島根原子力発電所2号炉 審査資料					
資料番号	EP-061改95(比1)				
提出年月日	令和3年6月17日				

島根原子力発電所2号炉

「実用発電用原子炉に係る発電用原子炉設置者の重大事故の発生及び拡大の防止に必要な措置を実施するために必要な技術的能力に係る審査基準」への適合状況について

比較表

(女川原子力発電所2号炉との比較)

令和3年6月 中国電力株式会社

まとめ資料比較表 〔技術的能力 1.0.2 可搬型重大事故等対処設備保管場所及びアクセスルートについて 別紙 37〕 女川原子力発電所 2号炉(2020.2.7版) 島根原子力発電所 2号炉 別紙(11) 建屋関係の耐震評価について 建物関係の耐震評価について 1. 評価概要 島根原子力発電所2号炉における保管場所及びアクセスルートに影響を与える 建物(外装材等含む。)について耐震評価を実施し、保管場所及びアクセスルー ことを確認する。 2. 免震重要棟の耐震評価について 1. 各建屋の諸元 2.1 建物諸元 各建屋の諸元を第1表に示す。 免震重要棟の諸元を第1表に示す。 第1表 各建屋の諸元 第1表 免震重要棟の諸元 平面形状 地上 平面形状 地上 建物名称 構造 階数 基礎構造 Х 高さ 竣工| Υ 管理 建屋名称 構造 階数 基礎構造 高さ 竣工日 NS(X) EW(Y) (m) (m) (m) 番号**1 鉄骨鉄筋コンクリート造 (m) (m) (m) 平成 2 免震重要棟*1 (一部鉄骨造) 地上3階 直接基礎 15.035.30 46.90地上5階 10月3 1号原子炉建屋 鉄筋コンクリート造 直接基礎 53.30 43.80 46.78 昭和 58 年 9 月 30 日 32 (免震構造) 地下2階 ※1:3.(3)a.①周辺構造物の損壊(建物,鉄塔等) における第1保管エリア周辺の建物。 地上4階 1 号廃棄物処理建屋 鉄筋コンクリート造 直接基礎 66.00 22.95 29.03 昭和 58 年 9 月 30 日 34 地下2階 地上3階 3 号原子炉建屋 鉄筋コンクリート造 平成 13 年 6 月 20 日 83 直接基礎 80.50 77.00 35.70 地下3階 地上3階 鉄筋コンクリート造 3号サービス建屋 直接基礎 52.00 50.00 19.20 平成 13 年 6 月 20 日 84 地下4階 地上2階 鉄筋コンクリート造 平成 13 年 6 月 20 日 3号タービン建屋 直接基礎 97.00 60.70 23.2085 地下3階

昭和 57 年 2 月 22 日

増築部

平成元年5月16日

平成5年11月11日

平成 23 年 8 月 19 日

平成8年4月19日

※1 「1.0.2-別紙10の第2表 アクセスルートの周辺構造物」による管理番号。

鉄筋コンクリート造

鉄骨鉄筋

コンクリート造

鉄骨造

(免震構造)

鉄骨造

事務本館

事務別館

事務建屋

保修センター

87

113

143

地上4階

塔屋1階

地上4階

塔屋2階

地上8階

地上4階

直接基礎

直接基礎

直接基礎

直接基礎

45.80

39.20

56.80

79.30

23.20

20.20

31.70

39.70

20.80

24.50

36.70

21.75

1.0.2-1

設備運用又は体	制等の相違(設計方針の相違)
記載表現,設備	名称の相違(実質的な相違なし)
	備考
別紙 (37)	
可能性のある	
トに影響がない	
ΞE	
96 年	
31 日	

		女川原子力発電所	行 2号炉	(2020.2.7版)			島根原子力発電所 2号炉	備考
2. 各建	屋の耐震評価力	7法等					<u>2.2</u> 建物の耐震評価方法等	
各建屋	の耐震評価方法	☆等を第2表に示し,	耐震性能	評価検討について	ては別添1~	8.に示す。	免震重要棟の耐震評価方法等を第2表に示し、耐震性能評価検討については別添1に示す。	
		第2表 各建	建屋の耐震	評価方法等			第2表 免震重要棟の耐震評価方法等	
管理 釆号*1	建屋名称	評価方法	1次固有周期	検討用地震動 (使用根拠)	必要保有水平	保有水平耐力	評価方法 検討用地震動 地震応答解析による	
	1号原子炉建屋	(現去よびあわたとスジルの)	田方は知ら	基準地震動 Ss7 波※2	<u>武</u> 凯丁·苏味	がむて初は	層間変形角(上部構造)基準地震動Ss ^{*1} せん断ひずみ(免震装置)	
32	(別添1)	保有水平町刀による評価***	固有 値 解 析	(基礎ト宕盤及び設直 レベルを確認 ^{※4})	新設 工 認時	新設工.認時	 ※1:基準地震動Ss-D,基準地震動Ss-F1,基準地震動Ss-F2,基準地震 動Ss-N1及び基準地震動Ss-N2のうち,建物の水平方向1次固有周期に 	
34	1 号廃棄物処理建屋 (別添 2)	保有水平耐力による評価**2	固有値解析	基準地震動 Ss7 波*2 (基礎下岩盤及び設置 レベルを確認*4)	新設工認時	新設工認時	おける加速度応答スペクトルが最も大きい基準地震動 S s – Dを用いる。	
83	3 号原子炉建屋 (別添 3)	保有水平耐力による評価**	固有値解析	基準地震動 Ss7 波** ² (基礎下岩盤及び設置 レベルを確認**()	工事反映 ^{*6}	工事反映 ^{※6}		
84	3 号サービス建屋 (別添 4)	保有水平耐力による評価*2	固有値解析	基準地震動 Ss7 波 ^{*2} (基礎下岩盤及び設置 レベルを確認 ^{*4})	新設工認時	新設工認時		
85	3 号タービン建屋 (別添 5)	保有水平耐力による評価*2	固有値解析	基準地震動 Ss7 波 ^{*2} (基礎下岩盤及び設置 レベルを確認 ^{*4})	工事反映 ^{%6}	新設工認時		
87	事務本館/別館 (別添 6)	地震応答解析による 層間変形角	固有値解析	基準地震動 Ss7 波 (基礎下岩盤を確認 ^{※5})		_		
113	事務建屋 (別添7)	地震応答解析による 層間変形角(上部構造) せん断ひずみ(免震層)	固有値解析	基準地震動 Ss7 波 (基礎下岩盤を確認※5)	_	_		
143	保修センター (別添 8)	保有水平耐力による評価*2	告示**3	基準地震動 Ss7 波 ^{※2} (加速度応答スペクト ルを確認)	新設時	新設時		
※1 ※2 基 ※3	「1.0.2-別紙 10 の第 2 陸準地震動 Ss 時に対応 「昭和 55 年建設省告示	2 表 アクセスルートの周辺 云する必要保有水平耐力が得 示第 1793 号第二 Rt を算出す	四構造物」によ R有水平耐力以 する方法」によ	- る管理番号。 - 下であることを確認す - り算出。	3.			
 ※4 基 ※5 基 ※6 新 	基礎下岩盤及び設置レ 基礎下岩盤と解放基盤 所設工認時以降の重量	ベルが解放基盤と大きな差 下岩盤は同等の岩盤である 増減や耐震性に影響のある	がないことをす ことを確認。 工事を反映(1	確認。 重量増減の場合は Ai 分	布見直し。)。			

