美浜3号機、高浜1,2,3,4号機及び大飯3,4号機 設計及び工事計画に係る補足説明資料

大山生竹テフラ噴出規模見直しに係る対応

2021年11月 関西電力株式会社

枠囲みの範囲は機密に係る事項ですので公開することはできません。

補足説明資料目次

- 補足1 大山火山の大山生竹テフラの噴出規模見直しへの対応に係る設計及び工事計画(変更) 認可申請書の概要
- 補足2 構造強度の設計における除灰要員荷重の影響確認について
- 補足3 建物・構築物の降下火砕物等堆積による静的負荷に対する構造強度評価について
- 補足4 緊急時対策所建屋の腐食設計について
- 補足5 設置許可との整合性について
- 補足6 各影響因子の整理について
- 補足7 構造強度の設計における保守性の担保について
- 補足8 評価部位の網羅性について
- 補足9 最新の気象データについて

1. 大山火山の大山生竹テフラの噴出規模見直しへの対応に係る設計及び工事計画(変更)認可申請書の概要

1. 1 概要

本資料は、大山火山の大山生竹テフラの噴出規模見直しへの対応として、「核原料物質、核燃料物質及び原子炉の規制に関する法律」に基づく設計及び工事計画の手続きを行うにあたり、「実用発電用原子炉及びその附属施設の技術基準に関する規則(以下「技術基準」という。)」の各条文のうち今回の申請対象が適用を受ける条文とそれらのうち適合性の確認が必要となる条文、及び設計及び工事計画(変更)認可申請書(以下「設工認」という。)に添付する書類について整理するものである。

また、上記の整理を踏まえ、設工認の本文(基本設計方針)及び添付資料の記載概要並びに技術基準の各条文に対する適合性についても示す。

1. 2 設計及び工事の計画における適用条文の整理について

本章では、大山火山の大山生竹テフラの噴出規模見直しへの対応に係る設工認について、「技術基準」の各条文のうち申請対象が適用を受ける条文とそれらのうち適合性の確認が必要となる条文の整理を行う。

申請対象が適用を受ける条文と適合性の確認が必要となる条文の整理結果を第 1-2-1 表に示す。なお、第 1-2-1 表における凡例は以下のとおりである。

【凡例】

○:適用条文であり、今回の申請で適合性を確認する必要がある条文

△:適用条文であるが、既に適合性が確認されている条文、又は工事計画に係る内容に影響を受けないことが明確に確認できる条文

×:適用を受けない条文

第 1-2-1 表 適用条文の整理結果 (1/8)

技術基準規則	適用要否 判 断	理 由
○設計基準対象施設		
竺 4 冬		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに
第4条 設計基準対象施設の地盤	×	伴う最大層厚変更に係る基本設計方針の変更であり、本条文
		の基本設計方針に影響がないため、審査対象条文とならない。
第5条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに
衆 5 衆 地震による損傷の防止	×	伴う最大層厚変更に係る基本設計方針の変更であり、本条文
地長による頂扇が例止		の基本設計方針に影響がないため、審査対象条文とならない。
第6条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに
第0 末 津波による損傷の防止	×	伴う最大層厚変更に係る基本設計方針の変更であり、本条文
件似による頂扇の例正		の基本設計方針に影響がないため、審査対象条文とならない。
第7条		大山火山の大山生竹テフラの噴出規模見直しに伴う最大層厚
カ・木 外部からの衝撃による損傷	0	変更により、本条文の基本設計方針に影響があり、本条文に
の防止		適合していることの確認が必要であるため、審査対象条文と
1 CA CA		なる。
第8条	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに
カ		伴う最大層厚変更に係る基本設計方針の変更であり、本条文
<u> </u>		の基本設計方針に影響がないため、審査対象条文とならない。
第 9 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに
発電用原子炉施設への人の	×	伴う最大層厚変更に係る基本設計方針の変更であり、本条文
不法な侵入等の防止		の基本設計方針に影響がないため、審査対象条文とならない。
第 10 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに
第 10 条 急傾斜地の崩壊の防止	×	伴う最大層厚変更に係る基本設計方針の変更であり、本条文
心例が		の基本設計方針に影響がないため、審査対象条文とならない。
第 11 条	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに
光 11 未 火災による損傷の防止		伴う最大層厚変更に係る基本設計方針の変更であり、本条文
八次による損傷の例止		の基本設計方針に影響がないため、審査対象条文とならない。

^{○:}適用条文であり、今回の申請で適合性を確認する必要がある条文△:適用条文であるが、既に適合性が確認されている条文、又は工事計画に係る内容に影響を受けないことが明確に確認できる条文×:適用を受けない条文

第 1-2-1 表 適用条文の整理結果 (2/8)

技術基準規則	適用要否 判 断	理 由
第12条 発電用原子炉施設内にお ける溢水等による損傷の 防止	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 13 条 安全避難通路等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 14 条 安全設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 15 条 設計基準対象施設の機能	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 16 条 全交流動力電源喪失対策 設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 17 条 材料及び構造	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 18 条 使用中の亀裂等による破 壊の防止	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 19 条 流体振動等による損傷 の防止	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 20 条 安全弁等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第21条 耐圧試験等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 22 条 監視試験片	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。
第 23 条 炉心等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴う最 大層厚変更に係る基本設計方針の変更であり、本条文の基本設計方 針に影響がないため、審査対象条文とならない。

- ○:適用条文であり、今回の申請で適合性を確認する必要がある条文△:適用条文であるが、既に適合性が確認されている条文、又は工事計画に係る内容に影響を受けないことが明確に確認できる条文×:適用を受けない条文

第 1-2-1 表 適用条文の整理結果 (3/8)

技術基準規則	適用要否 判 断	理由
第 24 条 熱遮蔽材	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 25 条 一次冷却材	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 26 条 燃料取扱設備及び燃料貯蔵 設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第27条 原子炉冷却材圧力バウンダ リ	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第28条 原子炉冷却材圧力バウンダ リの隔離装置等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 29 条 一次冷却材処理装置	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 30 条 逆止め弁	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 31 条 蒸気タービン	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第32条 非常用炉心冷却設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第33条循環設備等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 34 条 計測装置	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 35 条 安全保護装置	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 36 条 反応度制御系統及び原 子炉停止系統	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。

^{○:}適用条文であり、今回の申請で適合性を確認する必要がある条文 △:適用条文であるが、既に適合性が確認されている条文、又は工事計画に係る内容に影響を受けないことが明確に確認できる条文 ×:適用を受けない条文

第 1-2-1 表 適用条文の整理結果 (4/8)

	771213	週川木入り正理相木(4/0) T
技術基準規則	適用要否 判 断	理 由
第 37 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
制御材駆動装置		本設計方針に影響がないため、審査対象条文とならない。
第 38 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
原子炉制御室等		本設計方針に影響がないため、審査対象条文とならない。
第 39 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
廃棄物処理設備等 		本設計方針に影響がないため、審査対象条文とならない。
第 40 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
廃棄物貯蔵設備等		本設計方針に影響がないため、審査対象条文とならない。
第 41 条		 本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
放射性物質による汚染の防	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
止		本設計方針に影響がないため、審査対象条文とならない。
	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
第 42 条		う最大層厚変更に係る基本設計方針の変更であり、本条文の基
生体遮蔽等		本設計方針に影響がないため、審査対象条文とならない。
holes 10 hz		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
第 43 条 換気設備	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
		本設計方針に影響がないため、審査対象条文とならない。
hote 4 4 hz		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
第 44 条 原子炉格納施設	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
		本設計方針に影響がないため、審査対象条文とならない。
** 45 * *		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
第 45 条	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
保安電源設備		本設計方針に影響がないため、審査対象条文とならない。
第 46 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
緊急時対策所		本設計方針に影響がないため、審査対象条文とならない。
第 47 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
警報装置等		本設計方針に影響がないため、審査対象条文とならない。
第 48 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
準用		本設計方針に影響がないため、審査対象条文とならない。

^{○:}適用条文であり、今回の申請で適合性を確認する必要がある条文 △:適用条文であるが、既に適合性が確認されている条文、又は工事計画に係る内容に影響を受けないことが明確に確認できる条文 ×:適用を受けない条文

第 1-2-1 表 適用条文の整理結果 (5/8)

技術基準規則	適用要否 判 断	理 由
○重大事故等対処施設		
第 49 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
重大事故等対処施設の地	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
盤		本設計方針に影響がないため、審査対象条文とならない。
第 50 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
第50条 地震による損傷の防止	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
地長による損傷の例止		本設計方針に影響がないため、審査対象条文とならない。
第 51 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
津波による損傷の防止	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
年仪による頂例が例正		本設計方針に影響がないため、審査対象条文とならない。
第 52 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
水災による損傷の防止	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
八人による頂例の例正		本設計方針に影響がないため、審査対象条文とならない。
第 53 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
特定重大事故等対処施設	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
刊之至八字以中八之地以		本設計方針に影響がないため、審査対象条文とならない。
		大山火山の大山生竹テフラの噴出規模見直しに伴う最大層厚変
第 54 条		更により、基本設計方針が見直され、本条文の使用条件(荷重)
重大事故等対処設備		に影響があり、本条文に適合していることの確認が必要である
		ため、審査対象条文となる。
第 55 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
材料及び構造	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
		本設計方針に影響がないため、審査対象条文とならない。

^{○:}適用条文であり、今回の申請で適合性を確認する必要がある条文△:適用条文であるが、既に適合性が確認されている条文、又は工事計画に係る内容に影響を受けないことが明確に確認できる条文×:適用を受けない条文

第1-2-1 表 適用条文の整理結果 (6/8)

技術基準規則	適用要否 判 断	理 由
第56条 使用中の亀裂等による破壊 の防止	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 57 条 安全弁等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 58 条 耐圧試験等	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第59条 緊急停止失敗時に発電用原 子炉を未臨界にするための 設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第60条 原子炉冷却材圧力バウンダ リ高圧時に発電用原子炉を 冷却するための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第61条 原子炉冷却材圧力バウンダ リを減圧するための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第62条 原子炉冷却材圧力バウンダ リ低圧時に発電用原子炉を 冷却するための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 63 条 最終ヒートシンクへ熱を輸 送するための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第64条 原子炉格納容器内の冷却等 のための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第65条 原子炉格納容器の過圧破損 を防止するための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。

^{○:}適用条文であり、今回の申請で適合性を確認する必要がある条文 △:適用条文であるが、既に適合性が確認されている条文、又は工事計 画に係る内容に影響を受けないことが明確に確認できる条文 ×:適用を受けない条文

第 1-2-1 表 適用条文の整理結果 (7/8)

	为121 2	週
技術基準規則	適用要否 判 断	理 由
第 66 条 原子炉格納容器下部の溶 融炉心を冷却するための 設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第67条 水素爆発による原子炉格 納容器の破損を防止する ための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 68 条 水素爆発による原子炉建 屋等の損傷を防止するた めの設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第69条 使用済燃料貯蔵槽の冷却等のための設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第70条 工場等外への放射性物質 の拡散を抑制するための 設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第71条 重大事故等の収束に必要 となる水の供給設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 72 条 電源設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 73 条 計装設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第74条 原子炉制御室	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第75条 監視測定設備	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。
第 76 条 緊急時対策所	×	本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴 う最大層厚変更に係る基本設計方針の変更であり、本条文の基 本設計方針に影響がないため、審査対象条文とならない。

^{○:}適用条文であり、今回の申請で適合性を確認する必要がある条文△:適用条文であるが、既に適合性が確認されている条文、又は工事計

画に係る内容に影響を受けないことが明確に確認できる条文 ×:適用を受けない条文

第 1-2-1 表 適用条文の整理結果 (8/8)

技術基準規則	適用要否 判 断	理 由
第77条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
通信連絡を行うために必	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
要な設備		本設計方針に影響がないため、審査対象条文とならない。
第 78 条		本申請対象は大山火山の大山生竹テフラの噴出規模見直しに伴
第78 采 準用	×	う最大層厚変更に係る基本設計方針の変更であり、本条文の基
		本設計方針に影響がないため、審査対象条文とならない。

^{○:}適用条文であり、今回の申請で適合性を確認する必要がある条文 △:適用条文であるが、既に適合性が確認されている条文、又は工事計 画に係る内容に影響を受けないことが明確に確認できる条文 ×:適用を受けない条文

1. 3 設計及び工事の計画における添付書類の整理について

本章では、大山火山の大山生竹テフラの噴出規模見直しへの対応に係る設工認に添付する書類について「実用発電用原子炉の設置、運転等に関する規則」に基づき整理する。整理結果を第 1-3-1 表に示す。

第 1-3-1 表 本申請に添付する書類の整理結果 (1/4)

実用発電用原子炉の設置、 運転等に関する規則 別表第二添付書類	添付の要否 (○・×)	理由		
○各発電用原子炉施設に共通				
送電関係一覧図	×	本申請に伴い変更がなく、影響がないことから不要。		
急傾斜地崩壊危険区域内において 行う制限工事に係る場合は、当該 区域内の急傾斜地の崩壊の防止措 置に関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。		
工場又は事業所の概要を明示した 地形図	×	本申請に伴い変更がなく、影響がないことから不要。		
主要設備の配置の状況を明示した 平面図及び断面図	×	本申請に伴い変更がなく、影響がないことから不要。		
単線結線図	×	本申請に伴い変更がなく、影響がないことから不要。		
新技術の内容を十分に説明した書 類	×	本申請に伴い変更がなく、影響がないことから不要。		
発電用原子炉施設の熱精算図	×	本申請に伴い変更がなく、影響がないことから不要。		
熱出力計算書	×	本申請に伴い変更がなく、影響がないことから不要。		
発電用原子炉の設置の許可との整 合性に関する説明書	0	設置変更許可の変更内容と本申請内容との整合性を 示す必要であるため添付する。		
排気中及び排水中の放射性物質の 濃度に関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。		
人が常時勤務し、又は頻繁に出入 する工場又は事業所内の場所にお ける線量に関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。		
発電用原子炉施設の自然現象等に よる損傷の防止に関する説明書	0	降下火砕物より防護すべき施設を内包する建屋及び 屋外に設置している防護対象施設の技術基準規則第 7条及び第54条への適合性を示す必要があるため添 付する。		

第1-3-1表 本申請に添付する書類の整理結果(2/4)

実用発電用原子炉の設置、 運転等に関する規則 別表第二 添付書類	添付の要否 (○・×)	理由
放射性物質により汚染するおそれがある管理区域並びにその地下に施設する排水路並びに当該排水路に施設する排水監視設備及び放射性物質を含む排水を安全に処理する設備の配置の概要を明示した図面	×	本申請に伴い変更がなく、影響がないことから不要。
取水口及び放水口に関する説明 書	×	本申請に伴い変更がなく、影響がないことから不要。
設備別記載事項の設定根拠に関 する説明書	×	本申請に伴い変更がなく、影響がないことから不要。
環境測定装置(放射線管理用計 測装置に係るものを除く。)の 構造図及び取付箇所を明示した 図面	×	本申請に伴い変更がなく、影響がないことから不要。
クラス1 機器及び炉心支持構造 物の応力腐食割れ対策に関する 説明書	×	本申請に伴い変更がなく、影響がないことから不要。
安全設備及び重大事故等対処設 備が使用される条件の下におけ る健全性に関する説明書	0	降下火砕物より防護すべき施設を内包する建屋が使用される条件の下における健全性について、技術基準規則第54条への適合性を示す必要があるため添付する。
発電用原子炉施設の火災防護に 関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。
発電用原子炉施設の溢水防護に 関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。
発電用原子炉施設の蒸気タービン、ポンプ等の損壊に伴う飛散物による損傷防護に関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。
通信連絡設備に関する説明書及 び取付箇所を明示した図面	×	本申請に伴い変更がなく、影響がないことから不要。
安全避難通路に関する説明書及 び安全避難通路を明示した図面	説明書:× 図面:×	本申請に伴い変更がなく、影響がないことから不要。
非常用照明に関する説明書及び 取付箇所を明示した図面	説明書:× 図面:×	本申請に伴い変更がなく、影響がないことから不要。

第1-3-1表 本申請に添付する書類の整理結果 (3/4)

実用発電用原子炉の設置、運転 等に関する規則 別表第二添付書類	添付の要否 (○・×)	理由
○原子炉冷却系統施設		
原子炉冷却系統施設に係る機器 の配置を明示した図面及び系統 図	配置図:× 系統図:×	本申請に伴い変更がなく、影響がないことから不要。
蒸気タービンの給水処理系統図	×	本申請に伴い変更がなく、影響がないことから不要。
耐震性に関する説明書(支持構造物を含めて記載すること。)	×	本申請に伴い変更がなく、影響がないことから不要。
強度に関する説明書(支持構造物を含めて記載すること。)	0	降下火砕物より防護すべき施設を内包する建屋及び 屋外に設置している防護対象施設の技術基準規則第 7条及び第54条への適合性を示す必要があるため添 付する。
構造図	×	本申請に伴い変更がなく、影響がないことから不要。
原子炉格納容器内の原子炉冷却 材又は一次冷却材の漏えいを監 視する装置の構成に関する説明 書、検出器の取付箇所を明示し た図面並びに計測範囲及び警報 動作範囲に関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。
蒸気発生器及び蒸気タービンの 基礎に関する説明書及びその基 礎の状況を明示した図面	×	本申請に伴い変更がなく、影響がないことから不要。
流体振動又は温度変動による損 傷の防止に関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。
非常用炉心冷却設備その他原子 炉注水設備のポンプの有効吸込 水頭に関する説明書	×	本申請に伴い変更がなく、影響がないことから不要。

第1-3-1表 本申請に添付する書類の整理結果(4/4)

実用発電用原子炉の設置、運転 等に関する規則 別表第二添付書類	添付の要否 (○・×)	理由	
蒸気タービンの制御方法に関す る説明書	×	本申請に伴い変更がなく、影響がないことから不要。	
蒸気タービンの振動管理に関す る説明書	×	本申請に伴い変更がなく、影響がないことから不要。	
蒸気タービンの冷却水の種類及 び冷却水として海水を使用しな い場合は、可能取水量を記載し た書類	×	本申請に伴い変更がなく、影響がないことから不要。	
安全弁の吹出量計算書 (バネ式のものに限る。)	×	本申請に伴い変更がなく、影響がないことから不要。	
○「実用発電用原子炉の設置、運転等に関する規則」(第九条)			
設計及び工事に係る品質マネジ メントシステムに関する説明書	0	本申請に伴う品質管理の方法等のプロセス確認のため、添付する。	

1. 4 設計及び工事計画 (変更) 認可申請書の記載概要について

本章では、1.2章及び1.3章の整理を踏まえ、設工認の本文(基本設計方針)及び添付資料の記載概要を示す。本文の記載概要を 第1-4-1表、添付資料の記載概要を第1-4-2表に示す。

第1-4-1表 設工認本文の記載概要

施設の種類	本文の記載概要(既工認からの変更箇所)			
旭成り推規	要目表	基本設計方針		
原子炉冷却 系統施設	変更なし	○「第1章 共通項目 2.3 外部からの損傷の防 止 b. 火山」について、最大層厚にかかる記 載を変更する。		

第1-4-2表 設工認添付資料の記載概要

添付資料*		記載概要		
資料 1	発電用原子炉の設置の許可との整合 性に関する説明書	本申請が設置変更許可申請書の基本方針に従った詳細設計であることについて、設置変更許可申請書本文の変更箇所と設工認本文との整合性により示す。		
資料 2	発電用原子炉施設の自然現象等によ る損傷の防止に関する説明書	降下火砕物の層厚変更を踏まえ、想定する降下火砕物に対し、積雪及び風を考慮した場合 においても、施設の安全機能を損なうおそれがないこと説明する。		
資料 3 (資料 6)	安全設備及び重大事故等対処設備が 使用される条件の下における健全性 に関する説明書	降下火砕物の層厚変更を踏まえ、重大事故等対処設備が使用される条件の下における健全 性について説明する。		
資料4 (資料14)	強度に関する説明書	降下火砕物の層厚変更を踏まえ、降下火砕物より防護すべき施設を内包する建屋及び屋外 に設置している防護対象施設が構造健全性を有することを説明する。		

[※]カッコ内の添付資料番号は、設計及び工事計画変更認可申請となる高浜1・2号機の添付資料番号である。

1.5 設計及び工事計画(変更)認可申請にかかる技術基準則への適合性について

本章では、1.2章から1.4章までの整理を踏まえ、今回の設計及び工事計画(変更)認可申請において、適合性の確認が必要となる技術 基準の各条文の適合性を示す。適合性及び適合性を説明する添付資料を第1-5-1表に示す。

第1-5-1表 技術基準への適合性確認結果

技術基準規則	適合性の確認	添付資料*
第7条 外部からの衝撃による損傷の防止	設計基準対象施設は、想定される環境条件において、要求される機能を発揮する設計としていることから、本条の規定に適合していると判断した。	資料2,4 (資料2,14)
第 54 条 重大事故等対処設備	重大事故等対処設備は、想定される環境条件において、要求される機能を発揮する設計としていることから、本条の規定に適合していると判断した。	資料2,3,4 (資料2,6,14)

[※]カッコ内の添付資料番号は、設計及び工事計画変更認可申請となる高浜1・2号機の添付資料番号である。

構造強度の設計における除灰要員荷重の影響確認について

1. 概要

降下火砕物より防護すべき施設を内包する建屋及び屋外に設置している防護対象施設の構造強度の設計では、30日を目処に速やかに降下火砕物の除去を行うこと、また降灰時には除雪も合せて実施することを保安規定に定め、降下火砕物、積雪及び風による荷重を組み合わせて短期荷重として評価している。

一方で、設置変更許可での審査会合^{※1}では、以下の指摘があったため、考え得る最大除灰要員荷重を追加しても、降下火砕物より防護すべき建屋・施設が健全であることを説明する。

「除灰時にはこれらの荷重に加えて、除灰要員の荷重が施設に作用するため、建屋 及び屋外タンクのうち、裕度が小さいものについては、設工認での詳細設計の際 に除灰作業による荷重を積載荷重として考慮する必要がある。」

※1 第930回 原子力発電所の新規制基準適合性に係る審査会合(2020年12月15日)

2. 確認結果

全プラントの屋外施設について確認した結果、高浜3,4号機の屋外施設はいずれも十分な裕度を有していることから、評価対象施設として選定していない。除灰要員荷重を踏まえても構造健全性に問題はないが、参考として美浜3号機、高浜1,2号機、高浜3,4号機及び大飯3,4号機の防護対象施設の内、最弱部の評価結果の裕度が最も低い設備及び建屋に対して、除灰要員荷重を追加した際の影響確認を行う。

1. はじめに

考え得る最大除灰要員荷重を追加しても、降下火砕物より防護すべき建屋・施設が健全であることを説明する。

2. 評価対象施設

評価対象施設は美浜3号機、高浜1,2号機、高浜3,4号機及び大飯3,4号機の防護対象施設の中で最弱部の評価結果の裕度が最も低い設備及び建屋を代表施設として選定する。代表施設及び最弱部の評価結果を表1に示す。

表1. 代表施設の評価結果

(a) 設備

代表施設(部位)	発生応力	許容応力	裕度
	(MPa)	(MPa)	(-)
高浜1号機 燃料取替用水タンク (屋根板)	248	307	1. 23

(b) 建屋

代表施設(部位)	必要鉄筋量	配筋量	裕度
	(mm ² /m)	(mm²/m)	(-)
高浜1号機 ディーゼル建屋(屋根スラブ)	571	619	1.08

3. 評価方法

「強度に関する説明書」に記載の手順で評価を行う。施設に作用する荷重には降下火砕物、積雪及び風*に加えて、除灰要員の荷重を考慮するものとし、除灰要員の荷重は1,000 N/m²とする。これは、約100kgの除灰要員が1m²毎に配置されているのと同様な荷重状態となる。除灰要員を含めた荷重条件を表2に示す。

※ 風荷重については、基本的には風速 32m/s を考慮しているが、燃料取替用水タンク の屋根板及びディーゼル建屋の屋根スラブについては、水平方向の風荷重が作用すると、鉛直上向きの荷重が働き、鉛直下向き荷重が低減されるため、保守的に風荷 重は鉛直方向の荷重としては考慮しない。詳細を別紙1に示す。

表2. 除灰要員を含めた荷重条件

発電所名	荷重(雪+火山灰+除灰要員)	【参考】荷重(雪+火山灰)
光电川石	(N/m^2)	(N/m^2)
高浜発電所	8, 050	7, 050

4. 荷重条件の保守性及び実運用について

除灰要員を含めた荷重条件は、実運用と比較して保守的な評価となっている。高浜1号機のディーゼル建屋の場合、建屋上部の面積は約500m²であり、考慮する除灰要員荷重は、除灰要員500人分の荷重に相当する。設置許可の審査における建屋の除灰成立性の説明資料では、ディーゼル建屋の除灰は6人を前提として成立性確認を行っている(令和3年3月18日に提出した高浜1,2号機のまとめ資料「高浜発電所1,2号炉新知見への適合状況説明資料(DNPに対する防護)」115ページ)。なお、高浜1号機の燃料取替用水タンク上部の面積は約95m²であり、考慮する除灰要員荷重は、除灰要員95人分の荷重に相当するが、建屋よりも面積は小さく、それを超える人数**で除灰作業を行うことはない。

なお、実際に除灰を行う場合は、以下の流れで作業を行うことになる。

- ①階段等で屋根近傍までアクセスし、屋根に乗る前に屋根近傍から屋根面の除雪・ 除灰を行い、足場を確保する。
- ②その上で屋根全体の除雪、除灰を進めていく。

したがって、堆積した雪及び火山灰の上に除灰要員が乗ることはなく、これらが重畳することはないが、念のため代表施設を選定し、影響確認を行うものである。

※ ディーゼル建屋の場合、屋根 (500m²) の除灰を 6 人で行うが、燃料取替用水タンク の屋根 (95m²) はディーゼル建屋より面積が小さいため、6 人を超える人数で除灰 することはない。

5. 評価結果

代表施設に除灰要員の荷重を含めて強度評価を行った結果、裕度1を下回る施設はなかった。評価結果を表3に示す。したがって、雪及び火山灰が施設に堆積後、除灰要員が除灰を行ったとしても施設の健全性は保たれる。

表3. 除灰要員の荷重を含めた評価結果

(a) 設備

(b) 建屋

代表施設 (部位)	必要鉄筋量	配筋量	裕度
代表施設(部位)	$(\mathrm{mm}^{2}/\mathrm{m})$	$(\mathrm{mm}^{2}/\mathrm{m})$	(-)
高浜1号機	612	610	1. 01**
ディーゼル建屋 (屋根スラブ)	613	619	1.01

※:強度計算書と同様に保守的な評価基準値(短期許容引張応力度)から算出した値。 本来の許容限界である終局耐力から算出した場合は、1.11となる。

風荷重の考え方

1. はじめに

風荷重については、基本的には風速 32m/s を考慮しているが、屋外タンクの屋根板及び建屋の屋根については、水平方向の風荷重が作用すると、鉛直上向きの荷重が働き、鉛直下向き荷重が低減されるため、保守的に風荷重は鉛直方向の荷重としては作用させていない。本資料では、風荷重の考え方について説明する。

2. 風荷重の考え方

屋外タンクにおいて、水平方向の風がタンクに作用した場合、胴板上部に作用した風の一部は屋根板側に流れ込むことになる。そのため、屋根面上部では、屋根面上部を流れる風に加えて胴板から流入した風も加わることから流速が上がる。屋根面上部の流速が上がることで、屋根面上部では動圧が上昇し、静圧は減少することから、屋根部には上向きの荷重が作用する。

建築物荷重指針では、風力係数を用いて風荷重の算出を行っているが、今回のようなタンク形状の場合、風力係数はマイナスとなり、風荷重は鉛直上向きの荷重となることが示されている。建築物荷重指針の抜粋を別添1に示す。

また、建屋の屋根についても同様の考え方である。平屋根については、建設省告示第 1454 号において、屋根面の風力係数はマイナスとなるため、風荷重は鉛直上向きの荷重となることが示されている。建設省告示第 1454 号の抜粋を別添 2 に示す。

外部しゃへい建屋のドーム部については、球形であることから別添 1 の表 A6.10 において f/D=0.5 に相当し、Rb 部・Rc 部・Rd 部では風力係数はマイナスとなる。一方、風上から D/8 の範囲である Ra 部の風力係数はプラスとなるが、Rb 部・Rc 部・Rd 部に比べて面積が小さく、ドーム部全体では風荷重は鉛直上向きの荷重となる。なお、外部しゃへい建屋のドーム部は、耐震評価において基準地震動 Ss に対する検討を行っていることから、降下火砕物 堆積に対しては十分余裕を有する**部位である。

したがって、水平方向の風荷重が作用すると、鉛直上向きの荷重が働き、鉛直下向き荷重が低減されるため、保守的に風荷重は作用させない。

※高浜3,4号機の外部しゃへい建屋について、降下火砕物堆積時の鉛直方向の荷重として風荷重を作用 させない場合における構造強度評価結果は検定比0.0977である。(関原発第195号高浜3号機の設計 及び工事の計画の資料4別添1-4「建屋の強度計算書」より)

【「建築物荷重指針・同解説」(社) 日本建築学会(2004)】(抜粋)

- 36 - 建築物荷重指針

A6.2.3 構造骨組用の内圧係数

構造骨組用の内圧係数は、開口部の大きさや位置に応じて適切に定めなければならない。た だし、閉鎖型建築物の内圧係数は、表 A6.11 により定める。

表 A6.11 閉鎖型建築物の内圧係数 Cpi

C_{pi}	
0または-0.4	

A6.2.4 構造骨組用の風力係数

(1) 円形平面をもつ建築物の風力係数 CD

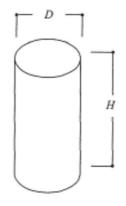
円形平面をもつ建築物の風力係数は、表 A6.12 により定める。ただし、 $DU_H \ge 6(m^2/s)$ で、アスペクト比 H/D が 8 以下の建築物にのみ適用する。

