準波源モデル③に対する詳細パラメータスタディの結果は 以下のとおりである。

詳細パラメータスタディ結果一覧

上昇側

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 |
|-----|---------------|------------|------------|-----------|-------------|-------------|
| | | | | а | 3.16m | — 3. O8m |
| | | | 1 Okm/s | b | 3. 23m | —2.49m |
| | | | 1. UNII/ 3 | C | 3.10m | —2.62m |
| 其 | | | | d | 3. 30m | — 2.39m |
| 準 | | 60.5 | 2.0km/s | а | 3. 33m | — 3.32m |
| 波 | 基準配置を | | | b | 3. 43m | — 2.97m |
| 源 | 南方へ | 003 | | C | 3. 33m | — 3. 04m |
| デ | ZUKIII | | | d | 3. 45m | — 3. O3m |
| ル | | | 2 Ekm/s | а | 3. 42m | — 3.33m |
| 3 | | | | b | 3. 47m | — 3. 07m |
| | | | 2. UNII/ 0 | C | 3. 38m | —3.11m |
| | | | | d | 3.50m | —3.11m |
| | | - | 8 | - | 3.57m | —3.41m |

下降側

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 |
|-----|---------------|------------|-------------|-----------|-------------|-------------|
| | | | | а | 3. 25m | —3.42m |
| | | | 1 Okm/s | b | 3. 00m | —2.74m |
| | | | | C | 3. 04m | —3.06m |
| 其 | | | | d | 3. 31m | —2.36m |
| 準 | | | | а | 3.47m | —3.53m |
| 波 | 基準配置を | 60s | 2.0km/s | b | 3. 28m | —3.13m |
| 源王 | 「南方へ」 | 003 | | C | 3.32m | — 3.26m |
| デ | 40Km | | | d | 3.44m | —3.11m |
| ル | | | | а | 3. 49m | —3.52m |
| 3 | | | 2 5km/s | b | 3.34m | —3.21m |
| | | | 2. 01(11/ 0 | C | 3.35m | — 3.29m |
| | | | | d | 3.47m | —3.21m |
| | | _ | ∞ | _ | 3.50m | — 3. 49m |
| | ニンティング | マケース | | ∶下降側﹔ | 最大ケース | |

4-4-1. 動的破壊特性の不確かさの影響確認(9/14)

<u> 基準波源モデル④:詳細パラメータスタディ</u>

検討結果

基準波源モデル④に対する詳細パラメータスタディの結果は 以下のとおりである。

詳細パラメータスタディ結果一覧

上昇側

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 |
|-----|---------------|------------|------------|-----------|-------------|-------------|
| | | | | а | 3.16m | — 3.36m |
| | | | 1 Okm/s | b | 3.06m | —2.54m |
| | | | | C | 2. 99m | —2.65m |
| 其 | | | | d | 3. 28m | —2.83m |
| 準 | | 60.5 | 2.0km/s | а | 3. 32m | — 3. 39m |
| 波 | 基準配置を | | | b | 3. 35m | —2.89m |
| 源王 | 「南方へ」 | 003 | | C | 3.26m | — 2.99m |
| デ | TUKIII | | | d | 3. 40m | — 3. O5m |
| ル | | | 2 Ekm/c | а | 3. 34m | — 3.37m |
| 4) | | | | b | 3. 38m | — 2.97m |
| | | | 2. UNII/ 0 | C | 3. 34m | — 3. O5m |
| | | | | d | 3. 44m | — 3. 08m |
| | | _ | 8 | _ | 3.57m | —3.26m |

下降側

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 | | |
|-----|---------------|------------|--------------|-----------|-------------|---------------------|---------|--|
| | | | | а | 3.11m | — 3.26m | | |
| | | | 1 Okm/s | b | 3. 46m | —2.79m | | |
| | | | | C | 3. 03m | — 2.78m | | |
| 其 | | | | d | 3. 35m | — 3.10m | | |
| 準 | | | | | а | 3. 33m | — 3.46m | |
| 波 | 基準配置を | 60s | 2 Okm/s | b | 3.62m | — 3.20m | | |
| 源王 | 「北方へ」 | | 2. 01(iii) 0 | C | 3.35m | — 3.28m | | |
| ーデ | ZUKIII | | | d | 3.50m | —3.31m | | |
| ル | | | 2.5km/s | а | 3. 39m | −3.47m [※] | | |
| 4 | | | | b | 3.63m | — 3. 27m | | |
| | | | | C | 3. 43m | — 3.34m | | |
| | | | | d | 3.53m | — 3.34m | | |
| | | - | 8 | - | 3.55m | −3.47m [*] | | |
| | | | | | | | | |
| | | | | | | | | |

(余白)

4-4-1. 動的破壊特性の不確かさの影響確認(10/14)

最大水位

<u>基準波源モデル⑤⑥:概略パラメータスタディ</u>

基準波源モデル⑤⑥に対する概略パラメータスタディの結果は以下のとおりである。 (詳細は、本編資料P.3.2.1-125参照)

| | 位置 | 上昇量 | 下降量 |
|-------|--------------|--------|----------|
| | 北方へ200km(N3) | 1.59m | —1.38m |
| 甘淮沈迈 | 北方へ80km(N2) | 1.53m | — 1.54m |
| 奉竿次源 | 北方へ40km(N1) | 2. 04m | — 2. 26m |
| 27703 | 基準 | 2.83m | —2.88m |
| | 南方へ40km(S1) | 3. 47m | — 2.55m |
| | 北方へ200km(N3) | 1.36m | —1.21m |
| 甘淮沈迈 | 北方へ80km(N2) | 1.47m | —1.51m |
| 奉牟次源 | 北方へ40km(N1) | 2.18m | — 2. 24m |
| モナルし | 基準 | 3. 21m | — 2.74m |
| | 南方へ40km(S1) | 3.50m | —2.91m |

概略パラメータスタディ(ステップ1)結果一覧

アスペリティの 最大水位

基準波源モデル⑤

概略パラメータスタディ (ステップ2) 結果一覧

| | | アスペリティの
位置 | 最大水位
上昇量 | 最大水位
下降量 |
|------|-----|---------------|-------------|----------------|
| | | S1を北方へ30km | 3.26m | — 3. O3m |
| | | S1を北方へ20km | 3. 34m | — 3. 02m |
| | 上升侧 | S1を北方へ10km | 3.38m | —2.81m |
| | | S1 | 3. 47m | — 2.55m |
| 甘淮沛迈 | | 基準を北方へ30km | 2.26m | —2.41m |
| 奉年次派 | | 基準を北方へ20km | 2. 49m | — 2.54m |
| モブル3 | | 基準を北方へ10km | 2.68m | — 2.73m |
| | 下降側 | 基準 | 2.83m | <u>— 2.88m</u> |
| | | 基準を南方へ10km | 3.26m | — 3. O3m |
| | | 基準を南方へ20km | 3. 34m | — 3. O2m |
| | | 基準を南方へ30km | 3.38m | <u>—2.</u> 81m |

基準波源モデル⑥ 概略パラメータスタディ(ステップ2)結果一覧

| | アスペリティの
位置 | 最大水位
上昇量 | 最大水位
下降量 |
|------|---------------|-------------|---------------------|
| | S1を北方へ30km | 3. 44m | −2.94m [%] |
| 基準波源 | S1を北方へ20km | 3.55m | −2.94m [≫] |
| モデル⑥ | S1を北方へ10km | 3. 59m | —2.82m |
| | S1 | S1 3.50m | |

※:小数第3位まで考慮すると,<u>S1を</u>北方へ20kmで最大

:概略パラスタ(ステップ1) 最大水位上昇/下降ケース

大間原子

:概略パラスタ(ステップ2) 最大水位上昇ケース

∶概略パラスタ(ステップ2) 最大水位下降ケース

4-4-1. 動的破壊特性の不確かさの影響確認(11/14)

<u>基準波源モデル⑤⑥:詳細パラメータスタディ</u>

検討ケース

• 基準波源モデル⑤⑥に対し、以下に示す破壊開始点、破壊伝播速度及びライズタイムを組合せた検討を実施した。

| 項目 | 変動範囲 | 備考 | |
|--------|---|--|--|
| 破壞開始点 | ✓プレート境界面深度20km(大すべり域深部下端に相当)を基本として、大すべり域深部下端の「南端:a」、「北端:b」、「超大すべり域背後:c」、「日本海溝と千島海溝の境界上:d」の4箇所配置 ✓不確かさ考慮として、「大すべり域中央部:e」に1箇所(超大すべり域深部下端に相当)配置 | 右図のとおり設定 | 0 100 200 k |
| 破壊伝播速度 | ・1.0km/s
・2.0km/s
・2.5km/s
・∞ [※] (基準:概略パラスタケース)
※∞は全域同時に破壊開始 | 1.0km/s:Fujii and Satake (2007)⁽⁶⁴⁾ による2004年 インド洋津波を再現する最適値 2.0km/s:Satake et al. (2013)⁽⁶³⁾ による2011年東北地方太平
洋沖地震再現モデル 2.5km/s:内閣府(2012)⁽⁴¹⁾の南
海トラフ大地震モデル | ・ ・< |
| ライズタイム | ・60s(基準:概略パラスタケース) | 世界のM9クラスの超巨大地震から
得られたライズタイムに関する知見
及びそれらを踏まえた影響検討を考
慮して60秒固定とした。
(「4-2-1.ライズタイムの影
響検討」参照) | 上昇側最大ケースを例示) |

詳細パラメータスタディ

4-4-1. 動的破壊特性の不確かさの影響確認(12/14)

<u> 基準波源モデル⑤:詳細パラメータスタディ</u>

検討結果

基準波源モデル⑤に対する詳細パラメータスタディの結果は 以下のとおりである。

詳細パラメータスタディ結果一覧

上昇側

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 |
|--------|---------------|------------|------------|-----------|-------------|-------------|
| | | | | а | 3.13m | — 3. 02m |
| | | | | b | 2. 70m | — 1.99m |
| | | | 1.0km/s | C | 2.64m | —2.12m |
| | | | | d | 2. 57m | — 1.84m |
| t t t | | | | е | 2.60m | —2.27m |
| 本
注 | | | | а | 3.38m | —2.88m |
| 波 | | 600 | 2.0km/s | b | 2.78m | —2.04m |
| 源 | S 1 | | | C | 3. 03m | —2.34m |
| Ē | 01 | 003 | | d | 2.73m | — 2.13m |
| デ | | | | е | 2.74m | — 2.35m |
| | | | | а | 3. 42m | —2.81m |
| ۲ | | | / | b | 2.97m | — 2.13m |
| | | | 2.5km/s | C | 3.15m | — 2.38m |
| | | | | d | 2.91m | -2.20m |
| | | | | e | 2. 84m | -2.37m |
| | | | 8 | - | 3. 47m | -2.55m |

下降側

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 |
|-----|---------------|------------|-------------|-----------|-------------|-------------|
| | | | | а | 2.57m | —2.76m |
| | | | | b | 3.15m | —2.50m |
| | | | 1.0km/s | C | 2.88m | —2.41m |
| | | | | d | 2. 92m | —2.43m |
| | | | | е | 2.55m | —2.44m |
| 基 | | | | а | 2.85m | —2.92m |
| 牛 | ++ ># + | | 60s 2.0km/s | b | 3.26m | —2.79m |
| 源 | 基準を
南方へ | 60s | | C | 2.93m | —2.72m |
| Ē | 10km | | | d | 2.93m | —2.73m |
| テル | | | | е | 2.82m | —2.66m |
| (5) | | | 2.5km/s | а | 2.87m | —2.95m |
| 0 | | | | b | 3.27m | -2.84m |
| | | | | C | 2.90m | —2.78m |
| | | | | d | 2.91m | —2.78m |
| | | | | е | 2.83m | —2.73m |
| | | | ∞ | _ | 3.26m | — 3. 03m |
| | :上昇側最大ク | | | :下降側最 | 大ケース | |

4-4-1. 動的破壊特性の不確かさの影響確認(13/14)

<u> 基準波源モデル⑥:詳細パラメータスタディ</u>

検討結果

基準波源モデル⑥に対する詳細パラメータスタディの結果は 以下のとおりである。

100 200 km

ト 見側 詳細パラメータスタディ結果一覧

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 | |
|--------|--------------------|------------|------------|-----------|-------------|-------------|---------|
| 基準波源モデ | S1を
北方へ
10km | 60s | 1.0km/s | а | 3. 22m | — 3.13m | |
| | | | | b | 3. 38m | — 2.10m | |
| | | | | C | 3.36m | — 2. 32m | |
| | | | | d | 3.11m | — 2. 22m | |
| | | | | е | 2. 98m | — 2.69m | |
| | | | 2.0km/s | а | 3. 46m | — 3. O3m | |
| | | | | b | 3.63m | — 2.31m | |
| | | | | C | 3.63m | — 2.56m | |
| | | | 003 | | d | 3.69m | — 2.39m |
| | | | | е | 3.53m | — 2.70m | |
| л
С | | | 2.5km/s | а | 3. 47m | — 2.99m | |
| 0 | | | | b | 3.57m | -2.40m | |
| | | | | C | 3.60m | —2.61m | |
| | | | | d | 3.67m | -2.47m | |
| | | | | e | 3. 54m | -2.72m | |
| | | | 8 | - | 3.59m | -2.82m | |

下降側

| タイプ | アスペリティ
の位置 | ライズ
タイム | 破壊伝播
速度 | 破壊
開始点 | 最大水位
上昇量 | 最大水位
下降量 |
|-----|--------------------|------------|------------|-----------|-------------|---------------------|
| 基準波 | S1を
北方へ
20km | 60s | 1.0km/s | а | 2.97m | — 3. 00m |
| | | | | b | 3.61m | — 2. 26m |
| | | | | C | 3. 22m | — 2. 45m |
| | | | | d | 3.28m | — 2. 35m |
| | | | | е | 3.03m | — 2.78m |
| | | | 2.0km/s | а | 3.36m | −3.11m [≫] |
| | | | | b | 3.50m | — 2.60m |
| 源 | | | | C | 3.61m | — 2.74m |
| Ŧ | | | | d | 3.63m | — 2.67m |
| アル | | | | е | 3.53m | —2.81m |
| 6 | | | 2.5km/s | а | 3.41m | −3.11m [≫] |
| Ũ | | | | b | 3.46m | —2.67m |
| | | | | C | 3.59m | — 2. 79m |
| | | | | d | 3.61m | — 2. 73m |
| | | | | е | 3.54m | — 2.83m |
| | | | ∞ | - | 3.55m | — 2. 94m |
| | :上昇側最大ク | ース | | ∶下降側最 | 大ケース | |

4-4-1. 動的破壊特性の不確かさの影響確認(14/14)

<u>まとめ</u>

基準波源モデル①~⑥の概略パラメータスタディ最大ケースを対象に、動的破壊特性の不確かさを考慮した検討を実施し、水位上昇側及び水位下降側の決定ケースが変わらないことを確認することを目的として、基準波源モデル①~⑥の概略パラメータスタディにおける最大水位上昇ケース及び最大水位下降ケースの全ケースを対象に詳細パラメータスタディを実施した。
 その結果、概略パラメータスタディにおける最大水位上昇ケース及び最大水位下降ケースとなる波源モデルのみを対