	7	女川原子力発	電所 2号	 - テ炉(2020	0.2.7版)				島相	眼原子力新	ě電所 2号炉				備考
3. 各建属	屋の耐震評価結果							2.3 建物の耐震評価結果							
各建屋0	<u>各建屋</u> の耐震評価結果を第3表に示し、耐震性能評価検討については <u>別添1~8</u> に示す。				<u>免震重要棟</u> の耐震評価結果を第3表に示し,耐震性能評価検討については <u>別添1</u> に示す。なお,										
					本評価結果は暫定条件を用いた評価結果であることから、正式条件を用いた評価結果は詳細設計										
								段階で示す。							
		第3表	建屋関係の	の耐震評価	西結果				第3表	免震重要	夏棟の耐震評価約	吉果			
答理	建屋名称				評价	西結果	影		評価方法		評価約	·果	影響		
番号*1	(別添参照番号)		評価方法		評価基準値	Qu/Qun 又は最大応答値	響		上部構造	層間 変形角	計価基準値 1/75 以下 ^{※1}	取入心谷恒 1/15459	無		
3.0	1号原子炉建屋	保有水平耐力(Qu)/基準地震	動 Ss 時に	1.00 12 1-	1 45	4005			210月	166%以下 ^{**2}	1000/	Aur		
02	(別添1)	対応する必	要保有水平耐力	力(Qun)	1.00 0.1.	1.40	200	地震心咨解机	免震装置	せん断	(標準特性時)	132%			
34	1号廃棄物処理建屋	保有水平耐力(Qu)/基準地震	動 Ss 時に	1.00以上	1.29	無			ひずみ	250%以下 ^{※2} (焙烘亦動時)	169%	無		
	(別称 2) 2	対応する必	要保有水平时; (0.) / 其進地雲	力(Qun)				 ※1 :「鉄筋コンク」	<u> </u> ート造建物の而	· · · 震性能評価	「行圧変動時) 話針(案)・同解説	 ((社) 日本建築	築学会)にお		
83	(別添3)	対応する必	要保有水平耐力	与 (Qun)	1.00以上	2.22	無	いて, 壁フレ	- ム構造の安全	限界状態とる	される層間変形角の	直。安全限界状態	態とは、地震		
84	3号サービス建屋	保有水平耐力(Qu)/基準地震	活動 Ss 時に 1.00 以上 1.41 無				応答時の応力及び地震終了時の鉛直荷重による応力を安定して維持することができる状態 であり、建物の被災度は大破が概ねこれに対応する。							
	 (別称 4) 3 号々ービン建長 		·要保有水平时。	/J (Qun)				※2:「免震構造の試評価例及び試設計例」((独) JNES, 2014)における設計目標値である。							
85	(別添5)	対応する必	要保有水平耐力	力(Qun)	1.00以上	1.07	無								
87	事務本館/別館	地震応答解析	事務本館	層間	1/75以下**2	1/244	無								
	(別添 6)		事務別館	変形角		1/162	無								
113	事務建屋	地震広ダ解析	上部構造	層間 変形角	1/30以下**3	1/300	無								
115	(別添 7)	AE IZ /U A'NH'N	免震層	せん断 ひずみ	250%以下**4	147%	無								
1.40	保修センター	保有水平耐力((Qu)/基準地震	i動 Ss 時に	1.00.011	1.00	Aur								
143	(別添 8)	対応する必	要保有水平耐力	力(Qun)	1.00 以上	1.03	燕								
₩1	「1.0.2–別紙 10 の第 2	表 アクセスル	ートの周辺構	ち造物」によ	くる管理番号。										
₩2	「鉄筋コンクリート造	建物の耐震性能	評価指針(案	き)・同解説	(日本建築学会)」	において, 壁フレ	ーム構								
造	造の安全限界状態とされる層間変形角の値。安全限界状態とは、地震応答時の応力及び地震終了時の鉛直荷														
重	重による応力を安定して維持することができる状態であり,建物の被災度は大破がおおむねこれに対応する。														
※3 「震災建築物の被災度区分判定基準及び復旧技術指針」((財)日本建築防災協会)において,鉄骨構造物															
(ラーメン構造) が被災度区分「大破」と判定される残留変形角の目安となる値。被災度区分は, 「軽微」,															
Γ	「小破」,「中破」,「大破」,「倒壊」の5区分があり,「大破」は,再使用するには詳細調査を実施し,建築物														
のj	の耐震改修の促進に関する法律に準拠した耐震診断によって復旧計画を立案できる状態である。														
※4 务	を 震構造の 試評価 例及	び試設計例((独	() JNES, 201	4)における	5設計目標である。										

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉
4. 各建屋外装材の被害想定について	3. 各建物の外装材の被害想定について
省略	省略
	4. 各建物の外装材以外の部材等による影響評価について
	省略

備考
「3. 各建物の外装材の被害想定 について」は東海第二との比較 を行うため省略
「4. 各建物の外装材以外の部材 等による影響評価について」は 女川2号炉に記載がないため省 略

	女川原子力発電所 2号炉(2020.2.7版)			備考			
女川原子力;	発電所 <u>事務建屋</u> 基準地震動 Ss に対する耐震性能評価検討	别添7					
 目的 <u>女川原子力発電所事務</u> 免震装置の耐震性能につ 建屋概要 建屋概要を<u>第58</u>素に, が<u>鉄骨造ラーメン構造</u>で 層ゴム,弾性すべり支承 	建屋に対し,基準地震動 Ss7 波に対する地震応答解析により いて検討を行い,建屋のアクセスルートへの影響を確認す 平面図を第42 図に,立面図を第43 図に示す。検討建屋は ,1階床下の免震層に免震装置(天然ゴム系積層ゴム,鉛つ ,オイルダンパ)を配置した免震構造である。	 目的 <u>島根原子力発言</u> 震装置の耐震性前 建物概要 建物概要を第二 骨鉄筋コンクリー 置(天然ゴム系利 置した免震構造す) 	・建物構造の相違 島根2号炉の免震重要棟は鉄 骨鉄筋コンクリート造(一部鉄				
	<u>第58表</u> 建屋概要				<u>第1表</u> 建物概要		骨造)の耐震壁付きラーメン構 造
構造	鉄骨造 (免震構造)			構造	鉄骨鉄筋コンクリート造(一部鉄骨造) (免震構造)		
階 数	地上8階	-		階数	地上3階		
基礎構造	直接基礎(岩盤に免震ピットが直接設置)			基礎構造	直接基礎(岩盤に免震ピットが直接設置)		
平面形状	56.80m(X方向)×31.70m(Y方向)			平面形状	35.3m(X方向)×46.9m(Y方向)	_	
高 さ	地上高さ 36.70m	_		高さ	地上高さ 15.0m	_	
竣工日	平成 23 年 8 月 19 日			竣工日	平成 26 年 10 月 31 日	-	

	備考
Х	

	備考
<u>4. 75</u>	
0 <u>. 55</u>	
5. 55	
<u>1. 05</u>	
8. <u>15</u> 7. <u>05</u>	

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	
3. 免震装置概要	3. 免震装置概要	
本建屋に使用している免震装置は、天然ゴム系積層ゴム9台、鉛プラグ入り積層ゴム9台及び	本建物に使用している免震装置は,天然ゴム系積層ゴム4台,鉛プラグ入り積層ゴム10台及	
弾性すべり支承9台の合計27台に加え、オイルダンパをX方向、Y方向にそれぞれ4台、合計	び低摩擦弾性すべり支承11台の合計25台に加え、オイルダンパをX方向、Y方向にそれぞれ	
<u>8台</u> である。免震装置の概要を <u>第59表</u> に,免震装置の配置図を <u>第44</u> 図に示す。	10台,合計 20台である。免震装置の概要を第2表に、免震装置の配置図を第3図に示す。	
第59表 免震装置の概要	第2表免震装置の概要	
ゴム材料は「諸属ゴム」	ゴム材料	
免震装置 せん断弾性率 形状 サイズ ゴム総厚 鉛径 基数	免震装置 形状 近ム総厚 基数 品番 メーカー	
天然ゴム系 0.29 N/mm ² ^{*1} 丸形 φ1,000mm 195.0mm 9	(N/mm ²)	
積磨コム (7.5x26)	天然ゴム系 240.0mm び目よ) 0.392 *1 丸形 φ1200mm (2.0.000) - 4 NS120G4 7 [*] リチ [*] ストン	
	相増コム (8.0×30) 240.0mm	
弾性すべり 0.78 N/mm ² 丸形 ø1,100mm 40.0mm - 9	鉛プラグ入り $ $	
文本 (8.0x5)	積層ゴム 0.385 ^{*1} 丸形 <i>4</i> 1300mm <i>252.3mm</i> 280 <i>4</i> LT130G4H ブ [*] リチ* ストン	
オイルダ*ンハ° ー ー ー - 8	(8. (×29) 39. 9mm	
※1:20℃での値	0.392 **1 丸形 ϕ 700mm — 1 SP070G4 $7^* I J f^* Z h^{\vee}$	
	0. 392 * 1 丸形 ϕ 800mm 39. 0mm — 3 SP080G4 7^* 功夫 λ	
	低摩擦弾性 (6.5×6) すべり支承 41.4mm	
	0.392 ^{※1} 丸形 ϕ 900mm (6.9×6) — 3 SP090G4 $7^* $ $yf^* $ $zh \rangle$	
	0.392 $*^{1}$ 丸形 ϕ 1000mm 40.0mm - 4 SP100G4 7^{*} リチャストン	
	(8.0×5)	
	オイルダンパ ー ー ー ー ー 20 BM250-4C オードモディブ	
● 天然ゴム系遺暦ゴム φ1.000 約プラグス以降層ゴム φ1.000	УХЎАХ [*]	
 弾性すべり支承 φ1, 100 オイルダンパ 	※1:20℃での値	
	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
	回 回 回 回 回 回 回 の の の の の の の の の の の の	
	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
4400		
	■ ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
тлиянат, 6,559 7,650 7,600 7,000 7,000 7,000 7,000 2,000 4,550 с.алинан	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
Y the second sec		
	$\longrightarrow X$	
第44回 免震装置配置図	<u>第3図</u> 免震装置配置図	

