柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.2 水素トレーラの火災影響評価について		3.2 2号水素ガストレーラの火災影響評価について	
1. 号炉へ水素を供給する水素トレーラの火災に対して、より一		<u>2号炉</u> へ水素を供給する水素ガストレーラの火災に対して,	
層の安全性向上の観点から,その火災が起こったとしても発電用		より一層の安全性向上の観点から、その火災が起こったとして	
原子炉施設に影響を及ぼさないことを評価するものである(1.号		も発電用原子炉施設に影響を及ぼさないことを評価するもので	
炉の運転中以外であれば、水素トレーラが発電所敷地内に配備さ		ある(2号炉の運転中以外であれば、水素ガストレーラが発電	
れることはない)。		所敷地内に配備されることはない)。	
		なお,水素ガストレーラの火災では,水素ガストレーラ保管	
なお、水素トレーラの火災では、展望台等により、6 号及び 7		<u>庫の壁等</u> により、 <u>2号炉</u> の発電用原子炉施設は輻射熱を受けな	
<u> </u>		いことから爆発による影響評価のみとする。	
る影響評価のみとする <u>(第 3.2-1 図)</u>			
i i i i i i i i i i		第3.2-1 図 水素ガストレーラと発電用原子炉施設の配置図	
(1) 想定の条件		(1) 想定の条件	
 ・水素トレーラ建屋内にて、水素トレーラが停車中に火災・ 		 ・水素ガストレーラ設置場所にて水素ガストレーラが停車 	
爆発を起こした場合を想定する。		中に爆発を起こした場合を想定する。	
・水素トレーラは水素ガスを満載した状態(最大積載量		 ・水素ガストレーラは水素ガスを満載した状態(最大積載) 	
<u>13,987m³</u>)を想定する。		量 <u>12,086m³</u>)を想定する。	
・燃料は水素とする。		・燃料は水素とする。	
 ・水素トレーラ建屋内での水素ガス漏えい、引火による水素 		 ・水素ガストレーラ設置場所での水素ガス漏えい、引火に 	
トレーラの爆発を想定する。		よる水素ガストレーラの爆発を想定する。	
・気象条件は無風状態とする。		・気象条件は無風状態とする。	
(2)評価手法の概要 本評価は、 <u>柏崎刈羽</u> 原子力発電所に対する <u>水素トレーラ</u> の ガス爆発による影響の有無の評価を目的としている。具体的		(2) 評価手法の概要 本評価は, <u>島根</u> 原子力発電所に対する <u>水素ガストレーラ</u> の ガス爆発による影響の有無の評価を目的としている。具体的	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
な評価指標とその内容を以下に示す。	な評価指標とその内容を以下に示す。	
第 3.2-1 表 評価指標及びその内容 評価指標 内容 危険限界距離[m] ガス爆発の爆風圧が 10kPa 以下になる距離	第3.2-1表 評価指標及びその内容 評価指標 内容 危険限界距離[m] ガス爆発の爆風圧が10kPa以下になる距離	
(3) 評価対象範囲 評価対象範囲は発電所構内で出火する <u>水素トレーラ</u> とする。	(3) 評価対象範囲 評価対象範囲は発電所構内で出火する <u>水素ガストレーラ</u> と する。	
(4) 必要データ評価に必要なデータを以下に示す。	(4) 必要データ 評価に必要なデータを以下に示す。	
第 3.2-2 表 水素爆発の評価条件 データ種類 内容 水素のK値 コンビナート等保安規則第5条別表第二に掲げる数値 K=2860000 コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 貯蔵設備又は処 コンビナート等保安規則第5条貯蔵設備にあっては貯蔵能力(単位:トン)の数値の平方根の数値(貯蔵能力が一トン未満のものにあっては, 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては, 貯蔵能力(単位:トン)の数値), 圧縮ガスの貯蔵設備にあっては, 貯蔵能力(単位:シン)の数値), 圧縮ガスの常用の温度及び圧力におけるガスの質量(単位:トン)に換算して得られた数値の平方根の数値(換算して得られた数値が一未満のものにあっては, 当該換算して得られた数値が一未満のものにあっては, 当該換算して得られた数値 興設備: 処理設備内にあるガスの質量(単位:トン)の数値 W=1.25 ^{1/2} =1.12 水素トレーラから発電用原子炉施設までの距離	第3. 2-2表 小素爆発の評価条件 データ種類 内容 ボ素のK値 コンビナート等保安規則第5条別表第二に掲げる値 水素のK値 コンビナート等保安規則第5条貯蔵設備又は処理設備の区分に応じて次に掲げる数値 野蕨設備マは処理 ご次ビオート等保安規則第5条貯蔵設備スは処理設備の区分に応じて次に掲げる数値 防蔵設備又は処理 コンビナート等保安規則第5条貯蔵設備では少すメートル) 空当該ガスの貯蔵設備にあっては貯蔵能力がートン未満のものにあっては貯蔵能力(単位 トン)の数値の平方根の数値(防御能力がートン未満のものにあっては貯蔵能力がートン未満のものにあっては、貯蔵して得られた数値の平方根の数値(換算して得られた数値) 空当該ガスの常用の温度及び圧力におけるガスの質量(単位 位 トン)に換算して得られた数値) 処理設備にあるガスの質量(単位 位 トン)の数値 W=1.042 水素ガストレーラから発電用原子炉施設までの距離	
「「「」」「「」」」「」「」」「」「」」「」」「」」「」」「」」「」」「」」「	離隔距離[m] 約90[m]	
 (5) W 値の鼻出 水素トレーラの最大積載量を貯蔵能力とし,W 値を算出す る。 積載量(貯蔵能力) =13987[m³]=1.25[t] W=1.251/2=1.12 	 (5) W値の算出 水素ガストレーラの最大積載量を貯蔵能力とし、W値を算出 する。 積載量(貯蔵能力) =1.085t W=1.042 	
(6) 危険限界距離の算出 次の式から危険限界距離を算出する。ここで算出した危険 限界距離が水素トレーラと発電用原子炉施設の間に必要な 離隔距離となる。	 (6) 危険限界距離の算出 次の式から危険限界距離を算出する。ここで算出した危険 限界距離が水素ガストレーラと発電用原子炉施設の間に必要な離隔距離となる。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$		$X = 0.04\lambda \cdot \sqrt[3]{K \times W}$	
X:危険限界距離[m], λ:换算距離 14.4[m·kg ^{-1/3}],		X:危険限界距離[m], λ:換算距離 14.4[m·kg ^{-1/3}],	
K:水素の定数,W:設備定数		K:水素の定数,W:設備定数	
K=2860000, W <u>=1.12</u> として, 危険限界距離を求める。		K=2860000, W= <u>1.042</u> として, 危険限界距離を求める。	
X=約_85[m]		X=約 <u>83[m]</u>	
(7) 爆発による影響評価結果		(7) 爆発による影響評価結果	
以上の結果から,水素トレーラにおいて爆発が発生した場		以上の結果から,水素ガストレーラにおいて爆発が発生し	
合を想定したとしても,離隔距離(約 <u>1645m</u>)が危険限界距離		た場合を想定したとしても,離隔距離(約 90m)が危険限界	
(約 85m)以上であることから,外部事象防護対象施設を内包		距離(約 83m)以上であることから,外部事象防護対象施設	
する発電用原子炉施設に爆風圧による影響はないと判断す		を内包する発電用原子炉施設に爆風圧による影響はないと判	
る。		断する。	
4. 構内危険物タンク等における延焼の危険性について		4. 構内危険物タンク等における延焼の危険性について	
4.1 軽油タンクの火災		4.1 ガスタービン発電機用軽油タンク,重油タンクの火災	
軽油タンク近傍で危険物を保管している設備はなく,現場作		ガスタービン発電機用軽油タンク, <u>重油タンク</u> 近傍で危険物	
業に伴い「屋外の危険物保管」や「火気の使用」をする場合は,		を保管している設備はなく、現場作業に伴い「屋外の危険物保	
社内文書に基づき危険物や火気を管理した状態で取り扱って		管」や「火気の使用」をする場合は、社内文書に基づき危険物	
いる。また、防火の観点から定期的なパトロール等にて現場の		や火気を管理した状態で取り扱っている。また、防火の観点か	
状況を確認している。		ら定期的なパトロール等にて現場の状況を確認している。	
以上により,軽油タンクの火災を想定したとしても周囲の可		以上により、ガスタービン発電機用軽油タンク、 <u>重油タンク</u>	
燃物への引火の可能性は低いと評価する。		の火災を想定したとしても周囲の可燃物への引火の可能性は	
		低いと評価する。	
4.2 車両(可搬型重大事故等対処設備)等の火災		4.2 車両(可搬型重大事故等対処設備)等の火災	
4.2.1 車両(可搬型重大事故等対処設備)等の延焼		4.2.1 車両(可搬型重大事故等対処設備)等の延焼	
可搬型重大事故等対処設備保管場所等(以下「保管所等」		可搬型重大事故等対処設備保管場所等(以下「保管場所等」	
という。)において、車両(可搬型重大事故等対処設備)の		という。)において、車両(可搬型重大事故等対処設備)の火	
火災が起こったとしても周囲の車両に影響を及ぼさないこ		災が起こったとしても周囲の車両に影響を及ぼさないことを	
とを評価するものである。		評価するものである。	
なお,保管所等の一部は防火帯に近接しているが,当該箇		なお,保管場所及びアクセスルートの一部は防火帯に近接し	
所における森林火災時の放射熱強度は火線強度が最大とな		ているが, <u>事故対応時の影響緩和のため,防火帯(約21m)に</u>	・条件の相違
った <u>ケース2</u> において最大でも <u>1.7kW/m²*程度であり</u> ,車両		加え空地を設けることにより、当該箇所における森林火災時の	【柏崎 6/7】
が延焼するような輻射強度ではないことを確認して いる。		放射熱強度は火線強度が最大となった <u>ケース1</u> において最大	島根2号炉は,保管場
		でも <u>1.6kW/m²以下となり</u> ,車両が延焼するような輻射強度では	所及びアクセスルート

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		ないことを確認している。	への影響がないように,
なお,保管所近傍における森林火災の燃焼継続時間(約 14			空地を設けている
時間)のうち、保管所において、人が長時間さらされても苦			
<u>痛を感じない放射熱(輻射)強度である 1.6kW/m² を超えて</u>			
いる時間は数十秒程度である。			
※:石油コンビナート等防災アセスメント指針では、人が		※:石油コンビナート等防災アセスメント指針では、人が長	
長時間さらされても苦痛を感じない放射熱強度を		時間さらされても苦痛を感じない放射熱強度を1.6kW/	
1.6 kW/m ² としている。		m ² としている。	
(1) 車両(可搬型重大事故等対処設備)等の火災の想定の条件		(1) 車両(可搬型重大事故等対処設備)等の火災の想定の条件	
 ・周囲への熱影響を考慮し、燃料積載量の大きい第一ガスタ 		・周囲への熱影響を考慮し、燃料積載量の大きい大型送水	
ービン発電機車(GTG用燃料タンク)の火災を想定する。		ポンプ車(エンジン用燃料タンク)の火災を想定する。	
・燃焼する <u>第一ガスタービン発電機車(GTG 用燃料タンク)</u>		・燃焼する <u>大型送水ポンプ車(エンジン用燃料タンク)</u> か	
からの輻射熱を受けやすくするため, 第一ガスタービン発		らの輻射熱を受けやすくするため, <u>タンクローリ</u> の走行	
<u>電機車</u> の走行用燃料タンクが向かい合う状態を想定する。		用燃料タンクが向かい合う状態を想定する。	
第一ガスタービン発電機車の走行用燃料タンクの受熱面		 ・タンクローリの走行用燃料タンクの受熱面は、裏面を除 	
は裏面を除く全ての面とし, 表面以外の面は発熱源に最も		くすべての面とし、表面以外の面は発熱源に最も近い表	
近い表面と同等の輻射熱を受けるものとする。		面と同等の輻射熱を受けるものとする。	
・発熱側となる第一ガスタービン発電機車は燃料を満載し,		・発熱側となる大型送水ポンプ車(エンジン用燃料タンク)	
受熱側となる第一ガスタービン発電機車は燃料量を 1/2		は燃料を満載し、受熱側となるタンクローリ(車両用燃	
とする(受熱側の熱容量を小さくすることにより、燃料の		<u>料タンク)</u> は燃料量を 1/2 とする(受熱側の熱容量を小	
温度が上昇しやすい状態とする)。		さくすることにより、燃料の温度が上昇しやすい状態と	
・車両に積載している燃料は軽油とする。		する。)	
・タンクローリと異なり大容量の燃料タンクではないこと		・車両に積載している燃料は軽油とする。	
から, <u>第一ガスタービン発電機車の GTG 用燃料タンク</u> の		・タンクローリと異なり大容量の燃料タンクではないこと	
全面火災を想定する。		から,大型送水ポンプ車のエンジン用燃料タンクの全面	
・ <u>第一ガスタービン発電機車</u> は,2 基(同容量)の <u>GTG</u> 用		火災を想定する。	
<u>燃料タンク</u> が近接した状態で配置されていることから, タ		・大型送水ポンプ車は、2 基(同容量)のエンジン用燃料	
ンクの同時火災を想定する。		<u>タンク</u> が近接した状態で配置されていることから、タン	
・気象条件は無風状態とする。		クの同時火災を想定する。	
・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の3		・気象条件は無風状態とする。	
倍とする。		 ・火災は円筒火炎をモデルとし、火炎の高さは燃焼半径の 	
		3倍とする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(2)評価対象範囲		(2) 評価対象範囲	
評価対象範囲は, 輻射熱の影響を考慮し燃料タンクが露出		評価対象範囲は、可搬型重大事故等対処設備の車両とする	2
している車両(第一ガスタービン発電機車,電源車)とする。		発熱側は燃料積載量の最も大きい大型送水ポンプ車(エンシ	
発熱側は燃料積載量の最も大きい <u>第一ガスタービン発電機</u>		ン用燃料タンク), 受熱側は熱容量の最も小さいタンクロー!	~
<u>車(GTG 用燃料タンク)</u> ,受熱側は熱容量の最も小さい <u>第一</u>		(車両用燃料タンク)とすることにより、他の車両は本評価	i
<u>ガスタービン発電機車(走行用燃料タンク)</u> とすることによ		に包絡される。	
り,他の車両は本評価に包絡される。 <u>なお,消防車等は,燃</u>			・条件の相違
料タンクが露出しておらず, 輻射熱の影響を受けないことか			【柏崎 6/7】
ら評価対象外とする。			島根2号炉は,消防車
			等も評価対象としてい
(3) 必要データ		(3) 必要データ	る
評価に必要なデータを以下に示す。		評価に必要なデータを以下に示す。	
<u>第 4.2.1-1 表 ガスタービン発電機車火災影響評価に必要な</u>		第4.2.1-1表 大型送水ポンプ車及びタンクローリ火災影響評価	
データ		に必要なデータ	
データの種類 内容		データの種類 内容	
輻射発散度[W/m ²] ¹⁾ 燃焼する可燃物によって決まる定数 (1) (1)		輻射発散度[W/m ²] ¹⁾ 燃焼する可燃物によって決まる定数	
42×10 [°] [W/m [°]] (蛭油) 燃料タンクの投影面積[m ²] 第一ガスタービン発電機車(GTG 用燃料タンク 2 基)		42×10 [W/m] (蛭曲) - 42×10 [W/m] (巨曲) - 42×10 [W/m] (12×10×10 [W/m] (12×10×10 [W/m] (12×10×10×10) (12×10×10×10) (12×10×10×10) (12×10×10) (12×10×10×10) (12×10×10) (12×10×10) (12×10×10×10) (12×10×10×10) (12×10×10×10) (12×10×10×10×10) (12×10×10×10×10) (12×10×10×10×10×10) (12×10×10×10×10×10×10×10×10) (12×10×10×10×10×10×10×10×10×10×10×10×10) (12×10×10×10×10×10×10×10×10×10×10×10×10×10×	
分)			
0.84×0.6×2=1.0[m] 離隔距離[m] 第一ガスタービン発電機車間の最短距離 5[m]		離隔距離[m] (大空医ホホンク単(エンジン用燃料タンク)をタン クローリ(車両用燃料タンク)の最短距離 3[m]	
1) 評価ガイド付属書 B より		1)評価ガイド附属書Bより	
(4) 燃焼半径の算出		(4) 燃焼半径の算出	
第一ガスタービン発電機車の火災においては様々な燃焼		大型送水ポンプ車の火災においては様々な燃焼範囲の形態	
範囲の形態が想定されるが、円筒火炎を生ずるものとする。		が想定されるが、円筒火炎を生ずるものとする。ここでの炸	Ę
ここでの燃焼面積は, <u>GTG 用燃料タンク</u> (2基)の投影面積		焼面積は、エンジン用燃料タンク(2基)の投影面積に等し	/
に等しいものとする。したがって,燃焼半径 R[m]は_GTG_用		いものとする。したがって, 燃焼半径 R[m]はエンジン用燃料	Ł
燃料タンクの投影面積を円筒の底面と仮定し算出する。		タンク(2基)の投影面積を円筒の底面と仮定し算出する。	
$R = (S \neq \pi)^{-0.5}$		$R=(S/\pi)^{-0.5}$	
S: <u>発電用燃料タンク</u> の投影面積(火炎円筒の底面積)		S:エンジン用燃料タンクの投影面積(火炎円筒の底面積)	
=1.0 [m ²]		$=1.6 [m^2]$	
$R = (1.0 / \pi)^{0.5} = 0.56 [m]$		$R = (1.6/\pi)^{0.5} = 0.71[m]$	
(「) 厳広堂住田の営山		(5) 一條基準結果の答山	
(3) 淤疣胚疣时间の异口		(1)	i n
※焼桃杭时间は、 燃料車を燃焼面積と燃焼速度で割った値 によって			1
になる。		になる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho}$	$t = \frac{V}{\pi R^2 \times v}, v = \frac{M}{\rho} \exists b, t = \frac{V \times \rho}{\pi R^2 \times M}$	
t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m],	t:燃焼継続時間[s], V:燃料量[m³], R:燃焼半径[m],	
v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s],	v:燃焼速度[m/s], M:質量低下速度[kg/m ² ・s],	
ρ:密度[kg/m ³], <u>m:質量[kg]</u>	ρ:密度[kg/m ³]	
ここで, V=0.4[m ³], M=0.044[kg/m ² ・s] , $\rho = 918[kg/m^3]$	ここで, <u>V=0.99[m³]</u> , $\rho = 918[kg/m^3]$, <u>M=0.044[kg/m²</u> .	
として, 燃焼継続時間を求めると,	<u>s</u>]として燃焼時間を求めると,	
$v = 0.044/918 = 4.793 \times 10^{-5} [m/s]$	$v = 0.044 / 918 = 4.79 \times 10^{-5} [m/s]$	
$t = 0.4 / (1.0 \times 4.793 \times 10^{-5}) = 8279[s] = 2.29[h]$	$t = 0.99 / (1.6 \times 4.79 \times 10^{-5}) = 3.60 [h]$	
(6)	(6) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
第一ガスタービン発雷機車(GTG 用燃料タンク)の火災が	大型送水ポンプ車(エンジン用燃料タンク)の火災が発生	
発生した時間から燃料が燃え尽きるまでの間,一定の輻射強	した時間から燃料が燃え尽きるまでの間、一定の輻射強度で	
度で第一ガスタービン発電機車(走行用燃料タンク)が昇温	タンクローリ(車両用燃料タンク)が昇温されるものとして、	
されるものとして、下記の式より燃料である軽油の温度Tが	下記の式より, 燃料である軽油の温度 T が 225℃となる危険	
225℃となる危険輻射強度を求める。	輻射強度を求める。	
$T = T + \varepsilon ESt$	The here $\left(1-e^{\left(-\frac{hS_2}{C}\right)t}\right)$ here $\left(-\frac{hS_2}{C}\right)t$	
$T = T_0 + \frac{1}{C + hSt}$	$E_{max} = \frac{1.652 \cdot 1.52 \cdot 1.61 \cdot (1 - 2 \cdot 1 - 1) - 1.52 \cdot 1.62 \cdot (1 - 2 \cdot 1 - 1)}{((1 - 2 \cdot 1 - 1) - 1.52 \cdot 1.62 \cdot 1 - 1)}$	
	$\varepsilon S_1 \left(1 - e^{(-C_1)^2} \right)$	
T₀:初期温度[38℃],E:輻射強度[W/m²],ε:走行用燃料タ	T ₀ :初期温度[50℃],T:許容限界温度[℃],T _{air} :外気	
ンク表面の放射率(0.96) ^{※1} , h: <u>走行用燃料タンク</u> 表面熱	温度[℃],E:輻射強度[W/m ²], ε: <u>車両用燃料タンク</u> 表	
伝達率[<u>17</u> ₩/m²K] ^{※2} , S: <u>走行用燃料タンク</u> 受熱面積[m²],	面の放射率[0.96] ^{*1} , h: 車両用燃料タンク表面熱伝達率	
C:走行用燃料タンク及び軽油の熱容量[<u>8.92×10⁴</u> J/K],	[17W/m ² K] ^{**2} , S ₁ : <u>車両用燃料タンク</u> 受熱面積[m ²], S ₂ : <u>車</u>	
t: 燃焼継続時間[s]	<u>両用燃料タンク</u> 放熱面積[m ²], C: <u>車両用燃料タンク</u> 及び	
※1:伝熱工学資料, ※2:空気調和·衛生工学便覧	軽油の熱容量[8.39×10 ⁴ J/K], t: 燃焼継続時間[s]	
	※1:伝熱工学資料, ※2:空気調和·衛生工学便覧	
$E=4948[W/m^2]$	$E=6,288 [W/m^2]$	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
(7)形態係数の算出	(7) 形態係数の算出	
火炎から任意の位置にある点(受熱点)の輻射強度は、輻	火炎からの任意の位置にある点(受熱点)の輻射強度は,	
射発散度に形態係数をかけた値となる。危険輻射強度となる	輻射発散度に形態係数をかけた値となる。危険輻射強度とな	
形態係数を算出する。	る形態係数を算出する。	
$Emax = Rf \times \phi$	${ m Emax} = { m Rf} imes \phi$	
Emax: 危険輻射強度, Rf: 輻射発散度, φ: 形態係数 第 4.2.1-2 表 形態係数の算出結果 <u>第一ガスタービン発電機車(走行用燃料タンク)</u> 6 暗輻射強度[W/m ²]	Emax: 危険輻射強度, Rf:輻射発散度, φ:形態係数 第4.2.1-2表 形態係数の算出結果 タンクローリ(車両用燃料タンク)	
福射発散度[W/m²] 福泉北市 42×10 ³	危険輻射強度[W/m ²] 6.29×10 ³	
形態係数 0.1178306	輻射発散度[W/m^2] 42×10 ³ 平能係物[-] 1.45×10 ⁻¹	
(8) 危険距離の算出 次の式から危険距離を算出する。 $\phi = \frac{1}{m} \tan^{-1} \left(\frac{m}{\sqrt{2}} \right) + \frac{m}{m} \left\{ \frac{(A-2n)}{\sqrt{2}} \tan^{-1} \left[\sqrt{\frac{A(n-1)}{R(n-1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{R(n-1)}} \right] \right\}$	(8) 危険距離の算出 次の式から危険距離を算出する。 $\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right) + \frac{m}{\pi} \left\{ \frac{(A - 2n)}{n\sqrt{AB}} \tan^{-1} \left[\sqrt{\frac{A(n - 1)}{B(n + 1)}} \right] - \frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n - 1)}{(n + 1)}} \right] \right\}$	
$\pi m \left(\sqrt{n^2 - 1}\right) \pi \left(n\sqrt{AB} \left[\sqrt{B(n+1)}\right] n \left[\sqrt{(n+1)}\right]\right]$ ただし, $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$ ϕ :形態係数, L:危険距離[m], H:火炎高さ[m], R:燃焼半径[m]	ただし、 $m = \frac{H}{R} \cong 3, n = \frac{L}{R}, A = (1+n)^2 + m^2, B = (1-n)^2 + m^2$ ϕ :形態係数,L:離隔距離[m],H:火炎の高さ[m], R:燃焼半径[m]	
第 4.2.1-3 表 危険距離の算出結果	第4.2.1-3表 危険距離の算出結果	
第一ガスタービン発電機車(走行用燃料タンク)形態係数0.1178306燃焼半径[m]0.56危険距離[m]1.8	タンクローリ(車両用燃料タンク) 形態係数[-] 1.45×10 ⁻¹ 燃焼半径[m] 0.71 危険距離[m] 2.2	
(9) 火災による熱影響の有無の評価	(9) 火災による熱影響の有無の評価	
以上の結果から, 第一ガスタービン発電機車の GTG 用燃	以上の結果から,大型送水ポンプ車(エンジン用燃料タン	
料タンクにおいて火災が発生した場合を想定したとしても、	<u>ク)</u> において火災が発生した場合を想定したとしても,離隔	
離隔距離(<u>5m</u>)が危険距離 <u>(1.8m)</u> 以上であることから, 向かい	距離(<u>3m</u>)が危険距離(<u>2.2m</u>)以上であることから,周囲の車	
合う他の第一ガスタービン発電機車に影響をおよぼすこと	両(可搬型重大事故等対処設備)に影響を及ぼすことはない	
はないと評価できる。	と評価できる。	

柏崎刈羽原子	·力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
また,他の	車両についても離隔距離が 2m 以上あることか			
ら,周囲の車	両(可搬型重大事故等対処設備)に影響をおよ			
ぼすことはな	いと評価できる。			
4.2.2 第一ガス	タービン発雷機の火災			・設備の相違
(1) 火災延焼の	影響			【柏崎 6/7】
第一ガスタ	ーー ービン発雷機の発雷機車の GTG 用燃料タンク			評価対象物の抽出結
において火災	が発生した場合を想定したとしても、「4.2.1」			果の相違
と同様に危険	距離(1.8m)以上の離隔距離(5m)を確保する			
ことから、隣	接するガスタービン発電機への影響はない。			
(2) アクセスル	ケートへの影響			
第一ガスタ	ービン発電機車はアクセスルートに近接して			
いるが. 隣接	道路への離隔距離は 5m 以上確保する。第一ガ			
スタービン発	(TG) 用燃料タンクの火災を想定した			
場合、離隔距	離 5m での輻射強度は 1.1kW/m ^{2%} 程度であり.			
車両等の通行	に影響を及ぼすことはない。評価条件及び結果			
について、次	、 ※ 音 との(、) - こ (、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、			
笛 4 9 9-1 寻	あ アクセスルートへの水災影響評価結果			
<u></u>				
	第二次スタービン先电域半辺157 タビスルレード 0.56			
離隔距離[m]	5			
形態係数	0. 0247444			
輻射発散度[W/m ²]	42×10^{3}			
※·石油コンビナート				
感じない放射熱(輻射)強度を 1.6kW/m ² としている。			
(3) 7 号炉主変	圧器火災の影響			
<u>第</u> 一ガスタ	ービン発電機車から離隔距離約 72m の場所に			
7 号炉主変圧	器を設置 していることから,「3.1 変圧器の火			
災影響評価に	ついて」における 7 号炉主変圧器の評価と同			
様に, 第一ガ	スタービン発電機車近傍の輻射強度評価を実施			
したところ,	0.5kW/m ² [*] 程度であり,操作への影響はない。			
評価条件及	び結果について, 次表に示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 4.2.2-2 表 7 号炉主変圧器への火災影響評価結果			
第一ガスタービン発雷機車			
燃焼半径[m] 7.03			
離隔距離[m] 72			
形態係数 0.0185608			
輻射発散度[W/m ²] 23×10 ³ 転射論 節[W/m ²] 0.43×10 ³			
(443) (42×10) ※: 石油コンビナートの防災アセスメント指針では、人が長時間さらされても苦痛を			
感じない放射熱(輻射)強度を1.6 kW/m ² としている。			
5. 発電用原子炉施設の外壁に設置されている機器の火災影響評価		5. 発電用原子炉施設の外壁に設置されている機器の火災影響評価	
発電用原子炉施設の外壁に設置されている機器(防護扉等)に		発電用原子炉施設の外壁に設置されている機器(扉等)につ	
 ついては、外部火災の熱影響を受けやすいことから、これらの機		いては、外部火災の熱影響を受けやすいことから、これらの機	1
哭について 水災影響評価を宝篋する		思について 水災影響証価を実施する必要があるが 離厚距離	1
		輻射強度等の関係から航空機墜落に伴う火災影響評価結果に包	
		<u> </u>	
5.1 評価対象範囲			
評価対象は、発電用原子炉施設の外壁に設置されている機器			
のうち、外部火災の熱影響を受ける以下の機器とする。			
• 防護扉			
 ・ルーバ(換気空調系の給・排気口) 			
·			
なお、複数設置されているこれらの機器のうち、最も熱影響			
を受ける位置にあるもの(発熱源に近く、機器本体だけでなく			
建屋内部へ熱影響が及ぶ可能性のあるもの)を評価することに			
よって、その他の機器は本評価に包絡される。発熱源は、火災			
時の輻射強度が大きい軽油タンク、変圧器、航空機とするが、			
建屋内への熱影響が確認された場合は内気温度についても評			
価本			
			1
<u>5.2</u> り護那の火災影響評価について			1
5.2.1 防護扉の温度評価			1
(1). 評価対象			1
防護扉のうち、軽油タンクに最も近く、輻射強度が最も大			1
きくなる 6 号炉非常用ディーゼル発電機(C)室の防護扉を			1
評価対象とする。			1

柏崎刈羽原子力発電	所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>(2) 想定の条件</u>					
・軽油タンクの火災については,添付資料-6「2.構内危					
険物タンクの火	災影響評価 と同	様の想定とする。			
 防護扉け 保守 	的に一扉外面の最	も執影響を受けやすい			
全国な防護院の	構造材 (均質休)	レオス			
並属を妙曖匪の					
・火災が発生した	時間から、燃料か	燃え尽さるまでの間,			
一定の輻射強度	を受けるものとす	- Zom			
以下に,概念図を	示す。				
建屋外	防護扉(均	均質体) 建屋内			
外気との熱伝道	幸 Q _{v. out}				
周囲への輻射の		内気との熱伝達			
	熱伝導	1			
N		G導 Q _c in			
火炎からの車	福射 Er				
第 5 2	1-1 図 伝執の構	明会図			
21					
(3) 必要アータ					
評価に必要なデータ	を以下に示す。				
第 5.2.1-1 表 軽润	由タンク火災影響調	平価に必要なデータ			
佰日	パラメータ	備老			
扉材質		- -	-		
外気温度[℃]	50	太陽輻射を考慮			
内気温度[℃]	33.3	夏期換算值	-		
外面熱伝達率[W/(m ² ・K)]	第 5.2.1-2 図参照	日 然 列 加 然 伝 連 平 (Bayley の 式)			
内面執伝達索[W/(m ² ・K)]	第591-2 図参昭	自然対流熱伝達率	-		
	另 5. 2. 1 2 因 愛照	(Bayley の式)	-		
扉の熟伝導率[W/(m・K)] 扉の厚さ[m]			-		
外面放射率(吸収率)[-]	0.9		-		
内面放射率[-]	0	輻射放熱はゼロとする。			
扉の熱拡散率[m ² /s]					
シュアファン・ボルツマン定 数[$W/(m^2 \cdot K)$]	5.67 $\times 10^{-8}$	伝熱工学資料			
Process () (main and)					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
Bayley の式 Nu \equiv h·x/ λ = 0.10Ra ^{1/3} (2×10 ⁹ \leq Ra \equiv g· β (T – T _{out})·x ³ /v ² ·Pr \leq 10 ¹²) より,自然対流熱伝達率hは次式から求められる。 h = 0.10 λ (g· β (T – T _{out})·Pr/v ²) ^{1/3} λ :空気の境膜平均温度(扉面温度 T と周囲流体温度 T _{out} の平均値)での熱伝導率 [W/(m·K)],g:重力加速度[m/s ²], β :空気の境膜平均温度での熱膨張率[1/K],Pr:空気の境膜 平均温度でのプラントル数[-],v:空気の境膜平均温度で の動 粘性率[m ² /s]			
6.0 6.0 </td <td></td> <td></td> <td></td>			
 (4) 防護扉の内外面温度と膨張量の算出 以下の式に示す一次元非定常熱伝導方程式を用いて,防護 扉外面及び内面温度を求める。 <i>dT</i> <i>dt</i> <i>t</i> <i>c</i> <i>dT</i> <i>d</i> <i>t</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
220 200 180 180 160 140 120 0 100			
第 5.2.1-3 図 防護扉の外面及び内面温度			
 (5) 熱影響の有無の評価 評価の結果,軽油タンク火災による防護扉の最高温度は, 扉外面 165.5℃,扉内面161.9℃となった。なお,建屋内の 防火扉は,耐火試験を実施しており,IS0834 規格に従い, 最終的に 1000℃を超える加熱に対して,3 時間の耐火性能* があることを確認している。これに対し,防護扉は建屋内の 防火扉よりも頑健性があり,同等以上の耐火性能を有してい ることから熱影響はないと評価する。 ※:非加熱面での 10 秒を超えて継続する火炎の噴出,発炎 及び隙間を生じないこと。 			
<u>5.2.2 6 号炉非常用ディーゼル発電機(C)室の内気温度評価</u> < 待機時 >			
防護扉の内面温度上昇を確認したため,6 号炉非常用ディー ゼル発電機(C)室(以下「評価対象室」という。)の内気温度 を算出し,室内に設置している機器等への影響について評価す る。なお,非常用ディーゼル発電機は待機状態とする。			
 (1) 評価条件 ・火災が発生した時間から,燃料が燃え尽きるまでの間, 扉内面温度161.9℃一定としたときの放熱量を評価対象 室への入熱とする。 ・より現実的な評価として,評価対象室に隣接する壁,床, 天井への放熱を考慮する。 ・隣接室については,隣接する壁,床,天井への放熱を考 			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
慮しないものとする。			
・隣接室の内気温度評価は、評価対象室の放熱面積と隣接			
室の室内負荷が最も大きい、評価対象室上階の非常用デ			
ィーゼル発電機(C)制御盤室を対象とすることで,他の隣			
接室内機器等への評価は包絡される。			
以下に, 6 号炉非常用ディーゼル発電機 (C) 室と軽油タ			
ンクの位置関係、及び伝熱の概念図を示す。			
<u>第 5.2.2-1 図 6 号炉非常用ディーゼル発電機(C) 室と軽油</u>			
タンクの位置関係			
建屋外 建屋壁 建屋内D/G(C)制御盤室(隣接室)			
按风空涧水和风血度1。 放熱量Q ₁₀ 常用換気空調系			
▲ 日本 (味熟めり)より			
火炎からの輻射 内気温度 T _g 排気			
内気との熱伝達 Q ₀ 換気空調系による除熱 Qv 工 常用換気空調系			
▲ <u>負荷 Q</u> (除熱あり)より			
防護扉(均質体) D/G(C)室(評価対象室)			
第599-9回仁教の概合図(北党田ズノーゼル改重機・法機味)			
<u> </u>			
(2) 建屋内の温度証価			
レイン 法法には近知地の加加地 内気温度け 水災に上ろ防難雇内而退度上見に伴う執角帯			
<u>こまい22旅泉地区2月四美に王腕による広旅さう慮し、広告</u> で求める			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$T_R' = T_R + \frac{Q_1 + Q_D - Q_{\nu} - Q_{HR}}{C_a} \cdot t$			
T <u>』</u> :初期内気温度,Q ₁ :室内負荷,Q ₂ :防護扉内面温度上 昇に伴う熱負荷 (内気との熱伝達),Q ₂ :空調による除熱			
量,Q _Ⅲ :隣接室への放熱量,C _a :室内空気の熱容量,t:			
時刻隣接室の内気温度については、隣接室への放熱量と			
室内の熱負荷及び換気空調系による除熱を考慮し、次式			
より求める。			
$T_n = \frac{Q_2 + Q_{HR}}{m\rho C} + T_a$			
Q_2 :室内負荷, m:風量, ρ :空気密度, C:空気比熱,			
<u>T_: 换気空調系給気温度</u>			
以下に評価結果を示す。			
第 5.2.2-1 表 建屋内の温度評価結果(待機時)			
6号炉非常用ディーゼル 6号炉非常用ディーゼル ※季様(0)中 ※季様(0)中			
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
内気温度[℃] 37 33*1			
許容温度[℃] 45 ³² 40 ³³ ※1・評価対象家上り家内負荷が小さく 初期内気温度は 28 5[℃]			
※1: 宇岡内家主より至ら長向が小さく,初期ら気温度は20.5[0] ※2: 室内の電気設備(非常用ディーゼル発電機)の最高使用温度			
※3:室内の電気設備(制御盤)の最高使用温度			
評価の結果, 6 号炉非常用ディーゼル発電機(C) 室は			
33℃となり、それぞれ、許容温度を下回ることを確認した。			
(3) 火災による熱影響の有無の評価			
以上の結果から、軽油タンク火災よる防護扉の加熱を想定			
したとしても,建屋内の 6 号炉非常用ディーゼル発電機(C)			
<u>室,及びその隣接室の内気温度が,ともに許容温度を超えな</u>			
いことから、発電用原子炉施設の建屋内への熱影響はない。			
なお、防護扉のほかに外壁からの入熱もあるが、短期的には			
防護扉からの入熱が支配的であるため、この間の内気温度か			
ら室内への熱影響を評価できる(壁厚が厚い場合,外壁から			
の入熱は一時的に壁内に蓄えられ、一定時間経過後から長時			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
間に亘って建屋内に放熱されるが、単位時間当たりの放熱量			
<u>は小さく換気空調系での除熱が可能)。</u>			
5.2.3 6 号炉非常用ディーゼル発電機(C)室の内気温度評価<			
運転時>			
6 号炉非常用ディーゼル発電機 (C) へ燃料を供給している軽			
油タンクの火災を想定しているため,ここでは,建屋内に設置			
されているディタンクからの燃料供給により、非常用ディーゼ			
ル発電機を運転している状態とし、その時の内気温度を算出、			
室内に設置している機器等への影響について評価する。			
(1) 評価条件			
 ・火災が発生した時間から,燃料が燃え尽きるまでの間, 			
扉内面温度 161.9℃一定としたときの放熱量を評価対象			
室への入熱とする。			
・評価対象室から隣接室への熱影響を評価するため、評価			
対象室から壁、床、天井への放熱を考慮する。			
・隣接室については、隣接する壁、床、天井への放熱を考			
慮しないものとする。			
・隣接室の内気温度評価は、評価対象室の放熱面積と隣接			
室の室内負荷が最も大きい,評価対象室上階の非常用デ			
ィーゼル発電機(C)制御盤室を対象とすることで,他の隣			
接室内機器等への評価は包絡される。			
・非常用ディーゼル発電機は、110%出力一定で運転してい			
るものとする。			
・隣接室内の負荷(電気品等)は非常用ディーゼル発電機			
の運転時のものとする。			
・非常時を想定し、非常用送風機は運転状態とするが、常			
用換気空調系による給気の除熱には期待しないものとす			
る(常用換気空調系の電源は非常用電源にも接続されて			
おり,送風機は非常時も運転可能)。			
なお、伝熱の概念並びに建屋内の温度評価手法は、5.2.2.6			
<u> 与炉非常用ティーセル発電機(C)室の内気温度評価<待機時</u>			
<u>>と回様である。以下に、伝熱の概念凶を示す。</u>			

柏崎刈羽原于	子力発電所 6/7号	炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
建屋外 火炎からの輻射 していたの 防 に	建屋壁 建屋内 風 換気空調系給気 放熱量 Q _{HR} (角 内気との熱伝達 Q _b 換気空調系によこ (均質体) 第 5. 2. 3-1 図 伝素 非常用ディーゼル発電材	D/G(C)制御盤室(隣接室)			
以下に評価	両結果を示す。				
第 5.2.3-	1表 建屋内の温度	評価結果(運転時)			
6 3	5 号炉非常用ディーゼル 発電機(C)室 (評価対象室)	6 号炉非常用ディーゼル 発電機(C)制御盤室 (隣接室)			
内気温度[℃]	44.6	39. 7 ^{**1}			
許容温度[℃] ※1:常用換気空調系 伴い室内負荷も ※2:室内の電気設備 ※3:室内の電気設備	45 ^{**2} 系による給気の除熱がなく, 増加していることから,初期 着(非常用ディーゼル発電機) 着(制御盤)の最高使用温度	40 ^{**3} 非常用ディーゼル発電機の運転に 別内気温度は 38.1[℃]となる。) の最高使用温度			
(2) 火災による	る熱影響の有無の評価				
以上の結果		~ 災よる防護扉の加熱を想定			
したとしても	も,建屋内の 6 号炉非	常用ディーゼル発電機 (C)			
室,及びその	の隣接室の内気温度が,	ともに許容温度を超えな			
いことから,	発電用原子炉施設の	建屋内への熱影響はない。			
なお、内気液	温度については, (1)評	平価条件に加え、各部の温			
度に設計値で	を用いる等,保守的な	評価を行っていることか			
ら,実際の渦	<u> 温度上昇はさらに低く</u>	抑えられると評価する。			
また,建屋	<u> 屋内の給排気ダクトは,</u>	換気・冷却に有効な位置			
に設置し、シ	/ュートパスやホット>	スポットを生じないレイア			
ウトとしてい	いることから、室内の	温度分 布が不均一となる			
ことはない。	以下に、給排気ダク	トの配置例を示す。			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
・ 小 小 ● (平面) (平面) (新面) 第 5.2.3-2 図 給排気ダクトの配置例			
53 ルーバの火災影響評価について			
(1) 評価対象			
ルーバのうち、6 号炉主変圧器に最も近く,輻射強度が最 も大きくなる 6 号炉非常用ディーゼル発電機(B)の排気ル ーバを対象とする。			
<u>(2) 想定の条件</u>			
・変圧器の火災については、添付資料-6「3.1 変圧器の火			
災影響評価について」と同様の想定とする。			
 ・火災が発生してから燃え尽きるまでの間,一定の輻射強度 でルーバが見追されるたのとする 			
以下に、ルーバへの受熱面を示す。			
ルーバ (断面) 受熱面 火炎からの輻射 し			
第 5.3-1 図 ルーバの受熱面			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3)必要データ			
評価に必要なデータを以下に示す。			
第 5.3-1 表 変圧器火災影響評価に必要なデータ			
離隔距離[m] 16			
燃焼半径[m] 6.91			
形態係数[-] 0.2051198			
輻射強度[W/m ²] 4.71×10 ³			
燃焼継続時間[h] 10.1			
(4) ルーバ温度と膨張量			
曲初国反これのに相不, アン・バスの当初国友は モーバルー			
こより、この類別強度にて たてバレンパー升価されるものとし			
し、「記の式より対象ルーパの温度及い膨張里を昇山する。 たた、北、バの社族は、アルミニウノ合会(IIS: λ (002)で			
なわ, ルーハの材質は,) ルミーリム合金 (J15:A0003) C			
<u>Ø. D.</u>			
$h_{se} = h_r + h_{cv}$			
<u>田典・J15 9501 2000 休温休行工事施工保</u> 理			
h _{se} :ルーハの熱伝達率,h ₁ :ルーハ衣面の輻射熱伝達率,			
hev:ルーパ表面の対流熱伝達率			
$\mathbf{q} = h_{se}(T - T_0) \downarrow \emptyset$			
$T = \frac{q}{h_{se}} + T_0$			
出典:伝熱工学資料			
T:ルーバ温度,T:周囲温度,a:入熱量(輻射強度)			
$l = L + \alpha (T - T_0)$			
出曲: 伝教工学資料			
1:ルーバ膨張量, L:ルーバ長さ(長辺方向) α · 熱膨張率			
$\sum \sum \infty$, h =15.6[W/m ² K] h =9.48[W/m ² K] T_=50[°C] I =			
$1500 [\text{mm}] \alpha = 2.8 \times 10^{-6} [1/\text{K}] \text{ b} \text{ b} \text{ c}$			
LOVY Lund, C. C. LV. LV. LV. LV. LV. LV. LV.			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
以下に評価結果を示す。			
第 5.3-2 表 ルーバの熱影響評価結果			
ルーバ温度「℃] 168			
ルーバ膨張量[mm] 5.4			
(5) 火災による熱影響の有無の評価			
ルーバ温度は 168℃となり、ルーバ長辺方向の熱膨張量は			
ルーバ長さ 1500mm に対して、5.4mm となったことから、ル			
ーバの形状が大きく変形することはない。			
また、ルーバの変形の有無にかかわらず、安全上支障のな			
い期間に点検を行い、ルーバの使用に問題があると判断され			
る場合には、父換等の措置が可能である。			
なお、ルーハ内側には熱影響を受ける機器等かなく、変圧			
孟次次時は、熱気流を考慮し、結気温度を監視しつつ、状況 はまず、たちに、たちに、たちに、たちに、たちに、たちに、たちに、たちに、たちに、たちに			
に応して換え 空調系の 停止 指直寺 を 講しる こ と から, 建 屋 内			
~~(の款意) 査(はない。			
5 4 - 配管書通率の水災影響評価について			
※14			
て 水災影響評価を実施する			
(1) 評価対象			
が最も大きくなる 6 号炉原子炉建屋南側外壁の外部注水接			
(2) 想定の条件			
主変圧器の火災については,添付資料-6「3.1 変圧器の			
火災影響評価について」と同様の想定とする。			
(3) 必要データ			
評価に必要なデータを以下に示す。			

柏崎刈羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 5.4-1 表 変圧者	器火災影響評価に必要なデータ			
密KI寫 距 函K 「m]	36.1			
燃燒半径[m]	6.91			
形態係数[-]	0.06460353			
	1.48×10^{3}			
燃焼継続時間[h]	10.15			
(4) 火災による熱影響の有	無の評価			
変圧器の火災影響評価	ᠳ(1)から(7)と同様の算出方法(こよ		
り輻射強度を求めた結果	見, 配管貫通部 (屋外配管)に対し	て受		
ける輻射強度は 1.48kW	/m ² となり,人が長時間さらされ、	Cb		
苦痛を感じない輻射強し	度である 1.6kW/m ² を下回るこ。	上力。		
<u>ら, 配管貫通部 (屋内</u> 面	2管と内気含む) への熱影響はな	Line.		
5.5ブローアウトパネルの火	災影響評価について			
<u>6 号及び 7 号炉のブロ</u>	ーアウトパネル(以下「B.P」という	<u>Dal</u>		
は、それぞれ原子炉建屋北	2側に 3 箇所, 南側に 1 箇所設			
れているが, 北側 B.P に	ついては、発熱源との配置より	<u>辐射</u>		
熱が届くことはなく、南側	<u>則 B.P についても, B.P 前に設</u>			
ている,非常用ディーゼ/	ル発電機のサイレンサ(排気口)			
り、輻射熱が届くことはな	い (第 5.5-1 図)。			
なお、サイレンサは最高	高使用温度が 500 度以上であり,			
変圧器からサイレンサま~	での距離とほぼ等しい位置にある	5主		
排気筒の温度評価(132℃)	と同程度と考えられることから、			
影響はない。				
また、航空機落下による	<u>水災を想定したとしても、サイ</u>			
サによって輻射が遮られ	る。仮に, 輻射を受けたとし	<u>C</u> b		
0.5kW/m ² 程度であり,輻射	強度は人が長時間さらされても	<u>苦痛</u>		
を感じないとされる 1.6k	W/m ² を下回っており, サイレン [、]			
の熱影響はない。				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
火炎 B. P 変圧器 サイレンサ 原子炉建屋			
第 5.5-1 図 <u>6 号炉 B.P と主変圧器火炎との位置関係</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉
別紙 6-1		
<u>6 号及び 7 号炉原子炉冷却材再循環ポンプ可変周波数電源装置</u>		
入力変圧器の耐震性評価結果		
1. 評価範囲		
6号及び7号炉原子炉冷却材再循環ポンプ可変周波数電源		
<u>装置人力変圧器は油入変圧器であり、本体部のタンクと放熱器</u>		
内に絶縁油が内包されており、地震によりタンク者しくは放熱		
クシクロしては灰然品が損易するケースとしては以下の2		
<u>/ ///////////////////////////////////</u>		
(ケース 1) タンク若しくは放熱器自体が地震により損傷す		
る。 		
(ケース 2)変圧器本体と基礎を固定している基礎ボルト等の		
基礎固定部が地震により破断し,変圧器が滑動,		
転倒することでタンク若しくは放熱器が損傷す		
<u>る。</u>		
ケース 1 については, 過去の油入変圧器の地震や輸送の損傷		
実績の中で、タンクや放熱器自体の損傷実績はないものの、タ		
ンクと放熱器をつなぐ配管(以下「放熱器母管」という)根元		
部について輸送時にクラックか入った美額かめることから、本		
35 を八方とした耐震圧計画を天起する。(計画部位は第 1 因の)①の部位)		
ケース 2 については,「変電所等における電気設備の耐震設		
<u>計指針 (JEAG5003-2010)」(以下「JEAG5003」という。) におい</u>		
て、「変圧器本体を基礎に固定する基礎ボルトが破断し本体が滑		
動しないよう、基礎ボルトの強度を十分に確保し得る施工上の		
注意が必要である」と示されており、地震力の大きさによって		
は基礎ボルト等の基礎固定部が破断する可能性があることか		
ら,基礎固定部について基準地震動 Ss を入力とした耐震性評		

Ē	備考
	 ・冬性の相違
	【柏崎 6/7】
	島根2号炉は,建物屋
	上に変圧器等の評価対
	象を設置していない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
価を実施する。(評価部位は第 1 図の②の部位)			
放熱器母管 ~			
放熱器 ①本体部評価部位 (本体の最弱部位) タンク ②基礎固定部評価部位 (基礎ボルト等自体の評価) 登礎ボルト等 ①素健固定部評価部位 (コンクリート部の評価)			
第 1 図 変圧器評価の概念図			
 2. 評価内容 (1) 変圧器本体部の耐震性評価方法(ケース 1) 6 号及び 7 号炉原子炉冷却材再循環ポンプ可変周波数電 源装置入力変圧器の放熱器母管の根元部については、基準地 震動 Ss を入力として、放熱器母管の根元に発生する曲げ応 力が許容応力以下であることを確認する。 (2) 変圧器基礎固定部の耐震性評価方法(ケース 2) 6 号及び 7 号炉原子炉冷却材再循環ポンプ可変周波数電 源装置入力変圧器の基礎固定部について、基準地震動 Ssを 入力とした以下の耐震性評価を実施する。 a. 基礎固定部が損傷しないことの確認^{(※1)(※2)} 基礎固定部 			
に発生する引張応力とせん断応力が許容応力以下である			
ことを確認する。			
b. 基礎固定部が基礎から引き抜けないことの確認(本) 基礎 固定部に発生する引張とせん断の組み合わせ荷重が以下 に示すコンクリート部の引張荷重及びせん断荷重の組合 せに対する許容値以下となることを確認する。 $\left(\frac{p}{pa}\right)^2 + \left(\frac{q}{qa}\right)^2 \leq 1$			
p : 基礎ボルト1本当たりの引張荷重			
pa:基礎ボルト1本当たりのコンクリート部の許容引張			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)					2.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	q :基礎ボルト1	本当たりの	せん断荷	重					
	qa:基礎ボルト1	本当たりの	コンクリ・	ート部の	り許容も	せん断			
	荷重								
	※1:「原子力発電	前耐震設計	技術規程	L (JEAC4	4601-2	L(800			
	に準拠								
	※2:「変電所等	痒における	電気設備	備の耐倉	震設計	指針			
	(JEAG5003	8-2010)」に	準拠						
<u>3.</u> 評価	<u> 新結果</u>								
(1)	変圧器本体部の耐	「震性評価結	果(ケー	・ス 1)					
	6 号及び 7 号炉	原子炉冷却	才再循環>	ポンプ可	可変周波	皮数電			
源	装置入力変圧器本	本体部の耐震	性評価の)結果は	第1ま	表のと			
お	りであり, 全ての	変圧器につ	いて発生	応力が割	午容応ス	力以下			
で	あることを確認し	た。							
第1ま	長 6 号及び7 号	异炉原子炉冷	·却材再循	「環ポンプ	プ可変	周波数			
	電源装置入力	変圧器本体音	部の耐震性	生評価結	課				
号炉	設備名	評価部位	評価項目	発生応力 (MPa)	許容応力 (MPa)	裕度 (※)			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1),(B-1)	放熱器母管根元部	曲げ	134	279	2. 08			
6 号炉 -	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2),(B-2)	放熱器母管根元部	曲げ	148	279	1.88			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1),(B-1)	放熱器母管根元部	曲げ	119	279	2. 34			
7 号炉 -	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2),(B-2)	放熱器母管根元部	曲げ	40	279	6. 97			
※:裕度	は評価部位の発生応力とその	の部位の許容応力のは	上率であり, 1	以上を裕度あ	ありとする	•			
(2)	変圧器基礎固定剖	3の耐震性評	価結果((ケース	2)				
9	6 号及び 7 号炉	原子炉冷却	材再循環	ポンプī	可変周	波数電			
源	装置入力変圧器基	一礎固定部の	耐震性評	価の結果	果は第	2表,			
第3表のとおりであり、全ての変圧器につ いて発生応力が				につい	て発生	応力が			
許容応力以下であることを確認した。									

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				2017.12	2.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第2表6号及び7号炉原子炉冷却材再循環ポンプ可変周波				環ポン	⁄ プ可変	周波			
	数電源装置入力変	圧器基礎固	定部の耐加	震性評 (価結果				
号炉	設備名	評価部位	評価項目	発生応力 (MPa)	許容応力 (MPa)	裕度 (※)			
	原子炉冷却材再循環ポンプ可変の周波数電源装置入力変圧異	基礎固定部	引張	127	202	1. 59			
6 号炉	(A-1), (B-1)	(基礎ボルト)	せん断	57	160	2.80			
	原子炉浴却材再循環ボンブ可 変周波数電源装置入力変圧器 (A-2),(B-2)	基礎固定部 (基礎ボルト)	引張 	126 64	191	1.51 2.50			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1),(B-1)	基礎固定部 (溶接)	引張とせん断 の組合せ	154	160	1.03			
7 号炉	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2),(B-2)	基礎固定部 (溶接)	引張とせん断 の組合せ	83	160	1. 92			
※:裕	度は評価部位の発生応力とその	 部位の許容応力の	比率であり, 1」		ありとする。	, ,			
kaka -					0				
<u>第3</u>	表 6 号及び 7 号	<u>寺原子炉冷去</u>	材再循環	ポンプ	"可変周 可変周	波数			
電	原装置人力发上器基	と健コンクリ	リート部の	<i>前震性</i>	E評価結	果			
号炉	設備名	評価部位	評価項目	発生応力 (※2)	許容応力 (※2)	裕度 (※1)			
6 – 46	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1),(B-1)	基礎コンクリート 部	引張とせん断 の組合せ	0. 116	1	8.62			
6 5%	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2), (B-2)	基礎コンクリート 部	引張とせん断 の組合せ	0.242	1	4.13			
	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-1), (B-1)	基礎コンクリート 部	引張とせん断 の組合せ	0. 263	1	3. 80			
7 号炉	原子炉冷却材再循環ポンプ可 変周波数電源装置入力変圧器 (A-2),(B-2)	基礎コンクリート 部	引張とせん断 の組合せ	0. 133	1	7.51			
※1:褚	」	の部位の許容応力の	」)比率であり, 1	以上を裕度	度ありとする	5.			
※ 2 : (1) 式の左辺を発生値,右辺を	許容値とする。							
4. 結									
6 5	号及び 7 号炉原子炉	戶冷却材再往	盾環ポンプ	プ可変周	周波数電	፪ 源装			
<u>置入フ</u>	り変圧器においては	,各評価部	位について	て発生に	芯力が静	午容応			
<u>力以</u> -	下であることが確認	されたこと	から, 基準	隼地震重	勆 Ss て	での地			
震時に	こおいても変圧器は	損傷するこ	と無く, 3	変圧器P	内の絶縁	<u> 家油は</u>			
漏えい	いしないことが確認	された。							
						<u>以上</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 6.1		
	軽油貯蔵タンク及び重油タンクの地下化について		
	<u>軽油貯蔵タンク及び重油タンクは、「危険物の規則に関する政</u>		
	令」第十三条第1項,第二十条第3項及び「危険物の規制に関す		
	る規則」第三十五条第1項第1号に適合する地下タンク貯蔵所の		
	ため、地表面で火災が発生する可能性は低い。		
	また、タンク地上部のマンホールも含め、地上で発生する火炎		
	からの輻射熱の影響を受けない構造とする。		
	以上から、軽油貯蔵タンク及び重油タンクは、外部火災の火災		
	源の対象から除外する。		
	「危険物の規則に関する政令」及び「危険物の規制に関する規		
	則」の抜粋を以下に示す。		
	「危険物の規則に関する政令」【一部抜粋】		
	(地下タンク貯蔵所の基準)		
	第十三条 地下タンク貯蔵所(次項及び第三項に定めるものを除く。)の位置,構造及び 設備の技術上の基準は,次のとおりとする。		
	一 危険物を貯蔵し、又は取り扱う地下タンク(以下この条,第十七条及び第二十六条に おいて「地下貯蔵タンク」という。)は、地盤面下に設けられたタンク室に設置するこ		
	と。		
	— mg —		
	(消火設備の基準)		
	第二十条 消火設備の技術上の基準は,次のとおりとする。 三 前二号の総務省会で定める製造所等以外の製造所等にあっては 総務省会で定めると		
	ころにより、別表第五に掲げる対象物について同表においてその消火に適応するものと		
	される祖火設備のりら、弗五種の祖火設備を設直すること。		
	「危険物の規制に関する規則」【一部抜粋】		
	(その他の製造所等の消火設備)		
	第三十五条 令第二十条第一項第三号の規定により,第三十三条第一項及び前条第一項に 掲げるもの以外の製造所等の消火設備の設置の基準は,次のとおりとする。		
	一 地下タンク貯蔵所にあっては, 第五種の消火設備を二個以上設けること。		
	— IIA —		
	また,軽油貯蔵タンク及び重油タンクの地下化イメージを第1		
	図及び第2図にします。		
L	1	1	I

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	マG.L ±0 <td></td> <td></td>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	反) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 6.2		
	薬品タンクの影響評価について		・設備の相違
			【東海第二】
	薬品タンクの影響評価については、森林火災発生時の消火活動		島根2号炉では,屋外
	の成立性という観点で評価を実施している。		に可燃性の薬品を取り
	森林火災発生時には、防火帯に沿った消火活動を実施すること		扱う設備の設置はない
	としている。一方で、敷地内の屋外薬品タンクにおいて、防火帯		
	付近には設置されていないため、森林火災の影響を受けて消火活		
	動に影響を及はすことはない。また、森林火災の影響を受けて楽		
	品かタンク外に漏れ出したとしても、タンク周辺には堰を設置し		
	(いるにの) 楽品は堰内に収まり, 泪火活動中に劇楽の影響を受		
	りることもない。なわ、一部の采品タンクは移取了たじめるか、		
	毎日ババを光生するう能住のある屋外楽品グングの位置を以下 の図に示す。毒性ガスを発生する可能性のある屋外薬品タンクけ		
	いるにかり。毎日ババを完上する内能日のの5年/1米田ノンノは 防火帯から離れていろため「薬品が漏えい」」 毒性ガスを拡散す		
	る可能性は低いと考えられる。仮に薬品が漏洩したとしても、薬		
	品を特定した後は防護具を着用し、安全を確保した上で通行及び		
	作業を行うこととしている。評価結果を下表に示す。		
	以上より、森林火災発生時の消火活動に支障を及ぼすことはな		
	l'.		
	図 屋外薬品タンクの位置		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二	二発電所(2018.9.12	2版)		島根原子力発電所 2号炉	備考
	表 屋外到	薬品タンクの火災時	の影響			
	No. 屋外薬品タンク	薬品の種類	容量 (m ³)	火災時の 危険有害性		
	 ① 硫酸貯蔵タンク 	硫酸	50.0	※ 1		
	② 苛性ソーダ貯蔵タンク	苛性ソーダ	50.0	※ 1		
	 ③ 屋外硫酸タンク 	硫酸	0.6	₩ 1		
	 ④ 硫酸貯槽 	硫酸	3.0	₩ 1		
	 5 苛性ソーダ貯槽 	苛性ソーダ	10.0	₩ 1		
	⑥ 硫酸希釈槽	硫酸	1.2	₩ 1		
	⑦ 希硫酸槽	硫酸	0.4	₩ 1		
	⑧ PAC 貯槽	ポリ塩化アルミニウム	6.0	₩ 2		
	⑨ 薬品混合槽	ポリ塩化アルミニウム 希釈硫酸	8.4	* 2		
	⑩ 溶融炉アンモニアタンク	アンモニア	1.0	₩ 3		
	 溶融炉苛性ソーダタンク 	苛性ソーダ	3.0	₩1		
	① 硫酸第一鉄注入タンク	硫酸第一鉄	7.0	₩3		
	 ※1 刺渡性,腐食性又は毒性のガス ※2 塩化水素ガスを発生するおそれ ※3 刺激性又は毒性のガスを発生す 	<を発生するおそれがある。 1がある。 Fるおそれがある。				

柏崎刈羽原子力発電所 6/7	7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙 6.3		
		構内危険物タンク等における延焼の危険性について		
		1. 溶融炉灯油タンクの火災		
		溶融炉灯油タンク近傍で危険物を保管している設備はなく、		
		現場作業に伴い「屋外の危険物保管」や「火気の使用」をする		
		場合は、社内規程に基づき危険物や火気を管理した状態で取り		
		扱っている。また、防火の観点から定期的なパトロール等にて		
		現場の状況を確認している。		
		以上により、溶融炉灯油タンクの火災を想定したとしても周		
		囲の可燃物への延焼の可能性は低い。		
		2. 車両(可搬型重大事故等対処設備及び自主設備)の火災		
		2.1 車両(可搬型重大事故等対処設備及び自主設備)の延焼		
		可搬型重大事故等対処設備及び自主設備保管場所(以下「保		
		管場所」という。)において、可搬型重大事故等対処設備及び自		
		主設備(以下「車両」という。)の火災が起こったとしても周囲		
		の車両に影響を及ぼさないことを評価する。		
		なお,保管場所の一部は防火帯に近接しているが,当該箇所		
		における森林火災時の輻射強度が 1.6kw/m ² **以下となるよう		
		に離隔距離を確保するため、車両が延焼するようなことはない。		
		※ 人が長時間さらされても苦痛を感じない輻射強度		
		<u>(1)</u> 車両火災の想定条件		
		a. 周囲への熱影響を考慮し、コンテナにより燃料タンクが露		
		出している車両と隔離する大型ポンプを除いて、燃料積載		
		量が最大となる予備電動機用クレーンの走行用燃料タンク		
		(以下「クレーン燃料タンク」という。)の火災を想定した。		
		b. タンク内の燃料の温度上昇を評価するため,燃料が少ない		
		ほど温度上昇がし易く評価は保守的となることから、受熱		
		側として、燃料タンクが露出している車両のうち、燃料積		
		載量が最小となるユニック車を選定し、ユニック車底部に		
		設置されている直方体構造の燃料タンク(100L)(以下「ユ		
		ニック車燃料タンク」という。)が輻射熱を受ける状態を想		
		定した。燃料タンクは直方体構造であり、一方の面が受熱		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	0版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	した場合その反対面は影になるため、燃料タンクの受熱面		
	は表面積の半分とし、全ての受熱面が火災源に最も近い表		
	面と同等の輻射熱を受けるものとした。		
	c. 発熱側となるクレーン燃料タンクは全燃料分(500L)を想		
	定した。 一		
	d積載している燃料は軽油とした。		
	e. タンク内での全面火災を想定した。		
	<u>f. 気象条件は無風状態とした。</u>		
	g. 火災は円筒火炎モデルとし、火炎の高さは燃焼半径の3倍		
	Liten		
	(2) 評価対象範囲		
	評価対象範囲は、保管場所で出火する車両とする。		
	<u>(3)</u> 必要データ		
	危険距離評価に必要となるデータを第1表に示す。		
	第1表想定火災源及び燃料に係るデータ		
	想定火災源 燃料の 燃料量 輻射発散度 質量低下速度 燃料密度 燃焼面積 V R f M ρ S		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	※1 評価ガイド 記載値 ※2 NUREG-1805記載値		
	※3 MSDS (製品安全データシート) 記載値		
	円同火炎モデルとして評価を美施するため、クレーン燃料タ		
	シリの投影面積を円面の氏面と仮正して以下のとおり昇出し		
	た。一見出植朱を見之表に示す。		
	S		
	$R = \sqrt{\frac{S}{\pi}}$		
	<u>R:燃焼丰拴(m), S:燃焼面積(三燃焼面積)(m²)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第2表 想定火災源の燃焼半径		
	燃焼面積 燃焼半径 想定火災源 S R		
	(m ²) (m)		
	クレーン燃料タンク 1.1 0.6		
	(5) 燃焼継続時間の算出		
	燃焼継続時間は、燃料量を燃焼面積と燃焼速度で割った値		
	になる。算出結果を第3表に示す。		
	V		
	$t = \frac{1}{\pi R^2 \times N}$		
	t : 燃焼継続時間(s), ∇ : 燃料量(m ³)		
	R:燃焼丰铨(m), v:燃焼速度=M/ρ(m/s) M: 好是低下速度(kg/m ² /a) a:燃料廠度(kg/m ³)		
	第3表 想定火災源の燃焼継続時間		
	想定火災源 燃料量 燃焼半径 質量低下速度 燃料密度 燃焼継続時間 $M_{(m^3)}$ (m) $(k_{\sigma}/m^2/s)$ (s)		
	クレーン検料タンク 0.5 0.6 0.044 870 8.754		
	▲…町盆皿送 軽油の自然発火温度240℃を許容温度とする		
	b. 評価結果		
	の輻射強度で昇温されるものとして、下記の温度評価式によ		
	りユニック車燃料タンク(100L)が内包する軽油の温度が		
	240℃となる輻射強度(=危険輻射強度)を求め、クレーン燃		
	料タンクからの熱影響がこの危険輻射強度となる離隔距離(~	
	危険距離しを算出した。		
	$T - T_{-} = $ <u>E t A</u>		
	$\rho_{w} C_{pw} V_{w} + \rho_{s} C_{ps} V_{s}$		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第	二発電所(2018.9.12	:版)	島根原子力発電所 2号炉	備考
<u>T</u> :許容温度(240℃), <u>T</u> ₀ :初期温度(50℃) ^{*1} ,							
			<u>E:輻射強度(₩/</u> 1				
			<u>t</u> :燃焼継続時間	(8,754s), A:受熱面	ī積(0.8m ²)		
			<u>.ℓ.</u> .:受熱側燃料容	5 <u>度(870kg/m³)</u> ,			
			<u>Cw</u> :受熱側液体	比熱(1.700J/kg/K)	~		
			<u>V</u> .:受熱側液体体	<u>S積(0.1m³),</u>			
			<u> 0.s</u> :燃料タンク容	5 <u>度(7,860kg/m³)</u>			
			<u>C_{Ps}:燃料タンク</u>	比熱(473J/kg/K),	~		
			<u>V</u> : 燃料タンクタ	<u>运積(0.003m³)</u>			
			<u>※1 水戸地方</u>	気象台で観測された過	過去最高気温 38.4℃		
			保守性を	寺たせた値			
			軽油の温度が24	0℃となる危険距離を	算出した結果、危険		
			<u> 距離は2.4mである</u>	ことを確認した。算出	結果を第4表に示す		
			http://				
				<u>表 火火影響評価結</u>	悉		
			想定火災源	受熱対象	危険距離 (m)		
			クレーン燃料タンク	ユニック車燃料タンク	2.4		
			 (7) 保管場所に保管	よろ東面の配置設計			
			クレーン燃料タ	ンクの火災を想定して	「も、車両同士の最低	Æ	
			離隔距離 2.5m が危	〕 険距離 2.4m を上回る	らことから、周囲の耳	一 王	
			両に影響を及ぼす	ことはない。		~~	
			2.2 常設代替高圧電源	「装置の火災			
			常設代替高圧電源	<u>装置の駆動燃料は,</u>	レーラー上のコンラ	<u></u>	
			ナ内にあるため、隣	妾する 車両に影響を及	をぼすことはない。		
			置を第1図に示す。	また, 第2図のとおり)津波防護壁で四方を		
			取り囲んだ構造とな	っており,周囲の可燃	<u> 然物への延焼の可能性</u>	生	
			5triven				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	常設代替高圧電源装置 「 」 」 」 」 」		
	第2図 津波防護壁と常設代替高圧電源装置の位置関係		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
参考資料 6-1	別紙 6.4	参考資料 6-1	
本戸田の仕も地体について	本に出るけたもない。	亦匠明の吐む地体について	
後圧器の防火対東について 	愛圧器の防火対束について	愛圧益の防穴対束について	
1. 変圧器の防火対策	1. 変圧器の防火対策 を以下に示す。	1. 変圧器の防火対策	
・変圧器には、内部圧力の上昇、又は電気回路の異常を検知す	(1) 熱感知により作動する水噴霧の自動消火設備を設置してい	 ・変圧器には、電気回路の異常を検知すると、瞬時に電源を自 	
ると、瞬時に電源を自動的に切る保護機能が備わっている。		動的に切る保護機能が備わっている。	
・金属筐体に覆われており火災が発生する可能性は低い。	(2) 変圧器には、内部圧力の上昇、又は電気回路の異常を検知	 ・金属筐体に覆われており、火災が発生する可能性は低い。 	
 ・万一油が漏えいした場合においても、地下の防災地下タンク 	すると,瞬時に電源を自動的に切る保護機能が備わっている。	 ・万一油が漏えいした場合においても、地下の排油溜めに溜ま 	
に溜まる構造となっている(第 1 図)。	(3) 金属躯体に覆われており火災が発生する可能性は低い。	る構造となっている。(第1図)	
	(4) 万一油が漏えいした場合においても、地下の油水分離槽を	七口壮界	
2. 中越沖地震による 3 号炉所内変圧器火災の事象	経由して、廃油槽に溜まる構造となっている。変圧器の地下		・条件の相違
・二次側接続母線部ダクトの基礎が沈下し,変圧器との相対変	構造を第1図に示す。		【柏崎 6/7,東海第二】
位が発生。	(5) 変圧器と二次側接続母線部ダクトの基礎は、建屋と同じ岩	防油堤 發圧器 防油堤	地域特性を踏まえた,
 ・ブッシング部破損による漏油と、地絡・短絡によるアークの 	盤に支持されており、地震時の沈下量の差の発生を防止する		対応の相違
発生により火災発生。	構造となっていることから、相対変位が発生し難く、ブッシ		
・屋外消火設備の損傷により消火活動に支障をきたしたが、当	ング部破損による漏油と、地絡、短絡によるアーク発生での	排油溜め	
該変圧器横に設置されている防火壁により, 隣接する所内変	火災が発生する可能性は低い。変圧器基礎の概要を第2図に		
圧器 3A や他設備に延焼することはなかった。	<u>示す。</u>		
	(6) 相対変位による破損を防止するため,屋外消火配管を地上		
3. 中越沖地震による 3 号炉所内変圧器火災の対策	化した。地上化された屋外消火配管を第3図に示す。	第1図 変圧器地下構造(防油堤及び排油溜め)	
(1) 下記の基礎構造変更により,変圧器と二次側接続母線部ダ	(7) 万一の火災発生に備え、変圧器には消火設備配管を設置し		
クトの基礎で沈下量の差が発生することを防止(第2図,	ている。変圧器の外観及び消火設備配管を第4図に示す。	2. 変圧器火災の事故拡大防止対策	
第 3 図)	(8) 平成 19 年に発生した新潟県中越沖地震による被害を踏ま	中越沖地震において、柏崎刈羽原子力発電所3号炉の所内変	
a. 二次側接続母線部ダクトの基礎をタービン建屋と同じ支	<u>え, 耐震性向上対策を行っており, JEAG5003-20</u>	圧器での火花は、地盤の沈下による相対変位が主な原因であっ	
持地盤にて支持	<u>10*に基づく静的水平加速度0.5Gに対して2倍程度の裕度</u>	<u>te.</u>	
b.変圧器と二次側接続母線部ダクトの基礎部を一体化,又	<u>を確保している。</u>	島根原子力発電所の2号炉主変圧器,2号炉所内変圧器,2	
は,二次側接続母線部ダクトの基礎構造を杭基礎構造へ	※ 変電所等における電気設備の耐震設計指針	号炉起動変圧器,3号炉補助変圧器,3号炉主変圧器及び3号	
<u>変更</u>		<u>炉所内変圧器は、基礎が岩盤又は地盤改良土に設置されている</u>	
		<u>ことから、地盤の沈下による相対変位は想定されないため、火</u>	
なお,6 号炉は,建設時より一体化された基礎を人工岩盤に		災が発生する可能性は少ない。	
て直接支持する構造となっている。		1号炉起動変圧器及び予備変圧器は、絶縁母線フレキシブル	
		導体部の絶縁処理による火災の発生防止対策を実施している。	
(2) 屋外埋設消火配管の地上化(第 4 図)			

炉	備考
知設備及び消火設備	
<u>を防止するため,屋外</u> 変圧器の外観及び消	

Ē	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-7	添付資料-7	添付資料-7	
<u>柏崎刈羽</u> 原子力発電所の敷地内への航空機墜落による 火災について	原子力発電所の敷地内への航空機墜落による火災について	<u>島根</u> 原子力発電所の敷地内への航空機墜落による火災について	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
 はじめに 本評価は、発電所敷地への航空機墜落による火災に対してよ り一層の安全性向上の観点から、その火災が起こったとしても 発電用原子炉施設に影響を及ぼさないことを評価するもので ある。 	1. <u>目</u> 的 本評価は, <u>東海第二発電所の</u> 発電所敷地への航空機の墜落に よって発生する火災が,添付資料-1で選定した評価対象施設に 影響を与えないことについて,「原子力発電所の外部火災影響評 価ガイド 附属書C 原子力発電所の敷地内への航空機墜落に よる火災の影響評価について」に基づき,評価を実施する。	1. <u>はじめに</u> 本評価は,発電所敷地 <u>内</u> への航空機墜落によ <u>る</u> 火災 <u>に対して</u> , より一層の安全性向上の観点から,その火災が起こったとして も発電用原子炉施設に影響を及ぼさないことを評価するもので ある。	
2. 航空機墜落による火災の影響評価	 航空機墜落の火災影響評価 航空機墜落による火災の想定は以下のとおりとする。 (1) 航空機は、当該発電所における航空機落下確率評価の対象 航空機のうち燃料積載量が最大の機種とする。 (2) 航空機は、燃料を満載した状態を想定する。 (3) 航空機の落下は発電所敷地内であって落下確率が 10⁻⁷(回 /炉・年)以上になる範囲のうち発電用原子炉施設への影響 が最も厳しくなる地点で起こることを想定する。 (4) 航空機の墜落によって燃料に着火し、火災が起こることを 想定する。 (5) 気象条件は無風状態とする。 (6) 火災は円筒火炎をモデルとし、火災の高さは燃焼半径の 3 倍とする。 (7) 輻射強度の算出としては、油火災において任意の位置にあ る輻射強度(熱)を計算により求めるには、半径が 1.5m以上 の場合で火災の高さ(輻射体)を半径の 3 倍にした円筒火炎 モデルを採用する。 3. 落下事故のカテゴリと対象航空機について 	2. 航空機墜落 <u>による</u> 火災の影響評価	
航空機落下確率評価では,評価手法 <u>及び対象航空機の大きさ</u> の違いを考慮して落下確率を求めている。 <u>火災の影響は対象航</u>	(1) 落下事故のカテゴリ 航空機落下確率評価では,評価条件の違いに応じたカテゴ リに分けて落下確率を求めている。	航空機落下確率評価では,評価 <u>手法及び対象航空機の大きさ</u> の違い <u>を考慮して</u> 落下確率を求めている。 <u>また,評価に考慮し</u>	・条件の相違 【柏崎 6/7】
空機の燃料積載量に大きく依存することから,別紙7-1に示す とおり、大型航空機と小型航空機に分類1、また、民間航空機	また,機種によって <u>装備</u> 飛行形態等が同一ではないため, 変下事故件数及び火災影響の大きさに美がある	ている航空機落下事故については,民間航空機と軍用機(自衛 隊機又は米軍機)では、その発生状況が必ずしも同一でけなく	島根2号炉は,飛行形 能の違いを踏まった航
と自衛隊航空機又は米軍航空機(以下「軍用航空機」とする)	したがって,これらを考慮して,下表に示すカテゴリごと	<u>軍用機の中でも、機種によって飛行形態が同一ではないと考え</u>	空機の分類を実施。
<u>に分類し</u> 以下のカテゴリごとに火災影響評価を実施する。	<u>に</u> 航空機墜落による火災の影響評価を <u>実施</u> する。	られる。したがって、航空機墜落による火災影響の評価におい	出雲空港及び米子空
		ては、第2-1表のとおり以下のカテゴリ毎に火災影響を評価す	港の最大離着陸地点以
		<u>る。(別紙7-1参照)</u>	内に位置するため、「飛

