別紙-2

島根原子力発電所2号炉

建物の地震応答解析モデルについて (建物基礎底面の付着力及び3次元FEM モデルの採用)

- 1. はじめに
- 2. 検討方針及び妥当性確認
- 2.1 基礎浮上り評価法に関する既往の知見
- 2.2 低接地率となる地震応答解析結果の妥当性確認について
- 2.2.1 廃棄物処理建物に関する検討
- 2.2.2 制御室建物に関する検討
- 3. まとめ
- 4. 参考文献
- 添付資料-1 建物基礎底面の付着力に関する検討
- 添付資料-2 廃棄物処理建物の地震応答解析
- 添付資料-3 制御室建物の地震応答解析
- 参考資料-1 付着力を考慮した3次元FEMモデルの適用性について
- 参考資料-2 付着力の考慮の有無による建物応答への影響の検討
- 参考資料-3 岩盤-レベルコンクリート間における付着力試験実 施後の破断面について
- 参考資料-4 設定付着力に関する統計的な考察について
- 参考資料-5 試験地盤と建物直下地盤の同等性について
- 補足資料-1 既工認実績における付着力試験方法との比較
- 補足資料-2 既工認実績における設定付着力との比較
- 補足資料-3 島根原子力発電所 敷地の地質・地質構造について
- 補足資料-4 建物直下地盤周囲の地盤状況について

1. はじめに

島根原子力発電所の建設時の工事計画認可申請書(以下「既工認」という。)で は,原子炉建物等の地震応答解析における基礎浮上り評価について,線形地震応 答解析又は浮上り非線形地震応答解析を実施している。

今回の工事計画認可申請(以下「今回工認」という。)では,入力地震動の増大 に伴い,基準地震動Ssによる検討においては,一部解析結果で浮上り非線形地 震応答解析を適用できる接地率に満たない可能性が高いことから,個別に解析の 妥当性を確認した上で採用する解析手法を選定する予定である。

本資料は,低接地率となる見込みの解析結果について個別に解析の妥当性を確認し,採用する地震応答解析モデル(基礎浮上り評価法)について説明するものである。

2. 検討方針及び妥当性確認

基礎浮上り評価法に関する既往の知見を整理し,低接地率となる見込みの解析 結果について個別に解析の妥当性を確認する。これらを踏まえて採用する地震応 答解析モデルについて検討を行う。

2.1 基礎浮上り評価法に関する既往の知見

島根原子力発電所2号炉(以下「島根2号炉」という。)の地震応答解析に当たっては、建物形状に応じ、建物と地盤の相互作用を考慮することとしている。 「原子力発電所耐震設計技術指針JEAG4601(以下「JEAG4601」という。)-1987」においては、建物と地盤の相互作用の影響を適切に考慮できるモデルとしてSRモデルや離散系モデル(FEMモデルを含む)が列挙されている。また、「JEAG4601-1991 追補版」においては、接地率に応じた地震応答解析手法の適用性が示されており、接地率 $\eta_{NL} < 65\%$ の場合は別途検討となっている(第2-1図参照)。

(「JEAG4601-1991 追補版」より抜粋)

参考として,接地率 η NL < 65% となる場合の別途検討の手法として,「原子力 発電所耐震設計技術規程 J E A C 4 6 0 1 - 2008(以下「J E A C 4 6 0 1 - 2008」という。)」では,誘発上下動を考慮した S R モデルや,特別な検討とし てジョイント要素を用いた 3 次元 F E M モデルが提案されている(第 2-2 図参 照)。

4 条-別紙 2-2

- 2.2 低接地率となる地震応答解析結果の妥当性確認について
 - (1) 基礎浮上り評価方針

島根2号炉の建物・構築物は「JEAG4601-1991 追補版」に示される浮上り非線形地震応答解析により基準地震動Ssに対して接地率を算定することを基本とする。接地率 $\eta < 65\%$ となる場合の別途検討は、「JEAC4601-2008」及び「JEAC4601-2015」の評価フローを参考とした。

上記を踏まえた島根2号炉における各建物(重要SA施設及び波及的影響に 係る施設を含む)の地震応答解析モデル(基礎浮上り評価法)の選定フローを第2 -3図に示す。

] []

4 条-別紙 2-5

(2) 採用する地震応答解析モデルの選定

制御室建物,廃棄物処理建物等は誘発上下動を考慮できる浮上り非線形解析 において,接地率η<50%となる見込みであることから,第2-3図に示す「特 別な検討に相当する検討」として,建物の基礎底面の付着力を考慮した地震応 答解析等を行い,その適用性を確認した上で,採用する地震応答解析モデルを 選定する。

建物の基礎底面と地盤間の付着力は,島根原子力発電所における付着力試験の結果に基づき 0.40N/mm²とした。(添付資料-1参照)

なお、本資料では制御室建物及び廃棄物処理建物の検討結果を示すこととし、 これら以外の建物において付着力を考慮する場合に採用する基礎浮上り評価法 の適用性については、詳細設計段階にて説明する。

また,島根2号炉において今回採用する3次元FEMモデルによる接地率は 35%を大きく上回る見込みであるが,詳細設計段階において,地震応答解析の 結果が低接地率となる場合には,適用範囲の確認も含めて採用する基礎浮上り 評価法の適用性を説明する。

(3) 建物基礎底面の付着力有無による建物応答への影響検討

建物基礎底面の付着力は、地震応答解析における解析精度の確保(接地率の 改善)を目的として設定したものであり、建物基礎底面の付着力の考慮の有無 による建物応答への影響を把握するため、第2-3回において、付着力を考慮し ない地震応答解析モデルを採用する建物のうち、建物・内包する施設の重要度 及び接地率を踏まえ、原子炉建物を代表として、付着力を考慮していないモデ ルと付着力を考慮したモデルを用いた地震応答解析を行った。その結果、付着 力により接地率は改善され、両モデルとも同等の応答値を示した。このことか ら付着力の考慮の有無による建物応答への影響は軽微であることを確認してい る。(参考資料-2参照)

なお、今回の検討において、一部周期帯で付着力考慮モデルの応答が付着力 考慮なしモデルの応答を僅かに上回っていることから、詳細設計段階において、 付着力を考慮しない建物のうち、建物・内包する施設の重要度、それらの許容 限界に対する裕度、及び接地率を踏まえた上で、代表とする建物を選定し、付 着力を考慮した場合の建物・設備への影響を確認する。

- 2.2.1 廃棄物処理建物に関する検討
 - (1) 検討概要

廃棄物処理建物は建物が比較的小規模で、基準地震動Ssに対する接地率 が小さい(接地率 $\eta < 50\%$)ため、接地率 $\eta < 65\%$ となる場合の別途検討手 法として先行プラントの既工認で適用実績のあるジョイント要素(付着力考 慮)を用いた3次元FEMモデルによる地震応答解析を行い、接地率が適用 範囲内($\eta \ge 35\%$ (目安値))であることを確認する。

(2) 検討結果

廃棄物処理建物について、ジョイント要素を用いた3次元FEMモデルに よる地震応答解析を行った結果を添付資料-2に示す。

検討の結果,ジョイント要素を用いた3次元FEMモデルによる接地率(最 小値)は98.8%(Ss-D,NS方向),93.9%(Ss-D,EW方向)であり, 解析の適用性を確認した。

(3) 採用する基礎浮上り評価法

廃棄物処理建物はジョイント要素(付着力考慮)を用いた3次元FEMモ デルの適用範囲を確認した上で、地震応答解析に際しては、ジョイント要素 を用いた3次元FEMモデルを採用することとする。

なお,ジョイント要素を用いた3次元FEMモデルは,先行審査(高浜3, 4号炉中間建屋)の地震応答解析で適用実績がある。

ジョイント要素を用いた3次元FEMモデルを第2-4図に示す。

第2-4図 ジョイント要素を用いた3次元FEMモデル

4 条-別紙 2-7

- 2.2.2 制御室建物に関する検討
 - (1) 検討概要

制御室建物は建物が小規模であることから、基準地震動Ssに対する接地 率が小さい(接地率 $\eta < 50\%$)ため、建物基礎の接地状況を踏まえた検討を 行う。

制御室建物について「JEAG4601-1991 追補版」に示される浮上 り線形地震応答解析を実施し、基礎浮上りが発生しないために必要な付着力 の算定を行う。

検討の結果,基礎浮上りが発生しないために必要な付着力が,島根原子力 発電所における付着力試験の結果に基づき設定した値を超えないことを確認 する。

(2) 検討結果

制御室建物について「JEAG4601-1991 追補版」に示される浮上 り線形地震応答解析を実施し,基礎浮上りが発生しないために必要な付着力 の算定を行った結果を添付資料-3に示す。

検討の結果,基礎浮上りが発生しないために必要な付着力(最大値)は0.32 N/mm²(Ss-D,NS方向)であることから,島根原子力発電所における付着 力試験の結果に基づき設定した値(0.40N/mm²)を超えないことを確認した。

(3) 採用する基礎浮上り評価法

制御室建物は基礎浮上りが発生しないことを確認した上で,地震応答解析 に際しては,浮上り線形地震応答解析を採用することとする。

なお,建物基礎底面の付着力の考慮は,先行審査(高浜3,4号炉中間建 屋,川内1,2号炉ディーゼル建屋,主蒸気管室建屋)の地震応答解析で適 用実績がある。

第2-5図 地盤の回転ばねのモーメントー回転角関係 4条-別紙2-8

3. まとめ

基礎浮上り評価法に関する既往の知見を整理し,低接地率となる見込みの解析 結果について個別に解析モデルの適用性を確認し,今回工認で採用する地震応答 解析モデルについて検討を行った。

検討の結果,島根2号炉の今回工認で採用する建物・構築物の地震応答解析モ デルは,第3-1表の通りとする予定である。

建物	採用する地震応答解析モデル (基礎浮上り評価法)	備考
廃棄物処理建物	ジョイント要素を用いた3次元FEM	個別に解析の妥当性確認
	モデル	を実施
		(添付資料-2参照)
制御室建物	SRモデル(浮上り線形地震応答解析)	個別に解析の妥当性確認
		を実施
		(添付資料-3参照)
1号炉原子炉建物	ジョイント要素を用いた3次元FEM	個別に解析の妥当性確認
	モデル	を実施
		(詳細設計段階にて説明
		する)
1号炉廃棄物処理	SRモデル (浮上り線形地震応答解析)	個別に解析の妥当性確認
建物		を実施
		(詳細設計段階にて説明
		する)

第3-1表 採用する地震応答解析モデル(基礎浮上り評価法)

注1:原子炉建物及びタービン建物は浮上り非線形解析を採用し,接地率η≧65%の見込み。 ただし,材料物性等の不確かさを考慮した地震応答解析の結果,接地率η<65%とな る場合,先行審査を含めた既工認で適用実績のある手法による解析を採用する。

注2:上記以外の波及的影響に係る施設及び新設のSA施設の地震応答解析に当たっては, 接地率 η 及び接地圧の値に応じて,浮上り線形地震応答解析,浮上り非線形地震応答 解析,誘発上下動を考慮したSRモデル又はジョイント要素を用いた3次元FEMモ デル等の先行審査を含めた既工認で適用実績のある手法による解析を採用する。

4. 参考文献

- (1) 日本電気協会:原子力発電所耐震設計技術指針JEAG4601-1987
- (2) 日本電気協会:原子力発電所耐震設計技術指針JEAG4601-1991 追補版
- (3) 日本電気協会:原子力発電所耐震設計技術規程JEAC4601-2008
- (4) 日本電気協会:原子力発電所耐震設計技術規程JEAC4601-2015

建物基礎底面の付着力に関する検討

1. 概要

本資料は、建物・構築物の地震応答解析モデルの基礎底面に設定した付着力に関して、その設定の妥当性について説明する。

2. 検討方針

地震応答解析に考慮する付着力について,既往の知見及び島根原子力発電所 で実施した付着力試験の結果を踏まえて設定する。

3. JNES報告書による付着力に関する研究

建物基礎と地盤間の付着力に関しては系統だった研究はあまり行われておら ず、知見も限られる状況の中、「(独)原子力安全基盤機構の報告書⁽¹⁾」(以下 「JNES報告書」という。)では付着力について試験及び解析的検討が実施 され、次の知見が得られたとされている。

- ・直接引張による付着力試験結果を用いたシミュレーション解析により、面的な広がりをもつ試験体の基礎浮上り挙動をよく再現できた。
- ・基礎浮上り評価においては、実際の発電所サイトの岩盤やレベルコンクリートの状況から付着力を推定する、あるいは試験等で付着力を確認することによって、基礎浮上りの評価に付着力を考慮することが可能と考えられる。

これらの知見の島根原子力発電所への適用性の確認と、「JNES報告書」の試験方法を参考とした試験計画の策定を目的として、「JNES報告書」の研究内容を確認した。

以下に「JNES報告書」の概要を示す。

3.1 研究概要

既往の原子炉施設は、第 3-1 図に示すように岩盤に直接支持されており、 表層土を掘削した後、岩盤上に直接コンクリートを打設するのが一般的であ る。この場合コンクリートと岩盤の境界面には付着力が生じていると予想さ れ、地震時の基礎浮上り挙動に影響を与えると考えられる。しかし、付着力 に関しては系統だった研究は少なく、知見が十分ではないことから、建物基 礎-岩盤間の付着力把握試験及び解析を実施し、実際の原子炉施設において 付着力が基礎浮上り性状に与える影響を検討するための基礎データを取得す ることを目的として、本検討が実施された。

第3-1図に示すように岩盤と基礎との間にはレベルコンクリートが打設さ れるため,接合面としては,岩盤とレベルコンクリート間(第3-1図の①), 及びレベルコンクリートと基礎コンクリート間(第3-1図の②)が存在する。 本検討では,①を模擬した10cm×10cmの接合面での付着力を検討する要素試 験体による直接引張試験及び曲げ引張試験と,①,②を模擬した150cm×150 cm の接合面で付着力を検討する中規模試験体による静的引き上げ実験及び3次 元FEM解析を用いた解析的検討が行われた。