1.0.2-8

女川原子	· 力発電所 2号炉(2020.2	.7版)		島村	表原子力発電所 2	2 号炉		備考
 4.検討内容 (1)検討方針 免震構造の本建屋の倒壊は,免 部構造並びに免震層に対する応答 地震応答解析に用いる検討用地 ① 基準地震動 Ss-D1 ② 基準地震動 Ss-D2 ③ 基準地震動 Ss-D3 ④ 基準地震動 Ss-F1 ⑤ 基準地震動 Ss-F2 ⑥ 基準地震動 Ss-F3 ⑦ 基準地震動 Ss-N1 	 4.検討内容 (1)検討方針 免震構造の本建物の倒壊は、免震装置が破壊するモードを想定し地震応答解析を実施し、上 部構造及び免震装置に対する応答について検討を実施する。 					 ・検討用地震動の相違 島根2号炉は基準地震動5波 のうち,建物の1次固有周期に おける加速度応答スペクトルが 最も大きい基準地震動Ss-D を採用 (検討用地震動は4.(4)に記載) 		
本建屋の評価基準値を第60表 評価基準値は上部構造について ((一財)日本建築防災協会)に と判定される残留変形角の目安と 免震層及び免震装置は免震構造 目標値とする。	本 <u>建物</u> の評価基 評価基準値は上 <u>解説」((社)日本</u> る。 免震装置は「免 <u>せん断ひずみであ</u>	準値を <u>第3表</u> に示 部構造については 注集業学会)におい 震構造の試評価例 る <u>166%(免震装</u> 置	 、「鉄筋コンクリー 、「鉄筋コンクリー 、て、安全限界状態)及び試設計例」((置標準特性時)及び (第3表 評価基準 	<u>- ト造建物の耐震性値</u> <u>とされる層間変形角</u> 独)JNES, 2014)に [×] 250%(免震装置の特 <u>値</u>	<u> 「 唐評価指針(案)・同</u> <u> 1値である 1/75</u> とす おける設計目標値の <u> 特性変動時)</u> とする。	 ・上部構造の評価基準値の相違 島根2号炉の免震重要棟は鉄 骨鉄筋コンクリートであるた め、「鉄筋コンクリート造建物の 耐震性能評価指針(案)・同解説」 に基づく評価基準値を設定 ・免震装置の評価基準値の相違 島根2号炉の免震重要棟は免 震装置が標準特性時のケースも 		
部位	項目	評価基準値		部位 上部構造	項目 層間変形角	評価基準値 1/75 以下		実施しているため,標準特性時 における評価基準値を設定
上部構造	層間変形角	1/30 以下		免震装置	せん断ひずみ	166%以下 (標準特性時) 250%以下 (性は点利用)		
免震層・免震装置	せん断ひずみ	250%以下				(特性変動時)		

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉
a. 上部構造のモデルの諸元	a. 上部構造のモデルの諸元
上部構造を線形とした解析モデルの諸元を第61表に示す。減衰特性は剛性比例の内部粘	上部構造の水平方向は弾性の等価せん断型モデルに,鉛直方向は弾性の軸に
性減表とし、減表定数は免震層上部1階床位置固定時の1次固有周期に対して <u>2%</u> とする。	<u>てモデル化する。</u> 減衰特性は剛性比例の内部粘性減衰とし,水平方向の減衰定
	上の1階床位置固定時の1次固有周期に対して5%とする。鉛直方向の減衰深
	ね,免震装置,上部構造の連成系鉛直方向1次固有周期に対して5%とする。
	解析モデルの諸元を <u>第4表</u> に示す。

	階高	重量	弾性剛性	$x10^{5}$ (kN/m)
皆数	(m)	(kN)	X方向	Y方向
RF		16,990*		
8F	4.00	13, 144	8.156	9.019
7F	4.00	13,972	8.315	9.057
6F	4.00	14, 416	8.144	8.997
5F	4.00	14,641	8.342	9.194
4F	4.10	14,880	8.208	8.952
3F	4.10	16,422	8.178	9.108
2F	4.10	14,258	9.046	10.189
1F	4. 20	22, 140	11.406	13.021
十言		140, 862		

<u>第61</u>表 各階, 階高, 重量, 弾性剛性

※RFの重量には塔屋部分の重量(881kN)が含まれる。

		島根原	備考				
造のモデル	~の諸元						
構造の水平	方向は弾	単性の等価	・地震応答解析モデルの相違				
<u>~化する。</u> i	咸衰特性	は剛性比	島根2号炉の免震重要棟は水				
皆床位置固:	定時の1	次固有周	期に対して <u>5</u> ・	<u>%</u> とする。 <u>鉛</u>	重方向の減衰定	数は地盤ば	平及び鉛直方向の剛性を考慮す
[装置,上]	部構造の)連成系鉛	直方向1次固 ^元	有周期に対して	こ5%とする。	_	るモデルで評価を実施
デルの諸	元を <u>第</u> 4	表に示す	0				
							・構造の違いに伴う減衰定数の
							相違
							島根2号炉の免震重要棟は鉄
							骨鉄筋コンクリート造であるた
							め、減衰定数5%を採用
	第	4表 各	階,階高,重量	量,弾性剛性			
	階高	重量	Ē	単性剛性(kN/m))]	
階数	(m)	(kN)	X方向	Y方向	Z方向		
屋上階		23904	7	7			
2. 陇	4.2	27058	5.333 $\times 10^{\circ}$	7.466 $\times 10^{\circ}$	5.703 \times 10°		
可し	5.0	27058	5. 158×10^{7}	6. 981×10^{7}	4.770 $\times 10^{8}$		
2階		29751					
	4.5		6. 608×10^{7}	8.904 $\times 10^{7}$	6.210 $\times 10^{8}$		
1 階		57765					

