柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3. 危険距離及び温度評価		3. 危険距離及び温度評価	
3.1 森林火災の想定		3.1. 森林火災の想定	
前述の 2.1 森林火災の想定と同じ。		前述の2.1.森林火災の想定と同じ。	
3.2森林火災による影響の有無の評価		3.2. 森林火災による影響の有無の評価	
(1) 評価手法の概要		(1) 評価手法の概要	
本評価は、輻射強度という指標を用いて、発電用原子炉施設		本評価は、輻射強度という指標を用いて、発電用原子炉	施
に対する森林火災の影響の有無の評価を目的としている。具体		設に対する森林火災の影響の有無の評価を目的としている	0
的な評価指標とその内容を以下に示す。		具体的な評価指標とその内容を以下に示す。	
第 3.2-1 表 評価指標及びその内容		第3.2-1表 評価指標とその内容	
評価指標 内容		評価指標 内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		輻射強度[W/m ²] 火炎の炎から任意の位置にある点(受熱点)の輻射強度	
火炎到達幅[m] 相崎刈羽原ナ刀発電所に到達する火炎の傾幅 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数			
燃焼半径[m] 森林火災の火炎長より算出する値		燃焼半径[m] 森林火災の火炎長より算出する値	
危険距離[m] 火災による輻射熱により許容限界温度になる距離		危険距離[m] 火炎による輻射熱により許容限界温度になる距離	
上記の評価指標は、受熱面が輻射体の底部と同一平面上にあ		上記の評価指標は, 受熱面が輻射体の底部と同一平面上	に
ると仮定して評価する。		あると仮定して評価する。	
森林火災の火炎形態については、土地の利用状況(森林、農		森林火災の火炎形態については、土地の利用状況(森林	·,
地,居住地等の分布),地形(標高,傾斜角度等),気象条件(風		農地、居住地等の分布)、地形(標高、傾斜角度等)、気象	条
向・風速,気温,湿度等)に大きく依存することから,これら		件(風向・風速,気温,湿度等)に大きく依存することから	>,
をすべて反映した火炎モデル仮定することは難しい。したがっ		これらをすべて反映した火炎モデルを仮定することは難	l
て、森林火災の火炎は円筒火災をモデルとし、火炎の高さは燃		い。したがって、森林火災の火炎は円筒火炎をモデルとし	' ,
焼半径の3倍とする。なお、危険距離の評価では、発電用原子		火炎の高さは燃焼半径の3倍とする。なお、危険距離の評	価
炉施設への火炎到達幅の分だけ円筒火炎モデルが横一列に並ぶ		では、発電用原子炉施設への火炎到達幅の分だけ円筒火炎	モ
ものとする (第 3.2-1 図)。		デルが横一列に並ぶものとする。	
		(第3.2-1図)。	
各円筒火炎モデルからの輻射熱			
火		火炎到達幅:W 危険距離:L _t 受熱点	
第 3.2-1 図 円筒火炎モデルの並べ方		第3.2-1 図 円筒火炎モデルの並べ方	

柏崎刈羽原子力発	電所 6/7号	- 炉 (2017.1	2.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉			備考			
(2)評価対象範囲					(2) 評価対象範囲						
評価対象範囲は相	評価対象範囲は柏崎刈羽原子力発電所に迫る森林火災とし				評価対象範囲	用は島根原	原子力発電	『所に迫る	る森林火災	災とした。	
*									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • •	
100											
(3) 心亜データ					(3) 証価に必要と	マデータ					
		L_			(3) 叶屾に必安る	トノ ブ レージ トユ		→ <u>_</u>			
評価に必要なアー	タを以下に示す	0			評価に必要な	よアータを	以下に入	ドす。			
第 3.2-2 表	森林火災影響	響評価に必要な	データ		第3.2−2表	衰 森林火	災影響評	価に必要	なデータ	2	
評価項目	ケース1	ケース2	ケース3		項目	ケース1	ケース2	ケース3	ケース4	ケース5	
火炎輻射発散度[kW/m²]	94.8	100	78.8		火炎輻射発散度	118	99.5	46, 9	49.3	52.4	
火炎輻射強度[kW/m²]	205	211	222		[kW/m ²]	264	000	246	970	245	
火線強度[kW/m]	2715	3002	1929		大線強度[kW/m]	4, 154	3,057	734	811	931	
反応強度[kW/m ²]	544	560	591		反応強度[kW/m ²]	980	776	917	739	930	
火炎長[m]	2.94	3.08	2.51		火炎長[m]	3.6	3.2	1.7	1.7	1.8	
火灸到達幅[m]	59	3730	F7		火炎到達幅[m]			4,870			
燃焼粧杭時间[m1n] ² 合除輻射強度[1w/m ²]	52	51	57		燃焼継続時間[min] ^{**} 合除輻射論度[1w/m ²]	23	21	82	81	17 725	
□ □ □ □ □ □ □ □ □ □	15.441 風行き 100m)が燃	13.477 ラス亚均時間	15.275		一 2 英輻射強度 [KW/III] ※1:防火帯周辺の森林	20.205 床(奥行き50	<u></u> m)が燃える		17.052	17.725	
(4) 燃焼半径の算出					(4) 燃焼半径の第	争出					
次の式から燃焼半	径を算出する。	算出結果を第	3.2-4 表に示		次の式から炒	然焼半径を	算出する	5。算出約	吉果を第	3.2-4 表に	
す。					示す。						
	Н						Н				
	$R = \frac{\pi}{2}$						$R = \frac{\pi}{2}$				
	3								7		
	R	と:燃焼半径[m]	,H:火炎長[m]				R :燃	《焼半径[r	m], H∶	火炎長[m]	
 (5) 円筒火炎モデル数	の算出				(5) 円筒火炎モラ	デル数の算	〔出				
次の式から円筒の	と 炎 モ デ ル 数 オ	を篁出すス	篁出結果を筆		次の式から円筒火炎モデル数を筧出すろ、筧出結果を			出結果を笆			
3.2-4 表に示す。		тнлло₀	并山州水で別		3.2-4表に示す。			циі / с у ј			
	W						W				
	$F = \frac{n}{2n}$						$F = \frac{m}{2R}$				
	28						2R				
F:円筒火炎モデル数	[−],₩:火炎到	到達幅 [m], R	:燃焼半径[m]		F:円筒火炎モデル	レ数 [-],	W:火炎	到達幅[m	」,R:燉	☆焼半径[m]	
 (6) 火炎輻射発散度の	算出				(6) 火炎輻射発費	故度の算出	I T				
火災で発生すス発	~~~ 埶 量 から 輻射素	助に寄与する国	合(輻射執生		水災で発生。	まる発熱長	。 計から転自	計動に 客」	与すス重	合(輻射熱	
合)を考慮し、その	輻射熱は円筒	いた。 大炎の側面及て	「上面から放射		割合)を考慮し	, シルボョ し, その車	E ~ り 冊 / 畐射熱はF	円筒火炎6	の側面及び	び上面から	
されると仮定し、円	筒火炎の火炎	辐射発散度 Rf	[kW/m²]を求め		放射されるとイ	仮定し、F	円筒火炎(の火炎輻	射発散度	Rf[kW/m ²]	
る。発熱量が保友さ	れるためいて	「の式で表現で	きろ		を求める 磁潮	丸量が保右	ミされスた	- x) UT	の式でま	実現できス	
る。 元が里川 休付で	れいシルリン、火一	シャノスガし	$C \sim 0$		でへいる。光き	《里// 不付	CAUQIO	, め「	~~~~ (A		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号烷
 (円筒火炎1個の側面積+上部面積[m²])×円筒火炎個数× 火炎輻射発散度[kW/m²]=火線強度[kW/m]×火炎到達幅[m] ×輻射熱割合[-] 		 (円筒火炎1個の側面積+上部面積[m²])× 輻射発散度[kW/m²]=火線強度[kW/m]×ッ 熱割合[-]
$(2\pi RH + \pi R^2) \times F \times Rf = I_B \times W \times \chi$		$\left(2\pi RH + \pi R^2\right) \times F \times Rf = I_B \times W \times f$
また,上記(4)(5)の式より,以下の式が求まる。火線強度は 2.2 森林火災による影響の有無の評価で算出された値を用い た。算出結果を第 3.2-4 表に示す。		また,上記(4)(5)の式より,以下の式 は2.2.森林火災による影響の有無の評価 いた。算出結果を第3.2-4 表に示す。
$Rf = \frac{6\chi I_B}{7\pi H}$ Rf: 火炎輻射発散度[kW/m ²], IB: 火線強度 [kW/m], H: 火炎長 [m]		$Rf = \frac{6\chi I_B}{7\pi H}$ Rf:火炎輻射発散度[kW/m ²], I _B :火線強度[I
< <p><火炎輻射発散度の算出方法> 火線強度(IB)[kW/m]は,第3.2-2 図に示すような火炎 構造(幅 W[m],奥行き D[m],火炎長 H[m])において「火 炎最前線での単位幅あたりの発熱速度」と定義でき,反応 強度(IR)[kW/m²]とは次の関係にある。 I_B = I_R×D ・・・・・式①</p>		<火炎輻射発散度の算出方法> 火線強度(I _B) [kW/m]は, 第3.2-2 図 造(幅:W[m], 奥行き:D[m], 火炎長:L _f 最前線での単位幅あたりの発熱速度」 度:I _R [kW/m ²]とは次の関係にある。 <i>I_B = I_R × D</i>
V, WRATE (I.B) V. K. E. (H) Frame Deepth (D) Finane Deepth (D) Frame Deepth (D) Frame Deepth (D) K. B.		火線強度(l_0) 火炎長 (L) (L) 反応強度(l_0) Flame Depth (D) Burned Discontinuous Flaming Zone Im 有効火炎領域 (出典: Andrews, P.L., et. al. (2011): H
第 3.2-2 図 火線強度及び円筒火炎モデルの考え方		Interpret Fire Characteristics Charts for Fire Behavior. USDA Forest Service Genera RMRS-GTR-253.) 第3.2-2 図 火線強度及び円筒火炎
		1

计炉	備考
×円筒火炎個数×火炎	
《火炎到達幅[m]×輻射	
< Y	
`λ	
式が求まる。火線強度	
価で算出された値を用	
「lww/m] u・ル 火毛 [m]	
図に示すような火炎構	
_ _f [m])において「火炎	
」と定義でき、反応強	
••••式(1)	
10	
10	
Fuel Bed Depth 円筒火炎	
t	
· 火 炎	
の 幅	
Unburned (W) Area	
·	
How to Generate and	
or Surface and Crown	
ral Technical Report	
the second s	
炎モデルの考え方	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
火炎輻射発散度を計算するための円筒火炎モデルでは,第		火炎輻射発散度を計算するための円筒火炎モデルでは、第	
3.2-2 図の有効火炎領域を,火炎の幅(W)に沿って円筒火炎		3.2-2 図の有効火炎領域を,火炎の幅:₩[m]に沿って円筒火	
(半径 R[m], 高さ H[m]) を F 個一列に並べて模擬する。こ		炎 (半径:R[m], 高さ:H[m])を F 個一列に並べて模擬する。こ	
こで,有効火炎領域の発熱量のうち輻射熱割合χ[-]を考慮		こで,有効火炎領域の発熱量のうち輻射熱割合χ[-]を考慮	
し、円筒火炎の側面及び上面からの輻射熱として放射される		し、円筒火炎の側面及び上面からの輻射熱として放射される	
として、発熱量が保存されるよう火炎輻射発散度を求める。		として,発熱量が保存されるように火炎輻射発散度を求める。	
円筒火炎での火炎輻射発散度を Rf[kW/m²]とすると,有効火		円筒火炎での火炎輻射発散度を Rf[kW/m²]とすると有効火炎	
炎領域の発熱量は保存されることから、以下の式で表現でき		領域の発熱量は保存されることから,以下の式で表現できる。	
る。			
=火線强度[kW/m]×火炎到達幅[m]×輻射熱割台[-]より		= 火線強度 [kW/m] × 火炎到達幅 [m] × 輻射熱割合 [-] より	
$(2\pi RH + \pi R^2) \times F \times Rf = I_B \times W \times \chi (= I_R \times D \times W \times \chi)$		$\left(2\pi RH + \pi R^2\right) \times F \times Rf = I_B \times W \times \chi \left(= I_R \times D \times W \times \chi\right)$	
(2)		·····式②	
また,評価ガイドより,円筒火炎モデルは		また,評価ガイドより,円筒火炎モデルは	
$R = H/3 \tag{3}$		R = H/3 · · · · · 式③	
$F = W / 2R \tag{4}$		$F = W/2R \qquad \cdots \cdots \neq 4$	
し会美されてので (2) (4) ざた(2) ざに伴う ナスこしにと		し会美されていてので、の、小さたのさに仕りたてこしにと	
こ L 我 C L L C L		と圧我されているので、 ⑤、 ④丸を⑥丸に八八りることによ	
り、伏氏が行られる。			
$Rf = \frac{6\chi I_B}{7\pi H} $ (5)		$Rf = \frac{6\chi I_B}{7\pi H} \qquad \cdots \overrightarrow{x}$	
発電所敷地近傍には草地,針葉樹,落葉広葉樹がある。そ		発電所敷地近傍には、針葉樹、落葉広葉樹がある。そのた	
のため,輻射熱割合は, <u>草地:0.35(米国国立標準技術研究</u>		め,輻射熱割合は,針葉樹:0.377及び落葉広葉樹:0.371(米	
<u>所 (NIST)の使用値),</u> 針葉樹:0.377 <u>並びに</u> 落葉広葉樹:0.371		国防火技術者協会(SFPE)が発行しているハンドブック(THE	
(米国防火技術者協会 (SFPE) が発行しているハンドブック		SFPE HANDBOOK of Fire Protection Engineering FOURTH	
(THE SFPE HANDBOOK of Fire Protection Engineering FOURTH		EDITION)より算出) <u>を発火点周辺の植生に合わせ、以下のと</u>	・条件の相違
EDITION)より算出) <u>のうち保守的に最も大きい値である</u>		<u>おり</u> 採用した。	【柏崎 6/7】
<u>0.377 を</u> 採用した。		<u> 発火点1,2,5:0.371 (落葉広葉樹)</u>	島根2号炉は,植生に
		<u> 発火点3,4</u> :0.377(針葉樹)	合わせた値を使用する
なお、反応強度は炎から輻射として放出される熱エネルギ		なお、反応強度は炎から輻射として放出される熱エネルギ	ため、針葉樹だけでな
一(火炎輻射強度)と火炎・煙として対流放出される熱エネ		ー(火炎輻射強度)と火炎・煙として対流放出される熱エネ	く、広葉樹も記載
ルギー(火炎対流発散度)の和により求められることから、		ルギー(火炎対流発散度)の和により求められることから、	
針葉樹の輻射熱割合(0.377)は、針葉樹代表種の火炎輻射強		針葉樹の輻射熱割合(0.377)は、針葉樹代表種の火炎輻射強	
度:4.9[kJ/g]と反応強度:13.0[kJ/g]の比(反応強度に対す		度:4.9[kJ/g]と反応強度:13.0[kJ/g]の比(反応強度に対す	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
る火炎輻射強度の割合)から算出した。	る火炎輻射		
	の輻射熱割	合 (0.371) は, 落葉広葉樹代表種の火炎輻射強度 :	
	<u>4.6[kJ/g]</u> と	<u>反応強度:12.4[kJ/g]の比(反応強度に対する火</u>	
	炎輻射強度の	<u>の割合)から算出した。</u>	
針葉樹代表種の発熱量	針葉樹代表種		・条件の相違
火炎輻射強度:4.9[kJ/g]+ 火炎対流発散度:8.1[kJ/g]=反応強度 13.0[kJ/g]	火炎輻射強度	<u> ξ 4.9[kJ/g]+火炎対流発散度 8.1[kJ/g]=反応</u>	【柏崎 6/7】
(ΔHrad) (ΔHcon) (ΔHch)	強度 13.0[k	<u>J/g]</u>	島根2号炉は,植生に
	輻射熱割合	(針葉樹)=火炎輻射強度 4.9[kJ/g]/反応強度	合わせた値を使用する
輻射熱割合	<u>13.0[kJ/g]</u>		ため, 針葉樹だけでな
Δ Hrad <u>4.9 [kJ/g]</u>		<u>=0.377</u>	く、広葉樹も記載
= 0.377	落葉広葉樹代表	表種	
ΔHen 13.0 [KJ/g]	火炎輻射強度	度4.6[kJ/g]+火炎対流発散度7.8[kJ/g]=反応強	
	<u>度12.4[kJ/g]</u>		
	輻射熱割合	(落葉広葉樹) = 火炎輻射強度4.6[kJ/g]/反応強	
	<u>度12.4[kJ/g]</u>		
		=0.371	
また、火炎輻射強度については、輻射熱割合が火炎輻射強度	また,火	炎輻射強度については、輻射熱割合が火炎輻射強	
と反応強度の比であることから、これに反応強度を乗じること	度と反応強制	変の比であることから、これに反応強度を乗じる	
により算出する。	ことにより	算出する。	
	(7) 火炎到達帕		
火炎到達幅を第 3.2-3 図の黒線で示す。6 号及び 7 号炉東	火炎到達	晶を第 3.2-3 図の黒線で示す。FARSITE 評価で延	
血から見える林縁(防火帯森林側)の長さを火炎到達幅とする。	焼した敷地	<u>への</u> 林稼(防火帯森林側)の長さを火炎到達幅と	
	する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
<image/>		<image/> <image/>
 (8) 燃焼継続時間の算出 燃焼継続時間は,林縁周辺<u>100m</u>の森林が燃える時間とし, FARSITE 計算結果から次の計算式により算出する。 燃焼継続時間[h]=林縁の奥行き÷延焼速度 林縁奥行:<u>100[m]</u> 延焼速度:林縁から<u>100m</u>以内の延焼速度の平均値 		 (8) 燃焼継続時間の算出 燃焼継続時間は、林縁から <u>50m</u>の範囲 とし、FARSITE 計算結果から次の計算式 燃焼継続時間[h] = 林縁奥行 林縁奥行: <u>50[m]</u> 延焼速度:林縁から<u>50m</u>以内の延焼
(9) 危険輻射強度の算出 火災の燃焼継続時間の間一定の輻射熱が外壁面に入熱した場 合を仮定し、外壁面での対流熱伝達と輻射放熱を考慮し、以下 の式に示す一次元非定常熱伝導方程式を用いて、コンクリート の表面温度が許容限界温度 200℃に達する輻射強度を危険輻射 強度として求める(第 3.2-4 図,第 3.2-5(a)(b)(c)図)。		 (9) 危険輻射強度の算出 火災の燃焼継続時間の間,一定の輻射 た場合を仮定し,外壁面での対流熱伝達 以下の式に示す一次元非定常熱伝導方程 リートの表面温度が許容限界温度 200% 危険輻射強度として求める。 (第 3. 2-4 図,第 3. 2-5(a) (b) (c) (d) (e)

号炉	備老
www.interview.intervi	
範囲の森林が燃える時間 重式により算出する。 ・ ・ 延焼速度 読焼速度の平均値	・条件の相違 【柏崎 6/7,東海第二】 防火帯幅は,防火帯外 縁での火線強度から算 出することとし,外縁か ら一定距離の範囲を考 慮し評価
輻射熱が外壁面に入熱し </td <td></td>	

柏崎刈羽原子	·力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原	子力発電所 2号炉	備考
$\frac{dT}{dt} = \alpha \frac{d^2 T}{dx^2}$ T:温度,t:眠 <u>α</u> :熱拡散率 以下に使用した	寺刻, x :∃	建物壁内における外面からの距離, マを示す。		$\frac{dT}{dt} = \kappa \frac{dT}{dt}$ T:温度, t <u></u> た:熱拡散: 以下に使用	l^2T dx^2 : 時刻, x : 率 したパラメー	建物壁内における外面からの距離, タを示す。	
第 3.2-3 君	表 輻射	村強度算出時の入力パラメータ		第3	3.2-3表 輻射	対強度算出の入力パラメータ	
項目パ	ラメータ 値	備考		項目	パラメータ	備考	
外気温度	50 ℃	日射の影響を考慮し設定		外気温度	50 °C	日射の影響を考慮し設定	
内気温度	45 ℃ ₹	非常用ディーゼル発電機室最高温度		内気温度	-	味可的に内気への熱伝達かない条件としている ため 本数値け評価結果に影響したい	
外面烈伝達率 62.5 内五劫伝達率 2.4	595 W/m ² K J	urges の式より (風速 16m/s)		外面熱伝達率	80.53 W/m ² K	ユルゲスの式より (風速22.1m/s)	
内面熱伝達率 3.46 熱拡散率 8.	$\frac{1883 \text{ W/m K}}{42 \times 10^{-7}}$ m ² /s	■柔設計竣工図書 原子炉建屋構造計算書より ■案設計竣工図書 原子炉建屋構造計算書より		内面熱伝達率	OW/m ² K (断熱)	保守的にコンクリートから内気に熱伝達がない 断熱条件とした。	
壁面の厚さ	1.5 m 🕺	津屋外壁厚さの最大値		熱拡散率:κ (κ=k/(ρ・c))	8.42×10 ⁻⁷ m ² /s	コンクリート 比熱 c =879.1J/(kg・K) 密度 ρ =2,200kg/m ³	
夏 外気との 周囲への輻射 Q. 火炎か <u>第 3</u>	建屋外 の熱伝達 Q _{v, out} hr, out からの輻射 E _f 3. 2-4 図	建屋壁(均質体) 建屋内 内気との熱伝達 Q _{v, in} 熱伝導 Q _{c, in} 建屋温度評価体系図		<u>壁面の厚さ</u> 外気との熱 周囲への輻射:Q _r	0.5 m 建物外側 伝達 :Q _{v.out} suff : E .out <u>第 3. 2-4 区</u>	査建物のうち最も薄い厚さ 建物壁(均質) 建物内側	 ・条件の相違 【柏崎 6/7】 島根 2 号炉は,壁面と 内気との熱伝達が無い 断熱条件として評価を 実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
000 0000 000 </th <th></th> <th>300 200 200 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(200*C) 9 9 9 9 9 200.00 0.20 0.40 0.60 0.80 1 200.01 9</th>		300 200 200 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(輻射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(電射強度: 17.634kW/m²) 9 第温度(200*C) 9 9 9 9 9 200.00 0.20 0.40 0.60 0.80 1 200.01 9
福射強度 時間 外面温度 1 15274 0.95 199.98 2 15275 0.95 200.00 第 3.2-5(c)図 危険輻射強度の算出(ケース 3)		1 17634 82 1366667 199 2 17635 82 1366667 199 3 17636 82 1366667 200 第3.2-5(c)図 危険輻射強度の算

柏崎刈羽原子力発電所	f 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 25
				300 250 200 200 150 9 100 1.34990 1.34990 1.34995 1.34990 1.34995 1.34990 1.34995 1.35000 19 10 10 10 10 <tr< th=""></tr<>

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
				300 4

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 (10) 形態係数の算出 次の式から各円筒火炎モデルの形態係数を算出した。算出結 果を第 3.2-4 表に示す。 		 (10) 形態係数の算出 次の式から各円筒火炎モデルの形態係数を算出した。算出 結果を第 3. 2-4 表に示す。 	
$\phi_{i} = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2} - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$ $\hbar = \frac{1}{\sqrt{n^{2} - 1}} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{$		$\phi_{i} = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2} - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$ $\forall z \not \sim \zeta, m = \frac{H}{R} \cong 3, n = \frac{L_{i}}{R}, A = (1 + n)^{2} + m^{2}, B = (1 - n)^{2} + m^{2}$	
φ _i :各円筒火炎モデルの形態係数,L _i :離隔距離[m], H:火炎長[m],R:燃焼半径[m]		 φ_i:各円筒火炎モデルの形態係数,L_i:離隔距離[m], H:火炎長[m], R:燃焼半径[m] 	
したがって,各円筒火炎モデルの形態係数を合計した値が, 発電用原子炉施設に及ぼす影響について考慮すべき形態係数 φt となる。		したがって,各円筒火炎モデルの形態係数を合計した値 が,発電用原子炉施設に及ぼす影響について考慮すべき形態 係数 φ _t となる。	
$\phi_i = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$		$\phi_t = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$	
 φ_t:各円筒火炎モデルの形態係数を合計した値 なお、1、2、3、···、Fの円筒火炎モデル数の合計は F 個となる。 		 φ_t:各円筒火炎モデルの形態係数を合計した値 なお、1、2、3、・・・、Fの円筒火炎モデル数の合計 はF個となる。 	
 (11) 危険距離の算出 輻射熱に対する発電用原子炉施設の危険輻射強度を調査し、 輻射強度がその危険輻射強度以下になるように発電用原子炉施設は危険距離を確保するものとする。 火炎輻射発散度の炎から任意の位置にある点(受熱点)の輻射強度は、火炎輻射発散度に形態係数をかけた値になる。次の式から形態係数 φ を求める。 		 (11) 危険距離の算出 輻射熱に対する発電用原子炉施設の危険輻射強度を調査 し,輻射強度がその危険輻射強度以下になるように発電用 原子炉施設は危険距離を確保するものとする。 火炎輻射発散度の炎から任意の位置にある点(受熱点)の 輻射強度は、火炎輻射発散度に形態係数をかけた値になる。 次の式から形態係数 φ を求める。 	
$E = Rf \cdot \phi$		$E = R_f \cdot \phi$	
E:輻射強度 [kW/m ²], Rf:火炎輻射発散度 [kW/m ²], φ:形態係数[-] φ>φ _t となる最大の距離として危険距離を算出する。算出 結果を第 3.2-4 表 に示す。		E: 輻射強度 [kW/m ²], R _f :火炎輻射発散度 [W/m ²], φ:形態係数 [-] φ>φ _t となる最大の距離として危険距離を算出する。算出 結果を第3.2-4 表に示す。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)		東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉				備考					
(12) 危険距離の評価結	果								(12) 危険距離の	評価結果					
想定される森林火災	炎において,評	価上必要とさ	れる危険距離						想定される	森林火災	において	,評価上昇	必要とされ	れる危険距	
(約 21m) に対し、 ᡮ	白崎刈羽原子力	発電所に設置	置される防火帯					離(22m) に	対し、島	根原子力	発電所に言	設置され	る防火帯の		
の外縁(火炎側)か	ら発雷田原子	戸施設の間の	離隔距離(約						外縁(水炎	則)からえ	公雷田原-	子炉施設の	の間の離り	高距離(約	
420m) が在院明確[]	しなステレな座	図した							140m)が在	全明確い	しもステし	よ確認し	- 14J *- 19LL1 		
43900 //12 灰 吧	しめることを唯	節凶 し /こ。								央 歫 西 上 人 _	しめること	こと推診し			
第 3.2-4 表	危険距離の語	平価に伴う評価	価項目						第 3.2-4	表 危険	距離の評	価に伴う	評価項目		
評価項目	ケース1	ケース2	ケース3						評価項目	ケース1	ケース2	ケース3	ケース4	ケース5	
燃燒半径[m]	0.98	1.02	0.83						燃焼半径[m]	1.193	1.037	0.537	0.563	0.600	
火炎円筒モデル数[-]	1900	1815	2224						火炎円筒モデル数	2,041	2,349	4,538	4, 323	4,059	
火炎輻射発散度[kW/m ²]	94.8	100	78.8						[-]						
火炎輻射強度[kW/m ²]	205	211	222						火灾輻射発散度 「LW/m ²]	118	99.5	46.9	49.3	52.4	
形態係数[-]	0.162	0.154	0.194						形態係数[-]	0.172	0. 205	0.371	0.357	0.333	
燃焼継続時間[min]	52	51	57						燃焼継続時間[min]	23	21	82	81	77	
危険輻射强度[k₩/m²]	15.441	15. 477	15.275						危険輻射強度	20.265	20 527	17 625	17 659	17 795	
〕已陕 距角 [m]	19	21	14						[kW/m ²]	20.205	20. 557		17.052	17.725	
									危険距離[m]	22	16	5	5	6	
				4.0	劫民组队	4 吟 町 敵 の	(二)								
				4.3	素家蜜と	10.陝距離(7)									
				line?	評価対象加	施設に対して	こ,森林火災による熱影響評価を行った								
				4.3	3.1 パラ	メータの算	Щ.								
					FARS	ITF解析約	~~~ 吉里であろ水炎到達時間 反応強度	ik							
				~ 火		も中秋年に		 H							
				201		血皮計加に火	公安なノークを昇山した。価度計価に	· <u></u> 加							
				117	をデータの	の説明を第一	4.3.1-1 表, FARSITE解析結果	:及							
				び泊	算出デーク	タを第 4.3.	Ⅰ-2 表,温度評価の流れを第 4.3.1-1	図							
				にデ	示す。										
					·····										
					55 A	0 1 1 #	温広志伝は田いよう。ための								
					<u> </u> 弗4	. 3. 1-1 衣	温度評価に用いたデータ内谷								
				[項	目	内容								
						火炎到達時間	出火から火炎の前線が該当地点に到達するまでの時間。								
					FARSITE	(hr) 反応強度	火炎継続時間の算出に使用する。 単位面積当たりの熟放出速度であり、火炎輻射強度の根								
					解析結果	(kW/m ²)	拠となる火災規模。火炎輻射強度の算出に使用する。								
						火炎長 (m)	皮応頭度が最大位置の火炎の高さ。円筒火炎モデルの形 態係数の算出に使用する。								
						火炎継続時間 (hr)	到達時間から算出され,円筒火炎モデルを用いた温度上 昇の算出に使用する。								
				FARSITE 解析結果 ドレ幣無出 火炎輻射強度 (kW/m ²) 反応強度に米国 NFPA の係数 0.377 を乗じて算出され, 円筒火炎モデルを用いた温度上昇の算出に使用する。											
					したデータ	燃焼半径 (m)	火炎長に基づき算出され,円筒火炎モデルの形態係数の 算出に使用する。								
						火炎到達幅 (m)	防火帯外縁における火炎到達セル数×セル幅(10m)								
				1											

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第	第二発電	節(20	018.9.1	2版)			島根原子力発電所 2号炉	備考
	<u>第4.3.1-</u>	<u>2 表 F</u>	FARS	ITE	解析結	果及び算	<u> 第出デー</u>	-タ		
	項目	発火点 1	発火点 2	発火点 3	発火点 4	発火点 5	発火点 6	発火点 7		
	火炎到達時間 (hr)	0.2	4.0	0.7	6.0	2.9	1.1	0.7		
	火炎長 (m)	0.7	0.9	1.6	1.1	1.5	1.6	1.5		
	火炎継続時間 (hr)	0.36	0.16	0.07	0.16	0.10	0.06	0.08		
	火炎輻射強度 (kW/m ²)	442	441	442	440	444	443	439		
	燃焼半径 (m)	0.2	0.3	0.5	0.4	0.5	0.5	0.5		
	火炎到達幅 (m)	1,960	1, 550	1,960	1, 460	1,960	1,960	1,330		
	到達時間	反応引	触度	火炎	Ę	火炎到道	幸幅			
						1	10mメッショ 距離が変化す	- ごとに離隔 る。	ล้	
	火炎継続時間	火炎輻射	村強度	燃焼≐	半径	離隔距	〕離			
				●日筒火炎	Ŧデル数	▼形態係	▼			
						70.20				
				★ ★ 輻射引	▼ 魚度					
		11 中尼湖	BE RE AIL:			PADOL	ア ロ出去づ	ha		
		血度影響			: 		IE田刀テー	-9		
		第4.	3.1-1	凶温月	<u> </u>	れ図				
	(1) 火炎継続	時間								
	最大火	炎輻射強	度の発	生メッ	シュと	<u> 隣接メ</u>	ッシュに	こおける		
	<u> </u>	<u>対則の</u> 互 場合は.	<u>こと/八</u> 次 最大時	14 15 15 15 15 15 15 15	<u>」則く</u> り 訳する	Qendini 、火炎縦	<u>ンム上の</u> 継続時間	2151館点 引の概念		
	図を第4.	3. 1-2 🗵	い示す	uiituttatta Quu	arinda and and and and and and and and and	un de la construcción de la constru La construcción de la construcción d	uttakeitetti	ianin 12846		
	到達時間 火炎継続時間 (1) 火炎継続 最大火: 火炎到達 向がある: 図を第 4.	レ 反応 大 次 気 転 重 度 影 響 4. 読 転 動 型 の 差 ま 4. 読 転 動 型 の 差 、 数 転 動 型 の 差 、 数 転 動 型 の 差 の き に 、 の き つ 差 の 差 の 差 の き に 、 の ろ の き つ 差 の き の き こ の き こ の き こ の こ の き こ の こ の き こ の こ の こ の こ つ こ の こ の こ つ こ の こ つ こ の こ の こ つ こ の こ の こ つ こ つ こ つ こ つ こ の つ こ の こ つ つ こ つ つ こ の こ つ こ の こ の こ つ こ の こ の こ つ こ こ こ こ こ こ こ こ こ こ こ こ こ	▲度 ^一 ^ー ^ー		↓	火奏到 離隔距 形態係 予態係 予修 下 まれ図 強接メー る。2 ~ 人次系	▲	L - ジンに離開 - タ こことに離開 - タ こことに離開 こことに離開 こことに離開 こことに離開 こことに離開		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018	8.9.12版)		島根原子力発電所 2号炉	備考
	火麥到達時間差 [hr] 2.3 2.4 列達時間差 [hr] 2.0 2.4 (0.1) 2.0 2.4 (0.2) 2.0 2.4 (0.2) 2.0 2.4 (0.2) 2.0 2.4 (0.2) 2.0 2.4 (0.2) 2.0 2.4 (0.2) 2.0 2.4 (0.2) 2.0 2.4 (0.2) 2.0 2.4	防火帯外縁 :最大火炎輻射強度 :最大火炎輻射強度 :大炎伝播方向 到達時間差の最大値:少 売時間の概念図	5発生位置 :炎継続時間(hr)		
	 (2) 火炎輻射強度はFARSITE から算出する。 反応強度は炎から輻射として放 炎・煙として対流放出される熱エ ことから,反応強度に対する火炎 とで,反応強度から火炎輻射強 HANDBOOK OF Fire Protection Eng 熱量を引用し,反応強度に対する する。 東海第二発電所の周囲は,針葉 針葉樹の係数 0.377 を使用する。 発熱量の関係を第4.3.1-3 表に示 反応強度(W/m²) =火炎輻射 数度(W/m²) 	 E出力データであ、 故出される熱エネ、 ネルギの和からえ、 転射強度の割合、 貧度を算出する。 ğineering」から、 防火炎輻射強度の割合、 防火炎輻射強度の気 樹で囲まれている 大炎輻射強度と見、 強度(W/m²) + 4 	5 反応強度 レギと,火		
	第 4.3.1-3 表 火炎輻射強度。	と反応強度の発熱	<u>上</u>		
	発熱量(二H) (二hrad) (二hcon	n) (_Hch)	(⊿Hrad/⊿Hch)		
	レッドオーク 発熱量 (落葉広葉樹の代表師) 4.6kJ/g 7.8kJ/	∕g 12.4kJ∕g	0.371		
	米松 発熱量 (引葉樹の代表種) 4.9kJ/g 8.1kJ/ ※:「THE SEPE HANDBOOK OF Fire Protection Engin	g 13.0kJ/g	0. 377		
		(SFPE:米国防火技利	所者協会)より		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 燃焼半径		
	燃焼半径は、火炎長から算出する。		
	$R = \frac{H}{3}$		
	<u>R:燃焼半径(m)</u> <u>H:火炎長さ(m)</u>		
	(4) 火炎到達幅		
	発電所周囲の森林境界に到達した火炎のセル数×10m(セル 幅)を火炎到達幅Wとして算出する。		
	(5) 円筒火炎モデル数 円筒火炎モデル数及び 10m メッシュ内の円筒火炎モデル数 を、火炎到達幅、燃焼半径から算出する。		
	$F = \frac{W}{2R} \qquad F' = \frac{10}{2R}$		
	 F :円筒火炎モデル数 W :火炎到達幅(m) F' :円筒火炎モデル数(10m メッシュ) R :燃焼半径(m) 		
	(6) 形態係数の算出 外部火災の影響評価ガイドに基づき形態係数を算出する。 各円筒モデルから受熱面までの距離が異なるため、各円筒火 炎モデルにおける形態係数を算出する。		
	$\phi_{i} = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2} - 1}} \right) + \frac{m}{\pi} \left[\frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left(\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right) - \frac{1}{n} \tan^{-1} \left(\sqrt{\frac{(n - 1)}{(n + 1)}} \right) \right]$ H L_{i} L_{i		
	$m = \frac{1}{R}, n = \frac{1}{R}, A = (1+n)^{2} + m^{2}, B = (1-n)^{2} + m^{2}$ $\boldsymbol{\Phi}_{i} : \boldsymbol{\Pi}$ 筒火炎モデルの形態係数 $L_{i} : 離隔距離 (m), \boldsymbol{H} : 火炎長 (m)$ R : 燃焼半径 (m)		
	(7) 輻射強度の算出 10m メッシュ内には燃焼半径から算出した F' 個の火炎が 存在するものとして,受熱面への輻射強度を算出する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	E₀=∞₀×F'×R _f (中心火炎の場合)		
	E _i =∅ _i ×F'×R _f ×2 (中心以外の火炎の場合)		
	∅ _i :形態係数		
	R _f :最大火炎輻射強度(kW/m ²)		
	F':円筒火炎モデル数 (10m メッシュ <u>)</u>		
	(8) 温度評価条件		
	受熱面への輻射強度は、円筒火炎モデルを火炎到達幅の長		
	さ分並べて、各々の輻射強度を積算し評価した。火炎輻射強		
	度は各々の位置で強度の違いがあるが、本評価では保守的に		
	最大火炎輻射強度の円筒火炎モデルが一様に存在するものと		
	して評価する。円筒火炎モデルの燃焼時間は火炎継続時間で		
	ある。円筒火炎モデルの概念図を第4.3.1-3図に示す。		
	離隔距離		
	火灸到達幅 W(m) L (m)		
	▶: F'個分の火炎から放射▶: F'個分を2カ所から同時に放射		
	第4.3.1-3図 円筒火炎モデルの概念図		
	4.3.2 熱影響評価		
3.3 建屋外壁の温度評価	4.3.2.1 建屋外壁の熱影響評価	3.3. 建物外壁の温度評価	
本評価で用いる許容限界温度は、一般的にコンクリートの強	(1) 影響評価対象範囲	本評価で用いる許容限界温度は、一般的にコンクリートの	
度にほとんど影響がないとされている 200℃とする。	評価対象施設の外壁について、森林火災を想定して評価を	強度にほとんど影響がないとされている 200℃とする。	
火災の進展により原子炉建屋外壁面が受ける輻射熱は,	実施した。	火災の進展により原子炉建物外壁面が受ける輻射熱は,	
FARSITE による森林火災解析結果から、1 メッシュ (10m×10m)	(2) 評価対象施設から最も近い防火帯外縁までの離隔距離を用	FARSITE による森林火災解析結果から,1メッシュ(10m×10m)	
ごとに火炎長、単位面積当り発熱量及び火炎到達時間が出力さ	いて評価を行う。評価対象施設から最も近い防火帯外縁まで	ごとに火炎長、単位面積当たりの発熱量及び火炎到達時間が	
れるので、メッシュごとに円筒火炎モデルを並べ(円筒火炎の	の離隔距離を第4.3.2.1-1図,第4.3.2.1-1表に示す。	出力されるので、メッシュごとに円筒火炎モデルを並べ(円	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)		島根原子力発電所 2号炉	備考
直径が 1m であれば, 1 メッシュに 10 個の円筒火炎を考慮),		筒火炎の直径が 1m であれば, 1 メッシュに 10 個の円筒火炎	
各メッシュに火炎が到達してから燃え尽きるまでの間輻射に寄		を考慮), 各メッシュに火炎が到達してから燃え尽きるまでの	
与するとして受熱点の輻射強度を積算する。受熱点への輻射強		間輻射に寄与するものとして受熱点の輻射強度を積算する。	
度計算方法の概念を <u>第 3.3-1 図</u> に示す。		受熱点への輻射強度計算方法の概念を <u>第3.3-2</u> 図に示す。	
外壁面の温度は、外壁面での対流熱伝達と輻射放熱を考慮し		外壁面の温度は、外壁面での対流熱伝達と輻射放熱を考慮	
以下の式に示す一次元非定常熱伝導方程式を用いて評価を実施		し以下の式に示す一次元非定常熱伝導方程式を用いて評価を	
する(<u>第 3.3-2 図</u>)。原子炉 <u>建屋</u> 外壁表面の温度は約 <u>55℃</u> とな		実施する (<u>第3.3-3図</u>)。原子炉建物外壁表面の温度は約 63℃	
り、森林火災の熱影響に対して許容温度以下であることを確認		となり、森林火災の熱影響に対して許容温度以下であること	
した(第 3.3-2 表, 第 3.3-3(a)(b)(c)図)。		を確認した(第 3. 3-2 表, 第 3. 3-4 (a) (b) (c) (d) (e) 図)。	
	第4.3.2.1-1図 評価対象施設から最も近い防火帯外縁までの	$dT = d^2T$	
$\frac{dT}{dt} = \alpha \frac{d^2T}{2}$	離隔距離	$\frac{dT}{dt} = \kappa \frac{dT}{dx^2}$	
$dt dx^2$		u ux	
T:温度,t:時刻,x:建物壁内における外面からの距離,	第4.3.2.1-1 表 評価対象施設から最も近い防火帯外縁までの	T:温度,t:時刻,x:建物壁内における外面からの距離,	
$\underline{\alpha}$:熱拡散率	離隔距離	<u>床</u> :熱拡散率	
	誕年は免疫部 原スに使用 海水 使用済燃料 タービン 放水路		
以下に使用したパラメータを示す。	評価対象施設 原ナ炉建屋 ポンプ室 乾式貯蔵建屋 建屋 ゲート 離隔距離	以下に使用したパラメータを示す。	
	(m) 267 242 37 221 41		
第 3.3-1 表 建屋外壁温度算出時の入力パラメータ		第3.3-1表 建物外壁温度算出時の入力パラメータ	
項目 パラメータ 備考	(3) 判断の考え方	項目 パラメータ 備考	
外気温度 50 ℃ 日射の影響を考慮し設定 内与泪度 45 ℃ 非常田ディーゼル発電機容長高温度		外気温度 50 ℃ 日射の影響を考慮し設定	
外面熱伝達率 62.595 W/m ² K Jurges の式より (風速 16m/s)	火災時における短期温度上昇を考慮した場合において、コ	内気温度 - いるため、本数値は評価結果に影響しない。	
内面熱伝達率 3.4883 W/m²K 建築設計竣工図書 原子炉建屋構造計算書より	ンクリート圧縮強度が維持される保守的な温度 200℃以下と	外面熱伝達率 第3.3-1 図参照 周囲温度 50℃の場合の自然対流熱伝達率	
熱拡散率 8.42×10 ⁻⁷ m ² /s 建築設計竣工図書 原子炉建屋構造計算書より	する。なお,外壁にはガラリ,配管貫通部等が存在するが,	(Bayley の式) 0 W/m²K 保守的にコンクリートから内気に熱伝達が	
壁面の厚さ 1.5 m 建屋外壁厚さの最大値	これらに対する火災影響は敷地内火災に包絡されるため本評	内面熱伝達率(断熱)ない断熱条件とした。	
	価では対象外とした。	コンクリート 熱拡散率:κ 8.42×10 ⁻⁷ 比熱 c =879.1J/(kg・K)	
	b. 評価方法	($\kappa = k/(\rho \cdot c)$) m ² /s 密度 $\rho = 2,200 kg/m^3$ 執行道率 k = 1.628W/(m・K)	
		壁面の厚さ 2.3 m 原子炉建物南面外壁の厚さ	
	の輻射強度で外壁が昇温されるものとして、式1の一次元非		
	定常執伝導方程式を差分法より解くことで、外辟表面の温度		
	及び外辟表面の温度が200℃とたろ輻射強度(=合陰輻射強度)		
	を質出する		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	$\rho C_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) \qquad (式 1)$ $-k \frac{\partial T}{\partial x} = E \qquad (x=0)$ $\frac{\partial T}{\partial x} = 0 \qquad (x=L)$ $(出典: 伝熱工学, 東京大学出版会)$ $T : 初期温度 (50°C) * E: 輻射強度 (W/m2)$ $\rho : 密度 (2,400 kg/m3) \qquad k: 熱伝導率 (1.63W/m/K)$ $C_{p}: 比熱 (880 J/kg/K) \qquad L: 厚さ[m]$ $% 水戸地方気象台で観測された過去高気温 38.4°Cに保守性を持たせた値$	自然対流熱伝達率(Bayleyの式) 7.0 6.0 5.0 4.0 3.0 数 2.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
サイト林緑 時刻T₂での 延焼前線 計算メッシュ 10m×10m 受熟面 出火点 (時刻Tslc出火) 受熟面の代表位置点 (受熟点) 時刻T₂~T₂+ΔTの 幅射強度に寄与する 円筒火炎 時刻T₁~T₁+ΔTの	式1で求めた危険輻射強度Eとなる形態係数 Φ を,式2より 算出する。 E = R f • Φ (式2) E : 輻射強度 (W/m ²), R f : 火炎輻射強度 (W/m ²), Φ : 形態係数 (出典:評価ガイド) 式2で求めた形態係数Φとなる危険距離Lを,式3より算出 する。 $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (式 3)$ ただし m = $\frac{H}{R} = 3$, n = $\frac{L}{R}$, A = (1+n) ² +m ² , B = (1-n) ² +m ² Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),	第 3. 3-1 図 熱伝達率(自然対流熱伝達率) サイト林縁 時刻T₂での 延焼前線 受熱面 ●●●●●● 受熱面の代表位置点 ●●刻T₂~T₂+ΔTの 「受熱点) ●●」●●●●
$ f = 1 \\ f = 1 \\ $	 R:燃焼半径(m) 上記のとおり危険距離を算出し,最も近い防火帯外縁から評価対象施設までの離隔距離を下回るか評価を実施した。なお、 天井スラブは以下の理由により,外壁の評価に包絡されるため 実施しない。建屋外壁の評価概念図を第4.3.2.1-2 図,天井ス ラブへの輻射熱の影響の概念図を第4.3.2.1-3 図に示す。 ・火炎長が天井スラブより短い場合,天井スラブに輻射熱を 与えないことから熱影響はない。 ・火炎長が天井スラブより長い場合,天井スラブに輻射熱を 与えるが,その輻射熱は外壁に与える輻射熱より小さい。 	愛熱点の輻射強度 $ $

炉			備考
;尊:Q _c	建物内 ♪in	側	
「「概念」の言	▲ ③ ☑		 ・条件の相違 【柏崎 6/7】 島根 2 号炉は,壁面と 内気との熱伝達が無い 断熱条件として評価を 実施
、3 炉建物	ケース4	ケース 5 238	
	58	58	
	50	50	
とす	3.		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号	備考	
3.4 内気温度評価	4.3.2.2 <u>建屋内部の室内温度評価</u>		3.4. 内気温度評価	・条件の相違	
森林火災において燃焼が継続している間、一定の輻射強度で	(1) 評価対象範囲		森林火災において燃焼が継続している間、一定の輻射強度		【東海第二】
発電用原子炉施設が昇温されるものとして、内壁の温度上昇を	評価対象施設に対し、室内で人員の活動が	ぶ必要な中央制御	で発電用原子炉施設が昇温されるものとして、内壁の温度上		島根 2 号炉は,柏崎
求め建屋内部に設置されている機器等への影響について評価す	<u>室について,森林火災を想定し,室内温度を</u>	·評価した。	昇を求め建物内部に設置している機器等への影響について評		6/7 と同様, 防火帯に近
3.	<u>(2) 判断の考え方</u>		価した。		接している固体廃棄物
なお、対象は防火帯に近接している <u>固体廃棄物処理建屋</u> とし、	<u>a. 許容温度</u>		なお、対象は防火帯に近接している <u></u> 固	貯蔵所D棟にて温度評	
森林火災における最も厳しいケース 2_の条件で評価する。 <u>固体</u>	中央制御室の設計室温から40℃とする。	_	とし、森林火災における最も厳しいケー	ス1の条件で評価す	価を実施
廃棄物処理建屋について温度評価を行う。	<u>b.評価方法</u>		る。固体廃棄物貯蔵所D棟について温度	評価を行う。	
以下に概念図を示す。	<u>4.3.2.1</u> の原子炉建屋の評価結果より,	外壁内面温度は	以下に概念図を示す。		
	53℃を想定した。なお,4.3.2.1の外壁外	面の評価結果は,			
	原子炉建屋南側の壁であり、中央制御室の	のある東側の壁と	建屋壁(均質)		
建屋外 建层缝(均質体) 建层内 地名		と想定すること	建物外侧		
	とした。				
「アメこの派伝達 Q _{v, out} 」 「周囲への輻射 Q _{- m} 、 内気との熱伝達 Q _{v, in}		3, 室内温度評価	室基 TR 中時不可能で1		
熱伝導 Q _{c, out} 換気空調系給気温度 <u>T。</u>	の評価条件を第 4.3.2.2-1 表に示す。		外気との熱伝達:O _{ver} 周囲への輻射:O		
熱伝導 Qe, in 風量 m 1				記号説明 gin:壁面からの入熱量[1] TR :室温[10]	
火炎からの輻射 E 室内負荷 Q				TSI:内壁面温度[℃] A :表面積[m ²] ⊿t:時間ステップ C :が気熱容量[h-1/m ²)	
	建屋壁			C · Extrage (K) = 7	
第 3.4-1 図 伝熱の概念図	建屋外 建屋内	空調による排気	第3.4-1図 内気温度評価概:	念図	・条件の相違
	Qin:外壁内面温度上昇				【柏崎 6/7】
評価に必要なパラメータを以下に示す。	外壁外面 に伴う熟負荷		評価に必要なパラメータを以下に示す。		島根2号炉は,室内の
		空調による給気			空気は出入りがない条
第 3.4-1 表 内気温度算出時の入力パラメータ			第3.4-1表 内気温度評価算出時の入	カパラメータ	件として評価を実施
宿日 パラマニタ 佐老	輻射熱 空内設備による熱		項目 パラメータ	備考	
項日 ハノメーク 哺号 外気温度[℃] 50 日射の影響を考慮し設定			外気温度[℃] 50 日射の影響を考慮 内気温度[℃] 50 初期温度は外気温	意し設定 国産と同じ 50℃に設定	
外壁面熱伝達率[W/m ² K] 62.595 Jurgesの式より(風速 16m/s)	第4.3.2.2-1 図 室内温度評価の概	念図	外壁面熱伝達率 第3.3-1 図参昭 周囲温度 50℃の	の場合の自然対流熱伝達率	
<u>内壁面熱伝達率[W/m²K]</u> <u>日</u> <u>日</u> <u>日</u> <u>1</u> <u>1</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u>			[W/m²K] (Bayleyの式) 内壁面熱伝達率 伝熱工学資料第5	5版に基づく自然対流熱伝達	
型の派伝導率[w/mk] 1.6279 コンクリートの熱広等率 熱拡散率 $[m^2/s]$ 8.42×10 ⁻⁷ コンクリートの熱拡散率	第4.3.2.2-1 表 室内温度評価の評価	ī条件	[W/m ² K] 2 率を算出 歴 の計 (ご) 売吉 (W/ N ²) 1,000 (アンカ H) 上の書		
壁厚[m] 0.4 固体廃棄物処理建屋			壁の熱伝導率[W/mK] 1.628 ヨングリートの熟 コンクリート	然広導率	
	評価条件項目 中	央制御室	熱拡散率[m ² /s] 8.42×10 ⁻⁷ 比熱 c =879. 密度 ρ =2,20	1J/(kg • K) 0kg/m ³	
		(子炉建屋)	熱伝導率 k =1 慶厚[m] 0.5 固体廢棄物貯蔵門	.628W/(m・K) FD棟外壁の厚さ	
	<u> 望田 江 </u> 望田 衣 田 積 (m ⁻) 家 内 執 自 荷 (W)	210 579		 Alternative of the State 	
	▲日派父時(W) 熱負荷情報	42, 504			
以下の式に示す一次示非完党執行道方程式を用いて め降及び	空調給気温度(℃)	15.5	山下の式に示す一次元非完労執行道士	おおお田いて 从時	
	室内許容温度 室内許容温度(℃)	40	い いんに かり ひんか に 市 然 仏 等 力	11-11で用すて、フト室	
			入 UT1 至田恒友で不のの。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$\frac{dT}{dt} = \alpha \frac{d^2 T}{dx^2}$	4.3.2.1 の一次元非定常熱伝導方程式を用いて算出した第 4.3.2.2-2 表の外壁内面温度より,下式を用いて室内温度評価	$\frac{dT}{dt} = \kappa \frac{d^2 T}{dx^2}$	
T:温度, t :時刻, x :建物壁内における外壁面からの距離, <u>α</u> :熱拡散率	<u>を算出した。</u> <u>第 4.3.2.2-2 表</u> 熱評価結果	T:温度, t:時刻, x:建物壁内における外壁面からの距離, <u>た</u> :熱拡散率	
<u>外壁及び内壁面温度上昇に伴う熱負荷は次式で計算される。</u>	火災源 評価対象 外壁内面温度[℃] 森林火災 中央制御室 53 (発火点1) (原子炉建屋) 53	内壁面からの入熱量は以下の式より算出される。	・条件の相違 【柏崎 6/7,東海第二】
$Q_{v,in} = n_{in}A(I_{in} - I_{room})$ <u>h_{in}:内壁面熱伝達率,A:内壁の表面積,T_{in}:内壁面温度,</u>	$Q_{in} = h_{in}A (T_{in} - T_{room})$	$qin = \alpha_1 \times (IR^3 - ISI^3)$ $qin: 壁面からの入熱量[W], \alpha_1: 内面熱伝達率,$	地域特性を踏まえた 評価条件に伴う評価式
<u>T_{room}:内気温度</u> 内気温度は、森林火災による内壁面温度上昇に伴う熱負荷と室	Q_{in} :外壁内面温度上昇に伴う熱負荷(W) h_{in} :外壁内面熱伝達率(8.29W/m ² /K) A :受熱壁の表面積(m ²)	<u>TR:室温[℃], TS1:内壁面温度[℃]</u> 上記の式より、内気温度は、以下の式より求めることがで	の相違
<u>内の熱負荷及び換気空調系による除熱を考慮し、次式で求める。</u> $T = - Q + Q_{M} + T$	<u></u>	$\frac{\underline{z}}{\underline{z}} = \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{1}{3} \frac{1}$	
¹ room — mρC - Υ · · · · · · · · · · · · · · · · · ·	<u>室内温度の評価は、森林火災による外壁内面温度上昇に伴う</u> 熱負荷と室内の熱負荷及び空調による除熱を考慮し算出した。 $T_{room} = \frac{Q + Q_{in}}{m \rho C_{p}} + T_{a}$	TR = TR + (q = ∠(qn×n))×Δre <u>TR:室温[℃], qin:壁面からの入熱量[W],</u> <u>A:内壁面の表面積[m²], Δt:時間ステップ,</u> <u>C:空気の熱容量[kJ/m³], q:室内熱負荷[W]</u>	
 (1) 固体廃棄物処理建屋 森林火災における<u>固体廃棄物処理建屋</u>の評価結果を以下に示す 	<u>Q</u> :室内熱負荷 (210,579W), m:風量 (42,504m ³ /h) <u>ρ:空気密度 (1.2kg/m³)</u> <u>C_p:空気比熱 (1,007J/kg/K), T_a:空調給気温度 (℃)</u>	 (1) 固体廃棄物貯蔵所D棟 森林火災における固体廃棄物貯蔵所D棟の評価結果を以下 に示す。 	
90 80 70 60 550 50 20 型 30 20	 <u>c. 評価結果</u> <u>森林火災を想定した中央制御室の室内温度を算出した結</u> <u>果,室内温度は許容温度以下であることを確認した。</u> <u>室内温度評価結果を第4.3.2.2-3表に示す。</u> <u>第4.3.2.2-3表 室内温度評価結果</u> 	120 100 100 100 100 100 100 100	
10 0 0.2 0.4 0.6 0.8 1 1.2 時間[hour] 時間[hour]	火災源評価対象建屋内部の到達温度 (℃)許容温度 (℃)森林火災 (発火点 1)中央制御室 (原子炉建屋)33<40℃	20 20 20 20 25 30 35 9 0 5 10 15 20 25 30 35 時間(h) 時間(h) 5 10 16 16 16 16 16 16 16 16 16 16 16 16 16	

柏崎刈羽原子力発電	⑥所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
第 3.4-2 表 森林	大災影響評価結果(固体廃棄物処理建屋)		第3.4-2表 森林火災影響評価結果(固体
(日本)	休庭蚕物如理建屋延価		固体廃棄物貯蔵所D棟評価
百日	本林火災 (ケース 2)		項目 森林火災(ケー
	2840※1		輻射強度[W/m ²] 15,678 ^{**}
₩約5±反[W/III]	51 (2060[a])		燃燒継続時間[min] ^{**2} 23(1380[s
於施祉就时间[ⅢⅢ]	70		外壁面温度[℃] 89
外壁面偏度[℃]	19		内壁面温度[℃] 54
内壁面値度しし」	39		内気温度[℃] 53
内気温度[℃]	31		[許容温度[℃] 100*3
計谷温度しし」	40***		※1:外壁面の初期温度は50℃,内壁面の初期温度
 ※1:離隔距離を 105m, そのf の式より輻射強度を算 ※2:防火帯周辺の森林(奥 ※3:固体廃棄物処理建屋内 用温度 	他の数値はケース2と同様とし,3.2(10)及び(11) 算出 行き100m)が燃える平均時間 1の電気設備(固型化処理装置制御盤等)の最高使		※2: 防火帯周辺森林(奥行さ50m)が燃える平均時 ※3: 固体廃棄物貯蔵所D棟内部に保管する低レベ ラム缶で使用しているパッキンの耐熱温度限
評価の結果,内気温	温度は 31℃(最大値)まで上昇するが, 室		評価の結果,内気温度は53℃(最大
内の雷気設備(周型化			
たて回てこしたの認知			
を下凹ることを帷認し			しているパッキンの耐熱温度限度 100
			した。
3.5 屋外施設の影響評価	6		3.5. 屋外施設の影響評価
(1) 評価手法の概要			 (1) 評価手法の概要
本林水災の水火は「	□ 筒 レ 火 な エ デ ル レ 1 ・ レ 火 の 直 さ け 厳 博		本井水災の水火け田管水火エデルとし
林仲八火の八次は「			林林久炎の久炎は日間久炎モノルと
半径の3倍とする。	また、火炎到達幅の分たけ円筒火炎モナル		半径の3倍とする。また、火灸到産幅の
が横一列に並ぶものと	とする(第 3.5-1 図)。		ルが横一列に並ぶものとする。(第3.5-
	各円筒火炎モデルからの輻射熱		
火	評価対象施設 離隔距離L ・ ・ ・ ・ ・ ・ ・		第3.5-1図 円筒火炎モデル

-炉	備考
至廃棄物貯蔵所D棟)	
s])	
は50℃とする。 寺間	
ル放射性固体廃棄物用ド 度(100℃)	
値)まで上昇するが, 棄物用ドラム缶で使用	
○ を下回ることを確認	
し,火炎の高さは燃焼 の分だけ円筒火炎モデ	
-1 図)	
炎到達幅:₩	
危険距離:L _t	
の並べす	
797亚个力	

柏崎刈羽原子力	発電所 6/	7号炉 (2017.12	. 20版)	東海第二発電所(2018.9.12版)		限原子力発電所 2号	寻炉	備考
(2) 必要データ					(2) 必要データ	(2) 必要データ		
評価に必要なデ	ータは以下の	とおり。			評価に必要なデータは以下のとおり。			
			水炎輻射強度が	最も大きい森林水災	。 (ケース1)のデータ			
た田いて証価する			<u>, , , , , , , , , , , , , , , , , , , </u>		た田いて証在ナス			
を用いて評価する	0				を用いて評価する。	2		
第 3.5-1 表	屋外施設	影響評価時の入力を	データ		第 3.5-1 表	屋外施設影響評価時	の入力データ	
項目	軽油タンク	燃料移送ポンプ	主排気筒		項目	海水ポンプ**1	排気筒**1	
		(防護板(鋼板))*1			火炎輻射発散度[kW/m ²]	1	18	
火炎輻射発散度[kW/m ²]		100			火炎輻射強度[kW/m ²]	3	64	
_ 火炎輻射強度[kW/m ²]		211			火炎長[m]	3.	. 58	
火炎長[m]		3.08			火炎到達幅[m]	4,	870	
火汆到達幅[m]		3730			燃燒継続時間[min]	2 2	23	
%%%无术医术冗时于[1][m1n] 卤化区只吃卤化「m7	200	51	404		離隔距離[m]	270	250	
初期温度「℃]	38*2	38 ^{×3} (55 ^{×2})	50*2		初期温度[℃]	40^{*3}	50*2	
許容(限界)温度[℃]	225*4	100 ^{*5}	325*6		許容(限界)温度[℃]	55 ^{**4}	325**5	
受熱面輻射強度[W/m ²]	680	470	520		受熱面輻射強度[W/m ²]	1, 451	1,576	
※1:燃料移送ポンプの温見	度評価体系は、「別	紙 2-4 2.2 軽油タンク:	火災以外の外部		※1:温度評価体系は,「別紙2-	4」を参照。		
火災時」を参照。					※2:鹿島地区の最高気温(気象	よ 庁) に 日 射 の 影 響 を 考 慮		
※2:柏崎市の過去最高気流	温(気象庁)に日身	村の影響を考慮			※3:冷却空気の初期温度のため	の鹿島地区の最高気温(気象月	庁) に保守性を持たせた値	
※3:燃料移送ポンプは防	護板の裏面に設置る	されており日射の影響を	受けないため,		※4:下部軸受の機能を維持する	ため電気規格調査会標準規格	各 JEC-2137-2000「誘導機」で定	
柏崎市の過去最高気	〔温(気象庁)とす	る。			める耐熱性の良好なグリーン	スを使用する場合の温度限度	§95℃から冷却空気の初期温度	
※4:軽油の発火点(理科4	年表)				40 しを走し引いた 55 しを停む	₩空気の計谷温度とする。 〈の♪よーず♪ ↓ ↓ 巛皮 △部言		
※5: 端子ホックスバッキ、 燃料数学ポンプの日	ンの耐熱温度(JIS 国国に記墨されてい	5 K6380) 、 Z Ft=#+F (留+FC) の d 表			※5:鋼材の制限温度(建築パム	のメガニスムと火災女主設計	T, 日本建築センター)	
燃料移达ホンプの肩 燃料移送ポンプにあ	り囲に設直されてい カ影郷が及げわいて	いる防護板(輌板)の外国 した確認する この担合	1温度をもつし, 当該ポンプの					
※行移区ホンノに系 許容限界温度(100%	(影響が及ばないこ で)を踏まえ 防護	こと唯記りる。この場合 「板外面の許容温度を 100	, ヨ酸ホンクの ℃とする (防護					
板(鋼板)の外面湯	このでは こので しの で しの で 以下で に	あれば、燃料移送ポンプ	(エリア)の温					
度は100℃を超えな	:(1)。							
※6:鋼材の制限温度(建	築火災のメカニズム	ムと火災安全設計,日本建	聿築センター)					
(3) 温度評価					(3) 温度評価			
a. <u>軽油タンク</u> 0	り温度評価							・設備の相違
一定の輻射強	度で軽油及び	<u>軽油タンク</u> が昇温る	されるものと					【柏崎 6/7,東海第二】
して,下記の式	より, <u>軽油</u> の	温度上昇を求め,	<u> 軽油</u> の温度が					島根2号炉では,軽油
許容温度以下で	あるか評価を	実施した。評価体系	系を第 3.5-2					タンク、燃料移送ポン
図に,評価結果	を第 3.5-2 表	そに示す。						プ,非常用ディーゼル発
								電機は、地下構造等の屋
$\epsilon E S_{c} + b$	hSaTain (sE	$S_{1} + hS_{2}T$	(hS_2)					内設備のため影響評価
$T = \frac{c_L S_1 + r}{r_L}$	$\frac{1021air}{2} - \left(\frac{21}{2}\right)$	$\frac{JS_1 + hS_2T_{air}}{LC} - T_0$	$e^{\left(\frac{m_2}{C}\right)t}$					PI取用のため影音計画
hS	2 \	nS_2)					対象外。
T ₀ :初期温度[38	§℃], E:輻射	強度[W/m²], ε: <u></u>	<u>軽油タンク</u> 表					また, 放水路ゲートに
面の放射率(0.	9) ^{※1} ,h: <u>軽油</u>	タンク表面熱伝達	率[<u>17</u> W/m ² K]※					ついても, 設置していな
² , S ₁ =S ₂ : <u>軽油</u>	<u>タンク</u> 受熱・	放熱面積[m²], C: <u>轉</u>	<u> </u>					いため,影響評価対象

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>び軽油</u> の熱容量[<u>8.72×10⁸J/K</u>], t : 燃焼継続時間 [s], T _{air} :			外。
外気温度[℃]			また, 島根 2 号炉で
			は, 海水ポンプは, 屋外
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			設置のため影響評価を
			実施
輻射熱の反射(1-ε)E 輻射熱 E 軽油タンク ・ 受熱面,放熱面			
第 3.5-2 図 <u>軽油タンク</u> の熱影響評価(概念図)			
b. 燃料移送ポンプ(防護板(鋼板))の温度評価		a. 海水ポンプの温度評価	
一定の輻射強度で燃料移送ポンプの周囲に設置されている		一定の輻射強度で海水ポンプの冷却空気が昇温されるも	
防護板(鋼板)が昇温されるものとして、下記の式より、防		のとして、下記の式より、冷却空気の温度上昇を求め、海	
護板(鋼板)の最大温度を求め、防護板(鋼板)の温度が許		水ポンプの冷却空気温度が許容温度以下であるか評価を実	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		施した。	
に, 評価結果を第 3.5-2 表に示す。		評価体系を第 3. 5-2 図に, 評価結果を第 3. 5-2 表に示す。	
$T = \frac{\varepsilon E_2^S + hST_{air}}{hS} - \left(\frac{\varepsilon E_2^S + hST_{air}}{hS} - T_o\right) e^{\left(-\frac{hS}{C}\right)t}$		$T = T_0 + \frac{E \times A_T}{G \times C_p}$	
<u>T₀</u> :初期温度[55℃],E:輻射強度[W/m²], ε:防護板(鋼板)		<u>T</u> :評価温度[℃], <u>T</u> ₀ :通常運転時の上昇温度[℃],	
外面の放射率(0.9) ^{※1} ,h:防護板(鋼板)表面熱伝達率		<u>E:輻射強度[W/m²], A_T:受熱面積[m²], G:重量流量[kg/s]</u> ,	
[17W/m²K] ^{※2} , S:防護板(鋼板) 放熱面積[32.4m²](S/2:受		<u>Cp:空気比熱[1007J/(kg・K)]^{*1}</u>	
熱面積は外面のみ), C:防護板(鋼板)の熱容量[2.41×			
<u>10⁶J/K], t:燃焼継続時間[s], T_{air}:外気温度[55℃]</u>		※1: 伝熱工学資料	
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			

予炉	備考
電動機端子箱	
☞ [:] 価(概念図)	
れるものとして,下記 , <u>排気筒</u> の温度が許容 果を第 3. 5-2 表に示す。	
W/m²],ε: <u>排気筒</u> 表面 伝達率[17W/m²K] ^{※2} 和・衛生工学便覧	
排気筒 赤:受熱面 青:放熱面 黒:断熱面	
缶(概念図)	
離隔距離を危険距離と まえ方について第 3.5-4	

BT協大炎モデルからの輻射熱 ・	各円筒火炎モデルからの輻射熱 危険距離 Lt 解隔距離	火炎到達幅	
第 3.5-5 図 危険距離の考え方 第 3.5-4 図 危険距離の考え方	6 () 危険距離:許容限界温度となる距離 防火帯	離隔距離 危険距離:許容限界温度となる距離	
	第 3.5-5 図 危険距離の考え方	第3.5-4 図 危険距離の考え方	
a. $headen de add e y = 1$ a. $headen de add e y = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$	a. 危険輻射強度の算出 (a) <u>軽油タンク</u> の危険輻射強度の算出 一定の輻射強度で <u>軽油及び軽油タンク</u> が昇温されるものと して、下記の式より,許容限界温度となる輻射強度を危険輻 射強度とする。算出結果を第 3.5-2 表に示す。 $\mathcal{E}_{max} = \frac{ThS_2 - hS_2T_{air}(1 - e^{(-\frac{hS_2}{C})t}) - hS_2T_0e^{(-\frac{hS_2}{C})t}}{eS_1(1 - e^{(-\frac{hS_2}{C})t})}$ T ₀ :初期温度[38 [°] C],T:許容限界温度[[°] C],ε: <u>軽油タンク</u> 表面の放射率(0.9) ^{×1} ,h: <u>軽油タンク</u> 表面熱伝達率[17W/m ^e K] ^{×2} ,S ₁ =S ₂ : <u>軽油タンク</u> 受熱・放熱面積[m ²],C: <u>軽油タンク及</u> <u>び軽油</u> の熱容量[<u>8.72×10^sJ/K],t:</u> 燃焼継続時間[s],T _{air} : 外気温度[[°] C] ×1:伝熱工学資料,×2:空気調和・衛生工学便覧 (b) <u>燃料移送ポンプ(防護板(鋼板))</u> の危険輻射強度の算出 一定の輻射強度で <u>燃料移送ポンプの周囲に設置されている</u> <u>防護板(鋼板)</u> が昇温されるものとして、下記の式より,許 容温度となる輻射強度を危険輻射強度とする。算出結果を第 3.5-2 表に示す。 $\mathcal{E}_{max} = \frac{2}{eS} \left(\frac{hS(T - T_{air})}{1 - e^{(-\frac{hS_2}{C})t}} \right)$	a. 危険輻射強度の算出 a. 危険輻射強度の算出 b. 設備の相違 【栢崎 6/7, 東注 島根 2 号炉で タンク、燃料科 ブ,非常用ディー 電機は,地下構造 内設備のため最 対象外。 また、放水路が ついても,設置し いため,影響副 外。 また、島根 2 は、海水ボンブの 合、酸量 内設備のため最 対象外。 また、人が路が ついても、設置し いため、影響副 外。 また、島根 2 は、海水ボンブの 設置のため影響 ため、 上での輻射強度で <u>海水ボンブの冷却空気</u> が昇温される ものとして、下記の式より、許容温度となる輻射強度を 定険輻射強度とする。算出結果を第 3.5-2 表に示す。 $Emax = (T - T_0) \times \frac{G \times C_p}{A_T}$	毎は多一告彡 ゲし平 2.は驟第,送ゼ等響 一て価 号,評二軽ポルの評 トい対 炉屋価】油ン発屋価 にな象 で外を

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
<u>ε</u> :防護板(鋼板)外面の放射率(0.9) ^{※1} , S:防護板(鋼		<u>T:許容温度[℃],T₀:通常運転時の</u>
板)受熱面積[16.2m²],h:防護板(鋼板)表面熱伝達率[17W/m²K]		<u>A_T:受熱面積[m²],G:重量流量[kg/s</u>
<u>**2, C:防護板(鋼板)の熱容量[2.41×10⁶J/K], t:燃焼継続</u>		<u>C_v:空気比熱[1007J/(kg・K)]^{*1}</u>
<u>時間[s], T:許容温度[100℃], T_{air}:外気温度(初期温度)</u>		
<u>[55℃]</u>		
<u>※1:伝熱工学資料,※2:空気調和·衛生工学便覧</u>		※1: 伝熱工学資料
(c) <u>主排気筒</u> の危険輻射強度の算出		(b) <u>排気筒</u> の危険輻射強度の算出
一定の輻射強度で <u>主排気筒</u> が昇温されるものとして、下記の		一定の輻射強度で排気筒が昇温
式より、許容限界温度となる輻射強度を危険輻射強度とする。		記の式より、許容限界温度となる
算出結果を第 3.5-2 表 に示す。		度とする。算出結果を第3.5-2表に
$E_{\max} = \frac{2h(T-T_{o})}{\varepsilon_{.1}} e^{jt}$		$E_{max} = \frac{2h(T - T_0)}{\varepsilon}$
T_0 :初期温度[50℃],T:許容限界温度[℃],ε: <u>主排気筒</u> 表		T₀:初期温度[50℃], T:許容限界温度
面の放射率(<u>0.9</u>) ^{※1} ,h: <u>主排気筒</u> 表面熱伝達率[<u>17</u> W/m ² K] ^{※2}		面の放射率[0.9] ^{※1} ,h: <u>排気筒</u> 表面熱
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧		※1:伝熱工学資料,※2:空気調利
b. 形態係数の算出		b. 形態係数の算出
次の式から各円筒火炎モデルの形態係数を算出する。算出結果		次の式から各円筒火炎モデルの形ち
を第 3.5-2 表		出結果を第 3.5-2 表に示す。
$\phi_{i} = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2} - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$		$\phi_i = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 2n)}{B(n - 1)}} \right] \right\}$ $T \subset T \subset \mathcal{L}, m = \frac{H}{R} \cong 3, n = \frac{L_i}{R}, A = (1 + n)^2 + n$
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L_1}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		∳ i:各円筒火炎モデルの形態係数, L
φ _i :各円筒火炎モデルの形態係数,L _i :離隔距離[m],H:火炎長[m],R:燃 焼半径[m]		H:火炎長[m], R:燃焼半径[m]
したがって,各円筒火炎モデルの形態係数を合計した値が,		したがって、各円筒火炎モデルの
発電用原子炉施設に及ぼす影響について考慮すべき形態係数		が、発電用原子炉施設に及ぼす影響
$\phi_t \ge tabo$		態係数 ϕ_t となる。
$\phi_t = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$		$\phi_t = (\phi_i + \phi_{i+1} + \phi_{i+2} \cdots)$
♦ t:各円筒火炎モデルの形態係数を合計した値		♦t:各円筒火炎モデルの形態係数を含

炉	備考
上昇温度[℃],	
5],	
されるものとして, ト	
こ示す。	
度[℃], ε: <u>排気筒</u> 表	
※伝達率[17W/m²K]**	
中 南上上于区员	
態係数を算出する。算	
-1 1 $\left[\left((n-1) \right] \right]$	
$\frac{1}{-1} \left[-\frac{1}{n} \tan^{-1} \left[\sqrt{\frac{n}{(n+1)}} \right] \right]$	
$m^2, B = (1-n)^2 + m^2$	
・函作収回の日本の作「…」	
i· 内由IP的IIC内出LIII」,	
形態係数を合計した値	
について考慮すべき形	
計した値	

相畸列羽原于人	力発電所 6/	7号炉 (2017.)	12.20版)	東海第二発電所(2018.9.12版)	島	根原子力発電所 2-	号炉	備考
なお, 1, 2, 3	, …, F の円	筒火炎モデル数の	合計は F 個と		なお, 1,2,3,	…, F の円筒火炎モ	デル数の合計は F 個と	
なる。					なる。			
c. 危険距離の	算出				c. 危険距離の算	争出		
輻射熱に対す	する発電用原	子炉施設の危険輻	朝強度を調査		輻射熱に対す	「る発電用原子炉施設	の危険輻射強度を調査	
し、輻射強度な	ぶその危険輻射	封強度以下になる。	こうに発電用原		し、輻射強度が	ぶその危険輻射強度以	「下になるように発電用	
子炉施設は危険	食距離を確保す	-るものとする。	、炎輻射発散度		原子炉施設は危	こ険距離を確保するも	のとする。火炎輻射発	
の炎から任音の	の位置にある点	〔(受埶点)の輻射	†強度は、火炎		散度の炎から任	一音の位置にある点(受勢点)の輻射強度は.	
転射発数 度に 垂	ど能体数をかけ	トを値にたる 次の	立から形能係		水炎転射発散度	Eに形能係数をかけた	値にたる次の式から	
細灯光秋及に加	786所数でかり	に直になる。八の	以かり形態床		八火袖 <u>利</u> 元取及 形能 <i>低</i> 粉 / 大士	という思い致をかりた		
数 φ を氷めな	Q ₀				形態係数Φを氷	くめる。		
$E = R_f \cdot \phi$					$E = R_f \cdot \phi$			
E:輻射強度	[kW/m²], Rf	: 火炎輻射発散度	$[kW/m^2]$.		E: 輻射強度	「 [kW/m²]. R』:火炎輻	射発散度[kW/m ²].	
a · 形能係数	2 , <u>3</u> ,		2 , 2,		a:形能係数			
$\Psi \cdot \mathcal{D} \to D$					Ψ · //2 /2/// 3Α			
$\phi > \phi_+ \ \varepsilon t_a$	こるように危険	距離を算出する。	算出結果を第		$\phi > \phi_+ \geq t_a$	るように危険距離を	算出する。評価結果を	
3.5-2.表に示す	F				第3.5-2表に示	、す_		
						/ 0		
	,				1 ()	$\left(\left(A - 2\pi \right) \right) = \left[\left(A - 2\pi \right) \right]$	\overline{n} 1 1 $\left[\left(\frac{n}{n} \right) \right]$	
$\phi_t = \frac{1}{m} \tan^{-1} \left(\frac{m}{m} \right)$	$+\frac{m}{\sqrt{2}}\left\{\frac{(A-2n)}{\sqrt{2}}\tan^{2}\right\}$	$-1\left[\sqrt{\frac{A(n-1)}{n}}\right] - \frac{1}{n} \tan^{-1}$	$\left[\left[\frac{(n-1)}{(n-1)} \right] \right]$		$\phi_t = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) +$	$\left[\frac{m}{\pi}\right] \left[\frac{(A-2h)}{n\sqrt{AB}} \tan^{-1}\right] \sqrt{\frac{A(B)}{B}}$	$\frac{n-1}{n-1} \left -\frac{1}{n} \tan^{-1} \right \sqrt{\frac{(n-1)}{(n+1)}} \right $	
$\pi n \qquad (\sqrt{n^2-1})$	$\pi \left(n \sqrt{AB} \right)$	$\left[\bigvee B(n+1) \right] n$	$\left[\bigvee (n+1) \right] \right]$		$(\sqrt{n} - 1)$			
ただし, $m = \frac{H}{R} \cong 3, n =$	$=\frac{L_t}{R}, A=(1+n)^2$	$+m^2, B = (1-n)^2 + m^2$			ただし, $m = \frac{H}{R} \cong 3$,	$n = \frac{L_t}{R}, A = (1+n)^2 +$	$-m^2, B = (1-n)^2 + m^2$	
φι:各火炎モデルの形	/態係数を合計し	た値, L _t : 危険距離[m]],H:火炎長[m] ,		φ.:各火炎モ	・デルの形態係数を合	計した値.	
R:燃焼半径[m]					[]: 6降距離[[m]. H:火炎長[m]. R	: 燃 焼 半 径 [m]	
第 3.5-2 表	長 温度評	価及び危険距離評	価結果		第3.5-2表	温度評価及び危険路	巨離評価結果	
	収油カンカ	はおおちょう	<u> </u>			海水ポンプ	排気筒	
	モーロク イク	(防護板 (鋼板))	工까べ同		最高温度[℃]	31	92	
最高温度[℃]	39	62	64		危険輻射強度[kW/m ²]	5.95	10.39	
	266.30	3. 37	10.38		形態係数[-] 合除野邂[m]	5. 06×10 ⁻²	8.83×10^{-2}	
危険輻射強度[kW/m ²]	0 0001111	1 0.0337244	0.1037108			270	250	
危険輻射強度[k₩/m ²] 形態係数[-] 在险距離[m]	2.6584444	0.0001211	20		etall, 1875 Deter etall, 111			

3.6 ときめ 2.6 とか 取してい、無体の対称中した場合を想定したしても、た 客様相等を含えないことなび容疑が確認した時にかれない。 2.6 とか されていることから、無用日子す事法に必認者を起き立ました。 1.5.7 と手は公園に出する男型装装用で応援手段の行出 上げないと習価する。 1.5.7 と手は公園に出する男型装装用で応援手段の行出 1.5.7 としていたいでしたがら、 1.5.7 と手は公園に出する男型装装用で応援手段の行出 1.5.7 としていたいでしたがの合成用にしい時間の利用した時間の 1.5.7 と手は公園に出する男型装装用で応援手段の行出 1.5.7 としていたいていたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいた	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
正上です。花井水原が中やした場合とおましたがら、森 5.2.2 生きたい語したり使い使いないないないないないないないないためでは、 5.2.2 生きたい語したり使い使いないないないないないためでは、 シンゴないたらせ前する。 5.2.2 生きたい語したりて、赤 5.2.2 生きたい語したり使い使いないたいないたいないたいたいないたいないたいないたいないたいないたいない	3.6まとめ		3.6 まとめ	
 (4) 二月20日またりは、日本の「秋田市山上の山田町山が峰市 いたいたっとしたの「秋田川山中ナ市場は、東京都会が直立立士 とけないときめ「から」、今月2日キテ正確に、東京都会が広正立」 こし、二日町の窓加油 正し、二日町の窓加油 正し、二日町の窓加油 正しておけたいたさしたから、今月2日キテ正確に東京都会と返す 立ことはないと時前げる。 (2) 二日町の窓加油 正しておけた。「日本の「「「日本の窓」」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった、「日本の」」であった。「日本の」」「日本の」」であった。「日本の」」」	以上より、森林火災が発生した場合を想定したとしても、許		以上より,森林火災が発生した場合を想定したとしても,	
 されていることから、金属用原子を解説に必要整要加上建すた とはないと特価する 	容限界温度を超えないこと及び危険距離以上の離隔距離が確保		許容限界温度を超えないこと及び危険距離以上の離隔距離が	
とはないと打催する。 ユニとはないと打催する。 シュシュニ主体気能になどスク熱なクジアにして温を支えした。 シュシュニ主体気能になどスク熱なクジアにてごなもないとす低する。 ・シーンドル水電気のはななり、シュン・1・カビー、上球気的の力器塗を 定したないとす低する。 ・シーン「加速なのはななり、シュン・1・カビー、上球気的の力器塗を 定したないとす低する。 ・シーン「加速なのはななり、シュン・1・カビー、上球気的の力器塗を 定したないとす低する。 ・シーン「加速なのはなるり、シュン・1・カビー、上球気的の力器塗を 定したないとす低する。 ・シーン「加速なのはなるり、シュン・1・カビー、上球気的の力器塗を 定したなり、 ・シーン「加速なのはなるり、シュン・1・カビー、上球気的の力器塗を 定したなり、 ・シーン「加速なのはなるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速ないる」」」」、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン「加速なのなっるり、 ・シーン」「加速なのなっるり、 ・シーン」「加速なのなっるり、 ・シーン」」 ・シーン」 ・シーン」	されていることから,発電用原子炉施設に熱影響をおよぼすこ		確保されていることから、発電用原子炉施設に熱影響を及ぼ	
4.5.5.2 主張局面にする意識整確認定な意識して設備を装置した。 1.0 評価式像素調理 主張気気になって、会社大阪大阪大した設備なした。 1.0 評価式像素調理 主張気気にするこの社会な意味した。 1.1 理想式像素通び目露 主張気気になって、会社大阪大阪大阪大阪大阪大阪大阪大阪大阪大阪大阪またの 1.1 第二 第二 1.1 第二 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	とはないと評価する。		<u>す</u> ことはないと評価する。	
		 4.3.2.3 主排気筒に対する熱影響評価と危険距離の算出 (1) 評価対象施設 主排気筒について、森林火災を想定して評価を実施した。 (2) 評価対象施設の仕様 主排気筒の仕様を第4.3.2.3-1 表に、主排気筒の外形図を 第4.3.2.3-1 図に示す。 第4.3.2.3-1 夏に示す。 第4.3.2.3-1 夏 評価対象施設の仕様 (1) 単位4.5m 主要す法 単位4.5m 主要す法 単位4.5m 主要す法 単位4.5m 主要す法 単成成5 140m (1) 第 第4.3.2.3-1 夏 評価対象施設の外形図 第4.3.2.3-1 夏 評価対象施設の外形図 第4.3.2.3-1 図 評価対象施設の外形図 第4.3.2.3-1 図 評価対象施設の外形図 第4.3.2.3-1 図 評価対象施設の外形図 第4.3.2.3-1 図 評価対象施設の外形図 第4.3.2.3-1 図 評価対象施設の外形図 第4.3.2.3-2 表 評価対象施設から最も近い防火帯外縁までの離隔距離を第 4.3.2.3-2 表に示す。 第4.3.2.3-2 表 評価対象施設から最も近い防火帯外縁までの 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	0版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(4) 判断の考え方		
	<u>a許容温度</u>		
	主排気筒鉄塔 (SS400, STK400) の許容温度は, 火災時に		
	おける短期温度上昇を考慮した場合において、鋼材の強度		
	が維持される保守的な温度 325℃以下とする。		
	<u>b</u> 評価方法		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとし		
	て, 表面での輻射による入熱量と対流熱伝達による外部へ		
	の放熱量が釣り合うことを表した式1により主排気筒鉄塔		
	表面の温度が 325℃となる輻射強度(=危険輻射強度)を求		
	める。評価において対流による放熱を考慮している。		
	$T = T_0 + \frac{E}{2h} \tag{₹1}$		
	(出典:建築火災のメカニズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)^{※1}</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された最高気温 38.4℃に保守		
	性を持たせた値		
	※2 「空気調和ハンドブック」に記載されている表面熱		
	伝達率のうち、保守的に最少となる垂直外壁面にお		
	ける夏場の表面熱伝達率(空気)を採用		
	式1で求めた危険輻射強度Eとなる形態係数 Φ を,式2より		
	第出する。		
	$E = R f \cdot \Phi \tag{$\pi 2$}$		
	E:輻射強度(W/m ²), Rf:火炎輻射強度(W/m ²),		
	Φ : 形態係数		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より算出		
	<u>t.Z.</u>		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{\pi} \cdot 3)$		
	ただし m= $\frac{H}{R}$ =3, n= $\frac{L}{R}$, A=(1+n) ² +m ² , B=(1-n) ² +m ²		
			<u> </u>