検討の結果,3次元FEM解析に設定する付着力の材料特性値としては, 要素試験体による直接引張試験結果が適切と考えられるとしている。

第3-1図 原子炉施設の建物基礎と岩盤

3.2 要素試験

3.2.1 実験因子と水準

要素試験の実験因子と水準を第 3-1 表に示す。岩盤種類は硬岩として 花崗岩,軟岩として凝灰岩,硬岩と軟岩の中間的な一軸圧縮強度レベルと して砂岩としている。岩盤の表面は自然破断面としている。レベルコンク リートの強度は,代表的なレベルコンクリート(推定強度 180kg/cm²)と 同程度と考えられる呼び強度 15N/mm²としている。

第3-1表 実験因子と水準

実験因子	水準		
岩盤の種類	①花崗岩(圧縮強度 150N/mm ² 程度)		
	②砂 岩 (圧縮強度 100N/mm ² 程度)		
	③凝灰岩(圧縮強度 20N/mm ² 程度)		
岩盤の表面粗さ	平滑面(自然破断面:凹凸10~20mm程度)		
コンクリート強度	呼び強度 15N/mm ²		

- 3.2.2 試験方法
 - (1) 岩盤の物性

岩盤の物性は、一軸圧縮強度(JGS2521-2000),圧裂引張強度 (JGS2551-2000),及び超音波伝播速度(JGS2110-1998) を測定している。

- (2) コンクリートの物性 コンクリートの物性は、材齢28日及び直接引張試験材齢における圧縮強 度と割裂引張強度を測定している。
- (3) 直接引張試験

試験体寸法は 60cm×10cm×20cm とした。高さ 10cm の岩盤の上部にコン クリートを厚さ 10cm で打設し,湿布養生を行ったとしている。

試験体は1種類の岩盤に対して6体作製し,1試験体について2箇所実施している。試験体にはあらかじめ下部の岩盤に達するまでの切れ込みを コンクリートカッターで入れたとしている。加力箇所上面には10cm×10cm の鋼製治具をエポキシ樹脂で接着したとしている。加力は第3-2図に示す 方法で行い,岩盤とコンクリートの界面が剥離破壊するまでの荷重を測定 している。直接引張試験による付着力Ftは,下式より算定している。

$$F_t = \frac{P}{A}$$

ここで、 F_t : 付着力 (N/mm²)
P : 最大荷重 (N)
A : 破断面積 (mm²)

(4) 曲げ試験

試験体寸法は長さ40cm×幅10cm×高さ10cmとしている。長さ20cmの岩盤を縦に設置し、その上部にレベルコンクリートを厚さ20cmで打設して湿 布養生を行ったとしている。加力は第3-3図に示す方法で行い、界面が剥 離破壊するまでの荷重を測定している。曲げ試験による付着力Fbは、下式 より算定している。

3.2.3 実験結果

(1) 岩盤の物性

岩盤の超音波伝播速度測定結果及び圧縮強度と圧裂引張強度試験結果を 第3-4図に示す。

(2) コンクリートの物性

レベルコンクリートの圧縮強度は、材齢 28 日では平均 21.9N/mm²,直接 引張試験と曲げ試験を実施した材齢 30 日では平均 24.7N/mm²であったとし ている。また、割裂引張強度は材齢 28 日では平均 2.25N/mm²,材齢 30 日で は平均 2.38N/mm²であり、圧縮強度の約 1/10 であったとしている。

(3) 直接引張試験

第3-5図に直接引張試験結果を示す。界面で破壊しなかった結果は点線 で示している。付着力の平均値は,砂岩(1.73N/mm²)>花崗岩(1.22N/mm²) >凝灰岩(0.35N/mm²)となった。岩盤の圧裂引張強度は,砂岩(6.7N/mm²) >花崗岩(5.5N/mm²)>凝灰岩(0.9N/mm²)の順となっており,付着力は岩 盤の圧裂引張強度の順と同じ傾向となったとしている。

※破線のデータは、岩盤がスリットから斜めに破壊した値を示す。(平均値からは除外)

第3-5図 直接引張試験による付着力

(4) 曲げ試験

第3-6回に曲げ試験結果を示す。付着力の平均値は,砂岩(1.98N/mm²) >花崗岩(1.86N/mm²)>凝灰岩(1.04N/mm²)となったとしている。付着力 は岩盤の圧裂引張強度の順と同じ傾向にあり,これは直接引張試験の場合 と同様であるとしている。

直接引張試験による付着力に対する曲げ試験による付着力の比は,花崗 岩では1.5,砂岩では1.15,凝灰岩では3.0となったとしている。コンク リートでは一般的に曲げ強度は引張強度の1.2倍~3倍程度とされており, 今回の試験結果は概ね同じ程度であったとしている。

第3-6図 曲げ試験による付着力

3.3 中規模試験

3.3.1 実験因子と水準

中規模試験シリーズの実験変数を第3-2表に示す。岩盤とレベルコン クリート間を対象としたRCシリーズでは、岩盤を花崗岩とし、その表面 は粗面と平滑面の2種類の自然破砕面としている。粗面及び平滑面の最大 凹凸差は、それぞれ、80mm 程度と20mm 程度としている。また、レベルコ ンクリートと基礎コンクリート間を対象としたCBシリーズでは、実施工 の状況を考慮し、レベルコンクリートの表面を木ごて仕上げとし、レイタ ンスの除去等の処理を施さない状態で接合面に基礎コンクリートを打設 したとしている。試験体は各試験シリーズにつき3体としている。岩盤は 「3.2 要素試験」と同一種類の花崗岩を使用している。

試験 シリーズ	下層材	上層材	下層材表面	
R C – N	花崗岩 (圧縮強度 150N/mm ² 程度)	レベルコンクリート (呼び強度 15N/mm ²)	粗面 (凹凸 80mm 程度)	
R C – F	花崗岩 (圧縮強度 150N/mm ² 程度)	レベルコンクリート (呼び強度 15N/mm ²)	平滑面 (凹凸 20mm 程度)	
СВ	レベルコンクリート (呼び強度 15N/mm ²)	基礎コンクリート (呼び強度 30N/mm ²)	木ごて仕上げ	

第3-2表 中規模試験体シリーズ

3.3.2 試験方法

RCシリーズの形状・寸法を第3-7図に示す。接合面の寸法は,1.5m×1.5mであり,接合面は,岩盤下面から400mm~480mm程度の高さに位置している。CBシリーズ試験体では,下層材と上層材の厚さを400mmとし,他の形状寸法はRCシリーズと同一としている。

第3-8図に加力方法を示す。下層材の3辺をPC鋼棒により反力床に 固定し,基礎浮上がり時における付着力の応力勾配を模擬するため,上層 材の偏心位置に引張力を載荷したとしている。

第3-7図 試験体形状・寸法(RCシリーズ)

第3-8図 加力方法

3.3.3 実験結果

各試験シリーズのコンクリートの強度試験結果を第3-3表に示す。

試験	大臣	圧縮強度	引張強度	ヤング係数
シリーズ	百以小	(N/mm^2)	(N/mm^2)	(N/mm^2)
RC - N	レベルコンクリート	19.5	1.96	2. 26×10^4
RC - F	レベルコンクリート	20.7	1.89	2. 28×10^4
СВ	レベルコンクリート	20.5	2.19	2.27×10^4
	基礎コンクリート	33.6	2.68	2.84 $\times 10^{4}$

第3-3表 コンクリートの強度試験結果

実験結果の一覧を第3-4表に示す。最大荷重は上層材と加力治具の重量を差し引いた値としている。また、付着力は、偏心引き上げ荷重に対して接合面の付着応力分布を線形と仮定して力のつり合いより評価した値であるとしている(第3-9図)。こうした評価方法による付着力は、花崗岩とレベルコンクリート間で花崗岩表面の粗度によらず、0.5N/mm²程度となり、また、レベルコンクリートと基礎コンクリート間で0.6N/mm²程度となったとしている。

⇒→ 雨→ /→-	最大荷重	付着力	平均付着力		
武阙火平	(kN)	(N/mm^2)	(N/mm^2)		
RC - N1	360.9	0.45			
RC - N2	462.9	0.58	0.53		
RC - N3	447.1	0.56			
RC - F1	437.0	0.54			
RC - F2	442.8	0.55	0.54		
RC - F3	415.5	0.52			
С В — W 1	550.8	0.69			
С В - W 2	404.3	0.50	0.63		
С В – W З	572.3	0.71			

第3-4表 実験結果

第3-9図 中規模試験による付着力評価方法

- 3.4 中規模試験体を対象とした3次元FEM解析
- 3.4.1 解析概要

花崗岩とレベルコンクリートの付着力は,直接引張試験では平均値が 1.2N/mm²程度であり,偏心引き上げ荷重に対して付着応力に線形分布を仮 定した場合の中規模試験結果は0.5N/mm²程度となったとしている。両者に よる付着力の評価結果の差を検討するため,RCシリーズ試験体を対象に, 接合面の付着特性をジョイント要素でモデル化した3次元FEM解析を 実施している。

第3-10図に解析モデルを示す。対称性を考慮し、試験体の半分を解析 モデルとしている。

花崗岩とレベルコンクリートはソリッド要素,両者の界面はジョイント 要素でモデル化したとしている。花崗岩とレベルコンクリートは弾性体と し,弾性定数は第3-5表に示す材料試験結果を用いたとしている。また, ジョイント要素は,第3-11図に示すように相対変位が0.002mmまでは付 着力を保持するものとし,この付着力は直接引張試験結果を参考に1N/mm² としたとしている。

第	3 -	5表	弾性定数
~			

材料	ヤング係数 (N/mm ²)	ポアソン比
レベルコンクリート	2. 3×10^4	0.18
花崗岩	4. 45×10^4	0.24

第 3-11 図 ジョイント要素の特性

3.4.2 解析結果

解析の結果,引き上げ荷重が448kNで接合面前面に剥離が生じ,最大荷 重に達したとしている。RCシリーズ試験体の最大荷重は361kN~463kN (第3-4表)であり,最大荷重の解析結果は中規模試験結果と概ね良好 に対応したとしている。

最大荷重時のジョイント要素の,対称面(x=0m)とD面(X=0.75m), 及び加力治具近傍のX=0.25mでの垂直応力分布を第3-12図に示す。

レベルコンクリート側面(D面)におけるジョイント要素の垂直応力分 布はほぼ線形と見なせるものの,中心軸近傍では,加力点側の端面(A面) に大きな垂直応力が生じる非線形分布を呈している。

中規模試験と直接引張試験による付着力の評価結果の差は, 接合面の付 着応力分布の評価方法に起因していると考えられ, 付着力の材料特性値と しては, 直接引張試験による値がより適切と考えられるとしている。

第3-12図 ジョイント要素の垂直応力分布(断面)

4条-別紙 2-添 1-14

3.5 まとめ

「JNES報告書」の知見の島根原子力発電所への適用性の確認と,「JNES報告書」の試験方法を参考とした4章の試験計画の策定を目的として, 「JNES報告書」の研究内容を確認した。

確認の結果,「JNES報告書」で対象としている岩盤は実機と同程度の 硬岩であり、レベルコンクリートは一般的な強度のものを用いていることか ら、その知見は島根原子力発電所において適用することが可能と考えられる。

また、4章の試験計画の策定にあたっては、「JNES報告書」の知見を 踏まえた考察を行った。

- 「JNES報告書」では以下の知見が得られたとされている。
 - ・面的な広がりをもつ中規模試験体の試験及びそのシミュレーション解析 結果から、基礎浮上り挙動時の建物-地盤間の接合面の付着応力分布は、 基礎浮上りが生じている側の端面に大きな垂直応力が生じる非線形分布 となる。
 - ・付着力として設定する値として,接合面を100mm×100mmとした直接引張 による付着力試験結果を用いることで基礎浮上り挙動をよく再現できた。 これに対し,以下の考察を行い,4章の試験計画を策定した。
 - ・実際の建物・構築物は面的な広がりをもつことから、基礎浮上り挙動時の建物-地盤間の接合面の付着応力分布は、中規模試験体と同様に、基礎浮上りが生じている側の端面に大きな垂直応力が生じる非線形分布となると考えられる。
 - ・基礎浮上り挙動の接合面の応力状態は、各要素レベルでは上向きの引張
 応力に対し付着力が抵抗する状態となることから、解析においては、接
 合面の各要素レベルに設定する付着力の値は単純引張の応力状態での試
 験結果に基づく必要があると考えられる。
 - ・単純引張の応力状態を試験体で再現するにあたっては、試験体のスケールが大きいとせん断や曲げが生じやすく、また、スケールが小さいと粗骨材等の影響を受け試験結果が安定しないことから、試験体形状を適切に設定しなければならないと考えられる。「JNES報告書」の直接引張試験の結果は、中規模試験体の基礎浮上り挙動をよく再現できていることから、直接引張試験体の接合面(100mm×100mm程度)は単純引張の応力状態を測定するにあたり、適切なスケールであると考えられる。

4. 付着力試験

「JNES報告書」の結果を踏まえて,実際の建物・構築物の建物-地盤間 に設定する付着力として,直接引張試験結果を用いることとする。よって,島 根原子力発電所の地震応答解析モデルに設定する付着力の値を求めるため,発 電所サイトの岩を用いた付着力試験を実施した。付着力試験方法の策定にあた っては,強度試験の項目・試験内容及び接合面の形状(スケール)について, 「JNES報告書」を参考とした。付着力試験方法の策定概要を第4-1図に示 す。

用 4[−]1 凶 们 有 刀 訊 練 刀 伝 切 束 止

4.1 試験概要

建物の建設にあたっては、施工精度確保の観点から岩盤上にコンクリート (レベルコンクリート)を打設し基礎底面を平坦にした後、基礎コンクリートの打設を行っている。

そこで,建物基礎底面と地盤(岩盤)間に生じる付着力を把握するため, 岩盤-レベルコンクリート間,及びレベルコンクリート-基礎コンクリート 間を模擬した試験体を用いて付着力試験を行った。なお,岩盤-レベルコン クリート間の付着力試験は,敷地の岩盤状況の影響を考慮するため敷地内の 岩盤上で実施する。