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
b. 免震層のモデルの諸元	b. 免震層のモデルの諸元	
(a) 水平ばね要素	(a) 水平ばね要素	
免震層の水平ばねは、天然ゴム系積層ゴム、鉛プラグ入り積層ゴム及び弾性すべり支承	免震層の水平ばねは、天然ゴム系積層ゴム、鉛プラグ入り積層ゴム及び低摩擦弾性すべ	
をそれぞれモデル化し、その特性を線形ばね、非線形ばねで評価する。	り支承をそれぞれモデル化し、その特性を線形ばね、非線形ばねで評価する。免震装置の	
	特性は,基準温度20℃に対して15℃の特性として定めたものとする。	
なお,水平方向の <u>地震応答解析では免震装置部分は</u> 履歴減衰のみを考慮し,材料減衰は	なお,水平方向の減衰特性は履歴減衰のみを考慮し、材料減衰は考慮しない。	
考慮しない。		
i. 天然ゴム系積層ゴムの特性を表す水平ばね	i. 天然ゴム系積層ゴムの特性を表す水平ばね	
天然ゴム系積層ゴムの特性を表す水平ばねは線形ばねにモデル化する。	天然ゴム系積層ゴムの特性を表す水平ばねは線形ばねにモデル化する。	
天然ゴム剛性: $K_r = A_r \cdot G_r / h_r$	天然ゴム剛性: $K_r = A_r \cdot G_r / h_r$	
天然ゴムせん断弾性率: $G_r=0.294$ N/mm ² (15℃)	天然ゴムせん断弾性率:G _r =0.392N/mm ² (20℃)	
ここで, A _r :積層ゴムの断面積, h _r :ゴム層の総厚さ	ここで, A _r :積層ゴムの断面積, h _r :ゴム層の総厚さ	
	丁仲, 그, 고려묘, 그, 고학내는 국는 노고, 그는 그, 부는 그, 바르 국고, 아이, 국가, 그	
大然コム糸槓増コムの特性を表す水平はねに考慮する諸元を <u>用 62 表, 用 63 表</u> に示す。	大然コム糸積増コムの特性を表す水平はねに考慮する諸元を用り表しの形も表に示	
	o E	
	笠「主、玉砕ゴ) 爻珪屋ゴ) にたて会雲屋北亚げわの共二 (1 甘たたれ)	
<u> 第 62 変</u> 大 二 ム 示 楨 信 コ ム に よ る 兄 長 信 小 平 は 4 4 0 6 1 元	<u> あう</u> 双 大 然 コム 米 損 増 コム に よ る 光 長 増 水 平 は 4 4 0 6 1 二 差 の に り)	
ゴムの 積層ゴムの ゴム層総厚	せん断剛性率 断面積 ゴム層総厚さ	
せん) が加強し、 (N/mm^2) が加積の総和 (n/mm^2) さd(cm)	$G_r (\text{N/mm}^2)$ $A_r (\text{cm}^2)$ $d (\text{cm})$	
$(N/IIIII)$ $A_r(CIII)$ 0.294 70.509 19.5	0.392 11305 24.0	
<u>0.234</u> 10,303 ※値は9期の会計	(20°C)	
第 63 表 天然ゴム系積層ゴムの水平剛性	第6表 天然ゴム系積層ゴムの水平剛性(1基あたり)	
種類 数 ゴム Kr (kN/m)	種類 基数 使用ゴム <u>水平両11年</u>	
ϕ 1,000 9 R3 1.063×10 ⁴	$\phi 1200$ 4 G4 1.87×10^3	
<u> </u>	※1:基準温度 20℃に対して,15℃の特性として定めた値。	

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉
ii. 鉛プラグ入り積層ゴムの特性を表す水平ばね	ii. 鉛プラグ入り積層ゴムの特性を表す水平ばね
鉛プラグ入り積層ゴムの特性を表す水平ばねは第46回に修正バイリニア型にモデル	鉛プラグ入り積層ゴムの特性を表す水平ばねは第5図に示す修正バイ
化する。	デル化する。
Q	Q
1 martine and	
Qa Ku	Q_d K_u

<u>第46図</u>修正バイリニア型履歴

鉛プラグ入り積層ゴムの特性を表す水平ばねに考慮する諸元を第64表に示す。 また, 第65表に各免震装置の種々の振幅レベルでの等価水平剛性を示す。

第64表 鉛プラグ入り積層ゴムによる免震層水平ばねの諸元

ゴムの せん断弾性率 G _r (N/mm ²)	積層ゴムの 断面積の総和 A _r (cm ²)*	鉛プラグの 断面積の総和 A _p (cm ²)*	ゴム層総厚 さ d(cm)
0.392	67,265	3, 421	20.1

※値は9基の合計

第65表 鉛プラグ入り積層ゴムの等価剛性

	松禄	公径		水平剛性(kN/m)*			
種類		基数	基数	数 ゴム	d=2.0cm	d=20cm	d=40cm
	(CIII)		- 4	(γ=10%)	(γ=100%)	(γ=200%)	
φ 1, 000	0 22	9	G4	1. 419×10^5	2.830×10 ⁴	2.008 $\times 10^4$	

※値は9基の合計

			備考					
鉛プラグ入り積層ゴムの特性を表す水平ばね								
鉛プラク	「入り積	層ゴム	ア型にモ					
デル化する	D o							
	. 0							
				\mathcal{Q}				
				≜				
				Qd	K_u			
			\int	K	Seq d			
			/					
		/						
		L		\mathbf{x}_d				
		第	55区	修正バイリニ	ア型履歴			
鉛プラク	「入り積	層ゴム	の特性を	を表す水平ば	ねに考慮する話	皆元を <u>第7表</u> に示 ⁻	す。	
また、第	第8表に	各免震	装置の	重々の振幅レ	ベルでの等価オ	ヽ平剛性を示す。		
·	······					,		
第	7.表	鉛ブラ	グ入り積	責層ゴムによ	る免震層水半は	ねの諸元		
			~	(1基あたり)				
		ゴムの	Ŧ	債層ゴムの	鉛プラグの	ゴム届絵厚さ		
種類	せん	ン断剛性*	率	断面積	断面積	ー (cm)		
	Gr	(N/mm^2)		$A_r (\mathrm{cm}^2)$	A_r (cm ²)	u (om)		
φ 1200	_	0.385		10779	531	24.0		
φ 1300		(20°C)		12657	616	25.2		
소 투	<u> 第8表</u>	鉛プラ	ダ入り	積層ゴムの等	価剛性(1基)	<u>あたり)</u>		
	¢∧/√		住日		水平剛性 ^{※1} (k	N/m)		
種類	逝住 (am)	基数	使用	<i>d</i> =2.4cm	<i>d</i> =24cm	<i>d</i> =48cm		
	(CIII)		14	(_γ =10%)	(₂ =100%)	(₂ =200%)		
φ 1200	26	6	G4	1.860×10^4	3. 730×10^{3}	2. 650×10^3		
ϕ 1300	28	4	04	2. 140×10^4	4. 250×10^{3}	3. 010×10^3		
※1:基準	昷度 20℃	に対して,	15℃の特	神として定めた	直。			

			備考					
鉛プラグ	、入り積	層ゴム						
鉛プラグ	、入り積	、 「層ゴム	ア型にモ					
ゴノノノ) Ele c					
//F1L9 @	0							
				Q				
					K K			
				Q _d				
			\int	`````````````````````````````````	d			
		/	/					
		L	<u> </u>	K _d				
				1				
		第	55区	修正バイリニ	- ア型履歴			
鉛プラグ	、入り積	層ゴム	の特性	を表す水平ば	ねに考慮する諸	伝えを第7表に示	す。	
キた 笛	、 8 表に	各岛震	装置の	国々の振幅 レ	ベルでの等価水	平剛性を示す	<i>,</i> 0	
s.r⊂, <u>2</u> ,			<u>我臣</u> •外		う・ く う 4 回い			
terter		AN -0	187 10 1	* *	マタモロトデン			
觅	/ 衣	鉛ファ	ク入り和	貢 自コムによ	る免震層水平は	ねの諸元		
[1	<u> </u>	~	(1 基あたり)		7	
毛生	止)	ゴムの	**	積層ゴムの 熊玉珪	鉛プラグの	ゴム層総厚さ		
俚积	でん C	ノ西川町川生。 (N/mm ²)	Ŷ	断 囬 慎 $4 (cm^2)$	时॥傾 4 (cm ²)	$d \pmod{d}$		
φ 1200	0,	0.385		10779	531	24.0		
φ 1300		(20°C)		12657	616	25.2	-	
,							J	
音	箆8表	鉛プラ	ダ入り	積層ゴムの筆	\$ 価剛性(1 基表	ちたり)		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	linenter.				水平剛性 ^{※1} (ki	V/m)	7	
種類	鉛径	基数	使用	<i>d</i> =2.4cm	d=24cm	<i>d</i> =48cm	-	
	(cm)		ゴム	( ₂ =10%)	( _{\varyappa} =100%)	( _{\varphi} =200\%)		
φ 1200	26	6	C A	1.860 $\times$ 10 ⁴	$3.730 \times 10^{3}$	2. $650 \times 10^3$		
φ 1300	28	4	64	2. $140 \times 10^4$	4. $250 \times 10^3$	3. $010 \times 10^3$		
※1:基準温	温度 20℃に	に対して,	15℃の特	特性として定めた	值。			