<u> Φ:形態係数,L:離隔距離(m),H:炎の高さ(m),</u> D: 機棒米径(m)				
(出典:評価ガイド)				
上記のとおり危険距離を算出し、最も近い防火帯外縁から影				
響評価対象までの離隔距離を下回るか評価を実施した。				
なお, 主排気筒は鉄塔と筒身で構成されるが, 鉄塔は筒身よ				
りも火災源との距離が近いこと,材質も鉄塔はSS400, STK400,				
筒身は SS400 であり物性値がともに軟鋼で同一であることか				
ら、鉄塔の評価を実施することで筒身の評価は包絡される。主				
<u> 排気筒の評価概念図を第4.3.2.3-2 図に示す。</u>				
対流による放熱				
主排気筒				
円間火炎				
■:受熱面※				
■:				
※ 全方面から放熱するのに対し、 受熱面はその半分となる。				
第4.3.2.3-2 図 主排気筒の評価概念図				
c. 評価結果				
森林火災によって上昇する主排気筒鉄塔表面温度及び、主				
#気筒鉄塔表面温度が 325℃となる危険距離を評価した結果,				
排気筒と同じ鋼材であることから、同式により危険距離を評				
価し <u>,</u> 津波防護施設に対しても離隔距離が確保されているこ				
とを確認した(別紙 2.5)。主排気筒の熱影響評価結果を第				
<u>4.3.2.3-3 表に, 主排気筒に対する危険距離を第 4.3.2.3-4</u>				
素に示す。				
$\widehat{\mathbf{L}}$ $\widehat{\mathbf{L}$	柏崎刈羽原子力発電所 6/7号炉 (20	017.12.20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--	----------------------	---	--------------	-------------------
$\frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$		第4.3.2.3-3表 主排気筒の熱影響評価結果		
$\hat{\mathbf{x}}$ = 1.25 × 1.1 × 1.25 × 1.1 × 1.25 × 1.1 × 1.25 × 1.1 × 1.25 × 1.1 × 1.25 ×		評価対象施設 デ火点 発火点 ア 計 主排気筒 51 52 52 52 52 52 52 52 52 52 52 52		
$ \frac{1}{24802} 1$		第4.3.2.3-4 表 主排気筒に対する危険距離		
4.3.2.4.非常用学ィーゼル発電機(電圧を心スプレイ素ディーゼ) ・設備の料理 0.3.2.4.非常用学ィーゼル発電機(電圧が広スプレイ素ディーゼル 品根2.50%では、様々ありた 1.3.2.4.1 出する外では、 2.3.2.4.1 出するかでは、 2.3.2.4.1 出するかでは、 2.4.2.4.1 人名(14) 2.5.3.4.1 人名(14) 2.5.4.1 人名(14) 3.5.4.1 人名(14) 4.5.5.4.1 人名(14) 4.5.5.4.1 人名(14) 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.		評価対象施設 予火点 発火点 第 第 第 #<		
 		4.3.2.4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		・設備の相違
(1) 正確対象範疇 局根 2 号炉では 花井 非常田アイーゼル 養玉様、(油) 「 レイン メンイ系アイーゼル タンク、燃料移送ボル クンク、燃料移送ボル クンク、燃料移送ボル クンク、燃料移送ボル ア、オテ西アイーゼル発電 (2) 計量対象加速のに構成び外形 空気の近人口となり動影響を受ける非常用ディーゼル発電 な気の近人口となり動影響を受ける非常用ディーゼル発電 キャク・ 生た、放木器グートに ついても、設置していない な気の近人口となり動影響を受ける非常用ディーゼル発電 キャク・ 生た、放木器グートに ついても、設置していない な気の(油)、ロンケスクス(素)、マスロ(国) キャク・ 生た、放木器グートに ついても、設置していない な気の(油)、ロンケスクス(素)、マスロ(国) キャク・ 生た、放木器グートに ついても、設置していない ならい、キャク・ キャク・ キャク・ キャク・ なる(国)、ロンケスクス(国) キャク・ 生た、外球器を完成した。 シャパット キャク・ キャク・ キャク・ キャク・ キャク・ キャク・ キャク・ キャク・ キャク・ キャクシス(国) キャク・ キャク・ キャク・ キャク・ キャク・ キャク・ キャ合 キャク・ キャク・		ル発電機を含む。)に対する熱影響評価と危険距離の算出		【柏崎 6/7,東海第二】
二 計畫用ディーゼル発電機 タンク、然料移送ボン 公 強電機会省ひ。の液入温気温度について、森林火災会類定し ブ,非常用ディーゼル発電機デーゼル発電機会会びの非常用ディーゼル発電 二 正確会素線と売。 (2) (2) 評価対象施設の仕様及び外形 空気の流入口となり熟読器会交ける非常用ディーゼル発電 空気の流入口となり熟読器会交ける非常用ディーゼル発電機会合わり、服気口仕 空気の流入口となり熟読器会交ける非常相手が示式 (3) 評価対象施設の仕様ののため影響評価 (4) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (6) (5) (7) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (8) (7) (7) (7) (7) (7) (8) (7) (7) (7) (8) (7) (8) (7) (7) (7) (8) (7) (8) (7) (8) (7) (8) (7)		(1) 評価対象範囲		島根2号炉では,軽油
建築を支払し、の読入空気加速について、食林火炎を差定して、 フ、非常用ティーセル発電 (2) 評価対象施設の仕様及び外形 空気の高入口となり熱影響を受ける非常用ディーゼル発電 強(石圧定な、スプレイ系ディーゼル発電 対象外、 接(石圧定な、スプレイ系ディーゼル発電 対象外、 度を集4.3.2.4-1表に、外形図を第4.3.2.4-1図に示す。 キャットの形態でありまた。 第4.3.2.4-1表に、外形図を第4.3.2.4-1図に示す。 ドレージンを定くたいまた。 第4.3.2.4-1表に、外形図を第4.3.2.4-1図に示す。 キャットの形態を行った。 第4.3.2.4-1表に、外形図を第4.3.2.4-1図に示す。 キャットの形態を発展していため、影響評価の 第4.3.2.4-1表に、非常確認を定いまた。 キャットの影響などのからいため、 第4.3.2.4-1スに、「日本」 中国報告 日本 日本 日本 日本 日本 6 第4.3.2.4-1図 日本 第4.3.2.4-1図 日本 第4.3.2.4-1図 現象気のの 第4.3.2.4-1図 現象気のの外形図		非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル		タンク、燃料移送ポン
LEMAZ美麗した。 (1) 詳細文集職設の仕様及び外形 空気の液入口となり熟影響を受ける非常用ディーゼル発電 使くしたなり熟影響を受ける非常用ディーゼル発電 使くしたなり熟影響を受ける非常用ディーゼル発電 使くしたかす (西上望心スプレイ系ディーゼル発電機を含む。) 吸気口住 推転表 (西上望心スプレイ系ディーゼル発電機を含む。) 吸気口住 (カレード・マンル発電機を含む。) 吸気口住 (カレード・マンル発電機を含む。) 吸気口(かす・) (カレード・マンル発電機を含む。) 吸気口(かす・) (カレード・マンル発電機を含む。) 吸気口(かす・) (カレード・マンル発電 (カレード・マンル発電機(の)) (カレード・マンル発電(の)) (カレード・マンル発電(の)) (カレード・マンル発電(の)) (カレード・マンル発電 (カレード・マンル発電) (カレード・マンル発電(の)) (カレード・マンル発電(の)) (カレード・マンルル・アン・ (カレード・) (カレード・マンルル・アン・ (カレード・マンルル・アン・ (カレード・マンルル・アン・ (カレード・マンルル・アン・ (カレード・) (カレード・マンルル・アン・ (カレード・マンルル・アン・ (カレード・マンルル・アン・ (カル・アン・ (カレード・		発電機を含む。)の流人空気温度について,森林火災を想定し		ブ,非常用ディーセル発
12) 計画が発展機なび狂怒などがた PRX師のため影響計価 空気の流入口となり影響後を受ける非常用ディーゼル発電 強人のため、影響が価 機(高圧使心スプレイ系ディーゼル発電機を含む。) 吸気口仕 また、放水路ゲートに 第4.3.2.4-1表に、外形図を第4.3.2.4-1回に示す。 いため、影響評価対象 第4.3.2.4-1表 評価対象施設の仕様 本参したがでは30歳(15) か。 また、約水路プレイないため、影響評価 か。 また、約水路プレイン30歳(15) 小のでも、設置していないため、影響評価対象 本参したがでは30歳(15) 小のでは、海水パンプは、屋外 1 PR(15) 1 第4(15) 1 15(16) 1				電機は、地下構造等の屋
空風の運入日となり運入日となり発売用アイービル発電 対象外。 強(前圧炉心スブレイ系ディーゼル発電機を含む。)吸気口仕 速た,放水路ゲートに 佐を第4.3.2.4-1 表に,外形図を第4.3.2.4-1 図に示す。 こいても,設置していないため,影響評価力象 第4.3.2.4-1 表 評価対象施設の仕様 「作用の取取用 (1) 原始 (1) 原始 (1) 原始 (1)		(2) 評価対象施設の仕様及び外形		内設備のため影響評価
強(面圧のひへレイネジィーセル発電機(変合に)) (吸気目) ((面圧のひへレイネジィーセル発電機(変合に)) (吸気目) ((面圧のひへレイネジィーセル発電機(変合)) (吸気目) ((面圧のひへレイネジィーセル発電機(変合)) ((回圧のひへレイネジィーレン発電機(変合)) ((回圧のひへレイネジィーレン発電機(変合)) ((回圧のひへレイネジィーレン発電機(変合)) ((回圧のひへレイネジィーレン発電機(変合)) ((回圧のひへレイネジィーレン発電機(変合)) ((回圧のひへレイネジィーレン発電機(変合)) ((回圧のひへレイネジィーレン発電機(変合)) ((回ビのひへレイネジィーレン発電機(変合)) ((回レーン・レイン・ジェーン・ジェーレン・ジェーン・ジェーレン・ジェーン・ジェーレン・ジェーレン・ジェーレン・ジェーン・ジェーレン・ジェーレン・ジェーレン・ジェーレン・ジェーン・ジェーレン・ジェーン・ジェーレン・ジェーン・ジェーン・ジェーン・ジェーン・ジェーン・ジェーン・ジェーン・ジェー		空気の流入口となり熱影響を受ける非常用ティーセル発電 (京広振)スプレイズディードル発電機な合な)四年日4		対家外。
第43.3.2.4-1 及 評価対象施設の仕録 50.4.5.2.11 及 評価対象施設の仕録 第4.3.2.4-1 及 評価対象施設の仕録 よび有効素化のの生産 第4.3.2.4-1 及 評価対象施設の仕録 よび有効素化の生産 第4.3.2.4-1 及 評価対象施設の仕録 よどの、数量が低力象外の。 また、鳥根 2 号炉では、海水ボンブは、屋外設置のため影響評価を実施 また、鳥根 2 号炉では、海水ボンブは、屋外設置のため影響評価を実施 第4.3.2.4-1 図 吸気口の外形図 第4.3.2.4-1 図 吸気口の外形図		機(間圧)// (-1) (周上)/ (-1) (周上)/ (-1) (周上)/ (-1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		また, 放小路ケートに
第4.3.2.4-1表 評価対象施設の仕様 ************************************		派之弟4.3.2.4-1 <u>秋</u> に,小乃因之弟4.3.2.4-1 因に小り。		いため「影響評価対象
加速の生まれ 非常用「ビイジタ電機(高圧) なびじ(茶ドィビッ発電機(高圧) なびじ(茶ドィビッ発電機(高圧) なび)(茶ドィビッ発電機(高圧) なび)(茶ドィビッ発電機(高圧) なび)(茶ドィビッ発電機(高圧) なび)(茶ドィビッ発電機(高圧) 日本 また、島根 2 号炉で は、海水ボンブは、屋外 設置のため影響評価を 実施 主要+法 円筒高さ:2.160 個 数 6 新 4:3.2.4-1 図 吸気口の外形図		第4324-1表 評価対象施設の仕様		外, 水香叶画内家
名称 金水 (小水)(茶) / (-2				* 1.0 また 鳥根 2 号炉で
低額 円筒報形 主要+法 外径::1.54m 用筒高さ:2.46m 樹 料 SS400 鋼 数 6 第4.3.2.4-1図 吸気口の外形図		名称 $2\pi m/1/4 = \pi/2 \pi m/2 \pi m$		は、海水ポンプは、屋外
主要寸法 外径 : 1.54m 円筒高さ: 2.46m 树料 SS400 個数 6 第 4.3.2.4-1 図 吸気口の外形図		種類門筒縦形		設置のため影響評価を
第4.3.2.4-1図 吸気口の外形図		主要寸法 外径 : 1.54m 円筒高さ: 2.46m 材料 SS400 個数 6		実施
		第4.3.2.4-1図 吸気口の外形図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 評価対象施設までの離隔距離		
	評価対象施設から最も近い防火帯外縁までの離隔距離を第		
	4.3.2.4-2表に示す。		
	第4.3.2.4-2表 評価対象施設から最も近い防火帯外縁までの		
	離隔距離		
	評価対象施設 非常用ディーゼル発電機(高圧炉心スプレ		
	(m) 2001		
	(4) 判断の考え方		
	<u>a. 許容温度</u>		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。)の流入空気の許容温度は、火災時におけ		
	る温度上昇を考慮した場合において、非常用ディーセル発		
	電機(高圧炉心スプレイ系ディーセル発電機を含む。)の性		
	能維持に必要な温度53℃以下※とする。		
	※ 非常用ナイーセル発電機(高圧炉心スフレイ糸ナイー		
	セル発電機を含む。)の流入空気温度が上昇すると、空		
	気份利出口温度が上昇し、シリンタへの必要空気量が		
	D. 計価力法		
	次次が発生した時間から燃料が燃え尽さるまでの前,一 字の転射強度による1執が北党田ゴメーゼル発展機(真正		
	たり軸別 畑度による人然が非吊用了 イービル 光电機 (間圧)		
	かしん アレイボノイービル 年間後を さび。 アルル アル アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア		
	の価度工升に前子りることを衣した以下により、加入りる 空気の温度が 52% とたる輻射論度(一合除輻射論度)を求		
	エスジー温度があることなる哺乳温度、一心厥哺乳温度、それ		
	E . A		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T \qquad (\not \exists 1)$		
	<u>T:許容温度(53℃), T₀:初期温度(40℃)^{*1},</u>		
	<u>E:輻射強度 (W/m²),</u>		
	<u>G:重量流量(4kg/s)^{*2}, A:輻射を受ける面積(7.8m²)</u>		
	<u>C_p:空気比熱(1,007J/kg/K)^{※3}</u>		
	<u> ΔT:構造物を介した温度上昇(5℃)^{※4}</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 ディーゼル発電機の内,給気流量が少ない高圧		
	炉心スプレイ系を評価対象とする。		
	ディーゼル発電機吸気流量 (228m ³ /min) ×		
	空気密度(1.17kg/m ³)÷60		
	※3 日本機械学会		
	※4 最高到達温度を想定した場合の温度上昇		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2より		
	算出する。		
	$\mathbf{E} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{\mathbf{t}2}}$		
	<u>E:輻射強度(W/m²), Rf:火炎輻射強度(W/m²),</u>		
	$\Phi: 形態係数$		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より算出		
	I.S.		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{\pi} < 3)$		
	ただし $m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	Φ :形態係数, L:離隔距離 (m), H:炎の高さ (m),		
	<u>R:燃焼半径(m)</u>		
	<u>(出典:評価ガイド)</u>		
	上記のとおり危険距離を算出し、森林火災によって上昇する		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電		
	機を含む。)に流入する空気の温度が,許容温度 53℃以下であ		
	るか評価を実施した。また, 危険距離が離隔距離以下となるか		
	評価を実施した。空気の流入口となり熱影響を受ける非常用デ		
	<u>ィーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含</u>		
	む。)吸気口の評価概念図を第4.3.2.4-2図に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。) 吸気ロ		
	: 受熱面		
	第4.3.2.4-2図 非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)吸気口の評価概念図		
	 c. 評価結果 森林火災によって上昇する非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)を通して流入 する空気の温度及び,非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。)吸気口を通して流入 する空気の温度が53℃となる危険距離を評価した結果,各 評価結果が許容値以下であることを確認した。 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)の熱影響評価結果を第4.3.2.4-3 表に, 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)に対する危険距離を第4.3.2.4-4 表に示 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.3.2.4-4表 非常用ディーゼル発電機(高圧炉心スプレイ	〔系	
	ディーゼル発電機を含む。)に対する危険距離		
	危険距離(m) 崩	 能 Kiā	
	評価対象施設 発火点 発火点 発火点 発火点 発火点 発火点 発火点 子	三頭唯 (m)	
		—	
	「酸(前上が小心パンレイ」 18 21 28 22 28 28 27 2 系ディーゼル発電機を 今す。) 「 18 21 28 22 28 28 27 2	267	
	 4.3.2.5 残留熱除去系海水系ポンプ及び非常用ディーゼル3	谷雷	 ・設備の相違
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)		【柏崎 6/7,東海第二】
	水ポンプに対する熱影響評価と危険距離の算出		島根2号炉では,軽油
	(1) 評価対象範囲		タンク、燃料移送ポン
	<u></u> 残留熱除去系海水系ポンプ電動機及び非常用ディーゼ/	<u>以発</u>	プ,非常用ディーゼル発
	電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用料	<u>毎水</u>	電機は,地下構造等の屋
	ポンプ電動機は、海水ポンプ電動機高さより高い海水ポン		内設備のため影響評価
	室の壁で囲まれており、側面から直接火災の影響を受ける		対象外。
	とはないが、上面は熱影響を受ける可能性がある。評価に	こね	また, 放水路ゲートに
	いては、海水ポンプ室の壁による遮熱効果を考慮せず、低	則面	ついても, 設置していな
	から直接火災の影響を受けることを想定する。また、残留	<u> </u>	いため,影響評価対象
	除去系海水系ポンプ電動機及び非常用ディーゼル発電機		外。
	<u> </u>		また,島根 2 号炉で
	動機は、電動機本体を全閉構造とした全閉外扇形の冷却ス	方式	は,海水ポンプは,屋外
	であり、外部火災の影響を受けた場合には、周囲空気の波	<u>L度</u>	設置のため影響評価を
	上昇により、冷却機能への影響が懸念されることから、		実施
	空気の温度を評価対象とする。火災発生位置と海水ボンラ		
	<u> 電動機内部の空気</u> (行力対象に固定于を線及び軸文でめ)	Lien 7 VA	
	そのうら計谷温度が低い軸交温度の機能維持に必要となる		
	<u> </u>		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 第4.3.2.5-1 図 火災発生位置と海水ボンブの位置関係 (2) 評価対象施設の仕様 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン プの海水ポンプ室内の配置図を第4.3.2.5-2 図,外形図を第 4.3.2.5-3 図に示す。仕様を第4.3.2.5-1 表に示す。 		
	第4.3.2.5-2 図 海水ポンプの配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.	. 9. 12 版)	島根原子力発電所 2号炉	備考
	第4.3.2.5-3 図 海水ポ、	ンプの外形図		
	第4995_1 主 荻毎号4	免掘雲の仕垟		
	历4.5.2.5 ⁻¹ 衣 时间为	<u> </u>		
	残留熱除去系海水系ポンプ	非常用ディーゼル発電機 (高圧炉心スプレイ系		
	電動機	ディーゼル発電機を含		
	主要寸法 全 幅:1.9 m	<u>全</u> 幅:0.51m		
	高さ:2.73m 材料 SS400,SUS304	局 さ:0.98m SS400		
	基数 4	3		
	(3) 評価対象施設までの離隔距離			
	残留熱除去系海水系ポンプ及び非	常用ディーゼル発電機(高		
	圧炉心スプレイ系ディーゼル発電機	を含む。)用海水ポンプを内		
	包する海水ポンプ室から最も近い防	火帯外縁までの離隔距離を		
	第4.3.2.5-2表に示す。			
	第4.3.2.5-2表 評価対象施設から最 座 回 5 歳	も近い防火帯外縁までの		
	評価対象施設 海 離隔距離 第	F水ポンプ室 242		
	(m)	242		
	(4) 判断の考え方			
	<u>a. 許容温度</u>			
	残留熱除去系海水系ポンプ電	動機及び非常用ディーゼル		
	発電機(高圧炉心スプレイ系ディ	ィーゼル発電機を含む。)用		
	海水ボンブ電動機の冷却空気の	許容温度は、上部及び下部		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018	. 9. 12 版)	島根原子力発電所 2号炉	備考
	軸受のうち,運転時の温度上昇	が高い下部軸受の上昇温度		
	を考慮し、軸受の機能維持に必	要な冷却空気の許容温度を		
	第4.3.2.5-3 表に示す。			
	第4.3.2.5-3 表 下部軸受の機能維	自存に必要な冷却空気の		
	名称 税留熱除去系海水系 ポンプ	非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含 む。)用海水ポンプ		
	 軸受の機能維持に必要な 冷却空気の許容温度 70[°]C^{※1} 	60°C ^{∞2}		
	 ※1 ボンブ運転により、下部軸受は最大で約10℃上与 め電気規格調査会標準規格 JEC-2137-2000「誘導 定するときの温度限度80℃から10℃を差し引い ※2 ボンブ運転により、下部軸受は最大で約35℃上与 め電気規格調査会標準規格 JEC-2137-2000「誘導 使用する場合の温度限度95℃から35℃を差し引い 	⁴ することから、軸受の機能を維持するた 機」で定める自由対流式軸受の表面で測 た70℃を冷却空気の許容温度に設定 ⁴ することから、軸受の機能を維持するた 機」で定める耐熱性の良好なグリースを いた 60℃を冷却空気の許容温度に設定		
	b. 評価方法			
	火災が発生した時間から燃料	が燃え尽きるまでの間,残		
	留熱除去系海水系ポンプ電動機	及び非常用ディーゼル発電		
	機(高圧炉心スプレイ系ディー	ビル発電機を含む。)用海水		
	ポンプ電動機が受ける輻射熱に	よって上昇する冷却空気温		
	度を求め, 第 4.3.2.5-3 表に示	す許容温度を下回るかを熱		
	エネルギの式より求まる下式で	評価を実施した。評価に用		
	いた諸元を第 4.3.2.5-4 表に,	評価概念図を第 4.3.2.5-4		
	図に示す。			
	$T - T_0 = \frac{E \times A}{G \times C_p} + \Delta T$	(式1)		
	<u>T</u> :評価温度 (℃), T ₀ :初期》	<u> 温度(39℃)^{※1},</u>		
	<u>E:輻射強度 (W/m²),</u>			
	<u>G:重量流量(kg/s),A:輻</u>	<u> 射を受ける面積 (m²)</u>		
	C_p : 空気比熱 (1,007)/kg/k	$(\Gamma^{\circ}C) \overset{*}{\sim} 2$		
	△1. 番目: 価値27.5 ム目: 一番目初を力した価度上升 ※1. 水戸地方気免台で細測			
	に保守性を持たせた値	<u>C407-週厶取同X1面30.4C</u>		
	 ※2 航空機火災による構造 	物を介した冷却空気の温度		
	上昇(ΔTb=2.2℃)	を包絡する 5℃に設定		
	······			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.3.2.5-4表 評価に用いた諸元		
	残留熱除去系 海水系ボンブ 電動機 非常用ディーゼ 発電機(高圧炉心な ディーゼ ル発電機を含 海水ボンブ 電動 G:重量流量(kg/s) 2.6 A:輻射を受ける面積(m ²) 12	ル プレイ系 す。)用 機	
	電動 輻射強度:E		
	第 4.3.2.5-4 図 評価概念図		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式 算出する。 E = R f • Φ (式2) E : 輻射強度(W/m ²), R f : 火炎輻射強度(W/m ²), Φ : 形態係数 (出典:評価ガ	<u>2より</u> <u>1 ド)</u>	
	式2で求めた形態係数Φとなる危険距離Lを,式3よ	り <u>り</u> 第出 (式 3)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第	第二発電	電所(2018. 9	9.12片	反)			島根原子力発電所 2号炉	備考
	<u>c評価結果</u>										
	輻射熱	輻射熱によって上昇する冷却空気の到達温度を算出した						度を第	出した		
	結果,許	結果,許容温度以下であることを確認した。評価結果を第						評価編	果を第		
	4.3.2.5-	4.3.2.5-5表, 第4.3.2.5-6表に示す。									
		第4.3	. 2. 5-5	5表	熱影響	評価額	結果				
				評伯	価温度(℃	2)			許容		
	評価対象施設	発火点 1	発火点 2	発火点 3	発火点 4	発火点 5	発火点 6	発火点 7	温度 (℃)		
	残留熱除去系 海水系ポンプ	45	45	45	45	45	45	45	< 70		
	非常用ディーセル発電機(高圧振られている)										
	(高圧)が心が レイ系 ディーセール発電機を含 む。)用海水ポンプ	45	45	45	45	45	45	45	< 60		
	第	4.3.2	. 5-6 🛃	長危	険距離	の評価	価結果				
				危	険距離(m)			離隔		
	評価対象施設	発火点 1	発火点 2	発火点 3	発火点 4	発火点 5	発火点 6	発火点 7	距離 (m)		
	残留熱除去系 海水系ポンプ	17	19	27	21	26	27	26	242		
	非常用ディーゼル発電 機(高圧炉心スプレイ系	14	16	0.0	10	0.0	0.0	0.0	0.4.0		
	ディーゼル発電機を含 む。)用海水ポンプ	14	10	23	18	23	23	22	242		
											・設備の相違
	4.3.2.6 放水區	各ゲー	トに対	する熱	影響評	平価と	危険跗	巨離の算	筆出		【柏崎 6/7,東海第二】
	(1) 評価対象	範囲									島根2号炉では,軽油
	放水路ケ	ートに	ついて	て,森	林火災	を想知	定して	評価を	実施し		タンク、燃料移送ポン
	た。										プ,非常用ディーゼル発
	(2) 評価対象	施設の	仕様及	をび外	形						電機は,地下構造等の屋
	放水路グ	ート駆	動装置	量の外	殻とな	る放力	水路ゲ	ート周	動装置		内設備のため影響評価
	外殻の仕様	を第4	. 3. 2. 6	5-1表	に,外	形図る	を第 4.	. 3. 2. 6	-1 図に		対象外。
	示す。										また, 放水路ゲートに
											ついても, 設置していな
											いため、影響評価対象
											外。
											また,島根 2 号炉で
											は, 海水ポンプは, 屋外
											設置のため影響評価を
											実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.3.2.6-1表 評価対象施設の仕様		
	名称 放水路ゲート駆動装置 床面高さ T.P.+11.0m 外殻材料 炭素鋼 個数 3 第4.3.2.6-1 図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	評価対象施設から最も近い防火帯外縁までの離隔距離を第 4326-2まに示す		
	第4.3.2.6-2表 評価対象施設から最も近い防火帯外縁までの		
	離隔距離		
	評価対象施設 放水路ゲート 離隔距離 41		
	(4) 判断の考え方		
	<u>a許容温度</u>		
	放水路ゲート駆動装置外殻の許容温度は、火災時におけ		
	る短期温度上昇を考慮した場合において、鋼材の強度が維		
	持される保守的な温度 325℃以下とする。		
	<u>b. 評価方法</u>		
	一定の輻射強度で放水路ゲート駆動装置外殻が昇温され		
	るものとして、表面での輻射による入熱量と対流熱伝達に		
	よる外部への放熟量が釣り合うことを表した式1により外 割ま面の温度が 205℃ トカス 毎日登座 (一会除毎日登座) た		
	<u> </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$T = T_0 + \frac{E}{2L} \tag{$\frac{1}{2}$}$		
	(出典:建築火火のがたんなど火火女主設計,		
	<u> 内国広入日本建築にな</u> T・許容温度(325℃) T。・初期温度(50℃) ^{×1}		
	E:輻射強度 (W/m^2), h: 熱伝達率 (17 $W/m^2/K$) ^{*2}		
	※1 水戸地方気象台で観測された最高気温 38.4℃に保守		
	性を持たせた値		
	※2 「空気調和ハンドブック」に記載されている表面熱		
	伝達率のうち,保守的に最少となる垂直外壁面にお		
	ける夏場の表面熱伝達率(空気)を採用		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2より		
	<u> 昇田北</u> る。 $F = P f \cdot \Phi$ (才2)		
	E - K · 如 ($X < m^2$). R f · 火炎輻射強度($W < m^2$).		
	Φ:形態係数		
	式2で求めた形態係数Φとなる危険距離Lを,式3より算出		
	I Den		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{x} 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	$\Phi:$ 形態係数, $L:$ 離隔距離(m), $H:$ 炎の高さ(m)		
	<u>R:燃焼半径(m)</u>		
	(出典::評価ガイド)		
	上記のとおり危険距離を筧出し。 最も近い防火帯外縁から影		
	響評価対象までの離隔距離を下回るか評価を実施した。放水路		
	ゲートの評価概念図を第4.3.2.6-2 図に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	放水路ゲート駆動装置外殻		
	 <u>京林火災によって上昇する放水路ゲート駆動装置外殻の</u> <u>表本水火災によって上昇する放水路ゲート駆動装置外殻の表面温度が</u> <u>表面温度及び,放水路ゲート駆動装置外殻の表面温度が</u> <u>325℃となる危険距離を評価した結果,各評価結果が許容値</u> <u>以下であることを確認した。熱影響評価結果を第4.3.2.6-3</u> <u>表に,危険距離を第4.3.2.6-4</u> <u>表に,危険距離を第4.3.2.6-4</u> <u>表に,危険距離を第4.3.2.6-4</u> <u>表に,危険距離を第4.3.2.6-4</u> <u>表に,危険距離を第4.3.2.6-4</u> <u>表に,危険距離を第4.3.2.6-4</u> <u>表に示す。なお,放水路ゲート駆動装置は津波防護施設が障壁となり,森林火災の影響を受ける可能性は低いが,外殻内面への熱影響防止のた <u>め,外殻裏面に断熱材を設置し,内部の放水路ゲート駆動 </u><u>装置へ熱影響がない設計とする。(別紙 2.11) </u></u> <u>新子業部がない設計とする。(別紙 2.11) </u> <u>新子業部では <u>そ欠点 発火点 発火点 発火点 発火点 発火点 発火点 発火点 発火点 <u>そ欠点 発火点 発火点 発火点 発火点 発火点 <u>そ欠点 そ火点 そ火点 そ火点 そ火点 そ火点 <u>そ欠点 そ火点 そ火点 そ火点 そ火点 そ火点 そ火点 <u>ま</u> </u></u></u></u></u> 		
	放水路ゲート 85 93 126 99 121 125 119 <325 第4.3.2.6-4 表 放水路ゲートに対する危険距離 変化点 定除距離(m) 離隔 評価対象施設 発火点 発火点 発火点 発火点 発火点 発火点 ア 放水路ゲート 12 14 20 15 19 20 19 41		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-1	別紙 2.6	別紙 2-1	
防火帯の管理方針について	防火帯の管理方針について	防火帯の管理方針について	
 はじめに 森林火災評価結果に基づき,森林火災による外部火災防護施設への延焼防止対策として,発電所構内道路及び地形状況等を考慮し,約 20m 幅の防火帯を設定する。 防火帯内に他の法令要求等により可燃物を含む機器等を設置する場合は必要最小限の機器等とし,防火帯の延焼防止効果を損なわない設計とする必要があるため,防火帯の管理方法について以下に示す。 	 はじめに 森林火災評価結果に基づき,森林火災による発電用原子炉施 設への延焼防止対策として,発電所構内道路及び地形を考慮し, 約23m幅の防火帯を設定する。 防火帯内に他の法令要求等による可燃物を含む機器等を設置 する場合は必要最小限とし,防火帯の延焼防止効果を損なわな い設計とする。防火帯の管理方針について以下に示す。 	 はじめに 森林火災評価結果に基づき,森林火災による外部火災防護施 設への延焼防止対策として,発電所内道路及び地形状況等を考 慮し,約21m幅の防火帯を設定する。 防火帯内に他の法令要求等により可燃物を含む機器等を設 置する場合は必要最小限の機器等とし,防火帯の延焼防止効果 を損なわない設計とする必要があるため,防火帯の管理方針に ついて以下に示す。 	
 防火帯の管理方針 防火帯の設定に当たっては、草木を伐採する等、可燃物を排除し、除草剤の散布やモルタル吹付け等を行う。また、防火帯は表示板等で明確に区分するとともに、構内道路の一部を防火帯として使用している箇所については、駐車禁止の措置等により、常時可燃物のない状態を維持する。 防火帯内には延焼防止効果に影響を与えるような可燃物を含む機器は、原則設置しない方針であるが、防火帯の位置設定においては発電所敷地内道路配置及び地形形状等を考慮して設定したことから、防火帯内の一部には他の法令要求等による少量の可燃物を含む機器等が存在する。このため、防火帯内に設置された機器等の延焼防止効果への影響の有無を評価し、必要な対策を講ずる設計とする。 第 1 表に防火帯に設置される機器等の管理<u>友針</u>について示す。 	 防火帯の管理方針 防火帯の設定に当たっては、樹木を伐採する等、可燃物を排除し、モルタル吹付け等を行う。また、防火帯は表示板等で明確に区別するとともに、構内道路の一部を防火帯として使用している箇所については、駐車禁止の措置等により、原則的に可燃物がない状態を維持する。 防火帯には延焼防止効果に影響を与えるような可燃物を含む機器等は、原則的に設置しない方針であるが、防火帯の位置設定においては構内道路等の条件を考慮して設定するため、他の法令要求等により標識等を設置する場合は、延焼防止効果への影響の有無を評価し、必要な対策を講じる設計とする。 麦1に防火帯内に設置される機器等の例について示す。 	 防火帯の管理方針 防火帯の設定に当たっては、草木を伐採する等、可燃物を排除し、除草剤の散布やモルタル吹付け等を行う。また、防火帯は表示板等で明確に区分するとともに、構内道路の一部を防火帯として使用している箇所については、駐車禁止の措置等により、常時可燃物のない状態を維持する。 防火帯内には延焼防止効果に影響を与えるような可燃物を 含む機器は、原則設置しない方針であるが、防火帯の位置設定においては発電所敷地内道路配置及び地形形状等を考慮して 設定したことから、防火帯内の一部には他の法令要求等による 少量の可燃物を含む機器等が存在する。このため、防火帯内に 設置された機器等の延焼防止効果への影響の有無を評価し、必要な対策を講ずる設計とする。 第1表に防火帯内に設置される機器等の管理方法について示す。 	

柏崎	刈羽原子力	発電所 6/7号	号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉			備考		
第 1	表 防火帯内	こ設置される機	器等の評価及び管理方針	表1 防火帯内に設置される機器等の評価及び管理方針の例			第1表 防火帯内に設置される機器等の評価及び管理方法						
	分類	機器例	評価及び管理方針	5		対象例	評価及び管理方針			~桁	松兕仞	亚 年 五 7 8 谷 田 七 3 土	
不燃性の機	器	 ・送電線 	火災により燃焼しない。防火帯延焼防			・送電線	火災により燃焼しない。防		73	「我	·送電線	計価及び管理方法 火災により延焼しないため、防火帯延焼	
		・ガードパイプ	止効果に影響を与えないことから,機	不燃性の機器	导等	 ・津波防護施設 ・防潮扉 	人帯 延尻 的 丘 効 未 に 影 替 を 与えないことから, 当該対		不燃性の機	機器	・フェンス	防止効果に影響を与えないことから、機	
		・マンホール (鋼製)	器に対して対策は不要。			・ケーフ N	象に対して対策は不要である				・配管(鋼製)	器に対して対策は不要。	1
可燃物を	局所的な設置	・標識	局所的な火災となる。防火帯延焼防止				。 局所的な火災に留まるため			 局所的な設置	・監視カメラ	局所的な火災となるため、防火帯延焼防	1
含む機器	機器	・カーブミラー	効果に影響を与えないことから,機器		局所的な設	・標識	防火帯の機能に影響はな い。防火帯延焼防止効果に			機器	・照明	止効果に影響を与えないことから、機器	1
			に対して対策は不要。		置機器	 ・津波・構内監 視カメラ 	影響を与えないことから、		可燃物を			に対して対東は不安。 防火帯の延焼防止効果に影響を及ぼすこ	1
	防火帯を横断 、 - 3 mm	なし		可燃性を含			当該対象に対して対策は个 要である。		含む機器	 防火帯を横断	1	とが想定されるため,以下の対策を実施。	1
	して設置			む機都寺			道路上に設定される防火帯			して設置	・ケージル	・不燃性の電線管、トレイ内に敷設	1
					防火帯を横	・道路	物を配置しない管理を行う					・埋設化,不燃材で養生	1
					MUCRAE		ことで,延焼防止効果に影 響を与えない。						1
				L	1		ber Crink ¥ '0	_					
							以	上					
													l l
													l l
													l l
													l l
													l l
													l l
													l l
													1
													1
													l l
													l l
													l l
													l l
													l l
													l l
													l l
													l l
													l l
													l l
													1
													l l
L													L

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-2	別紙2.1	別紙 2-2	
コンクリートの許容限界温度 200℃の設定根拠について	許容温度について	コンクリートの許容限界温度200℃の設定根拠について	
コンクリートの圧縮強度は、2000年度までは吊価とほとんど変		「建築欠火のノルームムと欠火女主政訂(別団広人 日本建築	
つちないかむしつ増加りる $_{0}$ しがし、ての後は保々に低下し、3000 で労用強度の $9/2$ に低下する k (公知公)の成方強度な確	「建業八次のイガーイムと八次女主説司「別凹伝八」日本建業	ビンクー)」では、ユンクリートの圧相独度は、2000と住住までは 営用しみじ亦たたいかたしてしますでが、その後は後々に低下し	
に市価強度の $2/3$ に <u>以下9 3</u> 。 欠後(市44後)の残け強度を確 促する提合には 450° が限界となる $*1$	(-) (市価で加く返りないがむしつ工計りながっての後は休べに以下して 500℃で営退強度の 2/2 にたるとしている。また、水災後(冷	
床 9 3 % 口 (こ 4 4 5 0 C か) 取 う ト こ な る 。 * 1	以下に「建築水災のメカーズ人と水災安全設計」の抜粋を示	1後)の建存確定を確保する場合には 450℃が限界としている*1	
また 他の文献*2 でけ コンクリートの強度を茎しく低下させ			 ・冬件の相違
ろ温度の境界を300℃とし、コンクリート表面の受熱温度が300℃			【柏崎 6/7】
以下で許容ひび割れ幅以上のひび割れが認められない場合の構造			 引用している文献の
体は健全であり、仕上げのみの補修でよいとしている。第1 図に			相違
コンクリートの被害等級及びその補修・補強方法について示す。			
よって本評価では、保守的に圧縮強度に変化がないとされる	コンクリートの許容温度に係る抜粋	よって本評価では、保守的に圧縮強度に変化がないとされる	
200℃を許容限界温度とし,評価を実施する。	(1)素材の高温強度	200℃を許容限界温度とし,評価を実施する。	
	常温時のコンクリートの圧縮強度低下率を図14に示す。圧縮強度は200℃程度までは常	1.4	
	度の 2/3 に, 800°Cでは殆ど零となる。2/3 はコンクリートの短期許容応力に相当するの		
200℃程度までは圧縮強度に変化はない→	で、500℃が素材としての限界温度と考えられる。また、図15に示すように高温から冷却し		
	た後の残存強度は、高温時の強度よりもさらに低下する。長期計谷応力度を加熱削強度の1 /3相当と考えると、火災後の残存強度を確保する場合には450℃が限界となる。	50.8 短期許容応力度:(2/3)F。	
↓ (2000) FR-42 O (2000) FR-21 ↓ (2000) FR-60(a) - ↓ (2000) FR-60(a) ↓ (2000) FR-60(a) - ↓ (2000) FR-60(a)	1.4 -0-Fectio	11- 単立 0.4 単	
	3 12 8 10		
	5 05 1 SHATE GOLF.	0.0 200 400 600 800 1000 温度 T [°C]	
		図14 コンクリートの高温時圧縮強度(常温強度に対する比)	
	0 [°] 200 480 660 1000 181度7[¹ C]		
	図 14 コンクリートの高温時圧縮強度(常温温度に対する比) (参考文献 18) ~23)のデータより作成		
(熱間) (冷間)	12 TFe(60		
0 200 400 600 300 0 200 400 600 300 加熱温度(°C) 加熱温度(°C)		6回到 2.4	
		∉ 提 長期許容応力度: (1/3)F	
1・建築水災のメカニズムと水災安全設計 百田和曲	9 200 400 600 800 1000 加熱温度()	加熱温度[℃]	
*2. 建物の火害診断及び補修・補強方法 日本建筑学会	図 15 加熱後のコンクリート残存圧縮強度(加熱前強度に対する比) (参考文献 24) ~26))のデータより作成	図15 加熱後のコンクリートの残存圧縮強度(加熱前強度に対する比)	
		第1図 コンクリートの強度と温度の関係 ^{※1} (一部加筆)	
		※1:建築火災のメカニズムと火災安全設計,日本建築センター	

柏崎	刈羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第1表	・火害等級と状況*1			
	· [
	 無被害の状態で、たと、 	 えば,			
I級	①被害全くなし、	- 71)7			
	位上げ部分に被害があ	っている。 る状態で,例えば,			
Ⅱ級	①躯体にすす、油煙等				
	③床・梁のはく落わ	ク受熱温度か 300 C以下, ずか。			
	鉄筋位置へ到達しない	被害で、例えば、			
Ⅲ級	 ①コンクリートの変も ②微細なひびわれ, 	色はビング色			
	③コンクリート表面(の甘の爆烈わざか)	の受熱面温度が300℃以上,			
	主筋との付着に支障が	ある被害で, 例えば,			
IV級	 ①表面に数 mm 幅のひ ②鉄磁一部電出 	びわれ,			
	主筋の座屈などの実質	的被害がある状態で,例えば,			
	 ①構造部材としての打 ②爆裂広範囲 	損傷大			
V 紙	③鉄筋露出大,				
1.02	 ④たわみが目立つ, ⑤健全時計算値に対⁻ 	する固有振動教測完値が075 未満			
	⑥載荷試験において,	試験荷重時最大変形に対する残留変形の割合が			
	A 法で 15%, B 法で	10%を超える。			
第2表	鉄筋コンクリート	構造物の火害等級と補修・補強の基本*			
水宝笔級	牛造	補修・補強の基本			
I 級	無被害の状態				
Ⅱ級	仕上げ部材に被害がある状態	仕上げのみの補修			
	鉄筋位置へ到達しない	強度,耐久性が低下している場合は,かぶりコ			
Ⅲ級	被害	ンクリートをはつり落とし、現場打コンクリー			
		「よにはモルラルで恢復するなどの処理をと			
	主筋との付着に支障が	部材体力が低下しているので、かぶりコンクリ			
IV級	のな板吉	現場打コンクリートで被覆する。場合により補			
	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	修も行う。			
V級	土肋の座屈などの美質 的な被害がある状態	補強, 取替え, 増設 			
*:建物の	火害診断及び補修・補強	方法,日本建築学会			

分炉	備考
別紙2-3	
根拠について	
低下するが,その高温 一方,発電用原子力設 日本機械学会)では, た,文献 ^{※1} では,鋼材 れており,一般的な鋼材 度が常温時と変わらな	
が常温時と変わらない	
を実施する。	
- SS400 (F=235) - SN400B (F=235) - SN490B (F=325) - SM490 (F=325) - SM490A (F=325) - SM490A (F=325) - SM58 (F=400)	
800 1000	
~6) のデータから作成)	
率※1(一部加筆)	
・, 日本建築センター 力の測定値を常温の基 率κ(T)であり, 鋼材の (T)=1となる。	

$\frac{1}{2} + 非常用ブレーゼル発電(次)(行いたスプレイメディーゼル発電 塩金含む)) の存在温度 温給機効率 n = の算用式(1)上り、液人等気温度を求める式(2) 上変点し、非常用ブレーゼル発電機(本の要な液入学気温度を求める式(2) 上変点し、非常用ブレーゼル発電機(本の要な液入学気温度 53℃) 本変にしきな温度(た成)(上)、 コレビルを覚機を行うた。の通路機用日度表温度 (1)二丁2××××××××××××××××××××××××××××××××××××$	2. 非常用が「・・ビル障機能(前用方のスプレイズの「・・ビル陸管 	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2号
図 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル) 発電機を含む。)概略図		相崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版) 2	東海第二発電所 (2018.9.12 版) 2. 非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電 機を含む。)の許容温度 過給機効率 $n c$ の算出式①より, 流入空気温度を求める式② <u>に変換し,非常用ディーゼル発電機 (高圧炉心スプレイ系ディ</u> <u>ーゼル発電機を含む。)の性能維持に必要な流入空気温度 53℃</u> を算出し許容温度に設定した。 <u>$n_c = T_0 \times ((P_1/P_0)^{0.286} - 1) / (t_1 - t_0) \cdots ①$</u> $t_1 = T_0 \times ((P_1/P_0)^{0.286} - 1) / n_c + t_0 \cdots ①$ <u>$T_0 :$流入空気温度 (K) (= t_0 + 273)</u> <u>$t_1 :$がりか への必要空気量を確保するための過給機出口最高温度</u> <u>$(142^{\circ}) *1$</u> <u>$t_0 :$流入空気温度(C), P_0 : 過給機入口圧力 (0.101MPa) *2</u> <u>$P_1 :$過給機出口圧力 (0.186MPa) *2, $n_c :$</u> 過給機効率 (0.7) <i>xa</i> *1 空気冷却器での冷却が可能な最高温度 *2 試験記録より *3 製品仕様より	島根原子力発電所	2号

炉	備考
	・設備の相違 【東海第二】 評価対象としている 設備の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-4		別紙 2-4	
各施設等の温度評価体系		各施設等の温度評価体系	
1. <u>軽油タンク</u> の温度評価体系			 ・設備の相違 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・火災時の輻射熱が軽油タンクに入射し、軽油及びタンク構造			【柏崎 6/7, 東海第二】
物の温度上昇に寄与すると想定する。			島根2号炉では,軽油
・空気との熱伝達による放熱を考慮する。			タンク,燃料移送ホン
 ・<u> ・<u> ・</u><u> ・<u> ・</u><u> ・</u> ・ ・ </u></u>			フ,非常用アイーセル発
			电機は,地下伸垣寺の座 内設備のため影響証価
$S_1 - S_2 = \pi \frac{D_0}{4} + \frac{\pi}{2} D_0 H$ [m ²]			対象外
・ 執容量 () は 軽油の執容量+タンク構造物の執容量とする			鳥根2号炉では海水
			ポンプは、屋外設置のた
			め影響評価を実施
$C = \rho_p V c_p + \rho_s \left\{ \pi \frac{D_o^2 - D_i^2}{4} H + \pi \frac{D_0^2}{4} (e_1 + e_2) \right\} c_s \qquad [J/K]$			
・タンクの温度上昇,輻射による入熱及びタンク表面からの放			
熱の関係は以下の式で表される。			
$C\frac{dT}{dt} = \varepsilon ES_1 - h(T - T_{air})S_2 \qquad [W].$			
T _{air} :外気温度[℃]			
温度 T は以下の式となる。			
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - T_0\right) e^{\left(\frac{h S_2}{C}\right)t} \qquad [^{\circ}\mathbb{C}]$			
・使用するパラメータを第 1 表に示す			
輻射熱の反射(1-ε)E 輻射熱E			
● ●<			
第1図 軽油タンク温度評価体系図			

\hat{F} 1 表 評価に使用するパラメータ NO 単位 備考 1 10 10 備考 1 10 10 低約二の最高気温 2 10 10 6.5 4 100 [J/kg·K] Kallen 0 100 [J/kg·K] Kallen	柏崎刈羽原子力発電所	〒 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第1表 評価に使用するパラメータ 第1表 評価に使用するパラメータ 第4 単位 備考 下: 初期温度 38 ℃ 柏崎市の最高気温 ϵ : 放射率 0.9 [-] 伝熱工学資料 $\rho_s: 軽油密度$ 918 [kg/m] NUREG-1805 c. 三軽曲化線 1700 [J/kg·K] 石油便覧 V: 軽油体積 528 [m] 保安規定による最低保有油量 $\rho_s: 4920 # 德好格 7860 [kg/m] 伝熱工学資料 定 · · · · · · · · · · · · · · · · · · · $					
バラメータ数値単位備考To: 初期温度38 \mathbb{C} 柏崎市の最高気温 ϵ : 放射率0.9 $[-]$ 伝熱工学資料 $\rho_{s}: 壓油密度$ 918 $[kg/m^{3}]$ NUREG-1805 $c_{s}: E 極油比熱$ 1700 $[J/kg·K]$ 石油便覧 $v: 壓油体積$ 528 $[m^{3}]$ 保安規定による最低保有油量 $\rho_{s}: f 2 \sqrt{p} 構造材密$ 7860 $[kg/m^{3}]$ 伝熱工学資料 $c_{s}: f 2 \sqrt{p} 構造材密$ 7860 $[kg/m^{3}]$ 伝熱工学資料 k_{s} m^{3} $[J/kg·K]$ 石熱工学資料	第1表 評价	価に使用するパラメータ			
$T_0: 初期温度38℃柏崎市の最高気温\varepsilon: 放射率0.9[-]伝熱工学資料\rho_v: 堅油密度918[kg/m³]NUREG-1805c_v: 堅袖比熱1700[J/kg·K]石油便覧V: : 堅袖依積528[m³]保安規定による最低保有油量\rho_a: + 9 \times 9 構造材密7860[kg/m³]伝熱工学資料c_a: + 9 \times 9 構造材比7860[kg/m³]伝熱工学資料\chi_a: - 10 \times 9 人名(J/kg·K]石熱工学資料\chi_a: - 10 \times 9 人名(J/kg·K)石熱工学資料$	パラメータ 数値	単位 備考			
	T ₀ :初期温度 38	℃ 柏崎市の最高気温			
$\rho_{\rm b}: 軽油密度918[kg/m^3]NUREG-1805c_{\rm p}: 軽油比熱1700[J/kg·K]石油便覧V: 軽油体積528[m^3]保安規定による最低保有油量\rho_s: タンク構造材密R80[kg/m^3]伝熱工学資料c_s: : タンク構造材比473[J/kg·K]伝熱工学資料$	ε : 放射率 0.9	[-] 伝熱工学資料			
c_p :軽油比熱1700 $[J/kg·K]$ 石油便覧V:軽油体積528 $[m^3]$ 保安規定による最低保有油量 $\rho_s: \rho > \rho$ 構造材密7860 $[kg/m^3]$ 伝熱工学資料 $c_s: f > \gamma > \rho$ 構造材比473 $[J/kg·K]$ 伝熱工学資料	ρ _p :軽油密度 918	[kg/m ³] NUREG-1805			
V : 軽油体積528[m²]保安規定による最低保有油量 $\rho_s: タンク構造材密$ 度7860[kg/m³]伝熱工学資料c_s: タンク構造材比 熱473[J/kg·K]伝熱工学資料	c _p : 軽油比熱 1700	[J/kg·K] 石油便覧			
$\rho_s: 9 > 9/4 描 d Y B B7860[kg/m^3]伝熱工学資料皮c_s: 9 > 9 / 9 \# d H473[J/kg·K]伝熱工学資料熱a_sa_sa_sa_s$	V: 軽油体積 528	Lm ^o 」 保安規定による最低保有油量			
c。: タンク構造材比 473 [J/kg・K] 伝熱工学資料 熱	p _s : タンク構造材密 7860 度 7860	[kg/m ³] 伝熱工学資料			
	c _s : タンク構造材比 熱	[J/kg·K] 伝熱工学資料			
Di : タンク内径 9.8 [m] 基本設計計算書	D _i : タンク内径 9.8	[m] 基本設計計算書			
D ₀ : タンク外形 9.872 [m] 設計図書	D ₀ :タンク外形 9.872	[m] 設計図書			
e1: タンク屋根厚0.022[m]設計図書	e1: タンク屋根厚0.022	[m] 設計図書			
e2: タンク底板厚0.009[m]基本設計計算書	e2 : タンク底板厚 0.009	[m] 基本設計計算書			
H: タンク高さ9.5[m]基本設計計算書	H : タンク高さ 9.5	[m] 基本設計計算書			
h : 熱伝達率 17 [₩/m²K] 空気調和衛生工学便覧	h : 熱伝達率 17	[W/m ² K] 空気調和衛生工学便覧			
C : 熱容量 $8.72 \times 10^{\circ}$ [J/K] 計算	C : 熱容量 8.72×10	10 ⁸ [J/K] 計算			
2. 燃料移送ポンプの温度評価体系	2. 燃料移送ポンプの温度評	評価体系		1. 海水ポンプの温度評価体系	
	燃料な送ポンプけ、その	国田に設置する防護坂によって、外部		・ 火災時の 朝射執が 流水ポンプ に入 射し 冷却 空気の 泪 度 ト	
	<u> 然料移送ホンクは, その</u>	同田に改直する防護板によりて、外向		・ 火	
<u>火災からの輻射による熱影響を受けないよう防護する。 防護板</u>	火災からの輻射による熱影	影響を受けないよう防護する。 防護板		<u>昇に寄与すると想定する。</u>	
は、燃料移送ポンプの近傍で発生する軽油タンク火災を想定し、 ・電動機内部の空気冷却対象は固定子巻線及び上部、下部軸	は,燃料移送ポンプの近傍	等で発生する軽油タンク火災を想定し,		・電動機内部の空気冷却対象は固定子巻線及び上部,下部軸	
火炎の方向に面した箇所は, 竜巻防護用の鋼板に耐火材・断熱材	火炎の方向に面した箇所は	は、竜巻防護用の鋼板に耐火材・断熱材		<u>受であり、そのうち許容温度が低い下部軸受を対象とする。</u>	
を設置することにより、その輻射による熱影響を受けないように ・海水ポンプ電動機の冷却空気が一定の輻射強度によって昇	を設置することにより、そ	の輻射による熱影響を受けないように		・海水ポンプ雷動機の冷却空気が一定の輻射強度によって昇	
$\frac{1}{1}$	する			1 はためたりて 比熱と熱容量の関係式とり温度Tけ	
なお、それ以外の面については、他の外部火災による熱影響か	なお、それ以外の面につ	のいては、他の外部火災による熱影響か		以下の式となる。	
軽微であることから,耐火材・断熱材を設置しない竜巻防護用の	軽微であることから、耐火	<材・断熱材を設置しない竜巻防護用の			
鋼板のみの仕様とする。 $T - T + \frac{E \times A_T}{C}$	鋼板のみの仕様とする。			$T - T_{c} + \frac{E \times A_{T}}{C}$	
防護板の仕様としては、以下のとおり。	防護板の仕様としては、	以下のとおり。		$I = I_0 + G \times C_p$	
① 防護振(断執) 燃料な送ポンプに迷控している報油タンク		は我洋ポンプに隊控している報油タンク			
		19区ホックに対安している柱面グック			
火災を想定。	火災を想定。				
燃料移送ポンプ が輻射による熱影響を受けないようにす	燃料移送ポンプ が車	輻射による熱影響を受けないようにす			
るため、火炎に面した箇所に設置する耐火材・断熱材・鋼	るため、火炎に面し				
	板(音巻防護用)を	·有する防護板。			
② 防護板 (鋼板) 教影響が軽微な面に設置する防護板。耐火	 ② 防護板(綱板) 執影 	ジョンシンスペート ジングンジンストレート ジングンジンストレート ジングンジンストレート ジングンジンストレート ジングンジンストレート ジョンジンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングンストレート ジングングンストレート ジングングンストレート ジングングンストレート ジングングングングン シングングングングングングングングングングングング ジングングングングングングング			
	村・新教村け迎罟斗子				
	121 121 121 121 121 121 121 121 121 121	,电合約喷用が到料版がかり往て。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2 号炉	備考
防護板の仕様を踏まえた燃料移送ポンプの温度評価体系は、以				
下のとおり。				
 2.1 軽油タンク火災時 ・火災時の一定の輻射熱が燃料移送ポンプの周囲に設置されている防護板(断熱)外面に入射し,一定時間維持されたと想定する。 以下に概念図を示す。 		輻射熱 E	電動機 端子箱	
			:受熱面	
A Strain		<u>第1図 海水ポンプの温</u>	度評価体系図	
▲ 大事 Q _{e, in} 内気との熱伝達 Q _{v, in}		<u>第1表</u> 評価に使用する	<u> </u>	
火炎からの輻射 E 燃料移送ポンプ		パラメータ 数値 T.・通常運転時の上昇温度「℃」 下部軸受	備考 · 22 設計値	
防護板		A _T :受熱面積[m ²] 10.93	構造図	
笠 9 図 に港店(紙為)にもいけて仁赦の概合図		G:重量流量[kg/s] 1.96 C:空気比執[I/(kg・K)] 1007	設計値 伝執工学資料	
・以下の式に示す一次元非定常熱伝導方程式を用いて,防護板 (断熱)の内面並びに燃料移送ポンプエリア温度を求める。 $\frac{dT}{dt} = \alpha \frac{d^2T}{dx^2}$ <u>T:温度,t:時刻,x:防護板(断熱)外面からの距離, \alpha:</u> 熱拡散率				
・防護板(断熱)の外面及び内面温度上昇に伴う熱負荷は次式 で計算される。				
$Q_{v,in} = h_{in} A (T_{in} - T_{room})$				
<u>h_{in}:防護板(断熱)内面熱伝達率,A:防護板(断熱)内面の</u> <u>表面積,T_{in}:防護板(断熱)内面温度,T_{room}:燃料移送ポン プエリア温度</u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
・燃料移送ポンプエリア温度は、火災による防護板(断熱)内			
<u> 面温度上昇に伴う熱負荷がポンプエリア内に蓄熱されること</u>			
を考慮し、次式で求める。			
0			
$\Delta T_{room} = \frac{\mathcal{L}_{v,in}}{2CV}$			
$\rho \in V$			
<u>ρ</u> :空気密度, C:空気比熱, V:ポンプエリア体積			
2.2 軽油タンク火災以外の外部火災時			
・軽油タンク火災以外の外部火災時は、保守的に輻射熱が防護			
板(鋼板)に入射し、防護板(鋼板)の温度上昇に寄与する			
と想定する。			
 ・空気との熱伝達による放熱を考慮する。 			
・防護板(鋼板)の外面にて受熱(面積 S/2),放熱は外面及び			
内面 (面積 S) とし, 受熱は, 面積が最大となるよう側面の 2			
面とした。			
 ・熱容量 C は、防護板(鋼板)の熱容量とする。 			
$C = \rho c V$ [J/K]			
・防護板(鋼板)の温度上昇、輻射による入熱及び防護板(鋼			
板)からの放熱の関係は以下の式で表される。			
$C \frac{dT}{dt} = \varepsilon E \frac{S}{2} - h(T - T_{air})S$ [W]			
T _{air} :外気温度[℃]			
温度 T は以下の式となる。			
$T = \frac{\varepsilon E \frac{S}{2} + hST_{air}}{hS} - \left(\frac{\varepsilon E \frac{S}{2} + hST_{air}}{hS} - T_o\right) e^{\left(-\frac{hS}{C}\right)t} \qquad [^{\circ}C]$			
<記号>			
T_0 :初期温度[℃],E:輻射強度[W/m ²],ε:防護板(鋼板)外			
面の放射率[−] ^{**1} ,h:防護板 (鋼板)表面熱伝達率[W/m ² K] ^{*2} ,S:			
<u>防護板(鋼板)放熱面積[m²](S/2:受熱面積は外面のみ), C:</u>			
防護板(鋼板)の熱容量 $[J/K]$, $ ho$: 密度 $[kg/m^3]^{st n}$, c : 比熱			
<u>[kJ/kgK]^{*1}, v:体積[m³],t:燃焼継続時間[s],T_{air}:外気温</u>			
度[℃]			
※1:伝熱工学資料, ※2:空気調和·衛生工学			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
空気との熱伝達 転射熱の反射(1-ε)E 転射熱.E			
3. <u>主排気筒</u> の温度評価体系 ・火災時の輻射熱が <u>主排気筒</u> に入射し, <u>主排気筒</u> の温度上昇に 寄与すると想定する。 ・ <u>主排気筒</u> 外表面からの放熱を考慮し以下の式を解く。 $\rho CV \frac{dT}{dt} = eE \frac{S}{2} - h(T - T)S.$ t→∞の場合で最大温度となり,その温度は以下の式となる。 $T = T_0 + \frac{eE}{2h}$ $\rho: \pm i \pm i \pm 5 = h + \frac{1}{2} + \frac$		2. <u>排気筒</u> の温度評価体系 ・火災時の輻射熱が排気筒に入射し, <u>排気筒</u> の温度上昇に寄 与すると想定する。 ・ <u>排気筒</u> 外表面からの放熱を考慮し以下の式を解く。 $\rho CV \frac{dT}{dt} = \varepsilon E \frac{S}{2} - h(T - T_0)S$ t→∞の場合で最大温度となり、その温度は以下の式となる。 $T = T_0 + \frac{\varepsilon E}{2h}$ $\rho : 排気筒部材密度[kg/m3], C:排気筒部材比熱[J/kg/K],$	
 S: <u>主排気筒</u>単位長さあたりの外周面積[m²], V: <u>主排気筒</u>単 位長さあたりの体積[m³], T:最高温度[℃], T₀:初期温度[℃] (柏崎市の最高気温)^{*1}, E:輻射強度[W/m²], h:熱伝達係 数[W/m²/K](出典:空気調和・衛生工学便覧), ε:反射率[-] (出典:伝熱工学資料) ※1:別紙 2-5 参照 		S: 排気簡単位長さあたりの外周面積[m ²], V: 排気簡単位 長さあたりの体積[m ³], T:最高温度[$^{\circ}$ C], T ₀ : 初期温度[$^{\circ}$ C], E: 輻射強度[W /m ²], h: 熱伝達係数[W /m ² /K](出典:空気 調和・衛生工学便覧), ϵ : 反射率[-](出典: 伝熱工学資 料)	
 輻射熱の反射(1-ε) E 車射熱 E ● ●<td></td><td> 輻射熱の反射(1-ε)E 輻射熱 E ● 転射熱 E ● 転射熱 E ● 町熱 ● ● 「「「「」」」 ● 「「」」 ● 「」」 ● 「」 ● 「」」 ● 「」」 <li< td=""><td></td></li<></td>		 輻射熱の反射(1-ε)E 輻射熱 E ● 転射熱 E ● 転射熱 E ● 町熱 ● ● 「「「「」」」 ● 「「」」 ● 「」」 ● 「」 ● 「」」 ● 「」」 <li< td=""><td></td></li<>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
4. 建屋内気温度の温度評価体系		3. 建物内気温度の温度評価体系	
・火災時の一定の輻射熱が建屋外壁面に入射し、一定時間維持		・火災時の一定の輻射熱が建物外壁面に入射し、一定時間維	
されたと想定する。		持されたと想定する。	
以下に概念図を示す。		以下に概念図を示す。	
建屋外 建屋壁(均質体) 建屋内 排気		建服健《均質》 建物外側 建物小倒	
外気との熱伝達 Q _{v, out} 周囲への輻射 Q _{r, out} 火炎からの輻射 E		外気との熱伝達:0,sat 加固への輻射:0,sat 火災輻射:E, 火災輻射:E, 火災輻射:E, 火災輻射:E, 火災輻射:E, 火災輻射:E, 火災輻射:E, 大災	
第 5 図 伝熱の概念図		第3図 伝熱の概念図	・条件の相違 【柏崎 6/7】
・以下の式に示す一次元非定常熱伝導方程式を用いて、外壁及		・以下の式に示す一次元非定常熱伝導方程式を用いて、外壁	島根2号炉は,室内の
び内壁面温 度を求める。		及び内壁面温度を求める。	空気は出入りがない条
$\frac{dT}{dt} = \alpha \frac{d^2 T}{dx^2}$		$\frac{dT}{dt} = \kappa \frac{d^2 T}{dx^2}$	件として評価を実施
T:温度,t:時刻,x:建物壁内における外壁面からの距離,			
<u>.</u>		T:温度, t:時刻, x:建物壁内における外壁面からの距離,	
		<u></u> . 熱拡散率	
・外壁及び内壁面温度上昇に伴う熱負荷は次式で計算される。			
$O_{-h} A(T_{-T})$		・内壁面からの入熱量は以下の式より算出される。	・条件の相違
<u> <u>v,in</u> = <i>n</i>_{in} (1_{in} = 1_{room}) <u>h_{in}: 内壁面熱伝達率, A: 内壁の表面積, T_{in}: 内壁面温度, T_{room}: </u></u>		$qin = \alpha 1 \times (TR^{j} - TS1^{j})$	【柏崎 6/7】 地域特性を踏まえた
内気温度		gin:壁面からの入熱量[W], α1:内壁面熱伝達率,	評価条件に伴う評価式
		<u>TR:室温[℃], TS1:内壁面温度[℃]</u>	の相違
 ・内気温度は、火災による内壁面温度上昇に伴う熱負荷と室内 			
の熱負荷及び換気空調系による除熱を考慮し, 次式で求める。		・上記の式より、内気温度は、次式で求める。	
$T_{room} = \frac{Q + Q_{v,in}}{m \rho C} + T_a$		$TR^{j+1} = TR^{j} + (q^{j} - \sum (qin \times A)) \times \Delta t / C$	
Q:室内負荷,m:風量, ρ:空気密度,C:空気比熱,T _a :換		<u>TR:室温[℃], qin:壁面からの入熱量[W], A:内壁面の表</u>	
<u>气空調系給気温度</u>		面積[m²], Δt:時間ステップ, C:空気の熱容量[kJ/m³],	
		<u>q</u> :室内熱負荷[W]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
5. 一定の輻射熱を受ける壁面(コンクリート)の温度評価体系		4. 一定の輻射熱を受ける壁面(コンクリート)の温度評価体系	
十分に厚い固体の表面が放射熱で加熱される場合の温度分布		十分に厚い固体の表面が放射熱で加熱される場合の温度分布	
は、以下の一次元の熱伝導方程式により表すことができる。		は、以下の一次元の熱伝導方程式により表すことができる。	
$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right)$		$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right)$	
これを表面(x=0)における境界条件		これを表面(x=0)における境界条件	
$\varepsilon q = h\{T(0,t) - T_0\} - k \frac{\partial T}{\partial x}\Big _{x=0}$		$\varepsilon q = h\{T(0,t) - T_0\} - k \frac{\partial T}{\partial x}\Big _{x=0}$	
の下で入射熱流束が時間的に一定であれば、次式が得られる。		の下で入射熱流束が時間的に一定であれば、次式が得られる。	
$T_{s}(t) = T_{0} + \frac{\varepsilon q}{h} \{1 - \exp(\frac{h^{2}t}{k\rho c})\operatorname{erfc}(\sqrt{\frac{h^{2}t}{k\rho c}})\}$		$Ts(t) = T_0 + \frac{\varepsilon q}{h} \left\{ 1 - \exp\left(\frac{h^2 t}{kpc}\right) \operatorname{erfc}\left(\sqrt{\frac{h^2 t}{kpc}}\right) \right\}$	
ただし, erfc(z)は余誤差関数であり, T_s (t) =T(0,t)とお		ただし, erfc(z)は余誤差関数であり, <i>Ts(t)=T(0, t)</i> とおいた。	
また、 $\epsilon q/h$ (T _e -T _o) <10 の範囲では、以下のとおり近似		また, $\epsilon q / h (Ts-T_a) < 10$ の範囲では,以下のとおり近似でき	
できる。		る。	
$ \frac{\epsilon q}{h(T_{s} - T_{0})} = \frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} \frac{1}{\sqrt{t}} + 1 $ $ T_{s} = T_{0} + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\rho q}} $ <記号> c:比熱[kJ/kgK], T_{0}:初期温度[K], erfc(z):余誤差関数, T_{s}:表面温度[K], h:熱伝達率[kW/m]K], ϵ :表面の放射率, k:熱伝導率[kW/mK], ρ :密度[kg/m], q:入射熱流束[kW/m], t:燃焼継続時間[s] 出典:原田和典, 建築火災のメカニズムと火災安全設計,日本建築センター		$\begin{aligned} \frac{\epsilon q}{h(T_{s} - T_{0})} &= \frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} \frac{1}{\sqrt{t}} + 1 \\ T &= T_{0} + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\epsilon q}} \\ &< \mbox{c: 比熱[kJ/kgK], T_{0}: 初期温度[K], erfc(z): 余誤差関数, Ts 表面温度[K], h: 熱伝達率[kW/m²K], \epsilon: 表面の放射率, k: 熱伝導率[kW/mK], \rho: 密度[kg/m³], q: 入射熱流束[kW/m²], t: 燃焼継続時間[s] \\ & \mbox{L: 此典: 原田和典, 建築火災のメカニズムと火災安全設計, Fa 本建築センター} \end{aligned}$	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 熱損失h(T_s, T₀) 		 熱損失h(T_s, T₀) 壁面 レレン 壁面内の 熱伝導 第4図 建物温度評価体系図 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-5	別紙 2.2	別紙 2-5	
初期温度の考え方	初期温度の考え方について	初期温度の考え方	
 外壁(コンクリート)面の初期温度 空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 外気温を求め、その値を切り上げた値を外気温及び評価対象施設の初期温度として設定した。なお、受熱面は各壁面の方向(東西南北)とした。 抽崎市の最高気温 37.6℃に対して、外壁面の相当外気温の最大値は 46.5℃となる。46.5℃を切り上げ、50℃を外気温及び初期温度として設定する。 なお、原子炉建屋内で最も室温が高いのは、主蒸気管トンネル室(設計温度:55℃)であり、外壁面の初期温度 50℃より高いものの、その外壁は原子炉建屋とタービン建屋の間に位置しており、 外部火災による輻射の影響を受けない。 	 外壁の初期温度 空気調和・衛生工学便覧を基に、<u>外気温度に</u>日射の影響を考 慮した相当外気温を求め、その値を切り上げ、評価対象の初期 温度として設定した。 水戸地方気象台の過去最高気温 38.4℃に、外気温度が最も高 くなる時間帯(11~15時)の日射量とコンクリートの日射吸収 率0.7を考慮すると、外壁面の相当外気温の最大値は45.5℃と なり、これを切り上げ、50℃を初期温度として設定する。 なお、原子炉建屋内で最も室温が高いのは、主蒸気管トンネ ル室(設計温度:60℃)であり、外壁面の初期温度50℃より高 いものの、その外壁は原子炉建屋とタービン建屋の間に位置し ており、外部火災による輻射の影響を受けない。 次に室温が高いのは、非常用ディーゼル発電機(高圧炉心ス プレイ系ディーゼル発電機を含む。)室(設計温度:40℃)とな るが、外壁面の初期温度50℃未満であることから、初期温度の 設定は妥当なものと考えられる。 	 外壁(コンクリート)面の初期温度 空気調和・衛生工学便覧を基に、日射の影響を考慮した相当 外気温を求め、その値を切り上げた値を外気温及び評価対象施 設の初期温度として設定した。なお、受熱面は各壁面の方向(東 西南北)とした。 鹿島地区の最高気温 37.5℃に対して、外壁面の相当外気温の 最大値は46.1℃となる。46.1℃を切り上げ、50℃を外気温及び 初期温度として設定する。 なお、原子炉建物内で最も室温が高いのは、主蒸気管室(設 計温度:60℃)であり、外壁面の初期温度50℃より高いものの、 その外壁は原子炉建物とタービン建物の間に位置しており、外 部火災による輻射の影響を受けない。 	
空気との熱伝達。 輻射熱の反射. 太陽輻射 最高気温: 37.6℃相当外気 温: 46.5℃。 →外気温・初期温度: 50℃。 第 1 図 原子炉建屋外壁面温度評価体系図	<complex-block><complex-block><complex-block><complex-block><complex-block><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/><image/></complex-block></complex-block></complex-block></complex-block></complex-block>	空気との熱伝達 解射熱の反射一 解射熱の反射一 で し 	

劳炉	備考
<u>主</u> 蒸気管室 <u>か</u> メーージ)	 ・設備の相違 【柏崎 6/7】 島根 2 号炉では,軽油 タンク,燃料移送ポン プ,非常用ディーゼル発 電機は,地下構造等の屋 内設備のため影響評価 対象外。 島根 2 号炉では,海水 ポンプは,屋外設置のた め影響評価を実施