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海	第二発電所(201	18.9.12版)		島根原子力発電所 2号	予炉	備考
				 計器飛行 	Fの飛行場での離着陸時に	おける大型航空機の落	行場での離着陸時」を対
				下事故	(以下「大型民間航空機(爵	雛着陸時)」という。)	象として設定
				 計器飛行 	<u> 行のうち航空路を巡航中の</u>	落下事故及び有視界飛	
				<u>行の大型</u>	し民間航空機の落下事故(し)	以下「大型民間航空機」	
				という。)		
				 有視界所 	修行の小型民間航空機の落	下事故(以下「小型民	
				間航空機	という。)		
				・ 自衛隊機	後又は米軍機の落下事故(<u> 別紙7-2参照)</u>	
				<u>a. 空中約</u>	合油機等,高高度での巡航	が想定される大型固定	
				翼機(以	<u> 以下「空中給油機等」とい</u>	<u>う。)</u>	
				<u>b.</u> その他	也の大型固定翼機,小型固	定翼機及び小型回転翼	
				機(以下	「その他の機種」という。		
						\ \1===	
<u>第 2-1 表 航空機の分類</u>					<u>第2-1表 航空機の分</u>		・条件の相違
落下事故カテゴリ 分類	1) 計 哭 孫 行 方 式	落下事故のカテ ① 孫行場での離差®	ゴリ	洛	事故カテゴリ	分類 大型民間航空機	【相嗬 6/ /】
(1)計器飛行方式民間航空機 1)飛行場での離着陸時 - (*) 2)航空路を巡航中 (*)	民間航空機	②航空路を巡航中		計器飛行方式	飛行場での離着陸時 ^{注1}	(離着陸時)	局根2 方炉は, 飛行形 能の違いた W オ う た 帖
(1)大型民間航空機	2)有視界飛行方式 ③大型機(大型固定翼機) 民間航空機 ④小型機(小型固定翼機)	E 異機及び大型回転翼機) E 翼機及び小型回転翼機)	民间机空機	航空路を巡航中 ^{注2}	大型民間航空機	悲の遅いを踏まえたが 空機の八短を実体	
(2)小型民間航空機 (3)大型軍用航空機		⑤訓練空域内で訓	 ⑤-1 空中給油機等,高高度での ※航が想定される大型固定翼機 	有視界飛行方式民間舶	間航空機	小刑民間航空機	2 ペンク類を実施。 山家 の 洪
(3)自衛隊機又は米軍機 1) 訓練空域外を飛行中 (4) 小型軍用航空機 (3) 10 訓練空域外を飛行中 (4) 小型軍用航空機	3) 自衛隊機又は米軍機	練中及び訓練空域 外を飛行中	⑤-2 その他の大型固定翼機,小 別田字習機及び回転翌機			小 全 氏 间 航 至 機	山云空徳及び木丁空
2) 基地ー訓練空吸间仕復時 注1: 柏崎刈羽原子力発電所は,新潟空港からの最大離着陸地点以遠に位置するため		⑥基地一訓練空域間	至回足異機及び回転異機 罰往復時	自衛隊機	訓練空域外を飛行中 ^{達3}	その他の機種	をの取入離 イ 陸 地 点 以 内 に 位 置 す ろ た み 「 孤
対象外(別紙7-3) 注2、始崎川羽原子力発電武は基地上訓練空ば関の往復の相定範囲内にみらわいため				又は米軍機	基地-訓練空域間往復時	_注4	行提での離差院時」を対
社2.1回時時時期、1万元電力は金地 前株主旗間の仕後の心定電面に入りないたの 対象外				注1:滑走路方向か	ら±60°の範囲に発電所が位置す	る空港があり、各空港の最	象として設定
				大離着陸距離:	が,発電所から各空港までの距離 紙7-3)	より大きいため、評価対象	「東海第二】
				注2:発電所周辺に	森子 。 存在する航空路と発電所との距離	が,それぞれの航空路の幅	島根2号炉は、計器飛
				より短い場合	は、評価対象とする。(別紙7-	4)	行方式のうち航空路を
				注3:発電所上空に 注4:発電所は基地:	は目衛隊機又は米軍機の訓練空域 -訓練空域間の往復想定範囲内に	はない。(別紙7-5) 入らないため、評価対象外	巡航中及び有視界飛行
				とする。(別)	紙7-5)		方式の大型機を併せて
							「大型民間航空機」とし
(1) 航空機墜落による火災の想定				(1) 航空機墜落	客による火災の想定		て分類
・ 航空機は, 柏崎刈羽原子力発電所における航空機落下評価				・航空機は	は, 島根原子力発電所にお	ける航空機落下評価の	
の対象航空機のうち燃料積載量が最大の機種とする。				対象航空	E機のうち燃料積載量が最	大の機種とする。	
・航空機は燃料を満載した状態を想定する。				・航空機に	は燃料を満載した状態を想知	定する。	
・航空機の落下は発電所敷地内であって落下確率が10-7[回				・航空機の	落下は発電所敷地内であっ	って落下確率が10-7[回	
/炉・年] 以上になる範囲のうち発電用原子炉施設への影響				/炉·年]	以上になる範囲のうち発	電用原子炉施設への影	
が最も厳しくなる地点で起こることを想定する。				響が最も	」厳しくなる地点で起こる	ことを想定する。	

柏崎刈羽原子力発	電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電	電所 2号炉	備考
・航空機の落下に	こよって	て燃料に着火	し火災が起こることを		・航空機の落	客下によって燃	料に着火し火災が起こることを	
想定する。					想定する。			
・気象条件は無風		する。			・気象条件に	は無風状態とす	る。	
・火災は円筒火炎	ををモラ	デルとし,火豹	&の高さは燃焼半径の3		・火災は円筒	笥火炎をモデル	とし、火炎の高さは燃焼半径の	
倍とする。					3倍とする	5.		
第 2-2 表		燃料積載量が	「最大の機種		第2-	-2表 燃料積載	は量が最大の機種	
分類 航空	と機		選定理由		分類	航空機	選定理由	
大型民間航空機 (国定翼 回転翼) B747-	-400	民間の大型航空機 のたのを選定	の中で燃料積載量が最大規模		大型民間航空機	B747-400	民間の大型航空機の中で燃料積	
小型民間航空機	2 000	0000を選定 民間の小型航空機	の中で燃料積載量が最大規模		(雕有 空时)		戦重が取入規模のものを選定 民間の大型航空機の中で燃料積	
(固定翼,回転翼)	5-200	のものを選定			大型民間航空機	B747-400	載量が最大規模のものを選定	
一 大型車用航空機 KC- (固定翼,回転翼) (空中約	767 合油機)	土安日 (年) 隊 航 空 機 中で 燃料 積載 量 が」	(別紙 7-2)の大型航空機の 最大規模のものを選定		小型民間航空機	Do228-200	民間の小型航空機の中で燃料積	
小型軍用航空機 AH-	-1S	主要自衛隊航空機	(別紙 7-2)の小型航空機の			KC-767	載量が最大規模のものを選定	
(固定翼, 回転翼) (対戦	- 単機)	甲で燃料積載量か	最大規模のものを選定		空中給油機等	(空中給油機)	シー和 (加機等の 中で) (加根単単) が最大規模のものを選定	
					その他の継種	F-15	その他の機種の中で燃料積載量	
					し、「日本の一般」	1 10	が最大規模のものを選定	
				(2) カテゴリ別の対象航空機(別紙 7.1)				
				a. 計器飛行方式民間航空機				
				計器飛行方式民間航空機の落下事故には、「①飛行場での				
				離着陸時」における落下事故と「②航空路を巡航中」の落				
				下事故がある。				
				①については, 東海第二発電所から約 36km 離れた位置に				
				茨城空港があり、茨城空港の最大離着陸地点(航空路誌(以				
				下「AIP」という。)に記載された離着陸経路において着				
				陸熊勢に入る地点又は離陸熊勢を終える地点)までの直線				
				距離(以下「最大離着陸距離」という。)を半径とし、滑走				
				路端から滑走路方向に対して+60°の扇型区域内に発電所				
				が存在するため、評価対象とする。				
				(別紙7273)				
				のについてけ 東海第二発電所上空に航空路が左左する				
				ため 証価対象とする				
				(別紙7.4)				

				(ボバノーノ)になびてく対象とした脱土(液金) 私にかり。				
				が、八豕加上1次は、、八次上位で触自医りる加上1次パ光电加に 遊下する東地な社会トレブルスことから、花球空港の空地				
				<u>1世(B131 及いA320)*のうち燃料積載量が多い航空機(B737)</u>				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	を選定した。また、②については、評価対象航空路を飛行		
	すると考えられる定期便のうち燃料積載量が最大の航空機		
	を選定した。		
	※茨城空港ホームページ(H29年7月確認)		
	変下事故のカテゴリ 対象航空機		
	1)計器飛行方式民間航空機 ①飛行場での離着陸時 B737-800		
	②航空路を巡航中 B747-400		
	b. 有視界飛行方式民間航空機		・条件の相違
	有視界飛行方式民間航空機の落下事故には,「③大型機		【東海第二】
	(大型固定翼機及び大型回転翼機)」の落下事故と「④小型		島根2号炉は,計器飛
	機(小型固定翼機及び小型回転翼機)」の落下事故がある。		行方式のうち航空路を
	本カテゴリにおいて対象とした航空機を下表に示す。有		巡航中及び有視界飛行
	視界飛行方式民間航空機の落下事故においては、全国の有		方式の大型機を併せて
	視界飛行が可能な民間航空機のうち、燃料積載量が最大の		「大型民間航空機」とし
	航空機を選定した。		て分類
	(別紙 7.5)		
	2) 有視界飛行方式民間航空機 ③大型機 B747-400		
	(④小型阀 Do228-200		
	<u>c. 自衛隊機又は米軍機</u>		
	自衛隊機又は米軍機の落下事故には、「⑤訓練空域内で訓		
	練中及び訓練空域外を飛行中」の落下事故と「⑥基地ー訓		
	練空域間往復時」の落下事故がある。		
	⑤については、東海第二発電所周辺上空には、自衛隊機		
	又は米軍機の訓練空域はないため、訓練空域外を飛行中の		
	落下事故を評価対象とする。		
	⑥については,東海第二発電所周辺の太平洋沖合上空に		
	自衛隊機の訓練空域があり、発電所は自衛隊の百里基地と		
	訓練空域間の想定飛行範囲(基地と訓練空域間を往復時の		
	飛行範囲として,想定される区域)内に位置することから,		
	自衛隊機の落下事故を評価対象とする。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	本カテゴリにおいて対象とした航空機を下表に示す。		
	⑤の対象航空機は、全国の自衛隊機及び米軍機のうち、		
	用途別に燃料積載量が最大の航空機を選定した。		
	<u>路下することを想定するにめ、日里基地に所属する目開隊</u>		
	機のうち燃料積載量が最大の航空機を選定した。		
	落下事故のカテゴリ 対象航空機		
	[5]-1 空中給油機等,高高度での KC-767 「5]訓練空域外」 巡航が想定される大型固定翼機		
	3) 自衛隊機 又は米軍機 5-2 その他の大型固定翼機, F-15		
	小型固定翼機及び回転翼機 ⑥基地ー訓練空域間往復時 F-15		
	4. カテヨリ別の離隣距離の評価		
	「実用発電用原子炉施設への航空機落下確率の評価基準につ		
	いて(内規)」(平成21・06・25原院第1号)の航空機落下確率		
	評価式に基づき,カテゴリごとに落下確率が10-7(回/炉・年)		
	に相当する面積を算出し、その結果を用いて評価対象施設に対		
	する離隔距離を求める。		
	(別紙 7. 7. 7. 8)		
(2) 評価毛注の概要		(2) 評価手注の概要	
		(2) 町回丁公の院委	
本計価は, <u>伯崎川祖</u> 原丁刀 年間川に対 9 つ 机 空機 堅 洛によ		半計価は、 <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
る火災影響の有無の評価を目的としている。具体的な評価指		災影響の有無の評価を目的としている。具体的な評価指標と	
標とその内容を以下に示す。		その内容を以下に示す。	
第 2-3 表 評価指標及びその内容		第2-3表 評価指標及びその内容	
評価指標 内容	1	評価指標内容	
輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度		輻射強度[W/m ²] 火災の炎から任意の位置にある点(受熱点)の輻射強度	
形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数		形態係数[-] 火炎と受熱面との相対位置関係によって定まる係数	
燃焼半径[m] 航空機燃料タンクの投影面積より求めた燃焼半径		燃焼半径[m] 航空機燃料タンクの投影面積より求めた燃焼半径	
燃焼継続時間[s] 火災が終了するまでの時間		燃焼継続時間[s] 火災か終「するまでの時間	
離隔距離[m] 以上になる地点とその地点から発電用原子炉施設までの直		離隔距離[m] 以上になる地点とその地点から発電用原子炉施設までの直	
線距離		線距離	
熱許容限界値[-] 建屋の外壁,天井スラブが想定火災の熱影響に対して許容限		熱許容限界値[-] 建物の外壁, 天井スラブが想定火災の熱影響に対して許容限	
界以下になる値		界以下になる値	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
上記の評価指標は、受熱面が輻射体の底部と同一平面上に		上記の評価指標は、受熱面が輻射体の底部と同一平面上に	
あると仮定して評価する。油の液面火災では、火炎面積の半		あると仮定して評価する。油の液面火災では、火炎面積の半	
径が3mを超えると空気供給不足により大量の黒煙が発生し		径が3mを超えると空気供給不足により大量の黒煙が発生し	
輻射発散度が低減するが、本評価では保守的な判断を行うた		輻射発散度が低減するが、本評価では保守的な判断を行うた	
めに,火災規模による輻射発散度の低減がないものとする。		めに,火災規模による輻射発散度の低減がないものとする。	
輻射熱に対する建物の危険輻射強度を調査し,輻射強度が		輻射熱に対する建物の危険輻射強度を調査し、輻射強度が	
その建物の危険輻射強度以下になるように発電用原子炉施		その建物の危険輻射強度以下になるように発電用原子炉施設	
設は危険距離(離隔距離)を確保するものとする。		は危険距離(離隔距離)を確保するものとする。	
(3)評価対象範囲		(3) 評価対象範囲	
 評価対象範囲は,発電所敷地内であって落下確率が10 ⁻⁷		評価対象範囲は,発電所敷地内であって落下確率が 10-7[回	
[回/炉・年] 以上になる範囲のうち発電用原子炉施設への影		/炉・年] 以上になる範囲のうち,発電用原子炉施設への影響	
響が最も厳しくなる区域とすることから、柏崎刈羽原子力発		が最も厳しくなる区域とすることから、島根原子力発電所に	
電所における航空機落下確率評価の対象航空機を, <u>大型民間</u>		おける航空機落下確率評価の対象航空機を,「大型民間航空	・条件の相違
		機(離着陸時)」,「大型民間航空機」,「小型民間航空機」,	【柏崎 6/7】
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー		「空中給油機等」,「その他の機種」に分類し、それぞれの	島根2号炉は,飛行形
年]となる標的面積を算出し、その結果から発電用原子炉施		機種の落下確率の合計が 10-7 [回/炉・年] となる標的面積を	態の違いを踏まえた航
設からの離隔距離を以下のとおり算出する。		算出し、その結果から発電用原子炉施設からの離隔距離を以	空機の分類を実施。
		下のとおり算出する。	出雲空港及び米子空
	4.1 計器飛行方式民間航空機の落下事故		港の最大離着陸地点以
(4)標的面積の算出	(1) 飛行場での離着陸時における落下事故	<u>(4) 標的面積の算出</u>	内に位置するため、「飛
	a. 標的面積	<u>a. 大型民間航空機(離着陸時)の標的面積の算出</u>	行場での離着陸時」を対
	Pd, a=fd, a · Nd, a · A · Φ d, a(r, θ)	飛行場での離着陸時における落下事故	象として設定
	Pd,a:対象施設への離着陸時の航空機落下確率(回/年)	$Pd, a = fd, a \cdot Nd, a \cdot A \cdot \phi d, a (r, \theta)$	【東海第二】
	fd,a=Dd,a/Ed,a:対象航空機の国内での離着陸時	Pd,a:対象施設への離着陸時の航空機落下確率	島根2号炉は,計器飛
	事故率(回/離着陸回)	(回/年)	行方式のうち航空路を
	Dd,a:国内での離着陸時事故件数(回)	Nd, a: 当該飛行場での対象航空機の年間離着陸回数	巡航中及び有視界飛行
	Ed,a:国内での離着陸回数(離着陸回)	(離着陸回/年)	方式の大型機を併せて
	Nd,a:当該飛行場での対象航空機の年間離着陸回数	<u>A</u> :発電用原子炉施設の標的面積	「大型民間航空機」とし
	(離着陸回/年)	(落下時に原子炉施設が影響を受ける建物の	て分類
	A:対象施設の標的面積(km ²)	<u> 面積) (km²)</u>	
	Φ d,a(r, $ heta$):離着陸時の事故における落下地点確率	<i>φ d, a (r, θ)</i> :離着陸時の事故における落下地点	
	分布関数 (/km ²)	確率分布関数 (/km²)	
		f d, a= Dd, a/ Ed, a: 対象航空機の国内での離着陸時	
		事故率	
		(回/離着陸回)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二列	ě電所(2018. 9. 12 版)	島根	原子力発電所 2号	炉	備考
			<i>Dd, a</i> : 国内 ⁻	での離着陸時事故件	:数(回)	
			<i>Ed,a</i> :国内 ⁻	での離着陸回数(離	着陸回)	
			,			
			第2-4表 計器	飛行方式民間航空機	幾の落下確率	
			(开	行場での離着陸時)) ~~~	
	水 帚ご 4 4-		~ 号 炉			
	発電所名称 パラメータ	東海第二発電所	パラメータ	2	号炉	
	飛行場	茨城空港	飛行場	出雲空港	米子空港	
	fd, a ^{₩1}	約 1.43×10 ⁻⁷ (=4/27,887,158)	発電別からの距離 滑走路方向に対する角度	新月17Km 約26°	ボリ22Km 約42°	
	Nd, a ^{₩ 2}	4, 210	最大離着陸距離 ^{注1}	約28km(約15 NM)	約43km(約23 NM)	
	Φ d, a(r, θ) ^{**3}	約 2.98×10 ⁻⁴	Nd, $a^{i\pm 2}$	13, 672	6, 156	
	発電所からの距離	約 36km	$A^{\#3}$	0.0	02459	
	滑走路方向に対する	統1 0 60°	$ \begin{array}{c} \phi d, a (r, \Theta) \\ \hline f d, a^{\ddagger 4} \end{array} $	2/37, 233, 22	2.63×10^{-8}	
	角度**4		Pd, a	1.49	0×10^{-8}	
	 最大離着陸距離*5 ※1 離着陸時の事故件数は、 年6月 原子力規制委時に1件,着陸時に3件 離着陸回数は、平成5 総括表 1.輸送実績」は 値。 ※2 「数字でみる航空 2014 陸回数とし、その和を預 ※3 別紙のとおり。 ※4 別紙のとおり。 ※5 AIPを参照した。 	約 56km (30nm) 「航空機落下事故に関するデータ」(平成 28 員会)より、平成 5 年~平成 24 年において離陸 た。 (別紙 7.9) 年~平成 24 年の「航空輸送統計年報 第 1 表 こおける運航回数の国内の値及び国際の値の合計 (別紙 7.10) 」にある平成 24 年飛行場別着陸回数と同数を離 発行場別離着陸回数とした。 (別紙 7.11) (別紙 7.3) (別紙 7.2) Pd. a=10 ⁻⁷ (回/炉・年)に相当する 5 と,約 0.56km ² となる。	13,2 注1:AIP JAPANのアラ 注2:「令和元年(平成31年)空 数を離陸回数とし、その和 注3:離着陸時の標的面積は25 0.02459km ² とする。(別細 注4:「航空機落下事故に関する: の計器飛行方式民間航空機 離着陸回数は、「航空機落 原子力規制庁)の値。(別 以上より、 大型民間航空機 10 ⁻⁷ [回/炉・年] とおりとなる。 $A_1 = 10^{-7}$ [E =0.165 [パローチチャートにより求め 注着管理状況調書」(国土交 1を飛行場別離着陸回数とす。 データ(平成11~30年)」(令 約の離着陸時事故件数を用い 下事故に関するデータ(平 1紙7-7) (離着陸時)の落 したる想的面積A (加/炉・年]/1.49×10 km ²]	 かれる (別紙 7 - 3) (ご知名) にある飛行場別着陸回 する。 (これるる飛行場別着陸回 する。 (本和3年2月 原子力規制庁) (ごないる年2月 原子力規制庁) (これるのでは、1000000000000000000000000000000000000	
	.b離隔距離					
	<u>a.</u> で求めた標的	1血積より, 評価対象施設である発電用				
	原子炉施設(原子炉	「建屋, タービン建屋, 海水ポンプ室*,				
	主排気筒)の離隔距	<u> ●離 L は 245m とする(評価結果は、約</u>				
	<u>245.9m)。また,使</u>	用済燃料乾式貯蔵建屋の離隔距離Lは				
	<u>393m とする(評価約</u>	吉果は,約393.4m)。(別紙7.12)				
	※ 評価対象施設で	である残留熱除去系海水系ポンプ及び非				
	小叶川小家小也又	のションズ田がからい1時小方がシングの作				

柏崎刈羽原	子力発電所	6/7号炉	i (2017.1	2.20版)	東	頁海第二発電所(2018.9	9.12版)		島根原子力発電	Î所 2号炉	備考
					常用デ	「ィーゼル発電機(高圧	炉心スプレイ系ディーゼ				
					ル発電	機を含む。)用海水ポン	/プについては、これらが				
					設置さ	れている海水ポンプ室	を標的面積とする。				
								b . 大型民	民間航空機及び小型	民間航空機の標的面積の算出	
a. 大型民間	航空機及び	小型民間航	空機の標的証	面積の算出				(a) 大型	民間航空機		
(a)計器飛行	方式民間航	空機の航空	路を巡航中の	の落下事故	(2) 航空路を巡	紙中の落下事故		①航空	路を巡航中の落下	事故	
					 a.標的面積			Pc=	$= f c \cdot N c \cdot A / W$	7	
$Pc = fc \cdot Nc$	c∙A∕W				$Pc = fc \cdot$	Nc • A/W		Pc	:対象施設への巡航	[中の航空機落下確率(回/年)	
Pc・対象が	布設への巡航	市中の航空機	落下確率[同	司/年]	Pc:対	象施設への巡航中の航	空機茲下確率 (回/年)	Nc	・評価対象とする航	空路等の年間飛行回数	
Nc · 評価文	は象とする航	空路等の年	間飛行回数	「飛行回/年]	$f_c = G_c$	·····································	たりの巡航中の落下事故			(飛行同/年)	
A· 举雪田	原子炉施設	の種的面積「	ˈkm²]		10 00	家(同/(飛行	回·km))	A	・原子炉施設の煙的	1面積 (km ²)	
N. 元电/I W. 航元取	亦」》他政	♥ノイ示り〕田/頃し	.KIII]		Co · · · ·				·航空败恒 (lm)		
₩・7世年的	『囲[エ╨]	行昭敵业をす	のの巡院中の	の遊下車株索		2011年東以什女(凹) こべ孤行昭離(孤行同日	m)	<i>VV</i>		(行明)離出たれの測蔵中の薄玉	
1C - GC / E	1C: 甲位 邢1	□・맫爾ヨだい	りの巡航中の	の溶下争敬卒	HC:亚	「「「「「」」」「「」」「「」」「「」」「「」」「「」」「「」」」「「「」」」「「」」「」」「」」「」」「」」「」」「」」「「」」「」」「「」」「」」「」」「」」「」」「「」」」「「」」」「」」「」」「」」」「「」」」「「		I C-	- GC/ AC: 単位ボ ませず		
	[四/飛1]	丁回・Km」			NC:計	価対象とする航空路等	の年间飛行回殺(飛行回		争议举	(凹/(飛行回・km))	
Gc:巡航日	事砹件数							Gc:巡航中事政件数(回)			
Hc: 延べ升	枪行距離[飛	行回・km」			A:対1	象施設の標的面積(km²	·)	Hc	:延べ飛行距離(飛	≋行旦•km)	
					W : 航空	空路幅(km)					
								第2-5表	計器飛行方式大型	型民間航空機の落下確率	
	第_2-4_表	標的面積の	算出結果						(航空路を	巡航中)	
発電所名称 及び号炉		柏崎刈羽原	京子力発電所		発電所名称	中产资		号 炉		9.号桁	
パラメータ		6 号及	び7号炉		パラメータ	■ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		パラメータ			
対象航空路 ^{注1}	航空路	広域航法経路	広域航法経路	転移経路 (NAEBA	対象航空 & ※1	旦1」程译: IWAKI (IXE) — SWAMP	広域航法経路:	対象航空路 ^{注1}	V29	Y39, Y287, Y206, Y597, Y332	
	(V31)	(¥31)	(¥305)	TRANSITION)		IWAKI (IXE) — Kisarazu (Kze)	Y30 (LOTUS — SWAMP)	$Nc^{\pm 2}$	365	186, 880	
Nc ^{注 2}	14600	3650	182.5	4015	fc ^{₩2}	約 5.13×10 ⁻¹¹ (=	0.5/9,740,013,768)	A ^{注3}	(H30年データ)	(H30年データ) 0.01917	
A ² ± 3	0.01	0.01	0.01	0.01	NT . ₩ 3	365	1,095	₩ ^{₹±4}	14	18.52	
W III 1	14	18.52	18.52	14	NC ^{××}	(平成 24 年データ)	(平成 24 年データ)	f c ^{淮5}	0. 5/11, 570	$,450,753=4.32\times10^{-11}$	
fc ^{i± 0}	E E0 10 ⁻¹⁰	0.5/9, 439, 243,	$077 = 5.29 \times 10^{-12}$	1 51.10-10	₩ ^{3% 4}	14.816	18.52	Pc		8.39×10^{-9}	
PC	5. 52×10	1.04×10 **	5. 21×10 ···	1.51×10	※1 別紙のとお	9 _°		注1:AIP JAI 注2:国土交通省航3	PANにより確認(別紙7- 空局への問い合わせ結果(ヒ	- 4)。 °ークデイの値)(別紙7-8)を365倍した	
	力発電前周辺の	0.1. 航空図 (AIPエ	>×10	- ト)にトろ (別			(万小和式 7.4)	值。			
紙7-4)	方元电//向起の				※2 延べ飛行距	離は, 平成 5 年~平成 24 年(の「航空輸送統計年報 第1表	注3:標的面積は2+ (別紙7-6)	号炉の原子炉建物,制御室建	物等の水平面積の台計値0.01917km²とする。	
注2:国土交通省航空	局への問合せ約	店果 (ピークデ-	イの値)を365倍	きした値。 ただし,	総括表 1.	輸送実績」における運航キロ	メートルの国内の合計値。	注4:航空路について	こは,「航空路の指定に関する	5告示」を参照。なお, RNAV航路については,	
平成24年のピ	ークデイにおけ	ける飛行回数が()回の場合は, 自	呆守的に0.5回とみ	巡航中の事	故件数は、「航空機落下事故」	(別紙 7.10) こ関するデータ」(平成 28 年 6	「飛行方式設定	定基準」に基づく航法精度を	航空路の幅とみなして用いる。(1NM=1.852km	
なし,年間182	2.5回とする。	(別紙7-5)			月原子力	規制委員会)より、平成5年	~平成 24 年において 0 件であ	 として換算) 注5:「航空機落下事 	事故に関するデータ(平成11	~30年)」(令和3年2月 原子力規制庁)の	
注3:原子炉建屋,コントロール建屋等の水平面積の合計値は0.01km²以下であるの			るため, 0.5	5 件発生したものとして評価し		計器飛行方式目	民間航空機の巡航中事故件数	を用いて算出する。 巡航中事故件数は, 平成			
で標的面積は0.	.01km²とする。	(別紙7-6)			※3 国土交通省;	航空局への問い合わせ結果(1	(別紙 4.9) ピークデイの値)を 365 倍した	10年~平成29年 ズボ ~ 赤 〜 町 南半 >>	∓の間で0件のため,保守的)に0.5件とする。 Sデータ(亚式11~20年)」(今和2年2日 原	
在4:「航空路の指定 注5:「減齢中重な供料	Eに関する告示 ht III III III III III III III III III I	」及び「航空路	う寺設正基準」 で0世のため /	による。 R字的にの「件トナー	值。			子力規制庁)の	→, □加工1效砕下 ≢ 叺に 関 りる D値。 (別紙 7 - 7)	5/ 2(十成11~30年/」(市和3年2月 原	
社3: 巡航中事政件数 ス 延べ飛行	Xは、平成3年~ 距離は 亚武4	~平成22年の前 年~亚式99年の	CUIHのため,1 「詰宛輸送兹=	木寸町にU.5件とす 計在却 第1声 ※	※ / 古仁奴叻)。	へいてけ 「結束政策乳点中	(別紙 7.13) 進した参照した。広ば航社の時				
つ。 延/^飛行i 括実 1 輪音	咋離は,平成43 検宝結」におけ	ー~十成23年の ろ運航キロメー	・ 加	山 平報, 第1衣 総 値を合計した値	※4 亘仃栓路に については	ういては、「加空玲寺設正基 ,航法精度を航空路の幅とみ	平」				
(別紙7-7)					として換算	した。)					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 これらの式より、Pc=10⁻⁷(回/炉・年)に相当する標的面積Aを求めると、約23km²となる。 b.離隔距離 a.で求めた標的面積より、発電用原子炉施設(使用済燃料乾式貯蔵建屋除く。)の離隔距離しは1,873mとする(評価結果は、約1,873.5m)。また、使用済燃料乾式貯蔵建屋の離隔距離しは2,695mとする(評価結果は、約2,695.5m)。 		
(b)有視界飛行方式民間航空機の落下事故	4.2 有視界飛行方式民間航空機の落下事故 (1) 有視界飛行方式民間航空機(大型機)の落下事故	②有視界飛行方式民間航空機の落下事故	
$Pv = (fv/Sv) \cdot A \cdot \alpha$ $Pv : 対象施設への航空機落下確率[回/年]$ $fv : 単位年当たりの落下事故率[回/年]$ $fv : 単位年当たりの落下事故率[回/年]$ $Sv : 全国土面積[km²]$ $A : 発電用原子炉施設の標的面積[km²]$ $\alpha : 対象航空機の種類による係数$ 第 2-5 表 落下確率の算出結果 $\sqrt[15p]{5p} - p / (5p) - (5p) - (2p) $	Pv=(fv/Sv)・A・α Pv:対象施設への航空機落下確率(回/年) fv:単位年当たりの落下事故率(回/年) Sv:全国土面積(km ²) A:対象施設の標的面積(km ²) A:対象航空機の種類による係数 アッジュ A:対象航空機の種類による係数	$Pv=(fv/Sv) \cdot A \cdot a$ $Pv:$ 対象施設への航空機落下確率(回/年) $fv:$ 単位年当たりの落下事故率(回/年) $Sv:$ 全国土面積(km ²) $A:$ 原子炉施設の標的面積(km ²) $a:$ 就象航空機の種類による係数 第2-6表 有視界飛行方式民間航空機の落下確率 $\sqrt[1]{5}\sqrt{-g}$ $\frac{g}{10}$ $\sqrt[1]{5}\sqrt{-g}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{6}$ $\sqrt[1]{7}$ $\sqrt[1]{6}$ $\sqrt[1]{7}$ $\sqrt[1]{8}$ $\sqrt[1]{7}$ $\sqrt[1]{7}$ $\sqrt[1]{8}$ $\sqrt[1]{7}$ $\sqrt[1]{8}$ $\sqrt[1]{8}$ $\sqrt[1]{9}$	
以上より, 大型民間航空機の落下確率(Pc <u>(計器飛行</u> <u>方式)+Pv(大型固定翼機)+Pv(大型回転翼機))</u> が10 ⁻⁷ [回	<u>これらの式</u> より, <u>Pv=10⁻⁷(回/炉・年)に相当する</u> 標 的面積 <u>A</u> を <u>求めると,約0.50km²となる。</u>	する。(別紙7-6) 注4:「実用発電用原子炉施設への航空機落下確率の評価基準について」の値を用いる。 <u>以上</u> より, <u>大型民間航空機の落下確率 Pc+ Pvが10⁻⁷ [回/炉・年]</u>	

小中川とならや時期時点に回うせるようとお問うともお 上のまた、低日・ロジェム(おしがえるなどのう)ともの 上のまた、低日・ロジェム(おしがえるなどのう)ともの 一点のまた 上のまた、低日・ロジェム(おしがえるなどのう)ともの 一点のまた 上のまた、低日・ロジェム(おしがえるなどのう)ともの 一点のまた 上のまた 一点のまた このまた 一点のまた このまた 二点のまた	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
PX.	/炉・年]となる標的面積 <u>A1</u> [km ²]を計算すると以下のとおり		となる標的面積A2を計算すると以下のとおりとなる。	
All 二切子 たいひ 中央 たい び そ ない び たいの All 二切子 たい ひ 中央 たい び ういの All 二切子 古い か かい ひ 中央 たい び ういの All 二切子 古い かい ひ 中央 たい び ういの All 二切子 古い かい ひ 中央 たい び ういの All 二切子 古い ひ かい ひ 中央 たい び ういの All 二切子 古い かい ひ 中央 たい び うい かい ひ 中央 たい ひ 小 かい ひ 中央 たい ひ 中央 たい ひ かい ひ 中央 たい ひ やみ たい ひ 中央 たい ひ かい ひ 中央 たい ひ かい ひ 中央 たい ひ かい ひ 中央 たい ひ 中央 たい ひ かい ひ 中 中央 たい ひ 中 中央 たい ひ 中央 たい ひ 中 中央 たい ひ 中央 たい ひ 中 中央 たい 日本 中央 日本 中央 日本 中央 日本 中田 日本 中央 日本 日本 中央 日本 日本 日	となる。			
 ① 立切 中 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$A1 = 10^{-7} \div (8.13 \cdot 10^{-10} + 6.72 \times 10^{-10} + 2.68 \times 10^{-9}) \times 0.01$		$A_2 = 10^{-7}$ [回/炉・年] / (8.39×10 ⁻⁹ +6.43×10 ⁻⁹) /	
 - 上部田田 - 三田田 - 三田 - 三田<td>$=0.239[km^2]$</td><td></td><td>0.01917</td><td></td>	$=0.239[km^2]$		0.01917	
●可認知 ●可認知 ●可認知			=0.129 [km ²]	
 ▲ 128から野田田田は1240m, 128510, 支援県町田上は240m, 125510, 128510, 支援県町田田山は240m, 125510, 1255, 12510, 125100, 1251000, 1251000, 1251000, 1251000, 1251000, 1251000, 1251000, 1251000, 1251000, 1251000, 1251000		b離隔距離		
$\frac{\frac{1}{2} \frac{1}{2} $		a. で求めた標的面積より,発電用原子炉施設(使用済		
$ \frac{ 6 \ {\rm grads} 5 \ {\rm grads} 2 \ {\rm gra$		燃料乾式貯蔵建屋除く。)の離隔距離Lは 229m とする(評		
$\frac{1}{2} experiment of the product $		価結果は、約 229.4m)。また、使用済燃料乾式貯蔵建屋の		
$\frac{1}{10000000000000000000000000000000000$		離隔距離Lは372mとする(評価結果は、約372.2m)。		
・①、電報整査び方式民間結実験、(小型機)、の変正手盤 ・二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、				
a. <u>E00033</u> $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{1} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$ $P_{2} = (x_{1} \wedge y_{2}) + \lambda + a$		(2) 有視界飛行方式民間航空機(小型機)の落下事故	(b) 小型民間航空機	
Pre: $(i_V/S_V) \cdot \Lambda \cdot a$ Pre: $(i_V/S_V) \cdot \Lambda + a$		<u>a.</u> 標的面積	有視界飛行方式民間航空機の墜落事故	
小型式電車を除す「いい」へ小型国家電機)、サいい」 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$Pv = (fv / Sv) \cdot A \cdot \alpha$	$P v = (f v / S v) \cdot A \cdot \alpha$	
V: !! !! !! !! !! !! !! !! !! !! !! !! !!		Pv:対象施設への航空機落下確率(回/年)	Pv:単位年当たりの落下事故率(回/年)	
Number of the set of the se		fv:単位年当たりの落下事故率(回/年)	fv:単位年当たりの落下事故率(回/年)	
h: :::::::::::::::::::::::::::::::::::		Sv:全国土面積(km ²)	Sv:全国土面積 (km ²)	
小型式関航空機の客下確率(Iv_(小型固定繁機),1+v_(小 		A:対象施設の標的面積(km ²)	A : 原子炉施設の標的面積 (km ²)	
$h = \frac{1}{10000000000000000000000000000000000$		α:対象航空機の種類による係数	 α :対象航空機の種類による係数 	
 小型に関軸空機の落下確率(Pv_(小型固定翼換)+Pv (小 小型に関軸空機の落下確率(Pv_(小型固定翼換)+Pv (小 				
小型民間航空機の客下確率(Pv_(小型固定案機) + Pv (小 小型民間航空機の客下確率(Pv_(小型固定案機) + Pv (小 小型民間航空機の客下確率(Pv_(小型固定案機) + Pv (小 レンコーン			第2-7表 有視界飛行方式民間航空機の落下確率	
$\sqrt{2/2-9}$ $\sqrt{2} \cos 2 \sin 2$		発電所名称東海第二発電所	号 炉 2号炉	
小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv (小 小型 小型 5v ^{±1} 37.2 万 0.1 0.1 0.1 0.1 0.0 18/20=0.20 18/20=0.90 ※1 1 m空機巻下葉鉱に関するデーク」(平成 32 年 6 月 原子力規制委員 会) による。 ※2 実用発電用原子炉鉱設への航空機巻下葉車に回する(1001) 0.01 1.0		パラメータ 小型固定翼機 1.75 (=35/20)		
小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv (小 $\frac{37.2 \ \%}{37.2 \ \%}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{18/20=0.90}{372,969}$ 小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv (小 $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{18/20=0.90}{372,969}$ 小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv (小 $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{18/20=0.90}{372,969}$ $\frac{18/20=0.90}{372,969}$ 小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv (小 $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{18/20=0.90}{372,969}$ 小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv (小 $\frac{11.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{37.2 \ \%}{1}$ $\frac{18/20=0.90}{372,969}$ $\frac{18/20=0.90}{372,969}$		小型回転翼機 1.20 (=24/20)	航空機種類	
小型民間航空機の落下確率(Pv_(小型固定翼機) +Pv (小 0.1 0.1 State 3 372,969 ※1 「航空機家下事故に関するデータ」(平成 28 年 6 月 原子力規制委員 会)による。 ※2 「実用発電用原子炉施設への航空機落下確率の評価基準について(内 規)」による。 A ¹³³ 0.01917 2 「実用発電用原子炉施設への航空機落下確率の評価基準について(内 規)」による。 A ¹³³ 0.1 Pr 1.08×10 ⁴ 1.1 Pr 1.08×10 ⁴ 1.1 1.1 1.1 1.1 1.1 1.08×10 ⁴ 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.1 1.1 1.1 1.1 </td <td></td> <td>Sv^{ж1} 37.2 Л</td> <td>f v^{±1} 24/20=1.20 18/20=0.90</td> <td></td>		Sv ^{ж1} 37.2 Л	f v ^{±1} 24/20=1.20 18/20=0.90	
小型民間航空機の落下確率(Pv_(小型固定翼機) + Pv (小 小型民間航空機の落下確率(Pv_(小型固定翼機) + Pv (小 小型民間航空機の落下確率(Pv_(小型固定翼機) + Pv (小		α ^{**2} 0.1 ※1 「航空機変下事故に関すろデータ」(平成 28 年 6 月 原子力規制委員)		
小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv (小 **2 「実用運電用原子が聴蔵への航空破落下離率の評価基準について(Pr 規)」による。 Pr 1.08×10* Pr 1.08×10* 注:「航空機落下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制序) による。 原子力規制序) A. で求めた標的面積より,発電用原子炉施設(使用済 燃料乾式貯蔵建屋除く。)の離隔距離Lは89mとする(評価 指集は、約89.4m)。また,使用済燃料乾式貯蔵建屋の離隔 注:「第2電線下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制序) (上は175mとする)(評価結果は、約175.4m)。 上 以上より、			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
 小型民間航空機の落下確率(Pv(小型固定翼機)+Pv(小 小型民間航空機の落下確率(Pv(小型固定翼機)+Pv(小 		22 「美用発電用原子が施設への航空機容下確率の計画基準について(内 規)」による。		
b.離隔距離 a.で求めた標的面積より,発電用原子炉施設(使用済 燃料乾式貯蔵建屋除く。)の離隔距離Lは29炉の原子炉建物,制御室建物等の水平面積の合計値0.01917 km²とする。(別紙7-6) 注3:標的面積は29炉の航子炉進物へ航空機客下確率の評価基準について」の値を用いる。 小型民間航空機の落下確率(Pv_(小型固定翼機)+Pv(小 正確Lは175mとする(評価結果は,約175.4m)。 正 正 正 上 上 上 り、 以上より、 1 1			注1:「机空機落下事故に関するテーダ(平成11~30年)」(令和3年2月 原子力規制庁) の有視界飛行方式民間航空機の事故件数を用いて算出する。	
		b. 離隔距離	注2:「航空機落下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制庁) にトス	
小型民間航空機の落下確率(Pv_(小型固定翼機) + Pv (小 小型民間航空機の落下確率(Pv_小型固定翼機) + Pv (小 		a. で求めた標的面積より,発電用原子炉施設(使用済	注3:標的面積は2号炉の原子炉建物,制御室建物等の水平面積の合計値 0.01917 km ² と	
小型民間航空機の落下確率(Pv(小型固定翼機)+Pv(小 加口本理(#))、10		燃料乾式貯蔵建屋除く。)の離隔距離Lは89mとする(評価	する。(別紙7-6) 注4:「実用発電用原子炉施設への航空機落下確率の評価基準について」の値を用いる。	
小型民間航空機の落下確率(Pv <u>(小型固定翼機)+Pv(小</u> <u>距離しは175mとする(評価結果は,約175.4m)。</u> <u>以上より,</u>		結果は、約89.4m)。また、使用済燃料乾式貯蔵建屋の離隔		
小型民間航空機の落下確率(Pv <u>(小型固定翼機)+Pv(小</u> <u>以上より</u>		距離Lは175mとする(評価結果は、約175.4m)。		
	小型民間航空機の落下確率(Pv(小型固定翼機)+Pv(小		以上より,	
	型回転翼機))が			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
10 ⁻⁷ [回/炉・年]となる標的面積 <u>A2</u> [km ²]を計算すると以下		小型民間航空機の落下確率Pvが10 ⁻⁷ [回/炉·年] となる	
のとおりとなる。		標的面積 \underline{A}_{3} を計算すると以下のとおりとなる。	
$\underline{A2} = 10^{-7} \div (4.70 \times 10^{-9} + 4.03 \times 10^{-9}) \times 0.01 = 0.114 [\text{km}^2]$		$A_3 = 10^{-7}$ [回/炉・年] /1.08×10 ⁻⁸ /0.01917	
		$=0.177[km^2]$	
<u>b.</u> 大型軍用航空機及び小型軍用航空機の標的面積の算出	4.3 自衛隊機又は米軍機の落下事故	<u>c. 自衛隊機及び米軍機の標的面積の算出</u>	・条件の相違
	(1) 訓練空域外を飛行中の落下事故(空中給油機等, 高高度で	訓練空域外を飛行中の墜落事故	【柏崎 6/7】
	の巡航が想定される大型固定翼機)	①空中給油機等	島根2号炉は,飛行形
<u>拍崎刈羽</u> 原子力発電所の上空には訓練空域がないため, <u>軍</u>	a標的面積	島根原子力発電所上空には訓練空域がないため,自衛	態の違いを踏まえた航
<u>用航空機</u> の落下確率Psoを求める式は,以下のとおりとなる。	$Pso = fso \cdot A / So$	<u>隊機又は米軍機</u> の落下確率 Pso を求める式は,以下のと	空機の分類を実施
Pso=(fso∕So) • A	Pso:訓練空域外での対象施設への航空機落下確率(回	おりとなる。	
Pso:訓練空域外での対象施設への航空機落下確率[回/年]	/年)	$P_{\rm SO} = (\underline{f_{\rm SO}} / \underline{S_{\rm O}}) \cdot \underline{A}$	
fso:単位年当たりの訓練空域外落下事故率[回/年]	fso:単位年当たりの <u>訓練空域外</u> 落下事故率(回/年)	Pso:訓練空域外での対象施設への航空機落下確率	
So :全国土面積から全国の陸上の訓練空域の面積を除いた	A: <u>対象施設</u> の標的面積(km ²)	(回/年)	
面積[km ²]	So:全国土面積から全国の陸上の訓練空域の面積を除	f so:単位年当たりの落下事故率(回/年)	
A:発電用原子炉施設の標的面積[km ²]	いた面積 (km ²)	So : 全国土面積から訓練空域の面積を除いた面積	
		(km ²)	
		A :原子炉施設の標的面積(km^2)	
第 2-6 表 落下確率の算出結果		第2-8表 自衛隊機及び米軍機の落下確率(空中給油機等)	
パラメータ 大型自衛隊機 大型米軍機 小型自衛隊機 小型米軍機	発電所名称 東海第二発電所	号炉 2号炉	
fso ^{itt} 2/20=0.1 4/20=0.2 6/20=0.3 1/20=0.05 So ^{itt} 295.000 372.000 295.000 372.000	fso ^{華1} 自衛隊機 0.025 (=0.5/20) 米軍機 0.05 (=1/20)		
A 0.01 0.01 0.01 0.01	So ^{巻2} 自衛隊機 29.5 万(=約37.2 万一約7.72 万) 米軍機 37.2 万(=約37.2 万一約0.05 万)	<u>机空機種類</u> 空甲縮油機等 $f so^{i\pm 1}$ 自衛隊機: 0.5/20=0.025 米軍機: 1/20=0.05	
Pso 3.38×10^{-9} 5.38×10^{-9} 1.01×10^{-8} 1.34×10^{-9} Pso ($\Delta \Xi L$) 2.02×10^{-8} 1.34×10^{-9}	※1 「航空機落下事故に関するデータ」(平成 28 年 6 月 原子力規制委員 会)による。なお、自衛隊機の事故件数は平成 5 年~平成 24 年におい	S o ^{注 2} 自衛隊機: 294, 881 米軍機: 372, 472	
130 (日前) 2.02×10 注:「平成23年度 航空機落下事故に関するデータの整備」(平成24年9月 独立行政	て 0 件であるため, 0.5 件発生したものとして評価した。 (別紙 7.15)	$\begin{array}{ c c c c c } \hline A^{\pm 3} & 0.01917 \\ \hline B_{C2} & A_{-}20 \times 10^{-9} \\ \hline \end{array}$	
法人 原子力安全基盤機構)による。	※2 「加全國各下事項に因するテーク」(平成28年6月 原十万規制要員 会)による。	注1:「航空機落下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制庁)	
		の自衛隊機又は米軍機の事故件数を用いて算出する。自衛隊機は,平成11年から平 成30年の間で0件であるが,保守的に0.5件とする。	
		注2:「航空機落下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制庁)	
		の値を用いる。 注3:標的面積は2号炉の原子炉建物,制御室建物等の水平面積の合計値0.01917km ² とす	
		る。(別紙 7 - 6)	
		以上より,	
以上より, <u>大型軍用航空機</u> の落下確率(Pso <u>(大型自衛</u>	これらの式より, Pso=10 ⁻⁷ (回/炉・年) に相当する	<u>空中給油機等の落下確率 Psoが10⁻⁷ [回/炉・年] となる</u>	・条件の相違
<u>隊機)+Pso(大型米軍機)</u>)が10 ⁻⁷ [回/炉・年]となる標的	標的面積 <u>A</u> を <u>求めると,約0.46km²となる。</u>	標的面積 <u>A4</u> を <u>計算すると以下のとおり</u> となる。	【柏崎 6/7】
面積A3[km ²]を計算すると以下のとおりとなる。			島根2号炉は,飛行形
$\underline{A3} = 10^{-7} \div (3.38 \times 10^{-9} + 5.38 \times 10^{-9}) \times 0.01 =$		$A_{4} = 10^{-7} [回/炉・年] /4.20 \times 10^{-9} / 0.01917$	態の違いを踏まえた航
$0.114 [\text{km}^2]$		$=0.456[\text{km}^2]$	空機の分類を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 b. 離隔距離 a. で求めた標的面積より,発電用原子炉施設(使用済 燃料乾式貯蔵建屋除く。)の離隔距離Lは217mとする(評 価結果は,約217.8m)。また,使用済燃料乾式貯蔵建屋の 離隔距離Lは355mとする(評価結果は,約355.97m)。 (2) 訓練空域外を飛行中の落下事故(その他の大型固定翼機, 小型固定翼機及び回転翼機) a. 標的面積 Pso=fso・A/So Pso: 訓練空域外での対象施設への航空機落下確率(回 /年) fso: 単位年当たりの訓練空域外落下事故率(回/年) A: 対象施設の標的面積(km²) So: 全国土面積から全国の陸上の訓練空域の面積を除 いた面積(km²) 	②その他の機種 島根原子力発電所上空には訓練空域がないため、自衛 隊機又は米軍機の落下確率Psoを求める式は、以下のと おりとなる。 Pso=(fso/So)・A Pso: 訓練空域外での対象施設への航空機落下確率 (回/年) fso: 単位年当たりの落下事故率(回/年) So: 全国土面積から訓練空域の面積を除いた面積 (km²) A : 原子炉施設の標的面積(km²)	 ・条件の相違 【柏崎 6/7】 島根 2 号炉は,飛行形 態の違いを踏まえた航 空機の分類を実施
小刑軍田航空機の英下確案(Dao(小刑自衛院機)→Dao	発電所名称 東海第二発電所 パラメータ 自衛隊機 0.35 (=7/20) fso ^{*1} 自衛隊機 29.5 万 (=約 37.2 万 –約 7.72 万) So ^{*1} 自衛隊機 29.5 万 (=約 37.2 万 –約 7.72 万) ※1 「航空機落下事故に関するデータ」(平成 28 年 6 月 原子力規制委員 会)による。 (別紙 7.15)	第2-9表 自衛隊機及び米軍機の落下確率(その他の機種 パラメータ 2 号炉 航空機種類 その他の機種 甘ぷの ^[1] 自衛隊機: 10/20=0.50 米軍機: 3/20=0.15 So ^{[12} 自衛隊機: 294,881 米軍機: 372,472 A ¹³³ 0.01917 Pso 4.03×10 ⁻⁸ 本1:「航空機落下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制庁) の自衛隊機又は米軍機の事故件数を用いて算出する。 ただし、平成30年2月5日に目達原駐屯地から南に約4kmで発生したAH-64D 航空 事故について、「航空機落下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制庁) いるが、当該事故は定期整備後の整備試験飛行空域との往復時に発生した事故であ ふため、「訓練空域外を飛行中(その他の機種)」の落下事故としてカウントした。 注:「航空機落下事故に関するデータ(平成11~30年)」(令和3年2月 原子力規制庁) の値を用いる。 :3: 標的面種は2号炉の原子炉建物、制御室建物等の水平面積の合計値0.01917km ² とす :3: (別紙7-6)	・冬仲の坦達
<u>小型軍用航空機</u> の落下確率(Pso <u>(小型自衛隊機) +Pso</u> (小型米軍機))が $10^{-7}[@/炉・年]となる標的面積A4[km2]を計算すると以下のとおりとなる。A4=10^{-7} \div (1.01 \times 10^{-8} + 1.34 \times 10^{-9}) \times 0.01=0.086[km2]$	<u>これらの式より、Pso=10⁻⁷(回/炉・年)に相当する</u> 標的面積 A を <u>求める</u> と <u>,約0.058km²となる。</u>	以上より、 <u>その他の機種</u> の落下確率 $P_{so} \dot{m} 10^{-7}$ [回/炉・年] となる 標的面積 A_5 を計算すると以下のとおりとなる。 $A_5 = 10^{-7}$ [回/炉・年] /4.03×10 ⁻⁸ / 0.01917 =0.047[km ²]	 ・条件の相違 【柏崎 6/7】 島根 2 号炉は,飛行形 態の違いを踏まえた航 空機の分類を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>b. 離隔距離</u>		
	a. で求めた標的面積より,発電用原子炉施設(使用済		
	燃料乾式貯蔵建屋除く。)の離隔距離Lは43mとする(評価		
	結果は,約43.0m)。また,使用済燃料乾式貯蔵建屋の離隔		
	距離Lは111mとする(評価結果は,約111.2m)。		
	(3) 基地-訓練空域間を往復時の落下事故(想定飛行範囲内に		・評価条件の相違
	発電用原子炉施設が存在する場合)		【東海第二】
	<u>a. 標的面積</u>		プラント立地箇所の
	<u>Pse=fse · A/Sse</u>		相違により,島根2号炉
	<u>Pse:対象施設への航空機落下確率(回/年)</u>		は基地-訓練空域間の
	<u>fse:基地と訓練空域間を往復中の落下事故率(回/</u>		往復想定範囲内に位置
	<u>年)</u>		していないため, 評価対
	<u>A:対象施設の標的面積(km²)</u>		象外としている
	<u>Sse:想定飛行範囲の面積(km²)</u>		
	発電所名称 東海第二発電所 パラメータ (自衛隊機の評価)		
	fse ^{#1} 0.25 (=5/20)		
	Sse ^{* 2} 175, 720		
	fse/Sse ^{**3} 3.00×10 ⁻⁶		
	※1 「航空機落下事故に関するデータ」(平成 28 年 6 月 原子力規制委員会)より,百里基地一訓練空域間の想定飛行範囲内における自衛隊機の		
	移動時の事故件数は平成5年~平成24年において0件であり,全国の 基地ー訓練空域間往復時の落下実績(5件)を用いた。		
	(別紙7.15,7.16) ※2 全国の基地ー訓練空域間往復時の想定飛行範囲の面積。		
	(別紙 7.16) ※3 fse, Sse から算出された約 1.42×10 ⁻⁶ 回/(年・km ²)を保守的に 2 倍 にして丸めた値。		
	これらの式より、Pse=10 ⁻⁷ (回/炉・年)に相当する		
	標的面積 A を求めると,約 0.033km ² となる。		
	b. 離隔距離		
	a. で求めた標的面積より,発電用原子炉施設(使用済		
	燃料乾式貯蔵建屋除く。)の離隔距離Lは22mとする(評価		
	結果は、約22.1m)。また、使用済燃料乾式貯蔵建屋の離隔		
	<u>距離しは78mとする(評価結果は,約78.6m)。</u>		
	自衛隊機の基地ー訓練空域間往復時の落下事故に対する		
	離隔距離を第4.3-1 図及び第4.3-2 図に示す。		

第4.5-1回 単馬・安康安戦間は世界の各下半校に対する 第4.5-1回 単馬・安康安戦間は世界の各下半校に対する 第4.5-2回 其局・明確安戦間は世界の名下半校に対する 第4.5-2回 其局・明確安戦間は世界の名下半校に対する 第4.5-2回 其局・明確安戦間は世界の名下半校に対する 第4.5-2回 其局・明確安戦間は世界の名下半校に対する 第4.5-2回 其局・明確安戦間は世界の名下半校に対する	柏崎刈羽原子力発電	這所 6 ∕ 7 号炉	(2017. 12. 20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
第4.3-1 K 第4.3-1 K 第4.3-1 K 第4.3-2 K 20 第第二項目的 第二項目的 20 第二項目的 20 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
第4.3.11 基本:空運空販売往貸知の業工事後に対する 注目版子を施設(使用溶燃料数式用減速局除く,)の履展距離 第4.3.21 基本:回航空販売貸貸貸取の業工事後に対する 第4.3.21 基本:回航空販売貸貸貸取の業工事後に対する 第4.3.21 基本:回航空販売貸貸貸取の業工事後に対する 第二済費料数式用減速量の確保距離					
第4.3-11回 二月週一切建立城南省省自時の港下平板に対すく 登園用原子回加設(使用漆燃料改式貯蔵建成総合、)の銀陽距離 第4.3-21回 五地一副純空城南省省中の港下平板に対すく 第4.3-21回 五地一副純空城南省省中の港下平板に対すく (使用漆燃料改式貯蔵建筑の範疇距離)					
第4.3-1回 基金・空運空販売注意時の際下事業に対する 建電用子が確認(使用造然料款式貯蔵建築除く。)の離隔距離 第4.3-2回 基金 罰補空販問性復時の際下事業に対する 度用造然料表式貯蔵建屋の卵隔距離					
第4.0-1回 法地-空運空域間往復時の澤下事故に対する 発電用原子炉施設《使用送燃料銘式貯蔵準量除く。)の範隔距離 第4.3-2回 基地-訓練空域的往後等の落下事後に対する 第4.3-2回 基地-訓練空域的往後等の落下事後に対する 使用活燃料乾式貯蔵準量の確隔距離					
第4.3-1区 基連-空運空域回往復時の落下事成に対する 発電用层子炉施設(使用済機料範式貯蔵建量除く。)の難隔計離 第4.3-2区 基地-訓練空家開往復時の落下事故に対する 第4.3-2区 基地-訓練空家開往復時の落下事故に対する 使用済燃料電式貯蔵建局の離蹊距離					
第4.3-1 因 医地-空運空域間往復時の落下事故に対する 発電田原子が施設(使用済燃料発式貯蔵建屋除く。)の離廃距離 第4.3-2 因 基地-訓練空域間往復時の落下事故に対する 住用済燃料乾式貯蔵建屋の離隔距離					
速北-2世空空歌師住後時の港下事故に太子 Q 発電用原子炉施設(使用済燃料乾式貯蔵建屋傘く。)の離隔距離 (第 4.3-2 図 基地-訓練空域間往復時の港下事故に対于2 (使用済燃料乾式貯蔵建屋の確隔距離)					
第4.3-2 図 基地-訓練空城間往復時の落下事故に対する 使用済然料範式時蔵建屋の離隔距離				<u>第4.3-1図 基地-空連空域間任復時の落下事故に対する</u> 発電用原子炉施設(使用済燃料乾式貯蔵建屋除く。)の離隔距離	
<u>第4.3-2 図 基地-訓練空城間往復時の落下事故に対する</u> <u>使用済燃料乾式貯蔵建屋の離隔距離</u>					
<u>第4.3-2 図 基地-訓練空域間往復時の落下事故に対する</u> 使用済燃料乾式貯蔵建屋の離隔距離					
<u>第4.3-2図 基地-訓練空城間往復時の落下事故に対する</u> <u>使用済燃料乾式貯蔵建屋の離隔距離</u>					
<u>第4.3-2 図 基地-訓練空城間往復時の落下事故に対する</u> <u>使用済燃料乾式貯蔵建屋の離隔距離</u>					
<u>第4.3-2 図 基地-訓練空域間往復時の落下事故に対する</u> 使用済燃料乾式貯蔵建屋の離隔距離					
<u>第4.3-2 図 基地-訓練空域間往復時の落下事故に対する</u> <u>使用済燃料乾式貯蔵建屋の離隔距離</u>					
<u>第4.3-2 図 基地-訓練空域間往復時の落下事故に対する</u> 使用済燃料乾式貯蔵建屋の離隔距離					
<u>第4.3-2 図 基地-訓練空域間往復時の落下事故に対する</u> <u>使用済燃料乾式貯蔵建屋の離隔距離</u>					
				<u> 毎4.3-2 凶 </u>	

炉	備考

柏崎刈羽原子力発	電所 6/	7号炉	(2017.12.2	20版)	東海第二発電所(2018.9.12版)		島根	原子力発行	電所 2号/	ب		備考
(5) 発電用原子炉施設	からの離隔	距離の算出	L L			(5) 発電用	原子炉施設	とからの離	隔距離の算	出		
(4)で求めた面積	責が,評価支	†象となるタ	発電用原子;	炉施設 (原		(4)で	求めたそれ	ぞれの面積	責が,評価支	象となる	発電用原子	
子炉建屋及びコン	トロール建	屋) 外壁面	iから等距离	誰の離隔を		炉施設	(原子炉建物	物及び 制御	1室建物等)	外壁面か	ら等距離の	
とった場合の標的	面積と等し	しくなる距	離を離隔出	巨離L[m]と		離隔をと	った場合の	の標的面積	と等しくな	:る距離を	離隔距離L	
し,離隔距離Lを算	算出した結:	果を以下に	示す。また	と、各航空		[m]とし	,離隔距離	Lを算出し	した結果を以	以下に示す	。また,各	
機の離隔距離を第	2-1図、第2	2-2図に示す	F_			航空機の)離隔距離る	を第 2-1 図	に示す。			
	· · · · ·								. , .			
第 2-7 表 発電用	原子炉施設	からの離婚	高距離の質	出結果		第2-10表	▶ 発電用[原子炉施設	からの離隔	[距離の算]	出結果	
	大型	小型	大型	小型			· 大刑					
項目	民間航空機	民間航空機	軍用航空機	軍用航空機		項目	民間航空機	大型	小型			
対象航空機	B747-400	Do228-200	KC-767	AH-1S			(離着陸時)	以间加至100	民间观主演	空中給油機等 ————————————————————————————————————	その他の機種 	
0500000000000000000000000000000000000	218	134	133	116		対象航空機	B747-400	B747-400	Do228-200	KC-767	F-15	
6号炉 燃料移送ポンプ	158	74	73	49		離隔距離	134	108	142	284	32	
7 号炉 (防護板(鋼板))	166	82	81	57								
6号炉 主排気筒	239	155	155	131								
7 号炉 までの離隔距離[m]	226	141	141	117								
※:軽油タンクの熱影響評価	は,航空機墜落	客による火災と	:軽油タンク火	災の重畳火災								
も考慮し, 航空機落下位:	置より内側にま (10)と三十	ある軽油タンク	の発火の有無	について評価								
を実施する。評価結果は	(12)に示う。											

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<complex-block></complex-block>		<u>第2-1図 各航空機の落下位置</u>	
<image/> <complex-block></complex-block>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
10 ⁻⁷ [回/炉・年]となる標的面積の考え方は,以下のとおり。		10 ⁻⁷ [回/炉・年] となる標的面積の者 り。
L		10 ⁻⁷ [回/炉·年] となる 標的面積=A 評価対
10 ⁻⁷ [回/炉・年]となる標的面積=S		第2-2図 標的面積の考え
第 2-3 図 標的面積の考え方		
発電用原子炉施設(原子炉建屋及びコントロール建屋)外 壁面から等距離の離隔をとり、10 ⁻⁷ [回/炉・年]となる標的面 積をSとした場合、以下の式が成り立つ。 $S = XY + 2LX + 2LY + \pi L^2/4 \times 4$ $\pi L^2 + 2(X+Y)L + XY - S = 0$ 二次方程式の解の公式より、以下の式となる。 $L = \frac{-(X+Y) + \sqrt{(X+Y)^2 - \pi (XY - S)}}{\pi}$		A=xy+ π L ² /4×4+2(π L ² +2L(x+y)+xy- 2次方程式の解の公式より、以 L=(-(x+y)+ $\sqrt{(x+\pi xy-A)})/\pi$
	 5. 熱影響評価結果 5.1 評価機種の選定 評価機種は「3. 落下事故のカテゴリと対象航空機について」 で抽出した航空機より選定し,他のカテゴリの評価に包絡されるものは評価対象外とした。 第5.1-1表,第5.1-2表にカテゴリごとの離隔距離と評価機 種を示す。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海洋	第二発電所(20	18. 9. 12	版)		島根原子力発電所 2号炉	備考
	第 5. 1-1 才 (発電月	夏 落下雪 月原子炉加	事故のカテゴリ 施設(使用済燃	ごとの離 料乾式貯	隔距離と 蔵建屋除	評価機種 く。))		
	落	下事故のカテ	ーゴリ	対象航空機	離隔距離 (m)	評価機種 ○:評価対象 ×:評価対象外		
	計器飛行方式 民間航空機	飛行場での	離着陸時	B737-800	245	0		
		航空路を巡, 大型機(大	航時 型固定翼機及び大型	B747-400 B747-400	1, 873 229	×*1 0		
	有視界飛行方式 民間航空機	回転翼機) 小型機(小 回転覆機)	型固定翼機及び小型	Do228-200	89	× ^{∦2}		
		回転裏(級) 訓練空域外 を飛行中	空中給油機等, 高高度での巡航が想 定される大型固定翼 機	KC-767	217	0		
	目衛隊機又は 米軍機	2 1611 +	その他の大型固定翼 機,小型固定翼機及 び回転翼機	F-15	43	× ^{※ 3}		
		基地一訓練	空域間往復時	F-15	22	0		
	 ※ 2 「有様非確 Do228-200 が短い「自 とした。 ※ 3 「その他の: 下事故の対 包絡される; 	17万氏同則之 であっても3m ³ 新隊機又は米軍4 大型固定翼機,同じ 大型固定翼機,同じ 大型固定翼機,同じ 大型固定翼機, 大型固定翼機, 大型 大型 大型 大型 大型 大型 大型 大型 大型 大型	 	の対象加至限の 228-200 よりも については、 高距離の短い「1 ごとの離 貯蔵建屋	5.5. 旅行損害 添料積載が多 評価に包絡され 「基地-訓練空城間:	3、単か服人降落空離 く、かつ服人降空離 るため評価対象外 或間往復時」の評価に 該間往復時」の評価に 三平価価機種		
	落	下事故のカラ	゛ゴリ	対象航空機	離隔距離 (m)	評価機種 〇: 評価対象 ×: 評価対象外		
	計器飛行方式	飛行場での	離着陸時	B737-800	393	0		
	民间规空极	航空路を巡; 大型機(大	航時 :型固定翼機及び大型	B747-400	2, 695	× ^{*1}		
	有視界飛行方式 民間航空機	回転翼機) 小型機(小	型固定翼機及び小型	Do228-200	175	×*2		
	1 ARC 11 - 144 - 7 1 - 3	回転異機) 訓練空域外 を飛行中	空中給油機等, 高高度での巡航が想 定される大型固定翼 機	KC-767	355	0		
	日開隊機又は 米軍機		その他の大型固定翼 機,小型固定翼機及 び回転翼機	F-15	111	× ^{#3}		
		基地一訓練	空域間往復時	F-15	78	0		
	 *1 「計器飛行 大型機」のう の大型機」() *2 「有視界飛 Do228-200 が短い「自行 とした。 *3 「その他の: 下事故の対: 	か式氏間航空機 壊下事故の対象 約評価に包絡さ近 行方式民間航空 であっても3m ³ 新隊機又は米軍 大型固定翼機、 東航空機と同じ	の虹空路を巡航時」の落下 機種と同じ B747-400 でを れるため評価対象外とした E1機の小型機」の落下事む と少量であることから,D 機 基地-訓練空域間往復時 小型固定翼機及び回転翼構	> サ政についてお 5 り, 離隔距離の こ。 女の対象航空機 (228-200 より) 序」の落下事故の 機」については 隔距離の短い「	 ・ 1 有視界飛行 の うち,燃料積載量が多 の うち,燃料積載量が多 の 評価に包絡さま 、 「基地-訓練空域間 	r万式民間航空機の 能行方式民間航空格 載量が最大となる らく、かつ離隔距离 いるため評価対象タ 反域間往復時」の評価は 1往復時」の評価は	ク 後 5 作 木 茶 二	
	包絡される	こめ評価対象外	とした。					

(1) システィーク (2) システィーク<	柏崎刈羽原子力系	隆電所 6/	/7号炉	(2017.12.2	20版)		Ţ	東海第二	発電所	(201	8. 9. 12	版)				島根原子	力発電所 2	2号炉		備考
<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	 (6) 必要データ 評価に必要なきなお,温度評価 しくなることから 7号炉主排気筒の とおり,小型民間 が小さく,燃料タ ことから大型軍所 	データを以 ^て fu fu fu fu fu fu fu fu fu fu	下に示す。 は、 <u>離隔距离</u> <u> 外壁面,6</u> 実施する。 <u> 大型軍用航2</u> <u> ち</u> 小さく,8 評価に包絡	<u>雅が短い方式 号炉燃料移き</u> また, <u>第2</u> - 空機と比べ車 雅隔距離も される。	が <u>評価が厳</u> 送ポンプ <u>,</u> 8表に示す 福射ている	<u>5.2</u> 共通 <u>各建屋</u> <u>心スプレ</u> <u>価に必要</u> (1) 各式 <u>各式</u> <u>す。</u>	データ, ラス ション データ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<u>の算出</u> <u>主排気</u> ディーゼ/ ろ <u>新空機</u> J 航空機	<u> 奇及び 一夕を つ 女び 燃</u>	非 幾 算 枓 枓 尾 含 す 係	ディー む。) るデー るデー	-ゼル 対 - タ を	<u>発電機</u> する火ジ 第 5.2-1	(<u>高</u> 圧 <u>炉</u> 影響 評 表 に示	 (6) 必要データ 評価に必要 ては,原子 実施する。 大型民間航 間航空機(いことから) 	9 要なデータを <u>炉建物外壁面</u> また, <u>第2-11</u> 空機と比べ燃 離着陸時)は 大型民間航空	·以下に示す <u>, 排気筒,</u> <u>表</u> に示すと <u>*料タンク面</u> :大型民間航 機の評価に	。なお,温 <u>海水ポンプ</u> の おり, <u>小型</u> <u>積が小さい</u> 空機と比べ 包絡される。	度評価につい D温度評価を <u>民間航空機は</u> こと、大型民 <u>推隔距離が遠</u>	・条件の相違 【柏崎 6/7,東海第二】 地域特性を踏まえた 評価対象の相違及び飛 行形態の違いを踏まえ た航空機の分類の相違
項目 大地 小型 小型 小型 Number of the start production of the start prod	第_2-8 表,	航空機火災	影響評価に	必要なデー	夕 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	第.5.	2-1表	各カテ	ゴリ舟	立空機	及び燃	料に倍	系るデー	<u>久</u>	<u>第2-11</u>	表航空機火	災影響評価	に必要なデー	-9	
地震振行 1077-00 10229-200 167-76 111-13 電振行の構築 164-14 104-1	項目	大型 民間航空機	小型 民間航空機	大型 軍用航空機	小型 軍用航空機	落下	事故のカテニ	ゴリ	対象 航空機	燃料の 種類	燃料量 V (m ³)	燃料密 (kg/m ²	度 質量低下速 M 3) (kg/m ² /s)		項目	大型民間 大型 航空機 民間	小型民間	自衛隊機	又は米軍機	
画称 () Jet A-1 Jet A-1 <t< td=""><td>想定する航空機</td><td>B747-400</td><td>Do228-200</td><td>КС-767</td><td>AH-1S</td><td>計器飛行方式 民間航空機</td><td>飛行場で</td><td>の離着陸時</td><td>B737 -800</td><td>JET A-1</td><td>26. 02^{* 3}</td><td>840*</td><td>² 0. 039[*]1</td><td>110. 0** 4</td><td></td><td>(離着陸時) 航空機</td><td>₩ 戦</td><td>空中給油機等</td><td>その他の機種</td><td></td></t<>	想定する航空機	B747-400	Do228-200	КС-767	AH-1S	計器飛行方式 民間航空機	飛行場で	の離着陸時	B737 -800	JET A-1	26. 02 ^{* 3}	840*	² 0. 039 [*] 1	110. 0** 4		(離着陸時) 航空機	₩ 戦	空中給油機等	その他の機種	
(熱発電) 216,84 2.88 145,03 0.98 0.98 0.9	燃料の種類	Jet A-1	Jet A-1	JP-4	JP-4	有視界飛行方式	大型機() 75大型回	大型固定翼機及 転翼機)	B747	JET A=1	216. 84 ^{# 3}	840 [#]	² 0. 039 ^{×1}	700. 0 ^{∰ 5}	想定する航空機	B747-400	Do228-200	KC-767	F-15	
m m m m	燃料量[m ³]	216.84	2.38	145.03	0.98	民间加工物	司法売は	空中給油機 第 支支 座 7	400	A 1					燃料の種類	JET A-1	JET A-1	JP-4	JP-4	
(株式) (6,65×10) (5,71×10) </td <td>輻射発散度[W/m²]</td> <td>50×10^{3}</td> <td>50×10^{3}</td> <td>58×10^{3}</td> <td>58×10^{3}</td> <td>白衛陵機</td> <td>外を飛行</td> <td>寺, 両両及じ の巡航が想定</td> <td>KC-767</td> <td>JP-4</td> <td>$145.03^{rac{5}{6}6}$</td> <td>760[∞]</td> <td>0. 051*1</td> <td>405. 2^{∰ 7}</td> <td>燃料量[m³]</td> <td>216.84</td> <td>2. 386</td> <td>145.04</td> <td>14.87</td> <td></td>	輻射発散度[W/m ²]	50×10^{3}	50×10^{3}	58×10^{3}	58×10^{3}	白衛陵機	外を飛行	寺, 両両及じ の巡航が想定	KC-767	JP-4	$145.03^{rac{5}{6}6}$	760 [∞]	0. 051*1	405. 2 ^{∰ 7}	燃料量[m ³]	216.84	2. 386	145.04	14.87	
読みデレンク開催 0003 205 226 226 124 6 分かた気能の置いてのの 度いの気能の置いてのしたした。 218 134 133 109 1.6.17*3 1.0*1 1.6.17*3 1.0*1 4.6.17*1 4.64*10*1 4.64×10*1 6.71×10*1 6.71×10*1 6 分かた気格の濃い面 226 141 141 117 1.6*1 1.6*1*1*1	燃焼速度[m/s]	6.66×10^{-5}	6.66×10^{-5}	6. 71×10 ⁻⁵	6.71×10^{-5}	マは米軍機	Р	される大型固 定翼機							輻射発散度[W/m ²]	5. 0×10^4	5. 0×10^{4}	5.8×10 ⁴	5.8 $\times 10^{4}$	
○ ウアメSin (2) 218 134 133 109 ○ 1 N (140 - 180.3 2000 6 分野燃料移送ボンブ <u>x</u> Cの離傷胆難[n] 158 74 73 19 オーイン担いったいつける 115 74 73 19 オーレン型にないたい 115 74 73 19 オーレン型にないたい 115 74 73 19 ボーン型やホーレージ 115 74 73 19 ボーン型やボート 115 74 73 19 ボーン型やボート 115 116 117 ※出血(15) 226 141 117 ※出血(15) 115 116 117 ※出血(15) 115 115 115 115 ※ ボックシックの単振気(15) 115 115 114 117 ※出血(15) 115 115 116 114 117 ※ 115 116 117 115 116 114 112 ※ 115 115 115 115 115 115 115 ※ 115 115 115 115 115 115 115 ※ 115 115 115 115 115 115 ※ <td>燃料ダング面積[m[*]]</td> <td>605</td> <td>26</td> <td>280</td> <td>12</td> <td></td> <td>基地-訓 往復時</td> <td>練空域間</td> <td>F-15</td> <td>JP-4</td> <td>14.87^{±8}</td> <td>760[*]</td> <td>¹ 0, 051^{# 1}</td> <td>44. 6^{** 9}</td> <td>燃焼速度[m/s]</td> <td>4. 64×10^{-5}</td> <td>4.64×10^{-5}</td> <td>6. 71×10^{-5}</td> <td>6. 71×10^{-5}</td> <td></td>	燃料ダング面積[m [*]]	605	26	280	12		基地-訓 往復時	練空域間	F-15	JP-4	14.87 ^{±8}	760 [*]	¹ 0, 051 ^{# 1}	44. 6 ^{** 9}	燃焼速度[m/s]	4. 64×10^{-5}	4.64×10^{-5}	6. 71×10^{-5}	6. 71×10^{-5}	
6 分声燃料移送ボンブ 158 74 73 49 まての範隔距離[a] 158 74 73 49 オーインジルベン (1) 226 141 141 117 ※出典については、参考資料 7-1 参照 44 44 117 ※ 4 44 117 ※ 4 44 117 ※ 4 44 117 ※ 4 44 117 ※ 4 44 117 ※ 4 44 117 ※ 4 44 118 118 118 118 118 118 118 10 14 14 14 14 14 14 14 14 11 11 117 118 118 118 118 118 118 12 13 13 13	65,207 型面よての 離隔距離[m]	218	134	133	109	※1 NU ※2 JI	R = G - 1 8 S - k - 2 2	305 記載値 209-1991記	載の1号の作	<u> </u>					燃料タンク面積[m ²]	700	32	405.2	44.6	
7 号炉主排気筒 までの確認距離[n] 226 141 141 117 ※出典については、参考資料 7-1 参照 ・141 117 6820-1, Becaber 300.0 (Jackanet Jackanet Jac	6 号炉燃料移送ポンプ までの離隔距離[m]	158	74	73	49	※3 ボー ※4 ボー 58325	イングジャパ イング社ホー 5-6, July 200	パン ホームページ - ムページ資料「73 07)」の機体図面よ	"737, 7 airplane り,主翼・i	7 4 7 型機情 Characteris 主翼と交差す	青報" stics for Air 「る胴体部面種	port Planr fが燃料タン	ning(document イク面積と同等。	D6- 想定	発電用原子炉施設 からの距離[m]	134 108	142	284	32	
(本) (○ / ##:mfm2mit.ull) (a) (○ / #:mfm2mit.ull) (a) (○ / #:mfm2mit.ul	7 号炉主排気筒 までの離隔距離[m]	226	141	141	117	し, 3 ※5 ボー	これらの面積	を算出した値 -ムページ資料「74 - 2009)」の操作回	7 airplane	Characteri:	stics for Air	port Plann	ning (document	D6-						
	※出典については、参考資	₩7-1参照				ク面 ※6 世界 ※7 ボー 58328 ※8 航空 ※9 ※8		定し、これらの而 0012-2013 に記載の ムベージ資料「7(2005)」 月号増刊F-15 引面より、燃料タン	資を算出した 領 仮び燃料 7 airplane イーグル(<i>i</i> クの配置及(他 密度から算出 Characteri: 九空ジャーナ パ大きさを想	↓した値 stics for Air つル社 昭和5 3定し, これら	rport Planr 5 年 2 月 5 日 の面積を算	ning(Document 日発行) X出した値	D6-						