表 A6.12 円形平面をもつ建築物の風力係数 CD

 $C_{\rm D} = 1.2k_1k_2k_{\rm Z}$

ここで,

k1: アスペクト比の影響を表す係数


k2: 表面粗さの影響を表す係数

 k_Z : 高さ方向分布係数で、表 A6.8 により定める。 ただし、 $0.8H < Z_6$ のときは $k_Z = 0.8^{2\alpha}$ と

する。

H/D < 1	$1 \le H/D \le 8$
0.6	$0.6(H/D)^{0.14}$

0.75
0.9
1

_ D : 建築物の外径 (m)

H : 基準高さ (m)

_ Z_b :表 A6.3 に定める高さ (m)

α:表 A6.3 に定めるパラメータ

圧の変動性状には、建築物内部の容積に対する隙間や開口の相対的な大きさが関係する。本項では、強風時の内圧に最も大きな影響を及ぼすと考えられる a) および b) の要因を考慮し、系統的なシミュレーションの結果に基づき、閉鎖型建築物の内圧係数を規定した。すなわち、外壁面に隙間や開口が一様に分布し、それらの隙間や開口から外圧が建築物内部に伝達され内圧が形成されるという仮定のもとに、種々の形状の建築物について内圧の時間平均値を算定し35)、それらに基づき内圧係数の指針値を与えた。

ほかの要因の影響も大きいと考えられる場合には、それらの影響も考慮した検討が必要である。例えば、建築物内部が気密な間仕切り等により分割されている場合には、内圧は建築物全体で一様にはならず、d)の影響を考慮する必要がある。容量の大きな空調機械を運転した場合にはe)の影響が大きくなり、膜構造のように屋根や外壁が柔な構造物ではf)の影響が大きい。また、h)に関しては、強風時に飛来物により風上壁面の窓ガラス等が破壊すると、そこから風が吹き込んで内圧が急激に上昇することが屋根の飛散等の原因になることが多く、注意が必要である。

A6.2.4 構造骨組用の風力係数

(1) 円形平面をもつ建築物の風力係数 Cp

円形平面をもつ建築物の風力係数は、レイノルズ数、気流条件、アスペクト比 H/D や表面粗 さの影響を受ける。

図 $A6.2.2^{36}$ は、表面が極めて滑らかな二次元円柱の一様流中での抗力係数 C_D のレイノルズ数による変化を示す。ここで、レイノルズ数は Re = UD/v で定義されている。ただし、U、D、v は、それぞれ流速、円柱の外径、流体の動粘性係数である。なお、流速 U を (m/s)、外径 D を (m) の単位とするとき、空気中でのレイノルズ数は、 $Re \approx 7UD \times 10^4$ と計算される。図 A6.2.2 によれば、 $Re = 2 \times 10^5 \sim 5 \times 10^6$ の範囲で C_D は大きく変化する。円柱まわりの流れは、通常図 A6.2.2 に示すように、「亜臨界域」、「臨界域」、「超臨界域」、および、「極超臨界域」の4領域に分けて考えられる。強風を対象とした場合、建築物のレイノルズ数は極超臨界域にあるので、本項ではこの領域を対象に風力係数 C_D を定めた。

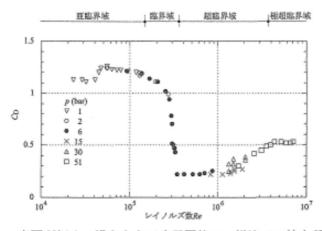


図 A6.2.2 表面が極めて滑らかな二次元円柱の一様流での抗力係数 C_D と レイノルズ数 Re の関係 $^{36)}$

円柱のアスペクト比や表面粗さは風力係数 C_D に大きな影響を及ぼす。特に、表面粗さは極超臨界域での C_D を大きく変化させる。本項では、アスペクト比 H/D の影響を係数 k_1 で、極超臨界域での表面粗さの影響を係数 k_2 で考慮した $^{37)}$ 。

屋根の外圧係数は、表 A6.10 に示すドーム屋根の外圧係数のうち、f/D=0 かつ h/D=1 に対する値とすることができる。

(2) 長方形平面をもつ独立上屋の風力係数 CR

独立上屋の場合,屋根の下にも風が流れ,屋根の上面だけでなく下面にも大きな変動風圧が 作用する。屋根に作用する風力は上下面に作用する風圧の差であり、独立上屋の場合には閉鎖 型建築物に比べて両者の相関が高く、それぞれ切り離して扱うことはできないので、風力係数 を直接与えた。なお、本項に示す風力係数は、基準高さが概ね 10m 以下の屋根を対象とした風 洞実験結果に基づいているため、簡便法の適用できる小規模な建築物に利用を限定している。

表 A6.13 に示す風力係数は、切妻屋根 (屋根勾配 $\theta > 0°$) や翼型屋根 (屋根勾配 $\theta < 0°$) の 風上ならびに風下部分に作用する最大および最小ピーク風力係数に関する風洞実験結果と諸外 国の基規準を参考にして定めたものである $^{38)}$ 。既往の実験結果のほとんどが屋根勾配± 30° までの範囲を対象としているため、本項の規定もこの範囲に利用を限定した。また、表の風力係 数は、屋根の下に流れを遮るような大きな遮蔽物がない状態を想定したものである。閉塞率が 50%を超えるような大きな遮蔽物が屋根の下に置かれると、屋根下面の風圧が上昇して大きな吹き上げ力が作用することが多い。このような場合には、風洞実験等により適切に風力係数を 定める必要がある。

(3) ラチス型塔状構造物の風力係数 Cp

一般にラチス型塔状構造物では、個々の部材はその幅が構面の寸法に比べて十分に小さく対称に配置されるので、構面全体に働く風力は、平均的には風方向の抗力のみとみなすことができる。構面全体の抗力は部材等各要素の抗力の和をとることで得られる。部材まわりの流れはその場所の流れの特性のみに支配されるので、各部材の抗力は直接作用する当該高さの速度圧に比例する。このような考え方に基づき、ラチス型塔状構造物の風力の算定法には、構面の充実率 φ に対応した風力係数に構面の正対投影面積を乗じて算定する方法、および、個々の部材等の風力係数と見付面積を乗じたものを合計して算定する方法。39(一般に「部材集計法」と呼ばれる)とが採用されている。いずれの場合も、充実率が小さいことが前提となっており、本項では前者の方法を採用し、充実率 φ が 0.6 以下の場合について風力係数 $C_{\rm B}$ を示した。

風力係数 C_D は、充実率 φ 、構造物の平面形状、部材の断面形状により表 A6.14 で与えられる。ここでの充実率 φ は、一構面の部材やプレートによる正対投影面積 A_F を外郭面積 $A_0(=Bh)$ で除したものであり、風向が構面に正対する場合の風上面について節間毎に求める。同じ高さであれば各構面の充実率 φ は等しいと考え、充実率 φ の算定には風下側のトラスやトラス以外の付属材は考慮していない。付属材に作用する風力は、表 A6.16 に示す部材の風力係数や風洞実験等によって求め、本項で求めたラチス型塔状構造物全体に作用する風力に加算する必要がある。

構造物の平面形状として4脚の正方形平面と3脚の正三角形平面,部材の断面形状として山 形鋼と円形鋼管のラチス型塔状構造物の風力係数を与えた。3脚の正三角形平面の風力係数は, 表 A6.14 の図に示す2種類の風向に対して同じ値である。部材が円形鋼管の場合にはレイノル

(3) 円形平面のドーム屋根の外圧係数 Cpe

円形平面のドーム屋根の外圧係数は表 A6.10 により定める。

表 A6.10 円形平面のドーム屋根の外圧係数 C_{pc}

f/D	R.	R ₄ 部 (正の係数)			R _a 部 (負の係数)				
	h/D = 0	h/D = 0.25	h/D = 1	h/D = 0	h/D = 0.25	h/D = 1			
0		検討不要		-0.6	-1.4	-1.2			
0.05	0.3	0	0	0	-1.0	~1.6			
0.1	0.4	0	0	0	-0.6	-1.2			
0.2	0.5	0	0	0	0	-0.4			
0.5	0.7	0.6	0.6		検討不要				
f/D	R _b 部		R _c 部		R _d 部				
	h/D = 0	h/D = 0.25	h/D = 1	h/D = 0	h/D = 0.25	h/D = 1	h/D = 0	h/D = 0.25	h/D =
0	0	-0.8	-1.2	0	-0.1	-0.4	0	-0.1	-0.3
0.05	0_	-0.4	-0.8	-0.2	-0.4	-0.4	-0.1	-0.3	-0.1
0.1	0	0.4	-0.6	-0.4	-0.6	-0.6	-0.2	-0.4	-0.4
0.2	0	-0.4	-0.6	-0.6	-0.8	-1.0	-0.2	-0.4	-0.4
0.5	0	-0.3	-0.4	-1.1	-1.2	-1.3	-0.2	-0.4	-0.4
		る f/D おより ま,それぞれ				A	,		

D : 建築物の外径 (m) H : 基準高さ (m)

h : 軒高 (m)

f : ライズ (m)

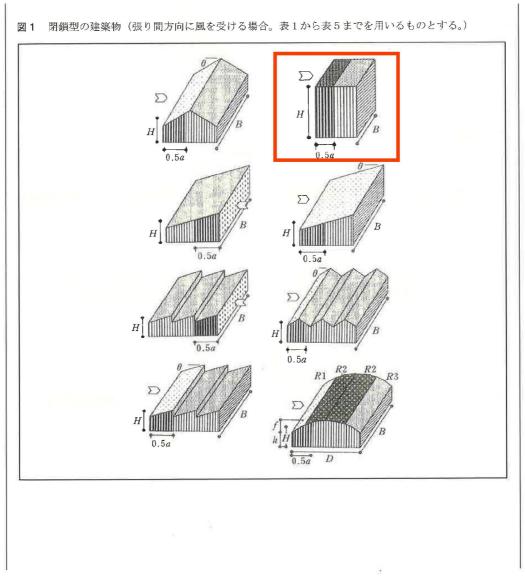
Rc

D/2

Rc

D/8 D/8

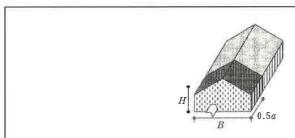
RaRb


Н

Rd

D/4

Rd


【建設省告示第 1454 号 (2015 年版 建築物の構造関係技術基準解説書 (国土交通省国土技 術政策総合研究所・国立研究開発法人建築研究所)より)】(抜粋)

287

第5章 荷重及び外力

図2 閉鎖型の建築物(けた行方向に風を受ける場合。表1,表2及び表5を用いるものとする。)

注 屋根面については、張り間方向に風を受ける陸屋根と同じ扱いとする。

図3 開放型の建築物 (表1,表3及び表5を用いるものとする。)

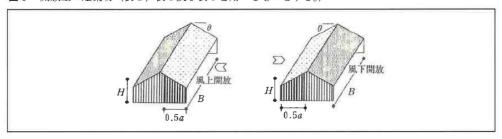


表1 壁面の Come

	風上壁面	側壁面		風下壁面
部位	風上笙山	風上端部より0.5aの領域	左に掲げる領域以外の領域	風「雪田
	(20000000000000000000000000000000000000			7///////
C_{pe}	0. 8kz	-0.7	-0.4	-0.4

表2 陸屋根面の Cpe 部位 風上端部より0.5aの領域 左に掲げる領域以外の領域 Cpe -1.0 -0.5

表3 切妻屋根面、片流れ屋根面及びのこぎり屋根面の Cpe

部位	風上面		風下面	
	<u> </u>			
θ	正の係数	負の係数		
10度未満		-1.0		
10度	0	-1.0		
30度	0.2	-0.3	-0.5	
45度	0.4	0		
90度	0.8	**		

この表に掲げる θ の数値以外の θ に応じた C_{pe} は、表に掲げる数値をそれぞれ直線的に補間した数値とする。ただし、 θ が10度未満の場合にあっては正の係数を、 θ が45度を超える場合にあっては負の係数を用いた計算は省略することができる。

288

建物・構築物への降下火砕物等堆積による静的負荷に対する構造強度評価について

1. 概要

本資料は、大山生竹テフラの噴出規模の見直しに伴う設計及び工事の計画(以下、「今回設工認」という。)のうち、建物・構築物(建屋)への降下火砕物等堆積による静的負荷に対する構造強度評価について、新規制基準適合時の設置変更許可(以下、「SA許可」という。)からの経緯を踏まえて、説明するものである。

建屋の構造強度評価に関係する項目について、SA許可と大山生竹テフラの噴出規模の見直しに伴う設置変更許可(以下、「DNP許可」という。)の比較を第1表に示す。

SA許可において、火山事象に対する建屋の構造強度評価に関係する項目が整理されている。その中で、評価対象の建屋並びに降下火砕物の最大層厚及び密度が設定されている。

第1表に示すとおり、DNP許可において、SA許可の建屋の構造強度評価に関する設計条件の うち層厚のみが変更となった。

以上を踏まえ、今回設工認では、層厚変更に伴い荷重が変更となるため、改めて建屋の構造強度 評価を実施している。

新規制基準適合時の工事計画(以下、「既認可」という。)と今回設工認の比較を第2表に示す。 また、降下火砕物堆積時における建屋の構造強度評価フローを第1図に示す。

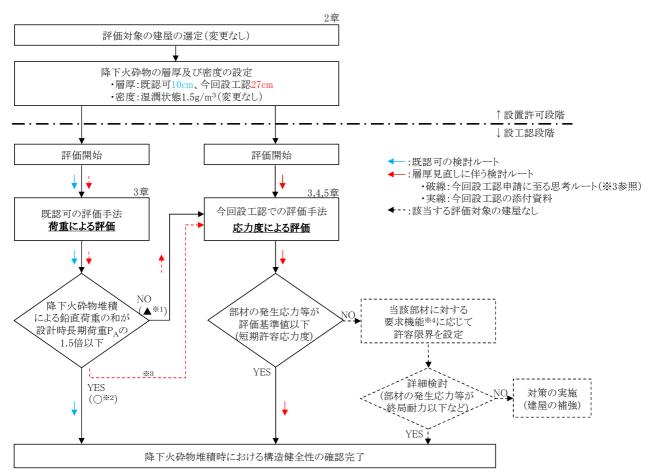
ここで、降下火砕物等堆積時における鉛直荷重に対する建屋の構造強度評価においては、層厚変 更による荷重の増加に伴い、既認可で採用した簡易な評価手法では保守的に設定される基準値を超 える場合があることから、評価対象施設である全ての建屋について評価手法の変更を行っている。

なお、評価手法の選択にあたって、既認可の評価手法では構造健全性を確認できない建屋のみ評価手法を変更するという考え方もあるが、評価方針を単純化するため、全ての建屋について評価手法を統一している。(第1図の赤破線部)

第1表 SA許可とDNP許可の比較 (建屋の構造強度評価に関係する項目)

項目	SA許可	DNP許可**1	差異
評価対象の建屋	防護すべき施設を内包する建屋 (別紙1参照)	_	なし**2
最大層厚	最大層厚 10cm	最大層厚 27cm	あり
密度	0.7g/cm ³ (乾燥状態) ~1.5g/cm ³ (湿潤状態)	_	なし

※1: SA許可から変更がない項目は「一」とする。


※2: SA施設の緊急時対策所建屋の扱いについては補足4別紙参照。

第2表 既認可と今回設工認の比較(建屋の構造強度評価に関係する項目)

項目	既認可	今回設工認*1	差異
評価対象の建屋	SA許可で設定した建屋	_	なし**2
評価条件	SA許可で設定した 最大層厚 10cm	DNP許可で設定した 最大層厚 27cm	あり
評価手法	荷重による評価	応力度による評価	あり

※1: 既認可から変更がない項目は「一」とする。

※2: SA施設の緊急時対策所建屋の扱いについては補足4別紙参照。

※1:外周建屋、燃料取扱建屋、原子炉補助建屋、燃料取替用水タンク建屋が該当。(▲:第4表参照) ※2:外部しゃへい建屋、中間建屋、ディーゼル発電機建屋、緊急時対策所建屋(1,2,3,4号機共用)、特重施設の建屋が該当。(○:第4表参照)

※3:評価方針を単純化するため、全ての建屋について評価手法を応力度による評価に統一

※4:降下火砕物を防護すべき施設に堆積させない機能、放射性物質の閉じ込め機能(気密性)及び放射線の遮蔽機能(遮蔽性)が該当。

第1図 降下火砕物堆積時における建屋の構造強度評価フロー

以降では、今回設工認における建屋の構造強度評価について、2章で評価対象とする建屋の選定の考え方を、3章で既認可の評価手法と今回設工認での評価手法の比較を、4章で今回設工認での評価手法の適用性を、5章で評価対象部位の網羅性及び代表性を説明する。

<本資料の構成>

- 2. 評価対象とする建屋の選定 (DNP許可のおさらい、SA許可から変更なし)
- 3. 既認可の評価手法と今回設工認での評価手法の比較
 - 3.1 既認可の評価手法
 - 3.2 今回設工認での評価手法
 - 3.3 評価方法の比較
 - 3.4 今回設工認の荷重条件に対する既認可の評価手法による評価結果
- 4. 今回設工認での評価手法の適用性
- 5. 評価対象部位の網羅性及び代表性
 - 5.1 評価対象部位の選定フロー
 - 5.2 評価対象部位の選定の考え方
- 6. まとめ

別紙1評価対象とする建屋の選定について

別紙2評価手法の既認可実績の例

2. 評価対象とする建屋の選定 (DNP許可のおさらい、SA許可から変更なし)

降下火砕物堆積に対して構造強度評価を実施する建屋の考え方は、既許可から整理されており、 今回設工認で評価対象とする建屋は既認可から変更はない。評価対象とする建屋の選定についての 詳細は別紙1に示す。

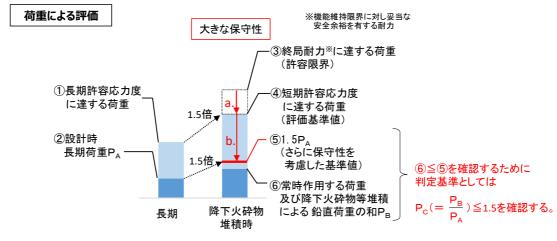
なお、令和2年5月14日付け原規規発第2005141号にて認可された大飯発電所3号機の設計及び工事の計画において、評価対象施設に重大事故等対処施設を内包する建屋として大飯3,4号機の緊急時対策所建屋を追加したことを踏まえ、今回設工認の評価対象施設として緊急時対策所建屋(1,2,3,4号機共用)を新たに追加している。(詳細は補足4別紙参照)

3. 既認可の評価手法と今回設工認での評価手法の比較

降下火砕物等堆積時における鉛直荷重に対する建屋の構造強度評価においては、層厚変更による 荷重の増加に伴い、既認可で採用した簡易な評価手法では保守的に設定される基準値を超える場合 があることから、今回設工認では評価方針を単純化するために、応力度による評価を統一的に採用 することとした。

本章では、既認可の評価手法及び今回設工認での評価手法について説明する。

3.1 既認可の評価手法


既認可の評価手法の概要図を第2図に示す。既認可の評価では、建設時に設計条件とした②設計時長期荷重 PAが①長期許容応力度に達する荷重を下回ること及び鋼材の長期許容応力度に対する短期許容応力度の比が1.5(④短期許容応力度に達する荷重が①の1.5倍)であることから、②設計時長期荷重 PAに対する、⑥常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和 PBの比 Pcが、1.5を超えないこと(⑥が⑤1.5PAを超えないこと)を確認することで、間接的に常時作用する荷重及び降下火砕物堆積等による鉛直荷重により部材に発生する応力が、短期許容応力度を下回ることを確認した。

なお、既認可の評価手法は以下の2点において大きな保守性を有する評価手法である。

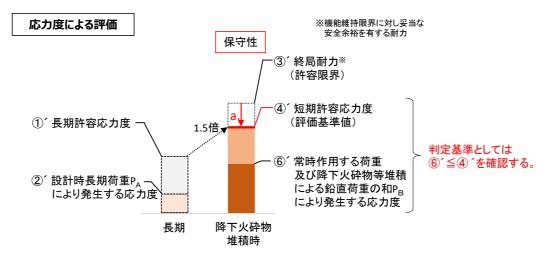
a. 許容限界について、降下火砕物堆積時における建屋への要求機能より設定すれば③終局耐力*に達する荷重であるところ、保守的に④短期許容応力度に達する荷重を評価基準値と設定したこと。

※機能維持限界に対し妥当な安全余裕を有する耐力

b. 評価部材の種類や諸元によらず荷重のみで評価できる簡易評価を実施するために、部材が④短期許容応力度に達する荷重を下回る⑤1.5P_Aをさらに保守性を考慮した基準値としたこと。

第2図 既認可の評価手法の概要図

3.2 今回設工認での評価手法


今回設工認での評価手法の概要図を第3図に示す。今回設工認での評価では、降下火砕物による荷重が増加することから、大きな保守性を有する既認可の評価手法では、降下火砕物堆積時に建屋が機能を維持できることを確認できない場合がある。

そのため、今回設工認での評価手法においては、至近の審査実績を踏まえて、評価対象施設である全ての建屋について、部材ごとに⑥'常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和PBにより発生する応力が、④'短期許容応力度を超えないことを直接確認する。

ここで、今回設工認での評価手法は以下の点において保守性を有する評価手法である。

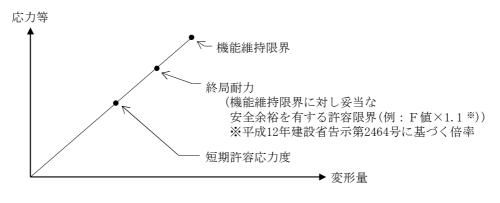
a. 許容限界について、降下火砕物堆積時における建屋への要求機能より設定すれば③'終 局耐力*であるところ、既認可の評価の考え方を踏襲し、保守的に④'短期許容応力度を 評価基準値と設定すること。

※機能維持限界に対し妥当な安全余裕を有する耐力

第3図 今回設工認での評価手法の概要図

3.3 評価方法の比較

今回設工認での評価手法は既認可の評価手法と比較すると計算過程は異なるが、常時作用する荷重及び降下火砕物等(降下火砕物及び雪)堆積による鉛直荷重により部材に発生する応力等が短期許容応力度を超えないことを確認するという点では同じである。


既認可の評価手法と今回設工認での評価手法の比較を第3表に示す。

第3表 評価手法の比較

比較項目		既認可の評価手法	今回設工認での評価手法
評価手法		荷重による評価 (荷重を比較し、間接的に許容値を 超えないことを確認する手法)	応力度による評価 (部材に発生する応力等と許容 値を直接比較する手法)
許容値	許容限界	終局耐力 ^{*2} に達する荷重 (<mark>第2図</mark> の③)	終局耐力*2 (第3図の③')
	評価基準値	短期許容応力度に達する荷重 (第2図の④)	短期許容応力度 (第3図の④')
	さらに保守性を 考慮した基準値 ^{*1}	設計時長期荷重の 1.5 倍 (第2図の⑤)	_

※1:評価部材の種類や諸元によらず、荷重のみで評価できる簡易評価を実施するために設定した値

※2:機能維持限界に対し妥当な安全余裕を有する耐力(下図参照)

許容値の概念図

3.4 今回設工認の荷重条件に対する既認可の評価手法による評価結果

評価対象とする建屋において、層厚変更による荷重の増加を踏まえた今回設工認の荷重条件に 対する既認可の評価手法による評価結果及び今回設工認での評価手法を第4表に示す。

第1図の構造強度評価フローでも示すとおり、層厚変更に対して荷重による評価では構造健全性を確認できない建屋(▲)があることから、今回設工認では評価対象とする全ての建屋(○及び▲)について、評価方針の単純化を図るため評価手法の統一を図り、応力度による評価を実施している。

第4表 層厚変更に対する既認可の評価手法による評価結果及び今回設工認での評価手法

プラント	建屋	既認可の評価手法 による評価結果* ^{1,2} (荷重による評価)	今回設工認での評価手法 <mark>**</mark> 2
	外部しゃへい建屋	0	応力度による評価
	補助建屋	A	応力度による評価
	燃料取扱建屋	A	応力度による評価
美浜3号機	中間建屋	0	応力度による評価
	ディーゼル建屋	A	応力度による評価
	制御建屋	A	応力度による評価
	緊急時対策所建屋	0	応力度による評価
	外部しゃへい建屋	0	応力度による評価
	補助建屋	A	応力度による評価
古汇 1 日操	燃料取扱建屋	A	応力度による評価
高浜1号機	中間建屋	0	応力度による評価
	ディーゼル建屋	A	応力度による評価
	制御建屋	A	応力度による評価
	外部しゃへい建屋	0	応力度による評価
	補助建屋	A	応力度による評価
高浜2号機	燃料取扱建屋	A	応力度による評価
	中間建屋	0	応力度による評価
	ディーゼル建屋	A	応力度による評価
	外部しゃへい建屋	0	応力度による評価
	外周建屋	A	応力度による評価
	燃料取扱建屋	A	応力度による評価
高浜3,4号機	原子炉補助建屋	A	応力度による評価
	中間建屋	0	応力度による評価
	燃料取替用水タンク建屋	A	応力度による評価
	ディーゼル発電機建屋	0	応力度による評価
高浜1,2,3,4号機	緊急時対策所建屋	0	応力度による評価
	原子炉格納容器	0	応力度による評価
	原子炉周辺建屋	0	応力度による評価
大飯3,4号機	制御建屋	0	応力度による評価
	廃棄物処理建屋	0	応力度による評価
	緊急時対策所建屋	0	応力度による評価

※1:「〇」荷重による評価でも降下火砕物堆積時に機能を維持できることを確認できる。 $(P_c \le 1.5, 3.1 \, \hat{\mathbf{m}} \hat{\mathbf{s}} \hat{\mathbf{m}})$ 「 \blacktriangle 」荷重による評価では降下火砕物堆積時に機能を維持できることを確認できない。 $(P_c > 1.5, 3.1 \, \hat{\mathbf{m}} \hat{\mathbf{s}} \hat{\mathbf{m}})$ ※2:特重施設の建屋は、全て荷重による評価でも降下火砕物堆積時に機能を維持できることを確認できる (\bigcirc) もの

4. 今回設工認での評価手法の適用性

今回設工認での評価手法は、部材の構造健全性を評価する手法として、部材に発生する応力等と 評価基準値を比較する標準的な手法である。本章では、降下火砕物堆積時に対する評価に対する今 回設工認での評価手法の適用性を確認する。

降下火砕物堆積による荷重に対して、安全機能を有する構築物、系統及び機器の健全性を維持するために、防護すべき施設を内包する建屋は、降下火砕物に対して内包する降下火砕物より防護すべき施設に降下火砕物を堆積させない機能を維持することが要求される。したがって、建屋は降下火砕物堆積による荷重に対して構造健全性を維持する必要がある。

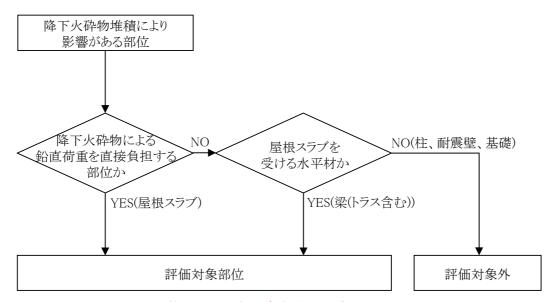
部材に発生する応力の算出方法は、安全機能の維持を確認する観点で同様の基準地震動による耐 震評価においても採用されている方法であるため、降下火砕物堆積時に対する評価においても適用 できる。

評価基準値は、安全機能の維持を確認する観点で、「3. 既認可の評価手法と今回設工認での評価 手法の比較」で示す通り保守的に、建築基準法等の安全上適切と認められる規格及び基準による許 容応力度として「RC-N 基準」等に基づき設定している。

したがって、今回設工認での評価手法は降下火砕物堆積時に対する評価に適用できる。今回設工 認での評価手法の既認可使用実績を第5表に示す。

屋根形状 評価手法 既認可実績の例 屋根スラブ RC-N 規準 「耐震評価(鉛直荷重単独)の実績] ・平成 27 年 8 月 4 日付け原規規発第 1508041 号にて認可された高浜発 電所第3号機工事計画の資料13-17-06-08「中央制御室遮蔽の耐震計 算書」のスラブ※ [降下火砕物堆積に対する強度評価の実績] ・平成30年10月18日付け原規規発第1810181号にて認可された東海 第二発電所工事計画の資料V-3-別添 2-1-7「建屋の強度計算書」の屋 根スラブ ドーム部 FEMモデル ・平成27年8月4日付け原規規発第1508041号にて認可された高浜発 電所第3号機工事計画の資料13-17-7-5「外部しゃへい建屋の耐震計 算書」のドーム部※

第5表 今回設工認での評価手法の既認可使用実績


[※]別紙2に既認可の評価手法を詳細に示す。

5. 評価対象部位の網羅性及び代表性

5.1 評価対象部位の選定フロー

建屋の構造強度評価手法を変更することに伴い、今回設工認での評価手法では、部材に発生する応力等が短期許容応力度を超えないことを確認する必要があることから、建屋ごとに評価対象部位を選定する必要がある。

建屋の評価対象部位の選定フローを第4図に示す。

第4図 評価対象部位の選定フロー

5.2 評価対象部位の選定の考え方

降下火砕物堆積時には、防護すべき施設を内包する建屋が、防護すべき施設に降下火砕物を 堆積させない機能を維持する必要がある。降下火砕物は屋根に堆積することから、防護すべき 施設に降下火砕物を堆積させない機能を維持するためには、屋根が崩壊しないことが求められ る。屋根を構成する屋根スラブ、梁(トラス含む)は、以下の理由により評価対象部位とする。

<屋根スラブ>

屋根スラブは、降下火砕物堆積による鉛直荷重を直接負担する部位であるため、降下火 砕物堆積時の評価を実施する。

<梁(トラス含む)>

梁(トラス含む)は、降下火砕物堆積による鉛直荷重を直接負担する屋根スラブを受ける 水平材であるため、降下火砕物堆積時の評価を実施する。 また、屋根に作用する鉛直荷重は、屋根を支持する架構や基礎を介して地盤まで伝えられる。 屋根から力が伝達される部位である柱、耐震壁、基礎は、以下の理由により評価対象部位としない。