2. abkwart/2 (Table) obmarate Warten Sam Laboration Same Same Same Same Same Same Same Same	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$ 2 \exp 2 \operatorname{a.s. a.s. transfer out of the transfer out of transfer out of$	3. 燃料移送ポンプ(防護板)の初期温度			
<u>Audezeka</u> , zeutezen <u>Lurdz</u> (audezega <u>Zurdz</u>	<u>空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当</u>			
脳振動したで強化した。ため、全部面はポンプ四周に認定していた。 な 「 な 、 な 、 な 、 な 、 な 、 な 、 な 、 な 、 な 、	外気温を求め、その値を切り上げた値を外気温及び評価対象の初			
	期温度として設定した。なお,受熱面はポンプ周囲に設置してい			
	る防護板とする。			
<u> </u>	柏崎市の最高気温 37.6℃に対して,燃料移送ポンプの周囲に設			
<u>20.22299 DLFT. BCZ各外组建会AUT组合定LCZ設立40, たた. 燃料発展/22/ConvCit. 国際に防設設設設置されたも 20.1022-001LfT. BCZ在外加組金とLCZ設立40, 20.022-001LfT. BCZ在外加組金とLCZ設立40, 20.022-001LfT. BCZ在和加組金とLCZ設立40, 20.022-001LfT. BCTCZ 20.022-001LfT. BCTCZ </u>	置している防護板外表面の相当外気温の最大値は 52.3℃となる。			
<u> とた、燃料移送ボンプについては、田畑に防護板会定置されてお</u> <u> 1. 時の必要着を受けないことから、推動面の最高な温の最高な 3. Gでを切り上げ、33でを加減温度として設定する。 <u> 1. 時ののではのした</u>, 3. STC - 加減温度として設定する。 <u> 1. 市場のでは、明確した、では、1. 時ののです。 <u> 1. 市場のでは、明確した、たままにない、日間の影響を考慮したの時</u> 水気温を大いた、その値を切り上げ、1. GTC - 加減二度 <u> 1. 市場の定価でなる。低いでと切り上げ、33でな加減温</u> 2. <u> 1. 市場のです。 1. 市場のです。 2. 市場の面のではない、1. 市場の影響を考慮したの時 水気温を大いた、その値を切り上げ、1. GTC - 加減二度 1. 市場のです。 2. 市場気度して設定した。たお、3. StC - 同日の影響を考慮したの時 水気温を大いた、その様を切り上げ、1. GTC - の加減温度 2. 市場気度して設定した。たお、3. StC - 同日の影響を考慮したの時 水気温を大いた。 2. 市場気度のの助場面で 2. 市場気筒のの助場面で 二、た用したのました。 2. 市場気筒のの助場面で 二、た用したのました。 2. 市場気筒のの助した、 本世にかられ、日時の気度のの自たした。 本世にかられ、その価を切り上げ、前面の表面のの目がした。 本世にかられ、見たの気気温感、4. StC - に見か、3. StC - に見か、3. StC - に見か、3. StC - に見か、3. StC - に見か、5. StC - にない、5. StC - に見か、5. StC - に見か、5. StC - にのまい、5. StC - にのす。 2. たたの - 5. StC - い、4. StC - に見か、5. StC - にのまい、5. StC - い、5. StC - にのまい、5. StC - い、5. StC </u></u></u>	52.3℃を切り上げ,55℃を外気温度の初期温度として設定する。			
$ \begin{array}{ c } \underline{9} & \underline{1} & 1$	また、燃料移送ポンプについては、周囲に防護板が設置されてお			
ST + 6C + 6g + D + DT + 3SC + 2g + 2	り、日射の影響を受けないことから、柏崎市の最高気温の最高値			
	37.6℃を切り上げ,38℃を初期温度として設定する。			
・ (本) (本) (本) (本) (A)				
$\sum_{\substack{a \in a \\ b \neq a \\ c \neq a$				
● 非然の反射 ・ 満切案の ・ 満切案の ・ 満切案の ・ 満切案の ・ 満切案の ・ 満切案の ・ 通知表していたの ・ 部である。 ・ 市である。 ・ かってきましてきまた。 ・ たままたる。 ・ 市できたる。 ・ たっできまる。 ・ たっできまる。 ・ たっできまる。 ・ たっできまる。 ・ たっできまる。 ・ たっできまる。 ・ 市である。 ・ 市できたる。 ・ たっできまる。 ・ たっできまる。 ・ たっできまる。 ・ 市でも、 ・ たっできまる。 ・ 市できたってきまる。 ・ たっできまる。 ・ たっできまる。 ・ たっできまる。 ・ 市でも、 ・ 市 に たっの た の 一 当 か 当 の 当 本 知 一 当 た こ きま た も た も に ち に た の 日 当 水 知 一 説 一 記 一 記 一 で た っ か ま) に き で た っ か た 。 ・ 市 に ち に っ か 思 一 な 一 前 き 1 で き で っ む こ も こ も た も で も た で の 日 当 水 知 一 説 し て で き で か さ わ ・ 市 に う か = 1 新 二 学 他 で ぎ の 日 当 水 知 一 説 一 ご た っ で き か っ か ・	空気との熱伝達 防 難			
M = M = M = M = M = M = M = M = M = M =	福射熱の反射			
$Aaska : 12.60$ $Mis My Sale : 52.61$ $-i Agaa : image (Maga) : 50.71 -i Agaa : image (Maga) : 50.71Image (Maga) : 50.71Image (Maga) : 50.71Image (Maga) : 50.71A : \underline{iH} S \underline{m} on m \underline{m} \underline{a} \underline{c}\underline{A} : \underline{a} \underline{f} \underline{A} \underline{C} \cdot \underline{A} \underline{C} \cdot \underline{A} \underline{A} \underline{C} \underline{A} \underline{A} \underline{C} \cdot \underline{A} \underline{A} \underline{C} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{A} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{C} \underline{C} + \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A}$				
$n = 5x = 23 \cdot 20^{\circ}$ $\rightarrow x = 34 \cdot 20^{\circ}$ $n = 10^{\circ}$ n = 10^{\circ} <td>最高気温:37.6℃</td> <td></td> <td></td> <td></td>	最高気温:37.6℃			
- 外気温・初界温度(防護板):55℃ - 初期温度(医満秋):55℃ - 初期温度(医満秋):55℃ - 前期温度(医満秋):55℃ - 第4回(医料移送ボンブ温度評価体系図) - 生排気筒の初期温度 - 主排気筒の初期温度 空気調和・衛生工学便覧を支上に、日射の影響を考慮した相当 - 大気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 - 指転筒の最高気温 37.6℃に対して、主排気筒の利用当気気 - 広相時市の最高気温 37.6℃に対して、主排気筒の利用当気気 - 広相時市の最高気温 37.6℃に対して、主排気筒の利用当外気温 - 上で認定する - して設定した。なお、受熱面は主排気筒の側面とした。 - 大価地方気象台の過去最高気温 38.4℃に、外気温度が目射吸収率1.0 - して設定する - してござっする	相当外気温:52.3℃ 熱伝導 ()			
・前風龍優(熊林移送ボンブ温度評価体系図 第 4 図 燃料移送ボンブ温度評価体系図 第 4 図 燃料移送ボンブ温度評価体系図 年期気筒の初期温度 ②気調和・衛生工学便覧を <u>5</u> とに、日射の影響を考慮した相当 次調和・衛生工学便覧を <u>5</u> とに、日射の影響を考慮した相当 》 ②気調和・衛生工学便覧を <u>5</u> とに、日射の影響を考慮した相当 《にた相当外気温を求め、その値を切り上げた値を外気温及び評価対象の初 温度として設定した。なお、受熱面は主排気筒の側面とした。 本声地方気象台の過去最高気温 37.6℃に対して、主排気筒の外期温度 《広格当外気温を求め、その値を切り上げ、前でか気温及び評価対象の初 温度として設定した。なお、受熱面は主排気筒の側面とした。 本戸地方気象台の過去最高気温 38.4℃に、外気温度が最も 《広格当外気温を求め、その値を切り上げ、値を外気温及び評価対象の初 』 出度として設定した。なお、受熱面は主排気筒の側面とした。 本声地方気象台の過去最高気温 38.4℃に、外気温度が最も 《人口・25時)の目針最と主排気筒の目射吸収率 《ムロ・15時)の目針最と主排気筒の目射吸収率 、 《ムロ・15 時)の目針吸収率 《ムロ・15 中)の目針吸収率 《国・15 中)の目針吸収率 《ムロ・15 中)の目針吸収率 《国・15 中)の目針吸収率 《国・15 中)の目針吸収率 《国・15 中)の目針吸収率 《国・15 中)の目針吸収率 《国・15 中)の目針吸 《ロ・15 中)の目針吸収率 《ロ・15 中)の目針吸収率 《国・15 中)の目針吸収率 《国・15 中)の 《ロ・15 中)の目針吸収率 《国・15 中)の 《国・15 中)の目針吸収率 《国・15 中)の 《国・15 中)の 《国・15 中)の 《国・15 中)の目針	→外気温・初期温度(防護板):55°C			
第4回燃料移送ポンプ温度評価体系図 第4回燃料移送ポンプ温度評価体系図 第4回燃料移送ポンプ温度評価体系図 5. 主排気筒の初期温度 2. 主排気筒の初期温度 2. 主排気筒の初期温度 空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、外気温度に日射の影響を考慮した相当外 小気温を求め、その値を切り上げた値を外気温及び評価対象の初 慮した相当外気温を求め、その値を切り上げ、評価対象の初 調度として設定した。なお、受熱面は主排気筒の側面とした。 1 水戸地方気象白の過去最高気温 38.4℃に外気温度が最も。 1 人口で設定する くなる時間帯(11~15 時)の日射量と主排気筒の目が吸取率1) たる時間帯(11~15 時)の日射量と主排気筒の目が吸取率1) 気温の最大値は 4.2℃となる。44.2℃を切り上げ、50℃を初期 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	→初期温度(燃料移送ホンク):38℃			
4.主排気筒の初期温度 2.主排気筒の初期温度 2.非気筒の初期温度 空気調和・衛生工学便覧をもとに,日射の影響を考慮した相当 空気調和・衛生工学便覧を基に,0分気温度に日射の影響を考慮した相当外 2.排気筒の初期温度 外気温を求め,その値を切り上げた値を外気温及び評価対象の 慮した相当外気温を求め,その値を切り上げ,評価対象の初 気温を求め,その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお, 受熱面は主排気筒の側面とした。 1 1 1 植崎市の最高気温 37.6℃に対して,主排気筒の相当外気 水戸地方気象台の過去最高気温 38.4℃に外気温度が最もる 1 1 上口で設定する くなる時間帯(11~15時)の目射量と主排気筒の目射吸取率1 5 2 1 上口で設定する たま費すると、主排気筒の相当外気温の量士値は48.6℃とかたり 1 1 1	第4図 燃料移送ポンプ温度評価体系図			
4. 主排気筒の初期温度 2. 主排気筒の初期温度 2. 排気筒の初期温度 2. 排気筒の初期温度 空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、外気温度に日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、日射影響を考慮した相当 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 慮した相当外気温を求め、その値を切り上げ、値を外気温及び評価対象の初 気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 温度として設定した。なお、受熱面は主排気筒の側面とした。 期温度として設定した。なお、受熱面は排気筒の側面とした。 温の最大値は45.1℃となる。45.1℃を切り上げ、50℃を初期温度 くなる時間帯(11~15 時)の目射量と主排気筒の目射吸収率1.0 気温の最大値は44.2℃となる。44.2℃を切り上げ、50℃を初期 トレて設定する を客慮するとと 支排気筒の相当め気温の量す値は48.6℃とたの 国産上して設定する				
4. 主排気筒の初期温度 2. 主排気筒の初期温度 2. 排気筒の初期温度 空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 空気調和・衛生工学便覧を基に、外気温度に日射の影響を考慮した相当外 空気調和・衛生工学便覧を基に、日射影響を考慮した相当外 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 慮した相当外気温を求め、その値を切り上げ、評価対象の初期 気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 温度として設定した。なお、受熱面は主排気筒のの側面とした。 期温度として設定した。なお、受熱面は排気筒の側面とした。 通の最大値は45.1℃となる。45.1℃を切り上げ、50℃を初期温度 くなる時間帯(11~15 時)の日射量と主排気筒の日射吸収率1.0 気温の最大値は44.2℃となる。44.2℃を切り上げ、50℃を初期 たま増するとレま排気筒の相当外気温の最大値は44.2℃となる。44.2℃をすのり上げ、50℃を初期 温度として設定する 知時にして設定する				
空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 期温度として設定した。なお、受熱面は主排気筒の側面とした。 柏崎市の最高気温 37.6℃に対して、主排気筒外表面の相当外気 この最大値は 45.1℃となる。45.1℃を切り上げ、50℃を初期温度 たま慮すると、主排気筒の相当体気温の相当体気温の相当体気温の目的とした。 たま慮すると、主排気筒の相当体気温の相当体気温の相当体気温の目的とした。 たま慮すると、主排気筒の相当体気温の相当体気温の相当体気温の目的とした。 たま慮すると、主排気筒の相当体気温の高力相当体気温の見す値は 48.6℃とたわ 温度として設定した。なお、受熱面は注が気筒の目前とした。 たま慮すると、主排気筒の相当体気温の見す値は 48.6℃とたわ 温度として設定した。なお、1000000000000000000000000000000000000	4. 主排気筒の初期温度	2. 主排気筒の初期温度	<u>2排気筒</u> の初期温度	
 外気温を求め、その値を切り上げた値を外気温及び評価対象の初 劇温度として設定した。なお、受熱面は主排気筒の側面とした。 抽崎市の最高気温 37.6℃に対して、主排気筒外表面の相当外気 温度として設定した。なお、受熱面は主排気筒の側面とした。 水戸地方気象台の過去最高気温 38.4℃に、外気温度が最も高 人なる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0 た表慮すると、主排気筒の相当外気洞の長大値は48.6℃となり 温度として設定した3.44.2℃を切り上げ、50℃を初期 	空気調和・衛生工学便覧をもとに、日射の影響を考慮した相当	空気調和・衛生工学便覧を基に、外気温度に日射の影響を考	空気調和・衛生工学便覧を基に、日射影響を考慮した相当外	
 期温度として設定した。なお、受熱面は主排気筒の側面とした。 油崎市の最高気温 37.6℃に対して、主排気筒外表面の相当外気 水戸地方気象台の過去最高気温 38.4℃に、外気温度が最も高 現温度として設定した。なお、受熱面は排気筒の側面とした。 水戸地方気象台の過去最高気温 38.4℃に、外気温度が最も高 人なる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0 た考慮すると、主排気筒の相当外気 た考慮すると、主排気筒の相当外気 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第温度として設定した。なお、受熱面は排気筒の側面とした。 第二度として設定した。なお、受熱面は排気筒の側面とした。 第二度として設定した。なお、受熱面は非気筒の側面とした。 第二度として設定した。なお、受熱面は非気筒の側面とした。 	外気温を求め、その値を切り上げた値を外気温及び評価対象の初	慮した相当外気温を求め、その値を切り上げ、評価対象の初期	気温を求め、その値を切り上げた値を外気温及び評価対象の初	
柏崎市の最高気温 37.6℃に対して,主排気筒外表面の相当外気 水戸地方気象台の過去最高気温 38.4℃に,外気温度が最も高 鹿島地区の最高気温 37.5℃に対して,排気筒外表面の相当外 温の最大値は 45.1℃となる。45.1℃を切り上げ,50℃を初期温度 くなる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0 気温の最大値は 44.2℃となる。44.2℃を切り上げ,50℃を初期 を考慮すると 主排気筒の相当外気 りんていたい りょうになる。45.1℃を切り上げ,50℃を初期	期温度として設定した。なお、受熱面は主排気筒の側面とした。	温度として設定した。なお、受熱面は <u>主排気筒</u> の側面とした。	期温度として設定した。なお,受熱面は排気筒の側面とした。	
温の最大値は 45.1℃となる。45.1℃を切り上げ,50℃を初期温度 として設定する た考慮すると、主排気筒の日射吸収率1.0 気温の最大値は 44.2℃となる。44.2℃を切り上げ,50℃を初期	柏崎市の最高気温 37.6℃に対して,主排気筒外表面の相当外気	水戸地方気象台の過去最高気温 38.4℃に,外気温度が最も高	鹿島地区の最高気温 37.5℃に対して,排気筒外表面の相当外	
として設定する	温の最大値は45.1℃となる。45.1℃を切り上げ、50℃を初期温度	くなる時間帯(11~15時)の日射量と主排気筒の日射吸収率1.0	気温の最大値は44.2℃となる。44.2℃を切り上げ、50℃を初期	
	として設定する。	を考慮すると,主排気筒の相当外気温の最大値は48.6℃となり,	温度として設定する。	
これを切り上げ、50℃を初期温度として設定する。		これを切り上げ,50℃を初期温度として設定する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 最高気温:37.6℃ 相当外気温:45.1℃ →外気温・初期温度:50℃ 上陽輻射:ご 定気との熱伝達・輻射熱の反射・熱伝導: ○ 	 → : 太陽輻射 → : 空気との伝熱・輻射熱の反射 	 ・協範報: 44.2℃ ・外気温・初期温度: 50℃ 	
第 5 図 主排気筒温度評価体系図	第2図 主排気筒の評価概念図	<u>第3図 排気筒</u> 温度評価体系図	
	3. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発 電機を含む。),残留熱除去系海水系ポンプ及び非常用ディーゼ ル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海 水ポンプ内への流入空気の初期温度 水戸地方気象台の過去最高気温 38.4℃を切り上げた 39 ℃を 流入空気の初期温度とした。	 海水ポンプの冷却空気初期温度 鹿島地区の最高気温 37.5℃を切り上げた 40℃を冷却空気の 初期温度とした。 	
		 最高気温: 37.5℃ →外気温・初期温度: 40℃ <!--</td--><td></td>	
	第3図非常用ディーゼル発電機(高圧炉心スプレイ系	第4図 海水ポンプ温度評価体系図	
	<u> エイーセル発電機を含む。)の評価機念図</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-6	別紙 2-6	
建屋天井面への熱影響評価	建物天井面への熱影響評価	
7年巳回去、の劫民郷さませしたが、 て井子は oいての劫民郷さ	決映回て、 の教影響が使き安安したが、てせてはっいての教影	
	建物側面への熱影響計画を美施したか、大井面についての熱影響式協会社で	
(限制) 9 る。	著を快討りる。 ・ 水火長が建物玉井西とり短い場合は玉井西に朝射熱は足かな。	
	・ 八次夜が建物人升面より 忘い 場合 は人升面に 細羽 然は 面がな	
	・ と と か ら 然 影 音 は な V 。 (知 1 因)	
	(天井面)の形能係数は 垂直面の方が大きいことから 王	
	(八)前のの形態は気は、垂直面の方が一人さいことがら、人 車面の執影響け側面に比べて小さい (筆9図)	
・コンクリートの厚さけ側面上り天共面の方が薄いことから	・コンクリートの厚さけ側面とり天井面の方が薄いことから	
デジー・ジーンは、「「「「」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	天井面の方が建物内側の熱伝達に上ろ放熱の効果が大きく	
るため熱影響は小さい。	なるため熱影響は小さい。	
以上より、側面の熱影響を実施することで天井面の熱影響は包	以上より,側面の熱影響評価を実施することで天井面の熱影響	
絡されることを確認した。	は包絡されることを確認した。	
建屋天井面が輻射熱を受ける範囲 建屋側面が輻射熱を受ける範囲 東屋側面が輻射熱を受ける範囲 人工 東屋 関面 建屋 火炎長が建屋天井面より短ければ天井面に輻射熱は届かない	建物天井面が輻射熱を受ける範囲 建物側面が輻射熱を受ける範囲 運物側面が輻射熱を受ける範囲 人次長が建物天井面より短ければ天井面に輻射熱は届かない	
第1図 天井面への輻射熱の影響	第1図 天井面への輻射熱の影響	
垂直面 (側面): 形態係数 F 垂直 ▲ 平面 (天井面): 形態係数 F 本平 第 2 図 垂直面と水平面の形態係数の大きさ	垂直面 (側面):形態係数 F 垂直 ● ● <td< td=""><td></td></td<>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>別紙2-7</u>	
		防火帯が入り組んでいる箇所の影響評価について	・設備の相違 【柏崎 6/7、東海第二】
		1. 概要	島根2号炉特有の防
			火帯が入り組んでいる
			箇所について, 影響評価
		んでいる箇所の防護対象設備に対する影響評価を行う。	を実施
		<u>2.</u> 評価対象施設	
		(1) 固体廃棄物貯蔵所B棟	
		<u>(2) ろ過水タンク</u>	
		3. 影響評価	
		<u>(1) 火線強度による評価</u>	
		評価対象施設周辺の最大火線強度は、林縁で最大火線強度	
		となる条件で評価した結果,固体廃棄物貯蔵所 B 棟で	
		<u>715kW/m,ろ過水タンクで296kW/mとなることを確認した。発</u>	
		電所での最大火線強度(4,154k₩/m)に対し,十分な余裕を確	
		保していることを確認した。	
		<u>なお,固体廃棄物貯蔵所B棟及びろ過水タンクは、下り勾</u>	
		配の位置にあり、火災が延焼し難いことから火線強度が大き	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
				<u>くなり難い。</u>	
				第1表 近傍の火線強度の最大値	
				ケース 対象施設 近傍の火線強度最大値 (kW/m) 可燃物	
				①ろ過水タンク 296 落葉広葉樹	
				1 ②固体廃棄物貯蔵所 B 棟 714 スギ 10 年生	
				①ろ過水タンク 274 落葉広葉樹	
				2 ②固体廃棄物貯蔵所 B 棟 715 落葉広葉樹	
				火線強度[kW/m] - 500 - 500 - 500 - 500 - 1000 - 2.000 - 3.000 - 4,000 - 5.000 - 10.000 - 5.000 - 10.000 - 15.000	
				 ■ 1,000 ■ 2,000 ■ 10,000 ■ 10,000	
				<u>第2図</u> ろ過水タンク及び固体廃棄物貯蔵所(B棟)周辺の	
				FARSITEの結果(ケース1の場合)	

柏崎刈羽原子力発電所 6/7号炉 (201	7.12.20版) 東海第二発電	近(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
			With a state of the	

柏崎刈羽原子力発電所 6	/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
柏崎刈羽原子力発電所 6	/ 7 号炉	(2017. 12. 20 版)	東海第二発電所 (2018. 9. 12 版)	島根原子力発電所 2.5 (2) (3) (4) (5)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-7	別紙 2.4	別紙2-8	
斜面に設定している防火帯の地盤安定性の観点からの考え方に	斜面に設定している防火帯の地盤安定性について	斜面に設定している防火帯の地盤安定性の観点からの考え方に のいて	
1. 防火帯の概要		1. 防火帯の概要	
防火帯は、第1図に示すとおり発電所設備の配置状況等を考		防火帯は、第1図に示すとおり発電所設備の配置状況等を考	
慮し、干渉しないように設定している。		慮し、干渉しないように設定している。	
設定に当たっては、草木を伐採する等、可燃物を排除し、そ		設定に当たっては、草木を伐採する等、可燃物を排除し、そ	
の後、除草剤を散布した上で、モルタル吹付け等を行い、草木		の後、除草剤を散布したうえで、モルタル吹付け等を行い、草	
の育成を抑制し、可燃物がない状態を維持する。		木の育成を抑制し、可燃物がない状態を維持する。	
第 1 図 防火帯位置		第1図 防火帯位置図	
2. 地震時の斜面崩壊による防火帯への影響評価		2. 地震時の斜面崩壊による防火帯への影響評価	
(1) 評価力針について 地電がお田となり 発電正動地のにて本林火災が発生する	約面に設定する防火=	(1) 評価力針についく 地震がお田したり 双電正動地及にて本林レ災が及仕する	・冬川の扣造
地長が起因となり、光電灯激地外にて林林八次が光生りる	料面に設定りる防火帯範囲を下因に小り。この料面については, 其進地震動を相定した地般安定性評価を実施しており 崩滅した	地長が起因となり、光电// 叙地/にて林林八次が光生りる	· 米什の相選 【宙海第二】
電と森林火災が重畳した場合を想定し 地震時の斜面崩壊に	<u>本中地展動を応足した地温気だ住前面を実施しておう</u> ,所得しな いことを確認している。このため 斜面に設定している防火帯が	電と森林火災が重畳した場合を想定し。 地震時の斜面崩壊に	▲根2号炉 柏崎6/7
よる防火帯への影響評価を行う。	斜面の崩落により機能を喪失することはない。	よる防火帯への影響評価を行う。	は、安全上の配慮として
			評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2)森林火災が防火帯を突破する可能性について		(2) 森林火災が防火帯を突破する可能性について	
森林火災(単独事象)の影響評価では、下記に示す保守的な		森林火災(単独事象)の影響評価では、下記に示す保守的	
前提条件としている。		な前提条件としている。	
① 気象条件(湿度, 気温, 風速)は, 過去 10 年間におけ		① 気象条件(湿度,気温,風速)は,過去10年間にお	
る森林火災発生件数の多い 3~5.月のうち,最も厳しい		ける森林火災発生件数の多い3~8月のうち,最も	
条件の組み合わせとしている。		厳しい条件の組み合わせとしている。	
② 植生は,現地調査等で特定した樹種ごとに,より厳しい		② 植生は、現地調査等で特定した樹種ごとに、より厳	
評価となるような 林齢及び下草を設定している。		しい評価となるような林齢及び下草を設定してい	
		る。	
③ 日照時間の影響を考慮し,防火帯近傍における火線強度		③ 日照時間の影響を考慮し,防火帯近傍における火線	
が最大となるよう に森林火災の発火時刻を設定してい		強度が最大となるように森林火災の発火時刻を設定	
る。		している。	
自然現象の重畳を検討する場合、主事象(地震)に対して、		自然現象の重畳を検討する場合、主事象(地震)に対して、	
副事象(森林火災)の規模を小さくすることは一般的に用いら		副事象(森林火災)の規模を小さくすることは一般的に用い	
れている手法である。		られている手法である。	
森林火災については、定量的な規模を示すことは困難である		森林火災については、定量的な規模を示すことは困難であ	
が、同様に、主事象である地震と重畳する森林火災の規模が単	図 崩落評価の実施箇所と防火帯位置の関係	るが、同様に、主事象である地震と重畳する森林火災の規模	
独事象の森林火災より小さくなると考えられ、防火帯内に多く		が単独事象の森林火災より小さくなると考えられ、防火帯内	
の可燃物(草木等)が流入しなければ、防火帯の延焼防止機能		に多くの可燃物(草木等)が流入しなければ、防火帯の延焼	
が直ちに喪失することはない。		防止機能が直ちに喪失することはない。	
(3) 地震と森林火災重畳時の重大事故等への対応について		(3) 地震と森林火災重畳時の重大事故等への対応について	・条件の相違
第2図に防火帯とアクセスルートを示す。		第2図に防火帯とアクセスルートを示す。	【柏崎 6/7】
<u>防火帯については、アクセスルートの周辺斜面の崩壊と同様</u>		アクセスルート周辺の防火帯については、アクセスルート	島根2号炉は,アクセ
の考え方*に基づき (第3図),斜面崩壊に伴い防火帯に可燃物		の周辺斜面の安定性評価と同様の考え方*に基づき安定性評	スルート周辺の安定性
が流入し、延焼防止機能に影響がある場合は、機能の低下を想		価を行っており、アクセスルートへの影響がないことを確認	評価を実施し,崩落の影
定する。		している。	響がないことを確認
<u>防火帯の機能が低下した場合,防火帯の内側への森林火災の</u>		アクセスルート周辺以外の斜面は,安定性評価を実施して	
<u>延焼が想定されるものの,発電所敷地内には道路(幅 10m 程度)</u>		いないため、斜面崩壊に伴い防火帯に可燃物が流入し、延焼	
や非植生のエリアが多くあることから、更なる延焼の可能性は		防止機能に影響がある場合は,機能の低下を想定する。	
低いと考えられる(「別紙 2-8 防火帯内植生による火 災につ		防火帯の機能が低下した場合,防火帯の内側への森林火災	
<u>いて」参照)。</u>		の延焼が想定されるものの、発電所敷地内には道路(概ね幅	
斜面崩壊の影響を受けるアクセスルートの範囲を第4図に,		員7m)や非植生のエリアがあることから,更なる延焼の可能	
<u>地震時におけるアクセスルートを第 5-1 図,第 5-2 図に示す。</u>		性は低いと考えられる。	
地震時に使用するアクセスルートのうち,中央交差点及び荒		※:「技術的能力 添付資料 1.0.2 可搬型重大事故等対	
浜側高台保管場所付近については、地震時の斜面崩壊の影響を		処設備保管場所及びアクセスルートについて」参照	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
受けないことから、防火帯の機能は維持され、当該箇所のアク			
セスルートは通行可能であり重大事故等に対処できる。			
※アクセスルートの周辺斜面の崩壊と同様の考え方は、「技術的			
能力 添付資料 1.0.2 可搬型重大事故等 対処設備保管場所			
及びアクセスルートについて」と同様とする。			
<u>また,地震時に使用するアクセスルートのうち,中央交差点</u>			
及び荒浜側高台保管場所付近を除く範囲については、森林火災			
が発生し、防火帯機能が低下する範囲から延焼してきたとして			
<u>も,防火帯の内側への更なる延焼の可能性は低いことから,当</u>			
該箇所のアクセスルートは通行可能(仮復旧の実施を含む)で			
あり重大事故等に対処できる。さらに、現場の状況に応じた自			
衛消防隊による予防散水により,防火帯内への森林火災の延焼			
リスク低減も可能である。			
		→ 「 ・ アクセスルート(原則・要員) ・ アクセスルート(原則・ 要員) ・ サブルート(原則・要員) ・ サブルート(原則・要員)	
		第一部 第一部 第一部 第一部 第一部 第一部 第一部 第一部	
		第1條符:=リア (E L50a)	
		37.3 (Alf # ± 1 7' (E L 13~33)	
第 2 図 防火帯とアクセスルート		第2保管エリア(EL44a)	
		0 250 500 m	
斜面のすべり範囲に応じた崩壊形状のイメージ			
[凡例] 一 崩壊前の斜面形状 すべり線 小 短		第2図 防火帯とアクセスルート	
崩壊後の土砂の堆積形状			
大 長 >すべり土物の土田に対して、土量変化率1.3を考慮			
長 > 那場工ゼの現在時の内度は、15'			
保守的な堆積土砂の形状を設定			
アクセスルート斜面の崩壊形状 (保守的た認定)			
<u>第3図 斜面崩壊時の堆積土砂の形状</u>			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 4 図 斜面崩壊の影響を受けるアクセスルートの範囲			
第 5-1 図 地震時におけるアクセスルートの選定結果			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 5-9 図 地震時におけるアクセスルートの選定結果			
<u> かりて</u> 回 地展时に4300 37 / こハル 下の 医足相木			
(4) 斜面崩壊に対する対策について			
(3)に示すようた斜面の崩壊によって防火帯の延焼防止機能低			
下が相定される場合は一安全上の配慮として当該箇所の新焼防止			
機能の低下を緩和するために 崩壊後の堆積十砂の影響範囲※を考			
第 6 図及び第 7 図に、対策を行う範囲の例を示す。			
※崩壊後の堆積十砂による影響範囲は、「技術的能力 添付資料			
102 可搬型重大事故等対机設備保管場所 及びアクセスル			
ートについて」と同様とする			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>弗 6 図 防火市の延焼防正機能の低下被和利東イメーン</u>			
<u>第 7 図 可燃物がないエリア</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 2-8	別紙 2.3	別紙2-9	
防火帯内植生による火災について	防火帯内植生による評価対象施設への火災影響について	防火帯内植生による火災について	
			夕 (山 の 山) 本
<u> 第 1 図に防火帯内の植生(平成 27 年 1 月現仕)を示す。</u>	防火帯内の植生調査結果(平成28年8月現在)を基に作成した	第1図に防火帯内の植生(平成31年2月現仕)を示す。	
発電用原子炉施設の周囲の植生は一部が低中木や広葉樹である	防火箭内植生図を下図に示す。	<u> 発電用原于炉施設,可搬型車大事故等対処設備の保管エリア及</u>	【相畸 6/7, 果海弗二】
ものの大半か之地である。また、重大事故等対処設備の周囲は広	<u> 発電所敷地内で,現場作業に伴い「産外の危険物保官」や「火</u>	ひアクセスルート近傍の防火帯内側については、樹木等伐採する	島根2
<u>栗樹や10年生以上のマツで火緑強度が低くなる植生であること</u>	<u>気の使用」をする場合は、社内又書に基づさ危険物や火気を官理</u>	<u>こととしており</u> ,防火帯内の植生による発電用原于炉施設及び里	里大事故等対処設備の
<u>から</u> ,…防火帯内の植生による発電用原子炉施設及び重大事政等対	した状態で取り扱うことから、敷地内植生に火か延焼することは	大事故等対処設備に対しての影響はない。	保管エリア及びアクセ
処設備に対しての影響はない。	なく、火災が発生することはない。方が一火災が発生した場合で		スルート近傍の防火帯
なお、重大事故等対処設備からの出火を想定した場合、炎感知	も、防火帯内の発電用原子炉施設周囲の主な植生は、火線強度が	なお、重大事故等対処設備の発火を想定した場合、炎感知器や	内側は、樹木等伐採
器やサーモカメラにて火災の早期検知が可能であること、 <u>周囲の</u>	<u>低い,マツ(樹齢10年以上)や短い草であり,</u> 道路(幅約10m)	烈感知器にて火災の早期検知が可能であること、近傍の樹木等を	
広葉樹等に延焼した場合を想定したとしても, 柏崎刈羽原子力発	や非植生のエリアも多くあることに加え, 防火の観点から定期的	<u>伐採していること及び</u> 島根原子力発電所の防火帯内には道路や	
電所の防火帯内には道路 <u>(幅 10m程度)</u> や非植生のエリアが多く	<u>なパトロール等にて現場の状況を確認しており、迅速に消火対応</u>	非植生のエリアが多くあることから、更なる延焼の可能性は低	
あることから、更なる延焼の可能性は低い。	が可能であるため発電用原子炉施設への影響はない。	۷۰ _۰	
		n free	
		· 章章· 章章· 章章· 章章· 章章· 章章· 章章· 章章· 章章· 章	
		TO STORAGE STREET	
<u>一一一次</u> 武子上世内技生回		<u> 1 回 戏录记代表世内技</u> 生回	
用 I 凶 光电///的火帝//他生凶	凶 防火帝的植生凶	第Ⅰ凶 光电/// 防火宿// 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	

	原子力発電所 6/7号	炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2	2 号炉	備考
		参考資料 2-1				参考2-1	
サウチノラス	「ケットローナ」、ファクタ	く供しの違いなるいで		-	河江では田していてたら	五夕仲しの主い	
彼はく評価	「個で使用している気家系	件との遅いについて		彼はく	評価で使用している気象	家余件との遅い	
被ばく評価で	で使用している気象条件	との違いについて以下に示	被ば	ずく評価で使	使用している気象条件と	の違いについて以下に示	
す。			す。				
なお, 被ばく	く評価は、 <u>柏崎刈羽</u> 原子	力発電所からの放射性物質	なお,	^お ,被ばく評	平価は、島根原子力発電	所からの放射性物質の拡	
の拡散状況を把	巴握するために発電所構	内の気象観測所のデータを	散状况:	兄を把握する	るために発電所構内の気	象観測所のデータを用い	
用いている。一	一方,森林火災は発電所	構外からの火災の進展を評	ている。	る。一方,柔	森林火災は発電所構外か	らの火災の進展を評価す	
価するため、発	発電所周辺の気象を代表	するように発電所構外の気	るため	めに、発電所	所周辺の気象を代表する	ように発電所構外の気象	
象観測所のデー	-タを用いていろ	, a a , , , , , , , , , , , , , , , , ,	编 测 所 ·	近のデータな	を用いている。		
			1//// ·				
第 1 表 被	被ばく評価で使用してい	いる気象条件との違い		第1表 被1	ばく評価で使用している	気象条件との違い	
	5 th de %	神げく証価		項目	森林火災	被ばく評価	
データ取得 柏崎	#你久炎	発電所構内気象観測装置	評価項	項目	森林火災の延焼	放射性物質の大気拡散	
場所新	所潟気象台		データ	タ取得場所 月	鹿島観測所, 松江気象台	発電所構内気象観測装置	
データ取得期 過去	過去 10 年(2003~2012 年)	1985 年 10 月から 1 年間 (KK7)	データ	夕取得期間 j	過去10年(2003~2012)	2009年1月~12月の1年間	
間					3~8月の最大風速	大気安定度の算出に使用	
風速 3~	~5 月の最大風速	大気安定度の算出に使用	風速		風速が大きいほど延焼しや	風速が小さい方が高濃度	
風速保守	』速が大きい方が延焼しやすく R守的	風速が小さい方が拡散しやすく なる			すく保守的 3~8月の卓越風向(16 方位)	で拡散しやすくなる 16 方位の風向出現回数を考	
風向 3~	~5 月の卓越風向(16 方位)	16 方位の風向出現回数を考慮し		· · · · · · · · · · · · · · · · · · ·	3~8月の最高気温	慮して評価	
気温 3~	~5月の最高気温	(評価) (評価) (評価) (評価) (評価) (評価) (目前) (目前) (目前) (目前) (目前) (目前) (目前) (目前	気温		気温が高い方が可燃物の水	評価には使用しない	
気法	気温が高い方が可燃物の水分量				分量が少なくなり保守的		
がら	ジンなくなり保守的				3~8月の最低湿度		
湿度 3~ 湿度	~5 月の最小湿度 湿度が低い方が可燃物の水分量	評価には使用しない	湿度	3	湿度が低い方が可燃物の水 分量が少なくなり保守的	評価には使用しない	
がら	ジ少なくなるため保守的			t .	最大日射量(雲なし)とする	大気安定度の算出に使用	
日射量 最7 日射	長大日射量(雲なし)とする 日射量が多い方が可燃物の水分	大気安定度の算出に使用 日射量が大きい方が拡散しやす		量 	日射が多い方が可燃物の水 分量が少なくなり保守的	日射量が大きい方が拡散 しやすくなる	
量1	量が少なくなるため保守的	くなる	降雨量	· - - - - - - - - - - - - -	降水量なしとする 降水がない方が可燃物の水	評価にけ使用したい	
降雨量 降7	春水量なしとする 春水がない方が可燃物の水分量	評価には使用しない		-	分量が少なくなるため保守的		
	+小小小い / / / / / / / / / / / / / 里						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 2-2			
マツ 10 年生と設定することの妥当性について			・条件の相違
			【柏崎 6/7】
マツ 10 年生未満とマツ 10 年生では, 可燃物データのうち生			島根2号炉は,植生調
きた木質の fuel 量のみ異なり他のパラメータは同じである。			査の結果,発電所構内に
10 年生未満のマツが1本でも存在していれば 10 年生未満の			10 年生未満のマツは存
マツを選択するのではなく、10 年生未満のマツが一様に広がり、			在しない
生きた木質の fuel 量が少ない状態であれば 10 年生未満とす			
る。10 年以上のマツが存在している中に 10 年生未満のマツが存			
在するようなエリアであれば, 10 年生未満よりも生きた木質の			
fuel 量は多く延焼を抑制する効果があることから 10 年生未満			
のデータではなく 10 年生のデータを用いることは適当である。			
また,発電所構内の森林簿から生きた木質の fuel 量を算出す			
<u>ると*2</u> ,約 80ton/ha であり、マツ 10 年生の生きた木質の fuel			
量より大きいことから、10年生のデータを入れることは妥当であ			
<u>a.</u>			
第 1 表 マツ及び落葉広葉樹の可燃物データ			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
2 自第一百子力発電前への林野水災に関する影響評価独立行政法			
山岡の小小小小小市、小小市、小小市、小市市、山岳山、小市、山岳山、小市、小小市、山岳山、小市、山岳山、山岳山、山岳山、山岳山、山岳山、山岳山、山岳山、山岳山、山岳山、山岳			
※1:fuel 量とは、単位面積当たりの可燃物(燃料)の量[ton/ha]			
※2:森林簿に記載の区画ごとの面積 S[ha]. 材積 V[m ³]及び、マツ			
の気乾比重 520[kg/m ³] ^{*3} から、生きた木質の fuel 量			
生きた木質の fuel 量=520×V÷S×1000			
※3:一般財団法人日本木材総合情報センターより			
条件に対応し、含有水分が平衡に達した状態での比重			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>参考資料 2-3</u>			
8月の気象条件及び 3~5月の気象条件を適用した解析結果の比			・条件の相違
較について			【柏崎 6/7】
			地域特性を踏まえた,
<u>1. 森林火災の想定</u>			森林火災における気象
<u>森林火災の想定における気象条件は,過去 10 年間(2003〜2012</u>			条件の相違
年)を調査し,森林火災の発生件数の多い 3~5 月の卓越風向,			
最大風速,最高気温,及び最小湿度の組み合わせとしているが,			
新潟県、柏崎市・刈羽村・出雲崎町における森林火災発生件数は、			
3~5 月を除き,8 月にも発生している。このため,8 月の気象条			
件を適用した森林火災について、現在のプラント状況と植生等が			
異なっている箇所はあるが、過去に感度解析を実施している。			
発火点は最大火線強度が大きくなると考えられるケース 2 の			
<u> 発火点とし、これを代表ゲースとした解析結果の比較である。</u>			
(1) 与毎冬仳の設定			
(1) X(家未什の設定 8 日における過去 10 年間の気免冬供を調本」た結果を第 1			
3 方における過ム 10 中间の X家未住を調査した福未を先 1 素(上段) に示す			
第 1 表 8 月の気象条件を適用した気象条件と 3~5 月の気象条			
件との比較			
風向し10万位」 取入風速[m/s] 取高気温[C] 取小湿度[%] 8月 南南東 11.0 37.5 31			
3~5月 南南東 16.0 31.9 12			
(2) 必要データ			
<u>気象条件以外の植生データ等の FARSITE 入力データは,ケー</u>			
ス 2 と同等とする。			
(3) 火線強度および火炎の到達時間の算出結果			
火線強度および火炎の到達時間の算出結果を第 2 表に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第2表 火線強度および火炎の到達時間			
評価項目 8月 3~5月			
最大火線強度[kW/m] 1362 2948 ^{※1} レベの回遠時間[hum] 6.004 2.053 ^{※2}			
<			
※2:ケース3の火炎の到達時間(最小値)			
<u>2. 評価結果</u>			
過去に実施した解析であるが,8月の気象条件を適用したケー			
スでは、これまでと同様に、気象条件における気温の上昇に対し			
て、風速の低下や湿度の上昇による影響が大きく最大火線強度が			
低下する傾向を示しており、発電用原子炉施設への熱影響はケー			
ス 2 の評価に包絡される結果となっている。なお,最大火線強度			
の低下に対して、風速と湿度のうち、どちらの影響が大きいかに			
ついては確認できていない。			
また、同様の影響によって延焼速度が遅く、火炎の到達時間は			
ケース 3 に対して 2 倍以上となっており, 自衛消防隊の対応に			
影響をおよぼすことはないと評価する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) <u>別紙 2.5</u> <u>津波防護施設等に対する森林火災影響について</u> 1. 評価対象の検討 津波防護施設のうち森林火災の影響を受ける対象を表 1,各 対象の設置箇所を図1に示す。 支援1 森林火災の影響を受ける対象 支援1 森林火災の影響を受ける対象 支援1 森林火災の影響を受ける対象 支援1 森林火災の影響を受ける対象 支援1 森林火災の影響を受ける対象 主 1 森林火災の影響を受ける対象 支援1 森林火災の影響を受ける対象 支援2 (支援1)	島根原子力発電所 2号炉	備考 ・設備の相違 【東海第二】 島根2号炉は,評価対 象となる津波防護施設 等は存在しない
	地大ジョイント部 鋼管抗鉄筋コンクリート防潮壁のうちー定間隔の施 エブ [*] ックの境界 ・鋼製アンカー、止水ゴ、A,鋼製防護部材等から構成される。 防潮扉 敷地南側境界付近 ・鋼材製 ・地上高さ(上端):T.P.+18m~T.P.20m		
	「「「「「「「」」」」」」「「」」」」」」」 「「」」」 「「」」」 「」」 「「」」」 「」 「「」」 「」 「「」」 「」 「「」」 「「」」 「「」」 「「」」 「「」 「「」」 「「」 「」 「」 「「」 「「」 「」 「」 「「」 「「」 「」 「「」 「「」 「「」 「」 「「」 「」 「」 「」 「」 「」 「」 「」 「「」 「 「」 「		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 2. 津波防護施設等に対する影響評価 2.1 鋼管杭鉄筋コンクリート防潮壁に対する熱影響評価 (1) 鋼管杭鉄筋コンクリート防潮壁の概要図 鋼管杭鉄筋コンクリート防潮壁(以下「防潮壁」という。)は, 地上部表面は鉄筋コンクリート製であるため,評価対象は鉄筋 コンクリートとして熱影響評価を実施した。 		
	<u>地盤高さの満上げ</u> 堤内側 <u>本層改良体</u> <u>東外側</u> <u>東外側</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小値</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東小</u> <u>東</u> <u>東小</u> <u>東</u> <u>東小</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u> <u>東</u>		
	<u>図2 防潮壁の概要図</u>		
	(2) 評価対象施設から最も近い防火帯外縁までの離隔距離 評価対象施設から最も近い防火帯外縁までの離隔距離を表 2 <u>に示す。</u> 麦2 評価対象施設から最も近い防火帯外縁までの離隔距離 評価対象施設から最も近い防火帯外縁までの離隔距離 渡価対象施設 防潮壁 離隔距離 (m)		
	<u>(3)</u> 判断の考え方		
	 <u>a.許容温度</u> <u>火災時における短期温度上昇を考慮した場合において</u>, <u>コンクリート圧縮強度が維持される保守的な温度</u> 200℃以 		
	下とする。		
	b.評価方法 火災が発生した時間から燃料が燃え尽きるまでの間		
	定の輻射強度で外壁が昇温されるものとして,式1の一次		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>元非定常熱伝導方程式を差分法より解くことで、外壁表面</u>		
	の温度及び外壁表面の温度が 200℃となる輻射強度(=危険		
	輻射強度)を算出する。		
	$\rho C_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) \qquad (\vec{x} 1)$		
	$-k \frac{\partial T}{\partial x} = E$ (x=0)		
	$\frac{\partial T}{\partial x} = 0 \qquad (x=L)$		
	(出典: 伝熱工学, 東京大学出版会)		
	<u>T</u> :初期温度(50℃) [※] E:輻射強度(W/m ²)		
	<u>ρ</u> :密度 (2,400kg/m ³) <u>k</u> :熱伝導率 (1.63W/m/K)		
	<u>C_p:比熱(880J/kg/K)</u> <u>L:厚さ(m)</u>		
	※ 水戸地方気象台で観測された過去最高気温 38.4℃に保守		
	性を持たせた値		
	<u>式1で求めた危険輻射強度Eとなる形態係数Φを,式2より</u>		
	<u>昇出する。</u> $\Sigma = D \left(- \Phi \right)$ (本の)		
	$\mathbf{E} = \mathbf{K} \mathbf{I} \cdot \mathbf{\Psi}$ (ス <i>2</i>) $\mathbf{E} \cdot \mathbf{i} \mathbf{E} \mathbf{h}$ 協商 (W/m ²) $\mathbf{P} \mathbf{f} \cdot \mathbf{k}$ 炎輻射論 $\mathbf{E} (W/m2)$		
	<u>・ // 徳休敏</u> (出曲・評価ガイド)		
	式2で求めた形態係数 Φとなる 危険距離 Lを、式3より 算出		
	する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{x}, 3)$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	Φ :形態係数,L:離隔距離(m).H:炎の高さ(m).		
	R:燃焼半径(m)		
	(出典:評価ガイド)		
	防潮壁の危険距離を算出した結果、森林からの離隔距離が危険距離なり回ることを確認した。 陸期離の認知は思えまでは思えまでは		
	<u> 映此離を上凹ることを帷認した。 別 潮壁の 評価 結果を表 3 に 不</u> オ		
	<u> </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	表3 防潮壁の評価結果		
	誕毎対免施設 危険距離 森林からの離隔距離		
	市「Ш ∧」 泳 心 ц Ҳ (m) (m) 防 湖 段 18 21		
	2.2 止水ジョイント部及び防潮扉に対する熱影響評価		
	(1) 止水ジョイント部及び防潮扉の概要図		
	止水ジョイント部は鋼製防護部材で表面を覆っているため、		
	<u>鋼製防護部材を熱影響対象として評価を実施した。</u> 味調算は想想の味調算は想見知道になった。		
	防潮扉は鋼製の防潮扉を熱影響対象として評価を実施した。		
	<u> 上水ジョイント部</u> <u> 単水ジョイント部</u> <u> 単水ゴム</u> <u> 堤内側</u> <u> 堤外側</u> <u> 堤外側</u>		
	提外側 断熱材 止水ゴム等の鋼製防護部材		
	図3 止水ジョイント部の概要図		
	堤外側 🔶 堤内側		
	<u>凶4</u> 防潮扉の概要図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発行	電所(2018.9.12版	į)	島根原子力発電所 2号炉	備考
	<u>(2)</u> 各評価対象施設から最	しましたの 森林火災位	<u>て置までの離隔距離</u>		
	各評価対象施設から最も	も近い森林火災位置	<u> 置までの離隔距離を</u>		
	<u>表4に示す。</u>				
	表4 各対象から最も近	丘い森林火災位置ま	での離隔距離		
	評価対象施設	止水ジョイント部	防潮扉		
	離隔距離 (m)	21	35		
	(3) 判断の老之方				
	<u>(0)</u> a 許容温度				
		方潮扉の許容温度に	t 火災時におけろ		
	短期温度上昇を考慮し	た場合において、	鋼材の強度が維持		
	される保守的な温度	325℃以下とする。			
	b. 評価方法				
		鋼製防護部材及び防	5 潮扉が昇温される		
	ものとして、表面での	の輻射による入熱量	と対流熱伝達によ		
	る外部への放熱量が鈍	約り合うことを表し	した式1により鋼製		
	防護部材及び防潮扉の	0温度が 325℃とな	る輻射強度(=危険		
	輻射強度)を求める。	_			
	$T = T_0 + \frac{E}{2h}$		(式1)		
	(出典	:建築火災のメカニズ	ムと火災安全設計,		
		財団治	去人日本建築センター)		
	<u>T:許容温度(325</u>	<u>℃), T₀: 初期温</u> 月	度(50℃) ^{※1}		
	E:輻射強度(₩/		$(17W/m^2/K) \times 2$		
	※1 水戸地方気象	象台で観測された過	去最高気温 38.4℃		
	に保守性を持	寺たせた値			
	<u>※2</u> 「空気調和/	ハンドブック」に言	2載されている表面		
	熱伝達率の	うち、保守的に最少	>となる垂直外壁面		
	における夏坊	易の表面熱伝達率	(空気)を採用		
	式1で求めた危険輻射	村強度 E となる形態	係数 Φ を, 式 2 よ		
	<u>り算出する。</u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$E = R f \cdot \Phi \qquad (\exists 2)$		
	<u>E:輻射強度(W/m²), Rf:火炎輻射強度(W/m²),</u>		
	$\Phi:$ 形態係数		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より算		
	出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\} (\vec{x} \le 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	Φ:形態係数, L:離隔距離 (m), H:炎の高さ (m),		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、最も近い森林火災位置か		
	ら影響評価対象までの離隔距離を下回るか評価を実施した。		
	<u>c. 評価結果</u>		
	止水ジョイント部は、止水ゴム等を防護する鋼製防護部材		
	の危険距離を算出した結果、森林火災位置からの離隔距離が		
	危険距離を上回ることを確認した。また、止水ゴム等を防護		
	する鋼製防護部材の裏面には不燃性の断熱材を設置するた		
	め、止水ジョイント部への影響はない。(別紙 2.10) 時期更い、(別制 0.11)		
	防潮扉は、鋼製の扉に対して危険距離を算出した結果、森		
	林火災位置からの離隔距離が危険距離を上回ることを確認し		
	た。また、防潮扉には水裕コムかめるか、直接火災の影響を		
	<u> </u>		
	し温度上升を抑制する。また万か一、防潮症からの然により		
	小五コムの (成肥か茂大しに 場合には, 速でかに取り 省 え 寺の) 対応を 図る		
		1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	表5 止水ジョイント部及び防潮扉の評価結果 評価対象施設 危険距離 (m) 森林からの離隔距離 (m) 止水ジョイント部 20 21 (鋼製防護部材で評価) 20 35		
	(4) その他の設備 その他の設備として津波監視設備がある。津波防護施設上部 に設置している④北西側及び⑦南西側の津波・構内監視カメラ は森林から近い位置にあるため、火災の影響を受け機能を喪失 する可能性があるが、他の津波・構内監視カメラを用いて監視 することで対応は可能である。また、状況を確認し速やかに予 備品と交換する対応をとる。各津波・構内監視カメラの位置を 図5に、主な監視範囲を表6に示す。		
	図5 律波・構内監視カメラの配直図 表6 津波・構内監視カメラの主な監視範囲		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	<u>以上</u>		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙 2.7		
		特定の安全重要度分類のクラス3施設に対する熱影響評価		・設備の相違
				【東海第二】
		放射性物質を内包する施設及び人員が長時間居住する可能性が		島根2号炉は、防火帯
		ある安全重要度分類のクラス3施設に対して、森林火災により上		に近接している固体廃
		昇する外壁表面温度が許容温度200℃以下であることを確認した。		乗物貯蔵所D棟を評価
		<u>各外壁表面温度を下表,該当する施設の位置と離隔距離を下図に</u>		
		<u> 亦 步。</u>		
		支 該当する施設 評価温度 (C)		
		図 該当する施設の位置と離隔距離		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.8		
	可搬型重大事故等対処設備及びアクセスルートへの熱影響		・条件の相違
	について		【東海第二】
			島根2号炉は,アクセ
	1. 概要		スルートへの熱影響に
	<u>森林火災の延焼による影響を防止するため,可搬型重大事故</u>		ついては, 保管アクセス
	<u>等対処設備及びアクセスルートは防火帯の内側に配備してい</u>		側で詳細に評価
	<u> 3.</u>		
	このうち、防火帯近傍に配備する可搬型重大事故等対処設備		
	保管場所及びアクセスルートについては,森林外縁からの必要		
	<u>な離隔距離を確保しており、森林火災による熱影響を受けるこ</u>		
	とはない。		
	2. 森林火災の熱影響評価		
	<u> FARSITE解析結果に基づき,防火帯外縁において最も</u>		
	高い火炎輻射強度が、一様に防火帯外縁に存在すると保守的に		
	<u>仮定し、一定の離隔距離において物体が受ける輻射強度を算出</u>		
	した。離隔距離と輻射強度の関係を図1に示す。		
	図1より,防火帯外縁から 53m 以上の離隔距離を確保するこ		
	<u>とにより、輻射強度は、「人が長時間さらされても苦痛を感じな</u>		
	<u>い輻射強度」とされる 1.6kW/m²以下となり,森林火災による</u>		
	熱影響を受けるおそれがないことを確認した。放射熱(=輻射		
	<u>強度)の影響に関する知見を表1に示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$ \begin{array}{c} 5.0\\ 4.5\\ 4.0\\ 3.5\\ 3.0\\ 2.5\\ 2.0\\ 1.5\\ 1.0\\ 0.5\\ 0.0\\ 30\\ 35\\ 40\\ 45\\ 50\\ 55\\ 60\\ \end{array} $		
	离相隔 距 離 (m)		
	図1 離隔距離と輻射強度の相関図		
	表1 輻射強度の影響(石油コンビナートの防災アセスメント		
	指針より抜粋)		
	表 5.17 放射熱の影響		
	放射熱強度 状況および説明 出典 (kW/m ²) (kcal/m ² h)		
	0.9 800 太陽 (真夏) 放射熱強度 *1) 1.3 1.080 レポール開発調査されてきな合わ始度 *9)		
	1.3 1.000 八小長時間楽膳されても支重な速度 12/ 1.6 1,400 長時間さらされても苦痛を感じない強度 *5)		
	2.3 2,000 露出人体に対する危険範囲(接近可能) 1 分間以内で痛みを感じる強度 *3) 現指針(平成 13 年)に示されている液面火災の基準値		
	2.4 2,050 地震時の市街地大火に対する避難計画で用いられる許容限界 *4)		
	4.0 3,400 20 秒 C 相外を感じる 加度。 反唐に 小池を主じる 場合 かめるが、 *5) 致死率 0%		
	4.6 4,000 10~20 秒で苦痛を感じる強度 *2) 古い木板が長時間受熱すると引火する強度 *2) フレアスタック直下での熱量規制(高圧ガス保安法他)		
	8.1 7,000 10~20 秒で火傷となる強度 *2) 9.5 8,200 8.秒で施みの開現に塗」。20.秒で第.2.時の少塩(おくぼちがつ		
	11.6 10,000 現指針(平成13年)に示されているファイヤーホールの基準 値(ファイヤーボールの継続時間は概ね数秒以下と考えられる *3) ことによる)		
	11.6~ 10,000~ 約15分間に木材繊維などが発火する強度 *2) 12.5 10.800 本片が引ゅする、あるいけブラスチックチューブが溶ける最小		
	12.5 10,000 (x,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y		
	25.0 21,500 長時間暴露により木片が自然発火する最小エネルギー *5) 37.5 32,300 プロセス機器に被害を与えるのに十分な強度 *5)		
	*1) 理科年表 *2) 高圧ガス保安協会:コンピナート保安・防災技術指針 (1974) *3) 消防庁特殊災害室:石油コンピナートの防災アセスメント指針 (2001) *4) 長谷見継二,重川希志依:火災時における人間の耐放射限界について,日本火災学会論文 集,Vol.31,No.1(1981) *5) Manual of Industrial Hazard Assessment Techniques, ed.P.J.Kayes. Washington, DC: Office of Environmental and Scientific Affairs, World Bank. (1985)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	3. 森林火災による熱影響評価結果		
	<u>保管場所に近接した場所で森林火災が発生し、火炎が防火帯</u>		
	<u>外縁まで到達した場合, 輻射強度が 1.6kW/m²※以下となる森林</u>		
	からの離隔距離は 53m となるが,西側及び南側保管場所の可搬		
	型重大事故等対処設備保管スペースは,森林から 53m 以上の離		
	<u>隔を確保しているため,熱影響を受けない。また,熱影響を受</u>		
	けないアクセスルートを確保していることから,可搬型設備の		
	走行及び運搬に影響はない。輻射強度が 1.6k₩/m²以上となる		
	範囲を図2に示す。		
	※ 人が長時間さらされても苦痛を感じない強度(出典:石油コ		
	ンビナートの防災アセスメント指針)		
	図 2 輻射強度が 1.6kW/m ² 以上となる範囲		

柏崎刈羽原子力発電所 6/7号炉 (2	2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙 2.9		
	外部火災	を想定したモニタリングポストAへのホース展張検証		・条件の相違
				【東海第二】
	<u>1. ホース月</u>	展張距離が長いケース		島根2号炉は,一番厳
	(1) 検証日	時 <u>,場所</u>		しいケースでもホース
		成 26 年 11 月 18 日(火) 14:00~15:00		展開が可能なことを既
	<u>場所:モ</u>	ニタリンクボスト <u>Aエリア</u>		に記載
	<u>(2) 検証内</u>			
		消防ホンフ自動単次の化学消防自動単を連結させ、約		
	<u>900mの</u> 分	「一人展張横証を行い, 日衛消防隊が集合した時点から		
	20	を広り起このることを確認した。		
	(3) (東証祖)	<u>木の刀利</u> 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		
	長い敷地	北西側は 300m 程度のホース展帯が必要とたろ この		
	<u>秋秋</u> 派遣	個に、最も早く到達する発火点3の結果(火炎到達時		
	<u>那代日前日</u> 間 0.7 時	間(約40分))を考慮しても、検証結果はホース展張		
	900m を	20 分で実施しているため、長いホース展張が必要とな		
	る箇所で	あっても火炎到達前に散水活動を行うことは可能であ		
	る。			
	在学; 无子 王=夕り;	<complex-block></complex-block>		
	図	1 検証概要図(モニタリングポストA消火)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2. 火炎到達時間が短いケース		
	<u>(1)</u> 検証日時,場所		
	日時:平成 26年10月23日(木) 14:30~15:30		
	場所:モニタリングポストDエリア		
	(2) 検証内容		
	水槽付消防ポンプ自動車及び化学消防自動車を用いて、約		
	150mのホース展張検証を行い,自衛消防隊が集合した時点か		
	ら 10 分で移動からホース展張までが可能であることを確認		
	<u>した。</u>		
	<u>(3)</u> 検証結果の分析		
	防火帯外縁に最も早く到達する発火点1の結果(火炎到達		
	時間 0.2 時間(約 12 分))を考慮しても,検証結果はホース		
	展張 150m を 10 分で実施しているため,防火帯外縁に最も早		
	く到達する火災であっても火炎到達前に散水活動を行うこと		
	は可能である。		
	<u> 凶 2 </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.10		
	止水ゴム等を防護する鋼製防護部材について		・設備の相違
	1 細制防難部材の東面に設置する断熱材		【界御弗二】
	<u> </u>		毎位2 万斤は, 計画列 象とたろ津波防護施設
	水ゴム等に影響を与える可能性があるため、鋼製防護部材の裏		等は存在しない
	断熱材は一般的なグラスウールを想定した場合、断熱材厚さ		
	が約 1cm 程度で, 裏面の止水ゴム等に影響を与えないことを確		
	認した。評価概念図と評価結果を以下に示す。		
	森林火災からの輻射		
	断熱材裏面からの輻射 ダイ鋼製防護部材		
	町熟材		
	Rt jan Re		
	図1 鋼製防護部材と断熱材の概念図		
	$d = \frac{\lambda \times (T_{out} - T_{in})}{\lambda - 0.015m}$		
	$\mathbf{u} = \frac{1}{\mathbf{h} \times (\mathbf{T}_{\text{in}} - \mathbf{T})} = 0.015 \text{ m}$		
	<u>(出典:JIS 9501 2016)</u>		
	<u>d</u> :断熱材の厚さ(m)		
	λ :断熱材の熱伝導率(0.034 W/(m・K)) ^{※1}		
	<u>T_{out}:断熱材表面(鋼製部材側)温度(325℃)^{※2}</u>		
	<u>T</u> in : 断熱材裏面(止水ゴム側)温度(100℃) ^{※3}		
	<u>T:周囲空気温度(37℃)^{*4}</u>		
	<u>h: 熱伝達率 (8.29W/ (m²·K)) * 5</u>		
	※1 伝熱上字資料(グラスウールの値) ※9 仮知道庶上目時において欠けの決定が進せたとう。		
	<u>※2 思 期 温 度 上 昇 時 に お い て 鋼 材 の 强 度 か 維 持 さ れ る</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	温度		
	<u>※3 裏面への放熱が太陽輻射熱強度(0.9kW/m²)未満</u>		
	<u>となる温度(100℃)</u>		
	※4 水戸地方気象台で観測された過去 10 年間の最高		
	気温		
	<u>※5</u> 空気調和・衛生工学便覧(静止空気に対する垂直		
	表面の値)		
	2. 鋼製防護部材の構造		
	鋼製防護部材は,止水ジョイント部の側面を防護するよう設		
	置する。FARSITE解析の結果,津波防護施設周囲で発生		
	する森林火災の最長の火炎長 1.6m であり, 津波防護施設の地上		
	高さは約 3m 以上で火炎長よりも高くなるため, 津波防護施設上		
	部が熱影響を受ける可能性は低い。万一,火炎長が高い森林火		
	災が発生した際には、必要に応じ、地上高さが低い敷地北西側		
	の津波防護施設を優先して散水活動により温度上昇を抑制す		
	<u> 3.</u>		
	<u>止水ジョイント部</u> 単水ジョイント部		
	図2 止水ジョイント部と鋼製防護部材		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 2.11		
	放水路ゲート駆動装置外殻への断熱材設置について		・設備の相違
			【東海第二】
	放水路ゲート駆動装置外殻が火災影響になり高温になると,		島根2号炉は,評価対
	内部にある駆動装置に影響を与える可能性があるため, 裏面に		象となる津波防護施設
	断熱材を設置する。		等は存在しない
	断熱材は一般的に使用されている硬質ウレタンフォームを想		
	定し、断熱材厚さが約27cm 程度で、放水路ケート駆動装置外殻		
	表面の温度上昇は IC 未満となり内部への熱影響を与えないこ		
	<u>とを確認した。評価概念図と評価結果を以下に示す。</u>		
	$Q = \frac{(T_1 - T_2)}{(T_1 - T_2)}$		
	$\left(\frac{1}{h}+\frac{\delta}{\lambda}\right)$		
	t' = $\frac{Q}{h}$ + T ₂		
	Q : 放散熱量 (W/m ²)		
	 T ₂ :内気温度(20℃)		
	h : 熱伝達率 (8.29W/m²/K) ^{※3}		
	※1 硬質ウレタンフォーム断熱材の熱伝導率		
	※2 森林火災の熱影響を受けた場合の到達温度		
	※3 空気調和・衛生工学便覧(静止空気に対する <u>垂</u>		
	直表面の値)		
	熱伝達率		
	外気温度 内気温度		
	外		
	被 11		
	断熱材厚さ		
	<u>凶</u> 評価概念図		

添付資料-3 添付資料-3 添付資料-3 添付資料-3 添付資料-3 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	添付	├-3 添作	方資料-3 添付資料	 - 3
石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について				
石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について				
石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について				
石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について 石油コンビナート等の火災・爆発について				
	石油コンビナート竿の火災・爆発について	石油コンビナート笑の火災・爆発について	石油コンビナート笠の火災・爆発について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. <u>ILUDE</u>	
本評価は,発電所敷地外で発生する石油コンビナート等の火	発電所敷地外で発生する石油コンビナート等の火災やガス爆	本評価は, 発電所敷地外で発生する石油コンビナート等の火災	
災やガス爆発に対してより一層の安全性向上の観点から、その	発により, 安全機能を有する構築物, 系統及び機器を内包する	やガス爆発に対してより一層の安全性向上の観点から、その火災	
火災やガス爆発が <u>柏崎刈羽</u> 原子力発電所に隣接する地域で起	発電用原子炉施設に影響を及ぼさないことについて、「原子力発	やガス爆発が島根原子力発電所に隣接する地域で起こったとして	
こったとしても発電用原子炉施設に影響を及ぼさないことを	電所の外部火災影響評価ガイド 附属書B 石油コンビナート等	も発電用原子炉施設に影響を及ぼさないことを評価するものであ	
評価するものである。	火災・爆発の原子力発電所への影響評価について」(以下「評価	- Jane	
	ガイド」という。)に基づき, 評価を実施する。		
	2. 危険物貯蔵施設等の抽出の考え方		
	発電所周辺 10km 以内の石油コンビナートの有無を確認した。		
	また、石油コンビナート以外の危険物貯蔵施設及び高圧ガス貯		
	蔵施設については,周辺自治体に資料開示請求を行い,必要に		
	応じてこれらの施設を有する事業者への聞き取り調査を行い確		
	認し、ガスパイプラインについては周辺事業者への聞き取り調		
	査を行い確認した。		
2. 石油コンビナート等の火災・爆発影響評価	3. 石油コンビナート等に対する評価	2. 石油コンビナート等の火災・爆発影響評価	
発電用原于炉施設の周りには周辺監視区域かめり、敷地境界		発電用原于炉施設の向りには向辺監視区域かめり, 敷地項券と の間にはいたくしき約500 の部項事業が確保されていて、「により	
		の間には少なくとも約500mの離隣距離が唯保されている。仮に火	
仮に火災・爆発が発生した場合に影響が入さいと考えられるも のしして、爆発物や化学物質な土島に扱うて油コンビナーしな		次・爆発が発生した場合に影響が入さいと考えられるものとしし、 爆変物の化労物所たた見に扱うて油コンバナー」なについて評価	
のとして、爆発物や化子物質を入重に扱う石油コンビリート等		爆発物や化子物質を入重に扱う石油コンヒリート等について評価	
について計画を美施する。		を夫旭りる。	
(1) 評価対象範囲	3.1 評価対象範囲	(1) 評価対象範囲	
評価対象は. 発電所敷地外の半径 10km 圏内に存在する石	評価対象は. 発電所敷地外の半径 10km 圏内に存在する石油コ	評価対象は,発電所敷地外の半径 10km 圏内に存在する石油	
油コンビナート等とする。なお、石油コンビナート等とは、	ンビナート等とする。	コンビナート等とする。なお、石油コンビナート等とは、石	
石油コンビナート等災害防止法で規制される特別防災区域	茨城県内において石油コンビナート等災害防止法により石油	油コンビナート等災害防止法で規制される特別防災区域内の	
内の特定事業所及びコンビナート等保安規則で規制される	コンビナート等特別防災区域に指定されているのは以下の区域	特定事業所及びコンビナート等保安規則で規制される特定製	
特定製造事業所とする。	である。	造事業所とする。	
	石油コンビナート等特別防災区域を指定する政令【別表抜粋】		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 十三 鹿島臨海地区 イ 茨城県鹿嶋市大字国末字北浜山,字南浜山及び字海岸砂地,大字泉川字 北浜山,字南浜山,字浜屋敷及び字沢東,大字新浜並びに大字粟生字海 岸の区域 同市大字光字光並びに大字粟生字東山及び字浜の区域のう ち主務大臣の定める区域 これらの区域に介在する道路の区域 ロ 茨城県神栖市光,居切字海岸砂地並びに深芝字海辺,字藤豊及び字原芝 の区域 同市北浜,奥野谷字浜野及び字東和田,東和田並びに東深芝の 区域のうち主務大臣の定める区域 		
(2) 評価結果	3.2 評価結果	(2) 評価結果	
石油コンビナート等災害防止法で規制される新潟県内の	第 3.2-1 図に示すとおり,茨城県内において石油コンビナー	石油コンビナート等災害防止法で規制される島根県内の特	
特別防災区域は「直江津地区」「新潟西港地区」「新潟東港地	ト等災害防止法により石油コンビナート等特別防災区域に指定	別防災区域は存在しない。また、島根原子力発電所から最寄	・条件の相違
区」の三カ所存在するが、これらは、それぞれ柏崎刈羽原子	されている鹿島臨海地区は東海第二発電所から約 50km 離れて	の特別防災区域である「福山・笠岡地区」、「水島臨海地区」	【柏崎 6/7,東海第二】
	おり,評価対象範囲の10km以上離れていることから,評価対象	まではそれぞれ約 120km であり, いずれも島根原子力発電所	地域特性を踏まえた条
	となる石油コンビナートは存在しないことを確認した。	から 10km 以遠である (第 2-1 図)。	件の相違
図)。また,コンビナート等保安規則で規制される特定製造			
事業所が評価対象範囲に存在しないことを新潟県防災局に			
<u>確認した。</u> 以上より,評価対象範囲内に石油コンビナート等		以上より、評価対象範囲内に石油コンビナート等は存在せ	
は存在せず、発電用原子炉施設に影響を及ぼすことはない。		ず,発電用原子炉施設に影響を及ぼすことはない。	
<image/>	<image/>	<image/>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4. 石油コンビナート以外の危険物貯蔵施設に対する評価		
	発電所から10km以内に位置する危険物貯蔵施設のうち,評価		
	対象施設に影響を及ぼすおそれのある施設を抽出し、その火災		
	影響又は爆発影響を評価した。		
3. 石油コンビナート等以外の火災・爆発影響評価	4.1 危険物貯蔵施設	3. 石油コンビナート等以外の火災・爆発影響評価	
<u>柏崎刈羽</u> 原子力発電所から 10km 圏内に位置する危険物	<u>4.1.1</u> 評価対象施設の抽出	<u>島根原子力</u> 発電所から10km圏内に位置する危険物施設(<u>危険</u>	
施設(危険物貯蔵施設,高圧ガス貯蔵施設,ガスパイプライ	発電所から10km以内(敷地内を除く)に,第一類から第六類	物貯蔵施設,高圧ガス貯蔵施設,ガスパイプライン)を抽出し,	
ン)を抽出し, 柏崎刈羽原子力発電所から最も近い施設及び	の危険物貯蔵施設(屋内貯蔵及び少量のものは除く)が約500	島根原子力発電所から最も近い施設及び島根原子力発電所から	
<u>柏崎刈羽</u> 原子力発電所から 10km 圏内の施設における最大	カ所存在することを自治体への聞き取り調査から確認した。	10km圏内の施設における最大数量をそれぞれ抽出する。なお,	
数量をそれぞれ抽出する。なお,危険物貯蔵施設については	第一類から第六類の危険物のうち、周辺での取扱量が多く、	危険物貯蔵施設及び高圧ガス貯蔵施設については松江市消防本	
柏崎市消防本部並びに長岡市消防本部,高圧ガス貯蔵施設に	引火性液体であるため広範囲に漏えいし大規模火災発生の可能	部に確認した。(平成30年6月に開示請求を実施)	
ついては新潟県防災局、ガスパイプラインについては天然ガ	性がある第四類危険物貯蔵施設を火災源と想定する。ここで、	確認した結果,島根原子力発電所から10km圏内には,高圧ガ	・条件の相違
ス鉱業会に確認した。	発電所10km以内には多数の第四類危険物貯蔵施設が存在する	ス貯蔵施設及びガスパイプラインは確認されていない。	【柏崎 6/7,東海第二】
	ため、影響評価を行う第四類危険物貯蔵施設の絞り込みを以下	また,LNG基地及び石油備蓄基地は存在しないことを確認して	島根2号炉は,LNG 基地
	の方法で行った。	いる。	及び石油備蓄基地が存在
	i) 発電所敷地外半径 10km 以内に石油コンビナートはない		せず, 評価対象外
<u>柏崎刈羽</u> 原子力発電所から 10km 圏内の危険物施設を第	ことから,半径10km以内に存在する危険物貯蔵施設の貯	島根原子力発電所から10km圏内の危険物施設を第3-1図及び	
3-1 図及び第 3-1~3 表に示す。	蔵容量は最大でも石油コンビナート相当の10万kL*1とし	第 3-1 表に示す。	
	た。ここで、第四類危険物のうち、最も輻射発散度が高い		
	<u>n-ヘキサン^{※2}が 10 万 kL 貯蔵された危険物貯蔵施設を想</u>		
	定し, その危険距離を算出した結果 1,329m ^{※2} となった。		
	※1 「石油コンビナート等災害防止法施行令」(昭和		
	51 年 5 月 31 日政令 129 号)の第 2 条で規定する		
	基準総貯蔵量		
	※2 算出方法は別紙 3.1 参照		
	ii) i)項の結果と別紙3.1の評価結果を踏まえ,発電所から		
	1.4km以遠には発電所に影響を及ぼす危険物貯蔵施設は存		
	在しないと判断し,発電所から1.4km以内に存在する第四		
	類危険物貯蔵施設に対して影響評価を行う。発電所周辺に		
	存在する第四類危険物貯蔵施設を第4.1.1-1表に,発電所		
	<u>との位置関係を第4.1.1-1 図に示す。</u>		
第 3-1 図 <u>柏崎刈羽</u> 原子力発電所から10km 圏内に位置する危		第 3-1 図 <u>島根</u> 原子力発電所から 10km 圏内に位置する	
険物施設		危険物施設	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
第 3-1 表 拍崎刈羽原子力発電所から 10km 圏内に位置する危	第4.1.1-1表 発電所周辺(東海村全域及び日立市の一部)に	第3-1表 <u>島根</u> 原子力発電所から10km圏内
険物施設【危険物 <u>貯蔵</u> 施設】(1/3)	存在する第四類危険物貯蔵施設	【危険物施設】(
	- 施設区分 No. 事業所名 消産 数量(L) 第金元方名 消産 数量(L) 	
	品外タンク貯御所	
	又は域外計畫所	
	給油與被所	
	第4.1.1-1表の1.4km以内に存在する危険物貯蔵施設のうち,	
	<u>屋外貯蔵である</u>	
	について、影響評価を実施した。な	
	お, の危険物貯蔵施設は地	
	下貯蔵であるため、評価対象外とした。	
	第4.1.1-1図 発電所周辺(東海村全域及び日立市の一部)に	
	位置する危険物貯蔵施設	

炉	備考
に位置する危険物施設	
1/8)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3-1 表 <u>柏崎刈羽</u> 原子力発電所から 10km 圏内に位置する危		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設	
険物施設【危険物 <u>貯蔵</u> 施設(2/3)		【危険物施設】(2/8)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3-1 表 <u>柏崎刈羽</u> 原子力発電所から 10km 圏内に位置する危		第3-1表 <u>島根</u> 原子力発電所から10km 圏内に位置する危険物施設	
険物施設【危険物貯蔵施設】(3/3)		【危険物施設】(3/8)	
※1:柏崎刈羽原子力発電所から最短の危険物貯蔵施設までの距			
離である			
※2:柏崎刈羽原子力発電所から 10km 圏内に位置する最大貯蔵			
量の危険物貯蔵施設である			
第 3-2 衣 柏崎利羽原十刀発電所から IOKm 圏内に位直する厄 险物施設【真圧ガス貯蔵施設】(1/2)			
		·	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3-2 表 柏崎刈羽原子力発電所から 10km 圏内に位置する危		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設	
陝物施設【尚庄刀 入貯廠施設】(2/2)		【氾陝物施設】(4/8)	
※1:柏崎刈羽原子力発電所から10km 圏内に位置する最大貯蔵量			
※2:柏崎刈羽原子力発電所から最短の高圧ガス貯蔵施設までの			
距離である			
第 3-3 表 柏崎刈羽百子力発電所から10㎞ 圏内に位置する合除			
物施設【ガスパイプライン】			
ルブ施設)までの距離である。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考			
		第3-1表 島根原子力発電所から10km 圏内に位置する危険物施設				
		【危険物施設】(5/8)				
柏崎刈羽原子力発電所 6/	~7 号炉 (2017.12	2.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
---------------	----------------	--------	---------------------	----------	---------------------------	----
				第3-1表 島根	根原子力発電所から10km圏内に位置する危険物施設	
					【危険物施設】(6/8)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第3-1表 島根原子力発電所から10km圏内に位置する危険物施設	
		【危険物施設】(7/8)	
		·	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉 第3-1表 島根原子力発電所から10km圏内に位置する危険物施設 【危険物施設】(8/8)	備考
		 ※1:島根原子力発電所から最短の危険物貯蔵施設まで距離である。 ※2:島根原子力発電所から10km 圏内に位置する最大貯蔵量の危険 貯蔵施設である。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.1 危険物貯蔵施設	4.1.2 火災の影響評価	3.1 危険物施設	
拍崎刈羽原子力発電所から 10km 圏内(敷地内を除く)にお	<u>4.1.2.1</u> 評価条件	<u>島根</u> 原子力発電所から10㎞圏内(敷地内を除く)における危	
ける危険物貯蔵施設の最大貯蔵量は, であり, 柏崎刈羽	<u>危険物貯蔵施設の火災の想定は以下のとおりとした。</u>	険物貯蔵施設の最大貯蔵量は, であり, 島根原子力発電	
原子力発電所 <u>から最短の危険物貯蔵施設までの距離は約</u>	<u>(1) 想定の条件</u>	所敷地内 <u>にある重油タンク(No. 1, 2, 3)の貯蔵量2, 700kLよりも</u>	・条件の相違
<u>2.3kmである(第 3.1-1 図)。</u>	a. 評価対象とする危険物貯蔵施設は 4.1.1 で抽出した	<u>少ない。</u>	【柏崎 6/7,東海第二】
仮に最短距離の危険物貯蔵施設に最大貯蔵量 が有っ		また,発電所に最も近い石油類貯蔵施設との離隔距離は約	島根 2 号炉は,発電所
たと仮定し,熱影響評価を実施したところ,危険距離は約 56m	を想定した。	1.5kmであり,仮に最短距離の危険物貯蔵施設に最大貯蔵量	敷地外で最も燃料保有量
であり, 柏崎刈羽原子力発電所との距離約2.3kmよりも小さい	b. 評価対象とする危険物貯蔵施設の燃料は満載した状態を	が有ったと仮定した場合でも、燃料保有量が敷地内	が多い施設が,発電所敷
ことを確認した。	想定した。	<u>危険物の最大貯蔵量に比べ少ないことから、危険距離は重油タ</u>	地内の危険物施設(重油
	<u>c.</u> 離隔距離は,評価上厳しくなるよう, a. で想定した危	ンク (No. 1, 2, 3) による火災の評価結果に包絡される。(第3. 1-1	タンク)に比べ燃料保有
よって,発電所敷地外の危険物貯蔵施設において火災が発生	険物貯蔵施設位置から評価対象施設までの直線距離とし	図)	量が少ないため,発電所
した場合においても <u>柏崎刈羽</u> 原子力発電所への影響はない。	t.	よって,発電所敷地外の危険物貯蔵施設において火災が発生	敷地内の危険物施設(重
	d. 危険物貯蔵施設の破損等により危険物が流出しても,防	した場合においても島根原子力発電所への影響はないことを確	油タンク)にて代表的に
	油堤内に留まるものとする。	認した。	評価を実施
	e. 気象条件は無風状態とした。		
<u>第 3.1-1 表 10km 圏内における最大の危険物貯蔵施設の貯</u>	f. 火災は円筒火炎モデルとし、火炎の高さは燃焼半径の3	<u>第3.1-1表 10km圏内における最大の危険物貯蔵施設の貯蔵量</u>	
蔵量	倍とした。	括粒	
種類 貯蔵量[kl]	g. 火災の形態はタンク内及び防油堤内の全面火災とした。		
原油	<u>(2)</u> 輻射強度の算定		
メチルアルコール	<u>油の液面火災において任意の位置にある輻射強度(熱)を</u>		
合計	計算により求めるため,半径が 1.5m 以上の場合で火炎の高さ		
	(輻射体)を半径の3倍にした円筒火炎モデルを採用した。	合計	
	4.1.2.2 共通データの算出		
	各外壁,主排気筒,非常用ディーゼル発電機(高圧炉心スプ		
	レイ系ディーゼル発電機を含む。),残留熱除去系海水系ポン		
	離評価に必要となる共通データを算出する。		
	(1) 危険物貯蔵施設及び燃料に係るデータ		
	示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 第 3.1-1 図 最大貯蔵量の危険物貯蔵施設と最短距離の危険物貯蔵施設 (1) 評価条件 以下に示すとおり,輻射発散度は原油の方が大きいことから,原油の輻射発散度を用いる。また,燃焼継続時間は原油 とメタノールが同じ防油堤の中に設置されていることから, 原油とメタノールの燃焼継続時間を加算した値を用いて評 価を実施する。 		 第3.1-1図 最短距離の危険物貯蔵施設 (1) 評価条件 <u>島根原子力発電所から10km 圏内(敷地内を除く)における危険物貯蔵施設において貯蔵量が最大な油種は重油であることから,発電所敷地内に設置している,より貯蔵量の大きい重油タンク(No.1,2,3)により評価を実施する。</u> 	 ・条件の相違 【柏崎 6/7,東海第二】 島根 2 号炉は,発電所 敷地外で最も燃料保有量 が多い施設が,発電所敷
第 3.1-2 表 原油とメタノールの評価条件 燃料の種類 原油 メタノール 燃料量[k1]	<u>第4.1.2.2-1 表 危険物貯蔵施設及び燃料に係るデータ</u> 想定火災源 燃料の 燃料量 幅射発散度 質量低下速度 燃料密度 防油堤面積 (m ³) (m ²) ^{※1} (kg/m ² /s) ^{※2} (kg/m ³) ^{※3} (m ²) ^{(m²}	第3.1-2 表 重油の評価条件燃料の種類重油燃料の種類1900防油堤面積[m²]491.7輻射発散度[W/m²]*123×10³質量低下速度[kg/m²·s]*20.035燃料密度[kg/m³]*21,000燃焼速度[m/s]*33.5×10⁻5*1 : 評価ガイド附属書Bより*2 : NUREG-1805 より*3 : 燃焼速度=質量低下速度÷燃料密度	地内の危険物施設(重油 タンク)に比べ燃料保有 量が少ないため,発電所 敷地内の危険物施設(重 油タンク)にて代表的に 評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 燃焼半径の算出	(2) 燃焼半径の算出	(2) 燃焼半径の算出	
燃焼面積は,防油堤面積に等しいものとする。したがって,	円筒火炎モデルとして評価を実施するため,燃焼半径は防	燃焼面積は、防油堤面積に等しいものとする。したがって、	
燃焼半径 R[m]の防油堤面積を円筒の底面と仮定し算出する。	油堤面積を円筒の底面と仮定して以下のとおり算出した。算	燃焼半径 <u>R[m]の</u> 防油堤面積を円筒の底面と仮定し算出 <u>する</u> 。	
$R = (S \neq \pi)^{-0.5}$	出結果を第4.1.2.2-2 表に示す。	$R = (S \neq \pi)^{-0.5}$	
S: 防油堤面積(火炎円筒の底面積) =		S:防油堤面積(<u>火炎の円筒の底面積</u>)=491.7[m ²]	
R =	$R = \int \frac{S}{\pi}$	$R = (491.7 / \pi)^{0.5} = 12.51 [m]$	
	R <u>:燃焼半径(m),</u> S:防油堤面積(<u>=燃焼面積)(m²)</u>		
	第 4.1.2.2-2 表 危険物貯蔵施設の燃焼半径		
	防油堤面積燃焼半径		
	想定火災源 S R (m ²) (m)		
(3) 燃焼継続時間の算出	(3) 燃焼継続時間の算出	(3) 燃焼継続時間の算出	
燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	
値になる。	になる。 <u>算出結果を第 4.1.2.2-3 表に示す。</u>	になる。	
$t = \frac{V}{-P^2 + v}$	V	$t = \frac{V}{V}$ $v = \frac{M}{V}$ $t = \frac{V \times \rho}{V}$	
πα ×ν t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m], v:燃焼速度[m/s]	$t = \frac{1}{2}$	$\pi R^2 \times v \qquad \rho \qquad \pi R^2 \times M$	
M: 質量低下速度[kg/m ² ·s], ρ:密度[kg/m ³], m: 質量[kg]	π K \times v	t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m],	
ここで、 $V_{\text{g}_{\text{B}}}$, $v_{\text{g}_{\text{B}}=2.5\times10^{\circ}[\text{m/s}]}$, $v_{s_{2/2-n}}=$, $v_{s_{2/2-n}}=2.135\times10^{\circ}[\text{m/s}]$ として、燃焼継続時間を求めると,	t : 燃焼継続時間(s), V : 燃料量(m ³)	v:燃焼速度[m/s], M:質量低下速度[kg/(m ² ・s)],	
t==35740[s]	R:燃焼半径(m), v:燃焼速度= M / ρ (m/s)	$ \rho:$ 密度[kg/m ³],	
=9.92[h]	M:質量低下速度(kg/m ² /s), ρ :燃料密度(kg/m ³)	t =52297[s]	
		=14.53[h]	
	<u> </u>		
	想定 M 相重 M 規一任 員重低下速度 M 相近 M 規一 t 火災源 V R M ρ t		
	(m) (m) (Kg/m/S) (Kg/m ⁻) (S)		
	4.1.2.3 外壁に対する危険距離評価		
	(1) 評価対象範囲		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
	評価対象施設の外壁について, 危険物貯蔵	施設の火災を想		
	定して評価を実施した。			
	(2) 想止火灰原から計価対象他設までの離開時	鹿と兎		
	4.1.2.3-1 x 1-2.			
	第4.1.2.3-1表 想定火災源から評価対象施設	までの離隔距離		
	想定火災源 「原子炉建屋」 (m) タービン建屋 (m)	使用済燃料 乾式貯蔵建屋(m)		
	1,100 1,200	800		
(4) 厄陝輻射强度の鼻田			(4)	
	<u>a. 計分価</u> 及	担合において		
	への時におりる歴労価及上升でも悪した コンクリート 下統論度が維持される保守的	が見にない。 1な温度 200°C 以		
	テレオス			
a 外辟面の合降輻射強度	·····································		a 外辟面の合降輻射強度	
火災が発生した時間から燃料が燃え尽きるまでの間。一	火災が発生した時間から燃料が燃え尽き	るまでの間。一		
定の輻射強度で発電用原子炉施設外壁が昇温されるものと	定の輻射強度で外壁が昇温されるものとし	て、式1の一次	定の輻射強度で発電用原子炉施設外壁が昇温されるものと	
して、下記の一次元非定常熱伝導方程式の解の式より、コ	元非定常熱伝導方程式の一般解の式より外	を基本面 (x=0)の	して、下記の一次元非定常熱伝導方程式の解の式より、コ	
ンクリートの表面温度が 200℃となる危険輻射強度を求め	温度が 200℃となる <u>輻射強度(=</u> 危険輻射強	<u>達)を算出す</u> る。	ンクリートの表面温度が 200℃となる危険輻射強度を求め	
る。)]	る。	
$T = T + \frac{1}{1}$	$T = T_{0} + \frac{2E\sqrt{\alpha t}}{\lambda} \left \frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^{2}}{4 \alpha t}\right) - \frac{x}{2\sqrt{\alpha t}} \operatorname{erfc} \left(-\frac{x^{2}}{4 \alpha t} - \frac{x^{2}}{2\sqrt{\alpha t}} \right) \right _{\lambda}$	$\frac{\mathbf{x}}{2\left(\alpha,t\right)}$ (式1)	$\tau - \tau$, 1	
$\left(\frac{\sqrt{k_{\rho}c}}{1.18h\sqrt{t}}+1\right)\frac{h}{\varepsilon E}$			$I = I_0 + \frac{\sqrt{k\rho c}}{\left(\frac{\sqrt{k\rho c}}{1 + c^2} + 1\right) \frac{h}{c^2}}$	
出典:原田和典,建築火災のメカニズムと火災安全設計,日本建築センター	(出典: 伝熱工学, 勇	夏京大学出版会)	$(1.18h\sqrt{t}) \mathcal{E}$	
T ₀ :初期温度[50℃],E:輻射強度[W/m ²],ε:コンクリート表面の放射率(0.95) * h・コンクリート表面熱伝達率[34.9W/m ² K]* k・コンクリート執伝道率	<u>T:許容温度(200℃),T₀:,初期温度(50%</u>	<u></u>	出典:原田和典,建築火災のメカニズムと火災安全設計,	
[1.6W/mK] *, ρ:コンクリート密度[2200kg/m ³] *, c:コンクリート比熱	<u>E:輻射強度 (W/m²)</u>		財団法人 日本建築センター	
[879J/kgK] *, t:燃焼継続時間[s] ※:建築設計竣工図書 原子炉建屋構造計算書	κ : コンクリート温度伝導率 (= $\lambda / \rho C_p$) (7.7×1	$0^{-7} m^2 / s)$	<u>T₀:初期温度[50℃],E:輻射強度[W/m²],ε:コンクリ</u>	
	<u>ρ: コンクリート密度(2,400kg/m³),</u>		ートの表面の放射率[0.94] ^{**1} , h: コンクリート表面熱伝	
	C_p::コンクリート比熱 (880J/kg/K)		達率[23.3W/m ² K] ^{**2} , k: コンクリート熱伝導率[1.6W/mK]	
	λ:=>//リート熱伝導率(1.63W/m/K),t:燃焼継	売時間(28,701s)	** ² , ρ: コンクリート密度[2, 200kg/m ³]** ² , c: コンクリ	
	x:温度評価の対象となる深さ位置(外壁表面	1 : Om)	<u>一下比烈[879]/kgK]^{**2}, t:燃焼継続時間[s]</u>	
	※ 水戸地万気家台で観測された過去最高気 (株ませまいませ)	温 38.4°Cに保守	※1:伝熱上字質料, ※2:原子炉建物 構造計算書	
	11.2.1月后至后围			
				1