地震応答解析に用いる付着力はこれらの試験結果に基づき設定する。

4.2 岩盤-レベルコンクリート間の付着力試験

- 4.2.1 使用材料の概要
 - (1) 岩盤の種類

島根原子力発電所の耐震上重要な建物が設置されている岩盤(以下「建物直下地盤」という。)と同種の岩を用いることとし、付着力試験に用いた岩盤の種類を第4-1表に示す。いずれも岩盤の表面は自然面とした。

4 条-別紙 2-添 1-16

敷地の地質水平断面図を第4-2図に,地質鉛直断面図を第4-3図に示す。

建物直下地盤は主に黒色頁岩,凝灰岩及びこれらの互層から構成されて いる。

第4-1表 岩盤の種類

No.	岩盤種類	岩盤表面の状態	試験(付着力試験種別)
\bigcirc	黒色頁岩	自然面:比較的平滑	現地試験注1
2	凝灰岩	自然面:凹凸数 mm 程度	現地試験注1

注1:敷地内の岩盤に直接コンクリートを打設

第4-2図 地質水平断面図(2号炉)

注1:制御室建物,廃棄物処理建物位置を投影

第4-3(1)図 地質鉛直断面図(南北方向) (2号炉)

注2:制御室建物位置を投影

第4-3(2)図 地質鉛直断面図(東西方向)(2号炉)

4 条-別紙 2-添 1-18

- (2) レベルコンクリートの強度レベルコンクリートの強度は、18N/mm²とした。
- 4.2.2 岩盤及びレベルコンクリートの強度試験
- (1) 岩盤の強度試験 岩盤の強度試験として、地盤工学会の「地盤工学関係規格・基準⁽²⁾」に基 づき、圧縮強度、圧裂引張強度の測定を行った。
- (2) コンクリートの強度試験

コンクリートの強度試験として、付着力試験材齢における圧縮強度(J
 IS A1108)と割裂引張強度(JIS A1113)の測定を行った。

4.2.3 付着力試験

試験は、建物直下地盤と同等な岩盤を対象に、敷地内の岩盤(黒色頁岩及び凝 灰岩)上に φ 100mm,高さ約 100mm のコンクリートを直接打設した。試験位置を 第4-4 図に、試験位置付近の地質断面図(水平,鉛直)を第4-5 図に、試験体 の概要を第4-6 図に、岩盤の状況を第4-7 図に示す。第4-5 図は、敷地地盤 の傾斜から試験位置の地質を推定したものであり、第4-7 図のスケッチ図と比 較的整合していることが分かる。

試験体は試験材齢前に型枠を脱型し、上部の引張治具をロードセルに接続し、 岩盤とコンクリート境界面が剥離破壊する際の最大荷重を測定した。

付着力試験装置の概要を第4-8回に示す。既工認実績における付着力試験方法との比較を補足資料-1に示す。

付着力F_tは下式により算出した。

 $F_t = \frac{P}{A}$ ここで、 F_t :付着力 (N/mm²) P :最大荷重 (N) A :断面積 (mm²)

標本数は、JNES報告書と同様に1岩種あたり12個とし、全部で24個の 試験体を用いて付着力試験を実施した。なお、標本数の妥当性について、他の 原位置試験における標本数を確認すると、土木学会指針⁽³⁾に規定されている原位 置における岩盤試験の標本数は、3ないし4個以上^{注1}とされており、地盤工学 会の「岩盤の原位置一軸引張り試験方法」^{注2}においても3個以上とされている ことから、これらと比べても十分な標本数といえる。

注1:土木学会指針に規定された試験の標本数(原位置岩盤の平板載荷試験:3個以上,

原位置岩盤のせん断試験:4個以上,岩盤の孔内載荷試験:3点以上)

- 注2: 令和元年6月末で公示終了
- 4 条-別紙 2-添 1-19

第4-4図 試験位置

第4-6図 試験体の概要(直接引張試験)

第4-7図 岩盤の状況(直接引張試験)

第4-8図 付着力試験装置の概要(直接引張試験)

⁴ 条-別紙 2-添 1-22

4.2.4 試験結果

(1) 岩盤の強度

試験に用いた岩盤の圧縮強度及び圧裂引張強度の試験結果を第4-2表に 示す。

巴般话粘	圧縮強度	圧裂引張強度		
石盛裡短	(N/mm^2)	(N/mm^2)		
黒色頁岩	47.6	7.14		
凝灰岩	49.1	9.36		

第4-2表 岩盤の物性試験結果注1

注1:試験体6本の平均値

(2) コンクリートの強度

試験に用いたコンクリートの圧縮強度及び割裂引張強度を第4-3表に示 す。

3/1 0 张		
材齢	圧縮強度	割裂引張強度
(日)	(N/mm^2)	(N/mm^2)
7	26.5	2.52

第4-3表 コンクリートの物性試験結果注2

注2:試験体6本の平均値

(3) 付着力

付着力試験の結果を第4-4表,第4-9図に示す。

建物直下地盤は主に黒色頁岩と凝灰岩で構成されていることを踏まえ, 岩盤全体として評価した付着力の平均値は 0.98N/mm²(標準偏差:0.30N/mm²) となった。

なお,個々の岩盤における付着力の平均値は,黒色頁岩 0.81N/mm²(標準 偏差:0.26N/mm²),凝灰岩 1.15N/mm²(標準偏差:0.24N/mm²)であった。

第4-4表 付着力試験の結果(岩盤-レベルコンクリート)

試験体の種類		平均値 (N/mm ²)	
岩盤-レベルコンクリート			
	黒色頁岩-レベルコンクリート	0.81	0.98
	凝灰岩-レベルコンクリート	1.15	

4条-別紙 2-添 1-23

岩盤-レベルコンクリート間における付着力試験実施後の破断面の状況 を、参考資料-3に示す。

なお、凝灰岩-レベルコンクリート間の付着力は、JNES報告書に比 べて大きな値となっている(島根:1.15N/mm²,JNES報告書:0.35N/mm²) が、JNES報告書では、「直接引張試験による付着力は岩盤の圧裂引張 強度の順と同じ傾向となった。」と報告されていることを踏まえ、付着力 と圧裂引張強度に関係性があると判断し、両者の圧裂引張強度を比較する と、島根がJNES報告書に比べて約11倍大きな値(島根:9.36N/mm²,J NES報告書:0.868N/mm²)となっていることから、この差は凝灰岩自体の 物性(圧裂引張強度)の違いによるものである。

第4-9図 付着力試験の結果(岩盤-レベルコンクリート)
- 4.3 レベルコンクリート-基礎コンクリート間の付着力試験
- 4.3.1 レベルコンクリート及び基礎コンクリートの強度 レベルコンクリートの強度は 18N/mm²とし,基礎コンクリートの強度は 21N/mm²とした。
- 4.3.2 コンクリートの強度試験
 コンクリートの強度試験として、付着力試験材齢における圧縮強度(J
 IS A1108)と割裂引張強度(JIS A1113)の測定を行った。
- 4.3.3 付着力試験

試験体は、高さ約 100mm に打設したレベルコンクリートを7日間養生した後に、高さ約 100mm の基礎コンクリートを打設し、φ 100mm×高さ 200mm の試験体を作製し、さらに7日間養生した後に試験を実施した。レベルコンクリートの接合面の状態は木ごて押えとした。

付着力は、岩盤-レベルコンクリート間の付着試験と同様に、コンクリート相互の境界面が剥離破壊する際の最大荷重を測定し算出した。試験体 及び付着力試験方法の概要を第4-10図に示す。

第4-10図 試験体及び付着力試験方法の概要(室内試験)

- 4.3.4 試験結果
- (1) コンクリートの強度コンクリートの圧縮強度及び割裂引張強度の試験結果を第4-5表に示す。

種類	材齢 (日)	圧縮強度 (N/mm ²)	割裂引張強度 (N/mm ²)
レベルコンクリート(F c 18)	14	33.3	3.04
基礎コンクリート(F c 21)	7	27.2	2. 79

第4-5表 コンクリートの物性試験注1

注1 試験体3本の平均値

(2) 付着力

付着力試験の結果を第4-11図に示す。 付着力の平均値は、1.61N/mm²(標準偏差:0.12N/mm²)であった。

第4-11図 付着力試験の結果 (レベルコンクリート-基礎コンクリート)

5. 地震応答解析に用いる付着力の設定

「岩盤-レベルコンクリート間の付着力試験」及び「レベルコンクリート-基礎コンクリート間の付着力試験」の結果並びに設定付着力を第5-1表に示す。 「岩盤-レベルコンクリート間の付着力試験」の付着力の方が小さいことから, 「岩盤-レベルコンクリート間の付着力試験」の付着力試験結果より,地震応 答解析に用いる付着力を設定する。

第5-1表に示す通り,地震応答解析に用いる付着力は,2種の岩種のうち平均値の小さい黒色頁岩の平均値 0.81N/mm²に対して2倍の安全率を考慮し 0.40N/mm²を採用することとした。

∕ ≇4€	学校体の孫辉	平均值	設定付着力
試験 試験 試験 が が が が が が が が が が が が が が が が		(N/mm^2)	(N/mm^2)
原位置	岩盤-レベルコンクリート	0.00	
試験注1	黒色頁岩-レベルコンクリート	0.81	0.40 注2
	凝灰岩-レベルコンクリート	1.15	0.40
室内 試験	レベルコンクリート-基礎コンクリート	1.61	

第5-1表 付着力試験の結果及び設定付着力

注1:直接引張試験

注2:各試験のうち、平均値の小さい黒色頁岩の平均値に対して2倍の安全率を考慮

ここで,付着力として設定した 0.40N/mm²という値について,定量的な評価を 行い,その保守性を確認する。

第 5-1 表に示す通り、「岩盤-レベルコンクリート」の付着力の平均値は 0.98N/mm²となっている。また、岩種別の平均値では、黒色頁岩は 0.81N/mm²、 凝灰岩は 1.15N/mm²となっており、黒色頁岩は凝灰岩より付着力の平均値が小さ くなっている。

岩盤物性を用いる解析では一般に試験結果の平均値を用いるが、今回実施した付着力試験は試験方法が標準化されていない^{注1}ことから、物性値のばらつき、 原位置試験の不確実性を踏まえて、平均値をそのまま用いるのではなく、保守 性を考慮し、平均値に対して2倍の安全率を考慮した。

また,建物直下地盤は主に黒色頁岩,凝灰岩及びこれらの互層から構成され ているが,実際の建物直下地盤における黒色頁岩と凝灰岩の構成割合を定量的 に確認できないこと,建物毎でその構成割合が異なることを踏まえ,付着力の 設定には,岩盤全体の平均値ではなく,保守的に値の小さい黒色頁岩のみ建物 直下地盤を構成するものと見なして黒色頁岩の平均値 0.81N/mm²に2倍の安全 率を考慮した 0.40N/mm²を採用した。なお,設定した付着力は,試験結果の最低 値 0.50N/mm²を下回る値となっている。

4 条-別紙 2-添 1-27

設定付着力に関する統計的な考察を参考資料-4 に示す。設定付着力 0.40N/mm²は,岩盤全体の平均値 0.98N/mm²に対して-1.93 σ ,黒色頁岩の平均 値 0.81N/mm²に対して-1.58 σ に相当する。

なお,設定した付着力は,既工認実績と比較しても試験結果に対して十分な 保守性を考慮した値である(補足資料-2参照)。

以上より,地震応答解析に用いる付着力 0.40N/mm²は十分に保守的な値である。

注1:地盤工学会において、「岩盤の原位置一軸引張り試験方法」(令和元年6月末公示終了) が定められ、その適用範囲に「岩盤とコンクリートの付着強さを求める場合にも適用で きる。」されている。今回実施した付着力試験は、本基準に示されているものと同等の 試験方法となっていることを確認した。 適用性の確認

付着力について, 島根原子力発電所の建物・構築物への適用性を以下の通り 検討した。

- 6.1 材料条件
- 6.1.1 岩盤

建物直下地盤及び試験地盤における岩盤物性を第6-1表に示す。 物性値を比較すると建物直下地盤と試験地盤はほぼ同等と見なせるこ とから、地盤の差異による試験結果への影響はない。

両者の比較の詳細を参考資料-5に示す。

×1. + · · = · ·		
	建物直下地盤 注2	試験地盤
	主に黒色頁岩,凝灰岩及び	黒色頁岩, 凝灰岩
岩種	これらの互層から構成さ	
	れる	
些の半能	岩盤分類:大部分が Сн級	亀裂,風化等がないこと
石の仏態	及び C M級 $^{\pm 1}$	を目視で確認
	黒色頁岩	黒色頁岩
避冲冲冲电	縦波:約 4.4km/s	縦波:約 3.8km/s
"押住 仮 还没	橫波:約2.1km/s	橫波:約2.3km/s
建物电下地盘:P5 使唐 封静地船,初立波涛鹿测索	凝灰岩	凝灰岩
[訊駛地盤: 超 首 彼 迷 及 側 足]	縦波:約 4.2km/s	縦波:約 2.9km/s
	橫波:約2.0km/s	橫波:約 1.5km/s
口刻引進改産	黒色頁岩:8.82N/mm ²	黒色頁岩:7.14N/mm ²
庄 农11	凝灰岩 : 9.03N/mm ²	凝灰岩 : 9.36N/mm ²

第6-1表 建物直下地盤及び試験地盤における岩盤物性

注1:電研式岩盤分類(田中治雄 土木技術者のための地質学入門, 1966)による。

- CH級:造岩鉱物及び粒子は石英を除けば風化作用を受けてはいるが,岩質は比較的堅硬であ る。一般に褐鉄鉱などに汚染せられ,節理あるいは亀裂間の粘着力はわずかに減少し ており,ハンマーの強打によって割れ目に沿って岩塊が剥脱し,剥脱面には粘土質物 質の薄層が残留することがある。ハンマーによって打診すれば,少し濁った音を出す。
- CM級:造岩鉱物及び粒子は石英を除けば風化作用を受けて多少軟質化しており,岩質も多少 軟らかくなっている。節理あるいは亀裂間の粘着力は多少減少しており,ハンマーの 普通程度の打撃によって割れ目に沿って岩塊が剥脱し,剥脱面には粘土質物質の層が 残留することがある。ハンマーによって打診すれば,多少濁った音を出す。
- 注2:島根2号炉原子炉建物位置のボーリング孔から採取した試料による試験。