柏崎刈羽原子力	発電所 6/7	7号炉 (2017.	12.20版)		東海第二発	電所(20	018.9.12	版)			島根原子力発電	Î所 2号炉		備考		
(7) 燃焼半径の算品	出			(2) 燃焼半	径の算出					(7) 燃焼半径の	第出					
航空機墜落に	よる火災は,そ	の状況によって	て,様々な燃焼	円筒	火炎モデルとし ⁻	て評価を	実施する	ため, 燃炼	産半径は燃	航空機墜落に	よる火災は、	その状況によっ	て、様々な燃烧	尭		
範囲の形態が想	定されるが,円	筒火炎モデルと	として評価を実	焼面積	を円筒の底面と	反定して	以下のと	おり算出し	た。算出	範囲の形態がた	またされるが,「	円筒火炎モデル	として評価を	実		
施するため, 燃	焼半径は対象と	した航空機燃料	科タンクの投影	結果を	第5.2-2表に示す	t.e.				施するため,燃	紫焼半径は対象	とした航空機燃	料タンクの投	影		
面積を円筒の底	面と仮定して以	人下のとおり算 品	出する。							面積を円筒の庭	底面と仮定してい	以下のとおり算	出する。			
				R =	S					R = $(S \neq \pi)^{-0.5}$						
R= $(S \neq \pi)^{-0.5}$				N N	π					R:燃焼半径[m],					
R:燃焼半径[m],	S:燃料タンク打	受影面積(火炎	円筒の底面積)	R : #	然焼半径(m), S	:燃焼ī	面積(m²)			S:燃料タング	7投影面積[m²]	(火炎円筒の底	面積)			
						,,										
第二	2-9 表 燃焼半	径の算出結果			第5.2-2表		機の燃焼	半径		第	2-12 表 燃焼当	ド径の算出結果				
項目	大型民間航空機	大型軍用航空機	小型軍用航空機					燃焼面積	燃焼半径			自衛隊機工	又は米軍機			
想定する航空機	B747-400	КС-767	AH-1S	4	塔下事故のカテゴリ		対象航空机	ξ S (m ²)	R (m)	· 項目	大型民間航空機	空中給油機等	その他機種	-		
燃料タンク面積[m ²]	605	280	12	計器飛行方式	飛行場での離着陸時		B737-800	110.0	5.918	想定する航空機	B747-400	KC-767	F-15			
<u>邓</u> 洗十任[m]	13.8	9.45	1.95	有視界飛行方式目	民間 大型機 (大型固定)	【 機及び大型	B747-400	700.0	14,928	燃料タンク面積[m ²] 燃焼半谷[m]	700	405.2	44.6			
				航空機	回転翼機) 空中系	油機等, 高	i			深游十年[11]	14, 95	11.30	5.77			
				自衛隊機又は	訓練空域外 高度で を飛行中 定され	この巡航が想 しる大型固定	KC-767	405.2	11.357							
				米軍機	翼機 翼機	有吐	E 15	44.6	0.760							
					基地一訓練空或间任	:復吁	F-15	44. 6	3.768							
				(3) 燃焼継	絵時間の算出											
				燃焼約	継続時間は、燃料	斗量を燃	焼面積と	燃焼速度で	「割った値							
				になる。	算出結果を第		に示す。									
				······		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~								
				t =-	V											
					$\pi R^2 \times v$											
				+ • #	<i>殊</i>	1 7 · /		3)								
				D I	然后他们可同(5)			 								
							$\underline{x} \underline{z} - \underline{w}$	<u> </u>	(3)							
					具里似「述皮(Kg	<u>5/ m⁻/ 5</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>然种省度 (K</u>	g/m°)							
					第5.2-3表	各航空機	の燃焼約	統時間								
				**	救のカテゴ॥	対象 燃	料量 燃烧	径 燃焼速度	燃燒継続時間							
				将下事 	取りルフ ユリ	航空機 B727	v R (m ³) (m)	(m⁄s)	t (s)							
				民間航空機 和祖恩森会士主	行場での離着陸時	-800	26.02 5.	918 4.64×10 ⁻⁵	(約 1. 4h) 6. 675							
				日祝乔飛行方式 大子 民間航空機 型[王成 (八王回た異機及の天 回転翼機) 空山 絵 油 繊 塗	-400 2	16.84 14.	928 4.64×10 ⁻⁵	0,075 (約 1.9h)							
					 東空域外 高高度での巡航 が想定される大 	KC -767 1	45.03 11.	357 6. 71×10^{-5}	5, 334 (約 1. 5h)							
				米軍機基	型固定翼機 地一訓練空域間往復時	F-15	14, 87 3.	768 6.71×10 ⁻⁵	4,968							
									(#J 1.4h)							

訓練空域外

を飛行中

自衛隊機又は

米軍機

7 号炉主排

気筒

離隔距離[m]

形態係数

226

0.0065677

141

0.0077434

117

0.0005214

第5.2-5表 各航空機の形態係数(使用済燃料乾式貯蔵建屋)

KC

-767

F-15

217

22

11.357

3.768

5.3634×10-3

5.3368 $\times 10^{-2}$

高度での巡航が想

定される大型固定

翼機

基地一訓練空域間往復時

荐	幕下事故のカラ	ーゴリ	対象 航空機	離隔距離 L (m)	燃焼半径 R (m)	形態係数 Φ (-)
計器飛行方式 民間航空機	飛行場での	維着陸時	B737 -800	393	5.918	4. 3767×10^{-4}
有視界飛行方式 民間航空機	大型機(大 回転翼機)	型固定翼機及び大型	B747 -400	372	14.928	3. 1444×10^{-3}
自衛隊機又は 米軍機	訓練空域外 を飛行中	空中給油機等,高 高度での巡航が想 定される大型固定 翼機	КС -767	355	11.357	$1.9926 imes 10^{-3}$
	基地一訓練	空域間往復時	F-15	78	3. 768	4. 5663 $\times 10^{-3}$

炉		備考
$\left[\frac{n-1}{n+1}\right]$	$\frac{1}{n} \tan^{-1} \left[\sqrt{\frac{(n-1)}{(n+1)}} \right]$	
$+m^{2},$	$B = (1-n)^2 + m^2$	
[m],	R:燃焼半径[m]	
出結果		
衛隊機び	ては米軍機	
機等	その他の機種	
6	3.77	
	32	
10^{-3}	2.66 $\times 10^{-2}$	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
(9) 輻射強度の算出	<u>(5)</u> 輻射強度の評価	<u>(9)</u> 輻射強度の <u>算出</u>
火災の火炎から任意の位置にある点(受熱点)の輻射強度	火炎から任意の位置にある点(受熱点)の輻射強度は,輻	火災の火炎から任意の位置にある点
は、輻射発散度に形態係数をかけた値となる。次式から輻射	射発散度に形態係数を掛けた値 <u>に</u> なる。 <u>算出結果を第5.2-6</u>	は、輻射発散度に形態係数をかけた値。
強度を算出する。	表, 第5.2-7.表に示す。	強度を算出する。
$E = Rf \times \phi$	$E = R f \cdot \Phi$	$E = Rf \cdot \phi$
E:輻射強度, Rf:輻射発散度, φ:形態係数	E:輻射強度(W/m ²), R f :輻射発散度(W/m ²), Φ :形	E:輻射強度,Rf:輻射発散度, Φ :形態
	態係数 <u>(-)</u>	
第 2-11 表 輻射強度の算出結果	第5.2-6表 各航空機の輻射強度	第2-14表 輻射強度の算
項目 大型民間航空機 大型軍用航空機 小型軍用航空機	(発電用原子炉施設(使用済燃料乾式貯蔵建屋除く。))	

落下事故のカテゴリ		対象 航空機	輻射発散度 R f (kW/m ²)	形態係数 Φ (-)	輻射強度 E (W/m ²)	
計器飛行方式 民間航空機	飛行場での離着陸時		B737 -800	50	1.1319×10 ⁻³	56.60
有視界飛行方式 民間航空機	大型機(大型固定翼機及び大型 回転翼機)		B747 -400	50	8.3278 \times 10 ⁻³	416.40
自衛隊機又は 米軍機	訓練空域外 を飛行中	空中給油機等,高 高度での巡航が想 定される大型固定 翼機	КС -767	58	5.3634×10 ⁻³	311.08
	基地一訓練空域間往復時		F-15	58	5. 3368×10 ⁻²	3, 095. 33

	備考			
(9) 輻射強度の算				
火災の火炎				
は,輻射発散	度に形態係数を	かけた値となる	。次式から輻射	
強度を算出す	3			
$E = Rf \cdot \phi$				
E:輻射強度	, Rf:輻射発散度	ξ. Φ:形熊係数		
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	第9-14 表 輻射	† 確 度 の 管 出 結 !	₽.	
[
項目	大型民間航空機	自衛隊機工	ては米軍機	
	5.0×10^4	空中給油機等 5.8×10 ⁴	<u>その</u> 他機種 5.8×10 ⁴	
● 形能係数	3.61×10^{-2}	3.12×10^{-3}	2.66×10^{-2}	
	1, 804, 8	181.1	1, 545, 7	
	1,001.0	101.1	1,0101	
(10)	吐用の営山			
燃焼継約	記時間は、燃料量	を燃焼面積と燃	「焼速度で割った	
値となる。				
$t = \frac{V}{V}$	$-\nu = \frac{M}{L}$	$v_{1} = \frac{V \times \rho}{V \times \rho}$		
$\pi R^2 \times$	v , ρ	$\pi R^2 \times I$	И	
v:燃焼速	度[m/s], M:質量	量低下速度[kg/($m^2 \cdot s)],$	
○:燃料	否度[kg/m ³],t:燃	燃焼継続時間[s]	,V:燃料量「m ³].	
R:伏娃坐	径[m]			
A 7011/20 1				

第5.2-7表 各航空機の輻射強度(使用済燃料乾式貯蔵建屋)

落下事故のカテゴリ			対象 航空機	輻射発散度 R f (k₩∕m ²)	形態係数 Ф (-)	輻射強度 E (₩∕m ²)
計器飛行方式 民間航空機	飛行場での離着陸時		B737 -800	50	4.3767 \times 10 ⁻⁴	21.89
有視界飛行方式 民間航空機	大型機(大型固定翼機及び大型 回転翼機)		B747 -400	50	3. 1444×10^{-3}	157.23
自衛隊機又は 米軍機	訓練空域外 を飛行中	空中給油機等,高 高度での巡航が想 定される大型固定 翼機	KC -767	58	1. 9926×10^{-3}	115. 58
不単機	基地一訓練空域間往復時		F-15	58	4.5663 $\times 10^{-3}$	264.85

(10) 燃焼継続時間の算出

輻射発散度[W/m²]

面 輻射強度[W/m²]

(防護板 |輻射強度[W/m²]

気筒 輻射強度[W/m²]

7 号炉主排 形態係数

形態係数

6号炉外壁 形態係数

6 号炉燃料

移送ポンプ

(鋼板))

燃焼継続時間は,燃料量を燃焼面積と燃焼速度で割った値 となる。

$$t = \frac{V}{\pi R^2 \times v}, \quad v = \frac{M}{\rho} \quad \pm \emptyset, \quad t = \frac{V \times \rho}{\pi R^2 \times M}$$

 $50 imes 10^3$

0.0070295

351.4

0.0127068

635.3

0.0065677

328.3

 58×10^{3}

0.0086371

500.9

0.0249018

1444.3

0.0077434

449.1

 58×10^3

0.0005997

34.7

0.0027727

160.8

0.0005214

30.2

t:燃焼継続時間[s],V:燃料積載量[m³],R:燃焼半径[m],

v:燃焼速度[m/s]

M:質量低下速度[kg/m²·s], ρ:密度[kg/m³]

$$t = \frac{V}{\pi R^2 \times v}, \quad v = \frac{M}{\rho} \quad \downarrow \emptyset, \quad t =$$

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-12 表 燃焼継続時間の算出結果		第2-15 表 燃焼継続時間の算出結果	
項目 大型民間航空機 大型軍用航空機 小型軍用航空機		自衛隊機又は米軍機	
燃料量[m ³] 216.84 145.03 0.98		項目 大型民間航空機 空中給油機等 その他の機種	
燃料面積[m²] 605 280 12 既是低工"主席[1] 0.054 0.051 0.051		燃料量[m ³] 216.84 145.04 14.87	
資重低下速度[kg/m [*] ·s] 0.054 0.051 0.051 燃料密度[kg/m ³] 810 760 760		燃焼面積[m ²] 700 405.2 44.6	
燃料曲及[kg/m] 010 100 100 燃焼速度[m/s] 6.66×10 ⁻⁵ 6.71×10 ⁻⁵ 6.71×10 ⁻⁵		燃焼速度[m/s] 4.64×10 ⁻⁵ 6.71×10 ⁻⁵ 6.71×10 ⁻⁵	
燃焼継続時間[hour] 1.49 2.14 0.34		質量低下速度 0.039 0.051 0.051	
※出典については、参考資料7-1参照		燃料密度[kg/m ³] 840 760 760	
		燃焼継続時間[h] 1.86 1.49 1.39	
		※出典については、参考資料7-1参照	
	 53 建屋外時に対すろ熱影響評価		
	(1) 亚価分角範囲		
	計画対象の建全な空について、前項で万規したカイゴリー		
	こにおける加全機学後にようて先生する八次を応定して計画		
	(2) 判断の考え方		
	a許容温度		
	火災時における短期温度上昇を考慮した場合において、		
	コンクリート圧縮強度が維持される保守的な温度 200℃以		
	下とする。		
(11) 評価結果	b.評価結果	<u>(11)</u> 評価 <u>結果</u>	
a. 建屋外壁の耐火性能評価		a. 建物外壁の耐火性能評価	
(a)許容限界值(許容限界温度)		(a) 許容限界值(許容限界温度)	
本評価で用いる許容限界値(許容限界温度)については.		本評価で用いる許容限界値(許容限界温度)について	
一般的にコンクリートの強度に影響がたいとされる200℃		けー一般的にコンクリートの強度に影響がたいとされる	
※レオス		200℃※とする	
こうる。 ※百円和曲 建築水災のメカーズムトル災左会設計 財		2000 こうる。 ※・	
※原田和興, 建築八次の / カー / ムと八次女主成司, 府		※. 原田和典, 建築八次のケガニハムと八次女主政計,	
団法人 日本建築 センター		財団法人 日本建築センター	
		(b) 耐火性能の評価結果	
(b)耐火性能の評価結果	● 水災が発生した時間から燃料が燃え尽きスすでの問 ─	√/ パパパパパパパパパパパパパパパパパパパパパパパパパパパパパパパパパパパパ	
、※が発生した時間から燃料が燃え尽きるまでの問 一定	ったの転射強度にトス入熱と対流にトス防熱を考慮した 下	一定の輻射強度で発電田原子恒協設外辟が見温されるも	
の輻射	20一次元非完堂執伝道方程式の一些艇の式とりコンク1	ヘン抽りなべ <u>た</u> 電川次1////温設/ご美///元間C40/20 のとして 下記の一次元非定党執伝道古母式の解のオト	
○1個別法及て元电用示」を把取り至い、升価で4000000000000000000000000000000000000	ート表面の温度ト見を求め マンクリート表面の温度ト見を求め、マンクリート	シーレングリートの表面の温度上見を求め コンクリー	
リートの衣面の温度上升を水め、コンクリートの表面温度か 2011年	谷価度以下じめるか評価した。	▶ り衣田温度か計谷底芥温度以下であるか評価を実施す	
許容限界温度以下であるか評価を実施する。		<u></u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$T_{s} = T_{0} + \frac{1}{\left(\frac{\sqrt{k\rhoc}}{1.18h\sqrt{t}} + 1\right)\frac{h}{eE}}$ 出典:原田和典,建築火災のメカニズムと火災安全設計,日本建築セン g_{-} T0:初期温度[50°C],E:輻射強度[W/m ²], ε :コンクリート表面の放射率_(0.95)_*, h:コンクリート表面熱伝達率[34.9W/m ² K]*, k:コンクリート熱伝導率[1.6W/mK]*, ρ :コンクリート密度[2200kg/m ³] *, c:コンクリート比熱[879J/kgK]*, t:燃焼継続時間[s] ※建築設計竣工図書_原子炉建屋構造計算書	$T = T_{0} + \frac{2 E \sqrt{\alpha t}}{\lambda} \left[\frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^{2}}{4 \alpha t}\right) - \frac{x}{2\sqrt{\alpha t}} \exp\left(\frac{x}{2\sqrt{\alpha t}}\right) \right]$ T:表面からx(m)の位置の温度(°C), T_{0}:初期温度(50°C)* $\kappa : \exists \nu \land \neg \neg$	$T = T_0 + \frac{1}{\left(\frac{\sqrt{k\rhoc}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\epsilon E}}$ 出典:原田和典,建築火災のメカニズムと火災安全設計, 財団法人 日本建築センター $T_0: 初期温度[50^{\circ}C], E: 輻射強度[W/m^2],$ $\epsilon: コンクリートの表面の放射率[0.94]^{*1},$ $h: コンクリート表面熱伝達率[23.3W/m^2K]^{*2},$ $k: コンクリート熱伝導率[1.6W/mK]^{*2},$ $\rho: コンクリート密度[2,200kg/m^3]^{*2},$ $c: コンクリート比熱[879J/kgK]^{*2},$ t: 燃焼継続時間[s] *1: 伝熱工学資料, *2:原子炉建物構造計算書	
	なお、天井スラブの評価は以下の理由により、外壁の評 価に包絡されるため実施しない。 ・火炎長が天井スラブより短い場合、天井スラブに輻射 熱を与えないことから熱影響はない。 ・火炎長が天井スラブより長い場合、天井スラブに輻射 熱を与えるが、その輻射熱は外壁に与える輻射熱より 小さい。 ・火炎からの離隔距離が等しい場合、垂直面(外壁)と 水平面(天井スラブ)の形態係数は、垂直面の方が大 きいことから、天井スラブの熱影響は外壁に比べて小 さい。 建屋外壁の評価概念図を第5.3-1 図に、天井スラブの評 価概念図を第5.3-2 図に示す。		
	対流による放熱 ズ井スラブ 中町 中町 屋内 福射強度:E 如期温度:50℃		

炉		備考
西結果		
衛隊機び	スは米軍機	
ı機等	その他機種	
1	1, 545. 7	
9	83	
:		
7		
2	2.5	
民間航空	空機)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	度上昇は無視できると考えられる。		
	このため,建屋外で発生する火災が使用済燃料の除熱,		
	閉じ込め機能の監視に影響を与えることはない。		
b. <u>燃料移送ポンプ</u> の温度評価			・設備の相違
(a)許容限界值(許容限界温度)			【柏崎 6/7,東海第二】
<u>燃料移送ポンプの</u> 許容限界値(許容限界温度) <u>が端子ボッ</u>			島根2号炉では,軽油
クスパッキンの耐熱温度100℃であることを踏まえ、燃料移			タンク、燃料移送ポン
送ポンプの周囲に設置されている防護板(鋼板)の許容温度			プ,非常用ディーゼル発
を当該ポンプの許容限界温度と同様の100℃とする。			電機は、地下構造等の屋
(b)耐火性能の評価結果			内設備のため影響評価
火災が発生した時間から燃料が燃え尽きるまでの間,一定			対象外。
の輻射強度で燃料移送ボンブの防護板(鋼板)が昇温される			島根2号炉では,海水
ものとして、下記の一次元非定常熱伝導方程式の解の式より			ポンプは、屋外設置のた
<u>防護板(鋼板)</u> の最大温度を求め <u>,防護板(鋼板)</u> の温度が			め影響評価を実施
許容温度以下であるか評価を実施する。			
$\varepsilon ES_1 + hS_2T_{air} \left(\epsilon ES_1 + hS_2T_{air} - \tau\right) (-\frac{hS_2}{2})_t$			
$I = \frac{1}{hS_2} - \left(\frac{1}{hS_2} - I_0\right)e^{(1-c_1)^2}$			
T₀:初期温度[55℃],E:輻射強度[W/m²],ε:防護板(鋼板)			
外面の放射率(0.9) ^{×1} ,			
h: <u>防護板(鋼板)</u> 表面熱伝達率[17\/m²K] ^{※2} , <u>S:防護板(鋼</u>			
板)放熱面積[32.4m ²]			
<u>(S/2:受熱面積は外面のみ),</u> C:防護板(鋼板)の 熱容量			
$[\underline{2.41 \times 10^{6}} \text{J/K}],$			
t:燃焼継続時間[s], <u>T_{air}:外気温度[55℃]</u>			
※1:伝熱工学資料,※2:空気調和·衛生工学便覧			
防護板(鋼板)の温度は最高でも87℃(燃料移送ポンプの			
許容限界温度以下)であることから,防護板(鋼板)の内側			
に設置されている燃料移送ポンプに対して熱影響はない。			

柏崎刈羽原子力多	発電所 6/7	号炉 (2017.	12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-14 表 燃料	料移送ポンプ((防護板(鋼板))の温度評価			
	結果					
	5 安炉燃料移达 大型民間航空機	<u>、</u> ホンフ 大型軍用航空機	小型軍用航空機			
	635.3	1444.3	160.8			
燃焼継続時間[hour]	1.49	2.14	0.34			
防護板(鋼板)温度[℃]	67	87	56			
					b 海水ポンプの温度評価	
					<u>(a)</u> 计谷限外值(计谷限外值及)	
					本評価で用いる許容限界値(許容限界温度)は、海水	
					ポンプ電動機の下部軸受の許容温度 55℃とする。	
					(b) 耐火性能の評価結果	
					一定の輻射強度で御水ホンノの行却空気が升温される	
					ものとして、下記の式より海水ポンプの冷却空気温度を	
					求め,許容温度以下であることを確認する。	
					$F \times A_{\pi}$	
					$T = T_0 + \frac{E \times R_1}{G \times C}$	
					u op	
					T₀:通常運転時の上昇温度[22℃],E:輻射強度[W/m²],	
					A _T :受熱面積[10.93m ²],G:重量流量[1.96kg/s],	
					C:空気比埶[10071/(kg・K)] ^{※1}	
					》1·仁樹工学次約	
					※1· 伍杰上于貝科	
					<u>第 2-17 表 海水ポンプの温度評価結果</u>	
					白衛隊機マけ米軍機	
					項目 項目 大型民間航空機 空中給油機等 その他機種	
					輻射強度[W/m ²] 1,804.8 181.1 1,545.7	
					評価温度[℃] 33 24 31	

相响利羽尔于刀先电所 07 75次 (2011.12.20 版)	俪考
c. 主排気筒の温度評価 5.4 主排気筒に対する熱影響評価 c. 排気筒の温度評価	
(a)許容限界値(許容限界温度) (1)評価対象範囲 (a)許容限界温度)	
本評価で用いる許容限界値(許容限界温度)は、鋼材の許主排気筒について、カテゴリごとにおける航空機墜落によ本評価で用いる許容限界値(許容限界温度)は、鋼材	
容限界温度325℃とする。 って発生する火災を想定して評価を実施した。 の許容限界温度 325℃とする。	
なお,主排気筒の評価に当たっては,保守性を考慮して,	
(b)耐火性能の評価結果 節身よりも離隔距離の短くなる鉄塔について評価した。 (b) 耐火性能の評価結果	
一定の輻射強度で主排気筒が昇温されるものとして、下記 (2) 評価対象施設の仕様 一定の輻射強度で排気筒が昇温されるものとして、下	
の式より,主排気筒の最大温度を求め,主排気筒の温度が許主排気筒仕様を第5.4-1表に,主排気筒外形図を第5.4-1 記の式より,排気筒の最大温度を求め,排気筒の温度が	
容温度以下であることを確認する。 図に示す。 許容温度以下であることを確認する。	
$T = T_0 + \frac{\varepsilon E}{2h}$	
T ₀ :初期温度[50℃],E:輻射強度[W/m ²],	
$\epsilon: 非気筒表面の放射率 (0.9)*1, \epsilon: 排気筒表面の放射率 [0.9]*1,$	
h: <u>排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2} h: <u>排気筒</u> 表面熱伝達率[17W/m ² K] ^{*2}	
※1: 伝熱工学資料, ※2: 空気調和·衛生工学便覧 ※1: 伝熱工学資料, ※2: 空気調和・衛生工学便覧	
第 2-15 表 主排気筒の温度評価結果 第 5.4-1 表 評価対象施設の仕様 第2-18表 排気筒の温度評価結果	
7号炉主排気筒 名称 主排気筒 項目 大型民間航空機 自衛隊機又は米軍機	
項目 大型民間航空機 大型車用航空機 小型車用航空機 小型車用航空機 輻射強度[W/m ²] 328.3 449.1 30.2 種類 鉄塔支持型	
表面温度[℃] 59 62 51 内径 4.5m 表面温度[℃] 98 55 91	
主要 う 伝 地表高さ 140m	
材料 筒身 SS400 ### SS400_STK400	
個数 1	
(3) 判断の考え方	
が維持される保守的な温度 325℃以下とする。	
b. 評価結果	
て、輻射による入熱量と対流による放熱量が釣り合うこと	
を表した下記の温度評価式により主排気筒鉄塔表面の最大	
温度を求め、表面温度が許容温度以下であるか評価した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$T = T_0 + \frac{E}{2E}$		
	$T: 計容温度(325C), T_0: 初期温度(50C)^{*1}$		
	上: 輻射强度(W/m^2), h: 烈伝達举($I/W/m^2/K$) ^{*2}		
	※1 水戸地方気象台で観測された過去最高気温38.4℃		
	に保守性を持たせた値		
	※2 空気調和・衛生上字便覧(外表面の熱伝達率は、受熱		
	面の形状や周囲の環境条件を受け変化するが、一般		
	的な値として垂直外壁面、屋根面及び上げ裏面の夏		
	李、冬季の値が示されている。評価上放熱が少ない		
	方が保守的であることから、これらのうち最も小さ		
	い値である $17W/m^2/K$ を用いる。)		
	なお, 評価に当たって主排気筒は鉄塔と筒身で構成され		
	ているが、筒身よりも鉄塔が火災源との距離が近いこと、		
	材質も鉄塔は SS400, STK400, 筒身では SS400 であり, 物		
	性値が鉄塔, 筒身ともに軟鋼で同一であることから, 鉄塔		
	の評価を実施することで筒身の評価は包絡される。主排気		
	筒の評価概念図を第 5.4-2 図に示す。		
	J J		
	主排気筒鉄塔表面の温度上昇を評価した結果,許容温度 以下であることを確認した。評価結果を第5.4-2表に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				12版)			島根原子力発電所 2号炉	備考
	第5.4-2表 主排気筒鉄塔表面の到達温度					温度			
		#下す#のカティリ	対象	燃焼面積	輻射強度	評価温度	許容温度		
	計思惑行	福丁	航空機	[m ²]	[W/m ²]	(°C)	(°C)	-	
	古 都飛行 方式民間 航空機	飛行場での離着陸時	B737 -800	110.0	56.60	52			
	有視界 飛行方式	大型機(大型固定翼機 及び大型回転翼機)	B747 -400	700.0	416.40	63			
	民間航空機 自衛隊機 又は	大面航空機 空中給油機等, 高高度での 自衛隊機 又は を飛行中 巡航が想定される 大型固定翼機	KC -767	405.2	311.08	60	< 325		
	米車機	基地一訓練空域間往復時	F-15	44.6	3, 095. 33	142			
<u>d. 軽油タンクの温度評価</u>									・設備の相違
航空機落下位置より原子炉建屋側にある軽油タンクが航									【柏崎 6/7】
<u>空機墜落による火災によって,発火するかどうか評価する。</u>									島根2号炉では,航空
航空機墜落による火災時に軽油タンク内の軽油が発火点と									機落下位置より建物側
なる輻射強度[₩/m ²]を算出し,その輻射強度が航空機燃料の									に危険物タンクが存在
輻射発散度(最大58×103W/m ²)より大きいことから,輻射熱									しない
により軽油が発火しないことを確認する。									
(a) <u>軽油タンクの危険輻射強度の算出</u>									
<u>一定の輻射強度で軽油及び軽油タンクが昇温されるも</u>									
のとして、下記の式より、許容限界温度となる輻射強度を									
危険輻射強度とする。									
$E_{max} = \frac{ThS_2 - hS_2T_{air}(1 - e^{\left(-\frac{hS_2}{c}\right)t}) - hS_2T_0e^{\left(-\frac{hS_2}{c}\right)t}}{\varepsilon S_1(1 - e^{\left(-\frac{hS_2}{c}\right)t})}$									
T₀:初期温度[38℃],T:許容限界温度[225℃] ^{※1} ,ε:軽油									
 タンク表面の放射率(0.9) ^{※2} ,									
h:軽油タンク表面熱伝達率[17W/m²K] ^{*3} , S ₁ =S ₂ :軽油 タン									
ク受熱・放熱面積[m ²],									
 C:軽油タンク及び軽油の熱容量[8.72×10 ⁸ J/K] ^{*4} ,t:燃焼継									
続時間[s] ^{※5} ,									
生工学便覧									
※5:評価対象航空機の中で最も燃焼継続時間の長い大型軍									
用航空機の2.14時間									

柏崎刈羽原子力発電所	6/7号炉 (2017.	12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電	所 2号炉	備考
(b) 評価結果						
以上より、燃焼継続	時間2.14時間で軽油の	発火点225℃と				
なる輻射強度は, 107k	W/m²となる。ここで,舫	抗空機燃料の輻				
<u>射発散度が58kW/m²であ</u>	り,軽油タンク受熱面で	での輻射強度は				
輻射発散度(58kW/m2)に	ニ形態係数(0~1の間の)値)をかけた				
値であることから、軽	油タンク受熱面の輻射	強度は58kW/m ²				
以下である。よって,車	経油タンク受熱面での輻	国射強度が軽油				
の発火点以上となる危	険輻射強度より小さいこ	ことから, 輻射				
熱により軽油が発火す	ること はない。					
e. タービン建屋非常用電気	【品室の温度評価					
航空機墜落による火	災では、タービン建屋周	同辺においても				
発生する可能性がある	ことから、航空機墜落に	こよる火災の熱				
影響を検討する。ター	ビン建屋非常用電気品	室への熱影響				
は,航空機墜落による	単独火災よりも危険物タ	マンク火災との				
重畳を考慮する場合が	厳しくなるため, 航空機	<u> 後墜落による火</u>				
	で示す航空機墜落によ	る火災と危険				
物タンク火災の重畳に	包絡されるため熱影響に	はない。				
<u>f.</u> 廃棄物処理建屋の温度評	范価					
航空機墜落による火		置周辺において				
も発生する可能性があ	ることから, 航空機墜落	客による火災の				
熱影響を検討する。廃	棄物処理建屋には復水	:貯蔵槽がある				
が,建屋外壁から2枚以	人上隔てたエリアにある	らため直接熱影				
響はないと考えられる	が,廃棄物処理建屋外壁	達の温度評価を				
実施することで廃棄物	処理建屋の耐性を評価す	する。				
評価に使用する条件	は以下のとおり。					
第 2-16 表 廃棄物処	理建屋火災影響評価に	必要なデータ				
項目 大型民間	航空機 大型軍用航空機	小型軍用航空機				
輻射発散度[W/m ²] 50×1	0 ³ 58×10 ³	58×10^{3}				
燃焼半径[m] 13.8 離隔距離[m] 143	9. 45 58	1.95				
燃焼継続時間[hour] 1.49	2.14	0.34				
い トト の 形能 体 数 及	「輻射強度を求め」下訴	 己の一次元非定				
堂執伝道方程式の解の:	式より、コンクリートの	<u>したしますの</u> しますの 温度上				
昇を求め コンクリー	トの表面温度が許容限界	「「「「「「「」」」「「」」」				
<u>// C-11-2/</u>						

ることを確認する。	
$T_{s} = T_{0} + \frac{1}{\left(\frac{\sqrt{k\rho c}}{1.18h\sqrt{t}} + 1\right)\frac{h}{\varepsilon E}}$	
出典:原田和典,建築火災のメカニズムと火災安全設計,日	
本建築センター	
<u>T₀:初期温度[50℃],E:輻射強度[W/m²], ε:コンクリート</u>	
表面の放射率(0.95)*,	
<u>h:コンクリート表面熱伝達率[34.9W/m²K]^{**}, k:コンクリ</u>	
<u>ート熱伝導率[1.6W/mK]*,</u>	
<u>ρ</u> :コンクリート密度[2200kg/m ³] [*] , c:コンクリート比熱	
<u>[879J/kgK]*,</u>	
<u>t:燃焼継続時間[s]</u>	
※:建築設計竣工図書 原子炉建屋構造計算書	
<u>第 2-17 表 廃棄物処理建屋外壁の温度評価結果</u>	
項目 大型民間航空機 小型軍用航空機 影能係数 0.0152052 0.0270672 0.0057874	
市場保険 0.012533 0.037013 0.037814 輻射強度[W/m ²] 764.7 2149.9 335.6	
a a b	
5.5 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発	・設備の相違
電機を含む。)に対する熱影響評価	【柏崎 6/7,東海第二】
	島根2号炉では,軽油
非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル	タンク、燃料移送ポン
発電機を含む。)の流入空気温度について、カテゴリごとに	プ,非常用ディーゼル発
おける航空機墜落によって発生する火災を想定して評価を実	電機は、地下構造等の屋
施した。	内設備のため影響評価
<u>(2)</u> 評価対象施設の仕様	対象外。
空気の流入口となり熱影響を受ける非常用ディーゼル発電	島根2号炉では,海水
機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気ロ	ポンプは, 屋外設置のた
の仕様を第5.5-1表に,外形図を第5.5-1図に示す。	め影響評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第 5.5-1 表 評価対象施設の仕様		
	名称 非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。) 吸気口 種類 円筒縦形 主要寸法 外径 : 1.54m 月筒高さ: 2.46m 1 樹料 SS400 個数 6 第 5. 5-1 図 評価対象施設の外形図		
	(3) 判断の考え方		
	<u>a許容温度</u>		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。)の流入空気の許容温度は、火災時におけ		
	<u>る温度上昇を考慮した場合において、非常用ティーセル発</u>		
	此確付に必要は価度 33 しな」 ことり る。 ※ 非常田ディーゼル発電機(真正仮心スプレイズディ)		
	冷却出口温度が上昇し、シリンダへの必要空気量が確保で		
	きなくなる。		
	b評価結果		
	火災が発生した時間から燃料が燃え尽きるまでの間,一		
	定の輻射強度による入熱が非常用ディーゼル発電機(高圧		
	炉心スプレイ系ディーゼル発電機を含む。)に流入する空気		
	の温度上昇に寄与することを表した下記の温度評価式によ		
	り,流入する空気の温度が 53℃となる輻射強度(=危険輻		
	射強度)を求め、当該火災源からの熱影響がこの危険輻射		
	強度となる離隔距離(=危険距離)を算出し、当該火災源か		
	ら評価対象施設までの離隔距離を下回るか評価を実施し		
	た。空気の流入口となり熱影響を受ける非常用ディーゼル		
	発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸		
	気口の評価概念図を第5.5-2図に示す。		
	$T = T_0 + \frac{E \cdot A}{G \cdot C_p} + \Delta T$		
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	---	--------------	----
	<u>T:許容温度(53℃), T₀:初期温度(39℃)*1</u> ,		
	$E:輻射強度(W/m^2), G:重量流量(4kg/s)*2,$		
	<u>A:輻射を受ける面積(7.8m²)</u>		
	<u>C_</u> :空気比熱(1,007J/kg/K) ^{※3} ,		
	<u> Δ T : 構造物を介した温度上昇(5℃)^{※4}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃に保		
	守性を持たせた値		
	※2 ディーゼル発電機機関の内,給気流量が少ない高圧炉		
	心スプレイ系を評価対象とする。		
	<u>ディーゼル発電機機関吸気流量(228m³/min)×空気</u>		
	密度(1.17kg/m ³)÷60		
	※3 日本機械学会 伝熱工学資料		
	※4 最高到達温度を想定した場合の温度上昇		
	非常用ディーゼル発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。) 吸気口		
	編射強度:E		
	: 受熱面		
	第5.5-2 図 非常用ディーゼル発電機(高圧炉心スプレイ系		
	ディーゼル発電機を含む。)吸気口の評価概念図		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ		
	ル発電機を含む。)に流入する空気の温度が 53℃となる危		
	<u>険距離を算出した結果,危険距離が離隔距離以下であるこ</u>		
	<u>とを確認した。評価結果を第5.5-2表に示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
	第5.5-2表 非常用ディーゼル発電機(高圧炉心スプレ	江系		
	ディーゼル発電機を含む。)への火災影響評価結果			
	対象 燃烧面積 輻射強度 評価温度	許容温度		
	溶下事故のカテゴリ 航空機 [m ²] [W/m ²] (℃) 計器飛行	(°C)		
	方式民間 飛行場での離着陸時 B737 -800 110.0 56.60 45 航空機 -800			
	市民市 大型機(大型固定翼機) B747 700.0 416.40 45 民間航空機 区び大型回転翼機) -400 700.0 416.40 45	- 52		
	自衛隊機 空中給油機等, 高高度での KC 405.2 311.08 45 自衛隊機 必航が想定される -767 405.2 311.08 45 火口体 火型固定翼機 45	~ 53		
	基地一訓練空域間往復時 F-15 44.6 3,095.33 50			
	5.6 残留熱除去系海水系ポンプ及び非常用ディーゼル発	電機 (高		・設備の相違
	圧炉心スプレイ系ディーゼル発電機を含む。)用海オ	、ポンプ		【柏崎 6/7、東海第二】
	に対する熱影響評価			島根2号炉では、軽油
	(1) 評価対象範囲			タンク、燃料移送ポン
		ゼル発		プ,非常用ディーゼル発
	電機(高圧炉心スプレイ系ディーゼル発電機を含む。)	用海水		電機は,地下構造等の屋
	ポンプ電動機は、海水ポンプ電動機高さより高い海水	ポンプ		内設備のため影響評価
	室の壁で囲まれており、側面から直接火災の影響を受	けるこ		対象外。
	とはないが、上面は熱影響を受ける可能性がある。評	価にお		島根2号炉では,海水
	いては、海水ポンプ室の壁による遮熱効果を考慮せす	,側面		ポンプは, 屋外設置のた
	から直接火災の影響を受けることを想定する。また,	残留熱		め影響評価を実施
	除去系海水系ポンプ電動機及び非常用ディーゼル発電	機(高		
	圧炉心スプレイ系ディーゼル発電機を含む。)用海水な	ペンプ電		
	動機は、電動機本体を全閉構造とした全閉外扇形の名	却方式		
	であり、外部火災の影響を受けた場合には、周囲空気	の温度		
	上昇により、冷却機能への影響が懸念されることから	,冷却		
	空気の温度を評価対象とする。火災発生位置と海水ホ	シプの		
	位置関係を第5.6-1図に示す。			
	電動機内部の空気冷却対象は固定子巻線及び軸受て	あり <u>,</u>		
	そのうち許容温度が低い軸受温度の機能維持に必要と	なる冷		
	却空気の温度が、許容温度以下となることを確認する	.Q		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
	第5.6-1 図 火災発生位置と海水ポンプの位置関係		
	(2) 評価対象施設の仕様 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン プの海水ポンプ室内の配置図を第5.6-2 図,外形図を第5.6-3 図に示す。仕様を第5.6-1表に示す。		
	第 5.6-2 図 海水ポンプの配置図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第5.6-3 図 海水ポンプの外形図 第5.6-1 表 評価対象施設の仕様 名称 残留熱除去系海水系ポンプ 電動機 非常用ディーゼル発電機 (高圧炉心スプレイ系ディ ーゼル発電機を含む。)用		
	海水ポンプ電動機 主要寸法 全 幅:1.9 m 全 幅:0.51m		
	上 高 さ:2.73m 高 さ:0.98m 材料 SS400, SUS304 SS400		
	基数 4 3		
	(3) 判断の考え方 a.許容温度 残留熱除去系海水系ポンプ電動機及び非常用ディーゼル 発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用 海水ポンプ電動機の冷却空気の許容温度は、上部及び下部 軸受のうち,運転時の温度上昇が高い下部軸受の上昇温度 を考慮し、軸受の機能維持に必要な冷却空気の許容温度を 第5.6-3 表に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 片	友)	島根原子力発電所 2号炉	備考
	第 5.6-4 表 評価	町に用いた諸	远		
		残留熱除去系 海水系ポンプ 電動機	非常用ディーゼル 発電機(高圧炉心スプレイ系 ディーゼル発電機を含む。)用 海水ポンブ電動機		
	G:重量流量(kg/s)	2.6	0.72		
	E:輻射強度 (W/m ²) ^{※1}	3, 095. 33	3, 095. 33		
	t : 燃燒継続時間 (s) ^{※1}	4,968	4,968		
	A:輻射を受ける面積 (m ²)	12	1.6		
	A _a :海水ポンプの表面積 (m ²)	20	1.8		
	C:電動機の熱容量 (kJ/K)	6,440	290		
	Δ T _α :輻射熱による構造物の温度上昇 ^{※2} (℃)	29	85		
	h _{in} :内部への熱伝達率 (W/m ² /K) ^{※3}	10	10		
	E _{in} :内部への輻射強度 (W/m ²)	290	850		
	C p : 空気比熱(J/kg/K)	1,007	1,007		
	Δ T _b :構造物を介した温度上昇 ^{※4} (°C)	2.2	2.1		
	※1 F-15の値	1			
	※2 熱影響が最も厳しいF-15を対象に,	熱エネルギーの式	より求まる式 (ΔT _α =E×A		
	×t/C/1000)より算出				
	※3 空気調和・衛生上字便覧(外表面の熱伝達 値)	『率は, 垂直表面の	⊃値 8.29₩/m²/K を切上けた		
	■/※4 熱影響が最も厳しいF-15を対象に、³	熱エネルギーの式	より求まる式 (ΔTь=Ein×		
	A _a /G/C _p)より算出				
			電動機端子箱		
	輻射強度:E		1		
			: 受熱面		
	第5.6-4 図	評価概念図			
	輻射熱によって上昇するそ	令却空気の多	削産温度を算出した		
	結果,許容温度以下である、	ことを確認	した。評価結果を第		
	5 6-5 志 笠 5 6-6 志に ディ	-			
	5.0-5 衣, 第5.0-0 衣(こ小9				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)							島根原子力発電所 2号炉	備考
	第5.6-5表 輻射熱によって上昇する冷却空気の到達温度								
	評価結果								
	(残留熱除去系海水系ポンプ)								
		落下事故のカテゴリ	対象 航空機	燃焼面積 S [m ²]	輻射強度 E [W/m ²]	評価温度 (℃)	許容温度 (℃)		
	計器飛行 方式民間 航空機	飛行場での離着陸時	B737 -800	110.0	56.60	45			
	有視界 飛行方式 民間航空機	大型機(大型固定翼機 及び大型回転翼機)	B747 -400	700.0	416.40	46			
	自衛隊機 又は 米軍機	空中給油機等, 訓練空城外 高高度での を飛行中 巡航が想定される 大型固定翼機	КС -767	405.2	311.08	46	< 70		
	不単傚	基地一訓練空域間往復時	F-15	44.6	3, 095. 33	59			
	第5.6-6表 輻射熱によって上昇する冷却空気の到達温度 評価結果 (非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電 機を含む。)						晶度 ル発電		
		ガマ東社のカンゴ1	対象	燃焼面積	輻射強度	評価温度	許容温度		
	自由责任	洛下事故のカテコリ	航空機	5 [m ²]	E [W/m ²]	(°C)	(°C)		
	計 盆飛11 方式民間 航空機	飛行場での離着陸時	B737 -800	110.0	56.60	45			
	有視介 飛行方式 民間航空機	大型機(大型固定翼機 及び大型回転翼機)	B747 -400	700.0	416.40	45	< 360		
	自衛隊機 又は 米軍機	空甲給油機等, 訓練空域外 高高度での を飛行中 巡航が想定される 大型固定翼機	KC -767	405.2	311.08	45			
	215-44.0%	基地一訓練空域間往復時	F-15	44.6	3, 095. 33	51			
	<u>5.6</u> 外 発電 外 て た ジ ・ ・ ・ ま を 受 に	壁に設置されている 電用原子炉施設の外壁 大災の熱影響を受けや 炎影響評価を実施する シ ・ 扉 ・ ルーバ ・ 配管貫通部 ・ ブローアウトパネル 5, 複数設置されてい する位置にあるもの	 幾器に対応 きていこ うすいこ うずいこ うすいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ うずいこ	すする熱されてとから、響を受	 熱影響評 いる機器 , これは けやすい 器のうた , 機器 	価 器 こ の 機 器 に う 、 最 も に つ い 能 器 に つ い 能 器 に つ い に つ い 器 に つ い に つ い 器 に つ い こ つ い し つ い し つ い し つ い し つ い し つ い つ い し つ い つ い つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い つ い つ い つ い つ い し つ い つ い し つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い し つ い し つ い し つ い つ い し つ い し つ い し つ い し つ い し つ い し つ い し つ い つ い し つ い し つ い つ い つ い つ い つ い つ い つ い い つ い い つ い つ い つ い つ い い つ い い つ つ い つ い つ い つ い つ つ い つ い つ い つ い つ い つ い つ つ つ い つ い つ い つ い つ い つ い つ い つ い つ い つ い い つ い い つ い い つ い つ い つ い つ い つ い つ い つ い い つ い い つ い い つ つ い つ い つ い つ つ つ つ い つ つ つ い つ い つ い つ つ つ つ い つ つ つ つ	<u>、ては</u> , <u>につい</u> <u>い</u> 下の 熱影響		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	建屋内部へ熱影響が及ぶ可能性のあるもの)を評価することに		
	よって、その他の機器は本評価に包絡される。		
	<u>5.6.1 扉の火災影響評価</u>		
	発電用原子炉施設の脆弱箇所の一つである扉について、火		
	災影響評価を実施する。		
	5.6.1.1 扉温度の評価		
	(1) 評価対象		
	扉のうち、建屋内部へ熱影響が及ぶ可能性がある原子炉		
	建屋電気室扉を評価対象とする。位置関係を第5.6.1.1-1		
	図に示す。		
	第5611-1回 ル災源と建民民との位置関係		
	牙 5. 0. 1. 1 ⁻ 1 因 火火派と 建全扉 と の 世		
	(2) 相定の条件		
	a. 加主協八次については、3.3 寺の八次永管計価と回支 の相定とした		
	D. 康は、衣山の取り款影響を交け、てすい金属を扉の構造		
	c. 火災か発生した時間から、燃料が燃え尽きるまでの		
	<u> し、一正の 輪射強度を 受けるものとした。</u>		
	d. 扉までの離隔距離は、電気室入口扉までの直線距離		
	27m 2 1/2.		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(3)</u> 必要データ		
	(4) 扉内外面温度の評価結果		
	<u>a許容温度</u>		
	火災時における短期温度上昇を考慮した場合おいて,		
	鋼材の強度が維持される保守的な温度 325℃とする。		
	<u>b評価結果</u>		
	火災が発生した時間から燃料が燃え尽きるまでの間,		
	一定の輻射強度で扉が昇温されるものとして,下記の1		
	次元非定常熱伝導方程式を差分法より解くことで扉内外		
	面温度が許容温度以下であるか評価した。評価において		
	対流による放熱を考慮している。		
	$\rho C_{\rm p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial t} \left(\alpha \frac{\partial T}{\partial t} \right)$		
	$\mathcal{P} = \mathcal{P} \partial \mathbf{t} \partial \mathbf{x} (\partial \mathbf{x})$		
	$-k\frac{\partial T}{\partial t} = E (x=0)$		
	∂T (I)		
	$\frac{\partial \mathbf{t}}{\partial \mathbf{t}} = 0 \qquad (\mathbf{x} = \mathbf{L})$		
	<u>T:表面からx(m)の位置の温度(℃),</u>		
	<u>T₀:初期温度(50℃)*</u>		
	α :扉の温度伝導率 (= $\lambda / \rho C_p$) (m²/s)		
	<u>ρ</u> :扉の密度 (7,920kg/m ³),		
	<u>C_p:扉の比熱(499J/kg/K)</u>		
	$\lambda: 扉の熱伝導率(16W/m/K),E:輻射強度(W/m²)$		
	※ 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値。		
	扉内外面の温度上昇を評価した結果,許容温度以下で		
	あることを確認した。評価結果を第5.6.1.1-1表,第		
	5.6.1.1-2 図に示す。		
	第5.6.1.1-1表 扉に対する熱影響評価結果		
	相定水災酒 亚価社会 評価温度 (℃) 社会担由 (℃)		
	F-15 原子炉建屋 電気室入口扉 75 69 <325		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	final sector of the sector o		
	 5.6.1.2 扉内側(電気室)の室内温度評価 (1) 評価条件 a. 火災が発生した時間から,燃料が燃え尽きるまでの 間,扉内面温度 69℃一定としたときの放熱量を原子 炉建屋電気室への入熱とした。 b. 室内の設備による熱負荷を考慮した室内の初期温度 は,夏期通常運転中の設計室温である 35℃とした。 		
	 (2) 室内温度評価 a. 許容温度 原子炉建屋電気室の設計室温である 40℃とする。 b. 評価結果 室内温度は、火災による扉外面温度上昇に伴う熱負荷 による加熱を考慮して、扉内面の温度上昇による室内温 度の最高到達温度を下式により算出し、室内温度が許容 温度以下であるか評価した。室内温度評価の概念図を第 5.6.1.2-1 図に示す。 		
	$Q_{in} = h_{in} \times A \times (T_{in} - T_{a})$ $T_{room} = \frac{Q_{in}}{m\rho C_{P}} + T_{a}$ $Q_{in} : 温度上昇に伴う熱負荷(W),$ $h_{in} : 内面熱伝達率(8.29W/m^{2}/K)$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東淮	事第二発電所(20	018.9.12版)		島根原子力発電所 2号炉	備考
	<u>A</u> :扉	の表面積(3.5m ²),	,T _{in} :扉内面涸	且度(69℃)		
	<u></u> :室	为初期温度(35℃	<u>),T_{room}:室内</u>	1温度(℃)		
	<u>m</u> :給	氦風量(4m ³ /s),	<u>ρ</u> :空気密度	(1.1kg/m ³)		
	<u>C_P</u> :空	気比熱(1,007J/	<u>kg/K</u>)			
	建屋壁 建屋外 扉外面 第15.6	原内 Gin:建屋 上昇	建屋内 面 扉裏面温度 に伴う熱負荷 室内料 目底証価の概今	送風機による排気 送風機による給気		
	<u> </u>	1.2-1 凶 主的征	血度計価の枕芯			
	電気室室温	を評価した結果	, 室内温度が言	午容温度以下で		
	あることを確	認した。評価結	果を第 5.6.1.2	2-1 表に示す。		
	なお, 室内温	度については扉	内面の最高温度	まを一定として		
	想定する等,	保守的な評価を	行っていること	<u>こから、実際の</u>		
	温度上昇は更	に低く抑えられ	ると考えられる	5		
	また, 室内	の給排気は、第	5.6.1.2-2 図の	<u>つとおり、ホッ</u>		
	トスポット等	が生じにくいレ	イアウトにする	ることで,室内		
	の温度分布が	不均一とならな	い設計としてい	<u>13.</u>		
	第 5.6	.1.2-1 表 室内	温度の評価結果	₹		
	想定火災源	評価対象	評価温度 (℃)	許容温度 (℃)		
	F-15	原子炉建屋 電気室入口扉	35.3	40		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	屋外		
	第5.6.1.2-2 図 電気室内の給排気の概念図		
	 5.6.2 ルーバの火災影響評価について 発電用原子炉施設の脆弱箇所の一つであるルーバについて, 火災影響評価を実施する。 (1) 評価対象 ルーバのうち,火災源から最も近く,輻射強度が最も大き くなる2D非常用ディーゼル発電機室外壁のルーバを対象と する。 (2) 想定の条件 2.火災の想定と同様の想定とした。 (3) 判断の考え方 ルーバの許容温度は,火災時における短期温度上昇を考慮 		
	した場合において,鋼材の強度が維持される保守的な温度 325℃とする。		
	一定の輻射強度でルーバが昇温されるものとして、輻射に		
	の温度評価式によりルーバ表面の最大温度を求め、表面温度		
	が許容温度以下であるか評価した。		
	$T = T_0 + \frac{E}{2h}$		
	<u>T:許容温度(℃),T₀:初期温度(50℃)^{※1}</u>		
	<u>E:輻射温度(3,095W/m²),h:熱伝達率(17W/m²/K)^{※2}</u>		
	※1 水戸地方気象台で観測された過去最高気温 (38.4°C)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海貧	第二発電所(2018.9.1	2版)	島根原子力発電所 2号炉	備考			
	に保守性	生を持たせた値						
	<u>※2 空気調</u> 利	D·衛生工学便覧(外表	面の熱伝達率は、受熱					
	面の形状	大や周囲の環境条件を	受け変化するが,一般					
	的な値と	として垂直外壁面,屋	根面及び上げ裏面の夏					
	季, 冬季	をの値が示されている。	評価上放熱が少ない					
	方が保守	所のであることから、	これらのうち最も小さ					
	い値であ	5ろ17W/m ² /Kを用い	<u>13.</u>)					
	対象のルーバ表	長面の最大温度を求め	許容温度以下である					
	ことを確認したこ	とから, ルーバの強	<u> </u> 変への影響はない。 評					
	価結果を第5.6.2	2-1.表に示す。						
	また、ルーバの	つ変形の有無にかかわ	らず、安全上支障のな					
	い期間に点検を行	<u> 「いルーバの使用に問</u>	題があると判断される					
	場合には、交換等	手の措置が可能である。	なお、ルーバ内側に					
	は熱影響を受ける	6機器等がなく,航空	幾火災時は,熱気流を					
	考慮し、状況に応	いて空調の停止措置	等を講じることから、					
	建屋内への影響に	true						
			伍 油 庄					
	<u>男 5.0</u>	<u>5.2-1 表 ルーハの評</u>						
	想定火災源	評価温度 (℃)	許容温度 (℃)					
	F-15	142	< 325					
			<u> </u>					
	563 配管貫通部の	水災影響評価について	-					
	圣雷用原子炉旅	の胎弱笛所の一つで	~ あろ配管貫通部につい					
	て、火災影響評価な							
	(1) 評価対象							
	内側にクラス1	1,2設備がある外壁	のうち、火災源から最					
	も近い外壁に位置	量する配管貫通部を想	定して評価を実施し					
	te.							
	(2) 想定の条件							
	<u>a. 航空機火災</u> に	a. 航空機火災については, 5.3 等の火災影響評価と同様の						
	想定とした。							
	b. 配管貫通部に	は, 不燃材料であるモ	ルタルによる穴仕舞が					
	されているため	り、モルタルを熱影響	対象とした。					
	<u>c. 火災が発生し</u>	と時間から,燃料が	然え尽きるまでの間,					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	一定の輻射強度を受けるものとした。		
	d. 火災源から配管貫通部までの離隔距離が最短となるよう,		
	火災源から配管貫通部までの離隔距離を, F-15の離隔		
	距離である 22m として熱影響評価を実施した。		
	(3) 判断の考え方		
	許容温度は, 火災時における短期温度上昇を考慮した場合		
	において, 圧縮強度が維持される保守的な温度 200℃*以下と		
	I.J.		
	※ 「高温加熱を受けた高強度モルタルの力学的性状,コン		
	<u>クリート工学年次論文集, Vol32, No.1, pp1121-1126</u> ,		
	2010		
	(4) 評価結果		
	火災が発生した時間から燃料が燃え尽きるまでの間,一定		
	の輻射強度で配管貫通部が昇温されるものとして、下記の一		
	次元非定常熱伝導方程式の一般解の式より配管貫通部表面の		
	上昇温度を算出した。評価結果を第5.6.3-1表に示す。		
	$T = T_{0} + \frac{E}{h} \left[1 - \exp\left(\frac{h^{2}}{\lambda \rho C_{p}} t\right) \operatorname{erfc}\left(\sqrt{\frac{h^{2} t}{\lambda \rho C_{p}}}\right) \right]$		
	<u>T:表面からx(m)の位置の温度(℃),T₀:初期温度(50℃)*</u>		
	1		
	<u>h:熱伝達率(17W/m²/K)*2</u>		
	$ \rho: モルタル密度(1,870 kg/m3), $		
	<u>C_P: モルタル比熱(548J/kg/K)</u>		
	λ :モルタル熱伝導率(1.71W/m/K),E:輻射強度(W/m ²)		
	t : 燃焼継続時間(4,968s)		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,受		
	熱面の形状や周囲の環境条件を受け変化するが,		
	一般的な値として垂直外壁面,屋根面及び上げ裏		
	面の夏季, 冬季の値が示されている。評価上放熱		
	が少ない方が保守的であることから、これらのう		
	ち最も小さい値である 17W/m ² /Kを用いる。)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第5.6.3-1表 配管貫通部の到達温度		
	対象 燃燒面積 輻射強度 燃燒継続時間 評価温度 許容温度		
	航空機 $[m^2]$ $[W/m^2]$ (s) (°C) (°C)		
	F-15 44.6 3,095.33 4,968 (約1.4h) 150 200		
	以上の評価により,配管貫通部表面の到達温度が許容温度 以下であることを確認した。		
	5.6.4 ブローアウトパネルの火災影響評価について		
	ブローアウトパネル(以下「B. P」という。)は、それぞれ		
	原子炉建屋全方位に各3箇所設置されているが,想定する航空		
	機火災からB. Pまでの水平距離及び鉛直高さを考慮すると,		
	B. Pに影響を与えるような輻射強度が届くことはない。位置		
	関係を第5.6.4-1表,第5.6.4-1図に示す。		
	第5.6.4-1表 火災源とブローアウトパネルとの位置関係 想定火災源 離隔距離(m) 水平方向 鉛直方向 F-15 33m*1 19.5m*2 ※1 F-15の航空機墜落距離 22m に,原子炉建屋最外壁からブローア ウトパネルまでの距離 11m を加えた距離 ※2 F-15の最高火炎高さ(EL.19.3m)とB.P下端高さ(EL.38.8m) の離隔距離		
	ビローアウトパネル EL 38.8m 33m 22m 22m 原子炉建屋 原子炉建屋 航空機火災 (F-15) 第 5.6.4-1 図 火災源とブローアウトパネルとの位置関係		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二	発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(12) 航空機墜落による火災と危険物タンク火災の重畳	5.7 航空機墜落火災と危	険物貯蔵施設等の火災の重畳評価	(12)航空機墜落による火災と危険物タンク火災の重畳	
a. 重畳する危険物タンクの選定	<u>(1)</u> 重畳評価で想定する	3 ケースの検討	<u>a.</u> 重畳する <u>危険物タンクの選定</u>	
航空機墜落による火災が発生した場合に重畳を考慮する	航空機墜落火災と危	5険物貯蔵施設等の火災による重畳評価	航空機墜落による火災が発生した場合に重畳を考慮する	
危険物タンクを検討する。	を実施した。		危険物タンクを検討する。	
航空機落下確率が10-7[回/炉・年]となる航空機落下位置と	航空機墜落火災とし	、て想定する機種は, 5.3, 5.4, 5.5の	航空機落下確率が 10-7 [回/炉・年] となる航空機落下位	・条件の相違
その周辺の危険物施設位置を <u>第2-7図及び第2-8図</u> に示す。 <u>発</u>	評価結果より,最も素	熟馨が大きいF−15とする。	置とその周辺の危険物施設位置を第 2-6 図に示す。 <u>航空機</u>	【柏崎 6/7,東海第二】
電用原子炉施設周辺には多量の油を保有する軽油タンクが	危険物貯蔵施設等0	D火災として想定する設備は, F−15	<u>落下位置を踏まえると、航空機墜落による火災によって発</u>	島根2号炉は,航空機
あることから、まず、航空機落下位置より原子炉建屋側にあ	の墜落火災想定位置近	<u> 丘傍にある溶融炉灯油タンクと主要変圧</u>	<u>火する可能性のある危険物タンクはないが, ガスタービン</u>	の落下想定範囲と重畳
る軽油タンクが航空機墜落による火災によって発火するか	器とする。		発電機用軽油タンクとの重畳を考慮し熱影響評価を実施す	するタンクはないが, ガ
どうか評価する。(11)の「d. 軽油タンクの温度評価」に示す	<u>重</u> 畳評価で想定する	5ケースを第 5. 7-1 表に,航空機墜落位	<u> </u>	スタービン発電機用軽
とおり, 航空機墜落による火災時に軽油タンク内の軽油が発	置と危険物貯蔵施設等	∲の位置を第 5. 7−1 図に示す <u>。</u>	なお,航空機落下位置は,航空機墜落による火災の影響	油タンクとの重畳を想
火点となる輻射強度[₩/m²]を算出し,その輻射強度が航空機			が最も厳しくなるよう落下確率が 10-7 [回/炉・年] となる	定
燃料の輻射発散度(最大58×10 ³ W/m ²)より大きいことから,	第5.7-1表	重畳評価で想定するケース	位置とし、また、想定する航空機は、燃料積載量・燃料タ	
輻射熱により軽油が発火しないことを確認した。また、航空	想定かっス	評価対象施設	ンク投影面積が大きい B747-400 とする。	
機落下位置より内側にある軽油タンクが航空機墜落による				
火災によって発火することはないことから, 航空機墜落によ		原子炉建屋		
<u>る火災との重畳火災を考慮する危険物タンクは, 航空機落下</u>		タービン建屋		
位置より外側の軽油タンクとする。	溶融炉灯油タンク 及びF-15	主排気筒		
6号炉では,航空機落下確率が10-7[回/炉・年]以上となる		残留熱除去系海水系ポンプ		
範囲にある危険物タンクは5号炉の軽油タンクとなる。7号炉		非常用ディーゼル発電機(高圧炉心スプレイ系		
では,航空機落下確率が10-7[回/炉・年]以上となる範囲にあ				
る危険物タンクは5号炉及び6号炉の軽油タンクとなる。	工安发江卻及び下15	7 し / 足圧		
6号炉に対する影響評価を考えると,5号炉軽油タンクは海				
側に設置されており,小型軍用航空機,小型民間航空機及び				
大型軍用航空機が5号炉軽油タンク位置に航空機が落下した				
としても,6号炉の原子炉建屋及びコントロール建屋への輻				
射熱はタービン建屋により遮蔽されるため影響はない。ただ				
し,6号炉タービン建屋1階の非常用電気品室は,5号炉軽油				
タンクの熱影響を受ける位置にあることから、燃料積載量・				
燃料タンク投影面積が大きい大型軍用航空機(KC-767)が5号				
炉軽油タンク周辺に落下し,5号炉軽油タンク2台火災と航空				
機墜落による火災が重畳した場合の熱影響評価を実施する。				
なお、航空機落下位置は、航空機墜落による火災の影響が最				
も厳しくなるよう落下確率が10-7[回/炉・年]となる位置と				
<u>する。</u>				
7号炉に対する影響評価を考えると,5号炉軽油タンクは海				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
側に設置されており、大型民間航空機が5号炉軽油タンクに			
落下したとしても、7号炉の原子炉建屋、コントロール建屋			
及びタービン建屋1階の非常用電気品室は6号炉タービン建			
屋により輻射熱が遮られることから影響はない。6号炉軽油			
タンクは山側に設置されていることから,小型軍用航空機			
(AH-1S)が6号炉軽油タンク周辺に落下し,6号炉軽油タンク2			
台火災と航空機墜落による火災が重畳した場合の熱影響評			
価を実施する。			
なお、航空機落下位置は、航空機墜落による火災の影響が			
最も厳しくなるよう落下確率が10-7[回/炉・年]となる位置			
とする。			
第 2-7 図 航空機落下位置と危険物タンク火災の重畳を	第5.7-1 図 航空機隊落位置と危険物貯蔵施設等の位置		
老庸すろ位置(6号炉)			
		■====================================	
		老園子ろ位置	
第 2-8 図 航空機落下位置と危険物タンク火災の重畳を			
考慮する位置 <u>(7.号炉)</u>			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)									島根原	〔子力発電所 2号	炉	備考			
b. 6号炉に対する影響評価(5号炉軽油タンク火災との重畳) (2) 評価に必要となるデータ								t	b.原子炉建物に対する影響評価						
(a)6号炉タービン建屋非常用電気品室の外壁面温度評価									((a) 原子炉建物の外壁面温度評価					
評価に必要たデー	証価に必要なデータけ以下のとおり									評価に必要な	データけ以下のとま	30			
		NO <i>J</i> 0													
安 010 末 叔油		感気ななどする	わゴーカ		一次 「 7	0 主 壬日	ヨボ(エ)ァ	ひましょ	ンゴ	Ъ	塗り	10末 ガフカ レ	いがまが田村市ない	ノカーレ(公見〉細い三正(エ)マ	
弗 2-18 衣 軽油	クノク火火影響	管門面に必要が			步.5.1-							-19衣 カスターヒ	/ 光竜機用軽加ク /	20人及影響計111に	
6 号炉ター	·ビン建屋 1F 非常 5 号/F 南側	常用電気品室評価 5 号に北側	十刑軍田航空继	火災源	燃料の 種類	^{然料} 量 輻射 (m ³) (kW	「発散度 燃 「/m ²)	(m ²)	燃焼半径 (m)	燃焼継続時間 (s)			必要なデータ		
項口	5 写炉南侧 軽油タンク	5 5 戸北間 軽油タンク	八至軍用航空機 (KC-767)	溶融炉 灯油タンク	灯油	10	50	19.36	2.483	11,008			大型民間航空機	敷地内危険物施設	
燃料の種類	軽油	軽油	JP-4	主要変圧	絶縁油	136	23	97	5.6	36, 131		項目		 ガスタービン発電機用	
燃料量[m ³]	344	344	145.03	器					0.0		-		B747-400	軽油タンク	
輻射発散度[₩/m²] 燃焼速度[m/a]	42×10^{3}	42×10^{3}	58×10^{3}	F-15	JP-4 1	4.87	58	44.6	3.8	4, 968	燃料	科の種類	JET A-1	軽油	
燃焼面積[m ²]	4. 79 × 10	4. 79×10 -	281		I	1	I				燃料	₩重[m³]	216.84	560	
燃焼半径[m]	7.68	7.85	9.45								輻射	寸発散度[₩/m²]	50×10^{3}	42×10^{3}	
タービン建屋までの距離[m]	91	120	67								燃焼	捷速度[m/s]	4.64×10^{-5}	4.79×10^{-5}	
燃焼継続時間[hour]	10.74	10.30	2.14								燃料	斗面積[m²]	700	302.7	
											原子	- 炉建物からの距離[m]	108	329	
											一 一 一 一 伏 侍	與維續時間[b]	1.86	10.73	
											2010/21		1.00	10.10	
次の式から形態係	系数を算出する) _o		以	下の式か	ら形態係数	次及び輻射	村強度を	:算出し	た。		次の式から形態	系数を算出した。		
					,			[-1	[])		1 (<i>m</i>	$m \int (A-2n) \int \overline{A}$	$\overline{(n-1)}$] 1 $\left[\sqrt{(n-1)} \right]$	
1 ()	$(\boldsymbol{\mu} \boldsymbol{\lambda} \boldsymbol{\lambda} \boldsymbol{\lambda} \boldsymbol{\lambda} \boldsymbol{\lambda} \boldsymbol{\lambda} \boldsymbol{\lambda} \lambda$			Φ	$=\frac{1}{\pi n} \tan^{-1}$	$\frac{\mathrm{m}}{\sqrt{2}} + \frac{\mathrm{m}}{\pi} \left\{ -\frac{\mathrm{m}}{2} \right\}$	$\frac{(A-2n)}{\sqrt{1-2n}}$ tan ⁻¹	A(n-1) B(n+1)	$\frac{1}{n} - \frac{1}{n} \tan^{-1}$	$\left \frac{(n-1)}{(n+1)} \right $		$\phi = \frac{1}{\pi n} \tan^{-1} \left(\frac{m}{\sqrt{n^2 - 1}} \right)$	$\left + \frac{m}{\pi} \right \frac{(1 - 2\pi)}{n\sqrt{AB}} \tan^{-1} \left \sqrt{\frac{1}{B}} \right $	$\frac{2(n-1)}{2(n+1)} = \frac{1}{n} \tan^{-1} \sqrt{\frac{(n-1)}{(n+1)}}$	
$\phi = \frac{1}{m} \tan^{-1} \left(\frac{m}{\sqrt{2}} \right) + \frac{m}{m}$	$\left\{\frac{(A-2n)}{\sqrt{1-2n}} \tan^{-1}\right\}$	$\left \frac{A(n-1)}{D(n-1)}\right = \frac{1}{n}$	$\tan^{-1}\left(\frac{(n-1)}{(n-1)}\right)$		~ 11	$\sqrt{n^2 - 1} / n ($	nAB	$\left[\sqrt{2} \left(\frac{1}{n} + 1 \right) \right]$	/] "	$\left[\sqrt{(1+1)}\right]$				_ L· _)	
$\pi n (\sqrt{n^2-1}) \pi$	$\left(n\sqrt{AB} \right)$	$\begin{bmatrix} V B(n+1) \end{bmatrix} n$	$\left[\left[\left(n+1 \right) \right] \right]$		ただし m	$=\frac{H}{R} \Rightarrow 3$, n	$=\frac{L}{R}$, A=	$=(1+n)^2$	+m ² , B	$=(1-n)^2+m^2$		ただし, $m = \frac{H}{R} \cong$	$3, n = \frac{L}{L}, A = (1+n)^2$	$+m^2, B = (1-n)^2 + m^2$	
$t = t = 1$ $H_{\sim 2}$	L (1 + m) ²	$m^2 P (1 m)^2$	2		ゆ・形能 区巻	r Ⅰ.離隔距	K 前件(m) 日・	次の直さり	(m) P :橡	大 栴 半 径 (m)		R	R		
$m = \frac{1}{R} = 3, n = \frac{1}{R}$	\overline{R} , $A = (1+n)$ +	-m, D = (1-n)	+m		¥•117/26 14 99		:ме(ш/, 11·	火の向でい	(m/, I· /	《加十 庄 (山)		Φ:形態係数, L:	離隔距離[m], H:	火炎高さ[m],	
φ : 形態係数, L :	離隔距離[m],	H:火炎高さ	[m],	E	$E = R f \cdot \Phi$							R:燃焼半径[m]			
R:燃焼半径[m]				E	: 輻射強度	(₩∕m²), R	f :輻射発	散度(W∕m	$(\Phi^2), \Phi:$	形態係数(-)					
	医 形能体	数の管出結里	L		笛	5.7-3 表	形能体制	数の質用	॑結果			筆 990 ╕	長 形能係数の管理	結果	
			≈							副設備工		<u></u>	<u>~</u>		
6 号炉ター	ビン建屋 1F 非常	的用電気品室評価		火	災源 許	平価対象施設	離隔距離	形態(除数	晶射强度 E (W∕m²)		項日	B747-400	ガスタービン発電機用	
項目	5 号炉南側 軽油タンク	5 号炉北側 軽油タンク	大型軍用航空機 (KC-767)			原子炉	45	5.9639	×10 ⁻³	298.20				軽油タンク	
タービン建屋までの距離[m]	単 エークシック 91	聖田ダンク 120	67			<u>建産</u> タービン建屋	77	2. 0248	×10 ⁻³	101.24	離隔	[距離[m]	108	329	
	7.68	7.85	9.45	次豆	•/5/r	土排 复答	91	9 6096	× 10 ⁻²	12/2 12	燃焼	半径[m]	14. 93	9.82	
形態係数	0.0138238	0.0083052	0.0292795	俗問	油 残昏	工コr×同 雪熱除去系海水	21	2.0820	×10-4	1545.15	形態	係数	3. 61×10^{-2}	1.73×10^{-3}	
					11/1 正常	系ポンフ	185	3. 4734	× 10 ×	17.37					
					(機(高圧炉心スプレイ	185	3. 4734	×10 ⁻⁴	17.37					
					* T 含む	₁⁻ヒ ル究電機を シ。)用海水ポンプ									
				主要	B変圧 器	タービン建屋	22	1.0160	×10 ⁻¹	2, 336. 84					
				F	-15	全対象	22	5.3368	×10 ⁻²	3, 095. 33					
															1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)			12.20版)	東海第二発電所(2018.9.12版)	Ę	島根原子力発電所 2	2 号炉	備考
火災の火炎から	壬意の位置にあ	っる点(受熱点	、)の輻射強度		火災の火	炎から任意の位置に	ある点(受熱点)の輻射	
は,輻射発散 度に形態係数をかけた値となる。次式から輻					強度は、輻	射発散度に形態係数	をかけた値となる。次式	
射強度を算出する。					から輻射強	度を算出する。		
$E = Rf \times \phi$					$E = Rf \cdot \phi$			
E:輻射強度, R	Rf:輻射発散度	$, \phi:$ 形態係	数		E:輻射強	度, Rf:輻射発散度,	Φ:形態係数	
第_2-20_素	<u>長輻射強</u>	度の算出結果	Ę			<u>第2-21表 輻射強度0</u>	2算出結果	
6 号炉ター	-ビン建屋 1F 非常	了用電気品室評価					ガスタービン発電機用	
項目	5 号炉南侧	5 号炉北側	大型軍用航空機		項目	B747-400	軽油タンク	
輻射発散度「W/m ²]	軽油タンク 42×10 ³	軽油ダンク 42×10 ³	(KC - 767) 58×10 ³		輻射発散度[W/m ²]	50×10^{3}	42×10^{3}	
形態係数	0.0138238	0.0083052	0. 0292795		形態係数	3.61×10^{-2}	1.73×10^{-3}	
輻射強度[W/m ²]	580.6	348.8	1698.2		輻射強度[W/m ²]	1, 804. 8	72.8	
ここで重畳を考慮	慮した場合, 航	空機墜落によ	る火災と同時		ここで重	畳を考慮した場合,	航空機墜落による火災と	
に軽油タンクが延続	売する場合は 輻	「射強度が大き	くなり, 航空		同時にガス	タービン発電機用軽	油タンクが延焼する場合	
機が落下後時間を	おいて軽油タン	ンクが発火す	る場合は燃焼		は輻射強度	が大きくなり,航空	機が落下後時間をおいて	
継続時間が大きく	なることから,	それらを包絡	うするように,		ガスタービ	ン発電機用軽油タン	クが発火する場合は燃焼	・条件の相違
評価を実施する(管	第2-9図)。				継続時間が	大きくなることから	各ケースについて評価	【柏崎 6/7】
					を実施する			●根の長には 重農を
					<u> て 天 に す る </u>	◎	い変動物田超油ないため	西低 2 万か (4, 里直で
					<u> </u>	<u>航空機と</u> ガスタービ、 同時に変化して唱 (イ 光 电 (炭 川 <u> 幹 田 グ ノ ク か</u>	複数/ 一 人 を 忠 止 し, 彰
						同時に発生する場合		響評価を実施
					<u>ケース2:</u> 船	抗空機の燃料が半分と	<u>:なった時点で</u> ガスタービ	
						ン発電機用 <u>軽油タン</u> ク	クの火災が発生する場合	
					ケース3:	航空機火災が終了直行	<u>後に</u> ガスタービン発電機	
						用軽油タンクの火災	が発生する場合	
航空機と軽油タ	ンクが同時に	延焼する場合	の輻射強度E		航空機と	ガスタービン発電機	用軽油タンクが同時に延	
け以下のとおり					悔すろ場合	の輻射強度Eはしい	下のとおり	
F = (580.6)(54)	后南侧枢油肉	ンク) +348 :	8(5县恒北側		F = 1.804.8 - 1.001.8	-72 8		
		安田航空機))	E = 2627.6			w /2]		
	1096.2 (入室-	里用机至阀儿	<u> </u>			W/III _		
					航空機が	洛ト後時間をおいて	カスタービン発電機用軽	
航空機が落下後	時間をおいて軋	軽油タンクが	発火する場合		油タンクが	発火する場合の最大	の燃焼継続時間tは、以	
の最大の燃焼継続明	時間tは,以下の	のとおり。			下のとおり	0		
t=10.74(5号炉	南側軽油タンク	ク) + 10.30	(5号炉北側軽		t = 1.86 + 10	. 73		
油タンク) + 2.14	1. (大型軍用航2	空機) t=23.	18「時間〕		=12.59「時	間		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(3) 評価結果		
	重畳評価で想定される輻射強度及び燃焼継続時間を用い		
	て、以下の式から評価温度を算出した。ただし、建屋表面温		
	度が許容温度である 200℃を超える場合には、周囲への放熱		
	を考慮した式を算出する。なお、現実的に起こり得る放熱量		
	を上回ることがないよう、放熱量が低くなる保守的な条件を		
	設定 した。		
	・建屋(原子炉建屋,海水ポンプ室及びタービン建屋)に係		
	る評価式		
	$\rho C_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right)$		
	放熱なしの場合: $-k \frac{\partial T}{\partial x} = E (x=0)$		
	放熱なしの場合: $-k \frac{\partial T}{\partial x} = E - h \left(T - T_0 \right)$ (x=0)		
	$\frac{\partial T}{\partial T} = 0$ (x=L)		
	$\partial \mathbf{x}$		
	<u>T:許容温度(200℃), E:輻射強度(W/m²)</u>		
	T_0 :初期温度(50°C) ^{*1} ,		
	<u>h:熱伝達率(17W/m²/K)*2</u>		
	<u>ρ:密度 (2,400kg/m³),</u>		
	<u>k:熱伝導率(1.63W/m/K)</u>		
	<u>C_P</u> :比熱 (880J/kg/K), L : 厚さ (m)		
	※1 水戸地方気象台で観測された過去最高気温		
	<u>38.4℃に保守性を持たせた値</u>		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,		
	受熱面の形状や周囲の環境条件を受け変化する		
	が,一般的な値として垂直外壁面,屋根面及び		
	上げ裏面の夏季、冬季の値が示されている。評		
	価上放熱が少ない方が保守的であることから、		
	<u>これらのうち最も小さい値である 17W/m²/K</u>		
	を用いる。)		
	・主排気筒に係る評価式		
	$T = T_0 + \frac{E}{2h}$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>T</u> :許容温度(325℃), T ₂ :初期温度(50℃) ^{※1}		
	<u>E:輻射強度(W/m²), h:熱伝達率(17W/m²/K)^{*2}</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	※2 空気調和・衛生工学便覧(外表面の熱伝達率は,受		
	熱面の形状や周囲の環境条件を受け変化するが、		
	一般的な値として垂直外壁面,屋根面及び上げ裏		
	面の夏季, 冬季の値が示されている。評価上放熱		
	が少ない方が保守的であることから、これらのう		
	<u>ち最も小さい値である 17W/m²/K を用いる。)</u>		
	・ 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高		
	<u> 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ</u>		
	に係る評価式		
	$T = T_0 + \frac{E \times A}{G \times C_p} + \Delta T$		
	<u>T:評価温度(℃), T₀:初期温度(39℃)^{*1},</u>		
	<u>E:輻射強度(W/m²)</u> ,		
	G: 重量流量(kg/s), A: 輻射を受ける面積(m2)		
	<u>C_P:空気比熱(1,007J/kg/K),</u>		
	<u>ΔT:構造物を介した温度上昇(5℃)*2</u>		
	※1 水戸地方気象台で観測された過去最高気温 38.4℃		
	に保守性を持たせた値		
	<u>※2</u> 構造物を介した冷却空気の温度上昇(ΔT _b =		
	2.2℃)を包絡する5℃に設定		
	この結果, 第5.7-4表に示すとおり, どのケースにおいて		
	も許容温度を下回ることを確認した。		
	<u>第5.7-4表</u>		
	重畳評価の想 評価対象施設 評価温度 (℃) 許容温度 (℃)		
	原子炉建屋 196 200		
	パーレス建築 187 溶融炉灯油92/7 主排気筒 181 < 325		
	発留熱除去系海水系が27 [*] 59 <70		
	かの刀/1~ ア現電域(両エがつハ ビリボ) 51 <60 主要変圧器 ・トージ 規長 105* < 200		
	及びF-15 ノビノを座 150 200 ※ 放熱なしの条件では許容温度を上回るため、放熱を考慮して評価を実施		

