リサイクル燃料備蓄センター設工認					
設 2一補一003					
2021年11月29日					

リサイクル燃料備蓄センター 設計及び工事の計画の変更認可申請書 (補足説明資料)

使用済燃料の除熱について

令和3年11月

リサイクル燃料貯蔵株式会社

目次

1.	目的	•••••••••••••••••••••••••••••••••••••••	1
----	----	---	---

(金属キャスクの除熱に関する補足説明)

2.	設計で用いる使用済燃料集合体の燃焼度について	1
3.	除熱解析のモデル化及び妥当性について ・・・・・・・・・・・・・・・・	3
4.	二次元熱解析モデルの妥当性について	7

(使用済燃料貯蔵建屋の除熱に関する補足説明)

5.	FLUENT検証における模擬キャスクの輻射の考慮について ·····	47
6.	使用済燃料貯蔵建屋内の定常の空気流れを想定した	
	三次元熱流動解析について・・・・・・・・・・・・・・・・・・・・・・・・・・	49
7.	給気温度の変化等による除熱評価結果への影響について	50

(参 考)

•	申請書添付書類3	(添付 3-1-1)	第2表	収納配置に応じた	
	使用済燃料集合体。	の仕様 ・・・・			 55

1. 目的

本資料は、使用済燃料集合体の発熱量の特性、領域に応じた伝熱モデルと その境界のパラメータ設定及び申請書の根拠としている二次元モデルと三次 元モデルによる解析結果の違いの考え方について補足し、今回申請する金属 キャスクと貯蔵建屋による除熱についてより詳しく説明するものである。

(金属キャスクの除熱に関する補足説明)

- 2. 設計で用いる使用済燃料集合体について
 - (1) 「最高燃焼度」及び「平均燃焼度」について
 - 燃料集合体は軸方向の燃焼度分布を有しており,個々の燃料集合体の 燃焼度を示す場合は,この軸方向の燃焼度分布から求められる平均の値 を燃焼度としている。

「最高燃焼度」及び「平均燃焼度」についても、これら個々の燃料集合体の燃焼度をもとに設定したものである。

(a)「最高燃焼度」については、金属キャスクに収納している全ての燃料 集合体それぞれの燃焼度が「最高燃焼度」を超えていないこと、すなわ ち、個々の燃料集合体の燃焼度の上限値として「最高燃焼度」を設定し ている。

MAX(収納する個々の燃料集合体の燃焼度) ≦ 最高燃焼度

(b)「平均燃焼度」については、金属キャスクに収納している全ての燃料 集合体に対する燃焼度の平均値が「平均燃焼度」を超えていないこと、 すなわち、キャスク内の全燃料集合体から求められる燃料集合体1体 当たりの燃焼度の平均値の上限値として「平均燃焼度」を設定してい る。

Σ 収納する個々の燃料集合体の燃焼度 キャスク内収納燃料集合体数 \leq 平均燃焼度

(2) 設計で用いる燃料集合体の燃焼度について

これら最高燃焼度,平均燃焼度がキャスク本体,使用済燃料貯蔵建屋等の設計解析上どの部分に用いられているかを第2-1表にまとめた。

項 目 燃焼度 PF ^{*1}		除熱評価(発熱量)			遮蔽評価(線源強度)		
		住田这趟刘时共74日	金属キャスク				
		使用消燃科灯咸建屋	全体モデル	輪切りモデル	燃料集合体モデル	伊用済燃料貯蔵建室	金禹キャスク
74	PF = 1	•					
平均	考慮		•	•			•
最高 考慮				•	•		•
その	他					•	
		金属キャスク周囲の空気	金属キャスク蓋・底部の部	金属キャスク中央断面部	金属キャスク中央断面部	一般公衆の線量,使用済燃	金属キャスク表面と表面
解析文	 「象	温度及びコンクリート温度	位(金属ガスケット、蓋部中	の部位(バスケット、側部中	の燃料被覆管温度	料貯蔵建屋内外の線量	から1mの線量当量率
			性子遮蔽材等)の温度	性子遮蔽材等)の温度			
モデルの考え方		収納された燃料集合体の	収納された燃料集合体の	評価部位の温度を保守的	最大の発熱量(PF 最大の		設けた収納配置の範囲で
		合計発熱量が,金属キャスク	PF を考慮した合計発熱量が,	に評価するために,PF 最大と	最高燃焼度燃料)を設定す		最大の線源強度を各領域に
		の最大崩壊熱量(Q)とな	金属キャスクの設計崩壊熱	なる軸方向位置で最高燃焼	る。		設定する。(図4参照)
		る。(図1参照)	量(Q _D)となる。(図2参	度燃料を中心部に集中配			
			照)	置。(図3参照)			

第2-1表 設計で用いる燃料集合体の燃焼度について

*1:PF(ピーキングファクタ:燃焼度の偏りの程度を表す)

 \sim

- 3. 除熱解析のモデル化及び解析条件について
- 3.1 伝熱形態について

BWR用大型キャスク(タイプ2A)の伝熱形態を第3-1図に示す。

使用済燃料から発生した崩壊熱は,主に胴内に充填されたヘリウムガスの 熱伝導とふく射によりチャンネルボックスに伝えられ,さらにチャンネルボ ックスからバスケットプレート及び伝熱プレートに伝えられる。バスケット プレート及び伝熱プレートに伝えられた熱は,主に熱伝導によりバスケット プレート端部に伝わり,さらにバスケットプレート端部からヘリウムガスの 熱伝導とふく射により胴内面に伝えられる。続いて,胴内面に伝えられた熱 は,熱伝導により金属キャスク表面に伝えられ,ふく射と空気の自然対流に より金属キャスク周囲の大気に拡散される。なお,側部中性子遮蔽材領域で は,主に炭素鋼及び銅製の伝熱フィンの熱伝導により熱が伝えられる。

3.2 除熱解析のモデル化及び解析条件

除熱解析は、BWR用大型キャスク(タイプ2A)の実形状を軸方向断面, 径方向断面にそれぞれ二次元で、燃料集合体の実形状を径方向断面に二次元 でモデル化し、有限要素法による伝熱解析コード(ABAQUS)を用いて 行った。使用した解析モデルは以下の3つである。

- ・金属キャスク熱解析モデル
 ①軸方向全体モデル(以下「全体モデル」という。)
 ②径方向輪切りモデル(以下「輪切りモデル」という。)
- ・燃料被覆管熱解析モデル

③燃料集合体モデル

これら3つの解析モデルの入出力フローを第3-2図に示す。また,解析に 使用する物性値を第3-1表及び第3-2表に,BWR用大型キャスク(タイ プ2A)外表面の熱伝達率を第3-3表に,解析に使用する放射率を第3-4 表に示す。