第994回審査会合

資料3-2 P.4.4-17-部修正

441 - 17

象に詳細パラメータスタディを実施して選定した決定ケースと本検討で選定した決定ケースとは同じであることが確認できた。

| モデル | パラメータスタディ | 敷地における
最大水位上昇量 | 取水ロスクリーン室前面における
最大水位下降量 |
|--------------------|-------------|-------------------|----------------------------|
| 甘洪冲洒工デル① | 概略パラメータスタディ | 2. 55m | —2.15m |
| 奉卒波源モナル① | 詳細パラメータスタディ | 2. 82m | —2.33m |
| 基準波源モデル② | 概略パラメータスタディ | 3. 62m | —3. 04m |
| | 詳細パラメータスタディ | 3.62m | —3. 04m |
| + | 概略パラメータスタディ | 3.57m | —3.49m |
| 基準波源モナル③ | 詳細パラメータスタディ | 3.57m | — 3. 53m |
| <u>╅┿╈┲╼╺┙</u> ╓╺╲ | 概略パラメータスタディ | 3.57m | —3.47m |
| 奉卒波源モナル④ | 詳細パラメータスタディ | 3.57m | — 3. 47m |
| <u>╅</u> ӝ╓╴╴┈╷╒ | 概略パラメータスタディ | 3. 47m | — 3. 03m |
| 基準波源モナル③ | 詳細パラメータスタディ | 3. 47m | — 3. 03m |
| 甘淮沖酒エゴルの | 概略パラメータスタディ | 3. 59m | —2.94m |
| <u> 本牛収</u> 源モナル® | 詳細パラメータスタディ | 3. 69m | —3. 11m |

三陸沖から根室沖のプレート間地震に伴う津波検討結果

(余白)

| 日次 | :本日のご説明に対応する範囲 4.4.2-1 |
|-----------------------------------|------------------------------------|
| | POWER |
| 1. 津波堆積物調査(現地調査) | 4-4-3 基準波源モデル56と基準波源モデル1~4の関連性 |
| 2. 日本海東縁部に想定される地震に伴う津波 | 4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の |
| 2-1. 波源モデルのパラメータに関する検討 | 傾向把握 |
| 2-1-1. 傾斜方向・傾斜角パターン影響検討 | 5. 千島海溝沿いの海洋プレート内地震に伴う津波 |
| 2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認 | 6. チリ沖に想定される地震に伴う津波の影響検討 |
| 2-2. 日本海東縁部に想定される地震に伴う津波の | 7. 陸上の斜面崩壊に起因する津波 |
| 評価因子影響分析 | 7-1. 地すべり地形分布図 |
| 2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 | 7-2. 二層流モデルの適用性について |
| 2-4. 日本海東縁部に設定された地方自治体による波源モデル | 8. 海底地すべりに起因する津波 |
| 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの | 8-1. 急傾斜部を対象とした地形判読 |
| 超巨大地震から得られた知見 | 8-2. 海底地すべり海上音波探査記録 |
| 3-1. 2011年東北地方太平洋沖地震から得られた知見 | 8-3. 海底地すべり地形崩壊量算定 |
| 3-2.世界のM9クラスの超巨大地震から得られた知見の整理 | 8-4. ハワイ付近の海底地すべりの影響について |
| 3-3. まとめ | 9. 火山現象に起因する津波 |
| 4. 三陸沖から根室沖のプレート間地震に伴う津波 | 9-1. kinematic landslideモデルによる追加検討 |
| 4-1. 検討対象波源域の選定 | 10. 津波発生要因の組合せに関する検討 |
| 4-2. 波源モデルのパラメータに関する検討 | 10-1. 線形足し合せ水位評価地点の妥当性確認 |
| 4-2-1 . ライズタイムの影響検討 | 11. 津軽海峡・発電所専用港湾及び津波の周期特性 |
| 4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認 | 11-1. 検討方法 |
| 4-2-3 . 分岐断層に関する検討 | 11-2. 日本海側からの津波に対する検討 |
| 4-3. 三陸沖から根室沖のプレート間地震に伴う津波の | 11-3. 太平洋側からの津波に対する検討 |
| 評価因子影響分析 | 11-4. まとめ |
| | 12. その他 |
| 4-4-1. 動的破壊特性の不確かさの影響確認 | 12-1. 想定津波群の作成方法 |
| 4−4−2 . 基準波源モデル①~⑥の水位分布比較 | 12-2. 津波の伝播特性について |

4-4-2. 基準波源モデル①~⑥の水位分布比較

第994回審査会合 資料3-1 P.2.3.1-141一部修正

<u>評価水位抽出位置(上昇側)における水位の分布</u>

- 基準波源モデル①~⑥の概略パラメータスタディ水位上昇最大ケースを対象に評価水位抽出位置における水位の分布を 比較した結果は以下のとおり。
 - ✓ 南護岸を境界に、基準波源モデル②~④は南護岸南側の水位が、基準波源モデル⑤⑥は専用港湾側の水位がそれぞれ 高くなる。
 - ✓ 基準波源モデル①は陸上への浸水が無く、評価水位抽出位置(上昇側)では取水ロスクリーン室前面のみ水位が抽出 される。
 - ─ 基準波源モデル① ── 基準波源モデル② ── 基準波源モデル③
 - ── 基準波源モデル④ ── 基準波源モデル⑤ ── 基準波源モデル⑥

| 日次 | ···································· |
|-----------------------------------|--------------------------------------|
| | POWER |
| 1. 津波堆積物調査(現地調査) | 4-4-3 基準波源モデル⑤⑥と基準波源モデル①~④の関連性 |
| 2. 日本海東縁部に想定される地震に伴う津波 | 4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の |
| 2-1. 波源モデルのパラメータに関する検討 | 傾向把握 |
| 2-1-1. 傾斜方向・傾斜角パターン影響検討 | 5. 千島海溝沿いの海洋プレート内地震に伴う津波 |
| 2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認 | 6. チリ沖に想定される地震に伴う津波の影響検討 |
| 2-2. 日本海東縁部に想定される地震に伴う津波の | 7. 陸上の斜面崩壊に起因する津波 |
| 評価因子影響分析 | 7-1. 地すべり地形分布図 |
| 2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 | 7-2. 二層流モデルの適用性について |
| 2-4. 日本海東縁部に設定された地方自治体による波源モデル | 8. 海底地すべりに起因する津波 |
| 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの | 8-1. 急傾斜部を対象とした地形判読 |
| 超巨大地震から得られた知見 | 8-2. 海底地すべり海上音波探査記録 |
| 3-1. 2011年東北地方太平洋沖地震から得られた知見 | 8-3. 海底地すべり地形崩壊量算定 |
| 3-2. 世界のM9クラスの超巨大地震から得られた知見の整理 | 8-4. ハワイ付近の海底地すべりの影響について |
| 3-3. まとめ | 9. 火山現象に起因する津波 |
| 4. 三陸沖から根室沖のプレート間地震に伴う津波 | 9-1. kinematic landslideモデルによる追加検討 |
| 4-1. 検討対象波源域の選定 | 10. 津波発生要因の組合せに関する検討 |
| 4-2. 波源モデルのパラメータに関する検討 | 10-1. 線形足し合せ水位評価地点の妥当性確認 |
| 4-2-1 . ライズタイムの影響検討 | 11. 津軽海峡・発電所専用港湾及び津波の周期特性 |
| 4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認 | 11-1. 検討方法 |
| 4-2-3 . 分岐断層に関する検討 | 11-2. 日本海側からの津波に対する検討 |
| 4-3. 三陸沖から根室沖のプレート間地震に伴う津波の | 11-3. 太平洋側からの津波に対する検討 |
| 評価因子影響分析 | 11-4. まとめ |
| 4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認 | 12. その他 |
| 4-4-1 . 動的破壊特性の不確かさの影響確認 | 12-1. 想定津波群の作成方法 |
| 4-4-2 基準波源モデル①~⑥の水位分布比較 | 12-2. 津波の伝播特性について |
4-4-3. 基準波源モデル56と基準波源モデル①~④の関連性(1/8)

第994回審杳会合 資料3-1 P.2.3.1-156一部修正

検討方針

・取水ロスクリーン室前面において特徴的な水位の増幅が認められる津波周期は7分~10分であり、基準津波策定位置に おいて特徴的な水位の増幅が認められる津波周期は30分であることを示した。(P.11.3-3参照) ・ここでは、津軽海峡入口における基準波源モデル①~⑥の津波の周期特性について、上記の水位の増幅が認められる周 期に着目した比較・分析を行い、基準波源モデル⑤⑥(津軽海峡内及び大間専用港湾に特化した津波挙動を考慮した モデル)と基準波源モデル①~④(3.11地震・津波の再現性等を考慮したモデル)との関連性について整理し、基準 波源モデル(5)(6)の妥当性を示す。

【前提条件】

基準波源モデル⑥は基準波源モデル⑤のすべり量を割り増ししたモデルとして位置づけられ、基準波源モデル④は基準波 源モデル③に分岐断層・海底地すべりを考慮したモデルと位置づけられる(本編資料P.3.2.1-6参照)。 ・なお、基準波源モデル⑥と基準波源モデル③は、すべり量等のパラメータ諸元がほぼ同等である(P.4.4.3-10参照)。

【検討概要】

1. 基準波源モデル(5)⑥と基準波源モデル(3)④との比較(P.4.4.3-3)

 ・ステップ1として、基準波源モデル⑤⑥と基準波源モデル①~④との津軽海峡入口における周期特性の違いを分析する。 分析は、上記前提条件を踏まえて、基準波源モデル(5)⑥と基準波源モデル(3)④とを抽出し実施する。

2. 基準波源モデル③と 基準波源モデル(1)2)との比較(P.4.4.3-4)

 ・ステップ2として、基準波源モデル①~④の津軽海峡入口における周期特性の類似性等を分析する。分析は、基準波源 モデル③と基準波源モデル①②とを比較することにより実施する。

3. 基準波源モデル56と 基準波源モデル①~④との比較結果(P.4.4.3-5)

上記の検討結果から、基準波源モデル⑤⑥と基準波源モデル①~④との比較結果を整理する。

4. まとめ (P.4.4.3-9)

 基準波源モデル(5)⑥が基準波源モデル(1) (P. 4, 4, 3–7. P.4.4.3-8参照) に対して保守的であることを確認する。

・基準波源モデル⑤⑥(津軽海峡内及び大間専用港湾に特化した津波挙動を考慮したモデル)と基準波源モデル①~④ (3.11地震・津波の再現性等を考慮したモデル)との関連性及び基準波源モデル(5)⑥の妥当性を示す。

4-4-3. 基準波源モデル56と基準波源モデル1~4の関連性(2/8)

振動数(Hz)

津軽海峡入口におけるスペクトル解析結果の比較

4-4-3. 基準波源モデル⑤⑥と基準波源モデル①~④の関連性(3/8)

4.4.3-4

2. 基準波源モデル③と基準波源モデル①②との比較

基準波源モデル①②③について、津軽海峡入口における 周期特性を把握するため、取水ロスクリーン室前面及び 基準津波策定位置でそれぞれ特徴的な水位増幅を示す周 期7分~10分及び30分(P.11.3-3参照)の水位変動に着 目しスペクトルの比較を行った。

- 周期7分~10分付近の津波のパワースペクトルは、基準波源モデル③が基準波源モデル①②に比べて大きい。
 ③>①②
- ・ 周期30分付近の津波のパワースペクトルは、基準波源 モデル①②③共にほぼ同等程度である。(パワースペ クトル比が1に近い。) ③≒①②

振動数(Hz)

第994回審査会合 資料3-1 P.2.3.1-158再掲

波源モデル

基準波源モデル③と基準波源モデル①②との比較

津軽海峡入口におけるスペクトル解析結果の比較

4-4-3. 基準波源モデル56と基準波源モデル1~4の関連性(4/8)

3. 基準波源モデル⑤⑥と基準波源モデル①~④との比較結果

第994回審査会合 資料3-1 P.2.3.1-159再掲

- 基準波源モデル①~⑥を対象とした津軽海峡入口における周期特性の比較結果(P.4.4.3-3, P.4.4.3-4参照)は以下のとおりであり、基準波源モデル⑤⑥は基準波源モデル①~④に比べて、周期7分~10分付近の成分が相対的に卓越し、周期30分付近の成分は下回る結果となった。
 - ✓ 周期7分~10分付近の津波のパワースペクトル ④5⑥>③>①②
 - ✓ 周期30分付近のパワースペクトル 56<1234

以上から、基準波源モデル①~⑥は、「周期7分~10分のパワースペクトルが大きいグループ」(基準波源モデル④⑤⑥)と「周期30分程 度のパワースペクトルが大きいグループ」(基準波源モデル①~④)に分類・整理することができる。

周期30分のパワースペクトルが大きい

周期7分~10分のパワースペクトルが大きい

(余白)

4-4-3. 基準波源モデル⑤⑥と基準波源モデル①~④の関連性(5/8)

4.4.3-7

 津軽海峡開口部付近の沿岸における基準波源モデル (15)⑥の計算津波高※(概略パラメータスタディ上昇 側最大ケース)の比較を行った。 •津軽海峡開口部付近においては、基準波源モデル⑤ ⑥が、広域の津波痕跡高の再現性を考慮し設定した 基準波源モデル①を上回っている。なお、津軽海峡 内等の周期特性を考慮して設定した基準波源モデル (5)⑥は基準波源モデル(1)に比べて津軽海峡内におい て保守的なモデルであると位置づけられる。 ※:計算津波高はP.4.4.3-8に示すとおり。 200 km 基準波源モデル① 大すべり域 超大すべり域 基準波源モデル⑤ 大すべり域 ・・・・・超大すべり域 基準波源モデル⑥ - 大すべり域 ・・・・・ 超大すべり域

アスペリティの位置を変化させる概略パラメータスタディで 上昇側最大ケースとなった各基準波源モデルの大すべり域等の位置図

4-4-3. 基準波源モデル56と基準波源モデル1~4の関連性(6/8)

<u>計算津波高</u>

| 4 | 4.4.3-8 |
|-------|------------------|
| 第99 | 94回審査会合 |
| 資料3-1 | P. 2. 3. 1-162再掲 |

| | | | | 計算津波高(m) | | | |
|-----|---------------|------|-----------------------------|--------------------------|------------------------|--|--|
| 沿岸 | | 地点 | テクトニクス的背景・
地震学的見地に基づくモデル | 大間の立地特性を考慮したモデル | | | |
| | 四川 | | 基準波源モデル①
(ト昇側最大ケース) | 基準波源モデル(5)
(ト気側最大ケース) | 基準波源モデル⑥
(ト気側最大ケース) | | |
| | 津軽海峡外 | 白屋 | (上升), 取八/ 八/ 369 | (工开阅取八) 八/ 578 | (工 升 回 取 八 / 八 / 7)1 | | |
| | | 山背泊 | 2.95 | 4.97 | 5.92 | | |
| 北海道 | | | 2.30 | 4 43 | 5.31 | | |
| | | 大森浜 | 5.09 | 5.83 | 6.83 | | |
| | | 函館港 | 3.93 | 3.21 | 3.76 | | |
| | | 大間 | 2.37 | 3.08 | 3.63 | | |
| | | 大間東岸 | 2.92 | 4.51 | 5.44 | | |
| | 津軽海峡内 | 易国間 | 3.29 | 5.92 | 7.56 | | |
| | | 甲 | 2.98 | 6.12 | 7.39 | | |
| | | 木野部 | 4.14 | 6.27 | 8.38 | | |
| | | 大畑 | 3.80 | 6.02 | 8.25 | | |
| | | 出戸川 | 5.27 | 8.67 | 10.35 | | |
| | | 石持 | 5.98 | 9.53 | 11.24 | | |
| 青森県 | | 岩屋 | 4.87 | 4.98 | 5.64 | | |
| | | 尻労 | 5.47 | 11.49 | 13.13 | | |
| | | 小田野沢 | 6.11 | 10.81 | 12.37 | | |
| | | 白糠 | 5.27 | 9.02 | 10.58 | | |
| | 津軽海峡外 | 泊 | 5.63 | 9.33 | 10.84 | | |
| | /+ <u>_</u> / | 出戸 | 5.60 | 9.59 | 11.70 | | |
| | | 新納屋 | 7.14 | 11.44 | 13.39 | | |
| | | 六川目 | 8.15 | 12.67 | 13.85 | | |
| | | 五川目 | 8.13 | 12.23 | 13.83 | | |