炉	備考

火災が発生した時間から燃料が燃え尽きるまでの間、一定の輻射強度で発電用原子炉施設外壁が昇温されるものとして、下記の一次元非定常熱伝導方程式より、コンクリートののとして、下記の一次元非定常熱伝導方程式より、コンクリートの	るまでの間, ⁵ 昇温されるも 試より, コン
の輻射強度で発電用原子炉施設外壁が昇温されるものとし て、下記の一次元非定常熱伝導方程式より、コンクリートの のとして、下記の一次元非定常熱伝導方程式より、コンクリートの	⁵ 昇温されるも 記式より, コン
て、下記の一次元非定常熱伝導方程式より、コンクリートののとして、下記の一次元非定常熱伝導方程式	昆式より, コン
表面の温度上昇を求め、コンクリートの表面温度が許容限界	リートの表面
温度以下であるか評価を実施する。 温度が許容限界温度以下であるか評価を実施	施する。
$\frac{dT}{dt} = \alpha \frac{d^2 T}{dx^2}$	
T:温度,t:時刻,x:建物壁内における外壁面からの T:温度,t:時刻,x:建物壁内における外壁面	面からの距離,
距離, <u> </u>	
第 2-21 表 建屋外壁面の温度評価結果 第2-22表 原子炉建物外壁の温度評価結果	ī果
6号炉タービン建屋 1F 非常用電気品室評価(建屋外壁面温度) 項目 ケース1	ケース3
項目 危険物タンクと航空機の重畳 輻射強度[W/m ²] 1,877.6(最大) 1,877.6(最大) 1,877.6(最大) 1,877.6(最大)	,804.8 (最大)
輪羽強度[w/m] 2027.6 (= 580.6+548.8+1096.2) 燃焼継続時間[hour] 23.18 (=10.74+10.30+2.14)	12. 59
表面温度[℃] 109 108	107
評価の結果,表面温度は <u>102</u> ℃となり,許容限界温度を下 評価の結果,表面温度は <u>最大109</u> ℃となり, 評	許容限界温度
回ることから、熱影響はない。を下回ることから、熱影響はない。	
(13) 発電用原子炉施設の外壁に設置されている機器 評価 発電用原子炉施設の外壁に設置されている機器 ついては、外部火災の熱影響を受けやすいことか の機器について、火災影響評価を実施する。 3. 評価対象範囲 評価対象範囲 評価対象範囲 評価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価対象範囲 ご価がたきく、火災源に 本体だけでなく建物内部へ熱影響が及ぶ可能性 にあるもの)を評価対象とする。	 <!--</th-->

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		<u>b.</u> 扉の火災影響評価	・設備の相違
		(a)評価対象	【柏崎 6/7】
(b) <u>6号炉タービン建屋非常用電気品室</u> の内気温度評価		<u>扉のうち,原子炉建物外壁面の設置状況を踏まえて,扉</u>	島根2号炉は,軽油タ
火災が発生した時間から, 燃料が燃え尽きるまでの間, 一		内側の機器の設置状況を考慮し,最も熱影響を受ける位置	ンクに近く, 内部への影
定の輻射強度で発電用原子炉施設が昇温されるものとして,		(開口面積が大きく,火災源に近く,機器本体だけでなく	響も考慮し, 室内に原子
内壁の温度上昇に伴う内気 温度の上昇から, <u>非常用電気品</u>		建物内部へ熱影響が及ぶ可能性のある位置)にある原子炉	炉補機冷却水ポンプ及
<u>室内</u> に設置 <u>して</u> いる機器等への影響につい て評価 <u>する</u> 。		補機冷却水ポンプ及び熱交換器が設置されている部屋の外	び熱交換器が設置され
		扉を評価対象とする。	ている外扉を評価対象
			として影響評価を実施
		(b) 想定の条件	
		影響を受けやすい金属とする。	
		- ・火災が発生した時間から,燃料が燃え尽きるまでの間,	
		一定の輻射強度を受けるものとする。	
以下に概念図を示す。		以下に概念図を示す。	
建屋外 外気との熱伝達 Q _{v, out} 周囲への輻射 Q _{r, out} 大炎からの輻射 E 使星壁(均質体) 建屋内 排気 内気温度 T _{rom} 内気温度 Q _{v, in} 換気空調系給気温度 T _n 風量 m 全内負荷 Q		建物外相 建物中 建物中 日-用窓用 D-用窓用 D-用 D-R D-R	
<u>第 2-10 図 伝熱の概念図</u>		<u>第2-8図 評価方法(概念図)</u>	・条件の相違 【柏崎 6/7】 島根 2 号炉では, 室内 の空気は出入りがない 条件として評価を実施

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		(c) 必要データ	
評価に必要なパラメータを示す		証価に必要なパラメータを示す	
計画に必要なパラクークを小り。		計画に必要なパラノーノを小り。	
第 2-22 表 航空機火災影響評価に必要なパラメータ		第2-23表 航空機火災影響評価に必要なパラメータ	
「項目」「パラメータ」備考		項目 パラメータ 備考	
入日 ジノン 回り 外気温度[℃] 50 ℃ 日射の影響を考慮し設定		外気温度[℃] 50 日射の影響を考慮し設定	
外壁面熱伝達率[W/m ² K] 34.883 コンクリートの外壁面熱伝達率		内気温度[℃] 40 設計室温	
内壁面熱伝達率[W/m ² K] 3.4883 コンクリートの内壁面熱伝達率		壁面熱伝達率[W/m ² K] 第 2-9 図参照 周囲温度 40℃及び 50℃の場合の	9自
壁の熱伝導率[W/mK] 1.6279 コンクリートの熱伝導率		気が対流熱伝達率(Bayley の式) 扉の熱伝道惑[W/mV] 45.1 細材の熱伝道惑	
熱拡散率[m²/s]8.42×10-7コンクリートの熱拡散率		扉の 然仏等半[w/ mk] 45.1 週初の 然仏等半 扉厚[m] —	
壁厚[m] 0.6		外面放射率[-] 0.9 伝熱工学資料第5版	
		内面放射率[-] 0 輻射放熱はゼロとする	
		熱拡散率[m ² /s] 1.2494×10 ⁻⁵ 鋼材の熱拡散率	
		シュテファン・ボルツマ 5.67×10 ⁻⁸ 伝熱工学資料第5版	
		ン定数LW/(m ⁻ ・K ⁺)]	
		自然対流熱伝達率(Bayleyの式)	
		7.0	
		6.0	
			_
		● 周囲温度40℃の場合	
		巖 2.0	
		0.0 50 100 150 200 250 300 350 400 450 500 550 600	
		温度 [°C]	
		第2-9図 熱伝達率(自然対流熱伝達率Bayleyの式	
		$(40^{\circ} C F 7 K E 0^{\circ} C))$	
		$(40 C (\chi 0.50 C))$	
		<u>(d)評価結果</u>	
以下の式に示す一次元非定常熱伝導方程式を用いて、外壁及		以下の式に示す一次元非定常埶伝道方程式を用いて	外
		時及び内陸西辺 使な金みて	
		室及い判室面値度を求める。	
$\frac{dT}{dt} = \alpha \frac{d^2T}{dt}$		$dT d^2T$	
$dt = dx^2$		$\frac{dt}{dt} = \kappa \frac{dx^2}{dx^2}$	
T·温度.t.·時刻.		T:温度、t:時刻、x:建物時内におけろ外時面からの距	离作。
			1 1 Jun 7
x : 建物壁内における外壁血からの距離, α: 熱孤散率		κ [:] 煭払 取 率	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
外壁及び内壁面温度上昇に伴う熱負荷は次式で計算される。		外壁及び内壁面温度上昇に伴う熱負荷は次式で計算され る。	
$Q_{v,in} = h_{in} \mathcal{A} (T_{in} - T_{room})$		$q2 = \alpha \ 1 \times A \times (TS1 - TR)$	
h_{in} : 内壁面熱伝達率, A: 内壁の表面積, T_{in} : 内壁面温度, T_{room} : 内気温度 内気温度は, 火災による内壁面温度上昇に伴う熱負荷と室内 の熱負荷及び換気空調系による除熱を考慮し, 次式で求める。 $T_{room} = \frac{Q + Q_{v,in}}{m \rho C} + T_a$		 g2:壁面からの入熱量[W], α1:内壁面熱伝達率[W/m²K], A:扉面積[m²], TS1:内壁面温度[℃], TR:内気温度[℃] 内気温度は、火災による内壁面温度上昇に伴う熱負荷と 室内の熱負荷及び換気空調設備による除熱を考慮し、次式 で求める。 	・条件の相違
Q:室内負荷,m:風量,ρ:空気密度 C:空気比熱, <u>T。</u> :换気空調系給気温度		<u>q1:室内熱負荷[₩], q2:壁面からの入熱量[₩],</u> <u>q3:主換気系による除熱[₩], q4:空調機による除熱[₩]</u>	【柏崎 6/7,東海第二】 地域特性を踏まえた 評価条件に伴う評価式 の相違
以下に評価結果を示す。		以下に評価結果を示す。	
120		100 外壁面最高温度 1.86 [h] 62 [C] 4.11 [h] 56 [C] 60 62 60 62 60 62 9 12 15 時間	
		<u>第2-10図 外壁及び内壁面温度</u>	

柏崎刈羽原子力	発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原	子力発電所 2号炉	備考
第 2-23 表	非常用電気品室の温度評価結果		第2-24表 至	<u> </u> 北物内気温度の評価結果	
6 号炉ター	ビン建屋非常用電気品室評価(値火時)		項目	危険物タンクと航空機の重畳	
項目	危険物タンクと航空機の重畳		■ 輻射強度「W/m ²]	1.877.6 (最大)	
輻射強度[W/m ²]	2627.6 (=580.6+348.8+1698.2)				
燃焼継続時間[hour]	$23. 18 \ (=10.74 + 10.30 + 2.14)$		燃焼継統時间[h]	10.73	
外壁面温度[℃]	50		外壁面温度[℃]	62	
内気温度[℃]	38		内壁面温度[℃]	56	
許容温度[℃]	40 [∞]		」 内気温度[℃]	40	
※:室内の電気設備	(パワーセンター, モータコントロールセンター)の最高		11次1皿反[0]	10	
使用温度			許容温度[℃]	45	
			 c. ルーバの火災影響 (a) 評価対象 ルーバのうち、か きくなる原子炉建物 (b) 想定の条件 火災が発生した時 一定の輻射強度を受 (c) 判断の考え方 ルーバの許容温度 慮した場合において 度 325℃とする。 (d) 評価結果 一定の輻射強度で による入熱量と対流 下記の温度評価式に 面温度が許容温度以 $T = T_0 + \frac{\varepsilon E}{2h}$ $T_0: 初期温度[s]$ $\varepsilon: 吸収率[0.9]$ ※1: 伝熱工学資 	 翌価について (災源から最も近く,輻射強度が最も大の外壁のルーバを対象とする。) 耐から,燃料が燃え尽きるまでの間, さけるものとする。 だは、火災時における短期温度上昇を考 、鋼材の強度が維持される保守的な温 シルーバが昇温されるものとして、輻射 による放熱量が釣り合うことを表した。 よりルーバ表面の最大温度を求め、表 下であるか評価した。 50°C], E:輻射強度[1,909.1W/m²], 1)*1, h:熱伝達率[17W/m²K]**2 資料, ※2:空気調和・衛生工学便覧 	

柏崎刈羽原子力発電所 6/7号炉	〒 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根	限原子力発電所 2号	炉	備考
			評価結果を第	2-25 表に示す。		
			対象のルーバ	表面の最大温度を求め	り、許容温度以下であ	
			ることを確認した	たことから, ルーバの	強度への影響はない。	
			また、ルーバの	の変形の有無にかかれ	っらず,安全上支障の	
			ない期間に点検る	を行いルーバの使用に	こ問題があると判断さ	
			れる場合には、こ	交換等の措置が可能で	である。なお、ルーバ	
			内側には熱影響	を受ける機器等がなく	、航空機火災時は、	
			熱気流を考慮し、	状況に応じて空調の	D停止措置等を講じる	
			ことから,建物	カへの影響はない。		
			第.2-	-25 表 ルーバの評価	i温度	
			想定火災源	評価温度[℃]	許容温度[℃]	
			危険物タンクと	100	325	
			机主阀"如重重			
			1 王之帝,王立,		~	
			Q. 配官員通前の?	火灰影響評価につい	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			肥厚見通前は、	, モルグル寺による/		
			建物外型の火火	影響評価に包給される		
			。 ブローアウト	パマルの水災影響証は	用について	
			ブローアウト	パネルは「百子行建成」	加北回にの笛託設置さ	
			カナルろが 離	[[「「「」」」」「「」」」「「」」」」「「」」」」」「「」」」」」「「」」」」」」		
			とから、屋の水	※影響評価に匀数さき		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
6号炉タービン建屋非常用電気品室は,後述の7号炉コント			・設備の相違
ロール建屋に対して, 輻射強度, 燃焼継続時間等の評価条件			【柏崎 6/7】
が厳しいことから、鎮火後の内気温度についても評価を実施			評価対象施設の相違
する。			
<u>以下に評価結果を示す。</u>			
120 — 外壁面温度(燃焼中) 100 — 内壁面温度(燃焼中) 100 — 外壁面温度(鎮火後) 100 — 外壁面温度(鎮火後) 100 — 内壁面温度(鎮火後)			
40 0 10 20 30 40 50 60 時間[hour]			
第 2-12 図 外辟及び内辟面温度(発水~鎮水後)			
第 9-94 書 非常田雪気日宮の泪鹿訶価結用			
6 号炉ダービン運産非常用電気品革評価(顕火後) 項目 合除物タンクと航空機の重畳			
外壁面温度[℃] 53			
内壁面温度[℃] 53			
内気温度[℃] 38			
許容温度[℃] 40*			
※:室内の電気設備(パワーセンター,モータコントロールセンター)の最高 使用温度			
評価の結果,内気温度は鎮火から33.8時間後に38℃(最大			
<u>値)まで上昇するが、室内の電気設備(パワーセンター、モ</u>			
ータコントロールセンター)の最高使用温度40℃を下回るこ			
とを確認した。			
c. 7号炉に対する影響評価(6号炉軽油タンク火災との重畳)			
(a)7号炉コントロール建屋の外壁面温度評価			
評価に必要なデータは以下のとおり。			

柏崎刈羽原子力発電所	6/7号炉	(2017.12	. 20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
笠 9_95 丰	い、カル公転郷	家価に必要	わデータ			
<u> </u>	✓/八火於音	町画に必安				
7 号炉=	コントロール建屋許	平価				
項目	6 号炉西側	6 号炉東側	小型軍用航空			
(数約)の新海	軽油ダンク	軽油ダンク 軽油	/援 (AH−1S)			
然れての1年2月 	^{単生1} 円 565	4至70 565	0.98			
[w/m ²]	42×10^{3}	42×10^{3}	58×10^{3}			
燃焼速度[m/s]	4.79 $\times 10^{-5}$	4.79 $\times 10^{-5}$	6.71×10^{-5}			
燃焼面積[m ²]	289	289	12			
燃焼半径[m]	9.59	9.59	1.95			
コントロール建屋までの距離[m]	100	109	116			
燃焼継続時間[hour]	11.33	11.33	0.34			
次の式から形態係数	を算出する。					
		<u> </u>				
$\phi = \frac{1}{m} \tan^{-1} \left(\frac{m}{m} \right) + \frac{m}{3} \left(\frac{A}{m} \right)$	$\frac{-2n}{2}$ tan ⁻¹ $\left \frac{A(n-1)}{2} \right $	$\frac{(n-1)}{2} \left -\frac{1}{2} \right $ tai	$n^{-1} \left \frac{(n-1)}{n} \right $			
$\gamma \pi n \left(\sqrt{n^2 - 1} \right) \pi \left(n \sqrt{n^2} \right)$	\sqrt{AB} $ VB($	$(n+1) \mid n$	$\left \sqrt{(n+1)} \right $			
	_	-	,			
$t \in \mathbb{Z}$, $m = \frac{H}{2} \approx 3 n = \frac{L}{2} A$	$1 = (1+n)^2 + m^2$	$B = (1 - n)^2 +$	m^2			
$m = \frac{1}{D} = 0, m = \frac{1}{D}, m = \frac{1}{D},$	(1 + n) + m,	D = (1 n)				
み ・ 形能 伝 粉 Ⅰ ・ 潮	的"你们的"。	」・ル公室さ	「m] R・做			
	エP名 IIニ 内田 [III] , II	1.八火间で				
焼半径[m]						
第 2-26 表	形態係数0	の算出結果				
7 号炉=	コントロール建屋詐	评価				
項目	6 号炉西側	6 号炉東側	小型軍用航空			
	軽油タンク	軽油タンク	機(AH-1S)			
コントロール建屋までの距離[m]	100	109	116			
於焼干住[m] 形能係粉	9.59	9. 59	1.95			
717 JET I/T 3/A	0.0113003	0.0140100	0.000000			
火災の火炎から任音の	の位置にある」	点 (受埶点)	の輻射強度			
	5 **+ + + - + - + + + + + + + + + + + + +					
は、 輻射 発散 度に 形態	糸数をかけた(<u> </u>	(式から輻射			
強度を算出する。						
$E = Rf \times \phi$						
F・虹针球座 Df・虹	目出 教 御 庙 💷	・形能反素				
L. 釉豹 四皮, KI: 郫	助光取度, Φ	• 心思怵数				

柏崎刈羽原子力発電所	6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 2-27 表	輻射強度の算出結果			
7 号炉=	コントロール建屋評価			
項目	6 号炉西側 6 号炉東側 小型軍用航空 軽油タンク 軽油タンク 機(AII-1S)			
輻射発散度[W/m ²]	$\frac{1}{42 \times 10^3} \frac{1}{42 \times 10^3} \frac{1}{58 \times 10^3}$			
形態係数	0.0179039 0.0149786 0.0005303			
₩4分5±/2 [W/m ⁻]	151.9 629.1 50.7			
ここで重畳を考慮し†	た場合,航空機墜落による火災と同時			
に軽油タンクが延焼する	る場合は輻射強度が大きくなり、航空			
機が落下後時間をおい	て軽油タンクが発火する場合は燃焼			
継続時間が大きくなるこ	ことから、それらを包絡するように、			
<u>評価を実施する(第2-1</u>	3図)。			
<u>航空機と軽油タンク</u>	か同時に 並 焼 す る 場 合 の 輻 射 強 度 E			
<u>は、以下のとおり。</u>				
E = (752.0 (6 亏 炉 四)	<u> </u>			
<u> 軽加タンク) +30.8 (7</u>	小型車用航空機//			
<u>E-1411.9 [w/m⁻]</u>				
航空機が遊下落時間	たおいて軽油タンクが発水する場合			
加土版が格工後时間の最大の燃焼継続時間+	これ、「社面ノンノル元八りる物日」			
+-11 33 (6是后西側	(x, y) = (y) < x(y)			
<u>$(-11.35(05)$</u> 油タンク) + 0.34(小				
<u>抽////////////////////////////////////</u>	主举用机主阀/			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3000 輻射熱が最大となる場合			
2500			
2000			
2 1500 小型軍用航空機			
滋 四側軽油タンク 本 1000			
500			
0 5 10 15 20 25 日間回			
3000 操結例始出目ぶ見上したて相へ			
2500 2500			
□ <u>≥</u> 型量 小型軍用航空機			
揺 西側軽油タンク			
0 5 10 15 20 25			
时间[h]			
3000			
2500 幅射強度最大で燃焼継続時間最大として温度評価を実施			
■ 1500			
(二) 一 <u>里</u> , 二 (二) 本 1000			
500			
0 5 10 15 20 25			
時间[h]			
第 2-13 図 重畳を考慮した場合の輻射強度及び燃焼継続			
時間の関係			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>火災が発生した時間から燃料が燃え尽きるまでの間,一定</u>			
の輻射強度で発電用原子炉施設外壁が昇温されるものとし			
<u>て、下記の一次元非定常熱伝導方程式より、コンクリートの</u>			
表面の温度上昇を求め、コンクリートの表面温度が許容限界			
<u>温度以下であるか評価を実施する。</u>			
$\frac{dT}{dt} = \alpha \frac{d^2 T}{dx^2}$			
<u>T:温度,t</u> :時刻,x:建物壁内における外壁面からの距離,			
α : 熱拡散率			
第 2-28 表 建屋外壁面の温度評価結果			
7号炉コントロール建屋評価(建屋外壁面温度)			
項目 危険物タンクと航空機の重畳 輻射強度「W/m ²] 1411.9 (=752.0+629.1+30.8)			
燃焼継続時間[hour] 23.00 (=11.33+11.33+0.34)			
表面温度[℃] 78			
評価の結果,表面温度は78℃となり,許容限界温度を下回る			
<u>ことから, 熱影響はない。</u>			
熱損失 h(T _s , T₀)			
人射熱流束 q 壁面内の 熱伝導			
第 2-14 図 建屋温度評価体系図			
(b)7号炉コントロール建屋の内気温度評価			
<u> 火災が発生した時間から, 燃料が燃え尽きるまで</u> の間, 一			
定の輻射強度で発電用原子炉施設が昇温されるものとして,			
内壁の温度上昇を求め、コントロール建屋に設置している機			
器等への影響について評価する。評価対象エリアは,壁厚が			
最も薄いエリアを選定する。			

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
以下に概念図を示す。				
建屋外 建屋壁(均質体)	建屋内			
外気との熱伝達 Q _{v, out}	内気温度 Troom 内気温度 On in			
周囲への輻射 Qr, out 熱伝導 Qc, out	換気空調系給気温度 T。			
→ 執伝道 0	風量 m ◆			
	室内負荷 0			
火炎からの輻射E				
<u>第 2-15 図</u> 伝熱の概	[念図			
評価に必要なパラメータを示す <u>。</u>				
第 2-29 表 航空機火災影響評価に	必要なパラメータ			
項目 パラメータ 備考				
外気温度[℃] 50 日射の影響を	き考慮し設定			
外壁面熱伝達率[W/m ² K] 34.883 コンクリート 内時売熱伝達率[W/m ² K] 2.4882 コンクリート	の外壁面熱伝達率			
Y型面熱伝達率[W/mK] 3.4883 コンクリート 壁の執伝道率[W/mK] 1.6279 コンクリート	の外生面然伝達率の執伝道率			
型の流氓サービッmil] 1.0210 - ビンジー 熱拡散率 $[m^2/s]$ 8.42×10 ⁻⁷ コンクリート	 の熱拡散率 			
壁厚[m] 0.5 -				
以下の式に示す一次元非定常熱伝導方	5程式を用いて,外壁			
及び内壁面温度を求める。	· · · · · · · · · · · · · · · · · · ·			
$dT = d^2T$				
$\frac{dt}{dt} = \alpha \frac{dt^2}{dx^2}$				
<u>T:温度,t</u> :時刻,x:建物壁内に	おける外壁面からの			
距離, α:熱拡 散率				
外壁及び内壁面温度上昇に伴う熱負荷	は次式で計算される。			
$Q_{v,in} = h_{in}A(T_{in} - T_{room})$				
<u>h_{in}:内壁面熱伝達率,A:内壁の表面積,</u> 1	<u>Γ_{in}:内壁面温度, T_{room}:</u>			
内気温度				
内気温度は, 火災による内壁面温度」	上昇に伴う熱負荷と室			
内の熱負荷及び換気空調系による除熱:	を考慮し,次式で求め			
<u>a.</u>				
$T = Q + Q_{v,in} + T$				
$I_{room} = \frac{m \rho C}{m \rho C} + I_a$				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<u>Q:室内負荷,m:風量, ρ:空気密度,C:空気比熱,T_a:换</u> 気空調系給 気温度			
<u>以下に評価結果を示す。</u> <u>小</u> <u>り</u> <u>り</u> <u>り</u> <u>り</u> <u>り</u> <u>り</u> <u>り</u> <u>り</u>			
20 ^{+'} 0 3 6 9 12 15 18 21 24 ₊ 時間[hour] ₊			
第 2-16 図 外壁及び内壁面温度 第			
2-30 表 建屋内気温度の評価結果 7号炉コントロール建屋評価(建屋内気温度) 項目 危険物タンクと航空機の重畳 輻射強度[W/m²] 1411.9 (=752.0+629.1+30.8) 燃焼継続時間[hour] 23.00 (=11.33+11.33+0.34) 外壁面温度[℃] 78 内壁面温度[℃] 47 内気温度[℃] 60* ※: 室内の電気設備 (ケーブル)の最高使用温度 出典: 日本電線工業会規格 JCS 0168-1:2004 ケーブルの常時許容温度 評価の結果,内気温度は40℃となり,ケーブル常時許容 温度60℃を下回ることを確認した。			
d. まとめ 6号炉の評価では外壁面は102℃,7号炉の評価では外壁面 は78℃であり,許容限界温度を下回ることから,熱影響はな いと評価する。また,6号炉の評価では内気温度は38℃,7 号炉の評価では内気温度は40℃であり,室内の電気設備の許 容温度を下回ることから,熱影響はないと評価する。		<u>f. まとめ</u> 評価の結果,内気温度は40℃となり,室内の許容温度を 下回ることから,熱影響はないと評価する。	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
--------------------------------	---	------------------------------	----
(13) 火災による熱影響の有無の評価		(<u>14</u>) 火災による熱影響の有無の評価	
以上の結果から, 航空機墜落による火災が発生した場合		以上の結果から、航空機墜落による火災が発生した場合を	
を想定したとしても、外壁面の温度が許容限界温度、内気		想定したとしても、外壁面の温度が許容限界温度を超えない	
温度が許容温度を超えないことから,発電用原子炉施設に		こと及び内気温度が許容温度を超えないことから、発電用原	
熱影響をおよぼすことはないと評価する。		子炉施設に熱影響を及ぼすことはないと評価する。	
	5.8 航空機墜落火災からの熱気流による影響評価		
	安全重要度分類のクラス1,2設備が給気口のすぐ内側にあ		
	る非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発		
	電機を含む。)吸気口及び使用済燃料乾式貯蔵建屋は、外部火		
	災により発生する熱気流が周囲の風況の影響により建屋に向か		
	うことが想定されるため、火災源から発生した熱気流が風によ		
	り直接給気口から流入する事象を想定する。		
	評価の概念図を第5.8-1図に示す。 火災による熱気流の主軸		
	傾き角 (tan β')が, 火災発生源と給気口とを結ぶ直線の傾		
	き角 $(\tan \beta)$ より大きい場合は、熱気流は建屋上方へ拡散し建屋		
	内空気温度への影響はないが、本評価においては保守的に熱気		
	流が直接給気口に当たる場合 $(\tan \beta' = \tan \beta)$ を想定し、その際		
	の風速を設定する。		
	現実的には発火点の位置や上昇気流,また気象条件の影響も		
	考慮すれば火災からの熱気流が全て給気口に到達し流入するこ		
	とは考えにくいが、本評価においては保守的に火災源から発生		
	する熱気流が直接給気口に流入するような風速を設定して評価		
	Litean		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	5.8.1 想定条件		
	・評価対象とする火災源は、最も近い位置で発生する航空機		
	火災(対象航空機: F-15)とした。		
	 ・離隔距離は, 評価上厳しくなるよう, 想定する火災源から 		
	評価対象施設の給気口まで最短となるよう設定した。		
	・熱気流の評価では,気象条件として有風状態を想定し,発		
	生する熱気流が直接給気口に流入するような風速を設定し		
	them		
	5.8.2 評価に必要となるデータの算出		
	(1) 火災源と給気口を結ぶ直線の傾き		
	以下の式から火災源と給気口を結ぶ直線の傾きを算出し		
	た。算出結果を第5.8.2-1表に示す。		
	tan β =給気口の高さ		
	火災源から給気口までの水平距離		
	第5.8.2-1表 火災源と各対象の給気口を結ぶ直線の傾き		
	評価対象施設 給気口の高さ 火災源から給気口ま 傾き tan β (m) での水平距離(m) (rad)		
	使用済燃料乾式 8.8 78 0.1		
	圧炉心スブレイ系ディーゼル発 4.9 24 0.2		
	电傚を百ぴ。)ツスロ		
	(2) _ 表地) 语一十 注		
	い下の式から執道式法を管出した。管出結果を第5.8.2-2		
	以下の以外の認識引法を昇山した。 昇山相末を用う.o.2-2 まに示す		
	D^{-2} S		
	$D = 2 \sqrt{\frac{\pi}{\pi}}$		
	D· 執酒士注 (m)		
	S・航空機火災(F-15)の燃焼面積(44 6m^2)		
	第 5.8.2-2 表 各対象の熱源寸法		
	<u>火</u> 災源 烈源寸法D (m)		
	航空磯火災 7.5		

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(9). 発告報告: 第二の大しの分支機構を貸押した。第日結果を第三8.8 ± 第 成正の大しの分支機構を貸押した。第日結果を第三8.8 ± 第 Q = (1 * 2) ΔH ₁₋₁ SM Q : 異告報行: 第公回, 2 : 数据(150, 02) AH ₂₋₂ (2020) 第三回の(1 / 20) AH ₂₋₂ (2020) 第三回の(1 / 20) AH ₂₋₂ (2020) 第三回の(1 / 20) AH ₂₋₂ (2020) 第三原本(1 / 20) 第三原本(1 / 20) 第三原本(1 / 20) 「日本(1 / 20) 第三原本(1 / 20) 「日本(1 / 20) 第三の(1 / 20)	$ \begin{array}{c} \underline{(0)} & \underline{\mathbb{R}} + \underline{\mathbb{R}} +$	$ \begin{array}{l} .(9). \ensuremath{\mathbb{R}} & \ensuremath{\mathbb{R}} \\ .(9). \ensuremath{\mathbb{R}} & \ensur$	(3). 新生动素 以王尔太公ら発生就量を展出した。展出結果を第5.5.2.3 第ビボ素 Q= (1-x) ΔH _{conf} SM Q: 第生教員(w_{0}, x : 放射分量(0.09) △且長 _{conf} : 深教集(約:100)/(26) S: 航空操大災 (F-1.5) 少燃焼曲額(44.6c?) M: 稻益医工業度($w_{conf} > x$) 第5.8.2.3.5、成定性であ大災額の発生就量 使な機大災 9.4×104 (F-1.5) 9.4×104 (F-1.5) 9.4×104 (F) 二次合業た本教品が高速協会にに読入する興講 以上の大な人主要は「該人」な「本興講 以上の大会権た本教品が高速協協会にに読入する興講 以上の大な人主要は「ホー」 tan $\beta = 0.37 \Lambda^{-9/8} \text{ pr}^{-0.0975}$ $\Lambda = \frac{10 1^{1/3}}{(Q e / C_0 \wedge T_0)^{1/3}}$	(3) 発生器量 以下の太々ら発生器量を開出した。開出結果を第5.5.5.25 素比売す Q= (1-\chi) $\Delta H_{v_s,v_t}$ SM Q:	(9) 発生熱量 以下の式から発生熱量を算出した。算出結果を第5.8.2-3 表ビ示す。 Q= (1-z) ΔH _{0.eff} SM Q: 第生熱量(0.7). x:放射分車(0.05) ΔHtf: 発熱度(43.5004/2kg) S:前建微火度(F-15)の燃焼面積(44.6m ²) M: 営量低下速度(5x/m ² /s) 第5.8.2-3表、泡液子な火災原の発生熱量 東安海火炎(F-15)の燃焼面積(44.6m ²) M:営量低下速度(5x/m ² /s) 第5.8.2-3表、泡液子な火災原の発生熱量 (4) 熱気流が重接絵気はに流入する風速 以下の式を満たす素気流が直接絵気はに流入する風速 以下の式を満たす素気流が直接絵気はに流入する風速 山上た。算出結果を2.6.8.2-4 表に示す。 tam $\beta = 0.37 A^{-9/8} p^{-0.09.75}$	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉 備考	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
$\frac{C_{p}: 空気比熱(1.007kJ/kg/K)}{\rho: 空気密度(1.17kg/m3), T_{0}: 周囲温度(310K)}$	$\frac{C_p: 空気比熱(1.007kJ/kg/K)}{c_p: 空気比熱(1.17kg/m3) T : 思田温度(210K)}$	$ \underline{\Lambda}: 無次元no ラ メ-β, Fr: フルード数 (-) $ C.: 空気比数(1,007k I / kg / K)	ν tan β : 火災源と給気口を結ぶ直線の傾き (rad)	$Fr = \frac{U}{\sqrt{Dg}}$	$\left(Q g / C_p \rho T_0 \right)^{-\gamma}$	$\Lambda = \frac{UD^{1/3}}{\sqrt{1/3}}$	们响为羽尿丁刀光电角 07 (万)产 (2017.12.20 瓜)		(3) 発生熟量 以下の式から発生熱量を算出した。算出結果を第5.8.2-3 素に示す。. Q= (1- χ) Δ H _{o, eff} SM Q: 発生熱量(kW), χ : 放射分率(0.05) Δ H _{o, eff} : 差熱量(43,500kJ/kg) S: 航空機火災(F - 1 5) の燃焼面積(44.6m ²) M: 質量低下速度(kg/m ² /s) 第5.8.2-3表 想定する火災源の発生熱量 <u>次災源 発生熱量Q(kW)</u> 航空機火災 9.4×10 ⁴ (4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。 tan β = 0.37 $\Lambda^{-9/8}$ Fr ^{0.0975} $\Lambda = \frac{UD^{1/3}}{(Qg/C_p \rho T_0)^{1/3}}$ Fr= $\frac{U}{\sqrt{Dg}}$ tan β : 火災源と給気口を結ぶ直線の傾き(rad) Λ : 無次元 ⁶ 5/-9, Fr : フルード数(-) C _p : 空気光熱(1.007kJ/kg/K) ρ : 空気密度(1.17kg/m ³), T ₀ : 周囲温度(310K) D: 航空機火災(F - 1 5) の燃焼面積(44.6m ²) g: 質量低下速度(kg/m ² /s)		
$\Lambda = \frac{UD^{1/3}}{\left(Q g/C_p \rho T_0\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D g}}$ $\frac{\tan \beta : 火災源と給気口を結ぶ直線の傾き (rad)}{\Lambda : 無次元^5 j - j, Fr : フルード数 (-)}$	$\Lambda = \frac{UD^{1/3}}{\left(Q g/C_{p} \rho T_{0}\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D g}}$ $\frac{\tan \beta : 火災源 と給気口を結ぶ直線の傾き (rad)}{\Lambda : 無次元5 ラ J = 9, Fr : フルード数 (-)}$	$\Lambda = \frac{UD^{1/3}}{\left(Qg/C_p\rho T_0\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{Dg}}$ $\tan \beta : $ 火災源と給気口を結ぶ直線の傾き (rad)	$\Lambda = \frac{UD^{1/3}}{\left(Q g/C_{p} \rho T_{0}\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D g}}$	$\Lambda = \frac{UD^{1/3}}{\left(Qg/C_p\rho T_0\right)^{1/3}}$	$\Lambda = \frac{UD^{1/3}}{\sqrt{1/3}}$		(3) 発生想量 以下の式から,発生惑量を第出した。第出結果を第5.8.2-3 素に示す。 Q= (1-χ) ΔH _{e,eff} SM Q: 発生惑量(33,500kL/kg) S: 航空陽火災 (F-1.5) の燃焼面積(44.6m²) M: 管量低下連度(kg/m²/s) 第5.8.2-3表 規定する火災瓶の発生惑量 火災脳 発生熱量Q (kW) 航空機火災 (F-1.5) 9.4×10 ⁴ (4) 熱気派が直接給気ロに流入する風速 以下の式を満たす感気流が直接絵気ロに流入する風速を算 出した。算出結果を第5.8.2-4 表記に示す。		$\tan \beta = 0.37 \Lambda^{-9/8} \mathrm{Fr}^{0.0975}$		
$\tan \beta = 0.37 \Lambda^{-9/8} \operatorname{Fr}^{0.0975}$ $\Lambda = \frac{U D^{1/3}}{\left(\operatorname{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$ $\operatorname{Fr} = \frac{U}{\sqrt{\operatorname{Dg}}}$ $\frac{\tan \beta : \text{火災源と給気口を結ぶ直線の傾き (rad)}}{\Lambda : \operatorname{m} \overset{\wedge}{,} \operatorname{Fr} : \mathbb{T} / \mathbb{T} - \mathbb{F} \overset{\vee}{,} \operatorname{Fr} : \mathbb{T} / \mathbb{T} - \mathbb{T} \overset{\vee}{,} \operatorname{Fr} : \mathbb{T} / \mathbb{T} \overset{\vee}{,} \operatorname{Fr} : \mathbb{T} / \mathbb{T} - \mathbb{T} / \mathbb{T} - \mathbb{T} / \mathbb{T} - \mathbb{T} \overset{\vee}{,} \operatorname{Fr} : \mathbb{T} / \mathbb{T} - \mathbb{T} - \mathbb{T} / \mathbb{T} - \mathbb{T} / \mathbb{T} - \mathbb{T} - \mathbb{T} / \mathbb{T} - \mathbb{T} / \mathbb{T} - \mathbb{T} - \mathbb{T} - \mathbb{T} - \mathbb{T} - \mathbb{T} - \mathbb{T} / \mathbb{T} - \mathbb{T} - \mathbb{T} - \mathbb{T} / \mathbb{T} - $	$\tan \beta = 0.37 \Lambda^{-9/8} \operatorname{Fr}^{0.0975}$ $\Lambda = \frac{U D^{1/3}}{\left(Q g / C_p \rho T_0 \right)^{1/3}}$ $\operatorname{Fr} = \frac{U}{\sqrt{D g}}$ $\frac{\tan \beta : 火災源と給気口を結ぶ直線の傾き (rad)}{\Lambda : 無次元^5 j / - j, \operatorname{Fr} : - \tau \mu - k 数 (-)}$	$\tan \beta = 0.37 \Lambda^{-9/8} \operatorname{Fr}^{0.0975}$ $\Lambda = \frac{U D^{1/3}}{\left(Q g / C_{p} \rho T_{0} \right)^{1/3}}$ $\operatorname{Fr} = \frac{U}{\sqrt{D g}}$ $\tan \beta : 火災源と給気口を結ぶ直線の傾き (rad)$	$\tan \beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$ $\text{Fr} = \frac{\text{U}}{\sqrt{\text{Dg}}}$	$\tan \beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$	$\tan \beta = 0.37 \Lambda^{-9/8} \operatorname{Fr}^{0.0975}$ $\Lambda = \frac{U D^{1/3}}{(2 - 2 M)^{1/3}}$	$\tan\beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$	(3) 至生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 表に示す。 Q= (1-x) ΔH _{v,eff} SM Q:至生熱量(k8),x:放射分率(0,05) ΔH_eff<:差熱量(43,500kL/kg) S:航空機火災(F-15)の燃度面積(44.6m²) M:貧量低下速度(kg/m²/s) 第5.8.2-3表 想定する火災源の発生熱量 火災源 発生熱量Q (kW) 航空機火災(F-15) 9.4×10 ⁴ (4) 熟気流が直接給気口に流入する風速を算		出した。算出結果を第5.8.2-4表に示す。		
出した。第出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$ $\text{Fr} = \frac{\text{U}}{\sqrt{\text{Dg}}}$ $\frac{\tan \beta : 火災源と給気口を結ぶ直線の傾き (rad)}{\Lambda : 無次元^5/-9, \text{Fr} : 7/ν - ド数 (-)}$	<u>出した。第出結果を第5.8.2-4 表に示す。</u> tan β =0.37 $\Lambda^{-9/8}$ Fr ^{0.0975} $\Lambda = \frac{UD^{1/3}}{\left(Q g/C_p \rho T_0\right)^{1/3}}$ Fr = $\frac{U}{\sqrt{D g}}$ <u>tan β : 火災源と給気口を結ぶ直線の傾き (rad)</u> <u>Λ : 無次元³ ラルタ、Fr : フルード数 (-)</u>	<u>出した。第出結果を第5.8.2-4 表に示す。</u> $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{\left(Q g/C_p \rho T_0\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D g}}$ $\tan \beta : 火災源と給気口を結ぶ直線の傾き (rad)$	出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{\left(Q g/C_p \rho T_0\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D g}}$	出した。算出結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \operatorname{Fr}^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{(Qg/C_p \rho T_0)^{1/3}}$	出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{($	出した。算出結果を第 5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第5.8.2-3 麦に示す。 Q= (1-\chi) ΔH _{e,eff} SM Q:発生熱量(W)、χ:放射分率(0.05) ΔH _{e,eff} SM S:航空機火災(F-15)の燃炉面積(44.6m²) M:質量低下速度(a ₂ /m²/s) 第5.8.2-3表 第5.8.2-3 蒸焼火災(F-15) 9.4×10 ⁴		以下の式を満たす熱気流が直接給気口に流入する風速を算		
$\frac{ \mathbf{U} _{\mathbf{L}} \mathbf{L} - \mathbf$	$U \Gamma m \beta c ka \pi r r r c ka \pi r r r c ka \pi r r r r r r r r r r r r r r r r r r $	<u>山下の式を満たす熱気流が直接給気口に流入する風速を算</u> <u>山上た。算出結果を第5.8.2-4 表に示す。</u> tan $\beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$ Fr = $\frac{\text{U}}{\sqrt{\text{Dg}}}$ tan β : 火災源と給気口を結ぶ直線の傾き (rad)	$\frac{10}{U\Gamma m \pi m c} \frac{11 m \pi m c}{12 m c} \frac{11 m \pi c}{12 m c} $	$\frac{U\Gamma}{U\Gamma} \frac{1}{10000000000000000000000000000000000$	$\frac{UD}{M_{1}} \frac{M_{1}}{M_{2}} \frac{M_{1}}{M_{2}} \frac{M_{1}}{M_{1}} \frac{M_{1}}{M_{2}} \frac{M_{1}}{M_{1}} \frac{M_{1}}{M_{1$	以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第5.8.2-3 表に示す。 Q= (1-χ) ΔH _{c, eff} SM Q:発生熱量(W), χ:放射分率(0.05) ΔH _{c, eff} :発熱量(43,500kJ/kg) S:航空機火災(F-15)の燃焼面積(44.6m ²) M:質量低下速度(kg/m ² /s) 第5.8.2-3 表 想定する火災額の発生熱量 火災順 発生熱量Q(kW) 航空機火災 9.4×10 ⁴		(4) 執気流が直接給気口に流入する風速		
(4) 熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 $\tan \beta = 0.37\Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$ $\text{Fr} = \frac{\text{U}}{\sqrt{\text{Dg}}}$ $\frac{\tan \beta : 火災源と給気ロを結ぶ直線の傾き (rad)}{\Lambda : 無次元パラル, Fr: フルード数 (-)}$	(4) 熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速 度 出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} \text{Pr}^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{\left(\text{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$ $\text{Fr} = \frac{U}{\sqrt{\text{Dg}}}$ $\frac{\tan \beta : 火災源と給気口を結ぶ直線の傾き (rad)}{\Lambda : 無次元^5 j-9, Fr : フルード数 (-)}$	(4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{\left(Q g/C_p \rho T_0\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D g}}$ $\tan \beta : 火災源と給気口を結ぶ直線の傾き (rad)$	(4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{\left(Q g/C_p \rho T_0\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D g}}$	(4) 熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_{p} \rho T_{0}\right)^{1/3}}$	(4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \operatorname{Fr}^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{(2\pi)^{-9/8}}$	(4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第 5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 麦に示す。 Q= (1-χ) ΔH _{c, eff} SM Q: 発生熱量(kW), χ:放射分率(0.05) ΔH _{c, eff} : 発熱量(43,500kJ/kg) S:航空機火災(F-15)の燃焼面積(44.6m²) M: 質量低下速度(kg/m²/s) 第5.8.2-3表 想定する火災源の発生熱量 火災源 発生熱量Q (kW)		航空機火災 (F-15) 9.4×10 ⁴		
航空機火災 9.4×10 ⁴ (4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算用結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_p \rho T_0\right)^{1/3}}$ Fr= $\frac{\text{U}}{\sqrt{Dg}}$ tan β : 火災源と給気口を結ぶ直線の傾き (rad) Λ : 無次元ッジルー, Fr : ブルード数 (-)	航空機火災 9.4×10 ⁴ (4) 熱気流が直接絵気ロに流入する風速を算 以下の式を満たす熱気流が直接絵気ロに流入する風速を算 出した。算出結果を第 5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_{p} \sigma T_{0}\right)^{1/3}}$ Fr = $\frac{U}{\sqrt{Dg}}$ tan β : 火災濃と給気口を結ぶ直線の傾き (rad) Λ : 無次元/ラス, Pr : フルード数 (-)	航空機火災 9.4×10 ⁴ (4) 熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 由した。算出結果を第5.8.2-4表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{ pr}^{00.97.5}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_p \rho T_0\right)^{1/3}}$ Fr= $\frac{U}{\sqrt{Dg}}$ tan $\beta : 水災源と給気口を結ぶ直線の傾き (rad)$	航空機火災 (F-15) 9.4×10 ⁴ (4) 熱気流が直接給気ロビ流入する風速 以下の式を満たす熟気流が直接給気ロビ流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{ Fr}^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{(Qg/C_p \rho T_0)^{1/3}}$ $F_{\text{T}} = \frac{U}{\sqrt{Dg}}$	航空機火災 (F-15)9.4×104(4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg/C}_p \rho T_0\right)^{1/3}}$	航空機火災 (F-15)9.4×10 ⁴ (4)熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \operatorname{Fr}^{0.0975}$ $\Lambda = \frac{\operatorname{UD}^{1/3}}{(1-2)^{1/3}}$	航空機火災 (F-15) 9.4×10 ⁴ (4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。 $\tan \beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 表に示す。 Q= (1-χ) ΔH _{c, eff} SM Q: 発生熱量 (kW), χ: 放射分率(0.05) ΔH _{c, eff} : 発熱量(43,500kJ/kg) S: 航空機火災 (F-1 5) の燃焼面積(44.6m ²) M: 質量低下速度(kg/m ² /s) 第5.8.2-3 表 想定する火災源の発生熱量		火災源 発生熱量Q (kW)		
	大災額発生熱量Q (km) 航空機大災 (F-15)第空機大災 (F-15)9.4×104(4)熱気流が直接給気口に流入する風速を第 以下の式を満たす熱気流が直接給気口に流入する風速を第 出した。算出結果を第5.8.2-4 表に示す。tan $\beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ tan $\beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{(Qg/C_p \circ T_0)^{1/3}}$ Fr = $\frac{U}{\sqrt{Dg}}$ tan β : 大災額と給気口を結ぶ直線の傾き (rad) $\Lambda : 類次元 5/5, Fr : 7/2F/3 (c)$		$ \frac{\underline{v \\ (N)}}{\underline{M} 2 \\ \underline{W} \\ (\Gamma - 1 5)} \qquad 9.4 \times 10^4 $ (4) 熱気減が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。算出結果を第 5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{ pr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(\text{Qg}/C_p \rho T_0\right)^{1/3}}$ Fr = $\frac{\text{U}}{\sqrt{\text{Dg}}}$	火災源発生熱量Q (kW)航空機火災 (F-15)9.4×104(4)熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。tan $\beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ tan $\beta = 0.37 \Lambda^{-9/8} Fr^{0.0975}$ $\Lambda = \frac{UD^{1/3}}{(Qg/C_p \rho T_0)^{1/3}}$	$ \underbrace{ \begin{array}{c c c c c c c c c } \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	火災源 発生熱量Q(kW) 航空機火災 9.4×10 ⁴ (F-15) 9.4×10 ⁴ (4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 10.37 $\Lambda^{-9/8}$ Fr ^{0.0975}	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第5.8.2-3 表に示す。 Q= (1-χ) ΔH _{c, eff} SM Q:発生熱量(kW), χ:放射分率(0.05) ΔH _{c, eff} :発熱量(43,500kJ/kg) S:航空機火災(F-15)の燃焼面積(44.6m ²) M:質量低下速度(kg/m ² /s)		第 5.8.2-3 表 想定する火災源の発生熱量		
第5.8.2-3 表 . 想定する大災難の発生熟量 <th>第5.8.2-3 書 想定する火災腰の発生熱量 航空機火災 9.4×10⁴ (4) 整気流び直接発気口に流入する風速 以下の式気満たす熱気流が直接沿気口に流入する風速を算 出した。第出結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{ pr}^{-0.0975}$ $\Lambda = \frac{U D^{1/3}}{\left(Q_R/C_p \rho T_o\right)^{1/3}}$ Fr= $\frac{U}{\sqrt{D_R}}$ tan $\beta : 火災際と給気口を読を直線の模支 (rad)$ $\Lambda : 篝火気の25/5, Fr : 2 ル - F 数 (c)$</th> <th>第5.8.2-3 表 想定する火災額の発生熟量</th> <th>第5.8.2-3 衰 想定する大災願の発生熱量 <</th> <th>第5.8.2-3 表 想定する火災源の発生熱量 <u> 大災源 発生熱量Q (kW)</u> 航空機火災 9.4×10⁴ (1-15) 9.4×10⁴ (4) 熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。第出結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(Q_{\text{g}}/C_{\text{p}}\rho_{\text{T}}_{0}\right)^{1/3}}$</th> <th>第5.8.2-3 表 想定する火災源の発生熱量火災源発生熱量Q (kW)航空機火災 (F-15)9.4×10⁴(4)熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。tan β = 0.37 $\Lambda^{-9/8}$ Fr^{-0.0975}$\Lambda = \frac{UD^{1/3}}{(D^{-1/3})^{1/3}}$</th> <th>第5.8.2-3 表 想定する火災源の発生熱量 <u>火災源</u>発生熱量Q(kW) 航空機火災(P-15)9.4×10⁴ (4)熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 $\tan \beta = 0.37\Lambda^{-9/8} \text{Fr}^{0.0975}$</th> <th>(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 麦に示す。 Q= $(1-\chi) \Delta H_{c, eff} SM$ Q:発生熱量 (kW), $\chi: 放射分率(0.05)$ $\Delta H_{c, eff}: 発熱量(43, 500 kJ/kg)$ S:範空機火災 (F-15) の燃焼面積(44.6m²)</th> <th></th> <th>M: 質量低下速度(kg/m²/s)</th> <th></th> <th></th>	第5.8.2-3 書 想定する火災腰の発生熱量 航空機火災 9.4×10 ⁴ (4) 整気流び直接発気口に流入する風速 以下の式気満たす熱気流が直接沿気口に流入する風速を算 出した。第出結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{ pr}^{-0.0975}$ $\Lambda = \frac{U D^{1/3}}{\left(Q_R/C_p \rho T_o\right)^{1/3}}$ Fr= $\frac{U}{\sqrt{D_R}}$ tan $\beta : 火災際と給気口を読を直線の模支 (rad)$ $\Lambda : 篝火気の25/5, Fr : 2 ル - F 数 (c)$	第5.8.2-3 表 想定する火災額の発生熟量	第5.8.2-3 衰 想定する大災願の発生熱量 <	第5.8.2-3 表 想定する火災源の発生熱量 <u> 大災源 発生熱量Q (kW)</u> 航空機火災 9.4×10 ⁴ (1-15) 9.4×10 ⁴ (4) 熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。第出結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 \Lambda^{-9/8} \text{Fr}^{0.0975}$ $\Lambda = \frac{\text{UD}^{1/3}}{\left(Q_{\text{g}}/C_{\text{p}}\rho_{\text{T}}_{0}\right)^{1/3}}$	第5.8.2-3 表 想定する火災源の発生熱量火災源発生熱量Q (kW)航空機火災 (F-15)9.4×10 ⁴ (4)熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。算出結果を第5.8.2-4 表に示す。tan β = 0.37 $\Lambda^{-9/8}$ Fr ^{-0.0975} $\Lambda = \frac{UD^{1/3}}{(D^{-1/3})^{1/3}}$	第5.8.2-3 表 想定する火災源の発生熱量 <u>火災源</u> 発生熱量Q(kW) 航空機火災(P-15)9.4×10 ⁴ (4)熱気流が直接給気ロに流入する風速 以下の式を満たす熱気流が直接給気ロに流入する風速を算 出した。算出結果を第5.8.2-4表に示す。 $\tan \beta = 0.37\Lambda^{-9/8} \text{Fr}^{0.0975}$	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 麦に示す。 Q= $(1-\chi) \Delta H_{c, eff} SM$ Q:発生熱量 (kW), $\chi: 放射分率(0.05)$ $\Delta H_{c, eff}: 発熱量(43, 500 kJ/kg)$ S:範空機火災 (F-15) の燃焼面積(44.6m ²)		M: 質量低下速度(kg/m ² /s)		
M: 黛泉低丁速度 3.6x~m ² ~x) M: 黛泉低丁速度 3.6x~m ² ~x) 第 5.8.2-3.5. 過度する大災源の発生熱量 <u> 坂災源</u> <u> な生熱量Q (k0)</u> <u> 頭空機火災</u> <u> 9.4×10⁴</u> (1) 熟気滋が直接給気口に溢入する風速 以下の式を進たす熟気液が直接給気口に溢入する風速を算 <u> 出した、</u> 第出提表素第 5.8.2-4 表に示す. ten $\beta = 0.37\Lambda^{-9/8} \text{Fr}^{-0097.5}$ $\Lambda = \frac{UD^{1/3}}{\left(Q g / C_{y} \rho T_{y}\right)^{1/3}}$ $Fr = \frac{U}{\sqrt{D_{H}}}$ $ton \beta : 広災線上緯気口を請去直線の値気 (rad). A : 無波元づける, Fr: ブルード数 (c).$	$M: \widehat{\mathbb{G}}_{\infty} \underbrace{\mathbb{K} \mathbb{F}_{\alpha} \mathbb{E}_{\alpha} \mathbb{G}_{\alpha} \mathbb{E}_{\alpha}^{-1} \mathbb{A}_{\alpha}^{-1}} \\ \widehat{\mathbb{K}} \underbrace{\mathbb{K} \mathbb{S}, \mathbb{S}, 2 - 3 \mathbb{E}_{\alpha} \mathbb{E}_{\alpha}^{-1} \mathbb{E}_{\alpha} $	M: 質量低下温度 ($u_{\alpha}/u^{-}/s$) 第5.8.2-3素 第5.8.2-3素 一次災難 発生熱量Q (u_{θ}) 航空陽火災 9.4×10 ⁴ (1) 熱気流が直接給気口に流入する風速を算 出した。算用結果を第5.8.2-4 表に示す。 tan $\beta = 0.37 A^{-9/8} rr^{0.0973}$ $\Lambda = \frac{UD^{1/3}}{(Q \not\in / C_{\nu} \rho \cdot \Gamma_{0})^{1/3}}$ $r_{r} = \frac{U}{\sqrt{Dg}}$ tan β : 大災潤と給気口を結ぶ直線の傾き (rad)	$\begin{split} \mathbf{M} : \overline{\mathbf{g}} \underline{\mathbf{g}} \underline{\mathbf{k}} \mathbb{E} \overline{\mathbf{k}} \underline{\mathbf{c}} \langle \mathbf{k} \underline{\mathbf{c}} \rangle \mathbf{s} \rangle \\ & \qquad \qquad$	$\begin{split} \mathbf{M} : \mathbf{G} \\ \mathbf{G} \\ \mathbf{M} : \mathbf{G} \\ G$	M: 質量低下速度(kg/m²/s) 第5.8.2-3 表 想定する火災源の発生熱量 <u> </u>	M: 質量低下速度 (kg/m²/s) 第5.8.2-3 表 想定する火災源の発生熱量	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 表に示す。 Q= (1-χ) ΔH _{c, eff} SM Q:発生熱量(kW), χ:放射分率(0.05)		$\Delta H_{c, eff}$:発熱量(43,500kJ/kg) S:航空機火災(F-1 5)の燃焼面積(44.6m ²)		
$\frac{\Delta H_{-,eff}}{S: \# \otimes 2 \mathbb{R} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}}$ $\frac{S: \# \otimes 2 \mathbb{R} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}}{\mathbb{R} : \mathbb{R} \times \mathbb{R} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}}$ $\frac{\mathbb{R} : \mathbb{R} \times \mathbb{R} \times \mathbb{Q} \times \mathbb{Q}$	$\begin{array}{c} \Delta\Pi_{-m,i} \ \underline{g} \underline{g} \underline{g} (\underline{g}, \underline{g}, \underline{g}, \underline{g}) \\ S : \underline{g} \underline{g} \underline{g} \underline{g} \underline{g} \underline{g} \underline{g} \underline{g}$	$\begin{split} \Delta \mathbf{L}_{arr} & \pm 28.5 \mathrm{gr}(\Delta S, \mathrm{Ce}^{-1}, \mathrm{D}, \mathrm{D}, \mathrm{S}, \mathrm{gr}(\Delta S, \mathrm{Ge}^{-1}, \mathrm{D}, \mathrm{D}, \mathrm{S}, \mathrm{gr}(\Delta S, \mathrm{Ge}^{-1}, \mathrm{Ge}$	$\begin{split} \Delta H_{a,ur}: \mathcal{R} \mathbb{R} \mathbb{R}^{d}(3, 0) \mathcal{R}(2, \mathbb{R}) \\ S: t \& \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}$	$\begin{split} \frac{\Delta H_{c.,sr}: 委認進(23,500k]/kg)}{S: 輸空機火災(F-15) の燃焼面積(44,6n2)}\\ M: 質量低下速度(kg/m2/s) \\ \\ \hline M: 質量低下速度(kg/m2/s) \\ \hline \frac{K_{5,8,2-3} ± 想定する火災源の発生熱量}{M_{5,2}^{2}} \\ \hline \frac{\chi_{災源} & \underline{\aleph} \pm k \underline{\mathbb{R}} \underline{\mathbb{Q}} (kw)}{\underline{m} \underline{n} \underline{n} \underline{\mathbb{Q}} $	$\frac{\Delta H_{\omega,nT} : $		(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 麦に示す。 Q= (1-χ) ΔH _{c, eff} SM		Q:発生熱量 (kW), χ:放射分率(0.05)		
$\begin{array}{c} Q: \underline{\mathcal{R}} \underline{\mathcal{R}} \underline{\mathcal{R}} \underline{\mathbf{M}} (\mathbf{r}), \underline{\mathbf{x}} : \underline{\mathcal{R}} \underline{\mathcal{R}} \underline{\mathcal{L}} \mathbf{\mathcal{R}} (\mathbf{x}, 0) \\ \Delta \Pi_{\underline{\mathbf{x}}, \underline{\mathbf{x}}} \underline{\mathcal{R}} \underline{\mathcal{R}} \underline{\mathcal{L}} (\underline{\mathbf{x}} - 1, 0) \\ (\underline{\mathbf{x}}, \underline{\mathbf{x}}, \underline{\mathcal{R}} \underline{\mathcal{R}} \underline{\mathcal{L}} (\underline{\mathbf{x}} - 1, 0) \\ \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}}} \underline{\mathbf{x}} \underline{\mathbf{x}$	$\begin{array}{c} Q: \underline{\mathbf{X}} \underline{\mathbf{X}} \underline{\mathbf{X}} \underline{\mathbf{X}}_{1}(\mathbf{x})_{1,\infty} : \underline{\mathbf{X}} \underline{\mathbf{X}} \underline{\mathbf{X}} \underline{\mathbf{Y}} \underline{\mathbf{Y}}_{1,\infty}} \\ \underline{\mathbf{A}} \mathbf{H}_{\mathbf{x}_{1,\infty}} : \underline{\mathbf{X}} \underline{\mathbf{X}} \underline{\mathbf{X}} \underline{\mathbf{X}} \underline{\mathbf{X}} (\mathbf{X} - 1, 5) : \mathcal{O} \underline{\mathbf{X}} \underline{\mathbf{X}}} \underline{\mathbf{X}} \underline{\mathbf{X}}} \underline{\mathbf{X}} $	Q: 20年歌憲 (48). x: 故新安平(0.05). ALt	$\begin{array}{c} \underline{Q}:\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}_{2,a,C_{1}}:\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}_{2,a,C_{2}}:\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}_{2,a,C_{2}}:\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}_{2,a,C_{2}}:\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}},\\ \underline{S}:\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\underline{\mathscr{G}}\underline{\mathscr{G}}}\underline{\mathscr{G}}\mathscr{G$	$\begin{array}{c} Q: \underline{\tilde{x}} \tilde{$	$\begin{array}{c} Q: \mathfrak{A} \pm k \mathfrak{a} \\ Q: \mathfrak{A} \pm k \mathfrak{a} \\ (\mathfrak{s} \times 500 \mathrm{kL}/\mathrm{sg}) \\ \Delta \mathrm{Li}_{c,st}: \mathfrak{A} \mathfrak{A} \mathfrak{A} \mathfrak{A} \\ S: \mathfrak{M} \mathfrak{A} \mathfrak{A} \mathfrak{A} \\ \mathfrak{A} \mathfrak{A} \\ (F-15) \\ \mathfrak{A} \mathfrak{A} \mathfrak{A} \\ \mathfrak{A} \mathfrak{A} \mathfrak{A} \\ \mathfrak$	Q: $\Re \pm \$ \implies (14), \chi : \underline{k} \$ + 5 \ge (0.05)$ $\Delta H_{\alpha, eff}$: $\Re \gg \implies (43, 500 kJ / kg)$ S: $\underline{k} x \equiv k \times \Im (1 + 1, 5), on \& \underline{k} \equiv \underline{k} \equiv (44, 6m^2)$ M: $\underline{f} \equiv \Box = \underline{k} \pm (\underline{k} \times \sqrt{n^2 / s})$ $\Re = 5, 8, 2, 3, \pm, \exists x \equiv 1.5 \times \Im \oplus \Re \equiv$ $\underline{k} = 5, 8, 2, 3, \pm, \exists x \equiv 1.5 \times \Im \oplus \Re \equiv$ $\underline{k} = 5, 8, 2, 3, \pm, \exists x \equiv 1.5 \times \Im \oplus \Re \equiv$ $\underline{k} = 0, 37 \wedge \frac{-y/8}{pr^{0.00175}}$	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3 表に示す。		$Q = (1 - \chi) \Delta H_{c, eff} S M$		
$\begin{split} & \Theta^{-} (1-x) \Delta H_{n,\mu^{-}}SM \\ & \Theta: \underline{x} \pm x$	$\begin{aligned} Q &= (1-\chi) \Delta H_{-,uv} S M \\ Q &= \Delta E d_{2} \Delta H_{-,uv} S M \\ Q &= \Delta E d_{2} \Delta H_{-,uv} S M \\ A H_{-,uv} &= \Delta E d_{2} \Delta B (0,005) \\ A H_{-,uv} &= \Delta E d_{2} \Delta B (0,05) \\ A H_{-,uv} &= \Delta E d_{2} \Delta B (0,05) \\ S &= \Delta E d_{2} \Delta E d_{2} \Delta B (0,05) \\ M &= \frac{1}{2} 1$	$\begin{split} & Q^{-} (1-\chi) \Delta H_{\alpha, err} SM \\ & Q: \Re \pm \Re \pm (\omega), \chi: \widehat{g} \widehat{g} \widehat{g} \widehat{g} \widehat{g} \widehat{g} \widehat{g} \widehat{g}$	$\begin{aligned} \mathbf{Q} = (1-\chi) \Delta \mathbf{H}_{n_{c}, err} \mathbf{S} \mathbf{M} \\ \mathbf{Q} : \frac{g \pm g \pm g g}{g} \frac{g \pm g \pm g \pm g g}{g} g \pm g \pm$	$\begin{aligned} \mathbf{Q} = (1-\chi) \Delta \mathbf{H}_{u_{c} \to ti} \cdot \mathbf{SM} \\ \mathbf{Q} : \mathbf{\overline{\mathbf{g}} \pm \underline{\mathbf{M}} \pm (\mathbf{k}, 0), \chi : \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \pm (\mathbf{k}, 0, 0), \\ \Delta \mathbf{H}_{u_{c} \to ti} : \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \pm (\mathbf{k}, 0, 0), \\ \Delta \mathbf{H}_{u_{c} \to ti} : \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \pm (\mathbf{k}, 0, 0), \\ \mathbf{S} : \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}), \\ \mathbf{S} : \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}), \\ \mathbf{M} : \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}, 0) \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \pm \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}), \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}), \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}), \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}), \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{k}, 0, 0^{*}), \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{M}, \mathbf{M}, \mathbf{M}) \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{M}, \mathbf{M}) \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{M}, \mathbf{M}) \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} (\mathbf{M}, \mathbf{M}) \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} = \mathbf{M} : \underline{\mathbf{M}} \times \underline{\mathbf{M}} \\ \underline{\mathbf{M}} : \underline{\mathbf{M}} \oplus \underline{\mathbf{M}} \times \underline{\mathbf{M}} = \mathbf{M} : \underline{\mathbf{M}} \times \underline{\mathbf{M}} = \mathbf{M} : \underline{\mathbf{M}} \times \underline{\mathbf{M}} \\ \mathbf{M} : \underline{\mathbf{M}} = \mathbf{M} : \mathbf{M} : \mathbf{M} = \mathbf{M} : \mathbf{M} : \mathbf{M} : \mathbf{M} : \mathbf{M} : \mathbf{M} = \mathbf{M} : $	$\begin{aligned} Q &= (1-\chi) \Delta H_{\alpha_{1},eff} SM \\ Q &: \Re \pm \Re \frac{1}{2} (43), \chi : \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} (0.05) \\ \Delta H_{\alpha_{1},eff} : \dot{\chi} \dot{\chi} \dot{\chi} \frac{1}{2} (43), 500 kL/kg) \\ S &: \Re 2\% \frac{1}{2} (\chi \chi (F-1.5), 0 \% \frac{1}{2} (4.6 m^{2})) \\ M &: \Re 2\% (F-1.5), 0 \% \frac{1}{2} (4.6 m^{2}) \\ \frac{\chi \chi \chi \pi}{\Re 2\% \chi \chi} \frac{\Re 2 t \frac{1}{2} k \frac{1}{2} Q_{-} (4\pi)}{\Re 2\% \chi \chi} \\ \hline \\ \frac{\chi \chi \chi \pi}{(F-1.5)} \frac{\Re 2 t \frac{1}{2} k \frac{1}{2} Q_{-} (4\pi)}{\Re 2 t \frac{1}{2} k \frac{1}{2} Q_{-} (5\pi)} \\ (4) \frac{\Re \chi \chi \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} \dot{\chi} $	Q= $(1-\chi) \Delta H_{s, eff} SM$ Q: 整先熟量 (k0), χ : 放射分章(0.05) $\Delta H_{s, eff} : $ 整熟是(43,500kJ/kg) S: 航空機大災 (F - 1.5) の燃炸面積(44,6m²) M: 實量低下速度 (ks/m²/s) 第.5.8.2-3 表 想定する火災源の発生熱量 使災源	(3) 発生熱量 以下の式から発生熱量を算出した。算出結果を第 5.8.2-3		表に示す。		
$ \begin{array}{c} \Xi E \Xi \Xi L, \\ \mathbf{Q} = (1 - \chi) \Delta \Pi_{\mathbf{C}_{- eff}} S M \\ \\ \mathbf{Q} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \mathbf{Q} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \mathbf{Q} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \mathbf{Q} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \mathbf{Q} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \mathbf{Z} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \mathbf{Z} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \\ \overline{\mathbf{Z}} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \\ \overline{\mathbf{Z}} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \\ \overline{\mathbf{Z}} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \\ \overline{\mathbf{Z}} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \\ \\ \overline{\mathbf{Z}} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \\ \\ \\ \\ \\ \\ \hline \mathbf{Z} : (2 \pm \chi) \Delta \Pi_{\mathbf{Q}_{- eff}} S M \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{split} \overrightarrow{\mathbf{x}} \mathbf{L}, & \mathbf{Q} = (1 - \chi) \Delta \mathbf{H}_{c, eff} \mathbf{S} \mathbf{M} \\ & \mathbf{Q} : \mathcal{A}_{\mathbf{x}} \mathbf{A}_{\mathbf{x}}^{T} \mathbf{B}_{\mathbf{x}}^{T} (\mathbf{S}_{\mathbf{x}}^{T} \mathbf{S}_{\mathbf{x}}^{T} \mathbf{S}_$	式に広土。 Q= (T-χ) ΔH _{e-ext} SM Q: 公共結果 (00,00) (A) ΔH _{a-ext} : 消除素(0,00) (A) S: 法医定 (35,00) (A) S: 法医定 (35,00) (A) M: 實品(5),52(3) (A) (A) (A) (A) (A) (A) (A) (A)	$\begin{split} &\frac{36.5.5.}{Q_{-}} &Q_{-} (1-\chi) \Delta \Pi_{\chi_{-},eff} SM \\ &\frac{Q_{-} (g_{-} - \chi, -3.5) \Delta \Pi_{\chi_{-},eff} SM \\ &\frac{Q_{-} (g_{-} - \chi, -3.5) \Delta \Pi_{\chi_{-},eff} SM \\ \Delta H_{\chi_{-},eff} \cdot 3.5 SO(4/\sqrt{-5}) \\ &\frac{\Delta H_{\chi_{-},eff} \cdot 3.5 SO(4/\sqrt{-5}) \\ &S_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} (44, g_{0}) \\ &\frac{G_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} (44, g_{0}) \\ &\frac{g_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} (44, g_{0}) \\ &\frac{g_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} (44, g_{0}) \\ &\frac{g_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} (44, g_{0}) \\ &\frac{g_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} g_{0} g_{0} g_{0} g_{0} \\ &\frac{g_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} g_{0} g_{0} g_{0} g_{0} \\ &\frac{g_{-} (g_{-} - \chi, -1.5) - 0.5 g_{0} g_{0} g_{0} g_{0} g_{0} g_{0} g_{0} \\ &\frac{g_{-} (g_{-} - \chi, -1.5) - 0.5 g_{-} (g_{-} - \chi, -1.5) - 0.5 g$	$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \chi_{1,\overline{n}}, & \\ \chi_{1,\overline{n}}, & \\ \end{array} \end{array} \\ & \begin{array}{l} Q = (1-\chi) \ \Delta H_{v_{n}, dY} SM \\ \hline \\ Q, & \\ \end{array} \\ & \begin{array}{l} \chi_{2} & \\ \end{array} \\ \begin{array}{l} \Delta H_{u_{n}, dY} : \\ & \\ \end{matrix} \\ & \begin{array}{l} \chi_{2} & \\ \end{matrix} \\ & \begin{array}{l} \chi_{2$	$\begin{split} \frac{\frac{1}{2} E.5.5}{Q_{1}^{2} (1-\chi) \Delta H_{o_{-eff}} SM} \\ Q : & \Sigma \pm \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0}) \\ & \Delta H_{o_{-eff}} : \frac{1}{2} \frac{\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{S : \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{S : \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{1}{2} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{Q_{1}}{Q_{1}} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{Q_{1}}{Q_{1}} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})(-\chi_{0})}{M : \frac{1}{2} \frac{Q_{1}}{Q_{1}} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})}{M : \frac{1}{2} \frac{Q_{1}}{Q_{1}} \frac{Q_{1}}{Q_{1}} \frac{Q_{1}}{Q_{1}} (2, 500 \text{K})}{M : \frac{1}{2} \frac{Q_{1}}{Q_{1}} \frac{Q_{1}$	素に示す. Q= (1- χ) ΔH _{c. off} SM Q: 葉牛熱量 (xh) χ : 放射分率(0.05) ΔH _{c. off} : 葉熱量(x5,500k]/kg) S: 航空機火災 (F = 1.5) の燃焼面積(44.6m ²) M: 質量低下速度(kg/m ² /s) 第5.8.2-3 表 想定する火災額の発生熱量 火災廠 発生熱量(kg/m²/s) 第5.8.2-3 表 想定する火災額の発生熱量 (4) 熱気流が直接給気口に流入する風速 (4) 熱気流が直接給気口に流入する風速 以下の式を満たす熱気流が直接給気口に流入する風速を算 出した。第出結果を第5.8.2-4 表に示す tan $\beta = 0.37 \Lambda^{-9/8}$ Pr^{0.097.5} 	(3) 発生熱量		以下の式から発生熱量を算出した。算出結果を第5.8.2-3		
$\underline{W}_{1} \circ \phi_{1} \nabla_{1} \nabla_{2} \nabla_{2} \nabla_{3} \nabla_{3}$ $\underline{\varphi} = (1 - \chi) \wedge \Pi_{m_{env}} \otimes M$ $\underline{\varphi} = (1 - \chi) \wedge \Pi_{m_{env}} \otimes M$ $\underline{\varphi} = (2 - \chi) \wedge M_{m_{env}} \otimes M$ $\underline{\varphi} = (2 - \chi) \wedge M_{m_{env}} \otimes M$ $\underline{\varphi} = (2 - \chi) \wedge M_{m_{env}} \otimes M$ $\underline{\varphi} = (2 - \chi) \wedge M_{m_{env}} \otimes M$ $\underline{\varphi} = (2 - \chi) \wedge M_{m_{env}} \otimes M$ $\underline{\varphi} = (2 - \chi) \wedge M_{m_{env}} \otimes M_{m_{env}} \otimes M_{m_{env}} \otimes M_{m_{env}}$ $\underline{\Psi} = \chi_{M, K} \otimes \chi_{M, K} \otimes \chi_{M, K} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M}} \otimes M_{M, M_{M}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M}} \otimes M_{M, M_{M}} \otimes M_{M, M_{M, M_{M}}} \otimes M_{M, M_{M}} $	$\begin{array}{c} Q_{1} c_{0} c_{0}$	$\begin{array}{c} \underline{\Psi}_{1}(\phi_{2},\phi_{3},\phi_{4},\phi_{3},\phi_{4},\phi_{3},\phi_{4},\phi_{3},\phi_$	$\begin{split} \frac{ \nabla T \circ T \pi^{-1/2} \otimes \mathbb{A}^{-\frac{1}{2}} \mathbb{E} \mathbb{A}^{-\frac{1}{2}} \mathbb{A}^{-\frac{1}{2}$	$\begin{split} \frac{ U T \oplus T A^{1/2} \otimes S M}{ K _{\infty, eff} S M} \\ & Q: [2k, 3k]_{\infty} (w), \ldots : \underline{x} \ $	$\begin{split} & \underline{\text{MEO-XarbSreek}} = \underbrace{\text{MEO-XarbSreek}}_{\text{Scients}}, & \underline{\text{MEO-XarbSreek}} = \underbrace{\text{MEO-XarbSreek}}_{\text{MEO-XarbSreek}}, & \underline{\text{MEO-XarbSreek}} = \underbrace{\frac{1}{12} \underbrace{\frac{1}{12} \underbrace{\text{MEO-XarbSreek}}_{\text{Scients}}, & \underline{\text{MEO-XarbSreek}}_{\text{Scients}}, & \underline{\text{MEO-XarbSreek}}_{\text{Scients}}, & \underline{\text{MEO-XarbSreek}}_{\text{Scients}}, & \underline{\text{MEO-XarbSreek}}_{\text{MEO-XarbSreek}}, & \underline{\text{MEO-XArbSreek}}_{MEO-X$	$\begin{split} \underline{U\Gamma}ozzh \circ \delta \mathcal{R} \pm \tilde{M} \underline{a} \pm \tilde{c} \tilde{\pi} 5.8.2 - 3 \\ \underline{k} \sqsubseteq z z z} \\ Q = (I - \chi) \Delta H_{u_{-}v(\overline{z}} SM \\ \underline{Q} : \frac{\mathcal{R}}{2} \pm \frac{\mathcal{R}}{2} \underline{Q} (M), \chi : \underline{x} \underline{x} \underline{M} \partial \overline{\varphi} (0.05). \\ \Delta H_{u_{-}v(\overline{z}} \cdot \underline{X} \underline{M} \underline{d} (43, 500 \underline{k} L/\underline{k} \underline{a}). \\ S : \underline{k} \underline{x} \underline{m} \underline{k} \underline{k} \underline{k} (I - 1, 5). o \underline{m} \underline{k} \underline{m} \underline{m} \underline{d} (44, 500^2). \\ M : \underline{m} \underline{m} \underline{k} \underline{k} \underline{k} \underline{k} (I - 1, 5). o \underline{m} \underline{k} \underline{m} \underline{m} \underline{d} (44, 500^2). \\ M : \underline{m} \underline{m} \underline{k} \underline{k} \underline{k} \underline{k} \underline{k} (I - 1, 5). o \underline{m} \underline{k} \underline{m} \underline{m} \underline{d} (44, 500^2). \\ M : \underline{m} \underline{m} \underline{k} \underline{k} \underline{k} \underline{k} \underline{k} \underline{k} \underline{k} k$			(3) 発生熱量		