第3-1図 伝熱形態図

月3-2因 原款牌机工 / 1207八山/17 日 区

	++水	温度	熱伝導率
1冉八百141	11 17	(°C)	(W/(m • K))
胴		26.95	42 0
外筒	巴圭/四*1	20.85	43.0
一次蓋	灰茶婀	226.85	38.0
二次蓋		526.85	21.1
蓋部中性子遮蔽材			
底部中性子遮蔽材	樹脂*2	_	0.6
側部中性子遮蔽材			
		25	13.5
		50	13.9
		100	14.9
バスケットプレー	ほう素添加	150	15.8
Ъ	ステンレス鋼*3	200	16.7
		250	17.6
		300	18.5
		350	19.4
伝熱プレート	アルミニウム合金*1	26.85	222
		26.85	43.0
	炭素鋼*1	226.85	38.6
におっい。		526.85	27.7
「「「「「「」」」		26.85	398
	銅*1	326.85	383
		526.85	371
		26.85	0.1527
古如有本	م ۱۱ ۲۰۰ / ×۱	126.85	0.1882
41天(噴(1)	NUUA-	226.85	0.2212
		326.85	0.2523
		26.85	0.02614
周囲気体	空気*1	126.85	0.03305
		226.85	0.03951

第3-1表 材料の物性値

注記*1:参考文献(3)参照。

*2:使用する樹脂は、参考文献(4)に示すものである。

*3:使用するほう素添加ステンレス鋼は、参考文献(5)に示すものである。

枠囲みの内容は商業機密に属しますので公開できません。

細たエデル	お所しを話	温度	熱伝導率	(W/(m • K))
脾ケイフル	均貨化限域	(°C)	径方向	軸方向
	燃料均質化領域 ^{*1} (燃料ハンドル部)			
	燃料均質化領域 ^{*1} (燃料グリッド部)			
今株エデル	燃料均質化領域 ^{*1} (燃料上部プレナム部)			
主体で / //	燃料均質化領域*1 (燃料有効部)			
	燃料均質化領域 ^{*1} (燃料下部タイプレート部)			
	側部中性子遮蔽材領域*2			
輪切りモデル	燃料集合体領域*3			
燃料集合体モデ ル	燃料棒			

第3-2表 均質化領域の物性値

注記*1:使用済燃料及びバスケットが収納される領域。

*2:側部中性子遮蔽材及び伝熱フィンのある領域。

*3:燃料集合体が収納されるチャンネルボックス内面より内側の領域。

如母	形状	温度	温度	熱伝達率*1
百以立		(K)	(°C)	$(W/(m^2 \cdot K))$
公尾キャフカが主西		293.15	20	1.55 $ imes \Delta$ T $^{1/3}$
金属イヤヘク外衣面 (側面)	垂直円筒	373.15	100	1.31 $ imes \Delta$ T $^{1/3}$
		473.15	200	1.11 $\times \Delta T^{1/3}$
公尾キャフカが主西	上向き 水平平板	293.15	20	1.57 $ imes \Delta$ T $^{1/3}$
金属イヤベククト衣面		373.15	100	1.32 \times Δ T ^{1/3}
(上山)		473.15	200	1. 12 \times Δ T ^{1/3}
公尾キャフクが主西	下向き	293.15	20	0.965 $ imes$ Δ T $^{1/5}$
金属イヤヘク外衣面 (下部端板)		373.15	100	0.944 $ imes$ Δ T $^{1/5}$
	小十千极	473.15	200	$0.924 imes \Delta \mathrm{T}^{1/5}$

第3-3表 BWR用大型キャスク(タイプ2A)外表面の熱伝達率

注記*1:熱伝達率は下記の式を用いて計算する。

$$h = 0.129 \lambda \left(\frac{g \beta \Delta T}{v^2} \times P r \right)^{1/3} \qquad (垂直円筒)^{-(6)}$$

$$h = 0.13 \lambda \left(\frac{g \beta \Delta T}{v^2} \times P r \right)^{1/3} \qquad (上向き水平坂)^{-(6)}$$

$$h = 0.6 \frac{\lambda}{r} \left(\frac{g \beta \Delta T}{v^2} \times D^3 \times P r \right)^{1/5} \qquad (下向き水平ᠮ)^{-(6)}$$

構成部材	材料	放射率*1	
胴(内面)	炭素鋼	0.055	
一次蓋(上面) 二次蓋(下面)	炭素鋼	0.17	
蓋部中性子 遮蔽材カバー	ステンレス鋼	0.15	
一次蓋(下面)	-次蓋(下面) 炭素鋼		
バスケットプレート	ほう素添加ステンレス鋼	0.15	
伝熱プレート	アルミニウム合金	0.055	
外筒(外表面) 胴(外表面) 二次蓋(外表面) 貯蔵建屋壁面	塗装	0.8	

第3-4表 材料の放射率

注記*1:参考文献(7)参照。塗装の設定根拠の詳細は別添1を参照。一次蓋(下面)では、金属ガスケット及び蓋部中性子遮蔽材温度を保守的に評価するため、酸化を考慮。また、胴(内面)では、燃料被覆管及びバスケット温度を保守的に評価するため、より小さな値を仮定。

各解析モデルの概要及び解析条件を以下に示す。

(1) 全体モデル

全体モデルは、金属キャスク全体を二次元の軸対称体としてモデル化したものであり、蓋部及び底部の温度を評価するためのモデルである。全体モデルの形状図を第3-3図に示す。

全体モデルは二次元モデルであるため、収納物である使用済燃料及びバ スケットは均質化して等価熱伝導率を設定した。側部中性子遮蔽材及び伝 熱フィンに関しても、これらを均質化して等価熱伝導率を設定した。以下 で、これらモデル化の詳細を述べる。

a. 燃料均質化領域の熱伝導率

(a) 径方向

使用済燃料及びバスケットが収納される領域(以下「燃料均質化領域」 という。)の径方向熱伝導率は、内部発熱を伴う円柱の場合の式(1)を用 いて計算した⁽¹⁾。

ここで, λ_{r1}:燃料均質化領域の径方向等価熱伝導率 (W/(m・K))

q : 単位体積発熱量 (W/m³)

R : 燃料均質化領域外半径(m)

T₁ : 燃料均質化領域最高温度(K)

T₂ : 燃料均質化領域外面平均温度(K)

輪切りモデルで軸方向を断熱条件とし,周囲環境温度を-25 °C, 38 °C,100 °Cとした3ケースの予備解析によりT₁及びT₂を求め,式 (1)を用いて温度依存性のある λ_{r1} を設定した。なお,各ケースで求め られる λ_{r1} の代表温度は,T₁とT₂の平均値とした。

(b) 軸方向

燃料均質化領域の軸方向熱伝導率は,構成部材の体積割合を考慮し て式(2)により計算した。

ここで, λ :等価熱伝導率 (W/(m・K))

V_i : 各構成部材の体積 (m³)

λ_i: : 各構成部材の熱伝導率 (W/(m・K))

V : 均質化した領域の体積(m³)

このとき,バスケットの軸方向の材料不連続性を以下のように考慮 した。

バスケットは菓子折り構造で上下のプレート同士は接触する構造だ が,燃料均質化領域の軸方向熱伝導率の算出に当たっては,バスケット の製造公差を考慮して製造公差分のギャップによる非接触部を仮定し た。具体的には,第3-4図に示すようにバスケットは直交しているプ レートで構成されており,ギャップは軸方向に互い違いに生じること になるため,第3-5図に示すようにギャップを有した2つのプレート が並列にあるとして,製造公差の許容値に相当する最大ギャップを仮 定してバスケットの軸方向熱伝導率を計算した⁽²⁾。この値を用いて,式 (2)により燃料均質化領域の軸方向熱伝導率を計算した。