$u = 0.02 E \phi_{1} $ $v = 0.02 E \phi_{1} $ $u, g = 0.02 E \phi_{1} $ $v = 0.00 E \phi_{1} $ $v, g = 0.01 E \phi_{1} $ $v = 0.00 E \phi_{1$	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
1. <u>EEE 220058</u> #41%#2	$E = \underline{6762[W/m^2]}$		$E=4,761[W/m^2]$
$\begin{aligned} \mathbf{h} & \frac{ \mathbf{h} _{2}}{ \mathbf{h} _{2}} \sum_{\mathbf{k} \in \mathbf{k} \in \mathbf{k}} \sum_{\mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k}} \sum_{\mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \\ \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \\ \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \\ \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \\ \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \\ \mathbf{k} \in \mathbf{k} \in \mathbf{k} \in \mathbf{k} \\ \mathbf{k} \in \mathbf{k} \in \mathbf{k} \\ $	1 权法内认为不在险运电场库		
$\begin{aligned} & \nabla_{\mathcal{A}} (A^{1} \mathbb{R}^{2} \mathbb{L}^{2} (A^{1} \mathbb{L}^{2} \mathbb{R}^{2} \mathbb{R}^{2} \mathbb{R}^{2} \mathbb{L}^{2} \mathbb{R}^{2} \mathbb{R}^{2} \mathbb{R}^{2} \mathbb{L}^{2} \mathbb{R}^{2} \mathbb$	b. <u> 軽祖ダンク</u> の厄庾輻射強度		
$\begin{split} & b = b = b = b = b = b = b = b = b = b$	火灰が発生した時間から燃料が燃えべさるまでの間,一 字の輻射強度で軽油ないなが見退されてきのトレエー下到		
$\begin{aligned} & \int \frac{1}{2} \int \frac{1}{2$	たり輻射強度に <u>軽価タング</u> が升価されるものとして、下記 の式上り軽地の温度が 225% しなる在除 輻射強度を求め		
$T = \frac{etS_1 + hS_2T_{dir}}{hS_2} - \left(\frac{etS_1 + hS_2T_{dir}}{hS_2} - r_0\right)e^{\left(-\frac{hS_2}{S}\right)t}$ $T_{\pm} gdl_{2}gl_$	の氏より <u>軽価</u> の温度が <u>2250</u> となる地陝 軸外强度を水め ス		
$T = \frac{xES_1 + hS_2T_{arr}}{hS_2} - \left(\frac{xES_1 + hS_2T_{arr}}{hS_2} - T_0\right)e^{\left(-\frac{hS_2}{C}\right)t}$ $T_{a}: OHRERGISCI, E: MARRERGISCI, c: SERVEZ, zanoski za transformation of the served product of the$	′⊋ ₀		
1.: 初期温度[38°C], E: 編射強度[16 ⁻¹],: 繁殖クンク表面熱伝達書 [12%(赤鼠 ⁻²), <u>E: 報知クンク表面熱伝達書</u> [12%(赤鼠 ⁻²), <u>E: 教知クンク表面熱伝達書</u> [12%(赤鼠 ⁻²), <u>E: 教知の正の意味</u> [12%(赤鼠 ⁻²), <u>E: 教知の正</u> [12%(赤鼠 ⁻²), <u>E: 教知の正</u> [12%(-2)%], <u>E: 教知の正</u> [12%(-2)%], <u>E: 教知の正</u> [12%(-2)%(-2)%], <u>E: 教知の正 [12%(-2)%(-2)%)</u>	$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - T_0\right) e^{\left(\frac{h S_2}{C}\right)t}$		
Image: Ima			
表面の放射車(0.9) ⁸¹ , b: 軽油タンク表面熱伝達車 [17]/mk1 ⁸² , S,=S,: 軽油タンク愛熱,放熱面積[m2], C: 軽油タンクズ酸素の蒸金量(S,72×10 ⁴)/K), c: 蒸爆沸絵 時間[5], T _{ab} : A 気温度[C] ※1: 伝熱工学資料, ※2: 弦気調和,確生工学便繁 E=24490 [5/m] c. 燃料移送ポンブ(防毒板 (鋼板)) の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間, 一 たの輻射強度で <u>燃料得送ポンプの周囲に改置されている防</u> 透板(鋼板)が用温されるものとして、下記の式より燃料 移造成を求める。 Fmax= $\frac{2}{cs} \left(\frac{hs(T - T_{ab})}{1 - e^{-\frac{D}{2}t}} \right)$.: 防薬板 (鋼板) 外面の放射率(0.9). ^m , S: 防薬板 (鋼 # T _a : 激素面積[10,2m], h: 防毒板 (鋼板) 要認定(1,12)/K], t: 燃塩繊維時(G), T ₁ : 許容温度(100C), T _m : A 気温度(2) 期温度) [102/mk1 ²⁸ , C)の激素量(3mk), monox的目率(0.9). ^m , S: 防毒板 (鋼 # T _a : 離素運転時の上昇温度[22] # T _a : 離素運転時の上昇温度[22] # T _a : 離素運転時の上昇温度[22] # T _a : 激素運転(3mk) # T _a : 離素運転時の上昇温度[22] # T _a : 素気温度(1007)/(kg·k)] ¹⁸	<u>T₀:初期温度[38℃],E:輻射強度[W/m²],ε:軽油タンク</u>		
[178/m]1 ⁽²⁾ , S. = S.: 新油タング受熱・放熱面積[m ²], C: 軽油タンク及び隆油の熱客気[S. 72×10 ⁽¹⁾ /K], t: 激焼維続 堕菌 [s], τ_{sh} : 外気温度[C]※1:伝熱工学資料, ※2: 空気調和・衛生工学便覧E=24460[5/m ²]c. 激杯移送ボンブ (防護板 (鋼板)) の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間, 一 定の輻射強度で燃料移送ボンブの周囲に設置されている防 護板 (鋼板) が昇温されるものとして、下記の式より 整法ボンブ (防護板 (鋼板)) の温度が 100℃となる危険幅 射強度を求める。 $F_{maxx} = \frac{2}{cs} \left(\frac{h5(T - T_{abr})}{1 - e^{-\frac{h^2}{2}s}} \right)$ $s. 10 速板 (鋼板) の熱容気(2,41×100/K), t: 燃洗線続時間[5], 2(1), t: 許溶温度[10,00(2)], s: Di變板 (鋼 例例) の熱容気(2,41×100/K), t: 燃洗線続時間[5], 1: 許溶温度[100(2)], f: 直索温 (1007)/(kg·K)](2)s. 10 速板 (鋼板) の熱容気(2,41×100/K), t: 燃洗線続時間[5], 1: 許溶温度[100(2)], f: 計容温度(100(2)), f: 重素) 鋼品度(100(2)], f: figuag(100(2)), figual)math blackmath blackmath blackfiguag(figuage)$	麦面の放射率(0.9) ^{※1} , h:軽油タンク表面熱伝達率		
軽油タンク及び軽油の熱容量[8,72×10 ⁺]/(], t: 然施総結 時間 [s], T_{ad} : 外気温度[C]※1: 伝熱工学資料, ※2: 空気調和・衛生工学便繁 $E=24460[W/m^2]$ c. <u>燃料移送ポンプ(防護板(鋼板))</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間, 一 定の輻射強度で燃料移送ポンプの問題に設置されている防 遷板(鋼板)が引温されるものとして、下記の式より <u>燃料</u> (基本ボンブ(防護板(鋼板)))の温度が100℃となる危険輻射 射強度を求める。 $E_{max} = \frac{2}{c5} \left(\frac{hS(T - T_{ab})}{1 - e^{-\frac{D}{C}} y} \right)$ c. 防護板 (鋼板) 外面の放射率 (0,9) ⁴¹ , S: 防護板 (鋼 人)の売となる危険幅 (鋼) (Light (鋼板)), nalle が 100℃となる危険幅 (鋼) (Light (鋼板)), nalle が 100℃となる危険幅 (Intervention))f. : 防護板 (鋼板) 外面の放射率 (0,9) ⁴¹ , S: 防護板 (鋼) (Light (鋼板)), nalle (鋼板), 表面熱伝達率 (Light (鋼板)), nalle (鋼板), 表面熱伝達率 (Light (鋼板)), nalle (鋼板), 水気温度 (鋼板), 水気温度 (鋼板) (Light (鋼板)), nalle (鋼板), 水気温度 (鋼板) (Light (鋼板)), nalle (鋼板), 水気温度 (鋼板),	<u>[17W/m²K]^{**2}, S₁=S₂:軽油タンク受熱・放熱面積[m²], C:</u>		
時間 [s]. $T_{u,:}$: 外気温度[C] ※1: 伝熱工学資料, ※2: 案気調和: 衛生工学展覧 $E=24400[T/m^2]$ c. <u>燃料移送ボンブ (防護板 (鋼板))</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間, 一 定の輻射強度で <u>燃料移送ボンブ (防護板 (鋼板))</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間, 一 定の輻射強度で <u>燃水ボンブの冷加空</u> <u>速板 (鋼板)</u> が昇温されるものとして、下記の式より <u>燃料</u> <u>移送ボンブ (防護板 (鋼板))</u> の温度が <u>100℃</u> となる危険幅 射強度を求める。 $E_{max} = \frac{2}{cS} \left(\frac{hS(T - T_{ab})}{1 - e^{-\frac{D}{C}t}} \right)$ r. : 防護板 (鋼板) 外面の放射車 (0.9) ⁴¹ , S: 防護板 (鋼 板) 突熱面積[10.2m²], h: 防護板 (鋼板) 表面熱伝達率 [177/mk1 ⁴² , c:防護板 (鋼板) の熱客量[2,41×10 ⁶]/K, t: 燃洗維続時間[3, T: 許容温度[100℃], T _{abc} : 外気温度 (約 調温度) [55℃]	軽油タンク及び軽油の熱容量[8.72×10 ⁸ J/K],t:燃焼継続		
※1: 伝熱工学資料,※2: 空気調和・衛生工学便覧 $E=24400[\P/n^2]$ c. 燃料移送ボンブ (防護板 (鋼板)) の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一 定の輻射強度で <u>燃料移送ホンブの周囲に設置されている防 護板 (鋼板)</u> が昇温されるものとして、下記の式より <u>燃料 移送ボンブ (防護板 (鋼板))</u> の温度が 100℃となる危険輻 射強度を求める。 $E_{max} = \frac{2}{cS} \left(\frac{hS(T - T_{abr})}{1 - e^{-\frac{hS}{C}t}} \right)$ r. 防護板 (鋼板) 外面の放射率 (0.9) *1, S: 防護板 (鋼 板) 支熱面積[16, 2m²], h: 防護板 (鋼板) 支面熱伝遠率 [170/m]12*, C:防護板 (鋼板) の熱容量[2, 41×10 ⁴]/K], t: 燃焼繊維時間[s], T: 許容温度[100℃], T _{abr} : 外気温度 (初 期温度) [55℃]	時間 [s], T _{air} :外気温度[℃]		
$E=24400[W/m^2]$ b. $\underline{B} \times d \times d \to T$ c. $\underline{k} \pm \hbar B \underline{k} \underline{x} \underline{x} \underline{y} \underline{f} (\underline{m} \underline{k} \underline{k} \underline{k} \underline{k} \underline{k} \underline{k} \underline{k} k$	<u>※1:伝熱工学資料,※2:空気調和·衛生工学便覧</u>		
c. <u>燃料移送ボンブ (防護板 (鋼板))</u> の危険輻射強度 b. <u>海水ポンブ</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一 定の輻射強度で <u>燃料移送ボンブの周囲に設置されている防</u> 渡板 (鋼板) が昇温されるものとして、下記の式より <u>燃料</u> たの輻射強度で <u>海水ポンプ</u> の冷憩室 移送ボンブ (防護板 (鋼板)))の温度が 100℃となる危険輻射強度 して、下記の式より <u>海水ポンプ</u> の冷憩室 財強度を求める。 $\mathcal{E}_{max} = \frac{2}{\epsilon S} \left(\frac{hS(T - T_{alr})}{1 - e^{-\frac{t-C}{C}} t} \right)$ *: 防護板 (鋼板) 外面の放射率 (0.9) *1, S: 防護板 (鋼板) が) 受熱面積[16.2m²], h: 防護板 (鋼板) 変面熱伝達率 [17W/m]X]*2, C:防護板 (鋼板) の熱容量[2.41×10 ⁶]/K], t: 燃産継続時間[s], T: 許容温度[100°C], T _{air} : 外気温度 (初 期温度) [55°C]	$E = 24460 [W/m^2]$		
c. <u>SK478 & 5x 5 7 (b) at kn (max)</u> 0 (b) at kn (max) x (χ) χ (χ) χ			
定の輻射強度で <u>燃料移送ポンプの周囲に設置されている防</u> <u>渡板(鋼板)</u> が昇温されるものとして、下記の式より <u>燃料</u> <u>移送ポンプ(防護板(鋼板))</u> の温度が <u>100℃</u> となる危険輻 射強度を求める。 $E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(T - T_{abr})}{1 - e^{(-\frac{hS}{C})t}} \right)$	c. <u>燃料移达ホンフ(防護板(鋼板))</u> の厄険輻射強度		b. <u>海水ホンノ</u> の厄険輻射強度
E containing (<u>maxino 2 online content of the second </u>	欠次が死生した時間から燃料が燃えべきるまでの間,一 定の輻射強度で燃料移送ポンプの周囲に設置されている防		の の 成 が 先 生 し に 時 間 か ら 然 村 か 然 か の 絵 村 か 然 や の た う に あ ち の た う た の た う た の た う た の た う た の た で し の た の し の ら の た の ろ の た の た の ろ の た の た の ろ の ろ の た の た の ろ の た の ろ の た の た の ろ の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た こ た の た ら の た の た の た の た の た の た の た の た の た の た の た の た の た た た た た た た た た こ た た た た た た た た た た た た た
$\underline{B} \subseteq \underline{K}$ ($\underline{M} \underbrace{K} \underbrace{K} \underbrace{K} \underbrace{K} \underbrace{K} \underbrace{K} \underbrace{K} K$	護板(鋼板)が昇温されるものとして 下記の式上り燃料		して下記の式上り海水ポンプの冷き
射強度を求める。 $E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(T - T_{air})}{1 - e^{(-\frac{hS}{C})t}} \right)$ $T = T_0 + \frac{E \times A_T}{G \times C_p}$ ε : 防護板 (鋼板) 外面の放射率 (0.9) ^{※1} , S: 防護板 (鋼 T_0 : 通常運転時の上昇温度[22℃], 板) 受熱面積[16.2m ²], h: 防護板 (鋼板) 表面熱伝達率 A_T : 受熱面積[10.93m ²], G: 重量液 [17W/m ³ K] ³²² , C:防護板 (鋼板) の熱容量[2.41×10 ⁶ J/K], t: A_T : 受熱面積[10.07J/(kg·K)] ^{※1} 燃焼継続時間[s], T: 許容温度[100℃], T_{air}: 外気温度 (初 M_T 期温度) [55℃] $T_T = T_0 + \frac{E \times A_T}{G \times C_p}$	<u>- 移送ポンプ</u> (防護板(鋼板))の温度が 100℃となる危険輻		る危険輻射強度を求める。
$E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(T - T_{air})}{1 - e^{(-\frac{hS}{C})t}} \right)$ $T = T_0 + \frac{E \times A_T}{G \times C_p}$ ε : 防護板 (鋼板) 外面の放射率 (0.9) **1, S: 防護板 (鋼 T_0 : 通常運転時の上昇温度[22°C], \overline{h}_0 : 受熱面積[16.2m²], h: 防護板 (鋼板) 表面熱伝達率 A_1 : 受熱面積[10.93m²], G: 重量効 $[17W/m²K]$ **2, C:防護板 (鋼板) の熱容量[2.41×10 ⁶ J/K], t: A_2 : 空気比熱[1007J/(kg・K)]*1 燃焼継続時間[s], T: 許容温度[100°C], T_{air} : 外気温度 (初 期温度) [55°C]	<u></u>		
 £:防護板(鋼板)外面の放射率(0.9)^{*1}, S:防護板(鋼 to)受熱面積[16.2m²], h:防護板(鋼板)表面熱伝達率 [17W/m²K]^{*2}, C:防護板(鋼板)の熱容量[2.41×10⁶J/K], t: tb, M, M,	$E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(T - T_{air})}{1 - e^{(-\frac{hS}{C})t}} \right)$		$T = T_0 + \frac{E \times A_T}{G \times C_p}$
ε :防護板 (鋼板) 外面の放射率 (0.9) *1, S:防護板 (鋼 板) 受熱面積[16.2m²], h:防護板 (鋼板) 表面熱伝達率 [17W/m²K]*2, C:防護板 (鋼板) の熱容量[2.41×10 ⁶ J/K], t: 燃焼継続時間[s], T:許容温度[100℃], T _{air} : 外気温度 (初 期温度) [55℃] $T_0: 通常運転時の上昇温度[22℃], A_1: 2000(kg・K)]*1$			
板) 受熱面積[16.2m ²], h:防護板(鋼板)表面熱伝達率 [17W/m ² K] ^{*2} , C:防護板(鋼板)の熱容量[2.41×10 ⁶ J/K], t: 燃焼継続時間[s], T:許容温度[100℃], T _{air} :外気温度(初 期温度)[55℃]	ε : 防護板(鋼板)外面の放射率(0.9) ^{※1} 、S : 防護板(鋼		 T ₀ :通常運転時の上昇温度[22℃].
	板)受熱面積[16.2m ²], h:防護板(鋼板)表面熱伝達率		A _T :受熱面積[10.93m ²],G:重量流
燃焼継続時間[s], T:許容温度[100℃], T _{air} :外気温度(初 期温度) [55℃]	[17W/m ² K] ^{※2} , C:防護板 (鋼板)の熱容量[2.41×10 ⁶ J/K],t:		C _p :空気比熱[1007J/(kg・K)] ^{※1}
<u>期温度)[55℃]</u>	燃焼継続時間 $[s], T:$ 許容温度 $[100$ $\mathbb{C}], T_{air}$:外気温度(初		
	期温度)[55℃]		

-炉	備考
	 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク及び燃料移送ポン プは,地下構造のため影 響評価対象外。 また,放水路ゲートに ついても,設置していな いため影響評価対象外。 なお,島根 2 号炉では, 海水ポンプは,屋外設置 のため影響評価を実施
え尽きるまでの間,一 気が昇温されるものと 到空気温度が <u>55℃</u> とな	
<u>E:輻射強度[W/m²],</u> 适量[1.96kg/s],	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
※1: 伝熱工学資料, ※2: 空気調和·衛生工学便覧		※1:伝熱工学資料	
$E = \underline{1700 [W/m^2]}$		E= <u>5,948[W/m²]</u>	
d. <u>主排気筒</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一 定の輻射強度で <u>主排気筒</u> が昇温されるものとして,下記の 式より <u>主排気筒</u> の温度が 325℃となる危険輻射強度を求め る。		c. <u>排気筒</u> の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一 定の輻射強度で <u>排気筒</u> が昇温されるものとして,下記の式 より <u>排気筒の表面</u> 温度が 325℃となる危険輻射強度を求め る。	
$T = T_0 + \frac{\varepsilon E}{2h}$		$T = T_0 + \frac{\varepsilon E}{2h}$	
$T_0: 初期温度[50°C], E: 輻射強度[W/m²], \varepsilon: 主排気筒表面の放射率(0.9)*1, h: 主排気筒表面熱伝達率[17W/m²K]*2※1: 伝熱工学資料, ※2: 空気調和·衛生工学便覧$		T ₀ :初期温度[50℃],E:輻射強度[W/m ²],ε:排気筒表 面の放射率[0.9] ^{*1} ,h:排気筒表面熱伝達率[17W/m ² K] ^{*2} ※1:伝熱工学資料,※2:空気調和・衛生工学便覧	
$E = 10388 [W/m^2]$		E=10,388[W/m ²]	
 (5) 形態係数の算出 火炎から任意の位置にある点(受熱点)の輻射強度は、 輻射発散度に形態係数をかけた値となる。危険輻射強度となる形態係数を算出する。 Emax=Rf×φ Emax・危険輻射強度 Rf・輻射発散度 φ・形態係数 	式1で求めた危険輻射強度Eとなる形態係数 Φ を,式2 より算出する。 $E = R f \cdot \Phi$ (式2) E : 輻射強度 (W/m2), R f : 輻射発散度 (W/m2), $\Phi : 形態係数$ (出典:評価ガイド)	 (5) 形態係数の算出 火炎から任意の位置にある点(受熱点)の輻射強度は,輻 射発散度に形態係数をかけた値となる。危険輻射強度となる 形態係数を算出する。 Emax=Rf×φ Emax・危険輻射強度 Rf・輻射発散度 	
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。	φ:形態係数	
第 3.1-3 表 形態係数の算出結果 建屋 軽油タンク 燃料移送ポンプ 主排気筒 (防護板 (鋼板)) (防護板 (鋼板)) 10388 輻射発散度[W/m²] 6762 24460 1700 10388 輻射発散度[W/m²] 41×10 ³ 10.1649447 0.5965911 0.0414750 0.2533875	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (式 3)$ ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1 + n)^2 + m^2$, $B = (1 - n)^2 + m^2$ $\Phi : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),$ R : 燃焼半径 (m).	第3.1-3表 形態係数の算出結果 <u> 種物 海水ポンプ 排気筒 </u> 危険輻射強度[W/m^2] 4,761 5,948 10,388 輻射発散度[W/m^2] 23×10 ³ 形態係数 6.90×10 ⁻² 8.60×10 ⁻² 1.50×10 ⁻¹	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	上記のとおり危険距離を算出し、当該危険物貯蔵施設から評価		
	対象施設までの離隔距離を下回るか評価を実施した。なお、天井		
	スラブは以下の理由により、外壁の評価に包絡されるため実施し		
	ない。建屋外壁の評価概念図を第4.1.2.3-1図に示す。		
	・火炎長が天井より短い場合、天井に輻射熱を与えないことか		
	ら熱影響はない。		
	・火炎長が天井より長い場合,天井に輻射熱を与えるが,その		
	輻射熱は外壁に与える輻射熱より小さい。天井スラブの評価		
	概念図を第4.1.2.3-2 図に示す。		
	 ・火炎からの距離が等しい場合,垂直面(外壁)と水 		
	平面(天井)の形態係数は、垂直面の方が大きいこ		
	とから、天井の熱影響は外壁に比べて小さい。		
	F井スラブ F井スラブ F井スラブ F井スラブ F中 E F		
	第4.1.2.3-1 図 建屋外壁の評価概念図		
	天井スラブに輻射熱を与える範囲 外壁に輻射熱を与える範囲 大井スラブ 健康外壁 屋内 健康外壁 屋内		
	<u> 第4.1.2.3-2 図 大井スフブの評価概念図</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
(6) 危険距離の算出 火炎から任意の位置にある点 (受熱点)の形態係数は以 下の式から求まる。次の式から危険距離を算出する。 $\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$	 c. 評価結果 評価対象施設の外壁表面温度が 200℃となる危険距離を 算出した結果,各評価対象施設の危険距離が離隔距離以下 であることを確認した。評価結果を第4.1.2.3-2表に示す。 第4.1.2.3-2表 外壁への危険物貯蔵施設火災影響評価結果 	(6) 危険距離の算出 火炎から任意の位置にある点(受熱点 の式から求まる。次の式から危険距離を $\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] \right\}$
	評価対象施設 危険距離 離隔距離 (m) (m)	ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + n$
ただし, $m = \frac{H}{n} \cong 3, n = \frac{L}{n}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	原子炉建屋 1,100	φ : 形態係数, L: 離隔距離[m], H:火炎の
R R	タービン建屋 41 1,200	R:燃焼半径[m]
	使用済燃料乾式貯蔵建屋 800	
第3.1-4表 危険距離の算出結果		<u>第3.1-4表 危険距離の算出</u>
建屋 軽油タンク 燃料移送ポンプ 主排気筒		建物 海水ポンプ
(防護板(鋼板))		形態係数 6.90×10 ⁻² 8.60×10 ⁻²
形態係数 0.1649447 0.5965911 0.0414750 0.2533875		燃焼半径[m] 12.51
燃焼半径[m]		危険距離[m] 63 56
□ 20 約 134 約 39 (7) 火災による熱影響の有無の評価 <u>最大貯蔵量の危険物貯蔵施設</u> における危険距離は最大で		(7) 火炎による熱影響の有無の評価 <u>重油タンク (No. 1, 2, 3)</u> における

も約<u>134m</u>であり,離隔距離が危険距離を上回っていることを 確認した。よって、発電所敷地外の危険物貯蔵施設におい て火災が発生した場合においても<u>柏崎刈羽</u>原子力発電所へ の影響はない。

い。

島相	退原子力発電所 2号炉		備考
危険距離の算出 火炎から任意の の式から求まる。 $\frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{n}{\pi}$ どし, $m = \frac{H}{R} \cong 3$, o:形態係数, L: 團	位置にある点(受熱点) 次の式から危険距離を算 $\frac{1}{k} \left\{ \frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} \right] \right\}$ $n = \frac{L}{R}, A = (1+n)^2 + m^2,$ 維隔距離[m], H:火炎の高	の形態係数は以下 出する。 $-\frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right]$ $B = (1-n)^2 + m^2$ さ [m],	
<u>第3.1</u>	4表 危険距離の算出結 加 海水ポンプ 10 ² 8.60×10 ² 12.51 56 響の有無の評価 1,2,3) における危 56 瞬距離が危険距離を上回 発電所敷地外の危険物貯 においても島根原子力発	集	 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク及び燃料移送ポン プは,地下構造のため影 響評価対象外。 また,放水路ゲートに ついても,設置していな いため影響評価対象外。 なお,島根 2 号炉では, 海水ポンプは,屋外設置 のため影響評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	4.1.2.4 主排気筒に対する危険距離評価		
	(1) 影響評価対象範囲		
	主排気筒について, 危険物貯蔵施設の火災を想定して評価		
	を実施した。		
	なお, 主排気筒の評価に当たっては, 保守性を考慮して,		
	筒身よりも離隔距離の短くなる鉄塔について評価した。		
	<u>(2)</u> 評価対象施設の仕様		
	主排気筒仕様を第4.1.2.4-1表に,主排気筒外形図を第		
	4.1.2.4-1.図に示す。		
	第4.1.2.4-1 表 評価対象施設の仕様		
	名称 主排気筒		
	種類 鉄塔支持型		
	内径 4.5m		
	主要寸法 地表高さ 140m		
	筒身 SS400		
	材料 鉄塔 SS400, STK400		
	個数 1		
	笠 4 1 9 4 1 図 一 証 年 社 毎 佐 乳 の め 形 図		
	<u> </u>		
	(3) 評価対象施設までの離隔距離		
	相定水災源から評価対象施設までの離隔距離を第		
	4.1.2.4-2表に示す。		
	第 4.1.2.4-2表 想定火災源から評価対象施設までの離隔距離		
	想定火災源 主排気筒(m)		
	1,200		
	(4) 判断の考え方		
	主排気筒鉄塔(SS400, STK400)の許容温度は、火災時に		
	おける短期温度上昇を考慮した場合において、鋼材の強度		
	が維持される保守的な温度 325℃以下とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	b評価方法		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとして,		
	表面での輻射による入熱量と対流熱伝達による外部への放熱		
	量が釣り合うことを表した式1により主排気筒鉄塔表面の温		
	度が 325℃となる輻射強度(=危険輻射強度)を求める。		
	$T = T_0 + \frac{E}{2h} \qquad (\vec{\pi} \ 1)$		
	(出典:建築火災のメカニズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)^{※1}</u>		
	<u>E:輻射強度 (W/m²), h:熱伝達率 (17W/m²/K) *²</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に		
	保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,受		
	熱面の形状や周囲の環境条件を受け変化するが、一		
	般的な値として垂直外壁面,屋根面及び上げ裏面の		
	夏季,冬季の値が示されている。評価上放熱が少な		
	い方が保守的であることから、これらのうち最も小		
	<u>さい値である17W/m²/Kを用いる。</u>		
	式1で求めた危険輻射強度Eとなる形態係数Фを,式2		
	より算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{I}} \mathbf{I} \mathbf{I}$		
	<u>E:輻射強度 (W/m²), Rf:輻射発散度 (W/m²),</u>		
	$\Phi:$ 形態係数		
	(出典:評価ガイド)		
	式2で求めた形態係数 Φ となる危険距離しを、式3より		
	見出す。 の ·		
	$\Phi = \frac{1}{\pi n} \tan^{-1}\left(\frac{m}{\sqrt{n^2 - 1}}\right) + \frac{m}{\pi} \left\{\frac{(A - 2n)}{n\sqrt{A B}} \tan^{-1}\left[\sqrt{\frac{A(n - 1)}{B(n + 1)}}\right] - \frac{1}{n} \tan^{-1}\left[\sqrt{\frac{(n - 1)}{(n + 1)}}\right]\right\} (\vec{x}, 3)$		
	ただし $m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u>Φ:形態係数, L:離隔距離 (m), H:炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9	9.12版)	島根原子力発電所 2号炉	備考
			(出典:評価ガイド)		
		上記のとおり危険距離を算出し	,当該危険物貯蔵施設か		
		ら評価対象施設までの離隔距離を	下回るか評価を実施し		
		た。なお、評価に当たって主排気	筒は鉄塔と筒身で構成さ		
		れているが、筒身よりも鉄塔が危	険物貯蔵施設との距離が		
		近いこと, 材質も鉄塔はSS400, 9	STK400, 筒身ではSS400		
		であり、物性値が鉄塔、同身とも	に戦調で同一であること		
		115, 武冶の計価を美施りること	<u>て同身の詳価は已給され</u>		
		公。土排入同少計Ш稅心因と第4.	. <u>1.2.4-2 ⊠1(_/, 9.</u>		
		対流による放熱 円筒火炎 町筒火炎 輻射強度: E 第 4.1.2.4-2 図 主排気筒 第 4.1.2.4-2 図 主排気筒 正 注振気筒鉄塔の表面温度が 325 した結果,主排気筒までの危険距 ことを確認した。評価結果を第 4.1000000000000000000000000000000000000	主排気筒 ・		
		第4.1.2.4-3表 主排気筒への危険物貯	藏施設火災影響評価結果		
		評価対象施設 危険距離 (m)	推 離隔距離 (m)		
		主排気筒 10	1,200		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>4.1.2.5</u> 非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼ		・設備の相違
	ル発電機を含む。)に対する危険距離評価		【柏崎 6/7,東海第二】
	(1) 評価対象範囲		島根 2 号炉では, 軽油
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル		タンク及び燃料移送ポン
	発電機を含む。)の流入空気温度について、危険物貯蔵施設の		プは,地下構造のため影
	火災を想定して評価を実施した。		響評価対象外。
	(2) 評価対象施設の仕様		また、放水路ゲートに
	空気の流入口となり熱影響を受ける非常用ディーゼル発電		ついても,設置していな
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の		いため影響評価対象外。
	仕様を第4.1.2.5-1表に,外形図を第4.1.2.5-1図に示す。		なお, 島根2号炉では,
			海水ポンプは, 屋外設置
	第4.1.2.5-1表 評価対象施設の仕様		のため影響評価を実施
	名称 #常用ディーゼル発電機(高圧炉 0.37 ' レ/系ディーt' & 発電機を含 1) 吸気口 種類 円筒縦形 主要寸法 外径 片要寸法 竹倍 日筒高さ : 2.46m 0 樹料 SS400 個数 6 第 4.1.2.5-1 図 評価対象施設の外形図 第 4.1.2.5-1 図 評価対象施設すでの離隔距離 想定火災源から評価対象施設までの離隔距離を第 4.1.2.5-2 表に示す。		
	 第4.1.2.5-2表 想定火災源から評価対象施設までの離隔距離 想定火災源 非常用ディーゼル発電機(高圧炉心スプレ イ系ディーゼル発電機を含む。)(m) 1,100 (4) 判断の考え方 a.許容温度 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)の流入空気の許容温度は、火災時におけ 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	る温度上昇を考慮した場合において、非常用ディーゼル発		
	<u>電機(高圧炉心スプレイ系ディーゼル発電機を含む。)の性</u>		
	能維持に必要な温度 53℃以下※とする。		
	※ 非常用ディーゼル発電機(高圧炉心スプレイ系ディ		
	ーゼル発電機を含む。)の流入空気温度が上昇する		
	と, 空気冷却出口温度が上昇し, シリンダへの必要		
	空気量が確保できなくなる。		
	<u>b評価方法</u>		
	火災が発生した時間から燃料が燃え尽きるまでの間,一		
	定の輻射強度による入熱が非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)に流入する空気		
	の温度上昇に寄与することを表した式1により,流入する		
	空気の温度が 53℃となる輻射強度(=危険輻射強度)を求		
	M.J.		
	$T = T_0 + \frac{E \cdot A}{C + C} + \Delta T \qquad (\vec{x} 1)$		
	T:許容温度 (53°C), T_0 :初期温度 (39°C) *1,		
	E:輻射強度 (W/m ²)		
	<u>G:車量流量(4kg/s)*2</u> , A:輻射を受ける面積(7.8m ²)		
	C_p :空気比熱 (1,007J/kg/K) *3,		
	$\Delta T:構造物を介した温度上昇(5°C)*4$		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に		
	保守性を持たせた値		
	※2 ディーセル発電機の内, 給気流量が少ない高圧炉心		
	スプレイ糸を評価対象とする。		
	<u> ディーセル発電機吸気流量(228m³/min)×</u>		
	空気密度 $(1.17 \text{kg/m}^{\circ}) \div 60$		
	※3 日本機械字会		
	※4 最高到達温度を想定した場合の温度上昇		
	式1 ご水のに厄陝輻灯独度日となる形態係数 Φ を,式2		
	$\underline{\mathbf{F}} = \mathbf{K} \mathbf{I} \cdot \mathbf{\Psi} \tag{(1.2)}$		
	<u>上: </u>		

果毋弗→弗电別(2018.9.12 版)	島根原于刀笼電所 2 亏炉	備考
式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\overrightarrow{\pi}, 3)$		
ただし $m = \frac{H}{R} \stackrel{.}{\rightleftharpoons} 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
<u>Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u> R : 燃焼半径 (m)		
上記のとおり危険距離を算出し、当該危険物貯蔵施設から評価		
対象施設までの離隔距離を下回るか評価を実施した。空気の流入		
ロとなり熱影響を受ける非常用ディーセル発電機(高圧炉心スプ		
レイ系ディーセル発電機を含む。) 吸気口の評価概念図を第 4.1.2.5-2 図に示す。		
非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。) 吸気口		
with the second		
: 受熱面		
第4.1.2.5-2 図 非常用ディーゼル発電機(高圧炉心スプレイ 系ディーゼル発電機を含む。)吸気口の評価概念図		
c. 評価結果 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)吸気口を通して流入する空気の温度が 53℃となる危険距離を算出した結果,危険距離が離隔距離 以下であることを確認した。評価結果を第4.1.2.5-3 表に 示す。		
	Kirkが このたい (Control (A))	KARTTALEO KARTTALE

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 第4.1.2.5-3表 非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)への危険物貯蔵施設火災影響評価結果 前価対象施設 前価対象施設 加売業用ディーゼル発電機(高圧炉心ズブレイ 系ディーゼル発電機を含む。) 17 1,100 4.1.2.6 残留熱除去系海水系ポンブ及び非常用ディーゼル発電 機(高圧炉心スプレイ系ディーゼル発電機を含む。) 用 海水ボンプに対する危険距離評価 (1) 評価対象範囲 残留熱除去系海水系ポンブ電動機及び非常用ディーゼル発 電機(高圧炉心スプレイ系ディーゼル発電機を含む。) 用海水ボンブ電動機は、海水ボンブ電動機及び非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。) 用海水ボンブ電動機は、海水ボンブ電動機高さより高い海水ボンブ 室の壁で囲まれており、側面から直接火災の影響を受けることを想定する。また、残留熱除去系海水系ポンブ電動機及び非常用ディーゼル発電機(高 上炉心スプレイ系ディーゼル発電機を含む。) 用海水ボンブ電動機及び非常用ディーゼル発電機(高 上炉心スプレイ系ディーゼル発電機を含む。) 用海水ボンブ電動機及び非常用ディーゼル発電機(高 上炉心スプレイ系ディーゼル発電機を含む。) 用海水ボンブ電動機及び非常用ディーゼル発電機 (高 正炉心スプレイ系ディーゼル発電機を含む。) 用海水ボンブ電動機及び非常用ディーゼル発電機 (高 上昇により、冷却機能への影響が懸念されることから、冷却 空気の温度を評価対象とする。火災発生位置と海水ボンブの 位置関係を第4.1.2.6-1回に示す。 電動機内部の空気冷却対象は固定子巻線及び軸受であり、 そのうち許容温度が低い軸受温度の機能維持に必要となる冷却空気の温度が、許容温度以下となることを確認する。		・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク及び燃料移送ポン プは,地下構造のため影 響評価対象外。 また,放水路ゲートに ついても,設置していな いため影響評価対象外。 なお,島根 2 号炉では, 海水ポンプは,屋外設置 のため影響評価を実施

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第4.1.2.6-1 図 火災発生位置と海水ポンプの位置関係		
		(2) 評価対象施設の仕様 残留熟除去系海水系ポンプ及び非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン プの海水ポンプ室内の配置図を第4.1.2.6-2 図、外形図を第 4.1.2.6-3 図に示す。仕様を第4.1.2.6-1 表に示す。 第4.1.2.6-2 図 海水ポンプの配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.1.2.6-3 図 海水ポンプの外形図		
	第4.1.2.6-1表 評価対象施設の仕様		
	- 非常用ティーセル発電機 		
	電動機 ーゼル発電機を含む。)用 海水ポンプ電動機		
	主要寸法 全 幅: 1.9 m 全 幅: 0.51m 直 さ: 2.73m 高 さ: 0.98m		
	材 料 SS400, SUS304 SS400		
	基数 4 3		
	 (3) 評価対象施設までの離隔距離 		
	<u> 残留熱除去系海水系ボンプ及び非常用ディーゼル発電機</u>		
	(高圧炉心スノレイ ボディー モル 発電機を 含む。) 用	~	
	4.1.2.6-2表に示す。		
	第4.1.2.6-2表 評価対象施設から火災源までの離隔距離		
	評価対象施設 海水ポンプ室		
	離隔距離 1,300		
	(小)山地の本之十		
	<u>14</u> , <u>19</u> ,		
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
	発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用		
		··]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	海水ポンプ電動機の冷却空気の許容温度は、上部及び下部		
	軸受のうち、運転時の温度上昇が高い下部軸受の上昇温度		
	を考慮し、軸受の機能維持に必要な冷却空気の許容温度を		
	第4.1.2.6-3表に示す。		
	第4.1.2.6-3表 下部軸受の機能維持に必要な冷却空気の		
	許容温度		
	名称 残留熱除去系海水系 ポンプ電動機 非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含 す。)用海水ポンプ電動機		
	軸受の機能維持に必要な 冷却空気の許容温度 70℃ ^{※1} 60℃ ^{※2}		
	 ※1 ボンブ運転により,下部軸受は最大で約10℃上昇することから,軸受の機能を維持するため電気規格調査会標準規格JEC-2137-2000「誘導機」で定める自由対流式軸受の表面で測定するときの温度限度 80℃から 10℃を差し引いた 70℃を冷却空気の許容温度に設定 ※2 ボンブ運転により,下部軸受は最大で約35℃上昇することから,軸受の機能を維持するため電気規格調査会標準規格JEC-2137-2000「誘導機」で定める耐熱性の良好なグリースを使用する場合の温度限度 95℃から 35℃を差し引いた 60℃を冷却空気の許容温度に設定 		
	<u>b.</u> 評価方法		
	火災が発生した時間から燃料が燃え尽きるまでの間、残		
	留熱除去系海水系ポンプ電動機及び非常用ディーゼル発電		
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水		
	ポンプ電動機が受ける輻射熱によって上昇する冷却空気温		
	度を求め, 第4.3.2.5-3表に示す許容温度を下回るかを熱		
	エネルギの式より求まる下式で評価を実施した。評価に用		
	いた諸元を第4.1.2.6-4 表に, 評価概念図を第4.1.2.6-4		
	図に示す。		
	$T = T_{0} + \frac{E \cdot A}{G \cdot C_{p}} + \Delta T \qquad (\vec{x} 1)$		
	<u>T</u> :評価温度 (℃), T ₀ :初期温度 (39℃) ^{※1,}		
	<u>E:輻射強度 (W/m²),</u>		
	<u>G:重量流量(kg/s),A:輻射を受ける面積(m²)</u>		
	<u>C_p:空気比熱 (1,007J/kg/K),</u>		
	<u> ΔT:構造物を介した温度上昇(5℃)^{※2}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 航空機火災による構造物を介した冷却空気の温度		
	<u>上昇(ΔT_b=2.2℃)を包絡する 5℃に設定</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4.1.2.6-4表 評価に用いた諸元		
	電動機 輻射強度:E		
	:受熱面		
	<u>第4.1.2.6-4 図</u> 評価概念図		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2 より算出する。 E=Rf・Φ (式2) E:輻射強度 (W/m ²), Rf:輻射発散度 (W/m ²), Φ:形態係数		
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad ($ $\vec{x}, 3$)		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	 <u> </u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(201	8.9.12版)		島根原子力発電所 2号炉	備考
	上記のとおり危険距離を算出し、当該危険物貯蔵施設か				
	ら評価対象施設までの離隔距離	を下回るか評	価を実施し		
	The com				
	<u>c</u> 評価結果				
	輻射熱によって上昇する冷ま	「空気の到達温	度を算出した		
	結果,許容温度以下であること	を確認した。	評価結果を第		
	4.1.2.6-5 表に示す。				
	<u> </u>	拉設火災影響許	<u>F価結果</u>		
	評価対象施設	危険距離	離隔距離		
		(m)	(m)		
	残留熱除去系海水系ポンプ	16	1,300		
	非常用ディーゼル発電機(高圧炉心スプレイ系	12	1,300		
					乳供の担害
	$\frac{4.1.2.7}{(1)}$	坦 两臣 干 1 Ш			・ 取 御 り 和 連
	お水牧ゲートについて、合除地	加定蔵施設の水	「巛を相定」て		111-001, 米西分二】 自根 9 早后でけ 軽油
	辺/パロノーハビノバーC, //		Mit Mike U.C.		品低 2 万斤 C は, 軽山 タンク 及 び 燃料 移送 ポン
	<u>11回こ太温した。</u> (2) 証価対象施設の仕様				プけ 地下構造のため影
	放水路ゲート駆動装置の外殻と	・たろ放水路ケ	ート駆動装置		ッ 福, 昭 中 時道 ジ / ビ ジ 秋 響評価対象外
	外殻の仕様を第4.3.2.7-1表に.	外形図を第4	.1.2.7-1 図に		また、放水路ゲートに
	示す。				ついても、設置していな
					いため影響評価対象外。
	第 4. 1. 2. 7−1 表 評価≯	す象施設の仕様	Ŕ		なお,島根2号炉では,
			~		海水ポンプは、屋外設置
					のため影響評価を実施
	名称 放水路ゲート駆動装置				
	床面高さ T.P.+11.0m				
	外設材料 灰素鋼 個数 3		-		
			i		
	第4.1.2.7-1 図 評価対	象施設の外形	<u>X</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第		
	4.1.2.7-2表に示す。		
	第4.1.2.7-2表 想定火災源から評価対象施設までの離隔距離		
	想定火災源 放水路ゲート(m)		
	1,000		
	(4) 判断の考え方		
	a. 許容温度		
	放水路ゲート駆動装置外殻の許容温度は,火災時におけ		
	る短期温度上昇を考慮した場合において、鋼材の強度が維		
	持される保守的な温度 325℃以下とする。		
	<u>b. 評価方法</u>		
	一定の輻射強度で放水路ゲート駆動装置外殻が昇温され		
	るものとして、表面での輻射による入熱量と対流熱伝達に		
	よる外部への放熱量が釣り合うことを表した式1により外		
	殻表面の温度が325℃となる輻射強度(=危険輻射強度)を		
	求める。		
	$T = T_0 + \frac{E}{2h} \qquad (\vec{x} \ 1)$		
	(出典:建築火災のメカ=ズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)^{*1}</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K) ^{※2}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	<u>が、一般的な値として垂直外壁面、屋根面及び上</u>		
	げ裏面の夏季, 冬季の値が示されている。評価上		
	放熱が少ない方が保守的であることから、これら		
	のうち最も小さい値である17W/m ² /Kを用いる。)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2 上り算出する。 E=Rf・Φ (式2) E:輻射強度 (W/m ²), Rf:輻射発散度 (W/m ²), Φ:形態係数 (出典:評価ガイド) 式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。 $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\}$ (式3) ただし $m = \frac{H}{R} \Rightarrow 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	 Φ: 形態係数, L:離隔距離(m), H:炎の高さ(m), R:燃焼半径(m)		
	放水路ゲート駆動装置外殻 輻射強度:E		
	: 受熱面 第4.1.2.7-2 図 放水路ゲートの評価概念図 <u>c. 評価結果</u> 故水路ゲート駆動装置外殻の表面温度が 325℃ となる合		
	険距離を算出した結果,放水路ゲートまでの危険距離が離		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電	電所(2018.9.1	12版)		島根原子力発電所	2号;
	ß	<u> 扇距離以下であること</u>	とを確認した。言	平価結果を第4	1.2.7-3		
	TR	長に示す。					
	左 月 公	<u> 第4.1.2.7-3 表 放</u> 7	<u> </u>	危険物貯蔵施設	設		
		火災	影響評価結果				
		評価対象施設	危険距離 (m)	離隔距離 (m)]		
		放水路ゲート	10	1,600			
3.2 高圧ガス貯蔵施設	<u>4.2</u> 高	圧ガス貯蔵施設					
柏崎刈羽原子力発電所から10km圏内(敷地内を除く)に							
おける高圧ガス貯蔵施設の最大貯蔵量は、 であ							
り, 相崎利羽原十刀発電所から東短の高圧カス灯風 施設							
仮に最短距離の高圧ガス貯蔵施設に最大貯蔵量							
が有ったと仮定し、熱影響評価及び爆風圧に							
よる影響評価を実施したところ、危険距離は約 30m、危							
となり, 柏崎刈羽原子力発電所との距離約5km							
よりも小さい ことを確認した。また, 飛来物の影響につ							
いて評価を実施し、飛来物の最大飛散 距離は							
となり、柏崎刈羽原子力発電所との距離約 5k							
よって,発電所敷地外の石油類貯蔵施設において火							
災・爆発が発生した場合に おいても柏崎刈羽原子力発							
電所への影響はない。							
LJ							
第3.2-1衣 10km箇内における東天の高圧カスの貯蔵量							
種類 貯蔵量[t]							
液化石油ガス							

~炉	備考
	・設備の相違 【柏崎 6/7,東海第二】 地域特性を踏まえた評 価条件の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第3.2-1図 最大貯蔵量の高圧ガス貯蔵施設と最短距離			
の高圧ガス貯蔵施設			
3.2.1 執影響評価			
 (1) 熱影響評価の評価条件 評価に 			
び 無かデータを以下に示す			
第391-1末 プロパンの評価冬州			
評価条件			
燃料の種類 プロパン			
一種和外充取及[W/m]」 (4×10° ज言任下演审旨[$k_{\sigma}/m^{2} \cdot c$] ² 0.000			
L 具 単 L L L L L L L L L L L L L L L L L			
2) NUREG-1805 より			
(2) 燃焼半径の算出			
<u>燃焼面積は、防油堤面積に等しいものとする。したがって、</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u> 燃焼半径R[m]の防油堤面積を円筒の底面と仮定し算出する。</u>			
\mathbf{P} (\mathbf{C} (\mathbf{A}) $0, 5$			
$R = (S \neq \pi)$			
S:防油堤面積(火炎円筒の底面積)=			
R =			
<u>(3) 燃焼継続時間の算出</u>			
<u>燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値</u>			
になる。			
$t = \frac{V}{2}$, $v = \frac{M}{2}$, $\xi \vartheta$, $t = \frac{m}{2}$			
$\pi R^2 \times v \rho \qquad \pi R^2 \times M$			
t: 燃焼継続時間[s], V: 燃料重[m [°]], K: 燃焼半径[m], v: 燃焼速度[m/s] M: 質量低下速度[kg/m ² ·s], ρ:密度[kg/m ³], m: 質量[kg]			
ここで,, M=0.099[kg/m ² ·s]として, 燃焼継続時間を求め			
t = 2419[s] = 0.671[h]			
(4) 合降輻射強度の筧出			
a. 外壁面の危険輻射強度			
火災が発生した時間から燃料が燃え尽きるまでの間,			
一定の輻射強度で発電用原子炉施設外壁が昇温される			
ものとして、下記の一次元非定常熱伝導方程式 の解の			
式より,コンクリートの表面温度が200℃となる危険輻射			
強度を求める。			
$T_s = T_0 + \frac{1}{\left(\frac{T_s}{T_s}\right)}$			
$\left(\frac{\sqrt{\kappa\rhoc}}{1.18h\sqrt{\tau}}+1\right)\frac{h}{\varepsilon E}$			
出典:原田和典,建築火災のメカニズムと火災安全設計,日本建築センター T.: 初期温度[50°C]F:輻射強度[W/m ²]。:コンクリート表面の放射率(0.95)			
, h:コンクリート表面熱伝達率[34.9W/m ² K], k:コンクリート熱伝導率			
L1.6W/mK」*, ρ:コンクリート密度L2200kg/m³」*, c:コンクリート比熱 [879J/kgK] *, t:燃焼継続時間[s]			
※:建築設計竣工図書 原子炉建屋構造計算書			
$E = 10333 [W/m^2]$			
<u>b. 軽油タンクの危険輻射強度</u>			
火災が発生した時間から燃料が燃え尽きるまでの間,			
<u>一定の輻射強度で軽油 タンクが昇温されるものとし</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
て,下記の式より軽油の温度が 225℃となる危険 輻射			
強度を求める。			
$\varepsilon ES_1 + hS_2T_{air}$ ($\varepsilon ES_1 + hS_2T_{air}$) ($\frac{hS_2}{2}$)			
$T = \frac{1}{hS_2} - \left(\frac{1}{hS_2} - T_0\right) e^{(C_0 T)^2}$			
T_0 :初期温度[38℃],E:輻射強度[W/m^2], ϵ :軽油タンク表面の放射率 (0.9)			
, n. 転加ランク表面系伝達年(1/1/m K), S ₁ -S ₂ . 転加ランク支系、版系面 積[m ²], C:軽油タンク及び軽油の熱容量[8.72×10 ⁸ J/K], t:燃焼継続時間[s],			
T _{air} :外気温度[℃] ※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			
$\underline{E} = 336369 \left[W/m^2 \right]$			
c. 燃料移送ホンフ(防護板 (鋼板)の危険輻射強度			
<u>间,一</u> 上の輻射強度で燃料移送ホンノの同囲に設置され ている防護振(綱振)が見追されるたのとして、下記の			
ている防護板(鋼板)が升温されるものとして、「記の 式とり燃料移送ポンプ(防護板(鋼板)の温度が100℃と			
たろ合降輻射 強度を求める。			
2/bS(T-T)			
$E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(1 - I_{air})}{1 - e^{\left(-\frac{hS}{C}\right)t}} \right)$			
ε:防護板 (鋼板) 外面の放射率 (0.9) ^{※1} , S:防護板 (鋼板) 受熱面積[32.4m²],			
h:防護板(鋼板)表面熱伝達率[17W/m ² K] ³² , C:防護板(鋼板)の熱容量[2.41 ×10 ⁶ T/K] +: 燃焼継続時間[s] T: 許容温度[100 ⁶ C] T. : 外気温度(初期温			
度) [55℃]			
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			
$E = 4001 [W/m^2]$			
<u>d. 主排気筒の危険輻射強度</u>			
火災が発生した時間から燃料が燃え尽きるまでの			
間、一定の輻射強度で主排気筒が昇温されるものとし			
て、ト記の式より主排気筒の温度が 325℃となる危険幅			
<u> 別 蚀度 を 水 約 る。</u>			
еF			
$T = T_0 + \frac{\omega}{2h}$			
$T_0: 初期温度[50℃], E: 輻射強度[W/m²], \epsilon: 王排気筒表面の放射率 (0.9)*1, h: 主排気筒表面熱伝達率[17W/m²K]*2$			
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$\underline{E=10388 \ [W/m^2]}$			
(5) 形態係数 (0) 昇出			
<u>火炎から仕息の位直にある点(交然点)の輻射強度は</u>			
<u> 軸別光散度に形態術数</u> たかけた値したる。 在除輻射強度し			
$F_{\text{max}} = \text{Rf} \times \phi$			
Emax: 危険輻射強度. Rf: 輻射発散度.			
第3.2.1-2表 形態係数の算出結果			
建屋 軽油タンク 燃料移送ポンプ 主排気筒			
(防護板(鋼板)) 合除輻射始度「W/m ²] 10223 236360 4001 10288			
相對発散度[W/m ²] 74×10 ³			
形態係数 0.1396392 4.5455275 0.0540748 0.1403903			
<u>火炎から仕意の位置にある点(受烈点)の形態係数は以</u> エのまたとまた。 たのまたと毎晩 F 離た 英川まえ			
下の式から水よる。次の式から厄険距離を昇出する。			
$1 \qquad (\qquad m \qquad) \qquad m \left[(1 \qquad 2m) \qquad \left[\boxed{1} \boxed{1} \boxed{1} \qquad \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \boxed{1}$			
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left(\sqrt{\frac{A(n-1)}{B(n+1)}} \right) - \frac{1}{n} \tan^{-1} \left(\sqrt{\frac{(n-1)}{(n+1)}} \right) \right\}$			
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$			
φ : 形態係数, L : 危険距離[m], H : 火炎高さ[m], R : 燃焼半径[m]			
<u>第3.2.1-3表 危険距離の算出結果</u>			
建屋 軽油タンク 燃料移送ポンプ 主排気筒			
形態係数 0.1396392 4.5455275 0.0540748 0.1403903			
燃焼半径[m]			
/ 2 四天 昨日 月睡 [四」 ポリ 30 ポリ 10 ポリ 54 ポリ 30			
(1) 火災による熱影響の有無の評価			
<u> 取入</u> 町蔵重の尚上刀人 町蔵他 設における 厄険 距離は 最大			
<u> ても#J34m でめり, 離臍距離別犯限距離を上回つていること</u>			

<u> を確認した。よって、発電所数地外の高圧ガス防電施設にお いて大災が発生した場合においても柏崎刈羽原子力発電所 <u> NT 大災が発生した場合においても柏崎刈羽原子力発電所</u> <u> NT 大災が発生した場合においても柏崎刈羽原子力発電所</u> <u> NT 大阪付属書Bに基づき場風圧の評価を行った</u> <u> PE 価がオドの付属書Bに基づき場風圧の評価を行った</u> <u> L2.1 堤風圧の影響評価</u> <u> 1.21 堤風工の影響評価</u> <u> 1.221 堤風工の影響評価</u> <u> 1.221 堤風工の影響評価</u> <u> 1.21 堤風工の影響評価 <u> 1.21 堤風工の影響評価 <u> 1.21 堤風工の影響評価 <u> 1.21 堤電所から10km以内 (敷地内を <u> たのうしたの高圧がなたたくしたの <u> 1.01 塩酸酸で加速設が発動であるため。 <u> 1.21 塩酸酸 (1.04 塩酸酸 (1.04 塩酸酸) (<u> 1.01 塩酸酸 (1.04 塩酸酸) (1.04 塩酸酸) (1.04 塩酸酸) (1.04 塩酸酸) (1.04 塩酸酸) (1.04 塩酸酸) (1.04 塩酸酸) (1.04 塩酸酸) (1.04 塩酸酸) (1.04 <u>低価にの</u>) (1.04 <u>低</u>) (</u></u></u></u></u></u></u></u></u>	
いて火災が発生した場合においても柏崎刈羽原子力発電所 へ影響はない。 4.2.1 爆風圧の影響評価 3.2.2 爆風圧の影響評価 (1) 評価対象施設の抽出及び評価に係るデーク 評価ガイドの付属書Bに基づき場風圧の評価を行った。 ところ、評価上必要とされる危険限界距離(湯風圧が ところ、評価上必要とされる危険限界距離(湯風圧が ところ、評価上必要とされる危険限界距離(湯風圧が ところ、評価上必要とされる危険限界距離(湯風圧が ところ、評価と変とされる危険限界距離(湯風圧が ところ、評価と変となる距離)に対し、粕崎刈羽原子力発電, 所主での離隔距離が危険限界距離以上あることを確認す る。 4.2.1 爆風圧の影響評価 1) 評価対象施設の抽出及び評価に係るデーク 実施第二発電所から10km以内(数地内を除く)には高圧ガ ス貯蔵施設が多数存在することから、以下のとおり抽出範囲 を怒り込み、評価対象施設の抽出を行った。 1) ジェ ンド蔵施設が多数存在することから、以下のとおり抽出範囲 を怒り込み、評価対象施設の曲出を行った。 2) 少 愛面から約1,500m の位置く、10km以内(敷地内を 除く) で最大の高圧ガス貯蔵施設が稼働中であるため、 この高圧ガス貯蔵施設(東京ガス株式会社が所有する日 立した。位置関係を第4.2.1-1図に示す。 1) 当該LNG基地に設置されるLNGタンク及びLPG 少なのでて危険限界距離 アンクでて危険限界距離 アンクでてた険限界距離する運行が発明。	
小影響はない。 4.2.1 場風圧の影響評価 3.2.2 場風圧の影響評価 4.2.1 場風圧の影響評価 評価ガイドの付属書BL気づき場風圧の評価を行った ところ、評価上必要とされる危険限界距離(場風圧ガ から、10米BL以下となる距離)に対し、拍検刈羽原子力発電 所までの離隔距離が危険限界距離以上あることを確認す る。 (1) 評価対象施設の抽出及び評価に係るデータ 東海第二発電所から 10km以内(敏地内を除く)には高圧ガ ス貯蔵施設が多数存在することから、以下のとおり抽出範囲 を絞り込み、評価対象施設の抽出を行った。 (1) 発電所から約1,500mの位置に、10km以内(敏地内を除く)には高圧ガ 下した。の高圧ガス貯蔵施設が稼働中であるため、 この高圧ガス貯蔵施設「な肉+た30kmの力」を認定 した。位置関係を第4.2.1-1図に示す。 (1) 当該LNG基地に設置されるLNGタンク及びLPG (1) 当該LNG基地に設置されるLNGタンク及びLPG ダンクたついて危険限界距離 使の効用にはためやさる医がようにがきため、	
3.2.2 様風圧の影響評価 4.2.1 様風圧の影響評価 評価ガイドの付属書 B に基づき様風圧の評価を行った 4.2.1 様風圧の影響評価 ところ、評価上必要とされる危険限界距離(様風圧が (1) 評価対象施設の抽出及び評価に係るデータ 東海第二発電所から 10km 以内(敷地内を除く)には高圧ガ 2.5 敷油(水) の10MPa 以下となる距離)に対し、抽崎刈羽原子力発電 不貯蔵施設が多数存在することから、以下のとおり抽出範囲 方形での離隔距離が危険限界距離以上あることを確認さす。 2.5 敷電所から約1,500mの位置に、10km以内(敷地内を) を絞り込み、評価対象施設の抽出を行った。 1) 発電所から約1,500mの位置に、10km以内(敷地内を) 座へ) で最大の高圧ガス貯蔵施設が稼働中であるため、 この高圧ガス貯蔵施設(東京ガス株式会社が所有する目 立LNG基地のLNGタンク及びLPGタンク)を選定 した。位置関係を第4.2.1-1回に示す。 1) 当該LNG基地設置されるLNGタンク及びLPG 少ンについて危険限界距離を算出し、この危険限界距	
3.2.2 爆風圧の影響評価 4.2.1 爆風圧の影響評価 評価ガイドの付属書 B に基づき爆風圧の評価を行った ところ,評価上必要とされる危険限界距離(爆風圧が 0.01MPa 以下となる距離)に対し,柏崎刈羽原子力発電 所までの離隔距離が危険限界距離以上あることを確認す ろ。 1) 評価対象施設の抽出及び評価に係るデータ 支防厳施設が多数存在することから,以下のとおり抽出範囲 を絞り込み,評価対象施設の抽出を行った。 3) う。 1) 発電所から約1,500mの位置に,10km以内(敷地内を 除く)で最大の高圧ガス貯蔵施設が稼働中であるため、 この高圧ガス貯蔵施設(東京ガス株式会社が所有する目 立LNC基地のLNCタンク及びLPGタンク)を選定 した。位置陽底を第4.2.1-1回に示す。 1) 当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し、この危険限界距 アンパン酸になるLNGクシク及びLPG アンパン酸になるLNGクシク及びLPG アンパン酸になるLNGクシク及びLPG アンパン酸になるLNGのクロのた酸限界距離を算出し、この危険限界距離を算出し、この危険限界距離を算出し、この危険限界距離を算出し、この危険限界距離を算出し、この危険限界距離を算出し、この危険限界距離を算出し、この危険限界距離を算出し、この危険になるため、	
評価ガイドの付属書Bに基づき爆風圧の評価を行った (1) 評価対象施設の抽出及び評価に係るデータ ところ、評価上必要とされる危険限界距離(爆風圧が 東海第二発電所から10km以内(敷地内を除く)には高圧ガ 0.01MPa以下となる距離)に対し、柏崎刈羽原子力発電 東海第二発電所から10km以内(敷地内を除く)には高圧ガ 方までの離隔距離が危険限界距離以上あることを確認す シ貯蔵施設が多数存在することから、以下のとおり抽出範囲 る。 (1) 評価対象施設の抽出を行った。 (1) ごの意味がないのの位置に、10km以内(敷地内を除く)には高圧ガ シトランのの位置に、10km以内(敷地内を (1) ごの意味がたいの子が空気 (1) ごの意味がないのからり、1,500mの位置に、10km以内(敷地内を (1) ごの高圧ガス貯蔵施設(東京ガス株式会社が所有する目 立しいの基地のしNGタンク及びLPG (1) 当該LNG基地に設置されるLNGタンク及びLPG アンクについてる険に見界距離を算出し、この危険限界距 第二の第二第二第二第二第二第二第二第二第二部でも第二	
ところ,評価上必要とされる危険限界距離(爆風圧が 0.01MPa 以下となる距離)に対し、柏崎刈羽原子力発電 所までの離隔距離が危険限界距離以上あることを確認す る。 東海第二発電所から 10km 以内(敷地内を除く)には高圧ガ ス貯蔵施設が多数存在することから、以下のとおり抽出範囲 を絞り込み,評価対象施設の抽出を行った。 3. i)発電所から約1,500mの位置に、10km 以内(敷地内を 除く)で最大の高圧ガス貯蔵施設が稼働中であるため、 この高圧ガス貯蔵施設(東京ガス株式会社が所有する目 立しNG基地のしNGタンク及びしPGタンク)を選定 した。位置関係を第4.2.1-1 図に示す。 ii) 当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し、この危険限界距 ლの範囲はに設置を許知し、この危険限界距	
0.01MPa 以下となる距離)に対し,柏崎刈羽原子力発電 所までの離隔距離が危険限界距離以上あることを確認す る。 二貯蔵施設が多数存在することから,以下のとおり抽出範囲 を絞り込み,評価対象施設の抽出を行った。 i)発電所から約1,500mの位置に,10km以内(敷地内を 除く)で最大の高圧ガス貯蔵施設が稼働中であるため, この高圧ガス貯蔵施設(東京ガス株式会社が所有する日 立しNG基地のしNGタンク及びLPGタンク)を選定 した。位置関係を第4.2.1-1図に示す。 ii)当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し、この危険限界距 max	
所までの離隔距離が危険限界距離以上あることを確認す 	
ろ。 i)発電所から約1,500mの位置に,10km以内(敷地内を 除く)で最大の高圧ガス貯蔵施設が稼働中であるため, この高圧ガス貯蔵施設(東京ガス株式会社が所有する日 立しNG基地のLNGタンク及びLPGタンク)を選定 した。位置関係を第4.2.1-1図に示す。 ii) 当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し,この危険限界距 施の範囲内に体帯する原因のためましし	
除く)で最大の高圧ガス貯蔵施設が稼働中であるため, この高圧ガス貯蔵施設(東京ガス株式会社が所有する日 立しNG基地のLNGタンク及びLPGタンク)を選定 した。位置関係を第4.2.1-1図に示す。 ii)当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し、この危険限界距 第の第四内に位置する真にガス防蔵施設を駆在する」	
この高圧ガス貯蔵施設(東京ガス株式会社が所有する日 立LNG基地のLNGタンク及びLPGタンク)を選定 した。位置関係を第4.2.1-1 図に示す。 ii) 当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し、この危険限界距 離の第四中に位置する真正ガス的毒族認を評価すれる	
立LNG基地のLNGタンク及びLPGタンク)を選定 した。位置関係を第4.2.1-1 図に示す。 ii) 当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し、この危険限界距	
<u>した。位置関係を第4.2.1-1 図に示す。</u> <u>ii) 当該LNG基地に設置されるLNGタンク及びLPG</u> <u>タンクについて危険限界距離を算出し、この危険限界距</u>	
ii) 当該LNG基地に設置されるLNGタンク及びLPG タンクについて危険限界距離を算出し、この危険限界距 離の第四内に位置する真正式ス防費物部を評価計算し」	
タンクについて危険限界距離を算出し、この危険限界距 離の策囲中に位置する真正式ス防費拡張な証価対象し	
離の第四内にた果たて真正式で時費抜款も証に対色して	
離の範囲内に位直する高圧以入灯風他設を評価対象とし	
て抽出した。評価条件を第4.2.1-1表に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第	三発電所(2018.9.1	2版)	島根原子力発電所	2号炸
第3. 2. 2-1表 高圧ガス爆発の評価条件	第 4. 2. 1-1 表	爆風圧影響評価で想	定した評価条件		
		日立LN	G基地 ^{**1}		
貯蔵ガス 液化石油ガス		LNGタンク	LPGタンク		
<u> </u>		液化玉鉄ガス	遊化石油ガス		
処理設備の₩値	貯蔵ガス	(メタン)	(プロパン)		
爆発形態 高圧ガスの漏えい後、引火によりガス爆発が発生	貯蔵量(m ³)	230,000	50,000		
	貯蔵量(t)	97, 704	31,000		
	密度(t/m ³)	0. 4248 ^{× 2}	0.62 ^{** 3}		
	貯蔵ガスK値 ^{※4}	714	888		
	貯蔵設備Wt 値 ^{※5}	358.	. 753		
<u>危険限界距離の算出方法</u> 誕年ガインにまざた。在哈四男馬離たいての書から第出す	※3 JISK224 ※4 コンビナート等 ※5 合計貯蔵量が1 日立LNG基地 海が3四号キャスキ	0-2013 記載値	二記載値 +貯蔵量の平方根の数値 び <u>LPGタンクの2種</u> ズキーNTTのしたりを		
評価カイトに基づさ, 厄陝限が距離を以下の式から昇出す	<u> </u>	<u>め, 評価ガイトに基*</u> した	つき,以下のとおり厄		
	<u> </u>				
$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	原子力発電所の多	♪部火災影響評価ガイ	、ド【一部抜粋】		
X:危険限界距離[m], λ:換算距離14.4[m·kg ^{1/3}], K:石 油類の定数, W:設備定数		がある場合においては、それぞれの) のガスの量の当該合計量に対する割 た数値の合計により、危険限界距離 おいては、それぞれのガスについて) 出する。	ガスの量 (単位: トン) の合 合を乗じて得た数値に、それ を算出する。また、処理設備 K・Wを算出し、その数値の		
<u>となり, 危険限界距離X</u> <u>となる。</u> よって, 柏崎刈羽原子力発電所との離隔距離は5kmある	次の式から危険限界距離を と原子炉施設の間に必要な離	算出する。ここで算出した危険限界 隔距離となる。	距離が石油コンビナート等		
ことから、爆風圧による柏崎刈羽原子力発電所への影響は ない。	X: 危険限界距離[m]、λ: 换	、= 0.04 A ý K X W 算距離 14.4[m·kg ^{-1/3}]、K: 石油類。	の定数[-]、₩:設備定数[-]		
	 上記のとおり,ガス量	の当該合計量に対す	る割合は,		
	<u> LNGタンク</u>	: $A = 97, 704 \div (97)$, 704 + 31, 000) = 0. 759		
	<u> LPGタンク:B=3</u>	1,000 ÷ (97,704 + 31	(,000) = 0.241		
	Wt =	$\sqrt{97,704+31,000}=358$	8. 753		

炉	備考

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉	備考	
		第4.2.1-1表の評価条件より					
X=0. 04×14. $4\sqrt[3]{(714\times1,000\times A\times Wt)+(888)}$)+(888×1,000	$\overline{\times B \times Wt}$ = 373			
	以上より、危険限界距離は373mとなる。発電所から最も近			電所から最も近			
		い位置にある高圧ガス貯蔵施設は,発電所から 900m の位置に			5900mの位置に		
		<u> </u>					
					であり,		
		発電所敷地から 400m	以内に, 高	圧ガス貯蔵施	設が存在しない		
		ことを確認した。これにより発電所より10km以内において,			以内において,		
		日立LNG基地の爆発影響を超える高圧ガス貯蔵施設はない			貯蔵施設はない		
		ことを確認した。					
		発電所に最も近いソ	ペイプライ	ンは、日立し	NG基地内のパ		
		<u>イプラインであり,日</u>	ヨ立LNG	基地内のパイン	プラインの影響		
		はタンクの影響に包約	各される。	また, 日立し]	NG基地構外へ		
		<u>延びるパイプラインに</u>	は埋設され,	,発電所から	<u>遠ざかるため影</u>		
		響はない。					
		(2) 爆風圧の影響評価約	吉果				
		抽出した高圧ガス則	宁蔵施設の	爆発における	危険限界距離は		
		<u>373m であり,敷地境</u>	界までの危	険限界距離が	離隔距離以下で		
		<u>あることを確認した。評価結果を第4.2.1-2表に,位置関係</u> を第4.2.1-2図に示す。			表に,位置関係		
第4.2.1-2表 抽出した高圧ガス貯蔵施設の爆風圧影響評価結果							
		和导值公理 马达和	容量	危険限界距離	離隔距離*		
		忠正爆発派 カス種類	(t)	(m)	(m)		
		LNGタンク メタン	97, 704	373	1,500		
	LPGタンク プロパン 31,000 よ,000						
	※ 敷地境界までの距離						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>第 4.2.1-2 図 発電所敷地から最も近い位置にある高圧ガス</u> <u>貯蔵施設</u>		
 3.2.3 飛来物の影響評価 「石油コンビナートの防災アセスメント指針」(平成25 年3月 消防庁特殊災 害室)*に基づき,飛来物の最大飛散 距離の評価を行ったところ,評価上必要と される距離に 対し,柏崎刈羽原子力発電所までの離隔距離が評価上必 要となる 距離以上あることを確認する。 ※:石油コンビナート等特別防災区域を有する都道府 県が防災計画を作成す るに当たって,災害の想 定をできるだけ客観的かつ現実的に行うための 評価手法を示した指針 	<u>4.2.2 爆発飛来物の影響評価</u>		
第3.2.3-1表 飛来物の評価条件 評価条件 評価条件 貯蔵ガス 液化石油ガス 貯蔵量 爆発形態 高圧ガスの漏えい後、引火によりガス爆発が発生し、飛来物が発生 発来物の最大飛散距離の算出方法 「石油コンビナートの防災アセスメント指針」に基づき、 容器の破損による破 片の飛散範囲を以下の式にて算出する。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$L = 465 M^{0.10}$			
L:破片の最大飛散範囲Lm」,M:破裂時の貯蔵物質量Lkg」			
したり 恋女物の是十孤労防難は し			
あることから、飛来物による柏崎刈羽原子力発電所への影			
響はない。 以下に石油コンビナートの防災アセスメント			
	 (1) 評価対象施設の抽出 		
	高圧ガス貯蔵タンクの大規模な爆発火災事象(BLEV		
	<u> E</u> : Boiling Liquid Expanding Vapor Explosion(沸騰液膨		
	張蒸気爆発))は、可燃性ガスが加圧され液体で貯蔵されてい		
	るタンクが、加熱されることによってタンク内の圧力が上昇		
	し、タンクの一部破損により起こる液体の急激な気化に伴い		
	発生するため、カスを加圧し貯蔵している加圧貯蔵型のタン		
	クについて爆発時に発生する成米初への影響評価を美施し		
	<u>た。</u> すた 大気圧に近い低圧・低温で貯蔵されていろ低温貯蔵		
	タンクは内部が保冷層で覆われ外部から熱が入り難く、BO		
	G圧縮機 ^{*1} 等でタンク内圧を一定に制御しているため,加圧		
	貯蔵タンクと比較して内圧が上昇し難く、BLEVEは発生		
	し難いが※2, BLEVE以外の爆発形態を想定し,発電所か		
	ら 1,500m 先にある日立LNG基地の低温貯蔵型タンクにつ		
	いて,爆発時に発生する飛来物への影響評価を実施した。		
	<u>※1 タンクから発生するボイルオフガスを再液化し、タンク</u>		
	内圧を一定に制御する。		
	<u>※2 出典「Environmental Assessment for the Sabine Pass</u>		
	Liquefaction Project		
	(9) 揭惑亦立地,不見網河在社田		
	<u>(4) 漆先飛米物の影響計価結米</u> 「石油コンビナートの防災アセスマント地站」(亚出 95 年		
	<u>- 1 価 - 2 こ 1 1 0 0 0 次 1 こ 7 1 回 1 (十成 23 中</u> 3 日 消防庁特殊災害室) に 其づき 抽出した 喜 に ガス 貯蔵		
	施設の爆発による破片の飛散範囲を以下の式にて算出した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.1	2.20版)	東海第二発電所	斤(2018.9.1	2版)		島根原子力発電所	2号
		$L = 90 M^{0.333}$	(容積 5m ³ 未清	茜の容器)			
		$L = 465 M^{0.10}$	(容積 5m ³ 以」	上の容器)			
		<u>L:破片の最大飛散</u>	<u>x範囲,M:</u> 積	破裂時の貯	"蔵物質量		
	山	本物の孫勘野離を管 4	山た結果 4	武告/15万度作/3	- 函作[1] - 函作[1]		
	<u></u> 下で	木初の水取距離を昇止	<u>」した相末,)</u> 評価結果を領	<u> </u>	表に示す。		
		<u>た</u> ,低温貯蔵型タンク	<u> </u>	<u>NG</u> 基地の	大規模な低		
	温貯	蔵型タンクを想定して	も,想定飛詰	散距離は約	1570mであ		
	<u>り</u> ,	発電所から最も近い位	「置にある高」	王ガス貯蔵	施設までの		
	离[隔]	距離 900m を下回るこ	とから, 低温	貯蔵型タン	/ク爆発によ		
	<u>る飛</u>	来物の影響はないと評	卒価できる。((別紙 3.3)	_		
		<u>第4.2.2-2表</u> 爆発	を飛来物の影響	響評価結果			
		施設名称	貯蔵量 (kg)	飛散距離 (m)	離隔距離* (m)		
			i				
	※ 敷地境	界までの距離					
	14	下に「石油コンビナ」	ートの咕似ア	ヤフィン	、 世社 - の 世		
	<u>少</u> 粋を	<u>」に, 「石田ユンビノ</u> ·示す	1.0210100				
		<u>,1,) 0</u>					

炉	備考		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
---	--	--------------	----
The second se	(2) ************************************		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 3.1		
	仮想危険物貯蔵施設の危険距離の算出について		・評価対象の相違
			【東海第二】
	<u>1. 評価条件</u>		島根 2 号炉は調査結果
	(1) 想定の条件		に基づき, 10km の範囲内
	<u>a</u> . 評価対象とする危険物貯蔵施設は熱影響が最大となる仮		の最大貯蔵量の危険物施
	<u>想危険物貯蔵施設(n-ヘキサンを 10 万 kL 貯蔵)を想定</u>		設が最も発電所に近い危
	した。		険物施設の場所にあった
	b. 評価対象とする危険物貯蔵施設の燃料は満載した状態を		と仮定して評価を実施
	想定した。		
	<u>c. 離隔距離は, 評価上厳しくなるよう, a. で想定した危</u>		
	険物貯蔵施設位置から評価対象施設までの直線距離とし		
	<u>d.</u> 消防法で定める最大の防油堤(80,000m ²)内の全面火災		
	<u> </u>		
	<u>倍とした。</u> (2) - - - - - - - - - - - - -		
	(2) 軸別強度の昇圧 油の液面水災において低音の位置になる輻射強度(熱) を		
	(輻射体)を半径の3倍にした円筒水炎モデルを採用した		
	(3) 合除物貯蔵施設及び燃料に係ろデータ		
	た険物貯蔵施設及び燃料に係るデータを第1表に示す。		
	第1表 危険物貯蔵施設及び燃料に係るデータ		
	想定火災源 燃料の 燃料 電輪射発 散度 質量 低下速度 燃料密度 防油 定面積 ρ S S (μ_{3}^{2}) ($\mu_{$		
	危険物貯蔵施設 n−ヘキサン 100,000 85 0.074 650 80,000		
	※1 計圖271 計圖261 1 8 0 5 記載値 ※2 NUREG-1 8 0 5 記載値		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2. 評価結果		
	<u>(1) 燃焼半径の算出</u>		
	円筒火炎モデルとして評価を実施するため, 燃焼半径は防		
	<u>油堤面積を円筒の底面と仮定して以下のとおり算出した。算</u>		
	<u>出結果を第2表に示す。</u>		
	S		
	$R = \sqrt{\frac{3}{\pi}}$		
	\mathbf{D} · 做牌坐径(m) S · 防沖坦西巷(一做牌西巷)(m ²)		
	第2表 危険物貯蔵施設の燃焼半径		
	防油提面積 燃燒坐谷		
	(m ²) (m)		
	仮想危険物貯蔵施設 80,000 160		
	(2) 燃焼継続時間の算出		
	になる。算出結果を第3表に示す。		
	V		
	$t = \frac{1}{\pi P^2 \times V}$		
	t : 燃燒継続時間(s), V : 燃料量(m ³)		
	R:燃焼半径(m), v:燃焼速度=M/ ρ (m/s)		
	MI:筫重低下速度(kg/m ² /s), ρ :燃料密度(kg/m ³)		
	第3表 危険物貯蔵施設の燃焼継続時間		
	想定 燃料量 燃焼半径 質量低下速度 燃料密度 燃烧継続時間		
	火災源 \mathbf{v} \mathbf{K} \mathbf{N} $\boldsymbol{\rho}$ \mathbf{t} (m ³) (m) (kg/m ² /s) (kg/m ³) (s)		
	仮想 650 10,984		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
<u>(3)</u> 危険距離の算出		
火災が発生した時間から燃料が燃え尽きるまで	の間, 一定	
の輻射強度で外壁が昇温されるものとして、下記	の一次元非	
定常熱伝導方程式の一般解の式より求まるコンク	リート表面	
の温度が 200℃となる輻射強度(=危険輻射強度)	<u>を,評価ガ</u>	
<u>イドに基づく形態係数の算出式に代入し、危険距</u>	離について	
<u>解くと結果は 1,329m となるため,保守的に 1.4km</u>	を抽出範囲	
<u>とした。</u>		
なお、外壁以外の評価対象施設は以下の理由に	より, 外壁	
の評価に包絡される。評価結果を第4表に示す。		
 ・主排気筒は鋼材,外壁はコンクリートである 	が、危険距	
離が長い外壁の方が評価上厳しい。		
・非常用ディーゼル発電機(高圧炉心スプレイ系	系ディーゼ	
ル発電機を含む。),残留熱除去系海水系ポンス	プ及び非常	
用ディーゼル発電機(高圧炉心スプレイ系ディ	ィーゼル発	
電機を含む。)用海水ポンプ内の空気は流れて	こおり,熱	
が蓄積される効果が小さいため、外壁の方が話	平価上厳し	
$T = T_{0} + \frac{2 E \sqrt{\alpha t}}{\lambda} \left[\frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^{2}}{4 \alpha t}\right) - \frac{x}{2 \sqrt{\alpha t}} \operatorname{erfc} \right]$	$\left(\frac{x}{2\sqrt{\alpha t}}\right)$	
T:許容温度(200℃), T ₀ :初期温度(50℃),		
E : 輻射強度 (₩/m ²)		
κ :コンクリート温度伝導率 (= $\lambda / \rho C_p$)		
(7.7×1	$0^{-7} m^2 / s$)	
ρ:コンクリート密度 (2,400kg/m ³),		
C _n :コンクリート比熱 (880J/kg/K)		
λ :コンクリート熱伝導率 (1.63W/m/K),		
t : 燃焼継続時間 (10,984s)		
x : コンクリート壁表面深さ (0m)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第4表 外壁への危険物貯蔵施設火災影響評価結果		
	想定火災源 危険距離 (m)		
	仮想危険物貯蔵施設 1,329		
	想定火災源 加速用工作 仮想危険物貯蔵施設 1,329 (1) 想定した防油堤面積の保守性について 下図に示すとおり,防油堤面積は大きいほど外壁表面の到 違温度が上昇することから,消防法で定める最大の防油堤面 積を評価で用いることは保守的である。 00000000000000000000000000000000000		

別紙 3.2	
<u>主排気筒の評価結果 10m の妥当性について</u>	・条件の相違
	【東海第二】
土排気同の計谷温度 325 しに到達する危険輻射強度は以下のと	地域特性を踏よえに評価対象の相違
	[[[八] 豕 •) 印建
$E = 2 h (T - T_0) = 2 \times 17 \times (325 - 50) = 9,350$	
T:許容温度(325 ℃), T ₀ :初期温度(50 ℃) ^{*1}	
h : 熱伝達率(17W/m²/K)**2, E : 輻射強度(W/m²)	
※1 水戸地方気象台で観測された過去最高気温 38.4℃に	
保守性を持たせた値	
※2 空気調和・衛生工学便覧(外表面の熱伝達率は,受	
熱面の形状や周囲の環境条件を受け変化するが、一	
般的な値として垂直外壁面,屋根面及び上げ裏面の	
夏季,冬季の値が示されている。評価上放熱が少な	
い方が保守的であることから、これらのうち最も小	
さい値である 17W/m²/K を用いる。)	
<u>上記で昇田した輻射強度は</u> <u>い入りるものであるた</u> め、証価ガイドに基づく質出式上り、この火災の形能係数け以	
下の通り筧出される。	
$E = R f \times \Phi \implies \Phi = R f \div E = \square \div 9.350$	
=0.00245989	
評価ガイドには形態係数の算出式は下式のとおりとあり、こ	
の式に形態係数を代入し、離隔距離Lを逆算する。	
$\mathbf{\Phi} = \begin{bmatrix} 1 & & \\ -1 & & \\ -1 & - \\ -1$	
$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\sqrt{\sqrt{n^2 - 1}} \right)^{+} \frac{1}{\pi} \left\{ \frac{1}{\pi \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{B(n+1)}{B(n+1)}} \right]^{-} \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{1}{(n+1)}} \right] \right\}$	
ただし $m = \frac{H}{2} = 3$, $n = \frac{L}{2}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$	
\mathbf{R} R R R R R R R R R R R R R R R R R R	

伯崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	この結果より離隔距離は10mとなり,評価ガイドに基づき算出	
	されている。また、軽油等の他の燃料と比較すると は	
	同じ離隔距離での輻射強度が低い。比較結果を下図に示す。	
	図離隔距離と輻射強度の関係	