炉			備考	
	別紙7-	1		
種類				
下確当	の評価基準に			
E)				
	自衛隊機, 在日米軍機			
	評価対象			
	自衛隊機 (F-4FI改 F-15 等)			
	在日米軍機			
トロール	(F-16, F/A-18 等)			
E2)	評価対象			
ミュータ	目衛隊機(T-1 等)			
ž)				
E2)	評価対象			
	目面隊機(MH-53 等) 在日米軍機(CH-53 等)			
E2)				
(01005	自衛隊機 (0H-6 等)			
(SA365 寮,報道	仕日木車懱(UH-1 寺)			
0, 川崎				
更と比べ	て運航回数が極めて少ない	<u>`</u>		
軍送事業	者の登録機数の割合から,			
いら,評価 ストベー:	西対象外とする。 スで計器飛行方式による所	5		
「形態をⅠ	取っていることから, 本基	5		
は米軍機	(空中給油機等)			
よ米車機	(その他の機種)			

柏崎刈	羽原子力発	電所 6	6/7号炉	ī (20	17.12.2	0版)			東海第二	二発電所	[:] (2018.	. 9. 12	版)			島	退原子力発電所	2 号炉	î		備考
						別紙 7-2								別紙 7.6						別紙7-2	
	<u>第1</u> 3	長 主要自	目衛隊航空	機の仕	様			自衛隊	機又は	长軍機の	用途に。	よる分	う類につい	て	自	衛隊機又は	*米軍機の用途に]	こる分類	頃につ	いて	・条件の相違
所属	形式	機種	保有数	全長	全幅	燃料積載量															【柏崎 6/7】
	小型固定翼	LR-1	2	[m] 10	[m] 12	920	自衛隊	機又は	米軍機0	D落下事	故には、	[5]	訓練空域外	トを飛行中」	自衛隊機	又は米軍機	の落下事故には、	「訓約	速空域	内で訓練中及	評価手法の違いを踏
	大型固定翼	LR-2	7	14	18	2040	の落下事	故と「(<u>⑥基地-</u>	-訓練空	或間を行	主復時	」の落下	事故がある。	び訓練空域	外を飛行中	の落下事故」と	「基地・	一訓練	空域間往復時	まえた航空機の分類の
	小型回転翼	AH-1S	70	14	3	980	<u>⑤及び</u>	<u>⑥につ</u>	いて, [自衛隊機	が保有	する機	種を代表	として, 用	の落下事故	」が含まれ	るが,島根原子力	」発電	所は基	地と訓練空域	相違に伴う記載の相違
陸上自衛隊	小型回転翼	0H-1	38	12	3	953	途による	飛行形	態を踏る	まえてカ	テゴリ	を分類	頁し, 燃料	積載量が最	間の往復範	囲内にない	ため,「基地	∥練空♯	或間往	復時の落下事	
	小型回転翼	UH-1H/J	141	$12/13^{*1}$	3	833	大となる	対象の	航空機を	を整理し	た。				故」は考慮	していない	'o				
	大型回転翼 大型回転翼	CH-47J/JA	A 56 34	16 16	4/5**2	3899			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						以下に自	衛隊機又は	 :米軍機の落下事ま	女によ	る火災	影響を評価す	
	大型回転翼	AH-64D	10	18	6	1421									る機種のカ	テゴリにつ	いて整理する。 ら	う箱にさ	あたっ	ては、代表と	
	大型固定翼	P-3C	75	36	30	34820									して自衛隊	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		میں سیست ح ل ل	1.7-	
	大型固定翼 大型回転翼	P-1 SH-60.J	4 46	38 15	35	1361											100111100				
海上自衛隊	大型回転翼	SH-60K	39	16	3	1361	1 到1/3亩	売ばみ	ち 恋 存日	日の遊下	■ +				(1) 到(姑	定域かって	行中の遊下車サ				
	大型回転翼	MH-53E	6	22	6	12113 5250	山峦		<u> </u>		また いまめん	· 一	Гидь ді , Г					い ふ た く	2. N. T	マニナ	
	大型固定翼	F-15J/DJ	201	19	13	14647	旦 魚 風		加速とし	A MA	里稻俱	l 流Lin			主義	机全機(人	空间正暴饿10月	远于《		herring and	
	大型固定翼	F-4EJ	62	19	12	12260	祭」,	瓢运」,			上規賞が						1				
	大型固定翼 大型固定翼	F-2A/B RF-4E/EI	92	16 19	11	11053	上表	に代表	的な目復	前隊機(こ	おけるり	用途等	を示す。		所属	機種	用途	寸法	₹(m)		
	大型固定翼	C-1	25	29	31	15709		所属	機種	形式	用途	寸法全長	(m) 燃料量* 全幅 (m ³)	1				全長	全幅		
航空自衛隊	大型固定翼	С-130Н	15	30	40	26344		陸上 自衛隊	LR-1 LR-2	小型固定翼 大型固定翼 小型回転翼	連絡偵察 連絡偵察	約 10 約 14	約12約0.9 約18約2	·	陸上自衛隊	LR-2	連絡偵察	14	18	約2	
	大型固定翼	KC-130H	4	49	48	26344		-	0H-6D 0H-1	小型回転翼 小型回転翼	利戦単 観測 観測	約 14 約 7 約 12	約2 約0.2 約3 約1		海上自衛隊	P-3C	哨戒	36	30	約 35	
	大型固定翼	E-2C	13	18	25	7002			UH-1H/J	小型回転翼	多用途	約 12/13	約3 約0.8	1		F-15J/DJ	戦闘	19	13	約 15	
	大型固定翼	E-767	4	49	48	_*3		-	CH-47J/JA UH-60JA	大型回転翼	 輸送 多用途 	約 16 約 16	約4/5 約4 約3 約3			F-4EJ	戦闘	19	12	約 12	
平成 25 年版防	大型回転翼 5衛白書より作	CH-47J 戓。燃料積	<u>15</u> 載量は日本角	16 亢空機全集	4 2013(鳳J	<u>3899</u> て書林),世界		海上	AH-64D P-3C	大型回転翼 大型固定翼	戦闘 哨戒	約 18 約 36	約6 約1 約30 約35	_		F-2A/B	戦闘	16	11	約 11	
航空機年鑑 20 ※1:大型航空	12-2013 (酣燈) E機の燃料が最	注) より。 た 大のものに	なお, 灰色で緒 なる。	網かけした	:航空機は	小型航空機。		日用隊	P-1 SH-60J	大型固定翼 大型回転翼	哨戒 哨戒	約 38 約 15	約35 <u>デ</u> KC-767 [*] 約3 約1	2		RF-4E/EJ	偵察	19	12	約 13	
※2:UH-1H, UI を意味す	+-1J の全長が+ ⁻る。	とれぞれ 12	,13m,CH-47	∫, CH−47JA	の全幅が	それぞれ 4,5m			SH-60K	大型回転翼	哨戒 掃海	約16	約3 約1 約6 約12	_		C-1	輸送	29	31	約 21	
※3:P-1(哨) 用途を考;	戎), E−767(早 えると, KC−767	期警戒管制 (空中給油	 の燃料積 より燃料 	載量は不明補給機はな	月だが,機 りないと推	体サイズ及び 定する。			MCH-101	大型回転翼	 ・輸送 掃海 ・ 	約 23	約19 約5	_	航空目衛隊	С-130Н	輸送	30	40	約 37	
	,							航空	F15J/DJ F-4FI	大型固定翼	 ・ 輸达 戦闘 戦闘 	約 19	約13約15 約12約12	_		KC-767	空中給油・輸送	49	48	約 145	
								E MAN	F-2A/B RF-4E/EJ	大型固定翼 大型固定翼	戦闘	約 16 約 19	約11 約11 約11 約11 約12 約13	_		KC-130H	空中給油機能付加	30	40	約 37	
									C-1 C-130H	大型固定翼 大型固定翼	輸送輸送	約 29 約 30	約31 約16 約40 約37			E-2C	早期警戒	18	25	約7	
									KC-767	大型固定翼	空中給油 ・輸送	約 49	約 48 約 145			E-767	早期警戒管制	49	48	約 91	
									KC-130H E-2C	大型固定翼	空中結 加 機能付加 早期警戒	約 30 約 18	約40約37	_							
									E-767	大型固定翼	早期警戒 管制	約 49	約 48 ≦ KC-767*	2	田冷	レーナル	「声效佔索」	┎╓┶╦╬	, г	治7月1 【1月	
									CH-47J	大型回転翼	輸送出典	約 16 L:平成 28	約4 約4 年度版防衛白書等	÷	川述					戦闘」,「頂	
								**1 **2	増槽(機体のタ た値。 P-1 及75 F-767	外部に装着して 7 の燃料量け不	「便用する燃料 「明であろが	科タンク) P-1 につい	の燃料量を考慮し	-	祭」,		「空中稻油」,		<u>拿</u> 我」	寺かめる。	
									寸法が小さく KC-767 と寸法	空中給油機能	を備えていな ものの空中総	:いこと, H 合油機能を	E-767 についてに 備えていないこと	t -	用途	を形行形態	で整理すると、		后佃」	及び「早期警	
								:	から, KC-767	に比べて燃料量	量は少ないと	想定される	5 °		<u> </u> 成」に	ついては,	局局度の巡航を行	<u>1250</u>	のと考	えられる。ま	
															<u>た,</u> 「	哨戒」及び	、「輸送」について	[は,	目的地	での低高度で	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	以下の機種については、原子力発電所付近で低高度での飛行	の飛行が考えられるものの、移動は高高度の巡航を行うもの	
	を行うことはないため,「⑤-1 空中給油機等, 高高度での巡航	と考えられる。ここで目的地としては、「哨戒」が海上、「輸	
	が想定される大型固定翼機」として整理し、その他については、	送」が基地あるいは空港であることから、原子力発電所付近	
	「⑤-2その他の大型固定翼機及び回転翼機」として整理した。	で低高度での飛行を行うことはない。	
	・高高度での巡航が想定される「空中給油」及び「早期警戒」	したがって、自衛隊機又は米軍機の落下事故のうち、訓練	
	を用途とした機種	空域外を飛行中の落下事故で考慮するカテゴリを、以下のと	
	・目的地付近で低高度での飛行となるものの移動は高高度の	おり整理した。なお,大型輸送へリコプターCH-47 の燃料積	
	巡航を行うものと想定される「哨戒」及び「輸送」を用途	載量は約4m ³ であることから,回転翼機は大型固定翼機の評	
	とした機種(「哨戒」の目的地は海上,「輸送」の目的地は	価に包含される。	
	基地又は空港)		
	下表に代表的な自衛隊機のうち燃料量の観点から大型機のみ		
	について, 上記のカテゴリで整理した結果を示す。		
	カテゴリ 用 途 該当する 寸法 (m) 燃料量* 航空機 全長 全幅 (m ³)	カテゴリ 用途 該当する 寸法 航空機 会長 会幅	
	P-3C 約 36 約 30 約 35 P-1 約 38 約 35 ≤KC-767	P-3C 36 30 約35	
	空中給油機,「空中給油」,「早 高高度での期警戒」,「哨 C-1 約29 約31 約16 C-130H 約30 約40 約37	「空中給油」,「早 C-1 29 31 約 21	
	巡航が想定 戒」,「輸送」を用 される大型 途とする大型固定翼 KC-767 約49 約48 約145	空中給油機等 期警戒」,「哨戒」, KC-767 49 48 約 145	
	固定翼機 機 $RC=130n$ 赤530 赤540 赤537 E=2C 約18 約25 約7	「輸送」を用途とう KC-130H 30 40 約37 る大型固定翼機	
	E^{-767} $\$7$ 49 $\$7$ 48 $\le KC^{-767}$ LR-2 $\$7$ 14 $\$7$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$18$ $$17$ $$17$ $$17$ $$17$ $$17$ $$17$ $$18$ $$17$	E-2C 18 25 約7 $F-767$ 49 48 約91	
	CH-47J 約16 約4 約4 UH-60JA 約16 約3 約3	「戦闘」,「連絡偵 LR-2 14 18 約2	
	その他の大 AH-64D 約18 約6 約1 出口の中期 上記以外を用途とす SH-60J 約15 約3 約1	察」,「偵察」等を F-15J/DJ 19 13 約15 その他の地種 田冷トオスナ刑田宮 F-451 10 10 約15	
	型 固 定 翼 機,小型固 型固定翼機及び回転 MH-53E 約 22 約 6 約 12	てい他の機種 用速とする人至固定 F-4EJ 19 12 約12 翼機,小型固定翼機 F-2A/B 16 11 約11	
	定翼機及び 回転翼機 四転翼機	及び回転翼機 RF-4E/EJ 19 12 約13	
	$F - 4EJ$ $\Re 13$ $\Re 13$ $\Re 13$ $\Re 13$ $F - 4EJ$ $\Re 12$ $\Re 12$		
	H=2A/B 称) 16 旅) 11 旅) 11 RF-4E/EJ 約 19 約 12 約 13	(2)想定する航空機について	
	出典:平成 28 年度版防衛白書等 ※ 増槽の燃料量を考慮した値。	(1)による分類により,ガイドに基づき積載燃料量の最	
		大の機種として、空中給油機等としては KC-767、その他の機	
	上記の分類を踏まえ、「⑤訓練空域外を飛行中の落下事故」で	種としてはF-15を想定する航空機として選定している。	
	考慮するカテゴリとして、燃料量が最大となる航空機を下表に	燃料量については、燃焼継続時間を算出する際に必要であ	
	示すとおり整理した。	り、燃料量は多い方が保守的な評価となる。	
	対象		
	カテゴリ 対象とする航空機の内訳 ハマー単 航空機 パマー単 (m ³) 空中絵油機等 高高 「空中絵油」 「見期整戒」		
	エー和国版 4, 同同 「エー和国」,「半知言広」, 度での巡航が想定さ「哨戒」,「輸送」を用途とす KC-767 145.03 れる大型固定翼機 る大型固定翼機		
	その他の大型固定翼「戦闘」,「連絡偵察」,「偵機,小型固定翼機及察」等を用途とする大型固定翼F-1514.87		
	び回転翼機 機,小型固定翼機及び回転翼機 ※ 増槽の燃料量を考慮した値。		
	and the construction many and construction (Hint)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	2. 基地 – 訓練空域間を往復時の落下事故		
	下表に「⑥基地-訓練空域間を往復時」の落下事故において		
	考慮している百里基地に所属する自衛隊機を示す。		
	所属機種 形式 用涂 寸法(m) 燃料量*		
	加加 全長 全幅 (m^3) 航空 $F15I/DI$ 大型固定翼 戦闘 約19 約13 約15		
	自衛隊 F-4EJ 大型固定翼 戦闘 約 19 約 12 約 12		
	T-4 大型固定翼 中等練習 約 13 約 10 約 3 RF-4E/EJ 大型固定翼 偵察 約 19 約 12 約 13		
	U-125A 大型固定翼 救難捜索 約16 約16 約6		
	□ □ □ N 3 出典:平成 28 年度版防衛白書,航空自衛隊ウェブページ(平成 29 年 7 月確認)		
	等 ※ 増槽の燃料量を考慮した値。		
	百里基地に所属する自衛隊機のうち燃料量が最大の航空機を		
	対象とし、下表のとおり整理した。		
	カテゴリ 対免レオス航空機の内部 対象 燃料量**		
	カナゴリ 対象とりる机空機の内部 航空機 (m ³) 0.000 試験空域において訓練を行うと		
	④基地 – 訓練空域間 想定される百里基地に所属する F-15 14.87 往復時 田宮翠巻及び回転翠巻 田宮家巻及び回転翠巻 F-15 14.87		
	※ 増槽の燃料量を考慮した値。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2	2018. 9. 12 版)		島根	原子力発電	電所 2号	炉		備考
		別紙 7.2						別紙 7-3	
	各施設付近の空港と施設	<u> </u>	島根原子力	」発電所付	寸近の空港	と発電所と	の距離に	ついて	・条件の相違
	発電所 名称 空港名 施設と空港 の距離 ^{**1}	最大離着陸 距離 ^{※2} 判 定	発電所名	空港名	発電所との	空港と空港の最大離着	判定	備考	【柏崎 6/7】 島根 2 号炉は、出
	東海第二 成田空港 約 80km 発電所 井山の井 45 00km	(21. 2nm) ×			£2〕 □	陸地点まで の距離 ^{注2}			港及び米子空港の計
	次城空港 約 36km ○:評価対象 ×:評価対象外	(30nm)	島根 原子力発電所	出雲空港	約 17km	(約 15NM)	対象	第1図	離着陸地点以内に住
	 ※1 施設と空港の緯度,経度より計測 ※2 AIPを参照した。 	した。	注1:施設と空港(米子空港の経度、緯度	約 22km より計測した。	(約 23NM)	対象	第2図	時」を対象として設
			注2:航空路誌(1	AIP)を参!	照した。				

『は,出雲空 空港の最大 以内に位置 での離着陸 こして設定

	12版) 島根原子力発電所 2号炉
Stricture of Later and Cale and	12版) 島根原子力発電所 294

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所 (2018.9.12 版) 別紙 7.3 茨城空港の滑走路方向に対する茨城空港—東海第二発電所の角度 <u>について</u> 茨城空港の滑走路の方位は、19° (真方位) (A I P記載のデー タ) である。 また、茨城空港ー東海第二発電所の方位は、約 28.60° (真方 位) (茨城空港と東海第二発電所の緯度、経度より計測した。) で ある。 したがって、茨城空港の滑走路方向に対する茨城空港-東海第 二発電所の角度は、約 9.60° となる。	島根原子力発電所 2号炉	備考 ・記載方針の相違 【東海第二】 島根2号炉は,2.(4) a.の表中に滑走路方向 に対する角度を記載し ているため,再度記載し ていない
	真 西 英 市		

製成2.4 製成2.4 製成2.4 製成2.4 製成2.4 かたしておかったり、またなかったりをしていていて などのためので、このかり、またなかったり、 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのためので、このかり、などのないでした。 などのないでした。	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	f (2018.9.12 別	坂)			島根原子	力発電所	2号炉			備考
				別	紙 7.4						別紙7-4	
日日の私医療がため、 客様の方が 日日の私医療がため、 客様の方が 日日の 家様の方が 日日の 家 のか 日日の 家 のか <t< td=""><td></td><td>各施設周辺における航空</td><td>路と各航空路の</td><td>の幅について</td><td></td><td></td><td>島根原子力発電所</td><td>所上空の評価</td><td><u> 対象航空</u></td><td>路等</td><td></td><td></td></t<>		各施設周辺における航空	路と各航空路の	の幅について			島根原子力発電所	所上空の評価	<u> 対象航空</u>	路等		
国際の構築の名称 新築物理部で 新築物理部で 新築物理部で 新築物理部で 新築物理 新政 1000000000000000000000000000000000000			「空政の中心領レー」			号炉	周辺航空路名称	航空路の中心 線と発電所間	片側の 航空路幅 ^{注2}	判定	備考	
武田県 で11 1000 (11-200- (10-200-)) 100- (10-200-) 10		周辺の航空路の名称	発電所間の 最小距離 ^{*1}	片側の 航空路幅 ^{** 2}	判定		航空路 V29(IZUMO(XZE)-DOZEN)	約 3.1km	7 km	対象	第1図	
時代日報 約0.638 1.443 0 (1011100) = 5440 ¹¹ 0 0		航空路 R211 (DAIGO(GOC)-SWAMP)	約 11.36km	7km	×		RNAV 経路 Z16 (MIHO(JET)-SPIDR)	約 8.7km	約 9.3km	対象	第1図	
取行時間 取りまれる 7.41m 0 10000-54000 0.11.000 0.000 <		直行経路 (IWAKI(IXE)-SWAMP)	約 0.68km	7.41km (4nm)	0		RNAV 経路 Y14 (MIHO(JET)-DRIPS)	約 8.7km	約 9.3km	対象	第1図	
日本 日		直行経路 (IWAKI(IXE)-KISARAZU(KZE))	約 4.13km	7.41km (4nm)	0		RNAV 経路 Y14 (MIHO(JET)-HALNA)	約 5.9km	約 9.3km	対象	第1図	
000000000-000000000-00000000000000000		広域航法経路 Y30 (LOTUS-SWAMP)	約 1.18km	9.26km (5nm)	0		RNAV 経路 Y45 (MIHO(JET)-SAKYU)	約 8.7km	約 9.3km	対象	第1図	
(第1) 振設者 化物容器 の構成 10 1 にないては、「物容 振動」であった。 「なごな 10 0 1 1 にないては、「物容 振動」として、 「なごな 10 0 1 1 に いては、ごかいては、「物容 振動」をななして用いた。 (1 um = 1.852 ka と して 激発した。) 2 ペリング 10 1 に 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		広域航法経路 Y108 (DAIGO(GOC) - CHOSHI(CVC)) ○・証価対象 ×・証価対象が	約 11.44km	9.26km (5nm)	×		RNAV 経路 Y45(MIHO(JET)-KYOKA) PNAV 級敗	約 8.0km	約 9.3km	対象	第1図	
1 かまる 20 またにおいては、地には、地には、地には、地には、地には、したいし、ためいし、ためいし、ためいし、地にし、地にし、地にし、地には、地には、地には、地には、地には、地には、地にし、地にし、地にし、地にし、地にし、地にし、地にし、地にし、地にし、地にし		○:評価対象 <:評価対象外 ※1 施設と航空路の緯度及び経度	Eより計測した。	オフナニーにおう	掛の店		Y22 (MIHO(JET)-TRUGA) RNAV 経路	約 8.7km	約 9.3km	対象	第1図	
1 1000		※2 航空路 K211 については、 とした。直行経路については 城航法経路については、航	航空路の指定に関 は, 「航空路等設定 は、 は	リッる日小」に記 [基準] を参照し7 同トカカレて田」	載の値 た。広 いた	2 号炉	Y18 (MIHO(JET)-RAKDA) RNAV 経路	約 8.7km	約 9.3km	対象	第1図	
Yas Utility(EF):75425 (90:400)		域航法裡路については、航行 (1nm=1.852km として換算し	」伝相度を航空路幅 した。)	面とみなして用す	1/20		Y38(MIHO(JET)-TSUNO) RNAV 経路	約 8.7km	約 9.3km	对象	第1図	
Yabi Gulfu (ED) - Tould: And And And 第 100 Widt (Marging) - Tould) 約5.700 約5.700 約5.700 約5.000 潮信 第 100 Widt (Marging) - Tould) 約5.700							Y38 (MIHO(JET)-STAGE) RNAV 経路	約 8.7km	約 9.3km	対象	第1図	
1<1<1000000000000000000000000000000000							Y361 (MIHO(JET)-TONBI) RNAV 経路	約 8.7km	約 9.3km	対象	第1図	
RNY 644 部の1、7xa 約9.3an 対象 第1 [2] Y200 1001(ET) - YADB0) 約0.9,5m 約9.3an 対象 第1 [2] Y200 1010(ET) - YADB0) 約0.9,5m 約9.3an 対象 第1 [2] Y200 1010(ET) - YADB0) 約6.6m 約9.3an 対象 第1 [2] Y200 1010(ET) - YADB0) 約6.6m 約9.3an 対象 第1 [2] Y200 1010(ET) - YADB0) 約6.6m 約9.3an 対象 第1 [2] Y200 1111(ET) - YADB0 約6.6m 約9.3an 対象 第1 [2] Y200 1111(ET) - YADB0 111 第252 # MAR6 112 112 Y220 Y220 Y220 Y220 112 112 Y220 Y220 Y220 Y200 Y200 Y200 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RNAV 経路 Y287 (MTHO(JET)-SOUTA)</td> <td>約 8.7km</td> <td>約 9.3km</td> <td>対象</td> <td>第1図</td> <td></td>							RNAV 経路 Y287 (MTHO(JET)-SOUTA)	約 8.7km	約 9.3km	対象	第1図	
RNW 経路 YS87 UHB0(JET)-FEPOS) 約3.96m 約9.36m 友象 第1回 NW 経路 Y332 UHB0(JET)-KAPA) 約9.46m 約9.36m 友象 第1回 1:1: 能設定認識認識的 第28 第1回 1							RNAV 経路 Y206 (MIHO(JET)-YAKMO)	約 1.7km	約 9.3km	対象	第1図	
RNAV 経路 約 8.4km 約 9.3km 対象 第 1 図 1:1:施設と空港の経度、緯度より計測した。 注2:航空路については、「航空路の指定に関する告示」を参照。なお、RNAV 航路については、 「飛行方式設定基準」に基づく航法構度を航空路の幅とみなして用いた。(11NI=1.852km として換算)							RNAV 経路 Y597 (MIHO(JET)-PEPOS)	約 3.9km	約 9.3km	対象	第1図	
注1:並設と空港の経度,編度より計測した。 注2:軌空路の指定に関する告示」を参照。なお,RNAV 航路については、 「飛行方式設定基準」に基づく航法精度を航空路の幅とみなして用いた。(1NM=1.852km として換算)							RNAV 経路 Y332(MIHO(JET)-KAPPA)	約 8.4km	約 9.3km	対象	第1図	
						注1:施設 注2:航空 「飛 とし	【Y332 (MIHO(JET)-KAPPA) まと空港の経度, 緯度より計測 路については,「航空路の指定 行方式設定基準」に基づく航沿 て換算)	 した。 Eに関する告示」を 法精度を航空路の	・参照。なお,RN 幅とみなして用	 NAV 航路に flいた。(1N	ついては, M=1.852km	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版) 島根原子力発電所 2号炉 備考	
(日本) 1000 (10000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000	第 基 夏 なこして しって こうしゅう しゅうしゅう しゅうしん こうしん 定 ない しゅうしん しゅうしゅう しゅう

柏崎刈	羽原	子力発電所	6/7号炉	(2017.12.2	0版)	東海第二発電所(2018.9.12版)		島根	原子力発電	電所 2号炉		備考
					別紙 7-6	別紙 7.1	,				別紙7-6	
		第 1 5	表 標的面積		単位:km ²	<u>外部火災影響評価で考慮する落下事故カテゴリの</u> 航空機落下確率評価結果	航空機落	下確率評価	に係る標的	的面積(島根原子力系	笔重所)	
発電所	号炉	原子炉建屋 ^{注1}	コントロール建国 (中央制御室) ^進	₽ 2 合計 ^{注3}	標的面積	東海第二発電所の航空機落下確率評価結果及び標的面積を下表	2 号炉	面積 水平面積	(km ²) 投影面積	炉心,使用済燃料プール 及び原子炉の安全停止(炉心冷 却も含む。)に必要な設備	備考	
柏崎刈羽 原子力発電所	6	0.003538	0.002378	0.005916	0.01	に示す。 たお、航空機変下に対する設計上の考慮の更不を確認するため	原子炉建物	0.006258		 ・ 炉心 ・ 燃料プール ・ 主要な安全系機器 		
工事計画認可 注1:ディー 注2:中央制 注3:海水熱	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	2載の建屋寸法だ 意機室は原子炉建 号及び7号炉合 ご域は地下に設置	」 →ら面積を算出した。 :屋に含む。 計。 :のため除外。		1	の従来の評価では、落下事故が発生していないカテゴリに対して 発生件数を 0.5 件としていたが、別紙 7.16 に記載のとおり「基地 (百里基地) – 訓練空域間往復時」の落下事故における航空機落 下確率の評価では、想定飛行範囲の面積を用いた評価式の保守性	タービン建物	0. 007799	0. 022304 ※ 1	 ・原子炉補機海水系(配管,電路) ・高圧炉心スプレイ補機海水系(配管,電路) ・A, HPCS-非常用ディーゼル発電機燃料移送ポンプ(配管,電路) 	 ※1: 3つの建物 を包含する1 つの建物とし て投影面積を 算出 	
						等を踏まえ、全国平均の落下確率の2倍値を用いている。	廃棄物処理建物	0.003015		 ・補助盤室 ・バッテリ室 ・計装用電気室 ・中央制御室換気系 		
						<u>航空機落下確率評価結果</u> ^{単位:回/炉・年} 春下確率	制御室建物 (共用)※2	0.000756	0.000945	・中央制御室	 ※2: 1号炉,2 号炉合計 	
						落下事故のカテゴリ 発電用原子炉施設 (使用済燃料乾式 貯蔵建屋除く。) 使用済燃料乾式 貯蔵建屋 1)計器飛行方式 民間航空機 ① 飛行場での離着陸時におけ 窓下事故 約 3.98×10 ⁻⁹ 約 1.80×10 ⁻⁹ 2) 有視界飛行方式民間航空機 約 1.37×10 ⁻⁸ 約 9.95×10 ⁻⁹	取水槽	0. 001337	0. 001337 ※ 3	 ・原子炉補機海水系(ポンプ, 配管,ストレーナ) ・高圧炉心スプレイ補機海水系 (ポンプ,配管,ストレーナ) 	 ※3: 地上に対象 施設が無いた め投影面積は 水平面積と同じ 	
						3)自衛隊機又は 米軍機 ① 訓練空域内で訓練中及び 訓練空域外を飛行中 約 2.56×10 ⁻⁸ 約 1.86×10 ⁻⁸ ② 基地ー訓練空域閉往復時 約 4.14×10 ⁻⁸ 約 3.00×10 ⁻⁸ 合 計 約 8.5×10 ⁻⁸ 約 6.1×10 ⁻⁸	合 計 (標的面積)	0.01917	0. 02459			
						<u>航空機落下確率評価に係る標的面積</u> ^{単位:m²} ^{単位:m²} ^{本平} <u>福積</u> 約4,489約7,315約1,212約784約13,800 投影 <u>約6,940約8,394約1,212約5,599約22,145</u> ※使用済燃料乾式貯蔵建屋の水平面積及び投影面積は、それぞれ約1,399m ² 及び 約1,887m ²						

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)		東海第二爭	卷電所(2018	. 9. 12 版)		島根原子力発電所 2号炉	備考
							別紙 7.9		
			Ē	计器飛行方式	民間航空機	大破事故概	要		・条件の相違
				(平成	5年~平成2	24年)			【柏崎 6/7,東海第二】
									島根2号炉は,最新デ
				離着	昏陸時の大破	事故			ータ (平成 10 年~平成
			(離陸時)						29 年)を利用した評価を
			発生年月日	場 所	型式	機体の損傷	運航形態		実施
			平成 8 年 6 月 13 日	福岡空港	ダグラス DC-10-30 型	大破	離陸		
			(着陸時)		1	1			
			発生年月日	場 所	型式	機体の損傷	運航形態		
			半成 5 年 4 月 18 日	花卷空港	ダグラス DC-9-41 型	大破	着陸		
			平成6年		エアバス・インダストリー				
			4月26日	名古屋空港	A300B4-622R	大破	着陸		
			平成 21 年	成田国際空港	型 ダグラス	+ 7.00	羊哇		
			3月23日	滑走路上	MD-11F 型	八收	有腔		
				巡	航中の大破事	₮故			
			彩化左口口	相正	+416 11-15	一世にの世に	· 도 한구 표정 한문		
			発生年月日	场 所	1% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	機体の損傷	連机形態		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海	毎第二発電所(2018.9.	12版)	島根原子力発電所 2号炉	備考
					別紙 7.14		
			有視界利	飛行方式民間航空機 大	、破事故概要		・条件の相違
				(平成5年~平成24年	王)		【柏崎 6/7、東海第二】
			(十刑田孛翌懋)		<u> </u>		自相の早后は 早新デ
			(入至固足異機) 発生年月日	場 所	型 式		局似 2 万炉は, 取利 /
			該当なし	—	—		ータ(平成 10 年~平成
			(大型回転翼機)	(E) -44	1701 _ls		29 年)を利用した評価を
			発生年月日 平成13年5月19日	場 所 三重県桑名市播磨付近	型 式 アエロスハ [°] シアル式 AS332L1		実施
			(小型固定翼機)				
			発生年月日	場所	型式		
			平成6年4月6日	広島県佐伯郡 高知県五川郡池川町	セスナ式 208B セスナ式 172P		1
			平成7年7月29日	北海道赤平市	ピスア式 1121 パイパー式 PA-28-140		1
			平成7年10月9日	北海道中川郡豊頃町	ピッツ式 S-2B		
			平成8年2月9日 平成8年11月20日	長崎県東彼杵群川棚町 静岡県伊東市	7 リテンノーマン式 BN-2B-20 セスナ式 172K		1
			平成9年8月21日	茨城県竜ケ崎市	パイパー式 PA-28-140		1
			平成9年10月26日	鹿児島県垂水市	セスナ式 152		1
			平成9年11月2日 平成10年3月21日	高知県室戸市	セステ式 172N ビーチクラフト式 A36TC		1
			平成 10 年 4 月 20 日	滋賀県琵琶湖	セスナ式 177RG		1
			平成 10 年 8 月 25 日	岐阜県大野郡荘川村 太阪府喜畑市	パイパー式 PA-28-161		1
			平成 10 年 9 月 24 日	茨城県霞ケ浦	レスク式 TB10		1
			平成11年3月24日	大分県大分郡野津原町	セスナ式 172M		1
			平成 11 年 8 月 1 日 平成 11 年 8 月 13 日	大分県大分郡圧内町 長野県斑尾山			1
			平成 13 年 3 月 25 日	香川県小豆群上庄町豊島	パイパー式 PA-28-181		1
			平成 13 年 5 月 19 日	三重県桑名市播磨付近	セスナ式 172P		1
			平成 13 年 8 月 16 日	而山県久木印柵原町 熊本県琢磨群琢磨村	セスナ式 172NAT セスナ式 172P		1
			平成 14 年 3 月 1 日	北海道带広市美栄町	スリンク [*] スヒ [*] ー式 T67MMK II		1
			平成 14 年 6 月 23 日	山梨県南巨摩群南部町 	<u>ソカタ式 TB21</u> ガ ルフストリートコマンダー式 695		1
			平成 15 年 7 月 11 日	宮崎県宮崎市	k゙ーチクラフト式 A36		1
			平成 16 年 1 月 22 日	山梨県甲府市	セスナ式 172P		1
			平成 16 年 9 月 11 日 平成 16 年 9 月 20 日	兵庫県蚕父巾 兵庫県三原郡南淡町	セステ式 172M ソカタ式 TB10		1
			平成17年3月2日	大阪市平野区瓜破	ヒ [*] ーチクラフト式 E33		1
			平成 19 年 9 月 1 日 亚成 19 年 11 日 15 日	宮崎空港南東約 1nm の海上 岐阜県中津川東郡山山頂付近	ヒーチクラフト式 A36 セスナズ 404		1
			平成 22 年 7 月 28 日	北海道松前郡福島町岩部岳東	セスナ式 TU206G		
				方の山中			
							1
							1
							1
							1
							1
							1
							1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東淮	毎第二発電所(2018.9.1	2版)	島根原子力発電所 2号炉	備考
	蒸 先在日日	提 訴	刑士		
	死生中月日 平成 23 年 1 日 3 日	物 所 熊本空港から北東約 14km の矢	至 氏 パイパー式 PA-46-350P		
		護山南南東斜面 静岡市清水区の興津川河口か			
	平成 23 年 7 月 26 日	ら富士川河口沖の駿河湾	エクストラ式 EA300/200 型		
	平成 23 年 7 月 28 日	北海迫河西郡芽至町剣田田甲	t -+//7/ト式 A36 型		
	(小型回転翼機)	(月)~	101		
	発生年月日 平成5年7月27日	場 所 福島県双葉郡大能町	型式 ベル式 206B		
	平成5年12月23日	岐阜県郡山郡八幡町	ロビンソン式 R22Beta		
	平成6年10月18日	大阪府泉佐野市	アエロスハ゜シアル式 AS355F1		
	平成6年11月13日	鹿児島県大島郡笠利町	ベル式 206B		
	平成8年4月27日	長野県長野市篠ノ井	アエロスハ [*] ジアル式 AS355F1		
	平成 8 年 6 月 10 日 平成 9 年 1 月 24 日	鹿兄島県鹿兄島中回之原 <u>町</u> 愛知県岡崎市	ロビンクン式 R22Beta アエロスハ [°] シアル式 AS365N2		
	平成9年5月21日	長野県茅野市	アエロスハ [°] シアル式 SA315B アルウェットⅢ		
	平成9年7月3日	三重県名張市	アエロスハ [°] シアル式 SA315B アルウェットIII		
	平成 10 年 5 月 3 日	神奈川県横須賀市津久井浜	アエロスハ [°] シアル式 AS350B		
	平成 12 年 4 月 24 日	三重県長島町木曽川左岸の河 原	ヒューズ式 269C		
	平成 12 年 11 月 9 日	岐阜県郡上郡高鷲村	ロビンソン式 R22Beta		
	平成 14 年 5 月 5 日	愛媛県松山空港の西南西 16km 付近海上	ロビンソン式 R44		
	平成 14 年 6 月 12 日	新潟県東蒲原郡上川村	ベル式 206L-4		
	平成 16 年 3 月 7 日	長野県木曽郡南木曽町	アエロスハ [®] シアル式 AS355F1		
	平成 16 年 12 月 24 日	佐賀県有明海海上	ロビンソン式 R44 アガスタオ A100K2		
	平成 19 年 6 月 2 日	时间, 前间市有小区草堤 岐阜県中津川市岐阜中津川場	ブリスタス A109K2 ベル式 412		
	平成 19 年 10 月 27 日	外離 看 陸場の北約 1.3km 付近 大阪府堺市堺区遠里小野町 3	ロビンソン式 R22BETA		
	平成 19 年 12 月 9 日	丁目 静岡県静岡市葵区南沼上 988	ユーロコフ [°] ター式 EC135T2		
	平成 20 年 7 月 6 日	青森県下北部大間町大間崎沖	アエロスハ [。] シアル式 AS350B		
	平成 21 年 2 月 10 日	群馬県利根郡みなかみ町	ベル式 206L-3		
	平成 21 年 7 月 20 日	但馬飛行場の南東約 15km	ロビンソン式 R44 II		
	平成 22 年 8 月 18 日	香川県沖多度郡多度津町佐柳 島沖	ベル式 412EP		
		14411			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
		別紙 7.15		
	白告院挑码で学生	·拗 十·冲車·扑車		・冬州の扣造
	<u>百闻陈ر汉 U 不</u> (亚成 5 年~	~ <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>		• 未件の相選 【柏崎 6/7 南海第二】
		<u></u>		【11号 0/1, 東海第二】 鳥根2号炉け 最新デ
	(訓練空域外を飛行中)			- タ (平成 10 年~平成
	●空中給油機等,高高度での巡航が想定され ・自衛隊機	れる大型固定翼機		29 年)を利用した評価を
	発生年月日 場 列 該当なし -	f 型式 一		実施
	 ・米軍機 	- Tri 15		
	発生年月日 場門 平成16年8月10日 東京都小笠原諸島	工型式 j北硫黄島 S-3 バイキング		
	●その他の大型固定翼機,小型固定翼機及び ・自衛隊機	「回転翼機		
	予発生年月日 場別 発生年月日 場別	「型式 の東タ川河川」		
	平成9年1月13日 打部日前次下列 平成13年2月14日 千葉県市原市天平	OH-6D		
	平成14年3月7日 大分県万年山山頂 平式14年3月7日 三重県鳥羽市と町	南東 2km OH-6D 幾部町の境に muc		
	平成 16 年 2 月 23 日 ある青峰山の南東 平成 17 年 4 月 14 日 新潟県阿賀町の御	5約 1km AH15 1神楽岳斜面 MU-2		
	平成 17 年 9 月 18 日 長崎県佐世保市 自衛隊相浦駐屯地	大潟町の陸上 AH1S		
	□ 平成 19 年 3 月 30 日 徳之島天城岳山頂	[付近 CH-47JA		
	 ・米軍機 発生年月日 場 列 ボホックレック 	行 型式		
	平成6年10月24日 高知県上佐郡吉町 平成11年1月21日 岩手県釜石市橋町	パロ A-6 等町山林 F-16		
	平成16年8月13日 学構内 沖縄県名進古直。	の伊福国原へ CH-53D シースタリオン 嘉屋のサトウ		
	平成 20 年 10 月 24 日 キビ畑	セスナ機		
	(基地ー訓練空域間往復時)・自衛隊機			
	発生年月日 離陸場所 (所属)	場 所 型 式		
	平成9年8月21日 木更津駐屯地 (陸自)	茨城県竜ケ崎市 OH-6D		
	平成11年11月22日 入間基地 (空自) 東市12年2月22日 次直共地	□ ¹ 埼玉県狭田市人間川河川敷 T-33A		
	平成12年3月22日 松島塞地 (空自) 平成12年7月4日 松島基地	宮城県牡鹿町山山		
	平成13年9月14日 小月航空基地	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		
	(海自)	側斜面 T-5		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二	二発電所(2	018. 9. 12	Į)		島根原子力	発電所 2号炉		備考
別紙 7-7					別紙 7.10				別紙 7-7	
延べ飛行距離について		日本国機	め運航回数	な及び運航路	<u> 巨离推</u>		離着陸回数及	なび延べ飛行距離		・条件の相違
										【柏崎 6/7,東海第二】
延べ飛行距離は, 平成 4 年~平成 23 年の「航空輸送統計年	・計算に用い	る数値は,	「航空輸送絲	充計年報 🖇	第1表 総括表」の	· 1.離着陸回對	数			島根2号炉は,最新デ
	次の値とす	る。				離着陸回義	 数のデータは, 表	€1のとおり「航	空機落下事故に関	ータ (平成 10 年~平成
の国内便のみの合計値とする。	①日本国機	①日本国機の運航回数は、国内便、国際便ともに定期便+不定					(平成 11~30 年))」(令和3年2月	原子力規制庁)	29 年)を利用した評価を
なお、国際便については、日本国内での運行距離ではないため	期便の値	Ī.				の民間航空相	幾(大型固定翼機	&,計器飛行方式)の離着陸回数の	実施
考慮していない。また、日本に乗り入れている外国機は運行距	 ②日本国機	の運航距離	は, 国内便	のみの定期	便+不定期便の値。	値とする。				
離の実績の公開記録がないため考慮してい ない。	 ・日本国機の 	国際便は,	日本から海	4外までの間	巨離が記載されてい	<u></u>				
ただし、国際便及び外国機が日本国内で墜落した場合は事故件	るが、日本	国内での運	電航距離では	はないため.	保守的に考慮しな					
数としてカウントし, 事故率が保守的となるようにしている。]						
	 ・日本に乗り 	入れている	外国機は,	運航距離に	こついて実績の公開					
	記録がない	ため、保守	的に考慮し	ない。						
	 ただし、日 	本国機の国	際便及び外	国機の落下	「事故が、日本国内					
	で落下した場	合は評価対	象とする。							
				-						
							第1表	離着陸回数		・条件の相違
		日	本国機の運航回]数	日本国機の運航距離		国内線(回)	国際線(回)	合計 (回)	【柏崎 6/7】
		国内便	(運航回)国際便	111-	(飛行回・km)国内便	平成11年	1, 189, 856	252, 902	1, 442, 758	島根2号炉は、出雲空
	平成5年	466, 787	57,451	524, 238	326, 899, 203	平成12年 平成13年	1, 321, 910	260, 816	1, 582, 726	港及び米子空港の最大
	平成6年 平成7年	484, 426 531, 508	60, 038 67, 908	544, 464 599, 416	343, 785, 576 380, 948, 123	平成14年	1, 367, 468	279, 976	1, 647, 444	他次の水り主他の取べ
	平成8年	543, 238	72, 425	615,663	397, 146, 610	──半成15年 平成16年	1, 399, 700	275, 410	1,675,110	離有陸地県以内に位直
	平成9年 平成10年	562, 574	83,070	639,708	420, 920, 228	平成17年	1, 418, 292	333, 094	1, 751, 386	し、「飛行場での離着陸
	平成 11 年	594, 957	85,804	680, 761 748, 956	459, 973, 069	平成18年	1, 481, 264	341,074	1,822,338	時」を対象として設定
	平成 12 年	671, 618	86, 824	758, 442	489, 803, 107	平成19年	1,403,440 1,467,684	358, 134	1, 825, 818	【東海第二】
	平成 14 年	683, 929 700_184	93,062	776,991	498, 685, 881	平成21年	1, 432, 724	336, 198	1, 768, 922	島根2号炉は,最新デ
	平成 16 年	698, 960	101,659	800, 619	517, 485, 172	──半成22年 平成23年	1, 432, 748	348,972	1, 781, 720	ータ (平成 11 年~ 平成
	平成 17 年	709, 377	106,078	815, 455 845, 539	527, 370, 038	平成24年	1, 539, 914	388, 538	1, 928, 452	
	平成 19 年	741, 949	112,605	854, 554	559, 797, 874	平成25年	1,643,536	395,086	2,038,622	30年)を利用した評価を
	平成 20 年 平成 21 年	733, 979 716, 640	118, 503 110, 234	852, 482 826, 874	554, 681, 669 544, 824, 157	平成26年 平成27年	1, 686, 160	428, 202	2, 114, 362	実施
	平成 22 年	716, 538	101, 721	818, 259	548, 585, 258	平成28年	1, 679, 378	533, 560	2, 212, 938	
	平成 23 年 平成 24 年	717, 100	96, 292 105, 086	813, 392 875, 348	555, 144, 327 608, 215, 704	平成29年	1,691,244	564,744	2, 255, 988	
	合計	13,033,054	1,821,050	14,854,104	9, 740, 013, 768	合計	29, 785, 962	7, 447, 266	37, 233, 228	
	* 離看陸回 際便の場	剱は,国内便 合は,離陸回	の場合は離陸 数=着陸回数	回竅=看陸回 =1/2 運航回	竅=連肌回竅とし,国 数とする。			·		
	(離着陸	回数=離陸回]数+着陸回数	(=国内便運航	〔回数×2+国際便運航					
	回数=13	, 033, 054 × 2+	1,821,050=2	1,881,198)						

柏崎刈羽原子力発電		東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
		<u>2. 延べ飛行距離</u>	・条件の相違
		延べ飛行距離のデータは、表2のとおり「航空機落下事故に	【柏崎 6/7,東海第二】
		関するデータ(平成11~30年)」(令和3年2月 原子力規制庁)	島根2号炉は,最新デ
		の民間航空機(大型固定翼機、計器飛行方式)の延べ飛行距離	ータ(平成 11 年~平成
		の値とする。	30 年) を利用した評価を
			実施
	<u>第 1 表 運航距離</u>	第2表 延べ飛行距離	
	日本国機の運行距離	国内線(km) 国際線(km) 合計(km)	
	(飛行回・km)	平成11年 459,941,610 3,000,000 462,941,610 平成12年 480,695,802 3,000,000 483,695,802	
平成4年	307, 445, 013	平成13年 489, 782, 465 3, 000, 000 492, 782, 465	
平成 5 年	326, 899, 203	平成14年 498,480,635 3,500,000 501,980,635	
平成6年	343, 785, 576	平成15年 519, 215, 755 5, 500, 600 522, 775, 755 平成16年 517, 051, 659 3, 900, 000 520, 951, 659	
平成7年	380, 948, 123	平成17年 527,104,292 3,700,000 530,804,292	
平成8年	397, 146, 610	平成18年 555, 392, 832 3, 700, 000 559, 092, 832 平成19年 559, 616, 583 3, 800, 000 563, 416, 583	
平成9年	420, 920, 228	平成20年 554, 535, 973 3, 800, 000 558, 335, 973	
平成 10 年	449, 784, 623	平成21年 544,494,742 3,600,000 548,094,742	
平成 11 年	459, 973, 069	平成22年 548,444,050 5,000,000 552,644,050 平成23年 554,156,367 3,400,000 557,556,367	
平成 12 年	480, 718, 878	平成24年 607,933,799 3,600,000 611,533,799	
平成 13 年	489, 803, 107	平成25年 656, 587, 038 3, 700, 000 660, 287, 038 平成26年 678, 832, 124 3, 800, 000 682, 632, 124	
平成 14 年	498, 685, 881	平成27年 681,945,100 3,900,000 685,845,100	
平成 15 年	519, 701, 117	平成28年 682,890,250 4,200,000 687,090,250 平成29年 689,723,341 4,400,000 694,123,341	
平成 16 年	517, 485, 172	平成30年 690,566,330 4,600,000 695,166,330	
平成 17 年	527, 370, 038	合計 11,497,450,753 73,000,000 11,570,450,753	
平成 18 年	555, 543, 154		
平成 19 年	559, 797, 874		
平成 20 年	554, 681, 669		
平成 21 年	544, 824, 157		
平成 22 年	548, 585, 258		
平成 23 年	555, 144, 327		
合 計	9, 439, 243, 077		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 7-5	別紙 7.13	別紙 7-8	
柏崎刈羽原子力発電所 6/7号炉 第1表 飛行回義 柏崎刈羽原子力発電 柏崎刈羽原子力発電 山崎刈羽原子力発電 (飛行回数) 東京航空交通管制部 ビークデイ ^{±1} (V31) (Y31) 日0 H24年上半期 1600便/年間 7600便/年間 第650便/年間 第650便/年間 第1:国土交通省航空局に問い合わせ入手したデータ。こ 航空交通管制部が全体として取り扱った交通量が とてあり、当該経路における交通量が半年間で ことであり、当該経路における交通量が半年間で 1421: 第1: 第2: 東際の便数は0であるが、保守的に0.5とする。	(2017.12.20版) 別紙 7-5 数 ⑤広 広域航法経路 (Y305) 転移経路 (NAEBA TRANSITION) 0 11 0 10 0.5×365 日= 182.5 便/年間 ^{注2} 11×365 日= 4015 便/年間 こでピークデイとは、東京 半年間で最も多かった日の 最も多かった日とは必ずし	東海第二発電所(2018.9.12 版) 別紙 7.13 評価対象となる航空路等の飛行回数 ^(a)	島根原子力発電所 2号炉 別紙 7-8 評価対象となる航空路の飛行回数 (現行回) 東京航空交通管制部 ビークデイ ¹¹ 平成 30 年上半期 (H30, 6, 6) 評成 30 年下半期 (H30, 8, 7) 評価に用いる 数値 ¹² 東京航空交通管制部 ビークデイ ¹¹ 平成 30 年上半期 (H30, 6, 6) 正単期合計:1 便 (120, 8, 7) 上単期合計:1 便 (1×365 日= 365 億少年間) NNV 経路 (14, 0(ED)-DRIPS) 1 1 1×3365 日= 365 億少年間 NNV 経路 (14, 0(ED)-DRIPS) 77 88 12×365 日= 186, 880 便/年間 Y14 NNV 経路 (140 (ED)-DRIPS) 77 88 13/2×365 日= 186, 880 便/年間 Y45 NNV 経路 (Y45 0HH0 (ED)-FRICA) 35 45 88/9 Y45 NNV 経路 (Y45 0HH0 (ED)-FRICA) 7 7 7 Y38 (HH0 (ED) -SUDA) 10 13 13 Y38 NNV 経路 (Y36 (MH0 (ED) -SUDA) 20 16 14 Y38 NNV 経路 (Y36 (MH0 (ED) -SUDA) 3 3 3 Y38 NNV 経路 (Y36 (MH0 (ED) -SUDA) 0 0 13 Y39 NNV 経路 (Y36 (MH0 (ED) -SUDA) 0 0 0 Y39 NNV 経路 (Y36 (MH0 (ED) -	備考
			Y597 MINV 経路 66 66 RNAV 経路 0 0 0 注1:国土交通省航空局に問合せ入手したデータ。ここで、ピークデイとは、東京航空交通管 制部が全体として取り扱った交通量が半年間で最も多かった日のことであり、当該経路 における交通量が半年間で最も多かった日とは必ずしも一致しない。 注2:航空路及び RNAV 経路それぞれについて、上半期の合計値と下半期の合計値を比較し、 大きいものを評価に用いた。	

柏崎刈羽原子力発電所 6/7号炉 (20	017. 12. 20 版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 7-8			
航空機落下確率の評価を最新データに更新し	」た場合の影響に			・条件の相違
ついて				【柏崎 6/7,東海第二】
				島根2号炉は,最新デ
<u>1. はじめに</u>				ータ(平成 10 年~平成
発電所敷地内への航空機墜落による火災影	影響については, <u>設</u>			29 年)を利用した評価を
置許可申請当時(平成25年9月)の最新デーク	<u>タとして,「平成23</u>			実施
年度 航空機墜落事故に関するデータの整	<u> </u>			
独立行政法人 原子力安全基盤機構)」に基	<u> </u>			
確率より、発電用原子炉施設からの離隔距離	<u>推を算出し,熱影響</u>			
<u>評価を行っている。</u>				
しかしながら、安全審査が長期化し、その	の間に、「航空機洛」			
<u>ト事故に関するテータ(平成28年6月 NRA5</u>				
まとめられたことを受け、その影響について	(唯認することとす)			
<u></u>				
9 航空機車均等のデータ再新による影響				
<u>2. 加全候事候寺のアーク文和による影響</u> 「航空機茲下事故に関するデータ(亚成98	8年6日 NRA技術報			
<u>- 航空機器</u> - 事成に因う - ア (+ 成26 生) 」でけ 平成5年1日~平成24年19日まで	の航空機事故デー			
タ 運行実績データ及び訓練空城面積データ	マとして更新されて			
いるが、各航空機の落下事故率は、同等若しく	くは低下している。			
このため、航空機の落下位置から発電用原子	- 炉施設までの離隔			
距離は同等若しくは長くなり、火災による影	/響も軽減される傾			
向となっている。				
	2機の落下位置から			
 発電用原子炉施設までの離隔距離」並びに「	「航空機墜落による			
	」について評価す			
<u>る。</u>				
3. 航空機墜落による火災影響評価				
「添付資料-7 柏崎刈羽原子力発電所の	敷地内への航空機			
墜落による火災について」における航空機墜	逐落による火災影響			
評価のうち,(1)航空機墜落による火災の想知	定~(3)評価対象範			
囲の考え方は同様であるため,(4)以降につい	いて,評価する。			

柏崎刈羽原	子力発電所	6/7号炉	≓ (2017. j	12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(1) 標的面	積の算出						
<u>a.</u> 大型日	民間航空機及	しび小型民間	航空機の標	的面積の算出			
(a)計器	飛行方式民	と間航空機の	航空路を巡	航中の落下事			
故							
Pc = fc	• Nc • A / W						
Pc · 対	象施設への	巡航中の航空	回繼茲下確落	《[同/年]			
<u>IC:</u> 州	<u>家地設 い</u> 毎対免レオ	乙島市の敗生の		<u></u> ī <i>₩</i> ⁄;			
<u>NC.青</u>	<u> 刈豕こり</u> 	る肌生暗寺♡	ノ中间派行世	<u>150</u>			
<u></u>	<u>110/平」</u> RDF了/年		17≠ [1 9]				
<u>A: 発育</u>	<u>電用原子炉</u> 加 111111111111111111111111111111111111	他設の標的面	槓[km²]				
<u>W : 航名</u>	E路幅[km]						
fc = Gc	/Hc:単位	飛行距離当た	<u>- りの巡航中</u>	の落下事故率			
	[□/	飛行回・km]					
<u>Gc:巡</u>	航中事故件	数[回]					
<u>Hc</u> :延	ベ飛行距離	[飛行回・km]					
第	3-1 表	標的面積	責の算出結果	1			
発電所名称 及び号炉		柏崎刈羽』	原子力発電所				
パラメータ		6 号及	び7号炉	1			
対象航空路 ^{注1}	航空路	広域航法経路	広域航法経路	転移経路 (NAFBA			
//J>/////	(V31)	(¥31)	(¥305)	TRANSITION)			
Nc ^{注 2}	14600	3650	182.5	4015	-		
A 注 3	0.01	0.01	0.01	0.01			
W 出 4	14	18.52	18.52	0 ⁻¹¹			
Pc	5. 35×10 ⁻¹⁰	1.01×10^{-10}	5. 05×10^{-10}	1.47×10^{-12}			
Pc (合計)		7.8	8×10 ⁻¹⁰		-		
注1:柏崎刈羽原子	力発電所周辺の	の航空図(AIPエ	ンルートチャー	-ト)による。(別			
紙7-4) 注2: 国土充语劣航;	<u> 花目への問合</u> に	トな甲(ピーカデ	イの値)を2654	立」た店 ただ)			
在2.国工交通省航空 平成24年の1	空向、CO向古で ピークデイにお	はる飛行回数が	100値)を305f 0回の場合は, (音じた値。たたじ, 保守的に0.5回とみ			
なし,年間1	82.5回とする。	(別紙7-5)					
注3:原子炉建屋, で煙的面積け	コントロール函 0 01km ² とする	建屋等の水平面利 (別紙7-6)	責の合計値は0.	01km ² 以下であるの			
注4:「航空路の指	定に関する告	。 示」及び「航空距	烙等設定基準」	による。			
注5:巡航中事故件	数は,平成5年	~平成24年の間	で0件のため,	保守的に0.5件とす	-		
る。延べ飛行 括表、1、輸	丁距離は,半成 送実績 にお!	5年~平成24年0 する運航キロメー	り「航空輛送税] −トルの国内の	計年報, 第Ⅰ表 約 値を合計した値。			
(別紙7-9)	· · · · · ·						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(b) <u>有視界飛行方式民間航空機の落下事</u> 故			
$\underline{Pv} = (\mathrm{fv}/\mathrm{Sv}) \cdot \mathrm{A} \cdot \alpha$			
Pv:対象施設への航空機落下確率[回/年]			
<u>fv:単位年当たりの落下事故率[回/年]</u>			
<u>Sv:全国土面積[km²]</u>			
A :発電用原子炉施設の標的面積[km ²]			
<u>α</u> :対象航空機の種類による係数			
第 3-2 表 落下確率の算出結果			
パラメータ 大型固定翼機 大型回転翼機 小型固定翼機 小型回転翼機			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
A 0.01 0.01 0.01 0.01 Py 6.72 × 10 ⁻¹⁰ 1.34 × 10 ⁻⁹ 4.70 × 10 ⁻⁹ 2.22 × 10 ⁻⁹			
Pv (合計) 9.94×10 ⁻⁹			
注:「NTEC-2016-2002 NRA技術報告 航空機落下事故に関するデータ」(平成28年6 日 原子カ相制委員会) による			
以上より、 大型民間航空機の落下確率(Pc(計器飛行方			
式) + Pv (大型固定翼機) + Pv (大型回転翼機)) が10 ⁽ [回/			
炉・年」となる標的面積A1[km²]を計算すると以下のとおりと			
$\underbrace{A1 = 10^{-7} \div (7.88 \cdot 10^{-10} + 6.72 \times 10^{-10} + 1.34 \times 10^{-9}) \times 0.01}_{0.0575[1.27]}$			
$=0.357[km^2]$			
小型氏間航空機の溶下確率(PV(小型固定異機)+PV(小 即回転翌機))が10 7 「回/炉、缶」したて種的支持 20 「 $1-2$ 」た			
<u> 空回転異候/) μ_10 $[回/炉・牛] C なる惊的面積A2[Km] を 計算するとい下のとなりとなる$</u>			
<u>前昇9ると以下のとわりとなる。</u> $A2-10^{-7}$ (470×10 ⁻⁹ +3.22×10 ⁻⁹) ×0.01-0.126[lm ²]			
$\frac{A2-10}{A2-10} \cdot (4.70 \times 10^{-13} \cdot 22 \times 10^{-13} \times 0.01 - 0.120 \text{ [Kiii]})$			
b 大型軍用航空機及び小型軍用航空機の標的面積の算出			
柏崎刈羽原子力発電所の上空には訓練空域がないため 軍			
用航空機の落下確率Psoを求める式は、以下のとおりとなる。			
$Pso = (fso/So) \cdot A$			
 Pso:訓練空域外での対象施設への航空機落下確率「回/年]			
fso:単位年当たりの訓練空域外落下事故率[回/年]			
So : 全国土面積から全国の陸上の訓練空域の面積を除い			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				2.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
た面積[km ²]							
A :発電用原子炉施設の標的面積[km ²]							
第 3−3 表 落下確率の算出結果							
パラメータ 大型	型自衛隊機	大型米軍機	小型自衛隊機	小型米軍機			
fso ^注 1/	1/20=0.05	4/20=0.2	6/20=0.3	1/20=0.05			
So ^{it}	295,000	371, 500	295,000	371, 500			
A Data 1	0.01	0.01	0.01	0.01			
Pso (合計)	1.09×10	1.85	$\times 10^{-8}$	1. 34 ^ 10			
注:「NTEC-2016-20	002 NRA技術報	8告 航空機落下	「事故に関するデー	-タ」(平成28年6			
月 原子力規	規制委員会)に	よる。					
じトトの) 大刑軍田	宇宙空継の茨	下確率 (Pso	(大型白衛隊			
		$\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$		(八里日南欧)			
<u>機)+Pso</u>	(人空木里的	<u> 愛)) パキ10・[</u>	<u> 単/炉・牛」とん</u>	<u>よる悰旳囬惧</u>			
<u>A3[km²] を</u>	計算すると	以下のとおり	りとなる。				
$A3 = 10^{-7} -$	\div (1.69×1	$0^{-9} + 5.38 \times 10^{-9}$	10^{-9}) $ imes 0.01$	=0.141[km ²]			
小型軍用	目航空機の落	下確率(Pso	(小型自衛隊林	幾)+Pso (小			
刑半軍機门) が10 ⁻⁷ 「同	/// (石)	やる栖的面積/	M1[1zm ²] な計			
(主木単版))			よる法国相位				
<u>算すると以</u>	人下のとおり	となる。					
$A4 = 10^{-7} -$	\div (1.01×1	$10^{-8} + 1.34 \times$	$10^{-9}) \times 0.01 =$	=0.086[km ²]			
(9) 惑電田丙乙	小市抜売み、う	の確認可以可能	の管山				
	一炉旭衣がり		<u>//异山</u> //子子日日				
<u>(1)</u> で求め	めた面積が,	評価対象と	なる発電用原	子炉施設(原			
子炉建屋及	とびコントロ	ール建屋) ダ	外壁面から等距	巨離の離隔を			
とった場合	合の標的面積	責と等しくな	この距離を離降	鬲距離L[m]と			
1 離隔距	「離」を筧出	した結果をじ	山下に示す。	またる航空			
			アニナ				
機の離隔距離を第3−1凶, 第3−2凶に示す。				N. 4. 1. N. 1. 1. 1			
<u>10⁻[回/炉・年]となる標的面積の考え方は, 添付資料-7</u>				添付資料-7			
「2. 航空機墜落による 火災の影響評価(5)発電用原子炉				论電用原子炉			
施設からの離隔距離の算出」と同様。							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3-4 表 発電用原子炉施設からの離隔距離の算出結果						
大型	小型	大型	小型			
項日 民間航空	E機 民間航空機	軍用航空機	軍用航空機			
対象航空機 B747-40 6号炉 外壁面 278	00 Do228-200	KC-767 155	AH-1S 109			
7 号炉 までの離隔距離[m] 286	150	161	116			
6号炉 燃料移送ポンプ 218 7日短 までの離厚野離[m] 997	83	95	49			
7 号炉 ま CO離隔距離[m] 227 6 号炉 主排気筒 300	164	103	131			
7号炉 までの離隔距離[m] 286	151	162	117			
※:軽油タンクの熱影響語	平価は、航空機	後 墜 落 に よ る	る軽油タン			
ク火災の重畳火災も考慮						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
以上の結果より、各航空機の落下位置から算出した発電用原			
子炉施設との離隔距離は、「添付資料-7 柏崎刈羽原子力発電			
所の敷地内への航空機墜落による火災について」と同等若しく			
は、それ以上であることから、発電用原子炉施設への熱影響は			
<u>既評価と同等若しくは包絡されるものと評価する。</u>			
(3) 航空機墜落による火災と危険物タンク火災の重畳			
航空機火災が発生した場合に重畳を考慮する危険物タン			
<u>クを検討する。航空機落下が10⁻⁷[回/炉・年]となる航空機落</u>			
下位置とその周辺の危険物施設位置を第3-3 図及び第3-4図			
に示す。			
第3-3図 航空機落下位置と危険物タンク火災の重畳を考慮する			
位置(6号炉)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第3-4図 航空機変下位置と危険物タンク火災の重畳を考慮する			
位置(7号炉)			
第 3-3 図及び第 3-4 図より, 各航空機の落下位置から算			
出した発電用原子炉施設との離隔距離は、「添付資料-7 柏			
崎刈羽原子力発電所の敷地内への航空機墜落による火災に			
ついて」と比較し、同等若しくは、数十メートル程度長くな			
っていること,最も厳しいケースとして,6号炉では,5号			
炉軽油タンク2 台火災と 大型軍用航空機 (KC-767) 火災が			
<u>重畳すること、7号炉では、6号炉軽油タンク2 台火災と小型</u>			
軍用航空機(AH-1S)火災が重畳することに変わりはないこ			
とから,発電用原子炉施設への熱影響は既評価と同等若しく			
は包絡されるものと評価する。			
4. 航空機墜落による火災の熱影響評価			
以上により、「航空機落下事故に関するデータ(平成28年6月			
NRA技術報告)」のデータを反映した評価は,「添付資料-7 柏			
崎刈羽原子力発電所の敷地内への航空機落下による火災につ			
いて」における熱影響評価と同等若しくは包絡される結果とな			
<u>ることを確認した。</u>			