4-4-3. 基準波源モデル⑤⑥と基準波源モデル①~④の関連性(7/8)

<u>4. まとめ</u>

POWER 第994回審査会合 資料3-1 P. 2. 3. 1-163再掲

443 - 9

- 津軽海峡入口における基準波源モデル①~⑥の津波の周期特性を分析し、基準波源モデル⑤⑥と基準波源モデル①
 ~④とを相対比較した結果を以下に示す。
 - ✓ 3.11地震・津波の再現性等を考慮した基準波源モデル①~④は、基準津波策定位置において特徴的な水位の増幅が認められる周期30分の周期特性を有する津波である。
 - ✓ 津軽海峡内及び大間専用港湾に特化した津波挙動を考慮した基準波源モデル⑤⑥は、取水ロスクリーン室前面で 特徴的な水位の増幅が認められる周期7分~10分の周期特性を有する津波^{※1}であると関連付けられる。

※1:基準波源モデル④も同様の特徴を有する津波と言えるが,基準波源モデル⑤,⑥を主眼に記載するため、ここでの記載を割愛した。

- 津軽海峡開口部付近において、基準波源モデル①⑤⑥の水位を比較した結果を以下に示す。
 - ✓ 基準波源モデル⑤⑥による津波水位は、基準波源モデル①(広域で3.11地震による津波水位を再現したモデル) による津波水位を上回っている。なお、津軽海峡内等の周期特性を考慮して設定した基準波源モデル⑤⑥は基準 波源モデル①に比べて津軽海峡内において保守的なモデルであると位置づけられる。
- まとめ
 - ✓ 基準波源モデル⑤⑥は、取水ロスクリーン室前面で特徴的な水位の増幅が認められる周期7分~10分の周期特性 を有する津波であり、また、これらの津波水位は基準波源モデル①(広域で3.11地震による津波水位を再現した モデル)による津波水位を上回っており保守的なモデルと位置づけられるため、基準波源モデル⑤⑥の設定は妥 当である。

| | 4-4-3. z
<u>(参考)基準</u> 注 | 蓥华/奴/源 ⁻
波源モデルのノ |) ル <u>う</u> しと
ペラメータの整 | 基华 <i>瓜</i> 源亡
理 | | | 0 / 0 / | POWE
第994回審査会
資料3-1 P 2 3 1- |
|----|---|--|--|--|-----------------------------------|-----------------------------------|---|--|
| | 各基準波源モラ | デルのパラメータ | は以下のとおり。 | , | | | | |
| | | 3.11地震・津波の | 再現性等を考慮した基準 |
波源モデル | |
津軽海峡⊽
津波挙動 | 内及び大間専用港湾に
勧を考慮した基準波源= | 特化した
モデル |
| | T × U g
(m)
(25.38)
(12.48)
(m)
(25.38)
(12.48) | 10 00 10
10 000 10
10 00 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | | | | 111
112
113
113
113
125
125
125
125
125
125
125
125 | (m)
(m)
(m)
(m)
(m)
(m)
(m)
(m) |
| 準注 | 波源モデル① 基準 | i
波源モデル② 3.11世
特性を
考に影 | 。
調における宮城県沖の破壊
考慮した特性化モデルを参
定した特性化モデル | <u>基準波源モデル</u>
基準波源モデル③ | 基準波源モデル④
ラメータ | 基準波源モテ | <u>「い</u> 5」
基準波 | 7源モデル⑥ |
| | 諸元 | 基準波源モデル① | 基準波源モデル② | 3.11地震における宮城県沖の破壊
特性を考慮した特性化モデルを参
考に設定した特性化モデル | 基準波源モデル③ | 基準波源モデル④ | 基準波源モデル⑤ | 基準波源モデル⑥ |
| _; | メントマグニチュード (Mw) | 9.06 | 9.04 | 9.04 | 9.05 | 9.04 | 9.04 | 9.04 |
| | 断層面積(S) | 110,472 (km²) | 110,472 (km²) | 110,472 (km²) | 110, 472 (km²) | 110, 472 (km²) | 110, 472 (km²) | 110, 472 (km²) |
| | 平均応力降下量(⊿σ) | 3.26 (MPa) | 3.07 (MPa) | 3.05 (MPa) | 3.14 (MPa) | 3.08 (MPa) | 3.08 (MPa) | 3.08 (MPa) |
| | 地震モーメント(Mo) | 4. 92 × 10 ²² (N · m) | 4. 62×10^{22} (N · m) | 4.59 × 10 ²² (N • m) | 4.73×10 ²² (N ⋅ m) | 4.65×10 ²² (N ⋅ m) | 4. 64×10^{22} (N · m) | 4. 64 × 10 ²² (N · m) |
| T | 背景領域(背景的領域)
(面積及び面積比率) | 2.79 (m)
(63,895 (km ²), 57.8%) | 5.12 (m)
(87,732 (km²), 79.4%) | | 3.90 (m)
(48,879(km²), 44.2%) | 3.72 (m)
(52,259(km²), 47.3%) | | 3.90 (m)
(56,997(km ²), 51.6 |
| | 基本すべり域
(面積及び面積比率) | | | 6. 30 (m)
(87, 732 (km ²), 79. 4%) | 7.80 (m)
(38,853 (km²), 35.2%) | 7.44 (m)
(35,022(km²), 31.7%) | 6. 30 (m)
(87, 616 (km ²), 79. 3%) | 7.80 (m)
(30,619(km ²), 27.7 |
| | 大すべり域
(面積及び面積比率) | 11.84 (m)
(27,829 (km²), 25.2%) | 16.37 (m)
(16,438 (km²), 14.9%) | 12.59 (m)
(16,438 (km²), 14.9%) | 15.59 (m)
(16,438(km²), 14.9%) | 14.88 (m)
(11,477(km²), 10.4%) | 12.59 (m)
(15,790 (km²), 14.3%) | 15.59 (m)
(15,790(km²), 14.3 |
| | 中間大すべり域
(面積及び面積比率) | | | | | 22.33 (m)
(6,018(km²), 5.4%) | | |
| | 超大すべり域
(面積及び面積比率) | 25.38 (m)
(18,748 (km²) , 17.0%) | 32.75 (m)
(6,302 (km²) , 5.7%) | 25. 19 (m)
(6, 302 (km ²), 5. 7%) | 31.19 (m)
(6,302(km²), 5.7%) | 29.77 (m)
(5,696(km²), 5.2%) | 25.19 (m)
(7,066(km²), 6.4%) | 31.19 (m)
(7,066(km ²), 6.4% |
| ſ | 平均すべり量 | 8.90 (m) | 8.37 (m) | 8.31 (m) | 8.57 (m) | 8.42 (m) | 8.41 (m) | 8,40 (m) |

注:表中の値はモデル化後の値

目 次

 \mathcal{C}

| 日 * 2 | ···································· |
|-----------------------------------|--------------------------------------|
| | POWER |
| 1. 津波堆積物調査(現地調査) | 4-4-3 . 基準波源モデル⑤⑥と基準波源モデル①~④の関連性 |
| 2. 日本海東縁部に想定される地震に伴う津波 | 4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の |
| 2-1. 波源モデルのパラメータに関する検討 | 傾向把握 |
| 2-1-1. 傾斜方向・傾斜角パターン影響検討 | 5. 千島海溝沿いの海洋プレート内地震に伴う津波 |
| 2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認 | 6. チリ沖に想定される地震に伴う津波の影響検討 |
| 2-2. 日本海東縁部に想定される地震に伴う津波の | 7. 陸上の斜面崩壊に起因する津波 |
| 評価因子影響分析 | 7-1. 地すべり地形分布図 |
| 2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 | 7-2. 二層流モデルの適用性について |
| 2-4. 日本海東縁部に設定された地方自治体による波源モデル | 8. 海底地すべりに起因する津波 |
| 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの | 8-1. 急傾斜部を対象とした地形判読 |
| 超巨大地震から得られた知見 | 8-2. 海底地すべり海上音波探査記録 |
| 3-1. 2011年東北地方太平洋沖地震から得られた知見 | 8-3. 海底地すべり地形崩壊量算定 |
| 3-2. 世界のM9クラスの超巨大地震から得られた知見の整理 | 8-4. ハワイ付近の海底地すべりの影響について |
| 3-3. まとめ | 9. 火山現象に起因する津波 |
| 4.三陸沖から根室沖のプレート間地震に伴う津波 | 9-1. kinematic landslideモデルによる追加検討 |
| 4-1. 検討対象波源域の選定 | 10. 津波発生要因の組合せに関する検討 |
| 4-2. 波源モデルのパラメータに関する検討 | 10-1. 線形足し合せ水位評価地点の妥当性確認 |
| 4-2-1 . ライズタイムの影響検討 | 11. 津軽海峡・発電所専用港湾及び津波の周期特性 |
| 4-2-2.2011年東北地方太平洋沖地震による津波等の再現性確認 | 11-1. 検討方法 |
| 4-2-3 . 分岐断層に関する検討 | 11-2. 日本海側からの津波に対する検討 |
| 4-3. 三陸沖から根室沖のプレート間地震に伴う津波の | 11-3. 太平洋側からの津波に対する検討 |
| 評価因子影響分析 | 11-4. まとめ |
| 4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認 | 12. その他 |
| 4-4-1 . 動的破壊特性の不確かさの影響確認 | 12-1. 想定津波群の作成方法 |
| 4-4-2 . 基準波源モデル①~⑥の水位分布比較 | 12-2. 津波の伝播特性について |

【検討概要】

| [津軽海峡入射前] ・津軽海峡開口部付近の沿岸における基準波源モデル①~⑥の計算津波高の分布傾向を比較する。(P.4.4.4-3, P.4.4.4-4) ・各波源から津軽海峡までの伝播特性(最大水位上昇量分布)について検討する。(P.4.4.4-5) |
|---|
|
 [津軽海峡入射後]
 ・津軽海峡内の伝播特性(最大水位上昇量分布等)について検討する。(P.4.4.4-6, P.4.4.4-7) |

4-4-4. 三陸沖から根室沖のプレート間地震に伴う津波の傾向把握(3/7) ^{4.4.4-4}

POWER

第994回審査会合

資料3-1 P.2.3.1-168再掲

<u>津軽海峡入射前の傾向(2/3):既往津波高及び計算津波高</u>

| | | | 既往最大 | | | | | | |
|-----|---------|------|-------|----------|------------------|----------|----------|----------|----------|
| | 区分 | 地点 | 津波高 | テク | ットニクス的背景・地震
1 | 大間の立地特性を | 考慮したモデル | | |
| | | | (m) | 基準波源モデル① | 基準波源モデル② | 基準波源モデル③ | 基準波源モデル④ | 基準波源モデル⑤ | 基準波源モデル⑥ |
| | 津軽海峡外 | 臼尻 | 1.80 | 3.69 | 5.10 | 4.54 | 5.46 | 5.78 | 7.21 |
| | | 山背泊 | 1.05 | 2.95 | 4.67 | 4.40 | 5.06 | 4.97 | 5.92 |
| 北海道 | | 志海苔 | 1.20 | 2.75 | 4.36 | 3.64 | 4.38 | 4.43 | 5.31 |
| | | 大森浜 | 1.80 | 5.09 | 7.67 | 7.47 | 6.89 | 5.83 | 6.83 |
| | | 函館港 | 3.90 | 3.93 | 4.71 | 4.03 | 4.07 | 3.21 | 3.76 |
| | | 大間 | 1.30 | 2.37 | 3.33 | 3.11 | 3.67 | 3.08 | 3.63 |
| | | 大間東岸 | 0.60 | 2.92 | 3.31 | 3.73 | 4.05 | 4.51 | 5.44 |
| | 津軽海峡内 | 易国間 | 2.20 | 3.29 | 4.84 | 4.27 | 5.19 | 5.92 | 7.56 |
| | | 甲 | 2.60 | 2.98 | 3.73 | 3.55 | 5.96 | 6.12 | 7.39 |
| | | 木野部 | 2.00 | 4.14 | 5.40 | 4.75 | 5.77 | 6.27 | 8.38 |
| | | 大畑 | 2.40 | 3.80 | 4.20 | 4.87 | 5.48 | 6.02 | 8.25 |
| | | 出戸川 | 1.60 | 5.27 | 6.81 | 6.35 | 8.13 | 8.67 | 10.35 |
| | | 石持 | 5.88 | 5.98 | 6.38 | 6.00 | 8.45 | 9.53 | 11.24 |
| 青森県 | | 岩屋 | 1.30 | 4.87 | 5.40 | 5.37 | 4.83 | 4.98 | 5.64 |
| | | 尻労 | 2.46 | 5.47 | 7.74 | 6.36 | 10.66 | 11.49 | 13.13 |
| | | 小田野沢 | 2.70 | 6.11 | 8.43 | 7.08 | 10.59 | 10.81 | 12.37 |
| | | 白糠 | 0.90 | 5.27 | 7.38 | 6.70 | 8.43 | 9.02 | 10.58 |
| | 津軽海峡外 | 泊 | 3.10 | 5.63 | 7.93 | 6.76 | 9.51 | 9.33 | 10.84 |
| | | 出戸 | 4.20 | 5.60 | 7.56 | 7.37 | 8.72 | 9.59 | 11.70 |
| | | 新納屋 | 3.70 | 7.14 | 10.12 | 9.24 | 9.54 | 11.44 | 13.39 |
| | | 六川目 | 5.56 | 8.15 | 12.47 | 9.68 | 11.45 | 12.67 | 13.85 |
| | | 五川目 | 11.83 | 8.13 | 12.80 | 9.63 | 11.70 | 12.23 | 13.83 |