<柱>

柱は主に地震時の曲げモーメント及び軸力に対して設計されている部位であり、地震時の曲げモーメントの影響により軸断面が十分に大きくなることから、降下火砕物堆積時の 圧縮力単独に対しては大きな余裕がある部位である。したがって、降下火砕物堆積時の構造健全性は確保できる。参考に、降下火砕物等堆積時の検討結果を参考資料1に示す。

<耐震壁>

耐震壁は主に地震時のせん断力に対して設計されている部位であり、層として負担する 地震時のせん断力の影響により軸断面が十分に大きい鉄筋コンクリートで構成されること から、降下火砕物堆積時の圧縮力単独に対しては大きな余裕がある部位である。したがっ て、降下火砕物堆積時の構造健全性は確保できる。参考に、降下火砕物等堆積時の検討結果 を参考資料2に示す。

<基礎>

基礎は、建屋全重量を負担しており、降下火砕物堆積による荷重の増加は建屋全重量に対して軽微であるとともに、地震時の上部建屋からの荷重を地盤に伝達するために平面的に広く、大きい断面を有する鉄筋コンクリートで構成されることから、降下火砕物堆積時の圧縮力に対して大きな余裕がある部位である。したがって、降下火砕物堆積時の構造健全性は確保できる。参考に、降下火砕物等堆積時の検討結果を参考資料2に示す。

なお、接地圧に対する地盤の支持力の確認についても同様である。

なお、接合部については、鉄骨架構の脆性的な破壊を防ぐため、母材より接合部の破断が先行 しないよう設計される部位であり、降下火砕物堆積時の母材の構造健全性を確認しているため、 接合部の構造健全性も確保できる。参考に、降下火砕物等堆積時の検討結果を参考資料3に示す。

6. まとめ

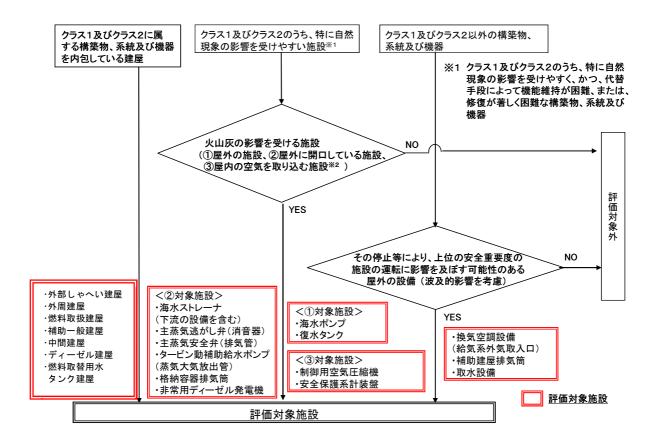
層厚変更による荷重の増加に伴う建物・構築物の構造強度評価において、既認可で採用した簡易な評価手法では保守的に設定される基準値を超える場合があることを踏まえ、今回設工認では評価 方針を単純化するために、応力度による評価を統一的に採用することとした。

今回設工認での評価手法は既認可の評価手法と比較すると計算過程は異なるが、常時作用する荷重及び降下火砕物等堆積による鉛直荷重により部材に発生する応力等が短期許容応力度を超えないことを確認するという点では同じである。また、今回設工認での評価手法は規準に基づく手法もしくは既認可の耐震評価や降下火砕物堆積に対する強度評価で使用実績がある手法であり、降下火砕物堆積時の建物・構築物の評価に適用できる。

さらに、今回設工認での評価手法を用いて建物・構築物の構造強度評価を実施するにあたり、選 定した評価対象部位の網羅性及び代表性について確認した。

評価対象とする施設の選定について

1. はじめに


- ・建屋の降下火砕物に対する設計としては、評価対象とする施設を選定した上で各影響因 子に対する設計を行っている。
- ・本資料では、評価対象とする施設の選定について説明する。

2. 防護対象の選定

(1) 防護対象施設の選定

火山の降下火砕物に対する防護対象施設はクラス1及び2に属する施設としている。 その上で、降下火砕物の影響を考慮する施設は、その設置状況や構造等を考慮して、以 下のとおり選定している。(選定フロー及び選定結果は図1参照)

- ・屋外に設置している防護対象施設は、降下火砕物が堆積し影響を受ける可能性のある ものについては、降下火砕物の影響を考慮する施設として選定する。
- ・屋内に設置している防護対象施設は、建屋にて防護されており直接降下火砕物による 影響を受けないため、防護対象施設の代わりに防護対象施設を内包する建屋を降下 火砕物の影響を考慮する施設として選定する。ただし、降下火砕物を取り込むことで 影響を受ける可能性がある屋内の防護対象施設については、降下火砕物の影響を考 慮する施設として選定する。
- ・また、降下火砕物の影響による機能的な波及的影響を考慮し、防護対象施設が、降下 火砕物の影響を受けたクラス3に属する施設及びその他の施設により機能的な波及 的影響を受ける可能性がある場合は、それらの施設を降下火砕物の影響を考慮する 施設として選定する。波及的影響の詳細内容を表1に示す。

※2 火山灰を含む外気・室内空気を機器内に取り込む機構を有しない施設又は取り込んだ場合でも、その影響が非常に小さいと考えられる施設(ポンプ、モータ、弁、盤内に換気ファンを有しない制御盤、計器等)については、 評価対象外とする。

図1 選定フロー(高浜3・4号 DNP 設置許可まとめ資料より抜粋)

(2) 評価対象とする建屋の選定

- ・評価対象とする建屋としては、図1の選定フローにおける「クラス1及びクラス2に属する構造物、系統及び機器を内包している建屋」及び、「クラス1及びクラス2以外の構築物、系統及び機器」から選定されることになる。(選定結果は表2参照)
- ・「クラス1及びクラス2に属する構造物、系統及び機器を内包している建屋」については、表2のとおり選定しており、全て、設工認対象としている。
- ・また、「クラス1及びクラス2以外の構築物、系統及び機器」については、図1に示す 通り、波及的影響を考慮する施設として、換気空調設備(給気系外気取入口)、補助建 屋排気筒、取水設備が挙げられるが、追加で対象となる建屋はないことを確認している。
- ・また、図1はDB施設を対象としたフローであるが、SA施設に係る建屋として、緊急時対策所建屋を設工認対象として選定しており、また、特重施設についても同様の考え方で選定を行っている。(選定結果は表4参照)

表1 波及的影響を与える施設

プラント	波及的影響を与える施設	影響内容
高浜3・4号機	換気空調設備	閉塞により安全系(クラス1,2)
	(給気系外気取入口)	のポンプ等、建屋内設備の機能に影
		響を与える。
	補助建屋排気筒	閉塞により安全系(クラス1,2)
		のポンプ等、建屋内設備の機能に影
		響を与える。
	取水設備	閉塞により海水ポンプ等、取水した
		海水の流路となる設備(クラス1,
		2) の機能に影響を与える。

表2 DB 建屋の選定結果

プラント	建屋名	防護対象施設の有無
高浜3・4号機	・外部しゃへい建屋	・クラス1、クラス2施設:有(詳
	• 外周建屋	細は表3に示す。)
	• 燃料取扱建屋	・クラス3やその他の施設による波
	• 原子炉補助建屋	及 <mark>的</mark> 影響を与える施設:有
	• 中間建屋	→選定対象 [※]
	・ディーゼル発電機建屋	
	・燃料取替用水タンク建屋	
	タービン建屋	・クラス1、クラス2施設:無
	• 廃棄物処理建屋、他	・クラス3やその他の施設による波
		及 <mark>的</mark> 影響を与える施設:無
		⇒選定対象外

※:今回設工認では、部材に発生する応力等と許容値を直接比較する応力度による評価を実施。

表3. 評価対象施設の抽出について(1/2)

0.7	安全機能の重要度分類		要度分類	the Manne Lab Control of
分類	定義	機能	構築物、系統又は機器	安全施設を内包する建屋名称
	その損傷又は故障により発	1) 原子炉冷却材圧力バウンダリ機能	原子炉冷却材圧力バウンダリを構成する機器・配管 (1次冷却材 系統)	・外部しゃへい建屋
P S - 1	生する事象によって、 (a) 炉心の著しい損傷、又は (b) 燃料の大量の破損を引	2) 過剰反応度の印加防止機能	制御棒駆動装置圧力ハウジング (1次冷却材系)	・外部しゃへい建屋
	き起こすおそれのある構築 物、系統及び機器	3) 炉心形状の維持機能	炉心支持構造物	・外部しゃへい建屋
			燃料集合体	・外部しゃへい建屋
		1) 原子炉の緊急停止機能	原子炉停止系の制御棒による系 (制御棒クラスタ、制御棒駆動 系)	・外部しゃへい建屋
		2) 未臨界維持機能	原子炉停止系 制御棒による系 化学体積制御設備のほう酸水注入機能 非常用炉心冷却系のほう酸水注入機能	- 外周建屋
		3) 原子炉冷却材圧力バウンダリの過圧 防止機能	加圧器安全弁(開機能)	・外部しゃへい建屋
	1) 異常状態発生時に原子炉を緊急に停止し、残留熱を除去し、原子の発生に停止し、残留熱力が正を防止し、敷地周辺公衆での過度の放射線の影響を防止する構築物、系統及び機器	4) 原子炉停止後の除熱機能	残留熱を除去する系統 余熱除去系 補助給水系 蒸気発生器2次側隔離弁までの主蒸気系・給水系	・原子炉補助建屋 ・中間建屋
M S - 1			残留熱を除去する系統 主蒸気逃がし弁 (手動逃がし機能) 主蒸気安全弁	・外周建屋
		5) 炉心冷却機能	非常用炉心冷却系 低圧注入系 (余熱除去系) 高圧注入系 蓄圧注入系	・原子炉補助建屋 ・外部しゃへい建屋
		6) 放射性物質の閉じ込め機能、放射線 の遮へい及び放出低減機能	原子炉格納容器	・外部しゃへい建屋
			アニュラス 原子炉格納容器隔離弁 原子炉格納容器スプレイ系	・外部しゃへい建屋・外周建屋・原子炉補助建屋
			アニュラス空気再循環設備 (アニュラス排気ファン等) 安全補機室空気浄化系 可燃性ガス濃度制御系	・外周建屋 - 原子炉補助建屋
			原子炉格納容器排気筒	-
		1) 工学的安全施設及び原子炉停止系へ の作動信号の発生機能	安全保護系	・原子炉補助建屋
			MS-1関連のもの 制御室及びその遮へい・換気空調系 (中央制御室非常用給気系統等)	• 原子炉補助建屋
			MS-1 関連のもの 原子炉補機冷却水系	• 中間建屋
M S - 1	2) 安全上必須なその他の 構築物、系統及び機器	2) 安全上特に重要な関連機能	MS-1 関連のもの 原子炉補機冷却海水系(海水ポンプ等)	-
			MS-1関連のもの 非常用所内電源系(ディーゼル発電機等)	・ディーゼル発電機建屋
			MS-1 関連のもの 非常用所内電源系(安全補機開閉器等) 直流電源系	• 原子炉補助建屋
			MS-1 関連のもの 制御用空気圧縮設備	• 中間建屋

表3. 評価対象施設の抽出について(2/2)

分類		安全機能の重要度分類		評価対象施設	
分類	定義	機能	構築物、系統又は機器	評恤对 祭 旭 武	
	1) その損傷又は故障によ	1)原子炉冷却材を内蔵する機能(ただし、原子炉冷却材を内蔵する機能(ただし、原子炉冷却材圧力パウンダリから除外されている計装等の小口径のもの及びパウンダリに直接接続されていないものは除く。)		・原子炉補助建屋	
	り発生する事象によって、 炉心の著しい損傷又は燃料 の大量の破損を直ちに引き 起こすおそれはないが、敷 地外への過度の放射性物質	2) 原子炉冷却材圧力パウンダリに直接	放射性廃棄物処理施設 (放射能インベントリの大きいもの) 放射性気体廃棄物処理系	・原子炉補助建屋	
P S – 2	の放出のおそれのある構築 物、系統及び機器	接続されていないものであって、放射性物質を貯蔵する機能	使用済燃料ビット(使用済燃料ラックを含む。)	・燃料取扱建屋	
		3) 燃料を安全に取り扱う機能	燃料取扱設備	・燃料取扱建屋	
	2) 通常運転時及び運転時 の異常な過渡変化時に作動 を要求されるものであっ て、その故障により、炉心 冷却が損なわれる可能性の 高い構築物、系統及び機器	1) 安全弁及び逃がし弁の吹き止まり機 能	吹き止まり機能に関連する部分 加圧器安全弁 加圧器逃がし弁	・外部しゃへい建屋	
	1) PS-2の構築物、系 統及び機器の損傷又は故障 により敷地周辺公衆に与え る放射線の影響を十分小さ	1) 燃料プール水の補給機能	使用済燃料ビット補給水系	・燃料取替用水タンク建屋	
	くするようにする構築物、 系統及び機器	2) 放射性物質放出の防止機能	燃料集合体落下事故時放射能放出を低減する系、排気筒 (補助建 屋)	-	
M S - 2		1) 事故時のプラント状態の把握機能	事故時監視計器の一部 格納容器エリアモニタ	・外部しゃへい建屋	
	2) 異常状態への対応上特 に重要な構築物、系統及び 機器	2) 異常状態の緩和機能	加圧器逃がし弁 (手動開閉機能) 加圧器ヒータ (後備ヒータ) 加圧器逃がし弁元弁	・外部しゃへい建屋	
		3) 制御室外からの安全停止機能	制御室外原子炉停止装置 (安全停止に関連するもの)	・原子炉補助建屋	

表4 SA 建屋の選定結果

プラント	建屋名*1	防護対象施設の有無
高浜3・4号機	・緊急時対策所建屋	・SA 施設:有
		⇒選定対象*2

※1:特重施設の建屋についても同様に選定。

※2:今回設工認では、部材に発生する応力等と許容値を直接比較する応力度による評価を実施。

評価手法の既認可実績の例

1. 屋根スラブ

(1) 既認可実績

平成27年8月4日付け原規規発第1508041号にて認可された高浜発電所第3号機工事計画の 資料13-17-06-08「中央制御室遮蔽の耐震計算書」より抜粋して示す。

(2) 解析モデル**	
	*
	*

※ここで示すモデル化範囲は屋根スラブではないが、降下火砕物に対する屋根スラブの評価と同様 に、鉛直荷重に対する評価を実施したスラブである。

枠囲みの範囲は機密に係る事項ですので公開することはできません。

(3) 応力の解析方法

- (1) 応力解析方法
 - a. 荷重ケース

作用荷重のうち地震荷重は、固定荷重及び積載荷重と同じ下向きに作用する場合に生じる応力が最大となるため、地震荷重は鉛直下向きの場合のみ考慮する。

b. 入力荷重の算出方法

長期荷重時の端部モーメント、中央モーメント及びせん断力を鉛直震度により係数倍することで入力荷重を算出する。なお、長期荷重時の端部モーメント、中央モーメント及びせん断力は「RC 規準」に準拠して算出する。長期荷重時の端部モーメント、中央モーメント及びせん断力を第4-23表、鉛直震度より算出した端部モーメント、中央モーメント及びせん断力を第4-24表に示す。

・短辺の端部モーメント(M_{x1})

$$M_{x1} = -\frac{1}{12} w_x \cdot I_x^2$$

・短辺の中央モーメント(M_{x2})

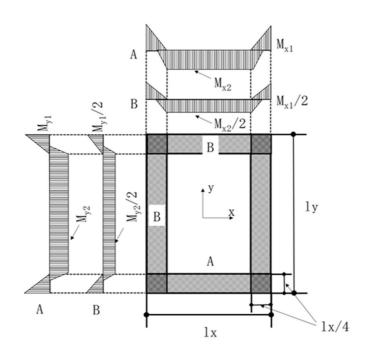
$$M_{x2} = \frac{1}{18} w_x \cdot I_x^2$$

・短辺のせん断力(Qx1)

$$Q_{x1} = 0.52 \cdot w \cdot I_x$$

・長辺の端部モーメント(My1)

$$M_{y1} = -\frac{1}{24} w \cdot I_x^2$$


・長辺の中央モーメント(My2)

$$M_{y2} = \frac{1}{36} w \cdot I_x^2$$

・短辺のせん断力(Q_{v1})

$$Q_{v1} = 0.46 \cdot w \cdot I_x$$

(注) RC 規準に基づく応力の算出方法を別図1に示す。

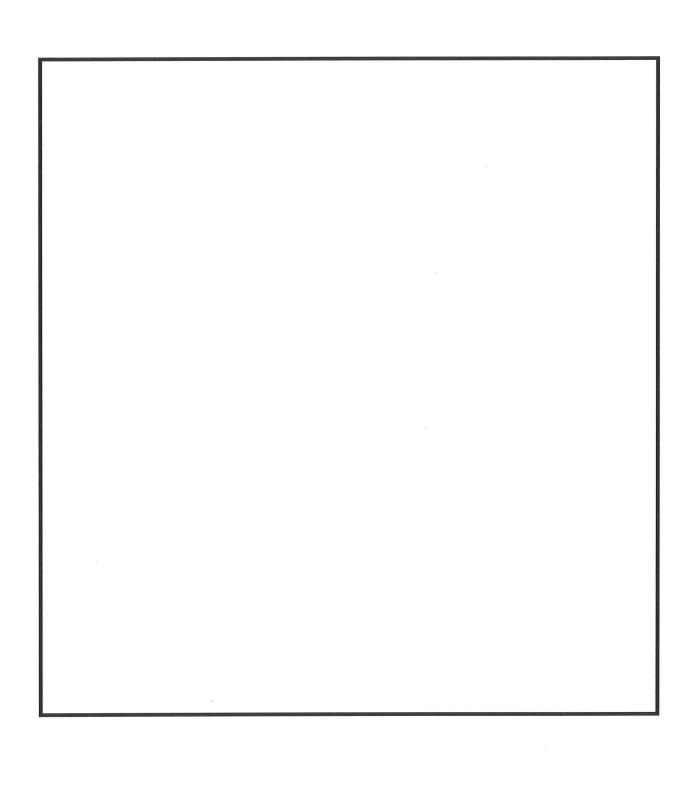
別図1 RC 規準に基づく応力の算出方法

(4) 断面の評価方法

(2) 断面の評価方法

床スラブの断面の評価に用いる応力は、地盤剛性の不確かさを考慮した地震応答解析による応答値を地震荷重とした応力解析により算出する。

Ss 地震時について、曲げモーメントに対しては、「RC-N 規準」に基づいて算定した必要鉄筋量が配筋量を超えないことを確認する。面外せん断力については、「RC-N 規準」に基づいて求めた許容せん断力を超えないことを確認する。


				_
9	K-	1.	17.	17
4.		4	П	1)

(1) 既認可実績

平成 27 年 8 月 4 日付け原規規発第 1508041 号にて認可された高浜発電所第 3 号機工事計画 の資料 13-17-7-5「外部しゃへい建屋の耐震計算書」より抜粋して示す。

(2) 解析モデル	

枠囲みの範囲は機密に係る事項ですので公開することはできません。

枠囲みの範囲は機密に係る事項ですので公開することはできません。

(3) 応力の評価方法

(1) Sd 地震時に対する評価

Sd 地震時に対する評価は、ドーム部及びシリンダー部について 3 次元 FEM モデルを用いた 弾性応力解析によることとし、地震力と地震力以外の荷重の組合せの結果、発生する応力が、 「RC-N 規準」等を参考に設定した許容限界を超えないことを確認する。

(4) 断面の評価方法

(1) Sd 地震時及び Sd 地震時+温度

軸力、曲げモーメント及び面内せん断力については、必要鉄筋量が配筋量を超えないことを確認する。必要鉄筋量(A)は、「RC-N 規準」に基づき、各要素の縦方向と横方向の軸力と曲げモーメントに対して必要となる片側鉄筋量(At)を柱の許容応力度設計式を用いて算定し、これと面内せん断力に対して必要となる全鉄筋量(As)(面内せん断力はすべて鉄筋で負担)より、下式によって算定する。

A = (2At + As)/2

面外せん断力については、「RC-N 規準」に基づいて求めた短期許容せん断力を超えないことを確認する。

参考資料1 降下火砕物堆積時の柱の検討

評価対象部位として選定しない部位のうち柱について、降下火砕物堆積時の検討結果を参考に示す。 柱の検討は、 ϕ 1-1 式により算定される圧縮応力度が、「鋼構造設計規準一許容応力度設計法一((社) 日本建築学会(2005))」に基づく短期圧縮許容応力度を超えないことを確認する。ここで、柱が負担する重量は、強度計算書に示している常時作用する荷重 F_d 、積雪荷重 F_s 及び降下火砕物堆積による鉛直荷重 F_g に柱が負担する一次部材の梁の自重を加えて算定する。

柱の断面積に対する負担面積の比が大きい高浜 3,4 号機中間建屋について、検討結果を参 1-1 表に示す。

 $\sigma_{sc} = W_s/A_s$ ($\gg 1$ -1 式)

ここで、

 σ_{sc} : 圧縮応力度 (N/mm^2) W_s : 柱が負担する重量 (N)

A_s :柱の断面積(mm²)

参 1-1表 柱の検討結果

部位	プラント	建屋	①発生値	②許容値	1)/2
柱	高浜 3, 4 号機	中間建屋	圧縮応力度 30.4N/mm ²	短期許容圧縮応力度 305N/mm ²	0. 0997

参考資料 2 降下火砕物堆積時の耐震壁及び基礎の検討

評価対象部位として選定しない部位のうち耐震壁及び基礎について、降下火砕物堆積時の検討結果 を参考に示す。

耐震壁においては上部建屋の全重量を基礎直上の部材で負担すること及び基礎においては基礎直上の耐震壁と接続する箇所において伝達される圧縮応力が大きくなることから、耐震壁及び基礎を合わせて、基礎直上の耐震壁について検討する。

基礎直上の耐震壁の検討は、参 2-1 式により算定される圧縮応力度が、「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会(2005))」に基づく短期許容圧縮応力度を超えないことを確認する。ここで、基礎直上の耐震壁が負担する重量及び軸断面積は地震応答解析モデルの諸元に基づき設定する。基礎直上の耐震壁が負担する重量には、部材上部の質点重量に加え、積雪荷重*1及び降下火砕物堆積による鉛直荷重の増分を考慮する。

基礎直上の耐震壁の軸断面積に対する堆積面積の比が大きい高浜 3,4 号機中間建屋について、検討結果を参 2-1 表に示す。

 $\sigma_{wc} = W_w / A_w$ (\$\sim 2-1 \text{ \delta}\$)

ここで、

 σ_{wc} : 圧縮応力度 (N/mm^2)

Ww : 基礎直上の耐震壁が負担する重量**1 (N)

※1: 積雪荷重は、質点重量が地震時の積雪荷重(1,050N/m²)を考慮して設定していることから、降下火砕物堆積時の積雪荷重(3,000N/m²)を考慮するため、差分(1,950N/m²)を加える。

A_w : 基礎直上の耐震壁の軸断面積(mm²)

参 2-1 表 基礎、耐震壁の検討結果

部位	プラント	建屋	①発生値	②許容値	1)/2
基礎	高浜 3, 4 号機	中間建屋	圧縮応力度	短期許容圧縮応力度	0, 0566
耐震壁	同供 3,4 万傚	中间建度	$0.923\mathrm{N/mm^{2}}$	$16.3\mathrm{N/mm^2}$	0.0566

参考資料 3 降下火砕物堆積時の接合部の検討

評価対象部位として選定しない部位のうち接合部について、降下火砕物堆積時の検討結果を参考に示す。

接合部の検討は、関原発第 195 号高浜 3 号機の設計及び工事の計画の資料 4 別添 1-4「建屋の強度計算書」において評価対象部材の梁に生じるせん断力が、「2015 年版 建築物の構造関係技術規準解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所)」及び「鋼構造接合部設計指針((社)日本建築学会(2012))」に基づく接合部の短期許容せん断力を超えないことを確認する。ここで、接合部の短期許容せん断力は、接合部を構成する部材(高力ボルト及びプレート)において、参 3-1 式及び参 3-2 式により算定される短期許容せん断力のうち小さい値とする。

評価対象部位の梁のうち、検定比が大きい高浜 3,4 号機燃料取扱建屋(母材検定比:0.831)の接合部について検討結果を参 3-1 表に示す。

$$Q_B = 0.45 \times T_0 \times A_B \times n$$
 (参 3-1 式)
 $Q_P = A_P \times f_S$ (参 3-2 式)

ここで、

 Q_B : 高力ボルトの短期許容せん断力(N)

 T_0 : 高力ボルトの基準張力 (N/mm^2)

 A_R : 高力ボルトの軸断面積(mm²)

n:せん断面数

 Q_P : プレートの短期許容せん断力(N)

 A_P :プレートの正味断面積(mm²)

 f_s : プレートの短期許容せん断応力度 (N/mm^2)

参 3-1 表 接合部の検討結果

部位	プラント	建屋	①発生値	②許容値	1)/2
接合部	高浜 3, 4 号機	从 似氏机冲巨	せん断力	短期許容せん断力	0.474
(安石市)	向供 3, 4 万機	燃料取扱建屋	155kN	327kN	0. 474

緊急時対策所建屋の腐食設計について

今回設工認においては、降下火砕物の層厚変更に伴う影響を受ける対象として、影響因子のうち「構造物への荷重」を選定し、建屋の強度評価を行っている。今回設工認において新たに強度評価を追加した緊急時対策所建屋(高浜発電所3・4号機)の腐食に対する設計については、その他の防護すべき施設を内包する建屋と同様に、次のとおりとする。

(緊急時対策所建屋の腐食に対する設計)

緊急時対策所建屋(高浜発電所3・4号機)は、想定する降下火砕物による腐食に対し、塗装等により降下火砕物と施設を接触させないこと又は運用等により、建屋が降下火砕物より防護すべき施設を内包し、建屋によって内包する防護すべき施設に降下火砕物を接触させない機能を維持するため、外装の塗装を実施することで短期的な腐食が発生しない設計としている。

また、降灰時の点検、並びに日常保守管理について保安規定に定めることで長期的な腐食が進展しない設計としている。

以上

別紙 緊急時対策所建屋の扱いについて

緊急時対策所建屋の扱いについて

1. はじめに

- ・緊急時対策所建屋は、新規制基準対応工認では、降下火砕物への影響確認を不要としているが、大飯3・4号機の緊急時対策所工認では、添付資料で降下火砕物への影響確認を行っている。
- ・今回のDNP設工認では、当社として最新の大飯3・4号機の緊急時対策所工認を踏襲し、降下火砕物への影響確認を行っているが、本資料では、設工認上の扱いの変遷について整理する。

2. 新規制基準対応工認での緊急時対策所建屋の扱い

- ・屋外のSA設備は、降下火砕物の影響を確認することとしており、その具体的な設計内容として、除灰運用を行うことを保安規定に定めることで、降下火砕物による影響を受けないとして、降下火砕物への影響確認を不要としている。
- ・緊急時対策所建屋は、SA施設と同様に、降下火砕物を除去することを保安規定に定めることにより、降下火砕物への影響確認を不要としていた。なお、降下火砕物の荷重に対して問題ないことも確認している。(設工認上の評価対象としていない扱いは、先行の川内1・2号機の新規制基準対応工認と同様である。)

3. 大飯3・4号機 緊急時対策所設工認での緊急時対策所建屋の扱い

- ・大飯3・4号機の緊急時対策所設工認では、他の建屋との整合性も踏まえ[※]、設工認の 添付資料で降下火砕物の影響確認(構造設計・腐食設計)を行う方針に変更した。
 - ※: DB 施設に係る建屋(原子炉補助建屋やディーゼル建屋等)については、工認にて 降下火砕物の影響確認(構造設計・腐食設計)を実施していることから、SA 施設 に係る緊急時対策所建屋についても、同様に降下火砕物の影響確認(構造設計・腐 食設計)を実施することで整合性を図るもの。

4. DNP設工認での扱い

- ・DNP設工認では、当社として最新の大飯3・4号機の緊急時対策所工認の考え方に倣って、降下火砕物への影響確認を行っている。
- ・ただし、緊急時対策所建屋に対する影響確認の項目としては、構造設計・腐食設計があるが、DNP設工認の申請範囲は、「降下火砕物の層厚変更」であり、それに対する設工認の申請範囲は荷重に対する構造設計としているため、腐食設計については、補足説明資料で説明することとしている。

新規制基準工認における緊急時対策所建屋の扱い

	緊急時対策所の場所	降下火砕物に対する影響評価
高浜3・4号機	1・2号 原子炉補助建屋	なし
美浜 3 号機	緊急時対策所建屋	なし
高浜1・2号機	緊急時対策所建屋	なし
大飯3・4号機	1・2号 原子炉補助建屋	なし

緊急時対策所設工認における緊急時対策所建屋の扱い

	緊急時対策所の場所	降下火砕物に対する影響評価
大飯3・4号機	緊急時対策所建屋	あり(構造設計・腐食設計)

DNP設工認における緊急時対策所建屋の扱い

	緊急時対策所の場所	降下火砕物に対する影響評価
美浜 3 号機	緊急時対策所建屋	あり(構造設計)※
高浜1~4号機	緊急時対策所建屋	あり(構造設計)※
大飯3・4号機	緊急時対策所建屋	あり(構造設計)※