柏崎刈	羽原子力発電	所 6/7号炉 (2017.12.20)	反)	東海第二発電所(2018.9.12版)	島村	退原子力発電所 2号炉	備考
		別	€ 7−9				
延べ飛行距離について							・条件の相違
							【柏崎 6/7, 東海第二】
延べ飛行	「距離は、平成	5 年~平成 24 年の「航空輸送	統計年				島根2号炉は、最新デ
報筆1月	表 総括表 1	輸送宝績」における運航キロス					
	<u>、 心山衣, 1.</u> ひろの合計値と [、]	<u> </u>					20 年) を利田」た証価を
			1124				29 中/を初用した計画を
<u> なわ,国</u> * 唐レ <i>イ</i> い	际使について	は、日本国内での運行距離ではな					关旭
ろ感してい		日本に来り入れている外国機は週	1丁				
の実績の公	<u>:</u> 開記録かない	ため考慮していない。					
ただし,	国際便及び外国	国機が日本国内で墜落した場合に	事故件				
数としてカ	ウントし, 事	事故率が保守的となるようにして	いる。				
	第	亨 1 表 運航距離					
		日本国機の運行距離					
		(飛行回・km)					
	平成5年	326, 899, 203					
	平成6年	343, 785, 576					
	平成7年	380, 948, 123					
	平成8年	397, 146, 610					
	平成9年	420, 920, 228					
	平成 10 年	449, 784, 623					
	平成 11 年	459, 973, 069					
	平成 12 年	480, 718, 878					
	平成 13 年	489, 803, 107					
	平成 14 年	498, 685, 881					
	平成 15 年	519, 701, 117					
	平成 16 年	517, 485, 172					
	平成 17 年	527, 370, 038					
	平成 18 年	555, 543, 154					
	平成 19 年	559, 797, 874					
	平成 20 年	554, 681, 669					
	平成 21 年	544, 824, 157					
	平成 22 年	548, 585, 258					
	十成 23 平 亚式 94 年						
	十成 24 平	000, 210, 704					
	百首	9, 740, 013, 768					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考	
参考資	· 7-1	参考資料7-1		
航空機墜落による火災の影響評価に用いたデータにつ		航空機の落下による火災の影響評価に用いたデータについて		
1 航空地の仕住について		1 航空機の仕様について		
1. 航空機の仕様について 第1-1ま 航空機の仕様		1. 加至機の正線について		
第1 ⁻ 1衣 航空機の任塚		第1-1 衣 航空機の任様		
項目 大型 小型 大型 民間航空機 民間航空機 軍用航空機 軍用航空機 軍	N型 航空機	項目 大型民間航空機 自衛隊機又は米軍機 空中給油機等 その他の機種		
想定する航空機 B747-400 Do228-200 KC-767	H-IS	想定する航空機 B747-400 KC-767 F-15		
燃料の種類 Jet A-1 JP-4	<u>P-4</u>	燃料の種類 JET A-1 JP-4 JP-4		
燃料量[m ³] 216.84 ¹¹ 2.38 ²¹ 145.03 ³¹	98^{2}	燃料量 (m^3) 216. $84^{\pm 1}$ 145. $04^{\pm 3}$ 14. $87^{\pm 5}$		
旅行ラング面積[m] 005 20 280 1) ボーイング社ホームページ "Technical Characteristics Boeing 747-4	2/])"に記	燃料タンク面積 (m^2) 700 ^{注2} 405.2 ^{注4} 44.6 ^{注6}		
載の値 日本航空機全集 2013,(鳳文書林出版販売(株)発行)記載値 世界航空機年鑑 2012-2013 に記載の燃料重量及び燃料密度(NUREG-1806) した値 ボーイング社ホームページ資料「747-400 Airplane Characteristics fo Planning」の機体図面より,主翼,主翼と交差する胴体部及び尾翼の面 ラップ等の面積を除いた面積が燃料タンク面積と同等と想定し算出し 1-1(a)図)。 日本航空機全集 2013 に記載の図面から,主翼及び主翼と交差する胴体部 らフラップ等の面積を除いた面積が燃料タンク面積と同等と想定し算 (第1-1(b)図) ボーイング社ホームページ資料「767 Airplane Characteristics for Planning」の機体図面より,KC-767 のベースとなっている航空機 B767 主翼,主翼と交差する胴体部及び補助燃料タンク面積として算出し 1-1(c)図) 日本航空機全集 2013 に記載の図面から,機体の投影面積を燃料タンク扱 同等と想定し算出した値(第1-1(d)図) 	AG算出 Airport 私のらフ 値(第 Airport ODER の 近の面積 値(第	 注1:ボーイング社ホームページ" Technical CharacteristicsBoeing 747-400" に記載の値 注2:ボーイング社ホームページ資料「747 Airplane Characteristicsfor Airport Planning (Document D6-58326-1, December 2002)」の機体図面 より,主翼,主翼と交差する胴体部及び尾翼面積が燃料タンク面積と同 等と想定し、これらの面積を算出した値 注3:世界航空機年鑑 2012-2013 に記載の値及び燃料密度から算出した値 注4:ボーイング社ホームページ資料「767 Airplane Characteristicsfor Airport Planning (Document D6-58328, September 2005)」に記載してい る同型機の機体図面より、燃料タンクの配置及び大きさを想定し、これ らの面積を算出した値 注5:航空ジャーナル2月号増刊F-15 イーグル (航空ジャーナル社昭和55 年 2月5日発行)(予備タンクを含む) 注6:航空ジャーナル 1978 別冊F-15 イーグル (昭和53 年3月5日発行)に 記載の機体図面より、燃料タンクの配置及び大きさを想定し、これらの 面積を算出した値 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号
主翼, 主翼と交差する胴体部及び尾翼から フラップ等を除した範囲=燃料タンク投影面積 38 FT 4 IN (20.83 M) 56 FT 4 IN (20.83 M) 57 FT 4 IN (20.83 M) 58 FT 4 IN (20.83 M) 6.50 M) 75 FT 6 IN (23.01 M) 75 FT 6 IN (23.01 M) 75 FT 6 IN (22.10 FT 11 IN (22.10 M) 75 FT 6 IN (24.05 M) 75 FT 11 IN (24.05 M)		229 FT 2 IN (69.85 M) 152 FT 7 IN (46.51 M) 152 FT 7 IN (46.51 M) 38 FT 4 IN (11.68 M) 68 FT 4 IN (20.83 M) 68 FT 4 IN (20.83 M) 75 FT 6 IN (23.24 M) 75 FT 6 IN (23.24 M) 75 FT 6 IN (23.24 M) 76 FT 3 IN (32.16 M) 106 FT 4 IN (32.77 M) 78 FT 11 IN (32.77 M)
第 1-1(a)図 燃料タンク投影面積(B747-400)		第 1-1 (a) 図 燃料タンク投影面積
(出典:747-400 Airplane Characteristics for Airport		(出典:747-400 Airplane Characte
Planning)		Planning)
 主翼及び主翼と交差する胴体部からフラップ等を除した範囲=燃料タンク投影面積 第 1-1(b)図 燃料タンク投影面積(Do228-200) 		
<u>第 1-1(b)図 燃料タンク投影面積(Do228-200)</u> (出典:日本航空機全集 2013)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考		
2. 燃料物性値について		2. 燃料の物性値について			
ジェット燃料は、JIS 規格では1号の灯油型(低析出点),		民間航空機の対象航空機としてボーイング 747-400 型機を	・設備の相違		
2号灯油型及び3号広範囲沸点型(ガソリン型)の3種類があ		選定しているが,当該機が使用する燃料の種類は,JET A-1 燃	【柏崎 6/7】		
り, ASTM 規格の Jet A-1, Jet A, Jet B に相当する。また,		料である。	評価手法の違いを踏		
<u>MIL規格では, JP-4(ガソリン型), JP-5 (灯油型) やJP-8 (灯</u>		火災影響評価において使用する燃料物性値のうち,輻射発	まえたカテゴリ分けの		
油型) があり,日本の民間航空機では安全性の高い1号(灯		散度及び質量低下速度について, JET A-1 燃料に関する明確	相違に伴う想定航空機		
<u>油型)が使用されており*1, 軍用航空機では JP-4 が使われ</u>		な知見がないため, JIS - K - 2209 - 1991 に「ジェット燃料に	の相違		
<u>ている^{※2}。よって,民間航空機の燃料の種類は Jet A-1(灯</u>		は合成炭化水素が含まれるが,この合成炭化水素は原油,オ			
		イルサンドあるいはシェールサンドから精製されたもので,			
使用する燃料物性値のうち,輻射発散度及び質量低下速度に		物性値は極めて灯油に近い」と記載があることから,			
ついては, Jet A-1 燃料に関する明確な知見がない。このた					
め, Jet A-1 は灯油型で あることから, 輻射発散度は灯油					
の値を採用する。					
NUREG-1805 において, JP-4, JP-5の質量低下速度, 密度が					
焼継続時間が長くなるので保守的である。					
軍用航空機の燃料(JP-4)は,ガソリン系の燃料であるこ					
とから、輻射発散度はガソリン・ナフサの値を採用し、質量					
※1:公益社団法人 石油学会 HP					
第 2-1 表 評価対象航空機の燃料物性値		項目			
項目 大型 小型 大型 小型		想定する航空機 B747-400 KC-767 F-15			
民間航空機 民間航空機 軍用航空機 軍用航空機 想定する航空機 B747-400 Do228-200 KC-767 Alt-1S		輻射発散度 (W/m ²) 5.0×10 ^{4注7} 5.8×10 ^{4注10} 5.8×10 ^{4注10}			
Market Stream (Market Stream) (Market Stre		燃焼速度 (m/s) 4.64×10 ⁻⁵ 6.71×10 ⁻⁵ 6.71×10 ⁻⁵			
輪射発軟度[w/m^{-1}] 50×10^{-50} 50×10^{-50} 58×10^{-50} 58×10^{-50} 質量低下速度[kg/m^3] 0.054 ³³ 0.054 ³³ 0.051 ⁴³ 0.051 ⁴³ 燃料密度[kg/m^3] 810 ³³ 810 ³³ 760 ⁴³ 760 ⁴³		質量低下速度 ($kg/(m^2 \cdot s)$) 0.039 ^{達8} 0.051 ^{達11} 0.051 ^{達11}			
		燃料密度(kg/m³) 840 ^{注9} 760 ^{注11} 760 ^{注11}			
 アドロスティア (F)為音 B におけるガメ(加め)直 アド価ガイド (F)為音 B におけるガメ(ジェ・ナフサの値 		注7:「原子力発電所の外部火災影響評価ガイド附属書B 石油コンビナート			
 NUREG-1805, Fire Dynamics Tools (FDTs): Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection 		等			
Inspection Program に記載の JP-5(灯油型)の値 4) NUREG-1805, Fire Dynamics Tools (FDTs): Quantitative Fire Hazard Analysis		注8 : NUREG-1805 に記載の灯油の値			
Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program 5に記載の IP-4(ガソリン型)の値		注9:JIS-K-2209-1991 記載の1号の値 注10.「原子力発電所の外部水災影響評価ガイド附属書B 石油コンビナート			
NUREG-1805 より抜粋。		等火災・爆発の原子力発電所への影響評価について」の附録Bにおけ			
		るガソリン・ナフサの値			
		注11:NUREG-1805 に記載のJP-4 の値			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力	」発電所 2号	炉	備考
--	---------------------	--------------------------------	------------------------	-----------------------	----------
第 2-2 表 軍用航空機の燃料物性値		3. 航空機燃料 JP-4 と JP-5	の物性値		
「		軍用で主に使用される	抗空機燃料と	して, JP-4 のジェッ	<u>k</u>
JP-4 (ガソリン型) 0.051 760 6.71×10 ⁻⁵		機燃料は,陸上,航空及び	び海上の各自行	衛隊の一部では現在 個	<u>-</u>
JP-5 (灯油型) 0.054 810 6.66×10 ⁻⁵			は JP-5 に比-	ベ輻射発散度の値がナ	
		きいことから、影響評価に	はJP−4 の値で	評価する。	-
			に示す。		
			· · / <u>(</u>		
		燃料の種類	IP-4	IP-5	
		幅射発散度(W/m ²)	5.8×10^4	5.0×10^4	
			6. 71×10^{-5}	6.66×10^{-5}	
		質量低下速度(kg/(m ² ・s))	0.051	0.054	
		燃料密度(kg/m ³)	760	810	
<u>また、貨工低下速度を灯油の値(0.039Kg/m··s)とし、密度を</u>					
<u>JetA-1</u> の値の最大値(840kg/m ^o)とした場合, 燃焼速度は, 4.642					
×10-5[m/s]となり, 燃焼継続時間は 2.14時間となり, JP-5 の					
<u>値を採用した場合の 1.49 時間に比べ約 0.65 時間長くなる</u>					
が, 2.14 時間であった場合でも外壁面の温度は約 56℃であ					
り, JP-5 で評価した場合と相違ない。					
100					
90					
80 JP-5 の質量低下速度, 燃料密度の場合					
30 灯油の質量低下速度, Jet A-1 の燃料密度の場合 20 214 時間燃焼 7.56%					
0 0.5 1 1.5 2 2.5 時間[hour]					
第 2-1 図 航空機火災影響評価の外壁面の温度推移					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
			別紙 7.5		
	「右本	1 界飛行ち式早間航空機(小刑機)」のある	友下事故		 ・ 冬 件 の 相 違
	<u>H</u>				末日の相連
		で考慮している航空機の燃料重			【果御弟二】
					島根2号炉は,燃料タ
		機種	燃料量 (m ³)		ンク面積の大きい大型
		ドルニエ Do228-200	約 2.4		機にて火災影響評価を
		バイバーPA-42-1000 セスナ 501	約 2.2		実施することから記載
		ビーチ B200 ガルフストリーム・コマンダ 695	約 2.1 約 1.8		
		セスナ 525/525A サイテーションジェット	約 1.8		LISIN
		ユーロコフター(アエロスバジアル)AS365N3 ベル 412	約 1.6		
		シコルスキ S-76A	約1.5		
		ビーナ C90A セスナ 510	約 1.5		
		セスナ 425	約 1.4		
		セスナ 404	約 1.3		
		セスナ 208B	約 1.3		
		ユーロコプターEC155B/B1 ベル 412FP	約1.3		
		ユーロコプター(アエロスパシアル)AS365N1	約 1.2		
		ユーロコプター(アエロスパシアル)AS365N2	約1.2		
	小刑田宝習機	ソカタ TBM700	約 1.1		
	小王回足荚液	シコルスキ S-76B	約 1.1		
		ユーロコプターEC135P1/P2	約 0.9		
		川崎 BK117B-1/B-2 ドラタス PC-6/R2-H4	約 0.9		
		センテスTC 0/B2 II4 セスナ 150L/M/A150L	約 0.9		
		川崎 BK117C-2 カマン K-1200	約 0.9		
		ベル 212	約 0.8		
		ベル 429 富士 ジル 205P	約 0.8		
		虽ユベル 205B ユーロコプター(アエロスパシアル)AS355F2	約 0.8		
		ユーロコプター(アエロスパシアル)AS355F1	約 0.7		
		$2 - \mu = 2 - \gamma \varphi - (F \pm \mu \chi \wedge \gamma \gamma \mu) AS355N$ $2 - \mu = 2 \gamma \varphi - EC135T1/T2$	約 0.7		
		パイパーPA-31-350/PA-31P-350	約 0.7		
		<u>ヘル 427</u> 川崎 BK117C-1	約 0.7		
		ビーチ 658	約 0.7		
		ビーナ 58 セスナ 340	約 0.6		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018.9.12版)		島根原子力発電所 2号炉	備考
		機種	燃料量 (m ³)		
		アガスタ A109K2	約06		
		富士ベル 204B-2	約 0.6		
		アグスタ A109E	約 0.6		
		マクドネル・タクフス 900 アグスタ AW119Ke	約0.6		
		セスナ T303	約 0.6		
		ユーロコプター (MBB) Bo105S	約 0.6		
		アクスタ AW109SP ユーロコプター(アエロスパシアル)SA315B	約0.6		
		セスナ 182P/Q/R	約 0.6		
		セスナ TU206F	約 0.6		
		アグスタ 109A II	約 0.6		
		アグスタ A109C	約 0.6		
		パイパーPA-23-250 フーロコプター(アエロスパシ(アル) $AS350P2$	約 0.5		
		ユーロコプターEC130B4	約 0.5		
		ユーロコプター(アエロスパシアル)AS350B3	約 0.5		
		セスナ TU206G セスナ U206C	約 0.5		
		ユーロコプター(アエロスパシアル)AS350B/BA	約 0.5		
		ユーロコプター(アエロスパシアル)AS350BI	約 0.5		
	小型固定翼機	ブリテン・ノーマン BN-2B-20 ビーチ F33	約0.5		
		ビーチ 35-C33A/F33A/F33C	約 0.5		
		ビーチ 36/A36	約 0.5		
		パイパーPA-46-310P	約 0.5		
		パイパーPA-46-350P	約 0.5		
		MD ヘリコプターズ 600N	約 0.5		
		ベル 206L-4	約 0.4		
		セスナ 172P	約 0.4		
		ソカタ/モランソルニエ MS885/893A ベル 2061-3	約 0.4		
		ユーロコプターEC120B	約 0. 4		
		ビーチ B36TC	約 0.4		
		パイパーPA-32R-3011 パイパーPA-34-200	約 0.4		
		パイパーPA-34-200T	約 0.4		
		パイパーPA-34-220T セスナ 172N	約 0.4		
		セスナ 172N セスナ 172K/L/M	約 0.4		
		セスナ 182S	約 0.3		
		セスナ T206H シーラス SR22/SR22T	約 0.3		
			赤5 0.0		

	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	Ţ	東海第二発電所(2018. 9. 12 版)		島根原子力発電所 2号炉	備考
Pair Pair Pair Pair Tage Pair Tage Pair Tage Pair Tage Pair Tage Pair T						
1.0 1.0 0.0 1.0 1.0			機種	燃料量 (m ³)		
1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 <td></td> <td>ヤスイ</td> <td>+ P210N</td> <td>約03</td> <td></td> <td></td>		ヤスイ	+ P210N	約03		
1 1 0 0 2 2 0 0 2 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 1 0 0 1 0 <td></td> <td>セスナ</td> <td>+ T210M/N</td> <td>約 0.3</td> <td></td> <td></td>		セスナ	+ T210M/N	約 0.3		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td>エンフ</td> <td>ストロム 480B/TH480B</td> <td>約 0.3</td> <td></td> <td></td>		エンフ	ストロム 480B/TH480B	約 0.3		
$\frac{\nabla - 2\pi \partial x}{2\pi (\tau - 2\pi (2\pi (2\pi (2\pi (2\pi (2\pi (2\pi (2\pi (2\pi (2\pi $			ダ TB21	約 0.3		
A - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2		ビーヲ	F A36TC	約 0.3		
Part A 2000 R 2000 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ムーニ	二一M20K 公—PA-28RT-201T	約0.3		
$ \frac{1}{2} 1$		ベル2	206B	約 0.3		
• • • • • • • • • • • • • • • • • • •		ロビン	アンズ R66 アンズ R66 アンズ ボー 2600 A アンズ ボー 2000 A	約 0.3		
$\frac{1}{12} + 5 + 10.5 +$		セスナ	t 172RG	約 0.3		
$\frac{1}{100} \frac{1}{100} \frac{1}$		セスナ	+ 210-5A	約 0.2		
$P_{2} = \frac{1}{2} \frac{\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$		セスナ	+ 152 	約 0.2 約 0.2		
$\frac{\sqrt{2} + 1 \log 2}{2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$		L = -	 - ズ/川崎 369E	約 0.2		
$\frac{\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - $		セスナ	+ 150B/C	約 0.2		
$\frac{2\sqrt{3}}{\sqrt{27}} \frac{122}{128} \frac{1}{\sqrt{2}} 1$			〒 B24ĸ -・クラシック・エアクラフト YMF ワコーF5C	約 0.2		
$\frac{2}{2} = \frac{2}{2} = \frac{2}$		セスナ	+ 1725	約 0.2		
$\frac{22.4 \times 10^{2}}{10^{2}} \frac{20.7 \times 10^{2}}{10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2}}{10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2}}{10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2}}{10^{2} \times 10^{2} \times 10^{2}} \frac{10^{2} \times 10^{2} \times 10^$		シーラ	フス SR20 タ TR200	約 0.2		
$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{$		小刑田定翌継 エンフ	ストロム 280FX	約 0.2		
$\frac{1}{2} \frac{1}{12} $		小至回足異機 富士 F	FA-200-160	約 0.2		
$\frac{2 29 7 10 a}{27 27 24 24} = \frac{8 6 a}{29 a} = \frac{1}{29 $		<u> </u>	FA-200-180 FA-200-180A0	約 0.2		
$\frac{2}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{2}{\sqrt{2}$		ソカク	タ TB10	約 0.2		
$\frac{\frac{1}{2}x^2 x^2 x^2 x^2 x^2 x^2 x^2 x^2 x^2 x^2 $		セステ	ナ 172R スティン・インダストリーA-1	約0.2		
		ガルフ	フストリーム・エアロスペース AG-5B	約 0.2		
$\frac{2}{7} \frac{2}{7} \frac{2}{7} \frac{2}{7} \frac{1}{10} \frac{10}{10} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{2}{2} \frac{10}{10} \frac{10}{10}$		セスサ	+ R172K	約 0.2		
$\frac{1}{2} \frac{1}{2} \frac{1}$		ダイヤ		約 0.2		
$\frac{1}{\sqrt{7}} \frac{\sqrt{7} + \sqrt{2} + 28 + 16}{\sqrt{7} + \sqrt{2} + 28 + 16}} = \frac{19 + 52}{9 + 0.2} = \frac{10 + 28 + 16}{\sqrt{7} + \sqrt{7} + \sqrt{2} + 28 + 16}} = \frac{19 + 52}{9 + 0.2} = \frac{10 + 28 + 28 + 16}{9 + 0.2} = \frac{10 + 28 + 28 + 16}{9 + 0.2} = \frac{10 + 28 + 28 + 16}{9 + 0.2} = \frac{10 + 28 + 28 + 16}{9 + 0.2} = 10 + 28 + 28 + 28 + 28 + 28 + 28 + 28 + 2$		ロビン	ノソン R44 アストロ/レイベン	約 0.2		
$\frac{\sqrt{47-7} - \sqrt{2} \sin^2(1)}{\sqrt{47-7} - \sqrt{2} \sin^2(1)} = \frac{90.2}{90.2}$ $\frac{\sqrt{47-7} - \sqrt{2} \sin^2(1)}{\sqrt{47-7} - \sqrt{2} \sin^2(1)} = \frac{90.2}{90.2}$ $\frac{\sqrt{47-7} - \sqrt{2} \sin^2(1)}{\sqrt{47-7} - \sqrt{2} \sin^2(1)} = \frac{90.2}{90.2}$ $\frac{\sqrt{47-7} - \sqrt{2} \sin^2(1)}{\sqrt{47-7} - \sqrt{2} \sin^2(1)} = \frac{90.2}{90.2}$ $\frac{\sqrt{47-7} - \sqrt{2} \sin^2(1)}{\sqrt{47-7} - \sqrt{2} \sin^2(1)} = \frac{80.2}{90.2}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.2}{80.2}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.2}{80.2}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.2}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.2}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.2}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{4} \sin^2(1)}{\sqrt{47-7} - \sqrt{4} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{47-7} - \sqrt{47-7} \sin^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{47-7} - \sqrt{47-7} \cos^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{47-7} - \sqrt{47-7} \cos^2(1)} = \frac{80.1}{80.1}$ $\frac{\sqrt{47-7} - \sqrt{47-7} - \sqrt{47-7} \cos^2(1)} = \frac{80.1}{80.1}$		タイキ パイノ	N - PA - 28 - 140	約 0.2		
$\frac{7 \times 4 \times -7 \times 23 \times 161}{(-7 \times -7 \times 23 \times 160)} = \frac{7}{16} \cdot 6 \cdot$		パイノ	°-РА-28-151	約 0.2		
7 + 7 + 7 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +		パイノ	°°∽−PA-28-161	約 0.2		
$\frac{1}{12} \frac{\sqrt{14}}{\sqrt{12}} \frac{\sqrt{16}}{\sqrt{16}} \sqrt$		パイノ	°\$−PA-28-181	約 0.2		
$\frac{1}{2^{2}} \frac{\pi}{4} + \frac{7}{2^{2}} \frac{1}{2^{2}} \frac{1}{2$		パイノ		約 0.2		
$z \neq z + y = 2x + $		モール	ννν K44 Π ν M-7-235C	約 0.2		
$\frac{ \forall \forall A = \forall \forall A = \forall \forall X = 0}{ \forall \forall A = \forall \forall X = 0} = \frac{ \forall \forall A = \forall \forall X = 0}{ \forall \forall A = \forall \forall X = 0} = \frac{ \forall \forall A = \forall \forall X = 0}{ \forall \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = \forall X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = \forall X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ \forall A = X = 0}{ \forall A = X = 0} = \frac{ A = X = X = 0}{ \forall A = X = X = 0} = \frac{ A = X = X = X = 0}{ \forall A = X = X = 0} = \frac{ A = X = X = 0}{ A = X = X = 0} = \frac{ A = X = X = X = 0}{ A = X = X = 0} = \frac{ A = X = X = X = X = 0}{ A = X = X = X = X = X = X = X = X = X =$		エクフ	ストラ EA300S, 300/L	約 0.2		
$\frac{1}{\sqrt{2}\sqrt{2}\sqrt{12}} \frac{1}{\sqrt{2}\sqrt{12}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt$		シャイ	イロフルーク SC01B-160 ナ 172	新 0.2 約 0.2		
岐 種 燃料量 (n^3) 2/2 / T28, 0, 6, H 約0, 2; 2/2 / T28, 0, 6, H 約0, 1; 2/2 / T28, 0, 1, H 約0, 1; 2/2 / T28, 0, 1 約0, 1; 2/2 / T28, 0, 1 約0, 1; 2/2 / T28, 0, 1 約0, 1; 2/2 / T28, 0, 1/2; NSG48 約0, 1; 2/2 / T28, 0, 1/2; NSG49 約0, 1; 2/2 / T28, 0, 1/2; NSG49 約0, 1; 2/2 / T28, 0, 1/2; NSG49 約0, 1; 1/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/3 / 3/0; 約0, 1; 1/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/3 / 3/0; 約0, 1; 1/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/3 / 3/0; 約0, 1; 1/2 / 2/2 / 2/2 / 2/2 / 2/2 / 2/3 / 3/0; 約0, 1;				1,5 0. 2		
機構 燃料量 (n ²) 2727 H9 約0.2 2747 H28, D, G, H 約0.1 7747 H2-28R-201 約0.1 7747 H2-28R-201 約0.1 7747 H2-48R-80 約0.1 7747 H2-48R-90 約0.1 7747 H2-48R-90 約0.1 7747 H2-18-150 約0.1 7747						
			lille ore			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			一般 種 「一個」	燃料量 (m°)		
ボイベーアA-28R-201 約 0.1 ボイベーアA-28R-201T 約 0.1 ボランガ focBc/SKCAB 約 0.1 ボイベーアA-18-150 約 0.1 ボイベーアA-18-150 約 0.1 エクストラ FA300/200 約 0.1 エクストラ FA300/200 約 0.1 ビューズ 2500 約 0.1 リバディール・2 約 0.1 アビオン・ビエール・ロバン DR400/180R 約 0.1 ビッツ S-2B/S-2C 約 0.1		<u>ンカら</u> ヤスサ	× 189 + 1728. D. G. H	約 0.2		
小型固定翼機パイパートPA-28P-201T約0.1パマンカマ 760%/68C4B約0.1ジュワイザー269C-1約0.1エクストラ EA300/200約0.1ロビンソン R22Beta/Mariner約0.1レーズ 269C約0.1リバティーXL-2約0.1ビッツ S-2B/S-2C約0.1		パイノ	\$-PA-28R-201	約 0.1		
小型固定環機 ドリ・1 ドリ・1 パイパーPA-18-150 約0.1 エクストラ EA300/200 約0.1 ロビンソン R22Beta/Mariner 約0.1 レニーズ 2690 約0.1 リバラィーAL-2 約0.1 アビオン・ビエール・ロバン DR400/180R 約0.1 ビッツ S-2B/S-2C 約0.1		パイノ	°S−PA-28R-201T	約 0.1		
小型固定翼機シュワイザー269C-1約 0.1エクストラ EA300/200約 0.1ロビンソン R22Beta/Mariner約 0.1セューズ 2690約 0.1リバティーXL-2約 0.1アビオン・ビエール・ロバン DR400/180R約 0.1ビッツ S-2B/S-2C約 0.1		パイノ	~~PA-18-150	約 0.1		
エクストラ LA300/200利 0.1ロビンソン R22Beta/Mariner約 0.1ヒューズ 269C約 0.1リバティーXL-2約 0.1アビオン・ビエール・ロバン DR400/180R約 0.1ビッツ S-2B/S-2C約 0.1		小型固定翼機 シュワ	フイザー269C-1	約 0.1		
ビューズ 260C 約 0.1 リパティーXL-2 約 0.1 アビオン・ピエール・ロバン DR400/180R 約 0.1 ビッツ S-2B/S-2C 約 0.1		エクフロビン	ペトフEA300/200 イソン R22Beta/Mariner	新 0.1 約 0.1		
リバティーXL-2 約 0.1 アビオン・ビエール・ロバン DR400/180R 約 0.1 ピッツ S-2B/S-2C 約 0.1		ヒュー	-ズ2690	約 0.1		
ビッツ S-2B/S-2C 約 0.1		リバラアビオ	ΓイーXL−2 オン・ピエール・ロバン DR400/180R	約 0.1		
		ピッツ	V S-2B/S-2C	約 0.1		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 7.7		
	航空機落下確率評価手法の保守性について		・記載方針の相違
			【東海第二】
	「実用発電用原子炉施設への航空機落下確率に対する評価基準		島根2号炉は,評価ガ
	について(内規)」に記載されているとおり、航空機落下確率評価		イド記載内容のため記
	手法には以下の保守性がある。		載していない
	(1) 計器飛行方式民間航空機の飛行場での離着陸時における		
	落下事故		
	原子力施設付近の上空の飛行はできる限り避けるよう指		
	付近における飛行は極めて少なくなるものと考えられる		
	が、当該原子炉施設に係る離着陸時の落下確率として、こ		
	の指導等による効果を考慮せずに、国内の飛行場における		
	離着陸時の事故件数及び当該飛行場の着陸回数から求める		
	こととしている。		
	さらに,評価に用いる落下地点の確率分布は,評価対象		
	区域の扇型内一様分布及び周方向に正規分布を仮定し、い		
	ずれか厳しい方を用いるとしている。		
	(2) 有視界飛行方式で飛行する民間航空機の落下事故		
	有視界飛行方式で飛行する民間航空機の落下確率評価に		
	おける評価式は、有視界飛行が全国的に均一して行われて		
	いるものと仮定し全国平均値を求めることとしている。し		
	かしながら、一般に、こうした有視界飛行については、原		
	子力施設付近の上空をできるだけ飛行しないよう指導され		
	ていること、原子力関係施設の上空については、航空法第		
	81条に基づく最低安全高度以下の高度での飛行に係る国土		
	交通大臣の許可が与えられないこととなっていること、及		
	び民間航空機の訓練空域が原子炉施設の上空に存在する場		
	合には自衛隊機の訓練空域と同様な飛行規制が取られてい		
	ることから、有視界飛行中の民間航空機が原子炉施設に落		
	下する可能性は他の地域に比べて十分低いと考えられる。		
	さらに、原子炉施設設置者は、原子炉施設上空からの視認		
	性を向上させるために、自主的に灯火を設置している。し		
	たがって、こうした実態を考慮すると、有視界飛行中の民		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	間航空機の落下確率について、全国平均値を評価に用いる		
	ことには十分な保守性があると言える。		
	(3) 自衛隊機又は米軍機の落下事故		
	訓練空域内で訓練中及び訓練空域外を飛行中の自衛隊機		
	又は米軍機の落下確率評価式は、いずれも、訓練空域が全		
	国的に均一して分布していると仮定し全国平均値で評価を		
	行うというものである。しかし、自衛隊機の訓練空域が原		
	子炉施設の上空に存在する場合には飛行機規制が取られて		
	いること(当該空域における訓練飛行中は通常の飛行時に		
	比べ機器の操作頻度が多いことに鑑み、従来から国土交通		
	省により原子炉施設から半径2海里以内,高度2000ft以下		
	(半径約3.6km以内、高度約600m以下)の範囲が訓練空域		
	から除外されている。),米軍機についても原子炉施設上空		
	の飛行規制に係る協力要請を行っており周知徹底を行う旨		
	回答を得ていること及びこれまでの事故の実績を考慮する		
	と、訓練空域外を飛行中の自衛隊機又は米軍機が原子炉施		
	設に落下する確率として全国平均値を用いることには保守		
	性があると言える。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 7.8 離隔距離の算出方法について 1. 考え方 各評価対象施設における離隔距離が一定に確保されるよう に,評価対象施設近辺の航空機が落下しない範囲の面積の和が 落下確率 10 ⁻⁷ (回/炉・年)に相当する面積となるまで標的面 積を拡大させたときの離隔距離を算出する方法を用いた。		
	2. 離隔距離算出方法 評価対象施設の各辺の長さを (a_i, b_i) とした場合, 離隔距 離をLとすると、当該評価対象施設近辺の航空機が落下しない 範囲 (面積:S_i) は以下の式で表される。 $Si = \pi L^2 + 2L(a_i + b_i) + a_i b_i$		
	上記の式を用いて,全ての評価対象施設に対して S ₁ を計算 し,それらを合計した上でLについて解くことで離隔距離が得 られる。 なお,各施設間の距離が近く,航空機が落下しない範囲が重 なる範囲が重なる場合は,重なった範囲の面積を分配して再計 算することで,航空機落下確率 10 ⁻⁷ (回/炉・年)に相当する 面積に近づける。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 7.11		
	計器飛行方式民間航空機の飛行場を離着陸時における落下事故の		・記載方針の相違
	確率分布関数について		【東海第二】
			島根2号炉は,評価ガ イド記載中広のホルコ
	「美用発電用原于炉施設への航空機落下確率に対する評価基準		イト記載内谷のため記
	(こういて(内規)」に基づき、計益ポイカ式氏间航空機の「①ポイ」 相(基地空港)での離美陸時」にたけて遊下車枚の確認八左間数		載 し くいない
	<u> 场(次城空後)での離星陸時」にわりる洛下争取の維平力和関数</u> には、過去敗党から最大離美陸地方までの直線距離(r) 内の内		
	$(C_{0}, \hat{H} \in \mathbb{R}^{n})$ (C_{0}, \hat{H} \in \mathbb{R}^{n}) 田で滑走路方向両側に対 $1 + 60^{\circ}$ 以内の 扇型 に一様な分布 又 け 周		
	方向で正規分布を仮定し、評価結果が厳しい方を用いろ、下式に		
	て評価した結果、今回の評価では、下表に示すとおり厳しい方で		
	ある正規分布を仮定した方法を用いることとする。		
	(一様分布)		
	$\Phi(\mathbf{r}_0, \boldsymbol{\Theta}) = \frac{1}{\mathbf{A}_{d,a}} (/ \mathrm{km}^2)$		
	$A_{d,a} = \frac{2}{3}\pi r_0^2 (km^2)$		
	(正規分布)		
	$\Phi(\mathbf{r}_0, \theta) = \frac{1}{A_{d,a}} f(\mathbf{x}) (\diagup \mathrm{km}^2)$		
	$A_{d,a} = \frac{2}{3}\pi r_0^2 (km^2)$		
	$f(x) = \frac{A}{\sqrt{2\pi\sigma}} \exp(-\frac{x^2}{2\sigma^2}) \cong 2.1 \times \exp(-\frac{30.42x^2}{\pi^2 r_p^2})$		
	$A = \int_{-\infty}^{+\infty} f(x) dx = \int_{-\pi r/3}^{\pi r/3} P dx = \frac{2}{3} \pi r_{P}$		
	$\sigma = \frac{\pi r}{3 \times 2.6}$		
	r _p :滑走路端から発電用原子炉施設までの距離(径方向)(km)		
	x:滑走路軸上から発電用原子炉施設までの距離(周方向)(km)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$x = r_p \times \theta$		
	θ:滑走路方向に対する空港-発電用原子炉施設の角度 (rad)		
	真 北		
	60° 水 東海第二 60° 東海第二 第電所 発電所 ア 英城空港 滑走路		
	真 南		
	項目 確率密度 (<i>/</i> km ²)		
	正規分布 約 2. 98×10 ⁻⁴		

別紙7.12 航空機落下確率評価における標的面積の考え方について 1. 基準の要求事項 航空機落下確率評価に用いる基準及び航空機墜落による火災 影響評価に用いる基準の要求事項は、それぞれ以下のとおり。 1. 航空機落下確率評価 () 新空機落下確率評価 () 新空機落 () 新空機落 () 新空機系 () 新空機器 () 新空機系 () 新空 () 新空機系 () 新空 () 新空機系 () 新空機系 () 新空機系 () 新空機系 () 新空機系 ()
航空機落下確率評価における標的面積の考え方について 1. 基準の要求事項 航空機落下確率評価に用いる基準及び航空機墜落による火災 影響評価に用いる基準の要求事項は、それぞれ以下のとおり。 (1) 航空機落下確率評価 ○実用発電用原子炉施設への航空機摩下確率に対する評価基準について(平 成21年6月30日原子力安全・保安院制定) 解説4-3 職者陸時及び巡航中の計器飛行方式民間航空機の原子炉施設への高子炉施設への高子研究部への高子研究部への高子研究部への高子研究部への高子研究部への高子研究部への高子研究部への高子研究部への高子研究部への第二の第二の第二の第二の第二の第二の第二の第二の第二の第二の第二の第二の第二の
航空機落下確率評価における標的面積の考え方について 1. 基準の要求事項 航空機落下確率評価に用いる基準及び航空機墜落による火災 影響評価に用いる基準の要求事項は、それぞれ以下のとおり。 (1) 航空機落下確率評価 〇実用発電用原子炉施設への航空機落下確率に対する評価基準について(平 成21年6月30日原子力安全・保安院制定) 解説 4 - 3 輝音陸時及び巡航中の計器飛行方式民間航空機の原子炉施設への高子炉施設への客下確率評価における入力パラメーク等に関する考え方(第4章)
1. 基準の要求事項 航空機落下確率評価に用いる基準及び航空機墜落による火災 影響評価に用いる基準の要求事項は、それぞれ以下のとおり。 (1) 航空機落下確率評価 ○実用発電用原子炉施設への航空機客下確率に対する評価基準について(平 成21年6月30日原子力安全・保安院制定) 解説 4 - 3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設への客下確率評価における入力パラメータ等に関する考え方(第4章)
1. 基準の要求事項 航空機落下確率評価に用いる基準及び航空機墜落による火災 影響評価に用いる基準の要求事項は、それぞれ以下のとおり。 (1) 航空機落下確率評価 〇実用発電用原子炉施設への航空機客下確率に対する評価基準について(平 成21年6月30日原子力安全・保安院制定) 解説 4 - 3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設への高下確率評価における入力パラメーク等に関する考え方(第4章)
 航空機落下確率評価に用いる基準及び航空機墜落による火災 影響評価に用いる基準の要求事項は、それぞれ以下のとおり。 (1) 航空機落下確率評価 ○実用発電用原子炉施設への航空機落下確率に対する評価基準について(平 成 21 年 6 月 30 日原子力安全・保安院制定) 解説 4 - 3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設へ の落下確幸評価における入力パラメータ等に関する考え方(第4章)

 (1) 航空機落下確率評価 ○実用発電用原子炉施設への航空機落下確率に対する評価基準について(平 成 21 年 6 月 30 日原子力安全・保安院制定) 解説 4 - 3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設へ の落下確率評価における入力パラメータ等に関する考え方(第 4 章)
 ○実用発電用原子炉施設への航空機落下確率に対する評価基準について(平 成21年6月30日原子力安全・保安院制定) 解説4-3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設への落下確率評価における入力パラメータ等に関する考え方(第4章)
成21年6月30日原子力安全・保安院制定) 解説4-3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設への落下確率評価における入力パラメータ等に関する考え方(第4章)
解説4-3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設へ の落下確率評価における入力パラメータ等に関する考え方(第4章)
解説4-3 離着陸時及び巡航中の計器飛行方式民間航空機の原子炉施設へ の落下確率評価における入力パラメータ等に関する考え方(第4章)
の落下確率評価における入力パラメータ等に関する考え方(第4章)
(4) 原子炉施設への標的面積(A)
原子炉施設への航空機落下に対する影響評価を行う場合において、航空機落
下事故時の安全性を確保する観点から重要なのは、大量の放射性物質を蓄え
ている炉心や使用済燃料プールを保護すること、並びに、原子炉の安全停止
<u>(炉心冷却も含む。)を確保すること</u> である。したがって、原子炉施設への
航空機落下確率評価では、これらを踏まえ、安全上重要な構築物、系統及び
機器の設置状況、航空機の大きさ、突入する角度、滑り込み等を勘案して標
的面積を決める必要がある。(以下略)
(2) 外部火災影響評価
○原子力発電所の外部火災影響評価ガイド(平成 25 年 6 月 19 日原子力規制
委員会決定)
附属書C 原子力発電所の敷地内への航空機墜落による火災の影響評価につ
いて
1. 総則
(中略)
本評価ガイドは、発電所敷地への航空機の墜落で発生する火災に対してより
一層の安全性向上の観点から、その火災が発電所の敷地内で起こったとして
も原子炉施設(本評価ガイドにおける「原子炉施設」は、安全機能を有する
<u>構築物、系統及び機器を内包するものに限る。)</u> に影響を及ぼさないことを
評価するものである。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
2. 航空機落下確率評価における標的面積		
1.(2)の基準を踏まえ,航空機墜落による火災影響評価におい		
ては,以下の屋外の外部事象防護対象施設等を標的対象として		
選定する。		
・原子炉建屋		
・使用済燃料乾式貯蔵建屋		
・海水ポンプ室		
<u>・タービン建屋(第1図,第2図参照)</u>		
・主排気筒		
なお、評価対象施設のうち放水路ゲートについては、津波の		
流入を防ぐための閉止機能を有している。航空機落下を起因と		
して津波が発生することはないこと及び放水路ゲートは、大量		
の放射性物質を蓄えておらず、原子炉の安全停止(炉心冷却を		
含む。)機能を有していないため、航空機落下確率を算出する標		
的面積として選定しない。また、使用済燃料乾式貯蔵建屋の安		
全機能については、以下のとおり使用済燃料乾式貯蔵建屋以外		
の東海第二発電所原子炉施設と独立していることから、航空機		
落下確率評価においては使用済燃料乾式貯蔵建屋単独で評価を		
実施することとした。		
① 使用済燃料乾式貯蔵建屋は,使用済燃料乾式貯蔵建屋以外		
の東海第二発電所原子炉施設の安全機能に直接的に影響を		
及ぼすものではなく、また、乾式貯蔵容器本体で安全機能		
(臨界防止機能,恋封機能, 遮蔽機能, 除熱機能) を確保		
する設計である。		
② 使用済燃料乾式貯蔵建屋の監視設備(乾式貯蔵容器の一・		
二次蓋間圧力,乾式貯蔵容器の表面温度等)及び火災防護		
設備(火災報知器)への電源供給については、全交流動力		
電源喪失時においては,事象発生後30分は専用の蓄電池か		
ら供給可能だが、その後は東海第二発電所の非常用ディー		
ゼル発電機から給電する設計である。ただし、監視設備及		
び火災防護設備(火災報知器)は状態監視用であり、その		
機能喪失は乾式貯蔵容器の安全機能に影響を及ぼすもので		
はない。		
一方,従来の航空機落下確率評価においては,1.(1)の基準を		
踏まえ、以下を評価対象としていた。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	・原子炉建屋		
	 ・タービン建屋(第2図参照^{*1}) 		
	・海水ポンプ室		
	·使用済燃料乾式貯蔵建屋 ^{※2}		
	※1 原子炉補機冷却系ポンプ及び熱交換器を含む区画		
	※2 使用済燃料乾式貯蔵建屋が各発電用原子炉施設か		
	ら独立して設置されているため,平成 21 年の実用		
	発電用原子炉施設への航空機落下確率の再評価の		
	際は個別に航空機落下確率を評価した		
	第1図 タービン建屋内の安全上重要な系統及び機器の配置		
	<u>(地上1階)</u>		
	第2図 タービン建屋内の原子炉補機冷却系ポンプ及び		
	熱交換器の配置		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.2	20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	別紙 7.16		
	基地ー訓練空域間往復時の落下事故における航空機落下確率の		・条件の相違
	推定について		【東海第二】
			島根2号炉は,基地-
	1. 想定飛行範囲の面積を用いた評価式の保守性について		訓練空域間を対象とし
	「基地(百里基地)-訓練空域間往復時」の落下事故におけ		ていない
	る航空機落下確率は、下式のとおり評価している。		
	$\underline{Pse=fse \cdot A/Sse} \cdot (A)$		
	Pse:対象施設への航空機落下確率(回/年)		
	fse:基地と訓練空域間を往復中の落下事故率(回/年)		
	A:発電用原子炉施設の標的面積(km ²)		
	Sse: 想定飛行範囲の面積 (km^2)		
	(A) 式によると、想定飛行範囲の面積(Sse)が小さいはど、		
	<u>大さな洛下催率となる。これは、基地ー訓練空域間を間易的に</u> 横に恐にするしたのとているためです。		
	<u>一様に飛行すると仮定しているためである。</u>		
	しかし、「原士刀関連施設上空の飛行制限について(通達)」		
	<u> 全て</u> 派119 る 必要がめる 物合には、動力表直の 停止 寺系 志 争歴 が発生しても 百二 力 問連 協 恐に 合 宝 を 及ぼ さ たい とう た 真 座 及		
	復時の自衛隊機が発電所に変下する確率は極めて小さいと考え		
	リーのことから 想定飛行範囲の面積が小さくたろほど よ		
	り保守的な落下確率を与えることとなる。(「想定飛行面積と航		
	空機落下確率の関係(概略図)」参照)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	原子力関連施設上空の飛行制限について(通達)		
	昭和 44 年 2 月 6 日 陸幕航第 59 号		
	改正 平成 10 年 3 月 23 日陸幕運第 145 号 平成 19 年 1 月 9 日陸幕法第 1 号 平成 19 年 3 月 28 日陸幕法第 61 号 平成 21 年 2 月 3 日陸幕法第 10 号		
	各方面総監 中央即応集団司令官 殿 中央管制気象隊長 航空学校長 陸上幕僚長の命により		
	総務課長 (例規 99) 原子力関連施設上空の飛行制限について(通達) 標記について、さきに防衛事務次官の指示に基づきその実施について通達し たところであるが、その後さらに細部について示されたので、今後下記により 実施されたい。 なお、陸幕航第 583 号(43.9.2)は廃止する。		
	記 1 原子力関連施設上空の整行け 原則として行わたいものとする		
	 2 管制機関の指示又は原子力関連施設の位置等の関係から、やむを得ずその 上空を飛行する必要がある場合には、動力装置の停止等緊急事態が発生して もこれらの施設に危害を及ぼさないような高度及び経路で飛行するものとす 		
	 る。 3 原子力関連施設は航空路図誌(防衛省監修)に記載され、その設置・廃止 等の状況は逐次追録されるので、関係者に当該施設の位置を周知徹底させる ものとする。 		
	訓練空域 訓練空域 飛行制限 ● 銀定飛行面積 基地		
	想 定 飛 行 面 積 小 想 定 飛 行 面 積 大		
	想定飛行面積と航空機落下確率の関係(概略図)		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>また,新規制基準に係る適合性の審査の申請をしている発電</u>		
	所のうち、自衛隊機の基地-訓練空域間往復時の航空機落下確		
	<u>率を(A)式により評価しているプラントは, 東海第二発電所を含</u>		
	<u>めて6つあり、これらのプラントにおける想定飛行範囲の面積</u>		
	<u>は下表のとおりである。</u>		
	発電所名称 想定飛行範囲の面積(km ²)		
	■ 東海弗→充電所 4,540 川内原子力発電所1,2号炉 19,400		
	玄海原子力発電所 3, 4 号炉 10,200		
	伊万発電所3号炉 40,080		
	上述のとおり、原子力関連施設上空の飛行を原則行わないよ		
	<u>う制限されていること等を踏まえると、東海第二発電所では、</u>		
	他フラントに比べて想定飛行範囲の面積か小さいため、他フラ		
	<u>ントの洛下確率に比べてより大さな保守性を含んでいると考え</u>		
	<u>a.</u>		
	 2. 「基地(百里基地)ー訓練空域間往復時」の落下事故におけ 		
	る航空機落下確率の算出について		
	事故における航空機落下確率は大きな保守性を含んでいること		
	から,以下を踏まえ,本航空機落下確率の算出においては,実		
	際に落下事故実績のある全国の基地と訓練空域間を往復時の落		
	下事故件数及び全国の基地の想定飛行範囲の面積を用いて算出		
	した全国平均の基地-訓練空域間往復時の航空機落下確率を 2		
	<u>倍した値(以下「全国平均の落下確率の2倍値」という。)を「基</u>		
	地(百里基地) – 訓練空域間往復時」の落下事故における航空		
	機落下確率とする。		
	・百里基地-訓練空域間往復時に落下事故は発生していない		
	が,全国の基地-訓練空域間往復時に5件の落下事故が発		
	<u>生していること及び百里基地-訓練空域間を飛行する際の</u>		
	自衛隊機の機種,飛行環境が全国と比較して大きな相違が		
	ないことを考慮すると、百里基地の落下確率は全国平均に		
	対して同程度又はそれ以下と考えられる。		
	・ 洛ト 事故 実績 が 存在 する 全国 半均の 落下 確率 を参考 とし、		
	保守性を確保するために全国平均の落下確率の 2 倍値を百		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)	版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	里基地ー訓練空域間往復時の落下確率として採用。		
	 ・百里基地 – 訓練空域間の想定飛行範囲の面積が小さいこと, 		
	防衛省による原子力関連施設上空の飛行は原則として行わ		
	ないよう制限されていること等を考慮すると,全国平均の		
	<u> 落下確率の2倍値は実際の落下確率より十分高いと考えら</u>		
	<u>れる。</u>		
	項目航空機落下確率(回/炉・年)		
	全国平均の落下確率 0.2 倍値 $(=3.00 \times 10^{-6} (回 / 年・km^2)^{*} \times 約 0.0138 km^2)$		
	※ 5 件/175,720km ² =約 1.42×10^{-6} (回/年・km ²)を保守的に 2 倍にし,		
	2.1 全国平均の落下確率の 2 倍値を用いることの保守性に		
	「基地(日里基地)-訓練空域間仕復時」は適去20年間落		
	<u> 下夫額かなく, 航空機洛下確率昇田時の発生件数の与え方に不</u>		
	確かさか存住する一方で、主国の基地一訓練空域間の住復時は		
	<u>週云 20 中间 し 5 什洛下 実績が存在する。主国十均の洛下帷平</u> け 誕価の母集団を大きくすることに上 N 茨下東均代粉を実績		
	(a, 計画の母来回を入さくりることにより格丁事政件数を天根) 値 (5 件) に其づき評価していること 其地—訓練空ば問を往		
	<u>値(0)) に至うき前面していること、変地 前株主機両では</u> 復時の変下確率が基地ごとに大きく異たることけ考えにくい		
	ことを考慮すると、全国平均の落下確率は国内における平均的		
	な落下確率として信頼性があると考えるが、本評価では保守的		
	に全国平均の落下確率の2倍値を用いることとする。		
	また, 原子力関連施設上空の飛行を原則行わないよう制限さ		
	れていること、やむを得ず原子力関連施設の上空を飛行する必		
	要がある場合には,動力装置の停止等緊急事態が発生しても原		
	子力関連施設に危害を及ぼさないような高度及び経路で飛行		
	することについて評価上考慮しておらず,この点においても保		
	守性は確保されている。		
	2.2 他の評価手法との比較		
	「基地(百里基地)-訓練空域間往復時」の落下事故におけ		
	る航空機落下確率の算出に当たっては、「原子力発電所の出力		
	運転状態を対象とした確率論的リスク評価に関する実施基準		
	<u>(レベル 1PRA 編): 2013」(一般社団法人 日本原子力学会)</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海	毎第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(以下「PRA 学	会標準」という。)において、過去発生してい		
	ない起因事象に	対する起因事象発生頻度の算出方法として使		
	<u>用</u> が認められて	いる, 以下の χ 二乗分布を用いた方法を使用		
	<u>することも考え</u>	<u>られる。</u>		
	$F = \chi^{2}$ (1,	0.5) /2T=0.2275/T (回/年)		
	<u>T:対象期間</u>	引 (=20 年)		
	その適用性及	び保守性については参考1のとおりであるが,		
	<u>χ</u> 二乗分布を用	いた方法よりも全国平均の落下確率の 2 倍値		
	<u>は以下のとおり</u>	<u>大きくなっている。</u>		
	項目	航空機落下確率 (回/炉・年)		
	2 国平均の落下確率 の2 倍値	$約 4.14 \times 10^{-6}$ (=3.00×10 ⁻⁶ (回/年・km ²)×約 0.0138km ²)		
	x 二乗分布を 用いた 方法	約3.46×10 ⁻⁸ (=0.2275 件/20 年/4.540km ² ×約0.0138km ²)		
	713 . 700 (24			

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
			別紙 7.16 参考 1		
			<u>χ</u> 二乗分布を用いた方法の適用性及び保守性について		・条件の相違
					【東海第二】
			航空機落下確率評価では,過去20年間における落下事故件数の		島根 2 号炉は, χ 二乗
			統計データに基づき航空機落下確率を算出しているが、平成5年		分布を用いていない
			~24年において,以下のカテゴリについては落下事故が発生して		
			<u>utzu</u>		
			(1)計器飛行方式民間航空機の「航空路を巡航中」の落下事故		
			(2)有視界飛行方式民間航空機の「大型機」の落下事故(大型		
			固定翼機)		
			(3)自衛隊機又は米軍機の「訓練空域外を飛行中」の「空中給		
			油機等, 高高度での巡航が想定される大型固定翼機」の落		
			下事故		
			(4)自衛隊機又は米軍機の「基地-訓練空域間往復時」の落下		
			<u>事故</u>		
			そのうち,評価上の保守性が大きい(4)のカテゴリに対する航		
			空機落下確率の推定には、PRA 学会標準において、過去発生し		
			ていない起因事象に対する起因事象発生頻度の算出方法として		
			使用が認められている、以下のχ二乗分布を用いた方法を用い		
			ることも考えられる。このχ二乗分布を用いた方法について,		
			その方法の適用性(1.参照)及び保守性(2.参照)を以下に示		
			<u></u>		
			$\underline{F} = \chi^2 (1, \ 0.5) / 2T = 0.2275 / T^{*1} (回/年)$		
			<u>T:対象期間(=20年)</u>		
			<u>※1 導出方法は参考2参照</u>		
			1. 航空機路下確率評価への χ — 来分布を用いた方法の適用性		
			NUREG/CR-4407 Pipe Break Frequency Estimation for Nuclear		
			$rower rialits (少与 3 ② 照)によると、事家先生頻度の推定 本法しして \pi一番公本を用いた支持を適用するためには =$		
			$ 力伝こしし、\chi 本力印を用いた力伝を適用するためには、事免除仕期時がポアソン公本に従っていてこしが冬供したて$		
			<u> </u>		
			<u>ハノノマガルは、 取印に唯ギが115のしかさい事家(別えは、</u>		
			× 歴事吸による 1 日の2に 数)の光生頻度を死生する唯学て		
			$ - \mu c c c c c c c c c c c c c c c c c c c$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	布に従うかどうかを判断するために,国内における昭和58年~		
	平成 23 年の 29 年間の国内の自衛隊機の「基地-訓練空域間往		
	復時」の落下事故率を対象に、母集団の分布形の検定に使用さ		
	れる χ 二乗分布を用いた適合度検定 (χ 二乗検定)を実施した。		
	本検定は、観測度数と理論度数の差が有意かどうかについて、		
	χ 二乗分布を用いて検定する統計的手法である。		
	<u>適合度検定の結果を下表に示す。</u>		
	落下事故件数 x 落下事故件数 k ボアソン分布 p(f) *1 ボアリン分布 p(f) *1 ボー p(f) *1 ボー p		
	檢定統計量である ~ ^一 垂分布の白中度け 3 (= (組分けの数 5)		
	-1—推定される日数の数1) であり 一般的に用いられる有音		
	<u>1 温足されの時気の気 () そのり</u> 、 成日に用いられの引き 水準 $\alpha = 0.05$ を用いると 絵定の判定占け α 一乗分布表とり		
	$7 81 (= \chi^2 (3 0.05))$ $\tau \pm 2 ch \lambda$		
	1.01 (人) (0, 0, 0)) () (1, 2) () <td></td> <td></td>		
	χ 二乗分布表		
	度 0.995 0.99 0.975 0.95 0.9 0.5 0.1 0.05 0.025 0.01 0.005 1 0.00004 0.00016 0.00098 0.0039 0.0158 0.455 2.710 3.84 5.02 6.63 7.88 2 0.0103 0.02010 0.0506 0.126 0.211 1.386 4.61 5.99 7.38 9.21 10.6 3 0.07172 0.1148 0.2158 0.352 0.584 2.37 6.25 7.81 9.35 11.3 12.8 4 0.2070 0.2971 0.484 0.711 106 336 778 9.494 111 133 14.9		
	5 0.4117 0.554 0.831 1.15 1.61 4.35 9.24 11.07 12.8 15.1 16.8		
			1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>χ</u> 二乗値は約 2.45 であり,判定点より小さいことから,観測		
	度数(ここでは、実年数)と理論度数(ここでは、理論年数)		
	の差は有意であるとは言えない。		
	したがって、国内の自衛隊機の基地-訓練空域間往復時の落		
	下事故率にポアソン分布を当てはめることは可能であり, 航空		
	機落下確率評価にχ二乗分布を用いた方法を適用することが可		
	能であると判断した。		
	2. χ二乗分布を用いた方法の保守性について		
	別紙 7.12 本文 1.に記載のとおり,実際には原子力関連施設		
	<u>上空の飛行を原則行わないよう制限されていること等を考慮す</u>		
	<u>ると、基地-訓練空域間往復時の自衛隊機が発電所に落下する</u>		
	確率は極めて小さいと考えられることから, χ二乗分布を用い		
	た方法においても保守性は確保されていると考えられる。		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙 7.16 参考 2		
		<u>χ</u> 二乗分布を用いた方法による発生率の導出について		・条件の相違
				【東海第二】
		ランダムに事象が発生する場合において,事象の発生率は二項		島根 2 号炉は, χ 二乗
		<u>分布に従うとするのが一般的である。</u>		分布を用いていない
		また,発生件数が小さい場合には、ポアソン分布での近似が可		
		能である。		
		発生率がポアソン分布に従う場合,その平均値んの 100 (1-		
		α)%信頼区間は χ 二乗分布を使用して,		
		$\frac{\chi^{2}(2N,1-\frac{\alpha}{2})}{2T} \leq \lambda \leq \frac{\chi^{2}(2N+2,\frac{\alpha}{2})}{2T} \qquad (N: \mathcal{R} \leq H \gg, T: 期間)$		
		で表される。		
		点推定値は、信頼上限及び信頼下限の平均の自由度をもつχ二		
		乗分布の中央値を用いて,		
		$\lambda = \frac{\chi^2 (2N + 1, 0.5)}{2T}$		
		<u>で表される。なお,NUREG/CR-4407</u> においても,点推定値の算		
		出に信頼上限及び信頼下限の平均の自由度をもつ χ 二乗分布の		
		中央値を用いている。		
		以上より,発生件数がポアソン分布に従う場合,0件(N=0)		
		である場合における発生率 Fは,		
		$F = \frac{\chi^2(1,0.5)}{2T} = \frac{0.2275}{T}$		
		により算出される。		
		【角军 記】		
		(1) 確率分布		
		① 二項分布		
		離散型確率変数 x の確率関数が次の式で表される分布を		
		二項分布という。		
		$p(x) = {}_{n}C_{x}p^{x}(1-p)^{n-x} (x=0, 1, 2, \dots n)$		
		これは、 確率 p をもつ事象が n 回の観察で x 回発生する		
		雌率を表している。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	② ポアソン分布		
	離散型確率変数 x の確率関数が次の式で表される分布を		
	ポアソン分布という。		
	$p(x) = \frac{e^{-m} \cdot m^x}{1 + m^x} \qquad (1 + 1) = \frac{1}{2} e^{-m x} e^{-m x}$		
	x! (x=0, 1, 2, …n, m(江上の定效)		
	<u>これは、単位時間中にある事象が発生する平均回数を m</u>		
	とするとき,単位時間中にその事象が x 回発生する確率を		
	表している。		
	<u>この分布は、非常に多くの観察回数のうち発生件数が少</u>		
	ない事象によく当てはまり,二項分布の平均値 m=np を一		
	<u>定のままで観察回数 n を無限に大きくしたときの極限とし</u>		
	て導かれる。		
	<u>なお、変数 X_1, …, X_nが平均値 λ のボアソン分布に従っ</u>		
	<u>ており、それらが独立であるとき、そのれ Y=X₁+…+X_n</u>		
	は、平均値 n λ のホアソン分布に従い、これをホアソン分		
	$ $		
	<u>③ ルノマガ仲</u> 遊室亦粉 - の確空密座八左が次のずで与うこれて八左な		
	<u>確半変数 X の確半密度万</u> 市が次の式で与えられる万市を パラメータ = 0 の π 二垂八左 k い δ		
	$\land \land $		
	$f(x) = \frac{x^{\alpha - 1} e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} \qquad (x > 0, \alpha > 0, \beta > 0)$		
	p $\mathbf{I}(a)$		
	ここで, Γ(α) はガンマ関数であり,		
	$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$		
	で表される。		
	<u>④ χ二乗分布</u>		
	確率変数 x の確率密度分布が次の式で与えられる分布を		
	自由度 m の χ 二乗分布という。		
	$f(x) = \frac{1}{2^{\frac{m}{2}} \Gamma(\frac{m}{2})} x^{\frac{m}{2}} e^{-\frac{x}{2}} (x \ge 0)$		
	<u>これには、$\alpha = m/2$、$\beta = 200 \gamma$分布の確率密度分布であ</u>		
	ω_{\circ}		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(2) 区間推定</u>		
	<u>真の値がある区間に含まれる確率のことを信頼度といい、</u>		
	<u>その区間の下限値を信頼下限,上限値を信頼上限という。こ</u>		
	<u>のある区間に含まれる確率を1-αとするとき,信頼度100(1</u>		
	<u>- α)%の信頼区間という。また,この α のことを有意水準</u>		
	<u>という。</u>		
	<u>(3)</u> 精密法によるポアソン分布の母平均 λ の区間推定		
	確率変数 X が母平均 λ のポアソン分布に従うとき, 上側確		
	率は以下のとおり表される。		
	$P(X \ge x) = Q(x \ ; \ \lambda) = \sum_{k=x}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!}$		
	<u>一方,</u> パラメータα, βのガンマ分布 GAM(α,β)に従う確		
	<u>率変数をGとすると,</u>		
	$P(G \leq \beta \lambda) = F_{G}(\beta \lambda \ ; \ \alpha, \beta) = \int_{0}^{\beta \lambda} \frac{x^{\alpha \cdot l} e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} dx$		
	<u>ここで,</u>		
	$u = \frac{e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}, dv = x^{\alpha-1} dx$		
	<u>とおくと,</u>		
	$du = \frac{-e^{-\frac{x}{\beta}}}{\beta^{\alpha+1}\Gamma(\alpha)}dx, v = \frac{1}{\alpha}x^{\alpha}$		
	であるから,部分積分を用いて,		
	$F_{a}(\beta\lambda; \alpha, \beta) = \left[\frac{x^{\alpha}e^{-\lambda}}{\alpha\beta^{\alpha}\Gamma(\alpha)}\right]_{0}^{\beta\lambda} + \int_{0}^{\beta\lambda}\frac{x^{\alpha}e^{-\frac{x}{\beta}}}{\alpha\beta^{\alpha+1}\Gamma(\alpha)}dx$		
	$=\frac{(\beta\lambda)^{\alpha}e^{-\lambda}}{\alpha\beta^{\alpha}\Gamma(\alpha)}+\int_{0}^{\beta\lambda}\frac{x^{\alpha}e^{-\frac{x}{\beta}}}{\alpha\beta^{\alpha+1}\Gamma(\alpha)}dx$		
	$=\frac{\lambda^{\alpha}e^{-\lambda}}{\alpha !}+\int_{0}^{\beta\lambda}\frac{x^{\alpha}e^{-\frac{x}{\beta}}}{\beta^{\alpha+1}\Gamma(\alpha+1)}dx$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$=\frac{\lambda^{\alpha}e^{-\lambda}}{\alpha!}+\Gamma_{\alpha}(\beta\lambda; \alpha+1,\beta)$		
	<u>となるから,</u>		
	$Q(x ; \lambda) = \sum_{\alpha=x}^{\infty} \frac{\lambda^{\alpha} e^{-\lambda}}{\alpha!} = \sum_{\alpha=x}^{\infty} \left[F_{\alpha}(\beta\lambda; \alpha, \beta) - F_{\alpha}(\beta\lambda; \alpha+1, \beta) \right]$		
	$=F_{_{\sigma}}(\beta\lambda\ ;\ \alpha,\beta)$		
	の関係が得られる。		
	<u>また,ガンマ分布で$\alpha = m/2$, $\beta = 2$ のとき, GAM(α, β)</u> は自由度 m の χ 二乗分布になることに注目すると,		
	$x = \frac{m}{2}, \beta = 2$		
	とおけば、 $m=2x$ 、 $\beta\lambda=2\lambda$ となるから、		
	$Q(x ; \lambda) = F_{x^2}(2\lambda ; 2x)$		
	<u>と、ポアソン分布の上側確率は、自由度 2x の χ 二乗分布の</u>		
	<u>2んまでの系積確率で表される。</u> <u>ここで、ポアソン分布の再生性((1)②参照)より、</u>		
	$P(Y \ge y) = F_{x^2}(2n\lambda ; 2y) = P(\chi_{2y}^2 \le 2n\lambda)$		
	が成り立つ。この関係から、		
	$P(Y \leq y) = 1 - P(Y \geq y+1) = 1 - P(\chi^{2}_{2(y+1)} \leq 2n\lambda)$ $= P(\chi^{2}_{2(y+1)} \geq 2n\lambda)$		
	<u></u>		
	$P(Y \leq y) = \frac{\alpha}{2} = P(\chi^2_{2(y+1)} \geq 2n\lambda)$		
	$\chi^2(2(y+1),\frac{\alpha}{2}) \ge 2n\lambda$		
	$\frac{\chi^2(2(y+1),\frac{\alpha}{2})}{2n} \ge \lambda$		
	となり, 同様に,		
	$P(Y \ge y+1) = 1 - P(Y \le y) = 1 - P(\chi_{2y}^2 \ge 2n\lambda)$		
	$=P(\chi_{2y}^{2}\leq 2n\lambda)$		
	<u>より,</u>		
	$P(Y \ge y+1) = \frac{\alpha}{2} = P(\chi_{2y}^2 \le 2n\lambda)$		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	$\chi^2(1-\frac{\alpha}{2},2y) \leq 2n\lambda$		
	2		
	$\chi^2(1-\frac{lpha}{2},2y) < 2$		
	$\frac{1}{2n} \ge \lambda$		
	<u>以上より、ボアソン分布の平均値λの(1-α)×100%信頼</u> 区間け		
	$\frac{1}{P(1-x^2-(2x)) \le 1 \le 1} x^2(2(x+1)) = 1 $		
	$P(\frac{1}{2n}\chi_{\frac{1}{2}}(2y) \ge \chi \ge \frac{1}{2n}\chi_{\frac{\alpha}{2}}(2(y+1)) = 1 - \alpha$		
	<u>で表される。(出典: 義谷千凰彦, 「数理統計ハンドブック」,</u> みみずく金 2009 年)		