概略パラメータスタディ上昇側最大ケースの最大水位上昇量分布

概略パラメータスタディ上昇側最大ケースの最大水位上昇量分布

| とめ | 第994 |
|--|---|
| | |
| 三陸沖から根室沖のプレー
射後に分け、それぞれの基本 | - ト間地震に伴う津波の伝播傾向を把握することを目的とし,津軽海峡入射前と津軽海峡入
基準波源モデルによる解析結果を比較・検討した結果,以下の傾向が確認できた。 |
| ✓ 基準波源モデル①~⑥
①~⑥の設定は妥当でる | の計算津波高は,おおむね既往津波高を上回ることを確認した。これより,基準波源モデル
あると判断される。(P.4.4.4-3) |
| ✓ 津軽海峡入射前の傾向 | (P. 4. 4. 4-3~P. 4. 4. 4-5) |
| > 基準波源モデル①~(
に大きな差は認めら) | ⑥のいずれのケースでも, 波源に直面する太平洋沿岸の水位が高く, 増幅特性等の伝播形態
れない。 |
| ✓ 津軽海峡入射後の傾向 | (P. 4. 4. 4–6, P. 4. 4. 4–7) |
| ▶ 基準波源モデル①~ | ~④:敷地南側で水位が高くなる。 |
| | これは基準波源モデル①~④の津波は周期30分のパワースペクトルが大きいこと及び |
| | 基準津波策定位置では周期30分で水位増幅特性が認められることと整合的である。 |
| ▶ 基準波源モデル⑤⑥ | ③:専用港湾内で水位が高くなる。 |
| | これは基準波源モデル⑤⑥の津波は周期7分~10分のパワースペクトルが大きいこと |
| | 及び取水ロスクリーン室前面では周期7分及び10分で水位増幅特性が認められること |
| | と整合的である。 |

| 日次 | :本日のご説明に対応する範囲 5-1 |
|-----------------------------------|--|
| | POWER |
| 1. 津波堆積物調査(現地調査) | 4-4-3 基準波源モデル(5)(6)と基準波源モデル(1)~(4)の関連性 |
| 2. 日本海東縁部に想定される地震に伴う津波 | 4-4-4 . 三陸沖から根室沖のブレート間地震に伴う津波の |
| 2-1. 波源モデルのパラメータに関する検討 | 傾向把握 |
| 2-1-1. 傾斜方向・傾斜角パターン影響検討 | 5. 千島海溝沿いの海洋プレート内地震に伴う津波 |
| 2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認 | 6. チリ沖に想定される地震に伴う津波の影響検討 |
| 2-2. 日本海東縁部に想定される地震に伴う津波の | 7. 陸上の斜面崩壊に起因する津波 |
| 評価因子影響分析 | 7-1. 地すべり地形分布図 |
| 2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 | 7-2. 二層流モデルの適用性について |
| 2-4. 日本海東縁部に設定された地方自治体による波源モデル | 8. 海底地すべりに起因する津波 |
| 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの | 8-1. 急傾斜部を対象とした地形判読 |
| 超巨大地震から得られた知見 | 8-2. 海底地すべり海上音波探査記録 |
| 3-1. 2011年東北地方太平洋沖地震から得られた知見 | 8-3. 海底地すべり地形崩壊量算定 |
| 3-2. 世界のM9クラスの超巨大地震から得られた知見の整理 | 8-4. ハワイ付近の海底地すべりの影響について |
| 3-3. まとめ | 9. 火山現象に起因する津波 |
| 4. 三陸沖から根室沖のプレート間地震に伴う津波 | 9-1. kinematic landslideモデルによる追加検討 |
| 4-1. 検討対象波源域の選定 | 10. 津波発生要因の組合せに関する検討 |
| 4-2. 波源モデルのパラメータに関する検討 | 10-1. 線形足し合せ水位評価地点の妥当性確認 |
| 4-2-1 . ライズタイムの影響検討 | 11. 津軽海峡・発電所専用港湾及び津波の周期特性 |
| 4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認 | 11-1. 検討方法 |
| 4-2-3 . 分岐断層に関する検討 | 11-2. 日本海側からの津波に対する検討 |
| 4-3. 三陸沖から根室沖のプレート間地震に伴う津波の | 11-3. 太平洋側からの津波に対する検討 |
| 評価因子影響分析 | 11-4. まとめ |
| 4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認 | 12. その他 |
| 4-4-1 . 動的破壊特性の不確かさの影響確認 | 12-1. 想定津波群の作成方法 |
| 4-4-2 . 基準波源モデル①~⑥の水位分布比較 | 12-2. 津波の伝播特性について |

5. 千島海溝沿いの海洋プレート内地震に伴う津波(1/18)

<u>波源位置の不確かさの検討(基本方針)</u>

- 本編資料では、既往津波の文献調査において、津軽海峡及び敷地に影響を及ぼしたと考えられる津波のうち、海洋プレート内地震に伴う津波として1933年昭和三陸津波のみが選定されたこと、及び2011年東北地方太平洋沖地震の発生に伴いその沖側で海洋プレート内地震が発生する蓋然性が高まっていると考えられることを踏まえ、津軽海峡にほぼ正対する配置を考慮し、波源を三陸沖に配置したケースを検討した(本編資料「3-2-3、三陸沖の海洋プレート内地震に伴う津波」参照)。
- 一方,2006年11月15日に千島列島沖地震(M7.9^{×1})がプレート間で発生した翌年,2007年1月13日千島列島沖地震(M8.2^{×1})地震がプレート内で発生した事例を踏まえ、念のため千島海溝沿いの海洋プレート内地震に伴う津波をも含めて影響を確認する。
- なお、検討対象とする基準波源モデルのパラメータは、下表の三陸沖の海洋プレート内地震で用いたパラメータとする。(本編資料P.3.2.3-18参照)

| 項目 | 諸元 | 主な設定根拠 |
|-------------------------------|-------------------------|---|
| モーメントマク゛ニチュート゛ Mw | 8. 6 | 土木学会(2016) ⁽⁴⁾ |
| 長さ L ^{※2} (km) | 283 (185) | 1933年昭和三陸地震津波の痕跡 |
| 幅 W (km) | 50 | 局の再現性か高い波源ハフメー
 タを基本に,土木学会 (2016)
 ⁽⁴⁾ のスケーリング則に基づき設 |
| すべり量 D ^{※2} (m) | 10.1 (6.6) | 定 |
| 剛性率 μ (N/m ²) | 7. 0 × 10 ¹⁰ | 土木学会(2016) ⁽⁴⁾ 等 |
| 地震モーメントMo(N・m) | 1.00×10 ²² | $Mo=\mu LWD$ |
| 走向 θ (°) | 190 | 海溝軸の向き |
| 上縁深さ d (km) | 1 | |
| 傾斜角 δ (°) | 45 |
 1933年昭和三陸地震津波の痕跡 |
| すべり角 λ (°) | 270 | 高の再現性が高い波源モデル
 |
| ライズタイム τ (s) | 60 | |

基準波源モデルのパラメータ

※1:気象庁震度データベースによる。

※2:土木学会(2016)⁽⁴⁾を参考に1933年昭和三陸地震モデルの長さ及びすべり量にスケーリング則を適用して設定。 ():スケーリング則適用前の1933年昭和三陸地震モデルのパラメータ。

5. 千島海溝沿いの海洋プレート内地震に伴う津波(2/18)

<u>概略パラメータスタディ(1/12):海溝軸方向における位置の変動範囲の設定</u>

地震調査研究推進本部(2014)⁽⁷³⁾による海洋プレート内地震の断 層面の設定方法を参考に、日本海溝・千島海溝の海溝軸と平行に 20km単位で移動させる。 概略パラメータスタディ(位置の変動範囲)

| 項目 | 変動範囲 |
|-----------------|---|
| 日本海溝沿い | 基準(日本海溝北端) |
| 日本海溝~
千島海溝沿い | 基準(日本海溝北端)から
北東へ20km~280km移動(20km単位) |
| 千島海溝沿い | 千島海溝南西端から北東へ20km, 40km |

M≧8.1の海洋プレート内地震断層面の設定方法 (地震調査研究推進本部(2014)⁽⁷³⁾に一部加筆)

100 200 km

基準位置から北東へ移動の断層配置図

5. 千島海溝沿いの海洋プレート内地震に伴う津波(3/18)

概略パラメータスタディ(2/12):海溝軸方向における走向の変動範囲の設定(1/2)

<u>海溝軸外側における正断層地形の走向に関する知見(中西(2017))</u>

- 中西(2017)⁽⁷⁴⁾では、「1933年昭和三陸地震の震源域を含む海域を対象とした海底地形調査結果が示されており、北緯 38度より北側ではNS(NO[®])からN2O[®] Eの断層地形が多く存在しており、これらの断層地形は海溝軸と平行あるいはほぼ 平行である。」とされている。
- また,千島海溝沿いについてもN60°EからN80°Eの断層地形が多く存在しており,ほぼ海溝軸と平行である。

Nakanishi (2011)の研究対象海域の海底地形図(A)と断層地形の記載結果(B). 等深線の間隔は100mであ る.赤色の実線,青色の実線,黒色の実線は、それぞれ陸側傾斜の断層地形、海側傾斜の断層地形、直線的に伸 びる高まりを示す.薄い灰色の部分は海山などの高まりを示す.濃い灰色の部分は5600mより浅いところを示す. HR:北海道海影,ER:襟裳海山,K1:第一鹿島海山,MG:茂木海山,JSM:常磐海山列,NFZ:納沙布断裂带, KFZ:鹿島断裂帯.

図5 断層地形の走向に関するローズダイアグラム(Nakanishi, 2011). F: 断裂帯の走向, M1:中生代磁気異常の走向, M2:北緯 38 度付近の中生代磁気異常の走向, PR:北緯 34 度 30 分付近に存在する中央海嶺伝播の振跡の 方向, T:海津軸の走向, Tn:北緯 38 度より北側の日本海溝の走向, Ts:北緯 38 度より南側の日本海溝の走向. ダイアグラムは最短値が1になるように正規化されている。

断層地形の走向に関するローズダイヤグラム

マルチビーム音響測深に基づく断層等地形分布

<u> 概略パラメータスタディ(3/12):海溝軸方向における走向の変動範囲の設定(2/2)</u>

<u>土木学会(2002)の知見</u>

・断層の走向の変動範囲は中西(2017)⁽⁷⁴⁾および土木学会(2002)⁽⁷⁵⁾の既存断層パラメータのばらつきの評価結 果を参考に基準±10°とした。

既存断層パラメータのばらつきの評価結果

| 海域 | ्रस्ति स्ती | | 萩原マップ | 解析対象 | データ | 走 | 向(゜) | すべり |)方向(°) | すへ | <り角(°) | 傾組 | 斜角(°) | | | | | |
|------------|--------------|------------------|-------|----------------|------------|------------|------------|------------|------------|------|--------|------|-------|------|------|-----|------|-----|
| 大区分 | 伊坦坝 | 小区方 | 海域区分 | データ | 数 | 平均 | 標準記 | 平均 | 標準嚴 | 平均 | 標準記 | 平均 | 標準贏 | | | | | |
| 口木海港。 | 千島海
溝南部 | 41°N以北 | G1 | プレート間 | 43 | 222.3 | 14.1 | 304.3 | 10.8 | | | 21.7 | 6.4 | | | | | |
| 千島海溝 | 日本海
溝北部 | 38∼41 ° N | G2 | 逆断層地震
のハーバー | 逆断層地震のハーバー | 逆断層地震のハーバー | 逆断層地震のハーバー | 逆断層地震のハーバー | 逆断層地震のハーバー | 29 | 185.4 | 12.1 | 295.0 | 7.7 | | | 16.0 | 5.7 |
| (141 [41]) | 日本海3
溝南部3 | 5.3∼38 ° N | G3 | ド角星 | 14 | 204.2 | 13.5 | 292.3 | 12.2 | | | 21.1 | 5.1 | | | | | |
| 日本海 | 北部 | 40°N以北 | E | 海屋エデル | 6(3) | -2.7 | 9.6 | | | 91.7 | 11.3 | 43.3 | 14.0 | | | | | |
| 東縁部 | 南部 | 40°N以南
38°E以東 | г | 断層モテル- | 町層モアル・ | 断増モアル・ | 町増モアル・ | 5(3) | 25.2 | 6.3 | | | 96.0 | 13.4 | 57.0 | 6.7 | | |

(注)・日本海溝および千島海溝(南部)沿い海域では、ハーバード CMT による発震機構解(1976年1月 ~2000年1月に発生した M_n6.0以上,深さ 60km 以下の地震)を解析対象とした。

日本海東縁部では、発震機構解の節面の特定が困難であるため、津波の痕跡高を説明できる断層モデルのパラメータを用いてばらつきを評価した。

「すべり方向」は、スリップベクトルの水平投影が真北から時計回りになす角度である。

・日本海東縁部のデータ数のうち括弧内の値は、走向に対して適用した1枚断層換算のモデル数である。

・日本海東縁部(南部)の新潟地震モデルには Noguera and Abe (1992)を採用している。天保山形 沖地震(1833)は沖合・沿岸近くの両モデルを採用している。

・ 萩原マップは萩原尊禮編(1991)による。
 土木学会(2002)⁽⁷⁵⁾に一部加筆

概略パラメータスタディ(走向)

| 項目 | 変動範囲 | 備考 |
|----|--------|--|
| 走向 | 基準±10° | ・土木学会(2002) ⁽⁷⁵⁾ の走向の
標準偏差相当 |

-3 -3.5

-4

基準位置

北東へ20km移動

北東へ40km移動 北東へ60km移動 北東へ80km移動 北東へ100km移動

北東へ140km移動

北東へ120km移動

海溝軸方向の概略パラメータスタディの結果は以下のとおりである。

最大水位上昇ケース

走向:基準+10°

位置:日本海溝北端から北東へ180km移動

波源位置と敷地における最大水位上昇量の関係

波源位置と敷地における最大水位下降量の関係

波源位置

北東へ180km移動 北東へ200km移動

北東へ160km移動

北東へ220km移動 北東へ240km移動 北東へ260km移動 北東へ280km移動 千島海溝西端

東へ20km移動 東へ40km移動

5-6

5. 千島海溝沿いの海洋プレート内地震に伴う津波(6/18)

水位時刻歷波形

(分)

<u>概略パラメータスタディ(5/12):海溝軸方向の最大水位上昇ケース検討結果</u>

0

120

海溝軸方向の概略パラメータスタディで得られた上昇側最大ケースは以下のとおりである。

波源モデル

5. 千島海溝沿いの海洋プレート内地震に伴う津波(7/18)

<u>概略パラメータスタディ(6/12):海溝軸方向の最大水位下降ケース検討結果</u> 海溝軸方向の概略パラメータスタディで得られた下降側最大ケースは以下のとおりである。 **(D)** 取水ロスクリーン室前面に 波源モデル おける最大水位下降量 200 概略パラメータスタディ (海溝軸方向・走向) -2.20m6.0 ************************ 水位下降側最大ケース 3 0 zk 1.19m(71.6分) 0.0 100 200 km 位 -1 15 -1.15m(68.1分) 0 200 400 m N -3.0 (m) ①防波堤開口部 240 ____ -6.0 6.0 120 180 240 300 360 420 480 G領域 ⊿s=5m 6 1111 3.0 水 1.53m(144.6分) 1.53 Alter Marine M Marine Ma 4000 -7000 -7000 0.0 -0.5m 位 -6000 (-1.52) 5000 -1.52m(74.8分) 120 -3.0 -2.20m -1.0 (m) 88 ②港内中央 -6.0 0 60 120 180 240 300 360 420 -1.5 子力発電 6.0 -2.0 3.0 2.00m(70.7分) ж -2.00) -2.5 1000 5000 0.0 位 24 -3.0 -1.94) -1.94m(75.5分) -3.0 (m) -3.5 ③取水口CW前面 2000 5000 480 -4.0 0 -4.5 5000 3.0 2.27m(70.6分) zk -(2.27) (NF Environmenter and the second s -5.0m 360 0.0 位 2000/ 5000/ 0 -2.19) -2.19m(75.6分) -3.0 (m) C ④取水口SC前面 -6.0L 60 120 180 240 300 360 420 480 0 最大水位下降量分布 (分)

波源モデル

水位時刻歴波形

5-8

5. 千島海溝沿いの海洋プレート内地震に伴う津波(8/18)

<u> 概略パラメータスタディ(7/12):海溝軸直交方向における位置の変動範囲の設定(1/2)</u>

- 海溝軸方向の概略パラメータスタディの検討の結果、最も敷地に与える影響が大きい断層モデルを対象に、海溝軸 直交方向(東西方向)位置を変化させる検討を実施する。
- Tsuru and Park (2000) ⁽⁷⁶⁾ では、「1933年昭和三陸地震の震源域を含む海域を対象としたマルチチャンネル音波 探査に基づく海底地質調査によれば、以下のとおり、海洋プレート上面の正断層構造は、日本海溝から陸側に約 30km、沖合側に約110kmの範囲に存在する」ことが示されている。
 - ✓ (海底面に達していない断層を含めた正断層構造は)日本海溝から沖合側に約110kmの位置から確認できる。
 ✓ 沈み込んだプレート内では、日本海溝から陸側に約30kmの範囲で正断層構造が確認できる。
- Tsuru and Park (2000) ⁽⁷⁶⁾ では、「1933年昭和三陸地震の震源域を含む海域に分布する断層の傾斜方向は、東傾 斜及び西傾斜の両方向」が示されている。
- ・ 千島海溝沿いの海洋プレート内地震についても、上記知見を参照する。

Figure 1. Study area. The thick shaded time shows the MCS survey line of KR97-07 cruise and dots represent OBS locations. Huge interplate earthquakes (e.g., 1994 far-off-Sanriku earthquake) often occur in the study area, and the 1896 Sanriku earthquake generated a large tsunami. Stars indicate epicenters of these earthquakes. A triangle shows locations of sites 441 and 434 by the DSDP legs 56-57.