- b. 側部中性子遮蔽材領域の熱伝導率
- (a) 径方向

側部中性子遮蔽材及び伝熱フィンのある領域(以下「側部中性子遮蔽 材領域」という。)の径方向熱伝導率は,熱通過を伴う円筒の場合の式 (3)を用いて計算した⁽¹⁾。

$$\lambda_{r2} = Q \times \frac{\ln(R_4/R_3)}{2\pi(T_3 - T_4)}$$
(3)

ここで, λ_{r2}:側部中性子遮蔽材領域の径方向等価熱伝導率 (W/(m・K))

Q : 軸方向単位長さ当たりの発熱量(W/m)

R₃ : 胴外面の半径(m)

R₄:外筒内面の半径(m)

T₃:胴外面の平均温度(K)

T₄:外筒内面の平均温度(K)

輪切りモデルで軸方向を断熱条件とし,周囲環境温度を-25°C,38°C, 100°Cとした3ケースの予備解析によりT₃及びT₄を求め,式(3)から温 度依存性のある λ_{r2} を設定した。なお,各ケースで求められる λ_{r2} の代 表温度は,T₃とT₄の平均値とした。

(b) 軸方向

側部中性子遮蔽材領域の軸方向熱伝導率は,構成部材の体積割合を 考慮して式(2)により計算した。

c. 解析条件

発熱条件として,軸方向の発熱分布を考慮した設計崩壊熱量となるように燃料有効部の発熱密度を設定した。

全体モデルの外部境界条件を第3-5表に示す。周囲温度を45℃,貯蔵 建屋壁面温度を65℃とし、周囲空気への自然対流熱伝達及び貯蔵建屋壁 面へのふく射による放熱を考慮した。なお,金属キャスク底面から貯蔵架 台への伝熱は保守側に断熱とした。

第3-3図 全体モデル形状図

第3-4図 バスケットの構造

第3-5図 バスケットの軸方向等価熱伝導率の求め方

項目	境界条件
周囲温度(℃)	45
貯蔵建屋壁面温度(℃)	65
貯蔵建屋壁面放射率	0.8
金属キャスク表面放射率	0.8
金属キャスク側面から	0.020*1
貯蔵建屋内壁面への形態係数	0.232
金属キャスク表面熱伝達率	笠 9-9 毛に とる
(側面,上面,下部端板)	そういなによる
底部熱移動	断熱

第3-5表 全体モデルの境界条件

注記*1:金属キャスク配列ピッチ寸法3.5mから算出される値。算出過程は別 添2参照。

(2) 輪切りモデル

輪切りモデルは、燃料集合体が最高温度となる金属キャスクの径方向断面を二次元でモデル化したものであり、中性子遮蔽材(側部),胴、バスケット等の温度を評価するためのモデルである。輪切りモデルの形状図を第3-6図に示す。

燃料集合体は均質化して等価熱伝導率を設定した。バスケットプレート, 伝熱プレート及びこれら交差部に関しても,均質化して等価熱伝導率を設 定した。以下で,これらモデル化の詳細を述べる。

a. 燃料集合体領域の熱伝導率

燃料集合体が収納されるチャンネルボックス内面より内側の領域(以下「燃料集合体領域」という。)の熱伝導率は、円柱形状の内部発熱体の 伝熱基礎式を基に正方形角柱形状に当てはめた以下の式(4)を用いて計 算した。

$$\lambda_{\rm f} = \frac{{\rm q}\,{\rm W}^2}{{\rm K}({\rm T}_5 - {\rm T}_6)} \cdots (4)$$

ここで,

λ_f : 燃料集合体領域の等価熱伝導率 (W/(m・K))

q :軸方向燃焼度の最大領域における単位体積発熱量
 (W/m³)

- W :燃料集合体領域外形寸法(m)
- K : 係数(-)(別添3に算出過程を示す。)
- T₅ : 燃料棒最高温度(K)
- T₆:チャンネルボックス温度(K)

燃料集合体モデルで軸方向を断熱条件とし、チャンネルボックス温度 を 27℃、127℃、327℃とした 3 ケースの予備解析により T₅及び T₆を求 め、式(4)から温度依存性のある λ_f を設定した。なお、各ケースで求めら れる λ_f の代表温度は、T₅とT₆の平均値とした。

b. バスケットプレート, 伝熱プレート及びこれら交差部の熱伝導率

バスケットプレート及び伝熱プレートは菓子折り構造により格子状と なるように配置され、その交差部には切欠きを有する。バスケットプレー ト、伝熱プレート及びこれら交差部の熱伝導率には、この切欠きを考慮し てモデル化したバスケットモデルによる予備解析から求められる等価熱 伝導率を設定した。

c. 軸方向への熱移動

輪切りモデルでは,軸方向への熱移動がモデル化されないため実際よ り高温の結果を与える。そこで,全体モデルによる解析結果を用いて,以 下の方法で軸方向への熱移動を考慮した。 (a) 外周部燃料領域の軸方向熱移動

外周部の32体の燃料集合体領域では、全体モデル解析における燃料 均質化領域での軸方向熱移動量を差し引いた発熱密度を設定した。な お、中央部の37体の燃料集合体領域では、最高燃焼度の軸方向燃焼度 最大領域の崩壊熱量に相当する発熱密度を設定し、軸方向熱移動は考 慮しない。

(b) 胴内面~外筒外面の軸方向熱移動

全体モデル解析における胴内面から外筒外面の軸方向への熱移動量 と一致するように, 胴内面及び外筒外面に吸熱を与えた。このとき, 胴 内面及び外筒外面の温度が全体モデルの温度と一致するように吸熱量 を調整した。

軸方向への熱移動に関する概念を第3-7図に示す。また,輪切りモ デルの軸方向熱移動量の設定方法と温度分布の関係を第3-8図に示す。 輪切りモデルにおける胴内面より内側の軸方向熱移動量は全体モデル を上回り,また,輪切りモデルの温度は全体モデルより保守的な温度と なる。

輪切りモデルに設定した発熱条件を第3-6表,第3-7表及び第3-8表に,熱移動量を第3-9表,第3-10表及び第3-11表に示す。

d. 解析条件

輪切りモデルの外部環境条件を第3-12表に示す。周囲温度を45℃, 貯蔵建屋壁面温度を65℃とし、周囲空気への自然対流熱伝達及び貯蔵建 屋壁面へのふく射による放熱を考慮した。

第3-6図 輪切りモデル形状図

第3-7図 輪切りモデルの軸方向熱移動モデル化概念図

第3-8図 輪切りモデルの軸方向熱移動量の設定方法と温度分布の関係 (一次元的概念図)

		発熱量 (kW)*2			
対象	(体)	軸方向への	軸方向への		
		熱移動考慮前	熱移動考慮後		
中央に収納される	37	11 7	11 7		
使用済燃料		11.7	11. (
外周に収納される	2.0		0.00		
使用済燃料	32	0.40	2.20		
合計	69	17.1^{*3}	13.9		

第3-6表 輪切りモデルの発熱条件(配置A*1)

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Aを示 す。

*2:輪切りモデルの評価対象断面である PF 最大領域 (mm)の発熱 量を燃料有効長(3,708 mm)当たりに換算した値。なお、表中の値は 端数処理した値であるため、合計値が一致しない場合がある。