柏崎刈羽原子力発電所 6/7号炉	5 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
		別紙 7.16 参考 3		
		<u>NUREG/CR-4407 の概要について</u>		・条件の相違
				【東海第二】
		<u>NUREG / CR-4407" Pipe Break Frequency Estimation for</u>		島根 2 号炉は, χ 二乗
		<u>Nuclear Power Plants"は、確率論的リスク評価で使用する安全</u>		分布を用いていない
		上重要な配管の破損頻度をデータの収集及び統計的な分析により		
		推定することを目的として実施された研究の成果をまとめた報告		
		<u>書である。</u>		
		本報告書では、破損が発生していないカテゴリの配管破損の発		
		生頻度の点推定値について以下の式を用いて整理している。		
		$F = \frac{\chi^2(1,0.5)}{1000} = \frac{0.2275}{1000000000000000000000000000000000000$		
		2T T		
		$(xh, 平報古書では配官飯損の発生頻度の急推走値に対して\chi二乗八方な用いた土津な採用していてが、航空機英工事件につい$		
		二米万川を用いた万伝を採用しているが、航空機格工事政につい		
		右に従うことから 航空機変下事故の発生頻度の方法定値に対し		
		マッ二乗分布を用いた方法を採用することは可能であると考えら		
		れる。		
		(NUREG / CR ⁻⁴⁴⁰⁷ 420 H ²) NUREG/CR-4407 F60-3291		
		May 1987		
		Pipe Break Frequency Estimation for Nuclear Power Plants William F. Zuroff		
		Regulatory Commission		
		WITTER AND THE THE		
		Idaho National		
		Engineering Laboratory Managed by the U.S. Department of Energy		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	ABSTRACT II EXECUTIVE SUMMARY III ACKNOWLEDGMENTS VI INTRODUCTION II OVERALL METHODOLOGY 3 FAILURE DATA 7 POPULATION DATA III RESULTS 22 REFERENCES 28 APPENDIX A-USING SUBJECTIVE DATA TO ESTIMATE PIPE BREAK 11 APPENDIX A-USING SUBJECTIVE DATA TO QUESTIONNAIRE RESPONDENTS B-I APPENDIX A-USING SUBJECTIVE DATA TO QUESTIONNAIRE RESPONDENTS B-I APPENDIX A-USING SUBJECTIVE DATA TO ESTIMATE PIPE BREAK 11 REFERENCES C-I APPENDIX A-USING SUBJECTIVE DATA TO ESTIMATE PIPE BREAK FI APPENDIX C-QUESTIONNAIRE RESPONSES C-I APPENDIX C-QUESTIONNAIRE RESPONSES C-I APPENDIX C-QUESTIONNAIRE RESPONSES C-I APPENDIX C-QUESTIONNAIRE RESOF PIPE BREAK EVENTS D-I APPENDIX FFAILURE RATE ESTIMATION METHODS F-I		
	(NUREG/CR-4407 RESULTS 抜粋)		
	Table 15. Frequencies of pipe breaks categorized by leak rate		
	Eas (vanie) Denominator Denominator Denominator C_{prec} bound C_{prec} bound C_{prec} C_{p		
	Non-LOCA ^b ≥1, <15 gpm 5 484.73 0.0041 0.0103 0.0217 ≥15 grm 4 484.73 0.0028 0.0089		
	LOCA ^e 50 to 500 gpm 0 484.73 0 0.0005 0.0062		
	>50 gpm 0 484.73 0 <u>0.0005</u> 0.0062 BWR		
	Non-LOCA ¹⁰ ≥1, <15 gpm 1 313.36 0.002 0.0032 0.0151 ≥15 gpm 9 313.36 0.0150 0.0287 0.0501		
	LOCA ^C 5001 c000 gpm 0 313.36 0 0.0007 0.0096 > 5000 gpm 0 313.36 0 0.0007		
	a. Point estimate $\lambda = N/T$ if $N > 0$; if $N = 0$, $\lambda = x_{10,80,2N+1}^2/2T$. b. Non-LOCA systems are those systems that if disabled, could not mitigate a LOCA (see Table 1).		
	c. LOCA systems are those systems susceptible to piping failures that could result in loss of reactor coolant (see Figure 1).		
	(NUREG/CR-4407 APPENDIX F 抜粋)		
	APPENDIX F		
	FAILURE RATE ESTIMATION METHODS		
	METHODS USED		
	This appendix shows the microau used to entry $\frac{\chi_{m}^{2}(2N)}{\lambda_{m}} \leq \lambda(transient)$ much the pipe failure rates using the observed fail. Ure data and the operating experience, F-1 The following well-assympt approximation methods using		
	in a converge were available to the second with replacement, $F^{2}_{2d} \propto \frac{\chi^{2}_{dar}/(2N+2)}{2D}$, (F-4) The general methods for estimating rates on a yearly basis and on a transfer that is an end of the second s		
	$\lambda(\text{pearly}) = \frac{N}{T} $ $\lambda_{1}^{2}(b) = the chi-square variate at cumulative probability "a", with "b"," divergent of foreignment of the squares of foreignment of the squares of the$		
	$\lambda(\text{transient}) = \sum_{i=1}^{N} \text{In these equations, or is the fraction left out of the intervals. For example, with bytes confidence limits, is (a), (a), (a), (b), (a), (b), (a), (b), (b), (b), (b), (b), (b), (b), (b$		
	95th percentile. If D, the number of transients, is small, then the Poisson approximation of the binomial distribu-		
	too is not acceptate, and $100(1 - c)w$ continence $\lambda = \text{estimated failure rate}$ NF ₁ NF ₂ NF ₂ NF ₂		
	N = number or reported pipe ratures T = total number of operating years experienced		
	$\Delta = \text{ total number of transients.} \qquad \qquad$		
	Confidence limits for yearly failure rates were based on the assume (cont in the underlying pion failure time distributions are exponential and, therefore, that the resultion data can be recovered the Pairon process. $F_L = F_{u/2}(2N, 2D - 2N + 2)$		
	In transier could autors, N is assumed to be binomially distributed. However, because the probability of failure is small, the followed function may be used to be $k_{2}(D, V) = F_{1,w/2}(DN + 2, 2D - 2N)$		
	approximate this variable for cases where the number of maximum is large. The generalized formulas for easi- mating 1000 off confected cases for easi- mating 1000 off confected cases and the set of th		
	rates are As before, for 93% confidence limits, the 0.05 and 0.95 quantifies are used ($\alpha = 0.10$). In this study, yearly rate confidence limits were v2_d(2N) v2_d(2N + 3)		
	$\frac{\Delta \log (2^{n-1})}{2T} \leq \lambda (\text{yearly}) \leq \frac{\Delta \log (2^{n-1} + a)}{2T} (F.3)$ $\begin{array}{c} \text{confidence limits were based on Equation (-16.4) if} \\ D - N = 100, \text{ and on Equation (-16.4) if} \\ The lower limits in Equations (F.3), (F.4), and (F.5) \end{array}$		
	and are not defined in cases where no failures are observed		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	Note off, boxener, Equations (F4) and (F2) also give and the point estimates for wards mass use $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}(N+1)}{2\pi} + \dots + 0$. More realisable $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}(N+1)}{2\pi} + \dots + 0$. More realisable $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}(N+1)}{2\pi} + \dots + 0$. More realisable $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}(N+1)}{2\pi} + \dots + 0$. More realisable $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}(N+1)}{2\pi} + \dots + 0$. More realisable $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}(N+1)}{2\pi} + \dots + 0$. More realisable $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}(N+1)}{2\pi} + \dots + 0$. More realisable $p(-1) = \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}}{2\pi} + \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}}{2\pi} + \frac{\sqrt{2}}{2\pi} + \frac{\sqrt{2}}{2\pi} \frac{\sqrt{2}}{2\pi} + \sqrt{2$		
	 FEFERENCE 9.1. S., R. Brown, M. Trojovsky, Data Summaries of Licensee Event Reports of Inverters at U.S. Commercial Nuclear Power Plants January 1, 1978 to December 31, 1982, NUREG/CR-3867, Idaho National Engineering Laboratory, August 1984. 9.2. 1. J. Bain, Statistical Analysis of Reliability and Life-Testing Models, New York: Marcel Dekker, Inc., p. 157. 9.3. SUPRDS 1978 Annual Reports of Cumulative System and Component Reliability, NUREO/CR-0942, Superimber 1979. 9.4. G. E. P. Box and G. C. Tino, Bayesian Inference in Statistical Analysis of Reliability and Life Data, New York: John Wiley and Sons, Inc., 1974. 9.5. N. Mann, R. E. Shafer, N. D. Singpur wella, Methods for Statistical Analysis of Reliability and Life Data, New York: John Wiley and Sons, Inc., 1974. 9.6. N. L. Johnson and S. Kotz, Discrete Distributions, New York: John Wiley and Sons, Inc., 1969, p. 58-59 and 96. 		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
添付資料-8	添付資料-8	添付資料-8	
げい価格であまガスの影響評価について	げい価及び右害ガスの影響について	げい価及び右害ガスの影響評価について	
はい注及し作曲なべの影響計画について	はい注入し作曲なべり影響について		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018. 9. 12 版)	島根原子力発電所 2号炉	備考
1. はじめに	1. 且的		1. <u>はじめに</u>	
外部火災により発生するばい煙及び有毒ガスについては、火	外部火災で発生するばい煙及	び有毒ガスは,火炎によ <u>り発生</u>	外部火災により発生するばい煙及び有毒ガスに	ついては、火
災による上昇気流により上空に運ばれ、発電所近傍に滞留する	<u>す</u> る上昇気流によ <u>って</u> 上空に運	ばれるため、ばい煙及び有毒ガ	災による上昇気流により上空に運ばれ、発電所近	<u>に傍に</u> 滞留する
ことはない。そのため、ばい煙及び有毒ガスが、換気空調系の	スが防護対象設備の周辺に滞留	する可能性は低いと考えられる	ことはない。そのため、ばい煙及び有毒ガスが、	換気空調設備
外気取入口から建屋内に進入する可能性は低いと考える。万	が, 保守的にばい煙及び有毒ガ	スが設備並びに居住性に与える	の外気取入口から建物内に侵入する可能性は小さ	いと考える。
一, 高濃度のばい煙及び有毒ガスが建屋内に進入することを想	影響について、評価を実施する。)	万一, 高濃度のばい煙及び有毒ガスが建物内に侵	と入することを
定し、以下のとおり評価を行った。			想定し、以下のとおり評価を行った。	
2. 評価対象	2. 評価対象		2. 評価対象	
	評価ガイドでは、ばい煙によ	る安全上重要な設備に対する影		
	響として、燃焼生成物の換気又	は空気供給系からの侵入による		
	電気故障,非常用ディーゼル発生	電機(高圧炉心スプレイ系ディ		
	ーゼル発電機含む)の故障、有	毒ガスによる影響等が挙げられ		
	TUZ.			
ばい煙の影響が想定される施設として、設備内にばい煙を含	ばい煙の影響が想定される設備	備として,「外気を直接設備内に	ばい煙の影響が想定される施設として、設備内	にばい煙を含
んだ外気を取り込む可能性のある機器、煙や埃に対して脆弱な	取り込む機器」、「外気を取り込	む空調系統(室内の空気を取り	んだ外気を取り込む可能性のある機器、煙や埃に	対して脆弱な
設備、建屋外部に開口部を有する設備について影響評価を実施	込む機器を含む。)」及び「屋	外設置機器」について評価を実	設備、建物外部に開口部を有する設備について影	/饗評価を実施
する。また、建屋内にばい煙及び有毒ガスを含んだ外気が取り	施する。また、建屋内にばい煙	及び有毒ガスを含んだ外気が取	する。また、建物内にばい煙及び有毒ガスを含ん	バケタが吸い
込まれた場合の居住性の観点から評価を実施する。評価対象は	り込まれた場合の居住性の観点	から評価を実施する。評価対象	込まれた場合の居住性の観点から評価を実施する	。評価対象は
以下のとおり。	設備を第2-1表に, 評価対象設	備抽出フロー図を第2-1図に示	以下のとおり。	
	T.			
学 0.1 末		トマ証価型の調査	竺 01末,亚伍马布	
<u> </u>		よる評価対象設備	<u> </u>	
分類 影響評価設備 換気空調系で給気されるエリアの設置 非常用ディーゼル発電機	分類	評価対象設備	分類 影響評価語	<u> </u>
機器 安全保護系	外気を直接設備内に取り込む機器	非常用ディーゼル発電機(高圧炉心ス プレイ系ディーゼル発電機を含む。)	設置機器 非常用ディーゼル発電	1機
建屋外部に開口部を有する設備 非常用ディーゼル発電機排気口	機器への 空気を取り込む空調系統(室内の 空気を取り込む機器を含む。)	 ・換気空調設備 ・計測制御設備(安全保護系) 	建物外部に開口部を有する設備 非常用ディーゼル発電	送機排気口
居住性への影響 甲央制御室 日央制御室 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	影響	非常用ディーゼル発電機(高圧炉心ス	居住性への影響 緊急時対策所	
	<u></u>	フレイ系ティーセル発電機を含む。) 用海水ポンプ		
	居住性へ の影響 外気を取り込む空調系統	中央制御室, 緊急時対策所		
なお、原子炉補機冷却海水ポンプ電動機は、タービン建屋内			なお、原子炉補機海水ポンプ及び高圧炉心スフ	ペレイ補機海水
に配置しており、直接ばい煙を取り込むことはなく影響はな			ポンプは、屋外に設置しているが、電動機内部に	
い。また、非常用ディーゼル発電機燃料移送ポンプ電動機は、			り込まない全閉外扇形構造の冷却方式であり、外	気を直接電動
屋外に設置しているが、電動機内部に直接外気を取り込まない			機内部に取り込まない構造であることから影響は	ない。(第 2-1
全閉外扇構造の冷却方式であり,外気を直接電動機内部に取り			図)	
込まない構造であることから影響はない(第 2-1 図)。				
				I

·炉	備考
機の冷却方式図	
置機器 , <u>原子炉建物付属棟空</u>	 ・設備の相違 【柏崎 6/7】 外気を取り入れてい
格には, バグフィルタ る性能)を設置してい 場合であっても, 一定 り <u>侵入</u> を阻止できる。	る米税の相違
隔離弁を設置し系統隔 中央制御室換気系につ には,給気隔離弁及び ドへの切替えを行うこ	
空調ファンを停止する	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
<非常用ディーゼル発電機>		<非常用ディーゼル発電機>	
非常用ディーゼル発電設備は, 換気空調系で給気されるエ	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発	非常用ディーゼル発電機は,換気空調設備で給気される工	
リアに設置していることから, 空調ファンを停止することで	電機を含む。)の吸気系統は、非常用ディーゼル発電機(高圧炉	リアに設置していることから、空調ファンを停止することで	
ばい煙の進入を阻止できる。	心スプレイ系ディーゼル発電機を含む。) 吸気口を介して吸気し	ばい煙の侵入を阻止できる。	
バグフィルタ(粒径約 2μm に対して80%以上を捕獲する	This.	フィルタ(粒径1μm~5μmに対して80%以上を捕獲する性	・設備の相違
性能)の入口と出口間の差圧を検知できる差圧感知計を監視	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発	<u>能)の入口と出口間の差圧を検知できる差圧感知計を監視し,</u>	【柏崎 6/7,東海第二】
<u>し, 差圧が上昇しバグフィルタ</u> が目詰まりした場合は <u>バグフ</u>	<u> 電機を含む。)吸気口のフィルタ(粒径 5μm以上において約 56%</u>	<u>差圧が上昇しフィルタが目詰まりした場合はフィルタの交換</u>	フィルタ仕様の相違
<u>ィルタ</u> の交換が可能である。	<u>捕獲)で粒径の大きいばい煙粒子は捕獲される。</u>	が可能である。	
なお,非常用ディーゼル機関は吸気系統から外気を取り入	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発	なお、非常用ディーゼル機関は吸気系統から外気を取り入	
れているため,機関内にばい煙が流入し,機関燃焼を阻止す	<u>電機を含む。) 吸気口のフィルタを通過したばい煙(数μm~10</u>	れているため、機関内にばい煙が流入し、機関燃焼を阻止す	
ることが考えられるが、ディーゼル機関への外気取入経路に	数μm) が過給機, 空気冷却器に侵入するが, それぞれの機器の	ることが考えられるが、ディーゼル機関への外気取入経路に	
は <u>バグフィルタ</u> を設置していることから,一定以上の粒径の	間隙は、ばい煙に比べて十分大きく、閉塞に至ることはない。	はフィルタを設置していることから、一定以上の粒径のばい	
ばい煙粒子が捕獲され, <u>バグフィルタ</u> により捕集されなかっ	シリンダ/ピストン間隙まで到達したばい煙(数μm~10 数	<u>煙粒子が捕獲され、フィルタにより捕集されなかったばい煙</u>	
たばい煙粒子が機関内へ送気される。 <u>バグフィルタ</u> では,粒	μm)は,当該間隙内において摩擦発生が懸念されるが,ばい煙	<u>粒子が機関内へ送気される。フィルタでは、粒径が数μm程度</u>	
径が数μm 程度の粒子が捕集され, それ以下のばい煙が機関	粒子の主成分は炭素であり、シリンダ/ピストンより軟らかい	の粒子が捕集され、それ以下のばい煙が機関内に送気される	
内に送気されるが,シリンダまでの通気流路(過給機,空気	ため、ばい煙粒子による摩擦が発生することはないと判断され	<u>が,シリンダまでの通気流路(過給機,空気冷却器等)の隙</u>	
冷却器等) の隙間より小さいことから閉塞に至ることはない	Z.	間より小さいことから閉塞に至ることはない。また、通常運	
<u>(第 3.2-2 図)</u> 。また,通常運転においても燃料油(軽油)	また、通常運転時はシリンダ内には燃料油(軽油)の燃焼に	転においても燃料油(軽油)の燃焼に伴うばい煙が発生して	
の燃焼に伴うばい煙が発生していることから,機関に損傷を	伴うばい煙が発生しているが、定期的な点検において、ばい煙	いることから、機関に損傷を与えることや運転機能を阻害す	
与えることや運転機能を阻害することはない。	によるシリンダへの不具合は認められない。	ることはない。	
	以上のことから、外部火災で発生するばい煙が、非常用ディ		
	ーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)		
	の機能に影響を与えることはないと判断した。		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発		
	電機を含む。)吸気系統概略図を第 3. 1−1 図に, 系統構造図を第		
	3.1-2 図に示す。		
	非常用ディーゼル発電機(高圧炉心スプレイ		
	原子炉建屋付属楝		
	通谷機 シリンダ		
	→ 空気冷却器		
	第3.1-1図 非常用ディーゼル発電機(高圧炉心スプレイ系		
	ディーゼル発電機を含む。)吸気系統概略図		

柏崎刈羽原子力発電所 6/7号炉 (201	7.12.20版) 東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	吸気口構造 シリング構造 (シリング/ビストン国際:数/m<10 数/m)		
	EXERcicità : La me esta d'al d'al d'al d'al d'al de la desta d'al de la desta d'al de la desta		
	<u>通給機断面</u>		
	3.2 外気を取り込む空調系統 3.2.1 換気空調設備 (1) 中央制御室換気系, 電気室換気系及び原子炉建屋換気系 これらの系統の給気用のファン入口にはフィルタが設置さ		
	<u> れている。</u> フィルタは捕集率 80%以上(JIS Z 8901 試験用紛体 11 種 粒径約 2μm)の性能を有しているため、外部火災で発 生する粒径が一定以上のばい煙は、このフィルタにより侵入 を阻止可能である。また、ばい煙によるフィルタの閉塞につ		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	いては,フィルタ出入口差圧又は排気ファン出口流量を監視		
	することで検知可能である。		
	<u>中央制御室換気系については, 隔離弁を閉止し, 閉回路循</u>		
	環運転を行うことにより,ばい煙等の侵入を阻止可能である。		
	中央制御室換気系の系統概略図を第 3.2-1 図に, 原子炉建		
	屋換気系の系統概略図を第 3.2-2 図に, 電気室換気系の系統		
	概略図を第3.2-3 図に示す。		
	e e C C/W 次未次却コイル 気 タンプイドクユニット EHC 電気加熱コイル		
	(通常時)		
	⇒性変素 ← 1/1		
	中央制建築 50.000 // 10.000 // 10.000 // 10.000 // 10.000 // 10.000 // 10.000 // 10.000 // 10.00000 // 10.00000 //		
	☆ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		
	中会発動変変変変現積電ファン 激灯2010月3日270 第1072010月3日270 日日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日		
	()が凹路循環運転時)		
	第3.2-1図 中央制御室換気系の系統概略図		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	f(r) f(
	<complex-block></complex-block>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(2) 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発		
	電機を含む。)室換気系		
	非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル		
	発電機を含む。)室換気系は、外気取入口にフィルタが設置さ		
	れていないため、適切なフィルタを設置する方針である。非		
	常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電		
	機を含む。) 室換気系の系統概略図を第3.2-4 図に示す。		
	○ ファン: 連転 空気の流れ		
	換気口 ダンパ:開		
	第3.2-4図 非常用ディーゼル発電機(高圧炉心スプレイ系		
	ディーゼル発電機を含む。)室換気系の系統概略図		
<安全保護系>	3.2.2 計測制御設備(安全保護系)	<u> </u>	
安全保護系設備は,現場盤が非常用電気品室,安全保護系	計測制御設備(安全保護系)は,原子炉建屋,電気室及び	安全保護系盤は,原子炉建物付属棟空調換気系,中央制御	・設備の相違
盤が中央制御室に設置してある。非常用電気品室への外気取	<u>中央制御室に設置してある。原子炉建屋,電気室及び中央制</u>	<u>室換気系で給気されるエリアに設置してある。</u> 外気取入口に	【柏崎 6/7,東海第二】
入経路にはバグフィルタ(粒径約2μmに対して 80%以上を捕	御室へ外気を取り入れる換気空調設備の外気取入口には、フ	はバグフィルタ(粒径2μmに対して80%以上を捕獲する性能)	フィルタ仕様の相違
獲する性能)を設置していることから,一定以上の粒径のば	ィルタを設置することにより, <u>粒径2μm以上のばい煙粒子に</u>	を設置していることから,一定以上の粒径のばい煙について	
い煙については進入を阻止することが可能である。バグフィ	ついては侵入を阻止することが可能である。フィルタにより	は、侵入を阻止することが可能である。バグフィルタにより	
ルタにより捕集しきれなかったばい煙が非常用電気品室に	侵入を阻止できなかったばい煙が原子炉建屋又は電気室内に	捕集しきれなかったばい煙が侵入した場合においても、空調	
進入した場合においても、空調ファンを停止することでばい	侵入した場合においても、空調ファンを停止することでばい	ファンを停止することでばい煙の侵入を阻止することが可能	
煙の進入を阻止することが可能である。また、中央制御室へ	煙の侵入を阻止することが可能である。また、ばい煙が中央	である。また, <u>バグ</u> フィルタにより捕集しきれなかったばい	
の外気取入経路にはバグフィルタを設置していることから,	制御室内に侵入した場合においては、外気取入ダンパを閉止	煙が中央制御室内に侵入する可能性がある場合、及び中央制	
一定以上の粒径のばい煙については進入を阻止することが	し, 閉回路循環運転を行うことでばい煙の侵入を阻止するこ	御室内においてばい煙が侵入したことを煙や異臭で確認した	
可能である。バグフィルタにより捕集しきれなかったばい煙	とが可能である。	場合等は、当直長の指示により、 <u>系統隔離運転モード</u> へ切り	
が中央制御室内に進入する可能性がある場合,及び中央制御		替えることにより,隔離が可能であり <u>安全保護系設備</u> に影響	
室内においてばい煙が <u>流入</u> したことを煙や異臭で確認した		はない。	
場合等は、当直長の指示により <u>,非常時モード</u> へ切り替える			
ことにより、隔離が可能であり <u>安全保護系設備</u> に影響はない			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
----------------------------------	-------------------------------	---------------------------------------	----
(第 3.2-3 図, 第 3.2-4(a)(b)図)。			
なお、中央制御室に侵入する可能性のあるばい煙の粒径	なお, 中央制御室に侵入する可能性のあるばい煙の粒径は,	なお,中央制御室に侵入する可能性 <u>が</u> あるばい煙の粒径は,	
は,おおむね2µm以下の細かな粒子であると推定されるが,	おおむね2μm以下の細かな粒子であると推定されるが,計測	おおむね2μm以下の細かな粒子であると推定されるが, 計測	
計測制御系の盤等において, 数µm 程度の線間距離となるの	制御設備(安全保護系)の盤において,数μm 程度の線間距	制御系の盤等において,数μm程度の線間距離となるのは,	
は, 集積回路 (IC 等) の内部であり, これらの部品はモー	離となるのは、集積回廊(IC等)の内部であり、これらの	集積回路 (IC等) の内部であり, これらの部品はモールド (樹	
ルド(樹脂)で保護されているため,ばい煙が侵入すること	部品はモール(樹脂)で保護されているため、ばい煙が侵入	脂)で保護されているため,ばい煙が侵入することはない。	
はない。また、端子台等の充電部が露出している箇所につい	することはない。また、端子第等の充電部が露出している箇	また、端子台等の充電部が露出している箇所については、端	
ては, 端子間の距離は数 mm あることから, ばい煙が付着し	所については,端子間の距離は数mm あることから,ばい煙が	子間の距離は数mmであることから,ばい煙が付着しても,	
ても, 直ちに短絡等を発生させることはない。したがって,	付着しても、直ちに短絡等を発生させることはない。したが	直ちに短絡等を発生させることはない。したがって, 万が一,	
万が一,細かな粒子のばい煙が盤内に侵入した場合において	って、万が一,細かな粒子のばい煙が盤内に侵入した場合に	細かな粒子のばい煙が盤内に侵入した場合においても、ばい	
も、ばい煙の付着等により短絡等を発生させる可能性はな	おいても、ばい煙の付着等により短絡等を発生させる可能性	煙の付着等により短絡等を発生させる可能性はない。	
لا ^ب ر و	はない。		
3.2建屋外部に開口部を有する設備		3.2 建物外部に開口部を有する設備	
屋外部に開口部を有する設備として,非常用ディーゼル発		建物外部に開口部を有する設備として,非常用ディーゼル発	
電機の排気口があるが、仮にばい煙が配管等の内部に侵入し		電機の排気口があるが,仮にばい煙が配管等の内部に侵入した	
た場合においても、その動作時には侵入したばい煙は吹き出		場合においても, その動作時には, 侵入したばい煙は吹き出さ	
されることから、その機能に影響を及ぼすことはない。(第		れることから, その機能に影響を及ぼすことはない。(第 3.2-6	
3.2-5 図)なお, 主排気筒も同様にばい煙が配管等の内部に		図)なお, <u>排気筒</u> も同様にばい煙が配管等の内部に侵入した場	
侵入した場合においても、その動作時には侵入したばい煙は		合においても,その動作時には侵入したばい煙は吹き出される	
吹き出されることから、その機能に影響を及ぼすことはな		ことから、その機能に影響を及ぼすことはない。	
k 'o			
	3.3 外気を取り込む屋外設置機器		
	(1) 残留熱除去系海水系ポンプ		
	残留熱除去系海水系ポンプ電動機は、全閉防まつ型屋外形		
	構造であり、下部に設置した外扇で外気を空気冷却器冷却管		
	内に直接取り込み、冷却管壁で電動機内部空気と熱交換する		
	ことで冷却を行う構造であり、冷却管内を通った空気は全て		
	排気口に導かれるため、外気が電動機内部に侵入することは		
	tavia		
	空気冷却器冷却管の内径は約26mmであり,ばい煙の粒径は		
	これに比べて十分小さいことから, 閉塞することはない。		
	電動機端子箱は,端子箱内部と外部(大気)に圧力差がな		
	く、端子箱蓋はパッキンでシールされているため、ばい煙の		
	侵入による短絡は発生しない。		
	<u>電動機の構造を第3.3-1図に示す。</u>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第221日 時の執路されて近した。 第221日 時の執路されて近した。 第45日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日		
	用 5.5-1 因 "戏笛恐际云术研小术小之 电影 人 " 件 但 凶		
	 (2) 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)用海水ポンプ 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)用海水ポンプ電動機は、外扇から吸引した外 気をファンカバーから下向きに本体放熱フィンに沿って流 し、電動機本体を冷却する構造であり、外気が電動機内部に 侵入することはない。 また、冷却流路出口幅は約28mmであり、ばい煙の粒径はこ れに比べて十分小さいことから、閉塞することはない。 電動機端子箱は、端子箱内部と外部(大気)に圧力差がな く、端子箱蓋はパッキンでシールされているため、ばい煙の 侵入による短絡は発生しない。 電動機の構造を第3.3-2 図に示す。 		
	<image/> <complex-block><text></text></complex-block>		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(1) 1) 2) 2) 1 (2) 1 <td></td> <td>第3.2-3図 非常用ディーゼル機関の吸気系統構造図</td> <td></td>		第3.2-3図 非常用ディーゼル機関の吸気系統構造図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.3居住性への影響	3.4 中央制御室の居住性評価	3.3居住性への影響	
	「実用発電用原子炉及びその附属施設の技術基準に関する規		
	則の解釈」第38条第13項に規定する「原子炉制御室外の火災		
	等により発生した有毒ガスに対する換気設備の隔離その他の適		
	切な防護措置」として、中央制御室換気系は外気の取入れを遮		
	断することができる。		
中央制御室換気空調系は、外気を遮断し、再循環させる非	中央制御室換気系の外気取入を遮断することで,運転員の作	中央制御室換気系は,外気を遮断し,再循環させる系統隔離	
常時モードに切り替えることができる。外気との遮断が長期	業環境に影響を及ぼさないことを確認するため,酸素濃度及び	運転モードに切り替えることができる。外気との遮断が長期に	
にわたり室内の空気が悪くなった場合は, 外気取入モードに	炭酸ガス濃度について評価した。	わたり室内の空気が悪くなった場合は、外気取入モードに切り	
切り換え、外気を取り入れることができる。また、外気から		替え,外気を取り入れることができる。また,外気からの空気	
の空気取り込みを一時的に停止した場合に,活動に支障のな		取り込みを一時的に停止した場合に,活動に支障のない酸素濃	
い酸素濃度の範囲にあることを正確に把握するため、酸素濃		度の範囲にあることを正確に把握するため, 酸素濃度計を配備	
度計を配備する。		する。	
外気取入遮断時の中央制御室内に滞在する運転員の操作		外気取入遮断時の中央制御室に滞在する運転員の操作環境	
環境の悪化防止のため,酸素濃度及び炭酸ガス濃度について		の悪化防止のため,酸素濃度及び炭酸ガス濃度について評価を	
評価を行い、中央制御室の居住性に影響がないことを確認す		行い、中央制御室の居住性に影響がないことを確認する。	
る。			
また,発電所敷地内で多量の油を内蔵する施設及び中央制	また、発電所敷地内で多量の油を内蔵する施設及び中央制御	また,発電所敷地内で多量の油を内蔵する施設及び中央制御	
御室外気取入口までの距離が近い設備(軽油タンク,主変圧	室給気口までの距離が近い設備(主要変圧器)からの火災を想	室 <u>外気取入口</u> までの距離が近い設備(<u>主変圧器</u>)からの火災,	
器,原子炉冷却材再循環ポンプ可変周波数電源装置入力変圧	定し,中央制御室内に侵入する有毒物質(CO,CO ₂ ,SO ₂ ,	及び航空機墜落による火災を想定し、中央制御室内に侵入する	
器)からの火災,及び航空機墜落による火災を想定し,中央	NO ₂)の最大濃度を判断基準である Immediately Dangerous to	有毒 <u>ガス</u> (CO, CO ₂ , SO ₂ , NO ₂)の最大濃度を判断基準(IDLH [※])	
制御室内に <u>進入</u> する有毒 <u>物質</u> (C0, C02, S02, N02)の最大濃度	<u>Life or Health[*](以下「IDLH」という。</u>)と比較すること	と比較することで, 有毒ガスに対する評価を実施し, 中央制御	
を判断基準(IDLH*)と比較することで、有毒ガスに対する評	で、有毒ガスに対する評価を実施し、中央制御室の運転員に影	室の居住性に影響が無いことを確認する。	
価を実施し、中央制御室の居住性に影響がないことを確認す	響を及ぼさないことを評価した。		
る。			
※:30 分暴露によって生命及び健康に対する即時の危険な	※ 30分曝露によって生命及び健康に対する即時の危険な影響を	※:30 分暴露によって生命及び健康に対する即時の危険な	
影響を与える濃度限度 値であり,脱出を妨げる目や呼	与える濃度限界値であり、脱出を妨げる目や呼吸器への刺激の予	影響を与える濃度限度値であり, 脱出を妨げる目や呼吸	
吸器への刺激の予防も考慮されている	防も考慮されている。	器への刺激の予防も考慮されている。	
331 中央制御室内の ^一 酸化炭素 酸素濃度の評価		331 中央制御室内の一酸化炭素 酸素濃度の評価	
外部火災時の 6 号及び 7 号炉中央制御室の居住性の評		外部火災時の島根2号炉中央制御室の居住性の評価とし	
価として、外気取入遮断時の中央制御室内に滞在する運転員		て、外気取入遮断時の中央制御室内に滞在する運転員の作業	
の作業環境の劣化防止のため、二酸化炭素濃度及び酸素濃度		環境の劣化防止のため、二酸化炭素濃度及び酸素濃度につい	
について評価を行う。なお、中央制御室内には、 燃焼によろ		て評価を行う。なお、中央制御室内には、燃焼による二酸化	
二酸化炭素の排出や酸素を消費する機器はなく、非常用ディ		炭素の排出や酸素を消費する機器はなく.非常用ディーゼル	
ーゼル発電機の火災時に消火設備より二酸化炭素が放出さ		発電機の火災時に消火設備よりハロン 1301 が放出されるこ	

れたとしても、中央制御室 <u>換気空調</u> 系との系統分離及び給・ とから、中央制御室内に二酸化炭素が取り込まれることはな	
排気口の位置的分散が図られており,中央制御室内に二酸化	
炭素が取り込まれることはないことから、在室人員の呼吸の	
みを想定し評価を行う。	
(1) 二酸化炭素濃度評価 (2) 炭酸ガス濃度 (1) 二酸化炭素濃度評価	
以下のとおり二酸化炭素濃度について評価する。 中央制御室閉回路循環運転時の中央制御室内の炭酸ガス濃 以下のとおり二酸化炭素濃度について評価する。	
度について評価した。 a.評価条件	
a. 評価条件 a. 評価条件	
・在室人員 <u>20 人^{*1}</u> ・在室人員 <u>11 人(運転員 7 人に余裕を持たせた人数)</u> ・在室人員 <u>10 人^{*1}</u> ・条件の相違	Ê
 ・中央制御室バウンダリ内体積 <u>14640[m³] *2</u> ・中央制御室バウンダリ内体積 <u>2,700m³</u> ・中央制御室バウンダリ内体積 <u>17,000[m³]</u> 【柏崎 6/7, 東 	東海第二】
 ・外気流入はないものとして評価する。 ・外気流入はないものとして評価する。 設備の相違 	 皇による影
・初期二酸化炭素濃度 0.03[%]・初期炭酸ガス濃度 0.03%・初期炭酸ガス濃度 0.03[%]響評価対象施計	設,入力デ
(「原子力発電所中央制御室運転員の事故時被ばくに関・評価結果が保守的になるよう空気流入は無いものとして <u>(空気調和・衛生工学便覧)</u> ータの相違	
<u>する規程(JEAC4622-2009)」)</u>	
・許容二酸化炭素濃度 <u>0.5[%]</u>	
(事務所衛生基準規則(昭和47年労働省令第43号,最) ・条件の相違	ŝ
終改正平成16年3月30日厚生労働省令第 70 号)) 【柏崎 6/7】	
・呼吸による排出する二酸化炭素濃度 <u>0.046[m³/h/人]</u> ・1人あたりの炭酸ガス吐出量は、事故時の運転操作を想定・呼吸により排出する二酸化炭素濃度 <u>0.030[m³/h/人]</u> 限られた環境	镜下(鉱山
(「原子力発電所中央制御室運転員の事故時被ばくに関し、し、中等作業での吐出量 ^{*1} を適用して、0.046m ³ /hrとの位金、調和・衛生工学便覧の軽作業の作業程度の吐出の)における労	労働環境を
<u>する規程(JEAC4622-2009)」</u> する。 <u>し量)</u> 規定する「鉱山	山保安法施
・評価期間は,各火災の燃焼継続時間を考慮し <u>24 時間**3</u> ・許容炭酸ガス濃度 <u>1.0%未満**2</u> ・評価期間は,各火災の燃焼継続時間を考慮し <u>18 時間**2</u> 行規則」を適用	i用
とする。	
※1:6 号及び 7 号炉の運転員(18 人)に余裕を持っ ※1 空気調和・衛生工学便覧 第14版 3空気調和設備 ※1:当直長(1人),当直副長(1人),2号炉の	
<u>て 20 人とする。</u>	
※2:保守的に 6 号炉中央制御室(熱負荷集計表記載) ※2 鉱山保安法施行規則 9 人に余裕を持って 10 人とする。	
<u>値:7320[m³])を2倍した値とする。</u> <u>※2:外部火災影響評価にて中央制御室近傍で長時</u>	
※3:外部火災影響評価にて長期間の影響をもたらす,	
航空機墜落による火災と軽油タンク火災の重畳を考	
<u>慮すると、約 23.2 時間が火災の継続時間となるこ</u>	
とから,24 時間で評価を実施する。	
b. 誕佈結果	
・ 和 「 細 相 本 ・ 小 町 細 相 本 ・ 外 気 遮 断 期間 t [hour] で の 二 酸 化 炭 素 進 度 C [%] ・ 外 気 遮 断 期間 t [hour] で の 二 酸 化 炭 表 進 度 C [%]	
$C = (M \times N \times t) / V \times 100 + C_{0}$	
M:呼吸による排出する二酸化炭素濃度 0.046[m³/h/人] M·呼吸による排出する二酸化炭素濃度 0.046[m³/h/人]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二季	卷電所(2018.	9.12版)		1	島根原子力発行	電所 2号炉		備考
N:在室人員 <u>20[人]</u>					<u>0.030[m³/h/人]</u>				
Ⅴ:中央制御室バウンダリ内体積 <u>14640[m³]</u>					N: 7	车室人数 <u>10[</u>	人]		
C ₀ :初期炭酸ガス濃度 0.03[%]	評価条件から求る	りた炭酸ガス	濃度は,第	3.4-2 表,第	V : F	中央制御室バリ	ウンダリ体積 <u>1</u>	7,000 $[m^3]$	
	3.4-2 図のとおりで	あり、外気取	入を遮断して	くも約 52 時間	C ₀ :	C ₀ :初期炭酸ガス濃度 0.03[%]			
	まで中央制御室内は	滞在可能であ	53.						
上記評価条件から求めた二酸化炭素濃度は,以下のとおりであ	敷地内で発生する	の火災の最長燃	然焼継続時間	(主要変圧器	上記評価条件から	求めた二酸化	2炭素濃度は, り	「下のとおりであ	
り, 30時間程度外気取入れを遮断したままでも, 運転員の作業環	約7時間)に対し	く,余裕があり	り運転員の作	業環境に影響	り,18時間外気取入	れを遮断した	こままでも,運転	云員の作業環境に	
境に影響を与えない。	を及ぼすことはない)			影響を与えない。				
第 3.3.1-1 表 二酸化炭素濃度の時間変化	<u>第3.4-2表 中央制御室</u>	美系閉回路彻	盾環運転時の	炭酸ガス濃度	第 3. 3. 1	-1.表酸化	と炭素濃度の時間	変化	
時間 6時間 12時間 24時間	時間 19時間	94 時間	48 時間	51.7 時間	時間	5 時間	10 時間	18 時間	
二酸化炭素濃度[%] 0.07 0.11 0.19					二酸化炭素濃度[%]	0.04	0.05	0.07	
	反酸ガス濃度 0.26%	0.48%	0.93%	1.00%					
	1.2								
	.0		1						
	 ○) 0.8 Ⅲ 								
	0	12 24 30 循環運転継続時	6 48 60 _{车間(b)}						
	│	与玄閉回路御	時間である	炭酸ガス濃度					
(2) 酸素濃度評価	(1) 酸素濃度				(2) 酸素濃度評価				
以下のとおり酸素濃度について評価する。	中央制御室換気系別	回路循環運動	云時の中央制行	御室内の酸素	以下のとおり	酸素濃度につ	いて評価する。		
	濃度について評価した	- ~ ⁰							
a. 評価条件	a. 評価条件				a. 評価条件				
・在室人員 <u>20 人</u>	・在室人員 <u>11 人(</u> 運	『転員 7 人に余	*裕を持たせ	た人数)	・在室人員	<u>10 人</u>			・条件の相違
・中央制御室バウンダリ内体積 <u>14640[m³]</u>	・中央制御室バウン	ダリ内体積 2	2, 700m ³		・中央制御	国マバウンダリ	内体積 <u>17,000</u>)[m ³]	【柏崎 6/7,東海第二】
・外気流入はないものとして評価する。	 初期酸素濃度 20. 	95% <u>**1</u>			・外気流入	.はないものと	して評価する。		設備の相違による影
・初期酸素濃度 20.95%	・評価結果が保守的	になるよう空	空気流入は無	いものとして	・初期酸素	濃度 20.95[[%]		響評価対象施設,入力デ
(「空気調和・衛生工学便覧」の成人の呼吸気・肺胞	評価する。				(空気調	和・衛生工学	:便覧)		ータの相違
気の組成の値を使用)	・1 人あたりの呼吸	量は事故時の	運転操作を想	見定し,歩行					
・酸素消費量 <u>1.250/min/人</u>	時の呼吸量*1を注	<u>箇用して,24L</u>	./min とする)					
(「空気調和・衛生工学便覧」の作業強度分類の中	・1人あたりの酸素	消費量 <u>は,</u> 成	之人吸気酸素液	農度 ^{※1}	・酸素消費	,量 <u>1.092[L/</u>	<u>[min]</u>		
くらいの作業強度に対する酸素消費量の中央値	(20.95%),成人	呼気酸素濃度	^{**2} (16. 40%	<u>) から</u> 1.092L	(空気調	和・衛生工学	:便覧)		
<u>を使用</u>)	/min <u>LtZa</u>								

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二列	老電所(2018	. 9.12版)			É	晶根原子力発電	所 2号炉		備考
・許容酸素濃度 <u>18%以上</u>	・許容	酸素濃度 19	9.0% <u>以上*</u> 3				・許容酸素	・条件の相違			
(酸素欠乏症等防止規則(昭和 47 年労働省令第 42						(鉱山保安法施行規則)					【柏崎 6/7】
号, 最終改正平成 15年 12 月 19 日厚生労働省令	<u>×1</u>	空気調和·	衛生工学便見	<u>覧 第14版</u>	3 空気調和設						限られた環境下(鉱山
<u>第 175 号)</u>)		備編									内)における労働環境を
	<u>*2</u>	子機には肺	胞から蒸発	した水蒸気が	加わってお						規定する「鉱山保安法施
・評価期間は、各火災の燃焼継続時間を考慮し 24		り, 吸気と	等容積では	ないため,酸	素消費量を計		・評価期間は	は, 各火災の燃	焼継続時間を	考慮し <u>18.</u> 時間と	行規則」を適用
時間とする。		算するには	t, 乾燥空気	奥算 (%) を	使用する。		する。				
	<u>×3</u>		施行規則								
b. 評価結果	b. 評価結	果					b. 評価結果				
・中央制御室の初期酸素量							• 中央制御	室の初期酸素量	1 .		
$3067.08[m^3] = 14640[m^3] \times 20.95[\%]$							3562.5	$[m^3] = 17000 [m^3]$	×20.95[%]		
・24 時間後の酸素濃度 20.7[%]							 18 時間後 	の酸素濃度 2	20.89[%]		
$= (3067.08 [m^3] - 1.25 [\ell/min/] \times$							=(3562.	5[m ³]-1.092[]	L/min/人]×10	$^{-3}$ [m ³ /L] ×	
$10^{-3} [m^3/\ell] \times 20 [\Lambda] \times 60 [min/h] \times 24 [h])$	評価条	件から求めた	酸素濃度は,	第 3.4-1 表	,第3.4-1図		10[人	$ \le 60 [min/h] $	×18[h])/1700	$0[m^3] \times$	
/14640[m ³] $ imes$ 100	のとおり	であり, 外気	取入を遮断し	ても約 73 時	間まで中央制	الم 100					
	御室内に	滞在可能であ	23.								
上記評価条件から求めた酸素濃度は、以下のとおり	敷地内	で発生する火	く災の最長燃	<u> </u> 疣継続時間	(主要変圧器約		上記評価条	件から求めた	竣素濃度は,以	下のとおりであ	
であり, 24 時間程度外気 取入れを遮断したままで	7 時間)	に対して、分	裕があり運	転員の作業環	境に影響を及		り, 18 時間外	気取入を遮断	したままでも,	運転員の作業環	
も、運転員の作業環境に影響を与えない。	ぼすこと	はない。					境に影響を与	えない。			
第 3.3.1-2 表 酸素濃度の時間変化	第3.4-1表	中央制御室	医换 気系閉回	路循環運転時	の酸素濃度		第3.3	3.1-2表 酸素	濃度の時間変化	<u>لا</u>	
時間 6時間 12時間 24時間	時間	12 時間	24 時間	48 時間	73 時間		時間	5 時間	10 時間	18 時間	
酸素濃度[%] 20.8 20.8 20.7	酸素濃度	20.6%	20.3%	19.6%	19.0%		酸素濃度[%]	20.94	20.92	20.89	
		201070	201070	101070	10.070						
		23.0									
		22.0									
	%)	20.0									
	憲	19.0			_						
	₩ 18.0 縦 17.0										
	16.0										
	kaka a		相界理 和 称								
	<u> </u>	一	<u> 医探気糸閉回</u>	哈佰泉連転時	の酸素濃度						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
3.3.2 中央制御室に対する有毒ガス影響評価	<u>(3)</u> 有毒ガス	3.3.2 中央制御室に対する有毒ガス影響評価	
(1) 評価の概要		(1) 評価の概要	
発電所敷地内で多量の油を内蔵する施設及び中央制	中央制御室換気系給気口の風上で発生し、給気口を直接臨	発電所敷地内で多量の油を内蔵する施設及び中央制御室外	
御室外気取入口までの距離が近い設備からの火災,及び	むことができる火災源を対象とし, 中央制御室換気系給気口	気取入口までの距離が近い施設からの火災を想定し、中央制	
航空機落下位置での火災を想定し、中央制御室内に侵入	位置における有毒ガス濃度の評価を実施した。	御室内に侵入する有毒ガスの最大濃度を判断基準と比較する	
する有毒ガスの最大濃度を判断基準と比較することで,		ことで、有毒ガスに対する中央制御室居住性の影響評価を実	
有毒ガスに対する中央制御室居住性の影響評価を実施		施する。	
する。			
本評価では,石油コンビナートの防災アセスメント指		本評価では、石油コンビナートの防災アセスメント指針で	
針での判断基準と同様に,米国国立労働安全衛生研究所		の判断基準と同様に、米国国立労働安全衛生研究所が定める	
が定める IDLH (Immediately Dangerous to Life or		IDLH (Immediately Dangerous to Life or Health) を採用す	
Health)を採用する。このIDLH は, 30 分暴露によって		る。この IDLH は, 30 分暴露によって生命及び健康に対する	
生命及び健康に対する即時の危険な影響を与える濃度		即時の危険な影響を与える濃度限度値であり、脱出を妨げる	
限度値であり、脱出を妨げる目や呼吸器への刺激の予防		目や呼吸器への刺激の予防も考慮されている。	
も考慮されている。			
(2)評価対象物質及び固定設備		(2) 評価対象物質及び固定設備	
発電所敷地内で多量の油を内蔵する施設及び中央制		発電所敷地内で多量の油を内蔵する施設及び中央制御室外	
御室外気取入口までの距離が近い設備として <u>軽油タン</u>		気取入口までの距離が近い設備として <u>,航空機及び変圧器</u> を	・条件の相違
<u>ク及び変圧器等</u> を評価対象とし,第3.3.2-1表に評価対		評価対象とし,第3.3.2-1表に評価対象施設,…評価対象設備	【柏崎 6/7】
象施設及び評価対象設備から外気取入口までの距離及		から外気取入口までの距離及び火災燃焼面積を示す。また,	設備の相違による影
び火災燃焼面積を示す。また、火災によって発生する物		火災によって発生する物質のうち, IDLH 対象物質である一酸	響評価対象施設,入力デ
質のうち, IDLH 対象物質である一酸化炭素(CO), 二酸		化炭素(CO),二酸化炭素(CO ₂), <u>二硫化</u> 硫黄(SO ₂)及び二	ータの相違
化炭素(CO2)及び <u>二酸化</u> 硫黄(SO2),二酸化窒素(NO2)を		酸化窒素(NO ₂)を評価対象物質とする。変圧器,航空機落下	
評価対象物質とする。 <u>軽油タンク,</u> 変圧器,航空機落		位置及び外気取入口の位置関係を第3.3.2-1図に示す。	
下位置及び外気取入口の位置関係を第 3.3.2-1 図 に			
示す。			

柏崎刈羽原子	力発電所 6	/7号炉 (20)	17.12.20版)	東海第二発電所(2018.9.12版)		島根原子力	発電所 2号炉		備考
第 3.3.2-1 表	評価対象施	設と外気取入口	までの距離及び		第 3.3.2-1	表 評価対象設	備と外気取入口まて	の距離及び	
	ik s	《			*********		《《而積		
						2	2211111		
火災発生場所	離隔距離 x [m]	排煙上昇高度之h[m]] 火災面積 A [m ²]		火災発生場所	離隔距離 x [m]	排煙上昇高度∠h[m]	火災面積 A[m ²]	
軽油タンク	80	18.3	289		主変圧器	81	20.4	35.7	
主後圧奋	30	18.3	150		民間航空機	144	14.7	700	
ホナプ可変周波数電	11	5. 1	9		軍用機	68	14. 7	44.6	
源装置入力変圧器		0.1							
大型民間航空機	218	18.3	605						
小型民間航空機	134	18.3	27						
大型軍用航空機	133	18.3	280						
小型軍用航空機	109	18.3	12						
航空機墜落による火									
火と単重八次の可能 性がある6号恒軽油タ	111	18.3	583						
レク									
					答 2 2 2 1	圆 哈克搬站工	医马马克 化丁丁二乙酸	「左応1日の	
					<u> </u>	凶	业直, 爱庄奋及09	気取入口の	
						位	置関係		
第 3.3.2-1 図	軽油タンク	,航空機落下,	変圧器及び外気						
	取入口の	の位置関係							

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(3) 評価方法	a. 評価手法	(3) 評価方法	
火災時の有毒ガスの発生率,外気取入口に有毒ガス	火災源から放出された有毒ガスは中央制御室換気系給気	火災時の有毒ガスの発生率、外気取入口に有毒ガスが到	
が到達する風速及び大気拡散を考慮し、中央制御室外	口に向う風によって、風下直線方向に拡散していくものと	達する風速及び大気拡散を考慮し、中央制御室外気取入口	
気取入口における有毒ガスの最大濃度を評価し、判断	して, Briggsの排煙上昇過程式により求めた評価対象ガス	における有毒ガスの最大濃度を評価し、判断基準である	
基準である IDLH と比較する。第 3.3.2-2 図に有毒	の風速と、有風時プルーム式を用いて、中央制御室換気系	IDLH と比較する。第3.3.2-2 図に有毒ガス影響評価フロー	
ガス影響評価フローを示す。	<u> 給気口の空気中に含まれる有毒ガス濃度を評価する。</u> 評価	を示す。	
	手法の概要を第3.4-3 図に示す。		
火災発生時の有毒ガス発生率 Q _F [Nm ³ /s]の算出			
熱浮力による上昇気流(排熱フラックス)から,		熱浮力による上昇気流(排熱フラックスから、外気	
外気取入口に有毒ガスが到達する風速 u[m/s]の算出		取入口に有毒カスが到達する風速 u[m/s]を算出)	
風速u[m/s]から拡散幅が最小となる(濃度が最大となる)		▲ 風速 u[m/s]から拡散幅が最小となる(濃度が最大と	
大気安定度を決定し、拡散幅を算出		なる)大気安定度を決定し、拡散幅を算出	
		↓ 大気扩散を考慮した 中央制御室外気取入口での濃度を質出	
IDLH と比較し影響の有無の判断		IDLH と比較し,影響の有無を判断	
		体ののの図ーナギギマド郷海ケマッ	
用 3.3.2-2 凶 有毎ルス影響評価ノロー			
。		。	
a. 八次時の有毎月への先生平 水災時に発生する有害ガス発生率は「燃料の元素		a. 八灰時の有毎次への光王平 水災時に発生する右害ガス発生率は一燃料の元素組成に	
の次時に完全する有毎次へ完全半は、旅村の九条 組成に其べき 燃料はな当たりの久右害ガスの発生		大次時に先生りる有毎万八先王平は, 旅村の九条組成に 基づき 燃料 1 kg あたりの久方芸ガスの発仕率に燃料消费	
脳 成に至うこ、 燃料 Ikgヨに りの 石石 毎万 八の 元王 家 に 燃料 消費 速度 を 垂じ て 質 出 す る 、 誕 研 数 第 3			
		歴度を木して毎日,5。 計画内象の八の光上十 GFL(m/3) け 次式を用いて計算する 計算結果を第33 9-1 表にす	
筒結里を筆 3 3 2-4 表にまとめろ		しんろ	
		$\Omega_{r}=\Omega_{r}' \times M$	
0. ² ・燃料 1 k g 当たりのガスの発生率[Nm ³ /kg]		ローマ、 Ω_r 、・ 燃料 1 kg 当たりのガス発生率 $[Nm^3/kg]$	
M · 燃料消費速度「kg/s]		M · 燃料消費速度 [kg/s]	
$t t t \downarrow$, $M = \rho \times A \times V$		$t \neq t \neq 0$ $X = 0 \times 10^{-10}$	
V :液面降下速度「m/s」A :火災面積「m ² 」		V :液面降下速度[m/s]	
ρ:燃料密度[kg/m ³]		A :火災面積[m ²]	
		ρ:燃料密度[kg/m ³]	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
第 3.3.2-2 表 有毒ガス発生率	第3.3.2-2表 有毒ガス発生率	
火災発生場所QF'収入COCO2SO2NO2軽油タンク・変圧器 2.6×10^{-2} 1.5×10^{0} 1.1×10^{-3} 5.3×10^{-4} $*1$ 航空機 6.1×10^{-1} 1.8×10^{0} 4.2×10^{-4} 2.8×10^{-3} $*2$ ※1: Smoke Plume Trajectory from In Situ Burning of Crude Oil in Alaska より,燃料 $1 \log$ $4 \otimes 2 = 2 \otimes 2 = 2 \otimes 2 = 2 \otimes 2 \otimes 2 = 2 \otimes 2 \otimes$	火災発生場所 Q_F' 主変圧器 $2.4 \times 10^{-2 \times 2}$ $1.5 \times 10^{0 \times 2}$ $1.1 \times 10^{-3 \times 2}$ $4.9 \times 10^{-4 \times 1}$ 航空機 $2.4 \times 10^{-2 \times 2}$ $1.7 \times 10^{0 \times 3}$ $2.1 \times 10^{-3 \times 4}$ $1.3 \times 10^{-3 \times 4}$ ※1:Smoke Plume Trajectory from In Situ Burning of Crude Oil in Alaska より, 燃料 1kg 当たりのガス発生率を標準体積に換算※2:Iohn L. Ross. Ronald I. Ferek. and Peter V. Hobbs.[Particle and Gas	
 ※2: Air Quality Procedures For Civilian Airports & Air Force Bases より, 燃料 1kg 当たりのガス発生率を標準状態体積に換算 ※3:環境省,温室効果ガス排出量算定・報告マニュアルより, 燃料 1kg 当たりのガス発生率を標準状態体積に換算 	 Karley and the set of the field o	
第 3.3.2-3 表 燃料消費速度算出時の入力値	第3.3.2-3表 燃料消費速度算出時の入力値	
火災発生場所 液面降下速度[m/s] 燃料密度[kg/m³] 超計 知いた 第二日 第二日 第二日	火災発生場所 液面降下速度[m/s] 燃料密度[kg/m³]	
軽油ダング・変圧器 5.5×10 ⁻⁰⁻¹⁰ 875 ⁻⁰⁰⁻¹⁰ 民間航空機 6.66×10 ^{-5-*3} 810 ^{-*3}	$\pm \infty$ 3.5×10^{-5} 1000^{-1} R間航空機 4.64×10^{-5} 840^{-1}	
軍用航空機 6.71×10 ⁻⁵ **3 760 **3	軍用機 6.71×10 ⁻⁵ 760 ^{※1}	
月 ※2:揮発油等の品質の確保等に関する法律(昭和五十一年十一月二十五日法律第 八十八号)「第二条第八項」 ※3:NUREG-1805より	※2:JIS-K-2209-1991 より	
燃料 1kg 当たりのガスの発生率は,各文献に掲載されて	燃料1kg当たりのガスの発生率は、各文献に掲載されて	
いる単位重量当たりのガス発生率を単位換算することによ	いる単位重量当たりのガス発生率を単位換算することによ	
り求めている。ただし、単位重量当たりのガス発生率は幅を	り求めている。ただし、単位重量当たりのガス発生率は幅	
もった値ではないため、保守性の観点からガス発生率が最大	をもった値ではないため、保守性の観点からガス発生率が	
となる燃料を選定している。	最大となるよう選定している。	
<u>変</u> 圧器の場合,絶縁油は重油及び軽油同様に鉱物油を原料 <u>として精製されていることから,より高いガス発生率となる</u> <u>軽油の数値を用いている。また,航空機の場合,燃料は JP-8</u> <u>を選定し,燃料 1kg 当たりのガス発生率が最大となるよう</u> <u>にしている。</u>		 ・条件の相違 【柏崎 6/7】 設備の相違による影 響評価対象施設,入力デ ータの相違

柏崎刈羽原子	一力発電所	6/7号炉	(2017.12	2.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
第 3.3.2-4	4表 評価注	対象ガスの	発生率の計算	算結果	第3.3.2-4表 評価対象ガスの発生率の計算結果	
		証価対象ガスの		,1	本 <u>(% 発生</u> 担正) 評価対象ガスの発生率 Q _r [Nm ³ /s]	
火災発生場所	CO	〒 III 八 家 ス ス マ J CO ₂	完工中 QFLINII / S SO ₂	NO ₂	次決策主端的 CO CO ₂ SO ₂ NO ₂	l
軽油タンク	3.6×10^{-1}	2. 2×10^{1}	1.6×10^{-2}	7.5 \times 10 ⁻³	主変圧器 3.0×10 ⁻² 1.8×10 ⁰ 1.4×10 ⁻³ 6.2×10 ⁻⁴	l
主変圧器	1.9×10^{-1}	1.1×10^{1}	8.3 $\times 10^{-3}$	3.8 $\times 10^{-3}$	民間航空機 6.6×10^{-1} 4.6×10^{1} 5.8×10^{-2} 3.4×10^{-2}	l
原子炉冷却材再循環	1 1 × 10-2	C 0 × 10 ⁻¹	5 0 × 10 ⁻⁴	0.0×10-4	単用機 5.5×10° 3.8×10° 4.8×10° 2.8×10°	l
派装置入力変圧器	1.1×10-	6.8×10	5. 0×10^{-5}	2.3×10		l
大型民間航空機	2.0×10^{1}	6. 0×10^{1}	1.3×10 ⁻²	9.1×10 ⁻²		l
小型民間航空機	8.9 $\times 10^{-1}$	2. $6 \times 10^{\circ}$	6. 2×10^{-4}	4. 0×10^{-3}		l
大型軍用航空機	$8.8 \times 10^{\circ}$	2.6 $\times 10^{1}$	6.1×10 ⁻³	4. 0×10^{-2}		l
小型軍用航空機	3. 7×10^{-1}	$1.1 \times 10^{\circ}$	2. 6×10^{-4}	1.7×10^{-3}		l
航空機墜落による火						l
火ご重重八炭の可能 性がある 6 号炉軽油	7. 4×10^{-1}	4. 4×10^{1}	3. 2×10^{-2}	1.5 $\times 10^{-2}$		l
タンク						l
						l
h b	(年版スロ)を	左主 ガラがる	別法ナて国ン	±	ト め 年 町 1 日に 左 書 ガ フ が 到 法 ナ 4 国 法	
0. 21		日母ノヘルコ	判理りる風			l
火》	火によって 発	生する有毒	軍カスは 燃度	もによって高	火災によって発生する有毒ガスは燃焼によって高温とな	l
温とな	なり熱浮力に	よって上昇	する。した	がって,以下	り熱浮力によって上昇する。したがって,以下の Briggs 式	l
の Br	iggs 式 (排	煙上昇過程	式)を用い`	て,有毒ガス	(排煙上昇過程式)を用いて、有毒ガス発生源と外気取入	l
発生》	原と外気取入	口との距離	と高度差か	ら, 外気取入	口との距離と高度差から、外気取入口に有毒ガスが到達す	l
口にす	旨毒ガスが到	達する風速	u[m/s]をヌ	杉める。風 速	る風速 u[m/s]を求める。風速と熱浮力の関係を第 3.3.2−3	l
レ教達	受力の関係を	笛 3 3 2-2	図に示し	風速の計算	図に示し、風速の計算結果を第332-6表にまとめる。	l
な 甲 オ		主にましょ	して ある			l
加木农	と	なによこの				l
					<u> (Briggsの排煙上昇過程式)</u>	
u = 1	$6F^{\frac{1}{3}}\cdot\Lambda h^{-1}$	$\frac{2}{3}$			$\Delta h = 1.6 T^{\frac{1}{3}} + r^{-1} + r^{\frac{2}{3}}$	
					$\Delta n = 1.0T + u + x$	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₹ Žižuu				$u = 1.6F^{\frac{1}{3}} \cdot \Delta h^{-1} \cdot x^{\frac{2}{3}}$	l
∠h : ‡	排煙上昇高度	E[m] = 火災	災発生源とダ	▲気取入口の		l
		高	度差		$\Delta h$ : 排煙上見喜度 (m) = $k$ 災発生源と外気取入口の喜度美	l
	劫 フニッター	<b>7</b> [4/_3]	0.027.0		$E \qquad : \# \frac{1}{2} = 0.037 \cdot Q_{T}$	l
Г : 19F	熬ノノツクノ	<[m ⁻ /s ⁻ ] —	$0.037 \cdot Q_{\rm H}$		$O_{11} = \frac{1}{10} \frac$	l
$Q_{H}$ : $\frac{1}{2}$	非出熱量[kca	al/s]			$\mathbf{w}_{H}$ : $\mathbf{\overline{H}}$	l
						l
						l
ただし	$\downarrow$ , $Q_{\rm H} = q/(\rho)$	/1000)×M			ただし、Q _u =q/ ( <i>o</i> /1000) ×M	
a · 鍫	, 動量[kcal/1]	] ※			a · 释埶最[keal/I]※	1
ч.л. мbb	彩"强雷"中世	- ka/s]			M ·	1
M • <i>R</i>		NG/ 0]				l
p : 燦	™密度[kg/	m'J			ρ:燃料密度[kg/m [°] ]	1
<u>x: 離</u>	隔距離[m]					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
※: 2005 年度以降適用する標準発熱量の検討結果と		※: 2005 年度以降適用する標準発熱量の検討	
改定値について(経済産業省資源エネルギー庁		結果と改定値について	
平成 19 年 5 月)		(経済産業省資源エネルギー庁 平成19年5月)	
第 3.3.2-5 表 燃料の発熱量		第3.3.2-5表 燃料の発熱量	
		火災発生場所 q 発熱量[kcal/L]	
八次光工場///     q     光派量[Kcal/1]       軽油タンク及び変圧器     9004 kcal/1 (37 7 MI/1)		主変圧器 9338kcal/L (39.1MJ/L)	
航空機         8765 kcal/1 (36.7 MJ/1)		航空機 8765kcal/L (36.7MJ/L)	
		風向中央制御室外気取入口	
▲向			
		制御室建物	
X			
第 3.3.2-2 図 風速と熱浮力の関係 (イメーン)		第3.3.2-3 図 風速と熱浮刀の関係(イメーン)	
なお Briggs の排煙上見過程式の適田冬供※け 以下のと		たお Briggs の排煙上見過程式の適田冬仇※けい下のと	
おり あいます。 ひかたエチ過往れの通用本目がは、ターので		おり	
$x \leqq x^*$		$x \leq x*$	
$x^* = 2.16F^{2/5} \cdot \Delta h^{3/5}$			
ここで、		$x* = 2.16F^{2/5} \cdot \Delta h^{3/5}$	
x :離隔距離「m]		x:風下距離[m]	
x*:浮力の効果が薄れて大気乱流による拡散効果が支		x*:浮力の効果が薄れて大気乱流による拡散効果が支	
配的になり始める距離[m]		配的になり始める距離[m]	
F:排熱フラックス[m ⁴ /s ³ ]		F:排熱フラックス[m ⁴ /s ³ ]	
Δh :排煙上昇高度[m](Δh<305m)		⊿h:排煙上昇高度[m] (∠h<305m)	
火災源ごとに x* を求め, 上記条件を満たしている		火災源ごとに x*を求め,上記条件を満たしていることを	
ことを確認しており, Briggsの排煙上昇過程式を用い		確認しており, Briggs の排煙上昇過程式を用いて排煙高さ	
て排煙高さが外気取入口高さと同じになる風速を求		が外気取入口高さと同じになる風速を求めることは妥当で	
めることは妥当である。		ある。	
💥 : G.A.Briggs, "Plume Rise", U.S.Atomic Energy		💥 : G.A.Briggs, "Plume Rise",U.S.Atomic Energy	
Commission, 1969		Commission, 1969	

柏崎刈羽原子力発電所 6/7	号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
第 3.3.2-6 表 風	速の計算結果		第3.3.2-6表 風速の計算結果	
火災発生場所	風速 u[m/s]		火災発生場所 風速 u[m/s]	
軽油タンク	28.2		主変圧器 11.1	
主変圧器	12.0		民間航空機 65.6	
原子炉冷却材再循環ポン			車用機 18	
プ可変周波数電源装置入	8.4			
力変圧器				
大型民間航空機	77.5			
小型民間航空機	19.3			
大型軍用航空機	43. 4			
小型軍用航空機	12.8			
航空機墜落による火災と				
重畳火災の可能性がある	44.3			
6号炉軽油タンク				
て評価する。 火災地点から放出さ の外気取入口の方向に 方向に拡散していくも ガスの発生率及び外気 る風速と,以下に示す 式を用いて,外気取入 スの濃度を計算する。 中の濃度は,下記数式 の高さ2において H= 最大濃度を計算する。 まとめる。	れた有毒ガスは、中央制御 向かう風によって、風下 のとし、先に求めた評価求 気取入口に有毒ガスが到遠 ガウスプルームモデルの ロの空気中に含まれる有毒 なお、外気取入口での空 この放出点の高さ H と評価 =Z=0, Y=0 として中心 計算結果を第 3.3.2-9 表	甲室 直線 対象 達す 式散 足気 町点 上 長に	火災地点から放出された有毒ガスは,中央制御室の外気 取入口の方向に向かう風によって,風下直線方向に拡散し ていくものとし,先に求めた評価対象ガスの発生率及び外 気取入口に有毒ガスが到達する風速と,以下に示すガウス プルームモデルの拡散式を用いて,外気取入口の空気中に 含まれる有毒ガスの濃度を計算する。なお,外気取入口で の空気中の濃度は,下記数式の放出点の高さ H と評価点の 高さ Z において H=Z=0, Y=0 として中心軸上最大濃度を計算 する。計算結果を第 3.3.2-9 表にまとめる。	

柏崎刈羽原	子力発電所 6	/7号炉	(2017.12.2	20版)		東海第二発電	所(2018. 9. 12版)			島根原子力発	電所 2号炉	i	備考	
$\chi(X,Y,Z) = \frac{1}{2\pi}$	$\frac{Q_F}{\mu\sigma,\sigma} \exp\left(-\frac{Y^2}{2\sigma^2}\right)$	$\left\{ \exp\left[-\frac{(Z-H)}{2\sigma^2}\right] \right\}$	$\left  -\frac{2}{2} \right  + \exp \left[ -\frac{(Z + Z)}{2} \right]$	$\left. \frac{(H+H)^2}{2\sigma^2} \right\}$				7	<b>「風時プル</b>	/一ム式)				
	で,		] [ -	.o _z _)				$\chi(X,Y,$	$Z) = \frac{Q_F}{2\pi u \sigma_V}$	$\frac{1}{\sigma_{\tau}} \exp\left(-\frac{Y^2}{2\sigma_{y}^2}\right)$	$\exp\left[-\frac{(Z-H)^2}{2\sigma_z^2}\right]$	$+\exp\left[-\frac{(Z+H)^2}{2\sigma_z^2}\right]$	}	
$\chi$ (X.	Y,Z):評価点	(X, Y, Z) のす	「毒ガスの》	農度[g/m³]	1			$\chi(X)$	77)、有毒	物質の濃度		L 2 J		
u:外	気取入口に有著	毒ガスが到達	するとした	場合の風	l			$\chi(\Lambda, I)$ u	;2): 青霉 : 外気取2	入口に有毒ガス	が到達するとし	た場合の風速(	m/s)	
谏	[m/s]							$\sigma_{\scriptscriptstyle Y}$	:建物及び	び地形の起伏の	ない平地での			
σY:	水平方向の拡散	汝幅[m]							y 方向	(水平方向)の	濃度の拡がりの	パラメータ (m)		
σZ:	鉛直方向の拡帯	文幅[m]						$\sigma_z$	: 建物及( z 方向	い地形の起伏の (鉛直方向)の	濃度の拡がりの	パラメータ (m)		
$Q_{F}: \mathcal{P}$	<b>火災によって発</b>	生する有毒丸	ゴスの発生率	⊠[Nm³/s]				$Q_{\scriptscriptstyle F}$	:火災に。	よって発生する	有毒ガスの発生	三率 (Nm ³ /s)		
H: 於	は出源の有効高さ	5[m]						Н	:放出源@	の有効高さ(m)	(= <u>_h</u> )			
	7775 0 (5 1	`	$a_1 + a_2$	$\log r + a_2 (\log r)^2$				C	o _y =0. 6775	$5 \theta_{0.1} \cdot (5-10)$	gx) $\cdot$ x, $\sigma_z = \sigma$	σ ₁ •x ^{a1+a2logx+a3(10}	9gx) 2	
$\sigma_{\gamma} = 0.6$	$///5 \theta_{0.1} \cdot (5 - 10)$	$g_{X}(x) \cdot x$ , $\sigma_{Z}$	$=\sigma_1 \cdot x^{a_1 \cdot a_2 \cdot a_3}$	·B · · · · · · · · · · · · · · · · · ·				1	ະだし, x	の単位は km	とし, xが0.2	2km 以遠の場合	,	
た	だし,xの単位に	は km としx:	が0.2km以遠	園の場合,				$ heta$ $_{ m o.}$	₁ , σ ₁ , a	1, a2, a3は以	人下のとおり。			
$\theta$ 0. I	l, σ1, a1, a2	, a3 は以下	のとおり。											
第 3.3.2-7 表	大気安定度と	入力値(離隔	扇距離が 0.	2km 以遠)	)			第 3.3.2 ⁻	-7表大	気安定度と入	力値(離隔距	離が 0.2km 以	<b>遠</b> )	
大気安定度 θ	ο. 1 σ 1	a1	a ₂	$a_3$				大気安定	度 θ _{0.1}	σ1	a ₁	a ₂ a ₃		
A 5	0 768.1	3. 9077	3.898	1.7330				A	40	768.1	3.9077	3.898 1.733 ) 49523 0.127	0	
C 3	0 122.0	0. 8916	-0.001649	0. 12772				C	30	58.1	0.8916 -0	0.001649 0.0		
D 2	0 31.7	0.7626	-0.095108	0.0				D	20	31.7	0.7626 -0	0.095108 0.0		
E 1	5 22.2	0.7117	-0. 12697	0.0				E	15	22. 2	0.7117 -	0. 12697 0. 0		
F 1	0 13.8	0.6582	-0.1227	0.0				F	10	13.8	0.6582 -	-0. 1227 0. 0		
xガ ³ 0.2km	未満の場合は,	$\theta_{0.1}$ , $\sigma_1$ , $\epsilon$	山は以下のと	とおり。た	-			Х	が 0.2km	未満の場合,	$\theta_{0.1}$ , $\sigma_1$ , $a$	a ₁ は以下のとお	5り。 	
だし, a ₂ , a	₃は0とする。							たた	Ĕし, a ₂ ,	a3は0とする	D _o			
第 3.3.2-8 表	大気安定度と	入力値(離隔	扇距離が 0.	2km 未満)	)			第 3.3.2 ⁻	-8表大	気安定度と入	、力値(離隔距	離が 0.2km 未済	茜)	
大気安定度	heta 0.1	σ 1		<b>a</b> 1				大学	、安定度	$ heta$ $_{0.1}$	σ1	a ₁		
А	50	165	1	. 07					А	50	165	1.07		
В	40	83.7	0.	894					В	40	83.7	0.894		
С	30	58	0.	891					С	30	58	0.891		
D	20	33	0.	854					D	20	33	0.854		
Е	15	24.4	0.	854					Е	15	24.4	0.854		
F	10	15.5	0.	822					F	10	15.5	0.822		
					-			L			1	]		
	┍亩は→◇承田□	百フにおう	小小人和北小	・胆ナッケ	÷			_		いような単日	百てにたれへい	たへ細たいを胆う	- 7 /=	
人気女征	: 皮は, 光 竜 用 // 載 の し わ り の 『	FTが2000000000000000000000000000000000000	女王脾竹に	- 戌りる気				フ 毎+	∖ 丸女正度 ≧ 針ヶ 和書	とは, 光竜川/	示丁州 旭 設 の 5 副 油 の 笠 囲 し	女王 脾 灯 に 関 う ロ 計 め 左 胆 の 判	い の の の	
家相町に記	戦いとわり, パ て A_C マロハー	戦速の 範囲と	. 口別で仅同 . 本					家1	ヨ亚T に 記車 l、Jァ ト - マ	KVVとわり,) - A_E IF IF I	戦速の範囲と	ロ わ ~ 夜 间 の が ち ね <del>- ト <i>巨 中</i> 弓</del>		
人小によっ	C A-6 に区分る	2112800	このり,天 タ	A.女止度 A	4			天生	うにようへ	A-F に区分	3112 UNC	のり,大気女江	ニ皮 A	