Figure 5. Horst and graben structures with normal faults. Subducting oceanic crust is cut by normal faults and horst-graben structures develop. Vertical exaggeration is 4 times. Data were muted around SP 2550 at data processing.

5. 千島海溝沿いの海洋プレート内地震に伴う津波(9/18)

<u> 概略パラメータスタディ(8/12):海溝軸直交方向における位置の変動範囲の設定(2/2)</u>

• 海溝軸直交方向(東西方向)位置を変化させる検討は以下のとおりとした。

概略パラメータスタディ(断層の位置:海溝軸直交方向)

| 項目 | 変動範囲 | 備考 |
|--------------|---|---|
| 位置
(東西方向) | 基準, 東へ100kmまで50km
単位で移動, 西へ50kmまで
50km単位で移動 | ・検討対象としている海洋プレー
ト内地震の発生メカニズムと
海底地形を考慮し設定した [※] 。 |

※検討対象としている海洋プレート内地震は、海側のプレートが陸側プレートに沈み込みを開始する海溝軸沖合 でプレートが下向きに曲げられることにより、伸張応力が作用して発生する正断層型の地震である。 よって、基準位置から西に50km、東に100kmの変動範囲は、同様の地震の発生領域を十分に包絡していると考 えられる。(P.5-9参照)

5. 千島海溝沿いの海洋プレート内地震に伴う津波(10/18)

概略パラメータスタディ(9/12):海溝軸直交方向における走向の変動範囲の設定及び 断層の傾斜の不確かさの考慮方法

- ・走向は海溝軸方向と同様に、海溝軸方向を基準に±10°とする。
- ・また、既に考慮済みである西傾斜ケースに加え、起震応力が共通で共役な断層となることを踏まえた東傾斜ケースについても考慮する。
- ・沈み込んだ海洋プレート内地震の断層モデルの傾斜角は、プレート境界面の傾斜を考慮する。なお、日本海溝と千島海溝のプレート境界面の傾斜に有意な差はないことから、日本海溝のプレート境界面の傾斜を基本に設定する。

概略パラメータスタディ(走向・傾斜角・傾斜方向)

| 項目 | 変動範囲 | 備考 | |
|------|-------------|---|--|
| 走向 | 基準±10° | ・土木学会(2002) ⁽⁷⁵⁾ の走
向の 標準偏差相当 | |
| 傾斜方向 | 西傾斜(基準),東傾斜 | ・共役断層の考慮 | |

5-12

5. 千島海溝沿いの海洋プレート内地震に伴う津波(12/18)

概略パラメータスタディ(11/12):海溝軸直交方向の最大水位上昇ケース検討結果

敷地における概略パラメータスタディ(海溝軸直交方向・走向)の最大水位上昇ケース検討結果は以下のとおりである。

5-13

OWER

<u>概略パラメータスタディ(12/12):海溝軸直交方向の最大水位下降ケース検討結果</u>

 取水ロスクリーン室前面における概略パラメータスタディ(海溝軸直交方向・走向)の最大水位 下降ケース検討結果は以下のとおりである。

| 波源モデル | 取水ロスクリーン室前面に
おける最大水位下降量 | | |
|---|----------------------------|--|--|
| 概略パラメータスタディ
(海溝軸直交方向・走向)
水位下降側最大ケース | —2.25m | | |

0 200 400 m 240 G領域 ⊿s=5m -0.5m -2.25m 120 -1.0 -1.5 -2.0 -2.5 240 -3.0 -3.5 -4.0 -4.5 -5.0m 360

最大水位下降量分布

0. ².

200

水位時刻歴波形

5-14

5. 千島海溝沿いの海洋プレート内地震に伴う津波(14/18)

<u>詳細パラメータスタディ(1/4):傾斜角及び断層上縁深さの変動範囲の設定</u>

- ・概略パラメータスタディの検討の結果、最も敷地に与える影響が大きい断層モデルを対象に、傾斜角及び上縁深さを変化 させる検討を実施した。
- ・各パラメータの変動は、土木学会(2002)⁽⁷⁵⁾の既存断層パラメータの傾斜角のばらつき評価結果(約5°)及び断層上 縁深さの不確かさ検討状況(0, 1, 2km)を参考に設定した。

| | 項目 | 変動範囲 | ケース数 | | | | |
|------|-----------|--|--|--|--|--|--|
| 傾斜角 | | 基準(45°),基準±5° | 土木学会(2002) ⁽⁷⁵⁾ の傾斜角
の標準偏差相当 | | | | |
| し纪況ナ | 海溝より東側の場合 | Okm, 1km(基準), 2km | 土木学会(2002) ⁽⁷⁵⁾ の不確か | | | | |
| 工修法で | 海溝より西側の場合 | 各波源位置のプレート境界面からの深さ
Okm, 1km (基準), 2km | さ検討例を参考に設定 | | | | |

詳細パラメータスタディ

既存断層パラメータのばらつきの評価結果

| 海域
大区分 | 海球上房八 | 萩原マップ
で対応する
海域区分 データ | 解析対象 | データ | , 走向(°) | | すべり方向(^) | | すべり角(゜) | | 傾斜角() | | | |
|---------------|------------------------|----------------------------|-------------------------------|-----------------|-----------------|------|----------|------|---------|------|-------|------|------|------|
| | 冲 现小区 77 | | 数 | 平均 | 標準顧 | 平均 | 標準顧 | 平均 | 標準偏差 | 平均 | 標準福 | | | |
| 口 +-347.548 | 千島海
溝南部 41°N 以北 | G1 | プレート間
逆断層地震
のハーバー
ド解 | プレート間 | G1 プレート間 | 43 | 222.3 | 14.1 | 304.3 | 10.8 | | | 21.7 | 6.4 |
| 日本海溝·
千島海溝 | 日本海
溝北部 38~41°N | G2 | | 29 | 185.4 | 12.1 | 295.0 | 7.7 | | | 16.0 | 5.7 | | |
| (111百)) | 日本海
溝南部 35.3~38°N | G3 | | 14 | 204.2 | 13.5 | 292.3 | 12.2 | | | 21.1 | 5.1 | | |
| 日本海 | 北部 40°N 以北 | E | 断層モデル・ | Her Ed an and a | Mr. Ed an and a | 6(3) | -2.7 | 9.6 | | | 91.7 | 11.3 | 43.3 | 14.0 |
| 東縁部 | 南部 40°N 以南
138°E 以東 | F | | 5(3) | 25.2 | 6.3 | | | 96.0 | 13.4 | 57.0 | 6.7 | | |

(注)・日本海溝および千島海溝(南部)沿い海域では、ハーバード CMT による発震機構解(1976年1月 ~2000年1月に発生した M_n6.0以上,深さ 60km 以下の地震)を解析対象とした。

・日本海東縁部では、発震機構解の節面の特定が困難であるため、津波の痕跡高を説明できる断層モデルのパラメータを用いてばらつきを評価した。

- 「すべり方向」は、スリップベクトルの水平投影が真北から時計回りになす角度である。
- ・日本海東縁部のデータ数のうち括弧内の値は、走向に対して適用した1枚断層換算のモデル数である。
- ・日本海東緑部(南部)の新潟地震モデルには Noguera and Abe (1992)を採用している。天保山形 沖地震(1833)は沖合・沿岸近くの両モデルを採用している。
- ・ 萩原マップは萩原尊禮編(1991)による。 土木学会(2002) ⁽⁷⁵⁾ に一部加筆

3.2.3 詳細パラメータスタディの結果

3 領域で基準断層モデルを位置移動した概略パラメータスタディでの計算ケースのうち, 以下の3波源を詳細パラメータスタディの基準断層モデルとした(図3.2.1-4参照)。

(i)領域4の断層を最も南に配置したケース(岩手県南部〜宮城県北部で最大水位上昇量)
(ii)領域3の断層を最も北に配置したケース(北海道南部〜岩手県北部で最大水位上昇量)
(iii)領域3の断層を南から2番目に配置したケース(宮城県北部で最大水位上昇量)

上記基準断層モデルについて、同位置で以下のように断層パラメータを変化させた計算 を実施した。

(1)領域4 (プレート内正断層)

| | ・断層上縁面深さ | :0, 1, | 2km | | |
|-----|-----------------------------|--------|--------|----------|---|
| | • 傾斜角 δ | :基準, | 基準土5 | | |
| | 走向 θ | : 基準, | 基準±10° | | |
| (2) | 領域3(逆断層) | | | | |
| | ・傾斜角 δ | : 基準, | 基準±5° | | |
| | ・走向 θ | ;基準, | 基準±10° | | |
| | ・すべり方向 | :基準, | 基準±10° | | |
| | (すべり角は | すべり方 | 向を満足する | よう変動する。) | |
| | 迷 | 所層上編 | 縁深さのス | 下確かさ考慮方 | 法 |

5. 千島海溝沿いの海洋プレート内地震に伴う津波(15/18)

5-16

<u>詳細パラメータスタディ(2/4):検討結果</u>

・詳細パラメータスタディの結果は以下のとおりである。

最大ケースの波源モデル

詳細パラメータスタディ結果

| 概略
パラスタ | 傾斜
方向 | 海溝軸
方向 | 海溝軸
直交方向 | 走向 | 傾斜角 | 上縁深さ | 最大水位
上昇量 | 最大水位
下降量 |
|------------|----------|------------------------|---------------|------|-----|--------|----------------------|-----------------------|
| | | | | | -5° | 基準-1km | 2.65m | -2. 32m |
| | | | | | | 基準 | 2.65m | -2.31m |
| | | | | | | 基準+1km | 2.64m | -2. 30m |
| F | 而 | 北東へ | 西北西 | | | 基準-1km | 2.76m | -2. 30m |
| 昇 | 傾 | 180km | へ 50km | +10° | 基準 | 基準 | 2.75m | -2. 29m |
| 側 | 斜 | 移動 | 移動 | | | 基準+1km | 2. 73m | -2. 28m |
| | | | | | +5° | 基準-1km | 2. 87m ^{≫1} | -2. 27m |
| | | | | | | 基準 | 2. 87m ^{%1} | -2. 27m |
| | | | | | | 基準+1km | 2. 85m | -2. 25m |
| | | 東
北東へ
傾
160km | · 基準
位置 | +10° | -5° | 基準-1km | 2. 07m | -2. 25m |
| | | | | | | 基準 | 2.07m | -2. 25m |
| | | | | | | 基準+1km | 2. 07m | -2. 25m |
| ہ | 東 | | | | | 基準-1km | 2.08m | -2. 25m |
| 降 | 傾 | | | | 基準 | 基準 | 2. 08m | -2. 25m |
| 側斜 | 斜 | 移動 | | | | 基準+1km | 2. 09m | -2. 25m |
| | | | | | +5° | 基準-1km | 2.10m | -2. 32m ^{%2} |
| | | | | | | 基準 | 2.10m | -2. 32m ^{%2} |
| | | | | | | 基準+1km | 2.10m | -2. 31m |

※1:小数第3位まで考慮すると、上縁深さ0kmで最大。 ※2:小数第3位まで考慮すると、上縁深さ0kmで最大。

∶詳細パラスタ 最大水位上昇ケース

:詳細パラスタ 最大水位下降ケース

波源モデル

水位時刻歴波形

5. 千島海溝沿いの海洋プレート内地震に伴う津波(18/18)

<u>千島海溝沿いの海洋プレート内地震に伴う津波検討結果</u>

 千島海溝沿いの海洋プレート内地震に伴う津波の検討結果は下表のとおりであり、三陸沖の海洋プレート内地震に伴う 津波を下回ることを確認した。

5-19

POWER

| | 敷地における
最大水位上昇量 | 取水ロスクリーン室前面における
最大水位下降量 |
|-------------|-------------------|----------------------------|
| 概略パラメータスタディ | 2. 75m | —2.25m |
| 詳細パラメータスタディ | 2.87m | —2.32m |

千島海溝沿いの海洋プレート内地震に伴う津波

【参考】 三陸沖の海洋プレート内地震に伴う津波

| | 敷地における
最大水位上昇量 | 取水ロスクリーン室前面における
最大水位下降量 |
|-------------|-------------------|----------------------------|
| 概略パラメータスタディ | 2.71m | —2.48m |
| 詳細パラメータスタディ | 2. 90m | —2.57m |

(余白)

| 日 次 | :本日のご説明に対応する範囲 6-1 |
|-------------------------------------|------------------------------------|
| 1. 津波堆積物調査(現地調査) | 4-4-3 . 基準波源モデル⑤⑥と基準波源モデル①~④の関連性 |
| 2. 日本海東縁部に想定される地震に伴う津波 | 4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の |
| 2-1. 波源モデルのパラメータに関する検討 | 傾向把握 |
| 2-1-1. 傾斜方向・傾斜角パターン影響検討 | 5. 千島海溝沿いの海洋プレート内地震に伴う津波 |
| 2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認 | 6. チリ沖に想定される地震に伴う津波の影響検討 |
| 2-2. 日本海東縁部に想定される地震に伴う津波の | 7. 陸上の斜面崩壊に起因する津波 |
| 評価因子影響分析 | 7-1. 地すべり地形分布図 |
| 2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 | 7-2. 二層流モデルの適用性について |
| 2-4. 日本海東縁部に設定された地方自治体による波源モデル | 8. 海底地すべりに起因する津波 |
| 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの | 8-1. 急傾斜部を対象とした地形判読 |
| 超巨大地震から得られた知見 | 8-2. 海底地すべり海上音波探査記録 |
| 3-1. 2011年東北地方太平洋沖地震から得られた知見 | 8-3. 海底地すべり地形崩壊量算定 |
| 3-2. 世界のM9クラスの超巨大地震から得られた知見の整理 | 8-4. ハワイ付近の海底地すべりの影響について |
| 3-3. まとめ | 9. 火山現象に起因する津波 |
| 4. 三陸沖から根室沖のプレート間地震に伴う津波 | 9-1. kinematic landslideモデルによる追加検討 |
| 4-1. 検討対象波源域の選定 | 10. 津波発生要因の組合せに関する検討 |
| 4-2. 波源モデルのパラメータに関する検討 | 10-1. 線形足し合せ水位評価地点の妥当性確認 |
| 4-2-1 . ライズタイムの影響検討 | 11. 津軽海峡・発電所専用港湾及び津波の周期特性 |
| 4-2-2 . 2011年東北地方太平洋沖地震による津波等の再現性確認 | 11-1. 検討方法 |
| 4-2-3 . 分岐断層に関する検討 | 11-2. 日本海側からの津波に対する検討 |
| 4-3. 三陸沖から根室沖のプレート間地震に伴う津波の | 11-3. 太平洋側からの津波に対する検討 |
| 評価因子影響分析 | 11-4. まとめ |
| 4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認 | 12. その他 |
| 4-4-1 . 動的破壊特性の不確かさの影響確認 | 12-1. 想定津波群の作成方法 |
| 4-4-2 基準波源モデル①~⑥の水位分布比較 | 12-2. 津波の伝播特性について |