※:腐食設計については、補足説明資料にてご説明。

以 上

別添 緊急時対策所建屋の降下火砕物に対する影響確認追加に伴う申請書上の追加状況について

	名称	追加の 有無	関連する記載
	I. 氏名又は名称及び住所並びに法人に あっては、その代表者の氏名	無	降下火砕物に対する影響確認との関連性なし。
	Ⅱ. 工事計画	無	火山に係る基本設計方針に個別の建屋名称は記載されていないこ とから記載変更なし。
本	Ⅲ. 工事工程表	無	降下火砕物に対する影響確認との関連性なし。
文	IV. 設計及び工事に係る品質マネジメントシステム	無	降下火砕物に対する影響確認との関連性なし。
	V. 変更の理由	無	降下火砕物に対する影響確認との関連性なし。
	VI.添付書類	無	降下火砕物に対する影響確認との関連性なし。
	資料1 発電用原子炉の設置の許可との整合性に関する説明書	無	個別の建屋名称は記載されていないことから記載変更なし。
	資料2 発電用原子炉施設の自然現象等に よる損傷の防止に関する説明書	無	目次であり、今回の追加を踏まえても追加資料はないことから、 記載の変更なし。
	資料2-1 耐震設計上重要な設備を 設置する施設の自然現象等による損傷 の防止に関する説明書	無	目次であり、今回の追加を踏まえても追加資料はないことから、 記載の変更なし。
	資料2-1-1 耐震設計上重要な 設備を設置する施設に対する自然現 象等への配慮に関する説明書	無	目次であり、今回の追加を踏まえても追加資料はないことから、 記載の変更なし。
添付資料	資料2-1-1-1 耐震設計上 重要な設備を設置する施設に対す る自然現象等への配慮に関する基 本方針	無	個別の建屋名称は記載されていないことから記載変更なし。
	資料2-1-2 火山への配慮に関する説明書	無	目次であり、今回の追加を踏まえても追加資料はないことから、 記載の変更はない。
	資料2-1-2-1 火山への配 慮に関する基本方針	無	個別の建屋名称は記載されていないことから記載変更なし。
	資料2-1-2-2 降下火砕物 の影響を考慮する施設の選定	有	荷重に対する評価対象施設として、緊急時対策所建屋を追加し た。
	資料2-1-2-3 降下火砕物 の影響を考慮する施設の設計方針	有	荷重に対する設計方針として、緊急時対策所建屋に係る方針を追加した。

	名称	追加の 有無	関連する記載
	資料2-2 特定重大事故等対処施設 の自然現象等による損傷の防止に関す る説明書	無	特物重大事故等対処施設に関する資料であり、今回の追加を踏まえても記載変更なし。
	資料3 安全設備及び重大事故等対処設備 が使用される条件の下における健全性に関 する説明書	無	個別の建屋名称は記載されていないことから記載変更なし。
	資料4 強度に関する説明書	無	目次であり、今回の追加を踏まえても追加資料はないことから、 記載の変更なし。
	資料4-1 強度計算の基本方針の概要	無	個別の建屋名称は記載されていないことから記載変更なし。
	別添1 火山への配慮が必要な施設の 強度に関する説明書	無	目次であり、今回の追加を踏まえても追加資料はないことから、 記載の変更なし。
添付	別添1-1 火山への配慮が必要な 施設の強度計算の方針	有	荷重に対する設計方針として、緊急時対策所建屋に係る方針を追加した。
資料	別添1-2 海水ポンプの強度計算 書	無	個別の建屋名称は記載されていないことから記載変更なし。
	別添1-3 復水タンクの強度計算 書	無	個別の建屋名称は記載されていないことから記載変更なし。
	別添1-4 建屋の強度計算書	有	緊急時対策所建屋の強度計算の内容及び結果を追加した。
	別添2 火山への配慮が必要な特定重 大事故等対処施設の強度に関する説明 書	無	特物重大事故等対処施設に関する資料であり、今回の追加を踏まえても記載変更なし。
	別紙 計算機プログラム(解析コー ド)の概要	無	緊急時対策所建屋に用いる解析コードはないため記載変更なし。
	資料5 設計及び工事に係る品質マネジメントシステムに関する説明書	無	降下火砕物に対する影響確認との関連性なし。

設置許可との整合性について

1. 概要

本資料は、自然現象(火山)に対して本設工認の基本設計方針とDNP設置許可との整合性について説明するものである。

2. DNP設置許可との整合性

DNP設置許可では層厚変更に伴い設置許可の変更箇所を網羅的に確認した結果*1、 層厚以外の記載は変更不要と整理している。したがって、設工認においても層厚変更に 伴い変更が必要となる箇所は層厚のみとなる。

設置許可と設工認の基本設計方針の対比表を別紙1に示す。

なお、設置許可と設工認の記載が同等の箇所には、実線のアンダーラインで明示する。 表記等が異なる場合には破線のアンダーラインを引くとともに、設置許可と設工認が 整合していることを明示している。

別紙1の対比表に示す通り、許可を受けた内容が設工認の基本設計方針に反映され、 設置許可と設工認の基本設計方針が整合していることを確認した。

※1:高浜発電所3,4号炉 新知見への適合状況説明資料(DNPに対する防護)P63~91

高海発電所3.4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		【原子炉冷却系統施設】		
(3) その他の主要な構造		(基本設計方針) 「共通項目」	①工事の計画の「設計基	
(i) 本原子炉施設は、(1) 耐震構造、(2) 耐津波構造に加え、以	1. 安全設計		準対象施設」は、設置変更	
下の基本的方針のもとに安全設計を行う。	1.1 安全設計の方針	2. 自然現象	許可申請書(本文)の「安	
a. 設計基準対象施設	1.1.1 安全設計の基本方針	2.3 外部からの衝撃による損傷の防止	全施設」を含んでおり整	
(a) 外部からの衝撃による損傷の防止	1.1.1.4 外部からの衝撃	2. 3. 1 設計基準対象施設及び重大事故等対処施設	合している。	
①安全施設は、発電所敷地で想定される③洪水、風(台風)、	安全施設は、発電所敷地で想定される洪水、風(台風)、竜巻、	①設計基準対象施設は、外部からの衝撃のうち自然現象による損傷の防止		
竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学	凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象、森	において、発電所敷地で想定される風(台風)、竜巻、凍結、降水、積雪、落	②工事の計画では、安全	
的事象、森林火災、高潮の自然現象(地震及び津波を除く。)又	林火災、高潮の自然現象(地震及び津波を除く。) 又はその組合せ	雷、地滑り、火山、生物学的事象、森林火災、高潮の自然現象(地震及び津	性を損なうおそれがある	
はその組合せに遭遇した場合において、自然現象そのものがも	に遭遇した場合において、自然現象そのものがもたらす環境条件	<u>波を除く。)</u> 又は地震、津波を含む <u>組合せに遭遇した場合において、自然現象</u>	場合、措置を講じること	
たらす環境条件及びその結果として施設で生じ得る環境条件	及びその結果として施設で生じ得る環境条件においても、安全機	そのものがもたらす環境条件及びその結果として施設で生じ得る環境条件	で安全機能を損なわない	
においても、②安全機能を損なうことのない設計とする。	能を損なうことのない設計とする。_	について②その安全性を損なうおそれがある場合は、防護措置、基礎地盤の	設計としている。	
		改良その他、供用中における運転管理等の運用上の適切な措置を講じる。		
のよと、水母工事にいっている。フロかれなのこと、川	かり、水色においておける。フロか用名のこと、辿り		③設置変更許可申請書	
③なお、発電所敷地で想定される自然現象のうち、洪	なお、発電所敷地で想定される自然現象のうち、洪水		_(本文) の「洪水」は、設	
水については、立地的要因により設計上考慮する必要	については、立地的要因により設計上考慮する必要は よい、		置変更許可申請書(本文)	
はない。 【新規制基準設置許可まとめ資料の記載 (T34)】	<u> </u>		で設計上の考慮は不要と	
高浜発電所周辺地域における河川としては、高浜発電所敷 地西側境界に接して渓流(才谷川)があるが、高浜発電所は才 谷川とは山を挟んだ反対側に立地している。 敷地の地形及び表流水の状況から判断して、敷地が洪水に よる被害を受けることはない。			している。_	
また、自然現象の組合せにおいては、④風(台風)、積雪、火	また、自然現象の組合せにおいては、風(台風)、積雪、火山及	地震及び津波を含む <u>自然現象の組合せにおいて、④火山については積雪と</u>	④工事の計画では、地震	
<u>山及び地滑りによる荷重の組合せを設計上考慮する。</u>	び地滑りによる荷重の組合せを設計上考慮する。	風(台風)、地震(Ss)については積雪、基準津波については地震(Sd)と積	及び津波を含めて自然現	
		雪の荷重を、施設の形状、配置に応じて考慮する。	象の組合せを網羅的に検	
		地震、津波と風(台風)の組合せについても、風荷重の影響が大きいと考	討し組み合わせを決定し	
		<u>えられるような構造や形状の施設については、組合せを考慮する。</u>	ており、設置変更許可申	
		また、地滑りの影響を受ける固体廃棄物貯蔵庫においては、④風(台風)、	請書(本文)の内容を含ん	
		積雪及び地滑りによる荷重の組合せを施設の形状、配置に応じて考慮する。	でおり整合している。	
		組み合わせる積雪深、風速の大きさはそれぞれ建築基準法を準用して垂直		
		積雪量 100cm、基準風速 32m/s とし、地震及び津波と組み合わせる積雪深に		
		ついては、建築基準法に定められた平均的な積雪荷重を与えるための係数		
		0.35 を考慮する。		
		<中略>		
		2. 3. 1. 1 外部からの衝撃より防護すべき施設		
		設計基準対象施設が外部からの衝撃によりその安全性を損なうことがな		
		いよう、外部からの衝撃より防護すべき施設は、設計基準対象施設のうち、		
		 「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規		

高浜発電所3. 4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		定されているクラス1及びクラス2に該当する構築物、系統及び機器(以下		
		「防護対象施設」という。)とする。		
		また、防護対象施設の防護設計については、外部からの衝撃により防護対		
		象施設に波及的影響を及ぼすおそれのある防護対象施設以外の施設につい		
		ても考慮する。さらに、重大事故等対処設備についても、外部からの衝撃よ		
		り防護すべき施設に含める。		
		2. 3. 1. 2 設計基準事故時及び重大事故等時に生じる応力との組合せ		
上記に加え、①重要安全施設は、科学的技術的知見を踏まえ、	上記に加え、重要安全施設は、科学的技術的知見を踏まえ、当	科学的技術的知見を踏まえ、①防護対象施設及び屋内の重大事故等対処設	①クラス1及びクラス2	
当該①重要安全施設に大きな影響を及ぼすおそれがあると想		備のうち、特に自然現象(地震及び津波を除く。)の影響を受けやすく、かつ、		
正される自然現象により当該①重要安全施設に作用する②衝		代替手段によってその機能の維持が困難であるか、又はその修復が著しく困		
撃及び設計基準事故時に生ずる応力を、それぞれの因果関係及		難な構築物、系統及び機器に大きな影響を及ぼすおそれがあると想定される		
び時間的変化を考慮して、適切に組み合わせる。_	して、適切に組み合わせる。	自然現象(地震及び津波を除く。)により作用する②衝撃は設計基準事故時及		
		び重大事故等時 <u>に生じる応力と重なり合わない設計とする。</u>	合している。	
		—		
			②自然現象による衝撃と	
<中略>	<中略>		設計基準事故時に生じる	
			応力が重ならないことを	
			確認しており、整合して	
			いる。	

高浜発電所3.	4 是機	設置許可	との整合性
同供用用用 0.	4 カ がせ	HA IEI 보고 HI	

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		【原子炉冷却系統施設】		
		(基本設計方針) 「共通項目」		
		2. 自然現象		
		2.3 外部からの衝撃による損傷の防止		
		2. 3. 1 設計基準対象施設及び重大事故等対処施設		
	1.9 火山防護に関する基本方針	2. 3. 1. 3 設計方針		
	1.9.1 設計方針	(1) 自然現象		
	1.9.1.1 概要	ъ. 火山		
-2) ①安全施設は、発電所の運用期間中において発電所の②	安全施設は、火山事象に対して、原子炉施設の安全性を確保す	①防護対象施設は、発電所の運用期間中において②安全性に影響を及ぼし	①安全施設を含む設計基	
安全機能に影響を及ぼし得る火山事象として設定した最大層		得る火山事象として設置(変更)許可を受けた降下火砕物の特性を設定し、	準対象施設のうちクラス	
厚 27cm、粒径 1mm 以下、密度 0.7g/cm³ (乾燥状態) ~1.5g/cm³		その降下火砕物が発生した場合においても、防護対象施設が安全機能を損な	1及び2に該当する構築	
(湿潤状態)の降下火砕物に対し、	された発電所に影響を及ぼし得る火山事象である降下火砕物によ	うおそれがない設計とする。	物、系統及び機器を、安全	
	る直接的影響及び間接的影響について評価を行うとともに、降下		性を損なわないために外	
	火砕物により安全施設が安全機能を損なうことのない設計とす		部からの衝撃より防護す	
	<u>る。</u>		る「防護対象施設」とし、	
			対象施設を設置変更許可	
			申請書(本文)より具体的	
			に記載しており整合して	
			いる。	
			②工事の計画では、安全	
			性を損なわないための措	
			置を講じることで、安全	
			機能を損なわない設計と	
			している。	
(3) その他の主要な構造	1 1 7 주 나 효사(까 사(마 리(地) 7 테 나 7 甘 사 사이	重大事故等対処設備は、「 <u>5.1.1.5環境条件等」を考慮した設計とす</u>		 重大事故等対処設備も認
(3) その他の主要な構造 b. 重大事故等対処施設	1.1.7 重大事故等対処設備に関する基本方針	<u> స</u> ్త.		 計基準対象施設と同様の
	1.1.7.3 環境条件等			設計としている。
(c-3-1) 環境条件 # # # # # # # # # # # # # # # # # # #	(1) 環境条件 共長していませんががないよりなおり	5. 1. 1. 5 環境条件等		
荷重としては重大事故等が発生した場合におけ	荷重としては重大事故等が発生した場合におけ	荷重としては重大事故等が発生した場合における環境圧力を踏ま		
る環境圧力を踏まえた圧力、温度、機械的荷重に加	る環境圧力を踏まえた圧力、温度、機械的荷重に加	えた圧力、温度、機械的荷重に加えて自然現象(地震、風(台風)、		
えて自然現象(地震、風(台風)、竜巻、積雪、火	えて自然現象(地震、風(台風)、竜巻、積雪、火	竜巻、積雪、火山の影響)による荷重を考慮する。		
<u>山の影響)による荷重を考慮する。</u>	山の影響)による荷重を考慮する。			
		なお、定期的に新知見の確認を行い、新知見が得られた場合に評価するこ		
			Î	İ

高浜発電所3, 4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		(a) 防護設計における降下火砕物の特性の設定 設計に用いる降下火砕物は、設置(変更)許可を受けた最大層厚27cm、粒径1mm以下、密度0.7g/cm³(乾燥状態)~1.5g/cm³(湿潤状態)と設定する。 (b) 降下火砕物に対する防護対策 降下火砕物の影響を考慮する施設は、降下火砕物による「直接的影響」及び「間接的影響」に対して、以下の適切な防護措置を講じることで安全機能を損なうおそれがない設計とする。 <中略> 		
(3) その他の主要な構造 c. 特定重大事故等対処施設 (b-3-1) 環境条件 荷重としては原子炉補助建屋等への故意による 大型航空機の衝突その他のテロリズムによる重大 事故等が発生した場合における環境圧力を踏まえ た圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	1.1.8 特定重大事故等対処施設に関する基本方針 1.1.8.3 環境条件等 (1) 環境条件 売重としては原子炉補助建屋等への故意による 大型航空機の衝突その他のテロリズムによる重大 事故等が発生した場合における環境圧力を踏まえ た圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜巻、積雪及び火山の影響)による荷重を考慮する。	2. 3. 2 特定重大事故等対処施設 特定重大事故等対処施設は、外部からの衝撃による損傷の防止において、想定される自然現象(地震及び津波を除く。)及び人為事象に対して、「5. 1. 2. 2 多様性、位置的分散等」、「5. 1. 2. 3 悪影響防止等」及び「5. 1. 2. 5 環境条件等」の基本設計方針に基づき、必要な機能が損なわれることがないよう、防護措置その他の適切な措置を講じる。 5. 1. 2. 5 環境条件等 荷重としては原子炉補助建屋等への故意による大型航空機の衝突その他のテロリズムによる重大事故等が発生した場合における環境圧力を踏まえた圧力、温度及び機械的荷重に加えて自然現象(地震、風(台風)、竜拳、積雪及び火山の影響)による荷重を考慮する。.		特定重大事故等対処施設も設計基準対象施設と同様の設計としている。

高浜発電所3, 4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		【原子炉冷却系統施設】		
		(基本設計方針) 「共通項目」		
		2. 自然現象		
		2.3 外部からの衝撃による損傷の防止		
		2.3.1 設計基準対象施設及び重大事故等対処施設		
		2. 3. 1. 3 設計方針		
		(1) 自然現象		
		b. 火山		
	1.9.1.6 設計対象施設の設計	イ. <u>直接的影響に対する</u> 設計方針		
	1.9.1.6.1 直接的影響に対する設計方針	(イ) 構造物への② <u>荷重</u>		
その直接的影響である①構造物への②静的負荷に対して	直接的影響については、設計対象施設の構造や設置状況等(形	①防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス	①工事の計画の①は、設	
安全裕度を有する設計とすること、	状、機能、外気吸入や海水通水の有無等)を考慮し、想定される	3 (発電用軽水型原子炉施設の安全機能の重要度分類) に属する施設 (以	置変更許可申請書(本文)	
	各影響因子に対して、影響を受ける各設計対象施設が安全機能を	下「クラス3に属する施設」という。) のうち、屋外に設置されている施	の「構造物」を具体的に記	
	損なうことのない設計とする。	設、並びに防護対象施設を内包し降下火砕物からその施設を防護する建屋	載しており整合してい	
	(1) 荷重	で、降下火砕物が堆積しやすい屋根構造を有する施設については、降下火	る。	
	a. <u>構造物への静的負荷</u>	砕物を除去することにより、短期的な荷重に対して安全機能を損なうおそ		
	設計対象施設のうち、構造物への <u>静的負荷</u> を考慮すべき施設	れがないよう②許容荷重が降下火砕物、風(台風)及び積雪による組合せ	②工事の計画の②は、設	
	は、以下に示すとおり、降下火砕物が堆積しやすい屋根構造を	を考慮した荷重に対して安全裕度を有する設計とする。	置変更許可申請書 (本文)	
	有する建屋及び屋外施設である。	なお、荷重により構造健全性を失わないよう、降灰時には当該施設に堆	の「静的負荷」に加え、風	
	・外部しゃへい建屋、外周建屋、燃料取扱建屋、原子炉補助	積する降下火砕物を除去することを保安規定に定める。	(台風)による荷重も考	
	建屋、中間建屋、ディーゼル発電機建屋、燃料取替用水タ	屋内の重大事故等対処設備については、環境条件を考慮して降下火砕物	慮していることから整合	
	ンク建屋	による短期的な荷重により機能を損なわないように、降下火砕物による組	している。	
	・復水タンク、海水ポンプ	合せを考慮した荷重に対し安全裕度を有する建屋内に設置する設計とす		
	当該施設の許容荷重が、降下火砕物による荷重に対して安全	る。		
	裕度を有することにより、構造健全性を失わず安全機能を損な	屋外の重大事故等対処設備については、環境条件を考慮して降下火砕物		
	うことのない設計とする。_	による荷重により機能を損なわないように、降下火砕物を除去することに		
	<中略>	より、重大事故等対処設備の重大事故等に対処するために必要な機能が損		
	1.9.1.5.1 直接的影響因子	なわれるおそれがない設計とする。		
	<中略>	なお、必要な機能が損なわれるおそれがないよう、降灰時には屋外の重		
	c. その他の自然現象の影響を考慮した荷重の組合せ	大事故等対処設備に堆積する降下火砕物を除去することを保安規定に定		
	降下火砕物と火山以外の自然現象の組合せについては、荷	める。		
	重の影響において、降下火砕物、風(台風)及び積雪による			
	組合せを考慮する。			

高浜発電所3.4号機 設置許可との整合性

設置変更許可申請書(本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画を該当事項	整合性	備考
	(2) 閉塞	(口) 閉塞		
	a. <u>水循環系の閉塞</u>	i . 水循環系の閉塞		
	<中略>			
水循環系の閉塞に対して狭隘部等が閉塞しない設計とす	降下火砕物は粘土質ではないことから水中で固まり閉塞す	防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3		
3 <u>2</u>	ることはないが、当該施設は、降下火砕物の粒径(最大 1mm)	に属する施設のうち、屋外に開口しており降下火砕物を含む海水の流路と		
	に対し十分大きな流水部を設けることにより、流路及びポンプ	なる施設について、降下火砕物の粒径より大きな流水部を設けることによ		
	軸受部の狭隘部等が閉塞しない設計とする。	り、水循環系の狭隘部が閉塞しない設計とする。		
		なお、降下火砕物により水循環系が閉塞しないよう、降灰時には点検を		
		行い、状況に応じてストレーナを洗浄することを保安規定に定める。		
	b. 換気系、電気系及び計装制御系に対する機械的影響 (閉塞)	ii. 換気系、電気系及び計装制御系に対する機械的影響 (閉塞)		
	<中略>			
換気系、電気系及び計装制御系に対する機械的影響 (閉塞)	各施設の構造上の対応として、海水ポンプ(海水ポンプモー	防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属	①工事の計画の①は設置	
<u> 対して①降下火砕物が侵入しにくい設計とすること、</u>	タ)は開口部を全閉構造とすること、ディーゼル発電機機関、	する施設及びその他の施設のうち、屋外に開口しており降下火砕物を含む	変更許可申請書(本文)の	
	ディーゼル発電機消音器及び換気空調設備は開口部を下向き	空気の流路となる <u>換気空調系</u> (外気取入口)については、① <u>開口部を下向</u>	①を具体的に記載してお	
	の構造とすること、また主蒸気逃がし弁消音器、主蒸気安全弁	きの構造とすること、またフィルタを設置することにより降下火砕物が侵	り整合している。	
	排気管等のその他の施設については開口部や配管の形状等に	<u>入しにくい構造とし、降下火砕物により閉塞しない設計とする。</u>		
	より、降下火砕物が流路に侵入した場合でも閉塞しない設計と	<u>換気空調系以外の</u> 降下火砕物を含む空気の流路となる <u>施設</u> についても、		
	する。	① <u>降下火砕物が侵入しにくい構造</u> 、又は降下火砕物が侵入した場合でも、		
	また、設備対応として、外気を取り入れる <u>換気空調設備</u> 及び	降下火砕物により流路が閉塞しない設計とする。		
	ディーゼル発電機消音器にそれぞれフィルタを設置すること	なお、降下火砕物により閉塞しないよう、降灰時には点検を行い、状況		
	により、フィルタより大きな <u>降下火砕物が内部に侵入しにくい</u>	に応じて換気空調系のフィルタの清掃や取替えの実施について保安規定		
	<u>設計とし</u> 、さらに降下火砕物がフィルタに付着した場合でも取	に定める。		
	替えが可能な構造とすることで、降下火砕物により閉塞しない			
	設計とする。			
	主蒸気逃がし弁又は主蒸気安全弁は、開口部に降下火砕物が			
	侵入した場合でも消音器や配管の形状により閉塞しにくい設			
	計とし、また仮に弁出口配管内に降下火砕物が侵入し堆積した			
	場合でも、弁の吹き出しにより流路を確保し閉塞しない設計と			
	する。			
	ディーゼル発電機機関は、フィルタを通過した小さな粒径の			
	降下火砕物が侵入した場合でも、降下火砕物により閉塞しない			
	設計とする。			
	格納容器排気筒及び補助建屋排気筒は、排気により降下火砕			
	<u>物が侵入しにくい設計とし</u> 、降下火砕物が侵入した場合でも、			
	排気筒の構造から排気流路が閉塞しない設計とする。また、降			
	下火砕物が侵入した場合でも、排気筒内部の点検、並びに状況			
	に応じて除去等の対応が可能な設計とする。			

高浜発電所3.	4 是機	設置許可との整合性	-
同供用用力 0.	4 / 1700		•

設置変更許可申請書(本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
	(3) 磨耗	(ハ)磨耗		
	a. 水循環系の内部における磨耗	i.水循環系、換気系、電気系及び計装制御系に対する機械的影響(磨耗)		
	a. <u>水循珠ボックといったまた</u> <中略>	1. 小相垛示、投风示、电风示及() 日 表 即 即示(() 对) 分 该(城市) 於 音 () 后 化)		
水循環系の内部における磨耗及び換気系、電気系及び計装	降下火砕物は砂よりも硬度が低くもろいことから磨耗によ	防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3		
制御系に対する機械的影響(磨耗)に対して磨耗しにくい設	る影響は小さい。また当該施設については、降灰時の特別点検、	に属する施設のうち、屋外に開口しており降下火砕物を含む海水の流路と		
計とすること、	その後の日常保守管理により、状況に応じて補修が可能であ	なる施設、並びに屋外に開口又は屋内の空気を機器内に取り込む機構を有		
	り、磨耗により安全機能を損なうことのない設計とする。	し、かつ摺動部を有する換気系、電気系及び計装制御系の施設については、		
		降下火砕物に対し機能を損なうおそれがないよう、降下火砕物が侵入しに		
	b. 換気系、電気系及び計装制御系に対する機械的影響 (磨耗)	くい構造とすること又は磨耗しにくい材料を使用することにより、 <u>磨耗し</u>		
	<中略>	にくい設計とする。		
	降下火砕物は砂よりも硬度が低くもろいことから、磨耗の影響			
	は小さい。	ルタの点検を行ない、状況に応じて清掃、取替え、並びに閉回路循環運転		
	 構造上の対応として、開口部を下向きとすることにより侵入し	等の実施について保安規定に定める。		
	にくい構造とし、仮に当該施設の内部に降下火砕物が侵入した場			
	合でも耐磨耗性のある材料を使用することにより、磨耗により安			
	全機能を損なうことのない設計とする。			
	世界			
	ル発電機消音器にそれぞれフィルタを設置することにより、フィ			
	ルタより大きな降下火砕物が内部に侵入しにくい設計とし、また			
	換気空調設備においては、前述のフィルタの設置、さらに外気取			
	入ダンパの閉止、換気空調設備の停止又は閉回路循環運転により、			
	建屋内への降下火砕物の侵入を防止することが可能な設計とする			
	(4) 腐食	(二) 腐食		
	a. 構造物の化学的影響 (腐食)	i . 構造物の化学的影響 (腐食)		
	<u></u>	防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3		
構造物の化学的影響(腐食)、水循環系の化学的影響(腐	金属腐食研究の結果より、降下火砕物によって直ちに金属腐食	に属する施設のうち、屋外に設置している施設並びに防護対象施設を内包		
食)及び換気系、電気系及び計装制御系に対する化学的影響	を生じないが、外装の塗装等によって短期での腐食により安全機	し降下火砕物からその施設を防護する建屋については、耐食性のある塗装		
(腐食) に対して短期での腐食が発生しない設計とするこ	能を損なうことのない設計とする。なお、降灰後の長期的な腐食	を実施することにより、降下火砕物により短期的に腐食が発生しない設計		
<u>Ł,</u>	の影響については、日常保守管理等により、状況に応じて補修が	<u>とする。</u>		
	可能な設計とする			
		おける点検並びに状況に応じた塗装の実施について保安規定に定める。		
		屋内の重大事故等対処設備については、降下火砕物による短期的な腐食		
		により機能を損なわないように、耐食性のある塗装を実施した建屋内に設		
		置する設計とする。		
		屋外の重大事故等対処設備については、降下火砕物を除去することによ		
		り、降下火砕物による腐食に対して重大事故等対処設備の重大事故等に対		
		処するために必要な機能が損なわれるおそれがない設計とする。		

高浜発電所3, 4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		なお、長期的な腐食の影響が生じないよう、降灰時には屋外の重大事故		
		等対処設備に堆積する降下火砕物を除去することを保安規定に定める。		
	b. 水循環系の化学的影響 (腐食)	ii . <u>水循環系の化学的影響(腐食)</u>		
	<中略>			
	金属腐食研究の結果より、降下火砕物によって直ちに金属腐食	防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3		
	を生じないが、耐食性のある材料の使用や塗装の実施等によって、	に属する施設のうち、屋外に開口しており降下火砕物を含む海水の流路と		
	腐食により安全機能を損なうことのない設計とする。なお、降灰	なる施設については、耐食性のある材料の使用や塗装を実施することによ		
	後の長期的な腐食の影響については、日常保守管理等により、状	り、降下火砕物により短期的に腐食が発生しない設計とする。		
	況に応じて補修が可能な設計とする。	なお、長期的な腐食の影響が生じないよう、降灰時には日常保守管理に		
		おける点検並びに状況に応じた塗装の実施について保安規定に定める。		
	c. 換気系、電気系及び計装制御系に対する化学的影響(腐食)	iii. 換気系、電気系及び計装制御系に対する化学的影響(腐食)		
	<中略>			
	金属腐食研究の結果より、降下火砕物によって直ちに金属腐食	防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3		
	<u>を生じない</u> が、塗装の実施等によって、 <u>腐食により安全機能を損</u>	に属する施設のうち、屋外に開口しており降下火砕物を含む空気の流路と		
	なうことのない設計とする。 なお、降灰後の長期的な腐食の影響	なる施設については、耐食性のある塗装を実施することにより、 <u>降下火砕</u>		
	については、日常保守管理等により、状況に応じて補修が可能な	物により短期的に腐食が発生しない設計とする。		
	設計とする。	なお、長期的な腐食の影響が生じないよう、降灰時には日常保守管理に		
		おける点検並びに状況に応じた塗装の実施について保安規定に定める。		
	(5) 大気汚染			
	a. <u>発電所周辺の大気汚染</u>	(ホ)発電所周辺の大気汚染		
発電所周辺の大気汚染に対して中央制御室の換気空調系	<u>降下火砕物</u> により汚染された発電所周辺の大気が、 <u>中央制御室</u>	防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属		
は降下火砕物が侵入しにくく、さらに外気を遮断できる設計	空調装置の外気取入口を通じて中央制御室に侵入しないよう、外	する施設及びその他の施設のうち、中央制御室換気空調系については、降		
とすること、	気取入口のガラリを下向きの構造とし、さらに平型フィルタを設	下火砕物が侵入しにくい構造とし、さらにフィルタを設置することによ		
	置することにより、降下火砕物が外気取入口に到達した場合であ	り、降下火砕物が中央制御室に侵入しにくい設計とする。		
	ってもフィルタより大きな <u>降下火砕物が内部に侵入しにくい設計</u>	なお、外気を遮断し降下火砕物の侵入による中央制御室の大気汚染を防		
	<u>とする。</u>	止するため、降灰時には閉回路循環運転の実施について保安規定に定め		
	これに加えて下流側にさらに細かな粒子を捕集可能な粗フィル	ప 。		
	タを設置していることから、降下火砕物の侵入に対して他の換気			
	空調設備に比べて高い防護性能を有しているが、仮に室内に侵入	【放射線管理施設】		
	した場合でも降下火砕物は微量であり、粒径は極めて細かな粒子	(基本設計方針)		
	である。	2. 換気装置、生体遮蔽装置		
	また、中央制御室空調装置については、外気取入ダンパの閉止			
	及び閉回路循環運転を可能とすることにより、中央制御室内への	<中略>		
	降下火砕物の侵入を防止すること、さらに外気取入遮断時におい	中央制御室空調装置は、重大事故等時を含む事故時において、微粒子フィ		
	て室内の居住性を確保するため、酸素濃度及び二酸化炭素濃度の	ルタ及びよう素フィルタを内蔵した中央制御室非常用循環フィルタユニッ		