*3:輪切りモデルの評価対象断面は PF 最大領域であり、軸方向への熱移 動考慮前における発熱量の合計値は設計発熱量(15.34 kW)を上回る。

💓 : 燃焼度 40,000 MWd/t に相当する発熱量。

:発熱量の総量が,設計崩壊熱量(燃焼度 34,000 MWd/t に相当する 発熱量 69 体分) となるように調整した発熱量。軸方向への熱逃げ を考慮することでより小さな値となる。

対象	収納体数 (体)	発熱量 (kW)*2			
		軸方向への	軸方向への		
		熱移動考慮前	熱移動考慮後		
中央に収納される	97	10.0	10.0		
使用済燃料	37	12. 3	12. 3		
外周に収納される	20	F 17	1 59		
使用済燃料	32	0.17	1. 55		
合計	69	17.5^{*3}	13.8		

第3-7表 輪切りモデルの発熱条件(配置B*1)

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Bを示す。

*2:輪切りモデルの評価対象断面である PF 最大領域 (______mm)の発熱 量を燃料有効長(3,708 mm)当たりに換算した値。なお,表中の値は 端数処理した値であるため,合計値が一致しない場合がある。

*3:輪切りモデルの評価対象断面は PF 最大領域であり,軸方向への熱移 動考慮前における発熱量の合計値は設計発熱量(15.33 kW)を上回る。

- 🐘 : 燃焼度 48,000 MWd/t に相当する発熱量。
 -]:発熱量の総量が,設計崩壊熱量(燃焼度 40,000 MWd/t に相当する 発熱量 69 体分)となるように調整した発熱量。軸方向への熱逃げ を考慮することでより小さな値となる。

対象		発熱量 (kW)*2			
	(体)	軸方向への	軸方向への		
		熱移動考慮前	熱移動考慮後		
中央に収納される	97	7 59	7 59		
使用済燃料	37	7.00	7.00		
外周に収納される	20	2.04	1 70		
使用済燃料	32	5.94	1.70		
合計	69	11.5^{*3}	9.30		

第3-8表 輪切りモデルの発熱条件(配置C*1)

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Cを示す。

*2:輪切りモデルの評価対象断面である PF 最大領域 (_____ mm)の発熱 量を燃料有効長(3,708 mm)当たりに換算した値。なお,表中の値は 端数処理した値であるため,合計値が一致しない場合がある。

*3:輪切りモデルの評価対象断面は PF 最大領域であり,軸方向への熱移 動考慮前における発熱量の合計値は設計発熱量(10.37 kW)を上回る。

- 📉 : 燃焼度 34,000 MWd/t に相当する発熱量。
-]:発熱量の総量が,設計崩壊熱量(燃焼度 29,000 MWd/t に相当する 発熱量 69 体分)となるように調整した発熱量。軸方向への熱逃げ を考慮することでより小さな値となる。

枠囲みの内容は商業機密に属しますので公開できません。

軸方向への熱移動量 (kW)*2	
0	
0	
2.96	
3.20	
1.51	
0	
0. 58	

第3-9表 輪切りモデルにおける軸方向への熱移動量(配置A*1)

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Aを示す。

*2:輪切りモデルの評価対象断面である PF 最大領域 (mm)の熱移動量を燃料有効長 (3,708 mm) 当たりに換算 した値。

第3-10表 輪切りモデルにおける軸方向への熱移動量(配置B*1)

部位	軸方向への熱移動量 (k₩)*2
中央に収納される	0
使用済燃料(37体)	0
外周に収納される	2.62
使用済燃料(32体)	3.05
月同	1.55
伝熱フィン、中性子遮蔽材(側部)	0
外筒	0.58

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Bを示す。

枠囲みの内容は商業機密に属しますので公開できません。

部位	軸方向への熱移動量 (kW)*2	
中央に収納される	0	
使用済燃料(37体)	0	
外周に収納される	2.16	
使用済燃料(32体)		
胴	0.79	
伝熱フィン、中性子遮蔽材(側部)	0	
外筒	0.55	

第3-	11 表	輪切りモデルにおけ	・ろ軸方向へ	の執移動量	(配置C ^{*1)})
77 0	11 11	+ $ +$ $ -$				/

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Cを示す。

*2:輪切りモデルの評価対象断面である PF 最大領域 (mm)の熱移動量を燃料有効長 (3,708 mm) 当たりに換算 した値。

項目	境界条件	
周囲温度 (℃)	45	
貯蔵建屋壁面温度 (℃)	65	
貯蔵建屋壁面放射率	0.8	
金属キャスク表面放射率	0.8	
金属キャスク表面から貯蔵建	0.000*1	
屋内壁面への形態係数	0. 232	
金属キャスク表面熱伝達率	笛 2-2 志に とる	
(側面)	知ってっ 衣による。	

第3-12表 輪切りモデルの境界条件

注記*1:金属キャスク配列ピッチ寸法3.5mから算出される値。 算出過程は別添3-2参照。 (3) 燃料集合体モデル

燃料集合体モデルは、燃料集合体の軸方向中央断面を二次元でモデル化 したものであり、燃料被覆管の温度を評価するためのモデルである。燃料 棒は正八角形でモデル化し、断面積等価となるように寸法を設定した。燃 料集合体モデルの形状図を第3-9図及び第3-10図に示す。

a. 燃料棒の熱伝導率

燃料棒の熱伝導率は、二酸化ウラン、ヘリウムガス及びジルカロイの体 積割合を考慮して式(2)により計算した。

b. 解析条件

発熱条件として,最高燃焼度燃料の PF 最大領域の崩壊熱量に相当する 発熱密度を設定した。また,伝熱形態として熱伝導及びふく射を考慮し, 軸方向への伝熱を無視し断熱とした。境界条件は,輪切りモデル解析で最 高温度となるチャンネルボックスの温度を設定した。

c. 輻射計算の手法

燃料棒の中心節点及びチャンネルボックスの節点に第 3-11 図に示す とおりふく射接続要素を設定し、6 種類のふく射接続を考慮した(第 3-12 図、第 3-13 図、第 3-14 図)。この6ケースのふく射接続におけるふ く射移動量は、伝熱解析コード(ABAQUS)コードにより下式にて考 慮される。この式の入力条件となる燃料棒表面積、形態係数及び放射率 は、別紙 1-13 表に示す値を用いた。なお、同表に示すとおりふく射計算 に使用する燃料棒の表面積は、解析モデルとは異なり実燃料棒の表面積 を設定した。

- ここで, Q_r:ふく射移動量(W)
 - F, :総括放射係数(-)
 - σ : ステファン・ボルツマン係数 (($W \cdot m^2$)/ K^4)
 - A : 燃料棒表面積 (m²)
 - T_a : 燃料棒 a の温度(K)
 - T_b: 燃料棒 b の温度(K)
 - F_{ab}: 燃料棒 a から燃料棒 b への形態係数(-)
 - ε_a:燃料棒 a の放射率(-)
 - ε_b:燃料棒 b の放射率(-)

注記*1:Wはウォーターロッドであり,発熱はない。

第3-9図 燃料集合体モデル形状図

(新型8×8燃料,新型8×8ジルコニウムライナ燃料の場合)

第3-10図 燃料集合体モデル形状図 (高燃焼度8×8燃料の場合)