チリ沖の波源位置に関する敷地への津波の影響を把握するため、チリ沖に複数の波源モデルを設定 して、チリ沖に想定される地震に伴う津波の影響検討を実施した。

6. チリ沖に想定される地震に伴う津波の影響検討(2/5) ^{資料3-2 P.5-3再掲}

チリ沖の波源位置に関する敷地への影響検討:既往研究

想定津波の位置

第994回審査会合

6-3

OWER

日本沿岸部における遠地津波の到達時間と最大水位 河田ほか(1998) ⁽⁷⁷⁾ に一部加筆

河田ほか(1998)⁽⁷⁷⁾によると環太平洋地震帯上に1960年チリ地震をベースとした想定津波モデルを配置[※]し,数値計算により到達時間・最大水位を評価した結果,北海道・東北地方(釧路・宮古)ではチリからの津波が最も大きくなる傾向にあるとされている。 ※対象とするNo. 1~No. 73の地域で実際に大地震が発生するかは別にして、初期波形のみを想定して、それによるわが国沿岸部への影響を調べたとされている。 河田ほか(1998)⁽⁷⁷⁾による

6. チリ沖に想定される地震に伴う津波の影響検討(3/5)

<u>チリ沖の波源位置に関する敷地への影響検討 : 波源モデル</u>

 チリ沖では、プレート境界約3000kmのうちM9.5規模の地震は その南端に位置する1960年チリ地震の発生域で発生している。
 チリ沖の約3000kmのプレート境界のうち、敷地へ及ぼす影響 の大きな波源位置を確認するため、河田ほか(1998)⁽⁷⁷⁾と 同様の位置に波源モデルを設定して検討を実施した。

波源モデルのパラメータ

| 項目 | 諸元 | | | | | |
|-------------------------------|--------------------------|--|-----|--|--|--|
| 位置(右図に対応) | (37) (38) (39) (40) (41) | | | | | |
| モーメントマク゛ニチュート゛ Mw | | | 9.4 | | | |
| 長さ L (km) | | | 800 | | | |
| 幅 W (km) | 150 | | | | | |
| すべり量 D (m) | 28.8 | | | | | |
| 剛性率 μ (N/m ²) | 5. 0 × 10 ¹⁰ | | | | | |
| 地震モーメントMo(N・m) | 1. 73 × 10 ²³ | | | | | |
| 走向 $	heta$ (°) ^{*2} | 2 10 | | | | | |
| 上縁深さ d (km) | 1 | | | | | |
| 傾斜角 δ (°) | 10 | | | | | |
| すべり角 λ (°) | 90 | | | | | |
| ライズタイムτ(s) | | | 0 | | | |

※1:基準波源モデルとして採用した1960年チリ地震津波の再現モデル (修正K&Cモデル)

※2:(37)のケースのみ海溝軸に合わせて走向を変化させた

第994回審査会合

資料3-2 P.5-4再掲

6-4

OWER

波源モデル位置

():河田ほか(1998) ⁽⁷⁷⁾の波源位置

6. チリ沖に想定される地震に伴う津波の影響検討(4/5)

<u>波源位置に関する影響検討:敷地における影響評価結果(1/2)</u>

敷地においては1960年チリ地震位置(41)のケースが水位上昇量,水位下降量ともに最大となり,基準波源モデルの配置箇所である1960年チリ地震の発生位置に波源を設定する場合の影響が最も大きいことが確認された。

• よって、基準津波策定に係りチリ沖に想定される地震に伴う津波に関し実施した位置の検討範囲は妥当と考えられる。

| —————————————————————————————————————— | | | | | | |
|--|-------|-------|-------|-------|-------|--|
| 波源位置 | (37) | (38) | (39) | (40) | (41) | |
| 最大水位上昇量(m) | 1.16 | 1. 21 | 1. 11 | 1.55 | 2.34 | |
| 最大水位下降量(m) | -1.28 | —1.09 | -1.01 | —1.74 | -2.79 | |

動地における最大水位変動量

第994回審査会合

資料3-2 P.5-5再掲

6-5

OWER

6. チリ沖に想定される地震に伴う津波の影響検討(5/5)

<u>波源位置に関する影響検討:敷地における影響評価結果(2/2)</u>

^{():}河田ほか(1998) ⁽⁷⁷⁾の波源位置

第994回審査会合

資料3-2 P.5-6再掲

6-6

OWER

| 日次 | ···································· |
|-----------------------------------|--------------------------------------|
| | POWER |
| 1. 津波堆積物調査(現地調査) | 4-4-3 . 基準波源モデル56と基準波源モデル1~4の関連性 |
| 2. 日本海東縁部に想定される地震に伴う津波 | 4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の |
| 2-1. 波源モデルのパラメータに関する検討 | 傾向把握 |
| 2-1-1. 傾斜方向・傾斜角パターン影響検討 | 5. 千島海溝沿いの海洋プレート内地震に伴う津波 |
| 2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認 | 6. チリ沖に想定される地震に伴う津波の影響検討 |
| 2-2. 日本海東縁部に想定される地震に伴う津波の | 7. 陸上の斜面崩壊に起因する津波 |
| 評価因子影響分析 | 7-1. 地すべり地形分布図 |
| 2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 | 7-2. 二層流モデルの適用性について |
| 2-4. 日本海東縁部に設定された地方自治体による波源モデル | 8. 海底地すべりに起因する津波 |
| 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの | 8-1. 急傾斜部を対象とした地形判読 |
| 超巨大地震から得られた知見 | 8-2. 海底地すべり海上音波探査記録 |
| 3-1. 2011年東北地方太平洋沖地震から得られた知見 | 8-3. 海底地すべり地形崩壊量算定 |
| 3-2.世界のM9クラスの超巨大地震から得られた知見の整理 | 8-4. ハワイ付近の海底地すべりの影響について |
| 3-3. まとめ | 9. 火山現象に起因する津波 |
| 4. 三陸沖から根室沖のプレート間地震に伴う津波 | 9-1. kinematic landslideモデルによる追加検討 |
| 4-1. 検討対象波源域の選定 | 10. 津波発生要因の組合せに関する検討 |
| 4-2. 波源モデルのパラメータに関する検討 | 10-1. 線形足し合せ水位評価地点の妥当性確認 |
| 4-2-1 . ライズタイムの影響検討 | 11. 津軽海峡・発電所専用港湾及び津波の周期特性 |
| 4-2-2 2011年東北地方太平洋沖地震による津波等の再現性確認 | 11-1. 検討方法 |
| 4-2-3 . 分岐断層に関する検討 | 11-2. 日本海側からの津波に対する検討 |
| 4-3. 三陸沖から根室沖のプレート間地震に伴う津波の | 11-3. 太平洋側からの津波に対する検討 |
| 評価因子影響分析 | 11-4. まとめ |
| 4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認 | 12. その他 |
| 4-4-1.動的破壊特性の不確かさの影響確認 | 12-1. 想定津波群の作成方法 |
| 4-4-2 . 基準波源モデル①~⑥の水位分布比較 | 12-2. 津波の伝播特性について |

津軽海峡内を対象として、防災科学研究所による地すべり地形分布図を整理した。

7-1. 地すべり地形分布図(2/15)

第868回審査会合 資料2-2 P.181再掲

<u>津軽海峡内地すべり地形の抽出(1/14):地すべり地形分布図(北海道側・恵山)</u>

| 江 差 | 館 | 大沼公園 | 日 尻 | 尾札部 |
|---------------------------------|--|-----------|-------------------------|----------|
| ESASHI | TATE | ONUMAKOEN | USUJIRI | OSATSUBE |
| LM-858 | LM-854 | LM-852 | LM-850 | LM-848 |
| 上/国 | 木古内 | 函館 | 五稜郭 | 恵山 |
| KAMINOKUNI | KIKONAI | HAKODATE | GORYOKAKU | ESAN |
| LM-859 | LM-855 | LM-853 | LM-851 | LM-849 |
| 大千軒岳
DAISENSENDAKE
LM-860 | 知内
SHIRIUCHI
LM-856 | | 大間
0MA
(第42集刊行済) | |
| 松 前
MATSUMAE
LM-861 | 渡島福島
OSHIMA-
FUKUSHIMA
IM-857 | 【函館】 | 佐 井
SA1
(第42集刊行済) | |

・恵山周辺の海沿いに大きな地 すべり地形が複数ある。

7-1. 地すべり地形分布図(3/15)

第868回審査会合 資料2-2 P.182再掲

<u>津軽海峡内地すべり地形の抽出(2/14):地すべり地形分布図(北海道側・五稜郭)</u>

| 江 差 | 館 | 大沼公園 | E1 尻 | 尾札部 |
|---------------------------------|--|-----------|-------------------------|----------|
| ESASHI | TATE | ONUMAKCEN | USUJIRI | OSATSUBE |
| LM-858 | LM-854 | LM-852 | LM-850 | LM-848 |
| 上ノ国 | 木古内 | 函館 | 五稜郭 | 恵山 |
| KAMINOKUNI | KIKONAI | HAKODATE | GORYOKAKU | ESAN |
| LM-859 | LM-855 | LM-853 | LM-851 | LM-849 |
| 大千軒岳
DAISENSENDAKE
LM-860 | 知内
SHIRIUCHI
LM-856 | | 大間
0MA
(第42集刊行済) | |
| 松 前
MATSUMAE
LM-861 | 渡島福島
OSHIMA-
FUKUSHIMA
IM-857 | 【函館】 | 佐 井
SAI
(第42集刊行済) | |

 海沿いに大きな地すべり地形 はない。

7-1. 地すべり地形分布図(4/15)

第868回審査会合 資料2-2 P.183再掲

<u>津軽海峡内地すべり地形の抽出(3/14):地すべり地形分布図(北海道側・函館)</u>

| 江 差 | 館 | 大沼公園 | E1 尻 | 尾札部 |
|---------------------------------|--|-----------|-------------------------|----------|
| ESASHI | TATE | ONUMAKCEN | USUJIRI | OSATSUBE |
| LM-858 | LM-854 | LM-852 | LM-850 | LM-848 |
| 上ノ国 | 木古内 | 函館 | 五稜郭 | 恵山 |
| KAMINOKUNI | KIKONAI | HAKODATE | GORYOKAKU | ESAN |
| LM-859 | LM-855 | LM-853 | LM-851 | LM-849 |
| 大千軒岳
DAISENSENDAKE
LM-860 | 知内
SHIRIUCHI
LM-856 | | 大間
0MA
(第42集刊行済) | |
| 松 前
MATSUMAE
LM-861 | 渡島福島
OSHIMA-
FUKUSHIMA
IM-857 | 【函館】 | 佐 井
SA1
(第42集刊行済) | |

 ・函館山の海沿いに大きな地すべり 地形が複数ある。

7-1. 地すべり地形分布図(5/15)

第868回審査会合 資料2-2 P.184再掲

<u>津軽海峡内地すべり地形の抽出(4/14):地すべり地形分布図(北海道側・木古内)</u>

| 江 差 | 館 | 大沼公園 | E1 尻 | 尾札部 |
|---------------------------------|--|-----------|-------------------------|----------|
| ESASHI | TATE | ONUMAKOEN | USUJIRI | OSATSUBE |
| LM-858 | LM-854 | LM-852 | LM-850 | LM-848 |
| 上ノ国 | 木古内 | 函館 | 五稜郭 | 恵山 |
| KAMINOKUNI | KIKONAI | HAKODATE | GORYOKAKU | ESAN |
| LM-859 | LN-855 | LM-853 | LM-851 | LM-849 |
| 大千軒岳
DAISENSENDAKE
LM-860 | 知内
SHIRIUCHI
LM-856 | | 大間
0MA
(第42集刊行済) | |
| 松 前
MATSUMAE
LM-861 | 渡島福島
OSHIMA-
FUKUSHIMA
IM-857 | 【函館】 | 佐 井
SA1
(第42集刊行済) | |

1:50,000 地形図 NK-54-22-10 きこない (函館10号) 地すべり地形分布図 木 古 内 Landslide Map of KIKONAI R 例 輪郭構造 滑落庫と側方崖 「「「」」 新鮮なまたは開めされていない冠張をもつ滑落座 人口773 部分的に開析されている記頂をもつ薄末電 > お頂が著しく開新された清潔庫 冠環が丸球をおびて不明瞭になった滑落度 関係されて無くなってしまった経験・滑落庫の推 中・縦斜の流れ盤すべり面が地表に露出し、滑落 値にあたる急遽を呈しない斜面、冠頂は尾根の反 分割知面とすべり面との交換である。 移動体の輪郭・境界 ・
またに清潔症があり、移動体の輪郭が明瞭ないし 判定可能 注意の液落度は物種であるが、移動体の職部の非 定が困難 滑落座はほとんど開祈されてしまったが過去の利 動体の一部(不安定土塊)が残存している 0 はかの移動体や堆積物におおわれた部分 斜直体の移動の初期状態、基密から分離してい いとしても不安定域・移動域と推定される範囲 お言移動体かどうか判定できない山体・小丘 Matter - Matter Till 内部構造 差 二次・小滑落度、差 線の解析程度に応じ 通行集型 て輪裂構造の場合と 同様に表わず 線状描述: 線状落地・小谷意線、 →は谷の出口または 谷底の板料方内 サプユニットの境界、 --------- BENRADINER (2 2 第四点い東秋日後、 *のない変き 福の狭い再状凹地。 単型 単数 移動方向等 移動体の主移動方向 0 1-14 クリーブ(約行) 10 1 · 10 / 11 354Z d. 前方への領動または領動を伴う移動とその 大売 . 2 元の斜面傾斜と逆方向へ傾動した斜面の傾 斜方向 1 その他 22.0 活動層(地すべりを変位させている顕著な 断層) 地層面等および節理・近裂の走向・傾斜 道路 **A**22.215 主要地方道 周調 一般地方道 索引図 LW-858 LW-854 LW-852 江遊 館 大用公園 LB-050 上/国 (田和) 田雄 LM-860 LM-856 大千軒岳 知内 1 (点は新聞20万分1回の開発 1:50,000 木古内 2000 2009年10月31日発行 防灵科学技術研究所 「この地図の内蔵に包たっては、国土地理教長の単語を得て、副教研内の2万5千分の1 地形図を使用したものである。 (単語書句 早近展住、第200-24750号) 防災科学技術研究所 National Research Institute for Earth Science and Disaster Prevention @ 2009 防災科学技術研究所研究資料 第335号 調査者 清水文健・井口 隆・大八木焼夫 許可なく被殺を加する by Fumitake SHIMIZU, Takashi INOKUCHI and Norio OYAGI 調製 北海道地図株式会社東京支店

 ・海沿いに大きな地すべり地形は ない。

7-1. 地すべり地形分布図(6/15)

第868回審査会合 資料2-2 P.185再掲

<u>津軽海峡内地すべり地形の抽出(5/14):地すべり地形分布図(北海道側・知内)</u>

| 江 差 | 館 | 大沼公園 | E1 尻 | 尾札部 |
|---------------------------------|--|-----------|-------------------------|----------|
| ESASHI | TATE | ONUMAKCEN | USUJIRI | OSATSUBE |
| LM-858 | LM-854 | LM-852 | LM-850 | LM-848 |
| 上/国 | 木古内 | 函館 | 五稜郭 | 恵山 |
| KAMINOKUNI | KIKONAI | HAKODATE | GORYOKAKU | ESAN |
| LM-859 | LM-855 | LM-853 | LM-851 | LM-849 |
| 大千軒岳
DAISENSENDAKE
LM-860 | 知内
SHIRIUCHI
LM-856 | | 大間
0MA
(第42集刊行済) | |
| 松 前
MATSUMAE
LM-861 | 渡島福島
OSHIMA-
FUKUSHIMA
LM-857 | 【函館】 | 佐 井
SA1
(第42集刊行済) | |