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 3.3		
	地上設置の低温貯蔵タンク爆発による飛来物影響評価について		・条件の相違
			【東海第二】
			地域特性を踏まえた評
	<u>添付3の4.2で示した低温貯蔵タンクの爆発により発生する</u>		仙対象の相違
	<u>飛来物の最高速度を評価し、この最高速度を初速度とした場合</u> の是十飛戦距離な短年した。この是十飛戦距離が爆発地もから		
	の取入飛取単種を評価した。この取入飛取単離が爆発地点から 発雲田原子恒施設までの離隔距離上り知いことを確認し、評価		
	<u>元电//// / / / / / / / / / / / / / / / / /</u>		
	2. 評価結果		
	容量が大きいタンクほど飛来物の最大飛散距離は長くなる。		
	このため、発電用原子炉施設の近くに位置する貯蔵タンクのう		
	ち、容量が最大となるものを評価対象候補として抽出した。抽		
	出した対象は第1表のとおり。		
	第1表 添付3の4.2で抽出した評価対象候補		
	タンクの種類 内容物 貯蔵容量 (m ³) 発電用原子炉施設からの 離隔距離(m)		
	LNG貯蔵タンク LNG 230,000 1,500		
	LPG貯蔵タンク LPG 50,000 1,500		
	2.1 タンク爆発により発生する飛来物の最高速度の算出		
	低温貯蔵タンクの評価では、 Methods for the Calculation of		
	Physical Effects (INO Yellow Book, CPRI4E (Part 1), 3rd edn)」		
	に至うさ、飛米初の速度を爆発エイルイがら氷めた。以下に放		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
	(1) 評価対象タンクのデータ 評価対象タンクのデータは第2表のとおり。なお、タンク 材重量については、保守的に評価を行うため、各タンクを球 状タンクと仮定して算出した。 $V = \frac{4}{3} \pi r^{3} \Rightarrow r = \left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}}$ $S = 4 \pi r^{2}$		
	M=Stρ V:タンクの体積 (m ³), S:タンクの表面積 (m ²) r:球状タンクと仮定した場合のタンクの半径 (m) M:タンクの質量 (kg), t:タンク外層の厚さ (m) ρ:タンク材密度 (kg/m ³)		
	第2表 評価対象タンクのデータ ダンクの 種類 貯蔵 容量 (m ³) タンク 体積 ^{*1} タンク 密度 ^{*2} 比熱比 (-) タンク 壁厚 ^{*3} タンク材 重量 ^{*4} LNG 230,000 253,000 7,850 1.3 0.01 7.6×10 ^s 貯蔵タンク LPG 50,000 55,000 7,850 1.1 0.01 2.7×10 ^s ※1 消防法に基づき空間容積を10%として算出 ※2 合金鋼の密度 ※3 多層構造となっているが、保守的に内槽側板の平均厚さを設定 ※4 タンク材重量=タンク表面積×タンク材質密度×タンク壁厚		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) 飛来物の最高速度の算出		
	爆発により発生するエネルギが、ある割合で飛来物に移行		
	<u>すると仮定して最高速度を算出した。算出に用いた式は以下,</u>		
	評価結果は第3表のとおり。		
	(a - a)V		
	$\mathbf{E} = \frac{\left(\begin{array}{c} p_1 & p_2 \end{array} \right) \mathbf{V}}{\mathbf{I}}$		
	$\gamma = 1$		
	$\overline{2 \text{ A F}}$		
	$v = \left \frac{2 \pi B}{M} \right $		
	N IVI		
	v: 飛来物の最高速度 (m/s)		
	M:タンクの質量 (kg),		
	E:タンク爆発により発生するエネルギ (J)		
	ρ_1 :タンク内の圧力(0.2MPa ^{*1}), ρ_2 :大気圧力(0.1MPa)		
	V:タンクの体積 (m ³), γ:比熱比 (-)		
	A:爆発エネルギの飛来物への移行係数(0.2 ^{*2})		
	※1 代表とした日立LNG基地のLNG貯蔵タンク		
	* 2 Methods for the Calculation of Physical		
	Effects (INO Yellow Book, CPR14E(Part 1),		
	3rd edn), van den Bosch, C. J. H. & Weterings		
	第2書 孤立版の是宣演産の評価は用		
	タンクの種類 爆発エネルキ (J) 渡米初の載高速度 (m/s) 発電用原子炉施設までの 離隔距離(m)		
	LNG貯蔵タンク 8.2×10 ¹⁰ 66 1,500		
	LPG貯蔵タンク 5.3×10 ¹⁰ 89 1,500		
	飛来物の最高速度の評価結果より、発電用原子炉施設まで		
	の離隔距離が同じであれば、最高速度が速いほど遠くまで飛		
	度が速い,LPG貯蔵タンクを対象に以下で最大飛散距離の		
	算出を実施する。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>2.2</u> 最大飛散距離の算出		
		大気圧に近い低圧・低温で貯蔵されている低温貯蔵タンクで		
		<u>は大規模な爆発は発生し難いが、小規模な爆発は発生するおそ</u>		
		<u>れがあるため評価を行った。</u>		
		<u>飛来物の想定に当たり、日立LNG基地のLNGタンク構造</u>		
		図を参考とした。飛来物化することが想定される爆風の影響を		
		直接受ける可能性がある部位を選定したところ、タンク本体及		
		び配管(鋼製パイプ)を抽出した。ステージなどタンク屋根部に		
		位置する部品は、鋼板で構成されており、その大きさからタン		
		<u>ク本体の評価に包絡される。抽出した飛来物に対して,第1図</u>		
		のとおりの日立LNG基地のLNGタンクより推定したLPG		
		タンク構造図を基に,「原子力発電所の竜巻影響評価ガイド」に		
		例示の飛来物から、包絡的な飛来物を設定した。なお、低温貯		
		蔵型のタンクは、低圧貯蔵であるため破裂エネルギが小さいこ		
		とから飛散距離は短く、また、外部事象防護対象施設等に衝突		
		<u>する水平方向の飛散角度は数度程度の範囲に限られるため、飛</u>		
		来物が外部事象防護対象施設等に衝突する可能性は低い。		
		タンク高さは 13m 程度である。棒状の物体は長くなるほど飛		
		<u>距離が長くなる傾向にあることから、保守的な評価として配管</u>		
		(鋼製パイプ)についてはタンク高さの 13m での評価を実施す		
		<u>る。また、タンク本体の破片としてはタンク側面部分の破損を</u>		
		想定し13m×22m程度が最大と考えられ、平板状の物体は幅、長		
		さが長くなるほど、飛距離が長くなる傾向にあることから、保		
		守的な評価としてタンク屋根部分を包絡する破片を想定する。		
		<u>厚さについては、LNGタンクの構造から 0.01m とする。LP</u>		
		<u>Gタンク概要図を第1図に示す。</u>		
		<u>空中では物体はランダムに回転すると仮定し、外力としては</u>		
		重力及び平均抗力(各方向に平均化した抗力係数と投影面積の		
		<u>積に比例して定義されるもの)を受けるものとし、放出角は感</u>		
		<u>度解析の結果,最も遠くまで到達する角度とした。</u>		
		水平方向:m $\frac{dv_x}{dt}$ =F $\frac{v_x}{V(t)}$		
		鉛直方向: $m \frac{dv_y}{dt} = F \frac{v_y}{V(t)} - m g$		
		$\mathbf{F}=-\frac{1}{2}\mathbf{C}_{\mathrm{D}}\mathbf{A}\rho\mathbf{V}(\mathbf{t})^{2}$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第	第二発電所(2018	3. 9. 12 版)	島根原子力発電所 2号炉	備考
	V(t)= $\sqrt{v_x^2 + v_y}$	2			
	m:飛来物の質量	t(kg), F :空氛	貳抵抗による外力(−)		
	g:重力加速度	(m/s ²), C _D :涝	流体抗力係数(−)		
	A:飛来物の速度	こ方向に対する投	影面積(m ²)		
	V:飛来物の速度	Ē (m∕s), ρ:Ξ	ੲ気密度(kg∕m³)		
	想定飛来物の諸テ	して飛散距離の	計算結果を第4表に示す。		
	<u>離隔距離 1,500m は</u>	,最大飛散距離了	である鋼製パイプの 557m を		
	<u>上回ることから、</u> 新	終来物が発電用原	子炉施設に到達することは		
	なく,影響はない。	-			
	<u>以上より,地上</u> 記	と置の低温貯蔵タ	ンク爆発飛来物が発電所に		
	<u>到達することはない</u>	<u>`</u>			
	←	22m			
	13m g⊥	タンク本	配管 体		
	図 1	図 LPGタン	ク概要図		
	<u>第4表</u>	想定飛来物の諸	元・飛散距離		
	飛来物の種類	鋼製パイプ (配管)	コンクリート板 (タンク本体)		
	サイズ (m)	長さ×直径 (13×1)	長さ×幅×厚さ (13×22×0.01)		
	質量 (t)	5 ^{** 1}	22 ^{** 2}		
	放出角(°)	40	35		
	飛散距離 (m)	557	244		
	離隔距離 (m)	(日立LNG基地から	1,500 5発電所敷地境界までの距離)		
	※1 鋼製パイプの質量は, ※2 実際のLNGタンクを	厚さ 15.9mm の配管を参考。 参考に設定した。	に設定した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-4	添付資料-4	添付資料-4	
燃料輸送車両の火災・爆発について	燃料輸送車両の火災・爆発について	燃料輸送車両の火災・爆発について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. <u>はじめに</u>	
本評価は、発電所敷地外で発生する燃料輸送車両の火災やガ	発電所敷地外で発生する燃料輸送車両の火災やガス爆発によ	本評価は, 発電所敷地外で発生する燃料輸送車両の火災やガ	
ス爆発に対してより一層の安全性向上の観点から、その火災や	り,安全機能を有する構築物,系統及び機器を内包する発電用	ス爆発に対してより一層の安全性向上の観点から、その火災や	
ガス爆発が <u>柏崎刈羽</u> 原子力発電所に隣接する地域で起こったと	原子炉施設に影響を及ぼさないことについて、「原子力発電所の	ガス爆発が島根原子力発電所に隣接する地域で起こったとして	
しても発電用原子炉施設に影響を及ぼさないことを評価するも	外部火災影響評価ガイド 附属書B 石油コンビナート等火災・	<u>も</u> 発電用原子炉施設に影響を及ぼさないこと <u>を</u> 評価 <u>するもので</u>	
のである。	爆発の原子力発電所への影響評価について」(以下「評価ガイド」	ある。	
	という。)に基づき、評価を実施する。		
2. 燃料輸送車両の火災影響評価	2. 燃料輸送車両の火災影響評価	2. 燃料輸送車両の火災影響評価	
(1) 燃料輸送車両の火災の想定の条件		(1) 燃料輸送車両の火災の想定の条件	
・発電所敷地外 10km 以内の施設において液化石油ガス輸送	発電所敷地外の公道上での燃料輸送車両の火災を想定し	<u>…</u> 非常用ディーゼル発電機の燃料を運搬するタンクローリが	・条件の相違
車両が許可申請されていることから、最大規模の液化石油	価対象施設に対する影響評価を行った。	火災を起こした場合を想定する。	【柏崎 6/7,東海第二】
ガス輸送車両が発電所敷地周辺道路で火災・爆発を起こし			島根2号炉は,発電所
た場合を想定する。	燃料輸送車両は、消防法令(危険物の規則に関する政令第15	・燃料積載量は消防法令(危険物の規制に関する政令第15条	敷地周辺の道路状況や
・燃料積載量は液化石油ガス輸送車両の中で最大クラスのも	条第1項三号)において、移動タンク貯蔵所の上限量が定めら	<u>第1項三号)に定められている移動タンク貯蔵所(タンク</u>	運用状況を踏まえ, 軽油
<u>の(16t[※])</u> と する。	れており、公道を通行可能な上限量(=30m ³)のガソリンが積	ローリ)の上限量 (30kL) とする。	を輸送している車両に
・燃料輸送車両は燃料を満載した状態を想定する。	載された状況を想定した。	・燃料輸送車両は燃料を満載した状態を想定する。	ついて影響評価を実施
・輸送燃料は液化石油ガス(プロパン)とする。	また,火災発生場所としては,発電所敷地外の近隣の国道2	・輸送燃料は軽油とする。	
 ・発電所敷地境界の道路での燃料輸送車両の全面火災を想定 	45号線上の評価対象施設に最も近い場所を想定した。	・発電所出入口ゲートでの燃料輸送車両の全面火災を想定す	
する。			
・気象条件は無風状態とする。		・気象条件は無風状態とする。	
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3		・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3	
倍とする。		倍とする。	
※:LP ガスタンクローリ製造会社,LP ガスプラント協会への			
聞き取り及び JX 日鉱日石エネルギー石油便覧より。なお,			
家庭業務用では容器(主として 10~50kg 容器)で、中・大			
規模工場ではバルク容器(1~1,000 kg型)やタンクローリ			
(主として 8~11t 積み)のものが使われている。			
(2) 評価手法の概要		(2) 評価手法の概要	
本評価は、柏崎刈羽原子力発電所に対する燃料輸送車両の火		本評価は、島根原子力発電所に対する燃料輸送車両の火災影	
災影響の有無の評価を目的としている。具体的な評価指標とそ		響の有無の評価を目的としている。具体的な評価指標とその内	
の内容を以下に示す。		容を以下に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-1 表 評価指標及びその内容		第 2-1 表 評価指標及びその内容	
評価指標 内容		評価指標 内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		■輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度 形能係物[-] 火炎と受熱面との相対位置関係に上って定まる係物	
		が感い気(1) バベビマスが面とられる) 性間(あいによう) でんよる(水気) 燃焼半径[m] 燃料輸送車両の投影面積より求めた燃焼半径	
危険距離[m] 火災による輻射熱により許容限界温度になる距離		危険距離[m] 火災による輻射熱により許容限界温度になる距離	
上記の評価指標は、受熱面が輻射体の底部と同一平面上に		上記の評価指標は、受熱面が輻射体の底部と同一平面上にあ	
あると仮定して評価する。油の液面火災では、火炎面積の半		ると仮定して評価する。油の液面火災では、火炎面積の半径が	
径が 3m を超えると空気供給不足により大量の黒煙が発生し		3m を超えると空気供給不足により大量の黒煙が発生し輻射発	
輻射発散度が低減するが、本評価では保守的な判断を行うた		散度が低減するが,本評価では保守的な判断を行うために,火	
めに、火災規模による輻射発散度の低減がないものとする。		災規模による輻射発散度の低減がないものとする。	
輻射熱に対する設備の危険輻射強度を調査し、輻射強度が		輻射熱に対する設備の危険輻射強度を調査し、輻射強度がそ	
その設備の危険輻射強度以下になるように発電用原子炉施設		の設備の危険輻射強度以下になるように発電用原子炉施設は危	
は危険距離(離隔距離)を確保するものとする。		険距離(離隔距離)を確保するものとする。	
(3) 評価対象範囲		(3) 評価対象範囲	
評価対象範囲は、発電所敷地境界の道路で出火する最大規		評価対象範囲は、発電所出入口ゲートで出火するタンクロー	・条件の相違
模の燃料輸送車両とする(第 2-1 図)。なお,発電所構内に		リ(30kL)とする(第 2-1 図)。	【柏崎 6/7】
は,1k1 未満の軽油を貯蔵したタンクローリが存在するが,6			島根2号炉は,発電所
- 号及び 7 号炉に設置している軽油タンクが 565k1 であり,			敷地周辺の道路状況や
発電用原子炉施設からの距離がタンクローリ配置位置より軽			運用状況を踏まえ, 軽油
油タンクの方が近いことから軽油タンクの火災影響評価に包		E.	を輸送している車両に
絡される。			ついて影響評価を実施
		and Subaction of the second se	
		離隔距離約890m	
離隔距離約 811m			
		は 本谷ゲート	
第2-1図燃料輸送車両の離隔距離		第2-1.図 燃料輸送車両の離隔距離	

柏崎刈羽原子力発電所 6/7	7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(4) 必要データ		2.1 共通データの算出	(4) 必要データ	
		各外壁,主排気筒及び非常用ディーゼル発電機(高圧炉心ス		
		プレイ系ディーゼル発電機を含む。),残留熱除去系海水系ポン		
		プ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル		
		発電機を含む。)用海水ポンプ及び放水路ゲートに対する影響評		
		価に必要となる共通データを算出する。		
		(1) 燃料輸送車両及び燃料に係るデータ		
評価に必要なデータを以下に示	<す。	燃料輸送車両及び燃料に係るデータを第2.1-1表に示す。	評価に必要なデータを以下に示す。	
笛 2-2 表 - プェ	コパンの証価条件	第91-1 志 燃料輸送車両及び燃料に係るデータ	第 9-9 表 軽油の評価条件	
	7075	想定火災源 燃料の 種類 燃料量 (m ³) 輻射発散度 (kW/m ²) ^{*1} 質量低下速度 (kg/m ² /s) ^{*2} 燃料密度 (kg/m ³) ^{*3} 燃焼面積 (m ²)		
燃料重[ton]	16	燃料輸送車両 ガソ 30 58 0.055 783 28.8	燃料量[m ²] 30	
	$74 \times 10^{\circ}$	※1 評価ガイド 記載値	輻射発散度[W/m²] ¹⁷ 42×10 ³ 新見(TT):= (2-12)	
質重低下速度[kg/m*・s]*/	0.099	 ※2 NUREG-1805 記載値 ※3 MSDS(製品データ安全シート) 	資量低下速度[kg/m ² ・s] ²⁷ 0.044 [My/2] ないたれ思てます。21 10.15×0.45	
	16. 5×2. 5		燃料タンク投影面積[m [*]] 10.17×2.45	
1) 評価刀イト付属書Bより			 D評価カイト P) NUDEC 1905 	
2) NUREG-1805 より 2) 東京長 16 5[m] · 東京制限合	、쎀二久		2) INREG-1803 2) 東西長10,17[m]	
3) 単岡技 10.3[m]: 単岡制版市	「		5)	
■ ● 阿幅 2.3 [m] : 道路運送」	单凹仍休女基毕 弗一采			
 (5) 燃焼半径の算出		(2) 燃焼半径の算出	(5) 燃焼半径の算出	
燃料輸送車両の火災において	こは様々な燃焼範囲の形態が想	 円筒火炎モデルとして評価を実施するため、燃焼半径は延	燃料輸送車両の火災においては様々な燃焼範囲の形態が想定	
定されるが、円筒火炎を生ずる	らものとする。ここでの燃焼面	焼面積を円筒の底面と仮定して以下のとおり算出した。算出	されるが、円筒火炎を生ずるものとする。ここでの燃焼面積は、	
積は、燃料輸送車両の投影面和	責に等しいものとする。したが	結果を第2.1-2表に示す。	燃料輸送車両の投影面積に等しいものとする。したがって、燃	
って, 燃焼半径 R[m]は燃料輸	送車両の投影面積を円筒の底面		焼半径 R [m]は燃料輸送車両の投影面積を円筒の底面と仮定し算	
と仮定し算出する。		$\mathbf{R} = \left \frac{\mathbf{S}}{\mathbf{S}} \right $	出する。	
$R = (S / \pi)^{-0.5}$		$\sqrt{\pi}$	$R = (S \neq \pi)^{-0.5}$	
S:燃料輸送車両の投影面積	(火炎円筒の底面積) =41.25	R : 燃焼半径 (m), S : 燃焼面積 (m ²)	S:燃料輸送車両の投影面積(火炎円筒の底面積)=24.91[m ²]	
[m ²]			$R = (24.91 / \pi)^{0.5} = 2.82 [m]$	
$R = (41.25 \neq \pi)^{-0.5} = 3.62$	ſm]	第 2.1-2 表 燃料輸送車両の燃焼半径		
	annann			
		想定火災源 S R (m ²) (m)		
		燃料輸送車両 28.8* 3.029		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12	2版)	島根原子力発電所 2号炉	備考
(6) 燃焼継続時間の算出	(3) 燃焼継続時間の算出		(6) 燃焼継続時間の算出	
燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積。	と燃焼速度で割った値	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値に	
になる。	になる。 <u>算出結果を第 2. 1-3 表に示す。</u>	~	なる。	
$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho} \& \forall), t = \frac{m}{\pi R^2 \times M}$	$t = \frac{V}{\pi R^2 \times v}$		$t = \frac{V}{\pi R^2 \times \nu}, \nu = \frac{M}{\rho} \& \emptyset, t = \frac{V \times \rho}{\pi R^2 \times M}$	
t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m],	t :燃焼継続時間(s), V:燃料量(m ³)		t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m],	
v:燃焼速度[m/s]M:質量低下速度[kg/m ² ·s],	R:燃焼半径(m), v:燃焼速度= <u>M</u> /	ρ(m∕s)	v:燃焼速度[m/s],M:質量低下速度[kg/m ² s],ρ:密度[kg/m ³]	
ρ :密度[kg/m³], <u>m:質量[kg]</u>	M:質量低下速度(kg/m ² $_{m}$ s), ρ :燃	料密度(kg/m ³)		
ここで, <u>m= ρV=16000[kg], M=0.099[kg/m²·s]</u> として, 燃			ここで, ρ=918[kg/m³], M=0.044[kg/m²・s]として, 燃焼継	
焼継続時間を求めると,	第2.1-3 表 燃料輸送車両火災の燃	然焼継続時間	続時間を求めると,	
$t = 16000 / (41.25 \times 0.099) = 3918[s] = 1.08[h]$	想完止災預 燃料量 燃烧半径 質量低下速度 外	然料密度 燃烧继続时间	$\underline{v=0.044/918=4.79\times10^{-5}}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(kg/m^3) (s)	t = 30 (24.91×4.79×10 ⁻⁵) =25148[s]=6.99[h]	
	燃料輸送車両 30 3.029 0.055	783 14, 826		
(7) 危険輻射強度の算出	2.2 評価結果		(7) 危険輻射強度の算出	
	2.2.1 外壁に対する危険距離評価			
	(1) 評価対象範囲			
	評価対象施設の外壁について,燃料	輸送車両の火災を想定		
	して評価を実施した。			
	(2) 想定火災源から評価対象施設までの解	推隔距離を第 2.2.1-1		
	表に,位置関係を第2.2.1-1回に示す。	~		
	第2.2.1-1 表 想定火災源から評価対象が	も設までの離隔距離		
	想定火災源 「開子炉建屋」 タービン類 (m)	建屋 使用済燃料乾式 貯蔵建屋 (m)		
	燃料輸送車面 510 450	520		
		020		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	做 0 0 1 1 回 山巛 双 出 坦 式 计 预 证 出 色 长 凯 办 片 思 胆 这		
	弗 2.2.1-1 図 火災発生場所と評価対象施設の位直関係		
	(3) 判断の考え方		
	a. 許容温度		
	火災時における短期温度上昇を考慮した場合において,		
	コンクリート圧縮強度が維持される保守的な温度 200℃以		
	下とする。		
a. 外壁面の危険輻射強度	<u>b. 評価方法</u>	<u>a. 外壁面の危険輻射強度</u>	
火災が発生した時間から燃料が燃え尽きるまでの間,一定	火災が発生した時間から燃料が燃え尽きるまでの間,一	火災が発生した時間から燃料が燃え尽きるまでの間,一定の	
の輻射強度で発電用原子炉施設外壁が昇温されるものとし	定の輻射強度で外壁が昇温されるものとして,式1の一次	輻射強度で発電用原子炉施設外壁が昇温されるものとして、下	
て、下記の一次元非定常熱伝導方程式の解の式より、コンク	元非定常熱伝導方程式の一般解の式より外壁表面(x=0)の	記の一次元非定常熱伝導方程式の解の式より, コンクリートの	
リートの表面の温度上昇が 200℃となる危険輻射強度を求め	温度が 200℃となる輻射強度 (=危険輻射強度) を算出する。	表面温度が200℃となる危険輻射強度を求める。	
る。	$T = T + \frac{2E\sqrt{\alpha t}}{1} \left[1 \exp\left(-\frac{x^2}{2}\right) - \frac{x}{2} \exp\left(-\frac{x}{2}\right) \right] (= 1)$	T - T , 1	
$T = T_0 + \frac{1}{\sqrt{1-1}}$	$\Gamma = \Gamma_0 + \frac{\lambda}{\lambda} \left[\sqrt{\pi} \exp\left(-\frac{4}{4\alpha t}\right) - \frac{1}{2\sqrt{\alpha t}} \exp\left(-\frac{1}{2\sqrt{\alpha t}}\right) \right] $ (BCT)	$I = I_0 + \frac{\sqrt{k\rho c}}{\left(\frac{\sqrt{k\rho c}}{1 + (\rho c)^2} + 1\right) \frac{h}{\rho E}}$	
$\left(\frac{\sqrt{k\rho c}}{1+10k^{1/2}}+1\right)\frac{h}{-F}$	(出典: 伝熱工学, 東京大学出版会)	$(1.18h\sqrt{t})^{\varepsilon E}$	
$(1.18h\sqrt{t})$ EL	T: <u>$\exists 2 / j j = h$許容温度</u> (200℃) T ₀ : 初期温度(50℃) ^{$\&1$}		
出典:原田和典,建築火災のメカニズムと火災安全設計,日	<u>a</u> :熱伝達率(<u>17</u> W/m ² /K) ^{※2}	出典:原田和典,建築火災のメカニズムと火災安全設計,	
本建築センター	κ :コンクリート温度伝達率 (= $\lambda / \rho C_p$) (7.7×10 ⁻⁷ m ² /s)	財団法人 日本建築センター	
T_s :外表面温度[200℃], T_0 :初期温度[50℃],E:輻射強度	ρ:コンクリート密度 (2,400kg/m ³)	T: <u>外表面温度</u> [200℃],T ₀ :初期温度[50℃],E:輻射強度	
$\lfloor W/m^2 \rfloor$,	C _p :コンクリート比熱 (880J/kg/K)	LW/m ²], ε: コンクリート表面の放射率[0.94] ^{*1} , h: コンク	
ε:コン クリート表面の放射率 (0.95) *, h:コンクリー	λ : $12/1$ 小小小小 大 λ : $12/1$ 小小	<u>リート表面</u> 熱伝達率[23.3W/m ² K] ^{*2} , k: コンクリート熱伝導	
ト表面熱伝達率[<u>34.9</u> W/m²K]*, k : コンクリート熱伝導	t : 燃焼継続時間(<u>14,826</u> s)	率[1.6W/mK] ^{**} , ρ:コンクリート密度[<u>2,200</u> kg/m ³] ^{**} ,	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
率[1.6W/mK] ^{**} , ρ:コンクリート密度[2200kg/m ³] ^{**} , c:	<u>x:温度評価の対象となる深さ位置(外壁表面:0m)</u>	c:コンクリート比熱[<u>879</u> J/kgK] ^{※2} , t:燃焼継続時間[s]	
コンクリート比熱[879J/kgK]*, t:燃焼継続時間[s]	※1 水戸地方気象台で観測された過去最高気温38.4℃に保守性		
※:建築設計竣工図書 原子炉建屋構造計算書	を持たせた値	※1:伝熱工学資料, ※2:原子炉建物 構造計算書	
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は、受熱面の		
	形状や周囲の環境条件を受け変化するが、一般的な値として垂直		
$E = 9295 [W/m^2]$	外壁面, 屋根面及び上げ裏面の夏季, 冬季の値が示されている。	$E=5, 224[W/m^2]$	
	評価上放熱が少ない方が保守的であることから、これらのうち最		
	<u>も小さい値である 17W/m²/K を用いる。)</u>		
	式1で求めた危険輻射強度Eとなる形態係数Фを,式2よ		
	り算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \mathbf{f} \cdot \Phi \tag{\textbf{$\vec{\mathbf{\chi}}_2$}}$		
	<u>E:輻射強度(W/m²), Rf:輻射発散度(W/m²),</u>		
	$\Phi:$ 形態係数		
	(出典:評価ガイド)		
	式2で求めた形態係数Φとなる危険距離Lを,式3より算		
	出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{\mathbf{x}} \ 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u>Φ:形態係数, L:離隔距離 (m), H:炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該燃料輸送車両から各		
	評価対象施設までの離隔距離を下回るか評価を実施した。な		
	お、天井スラブは以下の理由により、外壁の評価に包絡され		
	るため実施しない。		
	・火炎長が天井より短い場合、天井に輻射熱を与えない		
	ことから熱影響はない。		
	・火炎長が天井より長い場合、天井に輻射熱を与えるが、		
	その輻射熱は外壁に与える輻射熱より小さい。		
	 ・火炎からの距離が等しい場合,垂直面(外壁)と水平 		
	面(天井)の形態係数は,垂直面の方が大きいことか		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		ら, 天井の熱影響は外壁に比べて小さい。		
		建屋外壁の評価概念図を第2.2.1-2 図に, 天井スラブの		
		評価概念図を第2.2.1-3 図に示す。		
		対流による放熱		
		天井スラブ 株式 天井スラブ 外壁 屋内		
		初期温度:50℃		
		第2.2.1-2 図 建屋外壁の評価概念図		
		F井スラブに輻射熱を与える範囲 外壁に輻射熱を与える範囲 F井スラブ 上 第2.2.1-3 図 天井スラブの評価概念図		
		<u>c評価結果</u>		
		評価対象施設の外壁表面温度が 200℃となる危険距離を		
		算出した結果、各評価対象施設の危険距離が離隔距離以下		
		であることを確認した。		
		<u> 評価結果を第2.2.1-2表に示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12片	反)	島根原子力	」発電所 2号烷
	第2.2.1-2表 外壁への燃料	输送重两火	災影響評価結果	果	
	評価対象施設	危険距離 (m)	離隔距離 (m)		
	原子炉建屋		510		
	タービン建屋	23	450		
	使用済燃料乾式貯蔵建屋		520		
b. <u>軽油タンク</u> の危険輻射強度					
火災が発生した時間から燃料が燃え尽きるまでの間,一定 の輻射強度で <u>軽油タンク</u> が昇温されるものとして,下記の式 より <u>軽油</u> の温度が <u>225℃</u> となる危険輻射強度を求める。					
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - T_0\right) e^{\left(\frac{-h S_2}{C}\right)t}$					
T ₀ :初期温度[<u>38</u> ℃],E:輻射強度[W/m ²],ε: <u>軽油タンク</u> 表 面の放射率(0.9) ^{*1} ,h: <u>軽油タンク</u> 表面熱伝達率[17W/m ² K]					
** ² , S=S ₂ : <u>軽油タンク</u> 受熱・放熱面積[m ²],					
C: <u>軽油タンク及び軽油</u> の熱容量 <u>[8.72×10⁸J/K]</u> ,t:燃焼継続 時間「s] T ・ M気温度「℃]					
※1: 伝熱工学資料, ※2: 空気調和·衛生工学便覧					
$E = 208372 [W/m^2]$					
c. <u>燃料移送ポンプ(防護板(鋼板))</u> の危険輻射強度				b . <u>海水ポンプ</u> の危険輻射	強度
火災が発生した時間から燃料が燃え尽きるまでの間、一定				火災が発生した時間から	燃料が燃え尽き
の輻射強度で燃料移送ポンプの周囲に設置されている防護板				輻射強度で海水ポンプの冷	却空気が昇温さ
<u>(鋼板)</u> か昇温されるものとして、下記の式より <u>燃料移送ホ</u> ンプ(防蓮板(鋼板))の浿度が 100℃とたる危険転射強度を				記の式より <u>海水ホンフ</u> の <u>倍</u> 産を求める	<u>却空気温度から</u>
求める。				反之水》。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$E_{max} = \frac{2}{\varepsilon S} \left(\frac{hS(T - T_{air})}{1 - e^{(\frac{-hS}{C})t}} \right)$		$T = T_0 + \frac{E \times A_T}{G \times C_p}$	
ε :防護板(鋼板)外面の放射率 (0.9) ^{*1} , S:防護板(鋼板)受熱面積[16.2m ²], h:防護板(鋼板)表面熱伝達率[17W/m ² K] ^{*2} , C:防護板(鋼板)の熱容量[2.41×10 ⁶ J/K], t:燃焼継続 時間[s], T:許容温度[100°C], T_{air} :外気温度(初期温度) [55°C]		$T_0: 通常運転時の上昇温度[22°C], E: 輻射強度[W/m2], AT: 受熱面積[10.93m2], G: 重量流量[1.96kg/s], Cp:空気比熱[1007J/(kg・K)]*1$	
※1·		※1· 伝熱工子資料	
$E = 2873 [W/m^2]$		E= <u>5,948[W/m²]</u>	
 d. <u>主排気筒</u>の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定 の輻射強度で<u>主排気筒</u>が昇温されるものとして,下記の式よ り<u>主排気筒</u>の温度が 325℃となる危険輻射強度を求める。 <i>T</i> = <i>T</i>₀ + <i>E</i>/2<i>h</i> T₀: 初期温度[50℃], E: 輻射強度[W/m²], ε: <u>主排気筒</u>表面 の放射率 (0.9) ^{×1}, h: <u>主排気筒</u>表面熱伝達率[17W/m²K]^{×2} ※1: 伝熱工学資料, ※2: 空気調和・衛生工学便覧 		 c. 排気筒の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定の 輻射強度で排気筒が昇温されるものとして,下記の式より,排 気筒の温度が 325℃となる危険輻射強度を求める。 T = T₀ + ^{εE}/_{2h} T₀: 初期温度[50℃], E: 輻射強度[W/m²], ε: 排気筒表面の放射率[0.9]^{*1}, h: 排気筒表面熱伝達率[17W/m²K]^{*2} ※1: 伝熱工学資料, ※2:空気調和・衛生工学便覧 	
$E = 10388 [W/m^2]$		E=10, 388[W/m ²]	
 (8) 形態係数の算出 火炎から任意の位置にある点(受熱点)の輻射強度は,輻射発散度に形態係数をかけた値となる。危険輻射強度となる 形態係数を算出する。 Emax=Rf×φ Emax: 危険輻射強度, Rf:輻射発散度, φ:形態係数 		 (8) 形態係数の算出 火炎から<u>の</u>任意の位置にある点(受熱点)の輻射強度は, 輻射発散度に形態係数をかけた値となる。危険輻射強度とな る形態係数を算出する。 Emax=Rf×φ Emax: 危険輻射強度, Rf:輻射発散度, φ:形態係数 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-3 表 形態係数の算出結果		第2-3表 形態係数の算出結果	
建屋 軽油タンク 燃料移送ポンプ 主排気筒		原子炉建物 海水ポンプ 排気筒	
(防護板(鋼板)) 危険輻射強度[W/m²] 9295 208372 2873 10388		危険輻射強度 5,224 5,948 10,388	
輻射発散度[W/m ²] 74×10 ³ 形能係数 0.1256088 2.8158438 0.0388239 0.1403903		輻射発散度 42×10 ³	
7/72X/1/2X 0.1200000 2.010100 0.0000200 0.1100000		$\lfloor W/m^2 \rfloor$ $\#$ 態係数 1.23×10^{-1} 1.41×10^{-1} 2.47×10^{-1}	
 (9) 危険距離の算出		(9) 危険距離の算出	
次の式から危険距離を算出する。		次の式から危険距離を算出する。	
		$1 \qquad 1 \qquad m \left[(A-2n) \qquad 1 \qquad \sqrt{A(n-1)} \right] \qquad 1 \qquad $	
$\phi = \frac{1}{2} \tan^{-1} \left(\frac{m}{\sqrt{2}} \right) + \frac{m}{2} \left\{ \frac{(A-2n)}{\sqrt{4n}} \tan^{-1} \left \sqrt{\frac{A(n-1)}{n}} - \frac{1}{2} \tan^{-1} \right \sqrt{\frac{(n-1)}{(n+1)}} \right $		$\varphi = \frac{1}{\pi n} \tan \left[\left(\frac{1}{\sqrt{n^2 - 1}} \right)^+ \frac{1}{\pi} \left\{ \frac{1}{n\sqrt{AB}} \tan \left[\left(\sqrt{B(n+1)} \right)^- \frac{1}{n} \tan \left[\left(\sqrt{(n+1)} \right) \right] \right\} \right]$	
$\pi n \left(\sqrt{n^2 - 1}\right) \pi \left(n\sqrt{AB} \left[\sqrt{B(n+1)}\right] n \left[\sqrt{(n+1)}\right]\right)$		$t = t^{2}$ $m = \frac{H}{L} \approx 3 n = \frac{L}{L} A = (1+n)^{2} + m^{2} B = (1-n)^{2} + m^{2}$	
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		$R = 3, n - \frac{1}{R} = 3, n - \frac{1}{R}, R = (1 + n) + m, B = (1 - n) + m$	
ϕ :形態係数,L:危険距離[m],H:火炎高さ[m],		ϕ :形態係数,L:危険距離[m],H:火炎高さ[m],	
R:燃焼半径Lm」		R:燃焼半径[m]	
第 2-4 美 合除野難の質出結果		第2-4末 合除野難の質用結果	
		原子炉建物 海水ポンプ 排気筒 単能係数 1.22×10 ⁻¹ 1.41×10 ⁻¹ 2.47×10 ⁻¹	
形態係数 0.1256088 2.8158438 0.0388239 0.1403903 機体共発[] 2.62 2.62 3.62 <t< td=""><td></td><td>形態味致 1.23×10 1.41×10 2.47×10 燃焼半径[m] 2.82</td><td></td></t<>		形態味致 1.23×10 1.41×10 2.47×10 燃焼半径[m] 2.82	
旅院中住[III] 5.62 危険距離[m] 約13 約4 約26 約12		危険距離[m] 10 9 6	
(10) 火災による熱影響の有無の評価		(10) 火災による熱影響の有無の評価	
以上の結果から、燃料輸送車両において火災が発生した場		以上の結果から、燃料輸送車両において火災が発生した場	
合を想定したとしても,離隔距離(約 811m)が危険距離(最大		合を想定したとしても,離隔距離(約890m)が危険距離(最	
約 26m)以上であることから,発電用原子炉施設に熱影響をお		大 10m) 以上であることから,発電用原子炉施設に熱影響を	
上ぼすことはないと評価する。		及ぼすことはないと評価する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>2.2.2 主排気筒に対する危険距離評価</u>		
	(1)評価対象範囲		
	主排気筒について、燃料輸送車両の火災を想定して評価を		
	実施した。		
	なお、主排気筒の評価にあたっては、保守性を考慮して、		
	筒身よりも離隔距離の短くなる鉄塔について評価した。		
	<u>(2)</u> 評価対象施設の仕様		
	主排気筒仕様を第 2.2.2-1 表に, 主排気筒外形図を第		
	2.2.2-1図に示す。		
	第2.2.2-1表 評価対象施設の仕様		
	種類 鉄塔支持型		
	内径 4.5m		
	主要寸法 地表高さ140m		
	材料 筒身 SS400		
	鉄塔 SS400, STK400		
	第2.2.2-1図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第2.2.2-2表		
	<u>に</u> 示す。		
	第2.2.2-2 衣 想定火災原から評価対象施設よでの離隔距離		
	想定火災源主排気筒		
	(m)		
	燃料輸送車両 610		
	(4) 判断の考え方		
	a.許容温度		
	おける短期温度上昇を考慮した場合において. 鋼材の強度		
	が維持される保守的な温度 325℃以下とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b.</u> 評価方法		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとし		
	て、表面での輻射による入熱量と対流熱伝達による外部へ		
	の放熱量が釣り合うことを表した式1により主排気筒鉄塔		
	表面の温度が 325℃となる輻射強度(=危険輻射強度)を求		
	M.J.a.		
	$T = T_0 + \frac{E}{2h} \tag{\vec{x} 1}$		
	(出典:建築火災のメカ=ズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)*1</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	が,一般的な値として垂直外壁面,屋根面及び		
	上げ裏面の夏季、冬季の値が示されている。評		
	価上放熱が少ない方が保守的であることから、		
	これらのうち最も小さい値である 17W/m²/K		
	を用いる。)		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{\pounds2}}$		
	<u> </u>		
	$\Phi:$ 形態係数		
	(出典:評価ガイド)		
	式2で求めた形態係数 のとなる危険距離しを、式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\overrightarrow{\pi \sqrt{3}})$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12	2版)	島根原子力発電所 2号炉	備考
	$\Phi:$ 形態係数, $L:$ 離隔距離(m), $H:$ 炎	<u> その高さ (m),</u>		
	<u>R:燃焼半径(m)</u>			
		評価ガイド)		
	上記のとおり危険距離を算出し、当	当該燃料輸送車両から		
	評価対象施設までの離隔距離を下回る	るか評価を実施した。		
	なお,評価に当たって主排気筒は鉄塔	皆と筒身で構成されて		
	いるが、筒身よりも鉄塔が燃料輸送車	車両との距離が近いこ		
	と,材質も鉄塔はSS400, STK400,筒	<u>身ではSS400であり,</u>		
	物性値が鉄塔,筒身ともに軟鋼で同一	-であることから,鉄		
	塔の評価を実施することで筒身の評価	町は包絡される。		
	主排気筒の評価概念図を第 2.2.2-2	2.図に示す。		
	対流による放熱	4		
		注排気筒 人		
	円筒火炎 5			
	輻射強度:E			
		■:受熱面※		
		■:放熱面 ■:断熱面		
	※ 全方面からあ	放熱するのに対し,		
	受熱面はその	D 半分となる。		
	第2.2.2-2 図 主排気筒の評価	西概念図		
	<u>c</u> 評価結果			
	主排気筒鉄塔の表面温度が 325℃	となる危険距離を算出		
	した結果, 主排気筒の危険距離が離開	<u>高距離以下であること</u>		
	を確認した。評価結果を第2.2.2-3表	長に示す。		
	第2.2.2-3表 主排気筒への燃料輸送車両	<u> </u>		
	合 協 距 鄭	離區距離		
	評価対象施設 / 「四四年間」	така тыла така (m)		
	主排気筒 9	610		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	2.2.3 非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル	
	発電機を含む。)に対する危険距離評価	
	(1)評価対象範囲	
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル	
	発電機を含む。)の流入空気温度について、燃料輸送車両の火	
	災を想定して評価を実施した。	
	(2) 空気の流入口となり熱影響を受ける非常用ディーゼル発電	
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の	
	仕様を第2.2.3-1表に,外形図を第2.2.3-1図に示す。	
	第2.2.3-1表 評価対象施設の仕様	
	名称 非常用ディーゼ・必発電機(高圧炉 心スプレイ系ディーゼ・必発電機を含 む。)吸気口 種類 円筒縦形 主要寸法 外径 : 1.54m 円筒高さ: 2.46m 材料 SS400 個数 6	
	(3) 評価対象施設までの離隔距離	
	想定火災源から評価対象施設までの離隔距離を第 2.2.3-2	
	<u> 森に示す。</u>	
	第2.2.3-2表 想定火災源から評価対象施設までの離隔距離	
	想定火災源 非常用ディーゼル発電機(高圧炉心スプレ ィ系ディーゼル発電機を含む。)(m)	
	燃料輸送車両 510	
	(4) 判断の考え方	
	<u>a. 許容温度</u>	
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル	
	発電機を含む。)の流入空気の許容温度は、火災時における温	
	度上昇を考慮した場合において,非常用ディーゼル発電機(高	
	<u> </u>	

炉	備考
	 ・設備の相違
	【柏崎 6/7,東海第二】
	島根2号炉では,軽油
	タンク、燃料移送ポン
	プ,非常用ディーゼル発
	電機は,地下構造等の屋
	内設備のため影響評価
	対象外。
	また, 放水路ゲートに
	ついても, 設置していな
	いため影響評価対象外。
	なお, 島根 2 号炉で
	は,海水ポンプは,屋外
	設置のため影響評価を
	実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	要な温度 53℃以下**とする。		
	※ 非常用ディーゼル発電機(高圧炉心スプレイ系ディー		
	ゼル発電機を含む。)の流入空気温度が上昇すると、空気		
	冷却出口温度が上昇し、シリンダへの必要空気量が確保		
	できなくなる。		
	<u>b評価方法</u>		
	<u> 火災が発生した時間から燃料が燃え尽きるまでの間,</u>		
	定の輻射強度による入熱が非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)に流入する空気		
	の温度上昇に寄与することを表した式1により流入する空		
	気の温度が 53℃となる輻射強度(=危険輻射強度)を求め		
	Z.		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T $ (式 1)		
	<u>T:許容温度(53℃), T₀:初期温度(39℃)*1</u> ,		
	<u>E:輻射強度(W/m²)</u> ,		
	<u>G:重量流量(4kg/s)*2,A:輻射を受ける面積(7.8m²)</u>		
	<u>Cp:空気比熱(1,007J/kg/K)*3</u> ,		
	<u> </u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 ディーゼル発電機機関の内,給気流量が少ない高		
	圧炉心スプレイ系を評価対象とする。ディーゼル		
	発電機機関吸気流量(228m ³ /min)×空気密度		
	$\frac{(1.17 \text{kg/m}^3) \div 60}{(1.17 \text{kg/m}^3) \div 60}$		
	※3 日本機械字会 伝熱上字貨料		
	※4 最高到達温度を想定した場合の温度上昇		
	式1 $C X Ø C 厄 陝 騒 射 強 度 E と な る 形 態 係 数 \Psi を,式2$		
	$L \eta \neq \Omega_0$		
	$\underline{\mathbf{L}} - \underline{\mathbf{K}} \mathbf{I} \cdot \underline{\Psi}$ (八之)		
	<u> 上 · 珊扪湿浅 \ // Ⅲ /, 氏 Ⅰ : </u>		
	<u>米・北陸</u> 城が数 (山曲・評価ガイド)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{\pi}, 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	$\Phi: 形態係数, L:離隔距離(m), H:炎の高さ(m),$		
	<u>R: 燃焼 手 (m)</u> (出典: 評価ガイド)		
	上記のとおり危険距離を算出し,当該燃料輸送車両から評価対象施設までの離隔距離を下回るか評価を実施した。空気の流入口となり熱影響を受ける非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の評価概 念図を第2.2.3-2 図に示す。		
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。) 吸気ロ		
	 ・受熱面 第2.2.3-2図 非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)吸気口の評価概念図 た.評価結果 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)に流入する空気の温度が 53℃となる危険距 離を算出した結果,危険距離が離隔距離以下であることを確 認した。評価結果を第2.2.3-3表に示す。 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 第2.2.3-3表非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)への燃料輸送車両火災影響評価結果	島根原子力発電所 2号炉	 備考 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク,燃料移送ポン プ,非常用ディーゼル発 電機は,地下構造等の屋 内設備のため影響評価 対象外。 また,放水路ゲートについても,設置していないため影響評価対象外。 なお,島根 2 号炉では,海水ポンプは,屋外 設置のため影響評価を実施
	上昇により、冷却機能への影響が懸念されることから、冷却 空気の温度を評価対象とする。火災発生位置と海水ポンプの 位置関係を第2.2.4-1 図に示す。 電動機内部の空気冷却対象は固定子巻線及び軸受であり、 そのうち許容温度が低い軸受温度の機能維持に必要となる冷 却空気の温度が、許容温度以下となることを確認する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12	.20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.2.4-1 図 火災発生位置と海水ポンプの位置関係		
	(2) 評価対象施設の仕様		
	残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(
	圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの	毎	
	水ポンプ室内の配置図を第2.2.4-2 図,外形図を第2.2.4-3		
	に示す。仕様を第2.2.4-1表に示す。		
	<u> </u>		
	第2.2.4-3 図 海水ボンブの外形図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉	備考
	第2.2.4-1表 評価対象施設の仕様		象施設の仕様		
	名称	残留熱除去系海水系ポンプ 電動機	非常用ディーゼル発電機 (高圧炉心スプレイ系ディ ーゼル発電機を含む。)用 海水ポンプ電動機		
	主要寸法	全 幅:1.9 m 高 さ:2.73m	全 幅:0.51m 高 さ:0.98m		
	材料	SS400, SUS304	SS400		
	基数	4	3		
	 (3) 評価 残留熱 圧炉心ス 包する海 に示す。 	対象施設までの離隔距離 除去系海水系ポンプ及びま プレイ系ディーゼル発電機 拡ポンプ室から火災源まで	^上 常用ディーゼル発電機(高 後を含む。)用海水ポンプを内 5の離隔距離を第 2. 2. 4−2 表		
	<u>第 2. 2. 4</u> 	-2 表 想定火災源から評価 ^{思定火災源 海} 料輸送車両	<u> 西対象施設までの離隔距離</u> 水ポンプ室 760		
	(4) 判断(の考え方			
	<u>a</u> 許	容温度			
	残	留熱除去系海水系ポンプ電	<u> 重動機及び非常用ディーゼル</u>		
	発電	機(高圧炉心スプレイ系デ	「イーゼル発電機を含む。)用		
	<i>供水</i> 軸 <i>徑</i>	·ハイノ 电 期 (域の) 行 却 生 気の ・の うち、 運 転 時 の 温 度 ト 星	2011 谷価度は,上前及の下部		
	た考		必要な冷却空気の許容温度を		
	第2	.2.4-3表に示す。			
	第2.2.4-3	表下部軸受の機能維持に	<u>ニ必要な冷却空気の許容温度</u>		
	名:	残留熱除去系海水系 ポンプ電動機	スプレイ系ディーゼル発電機を含 む。)用海水ポンプ電動機		
	軸受の機能維 冷却空気の	特に必要な 許容温度 プロモンスト いー ア 2014 - 20			
	 ※1 ポン: め電(定す; ※2 ポン: め電(使用) 	7 運転により,下部軸受は最大で約10℃上 気規格調査会標準規格 JEC-2137-2000「誘 るときの温度限80℃から10℃を差し引い プ運転により,下部軸受は最大で約35℃上 気規格調査会標準規格 JEC-2137-2000「誘 する場合の温度限度95℃から35℃を差し引	ニ昇することから、軸受の機能を維持するた 導機」で定める自由対流式軸受の表面で測 いた70℃を冷却空気の許容温度に設定 ニ昇することから、軸受の機能を維持するた 導機」で定める耐熱性の良好なグリースを 引いた 60℃を冷却空気の許容温度に設定		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b.</u> 評価方法		
	火災が発生した時間から燃料が燃え尽きるまでの間,残留熱		
	除去系海水系ポンプ電動機及び非常用ディーゼル発電機(高圧		
	<u> 炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ電動機</u>		
	が受ける輻射熱によって上昇する冷却空気温度を求め、第		
	2.2.4-3表に示す許容温度を下回るかを熱エネルギーの式より		
	求まる下式で評価を実施した。評価に用いた諸元を第2.2.4-4		
	表に, 評価概念図を第2.2.4-4 図に示す。		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T \qquad (\vec{x}, 1)$		
	<u>T:評価温度(℃), T₀:初期温度(39℃)*1</u> ,		
	<u>E:輻射強度(W/m²),</u>		
	<u>G:重量流量(kg/s),A:輻射を受ける面積(m²)</u>		
	<u>Cp:空気比熱(1,007J/kg/K),</u>		
	<u>ΔT:構造物を介した温度上昇(5°C)*2</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4°Cに保		
	守性を持たせた値		
	※2 航空機火災による構造物を介した冷却空気の温度上昇		
	<u>(ΔT_b=2.2℃) を包絡する 5℃に設定</u>		
	第2.2.4-4表 評価に用いた諸元		
	残留熱除去系 非常用ディーセット		
	海水系ポンプ 売電機(高圧)パールイボ 電動機 ディーゼ ル発電機を含む。) 用		
	通本ボンデ電動機 G:重量流量(kg/s) 2.6 0.72		
	A:輻射を受ける面積(m ²) 12 1.6		
	電動機		
	· · · · · · · · · · · · · · · · · · ·		
	・受数面		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号	炉	備考	
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2より					
	算出する。					
	$\underline{\mathbf{E}} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi}$		式2)			
	<u>E:輻射強度(W/m²), Rf:輻射</u>	卷散度(W/m²),				
	<u>Φ:形態係数</u>					
		(出典:評	価ガイド)			
	式2で求めた形態係数Φとなる危	険距離しを,式	<u>3より算出</u>			
	<u> </u>					
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \begin{cases} (A - 2n) \\ n \sqrt{AB} \end{cases} \tan^{-1} \left[\sqrt{\frac{A(n - 2n)}{B(n + 2n)}} \right] = \frac{1}{\pi n} \left[\sqrt{\frac{A(n - 2n)}{B(n + 2n)}} \right]$	$\left[\frac{l}{l}\right]^{-\frac{1}{n}} \tan^{-1}\left[\sqrt{\frac{(n-1)}{(n+1)}}\right]$	} (式3)			
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$					
	Φ:形態係数, L:離隔距離(m), H:炎の高さ(m),					
	<u>R:燃焼半径(m)</u>					
		(出典:評	価ガイド)			
	上記のとおり危険距離を算出し、当該燃料輸送車両から評価					
	対象施設までの離隔距離を下回るか評価を実施した。					
	輻射熱によって上昇する冷却空気の到達温度を算出した					
	<u>結果,計谷温度以下であることを確認した。評価結果を第</u>					
	2.2.4-5 X (C/N 9.0					
	第2.2.4-5表 燃料輸送車両火災影響評価結果					
	評価対象施設	危険距離 (m)	離隔距離 (m)			
	残留熱除去系海水系ポンプ	13	760			
	非常用ディーゼル発電機(高圧炉心スプレイ系ディ	11	760			
	- で // 免 電機を 宮 む。) 用 御 水 ま 27					
	2.2.5 放水路ゲートに対する危険距離評価					・設備の相違
						【柏崎 6/7,東海第二】
	放水路ゲートについて、燃料輸送車両の火災を想定して評					島根2号炉では,軽油
	価を実施した。					タンク、燃料移送ポン

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(2)</u> 評価対象施設の仕様		プ,非常用ディーゼル発
	放水路ゲート駆動装置の外殻となる放水路ゲート駆動装置		電機は,地下構造等の屋
	外殻の仕様を第2.2.5-1表に,外形図を第2.2.5-1図に示す。		内設備のため影響評価
			対象外。
	第2.2.5-1表 評価対象施設の仕様		また, 放水路ゲートに
	名称 放水路ゲート駆動装置 床面高さ T.P. +11.0m 外殻材料 炭素鋼 個数 3		ついても, 設置していな
			いため影響評価対象外。
			なお, 島根 2 号炉で
			は, 海水ポンプは, 屋外
			設置のため影響評価を
			実施
	第2.2.5-1 図 評価対象施設の外形図		
	(3) 評価対象施設までの離隔距離		
	想定火災源から評価対象施設までの離隔距離を第2.2.5-2表		
	に示す。		
	第2.2.5-2表 想定火災源から評価対象施設までの離隔距離		
	相定止災 施 放水路ゲート		
	<u>恐足外炎</u> 源 (m)		
	燃料輸送車両 600		
	(4) 判断の考え方		
	A:		
	る短期温度上昇を考慮した場合において 鋼材の強度が維		
	持される保守的な温度 325℃以下とする。		
	b. 評価方法		
	一定の輻射強度で放水路ゲート駆動装置外殻が昇温され		
	るものとして、表面での輻射による入熱量と対流熱伝達に		
	よる外部への放熱量が釣り合うことを表した式1により外		
	殻表面の温度が 325℃となる輻射強度(=危険輻射強度)を		
	求める		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$T = T_0 + \frac{E}{2} $ (式 1)		
	2h		
	(出典:建築火災のカカニズムと火災安全設計,		
	<u>时団法人日本建築センター)</u>		
	$1: 計谷偏度(325C), 1_0: 仍期偏度(50C)^{-1}$ 下,輻射強度($W(-2)$) 上,執伝法索(17 $W(-2/V)$) ²		
	<u> 上: 軸別 强度(W/==), Π: χ(広運$2^{\circ}(1)$//=/Λ)</u>		
	会性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は、受熱面		
	の形状や周囲の環境条件を受け変化するが、一般的な		
	値として垂直外壁面、屋根面及び上げ裏面の夏季、冬		
	季の値が示されている。評価上放熱が少ない方が保守		
	的であることから、これらのうち最も小さい値である		
	$17W/m^2/Kを用いる。)$		
	式1で求めた危険輻射強度Eとなる形態係数Фを,式2より		
	算出する。		
	$\mathbf{E} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{\textbf{I}}$		
	E:輻射强度(W/m^2), Rf:輻射発散度(W/m^2),		
	<u> の: 形態係数</u> (川曲、誕年考え))		
	式 9 で求めた形能係数 の とたる 合 哈 距離 I を 式 3 上 り 算出		
	する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{x} 3)$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	<u>(出典:評価ガイド)</u>		
	上記のとおり危険距離を算出し、当該燃料輸送車両から評価		
	対象施設までの離隔距離を下回るか評価を実施した。放水路ゲ		
	<u> 一下の計価概念図を弗2.2.5-2 図に示す。</u>		
相崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
---	---	--	---
	放水路ゲート駆動装置外殻		
	: 受熱面 第2.2.5-2 図 放水路ゲートの評価概念図		
	 c. 評価結果 放水路ゲート駆動装置外殻の表面温度が 325℃となる危険距 離を算出した結果,放水路ゲートまでの危険距離が離隔距離以 下であることを確認した。評価結果を第2.2.5-3表に示す。 年2.2.5-3表 放水路ゲートへの燃料輸送車画水災影響評価結果 		
	第2.2.3 3 次 放水路グート 2.2.3 3 次 放水路ゲート 2.2.3 3 次 放水路ゲート 2.2.3 3 次 加水路ゲート 2.2.3 3 次 加水路ゲート 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
 3. 燃料輸送車両の爆発影響評価 (1) 燃料輸送車両の火災の想定の条件 ・発電所敷地外 10km 以内の施設において液化石油ガス輸送 車両が許可申請されていることから,最大規模の液化石油 ガス輸送車両が発電所敷地周辺道路で火災・爆発を起こした場合を相定する 	 3. 燃料輸送車両の爆発影響評価 (1) 燃料輸送車両及び燃料に係るデータ 発電所敷地外の公道上での燃料輸送車両の爆発を想定し, 評価対象施設に対する影響評価を行った。 	 3. 燃料輸送車両の爆発影響評価 (1) 燃料輸送車両の爆発の想定条件 <u>LPガスボンベを運搬する車両が発電所出入口ゲートで</u> 爆発を起こした場合を想定する。 	 ・設備の相違 【柏崎 6/7,東海第二】 島根2号炉は,発電所 敷地周辺の道路世況や
 ・燃料積載量は液化石油ガス輸送車両の中で最大クラスのもの(16t)とする。 ・燃料輸送車両は燃料を満載した状態を想定する。 ・輸送燃料は液化石油ガス(プロパン)とする。 ・発電所敷地境界の道路での高圧ガス漏えい、引火による燃料輸送車両の爆発を想定する。 ・気象条件は無風状態とする。 	可燃性ガスを輸送する燃料輸送車両は, <u>最大クラスの燃料</u> 輸送車両(積載量:15.1t)に液化天然ガス(LNG)及び液 化石油ガス(LPG)が積載された状況を想定した。評価条 件を第3-1表に示す。 また,爆発発生場所としては,発電所敷地外の近隣の国道	 ・燃料輸送車両は<u>運用上の最大値(0.5 トン)を積載した</u> <u>状態とする。</u> ・輸送燃料は<u>LPガス</u>(プロパン)とする。 ・<u>発電所出入口ゲート</u>での高圧ガス漏えい,引火による燃 料輸送車両の爆発を想定する。 ・気象条件は無風状態とする。 	運用状況を踏まえ,プロ パンガスボンベを輸送 している車両について 影響評価を実施

柏崎刈羽	原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉		
(2) 評価手法	の概要				(2) 評価手法	(2) 評価手法の概要	
本評価は	柏崎刈羽原子力発電所に対する燃料輸送車両のガ				本評価は	, <u>島根</u> 原子力発電所に対する燃料輸送車両のガス	
ス爆発によ	る影響の有無の評価を目的としている。具体的な評	评		爆発による	影響の有無の評価を目的としている。具体的な評		
価指標とそ	の内容を以下に示す。				価指標とそ	の内容を以下に示す。	
答	§ 3-1 表 評価指標及びその内容					第 3-1 表 評価指標及びその内容	
評価指標	内容				評価指標	内容	
危険限界距離	[m] ガス爆発の爆風圧が 0.01MPa 以下になる距離				危険限界距離[n] ガス爆発の爆風圧が 0.01MPa 以下になる距離	
(3) 評価対象	範囲				(3) 評価対象領	色囲	
評価対象	範囲は,発電所 <u>敷地境界の道路</u> で出火する燃料輸送				評価対象	範囲は,発電所 <u>出入口ゲート</u> で出火する燃料輸送	・条件の相違
車両とする					車両とする	o	【柏崎 6/7】
							地域特性を踏まえた
(4) 必要デー	<i>b</i>				(4) 必要デー	Я	評価対象及び評価条件
評価に必	要なデータを以下に示す。				評価に必	要なデータを以下に示す。	の相違
第	3-2 表 高圧ガス爆発の評価条件	第 3-1 表 / 隽	暴風圧影響評価で想定	した評価条件		<u> 第3−2 表 高圧ガス爆発の評価条件</u>	
データ種類	内容				「データ種類」	内容	
石油のK値	コンビナート等保安規則第5条別表第二に掲げる数値 K=888000 (プロパンの最大値)		燃料輸	送車両	て油の火焼	コンビナート等保安規則第5条別表第二に掲げる数値 K-999000(プロパンの常用の温度 10 以上 40 古港の K 体 999	
	コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応		液化天然ガス	液化石油ガス		A = 888000 (ノロハンの常用の温度 10 以上 40 米満の K 値 328 に 1,000 を乗じた値)	
	じて次に掲げる数値 貯蔵設備・液化ガスの貯蔵設備にあってけ貯蔵能力(単位:トン)		(メタン)	(プロパン)		コンビナート等保安規則第5条貯蔵設備又は処理設備の区分	
	の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては,	貯蔵量(t)	15.1	15.1		に応じてひにありる数値 貯蔵設備:液化ガスの貯蔵設備にあっては貯蔵能力(単位:ト	
貯蔵設備又は処	貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっては 貯蔵能力(単位:ウ方メートル)を当該ガスの常用の温度及び圧力	貯蔵ガスK値*1	714	888		ン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあ	
理設備の₩値	におけるガスの質量(単位:トン)に換算して得られた数値の平方	貯蔵設備W值*2	4	4	貯蔵設備又は	っては、町廠能力(単位:トン)の数値)、圧縮カスの町廠設 備にあっては貯蔵能力(単位:立方メートル)を当該ガスの常	
	根の数値(換算して得られた数値が一未満のものにあっては、当 該換算して得られた数値)	※1 評価ガイド 言	己載値			用の温度及び圧力におけるガスの質量(単位:トン)に換算し て得られた教徒の平吉担の教徒(絶算)て得られた教徒が一主	
	処理設備:処理設備内にあるガスの質量(単位:トン)の数値	※2 貯蔵量は1tり	以上となるため、貯蔵量	の平方根の数値		満のものにあっては、当該換算して得られた数値)	
	₩=16 ^{1/2} =4 発電所敷地境界の道路から発電用原子炉施設までの距離					処理設備:処理設備内にあるガスの質量(単位:トン)の数値	
离距隔距离[m]	約 811[m]					W-0.5 発電所出入口ゲートから発電用原子炉施設までの距離	
					两世 IPP9 正已 两世 L 面 」	約 890m	
(5) W 値の算	出				(5) ₩値の算ど	Ц	
最大規	莫の燃料輸送車両の積載量を貯蔵能力とし, W 値を				貯蔵能力	が1トン未満のものは、貯蔵能力(単位:トン)	・条件の相違
算出する。					の数値とす	<u>ることから,</u> ₩ 値を算出する。	【柏崎 6/7】
積載量	(貯蔵能力) = <u>16[t]</u>				積載量(貯蔵能力) =0.5[トン]	地域特性を踏まえた
$W = 16^{1/2}$	2=4				<u>₩=0.5</u>		評価条件の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(6) 危険限界距離の算出	<u>(2)</u> 危険限界距離の算出	(6) 危険限界距離の算出	
次の式から危険限界距離を算出する。ここで算出した危険限	評価ガイドに基づき,下式より危険限界距離を算出した結果,	次の式から危険限界距離を算出する。ここで算出した危険	
界距離が燃料輸送車両と発電用原子炉施設の間に必要な離降	6 危険限界距離が離隔距離以下であることを確認した。評価結果	限界距離が燃料輸送車両と発電用原子炉施設の間に必要な離	
距離となる。	を第3-2表に示す	隔距離 <u>となる</u> …	
$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	X=0. 04 × 14. $4\sqrt[3]{(K × 1, 000 × W)}$	$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	
X:危険限界距離[m], λ:换算距離 14.4[m·kg ^{-1/3}], K:石油	A X: 危険限界距離 (m), K: 石油類の定数 (-), W: 設備定数 (-)	X: 危険限界距離[m], <u>λ: 換算距離14.4[m·kg^{-1/3}]</u> ,	
類の定数, W:設備定数		K:石油類の定数, W:設備定数,	
K=888000, W= <u>4</u> として,危険限界距離を求める。	第3-2表 外壁への燃料輸送車両爆発影響評価結果	<u>K=888,000, W=0.5として, 危険限界距離を求める。</u>	
X=約 88[m]	[1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	<u>X=約44 [m]</u>	
	想定爆発源 ガス植類 (t) (m) (m)		
	燃料輸送車両 メタシ 15.1 81 450		
	※ 防護対象施設のなかで国道245号線から最も離隔距離が短いタービン建屋 までの距離		
 (7) 爆発による影響評価結果		(7) 爆発による影響評価結果	
以上の結果から、燃料輸送車両において爆発が発生した場合		以上の結果から、燃料輸送車両において爆発が発生した場	
を想定したとしても,離隔距離(約 <u>811m</u>)が危険限界距離(統		合を想定したとしても,離隔距離(約890m)が危険限界距離	
88m)以上であることから,発電用原子炉施設に爆風圧による景		(約 <u>44m</u>)以上であることから,発電用原子炉施設に爆風圧	
響はないと評価する。		による影響はないと評価する。	
4. 燃料輸送車両の飛来物の影響評価	4. 燃料輸送車両の爆発飛来物影響評価	4. 燃料輸送車両の飛来物の影響評価	
「石油コンビナートの防災アセスメント指針」(平成 25 年	3	「石油コンビナートの防災アセスメント指針」(平成25年3	
月 消防庁特殊災害室)※に基づき,飛来物の最大飛散距離の		月 消防庁特殊災害室) *に基づき, 飛来物の最大飛散距離の	
評価を行ったところ、最大飛散距離に対し柏崎刈羽原子力系		評価を行ったところ、最大飛散距離に対し、島根原子力発電	
電所までの離隔距離が評価上必要となる距離 <u>以下</u> であった。		所までの離隔距離が評価上必要となる距離 <u>以上</u> であった。	・評価結果の相違
このため、飛来物を想定した上での詳細な評価を実施した		このため, 飛来物は発電用原子炉施設に衝突することはない。	【柏崎 6/7】
ところ,飛来物は発電用原子炉施設に衝突することはない。	-		条件の相違に伴う評
		※:石油コンビナート等特別防災区域を有する都道府県が防	価結果の相違
※:石油コンビナート等特別防災区域を有する都道府県が防	Ī	災計画を作成するにあたって、災害の想定をできるだけ	
災計画を作成するに当たって、災害の想定をできるだけ客		客観的かつ現実的に行うための評価手法を示した指針	
観的かつ現実的に行うための評価手法 を示した指針			
<u>第 4-1 表 飛来物の評価条件</u>		第4-1表 飛来物の評価条件	
評価条件 貯蔵ガス 液化石油ガス		評価条件	
的版合 INTERTION			
		貯蔵ガス LPガス 貯蔵量 0.5 bン	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(1) 飛来物の最大飛散距離の算出方法	4.1 飛来物の最大飛散距離の簡易評価	(1) 飛来物の最大飛散距離の算出方法	
「石油コンビナートの防災アセスメント指針」に基づき,	国道245号線を通る加圧貯蔵の燃料輸送車両について、「石	「石油コンビナートの防災アセスメント指針」に基づき,	
容器の破損による 破片の飛散範囲を以下の式にて算出する。	油コンビナートの防災アセスメント指針」(平成 25 年 3 月 消	容器の破損による破片の飛散範囲を以下の式にて算出する。	
	防庁特殊災害室)に基づき、下式よりタンクの破損による破片		
	の飛散範囲を算出した。		
$L = 465M^{0.10}$	$L = 465 M^{0.10}$ (容積 5m ³ 以上の容器)	$L = 90 M^{0.333}$	
L:破片の最大飛散範囲[m], M:破裂時の貯蔵物質量[kg]	L:破片の最大飛散範囲, M:破裂時の貯蔵物質量	L:破片の最大飛散範囲[m],M:破裂時の貯蔵物質量[kg]	
$L = 465 \times (16000)^{0.10} = 122423$		$\underline{L} = 90 \times 500^{0.333} = 712.85$	
		となり,飛来物の最大飛散距離Lは約713mとなる。	
となり,飛来物の最大飛散距離 L は約 <u>1,225m</u> となる。			
	算出したタンク破片の飛散距離は 1,218m であり発電所敷地		・評価結果の相違
	に到達することを確認した。このため、より現実的な飛来物形		【柏崎 6/7,東海第二】
	<u>状等の想定を踏まえた詳細評価を実施することとした。</u>		条件の相違に伴う評
			価結果の相違
(2) 飛来物の最大飛散距離の詳細な評価	4.2 飛来物の最大飛散距離の詳細評価		
上記「石油コンビナート防災アセスメント指針」に基づく	上記「石油コンビナートの防災アセスメント指針」に基づく		
<u> 飛散範囲の推定式によると、飛来物が発電用原子炉施設に到</u>	飛散範囲の推定式によると,飛来物が発電用原子炉施設に到達		
達するおそれがあることから,燃料輸送車両(第 4-1 図参照)	<u>するおそれがあることから,燃料輸送車両(第4.2.2-1図参照)</u>		
から発生すると考えられる飛来物を想定した上での評価を行	から発生すると考えられる飛来物を想定した上での評価を行っ		
<u>った。</u>	<u>t.</u>		
飛来物の想定にあたり, BLEVE 現象 ^{※1} を引き起こす可能性	<u> 飛来物の想定に当たり、BLEVEを引き起こす可能性があ</u>		
がある液化石油ガス輸送車両のうち積載量が国内最大クラス	る加圧貯蔵の燃料輸送車両のうち積載量が国内最大クラスの構		
ものの構造図をもとに、飛来物化することが想定される爆風	<u>造図を基に、飛来物化することが想定される爆風の影響を直接</u>		
の影響を直接受ける可能性がある部位を選定したところ、タ	受ける可能性がある部位を選定したところ、タンク本体(鋼板)		
<u>ンク本体・はしご・バンパー部が抽出された。台車部等タン</u>	及びはしご(鋼製パイプ)を抽出した。		
<u>ク下部に位置する部品は、爆発力の方向をふまえると、発電</u>	<u>台車部などタンク下部に位置する部品は、爆発力の方向を踏</u>		
用原子炉施設に到達せず, また横 転した場合を考えても, 下	まえると、発電用原子炉施設に到達せず、また横転した場合を		
部の部品の飛散方向は発電所周辺道路の地形の高まりや森林	<u>考えても、タンク下部の部品の飛散方向は発電所周辺道路の地</u>		
の樹木に干渉し発電用原子炉施設に到達しないことから影響	形の高まりや森林の樹木に干渉し発電用原子炉施設に到達しな		
はない。トレーラーについては、鋼板で構成されており、そ	<u>いことから影響はない。</u>		
の大きさからタンク本体の評価に包絡される。	<u>抽出した飛来物に対して, 第4.2.2-1 図のとおり燃料輸送車</u>		
抽出した飛来物に対して,第4-2表のとおり液化石油ガス	<u>両の構造図</u> ,車両制限令に定められる限界値,「原子力発電所の		
輸送車両の構造図、車両制限令に定められる限界値、「原子力	<u> 竜巻影響評価ガイド」に例示の飛来物から、包絡的な飛来物を</u>		
発電所の竜巻影響評価ガイド」に例示の飛来物から、包絡的	設定した。なお、現実的には以下に示す車両の部品は存在しな		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
な飛来物を設定する。	いが、飛散距離を保守的に評価するため、存在すると仮定して		
はしご及び, バンパーの長さはともに 2.5m 程度である。	評価を実施する。		
棒状の物体は長さが大きくなると飛距離が大きくなる傾向に	トラクターについては、鋼板で構成されており、その大きさ		
あることから、保守的な評価として鋼製パイプ及び鋼製材に	からタンク本体の評価に包絡される。		
ついては車両制限令に定められる車両長さの最大限度の	はしご (鋼製パイプ)の長さは 2.5m 程度である。棒状の物体		
16.5m での評価を実施する。	は長くなるほど飛散距離が長くなる傾向にあることから、保守		
また、タンク板の破片としては鏡板部分の破損を想定し	的な評価としてはしご(鋼製パイプ)については車両制限令に		
<u>2.5m×2.5m 程度が最大と考えられるが, 平板は幅, 長さが大</u>	定められる車両長さの最大限度の17.0mでの評価を実施する。		
<u>きくなるほど、飛距離が大きくなる傾向にあることから、保</u>	また、タンク本体(鋼板)の破片としては鏡板部分の破損を		
守的な評価としてタンクの半分が破片となる想定をする。幅	想定し2.5m×2.5m程度が最大と考えられるが,平板状の物体は		
は車両制限令に定められる車両の幅の最大限度の 2.5m,長さ	幅、長さが長くなるほど、飛散距離が長くなる傾向にあること		
を車両制限令に定められる車両長さの最大限度の16.5mの平	から、保守的な評価としてタンクの半分が破片となる想定をす		
板について評価を実施する。厚さについては,構造図から	る。幅は車両制限令に定められる車両の幅の最大限度の2.5m,		
0.01mとする。	長さを車両制限令に定められる車両長さの最大限度の 17.0m の		
竜巻飛来物の飛行解析モデル(Simiu and Cordes, 1976)	平板での評価を実施する。厚さについては,構造図*から0.01m		
(東京工芸大, 2011)(江口ら, 2014 及び 2015)と同じモデ	とする。		
ルを使用し、空中では物体はランダムに回転すると仮定し、	※ 高圧ガスタンクローリーの事故防止について(高圧ガス		
外力としては重力及び平均抗力(各方向に平均化した抗力係	保安協会)		
数と投影面積の積に比例して定義されるもの)を受けるもの			
とする。	4.2.1 タンク爆発により発生する飛来物の最高速度の算出		
「BLEVE 時の破片最大速度は 150-200m/s」(Handbook of	タンク爆発により発生する飛来物の最高速度の算出は,別紙		
Hazardous Materials Spills Technology の 22.4.4 節)で	3.3と同様に「Methods for the Calculation of Physical Effects		
あることから、初期条件として地上にあるタンクローリ破片	<u>(TNO Yellow Book, CPR14E(Part 1),3rd edn)」に基づき求めた。</u>		
の初期速度を 200m/s とする。また,感度解析の結果より,	以下に抜粋を示す。		
もっとも遠くまで到達する放出角を鋼製パイプ及び鋼製材は	Step 3a2 Calculate the liberated energy, E_{av}		
<u>31°, 鋼板は 30°とする。</u>	Calculate the liberated energy in accordance with the method for blast effects, see		
想定飛来物の諸元及び,飛散距離の計算結果を第 4-2 表に	paragraph 7.5.2.		
示す。離隔距離 811m は,最大飛散距離である鋼製パイプの	Step 3a3 Calculate initial velocity, v_i		
550m を上回ることから,飛来物が発電用原子炉施設に到達す	This initial velocity of a fragment can be calculated by using of the following equation:		
ることはなく,影響はない。	$v_i = \sqrt{\frac{2 \times A_{ke} \times E_{av}}{M_i}} \qquad (m/s) \qquad (7.15)$		
※1:BLEVE 現象(沸騰液膨張蒸気爆発):液化ガスを貯蔵 するタンク火災等で、タンクが破損した場合に急激に 液化ガスが気化することに伴う爆発現象。	where E_{av} = liberated energy [J] M_v = total mass of empty vessel [kg] A_{ke} is the fraction of the liberated energy that goes into kinetic energy of the fragments. It depends on the situation. Upper limit $A_{ke} = 0.6$ Rough estimate $A_{ke} = 0.2$ BLEVE $A_{ke} = 0.04$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二	発電所(2018.9.12	版)	島根原子力発電所 2号炉	備考
	なお, タンク材重量	については、タンク	体積が最大の 33m ³ と		
	<u>なる円筒型のタンク</u> 飛	ジ状を想定して算出	した。評価条件を第		
(はしご~ 約	<u>4.2.1-1 表に示す。</u>				
	$V = \pi r^2 L \Rightarrow L =$	$=$ $\frac{V}{2}$			
約	$M = 2 \pi r I + \infty$	$\pm 2\pi r^2 \pm 2$			
	$M = 2\pi I L t p$	$\pm 2\pi I + t\rho$	+ (m)		
	 V:クンクの伴娘(3) r・田筒伴々い方底 	5m²), L:タンク安。 (両の平径(1_95m)※1	2 (m)		
	 1. 口向扒グング M・タンクの 哲量(k) 	』の十年(1.25m) (g) t ・タンク外層の	つ厚さ(0_01m) ^{※2}		
連結部。	MI: クジクの資重(K) o · タンク材密度(g), し・アラフア時間 7 850kg/m ³) ※ ³)字で(0.01m)		
第 4-1 図 燃料輸送車両概要図	※1 車両制限令	(積載物). 道路運送	美車両の保安基準(車		
	<u>」</u> ()により制	制限される最大幅 2.	5m を直径と想定した		
第 4-2 表 想定飛来物の諸元・飛散距離	場合の半径				
飛来物の種類 鋼製パイプ 鋼製材 鋼板	※2 高圧ガスタ	ンクローリーの事故	防止について(高圧		
(はしご) (バンパー) (タンク本体)	ガス保安協	会)に記載のタンク	厚さ (0.012m) を参		
$\begin{bmatrix} \forall \forall \uparrow \land (m) & \forall \xi \circlearrowright \land lle & \forall \xi \circlearrowright \land m \land \varPsi \lor lle \\ 16.5^{\$_1} \lor 0.05^{\$_2} & 16.5^{\$_1} \lor 0.3^{\$_3} \lor 0.2^{\$_3} & 16.5^{\$_1} \lor 2.5^{\$_1} \lor 0.01^{\$_4} \end{bmatrix}$	考に、薄い	いほど評価上保守的は	こなるため,厚さを		
質量(kg) 69.3 ^{*2} 530.4 ^{**3} 3238.1 孤数距離(m) 550 505 404	<u>0.01m</u> に設定	定			
消除於此時間(m) 350 505 404 離隔距離(m) 811	<u>※3</u> 合金鋼の密	度			
※1:車両制限令に定められる車両の幅2.5m,長さ16.5m(高速自動車国道を通行す るセミトレーラ連結車)の最大限度。					
※2:鋼製パイプの直径及び質量については、「原子力発電所の竜巻影響評価ガイド」	第 4.2.1-1 表	評価対象タンクの	評価条件		
を参考に設定した。直全 0.05m は,構造図上のはしこの直径約 0.04m を包絡する。		貯蔵容量 タンク体積※	*1 タンクの質量*2		
※3: 鋼製材の幅,奥行及び質量は、「原子力発電所の竜巻影響評価ガイド」を参考に 設定した 横浩図上のバンパー部の幅約0.3m。唐行約0.2mと同程度である	タンクの種類 内容物	(m ³) (m ³)	M (kg)		
※4:積載16t液化石油ガスタンクローリの構造図よりタンク板厚10mm					
(参考文献)	燃料輛达电问 LPG	30 33	4.9×10^{-5}		
1) Simiu, E. and Cordes, M., NBSIR 76-1050 Tornado-Borne	※1 消防法に基づき※2 タンク体積が 33	空間容積を 10%として算出 3m ³ となる円筒形状タンクを教	想定		
Missile Speeds (1976). 2) 東京工芸大学, 平成 21~22 年					
度原子力安全基盤調査研究(平成 22 年度) 竜巻による原子	爆発により発生する	エネルギが,ある割	合で飛来物に移行す		
力施設への影響に関する調査研究,独立行政法人原子力安全	ると仮定して最高速度	を算出した。算出に	用いた式は以下、評		
基盤機構委託研究成果報告書 (2011).	価結果は第 4.2.1-2 表	のとおり。			
3) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 竜巻による物体の	$\left(\begin{array}{c} a & -a \end{array} \right) \mathbf{V}$				
浮上・飛来解析コード TONBOS の開発, 電力中央研究所 研究	$E = \frac{\left(p_1 - p_2\right)v}{v - 1}$	-			
報告 N14002 (2014).	ý 1				
4) 江口譲, 杉本聡一郎, 服部康男, 平口博丸, 原子力発電所での	2 A E				
電巻飛来物速度の合理的評価法 (Fujita の竜巻モデルを用い	$v = \sqrt{\frac{M}{M}}$				
に 衆 個 所 が コート の 安 当 性 唯 認) , 日 本 機 械 字 会 論 乂 集 ,	•				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
Vol.81, No.823, [DOI: 10.1299/transjsme.14-00478]	v : 飛来物の最高速度 (m/s), M : タンクの質量(kg)		
(2015).	E:タンク爆発により発生するエネルギ(J)		
5) J. Casal, J. Arnaldos, H. Montiel, E. Planas-Cuchi, and J.	ρ1:タンク内の圧力(3.4MPa ^{※1}),ρ2:大気圧力(0.1MPa)		
A. Vı lchez,	V:タンクの体積 (33m ³), γ:比熱比 (1.1)		
Modeling and Understanding BLEVEs, in Handbook of	A:爆発エネルギの飛来物への移行係数(0.04 ^{*2})		
Hazardous Materials Spills Technology (ed.:M. Fingas),	※1 高圧ガス例示基準を参考とし,安全弁設定圧力×1.2		
chapter 22 (2002)	と設定		
	st 2 Methods for the Calculation of Physical Effects		
	(TNO Yellow Book, CPR14E(Part 1),3rd edn), van den		
	Bosch, C. J. H. & Weterings		
	第4.2.1-2表 飛来物の最高速度の評価結果		
	爆発エネルギ 飛来物の最高速度		
	<u>4.2.2</u> 最大飛散距離の算出		
	空中では物体はランダムに回転すると仮定し、外力としては		
	重力及び、平均抗力(各方向に平均化した抗力係数と投影面積		
	の積に比例して定義されるもの)を受けるものとし、放出角は		
	<u>感度解析の結果,最も遠くまで到達する角度とした。</u>		
	水平方向:m $\frac{dv_x}{dt}$ =F $\frac{v_x}{V(t)}$		
	鉛直方问: $m \frac{f}{dt} = F \frac{f}{V(t)} - m g$		
	$\mathbf{F} = -\frac{1}{2} \mathbf{C}_{\mathrm{D}} \mathbf{A} \ \rho \ \mathbf{V} \ (\mathbf{t})^{2}$		
	$V(t) = \sqrt{v_x^2 + v_y^2}$		
	m・飛本物の質量(k_{r}) 下・空気抵抗にトスタカ (_)		
	$ m · 元 元 元 20 · 2 頁 (ng), 1 · 元 X(12)/(による) / (一) $ $ \sigma · 舌力加速度(9.8m / e2) CD · 法休坊力 (本) $		
	$s · 王//// 企(ス (い) m/ s), し D · //(仲)/// 示 数 () \Delta · 飛 本 物 の 凍 庶 方向 に 対 オ ス 投 影 西 諸 (m2)$		
	V ・飛来物の凍度(m/c) 。・空気溶度(1.9 $k_{\rm m}$ /m ³)		
	Y · /丙/ヘ∇1/3/×/ /Δ/ス (Ⅲ/ S/, μ · 工ス(伍皮 (1· 4Kg/ Ⅲ)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東	〔海第二発電所(2018.	9.12版)	島根原子力発電所	2号炉	備考
	<u>燃料輸送車両</u> び,飛散距離の	概要図を第 4.2.2-1 国 計算結果を第 4.2.2-1	図に <u>, 想定飛来物の諸元及</u> <u> 表に示す。</u>			
	タンク本体 0	17m				
	<u>第 ·</u>	4.2.2-1 図 燃料輸送	·車両機要凶			
	第 4.2.2	2-1 表 想定飛来物の	諸元・飛散距離			
	飛来物の種類	鋼製パイプ (はしご)	鋼板 (タンク本体)			
	サイズ (m)	長さ×直径 (17.0 ^{*1} ×0.05 ^{*2})	長さ×幅×厚さ (17.0 ^{*1} ×2.5 ^{*1} ×0.01 ^{*4})			
	質量 (kg)	71 ^{× 2}	3, 336 ^{** 3}			
	飛散距離(m)	435	450			
	 離隔距離(m) ※1 車両制限令第3 大限度(長さ1 ※2 鋼製パイプの直 設定した。直名 ※3 鋼板の質量にへ ※4 「高圧ガスタン 板厚 0.01mと認 	(国道245号線から最も近い発電用 条3項及び通達で定められた指定道) 7.0m, 幅2.5m) (経及び, 質量については, 「原子力 6.05mは, 構造図上のはしごの直径 いいては, 「原子力発電所の竜巻影響) クローリーの事故防止について」(なした。)	原子炉施設(タービン建屋)までの距離) 路を通行できるセミトレーラー車両の最 発電所の竜巻影響評価ガイド」を参考に 約0.04mを包絡する。 評価ガイド」を参考に設定した。 高圧ガス保安協会)の構造図よりタンク			
(3) 飛来物影響評価結果				(2) 飛来物影響評価結果		
燃料輸送車両からの飛来物を想定した上での評価を実施し たところ 離原距離(約 811m)が是士恐欺距離(約 550m)	鋼製パイプの 450m を下回るこ	評価結果である最大所	後散距離435mは,離隔距離	燃料輸送車両からの飛来物を想	<u>定したうえでの評価を実施</u> が是士恐獣距離(約712m)	
を上回る結果となった。したがって、発電所周辺道路で燃料	45001を下回るこ 対象施設の安全	機能を喪失することに	町の漆光派未初により計画 はない。	を上回る結果となった。したがっ	て,発電所の敷地境界(発	
輸送車両が事故等により爆発し、なおかつその飛来物が発電	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			電所出入口ゲート)で燃料輸送車	両が事故等により爆発し,	
用原子炉施設に衝突することはなく、影響はない。				なおかつその飛来物が発電用原子	炉施設に衝突することはな	
				<u>く, 影響はない。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 4-1			
燃料物性値について			・設備の相違
			【柏崎 6/7】
燃料輸送車両の火災影響評価では 爆発による影響が大きいこ			鳥根2号炉は 発電所
			動地国辺の道路世況や
			演用出現を踏まう プロ
			連用 仏 化 と 暗 よ ん , ノ ビ パン ガ フ ボ ン ぷ た 酔 学
<u> 輪射先散度が入さく輪射速度も入さくなるに</u> の体寸的でのるか,			ハンガスホンハを輸送
賀重低下速度が速く燃焼時間が起い。このにめ、燃料積載重が入			している単画について
さいカソリンを搭載したタンクローリと比較し、想定の妥当性に			影響評価を実施
ついて評価する。			
評価に必要なデータを以下に示す。			
第 1 表 プロパンとガソリンの評価条件			
燃料の種類 プロパン ガソリン			
燃料量[ton] 16 23.4 (30[ton])			
輻射発散度[W/m ²] ¹⁾ 74×10 ³ 58×10 ³			
[質量低下速度[kg/m ² ・s] ²⁾ 0.099 0.055			
燃料輸送車両投影面積[m ²] 41.25 ³ 41.25 ³			
1) 評価カイド付属書Bより			
2) NURE6-1805 より 2) 東西長 16 5[m] - 東西制阻合 第三条			
3) 単両式 10.5 [m] . 単両前版市 第二米 車両幅 2 5 [m] . 道路運送車両の保安基進 第一条			
<u> </u>			
<u> 9 </u>			
第 2 表 危険距離の算出結果			
プロパン ガソリン			
危険距離[m]* 約 32m 約 28m			
※:最大値(燃料移送ポンプの場合)を記載			
以上の結果から、プロパンとガソリンの燃料物性値の相違によ			
以上であることから、発電用原子炉施設に熱影響をおよぼすこと			
はないと評価できる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 4-2			
燃料輸送車両の飛来物による影響評価について			・設備の相違
			【柏崎 6/7】
<u>1. はじめに</u>			島根2号炉は,発電所
柏崎刈羽原子力発電所では,燃料輸送車両の爆発時の飛来物の			敷地周辺の道路状況や
影響について、離隔距離が十分であることから影響はないとして			運用状況を踏まえ,プロ
いる。一方,「石油コンビナート防災アセスメント指針」に基づく			パンガスボンベを輸送
評価によると,離隔距離(811m)が,最大飛散距離(1,225m)以下			している車両について
であることから、参考として、頻度及び影響度の観点からリスク			影響評価を実施
<u>について評価する。</u>			
2. 燃料輸送車両の飛来物による影響がないことについて			
(1) 発電所周辺道路の交通状況			
発電所周辺道路としては国道 352 号線があるが,発電所付近			
は工業地域を走行する道路ではなく,より高規格で直線的な線			
形の道路である国道 116 号線に加え,国道 8 号線や高速自動車			
国道が並走しているため、新潟市(新潟東港地区・新潟西港地			
区)-(刈羽村・柏崎市)-上越市(直江津地区)等のコンビ			
<u>ナート間の通過交通に積極的に使用される道路ではない。また,</u>			
発電所周辺 10km 以内において液化石油ガスの許可申請を実施			
している 15 事業所に聞き取りを実施したところ, 回答を得ら			
れた 12 事業所のうち, 定常的に敷地付近の主要な道路である国			
352 号線の発電所付近を通過するタンクローリを取扱い,受け			
入れするのは 1 事業所のみであり, 繁忙期においても週1回程			
度の低頻度である。			
(2) 爆発時の発電用原子炉施設への影響			
燃料輸送車両は、高圧ガス保安法等の規制のもと製造・維持・			
管理されており,信頼性が確保されているが,万が一燃料輸送			
<u>車両の爆発により飛来物が発生したとしても、周辺道路からの</u>			
離隔距離は 811m 以上であり, BLEVE 現象 ^{※1} により容器が破損			
した場合の最大飛散範囲 1,225m に及ばないものの一定の離隔			
距離が確保されており影響は緩和される。発電用原子炉施設に			
衝突するものは多くても数個程度,また重量も小さいものであ			
<u>ると考えられ,建屋が一定の頑健性を持っていることを踏まえ</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
ると、同時に複数の設備に影響を与えることは考え難い。した		
がって、広範な影響を及ぼす可能性のある地震、津波を初めと		
する自然現象・人為事象に比べ,影響が小さいと言える。		
また、次項に述べるような確率論的な考察によっても、リス		
クが小さいと言える。		
以上のように、発電所周辺においては燃料輸送車両の交通が少		
ないことに加え、最大飛距離には及ばないものの一定の離隔が		
あること、また事象が生じた際の影響が小さく一部設備にとど		
<u>まることから、燃料輸送車両の爆発に伴う飛来物による発電用</u>		
原子炉施設への影響はないと判断できる。		
※1:BLEVE 現象 (沸騰液膨張蒸気爆発):液化ガスを貯蔵する		
タンク火災等で、タンクが破損した場合に急激に液化ガス		
が気化することに伴う爆発現象。		
3. 燃料輸送車両の飛来物による影響の確率論的考察について		
前項で述べたとおり、燃料輸送車両が爆発した際の影響は小さ		
く無視できると考えられるが、本項では、過去の事故発生頻度を		
用いて燃料輸送車両の爆発飛来物が発電用原子炉施設へ損傷を与		
える可能性がある確率を算出しても極めて低い値となることを確		
認する。		
(1) 評価条件		
・評価対象は原子炉建屋・コントロール建屋・廃棄物処理建屋・		
海水熱交換器区域・軽油タンクとする。		
・敷地付近の主要道路である国道 352 号線を通行する燃料輸		
送車両の火災を想定する。		
・積載物としては、BLEVE 現象を引き起こす、液化石油ガスを		
想定する。		
・燃料積載量は、液化石油ガス輸送車両の中で最大クラスの		
<u>16t を想定する。</u>		
20 計画力伝		
<u>計画に使用する台ハノクニクについて弗 I 衣に示す。</u> 。 英迎目内での歴史語送声声の爆発車や発生層座		
a. 机/// パリンの// / / / / / / / / / / / / / / / / / /		
<u> 光电出尿于炉肥改に影響を及ばりよりな</u> 嫌免を想定する		
<u> 単画として,BLEVE 現象を引さおこすおそれかめる,可燃</u>		