1.0.2-13

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉
iii. 弾性すべり支承の特性を表す水平ばね	<ul><li> Ш. 低摩擦弾性すべり支承の特性を表す水平ばね</li></ul>
地震応答解析では、計 <u>9基</u> の弾性すべり支承をそれぞれ <u>第47図</u> に示すように、弾性	地震応答解析では,計11基の低摩擦弾性すべり支承をそれぞれ第6図に
剛性及び折点荷重を摩擦力とした非線形水平ばねにモデル化する。これにはバイリニア	弾性剛性及び折点荷重を摩擦力とした非線形水平ばねにモデル化する。こ:
型の履歴特性を考慮し、履歴による減衰のみを考慮する。設定諸元を <u>第66表</u> に示す。	ニア型の履歴特性を考慮し,履歴による減衰のみを考慮する。設定諸元を第
	μΝ 🛉
T L	



第47図 弾性すべり支承に与える非線形特性

# 第66 表 弾性すべり支承による免震層水平ばねモデルの諸元

鉛直力*	摩擦係数	摩擦力	弹性剛性*
N (kN)	μ	μ N (kN)	K (kN/m)
56,811.6	0.011	624.9	$1.732 \times 10^{5}$

※値は9基の合計



島根原子力発電所 2号炉							備考
氏摩擦弹性	すべり	支承の特性を表					
也震応答解	いがでは,	計 11 基の低	こ示すように,				
剛性及び折点荷重を摩擦力とした非線形水平ばねにモデル化する。これにはバイリ							
「刑の層爾	特性な	とは、 「「「「」」をは、 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」	トス減春の	みを考慮する	設定諸元を知	第9表に示す	
	171工で 1	フ思し,腹ഥに	よる風欲の	* たん つ 思 り つ。	取た的儿を点		
	第6図	μN	▲ K K K K K K K K K K K K K	/▶ ▲ こ与える非線形	特性		
第9	表 低層	を擦弾性すべり	)支承による	免震層水平ば	ねの諸元		
			基あたり)	~			
15.45	廿业.	鉛直力	摩擦係数	摩擦力	弹性剛性*1	]	
種類	基奴	N (kN)	μ	$\mu N$ (kN)	$K  (\rm kN/m)$		
φ 700	1	2146	0.015	32.2	5. $06 \times 10^{3}$		
$\phi 800$	3	$3286 \sim 3405$	0.015	49.3~51.1	6. $77 \times 10^{3}$		
$\phi$ 900	3	$3879 \sim 5241$	0.015	58.2∼78.6	8. $07 \times 10^3$		
$\phi 1000$	4	$4045 \sim 6980$	0.015	60.7~104.7	$1.03 \times 10^{4}$		
※1:基	準温度 20%	Cに対して, 15℃の	り特性として定	めた値。			

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉					
<ul> <li>(b) 減衰要素</li> <li>減衰要素はオイルダンパをダッシュポット要素にモデル化する。ダッシュポット要素の</li> <li>諸元を<u>第 67 表</u>に示す。</li> </ul>	<ul> <li>(b)減衰要素</li> <li>減衰要素はオイルダンパをダッシュポット要素にモデル化する。ダッシュ</li> <li>諸元を<u>第10表</u>に示す。</li> </ul>					
第 67 表 オイルダンパによる免震層ダッシュポットモデルの諸元 減衰係数 減衰係数 リリーフ リリーフ 最大 最大	<u>第10表</u> オイルダンパによる免震層ダッシュポットモデルの諸元 (1基あたり) 減衰係数 減衰係数 リリーフ リリーフ 最大 最大					
C1     C2     荷重     速度     荷重     速度	$C_1$ $C_2$ $\overline{d}$ $\overline{d}$ $\overline{d}$ $\overline{d}$ $\overline{d}$ $\overline{d}$ $\overline{d}$					
(kN/cm/s) (kN/cm/s) Fr (kN) Vr (m/s) Fmax (kN) Vmax (m/s)	$(kN/(cm/s))  (kN/(cm/s))  F_r  (kN)  V_r  (m/s)  F_{max}  (kN)  V_{max}  (m/s)$					
25.0 1.695 800 0.32 1,000 1.50	25.0         1.695         800         0.32         1000         1.50					
オイルダンパはX,Y各方向4基ずつ,計8基配置する。オイルダンパの特性を第 48回に示す。 $F_{max}$	オイルダンパはX, Y各方向 10 基ずつ, 計 20 基配置する。オイルダン 7 図に示す。 $\frac{F_{max}}{C_1} + \frac{F_{max}}{V_r} + \frac{F_{max}}{V_{max}} + \frac{F_{max}}{V_r} + \frac{F_{max}}{V_m} + \frac{F_{max}}{V_r} + \frac{F_{max}}{V_m} + \frac{F_{max}}{V$					
<u>(c) 回転ばね要素</u>	第7図 オイルダンパに与える特性					
<u>免震層の回転ばねは免震層直上部分を剛版と仮定し,積層ゴム及びすべり支承の鉛直剛</u> 性より評価する。回転ばねの諸元を第68表に示す。						

第 68 表	免震層回転ばねの諸元

方向	X方向 (Y軸回り)	Y方向 (X軸回り)
回転ばね剛性 (kN.m/rad)	$6.217 \mathrm{x} 10^{10}$	2. $667 \times 10^{10}$

	備考
「ッシュポット要素の	
の諸元	
最大 速度 <i>V_{max}</i> (m/s) 1.50	
ルダンパの特性を휦	
	・解析モデルの相違 島根2号炉の免震重要棟は平 面的に配置した免震装置の鉛直 ばねとして免震層の回転を考慮

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	
	(c) 鉛直ばね要素	
	免震層の鉛直ばねは、天然ゴム系積層ゴム、鉛プラグ入り積層ゴム、	低摩擦弹
	支承をそれぞれ圧縮領域と引張領域が非対称となる非線形ばねでモデル	<u>~化する。</u>
	の引張方向の特性は、第8図に示すようにバイリニアとし、圧縮剛性に	係数を乗
	した。各装置の特性を第11~13表に示す。	
	なお、鉛直方向の減衰特性は剛性比例の内部粘性減衰とし、減衰定数	は地盤は
		_
		-
	P:軸力 P:軸力 P:軸力	
	引張側 N,	
		▶
	$(E \hspace{-0.5mm}/ \hspace{-0.5mm}/} \hspace{-0.5mm}/ \hspace{-0.5mm}/ \hspace{-0.5mm}/ \hspace{-0.5mm}/}$	ij.
	, , , , , , , , , , , , , , , , , , , ,	
	$K_c: 積層ゴム鉛直剛性 K_c: 低摩擦弾性すべり支承鉛直剛 K_c: K_c = K_c/10 K_c = K_c/10$	性
	$_2K_t = K_c/50$	
	(a) 積層ゴム (b) 低摩擦弾性すべり支承	k
	第 Q 团 -	
	第11 書 王鉄ゴム系建國ゴムの公古特州(1 其あたり)	
	第11後 八派・公示復信・公の西国村住(1座のにり)	7
	種類 新 直剛性 $(kN/m)$ 水 $(kN)$	
	上稲側 $\Lambda_c$ 与 張側 $_i\Lambda_t$ 与 張側 $_2\Lambda_t$ $+ 1200$ $4.57 \times 10^6$ $4.57 \times 10^5$ $9.14 \times 10^4$ 1120.5	-
	φ1200 4.31×10 4.31×10 5.14×10 1130.3	]
	<u> 第12 表 鉛ノフク入り積層コムの鉛直特性(1 基めたり)</u>	
	新酒 鉛直剛性 (kN/m) N (kN)	1
	王縮側 $K_c$ 引張側 $_{t}K_t$ 引張側 $_{2}K_t$	-
	$\phi$ 1200 5. 57×10 ⁶ 5. 57×10 ⁵ 1. 11×10 ⁵ 1077. 9	
	$\phi$ 1300 6. 21×10° 6. 21×10° 1. 24×10° 1265. 7	]

備考           近摩擦弾性すべり         ・地震応答解析モデルの相違 島根2号炉の免震重要棟は水 平及び鉛直方向の剛性を考慮す るモデルで評価を実施           試地盤ばね、免震         コン		
・地震応答解析モデルの相違 島根2号炉の免震重要棟は水 平及び鉛直方向の剛性を考慮す るモデルで評価を実施         11地盤ばね、免震		備考
監察擦弾性すべり (立ちる、積層ゴム)         島根2号炉の免震重要棟は水 平及び鉛直方向の剛性を考慮す るモデルで評価を実施           は地盤ばね、免震         ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		・地震応答解析モデルの相違
上する。積層ゴム 総数を乗じて設定       平及び鉛直方向の剛性を考慮す るモデルで評価を実施         土地盤ばね、免震	氐摩擦弾性すべり	島根2号炉の免震重要棟は水
弦弦を乗じて設定         るモデルで評価を実施           土地盤ばね,免震	化する。積層ゴム	平及び鉛直方向の剛性を考慮す
	系数を乗じて設定	るモデルで評価を実施
	は地盤ばね、免震	
	ŧ	