第3-11図 燃料集合体モデルの輻射接続の種類

第3-12図 燃料棒1-チャンネルボックス6間の形態係数算出モデル

第3-13図 燃料棒2-チャンネルボックス7間の形態係数算出モデル

第3-14図 燃料棒3-チャンネルボックス8間の形態係数算出モデル

	接続ケース*1				燃料棒 a の		放射率		
No.	⇒□ ₽.	燃料棒	燃料棒(b)		表面積		形態係数	游 彩挂(_) *7	燃料棒(b)
	記与	(a)	$CB^{*2}(b)$		(mm^2/mm) *3			燃科悴(a)	$CB^{*2}(b)^{*7}$
1	Б	燃料棒	燃料棒				0 199*4	0.8	0.8
1	Г ₁₂	(1)	(2)				0.128	0.8	
9	Б	燃料棒	燃料棒				0 0960*5	0.8	0.8
2	F ₁₃	(1)	(3)				0.0800	0.0	0.0
0	F 14	燃料棒	燃料棒				0.0133*5	0.8	0.8
J		(1)	(4)				0.0133	0.0	0.0
4	F	F 燃料棒	CB(6)			0.372^{*6}	0.8	0.8	
4	I [*] 16	(1)	CD(0)				0.372	0.0	0.0
5	F	燃料棒	CB(7)				0 311*6	0.8	0.8
5	1º 27	(2)					0.511	0.0	0.0
6	F ₃₈	燃料棒	CB(8)				0 0180*6	0.8	0.8
		(3)	(0)				0.0100	0.0	0.0

第3-13表 燃料集合体モデルにおける輻射計算入力条件

注記*1:第3-11 図参照。

*2: CB はチャンネルボックス。

*3:単位長さ(1 mm)当たりの燃料棒の表面積(燃料棒外径 mm)。 *4:平行に配置された円柱A₁, A₂間の放射形態係数の式⁽⁸⁾より算出。

*6:下式より算出。

$$F_{16} = F_{61} = \frac{180^{\circ}}{360^{\circ}} - F_{12} = 0.5 - 0.128 = 0.372 \qquad (\text{\mathbf{\#}}3 - 12 \, \text{C})$$

$$F_{27} = F_{72} = \frac{135^{\circ}}{360^{\circ}} - F_{12}/2 = 0.375 - 0.128/2 = 0.311 \quad (33-13)$$

$$F_{38} = F_{61} = \frac{45^{\circ}}{360^{\circ}} - F_{32}/2 - F_{31}/2$$
(第3-14 図参照)

- 3.3 参考文献
 - (1) (一社)日本機械学会,「伝熱ハンドブック」(1993), P.6, 7
 - (2) (一社)日本機械学会,「JSME テキストシリーズ 伝熱工学 改訂第8版」(2012), P.31
 - (3) (一社)日本機械学会,「伝熱工学資料 改訂第4版」(2003), P. 314, 317, 318, 328, 329
 - (4) N. Kumagai, et al., "Optimization of fabrication condition of metal cask neutron shielding part which applied simulation of curing behavior of epoxy resin", Proc. 15th Int. Symp. on PATRAM(2007)
 - (5) (一社)日本機械学会,「使用済燃料貯蔵施設規格 金属キャスク構造規格
 (2007 年版) JSME S FA1-2007,事例規格 バスケット用ボロン添加ステンレス鋼板 B-SUS304P-1 に関する規定(JSME S FA-CC-004)」(2009)
 - (6) (一社)日本原子力学会,「使用済燃料・混合酸化物新燃料・高レベル放射 性廃棄物輸送容器の安全設計及び検査基準:2013 (AESJ-SC-F006:2013)」
 (2014年11月), P.200,201
 - (7) (一社)日本機械学会,「伝熱工学資料 改訂第3版」(1975), P. 148, 149
 - (8) R. Shiegel, J. R. Howell, "THERMAL RADIATION HEAT TRANSFER Second Edition", Hemisphere Publishing Corporation (1981), P. 828
 - (9) D. L. Hagrman, et al., "MATPRO-VERSION 11 A HANDBOOK OF MATERIALS PROPERTIES FOR USE IN THE ANALYSIS OF LIGHT WATER REACTOR FUEL ROD BEHAVIOR", NUREG/CR-0497 TREE-1280 R3(1979)

別添 3-1

塗装の放射率設定根拠

「別紙 1-4 表 材料の放射率」において塗装に適用した放射率 0.8 は,参考 文献(3)に示された塗料の放射率 0.7~0.9 の平均値である。その設定の根拠を 以下に示す。

「別紙1-4表 材料の放射率」のうち,放射率0.8 が設定されている構成部 材は,外筒(外表面),胴(外表面),二次蓋(外表面)並びに貯蔵建屋壁面で ある。これら構成部材の放射率に係る文献値及び解析入力値を別添 3-1-1 表 に示す。また,BWR用大型キャスク(タイプ2A)の表面の塗装に使用予定 である_____の塗装の放射率の実測値を 別添1-1表に併せて示す。解析に適用した放射率(解析入力値)は,貯蔵建屋 壁面の仕様が制約とならないように,コンクリートに比べて放射率がより小さ い塗装を代表して適用することとし、塗料の放射率 0.7~0.9 の平均値 0.8 と した。解析入力値は放射率の実測値より小さく,BWR用大型キャスク(タイ プ2A)の内部の温度をより高く評価する観点から保守的な設定である。

## + + + + + + + + + + + + + + + + + +	4- 译	放射率			
小中小人可以小	江水	文献値	解析入力值	実測値	
外筒(外表面)					
胴(外表面)		\circ $$ \circ \circ \circ \circ		0.04*1	
二次蓋 (外表面)	塗装	$0.7 \sim 0.9^{(3)}$	0.8	0.84^{*1}	
贮粪冲已碎工					
灯風建厔壁面	コンクリート	0.94 ⁽³⁾		_	

別添 3-1-1 表 塗装の放射率設定

注記*1:BWR用大型キャスク(タイプ2A)の表面に使用予定である塗料 の実測値。

別添 3-2

形態係数の算出過程

「第3-5表 全体モデルの境界条件」及び「第3-12表 輪切りモデルの境 界条件」において設定している金属キャスク表面から貯蔵建屋壁面への形態係 数は,金属キャスク側面から貯蔵建屋の天井及び床面への形態係数として求め た。以下に,この形態係数の算出過程を示す。

はじめに,別添 3-2-1 図の金属キャスクの貯蔵配置に示すように,中心に 配置された対象金属キャスクの周囲の金属キャスクで囲まれた空間(一辺が 2 Wの正方形の空間)のうち,周囲の金属キャスクを除く面積(別添 3-2-1 図 の灰色のエリア)の等価断面半径R₂を式(1)で求めた。

別添3-2-1図 金属キャスクの貯蔵配置

金属キャスク表面から貯蔵建屋内壁面への形態係数は、日本原子力学会標準 「使用済燃料・混合酸化物新燃料・高レベル放射性廃棄物 輸送容器の安全設 計及び検査基準:2013」の附属書 AT に基づき、円環フィン形状の形態係数を求 める式から算出した。算出式及び各ふく射面の定義をそれぞれ式(2)から式(5) 及び別添 2-2 図に示す。ここで、金属キャスク長さをLとし、bにR₃を、aに R₂を、cにLを代入して、2 面から 3 面への形態係数F₂₃を求めた。形態係数 の算出条件及び結果を別添 3-2-1 表に示す。