柏崎刈羽原子力発	電所 6/7	号炉 (2017.)	12.20版)	東海第二発電所(2018.9.12版)		島根原子力系	Ě電所 2号炉		備考
が最も拡散しやす	-く Gが最も拡	散しにくい。オ	≤評価では,外		が最も拡散	しやすくFが	最も拡散しにく	い。本評価では,	
気取入口 に有毒	ガスが到達す	るとした場合の	の風速 u[m/s]		外気取入口	に有毒ガスが	到達するとしたな	昜合の風速u[m∕s]	
の中で、拡散幅が	最小となる(	濃度が最大とな	ころ)より拡散		の中で,拡	散幅が最小と	なる(濃度が最大	大となる)より拡	
しにくい大気安定	医を選択する	。風速と大気安	定度の関係は		散しにくい	大気安定度を	選択する。風速	と大気安定度の関	
以下のとおりであ	っり、本評価では	は第 3.3.2-10	表に示すとお		係は以下の	とおりであり	. 本評価では第3	. 3. 2-10 表に示す	
り風速け 6[m/s]	以上であるこ	とから大気安全			とおり風速	は6[m/s]い	トであることかに	る大気安定度は C	
とたり とり扩散	シェマのもこ	安定度 D で評	価を行う		マけりとか	りい トり扩散	しにくい大気安全	定度 D で証価を行	
		女 L 反 D C 开	で11 )。		えなりとな	り, より1410			
					<i>9</i> 。				
第 3.3.	2-9 表 拡散	幅の計算結果			第	3.3.2-9 表	拡散幅の計算結り	果	
	大気安定度	水平方向の	松直方向の		<i><b>小</b>巛惑仕担訴</i>	十与字字庙	水平方向の拡散幅	鉛直方向の拡散幅	
火災発生場所		拡散幅 σ _x [m]	抗散幅σ _z [m]		八贝完王物川	一	σ _γ [m]	$\sigma_{z}[m]$	
軽油タンク	D	6.6	3.8		王炎上器	D	6.7	3.9	
主変圧器	D	2.7	1.6		軍用機	D	5.7	3.4	
原子炉冷却材再循環ボン	D	1.0	0.7						
力変圧器	D	1.0	0.7						
大型民間航空機	D	17.7	9.5						
小型民間航空機	D	10.8	6.0						
大型軍用航空機	D	11.2	6.2						
小型軍用航空機	D	8.9	5.0						
1 航空機墜落による火災と 重畳火災の可能性がある	D	8.9	5.0						
6号炉軽油タンク		0.9	5.0						
	1	1							
第 3.3.2-10 表 風	速,日射量及	び放射収支量に	こよる大気		第 3.3.2-10 表 [	風速,日射量。	及び放射収支量に	こよる大気安定度	
安	定度					日射量T(kW/m	² ) 放射	収支量Q (kW/m ² )	
					風速u T ≧	0.60 > 0.30	$>$ 0.15 $>$ Q $\geq$	≧ -0.020 -0.040	
国速(U) 日射量 0.602	$ \begin{array}{c} & \text{(T)}  \text{kw/m}^2 \\ & \text{>} T  0, 30 > T \\ \end{array} $	<u> 放射収支</u> Q > -0.	$(\mathbf{Q}) \text{ kw/m}^2$ 020>Q -0.040		(m/s) 0.60	$T \ge T$	$\geq$ T -0.020	$> Q \ge > Q$	
$m/s$ $T \ge 0.60 \ge 0$	$0.30 \ge 0.15^{0.15}$	$5 > T$ $-0.020 \ge$	-0.040 >Q			0.30 0.15		-0.040	
$U \le 2$ A A-1	B B I	D D	G G		u < 2 A $2 \le u \le 3$ A - B	A-B B	D D		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			D E		$2 \equiv u < 3  A  B$ $3 \leq u < 4  B$	B-C C	D D	D E	
$4 \leq U \leq 6$ C C - 1	D D I	D D	D D		$4 \leq u < 6$ C	C-D D	D D	D D	
6 <u>&lt;</u> U C D	D I	D D	D D		$6 \leq u$ C	D D	D D	D D	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
(4) 評価結果		d. 評価結果	
中央制御室外気取入口における有毒ガスの濃度を		中央制御室 <u>外気取入口における</u> 有毒ガスの濃度を第	
第 3.3.2-11表にまとめる。 なお, 航空機墜落による		<u>3.3.2-11 表にまとめる。第 3.3.2-11 表より、中央制御室</u>	・評価の相違
火災と軽油タンク火災の重畳については, 重畳の可能		<u>外気取入口における有毒ガスの濃度は、IDLH以下であるこ</u>	【柏崎 6/7】
性がある 6 号炉軽油タンクと小型軍用航空機の濃度		とを確認した。	柏崎 6/7 は, 評価結果
を足し合わせることにより求めた。第 3.3.2-11 表よ			が満足しなかったため,
り、中央制御室外気取入口における有毒ガスの濃度			追加で詳細な影響評価
は, 主変圧器にて火災が発生した場合の CO2 及び			を実施
<u>NO2 を除き, IDLH 以下であることを確認した。</u>			
主変圧器の火災では, CO2 濃度及び NO2 濃度が			
IDLH を超えているが,ここでは,中央制御室外気取			
入口における有毒ガスの最大濃度を IDLH と比較す			
ることにより評価しており、実際には、中央制御室内			
における有毒ガスの濃度は瞬時に上昇せず、その濃度			
が徐々に増加する。そこで,中央制御室の居住性に対			
する影響について,「原子力発電所中央制御室の居住			
性に係る被ばく評価手法(内規)平成21 年 8 月 12			
日 原子力安全・保安院」【解説 7.2】に記載されてい			
る中央制御室内の雰囲気中に浮遊する放射性物質量			
の時間変化の考え方を参考に,以下の式を用いて,中			
央制御室内の有毒ガス濃度が IDLH の濃度に達する			
経過時間を評価する。			
有毒ガス濃度(最大値) x			
換気率 f 中央制御室 換気率 f			
第 3.3.2-3 図 中央制御室内の有毒ガス濃度変化(概念図)			
		1	1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
$\frac{dc(t)}{dt} = -fc(t) + fx$		
c(0) = 0		
$c(t) = (1 - \exp(-ft))x$		
$\ln\left(1-\frac{c(t)}{t}\right)$		
$t = -\frac{m(1 - x)}{f}$		
<u> </u>		
<u>c(t):中央制御室における有毒ガス濃度[ppm]</u>		
<u>f</u> :中央制御室の換気率[1/s]		
<u>x</u> :中央制御室外気取入口における有毒ガス濃度の		
最大值 [ppm]		
<u>従って、中央制御室における有毒カス濃度が</u>		
IDLH に達する経適時間は以下の 式となる。		
$\ln\left(1-\frac{C_{IDLH}}{r}\right)$		
$T_{IDLH} = -\frac{f}{f}$		
<u></u> T、IDIHに法する経過時間[s]		
$\frac{1_{\text{IDLH}} \cdot 1_{\text{IDLH}} (C \neq \gamma \cdot S \neq M \neq M \neq \eta \in [S]}{C}$		
ト式にて、中央制御室外気取入口の有毒ガスを最大濃		
<u> 唐</u> (C02 濃度:65.049[ppm], N02 濃度:23[ppm]) で		
一定とし、中央制御室内の換気率を考慮した有毒ガス濃		
度を算出したところ、IDLH に達するまでの経過時間は、		
CO2が約114分, NO2が約 244 分であった。		
これに対し、中央制御室に有毒ガスが進入してくる場		
合には、中央制御室の外気取り入れを遮断し、再循環さ		
せる非常時モードで運転することが可能であり,火災発		
生後 15 分程度*で中央制御室への外気取り入れを停止		
し、非常時モードへ切り替えることが可能である。		
また、火災(有毒ガス)の発生は、火災報知器(軽油	また、火災(有毒ガス)の発生は、火災感知器(主変圧	
<u>タンク・主変圧器等)</u> ,振動や衝撃音(航空機落下),敷	器),振動や衝撃音(航空機落下),敷地境界監視用カメ	
地境界監視用カメラ(森林火災)等により覚知できるこ	ラ(森林火災)等により覚知できることに加え、中央制御	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
とに加え、中央制御室外の火災発生に伴い、煙や異臭を		室外の火災発生に伴い、煙や異臭を確認した場合の当直長	
確認した場合の当直長判断による中央制御室隔離手順		判断による中央制御室隔離手順を運転手順書に定めてい	
が操作手順書に定められており、これらの覚知・判断に		る。火災の覚知・当直長判断・運転操作に時間を要するも	
時間を要するものはなく, 迅速に対応することが可能で		のはなく,15分程度**で中央制御室換気系を系統隔離運転	
ある。		モードに切り替えることが可能である。	
	(右風時プルームボ)		
	$C_{xyz} = \frac{Q}{2 \sigma_y \sigma_z u} \exp\left(-\frac{y^2}{2 \sigma_y^2}\right) \cdot \left(\exp\left\{-\frac{(z \cdot H_c)^2}{2 \sigma_z^2}\right\} + \exp\left\{-\frac{(z + H_c)^2}{2 \sigma_z^2}\right\}\right)$	(1)	
	(Briggsの排煙上昇過程式)		
	$H_{e} = 1.6 F^{1/3} \cdot x^{2/3} \cdot u^{-1}$	(2)	
	C _{xyz} :濃度 (ppm)		
	Q : 有毒ガス発生量 (Nm ³ ∕s) H. : 排煙上昇高度 (m)		
	$\sigma_y$ , $\sigma_z$ : 拡散パラメータ (m)		
	u :風速(m/s) F ・挑執フラックス(m ⁴ /s ³ )=0.037Q		
	$Q_{\rm H}$ : 排気熱量 (kcal/s) = $\dot{m}A\Delta H_{\rm c, eff}$		
	$\Delta H_{c, eff}$ : 燃焼時発熱量 (kcal/kg)		
	m :質量低下速度(kg/m ² /s)		
	x : 発生源と給気口との離隔距離 (m)		
	<ul> <li>z : 発生源と給気口との鉛直万向距離(m)</li> <li>v : 排気プルーム軸からの距離(m)</li> </ul>		
	由央制御室		
	$\downarrow$		
	風速 有毒ガスの軌跡 原子炉建屋		
	第3.4-3 図 中央制御室換気系給気口における		
	有毒ガス濃度評価手法の概要		
	火災によって発生する有毒ガスの中央制御室換	<u> 気給気</u>	
	口位置での濃度を求め,判断基準であるIDLH	**1と比較	
	評価を実施する。		
	※1 30分の曝露によって生命及び健康に対する	即時の危	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	険な影響を与える濃度限界値であり, 脱出を妨げる目や呼		
	吸器への刺激の予防も考慮されている。		
	評価手順は以下の通り。		
	(a) 火災源から発生する有毒ガス発生量Q (Nm ³ /s) を算		
	出する。		
	(b) 式(2)を用いて,火災源の排煙上昇高度He が給気口中		
	央の地表面からの高さと等しくなる風速uを求める。		
	(c) 式(1)を用いて,給気口における有毒ガス濃度を求め		
	<u>る。なお, z=高低差, y=0とする。</u>		
	なお、Briggsの排煙上昇過程式の適用条件**2は、以下の		
	とおりであり、火災源毎に下記条件を満たすことを確認し		
	た。このため、Briggsの排煙上昇適程式を用いて、排煙高		
	さか結気口高さと同しになる風速を水めることは妥当であ		
	2 G. A. Briggs, "Plume Rise", U. S. Atomic Energy		
	Commission, 1969		
	x ≙x '		
	$x'=2.16 F^{2/5} \cdot \Lambda h^{2/5}$		
	$x$ · 鄭原見 5 節 (m) 下 · 批教 フラックフ (m4 / $a^3$ )		
	$\Delta$		
	$H_{1}(L_{1}(L_{2})) 2日(L_{2}) 21(L_{2}) 21$		
	b. 評価データ		
	(a) 評価対象となる給気口及び火災源との距離		
	評価対象となる給気ロと火災源の水平方向の位置関係		
	を第3.4-4 図に、離隔距離及び鉛直方向距離を第3.4-3		
	表に、高さ方向の位置関係を第 3.4-5 図に示す。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第3.4-3表 給気口と火災源との距離		
	中央制御室擁気系中央制御室擁気系		
	評価対象 給気口 B2-18A 給気口 B2-19A		
	机空機		
	(F-15)		
	第3.4-4図 評価対象となる給気口と火災源との位置関係		
	第3.4-5 図 評価対象となる給気口と火災源との位置関係		
	(高さ方向)		
	加空機火火に灯する離隔距離は、最も保守的な評価と		
	→ 2 □ 田邸 磁入は小単磁 査地 □		
	*************************************		
	火災源からの距離が近く,高さが高い方が保守的となる		
	ため, B2-19A を対象に評価を実施した。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	(b) 火災発生時の有毒ガス発生量		
	第3.4-4表に燃料の燃焼特性を示す。		
	燃料 1kg 当たりの有毒ガスの発生量は,各文献に掲載		
	されている単位重量当たりのガス発生量より単位換算す		
	ることにより求められる。ただし、単位重量当たりのガ		
	ス発生量は幅をもった値ではないため、保守性の観点か		
	ら航空機燃料のうち、JP-4より保守的となるJET		
	<u>A-1の値を設定する。</u>		
	第3.4-4表 燃焼特性に関するデータ		
	油 種 JP-4 JET A-1		
	CO ₂ 3.053         3.237           有毒ガス発生量 ^幸 CO         0.030         0.030		
	(kg/kg) SO ₂ 0.001 0.0011		
	INO 2 0.005 0.000		
	※ 有毒ガスの発生量は以下の文献より算出した。 CO2:環境省,温室効果ガス排出量算定・報告マニュアル		
	CO ₂ : Ross J.L., Ferek R.J. and Hobbs P.V., "Particle and Gas Emissions from an In Situ Burn of Crude Oil on the		
	Ocean", J. Air & Water Manage. Assoc., 46, pp. 251-259 (1996)		
	S O ₂ : U.S.EPA AP-42, " Compilation of Air Pollutant Emission Factors Volume I:Stationary Point and Area Sources"		
	NO2:SO2と同		
	(c) 評価対象及び火災源に関するデータ		
	第3.4-5表に火災源に関するデータ,第3.4-6表に有		
	<u>毒ガス発生量に関するデータを示す。</u>		
	第3.4-5表 火災源に関するデータ		
	想定     加種     燃焼面積     質量低下速度     発熱量     パー     パー		
	航空機 (Part a) JP-4 44.6 0.051 10.300 2.27 23.300 862		
	(r-15)		
	<b>第34-6表 有毒ガス発生量に関すスデータ</b>		
	航空機 2 741 0 055 0 001 0 007		
	$(F-15) \qquad 3.741 \qquad 0.055 \qquad 0.001 \qquad 0.007$		
			II

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>(d) 拡散パラメータ</u>		
	式(2)より,各火災による排煙上昇高度が敷地からの給		
	気口高さと等しくなるものとして風速を算出した。算出		
	結果を第3.4-7表に示す。		
	<u>第3.4-7表 算出結果</u>		
	評価対象 風速 (m/s)		
	中央制御室 給気口 航空機(F-15) 5.9		
	B 2 - 1 9 A		
	また,算出した風速と第3.4-8表に示す大気安定度分		
	類表より、保守性を考慮して大気拡散の弱い安定度Dの		
	式を採用し, 第3.4-9表を用いて拡散パラメータを算出		
	L. / Ean		
	算出した拡散パラメータは風による拡散しか考慮され		
	ていないため、想定する火災の熱気による鉛直方向への		
	浮力拡散を考慮することとし,第3.4-10表に示すガウス		
	プルームモデルにおける大気拡散パラメータよりΔHe		
	<u>2/10を加えた値を採用した。</u>		
	第3.4-8表 大気安定度分類表**		
	日射量(T) 放射収支量(Q)		
	$\mathbb{R}$ $\mathbb{K}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$U < 2$ AA-BBDDGG $2 \le U < 3$ A-BBCDDEF		
	$3 \leq U < 4$ B B-C C D D D E		
	$4 \leq U < 6$ C $C - D$ DDDD $6 \leq U$ CDDDDD		
	※ 発電用原子炉施設の安全解析に関する気象指針		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)				島根原子力発電所 2号炉	備考
	第 3.4-9 表	拡散パラメ	ータ Pasq	uill-Gifford 図の近似関係 [※]		
					^	
			$\sigma_{y}(x) = \gamma_{y} \cdot x$	X ^{αy}		
	安定度	σу	γy	風下距離(x)		
		0.901	0.426	0~1, 000		
	А	0.851	0.602	1, 000~		
	в	0.914	0.282	0~1, 000		
		0.865	0.396	1, 000~		
	С	0.924	0. 1772			
		0.885	0.232	0~1 000		
	D	0.889	0. 1467	1, 000~		
		0.921	0.0864	0~1, 000		
	E	0.897	0.1019	1, 000~		
	E	0.929	0.0554	0~1, 000		
	F	0.889	0.0733	1, 000~		
	G	0.921	0.0380	0~1, 000		
		0.896	0.0452	1, 000~		
			$\sigma(\mathbf{x}) = \mathbf{y}$	Y ^α Z		
			$O_{z}(x) - \gamma_{z}$			
	安定度	σy	γ y	風下距離(x)		
		1.122	0.0800	0~10, 300		
	А	1.514	0.00855	300~10, 500		
		2.109	0.000212	500~10, 000		
	В	0.964	0.1272	500-10, 500		
	C	1.094	0. 1069	0~10,000		
	C	0. 918	0.1008	0 - 10, 000		
		0.826	0.1046	0~11, 000		
	D	0.632	0.400	$1, 000 \sim 10, 000$		
		0.555	0.811	$10, 000 \sim 10, 000$		
		0.788	0.0928	1 0000-10 000		
	E	0.565	0. 433			
		0. 415	0.0621	$0 \sim 11, 000$		
	F	0. 526	0.370	1, 000~10, 000		
		0.323	2.41	10, 000~10, 000		
		0.794	0.0373	0~11, 000		
	G	0.637	0.1105	1, 000~12, 000		
		0.431	0.529	$2, 000 \sim 10, 000$		
	※ 窒素酸	0.222 化物総量規制 [、]	 マニュアル	10, 000~10, 000		
			-			
	l					,

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	第3.4-10表 拡散パラメータ σ z*		
	TABLE 2. SUMMARY OF RECOMMENDATIONS FOR INTERIM CHANGES IN THE WORKBOOK VALUES OF THE DISPERSION PARAMETERS $\sigma_y$ AND $\sigma_z$		
	For crosswind spread $\sigma_y$ , irrespective of the terrain roughness, release height and sampling duration up to up to about 1 hour, use the formula* $\sigma_y/x = \sigma_0^* f(x), \sigma_0^*$ in radians with $\sigma_0^*$ the best available estimate of the standard deviation of the wind direction fluctuation for the		
	sampling time of interest and for the neight at which u is specified, and with values of $f(x)$ as follows: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
	<ul> <li>For vertical spread σ[*], for any sampling time for a surface release, and say &gt;10 min for an elevated release (see Section 2), use the existing Workbook curves with adjustment or constraint as follows:         <ul> <li>(a) For terrain with z₀ different from 3 cm apply factors based on F. B. Smith's nonogram (Ref. 5 or Ref. 6, p 377)</li> <li>(b) To allow for 'urban heating' adopt a stability category one-half category more unstable than that prescribed in the normal way in the Workbook</li> <li>(c) For evaluating the concentration at the surface from a surface release, consider estimates of the effective mixed behavior.</li> <li>(c) For evaluating the concentration at the surface from a surface release, consider estimates of the effective mixed behavior.</li> <li>(c) For evaluating the concentration in Eq. (4).</li> <li>(d) For buoyant plumes, increase the σ²₂ obtained from the curves by adding dH²/10 where dH is the estimated plume rise.</li> <li>*, f see Notes on Table 2'</li> <li>X Atmospheric dispersion parameters in gaussian plume modeling Part II</li> </ul> </li> </ul>		
	(e) 評価結果 各火災で発生する中央制御室換気系給気口での有毒ガ ス濃度を第 3.4-11 表に示す。		
	<u>第3.4-11表</u> 評価結果		
	評価対象     想定発火源     風速 (m/s)     拡散パラメータ(m)       中央制御室 換気系給気口 B 2 - 1 9 A     航空機火災 (F-1 5)     5.9     1.956     1.344		
	評価対象     想定発火源     ガス濃度 (ppm)       中央制御室 換気系給気口 B 2 - 1 9 A     航空機火災 (F - 1 5)     7,883     116     3     15       判断基準: I D L H*     40,000     1,200     100     20       ※ 30 分曝露によって生命及び健康に対する即時の危険な影響を与える濃度限界値		
以上より,外部火災により有毒ガスが発生した場合に	以上の結果から、全ての評価に対しIDLH以下であり、	以上より、外部火災により有毒ガスが発生した場合にお	
おいて、中央制御室の居住性が損なわれることはないと	中央制御室の居住性が損なわれることはないと評価でき	いて、中央制御室の居住性が損なわれることはないと評価	
評価する。	June -	する。	
	また,中央制御室に有毒ガスが流入してくる場合は,中 央制御室の外気取り入れを遮断し,再循環させる非常時モ		

- Propagation 2 - Automation 2 - Au	柏崎刈羽原	原子力発電所	6/7号炉	∃ (2017.12	2.20版)	東海第二発電所(2018.9.12版)		島根原	子力発電所	2 号炉		備考
Building State Stat						ードで運転を行うことが可能であり、この非常時モードへ	<u> </u>					
<ul> <li>A : UT や : UT や : A UT や : A UT * A</li></ul>						の切換は火災発生後10分程度*で実施可能であることを実						
A: 10 校立に開する一口の時間を実用したところす ため空に使った。         A: 10 校正 大学校報告 へため座すの広かす 28 - 12 ジェース 本報会 大火放在 (な)・磁空の広かす 28 - 12 ジェース 小切すび 作(1)         A: 10 女 大学校優先の人ににおける音波スを建す 28 - 12 ジェーム 小切すび 作(1)         A: 10 女 大学校優先の人にはおける音波スを建す 28 - 12 ジェーム 小切すび 作(1)         A: 10 女 大学校優先の人にはおける音波スを建す 10 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 2						測により確認している						
Augusta Augus	**	・切恭々に要	する一連の問	き間を実測し	たところ 15		<b>※</b> · ∄	町ちまえに要	すろ一連の時	間を実測した	- ところ 15 分	
Log (1) 上版 (1) L (1)	公理日	・ 刃目 たに 女					···	程度であった	·			
Amount Register TV, Append DV, Ap	力性の			~中 ()ぶい)唐/	なのホコンチ	ツール和双生 四相功和 山巛双生 (ナキギマの法1)	,		-• • #1 . TH #1 <b>7</b> #7		(いい)、唐林の	
金融-山空雪水-「ド・山等大弦相」     金融-山空雪水-「「山」、     金融-山空雪水-「「山」、     第二、日空     第二、日	公主	验允生→現場	唯認→火火分	全生(はい理論	寺の流入)を	※ 火報発生→現場確認→火火発生(有毒ガスの流入)	-	火火感知希知	₩→現場確認	&→火火免生	(はい煙等の	
x x x x x x x x x x x x x x x x x x x	確認	忍→非常時モ	ード へ切替	え操作		を確認→非常時モードへ切替操作	ŕ	流入)を確認	◎→系統隔離這	重転モードへ(	の切り替え操	
第3.3.2.2.11 素: 中央報知電外気気入りになける作者は入意構成         (本)       (本)       (本)       (本)       (本)       (								作				
第3.8.201 年、生株開空外気度入口にないたる在第30条度                 (新生業)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)             (11::200)												
「小菜菜店 (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1) <th< td=""><td>第 3.3.2-11</td><td>表 中央制御</td><td>『室外気取入</td><td>ロにおける有</td><td>「毒ガス濃度</td><td></td><td>第3.3.2-11</td><td>表 中央制徒</td><td>卸室外気取入口</td><td>コにおける有</td><td>毒ガス濃度</td><td></td></th<>	第 3.3.2-11	表 中央制御	『室外気取入	ロにおける有	「毒ガス濃度		第3.3.2-11	表 中央制徒	卸室外気取入口	コにおける有	毒ガス濃度	
「1000000000000000000000000000000000000	火災発生場所	CO 濃度 [ppm]	CO ₂ 濃度 [ppm]	SO ₂ 濃度 [ppm]	NO ₂ 濃度 [ppm]		火災発生場所	CO 濃度[ppm]	CO ₂ 濃度[ppm]	SO ₂ 濃度[ppm]	NO ₂ 濃度[ppm]	
(新たシマカ) 200 0.022 7.3 3.4 1     (新たシロロシン 0.020 44 23     (新たシロシン 0.020 44 23     (新たシロシン 1.2     (新たシロン 1.2     (新たシロン 1.2     (新たシロン 1.2     (新たシロン 1.2     (新たシロン 1.2     (新たシロン 1		(IDLH : 1,200)	(IDLH: 40,000)	(IDLH : 100)	(IDLH: 20)		入火光主物所	(IDLH:1,200)	(IDLH: 40, 000)	(IDLH:100)	(IDLH:20)	
法定意志         102         00.00         102         00.00         102         2.5           第日本の新聞         20         0.6         06.2         10.2         0.0         1.0         2.3           人力気が増         0         1.12         0.4         2.3         0.00         1.3         2.10           人力気が増         0         1.12         0.4         2.3         0.00         1.3         2.3           人力気が増         0.5         0.4         0.2         1.1         0.4         2.3         0.5         0.4         0.2         1.1           人力気 増         2.5         0.4         0.2         1.1         0.4         2.3         0.5         0.4         0.2         0.1         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         <	軽油タンク	166	9,852	7.3	3.4		主发上器	34	2,002	1.6	0.7	
i 載 4 1 × 7 mg	主 変 庄 奋 原 子 炉 冷 却 材 再	1092	65, 049	48	23		日前机空機	40 52	3, 100	4.0	2.3	
国産業業業         0.00         4.00         4.02         1.12           人力変定率         1172         0.4         2.3           大き兵隊振空線         100         1172         0.4         2.3           大き兵隊振空線         105         27:0         0.7         4.2           大き兵隊振空線         105         27:0         0.7         4.2           大き兵隊振空         206         6:30         0.2         1.0           直空環と参減少         355         7,674         5.4         3.4	循環ポンプ可変	509	25 626	96.9	10.0		平/11/及	02	0,000	1.0	2.1	
人力変比較         112         0.4         2.0           小型に酸塩2歳         25         071         0.2         1.1           小型に酸塩2%         205         070         0.2         1.0           防空度とも第0         0.2         1.0         1.0         1.0           防空度とも第0         0.2         1.0         1.0         1.0         1.0           防空度とも第0         0.2         1.0         1.0         1.0         1.0         1.0           ための意気         203         7.674         1.4         3.4         3.4         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0 </td <td>周波数電源装置</td> <td>598</td> <td>35, 636</td> <td>20.2</td> <td>12.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	周波数電源装置	598	35, 636	20.2	12.2							
<ul> <li>□ <u>A 247(20)(204) 100 1072 0.1 4.3</u></li> <li>□ <u>A 247 0020 204 105 71 0.2 1.1</u></li> <li>□ <u>X 252(20)(204 0.7 4.2 1)</u></li> <li><u>X 252(200 0.2 1)</u></li> <li><u>X 452(200 0.2 1)</u><!--</td--><td>入力変圧器</td><td>400</td><td>1479</td><td>0.4</td><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li></ul>	入力変圧器	400	1479	0.4	0.0							
大空原制空風         915         279         0.7         4.2           小空原制空風         208         620         0.2         1.0           法2度を指命         208         5.4         3.4           シンクの意応         3.05         7.074         5.4         3.4           (1) 素林火災時における防火帯外に位置する放射性物質の保管施設*がある (第3.4-6 図参照)。森林火災時におけるこれら保管施設 からの東海第二発電所への影響         ・設備の相選           (1) 素林火災時における医が大帯がた設時におけるこれら保管施設 たか、         5.1         1.0           (1) 素林火災時には当社が保管加設た町への影響         1.0         1.0           (方3.4-6 図参照)の、森林火災時には当社が管理する施設として、 ロレーザー濃縮技術研究組合本施設諸紫紫原の回体廃棄物 貯房庫(当社が保管業務会受証中、以下「国体深葉物貯房 庫(レーザー)」という。)及び直接低レベル放射性標案         1.0           10. 放射性物質の保管状態と発電所への影響         1.0         1.0           11.0         2.0         2.0         2.0           12.1         2.0         2.0         2.0         2.0           12.1         2.0         2.0         2.0         2.0           12.1         2.0         2.0         2.0         2.0         2.0           13.1         2.0         2.0         2.0         2.0         2.0         2.0	人型民间航空機 小型民間航空機	490 225	674	0.4	2.3							
小空場単枚機         206         620         0.2         1.0           航空場と整慮         325         7,674         5.4         3.4           (4) 森林火災時における防火帯外に位置する放射性物質保管施設         ・設備の相違         ・設備の相違           2000歳         1.0         1.0         1.0           (4) 森林火災時における防火帯外に位置する放射性物質の保管施設*があろ         (東海第二)         1.0           2000歳         1.0         1.0         1.0           1.0         1.0         1.0         1.0           1.0         1.0         1.0         1.0           1.0         1.0         1.0         1.0         1.0           1.0         1.0         1.0         1.0         1.0         1.0           1.0         1.0         1.0         1.0         1.0         1.0         1.0           1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0	大型軍用航空機	915	2749	0.7	4.2							
軟空機と軽曲ダ ンクの重整         325         7,674         5.4         3.4           (4) 森林火災時における防火帯外に位置する放射性物質保管施 設の東海第二発電所への影響         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>小型軍用航空機</td><td>206</td><td>620</td><td>0.2</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	小型軍用航空機	206	620	0.2	1.0							
(4) 森林火災時における防火帯外に位置する放射性物質保管施       ・設備の相違 	航空機と軽油タンクの重畳	325	7,674	5.4	3.4							
(4) 森林大災時における防火帯外に位置する放射性物質保管施 認の東海第二発電所への影響       ・設備の相違         200東海第二発電所への影響       【東海第二】         a. 概要       島根 2 号炉は、防火帯         防火帯外の防火帯近傍に放射性物質の保管施設*がある       外に放射性物質保管施         (第3.4-6 図参照)、森林大災時におけるこれら保管施設       外に放射性物質保管施         からの東海第二発電所への影響を評価した。          b. 放射性物質の保管状態と発電所への影響       酸はない         防火帯外の防火帯近傍には当社が管理する施設として、 但レーザー濃縮技術研究組合東海管理参照の固体廃棄物          貯蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵          増設事業所の廃棄物理設施設(事業許可申請中,以下「L       3         3事業可したいう。) がある、その他の施設としては、日	V / 0/ <u>E</u>											
設の東海第二発電所への影響       【東海第二】         a. 概要       協根 2 号炉は,防火帯         防火帯外の防火帯近傍に放射性物質の保管施設*がある       (第3.4-6 図参照)。森林火災時におけるこれら保管施設         からの東海第二発電所への影響を評価した。       外に放射性物質保管施         b. 放射性物質の保管状態と発電所への影響       政はない         防火帯外の防火帯近傍には当社が管理する施設として、       旧レーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物         貯蔵庫(当社が保管業務を受託中。以下「国体廃棄物貯蔵       座(レーザー)」という。)及び東海低レベル放射性廃棄         物理設事業所の廃棄物理設施設(事業許可申請中。以下「L       3事業可止という。) がある。その他の施設としては、日						(4) 森林火災時における防火帯外に位置する放射性物質保管施						・設備の相違
a. 概要       島根 2 号炉は, 防火帯         防火帯外の防火帯近傍に放射性物質の保管施設*がある       (第3.4-6 図参照)。森林火災時におけるこれら保管施設         からの東海第二発電所への影響を評価した。       みに放射性物質保管施         b. 放射性物質の保管状態と発電所への影響       設はない         防火帯外の防火帯近傍には当社が管理する施設として、          ロレーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物       時蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵         庫(レーザー)」という。)及び東海氏レベル放射性廃棄       物理設事業所の廃棄物理設施設(事業許可申請中。以下「L         3事業両しという。)がある。その他の施設としては、目						設の東海第二発電所への影響						【東海第二】
防火帯外の防火帯近傍に放射性物質の保管施設*がある (第3.4-6 図参照)。森林火災時におけるこれら保管施設 からの東海第二発電所への影響を評価した。         外に放射性物質保管施 設はない           b.放射性物質の保管状態と発電所への影響         設はない           防火帯外の防火帯近傍には当社が管理する施設として、 旧レーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物         時蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵           庫(レーザー)」という。)及び東海低レベル放射性廃棄 物理設事業所の廃棄物埋設施設(事業許可申請中。以下「L 3事業町」という。)がある。その他の施設としては、日         日						a. 概要						島根2号炉は、防火帯
(第3.4-6 図参照)。森林火災時におけるこれら保管施設       設はない         からの東海第二発電所への影響を評価した。          b. 放射性物質の保管状態と発電所への影響          防火帯外の防火帯近傍には当社が管理する施設として、          旧レーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物          貯蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵          庫(レーザー)」という。)及び東海低レベル放射性廃棄         物理設事業所の廃棄物埋設施設(事業許可申請中。以下「L         3事業所」という。)がある。その他の施設としては、目												外に放射性物質保管施
からの東海第二発電所への影響を評価した。						(第3.4-6 図参照) 。森林火災時におけるこれら保管施設						設はない
からの東海第二発電所への影響         b.放射性物質の保管状態と発電所への影響         防火帯外の防火帯近傍には当社が管理する施設として、         旧レーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物         貯蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵         庫(レーザー)」という。)及び東海低レベル放射性廃棄         物埋設事業所の廃棄物埋設施設(事業許可申請中。以下「L         3事業町」という。)がある。その他の施設としては、用												
b. 放射性物質の保管状態と発電所への影響         防火帯外の防火帯近傍には当社が管理する施設として,         旧レーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物         貯蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵         庫(レーザー)」という。)及び東海低レベル放射性廃棄         物埋設事業所の廃棄物埋設施設(事業許可申請中。以下「L         3事業所」という。)がある。その他の施設としては、目						が50米(神界二光电)が50影音を計画した。						
び          び          び          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          に          にしょ           にしょ           にしょ           にしょ           にしょ           にしょ         にしょ           にしょ         にしょ         にしょ           にしょ         にしょ           にしょ         にしょ           にしょ           にしょ           にしょ           にしょ           にしょ           にしょ         にしょ           にしょ						h 放射性物質の保管状能と発電所への影響						
旧レーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物       貯蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵       庫(レーザー)」という。)及び東海低レベル放射性廃棄       物埋設事業所の廃棄物埋設施設(事業許可申請中。以下「L       3事業所」という。)がある。その他の施設としては、日						<u>     広火帯外の防火帯近傍には当社が管理する施設として.</u>						
貯蔵庫(当社が保管業務を受託中。以下「固体廃棄物貯蔵       庫(レーザー)」という。)及び東海低レベル放射性廃棄       物埋設事業所の廃棄物埋設施設(事業許可申請中。以下「L       3事業所」という。)がある。その他の施設としては、日						旧レーザー濃縮技術研究組合東海濃縮実験所の固体廃棄物						
庫 (レーザー)」という。)及び東海低レベル放射性廃棄       物埋設事業所の廃棄物埋設施設(事業許可申請中。以下「L       3事業所」という。)がある。その他の施設としては、日						<u> </u>						
物理設事業所の廃棄物埋設施設(事業許可申請中。以下「L 3 事業所」という。)がある。その他の施設としては、日						庫(レーザー)」という。)及び東海低レベル放射性廃棄						
3.事業所」という。)があろ、その他の施設としては一日												
						3事業所」という。)がある。その他の施設としては、日						
本原子力研究開発機構の使用済燃料貯蔵施設(北地区),						本原子力研究開発機構の使用済燃料貯蔵施設(北地区),						
第2保管廃棄施設及び廃棄物埋設施設がある。森林火災時						第2保管廃棄施設及び廃棄物埋設施設がある。森林火災時						

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
	<u>において,以下のとおり,これら施設が影響を受け,保管</u>		
	物質等が流出する可能性は低い。		
	①固体廃棄物貯蔵庫(レーザー)は、コンクリート構造であ		
	り延焼しにくく、保管物質である未照射の劣化ウラン、天		
	然ウラン及び濃縮ウランはドラム管で保管されているた		
	め,森林火災の影響を受け保管物質が流出する可能性は低		
	②L3事業所については,放射能レベルの極めて低いL3廃		
	<u>棄物が 2m 以上の覆土により埋設されるため,森林火災の</u>		
	影響を受け埋設物が流出することはない。		
	③使用済燃料貯蔵施設(北地区)については, コンクリート		
	構造であり延焼しにくく,保管物質である天然ウラン燃料		
	は鉄箱で地下ピット保管されているため, 森林火災の影響		
	を受け保管物質が流出する可能性は低い。		
	④第2保管廃棄施設(廃棄物保管棟I,廃棄物保管棟I,保		
	<u>管廃棄施設NL)については, コンクリート構造であり延</u>		
	焼しにくく, 保管物質である低レベル放射性廃棄物はドラ		
	ム管で保管されているため,森林火災の影響を受け保管物		
	質が流出する可能性は低い。		
	⑤廃棄物埋設施設については,低レベル放射性廃棄物が2m		
	以上の覆土により埋設されるため, 森林火災の影響を受け		
	<u>埋設物が流出することはない。</u>		
	<u>上記のとおり、施設の構造及び状態を踏まえると、②及</u>		
	び⑤の埋設物は流出することはなく、①、③及び④の保管		
	物質が流出する可能性は低いが、仮に流出したとしても、		
	<u>中央制御室の外気取り入れを遮断し閉回路循環運転を行う</u>		
	<u>ことで、中央制御室の居住性を確保可能である。また、予</u>		
	防散水対応については、線量を確認しつつ実施する。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.12版)	島根原子力発電所 2号炉	備考
(2) 炭酸ガス濃度	(1) 二酸化炭素濃度評価	
外気遮断時の緊急時対策所内の炭酸ガス濃度について評	西 以下のとおり二酸化炭素濃度について評価する。	
L. TEan		
a. 評価条件	a. 評価条件	
・在室人員 100人(緊急時対策本部に収容する最大の対策	<u>・</u> 在室人員 <u>40 人^{*1}</u>	・条件の相違
要員数)	・緊急時対策所バウンダリ内体積 <u>2,150[m³]</u>	【東海第二】
<ul> <li>加圧エリア内空気量 2,900m³</li> </ul>	・外気流入はないものとして評価する。	設備の相違による影
・初期炭酸ガス濃度 0.03%	・初期炭酸ガス濃度 0.03[%]	響評価対象施設,入力デ
・評価結果が保守的になるよう空気流入は無いものとして	(空気調和・衛生工学便覧)	ータの相違
評価する。	・許容炭酸ガス濃度 1.0[%]	
・1人あたりの炭酸ガス吐出量は,事故時の運転操作を想	(鉱山保安法施行規則)	
定し,中等作業での吐出量 ^{※1} を適用して, <u>0.046m³/h</u>	・呼吸による排出する二酸化炭素濃度 <u>0.030[m³/h/人]</u>	
とする。	(空気調和・衛生工学便覧の軽作業の作業程度の吐出	
・許容炭酸ガス濃度 1.0%未満*2	し量)	
※1 空気調和・衛生工学便覧 第14版 3 空気調和	・評価期間は、火災の燃料継続時間を考慮し2時間※2と	
設備編	ta	
※2 鉱山保安法施行規則	※1:初動体制時に緊急時対策所にて活動する要員	
	38人に余裕を持って40人とする。	
	※2:外部火災影響評価にて緊急時対策所近傍で長	
	時間の影響をもたらす、航空機火災を考慮し、	
	火災の継続時間を 2 時間として評価を実施す	
	る。	
b . 評価結果	b. 評価結果	
	<ul> <li>・外気遮断期間 t[hour]での二酸化炭素濃度 C[%]</li> </ul>	
	$C = (M \times N \times t) / V \times 100 + C_{o}$	
	M·呼吸による排出する ^一 酸化炭素濃度	
	$0.030 [m^3/h/\lambda]$	
評価条件から求めた炭酸ガス濃度は、第35-2表。	第Ⅰ N·在室人数 40「人」	
3.5-3 図のとおりであり、外気取入を遮断しても約 6.1	* V:緊急時対策所バウンダリ体積 2.150[m ³ ]	
間まで緊急時対策所内に滞在可能である。	Co: 初期炭酸ガス濃度 0.03[%]	
緊急時対策所周囲で発生する火災として想定される航		
機墜落火災のうち. 最も長い燃焼継続時間であるB74	▼   7   上記評価条件から求めた二酸化炭素濃度は、以下のとお	
-400の約1.9 時間に対して余裕があり、運転員の作	約であり、2時間外気取入を遮断したままでも、対策要員	
環境に影響を及ぼすことはない。	の作業環境に影響を与えない。	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)		東海第二発	電所(2018.	9.12版)		Ē	備考			
	第	3.5-2 表 夕	く気遮断時の		ŧ	第 3. 3. 4-				
						時間		2時間	4時間	
	時間	1時間	2 時間	4 時間	6.1 時間	二酸化炭素濃度[%]	0.09	0.15	0.26	
	炭酸ガス濃度	0.19%	0.35%	0.67%	1.00%					
	1.2 1.0 - % 0.8 一 一 一 一 一 一 一 一 一 一 一 一 一	0 2 循 室人員数にX 酸ガス)	4 環運転継続時間 <u> する居住性</u>		8 ぎさない時間					
	(1) 酸素濃度		1 1 fata			(2) 酸素濃度評価	re (; ).tts ;			
	外気遮断	時の緊急時	対策所内の曹	愛素濃度につ	いて評価し	以下のとおり	<b>繁素</b> 濃度につ	いて評価する。		
	た。	14-				亚江友ル				
	a. 評価余	:1午 - 号 100 人 (	取卢吐马华力	かって広会子	マ具十の対学	a. 評価条件	40			、冬仲の扫法
	<ul> <li>· 仕至人</li> <li>· 田 三米</li> </ul>	.貝 <u>100 人(</u> 分	<u> </u>	いに収谷す	る軍人の対束	• 仕至人貝	<u>40 八</u> 筆正バウンガ	〕11内休德 9 15(	٥.[3]	・余件の相遅
	<u>安貝笏</u> - 加压工	<u>\)</u>   ア内穴与				• 衆忌時刻	中川ハワンク	リ <b>戸</b> (本) して証価する		【界供弗二】 シーム シート
	• 加工工	シノ 円 至风 - 表濃	里 <u>2,900回。</u> 95%			• 21、秋///八/	ょないものと 濃度 90 QE「	して計画する。 [%]		収開の相连による影響証価対象施設 スカデ
	· 亚価結	- 不仮反 20.3	パッパク にかスト うグ	空気流入け無	いものとして	(空气調:	_{辰反} 20.95[ 和・衛生工学	/ण」 (便暫)		一 年 町 回 八 3 水 旭 取 , 八 月 7 ータの相違
	評価す	-3.				· 酸素消費	□□ □□ ⊥ ⊥ 丁 量 1.092[I /	min]		
	・1 人あ	。。 たりの呼吸	量は、事故時	の運転操作	を想定し、歩	(空気調	■ 1.002[L/ 和・衛生工学	(何覧)		
	行時の	····································	·適用して、2	24L/minとす	-3	<ul> <li>・許容酸素</li> </ul>	濃度 19[%]			
	・1 人あ	たりの酸素	消費量は,成	人吸気酸素	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(鉱山保	安法施行規則	)		
	(20. 9	5%),成人	呼気酸素濃度	定 ^{※2} (16.40)	%) から	<ul> <li>·評価期間</li> </ul>	は、火災の燃	焼継続時間を考慮	<u> </u>	
	1.09	2L/minとす	-3.			3				
	・許容酸	素濃度 19	.0%以上*3							
	※1 空	気調和・衛	生工学便覧	第14版 3	空気調和設備					
	編	I								
	※2 呼	気には肺胞	から蒸発した	と水蒸気が加	わっており,					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)						Ĕ	島根原子力発電	所 2号炉		備考
	ņ	吸気と等容積	責ではないた	め,酸素消費	費量を計算する	3					
	l	こは、乾燥空	空気換算(%	)を使用す	る。						
	※3 鉱山保安法施行規則										
	b. 評価結果					b.評価結果					
							・緊急時対	策所の初期酸素	<u>素量</u>		
			ک میل میلی کار میلی میلی م	a tota			450.4	$m^3$ ]=2150[ $m^3$ ]×	20.95[%]		
	<u> 詳価条</u>	件から求め	た酸素濃度(	ま, 第3.5-1	1 表,第 3.5-	2	•2時間後(	20酸素濃度 20	). 72[%] ( (	F 2 /= 7	
	図のとお	りであり,	外気取人を	<u> </u>	<u> 78.6 時間まで</u>	£	=(450.	4[m ³ ]-1.092[L/	/min/人」×10 ⁻³		
	<u> </u>	東所内に流	住り肥くめる		日ウチルフトロ	<del>\</del>	40[]	<u>\]×60[m1n/h]</u>	×2[h])/2150[	$\underline{m}^{\circ} ] \times 100$	
	<u>業</u> 温时	対東川向囲	「一般」の	本州会は日本		료 7	上扫示在冬	仲ふく士みたぁ	※主演 中は い	エのしわれる	÷
	<u> </u>	<u> </u>	取りたい際	<u> 加松旅时間</u> 全 松 が ち り	(2020)(4)	[] 鉴	上記計皿衆 り 9 時間の	〒11-12水のた町 気取入を海豚1	をままでも	対策両目の作	<u>業</u>
		響を及ぼす	テレけない			12	<u> </u>	点えたい		MRXX BUILT	杰
				~~							
	第 3. 5-1 表 外気遮断時の酸素濃度						第 3.4	3.4-2表 酸素	濃度の時間変の	Ľ	
	時間	2 時間	4 時間	6 時間	8.6 時間		時間	1時間	2 時間	4 時間	
	酸素濃度	20.4%	20.0%	19.5%	19.0%		酸素濃度[%]	20.82	20.70	20.46	
	23.0 - 22.0 - 22.0 - 20.0 - 戦19.0 - 戦18.0 - 17.0 - 16.0 - (0) 第3.5-2 図 在	) 2 循 近 空 人員数に	4 4 位 環 運転継続時 に 対 す る 居住 (酸素)		10 <u>しまさない時間</u>	E					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版) 島根原子力発電所 2号炉	備考
別紙 8-1	別紙 8-1	
熱気流による影響評価について	熱気流による影響評価について	
<u>軽油タンク火災</u> や航空機墜落による火災が発生した場合,熱気	<u>危険物タンク火災</u> や航空機墜落による火災が発生した場合,熱	・条件の相違
流による発電用原子炉施設への影響が懸念されるため、その影響	気流による発電用原子炉施設への影響が懸念されるため、その影	【柏崎 6/7】
について評価するものである。	響について評価するものである。	設備の相違による影
		響評価対象施設,入力デ
1. 熱気流の発生源	1. 熱気流の発生源	ータの相違
発電用原子炉施設から離れた位置における火災では、熱	発電用原子炉施設から離れた位置における火災では、熱気流	
気流は上昇・拡散することから発電用原子炉施設に影響を	は上昇・拡散することから発電用原子炉施設に影響を及ぼすこ	
およぼすことはない。このため、発電用原子炉施設近傍で	とはない。このため、発電用原子炉施設近傍で発生する航空機	
発生する <u>軽油タンク火災及び</u> 航空機墜落による火災を熱	墜落による火災を熱気流の発生源として想定する。	
気流の発生源として想定する。		
2. 評価対象	2. 評価対象	
非常用ディーゼル発電機は、外部電源喪失が発生した場	非常用ディーゼル発電機は、外部電源喪失が発生した場合に	
合において安全機能を有する設備に電源を供給する設備	おいて安全機能を有する設備に電源を供給する設備であり、外	
であり、外気を内部に取り込む設備でもあることから評価	気を内部に取り込む設備でもあることから評価対象とする。な	
対象とする。なお、非常用ディーゼル発電機の給気口は原	お、非常用ディーゼル発電機の給気口は原子炉建物の屋上(非	
子炉 <u>建屋</u> の <u>3 階</u> に設置されている。	常用ディーゼル発電機給気口)と2階(高圧炉心スプレイ系デ	
	<u>ィーゼル発電機給気口)</u> に設置されている。	
2. 录7/Ⅲ//+ Ⅲ	2. 现在分田	
3. 計価和木 政委田原乙病拡張近傍での本災な相字した相会 北党田	3. 計Ш和木 発電田原乙偏拡乳近傍での水巛な相字した担合、北党田ディ	
光电用原丁炉旭蔵近傍ての八灰を芯定した物市, 外市用 ディーゼル発電機の公告口(6号版D系7号版D系)から執気	光电用尿丁炉旭設近傍ての八灰を恋定した物白,并市用ノイ	
ブイービル光電磁の和X口 <u>(05分)が5米75分)が5</u> 米X	でビル光电機の和X山から然X(加か旦)安取り込まれる可能性は 不完できないが、執気法の影響統囲け気免条件(周点、周速笑)	
	口足 くさないが, 然気(加の泉) 晋範囲な 気家未住 (風向, 風迷寺)	
	このため、これらの不確かさけなるたのの、水災発生時け非	
<u>1 因 $H_0$ 因)。 このため これたの不確かさけあるたのの 水災発生時</u>	このため、これのの小幅からはめるものの、 八次光王吋は弁	
	市用ノイービル光电機の福风価度を量焼しフラ、蒸気加め取り	
協介市用ノイ ビル光电域の相気価度を量低し ノノ, 然気 流の取り込みが懸今される坦今け 当該認備を起動したい	このが恋心で400%」は、当成設備を起動しない、(起動してい)	
(記動)ている場合け値にする)としにより効果があり	る物口は序エサる/ ことにより恋X(肌の影音を凹起する。 わた 非労田ディーゼル双重拗の公気口は 百乙尼津梅の民	
(ためしているの口はにエック) ここにより然気(加り影音)を回避する	(よ45), 2F田田ノイ ビル光电域の和スロは, 床丁炉 <u>圧物</u> の圧 ト(非労田ディーゼル発電機公会口) と9 隣(宣国福永マプレ	
で 口 座 1 20 たち 非党田ディーゼル 経電機の 公気 口 け 百 ヱ 后 碑 民 の	エ (7F市田ノイ ビル光电版相スロノ こと時 (同江) ルンクレ イ 医ディーゼル 発電機 絵写 ロ ) に 設置 さわ ていス こ レ 西 び 侍	
3階に集中して設置されていること みで位置的公共が回	コバノコービル光电機相入口/ に以直されていること,及び世 置的分割が団にわていることから、同時にオバアの設備が直接	
<u>5 </u> 酒に来てして既直されていること、及び世直的力取が凶 られていろことから 同時に今ての設備が直接執気法の影	単円刀取が回り40CV、ることがら、回時にす、Cの取開が単接 執気法の影響を受けることけ相定しべたく 影響を受けかい古	
なわ、非常用アイーセル発電機の結気ロは原子炉建産の <u>3 階</u> に集中して設置されていること、及び位置的分散が図 られていることから、同時に全ての設備が直接熱気流の影	<ul> <li>イボディーセル発電機給気口)に設置されていること、及び位置的分散が図られていることから、同時にすべての設備が直接</li> <li>熱気流の影響を受けることは想定しづらく、影響を受けない方</li> </ul>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
響を受けることは想定しづらく,影響を受けない方角に位		角に位置する非常用ディーゼル発電機は運転が可能である。ま	
置する非常用ディーゼル発電機は運転が可能である。ま		た,消火が確認された時点で,停止していた非常用ディーゼル	
た,消火が確認された時点で,停止していた非常用ディー		発電機の運転再開も可能となる。	
ゼル発電機の運転再開も可能となる。		以上より、熱気流の影響は限定的であり、発電用原子炉施設	
以上より、熱気流の影響は限定的であり、発電用原子炉		に影響を及ぼすことはないと評価する。	
施設に影響をおよぼすこ とはないと評価する。			
第 1 図 6 号炉熱気流を取り込む可能性のある給気口位置			
第2図 6 号炉 熱気流を取り込む可能性のある給気口位置			
第3図7号炉熱気流を取り込む可能性のある給気口位置			
(航空機火災)			
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	島根原子力発電所 2号炉	備考
---------------------------------------------	---------	---------------------------------------------	----
別添1-2		別添1-2	
柏崎刈羽原子力発電所 6号及び7号炉		島根原子力発電所 2 号炉	
運用,手順能力説明資料 外部からの衝撃による損傷の防止 (その他自然現象)		運用,手順能力説明資料 外部からの衝撃による損傷の防止 (その他自然現象)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所	島根原子力発電所 2号炉	備考
(加) (現在多人が知らりています。 (1) (1) (1) (1) (1) (1) (1) (1)	(第6条 小細からの確実によっては、その他自然通知)	2.10 cmtr2.55 (Lotter, List).control       Interster int	<ul> <li>・設計方針の相違</li> <li>【柏崎 6/7】</li> <li>島根2号炉は設計上考慮する事象として地滑り・土石流を選定</li> </ul>

柞	柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)				0版)					東	海第二	発電所		島根原子力発電所 2号炉							ſ	備考																
に係る運用対策等	運用対策等	手順・設計基準の設定、自然現象影響評価を行う。		訓練 ・設計基準の設定,影響評価に関する教育	<ul> <li>・降雪が確認された場合には、降雪量の監視をするとともに、必 手順 要に応じ、除雪要員の召集、要員への指示を行う。建屋や屋外の 設備等に長期間積雪の荷重をかけ続けたいため、除雪を実施する。</li> </ul>	wm.サニムが回身ョン回車エルリがいま、この, かまモニージッ。 ・担当部署は、気象予測で豪雪が予想され、発電所全体での支援	の必要がある等の場合、関係箇所と協議のうえ対策本部を発足し、 対応箇所が、降雪量の監視、要員の召集・指示、除雪作業等を実 サンナス	加9 つ	***********************************										に係る運用対策等	運用対策等	∋順 ・設計基準の設定、自然現象影響評価を行う。		ぼ後 ー ー	■線 ● 設計基準設定,影響評価に関する教育	e順・降雪が確認された場合には、降雪量の監視をするとともに、 、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<u> 必要に応じ,除雪要具の招集,要員への指示を行っ。準物や</u> 屋外設備等に長時間積雪の荷重をかけ続けないため,除雪を	実施する。	・担当部署は、気象予測で豪雪が予想され、発電所全体での支 セール亜ジャス なの相々 間に加速しか差のこうみ エール・シ	仮いむ安がのつすい物ロ、関係順所に励識のリム対水本時で 発足し、対応箇所が,降雪量の監視、要員の招集・指示,除	雪作業等を実施する。		練   ・連用及び手順に関する教育						
設計基準	区2		[計]     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [     [	教 行	· 運	the last	11- 体制	・一位	来 教育・	-									設計基準	区 分	連用・目	(本制)	保守・片	教育・副	「運用・引			体制			本です。	<b>教育・</b> 副						
	刘象項日	知見の収集等 (規格・基準類、 御	2000年一月19日 記録,年超過確率	価)		咳症双左時の除症	年ョ光工hth 0  称ョ  米													対象項目	知見の収集等	(規格・基準類,	観測記録)		降雪発生時の除雪 	作業												
	設置許可基準対象条文	第6条 外部からの衝撃に よる損傷の防止	(その他自然現象)																	設置許可基準対象条文	第6条 外部からの衝撃に	よる損傷の防止	(その他自然現象)															

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	別添資料3	5
	東海第二発電所	島根原子力発電所
	運用,手順能力説明資料 外部からの衝撃による損傷の 防止 (竜巻)	<u>運用, 手順能力説</u> <u>外部からの衝撃によ</u> <u>防止</u> (竜巻)

导炉	備考
	・資料構成の相違
別 添 2-3	【柏崎 6/7】
	島根2号炉は運用,手
	順説明資料を記載
う是個	
的資料	
こる損傷の	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版) 島根原子力 島根原子力 多	ě電所 2号
	Refer Line (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	(a)	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(	(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
	運用対策等 運外の飛散するおそれのある資機材、車両等については、 飛来時の運動エネルナ学を評価し、評価対象施設等への影響の有無を確認する。評価対象施設等へ影響を及ぼす資機 す、車両等については、固縛、固定、評価対象施設等への影 時、車両等については、固縛、固定、評価対象施設等かの 局に、評価対象施設等から の隔離、建屋内収納又は撤去の飛来物発生防止対策につい て手順等を定める。 (目前、国定、アルナキャルを飛客を防止対策につい で手順等を定める。 (回講, 東西等の質量、寸法、形状から算出した飛来の有 無、飛来時の運動エネルギ等による飛来物発生防止対策 (回講, 固定、評価対象施設等からの隔離, 建屋内収納又 1載去)の評価方法手順及び評価結果の管理	問当室による保守・点検の体制 日常点検 定期点検 損傷時の補修 亀用・手順,体制,保守・点検に関する教育	運用対策等 電外の飛散するおそれのある資機材、車両等については、 飛来時の運動エネルボ等を評価し、外部事象防護対象施設 への影響の有無を確認する。外部事象防護対象施設 への影響の有無を確認する。外部事象防護対象施設 への影響の有無を確認する。外部事象防護対象施設へ影響 を及ぼす資機材、車両等については、固縛、固定、評価対 象施設等からの隔離、建物内収納又は撤去の飛来物発生防 止対策について手順等を定める。 賞機材、車両等の商量、十法、形状から算出した飛来の有 無、飛来時の運動、十法、形状から算出した飛来の有 加速、固定、外部事象防護対象施設からの隔離、建物内 し納又は撤去)の評価方法手順及び評価結果の管理 に割点検 直備 直開・手順、体制、保守・点検に関する教育 運用・手順、体制、保守・点検に関する教育	
	画 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王	教	区         田         条         谷         市         条         校         市         特         市         特         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市         市	
	対象項目 資機材,車両等管理 資機材,車両等管理 管機材,車両等の飛来物発 生防止対策(固縛,固定, 評価対象施設等からの隔 離,建屋内収納又は徹去)		対象項 「演ん、車両等価 「一般な、車両等価 一部 一部 一部 一部 一部 一部 一部 一部 一部 一部	
	設置許可基準対象条文 第 6 条 外部からの衝 撃による損傷の防止		設置背 可基準 対象条 文第6条 外部 からの 御幕に よる 損傷の 兄子 の 御客に よる 損傷の 防 干	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第二発電所(2018	8.9.18版)			島根原子力	発電所 2号炉		備考	
	運用対策等 ・竜巻の襲来が予想される場合及び竜巻襲来後において,評価対	<ul> <li>象施設等を防護するための操作・確認、補修等が必要となる事 項について手順等を定める。</li> <li>「操作・確認事項」</li> <li>・竜巻に関する情報人手及び情報人手後の対応</li> <li>「情報の人手,周知,体制判断,実施方法と手順)</li> <li>・竜巻襲来が予想される場合の対応に関する運用・手順 (着老襲来が予想される場合の対応に関する運用・手順 (竜巻襲来が予想される場合の妨用中の資機材の固縛等)</li> <li>・竜巻襲来が予想される場合の燃料取扱作業の運用,手順 (竜答襲来が予想される場合の燃料取扱作業の通用,手順 (竜答襲来が予想される場合の燃料取扱作業の通用,手順</li> <li>・水密扉(原子炉建屋機器搬入口水密扉)及び防護扉(原 子炉建屋付属棟1階電気室扉,3階搬入口扉等)の閉止確 認手順</li> <li>「補修]</li> <li>・設備が損傷した場合の代替設備の確保及び補修,取替等 の運用,手順</li> </ul>	<ul> <li>・担当室による作業中止等の実施体制</li> <li>・担当室による扉閉止確認体制</li> <li>・担当室による扉閉止確認体制</li> <li>・竜巻襲来に備えた体制の構築,実施及び解除の判断基準,実施</li> <li>・竜浩野方法等</li> <li>・担当室による保守・点検の体制</li> <li>・担当室による損傷箇所の補修体制</li> <li>・日堂占給</li> </ul>	・定期点検・・損傷時の補修	・運用・手順、体制、保守・点検に関する教育	運用対策等 ・竜巻の襲来が予想される場合及び竜巻襲来後において、評価対 象施設等を防護するための操作・確認、補修等が必要となる事	項について手順等を定める。 「操作・確認事項」 ・竜巻に関する情報入手及び情報入手後の対応 ・竜巻読来が予想される場合の対応に関する運用・手順 (竜巻襲来が予想される場合の使用中の資機材の固縛等) ・竜巻襲来が予想される場合の使用中の資機材の固縛等) ・竜巻襲来が予想される場合の燃料取扱作業の運用、手順 ・原子炉建物付属棟面側機器搬入口等の閉止確認手順 ・配子炉建物付属棟面側機器搬入口等の閉止確認手順 ・記書には個一を迫くの体報設備のなのれば結体。取載的	<ul> <li>○通用,手順</li> <li>・担当箇所による作業中止等の実施体制</li> <li>・担当箇所による作業中止等の実施体制</li> <li>・担当箇所による原閉止確認体制</li> <li>・電巻襲来に備えた体制の構築,実施及び解除の判断基準,実施</li> <li>・種当箇所による保守・点検の体制</li> <li>・担当箇所による損傷箇所の補修体制</li> </ul>	<ul> <li>・日常点検</li> <li>・定期点検</li> <li>・損傷時の補修</li> <li>・運用・手順、体制、保守・点検に関する教育</li> </ul>	
	因 分	画 中 王	体制	保守 · 点檢	教育・訓練	区分	画 王 画	谷	<ul> <li>保守・点検</li> <li>教育・訓練</li> </ul>	
	対象項目許備対象施設等を防護	するための操作・確認事				対象項目 評価対象施設等を防護 するための操作・確認事	度			
	設置許可基準対象条文 第6条 外部からの衝	撃による損傷の防止				設置許可基準対象条文 第6条 外部からの衝撃による損傷の防止				

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
別 添 3-2	別添資料2	
柏崎刈羽原子力発電所6号 及び7号炉	東海第二発電所 運用,手順説明資料 外部からの衝撃による損傷の 防止	島根原子力発電所 運用,手順能力意 外部からの衝撃に の防止
運用, 手順能力説明資料 外部からの衝撃による損傷 の防止	(火山)	<u>(СКШ)</u>



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(第6条 火山) ①安全施設は、想定される自然現象(地震及び津波を除く。次頃において同じ。) が発生した場合においても安全機能 を損なわないものでなければならない。 ③重要安全施設に、当該重要安全施設に大きな影響を及ぼすおそれがあると想定される自然現象により当該重要安全 施設に作用する衝撃及び設計基準事故時に生する応力を適切に考慮したものでなければならない。 安全施設は、想定される自然現象(地震及び滞故 を除く。次項において同じ。) が発生した場合においても安全施設は、当該重要安全施設に大きな影響を及ぼすお それがあると想定される自然現象(地震及び滞故 で作用する衝撃及び設計基準事故時に生する応力を適切に 考慮したものでなければならない。	(第六条 火山) 変全階設は、都定される自然現象(埋葬及び非被全解へ。次頃について同じ。)が発生した場合において も安全階設は、当該重要安全施設に大きな影響を及ぼすおそれがあると増定される自然現象により当該 重要安全施設は、想定される自然現象(埋蕪及び 確要な全施設は、想定される自然現象(佣薰及び 確認な、認知症理事故に生する広力を通知に考慮したものでなければならない。 次全価設は、想定される自然現象(佣薰及び 確認かったもな 常報客なばすより当該重要安全施設に大きな のでなければならない。 別に考慮したものでなければならない。 別に考慮したものでなければならない。	(第6条 人山) ①安全施設は、想定される自然現象(他興及び津波を除く。次頃において同じ。) が発生した場合におい でも安全施設に作用する衝撃及び読計基準事故時に生ずる広力を通知に考慮したものでなければな 認重要全全施設に作用する衝撃及び読計基準事故時に生ずる広力を通知に考慮したものでなければな らない。 安全施設は、想定される自然現象(地震及び読計基準事故時に生ずる広力を通知に、当該重要安全施設に作用する を除く。次項において同じ。) が発生した場合に おいても安全機能を損なわないものでなければ ならない。	





予炉	備考
- 電子必動的の線度「電動物気」 	
	<ul> <li>・立地場所,評価対象火山等の相違</li> <li>【柏崎 6/7,東海第二】 個別評価結果により</li> <li>降下火砕物設計条件が 相違</li> </ul>
相企わない (後茂規則との対応) 王:工設(法本設計分射,添付書類) 後: 院気地で(運用手組に係る事項, 下広文書含む) [添付六、八への反映事項]	

的崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
区分         運用対策等           ・降灰が確認された場合には、非常用換気空調系の外気取入口のバグフィルタについ           ・降灰が確認された場合には、非常用換気空調系の外気取入口のバグフィルタについ           連用・手順         ・非常用ディーゼル発電機運転時は、バグフィルタの巡視点検を行い、必要に応じ取           *非常用ディーゼル発電機運転時は、バグフィルタの巡視点検を行い、必要に応じ取           *非常用ディーゼル発電機運転時は、バグフィルタの巡視点検を行い、必要に応じ取           体制         (体灰時の広相加)           化制         (体灰時の広相)           化中         ・外部事象防護対象施設を外部事象から防護する建屋等の保守・点検に関する教育	区分         運用対策等           ドブ         ・降下火砕物が確認された場合には、換気空調設備の 外気取入口のバグフィルタについて、差圧を確認す るとともに、状況に応じて清掃や取替を実施する。           第用・手順         ・ディーゼル発電機運転時は、吸気フィルタの巡視点 検を行い、必要に応じて取替・清掃を行う。           作制         (運転員の当直体制)           体制         (運転員の当直体制)           保守・点検         ・火山事象時の巡視点検           教育・訓練         ・防護施設の保守・点検に関する教育	<ul> <li> <ul> <li></li></ul></li></ul>	
<ul> <li>設置許可基準対象条文</li> <li>対象項目</li> <li>第 6 条 外部からの衝撃</li> <li>バグフィルタ取替え又は</li> <li>による損傷の防止</li> <li>清掃作業等</li> </ul>	<ul> <li>設置許可基準対象条文</li> <li>設置許可基準対象条文</li> <li>第六条 外部からの衝撃</li> <li>バグフィルタ,吸気</li> <li>ボンク和時・清掃作</li> <li>オルタ取替・清掃作</li> </ul>	<ul> <li>設置許可基準対象条文</li> <li>数項目</li> <li>第 6 条 外部からの衝</li> <li>フィルタ取替又</li> <li>運用</li> <li>度行</li> <li>存</li> </ul>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別 添 4-2	別添資料-2	別添 4-2	
柏崎刈羽原子力発電所 6 号及び 7 号炉	東海第二発電所	島根原子力発電所2号炉	
運用,手順能力説明資料	運用,手順説明資料	運用,手順能力説明資料	
外部からの衝撃による損傷の防止	外部からの衝撃による損傷の防止	外部からの衝撃による損傷の防止	
(外部火災)	(外部火災)	(外部火災)	



柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
設計基準に係る運用対策等	設計基準に係る運用対策等 (1/2)	設計基準に係る運用対策等	
<ul> <li>         ★ 日前市団板県外条文 対象項目 (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)</li></ul>	高部Find Mark (Accord)         所作の         部所自体的           75.5 A Mithon (Accord)         第5.6 (Find (Accord))         10.6 (Find (Accor	部火災) 防火帯の維持・管理 対見の収集 地見の収集 地見の収集 (発音・訓練 ・火災防護に関する教育 (防火帯の目的,点焼,維持) 通用・手順 ・火災防護に関する教育 (防火帯の目的,点焼,維持) 通用のの植生 及び立地条件) 数音・訓練 ・火災防護に関する教育 「石油コンビナート 有用の収集 (石油コンビナート (石油コンビナート 和見の収集 (石油コンビナート (石油コンビナート (石油コンビナート (石油コンビナート (石油コンビナート (石油コンビナート (石油コンビナート (石油コンビナート (石油コンビナート (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石油」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」) (石」)	
		٠	

山羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉
設計基準に係る運用対策等	設計基準に係る運用対策等(2/2)	設計基準に係る運用対策等
<ul> <li>運用対策等</li> <li>消防車の点検</li> <li>消防車の点検</li> <li>消火設備(消火栓等)の点検</li> <li>消防用資機材(防火服,空気呼吸器等)の点検</li> <li>前防用資機材(防火服,空気呼吸器等)の点検</li> <li>前防用資機材(防火服,空気呼吸器等)の点検</li> <li>前水対応の力量を維持するための教育,訓練</li> <li>前水対応の力量を維持するための教育,訓練</li> <li>前水対応の力量を維持するための教育,訓練</li> <li>約期消火班による消火訓練</li> <li>第火対応の力量を維持するための教育,訓練</li> <li>約期消火班による消火訓練</li> <li>・外気取入ダンパ閉,再循環運転の手順</li> <li>・換に手順の教育(運転員による外部火災発生時の外気取入ダンパ閉,再循環運転)</li> <li>・補修に関する教育・訓練(換気空調系)</li> </ul>	<ul> <li>通用対策等</li> <li>近天器、消火程を用いた消火活動及び化学消防自動車、水槽付消防自動車を用いた消火活動</li> <li>前水器、消火程を用いた消火活動及び化学消防自動車、水槽付消防自動車を用いた消火活動</li> <li>自前市防防</li> <li>一位学問防目動車及び水槽付消防式:ンプ目動車の点検</li> <li>一位学問防目動車及び水槽付消防式:ンプ目動車の点検</li> <li>一位学問防日動車及び水槽付消防式:シン目動車の点検</li> <li>一位学問防日動車及び水槽付消防式:シング自動車の点検</li> <li>一位決決協調(加入場)(大松)の点検</li> <li>一位部に防険</li> <li>一位和市防防</li> <li>一位和市防</li> <li>一位和市</li> <li>一位和市</li></ul>	<ul> <li>運用対策等</li> <li>警備員等は、火災発生を確認した場合は自衛消防隊長へ進齢する。</li> <li>・自衛消防隊に指示する。</li> <li>・自衛消防隊</li> <li>・自衛消防隊</li> <li>・自衛消防隊</li> <li>・自衛消防隊</li> <li>・自衛消防隊に指示する。</li> <li>・自衛消防隊に指示する。</li> <li>・自衛消防隊に指示する。</li> <li>・自衛消防隊に指示する。</li> <li>・自衛消防隊に指示する。</li> <li>・自衛消防隊の編成中国、奈然隔離運転</li> <li>・・ドへの切替え手順</li> <li>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>
来 数 運 来 数 通子 水 か 行 田 田 子 か 一 田 田 子 か 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	<ul> <li>区分</li> <li>区分</li> <li>区分</li> <li>(京市 中市</li> <li>(市市</li> <li>(市)</li> <li>(市)<td>区         田         区         区         区         区         区         区         区         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N</td></li></ul>	区         田         区         区         区         区         区         区         区         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N
	1 1 5 の 6 の 6 の 6 の 6 の 6 前 前 治 六 た 6 の 6 前 前 消 六 た 6 の 6 前 前 点 大 活 動 吸 見 に よ 5 の 1 前 小 六 活 動 吸 見 に よ 5 の 1 前 小 活 動 吸 見 に た 言 の 変 見 に よ た る 初 明 消 大 活 動 受 月 に よ た る 初 明 消 大 活 動 一 に よ た 活 動 変 見 に よ た 活 動 一 に よ た 活 動 一 に よ た 活 動 一 に よ た 活 動 一 に よ た 活 動 一 二 た た 二 の 二 作 二 の 二 条 一 の 正 条 一 の 正 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 の 二 条 一 一 二 条 一 の 二 条 一 一 二 条 一 一 二 条 一 一 一 一 一 一 二 日 二 一 一 一 一 一 一 一 一 一 一 一 一 一	対象項目           自衛         予防酸           予防酸         予防酸           電廠         予防酸           電影         予防           電影         予防           電影         予防           電影         予防
<ul> <li>設置許可基準対象条文</li> <li>第6条 外部からの衝撃によ</li> <li>る損傷の防止</li> <li>(外部火災)</li> <li>(外部火災)</li> <li>市</li> <li>市</li> <li>市</li> <li>市</li> <li>小</li> <li>小</li> <li>小</li> <li>小</li> </ul>	設置許可志準效 第六条 外部か による損傷の防止 (外部火災)	<ul> <li>設置許可基準対象条文 第6条 外部からの衝撃にJ る損傷の防止 (外部火災)</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
別 添 4-3	別添資料-3	別添 4-3	
柏崎刈羽原子力発電所6 号及び7 号炉	東海第二発電所	島根原子力発電所2号炉	
	本林水災評価に係ろ		
森林火災評価に係る植生確認プロセスについて	植生確認プロセスについて	森林火災評価に係る植生確認プロセスについて	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
1. 基準要求	1. 植生確認プロセスについて	1. <u>基準要求</u> 【第6条】	
【第6条】設置許可基準第6条(外部からの衝撃による損傷の 防止)にて、安全施設は、想定される自然現象(地震及 び津波を除く)が発生した場合においても安全機能を損 なわないものでなければならないことを要求されてい る。また、外部火災影響評価について詳細に規定してい る「原子力発電所の外部火災影響評価ガイド」(以下「評 価ガイド」という。)において、発電所敷地外で発生する 火災が発電用原子炉施設へ影響を与えないことについて 評価することを要求されている。 当該基準要求を満足するに当たっては、評価ガイドの 「付属書A森林火災の原子力発電所への影響評価につい て」において、FARSITE (Fire Area Simulator)という 森林火災シミュレーション解析コードの利用を推奨して おり、想定火災の火線強度に対する発電用原子炉施設の 防火帯幅を評価する。	「原子力発電所の外部火災影響評価ガイド」(以下「評価ガイド」 という。)において,発電所周囲で発生する森林火災を想定した発 電所に与える影響について評価することが要求されている。 当該評価は,評価ガイドにおいて推奨されている,森林火災シミ ュレーション解析コードFARSITE(以下「FARSITE」 という。)を用いて行う。 FARSITEの主なインプットデータのうち,樹種,林齢等 の植生データについては,影響評価範囲内の森林簿による植生確 認及びウォークダウンによる植生確認結果を反映する。以降に植 生確認のプロセスを示す。	設置許可基準規則第6条(外部からの衝撃による損傷の防止) にて,安全施設は,想定される自然現象(地震及び津波を除く) が発生した場合においても安全機能を損なわないものでなけれ ばならないことを要求されている。また,外部火災影響評価に ついて詳細に規定している「原子力発電所の外部火災影響評価 ガイド」(以下「評価ガイド」という。)において,発電所敷 地外で発生する火災が発電用原子炉施設へ影響を与えないこと について評価することを要求されている。 当該基準要求を満足するに当たっては,評価ガイドの「附属 書A 森林火災の原子力発電所への影響評価について」におい て,FARSITE (Fire Area Simulator)という森林火災シミュレ ーション解析コードの利用を推奨しており,想定火災の火線強 度に対する発電用原子炉施設の防火帯幅を評価する。	
<ol> <li>現場確認項目及び内容         上記基準要求を満足するためには、FARSITE を用いた評価に 必要なデータのうち、植生データについて「現地状況をできる だけ模擬するため、樹種や生育状況に関する情報を有する森林 簿の空間データを現地の地方自治体より入手する。森林簿の情 報を用いて、土地利用データにおける森林領域を、樹種・林齢 によりさらに細分化する。」と評価ガイドに記載されており、以 下のとおり、国土数値情報土地利用細分メッシュ及び自然環境 保全基礎植生調査データ、現場調査による確認を実施している。     </li> </ol>	<ol> <li>植生確認の内容         <ol> <li>(1) 森林簿による植生確認 東海第二発電所の立地自治体である茨城県から交付を受けた 森林簿により,影響評価範囲の植生確認を行う。</li></ol></li></ol>	2. 現場確認項目及び内容 上記基準要求を満足するためには, FARSITE を用いた評価に 必要なデータのうち,植生データについて「現地状況をできる だけ模擬するため,樹種や生育状況に関する情報を有する森林 簿の空間データを現地の地方自治体より入手する。森林簿の情 報を用いて,土地利用データにおける森林領域を,樹種・林齢 によりさらに細分化する。」と評価ガイドに記載されており, 以下のとおり,国土数値情報土地利用細分メッシュ及び森林簿 データ,現場調査による確認を実施している。	<ul> <li>・条件の相違</li> <li>【柏崎 6/7】</li> <li>島根2号炉は,外部火</li> <li>災影響評価ガイドを踏</li> <li>まえて,「森林簿」の空</li> <li>間データを使用</li> </ul>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
2.1 植生データの整備		2. 1 植生データの整備	
(1)植生データの入手及び整備		(1) 植生データの入手及び整備	
植生データについては、国土交通省の国土数値情報である		植生データについては、国土交通省の国土数値情報である	
<u>柏崎刈羽</u> 原子力発電所周辺の土地利用細分メッシュ(H21 年		<u>島根</u> 原子力発電所周辺の土地利用細分メッシュ(H21 年度)	
度)を用い土地利用データを作成し、土地利用データの森林		を用いて土地利用データを作成し、土地利用データの森林領	
領域を細分化するための森林簿の入手が困難であったため、		域を細分化するため <u>島根県から入手した森林簿のデータ</u> を使	・条件の相違
環境省の自然環境保全基礎調査 植生調査データ (H18 年度)		用して、森林領域等の植生データを細分化・整備した。	【柏崎 6/7】
を使用して、森林領域等の植生データを細分化・整備した。			島根 2 号炉は,「森林
			簿」 に基づき, 影響評価
(2)現場調査		(2)現場調査	を実施
FARSITE の入力にあたり,森林の樹種やその分布状況の詳		FARSITE の入力にあたり,森林の樹種やその分布状況の詳	
細な現状把握が必要であるため、発電所構内及び防火帯周辺		細な現状把握が必要であるため,発電所構内及び防火帯周辺	
の植生については,現場調査(写真撮影)を実施した。		の植生については,現場調査(写真撮影)を実施した。	
現場調査に当たっては、発電所構内の森林管理の単位とな		現場調査に当たっては、発電所構内の森林管理の単位とな	
っている 22 エリアに分け、1 級造園施工管理士の国家資格		っている60エリアに分け、1級造園施工管理士の国家資格を	・条件の相違
を有する者がウォークダウンをすることにより、植生を調査		有する者がウォークダウンをすることにより、植生を調査し、	【柏崎 6/7】
し、樹種、林齢、低木及び下草の有無を確認した。ウォーク		樹種、林齢、低木及び下草の有無を確認した。ウォークダウ	地域特性を踏まえた
ダウンの際に写直を撮影し、それをもとに植生を確認すると		ンの際に写直を撮影し、それをもとに植生を確認するととも	条件設定の相違
ともに、調査位置についても記録した。		に、調査位置についても記録した。	
	3 植生データの作成と記録の取扱い		
(3) 植生データの作成	<u>3.1. 植生データの作成</u>	<ul><li>(3) 植生データの作成</li></ul>	
	(1) 杰林藩のデータを 国土粉値信報土地利田細公メッシュを		
	(1) 林林海の) クセ、国工数値目報工地利用細力 クシンエを 100m メルシン かく 10m メルシン に 広協した データに オーバー		
	$\frac{1000 \times 9922 \text{ Mo } 100 \times 9922 \text{ Log}}{1000 \times 9922 \text{ Log}}$		
	$(0)$ (1) $\pi (r^2)$ $r^2$ $r^2$ $r^2$ $r^2$ $r^2$		
(1), (2) を踏まえ補正し、FARSIIE にて利用できるよう地 曲的な仕墨はおされる地理はおいえこと (010) には仕はおさ	12)(1)で作成したソークに定电所同辺の植生ソータとして、現		
理的な位置情報を扱う地理情報システム(G15)に植生情報を	場の植生性認症来のデータをオーハーレイする。	ように地理的な位置情報を扱う地理情報システム(GIS)に他	
人力してアーダを作成した。		生情報を入力してテーダを作成した。	
(1) 姑牛データの亚当州の佐辺		(1) 枯什データの亚ン州の体籾	
女 当性 を 唯 認 し に 。			
3 記録の取扱い	3.2 記録の取扱い	3 記録の取扱い	
		日担調本は用乃び FADSITE に入力した結件データな記得し	
丸物調査福本及いFARSIIE に八刀しに他生7 一クを記録とし	<u>林仲得ノニク</u> , 祝物()), 祝物()), 福本区のFAKSIIEに入力した他	元物調査福本及い FARSIIE に八月した他生ナークを記録とし	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.12版)	島根原子力発電所 2号炉	備考
て保管する。	生データを記録として保管する。	て保管する。	
4. 今後の対応		4.今後の対応	
発電所周辺の植生の変更がある場合は、その変更が森林火災		発電所周辺の植生の変更がある場合は、その変更が森林火災	
評価へ与える影響に応じて再評価の必要性を検討する。		評価へ与える影響に応じて再評価の必要性を検討する。	
	4. 定期的な植生の管理		
	・植生の妥当性判断に資格・経験年数が必要となる樹木につい		
	ては、定期的に資格・経験年数を有する調査員による植生確		
	認を行い、発電所周辺の植生とFARSITEに入力した植		
	生データに相違がないことを確認する。		
	・生育状況のみで判断が可能な草等の植生は、定期的に植生確		
	認を行い、発電所周辺の植生とFARSITEに入力した植		
	生データに相違がないことを確認する。また、必要に応じ草		
	刈り等を行い植生の維持管理を行う。		
	・・植生の変更が森林火災評価へ与える影響に応じて再評価の必		
	要性を検討する。		
	以上		