1:50,000 地形図 NK-54-22-11 しりうち (函館11号) 地すべり地形分布図 知 内 Landslide Map of SHIRIUCHI しりうち 木古内 40° 40° 1 輪郭構造 滑落崖と側方崖 新田なまたは開新されていない記録をもつ湯落住 人口丁丁 前分的に開好されている記録をもつ滑落度 >、 互頂が著しく開祈された漂落屋 第巻きれて無くなってしまった起源・滑落崖の機
、
定義元位置 共通の冠頭をもち、互いに反対方向を向く滑落線 中・緩糾の流れ盤すべり面が地表に貫出し、滑落 座にあたる急痛を呈しない料面、可須は尾根の反 友奈料着とすべり面との空間である。 -----移動体の輪郭・境界 () 後方に漂落崖があり、移動体の輪町が切除ない 利定可能 ※ 後方の液落崖は明線であるが、移動体の範疇の料 定が開算 滑等運はほとんど開新されてしまったが過去の得 動体の一部(不安定主場)が残存している () ほかの移動体や堆積物におおわれた部分 斜面体の移動の初期状態。基宏から分離していな いとしても不安定域・移動域と推定される範囲 斜面移動体かどうか判定できない山体・小丘 ADBIAR · NIGHART FR 内部構造 HITEN 課状理地・小谷園県 →は谷の出口また!! ※皮の領知方向 サブユニットの境界、 -第四日に現状回時、 余のない産地 編の狭い満状回地。 集算 找動方面等 移動体の主移動方向 7-54 クリーブ(銀行) 流れ・挿出し 落ちなど 前方への頃動または娘動を伴う移動とその 方向 元の料面傾斜と逆方向へ傾動した斜面の傾 6 その抽 法新聞(地すべりを変位させている論書な 死間) 地震圏等および筋理・断裂の走向・燥料 3128 8.8.2125 主要地方派 00.00 一般地方道 小谷石 26 51 E (1+65) (1+655 (1+65) 上/国 木古内 函館 LP-860 大千軒岳 (高級) UF-161 UF-857 松前 波島福島 ()内は新属的方分1回の図名 1:50.000 知 内 2009年10月31日発行 防災科学技術研究所 「この地型の作成に急たっては、第三条項目的の第三条件で、制限性的な2万5千分の」 地名意味が用したらの下ある。 (#試着句 平20英点 第257-2016号) 渡島福島 調査者 清水文録・井口 隆・大八木規夫 防災科学技術研究所 National Research Institute for Earth Science and Disaster Prevention ② 2009 防災科学技術研究所研究資料 第335号 BUCKNESSTO by Fumitake SHIMIZU, Takashi INOKUCHI and Norio OYAGI 調製 北海道地図株式会社東京支店

 ・涌元から小谷石周辺の海沿い に大きな地すべり地形が複数 ある。

7-1. 地すべり地形分布図(7/15)

第868回審査会合 資料2-2 P.186再掲

<u>津軽海峡内地すべり地形の抽出(6/14):地すべり地形分布図(北海道側・渡島福島)</u>

| 江 差 | 館 | 大沼公園 | 日 尻 | 尾札部 |
|---------------------------------|--|-----------|-------------------------|----------|
| ESASHI | TATE | ONUMAKOEN | USUJIRI | OSATSUBE |
| LM-858 | LM-854 | LM-852 | LM-850 | LM-848 |
| 上/国 | 木古内 | 函館 | 五稜郭 | 恵山 |
| KAMINOKUNI | KIKONAI | HAKODATE | GORYOKAKU | ESAN |
| LM-859 | LM-855 | LM-853 | LM-851 | LM-849 |
| 大千軒岳
DAISENSENDAKE
LM-860 | 知内
SHIRIUCHI
LM-856 | | 大間
0MA
(第42集刊行済) | |
| 松 前
Matsumae
LM-861 | 渡島福島
OSHIMA-
FUKUSHIMA
LM-857 | 【函館】 | 佐 井
SA1
(第42集刊行済) | |

 ・海沿いに大きな地すべり地形は ない。

7-1. 地すべり地形分布図(8/15)

第868回審査会合 資料2-2 P.187再掲

<u>津軽海峡内地すべり地形の抽出(7/14):地すべり地形分布図(北海道側・松前)</u>

| 江 差 | 館 | 大沼公園 | E1 尻 | 尾札部 |
|---------------------------------|--|-----------|-------------------------|----------|
| ESASHI | TATE | ONUMAKOEN | USUJIRI | OSATSUBE |
| LM-858 | LM-854 | LM-852 | LM-850 | LM-848 |
| 上ノ国 | 木古内 | 函館 | 五稜郭 | 恵山 |
| KAMINOKUNI | KIKONAI | HAKODATE | GORYOKAKU | ESAN |
| LM-859 | LN-855 | LM-853 | LM-851 | LM-849 |
| 大千軒岳
DAISENSENDAKE
LM-860 | 知内
SHIRIUCHI
LM-856 | | 大間
0MA
(第42集刊行済) | |
| 松 前
MATSUMAE
LM-861 | 渡島福島
OSHIMA-
FUKUSHIMA
IM-857 | 【函館】 | 佐 井
SA1
(第42集刊行済) | |

 海沿いに大きな地すべり地形は ない。

7-1. 地すべり地形分布図(9/15)

第868回審査会合 資料2-2 P.188再掲

<u>津軽海峡内地すべり地形の抽出(8/14):地すべり地形分布図(青森県側・尻屋崎)</u>

7-1. 地すべり地形分布図(10/15)

第868回審査会合 資料2-2 P.189再掲

<u>津軽海峡内地すべり地形の抽出(9/14):地すべり地形分布図(青森県側・大畑)</u>

 ・海沿いに大きな地すべり地形は ない。

7-1. 地すべり地形分布図(11/15)

第868回審査会合 資料2-2 P.190再掲

<u>津軽海峡内地すべり地形の抽出(10/14):地すべり地形分布図(青森県側・大間)</u>

 ・海沿いに大きな地すべり地形は ない。

7-1. 地すべり地形分布図(12/15)

第868回審査会合 資料2-2 P.191再掲

<u>津軽海峡内地すべり地形の抽出(11/14):地すべり地形分布図(青森県側・佐井)</u>

7-1. 地すべり地形分布図(13/15)

第868回審査会合 資料2-2 P.192再掲

<u>津軽海峡内地すべり地形の抽出(12/14):地すべり地形分布図(青森県側・陸奥川内)</u>

| | 竜飛崎
TAPPIZAKI
LM-76 | | 陸奥川内
MUTSUKAWAUCHI
LM-69 | |
|------------------|---------------------------|---------------------|--------------------------------|--|
| | 小
泊
KODOMARI | 餐田
KANITA | 脇野沢
WAKINOSAWA | |
| | LM-77 | LM-73 | LM-70 | |
| | 金木 | 油 川 | 浅 虫 | |
| | KANAGI
LM-78 | ABURAKAWA | LM-71 | |
| 鰺ヶ沢
AJIGASAWA | 五所川原
GOSHOGAWARA | 青森西部
AOMORISEIBU | 青森東部
AOMORITOBU | |
| LM-80 | LM-79 | LM-75 | LM-72 | |

 ・海沿いに大きな地すべり地形は ない。

7-1. 地すべり地形分布図(14/15)

<u>津軽海峡内地すべり地形の抽出(13/14):地すべり地形分布図(青森県側・脇野沢)</u>

| | 竜飛崎
TAPPIZAKI
LM-76 | | 陸奥川内
MUTSUKAWAUCHI
LM-69 |
|-----------|---------------------------|-------------|--------------------------------|
| | 小 泊 | 餐田 | 脇野沢 |
| | KODOMARI | KANITA | WAKINOSAWA |
| | LM-77 | LM-73 | LM-70 |
| | 金木 | 油 川 | 浅虫 |
| | KANAGI | ABURAKAWA | ASAMUSHI |
| | LM-78 | LM-74 | LM-71 |
| 鰺ヶ沢 | 五所川原 | 青森西部 | 青森東部 |
| AJIGASAWA | GOSHOGAWARA | AOMORISEIBU | AOMORITOBU |
| LM-80 | LM-79 | LM-75 | LM-72 |

・海沿いに大きな地すべり地形は

ない。

防災利学技術研

7-1. 地すべり地形分布図(15/15)

第868回審査会合 資料2-2 P.194再掲

<u>津軽海峡内地すべり地形の抽出(14/14):地すべり地形分布図(青森県側・竜飛崎)</u>

 \mathcal{L}

: 本日のご説明に対応する範囲

| 1. 津波堆積物調査(現地調査) | 4-4-3 . 基準波源モデル⑤⑥と基準波源モデル①~④の関連性 |
|--------------------------------------|------------------------------------|
| 2. 日本海東縁部に想定される地震に伴う津波 | 4-4-4 . 三陸沖から根室沖のプレート間地震に伴う津波の |
| 2-1. 波源モデルのパラメータに関する検討 | 傾向把握 |
| 2-1-1. 傾斜方向・傾斜角パターン影響検討 | 5. 千島海溝沿いの海洋プレート内地震に伴う津波 |
| 2-1-2. 上縁深さのパラメータスタディ検討範囲の妥当性確認 | 6. チリ沖に想定される地震に伴う津波の影響検討 |
| 2-2. 日本海東縁部に想定される地震に伴う津波の | 7.陸上の斜面崩壊に起因する津波 |
| 評価因子影響分析 | 7-1. 地すべり地形分布図 |
| 2-3. 日本海東縁部に想定される地震に伴う津波の妥当性確認 | 7-2. 二層流モデルの適用性について |
| 2-4. 日本海東縁部に設定された地方自治体による波源モデル | 8. 海底地すべりに起因する津波 |
| 3. 2011年東北地方太平洋沖地震を始めとするM9クラスの | 8-1. 急傾斜部を対象とした地形判読 |
| 超巨大地震から得られた知見 | 8-2. 海底地すべり海上音波探査記録 |
| 3-1. 2011年東北地方太平洋沖地震から得られた知見 | 8-3. 海底地すべり地形崩壊量算定 |
| 3-2.世界のM9クラスの超巨大地震から得られた知見の整理 | 8-4. ハワイ付近の海底地すべりの影響について |
| 3-3. まとめ | 9. 火山現象に起因する津波 |
| 4. 三陸沖から根室沖のプレート間地震に伴う津波 | 9-1. kinematic landslideモデルによる追加検討 |
| 4-1. 検討対象波源域の選定 | 10. 津波発生要因の組合せに関する検討 |
| 4-2. 波源モデルのパラメータに関する検討 | 10-1. 線形足し合せ水位評価地点の妥当性確認 |
| 4-2-1 . ライズタイムの影響検討 | 11. 津軽海峡・発電所専用港湾及び津波の周期特性 |
| 4-2-2.22.2011年東北地方太平洋沖地震による津波等の再現性確認 | 11-1. 検討方法 |
| 4-2-3 . 分岐断層に関する検討 | 11-2. 日本海側からの津波に対する検討 |
| 4-3. 三陸沖から根室沖のプレート間地震に伴う津波の | 11-3. 太平洋側からの津波に対する検討 |
| 評価因子影響分析 | 11-4. まとめ |
| 4-4. 三陸沖から根室沖のプレート間地震に伴う津波の妥当性確認 | 12. その他 |
| 4-4-1 . 動的破壊特性の不確かさの影響確認 | 12-1. 想定津波群の作成方法 |
| 4-4-2 . 基準波源モデル①~⑥の水位分布比較 | 12-2. 津波の伝播特性について |

第868回審査会合 資料2-2 P.196再掲

<u>検討方針</u>

陸上の斜面崩壊に起因する津波の評価手法として、二層流モデルが適用可能であることを示すことを目的として、 Kawamata et al. (2005)⁽⁸¹⁾による二層流モデルを用いた津波の再現性評価の状況をまとめる。

7-2. 二層流モデルの適用性について(2/11)

<u>Kawamata et al. (2005) (1/3)</u>

• Kawamata et al. (2005)⁽⁸¹⁾ による二層流モデルの基礎方程式は以下のとおりである。

【基礎方程式:連続式及び運動方程式】 【上層】 $\frac{\partial (\eta_1 - \eta_2)}{\partial t} + \frac{\partial M_1}{\partial x} + \frac{\partial N_1}{\partial y} = 0$ $\frac{\partial M_1}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_1^2}{D_1} \right) + \frac{\partial}{\partial y} \left(\frac{M_1 N_1}{D_1} \right) + g D_1 \frac{\partial \eta_1}{\partial x} - F D_x - I N T F_x = 0$ $\frac{\partial N_1}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_1 N_1}{D_1} \right) + \frac{\partial}{\partial y} \left(\frac{N_1^2}{D_2} \right) + g D_1 \frac{\partial \eta_1}{\partial y} - F D_y - I N T F_y = 0$ 【下層】 $\frac{\partial \eta_2}{\partial t} + \frac{\partial M_2}{\partial r} + \frac{\partial N_2}{\partial v} = 0$ $\frac{\partial M_2}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_2^2}{D_2} \right) + \frac{\partial}{\partial y} \left(\frac{M_2 N_2}{D_2} \right) + g D_2 \left(\alpha \frac{\partial D_1}{\partial x} + \frac{\partial \eta_2}{\partial x} - \frac{\partial h}{\partial x} \right) + \frac{\tau_x}{\rho_2} + \alpha F D_x + \alpha I N T F_x = DIFF_x$ $\frac{\partial N_2}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M_2 N_2}{D_2} \right) + \frac{\partial}{\partial y} \left(\frac{N_2^2}{D_2} \right) + g D_2 \left(\alpha \frac{\partial D_1}{\partial y} + \frac{\partial \eta_2}{\partial y} - \frac{\partial h}{\partial y} \right) + \frac{\tau_y}{\rho_2} + \alpha F D_y + \alpha I N T F_y = D I F F_y$

ここに、添え字の1、2:それぞれ上層、下層を示す。 η :水位変動(η_1 :静水面からの水位変化量、 η_2 :土石の厚さ), h:水深、 D:全水深、 M、N:x、y方向の線流量、 g:重力加速度、 ρ :密度(ρ_1 :海水1.03g/cm³、 ρ_2 :土石2.0g/cm³) α :密度比($=\rho_1/\rho_2$), τ_x/ρ 、 τ_y/ρ :x、y方向の底面摩擦力

第868回審査会合

資料2-2 P.197再掲

7-2. 二層流モデルの適用性について(3/11)

第868回審査会合 資料2-2 P.198再掲

> Measured Calculated

3

Measured Calculated

4

3

Kawamata et al. (2005) (2/3)

• Kawamata et al. (2005)⁽⁸¹⁾では、二層流モデルを用いて陸上部から水中への土砂突入による津波実験を再現しており、水 中への突入前の土砂形状及び第一波の発生状況について良好に再現できたとされている。

 35×10^{-3}

Thickness (m) 20

30

25

15

10

0

40 -

20

-20

0

Water level (m)

 -40×10^{-3}

(1)Point (3)

(2)Point Pl

1

【計測器の配置】

Fig. 5. Comparison between water level and thickness calculated by the revised model and measured values from the hydraulic experiments.

2

Time (s)

2

Time (s)

上:土砂厚の時間変化(③地点) 下:水位の時間変化(P1地点)

第868回審査会合 資料2-2 P.199再掲

<u>Kawamata et al. (2005) (3/3)</u>

• Kawamata et al. (2005)⁽⁸¹⁾ では、二層流モデルを用いて、陸上から海域への連続した山体崩壊による1741年渡島大島火山 津波についてパラメータスタディによる再現計算を実施しており、中国地方から北海道にわたる既往津波高を良好に再現 するマニングの粗度係数は0.4であるとされている。

左:復元地形,右:崩壊後地形

Fig. 10. Distribution of tsunami heights along the Japan Sea for different n values.