以上より,「第3-5表 全体モデルの境界条件」及び「第3-12表 輪切り モデルの境界条件」において設定している金属キャスク表面から貯蔵建屋壁面 への形態係数は,別添 2-1 表の2面から3面への形態係数F23の0.232である。

$$\begin{cases} \sum_{n}^{A_{n} + F_{nk} = A_{k} + F_{kn}} \\ \sum_{n}^{B_{n} + F_{nk} = 1, 0} & \dots & (1) \\ n = 1, 2, 3, \cdots M \\ \Xi = \overline{C}, A_{n} : n \exists n \exists n \exists n \exists n \exists n \exists n d (n^{3}) \\ F_{kn} : k \exists l \notin n \exists n \cap n \partial \mathcal{D} \mathbb{R}^{k} \mathbb{K} \mathbb{K} (-) \\ F_{12} = \frac{1}{X} - \frac{1}{\pi X} \left[\cos^{-1} \frac{B}{A} - \frac{1}{2Y} \left\{ \sqrt{(A + 2)^{2} - (2X)^{2}} \cos^{-1} \left(\frac{B}{XA} \right) \\ & + B \sin^{-1} \left(\frac{1}{X} \right) - \frac{\pi A}{2} \right\} \right] \\ F_{11} = 1 - \frac{1}{X} + \frac{2}{\pi X} \tan^{-1} \left(\frac{2\sqrt{X^{2} - 1}}{Y} \right) \\ - \frac{Y}{2\pi X} \left[\frac{\sqrt{4X^{2} + Y^{2}}}{Y} \sin^{-1} \left\{ \frac{4(X^{2} - 1) + (Y^{2}/X^{2})(X^{2} - 2)}{Y^{2} + 4(X^{2} - 1)} \right\} \\ - \frac{Y}{2\pi X} \left[\frac{\sqrt{4X^{2} + Y^{2}}}{Y} \sin^{-1} \left\{ \frac{4(X^{2} - 1) + (Y^{2}/X^{2})(X^{2} - 2)}{Y^{2} + 4(X^{2} - 1)} \right\} \right] \\ F_{13} = 1 - F_{12} - F_{11} \\ C = \overline{C}, X = a / b \\ Y = c / b \\ A = X^{2} + Y^{2} - 1 \\ B = Y^{2} - X^{2} + 1 \\ \end{array}$$

$$(4)$$

$$\frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& \exists \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{R})} \\ \frac{b (J \Re \& = \mathbb{R}^{k} + v \times J \cap \mathcal{O} + \mathbb{R})}{a (\ \mbox{\mathbb{H}} + \mathbb{R} \times \mathbb{$$

別添 3-2-2 図 各輻射面の定義

		R_1	1.325
	形状(m)	a (R_2)	3.214
		b (R_3)	1.250
算出条件		c (L)	5.607
		W	3.50
	係数(-)	Х	2.57
		Y	4.49
		А	25.73
		В	14.51
算 : 出 結	形態係数 (-)	F 12	0.298
		F 21	0. 767
		F 23	0. 232

別添 3-2-1 表 形態係数の算出条件及び結果

燃料集合体領域の等価熱伝導率算出式中の係数Kについて

燃料集合体領域の等価熱伝導率λ_fは,以下の式(1)を用いて計算する。

$$\lambda_{f} = \frac{qW^{2}}{K(T_{5}-T_{6})}$$
(1)
ここで、 λ_{f} : 燃料集合体領域の等価熱伝導率 (W/(m・K))
q : 軸方向燃焼度の最大領域における単位体積発熱量
(W/m³)
W : 燃料集合体領域外形寸法 (m)
K : 係数 (-)
T₅ : 燃料棒最高温度 (K)
T₆ : チャンネルボックス温度 (K)

以下で,式(1)中の係数Kについてその算出過程を示す。

矩形内部が一様の熱伝導率k,発熱密度qで,境界温度が0Kの場合(別 添3-3-1図)の理論解は,式(2)で得られる^{*1}。

 $\frac{\theta(\mathbf{x}, \mathbf{y})}{\mathbf{u}'' \mathbf{L}^{2}/\mathbf{k}} = 0.29469 \qquad (2)$ ここで, $\theta(\mathbf{x}, \mathbf{y}) : 矩形内部の温度 (K)$ $\mathbf{u}''' : 矩形内部の発熱密度 (W/m^{3})$ $\mathbf{L} : 矩形長さ (m)$ $\mathbf{k} : 矩形内部の熱伝導率 (W/(m \cdot K))$ $\theta(\mathbf{x}=0, \mathbf{y}=0) = T_{5} - T_{6}, \mathbf{u}'' = q, 2L = W, \mathbf{k} = \lambda_{f} \not{\varepsilon} + 3 \not{\varepsilon},$ $\frac{\theta(\mathbf{x}, \mathbf{y})}{\mathbf{u}'' \mathbf{L}^{2}/\mathbf{k}} = \frac{4(T_{5} - T_{6})}{qW^{2}/\lambda_{f}} = \frac{4}{K} \qquad (3)$

したがって, K=4/0.29469=13.57となる。

注記*1:Vedat S. Arpaci, "CONDUCTION HEAT TRANSFER", ADDISON-WESLEY PUBLISHING COMPANY (1966), P.219, 220, 465

- 4. 二次元除熱解析モデルの妥当性について
- 4.1 概要

BWR用大型キャスク(タイプ2A)の除熱解析で用いた二次元の輪切 りモデルと全体モデルを組み合わせた解析手法(以下「2Dモデル」とい う。)の妥当性を確認するため、BWR用大型キャスク(タイプ2A)の 三次元モデル(以下「3Dモデル」という。)を用いた除熱解析を行い、2D モデルと 3Dモデルの除熱解析結果を比較する。

4.2 3D モデルの概要

3D モデル図を第4-1 図に示す。3D モデルは、バスケットプレート及び伝 熱プレートを均質化することなくモデル化し、燃料集合体は1体ずつ燃料集 合体領域(チャンネルボックス内面より内側の領域)を直方体形状で均質化 してモデル化している。このため、3D モデルは実形状に即した軸方向及び径 方向への熱移動を評価できるモデルとなっている。ただし、トラニオンや蓋 ボルト等の除熱解析の評価結果に大きな影響を与えないと考えられる部位は モデル化を省略している。3D モデルと 2D モデルの各部位のモデル化方針の 比較を第4-1表に示す。また、3D モデルによる 2D モデルの妥当性確認フロ ー図を第4-2 図に示す。

4.3 解析条件

3D モデル及び 2D モデルを用いた除熱解析の条件の比較を第 4-2 表に示 す。発熱条件は 2D モデルの配置 A^{*1}の条件とする。

*1:申請書添付書類3添付3-1-1第2表に基づく配置Aを示す。

4.4 解析結果

3D モデルと 2D モデル(全体モデル,輪切りモデル)の除熱解析結果の比較を第4-3表に示す。また,温度分布の比較を第4-3図及び第4-4図に示す。

第4-3表より、中性子遮蔽材、胴及び蓋部、金属ガスケット、バスケット 並びに燃料集合体の温度は、すべての部位において 2D モデルの方が 3D モデ ルよりも高い結果となった。また、燃料集合体領域で最高温度となる金属キ ャスク径方向断面における、軸方向及び径方向の熱移動量の割合を第4-4表 に示す。第4-4表より、軸方向及び径方向の熱移動量の割合は 3D モデルと 2D モデル(全体モデル)で同等である。