高浜発電所3,4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
	計とする。	<u>の連絡口を遮断</u> し、中央制御室非常用循環フィルタユニットを通る閉回路循		
		環方式を構成することにより、運転員を被ばくから防護する <u>設計とする。</u>		
		【原子炉冷却系統施設】		
		(基本設計方針) 「共通項目」		
		2. 自然現象		
		2.3 外部からの衝撃による損傷の防止		
		2. 3. 1 設計基準対象施設及び重大事故等対処施設		
		2. 3. 1. 3 設計方針		
		(1) 自然現象		
		b. 火山		
	(6) 絶縁低下	イ. 直接的影響に対する設計方針		
	a. <u>計装盤の絶縁低下</u>	(へ) <u>絶縁低下</u>		
計装盤の絶縁低下に対して空気を取り込む機構を有する	5 計装盤のうち、空気を取り込む機構を有する安全保護系計装盤	防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属	①設置場所の空調系であ	
計装盤の設置場所の換気空調系は降下火砕物が侵入しにく	() については、屋内に侵入した降下火砕物を取り込むことによる影	する施設及びその他の施設のうち、空気を取り込む機構を有する計装盤に	る安全補機開閉器室空調	
<u>く、さらに①外気を遮断できる設計とすることにより、</u>	響を考慮する。	<u>ついては、設置場所の換気空調系</u> の屋外開口部を下向きの構造とするこ	系は、外気の遮断が可能	
	当該機器の設置場所は <u>安全補機開閉器室空調装置</u> にて空調管理	と、またフィルタを設置することにより、 <u>降下火砕物が侵入しにくい設計</u>	であることから、設置変	
	されており、本換気空調設備の外気取入口には平型フィルタを設	<u>とする。</u>	更許可申請書(本文)と整	
	置し、これに加えて下流側にさらに細かな粒子を捕集可能な粗フ	なお、 <u>外気を遮断し</u> 降下火砕物による計装盤の絶縁低下を防止するた	合している。	
	ィルタを設置していることから、 <u>降下火砕物の侵入に対して他の</u>	め、降灰時には外気取入ダンパの閉止及び閉回路循環運転の実施について		
	<u>換気空調設備に比べて高い防護性能を有している</u> が、仮に室内に	保安規定に定める。		
	侵入した場合でも降下火砕物は微量であり、粒径は極めて細かな			
	粒子である。			
	また、本換気空調設備については、 <u>外気取入ダンパの閉止及び</u>			
	<u>閉回路循環運転</u> を可能とすることにより、安全補機開閉器室内へ			
	の <u>降下火砕物の侵入を防止することが可能である。</u>			
	これらフィルタの設置により侵入に対する高い防護性能を有す			
	ること、また外気取入ダンパの閉止及び閉回路循環運転による侵			
	入防止が可能な設計とすることにより、降下火砕物の付着による			
	絶縁低下による影響を防止し、安全保護系計装盤の安全機能を損			
	なうことのない設計とする。			

高浜発電所3,4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		【原子炉冷却系統施設】		
		(基本設計方針) 「共通項目」		
		2. 自然現象		
		2.3 外部からの衝撃による損傷の防止		
		2. 3. 1 設計基準対象施設及び重大事故等対処施設		
		2. 3. 1. 3 設計方針		
		(1) 自然現象		
	1.9.1.2 火山事象に対する設計の基本方針	b. 火山		
①安全機能を損なうことのない設計とする。	(1) 降下火砕物による直接的な影響(荷重、閉塞、磨耗、腐食等)	防護対象施設は、発電所の運用期間中において安全性に影響を及ぼし得る	①工事の計画の「安全機	
	に対して、安全機能を損なうことのない設計とする。	火山事象として設置(変更)許可を受けた降下火砕物の特性を設定し、その	能を損なうおそれがない	
		降下火砕物が発生した場合においても、防護対象施設が①安全機能 <u>を損なう</u>	設計」は、設置変更許可申	
		おそれがない設計とする。	請書(本文)の「安全機能	
		<中略>	を損なうことのない設	
			計」と同義であり、整合し	
			ている。	
		(b) 降下火砕物に対する防護対策		
		イ. 直接的影響に対する設計方針		
		(イ) 構造物への荷重		
	(2) 発電所内の構築物、系統及び機器における降下火砕物の除去	防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3	①工事の計画では、構造	
	等の対応が可能な設計とする。	(発電用軽水型原子炉施設の安全機能の重要度分類) に属する施設 (以下	健全性を失わないよう措	
		「クラス3に属する施設」という。)のうち、屋外に設置している施設、	置を講じることで、安全	
		並びに防護対象施設を内包し降下火砕物からその施設を防護する建屋で、	機能を損なわない設計と	
		降下火砕物が堆積しやすい屋根構造を有する施設については、降下火砕物	している。	
		を除去することにより、短期的な荷重に対して安全機能を損なうおそれが		
		ないよう許容荷重が降下火砕物、風(台風)及び積雪による組合せを考慮		
		した荷重に対して安全裕度を有する設計とする。		
		なお、①荷重により構造健全性を失わないよう、降灰時には当該施設に		
		堆積する降下火砕物を除去することを保安規定に定める。		
		<中略>		
		(ロ) 閉塞		
		i . 水循環系の閉塞		
		防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3	①工事の計画では、水循	
		に属する施設のうち、屋外に開口しており降下火砕物を含む海水の流路と	環系が閉塞しないよう措	
		なる施設について、降下火砕物の粒径より大きな流水部を設けることによ	置を講じることで、安全	
		り、水循環系の狭隘部が閉塞しない設計とする。	機能を損なわない設計と	
		なお、①降下火砕物により水循環系が閉塞しないよう、降灰時には点検	している。	
		<u>を行い、状況に応じてストレーナを洗浄することを保安規定に定める。</u>		

高浜発電所3,4号機 設置許可との整合性

設置変更許可申請書(本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		ii. 換気系、電気系及び計装制御系に対する機械的影響(閉塞)		
		防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属	①丁事の計画でけ 閉塞	
		する施設及びその他の施設のうち、屋外に開口しており降下火砕物を含む		
		空気の流路となる換気空調系(外気取入口)については、開口部を下向き		
		の構造とすること、またフィルタを設置することにより降下火砕物が侵入		
		しにくい構造とし、降下火砕物により閉塞しない設計とする。	427& V X C C C V · S	
		換気空調系以外の降下火砕物を含む空気の流路となる施設についても、		
		降下火砕物が侵入しにくい構造、又は降下火砕物が侵入した場合でも、降		
		下火砕物により流路が閉塞しない設計とする。		
		なお、①降下火砕物により閉塞しないよう、降灰時には点検を行い、状		
		況に応じて換気空調系のフィルタの清掃や取替えの実施について保安規		
		<u>定に定める。</u>		
		(ハ)磨耗		
		i. 水循環系、換気系、電気系及び計装制御系に対する機械的影響 (磨耗)	①工事の計画では、磨耗	
		防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3	が進展しないよう措置を	
		に属する施設のうち、屋外に開口しており降下火砕物を含む海水の流路と	講じることで、安全機能	
		なる施設、並びに屋外に開口又は屋内の空気を機器内に取り込む機構を有	を損なわない設計として	
		し、かつ摺動部を有する換気系、電気系及び計装制御系の施設については、	いる。	
		降下火砕物に対し、機能を損なうおそれがないよう、降下火砕物が侵入し		
		にくい構造とすること又は磨耗しにくい材料を使用することにより、磨耗		
		しにくい設計とする。		
		なお、①磨耗が進展しないよう、降灰時には水循環系、換気空調系のフ		
		<u>ィルタの点検を行ない、状況に応じて清掃、取替え、並びに閉回路循環運</u>		
		転等の実施について保安規定に定める。_		
		(二) 腐食		
		i . 構造物の化学的影響 (腐食)		
		防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3	□ ①工事の計画では、長期	
		に属する施設のうち、屋外に設置している施設並びに防護対象施設を内包		
		し降下火砕物からその施設を防護する建屋については、耐食性のある塗装		
		を実施することにより、降下火砕物により短期的に腐食が発生しない設計		
		とする。	い設計としている。	
		なお、①長期的な腐食の影響が生じないよう、降灰時には日常保守管理	BOH! C O C O	
		における点検並びに状況に応じた塗装の実施について保安規定に定める。		
		屋内の重大事故等対処設備については、降下火砕物による短期的な腐食		
		全内の重人事成事が完成備については、降下人件物による短期的な腐食により機能を損なわないように、耐食性のある塗装を実施した建屋内に設		

高浜発電所3, 4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		置する設計とする。		
		屋外の重大事故等対処設備については、降下火砕物を除去することによ		
		り、降下火砕物による腐食に対して重大事故等対処設備の重大事故等に対	①工事の計画では、長期	
		処するために必要な機能が損なわれるおそれがない設計とする。	的な腐食の影響が生じな	
		なお、①長期的な腐食の影響が生じないよう、降灰時には屋外の重大事	いよう措置を講じること	
		故等対処設備に堆積する降下火砕物を除去することを保安規定に定める。	で、安全機能を損なわな	
			い設計としている。	
		ii. 水循環系の化学的影響(腐食)		
		防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3	①工事の計画では、長期	
		に属する施設のうち、屋外に開口しており降下火砕物を含む海水の流路と	的な腐食の影響が生じな	
		なる施設については、耐食性のある材料の使用や塗装を実施することによ	いよう措置を講じること	
		り、降下火砕物により短期的に腐食が発生しない設計とする。	で、安全機能を損なわな	
		なお、①長期的な腐食の影響が生じないよう、降灰時には日常保守管理	い設計としている。	
		における点検並びに状況に応じた塗装の実施について保安規定に定める。		
		iii. 換気系、電気系及び計装制御系に対する化学的影響(腐食)		
		防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3	①工事の計画では、長期	
		に属する施設のうち、屋外に開口しており降下火砕物を含む空気の流路と	的な腐食の影響が生じな	
		なる施設については、耐食性のある塗装を実施することにより、降下火砕	いよう措置を講じること	
		物により短期的に腐食が発生しない設計とする。	で、安全機能を損なわな	
		なお、①長期的な腐食の影響が生じないよう、降灰時には日常保守管理	い設計としている。	
		における点検並びに状況に応じた塗装の実施について保安規定に定める。		
		(ホ)発電所周辺の大気汚染		
		防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属	①工事の計画では、中央	
		する施設及びその他の施設のうち、中央制御室換気空調系については、降	制御室の大気汚染を防止	
		下火砕物が侵入しにくい構造とし、さらにフィルタを設置することによ	するための措置を講じる	
		り、降下火砕物が中央制御室に侵入しにくい設計とする。	ことで、安全機能を損な	
		なお、①外気を遮断し降下火砕物の侵入による中央制御室の大気汚染を	わない設計としている。	
		防止するため、降灰時には閉回路循環運転の実施について保安規定に定め		
		<u> </u>		
		(へ)絶縁低下		
		防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属	①工事の計画では、計装	
		する施設及びその他の施設のうち、空気を取り込む機構を有する計装盤に	盤の絶縁低下を防止する	
		ついては、設置場所の換気空調系の屋外開口部を下向きの構造とするこ		
		と、またフィルタを設置することにより、降下火砕物が侵入しにくい設計	で、安全機能を損なわな	
		とする。	い設計としている。	

高浜発電所3,4号機 設置許可との整合性

設置変更許可申請書 (本文)	設置変更許可申請書(添付書類八)該当事項	工事の計画 該当事項	整合性	備考
		なお、①外気を遮断し降下火砕物による計装盤の絶縁低下を防止するた		
		め、降灰時には外気取入ダンパの閉止及び閉回路循環運転の実施について		
		保安規定に定める。_		
		ロ. 間接的影響に対する設計方針		
また、降下火砕物の間接的影響である7日間の外部電源喪	(3) 降下火砕物による発電所外での間接的な影響(7日間の外部	降下火砕物による間接的影響である7日間の外部電源喪失、発電所外での	①工事の計画の①「原子	
失、発電所外での交通の途絶によるアクセス制限事象に対	電源の喪失、交通の途絶によるアクセス制限事象)を考慮し、	交通の途絶によるアクセス制限事象に対し、①原子炉及び使用済燃料ピット	炉及び使用済燃料ピット	
し、①発電所の安全性を維持するために②必要となる電源の	ディーゼル発電機の燃料油の貯蔵設備等により、原子炉及び使	の安全性を維持するために②必要となる電源の供給がディーゼル発電機燃	の安全性を維持」するこ	
供給が継続でき、安全機能を損なうことのない設計とする。	用済燃料ピットの安全性を損なうことのない設計とする。	料油貯油そうからの燃料供給により継続でき、非常用電源施設から受電でき	とで、設置変更許可申請	
		る設計とする。_	書(本文)の①「発電所の	
			安全性を維持」するため、	
			整合している。	
		【非常用電源設備】		
		(基本設計方針)		
		4. 燃料設備		
	1.9.1.6.2 間接的影響に対する設計方針	4. 1 ディーゼル発電機の燃料設備		
	降下火砕物による間接的影響には、広範囲にわたる送電網の損	設計基準対象施設である②ディーゼル発電機については、7日間の外部	②工事の計画の②は設置	
	傷による <u>7日間の外部電源喪失、発電所外での交通の途絶による</u>	電源喪失を仮定しても、②連続運転により必要とする電力を供給できるよ	変更許可申請書(本文)の	
	アクセス制限事象に対し、原子炉の停止、並びに停止後の原子炉	う、7 日間分の容量以上の燃料を敷地内の燃料油貯油そうに貯蔵する設計	②を具体的に記載したも	
	及び使用済燃料ピットの冷却に係る機能を担うために必要となる	とする。	のであり整合している。	
	<u>電源の供給が</u> 燃料油貯油そう及びディーゼル発電機により <u>継続で</u>			
	き、安全機能を損なうことのない設計とする。			

各影響因子の整理について

1. 概要

本資料は火山灰の各影響因子に対して設置許可審査での整理を示し、本設工認申請にて適合性確認対象とした経緯について説明する。

2. 層厚変更に影響がある影響因子

(1) 直接的影響

火山灰が施設に与える影響については、設置許可のまとめ資料に整理しており、層厚変更により評価結果が変わる影響因子は荷重及び閉塞である。DNP設置許可で行った個別評価の結果の概要を別紙1に示す。また、許可時の防護対象施設の選定の考え方及び個別評価を別添1及び別添2に示す。

(2) 間接的影響

新規制基準適合時には、火山灰は広範囲に及ぶことから、広範囲に亘る送電網の損傷による長期の外部電源喪失の可能性、原子力発電所へのアクセス制限事象が発生する可能性も考慮し、間接的影響に対する評価を設置許可段階で確認している。

DNP 設置許可においても、まとめ資料にて層厚変更により評価結果が変わらないことを確認している。火山灰による間接的影響の評価結果を別紙2に示す。

3. 設工認で評価を実施する施設の選定

層厚変更により評価結果が変わる影響因子は荷重及び閉塞*であるが、閉塞については、DNP設置許可で評価を行っており、設工認では評価結果を示していない。これは主蒸気逃がし弁(消音器)及び主蒸気安全弁(排気管)の閉塞評価は、設備の詳細設計を踏まえ、DNPの層厚に対して消音器及び排気管への火山灰の侵入により機器の機能に影響がないことを設置許可段階で確認していることから、設工認では申請対象としていないものである。なお、この整理は新規制基準対応の設置許可及び工認から変更していない。

したがって、設工認の添付資料及び補足説明資料は、層厚変更に伴い、閉塞に係る記載に変更が生じないため申請対象とはしていない。一方、荷重については、新規制基準工認の添付資料に構造強度評価の結果を示していることから、本設工認申請にて評価結果を示している。

設工認対象とした施設のフローを図1に示す。

※主蒸気逃がし弁(消音器)及び主蒸気安全弁(排気管)に対する閉塞

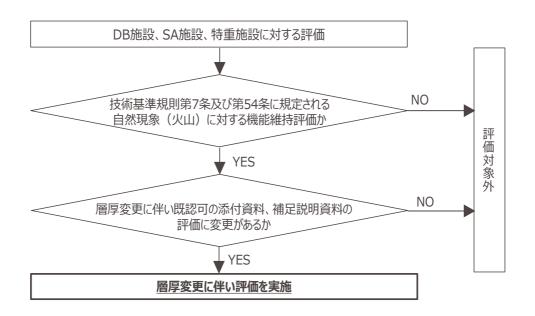


図1 設工認で評価を実施する施設の選定

影響因子	構造物への静的荷重 (降雨等の影響を含む)	構造物の化学的影響(腐食)	水循環系の閉塞	水循環系の化学的影響(腐食)
評価対象施設 外部しゃへい建屋、				
外周建屋、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	行い、工認で構造強度評価を実施するとしている。	○ 新規制基準適合時に、外装塗装が施され火山灰による化学的腐食により直ちに機能に影響を及ぼすことはないと評価している。 ○ DNP設置許可段階では、当該施設の構造 <mark>後装が施されている</mark> こと)は変わらないため、評価結果に影響を及ぼさないとしている。	3	<u> </u>
复水タンク	●※ 新規制基準適合時に、堆積荷重の条件を示し、工認で構造強度 評価を実施するとしている。 ⇒DNP設置許可段階では、堆積荷重が変更となるため、成立性 の確認を行い、設工認で構造強度評価を実施するとしている。	新規制基準適合時に、外装塗装が施され火山灰による化学的腐食により直ちに機能に影響を及ぼすことはないと評価している。 ⇒DNP設置許可段階では、当該施設の構造(<mark>塗装が施されている</mark> こと)は変わらないため、評価結果に影響を及ぼさないとしている。	3	3
毎水ポンプ	●※ 新規制基準適合時に、堆積荷重の条件を示し、工認で構造強度 評価を実施するとしている。 ⇒DNP設置許可段階では、堆積荷重が変更となるため、成立性 の確認を行い、設工認で構造強度評価を実施するとしている。	新規制基準適合時に、外接塗装が施され火山灰による化学的腐食により直ちに機能に影響を及ぼすことはないと評価している。 ⇒DNP設置許可段階では、当該施設の構造(塗装が施されている。 こと)は変わらないため、評価結果に影響を及ぼさないとしている。	○(ポンプ) 新規制基準適合時に、想定する火山灰の粒径は、Imm以下であり、ほとんどの火山灰は軸受潤滑水ストレーナを通過することになり、また、ポンプ軸受には、異物逃がし溝を設けており、火山灰による軸固着等には至らないと評価している。 ⇒DNP設置許可段階では、当該施設の構造(軸受潤滑ストレーナ及び異物逃がし溝が設けられていること)並びに火山灰の粒径は変わらないため、評価結果に影響を及ぼさないとしている。	○(ボンブ) 新規制基準適合時に、防汚塗装等の対応を実施しており、 水と金属が直接接することはないため、腐食により海水ボン ブの機能に影響を及ぼすことはないと評価している。 ⇒DNP設置許可段階では、当該施設の構造(塗装が施され ていること)は変わらないため、評価結果に影響を及ぼさない としている。
主蒸気逃がし弁(消音器)	<u></u>	<u> </u>	<u> </u>	3
主蒸気安全弁(排気管)	$\overline{\oplus}$	3	3	3
マービン動補助給水ポンプ 蒸気大気放出管)	•	3	3	3
非常用ディーゼル発電機 機関、消音器)	<u></u>	<u></u>	3	3
換気空調設備 給気系外気取入口)	<u></u>	<u></u>	3	<u></u>
各納容器排気筒 補助建屋排気筒	$\overline{\oplus}$	<u></u>	3	3
取水設備	<u></u>	<u></u>	新規制基準適合時に、火山灰の	新規制基準適合時に、海水系の化学的影響については、海水中の火山灰濃度は非常に希薄であること、除塵装置は防汚塗装等の対応を実施しており、海水と金属が直接接するとはなく、直ちに腐食により機能に影響を及ぼすことはないと評価している。 ⇒DNP設置許可段階では、当該施設の構造(塗装が施されていること)は変わらないため、評価結果に影響を及ぼさなしとしている。
毎水ストレーナ	•	<u></u>	〇(水循環系機能の一部であり下流の設備を含む) 新規制基準適合時に、火山灰の粒径は、ストレーナのメッシュサイズ よりも小さく、閉塞することはないとしている。また、ストレーナのメッ シュを通過した火山灰粒子は、下流の機器を通過するが、火山灰の 粒径は、冷却管内径より小さいことから閉塞しないと評価している。 DNP設置許可段階では、当該施設の構造(メッシュサイズ及び冷却管内径)並びに火山灰の粒径は変わらないため、評価結果に影響 を及ぼさないとしている。	○(水循環系機能の一部であり下流の設備を含む) 新規制基準適合時に、外装塗装が施されていることから、直 ちに腐食により機能を喪失することはないと評価している。 ⇒DNP設置許可段階では、当該施設の構造(塗装が施され ていること)は変わらないため、評価結果に影響を及ぼさなし としている。
制御用空気圧縮機	—(屋内) ①	3	3	3
安全保護系計装盤	—(屋内) ①	<u> </u>	3	3
緊急時対策所建屋	●※ 新規制基準適合時に、除灰運用を保安規定に定めることで機能 に影響を及ぼすことはないとしている。 ⇒DNP設置許可段階では、成立性の確認を行い、設工認で構 造強度評価を実施するとしている。	新規制基準適合時に、除灰運用を保安規定に定めることで機能に 影響を及ぼすことはないとしている。 ⇒DNP設置許可段階では、当該施設の運用は変わらないため、評 価結果に影響を及ぼさないとしている。(詳細は補足4参照。)	-	<u></u>
基本設計方針	(イ)構造物への荷重 防護対象施設及び防護対象施設に影響を及ぼす可能性のある クラス3(発電用軽水型原子炉施設の安全機能の重要度分類) に属する施設(以下)クラス3(展電用軽水型原子炉施設の安全機能の重要度分類) に属する施設(以下)クラス3(展電人の力力を) 外に設置している施設、並びに防護対象施設を内包し降下火砕物からその施設を防護する建屋で、降下火砕物が堆積しやすい 屋根構造を有する施設については、降下火砕物を除去すること により、短期的な荷重に対して安全機能を損なうおそれがないよう許容荷重が降下火砕物、風(台風)及び積雪による組合せを考慮した荷重に対して安全格度を有する設計とする。 (緊急時対策所建屋) 5.1.1.5 環境条件等 重大事故等が免性した場合における温度、放射線、荷車及びその他の使用条件において、その機能が有効に発揮できるよう、その設置(使用)・保管場所に応じた耐環境性を有する設計とするとともに、操作が可能な 設計とする。	(二)腐食 i.構造物の化学的影響(腐食) 防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3に属する施設の方と屋外に影響を及ぼす可能性のあるクラス3に属する施設の方と屋外に影響している施設並びに防護対象施設を内包し降下火砕物からその施設を防護する建屋については、耐食性のある塗装を実施することにより、降下火砕物により短期的に腐食が発生しない設計とする。 (緊急時対策所建屋) 重大事故等対処設備は、想定される重大事故等が発生した場合における温度、放射線、荷重及びその他の使用条件において、その機能が有効に発揮できるよう、その設置(使用)・保管場所に応じた耐環境性を有する設計とするとともに、操作が可能な設計とする。		(二)腐食 ii. 水循環系の化学的影響(腐食) 防護対象施設及び防護対象施設に影響を及ぼす可能性の るクラス3に属する施設のうち、屋外に開口しており降下火を 物を含む海水の流路となる施設については、耐食性のある料 料の使用や塗装を実施することにより、降下火砕物により短 期的に腐食が発生しない設計とする。

・影響因子に対する個別評価を実施 、●:最大層厚見直しに伴い評価結果に影響がある 、〇:最大層厚見直しに伴い評価結果に影響がない、※: 既許可で設工認にて評価結果を示すと整理した項目、一:影響因子として確認が不要 (不要とする理由) ① 静的荷重の影響を受けにくい構造(堆積しにくい、堆積しても機能に有意な影響を受けにくい等)、② 腐食があっても、機能に有意な影響を受けにくい、③ 影響因子と直接関連しない

影響因子評価対象施設	換気系、電気系及び計装制御系に対する機械的影響 (降雨等の影響を含む)	換気系、電気系及び計装制御系に対す る化学的影響 (降雨等の影響を含む)	発電所周辺の大気汚染	絶縁低下
外部しゃへい建屋、 外周建屋、 補助一般建屋、 中間建屋、 燃料取扱建屋、 ディーゼル建屋、 燃料取替用水タンク建屋	<u></u>	<u> </u>	<u> </u>	3
復水タンク	<u></u>	3	<u> </u>	3
海水ポンプ	○(モータ) 新規制基準適合時に、海水ポンプモータは全閉外扇型の冷却方式であり火山灰の侵入はないため、機械的影響はないと評価している。 ⇒DNP設置許可段階では、当該施設の構造(火山灰が侵入しない全閉外扇型構造であること) は変わらないため、評価結果に影響を及ぼさないとしている。	○(モータ) 新規制基準適合時に、海水ボンブモータは全閉 外扇型の冷却方式であり火山灰の侵入はない ため、化学的影響はないと評価している。 ⇒DNP設置許可段階では、当該施設の構造 (火山灰が侵入しない全閉外扇型構造であること)は変わらないため、評価結果に影響を及ぼ さないとしている。	3	3
主蒸気逃がし弁(消音器)	● 新規制基準適合時に、大気開放部には消音器が設置され、配管形状および消音器の構造から 火山灰が直接配管内に侵入しにくい構造であり、仮に直接配管内に侵入し配管を閉塞させた場合でも、火山灰の荷重より主蒸気逃がし弁の噴出力が大きいことから、機能に影響を及ぼすことはないと評価している。 ⇒ DNP設置許可段階では、当該施設の構造(火山灰が侵入しにくい構造であること)は変わらないが、層厚見直しにより堆積荷重が変更となることから、再評価を実施し、機能に影響を及ぼすことはないと評価している。	<u></u>	3	3
主蒸気安全弁(排気管)	● 新規制基準適合時に、主蒸気安全弁排気管は、配管形状より火山灰が直接配管内に侵入しに (い構造であり、仮に直接配管内に侵入し配管を閉塞させた場合でも、火山灰の荷重より主蒸 気安全弁の噴出が大きいことから、機能に影響を及ぼすことはないと評価している。 ⇒ DNP設置許可段階では、当該施設の構造 (火山灰が侵入しにくい構造であること) は変わらないが、層厚見直しにより堆積荷重が変更となることから、再評価を実施し、機能に影響を及ぼ すことはないと評価している。	<u></u>	<u> </u>	3
タービン動補助給水ポンプ (蒸気大気放出管)	○ 新規制基準適合時に、タービン動補助給水ボンプの蒸気大気放出管は、火山灰が侵入しにくい 構造であり、仮に一部侵入しても構造から閉塞することはなく、機能に影響を及ぼすことはない と評価している。 ⇒DNP設置許可段階では、当該施設の構造(火山灰が侵入しにくく、仮に侵入しても閉塞しない構造であること)は変わらないため、評価結果に影響を及ぼさないとしている。	<u></u>	<u></u>	3
非常用ディーゼル発電機 (機関、消音器)	○ 新規制基準適合時に、機関の吸入空気の流れは火山灰が侵入しにくい構造であり、また、層状フィルタにより火山灰が捕集されること、及び侵入した場合でも火山灰の硬度が低く破砕しやすいことから、機能に影響を及ぼすことはないと評価している。 ⇒ DNP設置許可段階では、当該施設の構造(火山灰が侵入しにくい構造であること並びに層状フィルタが設置されていること)並びに火山灰の対格及び硬度は変わらないため、腎価結果に影響を及ぼさないとしている。なお、炉規則83条の高濃度火山灰による対応の層厚見直しによる再評価は保安規定で確認する。	<u></u>	<u></u>	3
換気空調設備 (給気系外気取入口)	○ 新規制基準適合時に、換気空調設備の給気系外気取入口は火山灰が侵入しにくい構造であり、各外気取入口には平型フィルタを設置しているため、火山灰が外気取入口に到達した場合であっても、一定以上の粒径の火山灰については、侵入を防止することが可能であるとしている。また、フィルタよりも小さな火山灰が室内に侵入する可能性が考えられるが、閉回路循環運転および換気空調設備の停止により火山灰の侵入を阻止することができると評価している。 ⇒ DNP設置許可段階では、当該施設の構造(火山灰が侵入しにくく、各外気取入口には平型フィルタが設置されていること)及び運用並びに火山灰の粒径は変わらないため、評価結果に影響を及ぼさないとしている。	2	○ 新規制基準適合時に、換気空調設備の給気系外気取入口は火山灰が侵入しにくい構造であり、各外気取入口には平型フィルタを設置しているため、火山灰が外気取入口に到達した場合であっても、一定以上の粒径の火山灰については、侵入を防止することが可能であるとしている。また、フィルタよりも小さな火山灰が室内に侵入する可能性が考えられるが、閉回路循環運転により火山灰の侵入を阻止することができると評価している。 ⇒ DNP設置許可段階では、当該施設の構造(火山灰が侵入しにくく、各外気取入口には平型フィルタが設置されていること)及び運用並びに火山灰の粒径は変わらないため、評価結果に影響を及ぼさないとしている。	3
格納容器排気筒 補助建屋排気筒	○ 新規制基準適合時に、格納容器排気筒及び補助建屋排気筒の排気速度は、火山灰の降下速度を上回っており、火山灰により閉塞することはないとしている。また、仮に火山灰が侵入した場合でも、排気筒の構造から火山灰により流路を閉塞することはないと評価している。 → NN段置許可段階では、当該施設の構造(仮に火山灰が侵入しても閉塞しない構造であること)並びに火山灰の降下速度は変わらないため、評価結果に影響を及ぼさないとしている。	の	<u></u>	<u>3</u>
取水設備	3	3	<u>3</u>	<u>3</u>
海水ストレーナ	3	3	<u></u>	<u></u>
制御用空気圧縮機	○ 新規制基準適合時に、制御用空気圧縮機が設置された部屋は、中間建屋空調系にて空調管理されており、本空調系の外気取入口には、平型フィルタが設置されているが、これに加えて下流にさらに細かな粒子を捕集可能な相フィルタが設置されているため、他の空調系に比べて火山灰に対する高い防護性能を有しており、侵入する火山灰は微細なものに限られ、また火山灰は硬度が低くもろいことから、摺動部に侵入した火山灰により磨耗が発生することはなく、磨まにより摺動部への影響はないことから、制御用空気圧縮機の機能に影響を及ぼすことはないと評価している。 ⇒ DNP設置許可段階では、当該施設の構造(平型フィルタ及び粗フィルタが設置されていることと指動部の構造)並びに火山灰の粒径及び硬度は変わらないため、評価結果に影響を及ぼさないとしている。	2	3	3
安全保護系計装盤	2	2	<u>③</u>	の
緊急時対策所建屋	3	3	<u></u>	3
基本設計方針	(ロ) 閉塞 ii. 換気系、電気系及び計装制御系に対する機械的影響(閉塞) 防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属する施設及びその他 の施設のうち、屋外に開口しており降下火砕物を含む空気の流路となる換気空調系(外気取入 ロ)については、開口部を下向きの構造とすること、またフィルタを設置することにより降下火砕 物が侵入しにくい構造とし、降下火砕物により閉塞しない設計とする。 換気空調系以外の降下火砕物を含む空気の流路となる施設についても、降下火砕物が侵入しにくい構造、又は降下火砕物を含む空気の流路となる施設についても、降下火砕物が侵入しにくい構造、又は降下火砕物が侵入した場合でも、降下火砕物により流路が閉塞しない設計とする。 (ハ) 磨耗 i.水循環系、換気系、電気系及び計装制御系に対する機械的影響(磨耗) が、防護対象施設の防護対象施設に影響を及ぼす可能性のあるクラス3に属する施設のうち、 外に開口しており降下火砕物を含む海水の流路となる施設、並びに屋外に開口又は屋内の空気を機器内に取り込む機構を有し、かつ摺動部を有する換気系、電気系及び計装制御系の施設については、降下火砕物に対し、機能を損なうおそれがないよう、降下火砕物が侵入しにくい 構造とすること又は磨耗しにくい材料を使用することにより、磨耗しにくい設計とする。	(二)腐食 iii. 換気系、電気系及び計装制御系に対する化学的影響(腐食) 防護対象施設及び防護対象施設に影響を及ぼす可能性のあるクラス3に属する施設のうち、屋外に開口しており降下火砕物を含む空気の流路となる施設については、耐食性のある塗装を実施することにより、降下火砕物により短期的に腐食が発生しない設計とする。	(木)発電所周辺の大気汚染 防護対象施設、防護対象施設に影響を及ぼす可能性のあるクラス3に属する施設及びその他の施設のうち、中央制御室換気空調系については、降下 火砕物が侵入しにくい構造とし、更にフィルタを設置することにより、降下火 砕物が中央制御室に侵入しにくい設計とする。	(へ)絶縁低下 防護対象施設、防護対象施設に影響を及ぼす可能 性のあるクラス3に属する施設及びその他の施設の うち、空気を取り込む機構を有する計装鍵について は、設置場所の換気空調系の屋外開口部を下向きの構造とすること、またフィルタを設置することにより、降下火砕物が侵入しにくい設計とする。