(島根原子力発電所原子炉設置許可変更申請書(平成25年12月25日))

6.1.2 レベルコンクリート

レベルコンクリートの強度は、「JNES報告書」を参考に、代表的な レベルコンクリート(推定強度180kg/cm²)と同程度の呼び強度18N/mm² としたことから、レベルコンクリート強度による試験結果への影響はない。

- 6.1.3 基礎コンクリート
 基礎コンクリートの強度は、試験においては 21N/mm²、実機においては
 23.5N/mm²(ただし制御室建物は 22.1N/mm²)であり、試験と実機は同程度
 であることから、基礎コンクリート強度による試験結果への影響はない。
- 6.2 試験体
- 6.2.1 岩盤-レベルコンクリート間

試験体形状については, 接合面寸法は φ 100mm とし, 表面形状は黒色頁 岩, 凝灰岩共に凹凸 10mm 程度とした。

これは、「3. JNES報告書による付着力試験に関する研究」の「3.2 要素試験」の直接引張試験とほぼ同一の接合面寸法としている。

一方,表面形状はJNES報告書に比べて平滑であるが,「3.3中規模 試験」によると,表面粗度によらず同程度の付着力が得られている。以上 より,試験体による影響はない。

6.2.2 レベルコンクリート-基礎コンクリート間

接合面寸法は, φ100mm とした。表面形状はレベルコンクリートの標準 的な仕上げである木ごて仕上げとした。

これは、「3. JNES報告書による付着力試験に関する研究」の「3.2 要素試験」の直接引張試験とほぼ同一の接合面寸法及び表面形状であるこ とから試験体による影響はない。

6.2.3 試験方法の違いについて

「JNES報告書」による直接引張試験及び本章の付着力試験(直接引 張試験及び室内試験)の試験方法の違いを第6-1図に示す。各試験方法 は反力の取り方は異なるが,接合面はほぼ同一形状であり,接合面の応力 状態も同一である。また,付着力に対して,コンクリート及び岩盤の引張 強度及び圧縮強度は十分に大きいことから,基本的には接合面以外での破 壊は生じない。以上より,それぞれの試験から求まる付着力について,試 験方法の違いによる影響はない。

第6-1図 試験方法の違い

6.3 設計用付着力としての信頼性,保守性及び地盤のばらつきを踏まえた網羅 性・代表性について

5. 及び 6.1 のとおり,建物基礎底面の付着力として設定した値に十分な 保守性・妥当性があると判断しているが,試験地盤と建物直下地盤が離れ ており,建物直下地盤近傍での直接的な付着力試験データが得られていな いため,設計に用いる付着力について,信頼性,保守性及び地盤のばらつ きを踏まえた網羅性・代表性に対する説明性を向上させる観点から,1, 2号炉建物近傍において追加試験を実施する。追加付着力試験の方針を6.4 に示す。

また,詳細設計段階において,追加試験結果も踏まえ,建物基礎底面の 付着力として設定した値の保守性・妥当性を説明する。

- 6.4 追加付着力試験の方針
- 6.4.1 追加試験の目的

設計に用いる付着力について,説明性を向上させる観点から,1,2号 炉建物近傍において追加試験を実施する。 6.4.2 試験場所の選定

1,2号炉エリアを対象に,耐震上重要な建物が設置されている岩盤と 同様な岩盤とする。また,追加試験の目的,3号炉エリアで実施した試験 (以下,「前回試験」という)条件を踏まえて,以下の岩相,岩級が確認さ れる場所を選定する。追加試験の候補地を第6-2図に示す。

· 岩相:黑色頁岩

・岩級:CH級

なお、1、2号炉エリアでは、所定の岩盤が出現するまでに相当程度の 掘削が必要であることから、工事で掘削済みの箇所を中心に候補地を選定 した。

第6-2図 追加試験の候補地

- 6.4.3 試験方法
 前回試験と同様の試験方法(原位置試験(直接引張試験))を基本とする。
 (4.2 を参照)
- 7. 参考文献
 - (1) 独立行政法人 原子力安全基盤機構:平成18年度 原子力施設等の耐震性 評価技術に関する試験及び調査 原子力施設の非線形地盤・構造物相互作 用試験及び基準整備 基礎浮上り評価手法の調査に関する報告書,2007
 - (2) 地盤工学会:地盤工学関係 規格·基準

JGS 2521-2009 岩石の一軸圧縮試験方法

JGS 2551-2009 圧裂による岩石の引張り強さ試験方法

(3) 土木学会:原位置岩盤試験法の指針,2000

4 条-別紙 2-添 1-32

廃棄物処理建物の地震応答解析

1. 概要

本資料は,廃棄物処理建物の地震応答解析に採用するジョイント要素を用いた3次元FEMモデルによる地震応答解析について,解析結果が解析モデルの 適用範囲内に収まることを確認した結果について説明する。

- 2. 廃棄物処理建物の概要
- 2.1 位置

廃棄物処理建物の設置位置を第2.1-1図に示す。

2.2 構造概要

廃棄物処理建物は、地上5階、地下2階建の鉄筋コンクリート造の建物で ある。

廃棄物処理建物の平面寸法は,54.9m(一部 37.86m)^{注1}(NS)×56.97m (一部 40.5m)^{注1}(EW)である。基礎スラブ底面からの高さは 42.0m であ る。また,廃棄物処理建物は隣接する他の建物と構造的に分離している。

廃棄物処理建物の概要を第2.2-1 図及び第2.2-2 図に示す。 廃棄物処理建物の基礎は厚さ3.0mのべた基礎で,岩盤に直接設置している。 建物に加わる地震時の水平力はすべて耐震壁に負担させている。

注1:建物寸法は壁外面寸法とする。

第2.2-1図 廃棄物処理建物の概要(平面図)(EL 8.8m^{注2})(単位:m) 注2:「EL」は東京湾平均海面(T.P.)を基準としたレベルを示す。

(EW断面)

第2.2-2図 廃棄物処理建物の概要(断面図)(単位:m)

4 条-別紙 2-添 2-3

3. 検討用地震動

検討に用いる地震動は、基準地震動Ss-D, Ss-F1, Ss-F2, S s-N1及びSs-N2とする。

- 4. 地震応答解析
- 4.1 入力地震動の算定

水平方向の入力地震動は,建物直下地盤を水平成層にモデル化した実地盤 モデルを用いた一次元波動論によって算定する。

まず,解放基盤表面(T.P.-10m)で定義される基準地震動Ss(2Eo) を用いて,T.P.-10m以浅の地盤を取り去った解放地盤モデルで一次元波動 論による応答解析を行い,実地盤モデル下端位置(T.P.-215m)への入力 地震動(2E1)を算定する。次に,この地震動を用いて,T.P.-10m以浅 の地盤を考慮した実地盤モデルで一次元波動論による応答解析を行い,建物 基礎下端位置(T.P.0.0m)における応答波(E+F)を求め,これを建物 モデルへの入力地震動とする。この時,底面切欠き力も併せて考慮する。

表層は、拘束圧依存性と「せん断剛性-せん断ひずみ関係(G/G₀- γ 曲線)」及び「減衰定数-せん断ひずみ関係(h- γ 曲線)」を基に、地震時のひずみレベルを考慮した等価な剛性と減衰を設定している。

水平方向の入力地震動作成の概要を第4.1-1 図に,地盤各層の物理定数を 第4.1-1表に示す。

なお,地盤を3次元FEMでモデル化することから,基礎底面レベルにお ける地盤の応答が基礎底面切欠き力を考慮した入力地震動と一致するように 補正した地震動を,3次元FEM地盤モデルの底面に入力する。

建物への入力地震動(E+F)の加速度時刻歴波形と加速度応答スペクト ルを第4.1-2図~第4.1-6図に示す。

入力地震動の算定には解析コード「SHAKE」を用いる。

4 条-別紙 2-添 2-5

		S波	P波	単位体積	ポアソン	ヤング	せん断	減衰
		速度	速度	重量	比	係数	弾性係数	定数
層		V s	V p	γ	ν	Е	G	h
番	号	m/s	m/s	kN/m ³ (tf/m ³)		$\begin{array}{c} \times10^{5}\mathrm{kN/m^2} \\ (\times10^{4}\mathrm{tf/m^2}) \end{array}$	$\begin{array}{c} \times 10^{5}\mathrm{kN/m^2} \\ (\times 10^{4}\mathrm{tf/m^2}) \end{array}$	%
表層 ①-1	S s	127	422	20.7 (2.11)	0. 45	0.99 (1.01)	0.341 (0.348)	8
岩盤	3	1600	3600	24.5 (2.50)	0.377	176.5 (180.0)	64.0 (65.3)	3
岩盤	4	1950	4000	24.5 (2.50)	0.344	256.0 (261.0)	95.1 (97.0)	3
岩盤	\$5	2000	4050	26.0 (2.65)	0. 339	283.4 (289.0)	105.9 (108.0)	3
岩盤	6	2350	4950	27.9 (2.85)	0.355	427.6 (436.0)	157.9 (161.0)	3

第4.1-1表 地盤の物理定数

第4.1-2図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-D)

 (Ss-F1H(EW成分):EW万向)
 第4.1-3図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-F1)

(SS-F2H(EW成分): EW方向) 第4.1-4図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-F2)

第4.1-5 図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-N1)

第4.1-6図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-N2)

- 4.2 ジョイント要素を用いた3次元FEMモデルによる地震応答解析
- (1) 地震応答解析モデル

廃棄物処理建物は,建物と地盤との相互作用,基礎浮上り非線形及び基礎 と岩盤との付着力を考慮した,建物を質点系,地盤を3次元FEMでモデル 化した地震応答解析モデルにより,地震応答解析を行う。

水平方向の建物の地震応答解析モデルは,主要な耐震壁を曲げ・せん断部 材に置換し,重量を各階床位置に集中させた1軸多質点系モデルとする。な お,回転慣性重量は基礎下端に集約して評価する。

建物の減衰はモード減衰とし、各次のモード減衰定数は建物のひずみエネ ルギーに比例した値として算定する。建物の鉄筋コンクリート部分について は減衰定数を5%とする。

建物の非線形特性については、「JEAG4601-1991 追補版」に基 づき鉄筋コンクリート部には最大点指向型のトリリニア・スケルトン曲線を 設定する。

地盤は、建物基礎下端以下を実地盤モデルに基づき成層地盤とし、「JEAG4601-1991 追補版」により、成層補正を行ったのち、等価な一様地盤としての物性値を定め、3次元FEMを用いてモデル化する。3次元FEM地盤モデルと建物基礎底面の間には、島根原子力発電所における付着力試験の結果に基づき設定した付着力0.40N/mm²を考慮する。

建物の基礎浮上り非線形については,建物基礎と3次元FEM地盤モデル との間に設定した付着力を超える引張力を負担しないジョイント要素^{注1}を 用いることにより,浮上りを評価する。

地盤モデル底面及び側面は粘性境界を設けることにより, 遠方地盤への波 動の逸散を考慮する。

地震応答解析は、上記復元力特性を用いた弾塑性時刻歴応答解析とし、地 震応答解析モデル(水平方向)を第4.2-1 図に、建物質点系モデルの諸元 を第4.2-2 図及び第4.2-3 図に示す。

地震応答解析には解析コード「NAPISOS Ver.2.0」を用いる。

注1:建物モデルの自重によりジョイント要素に発生する応力(地反力)を算定し、こ れを地震応答解析の初期応力とする。

⁴ 条-別紙 2-添 2-13

4条-別紙 2-添 2-14

4 条-別紙 2-添 2-15

(2) 地震応答解析結果

基準地震動Ss-D, Ss-F1, Ss-F2, Ss-N1及びSs-N 2(水平動)による最大応答値を第4.2-4図~第4.2-9図に示す。最大接 地圧及び最小接地率を第4.2-1表に示す。

参考として,耐震壁の最大応答せん断ひずみは,最大で 0.51×10⁻³ (S s - D H, N S 方向)であり,評価基準値(2.0×10⁻³)に対して十分な余裕があることを確認している。

検討の結果,ジョイント要素を用いた3次元FEMモデルによる最小接地 率は98.8% (Ss-DH, NS方向),93.9% (Ss-DH, EW方向)で あり,「JEAC4601-2008」で適用範囲の目安とされている35%を上 回っていることから,解析結果が解析モデルの適用範囲内に収まることを確 認した。

以上のことから,廃棄物処理建物の地震応答解析にジョイント要素を用いた3次元FEMモデルを採用する。

最大応答加速度 (m/s ²)								
Ss-DH	S s - F 1 H (N S成分)	S s — F 2 H (N S成分)	S s - N 1 H	S s - N 2 H (N S 成分)	S s - N 2 H (EW成分)			
18.2	13.8	16.1	16.1	14.8	16.7			
13.9	11.3	11.2	11.7	12.0	13.4			
12.5	10.6	9.59	9.73	8.87	9.67			
11.2	9.46	8.98	9.88	8.22	8.01			
10.6	8.51	8.90	8.25	8.00	7.81			
10.2	8.12	8.31	7.75	7.31	7.07			
10.0	7.89	7.59	7.41	6.76	6.62			
9.66	7.56	7.36	6.88	7.13	6.05			
9.43	7.36	6.89	6.54	6.98	5.77			
7.52	6.04	5.58	5.40	5.17	5.14			
7.46	5.89	5.30	5.26	5.01	5.09			
	S s - DH 18. 2 13. 9 12. 5 11. 2 10. 6 10. 2 10. 0 9. 66 9. 43 7. 52 7. 46	S s - DHS s - F 1 H (N S $ddy)$ 18. 213. 813. 911. 312. 510. 611. 29. 4610. 68. 5110. 28. 1210. 07. 899. 667. 569. 437. 367. 526. 047. 465. 89	$S = -DH$ $S = -F + H$ (N S $R \oplus M$) $S = -F + 2H$ (N S $R \oplus M$)18.213.816.113.911.311.212.510.69.5911.29.468.9810.68.518.9010.28.128.3110.07.897.599.667.567.369.437.366.897.526.045.587.465.895.30	S = -DH $S = -F + H$ $(N S a d d d d d d d d d d d d d d d d d d$	S s - DH $S s - F 1H$ $(NS RGA)$ $S s - F 2H$ $(NS RGA)$ $S s - N 1H$ $S s - N 2H$ $(NS RGA)$ 18.213.816.116.114.813.911.311.211.712.012.510.69.599.738.8711.29.468.989.888.2210.68.518.908.258.0010.28.128.317.757.3110.07.897.597.416.769.437.366.896.546.987.526.045.585.405.177.465.895.305.265.01			