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
性の高圧ガスを積載した車を考える。 新潟県内では平成 16			
年から平成 26 年までの 10 年間で 3 件の, 可燃性の高圧			
ガスを積載したタンクローリに関する事故が発生してい			
る。これらは、いずれも漏えい等に留まり爆発事故には至			
っていないが、保守的な値として新潟県内において燃料輸			
送車両の爆発事故が発生する頻度を次のように求める。			
3 / 10 = 0.3[件/年]			
b. 周辺道路での燃料輸送車両の爆発事故発生頻度			
「石油コンビナートの防災アセスメント指針」に基づく,			
容器の破損による破片の飛散範囲 L は以下のとおり約			
<u>1.3km である。</u>			
<u>L = 465 × (16,000)^{0.10} = 1,224.23 [m]</u>			
したがって、爆発事故が発生した際に、飛来物が発電用原			
子炉施設に影響を与え得る道路延長は第 1 図のとおり,約			
<u>2.3km である。</u>			
周辺道路での燃料輸送車両の爆発事故発生頻度は、県内の			
燃料輸送車両の事故が、すべて新潟県内の高速自動車国道(実			
延長 379.5km) あるいは一般国道 (実延長 1781.9km) で発生			
したと仮定し算出する。高速自動車国道及び一般国 道の実延			
長は $379.5 + 1781.9 = 2161.4$ km から 2000km, 周辺道路の			
長さは約 2.3km から 3km とそれそれ保守的に設定する。			
周辺追路での燃料輛达単画の爆発事故発生頻度は次のよう			
(こなる) h 2 × 2 / 2000 = 4 5×10 ⁻⁴ [作/年]			
$0.3 \times 3 / 2000 - 4.3 \times 10^{-1} [+/+]$			
。一番本物の発電田原子恒施設衝空確率			
<u> め</u> 数4 歳 ま あ の 爆 発 時 に 飛 来 物 が 発 雷 田 原 子 に 施 設 に 到			
達する確率は、燃料輸送車両を中心とする半径が最大飛艇			
<u> </u>			
し算出する。評価対象施設の合計面積は,11843.5m ² である			
<u>から飛来物の発電用原子炉施設衝突確率は 11843.5 / (π</u>			
×1225 ²) = 2.51×10 ⁻³ となる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(3) 評価結果			
以上を踏まえると、燃料輸送車両による爆発により発電用			
原子炉設備に影響を与える確率は,			
<u>4.5×10⁻⁴×2.5×10⁻³ = 1.1 ×10⁻⁶ 程度と算出される。</u>			
(4) 結論			
燃料輸送車両が爆発しその飛来物が、発電用原子炉施設に			
<u>落下する確率は1.1×10⁻⁶ と極めて小さく,稀にしかおこら</u>			
ない。また建屋による防護にも期待できることから影響は無			
視できる。			
原子炉建屋コントロール建屋			
廃果物処理電量 海水熟受機器区域 軽油タンク			
「「「「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「			
ký 1. ško			
道路延長約 2.3km			
(トンネル部除く)			
第 1 図 敷地内概要図			

柏崎刈羽原子力発電所	6/7長	·炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 1	表 各種入	力条件			
燃料輸送車兩爆發頻度	ク 0.2 [/年]				
然种鞘达 半 间蒸光頻度	0.3 [/+]	中成10年9年成20年6月10年			
		前に新福泉子での前上の八損 載車両の爆発事故発生回数3回			
		戦平内の2線光争政先上回数3回 上り設定			
		出典・平成 26 年度高圧ガス事			
		故事例データベース(経済産業)			
		省・高圧ガス保安協会)			
到達距離	1225 [m]	「石油コンビナートの防災ア			
	2.2	セスメント指針 掲載の式より			
		設定			
原子炉建屋へ影響を与え得る	3 [km]	飛来物が発電用原子炉施設に			
範囲の道路延長		到達する可能性がある道路延			
		長約 2.3km より保守的に設定			
		(第1図)			
新潟県内 国道総延長	2000 [km]	一般国道:1781.9km			
		高速自動車国道:379.5km			
		(道路統計年報 2014)			
		合計 2161.4km より保守的に設			
		定			
標的面積	11843.5	原子炉建屋・コントロール建			
	[m ²]	屋・廃棄物処理建屋・海水熱交			
		換器区域・軽油タンクの合計面			
		植			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-5	添付資料-5	添付資料-5	
漂流船舶の火災・爆発について	漂流船舶の火災・爆発について	漂流船舶の火災・爆発について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. はじめに	
本評価は,発電所敷地外で発生する漂流船舶の火災やガス爆	発電所敷地外で発生する漂流船舶の火災やガス爆発により	<u>本評価は</u> ,発電所敷地外で発生する漂流船舶の火災やガス爆	
発に対してより一層の安全性向上の観点から、その火災やガス	安全機能を有する構築物、系統及び機器を内包する発電用原子	発に対してより一層の安全性向上の観点から、その火災やガス	
爆発が <u>柏崎刈羽</u> 原子力発電所に隣接する地域で起こったとし	炉施設に影響を及ぼさないことについて,「原子力発電所の外部	爆発が島根原子力発電所に隣接する地域で起こったとしても外	
ても外部事象防護対象施設を内包する発電用原子炉施設に影	火災影響評価ガイド 附属書B 石油コンビナート等火災・爆発	部事象防護対象施設を内包する発電用原子炉施設に影響を及ぼ	
響を及ぼさないことを評価するものである。	の原子力発電所への影響評価について」(以下「評価ガイド」と	さないことを評価するものである。	
	いう。)に基づき、評価を実施する。		
2. 漂流船舶の火災・爆発の影響評価について	2. 漂流船舶の火災影響評価	2. 漂流船舶の火災・爆発の影響評価について	
本評価は漂流船舶の火災に対する防護の有効性を確認する	発電所敷地周辺に漂流物を想定した軌跡解析を実施した結	本評価は漂流船舶の火災に対する防護の有効性を確認するこ	・条件の相違
ことが目的であるため,敷地周辺において現実的に想定される	<u>果,いずれの評価点においても最初の地点の近辺に留まるか,</u>	とが目的であるため、敷地周辺において現実的に想定される船	【東海第二】
船舶 <u>に比べ</u> , 火災影響が厳しくなる保守的な船舶の規模とし	発電所から離れていく結果となったことから、発電所敷地外で	舶のうち,火災影響が厳しくなる保守的な船舶の規模として,	島根2号炉は,喫水位
て,入港可能な最大の船舶が敷地へ到達することを仮定した評	発生する漂流物は発電所へ接近してくることはないが、本評価	入港可能な最大の船舶が敷地へ到達することを仮定した評価を	置によらず港湾内へ船
価を実施する。	では保守的に対象船舶の喫水位置から火災発生位置を特定し評	実施する。	船が漂流するとして評
	価することとした。		価を実施
(1) 想定の条件	a. 発電所から約1,500mの位置にある高圧ガス貯蔵施設(東	<u>(1) 想定の条件</u>	
・漂流船舶は新潟県内で輸送実績が多く,発電所前面の海域に	京ガス株式会社が所有する日立LNG基地のLNGタン	・漂流船舶は、島根原子力発電所前面の海域に船舶の主要	・条件の相違
航路がある液化石油ガス輸送船舶を想定する。	ク及びLPGタンク)にLNG及びLPGを輸送する輸	な航路がないことから、港湾内へ入港する船舶を想定す	【柏崎 6/7,東海第二】
	送船(以下「LNG輸送船」及び「LPG輸送船」とい	Jan.	島根2号炉は,発電所
・漂流船舶は港湾内に入港可能な大きさで実際に存在する最	う。)、内航船及び発電所港湾内に定期的に入港する燃料	・漂流船舶は、入港する船舶の中で燃料保管量が最大の重	近傍に液化石油ガスの
<u>大の船舶(積載量 1021t)</u> を想定する。	等輸送船(以下「定期船」という。)の火災を想定し、評	<u>油運搬船(保管容量:1,246kL)を想定する。</u>	輸送船舶が航行するこ
・漂流船舶は燃料を満載した状態を想定する。	価対象施設に対する影響評価を行った。	・漂流船舶は、燃料を満載した状態を想定する。	とはないため,発電所港
・港湾内での漂流船舶の全面火災を想定する。	b. 輸送船の喫水は であり, である発電所	・港湾内での漂流船舶の全面火災を想定する。	湾内の運用状況を踏ま
・気象条件は無風状態とする。	岸壁からの位置までしか近づけないことから、	・気象条件は、無風状態とする。	え,入港する最大規模の
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3	のポイントから評価対象施設までの離隔距離が	・火災は、円筒火炎をモデルとし、火炎の高さは燃焼半径	船舶である重油運搬船
倍とする。	<u>最も短くなる地点での火災を想定した。</u>	の3倍とする。	について影響評価を実
	<u>c.内航船及び定期船のうち火災影響が最大となる船舶の火</u>		施
	災を想定し、評価対象施設に対する影響評価を行った。		
	内航船及び定期船は満載時でも喫水がしたと浅く、		
	発電所岸壁まで接近可能であるため、発電所岸壁から評		
	価対象施設までの離隔距離が最も短くなる地点での火災		
	<u>を想定した。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 評価手法の概要	2.1 共通データの算出	<u>(2)</u> 評価手法の概要	
本評価は、 <u>柏崎刈羽</u> 原子力発電所に対する漂流船舶の火災	各外壁,主排気筒及び非常用ディーゼル発電機(高圧炉心ス	本評価は、島根原子力発電所に対する漂流船舶の火災影響	
影響の有無の評価を目的としている。具体的な評価指標とそ	プレイ系ディーゼル発電機を含む。),非常用ディーゼル発電機	の有無の評価を目的としている。具体的な評価指標とその内	
の内容を以下に示す。	(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ	容を以下に示す。	
	及び放水路ゲートに対する影響評価に必要となる共通データを		
	第出する。		
	<u>(1) 船舶及び燃料に係るデータ</u>		
	船舶及び燃料に係るデータを第2.1-1表に,各対象との位		
	置関係を第2.1-1図, 第2.1-2図に示す。		
第 2-1 表 評価指標及びその内容	第2.1-1 表 船舶及び燃料に係るデータ	第2-1表 評価指標及びその内容	
評価指標 内容	想定火災源 燃料の 燃料量 輻射発散度 質量低下速度 燃料密度 燃炸面積 (m^3) $(kW/m^2)^{*1}(kg/m^2/s)^{*2}$ $(kg/m^3)^{*3}$ (m^2)	評価指標 内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱面)の輻射強度	
が恋味気に」 パジと支系面との相対位置肉体によりて足よる味気 燃焼半径[m] 船舶の投影面積より求めた燃焼半径		が感い気[] パベビングに対し直角がによりてたよる状気 燃焼半径[m] 船舶の投影面積より求めた燃焼半径	
危険距離[m] 火災による輻射熱により許容限界温度になる距離		危険距離[m] 火災による輻射熱により許容限界温度になる距離	
	※1 評価ガイド 記載値		
上記の評価指標は, 受熱面が輻射体の底部と同一平面上に	 ※2 NUREG-1805 記載値 ※3 MSDS(製品データ安全シート) 	上記の評価指標は、受熱面が輻射体の底部と同一平面上に	
あると仮定して評価する。油の液面火災では、火炎面積の半	※4 LPG輸送船は燃料の種類が同じであることから,燃料量が多いLNG 輸送船に包絡されるため評価対象外とした。	あると仮定して評価する。油の液面火災では、火炎面積の半	
径が 3m を超えると空気供給不足により大量の黒煙が発生	※5 内航船は燃料の種類が同じであることから、燃料量が多い定期船に包絡 されるため評価対象外とした。	径が3mを超えると空気供給不足により大量の黒煙が発生し	
し輻射発散度が低減するが、本評価では保守的な判断を行う		輻射発散度が低減するが、本評価では保守的な判断を行うた	
ために、火災規模による輻射発散度の低減がないものとす		めに,火災規模による輻射発散度の低減がないものとする。	
る。			
輻射熱に対する設備の危険輻射強度を調査し、輻射強度が		輻射熱に対する設備の危険輻射強度を調査し、輻射強度が	
その設備の危険輻射強度以下になるように発電用原子炉施		その設備の危険輻射強度以下になるように発電用原子炉施設	
設は危険距離(離隔距離)を確保するものとする。		は危険距離(離隔距離)を確保するものとする。	
(3) 評価対象範囲		(3) 評価対象範囲	
評価対象範囲は、発電所港湾内で出火する漂流船舶とす		評価対象範囲は,発電所港湾内で出火する漂流船舶とする。	
る。 <u>なお、以前は船舶にて構内の重油タンクへの重油の補給</u>		なお,評価に用いる離隔距離は,喫水深さ等を考慮せず保守	・条件の相違
<u>を行っていたが,現在は重油タンクの運用を廃止しており,</u>		的に港湾内で発電用原子炉施設に対し最も接近する位置(護	【柏崎 6/7】
発電所構内に入港する危険物輸送船舶は存在しないことか		岸の境)から出火した場合を想定する。(第 2-1 図)	島根2号炉は,喫水位
<u>ら,発電所前面の海域で航行中の船舶が漂流し,港湾内に進</u>			置によらず港湾内へ船
入し,出火した場合を想定する。			舶が漂流するとして評
仮に、津波による船舶の漂流を想定したとしても、カーテ			価を実施
<u>ン・ウォールの高さ(T.M.S.L+3.2m),基準津波による最大</u>			
水位の高さ(T.M.S.L+7.2m), 想定している船舶の喫水(5.7m)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
の関係*から,船舶がカーテン・ウォールを乗り越えて発電			
用原子炉施設に接近することはない(第 2-1 図)。			
※:水面はカーテン・ウォールより 4.0m 高い位置となるが,			
船舶の水面から船底の最深部までの垂直深さが 5.7m で			
あり、水面がさらに上昇しなければ乗り越えることはな			
い。なお、カーテン・ウォールが地震・津波により損傷し			
た場合,敷地内の海側で低いエリア (T.M.S.L+3.0m) 及び			
基準津波の検討における大湊側遡上域の最大水位(7.5m)			
より上陸可能な船舶の喫水は4.5m以下である。			
取水口エリア近傍の法面高さが約 12m (T.M.S.L+12.0m)			
となっており,これ以上,発電用原子炉施設に接近するこ			
とはない。よって、この位置における発電用原子炉施設と			
の離隔距離(約 178m)が積載量最大の船舶にて評価した			
危険距離(最大約 148m)以上であることに加え,喫水 4.5m			
程度の船舶の積載量 (960ton 程度) が最大積載量			
(1021ton) 未満であることから, 想定している船舶の評			
価に包絡される。			
	<u>第2.1-1 図 LNG輸送船火災と評価対象施設の位置関係</u>		
4085			
The second secon			
第 2-1 図 漂流船舶の離隔距離	第2.1-2図 定期船火災と評価対象施設の位置関係	第2-1図 対象施設と重油運搬船の位置関係	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(4) 必要データ		(4) 必要データ	
評価に必要なデータを以下に示す。		評価に必要なデータを以下に示す。	
第 2-2 表プロパンの評価条件燃料の種類プロパン燃料量[ton] ³⁾ 1021輻射発散度[W/m²] ¹⁾ 74×10 ³ 質量低下速度[kg/m²·s] ²⁾ 0.099漂流船舶投影面積[m²] ³⁾ 67.77×131) 評価ガイド付属書 B より2) NUREG-1805 より3) 内航船舶明細の LPG 船舶の中で容積が最大の船舶の値		第 2-2 表重油の評価条件燃料の種類重油燃料量[kL]*31,246輻射発散度[W/m²]*123×103質量低下速度[kg/m²・s]*20.035漂流船舶投影面積[m²]*3678※1:評価ガイド附属書Bより※2:NUREG-1805より※3:入港する船舶の中で容積が最大の船舶の値	
 (5) 燃焼半径の算出 漂流船舶の火災においては様々な燃焼範囲の形態が想定 されるが、円筒火炎を生ずるものとする。ここでの燃焼面積 は、漂流船舶の投影面積に等しいものとする。したがって、 燃焼半径 R[m]は漂流船舶の投影面積を円筒の底面と仮定し 算出する。 R= (S/π)^{0.5} S: 漂流船舶の投影面積(火炎円筒の底面積) =881 [m²] R= (881/π)^{0.5}=16.74 [m] 	(2) 燃焼半径の算出 円筒火炎モデルとして評価を実施するため,燃焼半径は燃焼面積を円筒の底面と仮定して以下のとおり算出した。 なお,船舶の燃料タンクの破損等による火災を想定し、燃焼面積は船舶の全長と船幅より四角形として算出している。 算出結果を第2.1-2表に示す。	 (5) 燃焼半径の算出 漂流船舶の火災においては様々な燃焼範囲の形態が想定されるが、円筒火炎を生ずるものとする。ここでの燃焼面積は、 漂流船舶の投影面積に等しいものとする。したがって、燃焼 半径 R[m]は漂流船舶の投影面積を円筒の底面と仮定し算出する。 R= (S/π)^{0.5} S:漂流船舶の投影面積(火炎円筒の底面積) =678[m²] R= (678/π)^{0.5}=14.69[m] 	
	С ЛС ЛС ЛС ЛС ЛС (m ²) (m)		
(6) 燃焼継続時間の算出 燃焼継続時間は, 燃料量を燃焼面積と燃焼速度で割った値 になる。	(3) 燃焼継続時間の算出 燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値 になる。 <u>算出結果を第2.1-3</u> 表に示す。	(6) 燃焼継続時間の算出 燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値 になる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho} \& \emptyset, t = \frac{V \times \rho}{\pi R^2 \times M},$	$t = \frac{V}{\pi R^2 \times v}$	$t = \frac{V}{\pi R^2 \times \nu}, v = \frac{M}{\rho} \& \emptyset, t = \frac{V \times \rho}{\pi R^2 \times M}$	
t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s]M:質量低下速度[kg/m ² ·s], ρ:密度[kg/m ³], <u>m:質量[kg]</u> ここで, <u>m=ρV=1,021,000[kg],M=0.099[kg/m²·s]</u> として, 燃焼継続時間を求めると, t=1,021,000/(881×0.099)=11,706[s]=3.25[h]	t:燃焼継続時間(s),V:燃料量(m ³) R:燃焼半径(m),v:燃焼速度= $M / \rho (m / s)$ M:質量低下速度(kg/m ² /s), ρ :燃料密度(kg/m ³) <u>第2.1-3表</u> 船舶火災の燃焼継続時間 	t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s], ρ:密度[kg/m ³] ここで, ρ=1000[kg/m ³], M=0.035[kg/m ² ・s]として, 燃 焼継続時間を求めると, v=0.035/1000=3.5×10 ⁻⁵ t=1246/(678×3.5×10 ⁻⁵)=52477[s]=14.58[h]	
(7) 危険輻射強度の算出	2.2 外壁に対する危険距離評価 (1) 評価対象範囲 評価対象施設の外壁について,船舶の火災を想定して評価を実施した。 (2) 想定火災源から評価対象施設までの離隔距離を第2.2-1表に示す。 第2.2-1表 想定火災源から評価対象施設までの離隔距離 撤定火災源 原子炉建屋 タービン建屋 使用済燃料 1,100 1,300 300 280 530	(7) 危険輻射強度の算出	
 a. 外壁面の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定の輻射強度で発電用原子炉施設外壁が昇温されるものとして、下記の一次元非定常執伝導方程式の解の式より コンク 	 (3) 判断の考え方 a. 許容温度	 a. 外壁面の危険輻射強度 火災が発生した時間から燃料が燃え尽きるまでの間,一定の輻射強度で発電用原子炉施設外壁が昇温されるものとして、下記の一次元非定常熱伝導方程式の解の式より コ 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
リートの表面 <u>の</u> 温度上昇が 200℃となる危険輻射強度を求	<u>温度が200℃となる輻射強度(=</u> 危険輻射強度)を算出する。	ンクリートの表面温度が 200℃となる危険輻射強度を求め	
$\delta \mathfrak{Z}_{\circ} T_{s} = T_{0} + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\varepsilon E}}$	$T = T_{0} + \frac{2 E \sqrt{\alpha t}}{\lambda} \left[\frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^{2}}{4 \alpha t}\right) - \frac{x}{2 \sqrt{\alpha t}} \operatorname{erfc}\left(\frac{x}{2 \sqrt{\alpha t}}\right) \right] (\exists 1)$ $(\exists \mu : K \triangleq T \notin, \ \pi \pi f \neq \exists k \triangleq 0 $	$\label{eq:T} \mathcal{Z}_{\circ}$ $T = T_0 + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\varepsilon E}}$	
出典:原田和典,建築火災のメカニズムと火災安全設計,	T : 表面から x (m) の位置の温度 (℃),	出典:原田和典,建築火災のメカニズムと火災安全設計,	
日本建築センター	T₀:初期温度50℃) [≚]	財団法人 日本建築センター	
T _s :外表面温度[<u>200</u> ℃],T ₀ :初期温度[<u>50</u> ℃],E:輻射強度[W/m ²],	α : コンクリート温度伝導率 (= $\lambda / \rho C_p$) (7.7×10 ⁻⁷ m ² /s)	T: <u>外表面温度[200℃]</u> , T ₀ :初期温度[50℃], <u>E:輻射強</u>	
ε : コンクリート表面の放射率(<u>0.95</u>)*, h : コンクリート	ρ : $\exists 2 / 1 = h 密度(2, 400 \text{kg/m}^3),$	度[W/m ²], ε:コンクリートの表面放射率[0.94] ^{*1} , h:	
表面熱伝達率[<u>34.9</u> W/m²K]*, k : コンクリート熱伝導率	C_p: コンクリート比熱 (880J/kg/K)	<u>コンクリート表面熱伝達率[23.3W/m²K]^{**2}, k:コンクリ</u>	
[<u>16</u> W/mK]*, ρ:コンクリート密度[<u>2200</u> kg/m ³]*,	<u>λ</u> : コンクリート熱伝導率 (1.63W/m/K), E:輻射強度 (W/m ²)	<u>ート熱伝導率[1.6W/mK] ^{**2}</u> , ρ : コンクリート密度	
c : コンクリート比熱[<u>879</u> J/kgK] ^{**} , t : 燃焼継続時間[s]	t : 燃焼継続時間 (s)	<u>[2,200kg/m³]**</u> , c:コンクリート比熱 <u>[879J/kgK]**</u> , t:	
	x:温度評価の対象となる深さ位置(外壁表面:0m)	燃燒継続時間[s]	
※:建築設計竣工図書 原子炉建屋構造計算書	※ 水戸地方気象台で観測された過去最高気温 38.4℃に	※1:伝熱工学資料, ※2:原子炉建物 構造計算書	
	保守性を持たせた値		
$\underline{E} = 7701 [W/m^2]$	式1で求めた危険輻射強度Eとなる形態係数 Ф を,式2より	$E=4,759[W/m^2]$	
	第出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi}$		
	<u>E : 輻射強度 (W/m²), R f : 輻射発散度 (W/m²),</u> <u>Φ : 形態係数</u> 		
	式2で求めた形態係数 Ф となる危険距離しを,式3より算出 する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} (\vec{\pi}, 3)$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	Φ :形態係数, L:離隔距離 (m), H:炎の高さ (m),		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	上記のとおり危険距離を算出し、当該船舶から評価対象施		
	設までの離隔距離を下回るか評価を実施した。なお、天井ス		
	ラブは以下の理由により、外壁の評価に包絡されるため実施		
	L'ALVIE.		
	・火炎長が天井より短い場合、天井に輻射熱を与えないこ		
	とから熱影響はない。		
	 ・火炎長が天井より長い場合,天井に輻射熱を与えるが, 		
	その輻射熱は外壁に与える輻射熱より小さい。		
	・火炎からの離隔距離が等しい場合,垂直面(外壁)と水		
	平面 (天井) の形態係数は, 垂直面の方が大きいことか		
	ら, 天井の熱影響は外壁に比べて小さい。		
	建屋外壁の評価概念図を第2.2-1 図に, 天井スラブの評価		
	概念図を第2.2-2図に示す。		
	+1 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$		
	メガルによる放然 天井スラブ 外壁 屋内 単 単 単 単 単 単 単 単 単 単 単 単 単		
	初期温度:50℃		
	欸。。 」回一进民从陕东河伊斯会回		
	用 2.2-1 区 建座外壁の計価概念区		
	F井スラブに輻射熱を与える範囲 外壁に輻射熱を与える範囲 東内 査内 第 2. 2-2 図 天井スラブの評価概念図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.	9.12版)		島根原子力発電所 2号炉	備考
	.c評価結果					
	評価対象施設の外壁表面温度が 200℃となる危険距離を			る危険距離を		
	算出した結果、各評価対象施設の危険距離が離隔距離以下			離隔距離以下		
	であることを確認した。					
	なお、	LNG輸送船について積	<u>載量が 0m³</u>	の場合の喫水		
	を考慮し	ても最短の離隔距離は1	,100m(原子	- 炉建屋)であ		
	り危険距	離以上であるため,積載	量が少ない	場合の火災位		
	置を想定	しても危険距離が離隔距	離を上回る	ことはない。		
	評価結果	を第2.2-2表に示す。				
	生 9	9-9 ま ぬ 腔 ~ の 叭 姉 か		注田		
	27.2.					
	想定火災源	評価対象施設	厄陝距離 (m)	階隔距離 (m)		
		原子炉建屋		1,100		
		タービン建屋	263	1,100		
		使用資燃料乾式貯蔵建屋 原子炬建屋		300		
		タービン建屋	85	280		
		使用済燃料乾式貯蔵建屋		530		
		-				
1 帮油力、力不在险超自动在						乳供の担当
0. <u>軽伯クンク</u> の厄映軸別加度						
火灰が発生した時間から燃料が燃え尽さるよどの間,一定						【 相 呵 0/1, 果 伊 弗 一】
						局根2 方炉では, 軽油タ
より <u>軽油</u> の温度か_2250となる厄陝輻射強度を水める。						ンク、燃料移达ホンノ、
						非常用アイーセル発電
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - T_0\right) e^{\left(\frac{h S_2}{C}\right)t}$						機は, 地下博道寺の座内
						設備のため影響評価対 魚加
						家外。
I_0 : 初期溫度[<u>38</u> C], E: 輻射强度[w/m ²], ε : <u></u> <u></u>						また, 放水路クートに
шの						ういしも改直していな
**, $S_1 = S_2$: <u>軽油タンク</u> 交熱・放熱面積[m ²], C: <u>軽油タンク</u>						いたの影響評価対象外。
及び 整油の 熱谷 \underline{a} [8.72×10°]/K], t: 燃焼継続時間[s],						
						は、 海水ホンフは、 屋外
※1:伝熱丄字貸料, ※2:空気調和・衛生丄字便覧						設置のため影響評価を
						美施
$E = \underline{70930 \lfloor W/m^2 \rfloor}$						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
c. 燃料移送ポンプ(防護板(鋼板))の危険輻射強度		b . <u>海水ポンプ</u> の危険輻射強度	・設備の相違
火災が発生した時間から燃料が燃え尽きるまでの間, 一定	火災が発生した時間から燃料が燃え尽きるまでの間,一		【柏崎 6/7,東海第二】
の輻射強度で <u>燃料移送ポンプの周囲に設置されている防護</u>		定の輻射強度で <u>海水ポンプの冷却空気</u> が昇温されるものと	島根2号炉では,軽油
<u>板(鋼板)</u> が昇温されるものとして,下記の式より <u>燃料移送</u>		して,下記の式より <u>海水ポンプ</u> の <u>冷却空気</u> 温度が <u>55</u> ℃とな	タンク,燃料移送ポン
<u>ポンプ(防護板(鋼板))</u> の温度が <u>100℃</u> となる危険輻射強		る危険輻射強度を求める。	プ,非常用ディーゼル発
度を求める。			電機は,地下構造等の屋
$2 \left(l c(T, T, \lambda) \right)$		$T - T + E \times A_T$	内設備のため影響評価
$E_{max} = \frac{2}{sS} \left(\frac{hS(I - I_{air})}{e^{hS_{air}}} \right)$		$I = I_0 + \frac{1}{G \times C_p}$	対象外。
$e^{iS} \left(1 - e^{(-\overline{C})t} \right)$			また, 放水路ゲートに
<u>ε</u> :防護板(鋼板)外面の放射率(0.9) ^{※1} , S:防護板(鋼板)		T₀:通常運転時の上昇温度[22℃],E:輻射強度[W/m²],	ついても設置していな
受熱面積[16.2m²], h:防護板(鋼板)表面熱伝達率[17W/m²K]		A _T :受熱面積[10.93m ²], G:重量流量[1.96kg/s],	いため影響評価対象外。
^{※2} , C:防護板(鋼板)の熱容量[2.41×10 ⁶ J/K], t : 燃焼継続時		C _p :空気比熱[1007J/(kg・K)] ^{※1}	なお, 島根 2 号炉で
間[s],T:許容温度[100℃],T _{air} :外気温度(初期 温度)[55℃]			は, 海水ポンプは, 屋外
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧		※1:伝熱工学資料	設置のため影響評価を
			実施
$E = \underline{1825[W/m^2]}$		$E=5,948[W/m^2]$	
d. <u>主排気筒</u> の危険輻射強度		c. <u>排気筒</u> の危険輻射強度	
火災が発生した時間から燃料が燃え尽きるまでの間, 一定		火災が発生した時間から燃料が燃え尽きるまでの間,一	
の輻射強度で <u>主排気筒</u> が昇温されるものとして、下記の式よ		定の輻射強度で <u>排気筒</u> が昇温されるものとして,下記の式	
り <u>主排気筒</u> の温度が325℃となる危険輻射強度を求める。		より,排気筒の温度が 325℃となる危険輻射強度を求める。	
$T - T + \frac{\varepsilon E}{\varepsilon}$		$T - T + \varepsilon E$	
$1 = 1_0 + 2h$		$I = I_0 + \frac{1}{2h}$	
T ₀ :初期温度[50℃], E:輻射強度[W/m²], ε: <u>主排気筒</u> 表		T ₀ :初期温度[50℃],E:輻射強度[W/m ²],ε: <u>排気筒</u> 表	
面の放射率(0.9) ^{※1} ,h : <u>主排気筒</u> 表面熱伝達率[17W/m ² K]		面の放射率[0.9] ^{*1} ,h: <u>排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2}	
※ 2		※1:伝熱工学資料,※2:空気調和・衛生工学便覧	
※1:伝熱工学資料,※2:空気調和·衛生工学便覧			
$E = 10388 [W/m^2]$		E=10,388[W/m ²]	
(8) 形態係数の算出		(8) 形態係数の算出	
火炎から任意の位置にある点(受熱点)の輻射強度は,輻		火災からの任意の位置にある点(受熱点)の輻射強度は,	
射発散度に形態係数をかけた値となる。危険輻射強度となる		輻射発散度に形態係数をかけた値となる。危険輻射強度とな	
形態係数を算出する。	る形態係数を算出する。		
$Emax=Rf \times \phi$	$Emax = Rf \times \phi$		
Emax:危険輻射強度,Rf:輻射発散度, φ :形態係数		Emax:危険輻射強度, Rf:輻射発散度, φ:形態係数	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉 備考
第 2-3 表 形態係数の算出結果		第2-3表 形態係数の算出の結果
建屋 軽油タンク 燃料移送ポンプ 主排気筒		タービン建物 海水ポンプ 排気筒
(防護板 (鋼板)) 危険輻射強度[W/m²] 7.70 70.9 1.82 10.3		危険輻射強度 4,759 5,948 10,388
輻射発散度[W/m ²] 74×10 ³ 形能係数 0.1040675 0.9585140 0.0246699 0.1403903		輻射発散度 [m(2] 23×10 ³
NEW 0.1070015 0.3303140 0.0240035 0.1403003		[W/m ²] 形態係数 2.06×10 ⁻¹ 2.58×10 ⁻¹ 4.51×10 ⁻¹
(9) 合除距離の質出		(Q) 合) 6) 6)
次の式から告険距離を筧出すろ		次の式から合降距離を筧出すろ
		$1 \qquad (m) \qquad m \left[(A-2n) \qquad \left[A(n-1) \right] \qquad 1 \qquad \left[\sqrt{(n-1)} \right] \right]$
1 (m) $m\left[(4, 2n) \left[\frac{4(n+1)}{2} \right] \right]$ $\left[\frac{(n+1)}{2} \right]$		$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(1 - 2n)}{n\sqrt{AB}} \tan^{-1} \left(\sqrt{\frac{1}{B(n+1)}} \right) - \frac{1}{n} \tan^{-1} \left(\sqrt{\frac{(n-1)}{(n+1)}} \right) \right\}$
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left(\sqrt{\frac{A(n-1)}{B(n+1)}} \right) - \frac{1}{n} \tan^{-1} \left(\sqrt{\frac{(n-1)}{(n+1)}} \right) \right\}$		
		H = L + (1 + 2) + 2 = 2 = 2
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		$7 \le 1 \le 1, m = \frac{1}{R} \ge 3, n = \frac{1}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$
φ :形態係数,L: <u>危険</u> 距離[m],H:火炎高さ[m],		φ:形態係数, L: <u>離隔</u> 距離[m], H:火炎高さ[m],
R:燃焼半径[m]		R:燃焼半径[m]
第 2-4 表 危険距離の算出結果		<u>第2-4表</u> 危険距離の算出結果
建屋 軽油タンク 燃料移送ポンプ 主排気筒 (にた誰も(細ち)) (にたこの) (日本) (日本)		タービン建物 海水ポンプ 排気筒 形能係数 2.06×10 ⁻¹ 2.58×10 ⁻¹ 4.51×10 ⁻¹
形態係数 0.1040675 0.9585140 0.0246699 0.1403903		燃烧半径[m] 14.69
燃焼半径[m] 16.7 佐險距離[m] 約 66 約 17 約 148 約 53		危険距離[m] 35 28 17 離隔距離[m] 68 47 75
//LixerEpite[iii] #3.00 #3.11 #3.140 #3.03		
(10) 火災に上ス執影響の有無の評価		(10) 水災に上ろ執影響の有無の評価
以上の結果から、漂流船舶において火災が発生した場合を		以上の結果から、漂流船舶において火災が発生した場合を
想定したとしても、離隔距離(約 273m)が危険距離(最大約		想定したとしても、各発電用原子炉施設の離隔距離が危険距
148m)以上であることから,外部事象防護対象施設を内包す		離以上であることから,外部事象防護対象施設を内包する発
る発電用原子炉施設に熱影響をおよぼすことはないと評価		電用原子炉施設に熱影響をおよぼすことはないと評価でき
できる。		る。
<u>なお,発電所港湾内に入港する船舶火災の影響評価につい</u>		なお,隠岐諸島と島根半島(七類港等)を結ぶ定期船(フ)・条件の相違
ては,発電所港湾内に入港する危険物輸送船舶がないことを		ェリー等)については,発電所付近を航行しておらず,漂流 【柏崎 6/7】
<u>踏まえると、入港船舶の燃料積載量は運航に必要な程度であ</u>		等の影響はないと考えるが、仮に漂流し、発電所周辺に到達 地域特性を踏まえた
り,その熱影響は漂流船舶における火災影響評価において想		した場合であっても,燃料積載量(フェリー:約180kL)か 対象の相違
定した液化石油ガス輸送船舶のものより小さく,漂流船舶の		ら,重油運搬船の評価結果に包絡される。(第 2-2 図)
火災影響評価に包絡される。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2.3 主排気筒に対する危険距離評価 (1) 評価対象範囲 主排気筒について、船舶の火災を想定して評価を実施した。 なお、主排気筒の評価に当たっては、保守性を考慮して、 節身よりも離隔距離の短くなる鉄塔について評価した。 (2) 評価対象施設の仕様 主排気筒仕様を第2.3-1表に、主排気筒外形図を第2.3-1 図に示す。 第2.3-1表 評価対象施設の仕様 主要寸法 地表高さ140m 単 数年文符型 主要寸法 地表高さ140m 第2.3-1支 評価対象施設の515000 新 1 第2.3-1 図 第2.3-1 図 評価対象施設の外形図 第2.3-1 図 評価対象施設の外形図 第2.3-1 図 評価対象施設の外形図 第2.3-1 図 評価対象施設の外形図 (3) 評価対象施設までの離隔距離 想定火災源から評価対象施設までの離隔距離を第2.3-2表 と示す。	<image/>	・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク,燃料移送ポン プ,非常用ディーゼル発 電機は,地下構造等の屋 内設備のため影響評価 対象外。 また,放水路ゲートに ついても設置していな いため影響評価対象外。 なお,島根 2 号炉で は,海水ポンプは,屋外 設置のため影響評価を 実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.3-2表 想定火災源から評価対象施設までの離隔距離		
	想定火災源 生伊·×同 (m)		
	1 100		
	250		
	(4) 判断の考え方		
	a. 許容温度		
	おける短期温度上昇を考慮した場合において、鋼材の強度		
	が維持される保守的な温度 325℃以下とする。		
	<u>b. 評価方法</u>		
	一定の輻射強度で主排気筒鉄塔が昇温されるものとし		
	て, 表面での輻射による入熱量と対流熱伝達による外部へ		
	の放熱量が釣り合うことを表した式1により主排気筒鉄塔		
	表面の温度が 325℃となる輻射強度(=危険輻射強度)を求		
	M. Jam		
	$T = T_0 + \frac{E}{2h} $		
	(出典:建築火災のメカ=ズムと火災安全設計,		
	財団法人日本建築センター)		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)*1</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	が,一般的な値として垂直外壁面,屋根面及び		
	上げ裏面の夏季,冬季の値が示されている。評		
	価上放熱が少ない方が保守的であることから、		
	<u>これらのうち最も小さい値である 17W/m²/K</u>		
	<u>を用いる。)</u>		
	式1で求めた危険輻射強度Eとなる形態係数Φを、式2		
	より算出する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$\mathbf{E} = \mathbf{R} \cdot \mathbf{f} \cdot \mathbf{\Phi} \tag{(\pounds 2)}$		
	<u>E: 輻射強度(W/m²), Rf: 輻射発散度(W/m²),</u>		
	<u> Ψ: 北</u> 態 係 数 (μ 曲 ・ 評 価 ガ イ ド)		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より		
	 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(\Lambda - 2n)}{n \sqrt{\Lambda B}} \tan^{-1} \left[\sqrt{\frac{\Lambda (n - 1)}{B (n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{x} 3)$		
	ただし $m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u> Φ : 形態係数, L : 離隔距離 (m), H : 炎の高さ (m),</u>		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該船舶から評価対象		
	<u> 歴設までの離隔距離を下回るが計価を美施した。なれ</u> ,計 価に当たって主排気筒け鉄塔と筒身で構成されているが		
	筒身よりも鉄塔が当該船舶との距離が近いこと、材質も鉄		
	塔は SS400, STK400, 筒身では SS400 であり, 物性値が鉄		
	塔,筒身ともに軟鋼で同一であることから,鉄塔の評価を		
	実施することで筒身の評価は包絡される。		
	主排気筒の評価概念図を第2.3-2図に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	対流による放熱 ●		
	<u> 第2.3-2 図 土排気同の評価概念図</u>		
	 c. 評価結果 主排気筒鉄塔の表面温度が 325℃となる危険距離を算出 した結果,主排気筒の危険距離が離隔距離以下であること を確認した。なお、LNG輸送船について積載量が 0m³の 場合の喫水を考慮しても最短の離隔距離は 850m であり危 険距離以上であるため,積載量が少ない場合の火災位置を 想定しても危険距離が離隔距離を上回ることはない。評価 結果を第 2.3-3 表に示す。 第 2.3-3 表 主排気筒への船舶火災影響評価結果 植定火災源 危険距離 (m) 87 1,100 29 250 		
	2.4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発 電機を含む。) に対する危険距離評価		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を会む)の流入空気温度について、船舶の水災を相定		
	<u>(2)</u> 評価対象施設の仕様		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	空気の流入口となり熱影響を受ける非常用ディーゼル発電		
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の		
	仕様を第2.4-1表に,外形図を第2.4-1図に示す。		
	第2.4-1表 評価対象施設の仕様		
	名称 非常用ディーゼル発電機(高圧炉 心スプレイ系ディーゼル発電機を含 む。)吸気ロ 種類 円筒縦形 主要寸法 外径 : 1.54m 円筒高さ: 2.46m 材料 SS400 個数 6		
	第 2.4-1 図 評価対象施設の外形図		
	 (3) 評価対象施設までの離隔距離 想定火災源から評価対象施設までの離隔距離を第2.4-2表 に示す。 第2.4-2表 想定火災源から評価対象施設までの離隔距離 		
	想定火災源 非常用ディーゼル発電機(高圧炉心スプレ ィ系ディーゼル発電機を含む。)(m)		
	1,100		
	(4) 判断の考え方 a. 許容温度 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)の流入空気の許容温度は、火災時におけ る温度上昇を考慮した場合において、非常用ディーゼル発		
	電機(高圧炉心スプレイ系ディーゼル発電機を含む。)の性		
	能維持に必要な温度53℃以下**とする。		
	※ 非吊用アイーセル発電機(局圧炉心スフレイ糸ティーボル発電機た合た。)の法1空気温度がします。		
	ービル光电域を凸む。) の孤八空风偏度が上升する		
	<u> </u>		
	二 X 集 N Y 地 R K L C C に よ ん S S C C C C C C C C C C C C C		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	b評価方法		
	火災が発生した時間から燃料が燃え尽きるまでの間、一		
	定の輻射強度による入熱が非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)に流入する空気		
	の温度上昇に寄与することを表した式1により,流入する		
	空気の温度が 53℃となる輻射強度(=危険輻射強度)を求		
	MJ Jan		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T \qquad (\vec{z} \cdot 1)$		
	<u>T</u> :許容温度(53℃), <u>T₀</u> :初期温度(39℃) ^{*1} ,		
	<u>E:輻射強度(W/m²),</u>		
	<u>G:重量流量(4kg/s)^{*2}, A:輻射を受ける面積(7.8m²)</u>		
	<u>C_p:空気比熱(1,007J/kg/K)^{※3},</u>		
	<u> ΔT:構造物を介した温度上昇(5℃)**4</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 ディーセル発電機機関の内,給気流量が少ない高圧		
	炉心スプレイ糸を評価対象とする。		
	ディーセル発電機機関吸気流量(228m ³ /min)×		
	空気密度 $(1.17 \text{kg/m}^{\circ}) \div 60$		
	※4		
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より算出する。		
	$\underline{\mathbf{E}} = \mathbf{R} \mathbf{f} \cdot \mathbf{\Phi} \tag{武2}$		
	<u> </u>		
	$\Phi:$ 形態係数		
	…(出典::評価ガイド)…		
	式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{A B}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{x} \zeta 3)$		
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>Φ:形態係数, L:離隔距離(m), H:炎の高さ(m)</u> ,		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該船舶から評価対象		
	施設までの離隔距離を下回るか評価を実施した。空気の流		
	入口となり熱影響を受ける非常用ディーゼル発電機(高圧		
	<u> 炉心スプレイ系ディーゼル発電機を含む。)吸気口の評価概</u>		
	念図を第2.4-2図に示す。		
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。) 吸気口		
	· · · · · · · · · · · · · · · · · · ·		
	: 受熱面		
	第2.4-2図 非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)吸気口の評価概念図		
	<u>c.評価結果</u> 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)に流入する空気の温度が53℃となる危 険距離を算出した結果,危険距離が離隔距離以下であるこ とを確認した。評価結果を第2.4-3表に示す。		
	第2.4-3表 非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)への船舶火災影響評価結果 想定火災源 危険距離 離隔距離 153 1,100 50 330		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	. 20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	2.5 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高	
	圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプに対す	
	る危険距離評価	
	残留熱除去系海水系ポンプ電動機及び非常用ディーゼル発	
	電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水	
	ポンプ電動機は、海水ポンプ電動機高さより高い海水ポンプ	
	室の壁で囲まれており、側面から直接火災の影響を受けるこ	
	とはないが、上面は熱影響を受ける可能性がある。評価にお	
	いては、海水ポンプ室の壁による遮熱効果を考慮せず、側面	
	から直接火災の影響を受けることを想定する。また、残留熱	
	除去系海水系ポンプ電動機及び非常用ディーゼル発電機(高	
	<u> </u>	
	動機は、電動機本体を全閉構造とした全閉外扇形の冷却方式	
	であり、外部火災の影響を受けた場合には、周囲空気の温度	
	上昇により、冷却機能への影響が懸念されることから、冷却	
	空気の温度を評価対象とする。火災発生位置と海水ポンプの	
	位置関係を第2.5-1図に示す。	
	電動機内部の空気冷却対象は固定子巻線及び軸受であり、	
	そのうち許容温度が低い軸受温度の機能維持に必要となる冷	
	却空気の温度が、許容温度以下となることを確認する。	
	 ・・:火災からの輻射熱 海水ポンプ室の上面は開放のため 一部熱が当たる可能性あり 海水ポンプ室 海水ポンプ室 海水ポンプ 	
	第2.5-1 図 火災発生位置と海水ポンプの位置関係	

備考
 ・設備の相違
【柏崎 6/7,東海第二】
島根2号炉では,軽油
タンク、燃料移送ポン
プ,非常用ディーゼル発
電機は,地下構造等の屋
内設備のため影響評価
対象外。
また, 放水路ゲートに
ついても設置していな
いため影響評価対象外。
なお, 島根 2 号炉で
は, 海水ポンプは, 屋外
設置のため影響評価を
実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
	(2) 評価対象施設の仕様	
	残留熱除去系海水系ポンプ及び非常用ディーゼル発電機	
	(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン	
	プの海水ポンプ室内の配置図を第2.5-2図,外形図を第2.5-3	
	図に示す。仕様を第2.5-1表に示す。	
	第2.5-2 図 海水ポンプの配置図	
	第2.5-3 図 海水ポンプの外形図	

炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(201	18. 9. 12 版)	島根原子力発電所 2号炉	備考
	第2.5-1表 評価対	象施設の仕様		
	名称 残留熱除去系海水系ポンプ 電動機	非常用ディーゼル発電機 (高圧炉心スプレイ系ディ ーゼル発電機を含む。)用 海水ポンプ電動機		
	主要寸法 全 幅:1.9 m 高 さ:2.73m	全 幅:0.51m 高 さ:0.98m		
	材 料 SS400, SUS304	SS400		
	基数 4	3		
	 (3) 評価対象施設までの離隔距離 残留熱除去系海水系ポンプ及び (高圧炉心スプレイ系ディーゼル プを内包する海水ポンプ室から名 2.5-2表に示す。 第2.5-2表 想定火災源から評価 想定火災源 (4) 判断の考え方 a. 許容温度 残留熱除去系海水系ポンプ電 発電機(高圧炉心スプレイ系デ 海水ポンプ電動機の冷却空気の 軸受のうち,運転時の温度上昇 を考慮し、軸受の機能維持に必 第2.5-3表に示す。 			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)			島根原子力発電所 2号炉	備考
	第2.5-3表 下部軸受の機能維持に必要な冷却空気の許容温度		合却空気の許容温度		
	名称	系海水系 非常り スプ	用ディーゼル発電機(高圧炉心 ゚レイ系ディーゼル発電機を含		
	 ホンフ電 軸受の機能維持に必要な 	. 動機	む。)用海水ポンプ電動機		
	冷却空気の許容温度 70℃** ※1 ポンプ運転により、下部軸受は最大つ ************************************		60℃ ^{***}		
	め電気規格調査会標準規格 JEC-2137- 定するときの温度限度 80℃から 10℃	-2000「誘導機」で)	定める自由対流式軸受の表面で測 を冷却空気の許容温度に設定		
	※2 ポンプ運転により、下部軸受は最大 め電気規格調査会標準規格 IEC-2137-	で約 35℃上昇するこ -2000「誘導機」で?	とから、軸受の機能を維持するた 定める耐熱性の良好なグリースを		
	使用する場合の温度限度 95℃から 35	℃を差し引いた 60°	Cを冷却空気の許容温度に設定		
	<u>b.</u> 評価方法				
	火災が発生した時間から燃料が燃え尽きるまでの間,残 留熱除去系海水系ポンプ電動機及び非常用ディーゼル発電 機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水				
	ポンプ電動機が受ける頼	制熱によっ	て上昇する冷却空気温		
	度を求め, 第2.5-3表に	示す許容温	度を下回るかを熱エネ		
	ルギーの式より求まる下式で評価を実施した。評価に用いた諸元を第2.5-4表に、評価概念図を第2.5-4図に示す。 T=T ₀ + $\frac{E \cdot A}{G \cdot C_p}$ + Δ T T:評価温度(°C), T ₀ :初期温度(39°C)*1, E:輻射強度(W/m ²), G:重量流量(kg/s), A:輻射を受ける面積(m ²) C _p :空気比熱(1,007J/kg/K), ΔT:構造物を介した温度上昇(5°C)*2 ※1 水戸地方気象台で観測された過去最高気温 38.4°C に保守性を持たせた値 ※2 航空機火災による構造物を介した冷却空気の温度 上昇(ΔT _b =2.2°C)を包絡する5°Cに設定				
	<u>第2.5-4表</u> 評価に用いた諸元 残留熱除去系 非常用ディーゼル 発電熱除去系 みてまた(高圧恒心なて) レ(系)		諸元		
			非常用ディーゼル 発電機(高圧伝小1プレイズ		
		海水系ポンプ 電動機	ディーゼル発電機を含む。)用 海水ポンプ電動機		
	G:重量流量 (kg/s)	2.6	0.72		
	A:輻射を受ける面積 (m ²)	12	1.6		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考		
--------------------------------	---	--------------	----		
	電動機 輻射強度:E				
	:受熱面				
	第2.5-4 図 評価概念図				
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2 より算出する。 E=Rf・Φ (式2) E:輻射強度(W/m ²), Rf:輻射発散度(W/m ²), Φ:形 態係数 (出典:評価ガイド) 式2で求めた形態係数Φとなる危険距離Lを,式3より 算出する。 $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^{2}-1}} \right) + \frac{m}{\pi} \left\{ \frac{(A-2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{B(n+1)}} - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right] \right\}$ (式3) $t t t l m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^{2} + m^{2}$, $B = (1-n)^{2} + m^{2}$ $\Phi : 形態係数$, L:離隔距離(m), H:炎の高さ(m), R:燃焼半径(m)				
	上記のとおり危険距離を算出し,当該船舶から評価対象 施設までの離隔距離を下回るか評価を実施した。				
	 c. 評価結果 輻射熱によって上昇する冷却空気の到達温度を算出した 結果,許容温度以下であることを確認した。評価結果を第 2.5-5表に示す。 				

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)		東海第二発電所(2018.9.1	12版)		島根原子力発電所 2号炉	備考
			第2.5-5表 船舶火災影響	平価結果			
		想定火災源	想定火災源	危険距離 (m)	離隔距離 (m)		
			残留熱除去系海水系ポンプ	142	(11)		
			非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。) 用海水ポンプ	111	940		
			残留熱除去系海水系ポンプ	47			
			非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。) 用海水ポンブ	37	70		
		2.6 放水路夕 (1) 評価対望 放水路 した。 (2) 評価対望 放水路 人 (2) 評価対望 放水路 人 第2.6-1表 名称 床面高さ 外殻材料 個数 (3) 評価対望 に示す。	ゲートに対する危険距離評価 象範囲 ゲートについて、船舶の火災 象施設の仕様 ゲート駆動装置の外殻となる 様を第2.6-1 表に、外形図を 評価対象施設の仕様 放水路ゲート駆動装置 T.P.+11.0m 炭素鋼 3 第2.6-1 図 象施設までの離隔距離 災源から評価対象施設までの	を想定して 放水路ゲー 第 2. 6-1 図 評価対象が 離隔距離を	· 評価を実施 - ト駆動装置 Iに示す。 - - - - - - - - - - - - -		 ・設備の相違 【柏崎 6/7,東海第二】 島根 2 号炉では,軽油 タンク,燃料移送ポン プ,非常用ディーゼル発 電機は,地下構造等の屋 内設備のため影響評価 対象外。 また,放水路ゲートに ついても設置していな いため影響評価対象外。 なお,島根 2 号炉で は,海水ポンプは,屋外 設置のため影響評価を 実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.6-2表 想定火災源から評価対象施設までの離隔距離		
	想定火災源 (m) 想定火災源		
	1 050		
	220		
	(4) 判断の考え方		
	<u> </u>		
	与ふわり一度上方でう愿した初日において,判内の方法及が推 持される保守的な温度325℃以下とする		
	h. 評価方法		
	一定の輻射強度で放水路ゲート駆動装置外殻が昇温され		
	るものとして、表面での輻射による入熱量と対流熱伝達に		
	よる外部への放熱量が釣り合うことを表した式1により外		
	殻表面の温度が 325℃となる輻射強度(=危険輻射強度)を		
	求める。		
	T - T + E		
	$1 - 1_0 + \frac{2}{2}h$		
	(出典:建築火災のメカニズムと火災安全設計,	~	
	財団法人日本建築センター)	~	
	<u>T</u> :許容温度(325°C), T ₀ :初期温度(50°C)*1		
	\underline{E} :輻射强度(W/m^2), h: 烈伝達率($17W/m^2/K$) ^{**2}		
	※1 水戸地方気象台で観測された過去最高気温38.40 に但字性を持ちたた		
	に休寸性を持にせた胆 ※9、次年調和,条件工学便覧(別ま五の執伝法索は、受		
	※2 <u>全</u> X調加・風土工子皮見(外衣面の款店建学は、x 執声の形状や周囲の環境条件を受け変化するが	5	
	面の夏季. 冬季の値が示されている. 評価上放数		
	が少ない方が保守的であることから、これらのう	÷	
	ち最も小さい値である 17W/m ² /K を用いる。)	~	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	式1で求めた危険輻射強度Eとなる形態係数Φを,式2		
	より算出する。		
	$E = R \cdot f \cdot \Phi \qquad (\exists 2)$		
	<u>E:輻射強度(W/m²), Rf:輻射発散度(W/m²),</u>		
	$\Phi:$ 形態係数		
	<u>(出典:評価ガイド)</u>		
	式2で求めた形態係数 Φ となる危険距離Lを,式3より		
	<u>第出する。</u>		
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\} \qquad (\vec{\pi} \cdot 3)$		
	ただし $m = \frac{H}{R} \approx 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	$\Phi:$ 形態係数, $L:$ 離隔距離(m), $H:$ 炎の高さ(m),		
	<u>R:燃焼半径(m)</u>		
	(出典:評価ガイド)		
	上記のとおり危険距離を算出し、当該船舶から評価対象		
	施設までの離隔距離を下回るか評価を実施した。放水路ゲ		
	<u>ートの評価概念図を第2.6-2 図に示す。</u>		
	放水路ゲート駆動装置外殻		
	福射強度:E		
	: 受熱面		
	第2.6-2図 放水路ゲートの評価概念図		
	<u>c評価結果</u>		
	放水路ゲート駆動装置外殻の表面温度が 325℃となる危		
	険距離を算出した結果、放水路ゲートまでの危険距離が離		
	隔距離以下であることを確認した。評価結果を第2.6-3表		
	に示す		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	斤(2018.9.12	2版)		島根原子力発電所 2号炉	備考
	第2.6-3 表 放水路ゲー	トへの船舶火	災影響評価結果			
	想定火災源	5)険距離 (m)	離隔距離 (m)			
		87	1,050			
		29	220			
	I I					
3. 漂流船舶の爆発の想定	3 漂流船舶の爆発影響評価				3. 漂流船舶の爆発想定	 ・設備の相違
<u>(1)</u> 想定の条件	<u>(1)</u> (1) 評価対象船舶の抽出				<u>************************************</u>	【柏崎 6/7、東海第二】
 ·漂流船舶は新潟県内で輸送実績が多く、柏崎刈羽原子力発 	発電所から約1,500mの	位置にある高	圧ガス貯蔵施設 (東	東京	いては、重油が爆発する危険性はないことから、影響が無いこ	島根2号炉は,発電所
電所前面の海域に航路がある液化石油ガス輸送船舶を想	ガス株式会社が所有する日	立LNG基地	也)にLNG及びL	ΣP		港湾内に入港する最大
定する。	<u>Gを輸送する輸送船(内航</u>	抗船含む)の 類	暴発を想定し,評価	西対	なお、爆発の危険性がある液化石油ガス輸送船舶が発電所に	規模の船舶である重油
・漂流船舶は港湾内に入港可能な大きさで実際に存在する	象施設に対する影響評価を	行った。			<u>入港した実績が無いことを確認している。</u>	運搬船を想定しており,
最大の船舶(積載量 1021t)を想定する。	爆発地点は、火災発生と	:同じ場所を想	想定した。評価条件	<u>キを</u>		重油は爆発の危険性は
・漂流船舶は燃料を満載した状態を想定する。	<u>第 3-1 表に,各対象との位</u>	1置関係を第3	3-1 図,第 3-2 図に	こ示		ないため,影響評価対象
 ・港湾内での高圧ガス漏えい、引火による漂流船舶の爆発を 	<u>t.</u>					外
・気象条件は無風状態とする。	<u>第3-1表</u> 爆風圧影響	響評価で想定	した評価条件			
(2) 評価手法の概要						
本評価は、柏崎刈羽原子力発電所に対する漂流船舶のガス爆	貯蔵ガス					
発による影響の有無の評価を目的としている。具体的な評価指	貯蔵量(m ³)					
標とその内容を以下に示す。	貯蔵量(t)					
	密度(t/m ³)					
第 3-1 表 評価指標及びその内容	喫水 (m)					
評価指標 内容	貯蔵ガスK値 ^{※3}					
危険限界距離[m] ガス爆発の爆風圧が 0.01MPa 以下になる距離	」」「「「「」」」」「「」」」」」」」」」」」」」」」」」」」」」」」」」					
	※2 JIS K2240-2013 記載値 ※3 評価ガイド 記載値					
(3) 評価対象範囲	※ 4 貯蔵量は 1t 以上となるため, 貯i	蔵量の平方根の数値	Ĺ			
評価対象範囲は、発電所港湾内で出火する漂流船舶とする。						
なお、以前は船舶にて構内の重油タンクへの重油の補給を行っ						
ていたが、現在は重油タンクの運用を廃止しており、発電所構						
内に人港する危険物輸送船舶は存在しないことから,発電所前						
<u> 田の </u>						
物日で泡足りる。						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>(4)</u> 必要データ			
評価に必要なデータを以下に示す。			
<u>第 3-2 表 高圧ガス爆発の評価条件</u>			
データ種類 内容			
コンビナート等保安規則第5条別表第二に掲げる数値 石油のK値 K=889000 (プロパンの是土値)			
応じて次に掲げる数値			
の数値の平方根の数値(貯蔵能力が一トン未満のものにあって			
は、貯蔵能力(単位:トン)の数値),圧縮ガスの貯蔵設備にあっ 貯蔵設備又は処			
理設備の №値 び圧力におけるガスの質量(単位:トン)に換算して得られた数	<u>第3-1図 発電所とLNG,LPG輸送船の位置関係</u>		
値の平方根の数値(換算して得られた数値が一未満のものにあっ ては、当該掩算して得られた数値)			
処理設備:処理設備内にあるガスの質量(単位:トン)の数値			
₩=1021 ^{1/2} =31.95 ※雪町港湾岸時から発雪田頂乙痘施設までの距離			
離隔距離[m] 光电所得序型が5光电用床子炉施設よて50距離 約 273[m]			
<u> を 昇山 り る。</u>			
1021[t] W-10211/2-21 05			
$\frac{W-10211/2-31.95}{W-10211/2-31.95}$			
	第2-2回 発雲正と内航駅の位置間径		
	<u> </u>		
(6) 危険限界距離の算出	(2) 危険限界距離の算出		
ここで算出した危険限界距離が漂流船舶と発電用原子炉施	- 果, 危険限界距離が離隔距離以下であることを確認した。		
設の間に必要な離隔距離となる。	なお,それぞれの輸送船について積載量が 0m ³ の場合の喫		
$V = 0.042^{-3} \sqrt{K - W}$	水を考慮しても最短の離隔距離は、LNG輸送船で 680m、L		
$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	PG輸送船で 560m となり危険距離以上となるため、積載量が		
<u>X:危険限界距離[m], λ:換算距離 14.4[m·kg^{-1/3}],</u>	少ない場合の爆発位置を想定しても危険限界距離が離隔距離		
<u>K</u> :石油類の定数, W:設備定数K=888000, W=31.95 として,	を上回ることはない。評価結果を第3-2表に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
危険限界距離を求める。	X=0. 04 × 14. $4\sqrt[3]{(K \times 1, 000 \times W)}$		
<u>X=約 176[m]</u>	X:危険限界距離(m), K:石油類の定数(-), W:設備定		
	数(-)		
<u>(7)</u> 爆発による影響評価結果	第 3-2 表 船舶の爆風圧影響評価結果		
以上の結果から、漂流船舶において爆発が発生した場合を想	相合思惑疾 以言意疾 容量 危険限界距離 離隔距離*		
<u>定したとしても,離隔距離(約 273m)が危険限界距離(約 176m)</u>	想定爆発源 为久植類 (t) (m) (m)		
以上であることから,発電用原子炉施設に影響をおよぼすこと	335 1,100 以上		
はない。	340		
	105 390 以上 ※ 海水ポンプ室の高さは防潮堤高さよりも低く,直接爆風圧の影響を受けることはな		
	いため、海水ポンプ室は評価対象外とする。離隔距離は海水ポンプ室及び放水路ゲ ートを除いて最も近いタービン建屋までの距離とする。		
4. 漂流船舶の飛来物の影響評価	4. 漂流船舶の爆発飛来物影響評価		
月 消防庁特殊災害室) ※に基づき, 飛来物の最大飛散距離の評価	する輸送船があるが、これらの船舶が停泊しているときに津波		
を行ったところ、離隔距離が最大飛散距離以下であった。	警報等が発表された場合には、荷役及び作業を中止した上で、		
	緊急退避又は係留避泊する運用としており、実際に漂流し発電		
※:石油コンビナート等特別防災区域を有する都道府県が防災	所に接近する可能性は低いこと等から、想定した漂流船舶の飛		
計画を作成するに当たって、災害の想定をできるだけ客観的	来物が発電所に影響を及ぼすことはない。		
かつ現実的に行うための評価手法 を示した指針			
第 4-1 表 - 飛来物の評価条件			
· · · · · · · · · · · · · · · · · · ·			
貯蔵ガス 液化石油ガス			
貯蔵量 1021t 爆発形能 真圧ガスの混さい後、引火に上れガス爆発が発生し、恋求物が発生			
漆光形態 同圧ガスの備えい後、51人によりガス漆光が光生し、飛米物が光生			
(1)			
(1) 飛木初の取入飛取座船の昇山力仏			
「石油ゴンビノー下の防火ノビへアン下相則」に至りて、谷			
AOW000000000000000000000000000000000000			
L = +0.5M $I \cdot w \vdash の 是 + 恋 對 答 丽 [m] M · 砷 刻 哇 の 貯 菩 ዀ 质 是 [l_m]$			
<u>L: 版力の取入飛取範囲[iii], M: 版表時の</u> $M = 465 \times (1, 021, 000) 0, 10 - 1, 855, 04$			
<u>L-403 \wedge (1, 021, 000) 0.10-1, 855.04</u> しため 恋女物の見士恋欺匹敵 L は約 1 855したる			
」、飛木物の取入飛取単産 L はお 1,800m となる。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 飛来物影響評価結果			
飛来物による影響については,離隔距離(約 273m)が最大			
<u>飛散距離(約 1,855m)以下であるが,発電所遠方で漂流した船</u>			
舶が飛散距離である 1,855m 以内に流れ着いた後に爆発し,な			
おかつその飛来物が発電用原子炉施設に衝突する可能性は非			
常に低いことから, 想定した漂流船舶の飛来物の柏崎刈羽原子			
力発電所への影響はない。			
また, 柏崎刈羽原子力発電所付近には石油コンビナートが無			
く,発電所付近の航路を調査した結果,最も距離の近い航路で			
も 30km の離隔距離があることを確認した(第 4-1 図)。よっ			
て、漂流した船舶が発電所周辺まで流れてくる可能性は低く、			
それに加えて飛来物が発電用原子炉施設に衝突する可能性は			
非常に低い。			
<u>なお, (1)で用いた「石油コンビナートの防災アセスメント</u>			
指針」の計算式は,大規模な爆発を伴う LPG 容器の BLEVE 現			
象を取り扱うものであるが,発電所港湾内に入港する LPG 輸			
送船舶等の危険物輸送船舶はなく,発電所港湾内に入港する船			
<u> 船火災に伴う著しい飛来物の発生は想定されない。</u>			
一 1 日崎村羽原子力発電所までの 西線約 30km 日崎水羽原子力発電所 1 20 km			
第 4-1 図 発電所周辺の主要航路			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別紙 5-1			
漂流船舶の選定について			・設備の相違
			【柏崎 6/7】
船舶には外航船(国外航路を航行する船舶)及び内航船(国内			島根2号炉は,発電所
航路を航行する船 舶)がある。これらの船舶が漂流してきた場			近傍に液化石油ガスの
合を想定しても外航船の喫水(水面から船底の最深部までの垂直			輸送船舶が航行するこ
深さ)は 11m程度であり, 発電所港湾内まで進入することがで			とはないため, 発電所港
きない。よって,発電所港湾内まで進入可能な内航船が,漂流し			湾内の運用状況を踏ま
港湾内に進 入し火災・爆発した場合を想定する。			え,入港する最大規模の
発電所港湾内に進入可能な内航船にも様々な種類の燃料を積			船舶である重油運搬船
載する船舶が存在するが、火災・爆発を想定することから液化ガ			について影響評価を実
ス輸送船舶を対象とし、その中でも船舶数が多く 1),発電所前			施
面の海域に航路が存在する 2)液化石油ガス輸送船舶を対象とし			
た。液化石油ガスは,家庭業務用,一般工業用,発電用等がある			
が, 最も使用量の多い家庭業務用のプロパンガス 3,4,5)とした <u>。</u>			
発電所港湾内に進入可能な内航船の積載燃料別隻数割合を第 1			
図に示す。			
船舶の規模は, 100t 以上の内航船をすべて収録した内航船舶			
明細書に記載の液化石油ガス船舶の中で,最大の容積のものと			
し、評価に使用する入力値を以下に示す。			
容積 V:2010.28[m³] ⁶⁾ 全長 L:67.77[m] ⁶⁾			
全幅 H:13[m] ⁶⁾ 密度ρ:0.5076[t/m ³] ⁷⁾ 投影面積 S=L×H:			
<u>881[m²]</u>			
積載量 $M = \rho \times V : 1021[t]$			
18%			
■液化石油ガス			
1% ■液化天然ガス			
■その他油(軽油,ガソリン,灯油等の同時積載)			
38%			
第 1 図 柏崎刈羽原子力発電所に進入可能な内航船の積載燃料			
別隻数割合			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1) 平成 13 年度 危険物の海上輸送時の事故対応策の研究報告書			
(その1), H14.3, 社団法人日本海難防止協会			
2) 平成 23 年度 新潟港統計年報, H24. 12, 新潟県新潟地域振興			
局新潟港湾事務局			
3)日本LPガス協会統計資料 LP ガス需給の推移			
4) 液化石油ガスの保安の確保及び取引の適正化に関する法律施			
行規則第十二条			
5)経済産業省 LPガスの規格			
http://www.lpgpro.go.jp/guest/learning/basic/01_03.html			
6)内航船舶明細書の LPG 船舶の中で容積が最大の船舶の値			
7)日本 LP ガス協会 物性一覧			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 5-1		参考 5-1	
漂流船舶(火災)の二次的影響について	5. 漂流船舶の二次的影響	オイルフェンスの設置について	
	発電所港湾内で漂流船舶が出火し油が流出したとしても、港		
発電所港湾内で漂流船舶が出火し重油が流出したとしても、港	湾内の取水口にはカーテンウォールが設置されており、深層取	重油連搬船の受け入れ時等に、輪谷湾(海上)に油が流出した	
湾内の取水口にはカーテンウォールが設置されており、深層取水	水していることから発電用原子炉施設(海水ボンブ)への影響	場合には、公設消防に連絡するとともに、オイルフェンス設置に	
していることから発電用原子炉施設(海水糸ホンフ)への影響は	15th Man	よる拡散防止等の油流出災害の拡大防止措置を講じている。	
	という ボデブサオ ほうかん マサンテロント ほんいう せったり	また、深層取水していることから発電用原子炉施設(海水ホン	
また、相崎刈羽原子力発電所から主要航路までの距離は約	なお、発電所港湾外で船舶の油が流出した場合は、油の流出	フ)への影響はない。	
30km である。過去に発生したタンカーからの大規模油流出事故	を確認し次第、速やかにオイルフェンスを設置し、発電用原子	なお、重油連搬船の受け入れ時には、作業開始前にオイルフェ	
より推定すると、24時間程度*1で油がサイトに到達する可能性	炉施設への影響がないよう対応する。	ンスを設置する連用を行っているため、重油流出時において緊急	
があるが、海上保安庁より漂流船舶に関する連絡を受けた場合、		でオイルフェンスを設置する必要はない。	
オイルフェンスの設置に要する時間は11時間程度*** であるこ			
とから,油の到達時間内にオイルノェンスを設置することかでさ			
よって、産貨内への油の流入を妨けることが可能であると評価		オイルフェンス展張	
- Lunden			
×1・亚式 0 年 1 日 2 日 自根県隠村島の北北市約 110km の			
ニーナル・デート ロシア 国籍 タンカー「ナホトカ号」の重油流			
出東地が発生、流出島としては当時過去 2 乗日とたる重油			
約 6240k1 (推定) が流出 流出」た重油は 2 日間で 60 数		> ひ オイルフェンス	
My 02 HOAT (IEAL) 20 100日 0701年1013, 2011日 000000000000000000000000000000000			
№2・作業員の参集に 3 時間程度 オイルフェンスけ作業開始か			
ら 7~8 時間程度で設置が可能 設置手順としてけ オイル		重油運搬船	
フェンス等の資機材を保管エリアから渉湾まで移動(その間			
に作業船が柏崎洪上り移動し、オイルフェンスを接続後、作			