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	第 13 表 低摩擦弾性すべり支承の鉛直特性(1基あたり)         種類       鉛直剛性(kN/m)         種類       日 $\phi$ 700 $0.85 \times 10^7$ $\phi$ 800 $1.14 \times 10^7$ $\phi$ 900 $1.40 \times 10^7$ $\phi$ 1000 $1.75 \times 10^7$	<ul> <li>・地震応答解析モデルの相違 島根2号炉の免震重要棟は水</li> <li>平及び鉛直方向の剛性を考慮す るモデルで評価を実施</li> </ul>
(d)地盤ばね <u>地盤の剛性は免震層及び上部建物の水平周期に対し十分剛であると考えられるため,地</u> 盤ばねは考慮しない。	C地盤ばね 建物と地盤の動的相互作用は,建物下部の地盤を等価な水平ばね,回転ばね及び鉛直ばね として評価する。	<ul> <li>・地盤ばねの扱いの相違</li> <li>島根2号炉の免震重要棟は建</li> <li>物と地盤の動的相互作用を地盤</li> <li>ばねとして考慮</li> </ul>

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉
<u>c.</u> 免震装置の特性変動	d免震装置の特性変動
(a) 天然ゴム系積層ゴム	(a) 天然ゴム系積層ゴム
免震装置のうち、天然ゴム系積層ゴムの剛性のバラツキに対して第69表に示す3要因	免震装置のうち、天然ゴム系積層ゴムの剛性(水平及び鉛直)のばらつきに
を設定した。	<u>14</u> 表に示す3要因を設定した。
第69表 天然ゴム系積層ゴムのバラツキ	第14表 天然ゴム系積層ゴムのばらつき

バラツキの要因	剛性 Kr
製品誤差(設計値に対して)	-10%~+10%
経年変化(初期値に対して)	0%~+10%
環境温度(設計値に対して)	$-4\% \sim +6\%$

(b) 鉛プラグ入り積層ゴム

免震装置のうち,鉛プラグ入り積層ゴムの降伏後剛性<u>及び</u>降伏荷重特性値の<u>バラツキ</u>に 対して<u>第70表</u>に示す3要因を設定した。

# <u>第70表</u> 鉛プラグ入り積層ゴムの<u>バラツキ</u>

バラツキの要因	降伏後剛性 Kd	降伏荷重特性值 Qd
製品誤差(設計値に対して)	-10%~+10%	-10%~+10%
経年変化(初期値に対して)	0%~+10%	変化なし
環境温度(設計値に対して)	$-3\% \sim +5\%$	-13%~+19%

(b) 鉛プラグ入り積層ゴム

ばらつきの要因

製品誤差

(設計値に対して)経年変化

(初期値に対して) 環境温度

(設計値に対して)

免震装置のうち,鉛プラグ入り積層ゴムの降伏後剛性,降伏荷重特性値及 ばらつきに対して第15表に示す3要因を設定した。

# 第15表 鉛プラグ入り積層ゴムのばらつき

水平剛性 K_r

-5%  $\sim$  +5%

0%~+10%

-4% ~+4%

鉛直剛性 K_v

0%~+15%

0%~+10%

変化なし

げたへきの西田	降伏後剛性	降伏荷重特性值	鉛直剛性
はりりさい安凶	$K_d$	$\mathcal{Q}_{d}$	$K_{\nu}$
製品誤差	-5%~+5%	-10%~0%	-5%~+10%
(設計値に対して)	0,00 0,0	1070 070	0,0 10,0
経年変化	$0\% \sim +10\%$	0%	$0\% \sim +10\%$
(初期値に対して)	070 - 1070	0 70	070 - 1070
環境温度	$-10/2 \sim +10/2$	-15% + 14%	亦化たし
(設計値に対して)	-4 /0' +4 /0	-13 /0' +14 /0	変化なし

	備考
きに対して第	<ul> <li>・地震応答解析モデルの相違 島根2号炉の免震重要棟は水</li> <li>平及び鉛直方向の剛性を考慮するモデルで評価を実施</li> </ul>
<u> 及び鉛直剛性</u> の	・地震応答解析モデルの相違 島根2号炉の免震重要棟は水
, D	平及び鉛直方向の剛性を考慮す るモデルで評価を実施

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
(c) 弾性すべり支承	(c) 低摩擦弾性すべり支承	
免震装置のうち、弾性すべり支承の1次剛性及び摩擦係数に対して第71表に示す要因	免震装置のうち,低摩擦弾性すべり支承の1次剛性,摩擦係数及び鉛直剛性のばらつき	・地震応答解析モデルの相違
について変動を考慮した。	に対して <u>第16表に示す3要因を設定した。</u>	島根2号炉の免震重要棟は水
		平及び鉛直方向の剛性を考慮す
第71(a)表 弾性すべり支承のバラツキ(1次剛性)	第16表 低摩擦弾性すべり支承のばらつき	るモデルで評価を実施
バラツキの要因 1 次剛性 K1	ばらつきの要因 1 次剛性 $K_I$ 摩擦係数 $\mu$ 鉛直剛性 $K_{\nu}$	
製品誤差(設計値に対して) -20%~+20%	嬰 品 誤 差     (設 計 値 に 対 1 て) $-30\% \sim +30\%$ $-50\% \sim 0\%$ $-30\% \sim 0\%$	
環境温度(設計値に対して) -8%~ +13%		
繰り返し特性(設計値に対して) 0%~+20%	(初期値に対して) 0%~+10% 変化なし 0%~+10%	
	環境温度 (設計値に対して) -4%~+4% 変化なし 変化なし	
第71(b)表 弾性すべり支承のバラツキ(摩擦係数)		
バラツキの要因 <b>摩擦係数</b> μ		
製品誤差(設計値に対して) -20%~+20%		
繰り返し特性(設計値に対して) 0%		
免震装置のうち、オイルダンパの減衰係数及びリリーフ荷重の <u>バラツキ</u> に対して <u>第</u> 72表に示す3要因を設定した。 第72末、オイルダンパのバラツキ	免震装置のうち、オイルダンパの減衰係数及びリリーフ荷重の <u>ばらつき</u> に対して <u>第</u> 17表に示す3要因を設定した。	
バラツキの要因	はらつざの要因	
<u>リリーノ何里Fr</u> 製品調差(設計値に対して) $-10\% \sim +10\%$	(設計値に対して)-5%~+10%-5%~+10%	
経年変化(初期値に対して)     -3%~+3%	経年変化 (初期値に対して) -3%~+3% -3%~+3%	
「	環境温度 (設計値に対して) -5%~+5% -5%~+5%	

バラツキの要因	1 次剛性 K1
製品誤差(設計値に対して)	-20% ~+20%
環境温度(設計値に対して)	$-8\% \sim +13\%$
繰り返し特性(設計値に対して)	0%~+20%

バラツキの要因	摩擦係数 μ
製品誤差(設計値に対して)	-20%~+20%
繰り返し特性(設計値に対して)	0%

バラツキの要因	減衰係数C リリーフ荷重Fr
製品誤差(設計値に対して)	-10%~+10%
経年変化(初期値に対して)	$-3\% \sim +3\%$
環境温度(設計値に対して)	$-5\% \sim +5\%$

ばらつきの要因	減衰係数 C	リリーフ荷重 F _r
製品誤差	$E_{0}^{0} = 100^{0}$	$E_{0}^{0} = 100^{10}$
(設計値に対して)	-3 % ~ +10 %	-3 % ~ +10 %
経年変化	20/21 + 20/	20/21/20/
(初期値に対して)	-3 % ~ +3 %	-3 10, 0+3 10
環境温度	$E^{0/2}$	$E^{0/2} \rightarrow E^{0/2}$
(設計値に対して)	-5%~+5%	-5%~+ $5%$