第4.2-4 図 最大応答加速度(NS方向)

部材	最大応答曲げモーメント (MN・m)								
番号	Ss-DH	S s - F 1 H (N S成分)	S s - F 2 H (N S成分)	S s – N 1 H	S s - N 2 H (N S 成分)	S s - N 2 H (EW成分)			
1	511	387	432	450	414	459			
2	1550	1230	1320	1400	1300	1490			
3	3200	2580	2580	2770	2690	3040			
4	5060	4090	4000	4280	4240	4710			
5	7480	6470	6140	6300	6210	6820			
6	8360	7320	6860	6950	6850	7490			
7	10100	8990	8290	8270	8070	8690			
8	12200	11100	10200	10100	9590	10200			
9	16400	15300	13700	13600	12600	12600			
10	18800	17800	15800	15400	14200	13800			

図 最大応答曲げモーメント(NS方向)

質点		最大応答加速度(m/s ²)								
番号	Ss-DH	S s — F 1 H (EW成分)	S s — F 2 H (EW成分)	S s – N 1 H	S s - N 2 H (N S 成分)	S s - N 2 H (EW成分)				
1	17.9	12.0	14.1	16.3	15.8	14.8				
2	14.6	10.7	11.6	13.9	12.6	12.0				
3	12.0	9.79	9.06	11.1	11.6	9.28				
4	11.8	8.50	8.73	9.73	10.6	8.68				
5	10.2	7.96	8.90	8.39	9.68	7.94				
6	9.60	7.33	7.90	8.34	9.16	8.34				
7	10.7	6.91	7.25	8.33	9.58	8.29				
8	9.06	6.43	6.79	7.87	7.14	7.81				
9	8.86	6.20	5.86	7.91	6.08	7.15				
10	7.84	5.82	5.17	5.39	4.86	6.89				
11	7.75	5.75	5.15	5.26	4.74	6.89				
		- ++ ++ +++	(

第4.2-7図 最大応答加速度(EW方向)

部材	最大応答曲げモーメント (MN・m)								
番号	Ss-DH	S s - F 1 H (EW成分)	S s — F 2 H (EW成分)	S s – N 1 H	S s - N 2 H (N S 成分)	S s - N 2 H (EW成分)			
1	487	340	398	450	443	409			
2	1530	1110	1300	1480	1470	1330			
3	3080	2430	2690	3070	2970	2720			
4	4970	4060	4230	4840	4710	4270			
5	7710	6400	6250	7230	7400	6390			
6	8710	7180	6950	8050	8340	7100			
7	10700	8750	8330	9650	10200	8470			
8	13100	10700	10000	11800	12600	10100			
9	17800	14300	13100	15700	16900	13200			
10	20500	16400	15000	17900	19300	14900			

第4.2-9図 最大応答曲げモーメント(EW方向)

			N S	方向				
	Sa-DU	Ss-F1H	Ss-F2H	Sa-N1U	Ss-N2H	Ss-N2H		
	<u> 38</u> -ЛЦ	(NS成分)	(NS成分)	SS-NIL	(NS成分)	(EW成分)		
最大接地圧 (kN/m ²)	6457	5389	5728	6059	5856	5743		
最小接地率 (%)	98.8	100.0	100.0	99.0	100.0	100.0		
	EW方向							
			ΕW	方向				
	Ss-DH	Ss-F1H (EW成分)	EW Ss-F2H (EW成分)	方向 Ss-N1H	Ss-N2H (NS成分)	Ss-N2H (EW成分)		
最大接地圧 (kN/m ²)	Ss-DH 6828	Ss-F1H (EW成分) 6221	EW Ss-F2H (EW成分) 5760	方向 Ss-N1H 5834	Ss-N2H (NS成分) 5916	Ss-N2H (EW成分) 6183		

第4.2-1表 最大接地圧及び最小接地率

制御室建物の地震応答解析

1. 概要

本資料は、制御室建物について「JEAG4601-1991 追補版」に示さ れる浮上り線形地震応答解析を実施し、基礎浮上りが発生しないために必要な 付着力が、付着力試験に基づき設定した値を超えないことを確認した結果につ いて説明する。

- 2. 制御室建物の概要
- 2.1 位置

制御室建物の設置位置を第2.1-1図に示す。

2.2 構造概要

制御室建物は、4階建の鉄筋コンクリート造の建物である。 制御室建物の平面寸法は、22.0m^{注1}(NS)×37.0m^{注1}(EW)の矩形を成 している。基礎スラブ底面からの高さは21.95mである。また、制御室建物は 隣接する他の建物と構造的に分離している。

制御室建物の概要を第2.2-1 図及び第2.2-2 図に示す。 制御室建物の基礎は厚さ1.5mのべた基礎で,岩盤に直接設置している。 建物に加わる地震時の水平力はすべて耐震壁に負担させている。

注1:建物寸法は壁外面寸法とする。

第2.2-1図 制御室建物の概要(平面図)(EL 1.6m^{注2}) (単位:m)

注2:「EL」は東京湾平均海面(T.P.)を基準としたレベルを示す。

(EW断面)

(NS断面) 第2.2-2図 制御室建物の概要(断面図)(単位:m)

4 条-別紙 2-添 3-3

3. 検討用地震動

検討に用いる地震動は、基準地震動Ss-D, Ss-F1, Ss-F2, S s-N1及びSs-N2とする。

- 4. 地震応答解析
- 4.1 入力地震動の算定

水平方向の入力地震動は,建物周辺地盤の状況を適切に考慮した二次元FE M地盤モデルによって算定する。

まず,解放基盤表面(T.P.-10m)で定義される基準地震動Ss(2Eo) を用いて,T.P.-10m以浅の地盤を取り去った解放地盤モデルで一次元波動 論による応答解析を行い,二次元FEM地盤モデル下端位置(T.P.-215m) への入力地震動(2E1)を算定する。次に,この地震動を用いて二次元FE M地盤モデルによる地盤応答解析を行い,建物基礎下端位置(T.P.0.1m)に おける応答波(2E)を求め,これを建物一地盤連成モデルへの入力地震動と する。

なお,二次元FEM地盤モデルの側面はエネルギー伝達境界,底面は粘性境 界を設けることにより,遠方地盤への波動の逸散を考慮する。

表層は、拘束圧依存性と「せん断剛性-せん断ひずみ関係(G/Go-γ曲線)」及び「減衰定数-せん断ひずみ関係(h-γ曲線)」を基に、地震時の ひずみレベルを考慮した等価な剛性と減衰を設定している。

水平方向の入力地震動作成の概要を第4.1-1 図に,地盤各層の物理定数を 第4.1-1 表に示す。

建物-地盤連成モデルへの入力地震動(2E)の加速度時刻歴波形と加速度 応答スペクトルを第4.1-2図~第4.1-7図に示す。

入力地震動の算定には解析コード「SHAKE」及び「SuperFLUS H」を用いる。

第4.1-1図 入力地震動作成の概要(水平方向)

			210	• •				
		S 波	P波	単位体積	ポアソン	ヤング	せん断	減衰
		速度	速度	重量	比	係数	弾性係数	定数
層	3	V s	V p	γ	ν	Е	G	h
番	号	m/s	m/s	kN/m³ (tf/m³)		$\begin{array}{c} \times 10^{5} \mathrm{kN/m^2} \\ (\times 10^{4} \mathrm{tf/m^2}) \end{array}$	$\begin{array}{c} \times 10^{5}\mathrm{kN/m^2} \\ (\times 10^{4}\mathrm{tf/m^2}) \end{array}$	%
表層 ①-1	S s	127	422	20.7 (2.11)	0.45	0.99 (1.01)	0. 341 (0. 348)	8
岩盤①)-2	250	800	20.6 (2.10)	0.446	3. 80 (3. 88)	1.31 (1.34)	3
岩盤	2	900	2100	23.0 (2.35)	0.388	52.9 (53.9)	19.0 (19.4)	3
岩盤	3	1600	3600	24.5 (2.50)	0.377	176.5 (180.0)	64.0 (65.3)	3
岩盤	4	1950	4000	24.5 (2.50)	0.344	256.0 (261.0)	95. 1 (97. 0)	3
岩盤	5	2000	4050	26.0 (2.65)	0.339	283. 4 (289. 0)	105.9 (108.0)	3
岩盤	6	2350	4950	27.9 (2.85)	0.355	427.6 (436.0)	157.9 (161.0)	3

第4.1-1表 地盤の物理定数

第4.1-2図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-D)

 (Ss-F1H(EW成分): EW方向)
 第4.1-3図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-F1)

4 条-別紙 2-添 3-7

 (Ss-F2H(EW成分): EW方向)
 第4.1-4図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-F2)

 (Ss-N1H:EW方向)
 第4.1-5図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-N1)

 (Ss-N2H(NS成分): EW方向)
 第4.1-6図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-N2)

 (Ss-N2H(EW成分): EW方向)
 第4.1-7図 入力地震動の加速度時刻歴波形と加速度応答スペクトル (基準地震動Ss-N2)

4.2 地震応答解析モデル

水平方向の地震応答解析モデルは,主要な耐震壁を曲げ・せん断部材に置換し,重量を各階床位置に集中させた多質点系のスウェイ・ロッキングモデ ルとする。なお,回転慣性重量は基礎に集約して評価する。

建物と地盤の相互作用は,基礎スラブ底面を等価な地盤ばね(水平・回転) に置換して評価する。建物底面に付く地盤ばねは,振動アドミッタンス理論 により求めた振動数依存の複素ばねを,剛性は0Hz での実部の値(静的ばね 値)で,減衰係数は建物-地盤連成系の1次固有振動数での虚部の値と原点 とを結ぶ直線の傾きで,それぞれ近似する。

建物の減衰はモード減衰とし、各次のモード減衰定数は建物のひずみエネ ルギーに比例した値として算定する。建物の鉄筋コンクリート部分について は減衰定数を5%とする。

建物の非線形特性については,鉄筋コンクリート部には最大点指向型のト リリニア・スケルトン曲線を「JEAG4601-1991 追補版」に基づき 設定する。

基礎底面回転ばねは線形とした。

地震応答解析は、上記復元力特性を用いた弾塑性時刻歴応答解析とし、地震 応答解析モデル(水平方向)を第4.2-1図に、解析モデルの諸元を第4.2-2 図及び第4.2-3図に、地盤のばね定数と減衰係数を第4.2-1表に示す。

地震応答解析には解析コード「NUPP4」を用いる。

(NS方向)

(EW方向) 第4.2-1図 制御室建物の地震応答解析モデル

地盤ばね	方向	ばね定数	減衰係数			
基礎底面	N S	5. 10 \times 10 8 (N/mm)	2.84 $\times 10^{-6}$ (N·s/mm)			
水平ばね(Kg,Cg)	ΕW	4.86 $\times 10^{-8}$ (N/mm)	2.58 $\times 10^{-6}$ (N·s/mm)			
基礎底面	N S	7.45 $\times 10^{16}$ (N·mm/rad)	2.13 $\times 10^{13}$ (N·mm·s/rad)			
回転ばね(K <i>θ</i> ,C <i>θ</i>)	EW	1.57 $\times 10^{17}$ (N·mm/rad)	1.19 $\times 10^{14}$ (N·mm·s/rad)			

第4.2-1表 地盤のばね定数と減衰係数

4.3 地震応答解析

(1) 地震応答解析結果
 基準地震動Ss-D, Ss-F1, Ss-F2, Ss-N1及びSs-N

2 (水平動)による最大応答値を第4.3-1 図~第4.3-36 図に示す。 参考として,耐震壁の最大応答せん断ひずみは,最大で0.55×10⁻³ (Ss -DH,NS方向)であり,評価基準値(2.0×10⁻³)に対して十分な余裕が あることを確認している。

第4.3-1 図 最大応答加速度(NS方向)基準地震動Ss-DH

第4.3-2図 最大応答せん断力(NS方向)基準地震動Ss-DH

4 条-別紙 2-添 3-18

第4.3-3図 最大応答曲げモーメント(NS方向) 基準地震動Ss-DH

第4.3-5図 最大応答せん断力(EW方向)基準地震動Ss-DH

⁴ 条-別紙 2-添 3-20

第4.3-6図 最大応答曲げモーメント(EW方向) 基準地震動Ss-DH

第4.3-8図 最大応答せん断力(NS方向) 基準地震動Ss-F1H(NS成分)

4 条-別紙 2-添 3-22

第4.3-9図 最大応答曲げモーメント(NS方向) 基準地震動Ss-F1H(NS成分)

第4.3-12図 最大応答曲げモーメント(EW方向) 基準地震動Ss-F1H(EW成分)

第4.3-15 図 最大応答曲げモーメント(NS方向) 基準地震動Ss-F2H(NS成分)

基準地震動Ss-F2H(EW成分)

第4.3-18 図 最大応答曲げモーメント(EW方向) 基準地震動Ss-F2H(EW成分)