スを設置するための資機材はコンテナに収納し、防火帯内側			
の資材食庫エリアにて保管していろ			
		第1図 オイルフェンス設置範囲	
	1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-6	添付資料6	添付資料6	
敷地内における危険物タングの火災について	敷地内における <u>危険物貯蔵施設等</u> の火災・爆発について	敷地内における <u>症候物タンク</u> の火災について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的	1. はじめに	
本評価は、発電所敷地内の危険物タンクの火災に対してより	東海第二発電所敷地内の危険物貯蔵設備の火災・爆発が、安	本評価は、発電所敷地内の危険物タンクの火災に対してより	
一層の安全性向上の観点から,その火災が起こったとしても発	全機能を有する構築物、系統及び機器を内包する発電用原子炉施	一層の安全性向上の観点から、その火災が起こったとしても発	
電用原子炉施設に影響を及ぼさないことを評価するものであ	設に影響を及ぼさないことについて、「原子力発電所の外部火災影	電用原子炉施設に影響を及ぼさないことを評価するものであ	
る。	響評価ガイド附属書B石油コンビナート火災・爆発の原子力発電	る。	
	所への影響評価について」及び、「附属書C「原子力発電所の敷地		
	内への航空機墜落による火災の影響評価について」(ともに以下		
	「評価ガイド」という。)に基づき、評価を実施する。		
 2. 構内危険物タンクの火災影響評価		2. 構内危険物タンクの火災影響評価	
(1) 構内危険物タンクの火災の想定		(1) 構内危険物タンクの火災の想定	
・構内危険物タンクは発電用原子炉施設周辺に設置されて		・構内危険物タンクは発電用原子炉施設周辺に設置されて	
おり、発電用原子炉施設までの距離が近く貯蔵量の多い各		おり,発電用原子炉施設までの距離が近く貯蔵量の多い	
<u> </u>		ガスタービン発電機用軽油タンク及び貯蔵量の多い重油	
基隣接して設置しているが, 耐震 S クラス設備であり地		<u>タンク</u> とする。 <u>なお、隣接して設置している危険物タン</u>	・条件の相違
震随伴事象としても 2 基同時火災の想定はしにくいこ		クについては、同時に火災が発生することを想定する。	【柏崎 6/7】
と, 隣接軽油タンク火災時にもう一方の軽油タンクの温度			島根2号炉は,隣接し
は発火点まで上昇しないため 2 基同時出火することはな			て設置している危険物
いことから,発電用原子炉施設に近い軽油タンク 1 基の			タンクについては,同時
<u> 火災</u> を想定する。			に火災が発生すること
・構内危険物タンクは危険物を満載した状態を想定する。		・構内危険物タンクは危険物を満載した状態を想定する。	を想定
 ・構内危険物タンクの損傷等による防油堤内での全面火災 		・構内危険物タンクの損傷等による防油堤内での全面火災	
を想定する。		を想定する。	
・泡消火設備の消火機能には期待しない。		・泡消火設備の消火機能には期待しない。	
・気象条件は無風状態とする。		・気象条件は無風状態とする。	
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3		 ・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の 	
倍とする。		3倍とする。	
(2) 評価手法の概要		(2) 評価手法の概要	
本評価は、 <u>拍崎刈羽</u> 原子力発電所に対する構内危険物タン		本評価は、 <u>島根</u> 原子力発電所に対する構内危険物タンクの	
クの火災影響の有無の評価を目的としている。具体的な評価		火災影響の有無の評価を目的としている。具体的な評価指標	
指標とその内容を以下に示す。		とその内容を以下に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-1 表 評価指標及びその内容		第2-1表 評価指標及びその内容	
評価指標 内容		評価指標 内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度	
形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数		形態係数[-] 火炎と受烈面との相対位置関係によって定まる係数 	
		燃焼継続時間[s] 火災が終了するまでの時間	
離隔距離[m] 危険物タンクから発電用原子炉施設までの直線距離		離隔距離[m] 危険物タンクから発電用原子炉施設までの直線距離	
熱許容限界値[-] 建屋の外壁,天井スラブが想定火災の熱影響に対して許容限 界以下になる値		熱許容限界値[-] 建物の外壁,天井スラブが想定火災の熱影響に対して許容 限界以下になる値	
上記の評価指標は、受熱面が輻射体の底部と同一平面上にあ		上記の評価指標は、受熱面が輻射体の底部と同一平面上に	
ろと仮定して評価する、油の液面火災では 火炎面積の半径が		あると仮定して評価する。油の液面水災では、水炎面積の半	
3m を招えると空気供給不足に上り大量の里価が発生し起射発			
新度が低減するが、本証価では保守的な判断を行うために、水		Eがび間を超えると主気伝袖中足により八重の宗座が完工し 転射発動度が低減するが、本証価でけ保守的な判断を行うた	
		福利元散反が区域 うるが、本町回ては休り日本中的を日うた	
火焼候による細剤先散度の風感がないものとする。 「毎日劫に対去て乳焼の温度」目も証何し、温度」目がこの乳		のに、 八火焼僕による 細別 光 取及の 医顔 かよいものとりる。	
輻射熱に対 9 る 設備の 価度 上升 を 計 恤 し 、 価度 上升 か て の 設 () () () () () () () () () ()		輪別熱に対りる設備の価度上升を計価し、価度上升がその 記供。執筆 合明 思 住いてにたる たこに恋 香田 医ス にたむい 夢	
備の熱計谷限界値以下になるように発電用原子炉施設は離隔		設備の熱計谷限が値以下になるように発電用原于炉施設は離	
距離を確保するものとする。		隔距離を確保するものとする。	
	2. 火災源又は爆発源となる設備の影響評価		
(3) 評価対象範囲	2.1 評価対象の考え方	(3) 評価対象範囲	
評価ガイドに基づき, 発電所敷地内に存在する石油類やヒ	評価ガイドに基づき、発電所敷地内の火災源又は爆発源とな	評価ガイドに基づき、発電所敷地内に存在する石油類やヒ	
ドラジン等の危険物タンク火災の影響評価を実施する。消防	る石油類等の危険物貯蔵設備について, 火災・爆発の影響評価	ドラジン等の危険物タンク火災の影響評価を実施する。消防	
法又は <u>柏崎市火災予防条例</u> に基づく届出対象施設(第	を実施する。第2.1-1図のフローに基づき評価対象を抽出した。	法又は松江市火災予防条例に基づく届出対象施設(第2-2表)	
2- <u>2(a)(b)(c)</u> 表)より,評価対象とする危険物タンク等を抽	火災源の抽出結果を第2.1-1表に,爆発源の抽出結果を第2.1-2	より,評価対象とする危険物タンク等を抽出する(第 2-1 図	
出する (第 2-1 図のフロー図)。発電所敷地内の発火源とな	表に示す。	のフロー図)。発電所敷地内の発火源となる施設のうち,建	
る施設のうち, 建屋内に設置している設備及び地下貯蔵タン	・屋内貯蔵所は評価対象外とした。	物内に設置している設備及び地下貯蔵タンクは外部への火災	
クは外部への火災が発生する可能性が低いことから除外し、	・地下タンク貯蔵所については、地表面で火災が発生する可能	が発生する可能性が低いことから除外し,危険物を貯蔵し屋	
危険物を貯蔵し屋外に設置しているタンク等を想定発火源	性は低いことから、評価対象外とした。	外に設置しているタンク等を想定発火源とする。発電所敷地	
とする。発電所敷地内における危険物施設等の位置を第 2-2	 ・常時「空」状態で運用する設備については、評価対象外とし 	内における危険物施設等の位置を第 2-2 図に示す。	
図に示す。	た。		
	 ・貯蔵燃料の種類が同じ場合,貯蔵量が少なくかつ評価対象施 		
	設までの離隔距離が長い設備は、貯蔵量が多くかつ評価対象		
	施設までの離隔距離が短い他設備に包絡されるため、評価対		
	象外とした。		
	 ・火災源となる設備から評価対象施設を直接臨まないものにつ 		
	いては、当該合除物貯蔵設備において水災・爆発が発生して		
	も、その影響が及げたいため、評価対象外レーた		
	・ 怒雪 町 樺 如 上 り 入 正 し アノス タンクロー 11 につい アけ 一 峰座		
	- 光电灯(冊21より八灯して、 コクマクレーリについては, 燃料		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	補給時は監視人が立会を実施し、万が一の火災発生時は速や		
	かに消火活動が可能であることから、評価対象外とした。		
	敷地内の火災源及び爆発源となる設備及び評価対象施設の位		
	置を第2.1-2図に示す。		
【抜粋】外部火災影響評価ガイド		【抜粋】外部火災影響評価ガイド	
4.1 考慮すべき発電所敷地外の火災		4.1 考慮すべき発電所敷地外の火災	
(2) 近隣の産業施設の火災・爆発		(2)近隣の産業施設の火災・爆発	
近隣の産業施設で発生した火災・爆発により、原子炉施設		近隣の産業施設で発生した火災・爆発により、原子炉施	
が,その影響を受けないよう適切な防護措置が施されてお		設が、その影響を受けないよう適切な防護措置が施されて	
り、その二次的な影響も含めて、原子炉施設の安全性を損な		おり、その二次的な影響も含めて、原子炉施設の安全性を	
うことのない設計とする。なお,発電所敷地外の 10km 以内		損なうことのない設計とする。なお、発電所敷地外の 10km	
を発火点とし、森林等に延焼することによって発電所に迫る		以内を発火点とし、森林等に延焼することによって発電所	
場合は(1)の森林火災として評価する。(ただし, <u>発電所敷地</u>		に迫る場合は(1)の森林火災として評価する。(ただし、	
<u>内に存在する石油類やヒドラジンなどの危険物タンク火災</u>		発電所敷地内に存在する石油類やヒドラジンなどの危険	
<u>については、(3)の航空機墜落と同様に原子炉施設への熱影</u>		物タンク火災については、(3)の航空機墜落と同様に原	
<u>響評価等を行う。</u>)		子炉施設への熱影響評価等を行う。)	
発電所構内には、危険物施設のほかにタンクローリ(990L		<u> 固化材タンクの火災による熱影響を考慮し、固化材を可燃</u>	・設備の相違
×2 台、 $4kL \times 4$ 台、 $16kL \times 1$ 台)を配備している。990L タ		性の「不飽和ボリエステル樹脂」から「セメント」に変更す	【相崎 6/7】
シクローリのうち1台には指定数量以下の軽油を貯蔵し,		ることから、2号炉運転中において使用する予定はなく、「空」	評価対象物の抽出結
訓練後の電源車や消防車等への燃料補給に使用するが、それ		の状態で運用するため、評価対象から除外する。	果の相違
以外のタンクローリは通常時「空」の状態で運用している。		同様にタンクローリについても、通常時「空」の状態で運	
通常時「空」の状態であるタンクローリは発火の可能性はな		用しており、発火の可能性はないことから評価対象から除外	
いことから評価対象から除外する。同様に、発電所構内には		\underline{T}_{3}	
<u>重油タンクがあるが、現在は当該タンクの重油を抜き危険物</u>		また、島根3号炉原子炉設置変更許可(平成17年4月26	
<u> 貯蔵所として廃止届出をしており、重油タンク内の重油は</u>		日付け 平成 15・12・18 原第 3 号) を踏まえて設置した「3	
「空」であることから、評価対象から除外する。		<u> </u>	
<u>以上より、評価対象は、各号炉の軽油タンク、危険物を貯</u>		成27年11月13日付けで「危険物貯蔵所 廃止届出書」を所	
蔵する車両 (タンク ローリ),指定数量以下の危険物を貯蔵		<u> 轄消防に提出し、危険物貯蔵所としての使用を廃止し、軽油</u>	
<u>する倉庫(K3/4 少量危険物倉庫) 及びガスタービン車他燃</u>		を貯蔵しない連用としていることから評価対象から除外す	
料供給設備(一般取扱所)となる。			
<u>ここで、指定数量以下の危険物を貯蔵する車両等(タンク</u>		<u>以上より、評価対象は、ガスタービン発電機用軽油タンク、</u>	
<u>ローリ)は、貯蔵量が少なく周辺監視区域外に設置・保管さ</u>		<u> 重田タンク、補助ボイラ等となる。</u>	
れており, 評価対象とした軽油タンク火災の評価に包絡され		<u>ここで、補助ボイラ等は、評価対象としたガスタービン発</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-2(a)表 危険物製造所等許可施設一覧	第2.1-1表 敷地内	内の火災源となる設備一覧	第2-2表 危険物製造所等許可施設一覧(1/5)	
号炉 施設名 製造所の別 危険物 数量 詳細評価要	設備名 製造所等区分	設置 塩所 危険物の類 品名 (¹³) (〇:対象, X:対象所)	(2019年7月時点	_
五年 類 品名 五年 3444 ○(※1) 日本 3444 ○(※1)		第四類 第一石油類 ガンリン 0.90 × (屋内設置 → A)	号炉 施設名 製造所の別 危険物 評価 類 品名 数量 評価	
1号炉 軽油タンク(B) 屋外タンク貯蔵所 4 第2石油類 軽油 344kL ○(※1)	油倉庫 星內貯蔵所	第四類 第二石曲類 軽油・灯油 2.20 (星内設置 → A) 星内 第四類 第三石曲類 絶縁油 18.20 (日内設置 → A)	1 ディーゼル地下タンク 地下タンク 4 第2石油類 軽油 46kL ×	
1号炉 非常用ディーゼル発電 一般取扱所 1 第2石油類 軽油 20kL × (屋内設置)		第四類 第四石油類 潤滑油 21.00 × (屋内設置 → A)	(A) 貯蔵所 地下	_
機(A) 1 第 1 石油類 潤滑油 6.5kL × (屋内設置)		第四類 アルコール類 アルコール類 0.20 × (屋内設置 \rightarrow A)	1 $\begin{pmatrix} \overline{\gamma}_{4} & -\overline{\nu}_{1} & \overline{\nu}_{2} & \overline{\overline{\nu}_{2} & \overline{\nu}_{2} & \overline{\overline{\nu}_{2} $	
1号炉 非常用ディーゼル発電 一般取扱所 4 第2石油類 軽油 20kL × (屋内設置	重油貯蔵タンク 地下タンク貯蔵所	所 地下 第四類 第三石油類 重油 500.00 × (地下式 → B)	ディーゼル発電機	-
機(B) 1 第 1 石油類 潤滑油 6.5kL × (屋内設置	非常用ディーゼル発電機用タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 800.00 × (地下式 → B)	1 潤滑油サンプタンク 一般取扱所 4 第4石油類 潤滑油 2kL×2 × (A P) (A (A (A (A (A	
1号炉 非常用ディーセル発電 一般取扱所 4 第2石油類 軽油 14kL × (屋内設置	原子炉建垦 一般取扱所	第四類 第二石油類 軽油 33.20 × 屋内 (星内設置 → A) (日政設置 → A) (日本)	(A, D) ディーゼル発電機 細正原式 4 体 a T 決新 4001 V 0 ×	-
機(HPCS) 4 勇 4 石油類 酒宿油 6. 5kL × (屋内設直 1.日后 MCキュー 二 4 第 4 石油類 酒宿油 6. 5kL × (屋内設直		第四類 第四右論類 潤清油 16.50	1 燃料小出槽(A, B) 一般取扱所 4 第2石油類 軽油 490L×2 屋内	
1分炉 MGモット室 一板取扱所 4 男子石油類 第名油 12kL × (座内設置) 1.4.6 4		第四類 第一台 問題 軽細 0.36 (屋内設置 → A) 第四類 第三方論類 変計 1.00 ×	再循環ポンプMGセッ 一般取扱所 4 第4石油類 潤滑油 10.92kL ×	
1 5 / 2 - こ ノ 設備 一板 取 仮 方 1 - 第 1 4 田 須 (7) 1 - 10 KL × (座 / 3) ((座 / 3) (座 / 3) ((座 / 3) (座 / 3) ((座 / 3) (座 / 3) ((座 / 3) ((座 / 3) ((座 / 3) ((座 / 3) (((座 / 3) ((((座 / 3) ((((((((((((((((((タービン建屋 一般取扱所	第四頭 第一日前線 里曲 1.90 (屋内設置 → A) 室内街 第四石油町 潤澄油 185.23 × ×	ト流体継手室(A, B) ^{座内}	_
1 号 1 4 御親 7/ 酸ペパパ 3KL へ (逆ど)試過 1 号 6 加 にいい時諾タンク 局内タンク時諾託 4 第 2 式油新 広油 10.76201 又 (局内発展		第月1396 All Field 100-200 (星内設置 → A) 第四類 第3月200 7.93 × 第四類 第3月200 7.93 ×	1 メービン主油タンク × 1 (A B) 油港海維 一船町船町 4 第4万油灯 週湯油	
北田 潤浸油合歯		μ <td>(A, D) 面信行機 取取扱例 4 第4石油類 酒宿曲 55.7kL ××</td> <td>_</td>	(A, D) 面信行機 取取扱例 4 第4石油類 酒宿曲 55.7kL ××	_
	溶融炉灯油タンク 屋外タンク貯蔵所	所 屋外 第四類 第二石油類 灯油 10.00 ○	■ 「	
	可搬型設備用軽油タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 210.00 × (地下式 → B)	2 No. 2 重油タンク 1 第 3 石油類 重油 900kL 〇	
	ディーゼル発電機用燃料タンク 少量危険物貯蔵取扱所	近所 屋外 第四類 第二石油類 軽油 0.78 (他評価に包給 → D)	屋外タンク がっていて それ ののい の	
2 号炉 非常用ディーゼル発電 一般取扱所 1 第2 石油類 経油 20kL×(屋内設置		第四類 第一石油類 ラッカー等 0.10 × (屋内設置 → A) (((A) (2 No.3 重油ダング 日	
楼 (A) 4 第4 石油類 潤滑油 6.6kL × (屋内設置	No.1 保修用油倉庫 屋内貯蔵所	屋内 第四類 第二石油類 軽油 4.00 × (屋内設置 → A)	A系-ディーゼル機関 地下タンク 4 第2万沖類 郵沖 170kl ×	
2 号炉 非常用ディーゼル発電 一般取扱所 4 第2 石油類 経油 20kL × (屋内設置)		第四類 第四石油類 潤清油 90.00 × (屋内設置 → A) (((A)	2 燃料貯蔵タンク 貯蔵所 4 知2411100 半部 11000 地下	
機(B) 4 第4石油類 通常油 6.6kL × (屋内設置	No.2 保修用油倉庫 屋内貯蔵所	屋内 第四類 第四石油類 清清油 100.00 × (屋内設置 → A) (((A) (A2 系-ディーゼル機関 地下タンク 4 第 2 石油類 軽油 170kL ×	
2 号炉 MGセット室(A)(B) 一般取扱所 4 第4石油類 潤滑油 12kL×(屋内設置	緊急時対策室建屋 一般取极所	屋内 第四類 第三石油類 重油 5.76 × (屋内設置 → A) (屋内設置 → A) (((((((A) ((((((((((((((((() () () ()	燃料貯蔵タンク	_
2号炉 非常用ディーゼル発電 一般取扱所 4 第2石油類 軽油 14kL × (屋内設置	緊急時対策室建屋地下タンク 地下タンク貯蔵所	所 地下 第四類 第三石油類 重油 20.00 × (地下式 → B)	2 HPCS 糸-ディーセル 地下ダンク 推開燃料 http:// 170kL × 地下ダンク 4 第2石油類 軽油 170kL × 地下	
機(HPCS) 4 第4石油類 潤滑油 3.9kL × (屋内設置	絶縁油保管タンク 屋外タンク貯蔵所	所 屋外 第四類 第三石油類 絶縁油 200.00 × (常時「穿」→C)	(茂) 例ぶやf(灯)((な)シンク (灯)(((の)))	-
2 号炉 軽油タンク(A) 屋外タンク貯蔵所 4 第2石油類 軽油 344kL ○(※1)		第四類 第二石油類 軽油 5.97 × (他評価に包絡 → D) ((((((((((() () () () <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2 号炉 軽油タンク (B) 屋外タンク貯蔵所 4 第 2 石油類 軽油 341kL ○(※1)	常設代容高圧電源装置直場 一般取扱所	歴外 第四類 第四石油類 潤清油 0.94 (他評価に包絡 → D)	版取扱所 4 第3石油類 重油 65kL	
3号炉 非常用ディーゼル発電 一般取扱所 4 第2石油類 軽油 20kL × (屋内設置)	緊急時安全対策用地下タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 90.00 × (地下式 → B)		_
機(A) 1 第1石油類 潤滑油 6.6kL × (屋内設置	構内服洗濯用タンク 少量危険物貯蔵取扱所	短所 屋外 第四類 第三石油類 重油 1.82 × (他評価に包絡 → D)	2 4号所内ボイラ サービスタンク ×*	
3 号炉 非常用ディーゼル発電 一般取扱所 1 第 2 石油類 軽油 20kL × (屋内設置)	廃棄物処理建屋廃油タンク 少量危険物貯蔵取扱所	5所 屋内 第四類 第三石油類 廃油 1.90 × × (屋内設置 → A)		-
機(B) 1 第 1 石油類 潤滑油 6.6kL × (屋内設置)	雑固体減容処理設備用バーナ 少量危険物貯蔵取扱所	预所 屋内 第四類 第二石油類 灯油 0.93 (屋内設置 → A)	2 4 号所内ボイラ ×*	
3 号炉 非常用ディーゼル発電 一般取扱所 4 第 2 石油類 軽油 14kL × (屋内設置)	緊急用エンジン発電機燃料タンク 少量危険物貯蔵取扱所	坂所 屋外 第四類 第二石油類 軽油 0.80 (常時「空」→C) ×	2 タービン設備 一般取扱所 4 第4石油類 タービン 71kL ×	
機(HPCS) 4 第 4 石油類 潤滑油 3.9kL × (屋内設置	緊急時対策所用発電機燃料油貯蔵タンク 地下タンク貯蔵所	所 地下 第四類 第二石油類 軽油 150.00 (地下式 → B)		_
	オイルサービスタンク 少重10版初木酒 が正思田屋从语レゼンプ田様料ないカ 少量を除熱的部長地子	項 近介 第四頭 第二百調菓 里甜 0.39 (他評価に包絡 → D) 一面 日本 第二百調菓 単二 本 10.39 (他評価に包絡 → D) ※	2	
	スパニの7/12年ノビヨノスパマンノ11/22年アンマン 2 加ノビデマ9/51 第4428671	(他評価に包絡 → D)	■ MUCUPF ※・代表タンクの評価に知終される	
		網掛け箇所:評価対象となる設備		

柏崎刈羽原子	力発電所 (6/7号炉 (2017	7.12.2	20版)	東海第二発電所(2018.9.12版)		島根	· 原子力発	電所	f 2号均	F			備考
第 2-2(b)	表 危険	食物製造所等許可施	設一	覧			第2-2表 危険物製造所等許可施設一覧(2/5)							
E He Heat	制法式の同	危険物	×4. E.	के के प्राकृत के स्थान के जिसके के प्राकृत की कि		号炉	= 施設名	製造所の別	107	危険物		数量	評価	
万分" 爬取石	派垣内の加	類 品名	奴里	i于和时"[III;安古					現 4	前石 笛9石油類	軽油	16H	<u>安</u> 百 ×	
3 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	106k	L × (屋内設置)		2	A 米=非常用アイーセル 発電設備	一般取扱所		ゲィア油海	AND AD AN	7.0511	屋内 ×	
		4 第4石油類 難燃性作動油	3. 8k	L × (屋内設置)			元电队用		4	第4石油類	潤滑油	7.65kL	屋内	
3 号炉 軽油タンク(A)	屋外タンク貯蔵所	4 第2 石油類 軽油	344k	L (%1)		2	B 系−非常用ディーゼル	一般的场所	4	第2石油類	軽油	16kL	× 屋内	
3 5分 軽価タンク(b) 4 号伝 非常田ディーゼル務索	産アトランク 灯蔵別 一般 助 扨 所	4 第2 石油類 軽油	20k	L U(梁I) L X (最内設置)			発電設備	/1X4X3/X/7	4	第4石油類	潤滑油	7.65kL	× 屋内	
	//X4X1/X///	4 第4石油類 潤滑油	6, 6k	L × (屋内設置)					4	第2石油類	軽油	9kL	×	
4 号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	20k	L × (屋内設置)		2	HPCS 系非常用ディーゼル	一般取扱所		答 4 7 3 4 85	388 3.6. 34	7 5011	屋内 ×	
機 (B)		4 第4石油類 潤滑油	6. 6k	L × (屋内設置)					4	弗4 石 佃 親	個領油	7. 00KL	屋内	
1号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	14k	L × (屋内設置)		2	国化林タンク			策の石油精	小胞和ボ	21 6M	×	
機(HPCS)		4 第4石油類 潤滑油	3, 9k	L × (屋内設置)			回に内ノマノ			л7 2 °н 10 жя	ル樹脂	21. OKL	空運用	
4 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	106k	L × (屋内設置)				An an ar	\vdash		ナフテン			
		4 第4石油類 難燃性作動油	4k	L × (屋内設置)		2	促進材タンク	一般取扱所	4	第2石油類	酸コバル	87. 1L	× 屋内	
4号炉 軽油タンク(A)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L ⊖ (≫1)				-			F			
4 号炉 軽油タンク(B)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L ((% 1)		2	開始材タンク		5	第二種自己	ケトン系	267. 5kg	×	
5 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	106k	L × (屋内設置)			9号ガスタービン			反応性物質	道酸化物		2251.9	
5 品石 非常田ディーゼル務電	一般市场正	4 弟 4 右油類 リン酸エステル 4 第 9 石油類 ルシ迪	3k	L × (屋内設置)			2 写 パバラ こう 発電機							
55分子 非常用 ティーセル 光電 機 (A)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 第27曲風 軽価 4 第4万油箱 潤湯油	20k	L ~ (崖内設置)		2	2号ガスタービン	一般取扱所	4	第2石油類	軽油	52.68kL	×*	
5 号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	20k	L X (屋内設置)			発電機用サービスタンク							
機 (B)	1000000000	4 第4石油類 潤滑油	6. 6k	L × (屋内設置)		3	No.1 重油タンク	屋外タンク	4	第3石油類	重油	900kL	0	
5 号炉 MGセット室(A)	一般取扱所	 第1石油類 潤滑油 	10.5k	L × (屋内設置)				貯蔵所	-	N7 0 1 H 1 H 75R	里田	JOOKE		
5号炉 MGセット室(B)	一般取扱所	 第1石油類 潤滑油 	10.5k	L × (屋内設置)		3	補助ボイラ(サービスタ	一般取扱所	4	第3石油類	重油	109kL	×*	
5号炉 軽油タンク(A)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L ()(*1)			シクを古む)			Anter a como Sala Maret			×	
5号炉 軽油タンク(B)	屋外タンク貯蔵所	4 第2石油類 軽油	344k	L ()(%1)					4	弗 Ⅰ 石沺類		6.4KL	屋内	
5 号炉 非常用ディーゼル発電	一般取扱所	4 第2石油類 軽油	14k	L × (屋内設置)					4	第2石油類		1.2kL	× 屋内	
機 (HPCS)		4 第1石油類 潤滑油	3. 9k	L × (屋内設置)		3	第3危険物倉庫	屋内貯蔵所	4	第3石油類	潤滑油他	1. 4kL	×	
6 号炉 タービン設備	一般取扱所	4 第4石油類 潤滑油	98k	L × (屋内設置)						JU O HIHAR		1. 1112	屋内 ×	
	An	4 第4石油類 難燃性作動油	4k	L × (屋内設置)					4	第4石油類		40kL	屋内	
6 号炉 非常用ディーセル発電 (A)	一般取扱所	4 第2 石油類 軽油 4 第 4 石油類 潤温油	18k	L × (屋内設直)					4	第2石油類	軽油	34. 3kL	× 屋内	
6号/5 非常田ディーゼル発電	一般而扬所	4 第 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	э. эк 18b	L × (屋内設置)		3	A-ディーゼル発電機	一般取扱所	4	第4石油類	潤滑油	7.1kL	×	
(B) 機 (B)	1, 1, 1, 2, 1	4 第4石油類 潤滑油	3. 9k	L × (屋内設置)			 ・ ・ ・	(h Z	1	ЛТННА	11111111	1. IND	屋内	
		* 20 * E 19 24 15 11/19	0101			/								

柏崎刈羽原子	力発電所	6 /	~7 号	炉	(201	17.12	2.20版)	東海第二発電所(2018.9.12版)		Ē	島根原子ナ	」発電所 2	2 号炉			備考
第 2-2(c)	表 危险	険牧	製造	所	等許可族	施設-	一覧			第2-2表 危	険物製造	所等許可施	設一覧	(3/	<u>(5)</u>	
号炉 施設名	製造所の別	類	ţ	危険物 品:) 名	- 数量	量 詳細評価要否		号	テ炉 施設名	製造所の別	危類	[険物 品名		数量 評価 要否	
6号炉 非常用ディーゼル発電 機(C) (C)	一般取扱所	1 4	第 2 石油 第 4 石油	由類 軺 由類 潤	圣油 閏滑油	3.	18kL × (屋内設置) 9kL × (屋内設置)	-		3 B-ディーゼル発電機	一般取扱所	4 第2石油類 4 第4石油類	相調	E油 滑油	34. 3kL × 屋内 ×	
6号炉 軽油タンク(A)	屋外タンク貯蔵所	1	第2石油	由類 軺	圣油	56	55kL 🔿 (※1)					4 第 4 石 田 現 4 第 9 石 油 類		8油	7.1KL 屋内 24.2比I ×	
6号炉 軽油タンク(B)	屋外タンク貯蔵所	1	第2石油	由類 軺	圣油	56	65kL ○(※1)			3 C-ディーゼル発電機	一般取扱所	4 <u>第 2 1 </u> (四規			54.5KL 屋内 ×	
7 号炉 タービン設備	一般取扱所	1	第4石油 第4石油	由類 湄	関滑油 ###>##	9	98kL × (屋内設置)	-				4 第4石油類	1間	滑油	7.1kL 屋内	
7号炉 非常用ディーゼル発電	一般取扱所	4	第114 第2石油	山類 奥山類	#IXX1±1F907曲 圣油	3.	18kL × (屋内設置)	-		3 再循環ボンブ MG セット (A, B)	一般取扱所	4 第4石油類	潤	滑油	16kL × 屋内	
栈 (A)		4	第4石油	由類 渇	胃滑油	3.	9kL × (屋内設置)	-		 3 タービン設備 	一般取扱所	4 第4石油類	潤	滑油	100kL × 屋内	
7号炉 非常用ディーゼル発電	一般取扱所	4	第2石油	由類 輡	圣油	1	18kL × (屋内設置)						非水落	幹性液体	1,300L ×	
機 (B)		1	第4石油	山類 潤	閏 滑油	3.	9kL × (屋内設置)	-				4 第一石油類	水溶	性液体	600L ×	
7号炉 非常用ディーゼル発電 (C)	一般取扱所	1	第2石油	由類 軺	重200-300 変加	2	18kL × (屋内設置)	-				A アルコール	帽アルー	コール箱	600I ×	
7号炉 軽油タンク(A)	屋外タンク貯蔵所	1	第114	由類 轁	▲4月7日 圣油	56	55kL ○ (※1)					4 /// //		· / F 大只	10.000L <u>屋内</u>	
7号炉 軽油タンク(B)	屋外タンク貯蔵所	4	第2石油	由類 軺	圣油	56	65kL () (% 1)	1	#	共通 第1危険物倉庫	屋内貯蔵所	4 第2石油類	非水浴	\$1生液1本	19,000L 屋内	
第一ガスタービン発電	地下タンク貯蔵所	1	第2石油	由類 軺	圣油	107.	.8kl × (地下式)						水溶	性液体	200L <u>雇内</u>	
機用燃料タンク	一般取扱所	1	第2石油	由類 軺	圣油	71.8	84k1 ○ (※2)					4 第3石油類	非水泽	客性液体	3,000L × 屋内	
ガスタービン車他燃料 共用 供給設備	地下タンク貯蔵所	1	第2石油	由類 軺	圣油	14	11kL × (地下式)					4 第4石油頪	水溶	性液体	400L × 屋内 36.000I ×	
共用 ガスタービン車他燃料 供給設備	一般取扱所	1	第2石油	由類 軺	圣油	35.5	52kL \times (% 2)					4 为 4 1 仰叔	非水溶	2 但 规 学性液体	3,000L × 3,000L ×	
ガスタービン車他燃料 共用 供給設備	一般取扱所	4	第2石油	由類 轁	圣油	1	18kL × (※ 2)					4 第1石油類	 (洗) 水溶 	浄液) 性液体		
共用 No.1 重油タンク	屋外タンク貯蔵所	4	第3石油	由類 重	食油	300	00kL × (※3)						(現	像液)	座内 ×	
共用 No.2 重油タンク	屋外タンク貯蔵所	1	第3石油	由類 重	重油	32	20kL × (¥3)					4 アルコール	類 アルコ	ュール類	200L 屋内	
※1:自号炉の軽油タンク:	火災による熱影響	響評伯	町を実施	値する					#	共通 第2 危険物倉庫	屋内貯蔵所		非水浴	¥性液体 い油)	1,000L × 屋内	
 ※2: *	る熱影響評価にで 現在け重油をお	凹給さ 方きる	される。 マンクゆ	句に重	「油け存在」	したい						4 弗2石沺類	水溶	性液体	200L ×	
жо. лашану, соуу,			• • •	1167		0.0.1	0						非水浴	5性游休	屋内	
												4 第3石油類	(浸)	透液)	1,000L 屋内	
													水溶	性液体	400L × 屋内	
												4 第4石油類	第43	石油類	24,000L × 屋内	
										※:代表タンクの評価に包	「絡される。					

柏崎利羽原于刀笼电用 6/ (亏炉 (2017.12.20 脉)	東海第二発電所(2018.9.12版)		島村	退原子力発	管所 2号	炉			備考
			第 2-2 表 危険	物製造所	等許可施設-	-覧(4	<u> </u>		
		号炉	施設名	製造所の別	た険* 類 品	7 名	数量	評価 要否	
		共通	ガスタービン発電機用軽 油タンク	屋外タンク 貯蔵所	4 第2石油類	軽油	560kL	0	
		共通	タンクローリ (1 号車)	移動タンク 貯蔵所	4 第2石油類	灯油・軽油	3, 000L	× 空運用	
		共通	タンクローリ (2 号車)	移動タンク 貯蔵所	4 第2石油類	灯油・軽油	3, 000L	× 空運用	
		共通	タンクローリ (3 号車)	移動タンク 貯蔵所	4 第2石油類	灯油・軽油	3,000L	× 空運用	
		共通	 免震重要棟ガスタービン 発電装置 2 基 燃料小出槽(490L) 2 基 	一般取扱所	4 第2石油類	軽油	12, 048L	× 屋内	
		共通	A-ガスタービン燃料 地下タンク	地下タンク 貯蔵所	4 第2石油類	軽油	45, 000L	× 地下	
		共通	B-ガスタービン燃料 地下タンク	地下タンク	4 第2石油類	軽油	45, 000L	× 地下	
		共通	予備 ガスタービン 発電機 予備	一般取扱所	4 第2石油類	軽油	52. 68kL	×**	
		2	発電機用サービスタンク B1-ディーゼル燃料貯蔵	地下タンク	4 第2石油類	軽油	100kL	×	
		(新設) 2	タンク B2-ディーゼル燃料貯蔵	貯蔵所地下タンク	4 第2石油類	軽油	100kL	地下 ×	
		(新設) 2	タンク B3-ディーゼル燃料貯蔵	貯蔵所地下タンク	4 第2石油類	軽油	100kL	地下 ×	
		(新設) 3	タンク 非常用ディーゼル発電設	<u></u> 貯蔵所 屋外タンク	4 第2石油類	軽油	560kL	地下 ×	
		(廃止) 3	 備軽油タンク(A) 非常用ディーゼル発電設 	 貯蔵所 屋外タンク 	4 第2石油類	軽油	560kL	BELL X	
		(廃止) ;	備軽油ダンク(B) ※:代表タンクの評価に包絡	 「 「 「 「 「 「 「 「 「 」 「 」 」 「 」 」 」 」 「 」 」 」 」 う 「 」 」 う 「 」 う 」 う 、 」 う 、 、 う 、 う 、 う 、 う 、 う 、 う 、 、 、 、 、 、 、 、 、 、 、 、 、				9611.	
			<u>第 2-2 表 危険</u>	物製造所	等許可施設-	-覧(5	<u> </u>		
		号炉	施設名	製造所の別	危険物 類 品:) 名	数量	評価 要否	
					4 第1石油類	第1石油類	440L	× 屋内	
					4 アルコール類	エチル アルコール	2L	× 屋内	
		共通	危険物倉庫	屋内貯蔵所	4 第2石油類	第2石油類	4,700L	× 屋内	
					4 第3石油類	エンジン オイル	200L	× 屋内	
					4 第4石油類	潤滑油	400L	× 屋内	
		共通	危険物倉庫	屋内貯蔵所	4 第1石油類	第1石油類	3,280L	× 屋内	
		т.2	O ADv ADV AND THE WAS AND LOD.	10 7ft 200-011 144	4 第2石油類	第2石油類	3, 500L	屋内	
		- 共連 	○Ⅲ 验一 叔 停 电 用 免 單 機 44m 盤 事 務 所	光 发電設備	4	較油	490L	×*	
		*地	 一般停電用発電機 : 代表タンクの評価に包絡 	- 元 変 电 設 開 される。	+	聖祖	490L	A	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発	電所(2018.9.12	版)	島根原子力発電所 2号炉	備考
第 2-3 表 指定数量以下の危険物	第2.1-2表	内の爆発源とな	る設備一覧		
房炉 施設名 製造所の別 危険物 数量 詳細評価要否	設備名 内容物	本数 1本当たり容量	総容量 詳細評価要		
共用 タンクローリ 移動タンク貯蔵所 4 第 2 石油類 軽油 990L ×(※1)		(本)	(〇:対象,×:対		
共用 タンクローリ 移動タンク貯蔵所 4 第2石油類 軽油 990L × (常時空)	H ₂ , CO ₂ ボンベ庫 水素	20 7 m ³	140 m ³ (屋内配置-	A)	
共用 タンクローリ 移動タンク貯蔵所 4 第2石油類 軽油 4kL × (常時空)	水素貯槽 水素		6.7 m ³ O		
共用 タンクローリ 移動タンク貯蔵所 1 第2石油類 軽油 4kL ×(常時空)	予備ボンベ庫① 水素	40 7 m ³	280 m ³ ×		
共用 タンクローリ 移動タンク貯蔵所 4 第2 石油類 軽油 4kL × (常時空)			(室内配直一		
共用 タンクローリ 移動タンク貯蔵所 1 第2石油類 軽油 4kL × (常時空)	予備ボンベ庫② 水素	20 7 m ³	140 m ³ × (屋内配置-	A)	
	所内ボイラー		×		
1 3/1 10000 1000 1000	プロパンボンベ庫 プロパン	4 50 kg	200 kg (屋内配置-	A)	
4 7ħ2→応類 - 15L × (※1)	焼却炉用 プロパン	5 500 kg	2500 kg		
※1:軽油タンク火災による熱影響評価に包絡される。	フロバンホンベ庫 サービス建局		(屋内配直	A)	
	ボンベ庫 アセチレン	3 7 kg	21 kg (屋内配置-	<u>A)</u>	
	廃棄物処理建屋 アセチレン 化学分析用ボンベ庫 メタン+7/kg ² y	$\frac{1}{4}$ 7 kg	7 kg × 28 m ³ (屋内配置-	A)	
	命告田プロパンギンズ度 プロパン	19 50 kg	20 m ×		
			900 kg (屋内配置-	A)	
		網掛け箇所	: 評価対象となる設	用	
				(№ 1, № 2, № 3) (№ 1, № 2, № 3) (№ 1)	
				ARA SURVEY	
				ガスタービン発電機用軽油タンク	
				TO STOLAT	
第 2-2 図 危険物タンク及び危険物保存庫の位置(発電所全体)	第 2.1-2 図 火災源及び爆発	源となる設備及び	評価対象施設の位	置 第 2-2 図 危険物タンクの位置(発電所全体)	
	2.2 発電所敷地内危険物貯	蔵設備の熱影響調	平価		
	291 水災酒レわス設備の	- 小災の相空			
	人災源となる設備の火災	その想定は以下の	とおりとした。		
	(1) 想定条件				
	a 水災酒とたス設備)	+21で抽出した	波融 「「「」」 ない		
	Lten				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	b. 火災源となる設備の燃料は満載した状態を想定した。		
	<u>c. 離隔距離は, 評価上厳しくなるよう, a. で想定した火災</u>		
	源となる設備位置から評価対象施設までの直線距離とし		
	the		
	<u>d. 火災源となる設備の破損等による防油堤内の全面火災を</u>		
	想定した。		
	e. 気象条件は無風状態とした。		
	f. 火災は円筒火炎モデルとし、火炎の高さは燃焼半径の3		
	倍とした。		
	(2) 評価対象施設		
	原子炉建屋、タービン建屋、海水ポンプ室(非常用ディー		
	ゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)		
	用海水ポンプ)、主排気筒を評価対象施設とし、直接臨まない		
	使用済燃料乾式貯蔵建屋,非常用ディーゼル発電機(高圧炉		
	心スプレイ系ディーゼル発電機を含む。)及び放水路ゲートは		
	対象外とする。		
(4) 必安/ - ク 	2.2.2 共四ノークの昇山 タ対角振調の外路及び文排気管に対する教影郷証価に必要と	「近年に立てたち」	
計画に必要なケークを以下にかり。	百利家爬成のアド生及の王沢入向に対する恋影音計画に必要と		
	(1) 水災源とたる設備及び燃料に係るデータ		
	水災源とたろ設備及び燃料に係ろデータを第222-1 表に		
	示す。		
	第 2. 2. 2-1 表 火災源となる設備及び燃料に係るデータ		
	想定火災源 燃料の V R f M ρ S 種類 (-3) (地域 (-2))		
	「 「 」 」 」 」 」 」 」 」 」 」 』<		
	※3 MSDS(製品安全データシート)記載値		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20 版	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-4 表 軽油タンク火災影響評価に必要なデー	-2	第2-3表 危険物タンク火災影響評価に必要なデータ	
データ種類 内容		データ種類 内容	
輻射発散度[W/m²]燃焼する可燃物によって決まる定数 42.0×10³[W/m²] (軽油)		輻射発散度[W/m ²] (重油) 23×10 ³ [W/m ²]	
防油堤の面積 17×17=289[m ²]		(軽油) 42×10 ³ [₩/m ²] 防油堤面積	
建屋に近い軽油タンク防油堤の中心から建屋までの距 46[m]	育准 一	防油堤面積[m²] (重油タンク) 491.7m² (ガスタービン発電機用軽油タンク) 302.7m²	
隣接軽油タンクまでの距離 12[m] 離隔距離[m] 離隔距離[m] 離隔距離[m] から防護板(断熱)に近い軽油タンク防 心から防護板(断熱)までの距離 11[m] 主排気筒に近い軽油タンク防油堤の中心から主排気 距離 77[m]	油堤の中 筒までの	(重油タンク) 建物:568~606[m] 海水ポンプ:587~626[m] 排気筒:526~564[m] (ガスタービン発電機用軽油タンク) 建物:329[m] 海水ポンプ:472[m] 排気筒:434[m]	
 (5) 燃焼半径の算出 防油堤には貯槽その他不燃障害物が存在し、火災面積 面積分だけ小さくなるが、防油堤全面火災のような大規 災の場合は、多少の障害物も無視できる。したがって、 では、防油堤面積と等しい円筒火炎を生ずるものと想定の式から燃焼半径 R[m]を算出する。 R= (S/π)^{0.5} S:防油堤面積(火炎円筒の底面積) = 289 [m²] 	はその 模な火 本評価 し, 次 $R = \sqrt{\frac{S}{\pi}}$ R:燃焼半径(m),S:防油堤面積(=燃焼面積)(m ²)	 (5) 燃焼半径の算出 防油堤には貯槽その他の不燃障害物が存在し、火災面積は その面積分だけ小さくなるが、防油堤全面火災のような大規 模な火災の場合は、多少の障害物も無視できる。したがって、 本評価では、防油堤面積と等しい円筒火炎を生ずるものと想 定し、次の式から燃焼半径 R[m]を算出する。 (重油タンク) R= (S/π)^{0.5} S:防油堤面積(円筒火炎の底面積) =491.7[m²] 	
$R = (289 / \pi)^{0.5} = 9.59 \text{ m}$	第2.2.2-2表 火災源の燃焼半径	$R = (491.7 / \pi)^{-0.5} = 12.51 [m]$ (ガスタービン発電機用軽油タンク) R = (S / \pi)^{-0.5}	
	想定火災源 防油堤面積 S 燃焼半径 R 想定火災源 S R (m ²) (m) 溶融炉 灯油タンク 19.36 2.483	S:防油堤面積(円筒火炎の底面積)=302.7[m ²] R= $(302.7/\pi)^{0.5}=9.82[m]$	
(6) 形態係数の算出 次の式から形態係数を算出する。		(6) 形態係数の算出 次の式から形態係数を算出する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$		$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$	
$7 \subset T \subset U$, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$		ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$	
φ :形態係数,L:離隔距離,H:火炎高さ,R:燃焼半径		φ : 形態係数, L : 離隔距離, H : 火炎高さ, R : 燃焼半径	
第 2-5 表 形態係数の算出結果		第 2-4-1 表 重油タンク No. 1, 2, 3 の形態係数算出結果	
評価対象 建屋 軽油タンク 燃料移送ポンプ 主排気筒		評価対象 建物 海水ポンプ 排気筒	
(防護板(断熱))		燃焼半径[m] 12.51	
		離隔距離[m] 568~606 587~626 526~564	
雨IP閉此用阻□□		形態係数 No. 1 9.40×10 ⁻⁴ 8.80×10 ⁻⁴ 1.10×10 ⁻³	
7/3E/03AL 3 0.0121220 0.0000000 0.1100111 0.0200000		$\begin{bmatrix} - \end{bmatrix} \qquad \qquad$	
		第2-4-2表 ガスタービン発電機用軽油タンクの 形態係数算出結果 評価対象 建物 海水ポンプ 排気筒 燃焼半径[m] 9.82 離隔距離[m] 329 472 434 形態係数[-] 1.73×10 ⁻³	
(7) 輻射強度の算出		(7) 輻射強度の算出	
火災の火炎から任意の位置にある点(受熱点)の輻射強度		火災の火炎から任意の位置にある点(受熱点)の輻射強度	
は、輻射発散度に形態係数をかけた値となる。次式から輻射		は、輻射発散度に形態係数をかけた値となる。次式から輻射	
協定 た 管 山 オ ス			
$E = RI \times \phi$		$E = RI \times \phi$	
E:輻射強度,Rf:輻射発散度, φ :形態係数		E:輻射強度, Rf:輻射発散度, φ : 形態係数	
第 2-6 表 輻射強度の算出結果		第2-5-1表 重油タンクNo. 1, 2, 3の輻射強度算出結果	
評価対象 建屋 軽油タンク 燃料移送ポンプ 主排気筒		評価対象 建物 海水ポンプ 排気筒	
(防護板(断熱))		■ Interview (W/m ²) Interview	
輪射発散度し₩/m ^e 」 42.0×10 ^o 形能核粒[_] 0.0797920 0.2962000 0.7760717 0.0905000		Image: Matrix Model No. 1 9. 40×10^{-4} 8. 80×10^{-4} 1. 10×10^{-3}	
$1/2$ ∞ ∞ ∞ 0.0121223 0.0303330 0.0100111 0.0295969 		$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{No. 2} 8.77 \times 10^{-4} 8.23 \times 10^{-4} 1.02 \times 10^{-3} \\ \end{bmatrix}$	
THATSACK ["/ III] 0.00 / 10 10.2 / 10 02.0 / 10 1.2 / 10		No. 3 8. 25×10^{-4} 7. 73×10^{-4} 9. 54×10^{-4}	
		i i i i i i i i i i i i i i i i i i i	
		THEAD JANZ No. 2 20. 2 19. 0 23. 5	
		No. 3 19. 0 17. 8 22. 0	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		第2-5-2表 ガスタービン発電機用軽油タンクの 輻射強度算出結果 評価対象 建物 海水ポンプ 排気筒 輻射発散度[W/m²] 42×10 ³ 形態係数[-] 1.73×10 ⁻³ 8.38×10 ⁻⁴ 9.92×10 ⁻⁴ 輻射強度[W/m²] 72.8 35.2 41.7	
(8) 燃焼継続時間の算出 燃焼継続時間は, 燃料量を燃焼面積と燃焼速度で割った値に なる。 $t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho}$ より, $t = \frac{V \times \rho}{\pi R^2 \times M}$ t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s], M:質量低下速度[kg/m ² ·s], ρ :密度[kg/m ³]	 (3) 燃焼継続時間の算出 燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値 になる。算出結果を第2.2.2-3表に示す。 t = V π R² × v t : 燃焼継続時間(s), V:燃料量(m³) R:燃焼半径(m), v:燃焼速度=M/ρ(m/s) M:質量低下速度(kg/m²/s), ρ:燃料密度(kg/m³) 	(8) 燃焼継続時間の算出 燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値 になる。 $t = \frac{V}{\pi R^2 \times \nu}, \nu = \frac{M}{\rho}$ より, $t = \frac{V \times \rho}{\pi R^2 \times M}$ t:燃焼継続時間[s], V:燃料量[m ³], R:燃焼半径[m], v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s], ρ :密度[kg/m ³]	
ここで、V=565[m ³]、M=0.044[kg/m ² ・s]、 ρ =918[kg/m ³] と して、燃焼継続時間を求めると、 v=0.044/918=4.793×10 ⁻⁵ [m/s] t=565/ (289×4.793×10 ⁻⁵) =40788[s]=11.3[h] (出典) 質量低下速度、密度:NUREG-1805	<u>第2.2.2-3表</u> 火災源となる設備の燃焼継続時間 燃料量 燃焼半径 質量低下速度 燃料密度 燃焼継続時間	(重油タンクNo.1,2,3) ここで、V=900[m ³]、 ρ =1000[kg/m ³]、M=0.035[kg/m ² ・ §]として、燃焼継続時間を求めると、 v=0.035/1000=3.50×10 ⁻⁵ [m/s] t=900/(491.7×3.50×10 ⁻⁵)=14.53[h] (ガスタービン発電機用軽油タンク) ここで、V=560[m ³]、 ρ =918[kg/m ³]、M=0.044[kg/m ² ・	
(9) 評価結果	想定火災源 V NMARCE NMARCE NMARCE NMARCE NMARCE NMARCE (m^3) R R M $(kg / m^2 / s)$ (kg / m^3) t t 溶融炉 10 2.483 0.039 830 11,008	s]として、燃焼継続時間を求めると、 $v=0.044/918=4.79\times10^{-5}$ $t=560/(302.7\times4.79\times10^{-5})=10.73[h]$ (出典)質量低下速度、密度:NUREG-1805 (9)評価結果	
 a. 建屋外壁の温度評価 (a)許容限界値(許容限界温度) 本評価で用いる許容限界値(許容限界温度)については、 一般的にコンクリートの強度に影響がないとされる 200℃ とする。 		 a.建物外壁の温度評価 (a) 許容限界値(許容限界温度) 本評価で用いる許容限界値(許容限界温度)については、一般的にコンクリートの強度に影響がないとされる 200℃とする。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(b)耐火性能の評価結果		(b) 耐火性能の評価結果	
		<u>ア. 重油タンク(No. 1, 2, 3)</u>	
火災が発生した時間から燃料が燃え尽きるまでの間, 一定		火災が発生した時間から燃料が燃え尽きるまでの	
の輻射強度で発電用原子炉施設外壁が昇温されるものとし		間,一定の輻射強度で発電用原子炉施設外壁が昇温さ	
て、下記の一次元非定常熱伝導方程式の解の式より、コンク		れるものとして, 下記の一次元非定常熱伝導方程式の	
リートの表面の温度上昇を求め, コンクリートの表面温度が		解の式より,コンクリートの表面の温度上昇を求め,	
許容温度以下であるか評価を実施した。その結果,発電用原		コンクリートの表面温度が許容温度以下であるか評	
子炉施設外壁の表面温度は <u>約 119℃</u> となり, 許容温度を下回		価を実施した。その結果、発電用原子炉施設外壁の表	
る <u>こと</u> を確認した(第 2-3 図)。		面温度は <u>約 52℃</u> となり,許容温度を下回ることを確	
<i>m m</i> 1		認した。(第2-3図)	
$T_s = T_0 + \frac{\sqrt{k\rho c}}{\sqrt{k\rho c}} h$		$T = T_{0} + \frac{1}{1}$	
$\left(\frac{\sqrt{1}}{1.18h\sqrt{t}}+1\right)\frac{1}{\varepsilon E}$		$1 = 1_0 + \left(\frac{\sqrt{k\rho c}}{1 + 1}\right) \frac{h}{h}$	
		$\left(\overline{1.18h\sqrt{t}} + 1\right)\overline{\varepsilon}\overline{E}$	
出典:原田和典,建築火災のメカニズムと火災安全設計,日		出典:原田和典,建築火災のメカニズムと火災安全	
本建築センター		設計,財団法人 日本建築センター	
T ₀ :初期温度[50℃], E:輻射強度[W/m²], ε:コンクリート		T ₀ :初期温度[50℃],E:輻射強度[W/m²], ε:コンクリ	
表面の放射率(<u>0.95</u>)*, h : コンクリート表面熱伝達率		ートの表面の放射率[<u>0.94</u>] ^{*1} , h:コンクリート表面熱伝	
[<u>34.9</u> W/m ² K] [*] , k:コンクリ ート熱伝導率[1.6W/mK] [*] ,		達率[<u>23.3</u> W/m ² K] ^{※2} , k:コンクリート熱伝導率[1.6W/mK]	
ρ:コンクリート密度[2200kg/m³]*, c:コ ンクリート比		^{※2} , ρ:コンクリート密度[2,200kg/m ³] ^{※2} , c:コンクリ	
熱[879J/kgK]*, t:燃焼継続時間[s]		ート比熱[879J/kgK] ^{※2} , t:燃焼継続時間[s]	
※:建築設計竣工図書 原子炉建屋構造計算書		※1:伝熱工学資料, ※2:原子炉建物 構造計算書	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
前日 前日 <t< td=""><td></td><td>$\begin{bmatrix} 200 \\ 150 150 150 150 150 50 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 7 1 7 7 7 7 7$</td></t<>		$ \begin{bmatrix} 200 \\ 150 150 150 150 150 50 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 7 1 7 7 7 7 7 $

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
			2.2.3 外壁に対する熱影響評価 (1) 評価対象施設の外壁について,溶融炉灯油タンクの火災を 想定して評価を実施した。 (2) 火災源となる設備と評価対象施設までの離隔距離 火災源となる設備と評価対象施設までの離隔距離 火災源となる設備と評価対象施設までの離隔距離 支2.2.3-1表に示す。 第2.2.3-1表 火災源となる設備と評価対象施設までの離隔距離 加速大災源 1 加速大災源 加速 1 東子炉準量 加速 1 東子炉準量 加速 1 東子炉準量 加速 1 中子炉準量 加速 1 東子炉準量 加速 1 中子炉準量 加速 1 中子炉準量 加速 1 中子炉準量 加速 1 中日済燃料 乾売貯 載量 1 日済 1 日 二 2 2 2 2 2 2 2 2 <tr< td=""><td>200 100 10729[h].52.22 [°C] 50 0 5 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 61 5 10 62 6 5 61 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10</td></tr<>	200 100 10729[h].52.22 [°C] 50 0 5 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 60 5 10 61 5 10 62 6 5 61 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.1	2版)	島根原子力発電所 2号炉	備考
	ただし			
	$m = \frac{H}{R} \doteq 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	<u> Φ:形態係数, L:離隔距離(m), H:炎の高さ(m), </u>	<u>R:燃焼半径(m)</u>		
	第2.2.3-2表 火災源となる設備	歯の形態係数		
	#區距離 秋桂坐径			
	想定火災源 L R (m) (m)	Φ (-)		
	45 (原子炉建屋) 2.483	5. 9639×10^{-3}		
	灯油タンク (タービン建屋) 2.483	2. 0248×10^{-3}		
	(4) 輻射強度の算出			
	火炎から任意の位置にある点(受熱	点)の輻射強度は,輻		
	射発散度に形態係数を掛けた値になる	。算出結果を第2.2.3-3		
	表に示す。			
	$E = R f \cdot \Phi$			
	<u>E:輻射強度(W/m²), Rf:輻射発散度(W/</u>	´ <u>m²), Φ:形態係数</u>		
	第2.2.3-3表 火災源となる設(前の輻射強度		
		形態係数 輻射強度		
	想定火災源 種類 L Rf (\mathbf{m}) (\mathbf{k} W/ \mathbf{m}^2)	$ \begin{array}{ccc} \Phi & E \\ (-) & (W \swarrow m^2) \end{array} $		
	45 (原子炉建屋)	5. 9639×10^{-3} 298. 20		
	灯油タンク 灯油 77 50 (タービン建屋) ((2. 0248×10^{-3} 101. 24		
	(5) 判断の考え方			
	<u>a. 許容温度</u>			
	火災時における短期温度上昇を考慮	した場合において、コ		
	ンクリート圧縮強度が維持される保守	的な温度 200℃以下と		
	I.S.			
	<u>b評価結果</u>			
	火災が発生した時間から燃料が燃え	尽きるまでの間,一定		
	の輻射強度による入熱と対流による放	熱を考慮した,下記の		
	一次元非定常熱伝導方程式の一般解の	式よりコンクリート表		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	面の温度上昇を求め、コンクリート表面の温度が許容温度以		
	下であるか評価した。		
	なお、天井スラブは以下の理由により、外壁の評価に包絡		
	されるため実施しない。建屋外壁の評価概念図を第 2.2.3-1		
	図に示す。		
	 ・火炎長が天井スラブより短い場合,天井スラブに輻射熱 		
	を与えないことから熱影響はない。		
	 ・火炎長が天井スラブより長い場合,天井スラブに輻射熱 		
	を与えるが、その輻射熱は外壁に与える輻射熱より小さ		
	い。天井スラブの評価概念図を第2.2.3-2図に示す。		
	 ・火炎からの離隔距離が等しい場合,垂直面(外壁)と水 		
	平面(天井スラブ)の形態係数は、垂直面の方が大きい		
	ことから、天井スラブの熱影響は外壁に比べて小さい。		
	$2 E \left(\frac{\alpha t}{1} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right$		
	$T = T_0 + \frac{\sqrt{1-\alpha}}{\lambda} \left[\sqrt{\frac{1-\alpha}{\sqrt{1-\alpha}}} \exp\left(-\frac{\pi}{4\alpha t}\right) - \frac{\pi}{2\sqrt{\alpha t}} \operatorname{erfc}\left(\frac{\pi}{2\sqrt{\alpha t}}\right) \right]$		
	<u>T:表面から x (m)の位置の温度(℃), T。:初期温度(50℃)*</u>		
	<u>κ:コンクリート温度伝導率(=$\lambda / \rho C_p$)(7.7×10⁻⁷m²/s)</u>		
	<u>ρ:コンクリート密度(2,400kg/m³)</u>		
	<u>C_p:コンクリート比熱(880J/kg/K)</u>		
	$\lambda:$ コンクリート熱伝導率(1.63W/m/K),E:輻射強度(W/m ²)		
	t : 燃焼継続時間(11,008s), x : コンクリート壁表面深さ(0m)		
	※ 水戸地方気象台で観測された過去最高気温 38.4℃に保守性		
	を持たせた値		
	対流による放熱		
	天井スラブ 外壁 屋内		
	初期温度:50℃		
	第2.2.3-1 図 建屋外壁の評価概念図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	天井スラブに輻射熱を与える範囲 外壁に輻射熱を与える範囲 大井スラブ 歴 外壁 医内 第 2. 2. 3-2 図 天井スラブへの輻射熱の影響		
	コンクリート表面の温度上昇を評価した結果,許容温度200℃		
	以下であることを確認した。評価結果を第2.2.3-4表,第		
	2.2.3-4図に示す。		
	第2:2:3-4表外壁に対する熱影響評価結果		
	想定火災源 評価対象施設 評価温度 計谷温度 (℃) (℃)		
	溶融炉灯油タンク原子炉建量70タービン建量57		
	200 -原子炉建屋(火災源:溶融炉灯油タンク) 100 -タービン建屋(火災源:溶融炉灯油タンク) 100 -0 100 -0 00 -0		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
b. <u>軽油タンク</u> の温度評価			・設備の相違
(a)許容限界值(許容限界温度)			【柏崎 6/7,東海第二】
本評価で用いる許容限界値(許容限界温度)については、			島根2号炉では,軽油
軽油の発火点225℃とする。			タンク、燃料移送ポン
			プ,非常用ディーゼル発
(b)耐火性能の評価結果			電機は,地下構造等の屋
			内設備のため影響評価
火災が発生した時間から燃料が燃え尽きるまでの間, 一定			対象外。
の輻射強度で <u>軽油及び軽油タンク</u> が昇温されるものとして,			島根2号炉では,海水
下記の式より, <u>軽油</u> の温度上昇を求め,軽油の温度が許容温			ポンプは, 屋外設置のた
度以下であるか評価を実施した。その結果, <u>軽油</u> の温度は約			め影響評価を実施
<u>178℃</u> となり,許容温度を下回ることを確認した。			
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{C} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{C} - T_0\right) e^{\left(\frac{h S_2}{C}\right)t}$			
hS_2 (hS_2 (bS_2			
T₀:初期温度[<u>38</u> ℃],E:輻射強度[W/m²],ε: <u>軽油タンク</u> 表			
面の放射率(0.9) ^{*1} ,h: <u>軽油タンク</u> 表面熱伝達率[17W/m ² K]			
^{※2} , S ₁ =S ₂ : <u>軽油タンク</u> 受熱・放熱面積[m ²], C: <u>軽油タンク</u>			
<u>及び軽油</u> の熱容量[<u>8.72×10⁸</u> J/K], t: 燃焼継続時間[s],			
T _{air} :外気温度[℃]			
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
c. <u>燃料移送ポンプ</u> の温度評価		b . <u>海水ポンプ</u> の温度評価	・設備の相違
燃料移送ボンブは、軽油タンクの近傍に設置されており、			【柏崎 6/7, 東海第二】
当該タンクにて火災が発生した場合、その輻射による熱影響			島根2号炉では,軽油
を受ける。このため、燃料移送ボンブを熱影響から防護する			タンク、燃料移送ボン
ための防護板(断熱)をその周囲に設置する。第 2-4 図に			プ,非常用ディーセル発
防護板(断熱)設置範囲の例を示す。			電機は、地下構造等の屋
以下、防護板(断熱)の設置を考慮した場合の熱影響評価			内設備のため影響評価
を実施する。			対象外。
			島根 2 号炉では, 海水
(a) 許容限界值(許容限界温度)		(a) 許容限界值(許容限界温度)	ポンプは, 屋外設置のた
本評価で用いる許容限界値(許容限界温度)については,		本評価で用いる許容限界値(許容限界温度)について	め影響評価を実施
端子ボックスパッキンの耐熱温度 100℃とする。パッキンの		は, <u>海水ポンプ電動機の下部軸受の許容温度55℃とする。</u>	
耐熱温度は, JIS 規格に基づく耐熱性を決定するための試験			
温度であり,この温度以下であれば,発火することなく,パ			
ッキンとしての性能が維持できることから, 燃料移送ポンプ			
の機能に影響はない。			
(b)評価条件			
(4) 必要データから(8) 燃焼継続時間に, 以下の条件を加			
えて評価する。			
・第 2-4 図における①及び②の位置に設置する防護板(断			
熱)は、防油堤により全ての面に輻射は当たらないが、全			
面に輻射が当たる上面(③)の防護板(断熱)も含め,保			
守的に, 火炎から最短距離にて算出した最も厳しい条件の			
輻射が①~③の全ての面に当たるものとする。なお、①~			
③の防護板(断熱)に対する熱影響が支配的であることか			
ら、これらについては評価上考慮するが、それ以外の面に			
ついては, 燃料移送ポンプエリアに接する面が小さく, コ			
ンクリート製の防油堤もあること から評価上考慮しな			
<u>k</u> v _o			
 ・輻射が当たる面は、防護板(断熱)のみとして評価した防 			
護板(断熱)と燃料移送ポンプ間に防油堤が設置されてい			
る箇所①については,防油堤による伝熱の低減は考慮しな			
・輻射を受けない面は、保守的に断熱とする。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号烷
第 2-4 図 防護板(断熱)の設置概要と設置範囲の例		
 (c) 耐火性能の評価 火災が発生した時間から燃料が燃え尽きるまでの間,一定の輻射強度で<u>燃料移送ポンプエリアに設置している防護板(断熱)</u>が昇温されるものとして,下記により,<u>燃料移送ポンプ周囲の最大温度(燃料移送ポンプの最大温度)</u>を求め,許容限界温度以下であるか評価を実施する。 以下に概念図を示す。 		(b) 耐火性能の評価結果 <u>ア.重油タンク(No.1,2,3)</u> 火災が発生した時間から燃料7 間,一定の輻射強度で <u>海水ポンプ</u> れるものとして,下記 <u>の式</u> より <u>海</u> 温度を求め,許容温度以下である <u>その結果,海水ポンプの冷却空気</u> 許容温度を下回ることを確認した
		$T = T_0 + \frac{E \times A_T}{G \times C_p}$ <u>T_0:通常運転時の上昇温度[22°C],</u> <u>A_r:受熱面積[10.93m²],G:重量流</u> <u>C_p:空気比熱[1007J/(kg・K)]^{*1}</u> <u>※1:伝熱工学資料</u>

寻炉	備考
斗が燃え尽きるまでの プの冷却空気が昇温さ 海水ポンプの冷却空気 るか評価を実施した。 気温度は約23℃となり、 た。	・設備の相違 【柏崎 6/7,東海第二】 評価対象物の抽出結 果の相違
], E:輻射強度[W/m ²],	
流量[1.96kg/s],	

柏崎刈羽原子力発	後電所 6/	7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		鋼权		イ.ガスタービン発電機用軽油タンク	
屋外	耐火材	断熱材 ↓ 燃料移送ポンプエリア			
はなしず執行される			1	<u>火災が発生した時間がら燃料が燃え尽さるまでの</u>	
外気との熱伝達 Q _v ,	out	内気温度 Troom		<u>間,一定の輻射強度で海水ポンプの冷却空気が昇温さ</u>	
周囲への輻射 Qr, out	教仁道 0			れるものとして、下記の式より海水ポンプの冷却空気	
	*************************************	out			
N	熱	伝導 Q _{c, in} 内気との熱伝達 Q _{v, in}			
		燃料移送ポンプ		<u>その結果,海水ボンブの冷却空気温度は約23℃となり,</u>	
火炎からの輻射]	E Internet			許容温度を下回ることを確認した。	
	E E E E E E E E E E E E E E E E E E E				
Att o	- I	に教っての			
<u> </u>	-5 図	伝熱の概念図		$T = T_0 + \frac{E \times A_T}{E}$	
				$G \times C_p$	
評価に必要な	パラメータを	以下に示す。			
		<u> </u>		T ・ 通営運転時の L 見 泪 座 [99℃] F・ 距射 強 座 [W/m2]	
				<u>A_T:受熱面積[10.93m²],G:重量流量[1.96kg/s],</u>	
第 2-7 表	燃料移送ポ	シプエリア温度算出時の		C _n :空気比熱[1007J/(kg・K)] ^{※1}	
	入力パラ	メータ		—————————————————————————————————————	
	/ / / / /				
項目	パラメータ	備考			
外気温度[℃]	55	日射の影響を考慮した相当外気温(切			
		り上げ) 			
ポンプェリア知期沮座[℃]	38	相町田の取高気温(37.6C)を切り上 げた沮唐(防難垢(断執)の重面であ			
		り、日射の影響はない)			
厚さ[mm]	100		-		
熱伝導率[₩/mK]					
耐 密度[kg/m ³]					
火 比熱[J/(kg・K)]					
私 最高使用温度[℃]]				
材質					
			4		
防 」 厚さ[mm]	150		4		
護 一 課 一 熟伝導率[W/mK] 家 由 Fire / m ³]		_			
板 断 ^{笛皮 [Kg/m]} 熱 比執「T/(kσ・K)]		-			
材 最高使用温度[℃]	1	— メーカ仕様			
++ 577					
│ / / / / / / / / / / / / / / / / / / /					
厚さ[mm]	20				
鋼 熱伝導率[W/mK]	51.6	軟鋼 300K の値 [※]			
权 密度[kg/m ³]	7860	軟鋼 300K の値 [※]	-		
比熱[J/(kg・K)]	473	軟鋼 300K の値**			
※:口平懱惯子会 ,	子頁科 叹訂第5	1版, 2009 平 5 月 20 日			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
以下の式に示す一次元非定常熱伝導方程式を用いて,防護			
<u>板(</u> 断熱)の内面並びに燃料移送ポンプエリア温度を求める。			
$\frac{dT}{dt} = \alpha \frac{d^2T}{dt^2}$			
$dt dx^2$			
T・温度 + ・時刻 y ・防灌板(断熱)からの距離 。・			
防護板(断熱)及び防護板(断熱)内面温度上昇に伴う熱			
<u>負荷は次式で計算される。</u>			
O = h A(T - T)			
$\simeq v_{sin}$ '*in^ (* in * room)			
<u>h_{in}:防護板(断熱)内面熱伝達率,A:防護板(断熱)内</u>			
面の表面積,			
<u>T_{in}: 防護板(断熱)内面温度, T_{room}: 燃料移送ポンプエ</u>			
 リア温度			
燃料移送ポンプエリア温度は、軽油タンク火災による防護			
板(断熱) 内面温度上昇に伴う熱負荷がエリア内に蓄熱され			
ストレを老庸し、次式で求める			
$\Delta T_{room} = \frac{\mathcal{Z}_{\nu,in}}{\rho CV}$			
ρ :空気密度,U·空気比熱,V:ホンノエリノ 体積			
(d) 耐火性能の評価結果			
<u>軽油タンク火災における燃料移送ポンプの評価結果を以下</u>			
に示す。			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--	---------------------	--------------	----
600			
第 2−6 図 防護板(断熱)各部温度並びに燃料移送ポンプエリ			
<u>ア温度</u>			
600 1.0h, 400 1.0h, 300 1.0h, 100 0.00 0.10 0.15 0.20 0.25 0.30 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30			
第 2-7 図 防護板(断熱)内部の温度分布			

柏崎刈羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-8 表	然料移送ポンプ影響評価結果			
項目	軽油タンク火災			
輻射強度[W/m ²]	32.5×10^3			
燃焼継続時間[h]	11. 3			
防護板(断熱)外面温度[℃]	555			
防護板(断熱)内面温度[℃]	41			
ポンプエリア温度[℃]	41			
許容温度[℃]	100^{*1}			
※1:燃料移送ポンプ端子ボッ	ックスパッキンの耐熱温度			
<u>評価の結果,ポンプエ</u>	- リア(燃料移送ポンプ)の温度は約			
<u>41℃となり,許容温度を</u>	下回ることを確認した。			
、 ナ批与答の泪 使証価			。 排気筒の泪度訶屈	
	田泊本)			
(a) 計谷限外他(計谷限	《乔温度》		(a) 計谷限界值(計谷限界温度)	
本評価で用いる許容院	限界値(許容限界温度)については、		本評価で用いる許容限界値(許容限界温度)について	
主排気筒鋼材の許容温度	度325℃とする。		は, <u>排気筒</u> 鋼材の許容温度325℃とする。	
(b)耐火性能の評価結果	:		(b) 耐火性能の評価結果	
			<u>ア. 重油タンク (No. 1, 2, 3)</u>	
火災が発生した時間が	から燃料が燃え尽きるまでの間、一定		火災が発生した時間から燃料が燃え尽きるまでの	
の輻射強度で主排気筒	が昇温されるものとして 下記の式上		間 一定の輻射強度で排気筒が昇温されるものとして	
り 上北 与 答 の 是 十 2 由 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			下記のオトルー排写管の長十浬度を求め、乾索浬度以	
り土所入向の取入価反な				
夫施した。その結果, 素温主、一一二、、、、	土排気回の温度は約 <u>830</u> となり,計		下であるが評価を実施した。その結果、排気間の温度	
容温度を下回ることを確	確認した。 		は約 <u>52℃</u> となり,許容温度を下回ることを確認した。	
$T = T_0 + \frac{\varepsilon E}{2h}$			$T = T_0 + \frac{\varepsilon E}{2h}$	
T。:初期温度[50℃],E	:輻射強度[W/m²], ε:主排気筒表面			
の放射家 (0 9) ^{※1} h	·		而の放射率[0 0] ^{×1} h・排気筒表面執伝達率[17W/m ² K] ^{×2}	
♡/// / / / / / / / / / / / / / / / / /				
※1:	2:空気調和・衛生上子便見		※1:伝熱工子質科, ※2・空丸調和・衛生工子便見	
			イ.ガスタービン発電機用軽油タンク	
			火災が発生した時間から燃料が燃え尽きるまでの	
			問 一 定 の 転 財 強 度 で 排 気 筒 が 見 泪 さ れ ろ も の と し て	
			1、記の入より、伊ス同の取入温度を水め、計谷温度以	
			<u>トであるか評価を実施した。その結果,排気筒の温度</u>	
			は約52℃となり、許容温度を下回ることを確認した。	

柏崎刈羽原子力発	電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
				$T - T + \varepsilon E$	
				$I = I_0 + \frac{1}{2h}$	
				<u>Τ₀:初期温度[50℃],E:輻射強度[W/m²],ε:排気筒表</u>	
				面の放射率[0.9] ^{※1} ,h:排気筒表面熱伝達率[17W/m ² K] ^{※2}	
				※1:伝熱工学資料.※2:空気調和・衛生工学便覧	
。 タービン建民非常	常田需気品家の温度証	価			・ 設備の相違
<u> 6 </u>	<u>市所電気面至の温度</u> の軽油タンクけ山側に	<u>…</u> あり タービン建屋			【柏崎 6/7】
け海側にあることか	の 直接 転射執が 届く	、ことけたい 5 号恒			6 号及び7 号恒に上
の軽油タンクけ海個	したあり 輻射熱を受け	ることから執影響評			って評価対象が相違
価を実施する(筆く	<u>NEの / 福 別 派 を 文 ()</u> 2-8 図) 5 号 仮軽油 /	タンク水災時の6号炉			
タービン建屋の熱暑	2007。0月前4日 後継評価を実施するに	あたり使用するパラ			
メータを以下に示す	<u>。また、(9)で</u> 熱影響評	呼価を実施している 6			
号炉軽油タンク火災	時の6号炉原子炉建屋	での熱影響評価に使			
用したパラメータを	・並べて示す。それぞれ	いを比較すると、6 号			
炉軽油タンク火災の) 方が防油堤面積が大	きく、離隔距離が短			
く、燃焼継続時間が	長いことから,5 号炉	『軽油タンク火災時の			
6 号炉タービン建屋	*************************************	「原子炉建屋での熱影			
響評価に包絡される	。よって,5号炉軽油	タンク火災時には,6			
号炉タービン建屋へ	の熱影響はない。なお	ö, 5 号炉軽油タンク			
から7号炉のター	ビン建屋までの距離は	. 6 号炉までの距離			
より離 れていること	レから同様に熱影響は	ない。			
笛 2-0 表	冬建屋に対すス軽油な	マンク水災の影響			
<u></u>					
	5 5 ヶ /	6 号炉軽油タンク火災 原子炉建屋への影響			
防油堤面積[m ²]	185	289			
離隔距離[m]	91	46			
燃料貯蔵重[k1]	344	044			
資重战 / 速及 [kg/m 3]	9	18			
燃焼速度[m/s] ²⁾	4.79	$\times 10^{-5}$			
燃焼継続時間[hour]	10.7	11.3			
1) NUREG-1805 より					
2) 評価ガイドより,以下の)式から算出				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$t = \frac{V}{S \times v}, v = \frac{M}{\rho}$			
t:燃焼継続時間[s], V:燃料量[m³], S:防油堤面積[m²],			
v:燃焼速度[m/s]			
M:質量低下速度[kg/m ² ·s], ρ:密度[kg/m ³]			
第 2-8 図 非常用電気品室と危険物タンクまでの距離			
(10) 火災による熱影響の有無の評価		(10) 火災による熱影響の有無の評価	
以上の結果から, 軽油タンクにおいて火災が発生した場合を		以上の結果から、重油タンク及びガスタービン発電機用軽	
想定したとしても、許容限界温度を超えないことから、発電用		<u>油タンク</u> において火災が発生した場合を想定したとしても,	
原于炉施設に熱影響をわよばりことはないと評価りる。		計谷限が温度を超えないことから, 光竜用原士炉施設に熟彰 郷を及ぼすことけないと評価する	
		音で反はうことはないと可回うる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2.2.4 主排気筒に対する熱影響評価 (1) 評価対象範囲 主排気筒について,溶融炉灯油タンクの火災を想定して評 価を実施した。 なお,主排気筒の評価に当たっては,保守性を考慮して, 筒身よりも離隔距離の短くなる鉄塔について評価した。 (2) 評価対象施設の仕様 主排気筒仕様を第2.2.4-1表に,主排気筒外形図を第	西瓜水175元电/1 275%	с~ нц
	1.2.2.4-1 図に示す。. 第2.2.4-1 表 評価対象施設の仕様 第2.2.4-1 表 評価対象施設の仕様 		
	第2.2.4-2 表 火災源となる設備から主排気筒までの離隔距離 想定火災源 L (m) 溶融炉灯油タンク 21		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(4)</u> 形態係数の算出		
	以下の式から形態係数を算出した。算出結果を第2.2.4-3表に示	す。	
	$1 \qquad (m) \qquad m \left((A^{-2}n) \qquad (\overline{A(n-1)}) \qquad 1 \qquad (\overline{A(n-1)}) \qquad (m-1) \qquad ($	1)	
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\sqrt{\frac{1}{n - 1}} \right)^{+} \frac{1}{\pi} \left\{ \frac{1}{n \sqrt{A B}} \tan^{-1} \left(\sqrt{\frac{1}{B (n + 1)}} \right)^{-} \frac{1}{n} \tan^{-1} \left(\sqrt{\frac{1}{n + 1}} \right)^{-} \frac{1}{n - 1} \left(\sqrt{\frac{1}{n + 1}} \right)^{-} \frac{1}{n - 1} \left(\sqrt{\frac{1}{n + 1}} \right)^{-} \frac{1}{n - 1} \left(\sqrt{\frac{1}{n - 1}} \right)^{-} \frac{1}{n - $		
	$\hbar \hbar l = \frac{1}{R} = 3$, $n = \frac{1}{R}$, $A = (1+n) + m$, $B = (1-n) + m$		
	Φ:形態係数, L:離隔距離(m), H:炎の高さ(m), R:燃焼半径(m)		
	第224-3表 火災源とたろ設備の形能係数		
	離隔距離 燃焼半径 形態係数 想定火災源 L R Φ		
	(m) (m) (-)		
	溶融炉 21 2.483 2.6826×10 灯油タンク 21 2.483 2.6826×10	-2	
	<u>(5) 輻射強度の評価</u>		
	火災の火炎から任意の位置にある点(受熱点)の輻	村強度	
	は,輻射発散度に形態係数を掛けた値になる。算出結	果を第	
	2.2.4-4表に示す。		
	$E = R f \cdot \Phi$		
	E:輻射強度(W/m ²), Rf:輻射発散度(W/m ²), Φ :形態係	<u>教</u>	
	第2.2.4-4表 火災源となる設備の輻射強度		
	想定火災源 燃料の種類 輻射発散度 形態係数 輻射発	度	
	溶融炉 (KW/m ⁻) (一) (W/m ⁻) 水油タンカ 灯油 50 2.6826×10 ⁻² 1343.	3	
	х) (ш У У У		
	(6) 判断の考え方		
	a 許容温度		
	主排気筒鉄塔(SS400, STK400)の許容温度は、火災	時にお	
	ける短期温度上昇を考慮した場合において、鋼材の強		
	持される保守的な温度 325℃以下とする。		
	<u>b評価結果</u>		
	一定の輻射強度で主排気筒鉄塔が昇温されるものと		
	輻射による入熱量と対流による放熱量が釣り合うこと	を表し	
	た下記の温度評価式により主排気筒鉄塔表面の温度上	見を求	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	め、表面温度が許容温度以下であるか評価した。		
	なお、評価に当たって主排気筒は鉄塔と筒身で構成されて		
	いるが、筒身よりも鉄塔が火災源との距離が近いこと、材質		
	も鉄塔はSS400, STK400, 筒身ではSS400 であり,物性値が		
	鉄塔,筒身ともに軟鋼で同一であることから,鉄塔の評価を		
	実施することで筒身の評価は包絡される。主排気筒の評価概		
	念図を第2.2.4-2図に示す。		
	$T = T_0 + \frac{E}{2h}$		
	<u>T:許容温度(325℃), T₀:初期温度(50℃)*1</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は、受熱面の形状や周囲の環		
	境条件を受け変化するが、一般的な値として垂直外壁面、屋根面及び上げ裏		
	面の夏季,冬季の値が示されている。評価上放熱が少ない方が保守的である		
	<u>ことから、これらのうち最も小さい値である17W/m²/Kを用いる。)</u>		
	Y前による放熱 ● ● ●		
	<u>325℃以下であることを確認した。評価結果を第2.2.4-5表に</u> ニナ		
	ZT. g.e.		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2.2.4-5表 評価対象施設に対する熱影響評価結果		
	評価対象施設 評価温度 許容温度 (℃) (℃)		
	主排気筒 90 <325		
	2.2.5 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機		
	(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプに 対する熱影響評価		
	(1) 評価対象範囲		
	機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン		
	プ電動機は、海水ポンプ電動機高さより高い海水ポンプ室の壁		
	で囲まれており、側面から直接火災の影響を受けることはない		
	<u>が,上面は熱影響を受ける可能性がある。評価においては,海</u>		
	水ポンプ室の壁による遮熱効果を考慮せず,側面から直接火災		
	の影響を受けることを想定する。また、残留熱除去系海水系ポ		
	ンプ電動機及び非常用ディーゼル発電機(高圧炉心スプレイ系		
	ディーゼル発電機を含む。)用海水ポンプ電動機は, 電動機本体		
	を全閉構造とした全閉外扇形の冷却方式であり、外部火災の影		
	響を受けた場合には、周囲空気の温度上昇により、冷却機能へ		
	の影響が懸念されることから、冷却空気の温度を評価対象とす		
	<u>る。火災発生位置と海水ポンプの位置関係を第2.2.5-1 図に示</u>		
	I. I		
	電動機内部の空気冷却対象は固定子巻線及び軸受であり、そ		
	のうち許容温度が低い軸受温度の機能維持に必要となる冷却空		
	気の温度が、許容温度以下となることを確認する。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
		(2) 評価対象施設の仕様 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの海 水ポンプ室内の配置図を第2.2.5-2 図,外形図を第2.2.5-3 図 に示す。仕様を第2.2.5-1 表に示す。		
		第2.2.5-2 図 海水ポンプの配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(20	018.9.12版)	島根原子力発電所 2号炉	備考
		ペンプの外形図		
	第2.2.5-1 表 評価支 名称 残留熱除去系海水系ポンフ 電動機	対象施設の仕様 非常用ディーゼル発電機 (高圧炉心スプレイ系ディ ーゼル発電機を含む。) 用		
	全	海水ポンプ電動機		
	主要寸法 主要寸法 高 さ:2.73m	主 幅:0.51m 高 さ:0.98m		
	村 A SS400, SUS304 基数 4	3		
	(3) 火災源となる設備から主排気 残留熱除去系海水系ポンプ及び 圧炉心スプレイ系ディーゼル発電 包する海水ポンプ室から火災源ま に示す。 第2.2.5-2表 火災源となる設備 離隔距離 想定火災源 溶融炉灯油タンク	筒までの離隔距離 非常用ディーゼル発電機(高 機を含む。)用海水ポンプを内 での離隔距離を第2.2.5-2表 備から海水ポンプ室までの 難 ^{離隔距離} L (m) 185		

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考		
	<u>(4) 形態係数の算出</u>					
	以下の式から形態係数を算出した。算出結果	果を第2.2.5-3表				
	に示す。					
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n \sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] \right\}$	$-\frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right]$				
	ただし $m = \frac{H}{R} = 3$, $n = \frac{L}{R}$, $A = (1+n)^2 + m^2$,	$B = (1-n)^{2} + m^{2}$				
	Φ :形態係数, L:離隔距離(m), H:炎の高さ(m), R:	Φ:形態係数, L:離隔距離(m), H:炎の高さ(m), R:燃焼半径(m)				
	第2.2.5-3 表 火災源となる設備の形	態係数				
	離隔距離 燃焼半径 想定火災源 L R	形態係数 Φ				
	(m) (m)	(-)				
	溶融炉 灯油タンク1852.483	3. 473×10 ⁻⁴				
	(5) 輻射強度の評価					
	火災の火炎から任意の位置にある点(受勢	熟点)の輻射強度				
	は、輻射発散度に形態係数を掛けた値になる	る。算出結果を第				
	2.2.5-4 表に示す。					
	$E = R f \cdot \Phi$					
	<u> E:輻射強度(W/m²), Rf:輻射発散度(W/m²)</u>	<u>), Φ∶形態係数</u>				
	第2.2.5-4 表 火災源となる設備の報					
	想定火災源 燃料の種類 Rf Φ (kW/m^2) (-)	E $(\mathbb{W}/\mathbb{m}^2)$				
	溶融炉 灯油タンク 灯油 50 3.473×10) ⁻⁴ 17.37				
	· · · ·					
	(6) 判断の考え方					
	<u>a. 許容温度</u>					
	残留熱除去系海水系ポンプ電動機及び非常	常用ディーゼル発				
	<u>電機(高圧炉心スプレイ系ディーゼル発電機</u>	幾を含む。)用海水				
	ポンプ電動機の冷却空気の許容温度は,上部	部及び下部軸受の				
	うち, 運転時の温度上昇が高い下部軸受の上	二昇温度を考慮し,				
	軸受の機能維持に必要な冷却空気の許容温度	<u> 度を第2.2.5-5表</u>				
	に示す。					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018.9.2	12版)	島根原子力発電所 2号炉	備考
	第2.2.5-5表 下部軸受の機能経	推持に必要	な冷却空気の許容温度		
	名称 考留熱除去系 ポンプ電動	毎水系 機 非常 ス	常用ディーゼル発電機(高圧炉心 プレイ系ディーゼル発電機を含 む。) 用海水ポンプ電動機		
	軸受の機能維持に必要な 治却空気の許容温度 70℃ ^{※1}		60°C ^{⊛ 2}		
	※1 ポンプ運転により、下部軸受は最大で新 め電気規格調査会標準規格 JEC-2137-2 定するときの温度限度 80℃から 10℃を	約 10℃上昇する 000「誘導機」て 差し引いた 70℃	ことから、軸受の機能を維持するた で定める自由対流式軸受の表面で測 Cを冷却空気の許容温度に設定		
	※2 ホンフ運転により、下部軸受は最大で新 め電気規格調査会標準規格 JEC-2137-2 使用する場合の温度限度 95℃から 35℃	句 35 C上昇する 000「誘導機」て を差し引いた 60	ことから、軸交の機能を維持するた で定める耐熱性の良好なグリースを 0℃を冷却空気の許容温度に設定		
	b. 評価結果				
	火災が発生した時間から	る燃料が燃	え尽きるまでの間,残		
	留熱除去系海水系ポンプ	電動機及び	非常用ディーゼル発電		
	機(高圧炉心スプレイ系ラ	ディーゼル	発電機を含む。)用海水		
	ポンプ電動機が受ける輻射	村熱によっ	て上昇する冷却空気温		
	度を求め, 第2.2.5-5表し	こ示す許容	温度を下回るかを熱工		
	ネルギの式より求まる下す	式で評価を	実施した。評価に用い		
	た諸元を第2.2.5-6表に,	評価概念	:図を第2.2.5-4 図に示		
	J.				
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p}$	-ΔΤ	(式1)		
	<u>T</u> :評価温度(℃), <u>T</u> _0:初期温	<u>度(39℃)*1</u> ,	, <u>E:輻射強度(W/m²)</u> ,		
	<u>G:重量流量(kg/s),A:輻射</u>	を受ける面積	責(m ²)		
	<u>C_</u> :空気比熱(1,007J/kg/K),	<u>ΔT:構造</u>	物を介した温度上昇(5℃)		
	<u>*2</u>				
	※1 水戸地方気象台で観測され	1た過去最高	5気温 38.4℃に保守性を持		
	たせた値				
	※2 航空機火災による構造物を	ト介した冷封	<u>『空気の温度上昇(Δ T」</u> =		
	2.2℃)を包絡する5℃に設	<u>定</u>			
	第2.2.5-6表	平価に用い	た諸元		
	度 浅	留熱除去系 毎水系ポンプ 電動機	非常用ディーゼル 発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)用 海水ボンブ電動機		
	G:重量流量 (kg/s)	2.6	0.72		
	A:輻射を受ける面積 (m ²)	12	1.6		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.	. 9. 12 版)		島根原子力発電所 2号炮	ゴ 備考	
	福 射強度:E	正 · 受熱面	<u>這動機</u> 子箱			
	<u>第 2.2.5-4 図</u> 評価	虹概念図				
	輻射熱によって上昇する冷却空気 果,許容温度以下であることを確認 2.2.5-7表に示す。	気の到達温度を算 認した。評価結果	出した結 を第			
	第 2. 2. 5-7 表 評価対象施設に対	する熱影響評価編	課			
	評価対象施設	評価温度 許約 (℃) (容温度 ℃)			
	残留熱除去系海水系ポンプ	45 <	< 70			
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)用海水ポンプ	45 <	< 60			
	 2.3 爆風圧影響評価 2.3.1 想定事象 (1) 評価対象とする爆発源となる設備 (1) 評価対象とする爆発源となる設備 (2) 水素貯槽は、ガスを満載した状態 2.3.2 爆発源となる設備及びガスに係 	備は 2. 1 で抽出し 態を想定した。 るデータ	<u>た, 水素</u>			
	爆発源となる設備及びガスに係る	データを第 2.3.2-	1.表に示			
	T.					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(20)18.9.12版)	島根原子力発電所 2号炉	備考
	第2.3.2-1表 爆発源となる設	備及びガスに係るデータ	~	
		水素貯槽		
	貯蔵ガス	水素		
	貯蔵量(m ³)	6.7		
	密度(kg/m ³)	0.08988 ^{** 1}		
	貯蔵ガスK値 ^{※2}	2,860		
	貯蔵設備W値	0.0006		
	※1 一般社団法人 水素エネハ ※2 コンビナート等保安規定	レギー協会 記載値 第5条別表第二記載値		
	2.3.3 危険限界距離の算出			
	評価ガイドに基づき,下式よりた	危険限界距離を算出した	结果	
	危険限界距離が離隔距離以下であ	ることを確認した。評価	結果	
	を第2.3.3-1 表に示す。			
	X=0. 04 × 14. $4^{3}_{1}/(K \times 1.000 \times W)$	-		
	X:危険限界距離(m), K:石油類	の定数(-),W:設備定数	<u>(–)</u>	
			× □== -\$±//.	
	第2.3.3-1 表 爆発源となる設備と	評価対象施設までの離隣		
	評価対象施設 危険限	界距離 離隔距離**		
	タービン建屋 7	35		
	※ 評価対象施設のなかで水素貯槽から最も離	隔距離が短いタービン建屋までの	距離	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3. 構内危険物タンク以外の設備の火災影響評価	3. 敷地内貯蔵設備以外の影響評価	3. 構内危険物タンク以外の設備の火災影響評価	
評価対象範囲	3.1 評価対象範囲	(1) 評価対象範囲	
消防法又は <u>柏崎市火災予防条例</u> に基づく届出対象 <u>施設</u> では		消防法又は <u>松江市火災予防条例</u> に基づく届出対象設備では	
ない施設について、火災影響評価を実施する。評価対象とする		ない施設について、火災影響評価を実施する、評価対象とす	
設備を危険物タンクと同様に第 3-1 図のフローに基づき抽出		る設備を危険物タンクと同様に第3-1図のフローに基づき抽	
する (第 3-1 表)。危険物を貯蔵し屋外に設置している設備を		出する(第3-1表)。危険物を貯蔵し屋外に設置している設備	
想定発火源(主変圧器,水素ガストレーラー)とする。		を想定発火源(主変圧器、水素ガストレーラ)とする。	
なお, 薬品を取り扱う設備は輻射熱を受けない屋内設置であ		なお、薬品を取り扱う設備は輻射熱を受けない屋内設置で	
ること、外部への火災が発生する可能性が低いことから、評価		あること、外部への火災が発生する可能性が低いことから、	
対象から除外する <u>(第 3-2 表)</u> 。		評価対象から除外する。	
	敷地内貯蔵設備以外の火災源又は爆発源となる設備を、第		
	3.1-1 図のフローに基づき抽出した。抽出結果を第3.1-1表に		
	示すen		
	・貯蔵燃料の種類が同じ場合、貯蔵量が少なくかつ評価対象		
	施設までの離隔距離が長い設備は、貯蔵量が多くかつ評価		
	対象施設までの離隔距離が短い他設備に包絡されるため,		
	評価対象外とした。可搬型重大事故等対処設備及び自主設		
	備(第3.1-2表)についても、同じフローに基づき評価対		
	象を抽出した。		
	敷地内貯蔵設備以外の火災源又は爆発源となる設備及び評価		
	対象施設の位置を第3.1-2図に,可搬型重大事故等対処設備及		
	び自主設備の保管位置を第3.1-3図に示す。		