[・]影響因子に対する個別評価を実施 、●:最大層厚見直しに伴い評価結果に影響がある 、〇:最大層厚見直しに伴い評価結果に影響がない、※:既許可で設工認にて評価結果を示すと整理した項目、一:影響因子として確認が不要 (不要とする理由) ① 静的荷重の影響を受けにくい構造(堆積しにくい、堆積しても機能に有意な影響を受けにくい等)、② 腐食があっても、機能に有意な影響を受けにくい、③ 影響因子と直接関連しない

【高浜発電所3, 4号炉 新知見への適合状況説明資料 (DNPに対する防護) 2021年3月18日提出】 P15、P18

2.4 評価すべき影響因子の選定と評価手法

(2)間接的影響

火山灰は広範囲に及ぶことから、広範囲に亘る送電網の損傷による長期の外部電源喪失の可能性、原子力発電所へのアクセス制限事象が発生する可能性も考慮し、間接的影響を評価する。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「1.4 評価すべき影響因子の選定と評価手法」に同じ。

2.6 評価結果

(2)間接的影響の評価結果

高浜発電所3、4号炉の各号炉の非常用所内交流電源設備は、各号炉2台のディーゼル発電機とそれぞれに必要な耐震Sクラスの燃料油貯油そう(号炉当たり165k&:4基)を有している。

これにより、7 日間の外部電源喪失に対して、原子炉の停止、停止後の冷却に係る機能を担うため、非常用ディーゼル発電機の連続運転に必要な容量以上の燃料を貯蔵する設備を有し、必要とされる電力の供給が継続できる構成となっている。

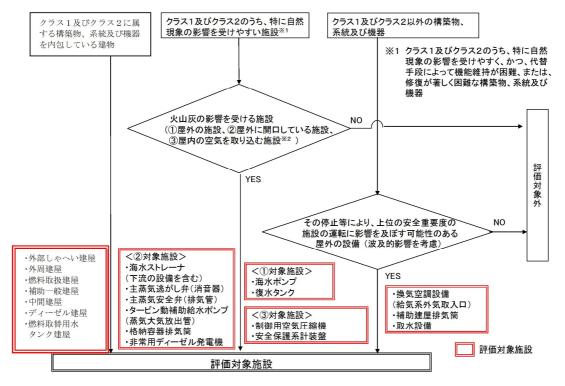
別添1

: 提出した資料に補足説明を追加した箇所

2.3 評価対象施設の抽出

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成25年6月28日原子力規制委員会規則第五号)」第6条において、「安全施設は、想定される自然現象が発生した場合においても安全機能を損なわないものでなければならない。」とされている。

また、「発電用軽水炉型原子炉施設の安全機能の重要度分類に関する審査指針」(平成2年8月30日原子力安全委員会決定)において安全機能を有する構築物、系統及び機器に対する設計上の考慮として、「クラス1では、合理的に達成し得る最高度の信頼性を確保し、かつ、維持すること。クラス2では、高度の信頼性を確保し、かつ、維持すること。クラス3では、一般産業施設と同等以上の安全性を確保し、かつ、維持すること。」が定められている。


以上のことから、図 1.2 の抽出フローより、一般産業施設を超える機能維持を要求しているクラス1及びクラス2に属する構築物、系統及び機器のうち火山灰の影響により、安全機能を損なうおそれがある施設を抽出する。

また、クラス1及びクラス2に属する構築物、系統及び機器を内包している建物についても評価対象施設として抽出するとともに、安全重要度の低い構築物、系統及び機器であっても、火山灰の影響を受けやすく、当該施設の停止等により、上位の安全重要度の施設の運転に影響を及ぼす可能性がある場合は評価対象施設として抽出する。

なお、その他のクラス3に属する施設については、火山灰による影響を受ける場合を考慮して、代替設備により必要な機能を確保できること、又は安全上支障が生じない期間に除灰あるいは修復等による対応も可能である。

評価対象施設の抽出結果を表 1.2 に示すとともに、評価対象施設の設置場所を図 1.3 に示す。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「1.3 評価対象施設の抽出」に同じ。

※2 火山灰を含む外気・室内空気を機器内に取り込む機構を有しない施設又は取り込んだ場合でも、その影響が非常に 小さいと考えられる施設(ポンプ、モータ、弁、盤内に換気ファンを有しない制御盤、計器等)については、評価 対象外とする。

図 1.2 評価対象施設の選定フロー

建物・構築物に係る影響評価

火山灰による建物・構築物への影響について以下のとおり評価する。

(1)評価項目および内容

①構造物への静的負荷(降雨等の影響を含む)

火山灰の堆積荷重により外部しゃへい建屋、外周建屋、燃料取扱建屋、補助一般建屋、中間建屋、ディーゼル建屋及び燃料取替用水タンク建屋の健全性に影響がないことを評価する。なお、堆積荷重には、降雨及び降雪の影響も考慮し、火山灰(湿潤状態)と積雪の組合せについても評価する。

②構造物の化学的影響 (腐食)

火山灰の構造物への付着や堆積による化学的腐食により構造物への影響がないことを評価する。

(2)評価条件

- ①構造物への静的負荷
 - A) 火山灰条件
 - a. 密度:1.5g/cm³ (湿潤状態) (火山灰の単位荷重は堆積量 1cm 当たり 150N/m²)
 - b. 降灰層厚: 27cm
 - B) 積雪条件
 - a. 密度: 0.3g/cm³ (積雪の単位荷重は積雪量 1cm 当たり 30N/m²) *1
 - b. 積雪量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にある。組み合わせる積雪量については、建築基準法に基づき特定行政庁(各自治体)が各地域の気象(積雪) 状況に応じた垂直積雪量を定めており、発電所が立地する地域の気象条件により即した、設計に用いられる積雪量であることから、福井県建築基準法施行細則の垂直積雪量「100cm」(以下、「設計積雪」という。)を用いる。

(3)評価結果

①構造物への静的負荷の成立性確認

建物・構築物について想定される火山灰の降灰層厚が許容層厚を超えないことを確認する。

火山灰による荷重については、30日を目処に速やかに火山灰を除去することから、建築基準法の積雪の考え方に基づき、短期の荷重として扱う。 許容層厚は以下いずれかの手法により算出する。

- 21 -

a. 荷重による評価

鋼材の長期許容応力度に対する短期許容応力度の比が 1.5 であることから、常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和が設計時長期荷重の 1.5 倍に等しくなる層厚

b. 応力度による評価

常時作用する荷重及び降下火砕物等堆積による鉛直荷重の和により発生する応力等が短期許容応力度等と等しくなる層厚

表-1に建物・構築物の許容層厚と火山灰の降灰層厚の比較を示す。

建物・構築物について、想定される火山灰の降灰層厚が許容層厚を超えないことから、火山灰による建物・構築物への静的負荷(降雨等の影響を含む)が安全機能及び必要な機能に影響を及ぼすことはない。

表-1 建物・構築物の許容層厚と火山灰の降灰層厚の比較

建屋	許容層厚 (cm) *	降灰層厚 (cm)
外部しゃへい建屋	100 以上	
外周建屋	54	
燃料取扱建屋	46	
原子炉補助建屋	100 以上	27
中間建屋	100 以上	
ディーゼル建屋	63	
燃料取替用水タンク建屋	100 以上	

※:応力度による評価

また、表-2に建物・構築物の見直し後の層厚(27cm)での応力等の発生値を換算した結果と許容値の比較を示す。

建物・構築物について、想定される火山灰の降灰層厚での発生値が許容値を超えないことから、火山灰による建物・構築物への静的負荷(降雨等の影響を含む)が安全機能及び必要な機能に影響を及ぼすことはない。(図 - 1 参照)

表-2 建物・構築物の降灰層厚での発生値と許容値の比較

建屋	発生値**	許容値*	裕度
外部しゃへい建屋	軸力 243kN/m	許容軸力 3,030kN/m	12.5
外周建屋	曲げモーメント 364kN・m	許容曲げモーメント 449kN·m	1. 23
燃料取扱建屋	曲げモーメント 294kN・m	許容曲げモーメント 350kN·m	1. 19
原子炉補助建屋	曲げモーメント 12.5kN·m/m	許容曲げモーメント 23.0kN·m/m	1.84
中間建屋	せん断力 253kN	許容せん断力 427kN	1. 69
ディーゼル建屋	曲げモーメント 409kN・m	許容曲げモーメント 533kN·m	1. 30
燃料取替用水タンク建屋	曲げモーメント 383kN・m	許容曲げモーメント 668kN·m	1.74

※: 許容値に対して発生値の割合が最も大きくなる評価項目について計算している。

図-1 発生値の換算方法の概要図 (燃料取扱建屋の例)

②構造物への化学的影響 (腐食)

化学的影響については、外装塗装が施されていることから、火山灰による化学的腐食により直ちに機能に影響を及ぼすことはない。

なお、長期的な影響については堆積した火山灰を除去し、除去後の点検等において、必要に応じて補修作業を実施する。

以上

- 24 -

83

復水タンクに係る影響評価

火山灰による復水タンクへの影響について、以下のとおり評価する。

(1)評価項目及び内容

①構造物への静的負荷(降雨等の影響を含む)

火山灰の堆積荷重により復水タンクの機能に影響を及ぼすことがないことを評価する。なお、堆積荷重には、降雪の影響も考慮し、火山灰と積雪の組み合わせも考慮する。火山灰と積雪の荷重条件、並びに荷重評価の考え方は以下のとおりとする。

②構造物の化学的影響(腐食)

火山灰の復水タンクへの付着や堆積による化学的腐食により復水タンクの機能への影響がないことを評価する。

(2)評価条件

- ①構造物への静的負荷
 - A) 火山灰条件
 - a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
 - B) 積雪条件
 - a. 密度: 0.3g/cm³ (積雪の単位荷重は 1cm 当たり 30N/m²) *1
 - b. 堆積量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。
 - C) 火山灰と積雪の荷重条件
 - a. 火山灰荷重=150 (N/m²·cm) ×27 (cm) =4,050 (N/m²)
 - b. 積雪荷重=30 (N/m²·cm) ×100 (cm) =3.000 (N/m²)
 - c. 火山灰と積雪による堆積荷重:7,050 (N/m²)
 - D) 評価部位及び評価方法
 - a. 復水タンクのタンク胴板及び屋根板*を評価対象部位とし、火山灰と 積雪による荷重に対して、応力評価を行う。評価モデルは胴板及び屋 根板をFEMによりモデル化する。

復水タンクのFEM解析に用いた解析条件を以下に示す。

- (1) 解析コード MSC/NASTRAN Ver.2004.5.0
- (2)解析モデル

屋根、胴、支柱及びブラケット等の板部材を板要素で、ラフター 及びラチスを梁要素モデル化する。

- *:屋根板溶接部の脚長を屋根板の厚さに合わせている。(図1参照)
- b. 許容応力は、JEAG4601-1987 に規定されるクラス 2, 3 容器の許容 応力状態ⅢASの許容応力に基づき評価する。

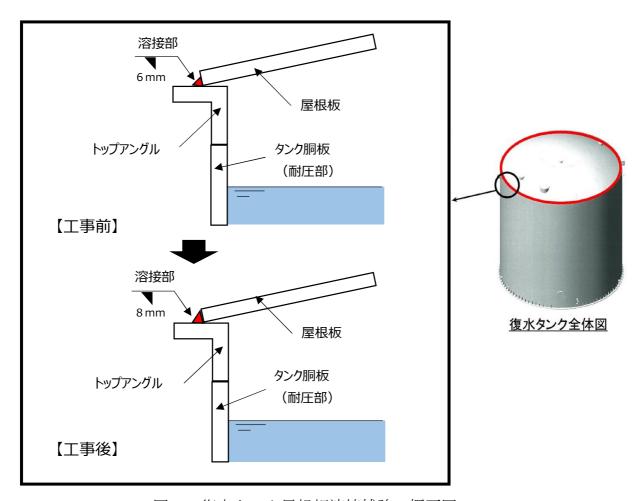


図1 復水タンク屋根板溶接補強の概要図

【補足】

・タンク屋根板の溶接部は、タンクの耐圧部ではなく、工認本文(要目表、基本設計方針)の記載事項でもない。よって、タンク屋根板の溶接については、実用炉規則の別表第一に該当する改造及び修理ではなく、工事認可及び事前届出を要する工事ではないため、自主工事にて溶接補強を実施している。

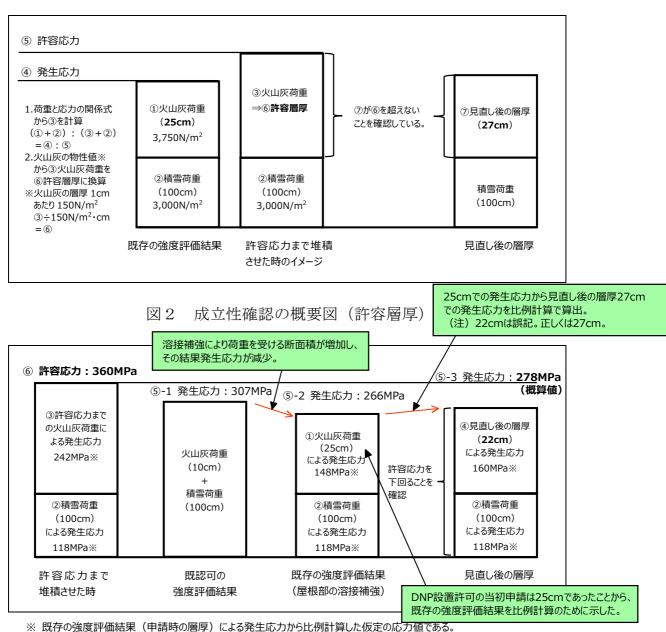
(3)評価結果

①構造物への静的負荷に対する成立性の確認

申請時の層厚 (25cm) での F E M 解析による発生応力と許容応力から許容層厚を算出した結果、火山灰による構造物への静的荷重 (降雨等の影響を含む) が機能に影響を及ぼすことはない。(図-2参照)

降灰層厚 (cm)	許容層厚(cm)
27	40. 7

85


また、申請時の層厚 (25cm) でのFEM解析による発生応力から、見直 し後の層厚 (27cm) での発生応力を概算した結果、許容応力を下回ってい ることから、火山灰による構造物への静的荷重 (降雨等の影響を含む) が 機能に影響を及ぼすことはない。(図-3参照)

発生応力 (MPa)	許容応力(MPa)	裕度
278	360	1. 29

②構造物の化学的影響 (腐食)

化学的影響については、外装塗装が施されていることから、火山灰による化学的腐食により直ちに機能に影響を及ぼすことはない。

また、長期的な影響については堆積した火山灰を除去し、除去後の点検等において、必要に応じて補修作業を実施する。

成行の法及計画相关(中時時の信子)にある光上心力からは可弁した以及の心力値である

図3 成立性確認の概要図(応力換算)

87

(4)関連設備への影響

復水タンクの関連設備として、現場水位計と開口部であるベント管がある。

復水タンク水位計は、図4に示す通り火山灰の堆積荷重を受けにくく、 火山灰が侵入しにくい構造であり、機能に影響を及ぼすことはない。

また、屋根部に設置されているベント管は、図5に示す通り下向きで火山灰が侵入しにくい構造となっており、火山灰の侵入による影響はない。

図4 復水タンク水位計

図5 復水タンクベント管

復水タンクには図6に示すように、階段及び手すり等が設置されており、 火山灰が堆積した場合には、屋根へ上がり除灰作業を行うことができる構造 となっている。

図6 復水タンク外観写真(左側面部、右屋根部)

以上

88

海水ポンプに係る影響評価

火山灰による海水ポンプへの影響について以下のとおり評価する。

(1)評価項目及び内容

①構造物への静的負荷(降雨等の影響を含む)

火山灰が堆積した場合に堆積荷重が厳しい条件となる海水ポンプモータフレームについて健全性に影響がないことを評価する。なお、堆積荷重には、 降雪の影響も考慮し、火山灰と積雪の組み合わせも考慮する。

②構造物の化学的影響 (腐食)

火山灰の海水ポンプへの付着や堆積による化学的腐食により海水ポンプ の機能への影響がないことを評価する。

③水循環系の閉塞による影響

火山灰が混入した海水を海水ポンプにより取水した場合に、流水部、軸 受部が閉塞し、機器の機能に影響がないことを評価する。

④水循環系の化学的影響 (腐食)

火山灰が混入した海水を海水ポンプにて取水することによる、内部構造物の化学的影響(腐食)により機器の機能に影響がないことを評価する。

⑤電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の電動機冷却空気への侵入による地絡・短絡、及び空気冷却器冷

火山灰の電動機冷却空気への侵入による地絡・短絡、及び空気冷却器が 却管への侵入による閉塞等、機器の機能に影響がないことを評価する。

⑥電気系及び計装制御系に対する化学的影響(腐食)

火山灰の電動機冷却空気への侵入による、内部構造物の化学的影響(腐食)により機器の機能に影響がないことを評価する。

(2)評価条件

- ①火山灰条件
 - a. 密度:1.5g/cm³ (湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
 - c. 粒径:1mm以下
- ②積雪条件
 - a. 密度: 0.3g/cm³ (積雪の単位荷重は 1cm 当たり 30N/m²) *1
 - b. 堆積量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。
- ③評価部位及び評価内容

火山灰堆積荷重の影響に係る評価部位は、荷重の影響を受けやすいモー

タフレームとする。

モータフレームに生じる応力は、電動機上面の投影面積の最も大きい外扇カバー全面に均等に火山灰が堆積した場合を想定し、その上で運転時荷重 (ポンプスラスト荷重)が加わる状態で荷重評価の導出を行う。(ここでは、想定堆積荷重として、火山灰と積雪を組み合わせた荷重で算出する。)

(3)評価結果

①構造物への静的負荷(降雨等の影響を含む)

火山灰と積雪による堆積荷重に対する海水ポンプモータフレームについての荷重評価を以下に示す。

a. 火山灰と積雪による堆積荷重

火山灰と積雪による堆積荷重は外扇カバー全面に均等にかかるが、評価モデルは外扇カバー重心位置への集中荷重とする。

火山灰と積雪の単位堆積荷重:

 $(150 \text{ N/m}^2 \times 27 \text{ cm}) + (30 \text{ N/m}^2 \times 100 \text{ cm}) = 7,050 \text{ N/m}^2$

モータ上面面積: 2.752 m×1.204 m=3.32 m²

モータ上面の火山灰と積雪による堆積荷重 Fv は次のとおりとなる。

 $F_v = 7050 \times 3.32 = 2.35 \times 10^4 (N)$

b. モータフレームに常時作用する荷重

モータ自重と運転時荷重であるポンプスラスト軸方向荷重をモータフレームに常時作用する荷重として算出する。

モータ自重 F_d : 10,800 kg×9.80665 m/s²=1.06×10⁵ (N)

ポンプスラスト軸方向荷重 (運転時荷重)

 $F_n: 8.500 \text{ kg} \times 9.80665 \text{ m/s}^2 = 8.34 \times 10^4 \text{ (N)}$

モータフレームに常時作用する荷重 H は次のとおりとなる。

 $H = F_d + F_p = 1.90 \times 10^5 (N)$

c. モータフレームに作用する曲げモーメント

 F_v 及びHはモータフレーム枠内に作用する力であり、モータの中心(軸中心上)を支点として、最も保守的なモーメントを考慮するために、中心からモータフレーム外枠までの距離を作用点として曲げモーメントを算出する。

$$M = (F_V + H) \times \frac{D}{2} = (2.35 \times 10^4 + 1.90 \times 10^5) \times \frac{1400}{2}$$
$$= 1.50 \times 10^8 (N \cdot mm)$$

d. モータフレームに生じる曲げ応力

断面係数 Z は次のように表すことができるので、

$$Z = \frac{1}{6} \left(\frac{D^4 - d^4}{D} \right) = \frac{1}{6} \times \left(\frac{1400^4 - 1382^4}{1400} \right) = 2.31 \times 10^7 (mm^3)$$

モータフレームに生じる曲げ応力 σ_b は次のとおりとなる。

- 31 -

90

$$\sigma_b = \frac{M}{Z} = \frac{1.50 \times 10^8}{2.31 \times 10^7} = 6.5 = 7 \text{(MPa)}$$

e. モータフレームに生じる圧縮応力

フレームの断面積 S は次のように表され、

$$S = D^2 - d^2 = 1400^2 - 1382^2 = 5.01 \times 10^4 (mm^2)$$

モータフレームに生じる圧縮応力 σ_c は以下のとおりとなる。

$$\sigma_c = \frac{F_V + H}{S} = \frac{2.35 \times 10^4 + 1.90 \times 10^5}{5.01 \times 10^4} = 4.3 = 5 \text{ (MPa)}$$

f. 結論

火山灰(積雪)が堆積した場合に上部に位置し荷重の影響や運転状態でのポンプの軸方向荷重の影響も受けるモータフレームにおいて、湿潤状態の火山灰(厚さ $27 \, \mathrm{cm}$ 、密度 $1.5 \, \mathrm{g/cm}^3$)と建築基準法における設計積雪(厚さ $100 \, \mathrm{cm}$ 、密度 $0.3 \, \mathrm{g/cm}^3$)の組み合わせによる堆積荷重 $7,050 \, \mathrm{N/m}^2$ により発生する応力に対し、JEAG4601-1987 の「その他支持構造物」における \mathbf{III}_A S に基づく許容応力と比較し、いずれも十分な裕度を有しており、機能に影響を及ぼすことはない。

表 1 海水ポンプモータに対する火山灰の堆積荷重による応力評価

モータフレーム に生じる応力	算定応力(MPa) (火山灰+積雪)	許容応力** (MPa)	裕度 (火山灰+積雪)	結果
曲げ応力	7	282	40	0
圧縮応力	5	244	48	0

※: JEAG4601-1987 の「その他の支持構造物」におけるⅢSの許容応力

表 2 モータの仕様

項目	条件
モータ全質量m	$10,800 \mathrm{kg}$
ポンプスラスト(常用) P	下向 8.5ton
フレーム外寸	1,400mm
フレーム内寸	1,382mm

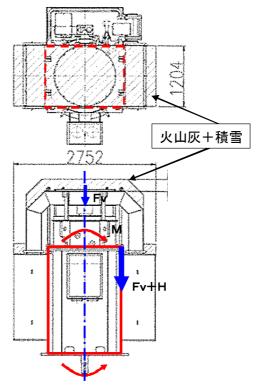


図1 海水ポンプモータフレーム構造

②構造物の化学的影響(降雨等の影響を含む)

外装塗装が施されていることから、火山灰による化学的腐食により直ち に機能に影響を及ぼすことはない。

また、長期的な影響については堆積した火山灰を除去し、除去後の点検において、必要に応じて補修作業を実施する。

③水循環系の閉塞による影響

海水ポンプ軸受潤滑水は、海水ポンプ出口配管から分岐し、ストレーナ (メッシュ間隔:約 1mm) を介して保護管から各軸受に注入される。ストレーナは2系統設置しており、海水ポンプ運転中に必要に応じて通水ライン を切り替えることができ、清掃を実施することも可能である。

ストレーナは、ストレーナ以降の設備に影響を与えるものを除去できるように設計されており、ストレーナを通過するものは、以降の設備に影響を与えることはない。

想定する火山灰の粒径は、1mm 以下であり、ほとんどの火山灰はストレーナを通過することになり、閉塞には至らない。また、軸受部には、異物逃がし溝(上部・中間軸受:約7.5mm 以上(FF 軸受けタイプでは約4mm 以上)、下部軸受:約5.5mm 以上)が設けられており、閉塞には至らない。

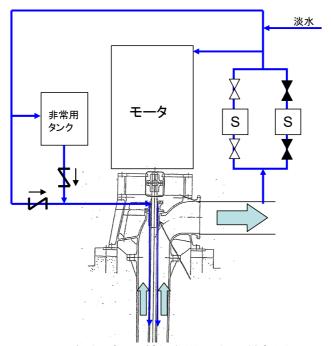


図 2 海水ポンプ軸受潤滑水系統概略図

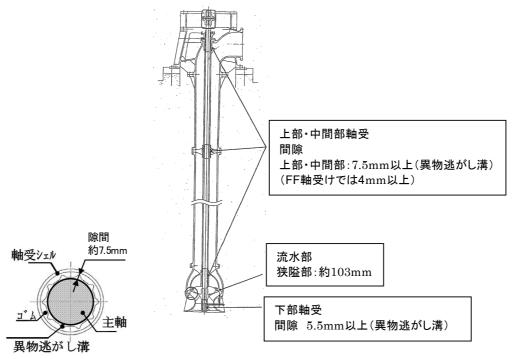


図3 海水ポンプ軸受構造図

④水循環系の化学的影響 (腐食)

海水系の化学的影響については、海水ポンプは防汚塗装等の対応を実施 しており、海水と金属が直接接することはないため、腐食により海水ポンプ の機能に影響を及ぼすことはない。

⑤電気系及び計装制御系に対する機械的影響(降雨等の影響を含む)

海水ポンプモータは、電動機本体を全閉構造とし、空冷式空気冷却器を 電動機の側面に設置して外気を直接電動機内部に取り込まない全閉外扇形 の冷却方式であり火山灰の侵入による影響はない。

立形モータの軸受構造上、軸受油槽内部への異物混入経路として考慮されるのは軸受貫通部であるが、当該部は内部にグリース封入した軸受端カバーでシールされており、火山灰が軸受槽内部に侵入することはない。

また、外気は下方向から取り込まれる構造のため、火山灰が侵入しにくい構造であり、仮に侵入しても冷却管(約 19mm)に対して火山灰の粒径(1mm以下)が十分小さく、運転中はファンからの通風により外部に排出されることから、冷却管が閉塞することはない。

なお、海水ポンプモータは温度監視を実施しており、万一火山灰の影響によりモータ温度の上昇が検知されれば、ポンプの切替え、冷却管の点検、清掃を行う。

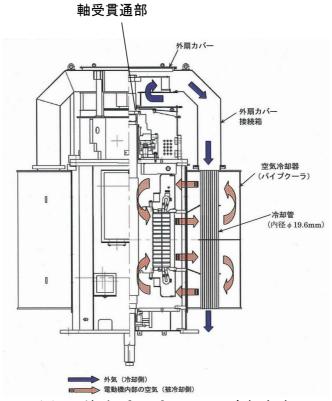


図4 海水ポンプモータの冷却方式

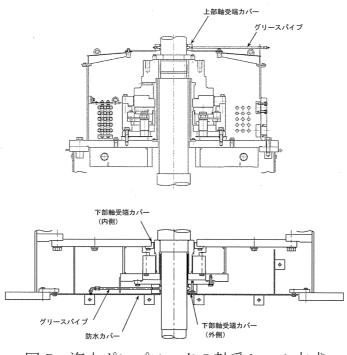


図 5 海水ポンプモータの軸受シール方式

⑥電気系及び計装制御系に対する化学的影響(腐食)