第4.3-20図 最大応答せん断力(NS方向)基準地震動Ss-N1H

第4.3-21図 最大応答曲げモーメント(NS方向) 基準地震動Ss-N1H

第4.3-22図 最大応答加速度(EW方向)基準地震動Ss-N1H

第4.3-23図 最大応答せん断力(EW方向)基準地震動Ss-N1H

⁴ 条-別紙 2-添 3-32

第4.3-24図 最大応答曲げモーメント(EW方向) 基準地震動Ss-N1H

第4.3-27図 最大応答曲げモーメント(NS方向) 基準地震動Ss-N2H(NS成分)

基準地震動Ss-N2H(NS成分)

第4.3-30 図 最大応答曲げモーメント(EW方向) 基準地震動Ss-N2H(NS成分)

第4.3-32図 最大応答せん断力(NS方向) 基準地震動Ss-N2H(EW成分)

4 条-別紙 2-添 3-38

第4.3-33 図 最大応答曲げモーメント(NS方向) 基準地震動Ss-N2H(EW成分)

第4.3-35図 最大応答せん断力(EW方向) 基準地震動Ss-N2H(EW成分)

第4.3-36 図 最大応答曲げモーメント(EW方向) 基準地震動Ss-N2H(EW成分)

(2) 基礎浮上りが発生しないために必要な付着力の算定

a. 算定方法

地震応答解析結果の最大転倒モーメントが浮上り限界モーメントを上回る ときに基礎浮上りが発生する。

浮上り限界モーメントは、「JEAG4601-1991 追補版」より以下の 式で表される。

 $M_0 = W L \swarrow 6 (kN \cdot m)$

ここで,

Mo:浮上り限界モーメント (kN・m)

W:建物の総重量(kN)

L:建物の基礎幅(m)

基礎浮上りが発生しないために必要な単位面積当たりの付着力は以下の通りである。

 $M = \sigma_{at} A L \swarrow 6 + Mo$ (kN · m)

 $\sigma_{at} = 6 (M - M_0) / A L (kN/m^2) = 6 (M - M_0) / 1000 A L (N/mm^2)$ $\Xi \subseteq \mathcal{C},$

M:最大転倒モーメント(kN・m)

σ_{at}: 単位面積当たりの付着力 (kN/m²)

A:基礎底面積 (m²)

b. 算定結果

基礎浮上りが発生しないために必要な付着力の算定結果を第4.3-1表に示す。

検討の結果,基礎浮上りが発生しないために必要な付着力の最大値は 0.32 N/mm²であることから,島根原子力発電所における付着力試験の結果に基づき 設定した値(0.40N/mm²)を超えないことを確認した。

以上のことから,制御室建物の地震応答解析に基礎浮上り線形解析を適用する。

地震動	方向	W	L	А	М	Mo	σat
		$(\times 10^3 kN)$	(m)	(m ²)	$(imes 10^5 { m kN} \cdot { m m})$	$(imes 10^5 { m kN} \cdot { m m})$	(N/mm^2)
Ss−DH	N S	199 04	22	814	14. 52	4.84	0.32
	ΕW	132.04	37	814	21. 23	8.14	0.26
S s - F 1 H (N S成分)	N S	122 04	22	814	13.64	4.84	0.29
S s - F 1 H (EW成分)	ΕW	132.04	37	814	18.00	8.14	0.20
S s - F 2 H (N S成分)	N S	132. 04	22	814	12.47	4.84	0.26
S s - F 2 H (EW成分)	ΕW		37	814	18.05	8.14	0.20
S s – N 1 H	N S	199 04	22	814	11.68	4.84	0.23
	ΕW	132.04	37	814	13.05	8.14	0.10
S s - N 2 H (N S成分)	N S	122 04	22	814	11.76	4.84	0.23
	ΕW	132.04	37	814	11.21	8.14	0.06
S s — N 2 H (EW成分)	N S	122 04	22	814	11.88	4.84	0.24
	EW	132.04	37	814	16.11	8.14	0.16

第4.3-1表 基礎浮上りが発生しないために必要な付着力
付着力を考慮した3次元FEMモデルの適用性について

- 1. 「JEAC4601-2015」における3次元FEMモデルの適用性について
 - (1) ジョイント要素(付着力無視)を用いた3次元FEMモデルの適用範囲及 び適用性

「JEAC4601-2015 参考資料 3.5(3)」及び引用している既往論文⁽¹⁾ によると、時間領域のグリーン関数法の地震応答解析結果との比較を行い、接 地率 η が 30%程度まで時間領域のグリーン関数法の結果と概ね一致するとさ れている。この結果を基に、ジョイント要素を用いた3次元FEMモデルの適 用範囲として接地率 $\eta \ge 35\%$ を提案している。「JEAC4601-2015 参 考資料 3.5(3)」を補足1に示す。

既往論文の解析条件と、島根2号炉において3次元FEMモデルを採用する 廃棄物処理建物の解析条件の比較を第1表に示す。基礎底面の付着力以外は、 実際の建物の大きさや解析モデル規模も含めて、ほぼ同じ解析条件となってい る。

(2) ジョイント要素(付着力考慮)を用いた3次元FEMモデルの適用性

「JEAC4601-2015 参考資料 3.5(7)」及び引用している既往論文⁽¹⁾ では、上記(1)のモデルをベースに更に現実に近い解析条件を設定した検討と して、建物基礎底面の付着力を考慮した検討を実施し、最大加速度が 900Gal の地震波を入力した際に、基礎底面の付着力として 0.49N/mm²を考慮した時の 接地率は約 30~50%となっていることが示されている。既往論文における 3 次 元FEMモデルの応答解析結果を第1図に示す。

「JEAC4601-2015 参考資料 3.5(7)」において、ジョイント要素に 付着力を考慮した3次元FEMモデルは、低接地率の範囲まで適用可能とされ ている。「JEAC4601-2015 参考資料 3.5(7)」を補足2に示す。

項目		既往論文	評価対象建物	
対象建物		PWR	BWR	
		原子炉建屋	2号炉廃棄物処理建物	
建物モデル		多軸多質点系モデル	単軸多質点系モデル	
地盤のせん断波速度		1,000m/s及び2,000m/s	約 1,660m/s (標準地盤の等価せん断波速度)	
基礎浮上り		ジョイント要素で考慮	ジョイント要素で考慮	
基礎幅		約 60m	NS:53.07m EW:53.64m	
地盤モデル化	水平	基礎幅の5倍	基礎幅の約5倍	
範囲 鉛直		基礎幅の 1.5 倍	基礎幅の約 1.5 倍	
基礎底面の付着力		無視 ^{*1} ,考慮 ^{*2}	考慮	

第1表 3次元FEMモデルの既往論文との解析条件の比較

※1:接地率の適用範囲に関する検討(「1.(1)ジョイント要素(付着力無視)を用いた3次元FEMモデル」に対応)

※2:現実に近い解析条件を設定した検討(「1.(2)ジョイント要素(付着力考慮)を用いた3次元FEMモデル」に対応)

第1図 既往論文における3次元FEMモデルの応答解析結果

2. 島根2号炉における3次元FEMモデルの適用性について

島根2号炉において採用した3次元FEMモデルは,既往論文における接地 率の適用範囲に関する検討及び基礎底面に付着力を考慮した検討とほぼ同じ解 析条件となっている。

「JEAC4601-2015」において、ジョイント要素に付着力を考慮した 3次元FEMモデルが提案されており、低接地率の範囲まで適用可能とされて いることから、当社が付着力を考慮した場合も適用できると判断し、接地率 η \geq 35%を目安値として設定した。

なお,島根2号炉において今回採用する3次元FEMモデルによる接地率は 35%を大きく上回る見込みである。

- 3. 参考文献
 - Nakamura, N. et al. : An estimation method for basemat uplift behavior of nuclear power plant buildings, Nuclear Engineering and Design, Vol. 237, 2007.7, pp. 1275-1287

「JEAC4601-2015 参考資料3.5(3) ジョイント要素を用いた3次元 FEM地盤モデル」(※1.(1)への引用箇所を下線で示す)

参図 3.5-12 に接地率が 30%程度の場合について,時間領域のグリーン関数法,3 次元 FEM モデル,従来モデル(誘発上下動を考慮しない地盤の回転ばねに浮き上が り非線形を考慮したモデルで図中では SR1 と標記),誘発上下動考慮の SR モデル (図中では SR2 と標記)の水平応答加速度を比較して示している。4 つの手法によ る応答結果はよく対応している。

参図 3.5-12 各解析法による水平応答加速度の比較 (η=30%)

参図 3.5-13 に接地率が 30%程度の場合について,時間領域のグリーン関数法と 3次元 FEM モデルの鉛直応答加速度(誘発上下動)を比較している。両者はよく対応している。

ジョイント要素を用いた3次元 FEM モデルの応答結果は、接地率ηが30%程度ま で時間領域のグリーン関数法の結果と概ね一致する。この結果をもとに文献(参 3.5-3) ではジョイント要素を用いた3次元 FEM モデルの適用範囲としてη≧35%を 提案している。

- 247 -

コード参 3.5-8

最新の研究では、低接地率時 ($\eta \leq 35\%$) における 3 次元 FEM モデルの妥当性に ついて検討されている。硬質岩盤上に立つ原子炉建屋を模擬した基礎-上部建物の 1 質点系モデルを対象として、グリーン関数法および地盤の 3 次元 FEM モデルによる 地震応答解析が行われ、両者の応答性状を比較することで低接地率時の 3 次元 FEM モデルの適用範囲が検討されている ^(参 3.5-4)。

グリーン関数法及び 3 次元 FEM モデルともに,参図 3.5-14 のように基礎部のメッシュ分割を均等 20 分割及び 30 分割とした 2 つを解析ケースとしている(検討結果において,Green20×20:グリーン関数法で 20 分割,Green30×30:グリーン関数法 で 30 分割,FEM20×20:FEM モデルで 20 分割,FEM30×30:FEM モデルで 30 分割と記載)。

参図 3.5-14 検討モデル図(20分割の例 上:基礎部拡大,下:全体鳥瞰図)

参図 3.5-15~参図 3.5-17 に各応答の結果を比較して示している。参図 3.5-16 の鉛 直応答(入力 1700Gal 以降)にやや差異が現れるものの、3 次元 FEM モデルのそ れぞれの応答結果は、時間領域のグリーン関数法の結果と概ね対応している。この 結果をもとに文献(参 3.5-4)では、低接地率時(η≦35%)において完全に剥離 (η=0%)する場合を除き、3 次元 FEM モデルとグリーン関数法の両者の応答が良 く対応することを示している。

コード参 3.5-9

- 248 -

「JEAC4601-2015 参考資料3.5(7) 基礎底面の付着力を考慮した 基礎浮き上がり解析法」(※1.(2)への引用箇所を下線で示す)

(7) 基礎底面の付着力を考慮した基礎浮き上がり解析法 基礎底面と地盤間の付着力を考慮した基礎浮き上がり解析法として、現在以下の 方法が提案されている。 ①付着力をジョイント要素で考慮した 3 次元 FEM 地盤モデルによる方法 (* 3.5-3) ②付着力を離散化した地盤ばねに考慮した方法 (参 3.5-8) ③付着力をSRモデルの回転地盤ばねに考慮した方法 (参3.5-9) 基礎底面の付着力はいずれの方法においても浮き上がりに対する引張抵抗として モデル化されているが、地盤のモデル化方法や基礎浮き上がりの考慮方法などは各 方法にそれぞれの特徴があり、浮き上がりを考慮した非線形地震応答解析としての 適用範囲も異なっている。 ①の方法は、地盤を3次元 FEM でモデル化し、基礎地盤間の剥離・滑り現象や付 着力の影響をジョイント要素で考慮する方法である(本参考資料(3)参照)。②の方 法は、地盤をウィンクラ型の離散化ばねでモデル化し、剥離現象や付着力の影響を 離散化ばねに考慮する方法である(本参考資料(6)参照)。③の方法は、地盤を集約 した地盤ばね(水平ばね、回転ばね)でモデル化し、剥離現象や付着力の影響を基 礎底面の回転地盤ばねに考慮した方法である。 ①,②の方法は付着力の考慮に加えて浮き上がりに伴う誘発上下動の評価が可能 であり、これらの解析法は低接地率の範囲まで適用可能である。③の方法は浮き上 がりに伴う誘発上下動が考慮されていないため、その適用範囲は誘発上下動の影響 が大きくない範囲(目安として接地率65%以上)と考えられる。 これらの解析法の中では、①の方法が基礎浮き上がり現象や付着力の影響を最も 詳細にモデル化した方法と考えられ、これまでの検討例も多い。以下に、この解析 法による PWR 型原子炉建屋を対象とした付着力の影響に関する解析例を示す。 参図 3.5-35 は、付着力を考慮したジョイント要素の特性を示している。付着力を 超える引張応力が作用した以後は付着力が失われるモデルとなっている。参図 3.5-36 は付着力の違いによる接地率の比較を示し、参図 3.5-37 は付着力による最大応答 値(水平加速度、鉛直加速度)の影響について示している。付着力は接地率や浮き 上がりに伴う鉛直方向加速度(誘発上下動)に大きく影響するが、水平応答への影 響は小さいことが示されている。 コード参 3.5-22 - 261 -

付着力の考慮の有無による建物応答への影響の検討

1. 概要

1.1 検討概要

島根原子力発電所2号炉の建物の地震応答解析には、SRモデル、ジョイント要素を用いた3次元FEMモデル及び基礎固定モデルを用いている。今回工認で採用する地震応答解析モデルにおける付着力の考慮の有無を第1.1-1表に示す。

付着力試験結果を踏まえ、建物の基礎底面と地盤間には付着力が存在すると 考えられることから、今回、ジョイント要素を用いた3次元FEMモデル及び SRモデル(浮上り線形地震応答解析)では付着力を考慮することとした。一 方で、SRモデル(浮上り非線形地震応答解析)については、既工認でも実績 のある手法として、付着力を考慮していない。また、基礎固定モデルについて は、建物と地盤の相互作用を考慮していない。