4.5 まとめ

2D モデルを用いた除熱解析で得られている評価部位の最高温度は,3D モデルを用いた除熱解析で得られた評価部位の最高温度よりもすべての評価部位において高い結果となり,2D モデルは保守的な除熱解析モデルといえる。また,軸方向及び径方向の熱移動量の割合は,3D モデルと 2D モデル(全体モデル)で同等の結果となり,2D モデル(全体モデル)における均質化領域の物性値と軸方向熱移動の設定方法は妥当であるといえる。

以上より,2DモデルによるBWR用大型キャスク(タイプ2A)の除 熱解析手法は妥当である。 枠囲みの内容は商業機密に属しますので公開できません。

第4-1図 3Dモデル(1/4対称モデル)

第4-2図 3Dモデルによる 2Dモデルの妥当性確認フロー図

第4-3図 温度分布の比較(1/2)

第4-4図 温度分布の比較(2/2)

百日	20 エディ	이 거 그 그 가
供日	3ルモナル	$\frac{2\nu \tau \tau \nu}{(\Delta H - \tau)}$
燃料集合体	 チャンネルボックスより内部 を直方体形状で均質化。 軸方向熱伝導率は、構成部材の 体積割合を考慮して均質化し た熱伝導率を設定。 燃料有効部の径方向熱伝導率 は、燃料集合体モデルから求め られる等価熱伝導率を設定。 燃料有効部以外の径方向熱伝 導率は、構成部材の体積割合を 考慮して均質化した熱伝導率 を設定。 	 (全体モデル) ・燃料集合体,バスケット等を均質 化。 ・軸方向熱伝導率は,構成部材の体積 割合を考慮して均質化した熱伝導 率を設定。 ・径方向熱伝導率は,輪切りモデルから求められる等価熱伝導率を設定。 ・チャンネルボックスより内部を正 方形状で均質化。 ・燃料集合体モデルから求められる 等価熱伝導率を設定。
バスケット	 ・切欠き、ギャップを無視し、軸 方向に連続体としてモデル化。 ・軸方向熱伝導率は、軸方向接触 面にギャップが存在すると仮 定して設定。 ・径方向熱伝導率は、バスケット モデルから求められる等価熱 伝導率を設定。 	 (全体モデル) ・燃料集合体,バスケット等を均質化。 ・軸方向熱伝導率は,軸方向接触面に ギャップが存在すると仮定して設定。 (輪切りモデル) ・径方向熱伝導率は,バスケットモデルから求められる等価熱伝導率を設定。
伝熱フィン及び 側部中性子遮蔽材	・ 実形状をモデル化。	 (全体モデル) ・軸方向熱伝導率は,構成部材の体積 割合を考慮して均質化した熱伝導 率を設定。 ・径方向熱伝導率は,輪切りモデルか ら求められる等価熱伝導率を設定。 (輪切りモデル) ・実形状をモデル化。
トラニオン	省略	同左
蓋ボルト	省略	同左
金属ガスケット	省略	同左

第4-1表 モデル化方針

	項目	3D モデル	2D モデル
	伝熱解析コード	ABAQUS	同左
発熱量		15.34 kW(配置A ^{*1} の設計崩壊熱量)	同左
使月	用済燃料の軸方向の 惑勅号記会	使用済燃料の軸方向の崩壊熱量分布を考慮	同左
	免然重設正	(ノートことに充熱密度を設定)。	全体エデルでけ亚均燃
使用済燃料の収納配置 ごとの崩壊熱量設定		中央部の使用済燃料 37 体は,最高燃焼度の 発熱量で設定。外周部の使用済燃料 32 体は, 使用済燃料の収納体数全数(69 体)の総発熱 量が設計崩壊熱量となるように設定。	全体モテルでは平均燃 焼度の発熱量を設定。 輪切りモデルでは外周 部燃料32体に軸方向の 熱移動を考慮。中央部 燃料37体は最高燃焼度 の発熱量を設定。
	周囲空気温度(℃)	45	同左
	貯蔵建屋壁面温度(℃)	65	同左
	貯蔵建屋壁面 放射率	0.8	同左
	金属キャスク 表面放射率	0.8	同左
境	金属キャスク表面から貯蔵建屋壁面への形態係数	0. 232*2	同左
界条	金属キャスク側面 表面熱伝達率	垂直平板の乱流自然対流熱伝達の式 ^{*3} h = 0.129 $\lambda \left(\frac{g \beta \Delta T}{v^2} \times P r \right)^{1/3}$	同左
件	金属キャスク上面 表面熱伝達率	加熱水平上面の乱流自然対流熱伝達の式 ^{*3} h = 0.13 $\lambda \left(\frac{g \beta \Delta T}{v^2} \times P r\right)^{1/3}$	同左
	金属キャスク下部 端板表面熱伝達率	加熱水平下面の層流自然対流熱伝達の式 ^{*3} h = 0.6 $\frac{\lambda}{D} \left(\frac{g \beta \Delta T}{\nu^2} \times D^3 \times P r \right)^{1/5}$	同左
	底部熱移動	断熱	同左

第4-2表 解析条件

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Aを示す。

*2:金属キャスク配列ピッチ3.5 mから算出される値。

- *3:記号の説明を以下に示す。
 - h : 熱伝達率 (W/(m²・K)), λ : 熱伝導率 (W/(m・K)), g : 重力加速 度 (m/s²),
 - β :体積膨張係数 (1/K), Δ T:周囲空気と外表面の温度差 (K),
 - v:動粘性係数 (m²/s), Pr:プラントル数 (-), D:代表長さ(m)

評価部位	最高温度(℃)		泪庄比盐 (℃)		
	3D モデル	2D モデル	価度比較(U) (2D モデル)-(3D モデル)		
		(配置(i))			
中性子遮蔽材*2	125	128 (輪切りモデル)	+3		
胴及び蓋部	135	142 (全体モデル)	+7		
金属ガスケット* ³	94	96 (全体モデル)	+2		
バスケット	245	248 (輪切りモデル)	+3		
燃料集合体	253	259 (輪切りモデル)	+6		

第4-3表 除熱解析結果の比較(配置A^{*1})

注記*1:(参考)申請書添付書類3(添付3-1-1)第2表に基づく配置Aを示す。

*2:蓋部,側部,底部中性子遮蔽材のうち最高温度となる部位。

*3:保守側に評価するため、一次蓋の最高温度とした。なお、一次蓋金属 ガスケット設置位置の最高温度は、3D モデルの場合 88 ℃,2D モデ ル(全体モデル)の場合 89 ℃である。

第4-4表 最高温度評価断面における軸方向及び径方向の熱移動量割合の比較

項目	記号	3D モデル	2D モデル(全体モデル)
		(%)	(%)
胴内面	Q_{r1}	85	81
	\mathbf{Q}_{z1}	15	19
外筒外面	\mathbf{Q}_{r2}	86	85
	Q_{z2}	14	15

注記:表中の記号は下図参照。

(使用済燃料貯蔵建屋の除熱に関する補足説明)