海水ポンプモータは、上述のとおり電動機本体を全閉構造とし、空冷式空気冷却器を電動機の側面に設置して外気を直接電動機内部に取り込まない全閉外扇形の冷却方式であり、火山灰の侵入はないため、化学的な影響はない。

以上

主蒸気逃がし弁(消音器)に係る影響評価

火山灰による主蒸気逃がし弁(消音器)への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系に対する機械的影響(降雨等の影響を含む)

火山灰の主蒸気逃がし弁消音器への侵入により、機器の機能に影響がないことを評価する。具体的には、主蒸気逃がし弁は、火山灰が主蒸気逃がし 弁出口配管に侵入しにくい構造であることと、及び主蒸気逃がし弁の噴出力が火山灰の重量よりも大きいことを確認する。

(2)評価条件

- ①火山灰条件
 - a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
- ②積雪条件
 - a. 密度:0.3g/cm 3 (積雪の単位荷重は1cm 当たり30N/m 2) *1
 - b. 堆積量:100cm^{*2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。

(3)評価結果

①換気系に対する機械的影響(降雨等の影響を含む)

消音器の構造は図 1 の通りパンチ穴が空いたディフューザーと吸音材が 入った多孔板で構成されている。

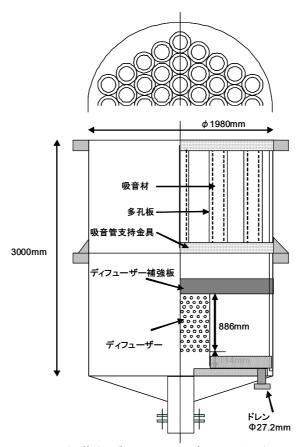


図1 主蒸気逃がし弁消音器の構造図

なお、仮に火山灰が主蒸気逃がし弁出口配管内に侵入し、配管を閉塞させた場合についても以下のとおり評価する。

主蒸気逃がし弁の噴出力の評価においては、想定堆積荷重である湿潤状態の火山灰(厚さ 27cm、密度 1.5g/cm³)と建築基準法における設計積雪(厚さ 100cm、密度 0.3g/cm³)の組み合わせ荷重が加わるとして確認する。

主蒸気逃がし弁の出口配管外径 ϕ 16.52cm であることから、火山灰の堆積 荷重は以下のとおりである。

$$\pi \times (\frac{16.52}{2})^2 \times (27 \times 1.5 + 100 \times 0.3) = 15,112 = 16 \text{(kg)}$$

主蒸気逃がし弁の噴出力は、クールダウン末期の 177 \mathbb{C} の飽和圧力である 8.5kg/cm^2 と、弁出口側の流体通過断面積が約 180cm^2 より、以下のとおりである。

$8.5 \times 180 = 1530 (kg)$

以上より、火山灰が直接配管内に侵入し、仮に配管を閉塞させた場合でも、火山灰(湿潤状態)と積雪の組み合わせ荷重よりも主蒸気逃がし弁の噴出力が十分大きいことから、主蒸気逃がし弁の機能に影響を及ぼすことはない。

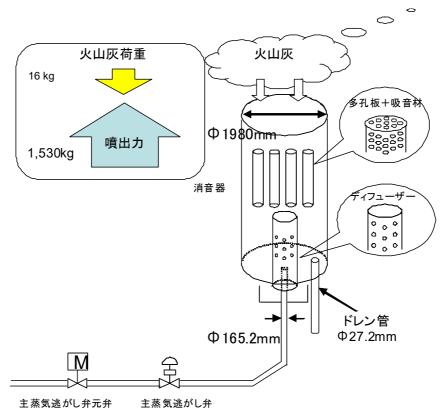


図2 主蒸気逃がし弁出口配管形状および消音器の構造

また、各主蒸気逃がし弁消音器の設置状況より、火山灰の周辺の構築物からの落下による侵入等は考えにくい。

図3 主蒸気逃がし弁消音器の設置状況(左3号炉、右4号炉(各3系統))

以上

主蒸気安全弁排気管に係る影響評価

火山灰による主蒸気安全弁排気管への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系に対する機械的影響(降雨等の影響を含む)

火山灰の主蒸気安全弁排気管への侵入により、機器の機能に影響がないことを評価する。具体的には、主蒸気安全弁は、火山灰が侵入しにくい構造であることと、及び主蒸気安全弁の噴出力が火山灰の重量よりも大きいことを確認する。

(2)評価条件

- ①火山灰条件
 - a. 密度:1.5g/cm³ (湿潤状態) (火山灰の層厚 1cm 当たり 150N/m²)
 - b. 堆積量:27cm
- ②積雪条件
 - a. 密度: 0.3g/cm³ (積雪の単位荷重は 1cm 当たり 30N/m²) *1
 - b. 堆積量:100cm^{※2}
 - ※1: 福井県 建築基準法施行細則に基づく積雪の単位荷重を用いる。
 - ※2: 火山事象と積雪事象は独立の関係にあることから、組み合わせる積雪量については同建築基準法の設計 積雪「100cm」を用いる。

(3)評価結果

①換気系に対する機械的影響(降雨等の影響を含む)

主蒸気安全弁の排気管は図 1 のように斜めに配管が接続される構造となっている。

仮に火山灰が主蒸気安全弁排気管内部に侵入したと仮定すると、大部分はドレン受皿に溜まり、一部主蒸気安全弁の弁出口管に侵入するが、火山灰により出口配管を閉塞させることはないと考えられるため、主蒸気安全弁の蒸気放出機能に影響を与えることはない。

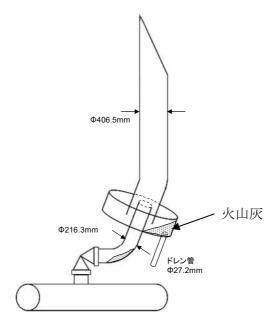


図1 主蒸気安全弁排気管の構造図

なお、仮に火山灰が主蒸気安全弁出口配管内に侵入し、配管を閉塞させた場合についても以下のとおり評価する。

主蒸気安全弁の噴出力の評価においては、想定堆積荷重である湿潤状態の火山灰(厚さ 27cm、密度 1.5g/cm³)と建築基準法における設計積雪(厚さ 100cm、密度 0.3g/cm³)の組み合わせ荷重により評価する。

主蒸気安全弁の出口配管外径 φ 21.63cm であることから、火山灰の堆積荷重は以下のとおりである。

$$\pi \times (\frac{21.63}{2})^2 \times (27 \times 1.5 + 100 \times 0.3) = 25905 = 26 \text{(kg)}$$

主蒸気安全弁の噴出力は、弁の噴出圧力 76.3kg/cm² と、弁出口側の流体 通過断面積が約 323cm²であることから、以下のとおりである。

 $76.3 \times 323 = 24644 \text{(kg)}$

以上より、火山灰が直接配管内に侵入し、仮に配管を閉塞させた場合でも、火山灰(湿潤状態)と積雪の組み合わせ荷重よりも主蒸気安全弁の噴出力が十分大きいことから、主蒸気安全弁の機能に影響を及ぼすことはない。

- 41 -

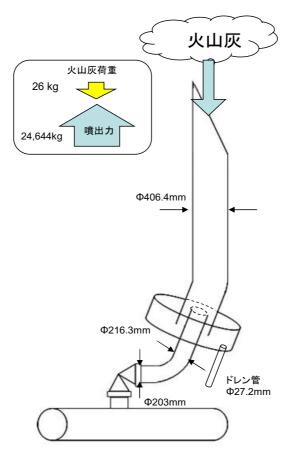


図2 主蒸気安全弁出口配管および排気管の構造

図3 主蒸気安全弁 (排気管) の設置状況 (3号炉)

以 上

配管内部は十分に広いことや、下流のドレン管から火山灰は排出されることから閉塞することなく

機能に影響を及ぼすことはない。

タービン動補助給水ポンプ蒸気大気放出管に係る影響評価

火山灰によるタービン動補助給水ポンプ蒸気大気放出管への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系に対する機械的影響(降雨等の影響を含む)

火山灰のタービン動補助給水ポンプ蒸気大気放出管への侵入により、機器の機能に影響がないことを評価する。具体的には、タービン動補助給水ポンプ蒸気大気放出管は、火山灰が侵入しにくい構造であることを確認する。

(2)評価条件

①火山灰条件

a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量:27cm

(3)評価結果

①換気系に対する機械的影響(降雨等の影響を含む)

タービン動補助給水ポンプの蒸気大気放出管は、火山灰が直接侵入しに くい構造であり、仮に一部火山灰が侵入した場合でも、配管の構造等から閉 塞することなく機能に影響を及ぼすことはない。

タービン動補助給水ポンプの蒸気大気放出管の設置状況を図 1 に、蒸気 大気放出管の構造を図 2 に各々示す。

図1 タービン動補助給水ポンプ蒸気大気放出管の設置状況

102

図2 タービン動補助給水ポンプ蒸気大気放出管の構造

以 上

非常用ディーゼル発電機に係る影響評価

火山灰による非常用ディーゼル発電機への影響について以下のとおり評価する。

(1)評価項目及び内容

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の非常用ディーゼル発電機への侵入等により、機器の機能に影響 がないことを評価する。

(2)評価条件

①火山灰条件

a. 密度:1.5g/cm³ (湿潤状態) (火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量:27cm c. 粒径:1mm以下

(3)評価結果

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む)図 1 に示すとおり、非常用ディーゼル機関の吸入空気の流れは下から吸い上げる構造となっており、火山灰が侵入しにくい構造であり、水分を含んだ火山灰は密度が増し、更に侵入する可能性は小さくなる。更に、フィルタにより粒径 0.18mm 以上のものは 90%以上捕集できる。

仮に過給機に火山灰が侵入しても、過給機における狭隘部はコンプレッサホイルとケーシングの間隙 (0.37mm) であり、想定する火山灰は侵入する可能性があるが火山灰は破砕しやすく、硬度が低いことから過給機を磨耗させることはない。

また、機関吸気に火山灰等の固形物が混入した場合でも、シリンダライナー及びピストンリングは磨耗に強い鋳鉄(ブリネル硬さ*1230 程度(SUS180程度))であること、火山灰は砂と比較して破砕しやすく*2硬度が低く*3、定期検査ごとに行なうシリンダライナー及びピストンリングの点検においても砂等による有意な磨耗影響は確認されていない。長期的な影響についても、シリンダライナー及びピストンの間隙内へ侵入した火山灰は、シリンダとピストン双方の摺動運動が繰り返されるごとに、更に細かな粒子に破砕され、破砕された粒子はシリンダライナー及びピストンリング間隙に付着している潤滑油により機関外へ除去されること、また火山灰が燃焼室内に一時的に滞留したとしても、排気ガスと共に大気へ放出されることから、火山灰粒子による長期的な影響も小さいと考えられる。

なお、吸気消音器及び空気冷却器(空気側)についても、狭隘部等はなく、火山灰により、機能に影響を及ぼすことはない。

- ※1 ブリネル硬さとは、一般的に金属等の工業材料に用いられる硬さの単位
- ※2 武若耕司(2004):シラスコンクリートの特徴とその実用化の現状、コンクリート工学、vol.42、No.3、p.38-47
- ※3 恒松修二・井上耕三・松田応作(1976):シラスを主原料とする結晶化ガラス、窯業協会誌 84[6]、p.32-40

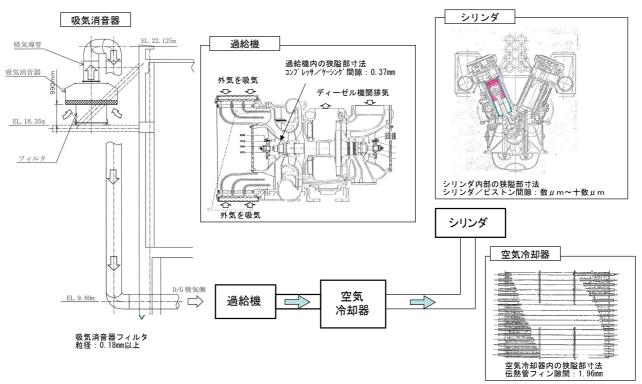


図1 非常用ディーゼル機関の吸入空気の流れ

(4) 関連設備への影響

非常用ディーゼル発電機の関連設備として、非常用ディーゼル発電機燃料油貯油そうがある。

非常用ディーゼル発電機燃料油貯油そうは地下タンクであり、火山灰による直接的影響を受けないが、ベント管については屋外にあることから影響について確認する。

非常用ディーゼル発電機燃料油貯油そうのベント管は、図 2 に示すとおり開口部が下向きとなっており、火山灰が侵入しにくい構造となっている。また、地上面から約 11.5mの位置にベント管の開口部があり、火山灰の吹き上がりによる侵入の影響も考えにくい。

更に、ディーゼル機関の燃料油系統には燃料油こし器*があり、運転に 影響がある大きさの異物は除去される。

なお、燃料油フィルタはストレーナが2台ずつ設置されており、切替えも可能である。

(※) 燃料油こし器の網目:120 メッシュ、200 メッシュ

図2 燃料油貯油そうベント管の外観写真(右は拡大写真)

以上

換気空調設備(給気系外気取入口)に係る影響評価

火山灰による換気空調設備(給気系外気取入口)への影響について以下のと おり評価する。

(1)評価項目及び内容

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の換気空調設備(給気系外気取入口)への侵入等により、機器の 機能に影響がないことを評価する。

<評価対象設備>

換気空調設備(給気系外気取入口)

[中央制御室空調装置、安全補機開閉器室空調装置、ディーゼル発電機室 換気空調設備、補助給水ポンプ室換気空調設備、中間建屋換気空調設備、 主蒸気配管室換気空調設備、格納容器換気空調設備、燃料取扱室空調装 置、補助建屋換気空調設備、主給水配管室換気空調設備、放射線管理室 空調装置]

②発電所周辺の大気汚染

火山灰により汚染された発電所周辺の大気が換気空調設備を経て運転員が常駐している中央制御室の居住性に影響がないことを評価する。

中央制御室換気空調装置は、火山灰が降灰した際に閉回路循環運転により外気の取り込みを一時的に停止することが可能であるが、その場合の中央制御室内の居住性について、中央制御室内に滞在する運転員の操作環境の劣化を防ぐために、酸素濃度及び炭酸ガス濃度の評価を行う。

(2)評価条件

①火山灰条件

a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量: 27cm c. 粒径: 1mm 以下

(3)評価結果

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 図 1 に示すとおり、各換気空調設備の給気系外気取入口は、火山灰が侵入しにくい構造であり、水分を含んだ火山灰は密度が増し、更に侵入する可能性は小さくなる。

また、各外気取入口には平型フィルタが設置されており、火山灰が外気取入口に侵入した場合であっても、平型フィルタは、数 μ m オーダーの粒子に対し除塵効率が 9割程度あり、フィルタより大きな火山灰が除去されることから、給気を供給する系統及び機器に対して火山灰が与える影響は小さいと考えられる。図 2 に示すとおり、各フィルタについては、各建屋等からの

アクセス性がよく、必要に応じて清掃及び交換することにより除灰ができる ことも確認している。

屋内への火山灰の侵入について、外気を取り入れしている空調系統として、中央制御室空調装置、安全補機開閉器室空調装置、ディーゼル発電機室換気空調設備、補助給水ポンプ室換気空調設備、中間建屋換気空調設備、主蒸気配管室換気空調設備、格納容器換気空調設備、燃料取扱室空調装置、補助建屋換気空調設備、主給水配管室換気空調設備、放射線管理室空調装置がある。

各外気取入口には平型フィルタ(主として粒径が 5μ m より大きい粒子を捕集可能)を設置しているため、火山灰が外気取入口に到達した場合であっても、一定以上の粒径の火山灰については、平型フィルタにより侵入を阻止することが可能である。

また、フィルタよりも小さな火山灰が室内へ侵入する可能性が考えられるが、上記の系統のうち、外気取入用ダンパが設置されており閉回路循環運転が可能である中央制御室、安全補機開閉器室の空調系については、火山灰の侵入が想定される場合には、外気取入ダンパを閉止し、閉回路循環運転を行うことにより、火山灰の侵入を阻止することが可能である。その他の系統については、換気空調設備を停止することにより、火山灰の侵入を阻止することが可能である。

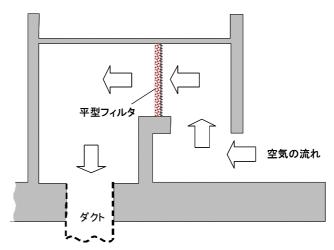


図1 中央制御室外気取入口の空気の流れ

- 49 - 108

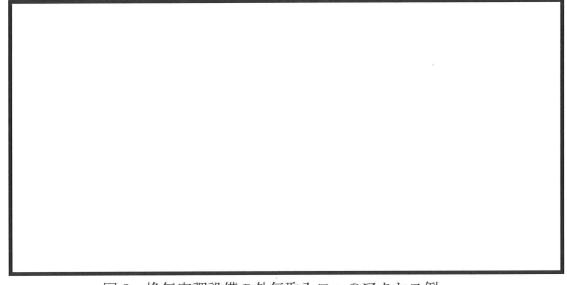


図2 換気空調設備の外気取入口へのアクセス例

枠囲みの範囲は機密に係る事項ですので公開することはできません。

②発電所周辺の大気汚染

中央制御室空調系については、外気取入ダンパを閉止し、外気隔離運転することも可能であり、その場合でも中央制御室の居住性が維持されることを確認している。(図3参照)

a. 酸素濃度

「空気調和・衛生工学便覧 空調設備篇」に基づき、酸素濃度は表 1 のとおり 93 時間外気取入を遮断したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えないことを確認した。

衣 1 中大 同 岬 主 り 飯 糸 仮 及 叶 画 加 木				
時間	12 時間	24 時間	36 時間	93 時間
酸素濃度	20.69 %	20.44 %	20.19 %	19.00 %

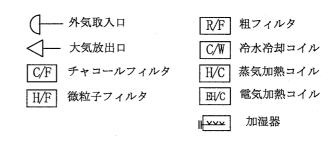
表1 中央制御室の酸素濃度評価結果

(評価条件)

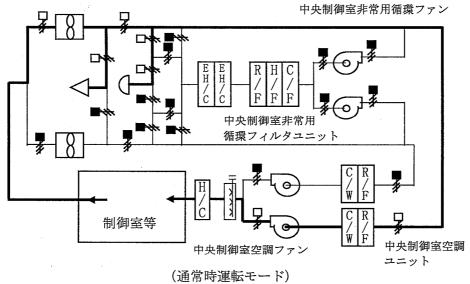
- ·在室人員 15名
- ・中央制御室バウンダリ内体積 4.700m3
- ・空気流入はないものとして評価する。
- •初期酸素濃度 20.95 %
- ・1人当たりの呼吸量は、事故時の運転操作を想定し、歩行時の呼吸量 を適用して、24 ℓ/min とする。
- ・1 人当たりの酸素消費量は、呼気の酸素濃度: 16.40 %として、65.52 ℓ/h とする。
- ・許容酸素濃度 19 %以上(鉱山保安法施行規則から)

b. 炭酸ガス濃度

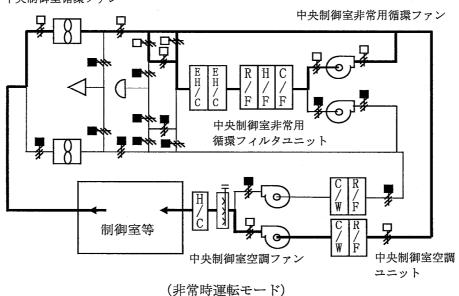
「空気調和・衛生工学便覧 空調設備篇」に基づき、炭酸ガス濃度は表2のとおり66時間外気取入れを遮断したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えないことを確認した。


表 2 中央制御室の炭酸ガス濃度評価結果

時間	12 時間	24 時間	36 時間	66 時間
炭酸ガス濃度	0.207 %	0.383 %	0.559~%	0.999 %


(評価条件)

- 在室人員 15 名
- ・中央制御室バウンダリ内体積 4,700m3
- ・空気流入はないものとして評価する。
- ・初期炭酸ガス濃度 0.03 %
- ・1人当たりの炭酸ガス吐出量は、事故時の運転操作を想定し、中等作業時の吐出量を適用して、0.046 m³/h とする。
- ・許容炭酸ガス濃度 1.0%以下(鉱山保安法施行規則から)


- 51 - 110

中央制御室循環ファン

中央制御室循環ファン

(注)上記は3号炉の制御室換気空調設 備の概要図を示す。4号炉も同じ。

図3 中央制御室空調装置 概略系統図

以上

- 52 - 111

排気筒に係る影響評価

火山灰による排気筒(格納容器排気筒、補助建屋排気筒)への影響について 以下のとおり評価する。

(1)評価項目及び内容

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の排気筒への侵入により、排気筒への機能に影響がないことを評価する。具体的には、排気筒の排気速度が火山灰の降下速度よりも大きく、火山灰が排気筒へ侵入しないことを確認する。また、火山灰が侵入したとしても流路が閉塞しないことを確認する。

②換気系に対する化学的影響 (腐食)

火山灰の付着に伴う構造物の腐食により、排気筒の機能に影響がないことを評価する。

(2)評価条件

①火山灰条件

a. 密度:1.5g/cm³(湿潤状態)(火山灰の層厚 1cm 当たり 150N/m²)

b. 堆積量: 27cm c. 粒径: 1mm 以下

(3)評価結果

①換気系、電気系及び計装制御系に対する機械的影響(降雨等の影響を含む) 火山灰の降下速度と排気筒の排気速度の評価について以下に示す。

a. 火山灰の降下速度

火山灰粒子の降下速度を単粒子の自由降下*と考えてモデル化し、以下のとおり導出する。

降下速度W_f (m/s) は次式で表される。

$$W_{\rm f} = \sqrt{\frac{4}{3} \times \frac{g}{C_{\rm W}} \times \frac{\rho_{\rm K} - \rho_{\rm L}}{\rho_{\rm L}} \times d_{\rm K}}}$$

重力加速度 $g = 9.80665 (m/s^2)$

抵抗係数 $C_w = 0.44$

粒子密度 $\rho_{\kappa} = 1500 (kg/m^3)$

空気密度 $\rho_r = 1.1(kg/m^3)$

粒子径 $d_{\kappa}(m)$

本評価では排気筒の排気速度(吹き出し風速)との比較を行うことから、 降下速度が大きいほど保守的となるため、上式より粒子密度と粒子径はいず れも大きい方が降下速度も大きくなる。 そのため、本評価では想定される火山灰の特性として設定された、湿潤密度 $1,500 \text{kg/m}^3 (1.5 \text{g/cm}^3)$ 、粒子径 0.001 m (1 mm)の火山灰粒子を用いて降下速度を算出すると以下となる。

$$W_{f} = \sqrt{\frac{4}{3} \times \frac{9.80665}{0.44} \times \frac{1500 - 1.1}{1.1} \times 0.001} = 6.36 \Rightarrow 6.4 \text{(m/s)}$$

(※) 単粒子が静止した気体中を自由落下し、粒子の流体抵抗、重力及び浮力の間に 釣り合いの状態が生じたときの粒子の速度

【参考文献】「流体-固体二相流-空気輸送と水力輸送-」日刊工業新聞社 森川敬信 著

b. 各排気筒の排気速度

高浜3、4号炉の格納容器排気筒及び補助建屋排気筒は、常時排気があり、格納容器排気筒及び補助建屋排気筒に接続されている排気量及び排気筒サイズは表のとおりである。

表1 高浜3、4号炉の各排気筒に接続されている系統の排気量

	高浜3号炉	高浜3号炉	高浜4号炉	高浜4号炉
	格納容器排気筒	補助建屋排気筒	格納容器排気筒	補助建屋排気筒
アニュラス空				
気浄化系統				
安全補機室空	(56m³/min×1 台) **		(56m³/min×1 台) **	
気浄化系統	(90Ш/ШШХІ Д)		(бош-лиш-т д)	
格納容器排気			_	
系統	_		_	
燃料取扱室排	1,400m³/min×1 台		1,400m³/min×1 台	
気系統	1,400III/IIII/1 🗆		1,400m/mm/1 🗇	
放射線管理室	800m³/min×1 台			
排気系統				
補助建屋排気		2,000m³/min×2 台		2,070m³/min×2 台
系統		2,000m9/mm×2 🖻		2,070m9/mm×2 🛱
合計排気量	2,200m³/min	4,000m³/min	1,400m³/min	4,140m³/min
排気筒サイズ 2,200mm×1,500mm 2,200mm×1,500mm 1,900mm×1,500mm 2,300mm×1,500mm				

(※)連続運転ではないので、保守的に吹き出し風速算出に考慮しない

各排気筒の排気量より、排気速度(吹き出し速度)は下式で求められる。

$$V = rac{Q}{A}$$
 排気筒吹き出し速度 $V(m/s)$ 合計排気量 $Q(m^3/s)$ 排気筒断面積 $A(m^2)$

表 2 高浜 3、4号炉の各排気筒の排気速度

	高浜3号炉	高浜3号炉	高浜4号炉	高浜4号炉
	格納容器排気筒	補助建屋排気筒	格納容器排気筒	補助建屋排気筒
排気速度	11.1m/s	$20.2 \mathrm{m/s}$	8.1m/s	20.0m/s

以上より、各排気筒の排気速度(吹き出し速度)は火山灰の降下速度 6.4m/sを上回ることから、火山灰が排気筒内へ侵入することはない。

仮に、火山灰が直接格納容器排気筒及び補助建屋排気筒内に侵入した場合でも、排気筒の構造から火山灰により流路を閉塞することはなく、ドレンから排出することも可能であり、機能に影響を及ぼすことはない。 (図1参照)

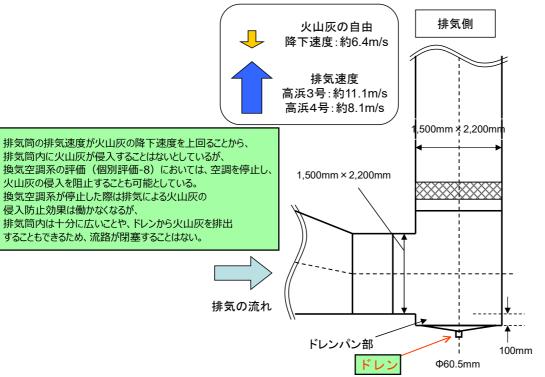


図1 格納容器排気筒曲がり部の構造(高浜3号炉)

②換気系に対する化学的影響 (腐食)

火山灰による化学的腐食を想定しても、屋外設備である排気筒は外面塗装等による対応を行っていることから、直ちに腐食により排気筒の機能に影響を及ぼすことはない。

なお、長期的な影響については、火山灰が排気筒に侵入した場合でも、 内部の点検や除去が可能であり、その状況に応じて補修作業を行う。

以上

- 55 - 114

海水取水設備に係る影響評価

火山灰による海水取水設備への影響について以下のとおり評価する。

(1)評価項目及び内容

①水循環系の閉塞

火山灰が混入した海水を取水することにより、海水取水設備が閉塞しないことを評価する。

②水循環系の化学的影響 (腐食)

火山灰が混入した海水を取水することによる構造物内部の腐食により機器の機能に影響がないことを評価する。

(2)評価条件

①火山灰条件

a. 粒径:1mm以下

(3)評価結果

①水循環系の閉塞

取水設備は図 1 に示すとおり、順にくらげ防止網、レーキ付バースクリーン、ロータリースクリーンとの構成になっており、海水中の大きな塵芥の除去を実施している。表 1 には取水設備のメッシュの間隔を示す。

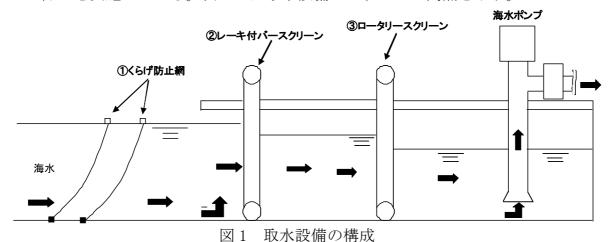


表1 取水設備のメッシュ間隔

	①くらげ防止網	②レーキ付バースクリーン	③ロータリースクリーン
メッシュ間隔	メッシュ:45mm	バーピッチ:49mm	メッシュ:6mm

以上より、取水設備のメッシュ間隔に対して、想定する火山灰の粒径は 十分小さく、また、粘性を生じさせる粘土鉱物等は含まれていないことから 除塵装置が閉塞することはない。

115

②水循環系の化学的影響 (腐食)

海水系の化学的影響については、海水中の火山灰濃度は非常に希薄であること、除塵装置は防汚塗装等の対応を実施しており、海水と金属が直接接することはなく、直ちに腐食により機能に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「個別評価-10」に同じ。

DNP設置許可では、海水中の火山灰濃度がどの程度であれば希薄とするのか議論されていないが、腐食に対する火山防護設計としては、防汚塗装を施すことで機能に影響を及ぼすことはないとしている。

以上

- 57 - 116

海水ストレーナに係る影響評価

火山灰による海水ストレーナ(下流設備を含む)への影響について以下のと おり評価する。

(1)評価項目及び内容

①水循環系の閉塞

火山灰が混入した海水を取水することにより、海水ストレーナ(下流設備を含む)が閉塞しないことを評価する。

②水循環系の化学的影響 (腐食)

火山灰が混入した海水を取水することによる構造物内部の腐食により機器の機能に影響がないことを評価する。

(2)評価条件

①火山灰条件

a. 粒径:1mm以下

(3)評価結果

①水循環系の閉塞

火山灰の粒径は、海水ストレーナのエレメントのメッシュサイズ(直径 8mm)より小さく、海水ストレーナが閉塞することはなく、機能に影響を及ぼすことはない。

海水ストレーナのメッシュを通過した火山灰の粒子は、下流の冷却器の冷却管(表1参照)に対して粒子が十分小さく、冷却管の閉塞により、下流の機器に影響を及ぼすことはない。また、各冷却器に通水される海水の流量は大きいことから、火山灰が冷却管内で堆積し閉塞することは考えにくい。