以上を踏まえ,付着力を考慮していないSRモデル(浮上り非線形地震応答 解析)について,付着力の考慮の有無による建物応答への影響の検討を行う。

検討は,建物の重要度,内包する施設の重要度及び接地率を踏まえ,原子炉 建物を代表として,今回工認で採用する地震応答解析モデル(以下「今回工認 モデル」という。)と,今回工認モデルに基礎底面の付着力を考慮したモデル (以下「付着力考慮モデル」という。)を用いた地震応答解析を行い,解析結 果の比較を行う。

採用する地震応答解析モデル 付着力の 建物名 (基礎浮上り評価法) 考慮 ジョイント要素を用いた 廃棄物処理建物, 1号炉原子炉建物 考慮する 3次元FEMモデル SRモデル 制御室建物, 1号炉廃棄物処理建物 考慮する^{注1} (浮上り線形地震応答解析) 原子炉建物,タービン建物,ガスタービ SRモデル 考慮 ン発電機建物,緊急時対策所,1号炉タ (浮上り非線形地震応答解析) しない ービン建物, サイトバンカ建物 サイトバンカ建物(増築部),2号炉排 気筒モニタ室,燃料移送ポンプエリア竜 基礎固定モデル 巻防護対策設備

第1.1-1表 地震応答解析モデルにおける付着力の考慮の有無

注1:基礎浮上りが発生しないために必要な付着力が,付着力試験に基づき設定した値を超え ないことを確認する。

2. 解析モデル

2.1 今回工認モデル

今回工認モデルは、SRモデル(浮上り非線形地震応答解析)とし、地震応答解析モデルを第2.1-1図及び第2.1-2図に示す。

地盤ばね	ばね定数	減衰係数
基礎底面水平ばね(Kg,Cg)	1.55 $ imes 10$ 12 (N/m)	2.23 $\times 10^{10}$ (N·s/m)
基礎底面回転ばね(K θ, C θ)	2.13 $\times 10^{15}$ (N·m/rad)	4.32 ×10 ¹² (N·m·s/rad)

第2.1-1図 原子炉建物の地震応答解析モデル(NS方向)

地盤ばね	ばね定数	減衰係数
基礎底面水平ばね(Kg,Cg)	1.51 $ imes$ 10 12 (N/m)	2.13 ×10 ¹⁰ (N·s/m)
基礎底面回転ばね(K _θ ,C _θ)	3.02 $\times 10^{15}$ (N·m/rad)	9.01 $\times 10^{12}$ (N·m·s/rad)

第2.1-2図 原子炉建物の地震応答解析モデル(EW方向)

2.2 付着力考慮モデル

付着力考慮モデルは、今回工認モデルを基本とし、田中ほか⁽¹⁾に基づき、 基礎底面と地盤間における付着力を考慮した基礎浮上り特性によるSRモデ ルとする。

付着力を考慮した基礎浮上り特性について,基礎下の転倒モーメントMと 回転角 θ の関係を第 2.2-1 図に示す。なお,付着力は島根原子力発電所にお ける付着力試験結果に基づき設定した 0.40N/mm²(添付資料-1参照)を用い た。

第2.2-1図 基礎下の転倒モーメントMと回転角θの関係

3. 検討用地震動

検討に用いる地震動は、基準地震動 Ss-Dとする。

- 4. 地震応答解析結果
- 4.1 最大応答加速度
 最大応答加速度を第4.1-1表及び第4.1-2表に示す。

質点	最大応答加速度 (m/s ²)		比率
番号	付着力考慮モデル	今回工認モデル	(付着力考慮モデル/今回工認モデル)
1	10.2	10.2	1.00
2	10.1	10.2	0.990
3	8.71	8.58	1.02
4	8.61	8.61	1.00
5	8.02	8.02	1.00
6	24.0	24.1	0.996
7	16.6	16.8	0.988
8	12.4	12.5	0.992
9	10.2	10.2	1.00
10	9.39	9.39	1.00
11	8.71	8.58	1.02
12	8.61	8.61	1.00
13	8.02	8.02	1.00
14	12.4	12.5	0.992
15	10.2	10.2	1.00
16	9.39	9.39	1.00
17	8.71	8.58	1.02
18	8.61	8.61	1.00
19	9.93	9.37	1.06
20	24.0	24.1	0.996
21	17.4	17.6	0.989
22	12.4	12.5	0.992
23	10.2	10.2	1.00
24	9.39	9.39	1.00
25	8.71	8.58	1.02
26	8.61	8.61	1.00
27	8.06	8.06	1.00
28	12.4	12.5	0.992
29	10.2	10.2	1.00
30	10.2	10.1	1.01
31	8.71	8.58	1.02
32	8.61	8.61	1.00
33	8.06	8.06	1.00
34	6.91	6.91	1.00
35	6.76	6.76	1.00

第4.1-1表 原子炉建物の最大応答加速度(NS方向)

質点	最大応答加速度(m/s ²)		比率
番号	付着力考慮モデル	今回工認モデル	(付着力考慮モデル/今回工認モデル)
1	8.39	8.39	1.00
2	8.26	8.26	1.00
3	26.9	27.0	0.996
4	17.9	17.9	1.00
5	13.7	13.7	1.00
6	11.3	11.3	1.00
7	12.6	12.2	1.03
8	8.61	8.67	0.993
9	8.39	8.39	1.00
10	8.26	8.26	1.00
11	13.7	13.7	1.00
12	11.3	11.3	1.00
13	11.7	11.6	1.01
14	8.61	8.67	0.993
15	8.39	8.39	1.00
16	9.42	9.42	1.00
17	26.9	27.0	0.996
18	17.2	17.2	1.00
19	13.7	13.7	1.00
20	11.3	11.3	1.00
21	11.7	11.6	1.01
22	17.2	17.2	1.00
23	13.7	13.7	1.00
24	11.3	11.3	1.00
25	11.1	10.4	1.07
26	8.61	8.67	0.993
27	8.39	8.39	1.00
28	8.44	8.44	1.00
29	11.3	11.3	1.00
30	10.0	10.8	0.926
31	8.61	8.67	0.993
32	8.39	8.39	1.00
33	8.44	8.44	1.00
34	7.65	7.65	1.00
35	7.52	7.52	1.00

第4.1-2表 原子炉建物の最大応答加速度(EW方向)

4.2 最大応答せん断ひずみ

最大応答せん断ひずみを第4.2-1表及び第4.2-2表に示す。

部材	最大応答せん断ひずみ(γ) (×10 ⁻³)		比率
番号	付着力考慮モデル	今回工認モデル	(付着力考慮モデル/今回工認モデル)
1	0.289	0.280	1.03
2	0.357	0.349	1.02
3	0.355	0.356	0.997
4	0.370	0.364	1.02
5	0.434	0.406	1.07
6	0.281	0.268	1.05
7	0.307	0.293	1.05
8	0.335	0.324	1.03
9	0.330	0.316	1.04
10	0.327	0.324	1.01
11	0.353	0.355	0.994
12	0.368	0.363	1.01
13	0.432	0.405	1.07
14	0.115	0.115	1.00
15	0.148	0.139	1.06
16	0.155	0.156	0.994
17	0.215	0.218	0.986
18	0.659	0.609	1.08
19	0.201	0.197	1.02
20	0.253	0.235	1.08
21	0.360	0.361	0.997
22	0.337	0.327	1.03
23	0.330	0.316	1.04
24	0.327	0.324	1.01
25	0.353	0.355	0.994
26	0.355	0.355	1.00
27	0.446	0.413	1.08
28	0.341	0.330	1.03
29	0.266	0.259	1.03
30	0.344	0.337	1.02
31	0.344	0.346	0.994
32	0.351	0.350	1.00
33	0.445	0.413	1.08

第4.2-1表 原子炉建物の最大応答せん断ひずみ(NS方向)

部材	最大応答せん断ひずみ(γ) (×10 ⁻³)		比率
番号	付着力考慮モデル	今回工認モデル	(付着力考慮モデル/今回工認モデル)
1	0.322	0.324	0.994
2	0.226	0.226	1.00
3	0.284	0.293	0.969
4	0.374	0.368	1.02
5	0.187	0.186	1.01
6	0.181	0.181	1.00
7	0.392	0.389	1.01
8	0.484	0.477	1.01
9	0.309	0.312	0.990
10	0.221	0.221	1.00
11	0.0818	0.0818	1.00
12	0.0644	0.0648	0.994
13	0.257	0.255	1.01
14	0.353	0.347	1.02
15	0.288	0.287	1.00
16	0.160	0.163	0.982
17	0.231	0.234	0.987
18	0.431	0.433	0.995
19	0.169	0.168	1.01
20	0.173	0.172	1.01
21	0.389	0.387	1.01
22	0.455	0.458	0.993
23	0.202	0.201	1.00
24	0.252	0.262	0.962
25	0.361	0.351	1.03
26	0.487	0.481	1.01
27	0.219	0.218	1.00
28	0.299	0.303	0.987
29	0.315	0.325	0.969
30	0.322	0.315	1.02
31	0.488	0.481	1.01
32	0.219	0.218	1.00
33	0.298	0.303	0.983

第4.2-2表 原子炉建物の最大応答せん断ひずみ(EW方向)

4.3 床応答スペクトル
 床応答スペクトル(h = 1%及びh = 5%)の比較を第4.3−1図~第4.3
 −16図に示す。

第4.3-5図 床応答スペクトル(h=1%)の比較 (EW方向 EL 1.3m(質点番号34))

第4.3-6図 床応答スペクトル(h=1%)の比較 (EW方向 EL 15.3m(質点番号1))

第4.3-7図 床応答スペクトル(h=1%)の比較 (EW方向 EL 42.8m(質点番号5))

第4.3-8図 床応答スペクトル(h=1%)の比較 (EW方向 EL 63.5m(質点番号3))

第4.3-9図 床応答スペクトル(h=5%)の比較 (NS方向 EL 1.3m (質点番号34))

第4.3-10図 床応答スペクトル(h=5%)の比較 (NS方向 EL 15.3m(質点番号4))

第4.3-11図 床応答スペクトル(h=5%)の比較 (NS方向 EL 42.8m(質点番号8))

第4.3-12図 床応答スペクトル(h=5%)の比較 (NS方向 EL 63.5m(質点番号6))

第4.3-13図 床応答スペクトル(h=5%)の比較 (EW方向 EL 1.3m(質点番号34))

第4.3-14図 床応答スペクトル(h=5%)の比較 (EW方向 EL 15.3m(質点番号1))

第4.3-15図 床応答スペクトル(h=5%)の比較 (EW方向 EL 42.8m(質点番号5))

第4.3-16図 床応答スペクトル(h=5%)の比較 (EW方向 EL 63.5m(質点番号3))

4.4 接地率の比較

接地率の比較を第4.4-1表に示す。

地震亡ダ砲振れデル	接地率η(%)		
地展心谷胜州てアル	NS方向	EW方向	
今回工認モデル	68.9	82.3	
付着力考慮モデル	100	100	

第4.4-1表 接地率の比較

5. 付着力の考慮の有無による建物応答への影響の検討結果

原子炉建物を対象とし、今回工認モデルと付着力考慮モデルを用いた地震 応答解析を行った結果、付着力により接地率は改善され、両モデルとも同等 の応答値を示した。このことから、付着力の考慮の有無による建物応答(水 平方向)への影響は軽微である。

- 6. 参考文献
 - (1) 田中英朗ほか:基礎底面の付着力を考慮した基礎浮き上がり解析法,日本建築学会学術講演梗概集(中国),2008年9月,pp.1069-1070

岩盤-レベルコンクリート間における付着力試験実施後の破断面について

1. 概要

岩盤-レベルコンクリート間の付着力試験実施後の破断面の写真及びスケッ チ図に基づき考察を行う。

2. 岩盤-レベルコンクリート間の付着力試験実施後の破断面の状況

第2-1図,第2-2図に黒色頁岩-レベルコンクリート間及び凝灰岩-レベルコンクリート間における付着力試験後の破断面の状況(写真及びスケッチ図) を示す。

岩種に関わらず,岩盤面には薄いコンクリートの層が広く付着しているが, 破断位置はいずれも岩盤とレベルコンクリートの境界面であったことから,試 験値は岩盤とレベルコンクリート間の付着力を示しているといえる。

第 2-1 図(1) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

第2-1図(2) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

(黒色頁岩-レベルコンクリート)

第2-1図(4) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

2-1 図 (6) 付着刀試験後の破断面の状況 (黒色頁岩ーレベルコンクリート)

第2-1図(7) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

第2-1図(8) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

第2-1図(9) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

(黒色頁岩-レベルコンクリート)

第2-1図(11) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

第2-1図(12) 付着力試験後の破断面の状況 (黒色頁岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

第2-2図(2) 付着力試験後の破断面の状況 (凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

第2-2図(5) 付着力試験後の破断面の状況 (凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

第2-2図(11) 付着力試験後の破断面の状況 (凝灰岩-レベルコンクリート)

(凝灰岩-レベルコンクリート)

設定付着力に関する統計的な考察について

1. 概要

今回設定した付着力について統計的な観点も含めた考察を行う。

2. 岩盤-レベルコンクリート間の付着力試験結果と設定付着力の関係
 第2-1図に岩盤-レベルコンクリート間の付着力試験結果と設定付着力の関

係を示す。

設定付着力 (0.40N/mm²) は、平均値の小さい黒色頁岩の平均値 (0.81N/mm²) に対して -1.58σ に相当する。参考として、凝灰岩の平均値 (1.15N/mm²) に対して -3.13σ ,黒色頁岩と凝灰岩を合わせた全体の平均値 (0.98N/mm²) に対して -1.93σ となる。

なお,試験結果のばらつきについて,岩種毎に評価した場合は試験によるも のであるが,岩盤全体として評価した場合には試験によるものと岩種の違い によるものが含まれている。

設定付着力の関係

試験地盤と建物直下地盤の同等性について

1. 概要

試験地盤は,建物直下地盤から離れているため,両者の同等性を確認し試験 地盤における付着力試験結果を基に設定した付着力を建物直下地盤に適用する ことの妥当性を以下に示す。