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉
(e) 解析条件	(e)解析条件
天然ゴム系積層ゴム、鉛プラグ入り積層ゴム、弾性すべり支承及びオイルダンパのバラ	天然ゴム系積層ゴム,鉛プラグ入り積層ゴム,低摩擦弾性すべり支承及び
<u>ツキ</u> については、免震層全体での等価剛性が最大あるいは最小となる <u>組み合わせ</u> について	については、 <u>標準特性とした場合に加え、ばらつきとして</u> 免震層全体での等
検討を実施する。すなわち、剛性が最大となるケースとして、天然ゴム系積層ゴムの剛性	あるいは最小となる組合せについて検討を実施する。すなわち、剛性が最大。
が最大、かつ鉛プラグ入り積層ゴムの降伏後剛性及び降伏荷重特性値が最大、かつ弾性す	として、天然ゴム系積層ゴムの剛性が最大、かつ鉛プラグ入り積層ゴムの降位
べり支承の摩擦力が最大,かつオイルダンパの減衰係数,リリーフ荷重が最大となる組み	伏荷重特性値及び鉛直剛性が最大,かつ低摩擦弾性すべり支承の摩擦力及び
合わせ及びその逆の2ケースを考慮する。解析ケースを第73表に示す。	大,かつオイルダンパの減衰係数,リリーフ荷重が最大となる組合せ及びその
	スを考慮する。解析ケースを <u>第18表</u> に示す。
上部建物モデル及びそのほかの条件は設計用地震応答解析に用いたものと同一とする。	

解析ケース	天然ゴム系 積層ゴム	鉛入り 積層ゴム	弾性すべり支承	オイルダンパ
剛枕是小	Km: 0.96	Kd: 0.87	1 次剛性: 0.72	減衰係数 : 0.82
则性取力	Kr. 0.80	Qd: 0.77	摩擦係数: 0.80	リリーフ荷重: 0.82
凯乱估	Kr: 1.00	Kd: 1.00	1 次剛性: 1.00	減衰係数 : 1.00
<b></b> 武 計 個		Qd: 1.00	摩擦係数: 1.00	リリーフ荷重: 1.00
剛性最大	V1 - 90	Kd: 1.25	1 次剛性: 1.53	減衰係数 : 1.18
	Kr:1.26	Qd: 1.29	摩擦係数: 1.20	リリーフ荷重: 1.18

第73表 解析ケース一覧

解析 天然ゴム系 鉛プラグ入り 低摩擦弹性 オイルダンパ 積層ゴム 積層ゴム すべり支承 ケース 降伏後剛性 K_d : 1.19 1 次剛性 K₁: 1.44 剛性 水平剛性 K_r: 1.19 減衰係数 C :1.18 降伏荷重特性值 Q_d: 1.14 摩擦係数 μ : 1.00 最大 鉛直剛性 K_v: 1.25 リリーフ荷重 F_r: 1.18 鉛直剛性 K_r : 1.20 鉛直剛性 K_v: 1.10 降伏後剛性 K_d : 1.00 1 次剛性 K₁: 1.00 標準 水平剛性 K_r: 1.00 減衰係数 C : 1.00 降伏荷重特性值  $Q_d$ : 1.00 摩擦係数≠:1.00 特性時 鉛直剛性 K_y: 1.00 リリーフ荷重 F_r:1.00 鉛直剛性  $K_{\nu}$ 鉛直剛性 K_v: 1.00 : 1.00 降伏後剛性 K_d : 0.91 1 次剛性 K₁: 0.66 剛性 水平剛性 K_r: 0.91 減衰係数 C :0.87 降伏荷重特性值 Q_d: 0.75 摩擦係数μ:0.50 最小 鉛直剛性 K_v: 1.00 リリーフ荷重 F_r: 0.87 鉛直剛性 K, 鉛直剛性 K_v: 0.70 : 0.95

第18表 解析ケース一覧

	備考
びオイルダンパ	
等価剛性が最大	・解析ケースの相違
大となるケース	島根2号炉の免震重要棟は免
降伏後剛性,降	震装置のばらつきを考慮した場
び鉛直剛性が最	合に加え、免震装置の特性を標
その逆の2ケー	準とした場合の評価も実施
	・地震応答解析モデルの相違
	島根2号炉の免震重要棟は水
	平及び鉛直方向の剛性を考慮す
	るモデルで評価を実施
3	
8	
0	
0	
7	
7	

	女川原子力発電所 2号炉 (2020.2.7版) 島根原子力発電所 2号炉										
(3) 固有値解析結果						(3) 固有値解析結果					
上部構造は線形とし,免震層の水平ばねを各振幅レベルの等価線形値を取る場合について <u></u> 固		水平方向の固有値解析は、上部構造は線形とし、免震層の水平ばねを各振幅				:各振幅 ι					
有値解析を実施した。		形値を取る場合につ	いて実施	した。鉛画	直方向の固有値解	所は水平方向固	]定条件?				
						<u>った。</u>		· <u>· · · · ·</u>			
a. 免震層の水平変形時	長の固有周	哥期				a. <u>水平方向の</u> 固有周	朝				
免震層が水平変形	$d=\underline{20cm}$	$(\gamma = 100)$	0%) 及び d= <u>40c</u>	m ( $\gamma = 200\%$ )	こおける等価剛性を	免震層が水平変	形 $d = 24c$	$m (\gamma = 1)$	100%)及び d=4	$\underline{8}\underline{cm}$ ( $\gamma = 200\%$	5)におF
もつ場合の固有値解	析結果を	第74表》	及び <u>第75表</u> に示す	<b>f</b> .		もつ場合の水平方	向の固有伯	直解析結	果を <u>第 19 表</u> 及び第	<u>第20</u> 表に示す。	
第74表	<b>永</b> 平変	变形 d=20	$\underbrace{\text{Ocm}}_{\text{(}\gamma = 100\%)}$	における固有周	期	第19	表 水平	変形 d =	$= 24 \text{cm}$ ( $\gamma = 100\%$ )	)における固有	ī周期
7	方向	次数	固有周期(s)	刺激係数*	]		方向	次数	固有周期(秒)	刺激係数*	_
		1	3.86	1.069				1	3.345	1.001	
Х	方向	2	0.78	0.082			X方向	2	0.078	0.007	
		3	0.40	0.020	4	-		3	0.047	0.014	_
		1	3.84	1.063				1	3.344	1.001	
Y	力回	2	0.75	0.075			Y方向	2	0.069	0.008	
		3	0.38	0.017	]			3	0.047	0.015	]
	方向	次数	固有周期(s)	刺激係数*			方向	次数 1	固有周期(秒) 3 886	刺激係数*	-
		1	4.36	1.054			<b>T</b> T	1	3.886	1.001	
X	「方向	2	0.79	0.064			入力回		0.078	0.007	
		<u>ろ</u> 1	0.40	0.015		-		ა 1	0.047	1.000	-
Y	方向	$\frac{1}{2}$	0.75	0.059			V卡向		0.060	0.000	
	22101	3	0.38	0.013			I // [4]	3	0.009	0.009	
※最大値を1で基	準化したイ	各次固有モ	ードに対する刺激	係数として求め絶	対値を示す。	  ※最大値を	1で基準化し	レート た各次固有	。		<b>」</b> 直を示す。
						<u>b. 鉛直方向の固有周</u>	司期				
						水平方向固定条	件とした	昜合の鉛	直方向の固有値解	<u>析結果を第 21</u>	表に示す
								<u>第 21 表</u>	鉛直方向の固有	周期	
						[	方向	次数	固有周期(秒)	刺激係数*	]
								1	0.065	1.277	
							Z方向	2	0.023	0.503	
								3	0.018	0.233	]
						※最大値を	1で基準化し	た各次固有	<b>Fモードに対する刺激係</b>	数として求め絶対値	直を示す。

	備考
~ ベルの等価線	
として解析を行	・地震応答解析モデルの相違
	島根2号炉の免震重要棟は水
	平及び鉛直方向の応答を考慮す
	るモデルで評価を実施している
する等価剛性を	ため、鉛直方向の固有値解析に
	ついて記載
	・地震応答解析モデルの相違
	島根2号炉の免震重要棟は水
	平及び鉛直方向の応答を考慮す
	るモデルで評価を実施している
	ため、鉛直方向の固有値解析結
	果を記載