機器名		冷却管内径	海水流量
	清水冷却器	約 13mm	
非常用ディーゼル	潤滑油冷却器	約 13mm	約 297 m³/h
発電機	燃料弁冷却水冷却器	約 13mm	ポリ 29 1 m 9 n
	空気冷却器	約 10mm	
空調用冷凍機		約 14mm	約 229 m³/h
原子炉補機冷却水冷却器		約 16mm	約 2000 m³/h

表1 冷却器の冷却管の内径及び海水流量

②水循環系の化学的影響 (腐食)

化学的影響については、海水ストレーナ下流の機器の冷却器(細管)についても、耐食性のある材料を用いていること、並びに連続通水状態であり著しい腐食環境にはならないことから、腐食により下流の機器に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「個別評価-11」に同じ。

以上

制御用空気圧縮機に係る影響評価

火山灰による制御用空気圧縮機への影響について以下のとおり評価する。

(1) 評価項目及び内容

①換気系、電気系及び計装制御系に対する機械的影響(磨耗) 火山灰が制御用空気圧縮機の摺動部に侵入する可能性を考慮し、侵入 した場合の影響について評価する。

(2) 評価条件

①火山灰条件

a. 粒 径:1 mm 以下

(3)評価結果

制御用空気圧縮機が設置されているエリアは、中間建屋空調設備にて空調管理されている。

制御用空気圧縮機は、室内の空気を吸入して圧縮空気を供給しているため、火山灰の降灰の際に、機器内に火山灰が侵入する可能性があるが、中間建屋換気空調設備の外気取入口には、平型フィルタ(粒径がおよそ $5~\mu$ mより大きい粒子を除去)が設置されており、これに加えて下流側にさらに細かな粒子を捕集可能な粗フィルタ(粒径がおよそ $2~\mu$ mより大きな粒子を除去)が設置されている。このため、他の空調設備に比べて、火山灰に対して高い防護性能を有しており、室内に侵入した火山灰の粒径はほぼ $2~\mu$ m以下の細かな粒子であると推定される。

なお、微細な粒子であっても、制御用空気圧縮機のシリンダライナ内面と ピストンリングは直接、接触摺動している状態であり、機器内に吸入された 火山灰がシリンダライナ内面とピストンリングの間に侵入した場合には摩 耗発生が懸念される。

しかしながら、シリンダライナはハードクロムメッキ処理、ピストンリングはカーボングラファイトであり、火山灰は硬度が低くもろいことから、摺動部に侵入した火山灰により磨耗が発生し、摺動部に損傷を発生させることはない。さらに、火山灰の降灰時には、外気取入ダンパを閉止することにより侵入を阻止することが可能であることから、制御用空気圧縮機の機能に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出資料のうち「個別評価-12」に同じ。

以上

118

安全保護系計装盤に係る影響評価

火山灰による安全保護系計装盤への影響について以下のとおり評価する。

(1) 評価項目及び内容

無縁低下

火山灰が盤内に侵入する可能性及び侵入した場合の影響について評価する。

(2) 評価条件

- ① 火山灰条件
 - a. 粒 径:1 mm 以下

(3) 評価結果

安全保護系の計装盤が設置されているエリアは、安全補機開閉器室空調 装置にて空調管理されている。

安全保護系の計装盤には、その発生熱量に応じて盤内に換気ファンを設置している場合があるため、換気に伴い火山灰が計装盤内に侵入する可能性が考えられるが、安全補機開閉器室空調系の外気取入口には平型フィルタ(粒径がおよそ $5~\mu$ mより大きい粒子を除去)が設置されていおり、これに加えて下流側にさらに細かな粒子を捕集可能な粗フィルタ(粒径がおよそ $2~\mu$ mより大きな粒子を除去)が設置されている。

このため、他の空調系に比べて火山灰に対する高い防護性能を有しており、室内に侵入した火山灰の粒径はほぼ 2μ m以下の細かな粒子であると推定される。

なお、微細な粒子であっても、火山灰が盤内に侵入した場合には、その付着等により短絡等を発生することが懸念されるが、計装盤において数 μ m程度の線間距離となるのは、集積回路(I C など)の内部であり、これら部品はモールド(樹脂)で保護されているため、火山灰が侵入することはない。また、端子台等の充電部が露出している箇所については、端子間の距離が数mm程度あることから、火山灰の付着等により短絡等を発生させる可能性はない。さらに、火山灰の降灰時には、外気取入ダンパを閉止し閉回路循環運転を行うことにより侵入を阻止することが可能であることから、安全保護系計装盤の機能に影響を及ぼすことはない。

なお、上記の内容については、既提出資料から変更がないため、既提出 資料のうち「個別評価-13」に同じ。

以上

119

【高浜発電所3, 4号炉 新知見への適合状況説明資料 (DNPに対する防護) 2021年3月18日提出】 P144~148

3. 海水ポンプ及び海水ストレーナに対する気中降下火砕物濃度の影響について

1. 概 要

海水ポンプ及び海水ストレーナに対する降下火砕物の影響として、新規制基準適合性審査 時において荷重、閉塞、腐食、磨耗による影響評価を実施しているが、実用炉規則の改正を 踏まえ気中降下火砕物濃度を考慮した影響評価を実施する。

2. 気中降下火砕物濃度に対して評価が必要な影響因子

海水ポンプ及び海水ストレーナに対する降下火砕物による影響因子(荷重、閉塞、腐食、 磨耗)について、新規制基準適合性審査時の評価結果を踏まえ、気中降下火砕物濃度を考慮 した評価を行う。

(1) 海水ポンプ

① 荷重

【新規制基準適合性審査時における評価】

設置許可において設定した層厚「<u>27cm</u>」に積雪及び風を考慮して荷重評価を行い、 問題ないことを評価している。

【気中降下火砕物濃度を考慮した評価】

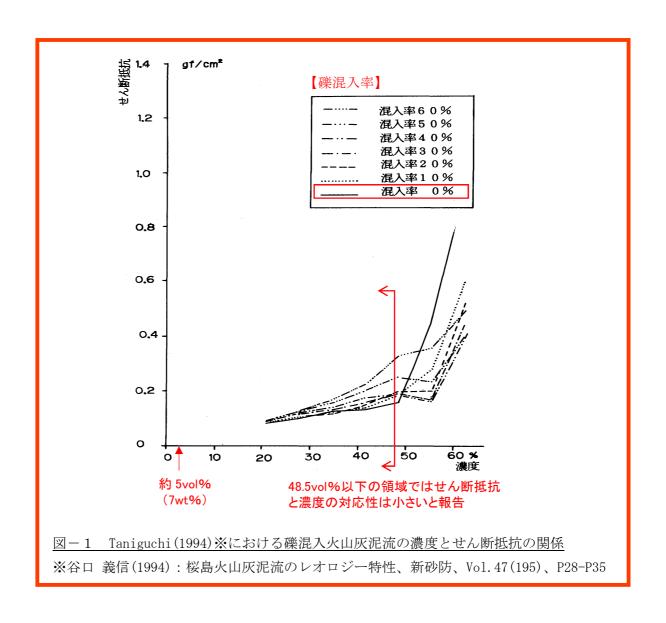
想定する降下火砕物の層厚「<u>27cm</u>」は変わらないことから、荷重に対する評価に影響はない。

② 閉塞

【新規制基準適合性審査時における評価】

設置許可において設定した降下火砕物の粒径「1mm以下」に対し、流水部、軸受の間隙(異物逃がし溝)が降下火砕物の粒径より大きいこと、及び電動機が全閉型であることから、閉塞するおそれはないと評価している。

【気中降下火砕物濃度を考慮した評価】


想定する降下火砕物の粒径「1mm以下」は変わらないことから、閉塞に対する評価に 影響はない。

なお、気中降下火砕物濃度を考慮すると、短期間で降下火砕物が海面に降ることにより、海水中の降下火砕物濃度が上昇する可能性が懸念されるが、以下の理由により 閉塞に対する評価に影響はない。

- ・降下火砕物は、粒径分布に関わらず、海水との密度差により海水面に浮くか又は 短時間で海底に沈むため、海水中の降下火砕物濃度が極めて高くなることは考え にくい。
- ・海水中の降下火砕物の性質(沈むものの割合、沈降速度等)は粒径により変化するものと考えられるが、想定する層厚「27cm」に対して海水ポンプ室底面は十分な深さ(6.45m)があり、仮に降下火砕物が海水中に均一に分散したとしても、濃度は7wt%程度である。(表-1参照)
- ・層厚増加に伴い濃度が 4wt%程度から 7wt%程度に増加するが、図-1で示す火山 灰の容積濃度とせん断抵抗の関係図では、火山灰濃度が 7wt%程度の領域で、せん 断応力の著しい増加はないことから、火山灰層厚の増加に伴う海水の著しい粘性 増加は起こらない。したがって、火山灰層厚の増加が海水ポンプの運転に影響を 及ぼすことはない。
- ・海水ポンプ室へ入る降下火砕物は、取水口から海水取水トンネルを通って海水ポンプ室へ流入するものが想定されるが、海水取水トンネルの形状により、海水ポンプ室外の海面へ降った降下火砕物が海水ポンプ室へ多量流入する可能性は低い。 (海水ポンプ室及び海水取水トンネルの形状を図—2に示す。)
- ・海水ポンプ吸い込み口は海水ポンプ室底面より 1m 以上高いレベルにある。したがって、降下火砕物が海水ポンプ室底面に堆積しても海水ポンプの取水に影響を及ぼすことはない。

表-1 層厚と海水中の濃度

プラント	見直し後 の層厚	海水ポンプ 底面の深さ	濃度	【参考】 層厚見直し前 の濃度
高浜3,4号炉	27 c m	6.45 m	7wt%	4wt%

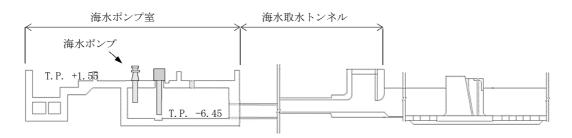


図-2 海水ポンプ室及び海水取水トンネルの形状

③ 腐食

【新規制基準適合性審査時における評価】

海水ポンプは防汚塗装を施しており、海水と金属が接することはない。海水ポンプ モータは、全閉構造であることから、火山灰の侵入による影響はない。

【気中降下火砕物濃度を考慮した評価】

気中降下火砕物濃度を考慮しても、腐食に対する評価に影響はない。

④ 磨耗

【新規制基準適合性審査時における評価】

海水ポンプモータが全閉構造であることから、磨耗への影響はないことを確認している。

【気中降下火砕物濃度を考慮した評価】

気中降下火砕物濃度を考慮しても、磨耗に対する評価に影響はない。

なお、気中降下火砕物濃度を考慮すると、短期間で降下火砕物が海面に降ることにより、海水中の降下火砕物濃度が上昇する可能性が懸念されるが、以下の理由により 磨耗に対する評価に影響はない。

- ・海水ポンプは通常運転時においても磨耗を引き起こす要因となりうる砂を含む海水を通水しながら運転しており、特に台風等の強風時は海底の砂を多量に含んだ海水を通水しているが、海水ポンプの磨耗によるトラブルは発生していない。
- ・降下火砕物は海水との密度差により海水面に浮くか又は短時間で海底に沈むため、海水中の降下火砕物濃度が極めて高くなることは考えにくい。したがって、短期(24 時間)でポンプの運転に支障をきたすような磨耗が発生することは考えにくい。

(2) 海水ストレーナ

① 閉塞

【新規制基準適合性審査時における評価】

設置許可において設定した降下火砕物の粒径「1mm以下」に対し、海水ストレーナメッシュが大きいことから、閉塞するおそれはないと評価している。また、下流設備である非常用ディーゼル機関の冷却器、空調用冷凍機、原子炉補機冷却水冷却器においても閉塞することはないと評価している。

【気中降下火砕物濃度を考慮した評価】

想定する降下火砕物の粒径「1mm以下」は変わらないことから、閉塞に対する評価に 影響はない。

なお、気中降下火砕物濃度を考慮すると、短期間で降下火砕物が海面に降ることにより、海水中の降下火砕物濃度が上昇する可能性が懸念されるが、以下の理由により閉塞に対する評価に影響はない。

- ・降下火砕物は、粒径分布に関わらず、海水との密度差により海水面に浮くか又は 短時間で海底に沈むため、海水中の降下火砕物濃度が極めて高くなることは考え にくい。
- ・海水中の降下火砕物の性質(沈むものの割合、沈降速度等)は粒径により変化するものと考えられるが、想定する層厚「27cm」に対して海水ポンプ室底面は十分な深さ(6.45m)があり、仮に降下火砕物が海水中に均一に分散したとしても、濃度は7wt%程度である。(表-1参照)
- ・<u>層厚増加に伴い濃度が 4wt%程度から 7wt%程度に増加するが、図-1で示す火山</u> 灰の容積濃度とせん断抵抗の関係図では、火山灰濃度が 7wt%程度の領域で、せん 断応力の著しい増加はないことから、火山灰層厚の増加に伴う海水の著しい粘性 増加は起こらない。したがって、火山灰層厚の増加が海水ポンプの運転に影響を 及ぼすことはない。
- ・海水ポンプ室へ入る降下火砕物は、取水口から海水取水トンネルを通って海水ポンプ室へ流入するものが想定されるが、海水取水トンネルの形状により、海水ポンプ室外の海面へ降った降下火砕物が海水ポンプ室へ多量流入する可能性は低い。 (海水ポンプ室及び海水取水トンネルの形状を図—2に示す。)

② 腐食

【新規制基準適合性審査時における評価】

海水ストレーナは外装塗装が施されていることから、直ちに腐食により機能を喪失 することはない。

【気中降下火砕物濃度を考慮した評価】

気中降下火砕物濃度を考慮しても、腐食に対する評価に影響はない。

3. まとめ

海水ポンプ及び海水ストレーナに対する降下火砕物の影響は、荷重、閉塞、腐食、磨耗が 想定されるが、各影響因子に対して気中降下火砕物濃度を考慮した影響評価を実施した結果、 健全性に問題がないことを確認した。

以上

構造強度の設計における保守性の担保について

1. 概要

本資料は、降下火砕物等堆積時における構造強度設計において変更を伴った評価手法及び評価条件に対する保守性の担保について説明をするものである。なお、防護すべき施設を内包する建屋(建物・構築物)の評価手法の変更に対する保守性の担保については、補足3「降下火砕物等堆積時のおける鉛直荷重に対する建物・構築物の評価手法について」に示す。

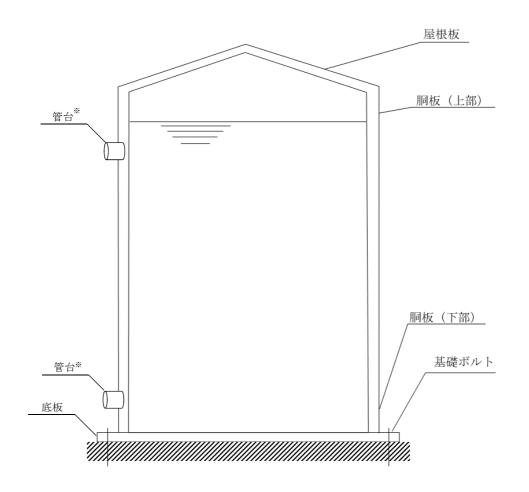
2. 屋外タンク及び海水ポンプの評価手法・評価条件

高浜3,4号機においては、屋外タンク及び海水ポンプ共に評価手法・評価条件を変 更していない。

評価部位の網羅性について

1. 概要

本資料は、防護対象施設及び防護すべき施設を内包する建屋の評価部位の網羅性について詳細に説明を行うものである。


2. 評価部位及び構造強度評価対象部位について

降下火砕物等堆積時における構造強度設計では、施設毎に評価部位を網羅的に抽出 している。

下表に設備毎の評価部位を網羅的に抽出した結果及び評価対象部位の選定の考え方について整理し、下図に概略図を示す。なお、評価対象部位は、既工認から変更はない。 防護すべき施設を内包する建屋の評価部位の網羅性及び代表性については、補足3に示す。

表1.屋外タンク

評価部位	評価対象部位の選定の考え方
屋根板	構造強度評価を実施。
胴板	構造強度評価を実施。
基礎ボルト	構造強度評価を実施。
拉	火山灰及び雪が堆積しにくい円筒形状であることから、
管台	堆積物により有意な影響を受けないため評価対象外。
佐七	底板は基礎ボルトと比べて荷重を負担する面積が大きい
底板	ことから基礎ボルトの評価に包絡される。

※ 補助給水、補給水、スピルオーバー等の管台

図1 屋外タンクの概略図

表2.海水ポンプ

評価部位※3	評価対象部位の選定の考え方
電動機フレーム※1	構造強度評価を実施。
 外扇カバー ^{※4}	海水ポンプは耐震設計上重要な機器であることから、
× 1 /449 × ·	十分な構造強度を有した機器であり、降下火砕物に対し
電動機支え台※5	ても十分な構造強度を有している。代表部位としては作
	用荷重※2 に比べて小さな断面を持つ電動機フレームを評
<u>吐出しエルボ^{※6}</u>	価対象部位としている。

- ※1 美浜3号機及び高浜1,2号機の場合、代表部位は下部ブラケットになるが、基本的な考え方は 高浜3,4号機及び大飯3,4号機の電動機フレームと同じである。
- ※2 電動機フレームには降下火砕物、積雪、風、自重に加えてポンプスラスト荷重が作用する。
- ※3 海水ポンプが設置される海水ポンプ室は、降下火砕物に対する防護対象施設であるクラス1、クラス2に該当しない。なお、海水ポンプ室は地震荷重に対する健全性を確認していることから、降下火砕物堆積時の構造健全性は確保できると考えられる。
- ※4 外扇カバーには降下火砕物、積雪、風、自重が作用するが、電動機フレームには降下火砕物、積雪、風、自重に加えてポンプスラスト荷重が作用するため、電動機フレームの方が厳しい傾向の評価結果となる。
- ※5 電動機支え台の断面は、電動機フレームの断面と比べて大きくなるように設計しており、荷重を 負担する面積が広いため、電動機フレームの方が厳しい傾向の評価結果となる。
- ※6 吐出しエルボの断面は、電動機フレームの断面と比べて大きくなるように設計しており、荷重を 負担する面積が広いため、電動機フレームの方が厳しい傾向の評価結果となる。

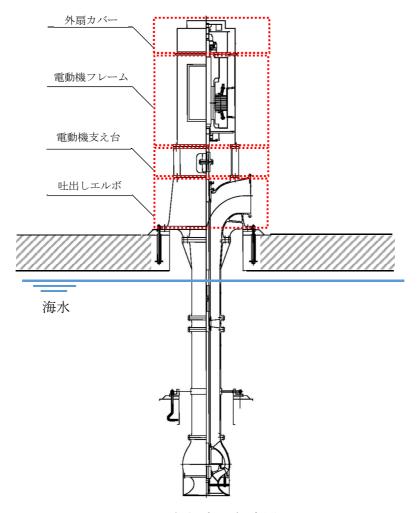


図2 海水ポンプの概略図

(参考) 頂版に作用する降下火砕物による荷重について

海水ポンプ室は基準地震動 Ss に対して耐震安全性を有することを確認している。降下 火砕物による荷重は、常時における荷重として考慮する必要がある。

ここでは、海水ポンプ室頂版に作用する降下火砕物による荷重の影響を確認するため、 「降下火砕物を考慮した際の常時の鉛直荷重」と「地震時の鉛直荷重」との比較を行う。 比較する際の地震動は、耐震評価において海水ポンプ室頂版の照査値が最大となる地震動 を対象とする。

表-1に「降下火砕物を考慮した際の常時の鉛直荷重」と「地震時の鉛直荷重」との比較を示す。

表-1 「降下火砕物を考慮した際の常時荷重」と「地震時の鉛直荷重」の比較

サイト	地震動	地震時の鉛直荷重 (頂版自重+地震時の雪荷重 +地震時慣性力)	常時の鉛直荷重 (頂版自重+降下火砕物重量 +常時の雪荷重)
美浜3号機	Ss-11	24, 694 (N/m2)	20, 400 (N/m2)
大飯 3 , 4 号機	Ss-1	55, 566 (N/m2)	43, 500 (N/m2)
高浜1,2号機	Ss-1	18, 944 (N/m2)	18,800 (N/m2)
高浜3,4号機	Ss-7	44, 649 (N/m2)	42, 300 (N/m2)

※高浜1、2号機は耐震評価の照査値が大きい高浜2号機を代表に示す。

表-1から、「降下火砕物を考慮した際の常時の鉛直荷重」は「地震時の鉛直荷重」よりも小さいことを確認した。なお、「降下火砕物を考慮した際の常時の鉛直荷重」と「地震時の鉛直荷重」の差が比較的小さい高浜1,2号機及び高浜3,4号機海水ポンプ室の耐震評価における頂版の最大照査値はそれぞれ0.48及び0.44であり、十分な裕度を有している。

表-1及び海水ポンプ室は基準地震動 Ss に対して耐震安全性を有することから、降下 火砕物は海水ポンプ室の健全性に影響を与えないことを確認した。

最新の気象データについて

1. はじめに

- ・今回のDNP設工認では、降下火砕物に対する荷重に対する構造強度評価を行っているが、その際、火山事象以外の事象(積雪・風)による荷重を組み合わせた評価を行っている。この際、想定する気象条件としては、新規制適合時の設置許可で設定した条件を用いている。
- ・本資料では、新規制適合時の設置許可で設定した条件が、最新の気象データを踏まえて も問題ないことを説明する。

2. 最新の気象データ

- ・当社では、設置許可段階で、申請時の最新の気象データを確認した上で、設計で考慮する条件を設定し、許可を頂いている。
- ・設工認段階では、設置許可で設定した条件に対して詳細設計を行い、各自然現象に耐えられる設計を行うこととしている。
- ・なお、安全性向上評価の届出(至近の例:高浜発電所3号機 第3回 安全性向上評価 届出 (2021.10.6 届出))の中で、最新の気象データを確認し、新規制適合時の設置許可 で設定した条件が問題ないことを確認することとしており、実際に、別紙1に示すとおり、新規制適合時の設置許可で設定した条件を超えるような気象条件は確認されておらず、今回のDNP設工認では、新規制適合時の設置許可で設定した条件を用いて評価 を行うことで問題ない。

【高浜発電所3号機 第3回 安全性向上評価届出(2021.10.6 届出)】(抜粋) うこととしている。

(3) 確認結果

評価の実施時点において、(1)項の規格・基準に新たに反映すべき知見はなく、(2)項のとおり、溢水評価への影響の確認及び 溢水評価上の管理値について更新管理を行っていることから、 安全評価の前提となっている内部溢水に係る設置変更許可の内 容を見直しする必要はない。

3.1.1.3.2 外部事象に係る評価

3.1.1.3.2.1 自然現象

(1) 地震

「2.2.2.2(1) f. 国際機関及び国内外の学会等の情報(自然現象に関する情報)」に示すとおり、評価期間において、自然現象に関する反映が必要な新知見情報には、地震に関するものはなく、設計上考慮している地震について見直しをする必要がないことを確認した。

(2) 津波

「2.2.2.2(1) f. 国際機関及び国内外の学会等の情報(自然現象に関する情報)」に示すとおり、評価期間において、自然現象に関する反映が必要な新知見情報には、津波に関するものはないが、評価期間中に津波警報等が発表されない可能性のある津波への対応として、第1.1.1.2表に示すとおり、隠岐トラフ海底地すべりを波源とする津波を基準津波として追加し、安全施設はこれに対し、津波防護施設や浸水防止設備等により安全機能を損なわない設計とすることで設置変更許可をいただいた。

(3) 風 (台風)

最寄の気象官署(舞鶴特別地域気象観測所)の観測記録により、評価期間における最大瞬間風速は、設置変更許可申請書に記載の 51.9m/s (2004 年 10 月 20 日) を越えていないことを確認した。

(4) 竜巻

「2.2.2.2(1) f. 国際機関及び国内外の学会等の情報(自然現象 に関する情報)」に示すとおり、評価期間において、自然現象に 関する反映が必要な新知見情報には、竜巻に関するものはなく、 設計上考慮している竜巻について見直しをする必要がないこと を確認した。

(5) 凍結

最寄の気象官署 (舞鶴特別地域気象観測所) の観測記録によ り、評価期間における最低気温は、設置変更許可申請書に記載 の-8.8℃ (1977 年 2 月 16 日) を下まわらないことを確認した。

(6) 降水

最寄の気象官署(舞鶴特別地域気象観測所)の観測記録により、評価期間における日最大1時間降水量は、設置変更許可申 請書に記載の80.2mm(1957年7月16日)を超えていないことを確認した。

(7) 積雪

最寄の気象官署(舞鶴特別地域気象観測所)の観測記録により、評価期間における積雪深さの月最大値は、設置変更許可申 請書に記載の87cm(2012年2月2日)を超えていないことを 確認した。

(8) 地滑り

想定される地滑りの設定根拠となっている文献を以下に示す。 これらについては、変更がなく、設置変更許可の内容を変更す る必要がないことを確認した。

- a. 地すべり地形分布図 (独立行政法人防災科学技術研究所発 行)
- b. 土砂災害危険箇所図(国土交通省国土政策局発行)

(9) 火山の影響

「2.2.2.2(1) f. 国際機関及び国内外の学会等の情報(自然現象 に関する情報)」に示すとおり、評価期間において、自然現象に 関する反映が必要な新知見情報には、火山に関するものはないが、評価期間中に大山火山の大山生竹テフラの噴出規模見直し への対応として発電所の敷地において考慮する最大層厚を変更 し、防護すべき安全施設が降下火砕物により安全機能を損なわ ない設計とする設置変更許可を申請中である。

(10) 生物学的事象

評価期間において、発電所の運転や安全性に影響を与えるような事象はなく、海生生物の来襲の想定に変更がないことから、 設計上考慮している生物学的事象について、評価条件及び評価 方針等の見直しをする必要がないことを確認した。

(11) 森林火災

防火帯外周の植生調査の結果、評価期間において、森林火災 の解析に必要な入力データに変更がないことを確認した。

(12) 高潮

最寄の検潮所(舞鶴検潮所)の観測記録により、評価期間における最高潮位は、最新の設置変更許可申請書添付六に記載のT.P. (東京湾平均海面)+0.93m (1998年9月22日)を超えていないことを確認した。なお、舞鶴検潮所の過去最高潮位については、3分間平均値を用いた見直しが実施されたことにより、T.P.+1.02m (1998年9月22日)に変更されているが、安全施設は、敷地高さ (T.P.+3.5m 以上)に設置し、津波防護施設や浸水防止設備等により安全機能を損なわない設計としているため、設計上考慮している内容を見直す必要がないことを確認した。

(13) 安全解析に使用する気象条件

安全解析は、敷地において観測した 2006 年 1 月から 2006 年 12 月までの 1 年間の気象資料を用いて実施していることから、 安全解析に使用した気象資料が最近の気象状態と比較して特に 異常でないかどうかの検討を行った。

風向出現頻度及び風速出現頻度について、敷地内観測点Aの

標高約81mにおける10年間(2010年1月~2019年12月)の 資料により検定を行った。検定法は、不良標本の棄却に関する F分布検定の手順に従った。

その結果、有意水準 5%で棄却された項目は 27 項目中 5 項目 であり、安全解析に使用した気象資料は最近の気象状態と比較 して同等と判断できない。

そこで、最近の気象状態と比較して同等と判断された最新の 2019年1月~2019年12月の気象資料を用いて、設計基準事故 時の被ばく線量評価を実施した結果を以下に示す。全ての事象 において、判断基準の5mSvを下回ることを確認した。

on of the second	実効線量(mSv)		
設計基準事故名	2006 年気象	2019 年気象	
放射性気体廃棄物処理施設の破損	約 1.4	約 1.5	
蒸気発生器伝熱管破損	約 2.8	約 3.1	
燃料集合体の落下	約 0.030	約 0.038	
原子炉冷却材喪失	約 0.27	約 0.28	
制御棒飛び出し	約 0.079	約 0.084	

表 設計基準事故時の被ばく線量評価結果

一方、平常運転時の線量目標値との比較を行った線量評価地 点における気体廃棄物の希ガスの γ 線からの外部被ばくによる 実効線量、液体廃棄物中の放射性物質(よう素を除く)の摂取 に伴う内部被ばくによる実効線量及びよう素の摂取に伴う内部 被ばくによる実効線量は、それぞれ約 11μ Sv/y、約 2.1μ Sv/y、 約 1.5μ Sv/y で、合計は約 14μ Sv/y であり、線量目標値 50μ Sv/y を下回ることを確認した。

なお、設置許可申請書の添付書類六に記載の気象資料の更新 については、添付書類九、添付書類十に記載の被ばく評価(設 計基準事故時・平常運転時)の内容の見直しを伴う設置変更許 可申請案件があった際に実施する。

3.1.1.3.2.2 外部人為事象

(1) 飛来物 (航空機落下)

「航空路誌」(2020年10月8日国土交通省航空局)、「航空機落下事故に関するデータ」(2021年2月原子力規制委員会)及び「航空輸送統計年報」(2020年6月国土交通省総合政策局)を確認した結果、評価時点において、航空機落下確率評価の前提となっている航空路、航空機落下事故データ及び飛行距離データのうち、航空路に係る航空交通量、航空機落下事故データ及び飛行距離データを更新した。航空機落下確率を再評価した結果、別紙3.1.1.3.2.2-1のとおり既評価及び判断基準値を下回ることを確認した。

(2) 爆発

発電所敷地外 10km 以内の範囲において、石油コンビナート 施設及び石油コンビナート施設に相当する産業施設が建設され ていないことから、評価期間において、防護対象施設への影響 を再評価する必要がないことを確認した。

(3) 近隣工場等の火災

a. 石油コンビナート等の施設の火災

発電所敷地外 10km 以内の範囲において、石油コンビナート施設及び石油コンビナート施設に相当する産業施設が建設されていないことから、評価期間において、防護対象施設への影響を再評価する必要がないことを確認した。

b. 発電所敷地内に存在する危険物タンクの火災

発電所敷地内に存在する危険物タンクの新設、仕様変更及 び移設がなかったことから、評価期間において、防護対象施 設への影響を再評価する必要がないことを確認した。

c. 航空機墜落による火災

「航空機落下事故に関するデータ」及び対象となる航空路

3.1.1-14