2. 検討方法

試験地盤と建物直下地盤の同等性について,地質・地質構造の観点から比較 を行う。また,参考に岩盤物性の観点からも比較を行う。

試験地盤と建物直下地盤の同等性確認の流れを第2-1図に示す。

第2-1図 試験地盤と建物直下地盤の同等性確認の流れ

- 3. 試験地盤と建物直下地盤の地質・地質構造の比較
- 3.1 敷地地盤について

敷地地盤における地質断面図を第3-1図に示す。また、2号炉エリア(1号 炉エリア含む)及び3号炉エリアの地質・地質構造を補足資料-3に示す。

敷地地盤は,新第三紀中新世の堆積岩類から成る成相寺層と貫入岩類から構成されており,2号炉及び3号炉原子炉建物基礎地盤周辺は北に向かって約10~30°傾斜している。

これまでのボーリング調査の結果,成相寺層中において,連続性の高い堆積 層(フローユニット)が、2号炉エリア(1号炉エリア含む)から3号炉エリ アまで連続していることを確認しており,試験地盤及び建物直下地盤を構成す る地質は,いずれもこの連続性の高い堆積層の上位に位置し,同一の「下部頁 岩部層」に区分される。

このことから,試験地盤及び建物直下地盤の地質は,同様の堆積環境で形成 されたものであり,岩相及び岩種が同一であれば,両者の岩盤は同等であると 判断する。

第3-1図 敷地地盤における地質断面図

⁴条-別紙 2-参 5-2

- 3.2 試験地盤と建物直下地盤の岩相及び岩級について 試験地盤と建物直下地盤の岩相及び岩級の比較を行う。
 - (1) 岩相の比較

試験地盤と建物直下地盤における岩相の比較を第3-2図に示す。 試験地盤は黒色頁岩及び凝灰岩で構成されており,建物直下地盤は試験地盤 と同様に黒色頁岩,凝灰岩及びこれらの互層が広く分布している。

また,試験地盤が局所的であるため,試験地盤を含む建物直下地盤(3号炉) 及び原子炉建物南側に隣接する原子炉建物南側地盤における岩相区分の比較 を行う。第3-3図にそれぞれの地盤における岩相区分及び位置関係を示す。 いずれの地盤においても主に黒色頁岩及び凝灰岩から構成されている。

試験地盤と建物直下地盤の岩相区分の対応

, 2号炉)	「」 「」 の互層				
建物直下地盤(1	💌 凝灰岩・凝灰角礫岩 (頁岩の薄層を挟む)	画 (凝灰岩の薄層を挟む)			
試験地盤	1 凝灰岩	■ 黒色頁岩 ■ 凝灰質頁岩			
試験体	凝灰岩	王 何 招			

試験地盤と建物直下地盤における岩相区分の比較及び位置関係 3-3 図

⁴ 条-別紙 2-参 5-5

(2) 岩級の比較

試験地盤と建物直下地盤における岩級区分の比較を第3-4図に示す。 試験地盤における岩級は主にCH級であり,建物直下地盤における岩級は試 験地盤と同様に主にCH級である。

また,試験地盤が局所的であるため,試験地盤を含む建物直下地盤(3号炉) 及び原子炉建物南側に隣接する原子炉建物南側地盤における岩級区分の比較 を行う。第3-5図にそれぞれの地盤における岩級区分及び位置関係を示す。 いずれの地盤においても岩級は主にCH級である。

試験地盤と建物直下地盤における岩級区分の比較及び位置関係 го [Х]

4条-別紙 2-参 5-8

4. 試験地盤と建物直下地盤の岩盤物性値の比較

参考として,試験地盤と建物直下地盤(2号炉)の岩盤物性値の比較を行う。 岩盤物性値については,「JNES報告書」によると,「直接引張試験によ る付着力は岩盤の圧裂引張強度の順と同じ傾向となった。^{注1}」とされているこ とから,付着力は岩盤の圧裂引張強度と関係性があると判断し,ここでは試験 地盤と建物直下地盤(2号炉)における圧裂引張強度^{注2}の比較を行う。併せて 3号炉原子炉建物直下地盤における圧裂引張強度^{注3}も示す。

第4-1図に試験地盤及び建物直下地盤(2号炉及び3号炉)における圧裂引 張強度の比較を示す。

黒色頁岩,凝灰岩とも試験地盤の圧裂引張強度の平均値は,建物直下地盤(2 号炉)の圧裂引張強度の平均値と同程度であり,試験地盤の個々の圧裂引張強 度も建物直下地盤(2号炉)の±1σの範囲内に概ね収まっていることから, 試験地盤と建物直下地盤(2号炉)は同等の岩盤である。また,3号炉建物直 下地盤の値とも同程度であることを確認した。

- 注1:「JNES報告書」では,岩盤物性試験として,一軸圧縮強度,圧裂引張強度,超音波伝 播速度を計測しており,このうち圧裂引張強度の順と付着力の順が同じ傾向(砂岩>花崗 岩>凝灰岩)となったことが示されている。
- 注2: 島根2号炉原子炉建物位置のボーリング孔から採取した試料による試験。 (島根原子力発電所原子炉設置許可変更申請書(平成25年12月25日))
- 注3: 島根3号炉原子炉建物位置のボーリング孔から採取した試料による試験。 (島根原子力発電所原子炉設置許可変更申請書(平成17年4月26日))

第4-1図(1) 試験地盤及び建物直下地盤(2号炉及び3号炉) における岩盤の圧裂引張強度の比較(黒色頁岩)

第4-1図(2) 試験地盤及び建物直下地盤(2号炉及び3号炉) における岩盤の圧裂引張強度の比較(凝灰岩)

5. まとめ

試験地盤と建物直下地盤の同等性を地質・地質構造の観点から確認した。 試験地盤と建物直下地盤の地質が同様の堆積環境で形成されたものであり, 同一の地層区分であることを確認した。

試験地盤と建物直下地盤の岩相は主に黒色頁岩及び凝灰岩で構成されている こと,及び岩級はCH級であり,岩相及び岩級が同一であることを確認した。 また,参考として,試験地盤と建物直下地盤の岩盤物性値(圧裂引張強度)

を比較し、同程度であることを確認した。

以上より,試験地盤と建物直下地盤は同等のものであり,試験地盤における 付着力試験結果を基に設定した付着力を建物直下地盤に適用することは妥当で あると判断する。

既工認実績における付着力試験方法との比較

島根サイトと既工認実績における付着力試験方法を第1表に示す。なお、参考 に「JNES報告書」及び地盤工学会の「岩盤の原位置一軸引張り試験方法」の 試験方法も同表に示す。

笛1 表	皀根サイ	トレ旺工認	宝績におけ	・ス付差	- 力計 輪-	方注の	৸₩齢
炉 1 32	面似ソイ	トてれてい	大阪(しる))		ノノロへ河欠ノ	11LV/	'レム牛乂

サイト			拉合素の凹肌の	レベルコンクリート				
		試験体形状	按合面00回凸00 状態	圧縮強度 (N/mm ²)	養生日数	対象岩種等	標本数	
島根		直円柱 ^① (φ10 cm)	10mm 程度 ²	18 ³	7日④	黒色頁岩, 凝灰岩	24 ^⑤ (1岩種当り12)	
	高浜	直四角柱 (10 cm×10 cm)	10~20mm 程度	15	27 日	流紋岩	27	
既工認実績	大飯	直四角柱 (10 cm×10 cm)	10~20mm 程度	15	28 日	石英閃緑岩	19	
	美浜	直四角柱 (10 cm×10 cm)	10~20mm 程度	15	28 日	花崗岩	15(現地)+25(室内)	
	川内*1	直四角柱	木ごて仕上げ	15	62~68 日	レベルコンクリート	• 3	
		(150 cm×150 cm)		30	31~37 日	基礎コンクリート		
参考	JNES	直四角柱 (10 cm×10 cm)	10~20mm 程度	15	28 日	花崗岩,砂岩, 凝灰岩	36(1 岩種当り 12)	
	報告書	直四角柱 (150 cm×150 cm)	粗面(80mm 程度) 平滑面(20mm 程度)	15	28 日	花崗岩	6(1 水準当り 3)	
	地盤 工学会	直円筒, 直円柱, 直四角柱 (100~1000mm)	規定なし	規定なし	規定なし	軟岩から硬岩まで を対象	3以上	
((1) (2) (3)	 《既工認実績と異なる方法を採用した理由》 ① コンクリートの充填性を考慮し試験体形状を直円柱とした。なお、地盤工学会の試験方法では直円柱も採用されている。 ② 「JNES報告書」によると、「岩盤表面の凹凸状況の差が接合面の剥離性状にほとんど影響を及ぼしていないことが認められた。」とあることから、接合面の凹凸による付着力への影響は軽微であると考え10mm 程度に設定した。 ③ 市中生コンプラントで調達可能で最も低いFc = 18N/mm²とした。 							

④ 養生期間を短縮するため、早強コンクリート(調合材齢7日)を採用した。

⑤ 標本数は、「JNES報告書」を参考に1岩種当り12個とした。なお、地盤工学会の試験方法では3個以上とされている。

*1:「JNES報告書」のレベルコンクリートと基礎コンクリート間の付着力試験結果を用いている。

注:他サイトの情報等に係る記載内容については、公開資料を基に当社の責任において記載したものです。

既工認実績における設定付着力との比較

島根サイトと既工認実績における設定付着力の比較を第1表に示す。

島根サイトの建物直下地盤は主に黒色頁岩,凝灰岩及びこれらの互層から構成 されており,実際の建物直下地盤における黒色頁岩と凝灰岩の構成割合を定量的 に確認できないこと,建物毎でその構成割合が異なることから,付着力の設定に は,岩盤全体の平均値(0.98N/mm²)ではなく,保守的に値の小さい黒色頁岩の平均 値(0.81N/mm²)に基づき設定した。また,物性値のばらつき,原位置試験の不確実 性を踏まえて,平均値をそのまま用いるのではなく,保守性を考慮し,平均値に 2倍の安全率を考慮し,かつ試験結果の最低値を下回るよう設定した。

よって、島根サイトの設定付着力は、岩盤全体の平均値(0.98N/mm²)に対して2 倍以上の余裕があることから、既工認実績と比較しても遜色なく、試験結果に対 して十分な保守性を考慮した値である。

		<i>></i> v = ≠ v			211 - 11-			
サイト		建物	採用する地震	付着力の設定				
			応答解析モデル (基礎浮上り評価法)	試験の平均値 (N/mm ²)	試験の 最小値 (N/mm ²)	設定 付着力 (N/mm ²)	保守性の考え方等	
島根		廃棄物処理建物	ジョイント要素を 用いた3次元 FEMモデル ^{*1}	1.15(凝灰岩)	0. 50	0.40	2種の岩種のうち平均値の小さい 黒色頁岩の平均値に対して2倍の 安全率を考慮するとともに最小値 0.50を下回るよう設定	
		制御室建物	SRモデル* ² (浮上り線形 地震応答解析)	0.81(黒色頁岩)				
既工認実績	高浜	中間建屋	ジョイント要素を 用いた 3 次元 F E Mモデル ^{* 1}	0.92	0.55	0.3	平均値に対して十分な余裕を考慮 するとともに最小値 0.55 を下回る よう設定	
	大飯	制御建屋	ジョイント要素を 用いた3次元 FEMモデル* ¹	0.71	0.44	0.3	平均値に対して十分な余裕を考慮 するとともに最小値 0.44 を下回る よう設定	
	美浜	原子炉建屋	ジョイント要素を 用いた3次元 FEMモデル ^{*1}	0.91	0.57	_	補足説明資料において工認ケース との比較ケース(側面回転ばね非考 慮モデル)に平均値(0.91N/mm ²)を 設定* ³	
	川内	ディーゼル建屋, 主蒸気管室建屋	基礎固定 モデル* ²	0.63	0. 50	0.18 (必要付着力)	「JNES報告書」のレベルコンク リートと基礎コンクリート間の試 験結果の平均値(0.6N/mm ²)と比較	

第1表 島根サイトと既工認実績における設定付着力の比較

*1:ジョイント要素に付着力を考慮。

*2:基礎浮上りが発生しないために必要な付着力が設定付着力を超えないことを確認。

*3:工認ケースにおいては、付着力を考慮していない。

注:他サイトの情報に係る記載内容については、公開資料を基に当社の責任において記載したものです。

島根原子力発電所 敷地の地質・地質構造について (第 223 回審査会合資料再掲)

以下に、島根原子力発電所の2号炉エリア(1号炉エリア含む)及び3号炉エリアの地質・地質構造を示す(第223回審査会合、資料2-1の再掲)。

4 条-別紙 2-補 3-2

4 条-別紙 2-補 3-3

4 条-別紙 2-補 3-4

注:3号炉の地質断面図では、2号炉の地質断面図で互層として区分していた地質を細分している。

4 条-別紙 2-補 3-5

注:3号炉の地質断面図では、2号炉の地質断面図で互層として区分していた地質を細分している。

4 条-別紙 2-補 3-6
建物直下地盤周囲の地盤状況について

建物直下地盤周囲の地盤状況として,原子炉建物南側に隣接した土木構造物(第 1ベントフィルタ格納槽及び低圧原子炉代替注水ポンプ格納槽)の設置地盤にお ける岩相区分及び岩級区分を第1図に示す。

建物直下地盤周囲における岩相は黒色頁岩(一部凝灰質頁岩)及び凝灰岩が確認され、岩級は主にCH級であることから、試験地盤は建物直下地盤と同等の地盤である。

岩相区分

岩級区分

(第1ベントフィルタ格納槽) 第1図(1) 原子炉建物南側に隣接する土木構造物の設置地盤における 岩相区分及び岩級区分 4条-別紙 2-補 4-1

(配置図)

 ※:岩相区分及び岩級区分と方位を合わせるため、 写真を 180°回転させている。
掘削面 (T. P. -1.6m)

(低圧原子炉代替注水ポンプ格納槽) 第1図(2) 原子炉建物南側に隣接する土木構造物の設置地盤における

岩相区分及び岩級区分