柏崎刈羽原子力発電所	6/7号炉 ((2017.12.	20版)	東海	第二発	電所	(2018	. 9. 12 片	坂)				島根原子力	」発電所 2-	号炉		備考
第 3-1(a)表	その他の危	険物		第3.1-1 表 敷地内貯蔵設備以外の火災源又は爆発源となる					第 3-1 表 その他の危険物								
号炉 設備名	危険物の種類	数量	詳細評価要否			設備	一覧					(2019年7月時点)					
1 号炉 主変圧器	1種2号 鉱油	193.00kL	. (%1)	設備名	設置	后険	物の類	品名	最大数量	詳細評価要否	5	号炉	設備名	危険物の種類	数量	評恤 要否	
2 号炉 主変圧器	1種2号 鉱油	198, 00kI.	. (**1)	0.5 (0.7 1)	場所	7 - 17 4		nn.F1	(m ³)	(○:対象,×:対象外)		1	起動変圧器	絶縁油	46kL	× (※1)	
3 号炉 主変圧器 4 号炬 主変圧器	1種2号 鉱油 1種2号 鉱油	193. 00kL	· O (<u>*1</u>)	主要変圧器	屋外	第四類:	第三石油類	絶縁油	136	0		1	予備変圧器	絶縁油	10kL	× (※1)	
1.5 // 工業工業 5 号炉 主変圧器	1種2号 鉱油	190. 00kL	· O (%1)	所内変圧器 2 A	屋外	第四類	第三石油類	絶縁油	21.00	0		1	44m 盤高圧ガス貯蔵所	水素	1155m ³	× (屋内)	
6 号炉 主変圧器	1種2号 鉱油	200. 00kL	· O (%1)	所内変圧器 2 B	屋外	第四類	第三石油類	絶縁油	21.00	(hter trick of the		2	主変圧器	絶縁油	77kL	0	
7 号炉 主変圧器	1種2号 鉱油	214. 00kL	· () ()(1)	和新亦仁思 0.4	E5.74	Ante man alega	第三三边商	\$2. \$3. 3 4 .	45.05	(他評価に包給 → D) ×	\neg	2	所内変圧器 (A,B)	絶縁油	20kL	× (※1)	
15 ^元 /P 所內変圧器 1A, 1B 2号炉 所內変圧器 2A, 2B	1種2亏 మ油 1種2号 鉱油	18.40kL 17.20kL	× (*2)	起動変圧器 2 A	座7下	弗西頬	99二11 (田規	和巴利尔和	45.95	(他評価に包絡 → D)		2	起動変圧器	絶縁油	24kL	× (※1)	
3 号炉 所内変圧器 3A	1種2号 鉱油	17.20KL	× (*2)	起動変圧器 2 B	屋外	第四類:	第三石油類	絶縁油	46.75	0		2	水素ガストレーラ	水素	12086m ³	0	
3 号炉 所内変圧器 3B	1種2号 鉱油	17.30KL	× (**2)	予備変圧器	屋外	第四類	第三石油類	絶縁油	35.90	× (他評価に包絡 → D)		2	発電用水素ガスボンベ保管庫	水素	140m ³	× (屋内)	
4 号炉 所内変圧器 4A, 4B 5 号后 新内恋圧器 5A 5B	1種2号 鉱油	18.10kL	× (<u>*</u> 2)	1号エステート変圧器	屋外	第四類	第三石油類	絶縁油	1.10	× (地評毎に勾終 → D)		3	主変圧器	絶縁油	141kL	× (※1)	
6号炉 所內変圧器 6A	1種2号 鉱油	20. 50kL	× (*2) × (*2)	2-2-2 テート亦正型	民力	100 mm #86	第三石油和	络绿油	1 10			3	所内変圧器	絶縁油	21kL	× (※1)	
6号炉 所内変圧器 6B	1種2号 鉱油	21.00kL	× (*2)	25	<u>/11.</u> /F	第四項	7721日 1日 大只	和巴利米(四	1. 10	(他評価に包絡 → D) ×		3	補助変圧器	絶縁油	37kL	× (※1)	
7号炉 所内変圧器 7A,7B	1種2号 鉱油	19.20kL	× (*2)	66kV非常用変電所	屋外	第四類	第三石油類	絶縁油	6.60	へ (他評価に包絡 → D)		3	発電機用水素ガスボンベ保管庫	水素	1477. 5m ³	× (屋内)	
共用 NO.1 高起動変圧器 共用 NO.2 高起動変圧器	1種2号 鉱油	78, 30kL 70, 00kL	× (※2)	中央制御室計器用エンジン発電機	屋外	第四類	第二石油類	軽油	0.026	× (常時「空」 → C)	×	×1:	2号の主変圧器火災による勢	い影響評価に包含	される。	0	
共用 NO.3 高起動変圧器	1種2号 鉱油	70.00kL	× (*2)					I		-							
1号炉 低起動変圧器 1SA, 1SB	1種2号 鉱油	25, 90kL	× (¥2)														
3号炉 低起動変圧器 3SA, 3SB	1種2号 鉱油	25. 20kL	× (¥2)								1						
<u> </u>	1種2号 鉱油	24.60kL	\times (\times 2) \times (\times 2)														
1 号炉 励磁変圧器	1種2号 鉱油	13.20kL	× (¥2)														
2 号炉 励磁変圧器	1種2号 鉱油	13.50kL	× (※ 2)														
3 号炉 励磁変圧器	1種2号 鉱油	13.50kL	× (※2)														
4 号炉 励磁変圧器 5 号炬 励磁変圧器	1種2号 鉱油 1種2号 鉱油	9.50kL	\times (\times 2)														
共用 NO. 1 工事用変圧器	1種2号 鉱油	8. 585kL	× (*2)														
共用 NO.2 工事用変圧器	1種2号 鉱油	11.50kL	× (※2)														
共用 補助ボイラー用変圧器 3A	1種2号 鉱油	31.80kL	× (※2)														
共用 補助ホイフー用変圧器 4A 共用 補助ボイラー用変圧器 4B	1 種 2 号 鉱油 1 種 2 号 鉱油	9. 10kL 9. 10kL	\times (\times 2)														
共用 補助ボイラー用変圧器 4C	1種2号 鉱油	9.10kL	× (※2)														
共用 (NO. 1~3)	水素ガス(ボンベ) 濃度:99.9%	2, 520m ³	× (屋内設置)														
1 号炉 屋外ボンベ室 (K1)	水素ガス (ボンベ) 濃度:00.00%	196m ³	× (屋内設置)														
1 日本 屋外 (K1)	(ボンベ)	12 007-3															
1 5% (水素ガストレーラー)	濃度:99.99%	15, 9871	0														
				第3.1-2 図 火災	原となる	変圧	器及び	「評価す	†象描	静の設置位置	1						
								н рцу,	1 >3 12</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
				1													1

柏崎刈羽原子力発電所 6	/7号炉 (2	2017.12.20版)	東海	第二発	電所(2018. 9. 12	版)		島根原子力発電所 2号炉	備考
第 3-1(b)表	その他の危険	焱物	第 3.1-2 表 可	般型重大	く事故等	家刘処設備	及び自主	設備一覧		
号炉 設備名	危険物の種類	数量 詳細評価要否	設備名	数量 危険物	物の額品。	名 燃料量[L]	配備位置	詳細評価要否		
2 号炉 屋外ボンベ室(K2)	水素ガス (ボンベ) 濃度・00,00%	196m ³ × (屋内設置)	SA UN D			1 (1数量あたり) 200 (東 両)	南側保管場所	(○:対象,×:対象外) ✓		
3 号炉 屋外ボンベ室 (K3)	<u> 歳度</u> :55,55% 水素ガス (ボンベ) 濃度:00,00%	196m ³ × (屋内設置)	可搬型代替注水大型ボンプ ^{※1※3}	7台 第四類	第二石油類 軽言	油 900(ボンブ)	西側保管場所 予備機置場	へ (他評価に包絡 →D)		
4 号炉 屋外ボンベ室 (K4)	(祝 <u>反</u> . 55, 55%) 水素ガス (ボンベ) 濃度: 00,00%	196m ³ × (屋内設置)	可搬型代替低圧電源車 ^{※1※3}	5台 第四類	第二石油類 軽道	油 250	南側保管場所 西側保管場所 予備# 開根	× (他評価に包絡 →D)		
5 号炉 屋外ボンベ室(K5)	<u> </u>	196m ³ × (屋内設置)	タンクロー11※1※3	5台 第四類 3	第二石油類 邮路	油 100 (車 両)	南側保管場所 西側保管場所	×		
6 号炉 屋外ボンベ室(K6)	(ボンベ) 水素ガス (ボンベ)	210m ³ × (屋内設置)				4,000 (959)	予備機置場 南側保管場所	(他評価に包給 →D) ×		
7 号炉 屋外ボンベ室 (K7)	<u>歳度</u> :99.99% 水素ガス (ボンベ)	210m ³ × (屋内設置)	ホイールローダ ^{ル1 & 3}	5台 第四額 :	第二石油類 輕言	油 177	西側保管場所 予備機置場 	(他評価に包絡 →D)		
共用 予備変圧器		33. 50kL × (%2)	窒素供給装置 ^{※1 ※3}	4台 第四類 :	第二石油缸 軽調	油 380 (装置)	南側保管場所 南側保管場所	へ (他評価に包絡 →D) ×		
共用 補助ボイラー用変圧器 5 A	1種2号 鉱油	30.80kL × (※2)	並索供給装直用電源単 ^{(*) * 5} 油圧ショベル ^{液2}	2倍 前四類 1台 第四額 :	第二石油類 単語 第二石油類 ■話:	油 250 油 65	西側保管場所 南側保管場所	(他評価に包絡 →D) ×		
共用 補助ボイラー用変圧器 5 B	1種2号 鉱油	30.80kL × (※2)	ブルドー ^{ザ※2}	1台 第四類	第二石油類 軽	油 470	南側保管場所	(他評価に包絡 →D) × (触評価に包絡 →D)		
3号炉 PLR-TNV(A)入力変圧器	1種2号 鉱油	8. 20kL (%1)	ホース展張車 ^{※2}	10台 第四照	第二石油類 軽言	油 130	南側保管場所 西側保管場所			
3号炉 PLR-INV(B)入力変圧器	1種2号 鉱油	8.20kL (%1)	可提利 ケーブル 運搬 車 ^{※2}	2台 第四類	第二石油類 載話	油 100	予備機置場 南側保管場所	(他評価に包給 →D) ×		
4 号炉 PLR-INV(A)入力変圧器	1種2号 鉱油	9.70kL (%1)	可搬型整流器運搬車 ^{※2}	2台 第四類	第二石油類 軽	油 70	西側保管場所 予備機置場	(他評価に包絡 →D) × (絶評価に包絡 →D)		
4 号炉 PLR-INV(B)入力変圧器	1種2号 鉱油	9.70kL (%1)	放水砲/泡消火薬剤運搬車 ^{※2}	2台 第四類 :	第二石油類 軽言	油 300	南側保管場所 西側保管場所	(他評価に包紹 →D) × (他評価に包絡 →D)		
6号炉 原子炉沿却材冉循環ボンブ可変周波数電 源装置(A-1)入力変圧器	1種2号 鉱油	3.61kL ○ (※1)	汚濁防止膜運搬車 ^{卖2}	2台 第四類	第二石油類 軽言	油 300	南側保管場所 西側保管場所	× (他評価に包絡 →D)		
6号炉 原子炉冷却材再循環ポンプ可変周波数電 源装置(A-2)入力変圧器	1種2号 鉱油	13.70kL 🔘 (※1)	小型船舶運搬車※2	2台 第四類	第二石油虹 軽言	油 300	南側保管場所 西側保管場所 南側保管場所	× (他評価に包絡 →D)		
6号炉 原子炉冷却材再循環ポンプ可変周波数電 源装置(B-1)入力変圧器	1種2号 鉱油	3. 61kL ○ (※1)	可搬型代替注水中型ポンプ*1※2※3	6台 第四類	第二百油類 軽言	油 200 (車 両) 125 (ポンブ)	南側保管場所 西側保管場所 予備機置場	× (他評価に包絡 →D)		
6号炉 原子炉冷却材再循環ポンプ可変周波数電 源装置(B-2)入力変圧器	1種2号 鉱油	13.70kL () (※1)	ホース展張車(消火用)*2	1台 第四類	第二石油類 軽言	油 130	西側保管場所	× (他評価に包絡 →D)		
7号炉 原子炉冷却材再循環ポンプ可変周波数電 7号炉 源装置(A-1)入力変圧器	1種2号 鉱油	3.70kL (%1)	水槽付消防ボンプ自動車※2	2台 第四類	第二石油類 軽言	油 200 (車両) 100 (ボンブ)	西側保管場所 監視所付近 売側保護場所	× (他評価に包絡 →D)		
7号炉 原子炉冷却材再循環ポンプ可変周波数電	1種2号 鉱油	9. 50kL (%1)	化学消防自動車 ^{換2}	2台 第四類	第二石油類 軽 i	油 100 (ボンブ)	監視所付近	へ (他評価に包絡 →D) ×		
7号炉 原子炉冷却材再循環ポンプ可変周波数電	1種2号 鉱油	3. 70kL () (※1)	→備電動機交換用クレーン ^{※2}	1台 第四類	第二百油版 軽 第二石油版 軽	油 500 (車両)	西側保管場所	(他評価に包絡 →D) ×		
7号炉 源井野(の) オー海底部	1種2号 鉱油	9. 50kL (%1)	可搬型高圧窒素供給装置(小型) ^{※2}	1台 第四類	第二石油類 軽	a 300 (グレーン) 300 (車両) 350 (装置)	予備機置場	(他評価に包給 →D) × (舶評価に包絡 →D)		
	第2石油類 軽油	330L × (屋内設置)	放射能観測車 ^{※2}	1台 第四類 :	第二石油新 軽	油 70	予備機置場	(他評価に包絡 →D) (他評価に包絡 →D)		
共用 給水建屋	第2石油類 軽油	100L × (屋内設置)	※1 可搬型重大事故等対処設備 ※2 自主設備							
1号炉 荒浜側焼却建屋プロパン庫	LPガス	4000kg × (屋内設置)	※3 予備							
5号炉 大湊側焼却建屋プロパン庫	LPガス	4000kg × (屋内設置)								
※1:自号炉の変圧器火災による熱影響	評価を実施する。									
※2:自号炉の主変圧器火災による熱影響	響評価に包絡される	0								
※3:燃料タンクは「空」であることか	ら,評価対象から除	外する。								
			第3.1-3 図 可搬型	重大事	故等対	処設備及び	(自主設備	请保管場所の		
					設置な	7罟				
					비희재					

相	自崎刈羽原子力発電所 6	/7号炉	(2017.12.	20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号烷
	第 3-2	表					
号炉	設備名	薬品の種類	数量	備考			
1号炉	CWP建屋 (K1)	過酸化水素 濃度:35.0%	600L	× (屋内設置)			
2 号炉	CWP建屋 (K2)	過酸化水素 濃度:35.0%	600L	×(屋内設置)			
共用	大湊側 補助ボイラー	希硫酸 濃度:35%	250L	× (屋内設置)			
共用	大湊側 補助ボイラー	水加ヒドラジン 濃度:60%	20L	× (屋内設置)			
共用	大湊側 補助ボイラー	水加ヒドラジン 濃度 : 1%	700L	× (屋内設置)			
共用	水処理建屋	塩酸 濃度:35%	5. 9m³	×(屋内設置)			
共用	水処理建屋	苛性ソーダ 濃度:25%	5m³	× (屋内設置)			
共用	水処理建屋	重亜硫酸ソーダ 濃度:35%	240L	×(屋内設置)			
上の に累 3.1.1 電し 3.1	○観点から、その火災が起 影響を及ぼさないことを評 評価対象変圧器 平価対象は、5~7 号炉周追 してある変圧器を対象と .1−1 図、保有油量を第 3	こったとして 価 するもの 辺の屋外 <u>(建</u> する。各変E .1.1-1 表に 				上の に景 3.1.1	O観点から、その火災が起こったとして 「響を及ぼさないことを評価するもので 評価対象変圧器 評価対象は、2号炉周辺の屋外に設 対象とする。各変圧器の設置場所を第 量を第3.1.1-1表に示す。
7 号 7 号 再 装	一 伊主変圧器 一 伊主変圧器 一 伊主変圧器 一 の 日 7 8 1 7 8 1 7 8 1 7 8 1 7 8 1 7 8 1 7 8 1 7 8 1 8 1 8 1 6 5 5 5 5 5 5 5 5 5 5 5 5 5	炉所内変圧器 主変圧器 対 動変圧器 変圧器の	ウゲ王 冬止 御 号炉 起動変圧 記 号炉原子炉建設 策所用 可搬型	器			第 3. 1. 1-1 図 変圧器の位
1							

柏崎刈羽原子力発電所 6/7号	·炉 (2017.12	2.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所	2 号炉		備考
第 3.1.1-1 表 変圧	器保有油量			第 3.1.1-1 表 変圧器	保有油量		
当に/曲 友	日夕	但专油具		設備名	品名	保有油量	
5 号位主恋区哭 1	<u> </u> 和 つ 日 和 の 日 紅 の 日 和 の の の の	床有 但里 190_00kI		2号炉主変圧器	絶縁油	77kL	1
6 号炉主変圧器 11	種2号鉱油	200. 00kL		2 号炉所内変圧器 (A, B)	絶縁油	20kL	1
7号炉主変圧器 15	種2号鉱油	214. 00kL		2号炉起動変圧器	絶縁油	24kL	1
低起動変圧器 5SA, 5SB 1 ³	種2号鉱油	17.05kL					1
低起動変圧器 6SA, 6SB 1	種2号鉱油	24.60kL					1
所内変圧器 5A, 5B 15	種2号鉱油	18.10kL					1
							1
所内変圧器 6A 1	種2号鉱油	20. 50kL					
所内変圧器 6B 1	種2号鉱油	21.00kL					1
所内変圧器 7A, 7B 1	種2号鉱油	19.20kL					1
5号炉励磁変圧器 1	種2号鉱油	9.50kL					1
6 号炉原子炉冷却材再循環ポンプ可変周	種の具術油	2 6114					1
波数電源装置(A-1),(B-1)入力変圧器	裡 2 万 班 佃	5. OIKL					1
6 号炉原子炉冷却材再循環ポンプ可変周	種 2 号 鉱 油	13 70kL					1
波数電源装置(A-2),(B-2)入力変圧器		10. TORE					1
7 号炉原子炉冷却材再循環ポンプ可変周	種2号鉱油	3.70kL					1
波数電源装置(A-1),(B-1)人力炎比器							1
1 7 5炉原于炉帘却材再循東ホンフ可変局	種2号鉱油	9.50kL					1
 3.1.2 発電用原子炉施設(外壁面) (1)変圧器の火災の想定 ・発電用原子炉施設周辺に設置され設までの距離が近く,内包していを対象とする。なお,主変圧器の置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが、防火壁を設置しているが、防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが,防火壁を設置しているが、防火壁を設置しているが,防火壁を設置しているが、防火地車を設置しているが、防火地車を設置しているが、防火地車を設置しているが、防火地車を設置しているが、防火地車を設置しているが、防火地車を設置しているが、防火地車を設置している。 	及び屋外施設の れており,発電 の周辺に所内容 ていることから 全面火災を想定 の消火機能等 火炎の高さは燃	の影響評価	 3.2 熱影響評価 3.2.1 変圧器火災の想定 変圧器火災の想定は以下のとおりとした。 (1) 想定条件 a. 評価対象とする火災源は3.1で抽出した主要変圧器,所 内変圧器2A及び起動変圧器2Bとした。なお,隣接す る変圧器間には耐火壁があるため,隣接変圧器への延焼 は考慮しない。 b. 変圧器の防火設備の消火機能等[※]には期待しない。 c. 離隔距離は,評価上厳しくなるよう,a. で想定した変圧 器設置位置から評価対象施設までの直線距離とした。 d. 変圧器の破損等による変圧器の全面火災を想定した。 e. 気象条件は無風状態とした。 f. 火災は円筒火炎モデルとし,火炎の高さは燃焼半径の3 倍とした。 ※ 変圧器の防火対策として,水噴霧の自動消火設備を設置している ことに加え,耐震性向上対策を行っている。(別紙6.4). 	 3.1.2 発電用原子炉施設(外壁面)及 (1) 変圧器の火災の想定 ・発電用原子炉施設周辺に設置さ施設までの距離が近く,内包1 圧器を対象とする。なお,主認等も設置しているが,防火壁を 勝接変圧器への延焼は考慮した ・変圧器の損傷等による変圧器の 気象条件は無風状態とする。 ・火災は円筒火炎をモデルとし、 3倍とする。 	び屋外施設の されており, こている絶縁 を 正器の周辺 を 設してい ない。 の全面火災を こ は期待しな 火炎の高さ	 2影響評価 発電用原子炉 油の多い主変 に所内変圧器 ることから, 想定する。 い。 は燃焼半径の 	

(2) 特許事件の地震 (2) 特許事件の地震 (3) 特許事件の地震 (2) 特許事件の地震 小子油は、社区内医具合常電新に対する変圧等の大変構 都の音響の許能を目的としている。其体的な時前構成とその内容 (3) 特許事件の地震 (3) 特許事件の地震 (4) 特許事件の地震 (3) 特許事件の地震 (5) 特許事件の地震 (3) 特許事件の地震 (5) 特許事件の地震 (3) 日本主要な対象に対する変化器の大変構 部の音響の許能を目的としている。其体的な時前構成とその内容 などれています。 (5) 日本主要な対象のの強張のないためると見なの一体性の 動産性の目の、実施のなどの地震 (3) 日本主要な対象のの強張のなどのからの 生きななどのなどのなどのなどのなどのなどのなどの などれています。 (5) 日本主要な対象のの強張のなどのかったの 電磁のなどののなどのなどのなどのなどのなどの に対象ののでしておかったのなどれなのなどのなどの などれていておかったのなどのなどのなどの などれていておかったのなどれなのなどのなどの などれていておかったのなどのなどのなどの などれていておかったのなどのなどのなどの などれていておかったのなどのなどの などれていておかったのなどのなどの などれていておかったのなどのなどの などれていておかったのなどのなどの などれていておかったのなどのなどの などれていておかったのなどの などれていておかったのなどの などれていておかったのなどの などれていておかったのなどの などれていておかったのなどの などれていておかったのなどの などれていておかったのなどの などれなどの などれていておかったのなどの などれていておかったのなどの などれないておかったのなどの などれないておかったのなどの などれていておかったのなどの などれないておかったのなどの などれないておかったのなどの などれないておかったのなどの などれないたかったの などれないておかったの などれないでなどの などれないておかったのなどの などれないておかったの などれない などれないておかったの などれない などれないたかったの などれない などれたい などれない などれない などれない などれない などれない などれない などれない などれて などれない などれない などれたい などれない などれない などれない などれない などれたい などれない などれない などれない などれたい などれない などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれて などれない などれたて などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたい などれたて などれたい などれたい などれたい などれたて などれたて などれたい などれたて	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.2.2 ### $N-200$ #H $2.32 ###N-200#H 2.32 ###N-200#H 2.32 ###N-200#H 2.32 ###N-200#H 2.32 ###N-200#H 3.3.2-1 # MODELLA LEADAU MARKALLA MARKALA MARKALLA MARKALLA MARKALLA MARKALLA MARKAL$	 (2) 評価手法の概要 本評価は、<u>拍崎刈羽</u>原子力発電所に対する変圧器の火災影響の有無の評価を目的としている。具体的な評価指標とその 内容を以下に示す。 	(2) 輻射強度の算定 油火災において任意の位置にある輻射強度(熱)を計算に より求めるため、火炎の高さ(輻射体)を半径の3倍にした 円筒火炎モデルを採用した。	 (2) 評価手法の概要 本評価は、<u>島根</u>原子力発電所に対する変圧器の火災影響の 有無の評価を目的としている。具体的な評価指標とその内容 を以下に示す。 	
か低減するか,本評価では保守的な判断を行うために、火災規模による に、火災規模による輻射発散度の低減がないものとする。 か、本評価では保守的な判断を行うために、火災規模によ る輻射発散度の低減がないものとする。 (3) 評価対象範囲 (3) 評価対象範囲 <u>5~7 号炉周辺</u> の屋外には、主変圧器、所内変圧器、起動 変圧器、 <u>励磁変圧器</u> が存在するが、貯蔵量の多い主変圧器を (3) 評価対象範囲 2号炉周辺の屋外には、主変圧器、所内変圧器、起動変圧	 第 3.1.2-1 表 評価指標及びその内容 評価指標 内容 幅射強度[W/m²]* 火災の炎から任意の位置にある点(受熱点)の輻射強度 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数 然焼半径[m] 変圧器規模より求めた燃焼半径 然焼継続時間[s] 火災が終了するまでの時間 離隔距離[m] 変圧器から発電用原子炉施設までの直線距離 熟許容限界値[-] 建屋の外壁,軽油タンク,主排気筒が想定火災の熱影響に対し て許容限界以下になる値 上記の評価指標は、受熱面が輻射体の底部と同一平面上に あると仮定して評価する。 ※: 油の液面火災では、火炎面積の半径が 3m を超えると 空気供給不足により大量の黒煙が発生し輻射発散度 がにたたス が、大変の現代の半径が 3m を超えると なのにより大量の黒煙が発生し輻射発散度 がにたたス が、大変の見の半径が 3m を超えると なのにより大量の黒煙が発生し幅射発散度 からにまれののになり、 なのにないのでは、 からの黒煙が発生し幅射発散度 からには、 本に からにないのでは、 本に の次の定して の次の定して て た た がの た かられまれまれまれまれ、 の は た かられまれまれまれまれまれまれまれまれまれまれまれまれまれまれまれまれまれまれま	3.2.2 共通データの算出 各対象施設の外壁に対する熱影響評価に必要となる共通デー クを算出する。 (1) 変圧器及び燃料に係るデータ 変圧器及び燃料に係るデータを第3.2.2-1表に示す。 第3.2.2-1表 火災源の輻射強度 2 整定火災源 油の種類 136.00 23 0.035 900 2 NUREG-1805記載値	第3.1.2-1表 評価指標及びその内容 評価指標 内容 輻射強度[W/m ²]* 火災の炎から任意の位置にある点(受熱点)の輻射強度 形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数 燃焼半径[m] 変圧器規模より求めた燃焼半径 燃焼継続時間[s] 火災が終了するまでの時間 離隔距離[m] 変圧器から発電用原子炉施設までの直線距離 熱許容限界値[-] 建物の外壁,海水ボンブ,排気筒が想定火災の熱影響に対して許容限界以下になる値 上記の評価指標は、受熱面が輻射体の底部と同一平面上にあると仮定して評価する。 ※: 油の液面火災では、火炎面積の半径が3mを超えると空気 (供給不足により大量の黒煙が発生し輻射発散度が低減する 10 () 中部(年本)	
	が低減するが,本評価では保守的な判断を行うため に,火災規模による輻射発散度の低減がないものとす る。 (3)評価対象範囲 <u>5~7 号炉周辺</u> の屋外には,主変圧器,所内変圧器,起動 変圧器, <u>励磁変圧器</u> が存在するが,貯蔵量の多い主変圧器を 評価対象とする。		が、本評価では保守的な判断を行うために、火災規模によ る輻射発散度の低減がないものとする。 (3) 評価対象範囲 <u>2号炉周辺</u> の屋外には、主変圧器、所内変圧器、起動変圧 器が存在するが、貯蔵量の多い主変圧器を評価対象とする。	

柏崎刈羽原子力発電	電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根	原子力発電所 2号炉	備考
(4) 必要データ			(4) 必要データ		
評価に必要なデータる	を以下に示す。		評価に必要なデー	ータを以下に示す。	
第_3.1.2-2 表	変圧器火災影響評価に必要なデータ		<u>第3.1.2-2表</u> 主	変圧器火災影響評価に必要なデータ	
データ種類	内容				
輻射発散度[W/m ²]	燃焼する可燃物によって決まる定数 23.0×10 ³ 「W/m ²](重油) ^{*1}		データ種類	内容	
主変圧器の投影面積[m ²] ^{**2}	6 号炉: 14.5×10.6 (155[m ²])		輻射発散度[W/m ²]	燃焼する可燃物によって決まる係数 23×10 ³ [W/m ²](重油) ^{※1}	
	 7 号が: 14.0×10.0 (155[m]) 建屋に近い主変圧器の中心から建屋までの距離 		主変圧器の投影面積[m ²] ^{*2}	4.2×8.5=35.7[m ²] 主恋に思ったことに、ほい、ほかったの。 第4.1000000000000000000000000000000000000	
	13[m] ^{%4}			主変圧器の中心からターモン建物までの離隔距離 8[m]	
	軽油タンクに近い主変圧器の中心から軽油タンクま での距離 67「m] ^{※5}		離隔距離[m]	主変圧器の中心から海水ポンプまでの離隔距離	
离睢 际鬲 距 离睢 [m] **3	燃料移送ポンプに近い主変圧器の中心から燃料移送			18[m] ナ亦正哭の中心から排気筒までの離厚距離 88[m]	
	ポンプ(防護板(鋼板)までの距離 62[m] ^{※5}			2.2.2.4.00年心がら好気間までの離開距離 86[11] の元素成分に関する規格がないため、絶縁油の輻射発	
	王排気間に近い王変圧器の中心から王排気間までの 距離 23[m] ^{※5}		散度は物性の近い重油の	り値を使用する。	
×1:変圧器用の絶縁油はその	元素成分に関する規格がないため、絶縁油の輻射発散		※2:第3.1.2-1図に変圧器の	投影面積を示す。	
度は物性の近い重油の値	直を使用する。				
 ※2:第3.1.2-1 図に変圧器の ※3:6 号及び7 号恒の主変圧男 	投影面積を示す。 哭け油量がほぼ同笑であることから 発電田原子恒施設				
との距離がより近い主要	変圧器にて熱影響の評価をする。				
※4:6号及び7号炉コントロ・	ール建屋と6号炉主変圧器との距離				
※5:7号炉軽油タンク,7号炸 7号に主恋広告しの距離	戸燃料移送ポンプ(防護板(鋼板)),7 号炉主排気筒と #				
(方が主変圧器との距離	it.				
				Liver ch	
			想定する燃	焼面積	
	变压器投影面積			亦正明	
				愛圧奋	
	变压器			一 亦 正 哭 其 碑	
				发 江 品 峚 埏	
	500 III III III III III III III III III				
			Ŏ		
	変圧器基礎				
第 3.1.2	-1 図 変圧器の投影面積		第 3.1.2	-1図 主変圧器の投影面積	
(5)燃焼半径の算出		(2) 燃焼半径の算出	(5) 燃焼半径の算出		
変圧器周りの防	油堤には玉砂利が敷き詰められているこ	変圧器周りの防油堤には玉砂利が敷き詰められていること	変圧器周りの防	油堤には玉砂利が敷き詰められているこ	
と,及び漏えいした	に油を回収する防災地下タンクを設置して	及び漏えいした油を回収する地下タンクを設置していること	と,及び漏えいし	と油は、装置下の防油堤内に滴下すること	
いることから防油t	泉の全面火災が生じることけ老えにくい	から防油堤の全面火災が生じることけたいしたがって	から防油堤の全面・	と災が生じることは考えにくい よって	
		本「明大体の合本ルベットを回答ル水ナルドファレル」	ホーマーキー	() $()$ $()$ $()$ $()$ $()$ $()$ $()$	
よつし, 変圧奋争権	▶ の王田火灰により円同火灾を生しること	変圧 荷平 伊 の 王 国 火 灭 に よ り 円 同 火 炎 を 生 し る こ と と し , 悠	変圧 奋 平 仲 切 至 面 り	べみにより円同火灾を生しることとし, 際	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
とし、燃焼面積は変圧器の投影面積に等しいものとする。し	焼面積は変圧器の投影面積に等しいものとして燃焼半径を算	焼 「焼面積は変圧器の投影面積に等しいものとする。したがって,	
たがって, 燃焼半径は変圧器の投影面積を円筒の底面と仮定	<u>出する。</u> 変圧器の投影面積を第 3. 2. 2-1 図に,算出結果を第	第 燃焼半径は変圧器の投影面積を円筒の底面と仮定し算出す	
し算出する。 <u>6 号炉主変圧器について示す。()内は7</u>	3.2.2-2 表に示す。	る。	
- 是炉am	$ \sqrt{s}$		
R= $(S \neq \pi) 0.5$	$R = \sqrt{\frac{\pi}{\pi}}$	$R = (S \neq \pi)^{-0.5}$	
S:投影面積(火炎円筒の底面積)= <u>150 [m²](155[m²])</u>		S:投影面積(<u>火炎円筒の底面積</u>)= <u>35.7[m²]</u>	
<u>R= $(150 \neq \pi)$ 0.5=6.91 [m] (7.03[m])</u>	R:燃焼半径(m),S: <u>防油堤</u> 面積(<u>=燃焼面積</u>)(m ²) $R = (35.7 / \pi)^{-0.5} = 3.37 [m]$	
(6) 形態係数の算出		(6) 形態係数の算出	
次の式から形態係数を算出する。		次の式から形態係数を算出する。	
	恋たりる然焼面積 変圧器本体	$(1 + 1) = m \left[(m) + m \left[(A - 2n) + m^{-1} \left[A(n-1) \right] + m^{-1} \left[A(n-1) \right] \right] \right]$	
		$\varphi = \frac{1}{\pi n} \tan \left(\frac{1}{\sqrt{n^2 - 1}} \right)^+ \frac{1}{\pi} \left(\frac{1}{\sqrt{AB}} \tan \left[\sqrt{B(n+1)} \right]^- \frac{1}{n} \tan \left[\sqrt{(n+1)} \right] \right)$	
$\phi = \frac{1}{\pi^{2}} \tan^{-1} \left \frac{m}{\sqrt{2}} + \frac{m}{\pi} \right \left \frac{(A-2n)}{\pi\sqrt{4n}} \tan^{-1} \left \sqrt{\frac{A(n-1)}{n}} - \frac{1}{\pi} \tan^{-1} \left \sqrt{\frac{(n-1)}{(n+1)}} \right \right $		t_{z} t_{z} t_{z} L_{z} L_{z	
$\mathcal{M} = \left(\sqrt{n^2 - 1}\right) \mathcal{M} \left(\frac{n\sqrt{AB}}{n\sqrt{AB}}\right) \left[\sqrt{B(n+1)}\right] \mathcal{M} = \left[\sqrt{(n+1)}\right]$	放熱器	$K = \frac{1}{R} = 3, n = \frac{1}{R}, A = (1+n) + m, B = (1-n) + m$	
$t = \frac{H}{L} \approx 3 n = \frac{L}{L} A = (1+n)^2 + m^2 B = (1-n)^2 + m^2$	· 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	φ : 形態係数, L : 離隔距離, H: 火炎高さ, R : 燃焼半径	
$R = \frac{1}{R} R^{-1} R^$			
φ : 形態係数, L : 離隔距離, H : 火炎高さ, R : 燃焼半径			
	● 絶縁油		
	第3.2.2-1 図 変圧器の投影面積		
第 3.1.2-3 表 形態係数の算出結果	第3.2.2-2表 火災源の燃焼半径	第3.1.2-3表 形態係数の算出結果	
評価対象 建屋 軽油タンク 燃料移送ポンプ 主排気筒	도 가기 차네 4월 프로 그는 차네 4월	評価対象 建物 海水ポンプ 排気筒	
(防護板 (鋼板)) 燃焼半径[m] 6.91 7.03 7.03 7.03	燃焼面槓 燃焼手栓 想定火災源 S R	燃焼半径[m] 3.37	
離隔距離[m] 13 67 62 23	(m ²) (m)	離隔距離[m] 8 18 88 形能係数[-] 1.85×10 ⁻¹ 6.01×10 ⁻² 2.82×10 ⁻³	
形態係数[-] 0.2619634 0.0213565 0.0248130 0.1341728	主要変圧器 97.00 5.557		
	所内変圧器 2 A 22.45 2.674		
	起動変圧器 2 B 58.91 4.331		
(7) 輻射強度の算出		(7) 輻射強度の算出	
火災の火炎から任意の位置にある点(受熱点)の輻射強度		火災の火炎から任意の位置にある点(受熱点)の輻射強度	
は、輻射発散度に形態係数をかけた値となる。次式から輻射		は、輻射発散度に形態係数をかけた値となる。次式から輻射	
強度を算出する。		強度を算出する。	
$E = Rf \times \phi$		$E = Rf \times \phi$	
F·輻射強度 Rf·輻射発散度 a·形能係数		E:輻射強度,Rf:輻射発散度, ϕ :形態係数	

第 3.1.2-4 表 輻射強度の算出結果第3.1.2-4表 輻射強度の算出結果	
評価対象建屋軽油タンク燃料移送ポンプ主排気筒	
幅射発散度 (b) $asymptotic (a)$ $asymptotic (a)$ (b) $asymptotic (a)$ $asymptotic (a)$ (b) <	
[W/m ²] 形態係数[-] 1.85×10 ⁻¹ 6.01×10 ⁻² 2.82×10 ⁻³	
形態保致[-] 0.2619634 0.0213565 0.0248130 0.1341728 火炎面積の 13.8 14.0 14.0 6.74	
interval interval <t< td=""><td></td></t<>	
Image 0.02×10 0.49×10 0.01×10 5.08×10 [W/m²]	
(8) 燃焼継続時間の算出 (3) 燃焼継続時間の算出 (8) 燃焼継続時間の算出	
燃焼継続時間は燃料量を燃焼面積と燃焼速度で割った値 燃焼継続時間は <u>、</u> 燃料量を燃焼面積と燃焼速度で割った値 燃焼継続時間は燃料量を燃焼面積と燃焼速度で割った値に	
になる。 <u>6 号炉主変圧器について示す。()内は 7</u> になる。 <u>算出結果を第3.2.2-3 表に示す。</u> なる。	
 无炉。 ···································	
$t = \frac{V}{V}, V = \frac{M}{M} (V \times \rho)$	
$\pi R^2 \times v \qquad \rho \qquad \qquad \pi R^2 \times M$	
t:燃焼継続時間[s],V:燃料量[m ³],R:燃焼半径[m], t:燃焼継続時間(s),V:燃料量(m ³) t:燃焼継続時間[s],V:燃料量[m ³],R:燃焼半径[m],	
v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s], R:燃焼半径(m), v:燃焼速度=M/ρ(m/s) v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s],	
ρ : 密度[kg/m ³] M: 質量低下速度(kg/m ² /s), ρ : 燃料密度(kg/m ³) ρ : 密度[kg/m ³] ρ : 密度[kg/m ³]	
$\sum_{i=1}^{n} (214 [m^{i}]), M=0.035 [kg/m^{2} \cdot s], \rho = 0.035 [kg/m^{2} \cdot s], \rho = 0.000 [kg/m^{2}]$	
$\frac{900 \text{ kg/m}}{2} \geq U(7) \text{ kg/kk} \text{ kindle} = 2 \times 0.035 / 1000 - 3.50 \times 10^{-5} \text{ km/s}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(10.4[h])	
(出典)質量低下速度,密度:NUREG-1805	
所內変圧器 2 A 21.00 2.674 0.035 900 24,094	
起動変圧器 2 B 46.75 4.331 20,447	
(9) 評価結果	
a. 建屋外壁の温度評価 a. 建物外壁の温度評価	
(a) 許容限界值(許容限界温度) (a) 許容限界温度)	
本評価で用いる許容限界値(許容限界温度)については、本評価で用いる許容限界値(許容温度)については、	
一般的にコンクリートの強度に影響がないとされる 200℃ ――――――――――――――――――――――――――――――――――	
とする。 200℃とする。	
(1) 新花焼金の運産結果	
(D) 「八江肥ジ町皿加油木 (D) 「八江肥ジ町皿加油木 火災が発生した時間から燃料が燃え尽きるまでの間。一定 火災が発生した時間から燃料が燃え尽きるまでの間。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
の輻射強度で発電用原子炉施設外壁が昇温されるものとし		一定の輻射強度で発電用原子炉施設外壁が昇温されるも	
て、下記の一次元非定常熱伝導方程式の解の式より、コンク		のとして、下記の一次元非定常熱伝導方程式の解の式よ	
リートの表面の温度上昇を求め, コンクリートの表面温度が		り、コンクリートの表面の温度上昇を求め、コンクリー	
許容温度以下であるか評価を実施した。その結果,発電用原		トの表面温度が許容温度以下であるか評価を実施した。	
子炉施設外壁の表面温度は約184℃となり、許容温度を下回		その結果,発電用原子炉施設外壁の表面温度は約 187℃	
ることを確認した。		となり、許容温度を下回ることを確認した。	
ることを確認した。 $f_s = T_0 + \frac{1}{\left(\frac{\sqrt{k}\kappa}{1.18h\sqrt{t}} + 1\right)\frac{h}{\epsilon E}}$ 出典:原田和典,建築火災のメカニズムと火災安全設計, 日本建築センター $T_0:初期温度[50^{\circ}C], E:輻射強度[W/m^2], \epsilon:コンクリー ト表面の放射率 (0.95) *, h:コンクリート表面熱伝達 率[34.9W/m2K]*, k:コンクリート熱伝導率[1.6W/mK]*, \rho: = 2 \cdot 2$	3.2.3 外壁に対する熱影響評価 (1) 評価対象範囲 評価対象施設の外壁について、主要変圧器、所内変圧器2 A及び起動変圧器2Bの火災を想定して評価を実施した。 (2) 変圧器と評価対象施設までの離隔距離	となり,許容温度を下回ることを確認した。 $T = T_0 + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\varepsilon E}}$ 出典:原田和典,建築火災のメカニズムと火災安全設計, 財団法人 日本建築センター $T_0:初期温度[50°C], E:輻射強度[W/m2], \varepsilon: コンクリ ートの表面の放射率[0.94]×1, h: コンクリート表面熱伝 達率[23.3W/m2K]×2, k: コンクリート熱伝導率[1.6W/mK] *2, \rho: \exists ン / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, c: \exists ン / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, c: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \otimes B \in [2, 200 kg/m3]^{×2}, d: \exists 2 / 0 \cup - k \boxtimes B \in [2, 200 kg/m3]^{×2$	
	<u>愛生命と計価対象施設までの離開距離を用3.2.3-1 衣に示</u> す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発	電所(2018.9.12	版)	島根原子力発電所 2号炉	備考
	第3.2.3-1表 各変圧	器と評価対象施設	までの離隔距離		
	想定火災源	影響対象	離隔距離 (m)		
	主要変圧器	タービン建屋	22		
	所内変圧器 2 A	タービン建屋	8		
	起動変圧器 2 B	タービン建屋	13		
	(3) 形態係数の算出 以下の式から形態係数 表に示す。 $\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \begin{cases} \frac{1}{\pi} \\ \frac{1}{\pi}$	3-2 1 2			
	第 3.2.3-2 表	各変圧器の形	<u>態係数</u>		
	想定火災源 離隔距離 し L (m)	燃焼半径 R (m)	形態係数 Φ (−)		
	主要変圧器22(タービン建屋	5. 557	1.0160×10^{-1}		
	所内変圧器2A 8 (タービン建屋	2.674	1.5128×10 ⁻¹		
	起動変圧器2B 13 (タービン建屋	4.331	1.5063 $\times 10^{-1}$		
	 (4) 輻射強度の評価 火炎から任意の位置(射発散度に形態係数を打 表に示す。 E = R f ・ Φ E : 輻射強度(W/m²) Φ : 形態係数 	<u>こある点(受熱点 掛けた値になる。</u> , Rf:輻射発)の輻射強度は, 算出結果を第 3. 2. 教度(W/m ²),	辑	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)					島根原子力発電所 2号炉	備考	
	想定火災源	燃料の種類	輻射発散度 Rf (kW/m ²)	形態係数	輻射強度 E (W/m ²)			
	主要変圧器	絶縁油		1.0160×10^{-1}	2, 336. 84			
	所内変圧器 2 A	絶縁油	23	1.5128×10^{-1}	3, 479. 47			
	起動変圧器2B	絶縁油		1.5063×10^{-1}	3, 464. 49			
	(5) 判断のる	考え方						
	a. 許容温原	É.						
	火災時日	こおける短期	加温度上昇を	考慮した場合	において、コ			
	ンクリー	ト圧縮強度か	が維持される	保守的な温度	200℃を許容			
	温度とする	5						
	b. 評価結長	₹						
	火災が多	経生した時間	引から燃料が	が燃え尽きるま	での間,一定			
	の輻射強度							
	定常熱伝導							
	上昇を求め							
	か評価した	と。建屋外雪	産の評価概念	図を第3.2.3	-1 図に示す。			
	• 火炎長/							
	与えない	いことから素	影響はない					
	· <u>火</u> 炎長7	が天井スラフ	ブより長い場	合,天井スラ	ブに輻射熱を			
	与える7							
	大开入			.2.3-2 図に示				
	• 火沢かい	20) 離 隔距 サマニマン a	他が寺しい場	☆ご,	外生たいと小平			
		+ ヘノノノ い	の対影郷けめ		かんさいこと			
	1,14 D. J.		ノ芯記(音)(よ))		<u>C.C.V.</u>			
	$T = T_0 + \frac{2 E \sqrt{\alpha t}}{\lambda} \frac{1}{\left[\sqrt{\pi} \exp\left(-\frac{x^2}{4 \alpha t}\right) - \frac{x}{2\sqrt{\alpha t}} \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)\right]}$							
	<u>T:表面からx(m)の位置の温度(℃),T₀:初期温度(50℃)^{*1}</u>							
	<u>κ</u> :コンク	リート温度位	<u> ξ導率(=λ/</u>	<u> </u>	$(10^{-7} \text{m}^2/\text{s})$			
	ρ:コンク	リート密度(2,400kg/m ³	³)				
	<u>C.</u> : コンク	リート比熱	(880J/kg/	<u>(K)</u>				
	λ:コンクリ	リート熱伝導	享率(1.63W/	m/K),E:輻	<u>討強度(₩∕m²)</u>			
	<u>t</u> :燃焼継網	<u>売時間(s)</u> ,	x:コンクリ	一卜壁表面深	<u> き(Om)</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に		
	保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は, 受熱		
	面の形状や周囲の環境条件を受け変化するが、一般		
	的な値として垂直外壁面,屋根面及び上げ裏面の夏		
	季, 冬季の値が示されている。評価上放熱が少ない		
	方が保守的であることから、これらのうち最も小さ		
	<u>い値である 17W/m²/K を用いる。)</u>		
	対流による放熱		
	天井スラブ 外壁 屋内 輻射強度:E 初期温度:50℃		
	第3.2.3-1 図 建屋外壁の評価概念図		
	天井スラブに輻射熱を与える 外壁に輻射熱を与える範囲 天井スラブ 外壁 医内 第 3. 2. 3-2 図 天井スラブの評価概念図		
	ただし、上式で算出した建屋表面温度が許容温度である 200°C を超える場合には、周囲への放熱を考慮した次式を用いて算出す る。なお、現実的に起こり得る放熱量を上回ることがないよう、 放熱量が低くなる保守的な条件を設定した。 $T = T_0 + \frac{E}{h} \left[1 - \exp\left(\frac{h^2}{\lambda \rho C_p} t\right) \operatorname{erfc}\left(\sqrt{\frac{h^2 t}{\lambda \rho C_p}}\right) \right]$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2	018.9.12版)		島根原子力発電所 2号炉	備考
	<u>T:表面からx(m)の位置の温度(</u>	<u>℃), T_0 : 初</u>	期温度(50℃)*1		
	<u>h:熱伝達率(17W/m²/K)*2</u>				
	<u>ρ:コンクリート密度(2,400kg/</u>	(m ³)			
	<u>C_p:コンクリート比熱(880J/kg</u>	<u>(K)</u>			
	<u>λ:コンクリート熱伝導率(1.63</u>)	/m/K),E:	輻射強度(W/m ²)	Σ	
	t:燃焼継続時間(11,008s), x:	コンクリー	ト壁表面深さ(0m)	~	
	※1 水戸地方気象台で観測さ	れた過去最高	高気温 38.4℃に伤		
	守性を持たせた値				
	※2 空気調和·衛生工学便覧	(外表面の熱	伝達率は、受熱面	Ω.	
	の形状や周囲の環境条件を	受け変化する	るが、一般的な値		
	として垂直外壁面,屋根面	i及び上げ裏i	面の夏季, 冬季の		
	値が示されている。評価上	放熱が少ない	い方が保守的でを	$\Sigma_{\rm c}$	
	ることから、これらのうち	最も小さい	直である 17W/m ²		
	<u>/Kを用いる。)</u>				
	コンクリート表面の温度上昇	を評価した約	吉果,許容温度		
	200℃以下であることを確認し	た。評価結果	を第3.2.3-4表に		
	示 す し い				
	第3.2.3-4 外壁に対す	る熱影響評価	 		
	想定火災源 評価対象施設	評価温度* (℃)	許容温度 (℃)		
	主要変圧器	149	_		
	所内変圧器 2 A タービン建屋	187	< 200		
	起動変圧器 2 B	182			
	※ 放熱なしの条件では許容温度を上	回るため,放熱を	を考慮して評価を実施		・設備の相違
					【柏崎 6/7, 東海第二】
b. <u>軽油タンク</u> の温度評価					島根2号炉では,軽油
(a)許容限界值(許容限界温度)					タンク,燃料移送ポン
本評価で用いる許容限界値(許容限界温度)については,					プ,非常用ディーゼル発
<u>軽油の発火点225℃</u> とする。					電機は,地下構造等の屋
					内設備のため影響評価
(b)耐火性能の評価結果					対象外。
火災が発生した時間から燃料が燃え尽きるまでの間,一					島根2号炉では,海水
定の輻射強度で <u>軽油及び軽油タンク</u> が昇温されるものとし					ポンプは, 屋外設置のた
て,下記の式より, <u>軽油</u> の温度上昇を求め, <u>軽油</u> の温度が許					め影響評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
容温度以下であるか評価を実施した。その結果, <u>軽油</u> の温度			
は約 42℃となり、許容温度を下回ることを確認した。			
$T = \frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - \left(\frac{\varepsilon E S_1 + h S_2 T_{air}}{h S_2} - T_0\right) e^{\left(\frac{h S_2}{C}\right)t}$			
$T_0: 初期温度[38°C], E: 輻射強度[W/m2], \varepsilon : \underline{隆油タンク}表面の放射率 (0.9)*1, h: 軽油タンク表面熱伝達率[17W/m2K]*2, S_1 = S_2 : \underline{軽油タンク}受熱・放熱面積[m2], C: 軽油タンク及び軽油の熱容量[8.72×108J/K], t: 燃焼継続時間[s],T_{air}: 外気温度[°C]**1: 伝熱工学資料, **2: 空気調和・衛生工学便覧$			
c. <u>燃料移送ポンプ</u> の温度評価		b . <u>海水ポンプ</u> の温度評価	・設備の相違
(a)許容限界值(許容限界温度)		(a) 許容限界值(許容限界温度)	【柏崎 6/7,東海第二】
燃料移送ポンプの許容限界値(許容限界温度)が端子ボッ		本評価で用いる許容限界値(許容限界温度)について	島根 2 号炉では, 軽油
<u>クスパッキンの耐熱温度100℃であることを踏まえ、燃料移</u>		は,海水ポンプ電動機の下部軸受の許容温度 55℃とする。	タンク、燃料移送ポン
送ポンプの周囲に設置されている防護板(鋼板)の許容温度			プ,非常用ディーゼル発
を当該ポンプの許容限界温度と同様の 100℃とする。		(b) 耐火性能の評価結果	電機は,地下構造等の屋
(b)耐火性能の評価結果		火災が発生した時間から燃料が燃え尽きるまでの間,	内設備のため影響評価
火災が発生した時間から燃料が燃え尽きるまでの間,一定		一定の輻射強度で <u>海水ポンプの冷却空気</u> が昇温されるも	対象外。
の輻射強度で <u>燃料移送ポンプの防護板 (鋼板)</u> が昇温される		のとして,下記の <u>式より海水ポンプ</u> の <u>冷却空気</u> 温度を求	島根 2 号炉では, 海水
ものとして、下記の一次元非定常熱伝導方程式の解の式より		め,許容温度以下であるか評価を実施した。その結果,	ポンプは, 屋外設置のた
<u>防護板(鋼板)</u> の最大温度を求め, <u>防護板(鋼板)の温度が</u>		<u>海水ポンプの冷却空気</u> 温度は約 <u>30℃</u> となり,許容温度を	め影響評価を実施
許容温度以下であるか評価を実施した。その結果, 燃料移送		下回ることを確認した。	
<u>ポンプ</u> の温度は <u>71℃</u> となり,許容温度を下回ることを確認			
した。			
$T = \frac{\varepsilon E_2^{\underline{S}} + hST_{air}}{hS} - \left(\frac{\varepsilon E_2^{\underline{S}} + hST_{air}}{hS} - T_o\right) e^{\left(-\frac{hS}{C}\right)t}$		$T = T_0 + \frac{E \times A_T}{G \times C_p}$	
T₀:初期温度[55℃],E:輻射強度[W/m²],ε:防護板(鋼		 To::通常運転時の上昇温度[22℃],E:輻射強度[W/m ²],	
$_{-\underline{v}}$ が か か か か か か か か か か か か か か か か か か		A _r :受熱面積[10.93m ²].G:重量流量[1.96kg/s].	
達率[17W/m ² K] ^{*2} , S:防護板(鋼板)放熱面積[32,4m ²](S/2·		<u> C.</u> :空気比熱[1007]/(kg・K)] ^{※1}	
受勢面積は外面のみ) (:防護板(綱板)の数容量「2 41		<u>→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→</u>	
×10 ⁶ I/K] t· 燃焼継続時間 [s] T. · 外気温度 [55°]			
※1. 伝執工学資料 ※2. 空気調和. 衛生工学価階			
<u>MI HM 上丁只们,M4 · 工入脚件 用上上丁区克</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
d. <u>主排気筒</u> の温度評価		c. <u>排気筒</u> の温度評価	
(a)許容限界值(許容限界温度)		(a) 許容限界值(許容限界温度)	
本評価で用いる許容限界値 (許容限界温度) については,		本評価で用いる許容限界値(許容限界温度)について	
主排気筒鋼材の許容温度325℃とする。		は,排気筒鋼材の許容温度 325℃とする。	
(b)耐火性能の評価結果		(b) 耐火性能の評価結果	
火災が発生した時間から燃料が燃え尽きるまでの間, 一		火災が発生した時間から燃料が燃え尽きるまでの間,	
定の輻射強度で <u>主排気筒</u> が昇温されるものとして,下記の		一定の輻射強度で <u>排気筒</u> が昇温されるものとして,下記	
式より <u>主排気筒</u> の最大温度を求め,許容温度以下であるか		の式より,排気筒の最大温度を求め,許容温度以下であ	
評価を実施した。その結果,主排気筒の温度は約 <u>132℃</u> と		るか評価を実施した。その結果,排気筒の温度は約52℃	
なり、許容温度を下回ることを確認した。		となり、許容温度を下回ることを確認した。	
$T = T_0 + \frac{\varepsilon E}{2h}$		$T = T_0 + \frac{\varepsilon E}{2h}$	
T ₀ :初期温度[50℃],E:輻射強度[W/m ²],		T _o :初期温度[50℃],E:輻射強度[W/m ²],ε:排気筒表	
ε : 主排気筒表面の放射率(0.9) ^{*1} ,		面の放射率[0.9] ^{*1} , h: <u>排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2}	
h: <u>主排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2}		※1:伝熱工学資料, ※2:空気調和・衛生工学便覧	
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧			
(10) 火災による熱影響の有無の評価		(10) 火災による熱影響の有無の評価	
以上の結果から, 変圧器において火災が発生した場合を想		以上の結果から、変圧器において火災が発生した場合を想	
定したとしても、許容限界温度を超えないことから、発電用		定したとしても、許容限界温度を超えないことから、発電用	
原子炉施設に熱影響をおよぼすことはないと評価する。		原子炉施設に熱影響を及ぼすことはないと評価する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炮
	3.2.4 放水路ゲートに対する熱影響評価	
	(1) 評価対象範囲	
	<u>放水路ゲートについて主要変圧器及び所内変圧器2Aの火</u>	
	<u>災を想定して評価を実施した。</u>	
	<u>(2)</u> 評価対象施設の仕様	
	放水路ゲート駆動装置の外殻となる放水路ゲート駆動装置	
	機械室の仕様を第 3.2.4-1 表に,外形図を第 3.2.4-1 図に示	
	<u></u>	
	第3.2.4-1 表 評価対象施設の仕様	
	# and the second s	
	名称 放水路ゲート駆動装置	
	床面高さ T.P.+11.0m	
	外殻材料 炭素鋼 個数 3	
	第3.2.4-1図 評価対象施設の外形図	
	(3) 火災源となる設備から放水路ゲートまでの離隔距離	
	火災源となる設備から放水路ゲートまでの離隔距離を第	
	<u>3.2.4-2</u> 表に示す。	
	第3.2.4-2表 火災源となる設備から放水路ゲートまでの	
	離隔距離	
	離隔距離	
	主要変圧器 270	
	所内変圧器 2 A	
	<u> 以下の式から</u> 形態 (※ 数 を 昇出 した。 昇出 結果 を 弟 3.2.4-3 また 二十	
	<u> </u>	

Ē	備考
	・評価対象の相違
	【東海第二】
	島根2号炉は,評価対
	象となる津波防護施設
	はない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東	瓦海第二発電所	F (2018.9.12	版)	島根原子力発電所 2号炉	備考
	$\Phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n}} \right)^2$	$\left(\frac{n}{2}\right) + \frac{m}{\pi} \left\{ \frac{(A-2)}{n\sqrt{A}} \right\}$	$\frac{n}{B}$ $\tan^{-1}\left[\sqrt{\frac{A(n-1)}{B(n+1)}}\right]$	$\frac{1}{1} - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right]$		
	ただし m= <u>H</u> ≒3	, $n = \frac{L}{R}$, A	$ = (1+n)^2 + m^2$, $B = (1-n)^2 + m^2$		
	Φ:形態係数, L:潮	推隔距離(m), H	I:炎の高さ(m),	R:燃焼半径(m)		
	<u>第 3.2.</u> 4	4-3 表 火災液	原となる設備の	D形態係数		
	想定火災源	離隔距離 L (m)	燃焼半径 R (m)	形態係数		
	主要変圧器	270	5.557	8. 202×10^{-4}		
	所内変圧器 2 A	270	2.674	1.887×10^{-4}		
	 (5) 輻射強度の 火災の火炎 は,輻射発散 3.2.4-4表に対 E = R f ・ E : 輻射 Φ : 形態 	<u>評価</u> から任意の位 度に形態係数 示す。	<u>:置にある点(</u> を掛けた値に , Rf:輻射	<u>受熱点)の輻射強度</u> なる。算出結果を第 発散度(W/m ²),		
	第 3.2.4	4-4 表 火災液	原となる設備の	D輻射強度		
	想定火災源 燃料	軽の種類 単の種類 (kW)	発散度 形態 R f /m ²) (係数 輻射強度 Φ E -) (W/m ²)		
	主要変圧器 新	色縁油	23 8.202	×10 ⁻⁴ 19	-	
	所内変圧器 2 A 縦	色縁油	23 1.887	×10 ⁻⁴ 4		
	<u>(6) 判断の考え</u>	<u>方</u>				
	<u>a. 許容温度</u> 放水路ゲー	ト駆動装置機	緑槭室外殻の許	容温度は、火災時に		
	<u>水小時</u> おける短期温	<u>- 赤邦衣直做</u> 度上昇を考慮	した場合にお	いて、鋼材の強度か		
	<u>維持される保</u>	守的な温度 32	25℃以下とす	3		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	b. 評価結果		
	一定の輻射強度で放水路ゲート駆動装置機械室外殻が昇温		
	されるものとして,輻射による入熱量と対流による放熱量が		
	<u>釣り合うことを表した下記の温度評価式により放水路ゲート</u>		
	駆動装置機械室外殻表面の温度上昇を求め、表面温度が許容		
	温度以下であるか評価した。放水路ゲートの評価概念図を第		
	3.2.4-2 図に示す。		
	$T = T_{o} + \frac{E}{E}$		
	2 0 2 h		
	<u>T:許容温度(325℃),T₀:初期温度(50℃)*1</u>		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)*2</u>		
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は、		
	受熱面の形状や周囲の環境条件を受け変化する		
	か,一般的な値として垂直外壁面,屋根面及び		
	上り表面の夏学、冬学の値が示されている。評		
	<u>伽工成熟が少ない方が休守的にめることがら</u> これらのうた是た小さい値である $17W/m^2/W$		
	(1000)の取りがさい他にのる $100/m / Kを用いる)$		
	成水路ケート駆動装直外殻		
	転射論度・F		
	:受熱面		
	第 3. 2. 4-2 図 放水路ゲートの評価概念図		
	放水路ゲート駆動装置外殻表面の温度上昇を評価した結		
	<u>果,許容温度 325℃以下であることを確認した。評価結果を</u>		
	第3.2.4-5表に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉	備考
	第 3. 2. 4-5 表 評価対象施設に対する熱影響評価結果			評価結果		
			評価温度	許容温度		
		評価対象施設 	(°C)	(°C)		
	主要変圧器	放水路ゲート	51	< 325		
	所内変圧器 2 A		51	020		
212 惑電田匠フに拡張(民人)の影響部伍						冬件不扫法
3.1.3 光电用原于炉施設(産工)の影響評価						• 采什の相選
衆ホンノー友向仮数电泳表直入力及上部に対しては、(1) (5) の上うた設計上の配慮がたされて いろ						上に変圧器等の評価対
						金を設置していたい
(1) 火災の発生防止						
変圧器は基準地震動に対して絶縁油が漏えいしない設計						
としていることから、地震の際に漏えい・火災発生のおそれ						
はない (別紙 6-1 参照)。中越沖地震以前の主変圧器等の						
設置状況とは異なり、変圧器・ブッシング等がコントロール						
建屋屋上に設置されており、同一の躯体上にあることから相						
対変位を生じることはなく, 地盤沈下に伴うブッシング部の						
破損による漏えいや火災発生はない。						
また中越沖地震後の点検においても異常は確認されてい						
ない。定期的な点検や絶縁油分析を行い、信頼性を確保して						
いる。なお, 更なる安全性向上の観点から, 万が一絶縁油が						
漏えいした場合であっても, 他号炉側の原子炉冷却材再循環						
ポンプ可変周波数電源装置入力変圧器へ絶縁油が流出する						
<u>ことを防止するため防油堰を設ける。(第 3.1.3-1 図)</u>						
変圧器のエリアは中央制御室より IIV による状況の確認						
<u>か可能である。また、佃欠次に対応した人型相欠番を設直し</u> ていて、わた、更ねて安全向上の知らから、威知思の評異な						
くいる。なや、文なる女王回上の観点から、恩知奋の故直を 行い、日期の絵知、消水が可能や認計レオス						
<u>11、, 〒初21800</u> , 1日八 <u>201</u> 8は取自こうる。 「合隘物の規制に関すス相則」(昭和 34 年終理府会第 55						
日本市場の1000000000000000000000000000000000000						
こと」と定めており、変圧器絶縁油(第4類 第3石油類非水						
<u>溶性)の指定数量が 2,0000であることをふまえると所要単</u>						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
位は3.1単位となる。変圧器近傍には油火災用 B-20 (20 単			
位)の能力を持った消火器を各号炉 1 台備え付けており所			
要能力を満たしている。			
なお,同様の考え方から, JEAG 5002「変電所等における			
防火対策指針」では、「消火器具の所要能力単位は、全主要			
変圧器内に貯蔵された絶縁油量を20,0000で除した値以上」			
と定めており、当該エリアでは同じく 3.1 単位が必要な能			
力値となる。			
(3) 火災の影響軽減			
コントロール建屋の屋上面や,周辺建屋はその外壁の厚さ			
により,変圧器火災の影響を受けない設計としている。			
(3.1.3.2 変圧器の火災による発電用原子炉施設(屋上)へ			
の影響参照)			
以上のように, 原子炉冷却材再循環ポンプ可変周波数電源			
装置入力変圧器に対しては,火災防護上の対策がなされてい			
ることから、安全施設への影響はないと考えられるが、以下			
では万が一火災が生じた場合の影響評価を実施する。			
単なる漏えいでは周囲に火源がないことから、火災には至			
らない。したがって、火災としては、地絡、短絡等電気事故			
に伴うものが考えられるが、事故時には保護継電器が作動し			
事故電流を遮断し、仮に過熱により内圧が上昇した場合でも			
変圧器上部に設置した放圧装置により放圧する構造である			
ため、タンクは損傷には至らず、変圧器上部での火災となる。			
放圧する場合でも変圧器内は窒素ガスが封入されており変			
圧器上部には窒素ガスの層があることと、受け容器へ導かれ			
ることから油が吹き出すことはない。燃焼する位置は、酸素			
供給の観点から放圧装置等が設置されている上部が考えら			
れ、この場合、タンクの貫通部である放熱器フランジについ			
ては、液位が高い間には絶縁油の液相部に浸っており火炎に			
さらされないことから,者しい漏えいは生じない。(第			
以上を踏まえ、変圧器は設計基準地震動に対して漏えいし			
ない設計としており、複数台の同時火災は想定されないた			
め, 変圧器1台の投影面積での火災を想定し評価する。			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	---------------------	--------------	----
第 3.1.3-1 図 変圧器・防油堰配			
^{窒素ガス層}			
<u>第 3.1.3-2 図 変圧器火災の概要図</u>			
3.1.3.1変圧器の火災における延焼の危険性			
原子炉冷却材再循環ポンプ可変周波数電源装置入力変圧器			
において, 火災が起こったとしても周囲の変圧器に影響を及ぼ			
さないことを評価するもので ある。			
<u>(1)変圧器の火災の想定の条件</u>			
・周囲への熱影響を考慮し、保有油量が最大である 6 号炉			
原子炉冷却材再循環ポンプ可変周波数電源装置(B-2)入力			
変圧器の全面火災を想定する。			
・ 配置上,油量が最大である 6 号炉原子炉冷却材再循環ポ			
ンプ可変周波数電源装置(B-2)入力変圧器と向かい合い,			
油量が少なく最も接近している7号炉原子炉冷却材再循環			
ボンブ可変周波数電源装置(A-1)入力変圧器が輻射熱を受			
ける状態を想定する。受熱面は下面と裏面を除く全ての面			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉
とし,表面以外の面は発熱源に最も近い表面と同等の輻射		
熱を受けるものとする。また、輻射熱を受けない面は保守		
<u>的に断熱とし、大気への放熱は輻射を受ける面(下面と裏</u>		
<u>面を除く全ての面)からのみなされるものとする。(第</u>		
3.1.3.1-1 図)		
・発熱側・受熱側とも絶縁油を満載した状態を想定する。		
 ・変圧器の近傍に配備している大型消火器による消火には 		
期待しない。		
・気象条件は無風状態とする。		
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3		
倍とする。		
裏面,下面は, 変圧器		
受熱も放熱も したいいけて 編射		
変圧器基礎		
屋上床躯体		
<u> 弗 3.1.3.1-1 凶 変圧 </u>		
(2) 評価対象範囲		
評価対象範囲は、コントロール建屋の屋上に設置している		
全ての変圧器及び発電機とする。発熱側は油量が最も多く燃		
焼時間が長い 6 号炉原子炉冷却材再循環ポンプ可変周波数		
電源装置(B-2)入力変圧器,受熱側は油量が少なく最も接近		
している 7 号炉原子炉冷却材再循環ポンプ可変周波数電源		
装置(A-1)入力変圧器とすることにより,他の変圧器等は本		
評価に包絡される。		
(3) 必要データ 評価に必要なデータを以下に示す。		

 戸	備考

柏崎刈羽原子力発電	;所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3.1.3.1-1 表 刻	変圧器火災影響評価に必要なデータ			
データの種類	内容			
輻射発散度[W/m ²]	燃焼する可燃物によって決まる定数			
	23.0×10 ³ [W/m ²] **1 (重油) **2			
6 号炉原子炉冷却材冉循環 ポンプ可変周波数電源装置	5. $15 \times 4.64 = 23.9 \text{ [m²]}$			
(B-2)入力変圧器の投影面積				
[m ²]				
離隔距離[m]	変圧器間の最短距離 4.1[m]			
※1:評価ルイト竹属者Bより ※2:変圧器用の絶縁油はその5	元素成分に関する規格がないため、輻射発散度は物性			
の近い重油の値を使用する	0			
(4) 燃焼半径の箟出				
<u>6</u> 早后百子后必=	却材更循環ポンプ可亦国波粉雲酒装置			
	本の生面火炎により円周火炎を生しるこ			
<u>ととし、</u> 燃焼面積は	公 此器の投影面積に等しいものとする。			
したがって, 燃焼半	径は変圧器の投影面積を円筒の底面と仮			
定し算出する。				
$\underline{R} = (S \neq \pi) \ 0.55$	5:投影面積(火炎円筒の底面積)=23.9			
$[m^2]$				
$R = (23.9 \neq \pi)$ (0.5=2.75 [m]			
(5) 厥橈継続時間の管	<u>і</u> щ			
做座继结时間》,	- <u>円</u> 料畳な燃焼西巷と燃焼浦鹿で割った <i>値に</i>			
<u>窓院</u> 和小市市町は、窓	科重を然焼面積と燃焼速度で割りた値に			
7よろ。				
$t = \frac{V}{V}$, $v = \frac{1}{2}$	<u>M</u>			
$\pi R^2 \times v^2$	ρ			
t:燃焼継続時間[s]	, V:燃料量[m³], R:燃焼半径[m], v:			
燃焼速度[m/s]				
<u>M:質量低下速度[kg</u>	g/m²·s], ρ:密度[kg/m³], m:質量[kg]			
ここで、V=13.7[m ³]. M=0.035[kg/m ² ·s] . $\rho = 960[kg/m^3]$			
として				
	$15 \times 10^{-5} [m/a]$			
$\sqrt{-0.033/900-3.04}$	$10 \times 10 \text{ [m/s]}$			
$t = 13.1 / (23.9 \times 3)$	$5.045 \times 10^{\circ}$ = 15708[s] = 4.36[h]		ļ	
(6) 危険輻射強度の算	[<u>出</u>		ļ	
6 号炉原子炉冷;	却材再循環ポンプ可変周波数電源装置		ļ	
<u>(B-2)入力変圧器の</u>	<u> 火災が発生した時間から燃料が燃え尽き</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
るまでの間,一定の輻射強度で 7 号炉原子炉冷却材再循環			
ポンプ可変周波数電源装置(A-1)入力変圧器が昇温されるも			
のとする。輻射による入熱量と対流熱伝達による放熱量の差			
が変圧器の温度上昇に寄与することを表した下記の式から,			
<u>重油の温度 T が 200℃^{*1}となる危険輻射強度を求める。</u>			
$C\frac{\mathrm{d}T}{\mathrm{d}t} = \varepsilon ES_1 - h(T - T_{air})S_2$			
<u>T₀:変圧器初期温度[55℃],T_{air}:外気温度 38[℃],E:輻射</u>			
 强度[W/m ²],			
<u>ε</u> :7号炉原子炉冷却材再循環ポンプ可変周波数電源装置			
(A-1)入力変圧器表面の放射率(0.9) ^{※2} ,h:7号炉原子炉冷			
却材再循環ポンプ可変周波数電源装置(A-1)入力変圧器表面			
熱伝達率[17W/m²K] ^{※3} , S ₁ (=S ₂):7号炉原子炉冷却材再循環ポ			
ンプ可変周波数電源装置(A-1)入力変圧器受熱面積[m²], C:7			
号炉原子炉冷却材再循環ポンプ可変周波数電源装置(A-1)			
<u>入力変圧器及び重油の熱容量 [6.64× 10⁶J/K]^{*1}, t:燃焼継</u>			
続時間[s]			
※1:変圧器用の絶縁油はその元素成分に関する規格がない			
ため,物性値は重油の値を使用。絶縁油の品質記録に記載			
されている発火温度の最低値とする。			
※2:伝熱工学資料(変圧器の金属筐体は塗装仕上げされて			
いることから、表面の塗装に類似の塗装として「塗料(エ			
ナメル・白)」の値を用いる。非金属の放射率は金属より			
大きいため, 非金属である塗料の値で評価することは保守			
的である。)			
※3:空気調和・衛生工学便覧(外表面の熱伝達率は,受熱面			
の形状や周囲の環境条件を受け変化するが、一般的な値と			
して垂直外壁面(変圧器の側面部に相当),屋根面(変圧			
<u>器の上面部に相当)の夏季,冬季の値が示されている。評</u>			
<u>価上放熱が少ない方が保守的であることから, これらのう</u>			
ち最も小さい値である 15kcal/m²h℃を SI 単位に換算し			
<u>た 17W/m²K を用いる。)</u>			
結果として, 危険輻射強度は以下になる。			
$E=7947[W/m^2]$			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>(7)形態係数の算出</u>			
火炎から任意の位置にある点(受熱点)の輻射強度は,輻射			
発散度に形態係数をかけた値となる。危険輻射強度となる形態			
$Emax = Rf \times \phi$			
第 3.1.3.1-2 表 形態係数の算出結果			
7 号炉原子炉冷却材再循環ボンプ可変周波数電源装置			
(A-1)入力変圧器 危険輻射強度[W/m²] 7.94×10 ³			
輻射発散度[W/m ²] 23×10 ³ 形態係数 0.3455400			
(8) 危険距離の算出 次の式から危険距離を算出する。			
$\phi = \frac{1}{2} \tan^{-1} \left(\frac{m}{2} \right) + \frac{m}{2} \left\{ \frac{(A-2n)}{2} \tan^{-1} \right\} \left\{ \frac{A(n-1)}{2} - \frac{1}{2} \tan^{-1} \right\} \left\{ \frac{(n-1)}{2} \right\}$			
$\int \pi n \left(\sqrt{n^2 - 1} \right) \pi \left(n \sqrt{AB} \left[\sqrt{B(n+1)} \right] n \left[\sqrt{(n+1)} \right] \right)$			
7272 U, $m = \frac{1}{R} \cong 3, n = \frac{1}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$			
 σ:形態係数,L:危険距離[m],H:火炎高さ[m],R:燃焼半 			
<u> </u>			
第 3 1 3 1-3 表 危険距離の筧出結果			
7号炉原子炉冷却材再循環ポンプ可変周波数電源装置			
(A-1)入力変圧器 形態係数 0.3455400			
燃焼半径[m] 2.75 たいFUT 第二日			
/ 过 9天 此 9座 上 四]			
また。歴歴教了時点までの亦耳思沮疾の推致な下回に一十			
<u>また、 然焼料 」 時点までの 愛圧 </u>			
250 Br-via Lie			
200			
Şi 150			
50 燃燒終了時間			
0 1 2 3 4 5 時期[hour]			
<u>第 3.1.3.1-2 図 変圧器絶縁油温度の推移</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(9) 火災による熱影響の有無の評価			
以上の結果から, 6 号炉原子炉冷却材再循環ポンプ可変周			
波数電源装置(B-2)入力変圧器において火災が発生した場合			
<u>を想定したとしても,離隔距離(4.1m)が危険距離(約 4.0m)</u>			
<u>3.1.3.2変</u> 圧器の火災による発電用原子炉施設(屋上)への影響			
(1) 変圧器の基礎への熱影響 火災が発生した時間から絶縁油			
が燃え尽きるまでの間, 一定の火炎の熱で変圧器の基礎が昇			
温されるものとして、基礎への熱影響について評価する。以			
 下に概念図を示す。			
変圧器 量外			
変圧器基礎面			
変圧 超基礎 長上 店仕上げ			
屋上床躯体内の熱伝導			
屋上床躯体(下面)			
<u>第 3.1.3.2-1 図 変圧器基礎への熱影響</u>			
評価に必要なパラメータを示す。			
<u>第 3.1.3.2-1 表 変圧器火災影響評価に必要なパラメータ</u>			
項目 パラメータ 備考			
外気温度[℃]50日射の影響を考慮し設定			
基礎面熱伝達率[W/m ² K] 34.883 コンクリートの基礎面熱伝達率			
産上休躯体(ト面) コンクリートの産上休躯体(ト) 執伝達率「W/m²K] 3.4883			
基礎・躯体の熱伝導率			
[W/mK] 1.6279 コンクリートの熱伝導率			
基礎・躯体の熱拡散率 $[m^2/s]$ 8.42×10 ⁻⁷ コンクリートの熱拡散率 其体 躯体 5-5-2 1.10 其体 (0.50-2) 躯体 (0.50-2)			
<u>以下の式に示す一次元非定常熱伝導方程式を用いて, 基礎面</u>			
から屋上床躯体(下面)までの温度を求める。			
$dT = d^2T$			
$\frac{dt}{dt} = \alpha \frac{dt^2}{dr^2}$			
un un			
<u>T:温度, t :時刻, x :基礎面からの距離, α:熱拡散率 以</u>			
下に評価結果を示す。			

柏崎刈羽原子力発電所 6 / 7 号炉 (2017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
450			
<u>第 3.1.3.2-2 図 基礎面・屋上床躯体(下面)の温度</u>			
Image: Subscript of the system 140 燃焼開始から30時間後 燃焼開始から64.85時間後 敷(体 (0.50m)) 0 0			
<u>第 3.1.3.2-3 図 基礎・躯体内部の温度変化</u> 第 3.1.3.2-2 表 変圧器基礎面の温度評価結果			
6号炉(変圧器基礎面) 項目 6号炉原子炉冷却材再循環ポンプ可変 周波数電源装置(B-2)入力変圧器 火炎温度[℃] 360 ^{※1} 燃焼継続時間[hour] 4.36 基礎面温度[℃] 360 ^{∞2} (51) ^{∞3} 屋上床躯体(下面)温度[℃] 29 ^{∞2} (33) ^{※3} 基礎・躯体境界温度[℃] 38 ^{∞2} (45) ^{*3}			
 許容温度[℃] 200^{3:4} ※1:絶縁油の沸点(出典:機械工学便覧) ※2:燃焼終了直後の温度 ※3:屋上床躯体(下面)が最高温度に到達した時の温度(燃焼開始から約 64.8 時間後) ※4:コンクリートの許容限界温度 			
<u>絶縁油の液面火災において,絶縁油(炎の直下の部分)の</u> 温度は沸点近傍で安定すると考えられることから,本評価で は加熱温度として絶縁油の沸点を用いる。大規模石油タンク の燃焼に関する研究報告書(平成 11 年,自治省消防庁消防			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
研究所)には,直径 10m のタンクの原油を燃焼させる実験を			
行った際の原油の温度が掲載されている(第 3.1.3.2-4 図)。			
これによると, 最高温度は 350℃程度である。			
$\Lambda - Fuel(1st)$			
€ 300 - (2nd) Fuel (2nd) -			
0 500 1000 1500 Time (s)			
弗 3.1.3.2-4 図 原油の温度変化(直径 10m のタンク)			
評価の結果, 基礎の表面(変圧器の設置面)より約 0.12m			
までコンクリートの許容限界温度を超えているが、屋上床躯			
体(下面)については許容限界温度を超えないことを確認し			
<u>12.</u>			
(2) コントロール建屋の屋上への熱影響			
火災が発生した時間から絶縁油が燃え尽きるまでの間、一			
定の輻射強度でコントロール建屋の屋上面が昇温されるも			
のとして、屋上への熱影響について評価する。			
変圧器 屋外			
辐射热 E 中市 化 中市 化			
変圧器基礎 響射熱の反射			
屋上床躯体_屋上床仕上げ			
屋上床躯体(下面)			
第 3.1.3.2-5 図 建屋屋上への熱影響			
<u>評価に必要なパラメータを示す。</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3.1.3.2-3 表 変圧器火災影響評価に必要なパラメータ			
項目 パラメータ 備考			
外気温度[℃] 50 日射の影響を考慮し設定 屋上面執伝達率[W/m²K] 34.883 コンクリートの屋上面執伝達率			
星上 品 派 は 建 + (ハ l m l) の 1 0 0 1 0 0 1 0 0 1 0 0 2 1 0 0 0 2 1 0 0 0 0			
率[W/m²K] 面)熱伝達率 躯体の熱伝導率[W/mK] 1.6279			
躯体の熱拡散率[m ² /s] 8.42×10 ⁻⁷ コンクリートの熱拡散率			
以下の式に示す一次元非定常熱伝導方程式を用いて、屋上			
床住上けから屋上床躯体(下面)までの温度を求める。			
$\frac{dT}{dT} - \alpha \frac{d^2T}{dT}$			
$\frac{dt}{dt} = \frac{d^2}{dx^2}$			
T:温度.t.:時刻.x :基礎面からの距離.α:熱拡散率			
なお, 第 3.1.3.2-6 図のように, 受熱面が火炎底面と異			
なる高さにあることから、「石油コンビナートの防災アセス			
メント指針」より,下記の考え方に基づき形態係数を算出し			
輻射強度を求める。			
1 $\binom{m}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$ $\binom{d}{m}$			
$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left \sqrt{\frac{A(n - 1)}{B(n + 1)}} \right - \frac{1}{n} \tan^{-1} \left \sqrt{\frac{(n - 1)}{(n + 1)}} \right \right\}$			
ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$			
<u>φ</u> : 形態係数, L : 危険距離[m], H : 火炎高さ[m], R : 燃焼			
<u>半径[m]</u>			
火 炎			
(変圧器)。 01			
火炎底面 (亦压器			
基礎), 02			
└─────┴───└───┘───┘────────────────────			
第 3.1.3.2-6 図 受勢面の高さによろ形能係数			
以下に評価結果を示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
140 一屋上床住上げ面温度(燃焼中) 120 躯体(下面)温度(燃焼中) 100 屋上仕上げ面温度(鎮大後) 三上床躯体(下面)温度(鎮大後) 屋上床躯体(下面)温度(鎮大後) 20 屋上床躯体(下面)が最高温 0 3 6 9 12 15 18 21 24 時間[hour] 日 日 日 日 10			
<u>第 3.1.3.2-7 図 基礎面・屋上床躯体(下面)の温度</u>			
第3.1.3.2-4 表 屋上床仕上げ面の温度評価結果 6号炉(屋上床仕上げ面) 項目 6号炉原子炉冷却材再循環ポンプ可変周 波数電源装置(B-2)入力変圧器 輻射強度[W/m²] 3.91×10³ 燃焼継続時間[hour] 4.36 屋上床仕上げ面温度[℃] 118 ^{*1} (51) ^{**2} 屋上床躯体(下面)温度[℃] 35 ^{*1} (40) ^{**2} 許容温度[℃] 200 ^{*3} **1: 燃焼終了直後の温度 **2: 屋上床躯体(下面)が最高温度に到達した時の温度(燃焼開始から約 15.6			
時間後) ※3:コンクリートの許容限界温度			
評価の結果,屋上床躯体(下面)の温度は燃焼開始から約 15.6 時間後に最高温度に到達しているが,コンクリートの許			
容限界温度を超えないことを確認した。ただし、屋上床躯体			
(下面)の温度上昇が確認されたことから,変圧器の下部に			
位置する中央制御室換気空調機室について、内気の温度評価			
<u>を実施する。なお、変圧器基礎面からの入熱による内気の温</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
度上昇については、その面積が小さく内気への影響は限定的			
であることから、屋上床仕上げからの入熱による内気の温度			
評価に包絡される。			
(3) 屋上設置機器への影響			
コントロール建屋屋上階に設置する無線連絡設備及び衛			
<u>星電話設備のアンテナについては、原子炉冷却材再循環ポン</u>			
プ可変周波数電源装置入力変圧器に対して3.のとおり火災			
に対する各種対策が取られていることから熱影響を受ける			
おそれはない。また、万が一変圧器火災が発生し熱影響を受			
けた場合であっても,送受話器,電力保安通信用電話設備の			
有線系回線が使用可能であることから, 必要な通信連絡の機			
能は維持される。			
3.1.3.3 変圧器の下部に位置している中央制御室換気空調機室			
<u>への影響</u>			
屋上床仕上げ面からの入熱による影響 変圧器の下部に位			
<u>置している中央制御室換気空調機室内の機器等への影響に</u>			
ついて評価する。			
<u>第 3.1.3.3-1 図に概念図を示す。</u>			
<u>外壁及び内壁面温度上昇に伴う熱負荷(Q_{v,in})は次式で計</u>			
<u>算される。</u>			
$Q_{v,in} = h_{in} \mathcal{A} (T_{in} - T_{room})$			
$\underline{\mathbf{n}_{in}}$:內壁面熱伝達率,A:內壁の衣面積, $\underline{\mathbf{l}_{in}}$:內壁面溫度,			
I <u>room</u> :内 凤 温度			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
建屋外 英正器基礎 人交からの輻射 E 女欠からの輻射 E 外気との熱伝達 Qat 上床躯体 熱伝導 Qat 小気温度 Trow 内気との熱伝達 Qat 換気空調系給気温度 Ta 換気空調系給気温度 Ta 第 3.1.3.3-1 図 伝熱の概念図 以下に評価結果を示す。			
第 3.1.3.3-1 表 建屋内気温度の評価結果 6号炉中央制御室換気空調機室評価(建屋内気温度) 項目 6号炉原子炉冷却材再循環ポンプ可変周波数 電源装置(B-2)入力変圧器(屋上面) 内気温度[℃] 38*1 許容温度[℃] 40*2 ※1: 燃焼終了後も含めた最高温度 ※2: 中央制御室換気空調機室の最高使用温度 評価の結果, 燃焼終了後の温度上昇を踏まえたとしても,			
 内気温度は最高で約 38℃となり,室内設備の最高使用温度 40℃を下回ることを確認した。 3.1.4 まとめ 			
以上の結果から、コントロール建屋の屋上に設置している 変圧器の火災を想定した場合、変圧器の基礎面は許容限界温 度を超えるものの、屋上床躯体については許容限界温度を下 回ることから、建屋の強度に対する熱影響はないと評価す る。			
<u>また,変圧器の下部に位置している中央制御室換気空調機</u> 室の内気温度は最高でも約 38℃であり,室内にある設備の 最高使用温度を下回ることから,熱影響はないと評価する。			