5. FLUENT検証における模擬キャスクの輻射の考慮について

電中研試験では、模擬キャスク側部表面を鏡面仕上げとして、模擬キャスク の輻射を低減していることから、解析コードの検証解析では、輻射を考慮しな い条件とした。

検証解析では,輻射を考慮していないので,伝熱経路が模擬キャスクから空 気への伝熱となり,あたためられた空気が天井面近傍へと上昇していく。その 結果,天井面近傍は温度が高く,床面近傍は温度が低くなっている。

現実には、模擬キャスクの輻射伝熱により床面があたためられ、その結果、 床面近傍の空気があたためられる。輻射を考慮しない場合に比べて、床面近傍 の空気の温度は高くなる。

輻射を考慮した検証解析でも,輻射伝熱により床面があたためられ,その結果,床面近傍の空気があたためられる。輻射を考慮しない場合と比べて,床面 近傍の温度が高くなっている。

使用済燃料貯蔵建屋の除熱解析で、使用済燃料貯蔵建屋躯体コンクリートの 最高温度は、貯蔵架台と床面の接触部である。適合性説明資料において、輻射 を考慮した条件で解析している。輻射を考慮しても使用済燃料貯蔵建屋躯体コ ンクリートの最高温度は、65℃を超えないことを確認している(参考として、 温度解析の比較を第5-1図に示す)。

第5-1 図 使用済燃料貯蔵建屋内温度分布比較

6. 使用済燃料貯蔵建屋内の定常の空気流れを想定した三次元熱流動解析 について

三次元熱流動解析では、定常計算によって使用済燃料貯蔵建屋躯体コンクリートの時間平均温度が恒常的に制限値を超えないことを確認している。給気温度、金属キャスク発熱量等の解析条件を保守的に設定することで、建屋躯体コンクリート温度を厳しく評価している。

例えば、給気温度については、日中-夜間の日変動や年間変動を無視して、 設計給気温度が24時間継続するような厳しい状態で解析を行っている。

外気温度の変化を考慮した非定常解析を行い,建屋躯体温度の時間変化を追 跡した結果,建屋躯体コンクリートや金属キャスクの構造材が持つ熱容量は大 きく,床面の温度変動は極めて緩やかであることを確認している。例として, 外気温度と使用済燃料貯蔵建屋各部のコンクリート最高温度の時間変化を追 跡した結果を第6-1図に示す。

使用済燃料貯蔵建屋内の流れ場の揺らぎによって生じる建屋躯体の温度変 動は微小と考えられることにより,温度変動を含めたこれらの温度場は厳しい 解析条件によって得られた定常状態の温度場により包絡されるものと考えら れる。

第6-1図 外気温度変動に対する使用済燃料貯蔵建屋躯体の温度変化

7. 給気温度の変化等による除熱評価結果への影響について

給気温度等解析条件が変動した場合の除熱解析結果への評価について,以下 (1)~(3)に示す。なお,本評価に当たっての金属キャスクの最大崩壊熱量や寸 法等については,除熱解析結果における影響を確認する目的から以下の通りに 設定した。

(1) 給気温度の設定について

使用済燃料貯蔵建屋の除熱解析では,設計給気温度を29.5℃として評価している。この温度は,むつ特別地域気象観測所の2004年~2013年の夏季(6月~9月)毎正時温度データを用いて,高温側から1%の値(超過危険率1%)を用いている。1994年以降2016年度までの10年ごとの夏季(6月~9月)毎正時温度データの状況を第7-1表に示す。

なお、除熱解析においては、日中-夜間の日変動や年間変動を無視して、 設計給気温度が24時間継続するような厳しい設定として解析を行っている。 また、外気温度の変化を考慮した非定常解析では、使用済燃料貯蔵建屋コン クリートや金属キャスクが持つ熱容量は大きく、設計給気温度を超える期間 は長くは続かず、床面温度変動はきわめて緩やかであることを確認している。 このため、外気温度が変わる都度、設計条件を変更する必要はないと考えら れる。

(2) 給気部流路外壁設置の保安灯による除熱評価への影響について

給気部流路の外壁に取り付けられている保安灯は,流路断面積 14.8 $m^2(2.0m \times 7.4m)$ に対して 0.0961 $m^2(77 mm \times 1248 mm)$,比率として 0.65%であり,流路断面積に占める割合は小さい。過去に実施した三次元熱流動解析結果の流れ場(第7-1図)からも,保安灯のサイズ,設置位置は貯蔵区画に流入する給気流れに大きな影響は与えないと考えられる。また,一次元計算において,壁に取り付けられている保安灯の消費電力が保守的に 100%熱に変わるものとして考慮しても,影響がないことを確認している。

(3) その他

受入れ区域の状況についても評価状況を添付にて示す。一次元熱計算にお ける受入れ区域の排気温度は 39.9℃となり,基準とした 45℃以下であること を確認している。

観測期間	夏季(6月~9月)毎正時温度データを 用いて高温側から1%の値(℃) (超過危険率1%)	
1994 年~2003 年	29. 2	
1995 年~2004 年	28.9	
1996 年~2005 年	28.9	
1997 年~2006 年	29.0	
1998 年~2007 年	29. 1	
1999 年~2008 年	29. 1	
2000 年~2009 年	28.6	
2001年~2010年	28.9	
2002年~2011年	29. 1	
2003 年~2012 年	29.4	
2004 年~2013 年	29. 5	
2005 年~2014 年	29.4	
2006年~2015年	29.4	
2007年~2016年	29.4	

第7-1表 環境条件の設定(給気温度)

第7-1図 給気部(開口中央)の流況

添付 7-1

受入れ区域における排気温度評価について

受入れ時のみキャスクがある受入れ区域の排気温度を添付 7-1-1 表に示 す。一次元熱計算における受入れ区域の排気温度は 39.9℃であり,基準温度の 45℃以下であることを確認した。

 評価領域
 給気温度(℃)
 排気温度(℃)
 基準温度(℃)

 受入れ区域
 29.5
 39.9
 45

添付 7-1-1 表 受入れ区域の排気温度

(評価条件)

- 評価領域,流路設定及び考慮する圧力損失要素 評価領域は、受入れ区域給気部の開口寸法が各開口部で異なるため、給気 部の開口寸法が最小であるエリアを選定した(添付 7-1-1 図)。また、流 路設定及び考慮する圧力損失要素を添付 7-1-2 図に示す。
- ② 金属キャスクの発熱量
 評価領域における金属キャスクの総発熱量として 12.1 kW×2 基を想定。
 ③ 照明設備の発熱量

評価領域における照明設備の発熱量として 1.4 kW を想定。

- ④ 金属キャスクの形状 金属キャスクは、緩衝体が取り付けられた状態で受入れ区域に仮置きされ るため、BWR 中型キャスクの上部および下部に円柱形状の緩衝体を想定。
- ⑤ 設計給気温度

29.5℃一定とした。むつ特別地域気象観測所の 2004 年~2013 年の夏季(6 月から9月)毎正時温度データを用いて高温側から1%の値(超過危険率1%)。

添付 7-1-1 図 受入れ区域の評価領域

添付7-1-2図 考慮する圧力損失要素

申請書添付書類3(添付3-1-1)第2表 収納配置に応じた使用済燃料集合体の仕様

5 5

(参考)