日本海側沿岸部の最高津波水位分布とnの関係 Kawamata et al. (2005)⁽⁸¹⁾に一部加筆

<u>まとめ</u>

- Kawamata et al. (2005) ⁽⁸¹⁾ では二層流モデルを用いて、陸上部から水中への 土砂突入に関する津波実験及び既往津波(1741年渡島大島津波)の再現性検証が 行われている。
- したがって、同様の現象である陸上の斜面崩壊に起因する津波の評価手法として Kawamata et al. (2005)⁽⁸¹⁾を参照した二層流モデルを適用することは妥当であ ると考えられる。

第868回審査会合 資料2-2 P.201再掲

<u>(参考) その他の検討事例(1/6)</u>

- Kawamata et al. (2005) ⁽⁸¹⁾のほかに,陸上の斜面崩壊,山体崩壊及び火山噴火に伴う火砕流に起因する津波評価 に二層流モデルを適用した検討事例を下表のとおり整理した。
- これらの文献について二層流モデルの適用に関する概要をまとめた(P.7.2-8~P.7.2-12)。

| <u>事例(文献)</u> | <u>二層流モデル適用現象の分類</u> |
|---|--------------------------------|
| 1741年渡島大島山体崩壊
(松本ほか、1998) ⁽⁸²⁾ | 陸上から海中への山体崩壊に伴う津波(P.7.2-8参照) |
| 水理模型実験
(今村ほか, 2001) ⁽⁸³⁾ | 陸上から水中への土砂突入に伴う津波(P.7.2-9参照) |
| 鬼界カルデラ噴火
(Maeno and Imamura, 2007) ⁽⁸⁴⁾ | 陸上から海中への火砕流突入に伴う津波(P.7.2-10参照) |
| 1883年クラカタウ火山噴火
(Maeno and Imamura, 2011) ⁽⁸⁵⁾ | 陸上から海中への火砕流突入に伴う津波(P.7.2-11参照) |
| 1792年島原眉山崩壊
(栁澤ほか,2014) ⁽⁸⁶⁾ | 陸上から海中への山体崩壊に伴う津波(P.7.2-12参照) |

二層流モデルの適用事例

7-2. 二層流モデルの適用性について(7/11)

第868回審査会合 資料2-2 P.202再掲

<u>(参考) その他の検討事例(2/6):松本ほか(1998)</u>

- 松本ほか(1998)⁽⁸²⁾は、二層流モデルを用いた津波発生モデルを開発し、1741年渡島大島火山津波の再現計算に二層流モ デルを適用している。
- この際、現在の崩壊地形の中央火口丘(寛保岳)から北側の海岸線までを崩壊箇所と推定し、すべての崩壊物が海域へ流れ込んだものと仮定して検討を行っている。
- また、二層流モデル及び既往モデル(土石流の流入時間変化をSINE関数で与えるモデル)による検討結果と痕跡調査結果とを比較し、二層流モデルは、既往モデルに比べ良く波高分布を再現しているとしている。

北海道南西海岸での計算値と実測値の比較

松本ほか(1998)⁽⁸²⁾より

7-2. 二層流モデルの適用性について(8/11)

第868回審査会合 資料2-2 P.203再掲

<u>(参考) その他の検討事例(3/6):今村ほか(2001)</u>

 今村ほか(2001)⁽⁸³⁾は、土砂突入による津波発生機構を解明することを目的として、陸上部から水中への土砂突入による 水理実験を実施して津波の発生過程を整理の上、二層流モデルの適用性について検討を実施している。
 二層流モデルの適用性検討では、底面粗度係数n、水平拡散係数 v、界面抵抗係数 f_{inter}に対してパラメータスタディを実 施し、妥当な係数値を推定している。

1次元水路実験装置

パラメータスタディの係数比較ケース

| <i>4</i> _ | 底面粗度 | 水面竹製 | 田西坪坊 | 突入時間 t(s) | | | |
|------------|------------------------|--------------|--------|-----------|-----------|-----------|--|
| ス名 | n(s/m ^{1/3}) | $\nu(m^2/s)$ | finter | 斜面
30° | 斜面
37° | 斜面
45° | |
| A-1 | 0.08 | 0.01 | 0.0 | 1.59 | 1.21 | 1.03 | |
| A-2 | 0.10 | 0.01 | 0.0 | 1.86 | 1.41 | 1.18 | |
| A-3 | 0.12 | 0.01 | 0.0 | 2.14 | 1.61 | 1.35 | |
| B-1 | 0.12 | 0.02 | 0.0 | 2.28 | 1.74 | 1.45 | |
| B-2 | 0.12 | 0.03 | 0.0 | 2.34 | 1.81 | 1.53 | |
| B-3 | 0.12 | 0.005 | 0.0 | 2.01 | 1.54 | 1.28 | |
| C-1 | 0.12 | 0.01 | 0.05 | 2.14 | 1.61 | 1.35 | |
| C-2 | 0.12 | 0.01 | 0.20 | 2.14 | 1.61 | 1.35 | |
| C-3 | 0.12 | 0.01 | 1.00 | 2.14 | | - | |
| 実験 | — | - | | 1.85 | 1.45 | 1.25 | |

底面粗度係数の変化の影響(勾配30度, 0.5s)

水平拡散係数の変化の影響(勾配30度, 0.5s)

界面抵抗係数の変化の影響(勾配30度, 0.5s)

今村ほか(2001)⁽⁸³⁾より

7-2. 二層流モデルの適用性について(9/11)

<u>(参考) その他の検討事例(4/6): Maeno and Imamura(2007)</u>

- Maeno and Imamura (2007) ⁽⁸⁴⁾ は、約7,300年前の鬼界カルデラ形成噴火時の 火砕流の海域突入に伴う津波について、二層流モデルにより数値計算を行って いる。
- 火砕流の体積及び崩壊の継続時間を変化させた計算を実施し、周辺への津波の 影響について比較・検討を行っている。

火砕流の計算パラメータ

 Table 1. Parameters for Numerical Calculations of a Pyroclastic

 Flow Entering the Sea^a

| | | | | Tsunami | | | | |
|----------|------------------|-------------------|------|-----------------|--------------------|---------|-------|--|
| | Pyroclastic Flow | | | Location 1 | Location 4 | | | |
| | V, | Q_{\max} , | Τ, | η_{\max} , | η _{max} , | U_0 , | U*, | |
| Models | km ³ | m ³ /s | s | m | m | m/s | m/s | |
| Model 1a | 10 | 1.0E+08 | 157 | 23 | 2.0 | 0.8 | 0.033 | |
| Model 1b | 10 | 5.0E+07 | 314 | 15 | 1.7 | 0.7 | 0.029 | |
| Model 1c | 10 | 2.0E+07 | 785 | 15 | 0.8 | 0.4 | 0.016 | |
| Model 1d | 10 | 1.0E+07 | 1571 | 8 | 0.5 | 0.2 | 0.008 | |
| Model 2a | 5 | 1.0E+08 | 79 | 17 | 1.5 | 0.7 | 0.029 | |
| Model 2b | 5 | 5.0E+07 | 157 | 13 | 1.3 | 0.6 | 0.024 | |
| Model 2c | 5 | 2.0E+07 | 393 | 11 | 0.8 | 0.4 | 0.016 | |
| Model 2d | 5 | 1.0E+07 | 785 | 10 | 0.5 | 0.2 | 0.008 | |
| Model 3b | 3 | 5.0E+07 | 94 | 11 | 0.9 | 0.4 | 0.016 | |
| Model 3c | 3 | 2.0E+07 | 236 | 9 | 0.7 | 0.3 | 0.012 | |
| Model 3d | 3 | 1.0E+07 | 471 | 8 | 0.5 | 0.2 | 0.008 | |

 ${}^{a}Q_{max}$, maximum volume flux; V, volume; T, duration; η_{max} , maximum wave height; U_{0} , depth-averaged velocity; U_{*} , shear velocity. Duration of calculations is set to be 2.3 hours for all models.

Figure 2. Computed maximum heights of the tsunami with all models at (a) Makurazaki, (b) Ei, (c) Nejime, and (d) Tachibana Bay. (e) Comparison of tsunami waveforms with different volume flux (models 1a, 1b, and 1c). Time in the abscissa is in seconds. The waveforms are computed at the Osumi Strait (See Figure 1). (f) Depth-averaged velocity of tsunami at Tachibana Bay. (u: x-direction; v: y-direction)

各モデルの火砕流の流量と最高津波高の関係(a,b,c,d) 大隅海峡における波形時刻歴の比較(e) 橘湾での水深平均流速の比較(f)

Figure 1. (a) Location of the Kikai caldera, south of Kyushu, Japan. This map also shows the computed area used for the numerical simulations. Tsunami data were collected at four points (1: Makurazaki, 2: Ei, 3: Nejime, 4: Tachibana Bay). (b) In the numerical simulations, pyroclastic flows are generated from a circular source of 4 km radius in the center of the pre-caldera island.

鬼界カルデラの位置と火砕流発生源

Maeno and Imamura (2007) ⁽⁸⁴⁾ より

7-2. 二層流モデルの適用性について(10/11)

その他の検討事例(5/6): Maeno and Imamura(2011) (参考)

- Maeno and Imamura (2011) ⁽⁸⁵⁾は、1883年のクラカタウ火山噴火に伴う 津波の発生メカニズムについて、カルデラ崩壊・マグマ爆発・火砕流の3 ケースを仮定し、それぞれ数値計算を実施しており、そのうち火砕流に伴 う数値計算に二層流モデルを使用している。
- 数値計算結果とスンダ海峡沿岸にて噴火直後に得られた津波観測データと を比較した結果、上記のうち火砕流による津波計算結果が観測データを良 好に再現しており、同津波発生の最も合理的メカニズムとしては5km³以上 の火砕流の海域突入と考えられるとしている。

第868回審杳会合

資料2-2 P.205再掲

Figure 1. A map of Sunda Strait, Indonesia, and the location of the Krakatau Islands. Numerical tsunam simulation data were compared with observations at 12 locations (circles). The proximal area surrounded by a dashed line has an 83.33 m mesh (Zone A). This is combined with a distal area with a 250 m mesh (Zone B)

Figure 4. A representative initial condition of pyroclastic flow generation from a circular source. (a) Time profiles of a dense flow layer on a horizontal plane under the condition of the density of 1100 kg/m3 with the volume of 10 km3 and the average flux of 107 m3/s (model DPF10-7La in Table 1). Input flux is controlled following a sine function. Duration of the eruption (T) is 1000 s. (b) Initial lateral flux balances with vertical flux where an x-axis is seconds. (c) A schematic representation of a flow.

火砕流発生源モデル

Figure 3. Two-types of two-layer shallow water models describing pyroclastic flows entering the sea. (a) Dense-type model (DPF), where η_1 is the water surface elevation, η_2 is the thickness of a dense flow, and h_1 is the still water depth; (b) light-type model (LPF), where η_1 is the thickness of a light flow, η_2 is the water surface elevation, and h_2 is the still water depth. For both models, ρ is the density of flow or water, τ is the bottom friction, *INTF* is the interfacial shear stress, and DIFF is the turbulent diffusion force.

二層流モデル (a) 火砕流密度が水よりも大きい場合 (DPF) (b) 火砕流密度が水よりも小さい場合(LPF)

火砕流の計算パラメータ

Table 1. Initial Conditions of Numerical Simulations of Tsunamis Generated by Pyroclastic Flows Entering the Sea^a

| Model | V | Qave | ρ | d | na | n _w | Ĵ |
|-----------|----|--------|--------|---|------|----------------|------|
| DPF05-6L | 5 | 1.E+06 | 1100 | 3 | 0.01 | 0.08 | 0.20 |
| DPF05-6H | 5 | 1.E+06 | 1500 | 3 | 0.01 | 0.08 | 0.20 |
| DPF05-7L | 5 | 1.E+07 | 1100 | 3 | 0.01 | 0.08 | 0.20 |
| DPF05-7H | 5 | 1.E+07 | 1500 | 3 | 0.01 | 0.08 | 0.20 |
| DPF05-8L | 5 | 1.E+08 | 1100 | 3 | 0.01 | 0.08 | 0.20 |
| DPF05-8H | 5 | 1.E+08 | 1500 | 3 | 0.01 | 0.08 | 0.20 |
| DPF10-6L | 10 | 1.E+06 | 1100 | 3 | 0.01 | 0.08 | 0.20 |
| DPF10-6H | 10 | 1.E+06 | 1500 | 3 | 0.01 | 0.08 | 0.20 |
| LPF10-7 | 10 | 1.E+07 | 900 | 3 | 0.06 | 0.06 | 0.18 |
| DPF10-7La | 10 | 1.E+07 | 1100 | 3 | 0.01 | 0.08 | 0.20 |
| DPF10-7Lb | 10 | 1.E+07 | 1100 | 3 | 0.06 | 0.06 | 0.06 |
| DPF10-7H | 10 | 1.E+07 | 1500 | 3 | 0.01 | 0.08 | 0.20 |
| LPF10-8a | 10 | 1.E+08 | 900 | 3 | 0.01 | 0.06 | 0.18 |
| LPF10-8b | 10 | 1.E+08 | 900 | 3 | 0.06 | 0.06 | 0.18 |
| DPF10-8a | 10 | 1.E+08 | 1100 | 3 | 0.01 | 0.08 | 0.06 |
| DPF10-8b | 10 | 1.E+08 | 1100 | 3 | 0.06 | 0.06 | 0.18 |
| DPF20-7 | 20 | 1.E+07 | 1100 | 3 | 0.01 | 0.08 | 0.20 |
| LPF20-8a | 20 | 1.E+08 | 900 | 3 | 0.06 | 0.06 | 0.06 |
| LPF20-8b | 20 | 1.E+08 | 900 | 2 | 0.06 | 0.06 | 0.18 |
| LPF20-8M | 20 | 1.E+08 | 1000 | 2 | 0.06 | 0.06 | 0.18 |
| DPF20-8a | 20 | 1.E+08 | 1100 | 3 | 0.06 | 0.06 | 0.06 |
| DPF20-8b | 20 | 1.E+08 | 1100 | 2 | 0.06 | 0.06 | 0.18 |

^aV, volume of pyroclastic flow (km³); Q_{ave}, average volume flux of pyroclastic flow (m³/s); ρ , density of pyroclastic flow (kg/m³); d, vent diameter (km); na and nw, bottom drag coefficients for on-land and sea, respectively; f, interfacial drag coefficient.

観測記録(a)と計算結果(b)の比較 (a)の破線は既往研究で推定されたもの

Maeno and Imamura (2011) ⁽⁸⁵⁾ より

7-2. 二層流モデルの適用性について(11/11)

第868回審査会合

資料2-2 P.206再掲

<u>(参考) その他の検討事例(6/6):栁澤ほか(2014)</u>

- 栁澤ほか(2014)⁽⁸⁶⁾は、二層流モデルの土塊層に土質パラメータを考慮したモデルを構築し、同モデルの妥当性検証として1792年の眉山崩壊による有明海津波の再現計算を実施している。
- まず、津波の発生と伝播に大きく寄与すると考えられる海域における定常状態のせん断強さ *r*_{ss}及び界面抵抗係数 *f*_{inter}に ついてパラメータスタディを実施して崩壊範囲の比較を実施している。
- その後、崩壊範囲の再現性が確認できたケースを対象に、津波解析を実施し、シミュレーション結果は津波痕跡高の分布 傾向をよく再現できたとしている。

眉山崩壊による堆積範囲とシミュレーションの比較

津波痕跡高とシミュレーションの比較