女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
(4) 検討用地震動	(4) 検討用地震動	
検討用の地震動は <u>基準地震動 Ss-D1, 基準地震動 Ss-D2, 基準地震動 Ss-D3, 基準地震動 Ss-F1,</u>	検討用の地震動は、基準地震動Ss-D、基準地震動Ss-F1、基準地震動Ss-F2、	・検討用地震動の相違
基準地震動 Ss-F2,基準地震動 Ss-F3 及び基準地震動 Ss-N1 の7波とする。	基準地震動Ss-N1及び基準地震動Ss-N2のうち,免震重要棟の地盤ばね,免震装置,	島根2号炉は基準地震動5波
	上部構造の連成系水平方向1次固有周期(免震層の水平変形 d=24cm ( γ=100%))における	のうち,建物の1次固有周期に
	加速度応答スペクトルが最も大きい基準地震動Ss-Dとする。基準地震動Ssの解放基盤表	おける加速度応答スペクトルが
	面における加速度応答スペクトル (水平方向) を第9図に示す。	最も大きい基準地震動Ss-D
		を採用
事務建屋基礎下岩盤と解放基盤下岩盤は同等の岩盤であることから, 解放基盤表面における	免震重要棟の地震応答解析モデルへの入力地震動は,成層地盤モデルを用いた一次元波動論	・入力地震動の評価方法の相違
加速度応答スペクトルを採用する。事務建屋配置図及び地質断面比較図を第49図に示す。基	による解析によって求める。	島根2号炉の免震重要棟は成
準地震動 Ss <u>7 波</u> の解放基盤表面における加速度応答スペクトルを <u>第50 図</u> に示す。 <u>また、減衰</u>		層地盤モデルを用いた一次元波
<u>定数は鉄骨造建屋のため2%を採用する。</u>		動論によって入力地震動を評価
事務建屋設置位置     2 号原子炉建屋設置位置       Y     Y'		
(W)(E)		
○ P14. 1m 解放基盤レベント		
CH B		
0. P100m		
В		
(CH)		
0. P200		
────────────────────────────────────		



女川原子力発電所 2号炉(2020.2.7版)			島根原子	力発電	所 2号	予炉		
	(5) 解析ケ	ース						
	免震装	置の特性のばらつ	きを考慮した	全解析グ	rースを	第 22 表	に示す。	
			第 22	表 解核	斤ケース	_		
		<i>x</i> _7	基準地震動		入力方向	]	免震装置の	
		//->		Х	Y	Ζ	のばら・	
								標準特性
		S s - D (X)		H*1	-	$V^{st 2}$	剛性最	
							剛性最	
			5 s - D			V ^{*2}	標準特例	
		S s - D (Y)	_	—	$H^{*1}$		剛性最	
							剛性最	
	>	※1:基準地震動Ss- ※2:基準地震動Ss-	-Dによる水平方向 -Dによる鉛直方向	]の入力地創 ]の入力地創	、 重動 震動	<u>.</u>		

# (5) 地震応答解析結果

地震応答解析結果を第76~82表に示す。

# 第76表 地震応答解析結果一覧表(基準地震動 Ss-D1)

## ○ 上部層間変形角

化光子	Xフ	ラ向	Y方向		
岡盤 剛性最大		剛性最小	剛性最大	剛性最小	
8F	1/704	1/890	1/819	1/997	
7F	1/464	1/588	1/526	1/636	
6F	1/360	1/485	1/401	1/530	
5F	1/319	1/437	1/353	1/487	
4F	1/306	1/422	1/332	1/460	
3F	1/300	1/417	1/335	1/468	
2F	1/319	1/447	1/356	1/500	
1F	1/418	1/567	1/471	1/645	

(注):下線は各方向の最大層間変形角

# ○ 免震層せん断ひずみ

卡卢	Xフ	5向	Y方向		
ノ」[1]	剛性最大	剛性最小	剛性最大	剛性最小	
免震層せん断ひずみ	109. 74%	146.67%	107.69%	147.18%	

# <u>(6)</u> 地震応答

各解析ケ を第 25 表に

	島根原子力発電所 2号炉						備考
-ス							・解析ケースの相違
 骨の特性のばらつ	きを考慮し	た全解析ケ	ースを第2	<ol> <li>2 表に示す。</li> </ol>			鳥根2号炉の免震重要棟は入
			山田での方の方法主要の時代のゴ				
	h-t-						力力向及い免疫表直の特性のは
	<u>第</u>	,22 表 解析	ケース				らつきを考慮しているため、解
		7	力方向	免震装	置の特性		析ケースを一覧表で記載
ケース	基準地震	助 X	Y	Z のば	らつき		
				標準	特性時		
S s - D (X)		$H^{*1}$	- V	※2 岡村	<b></b> Ł最大		
	0 5			岡山	挂最小		
	5 s -1	)		標準	特性時		
S s - D (Y)		—	H*1 V	※2 岡川	<b></b>		
				岡山	挂最小		
Ⅰ:基準地震動Ss-	Dによる水平	方向の入力地震	動		ı		
2:基準地震動 S s - 1	Dによる鉛直	方向の入力地震	動				
解析結果							
ースにおける上	部構造層間	間変形角を第	23 表及び	第 24 表に, 1	も震装置せん	断ひずみ	
に示す。							
第	23表上	部構造層間刻	E形角(X	方向)			・検討用地震動の相違
ケース	階数	標進特性時	₣ 副性ı	最大 剛州	卡最小		島根2号炉は基準地震動5波
	3階	1/22838	1/25	830 1/2	23904		のうち,建物の1次固有周期に
$S_s - D_s(X)$	<u>2</u> 階	1/15969	1/17	391 1/	7194		おける加速度応答スペクトルが
	1階	1/15459	1/16	031 1/	7000		具またきい甘浦地震動で。 D
	-11	(	注):下線はX	(方向の最大層間	変形角		取も入さい基準地展動5 S - D
		·					を採用
第	24表 上	部構造層間刻	変形角(Y	方向)			
ケース	階数	標準特性時	f 剛性	最大 剛性	<b>E</b> 最小		
	3階	1/35235	1/37	400 1/3	9326		
$S_s - D_{(Y)}$	2階	1/23969	1/24	366 1/2	7203		
	1階	1/21898	<u>1/21</u>	729 1/2	4496		
		(	注):下線はY	方向の最大層間	変形角		
	kt		1 ) hlat >>>	7			
	第 25 表	光震装置も	まん断ひず	the second secon			
			特州	生変動時			
ケー	ス	標準特性時	副体帯キ		_		
Se-D	(X)	131 67%	109 50%	168 3/10/			
S = D	(Y)	131.67%	109 59%	168 34%	<u> </u>		
<u> </u>	<u>、」</u> · 下線け博潮	101.01/0	100.03 /0 動時 そわ ごわ	 の最大社と版71~			
(主)	・」//水/よ/示半	-四工呀,何比发	±∞"") (40°(40'	92 / こ / 10 四川 し、	~ /-		

	島根		備考				
ス			・解析ケースの相違				
<u>—</u> の特性のげらつき	きを老虐し	た全解析ケ	ースを	·	に示す		島根2号炉の免雲重要棟け入
			山田とりが、シル展里女体はハ				
	kaka		- <b>,</b> .				刀方向及び免晨装直の特性のは
	<u>第</u>	22 表 解朴	「ケース	_			らつきを考慮しているため、解
	甘油山膏	-	入力方向	]	免震装置の特性	]	析ケースを一覧表で記載
ゲース	<b>基準地震</b>	虭 X	Y	Z	のばらつき		
					標準特性時		
S s - D (X)		$H^{*1}$	—	$V^{*2}$	剛性最大		
	С. Т				剛性最小		
	5 s - L	)			標準特性時		
S s - D (Y)		—	$\mathrm{H}^{\divideontimes 1}$	$V^{\frac{w}{2}}$	剛性最大		
					剛性最小		
: 基準地震動 S s - I	つによる水平	方向の入力地震	動				
: 基準地震動 S s - I	Oによる鉛直	方向の入力地震	動				
<b></b> 解 析 結 果							
ースにおける上語	部構造層間	引変形角を第	;23 表】	及び第24	4表に,免震装置も	さん断ひずみ	
示す。							
笙	23 表 上	部構造層間	変形角	(又方向	1)		<ul> <li>・ 検討用地 雪動の 相違</li> </ul>
21.							自由。只应注其淮州震新,述
ケース	階数	標準特性明	時 岡	剛性最大	剛性最小		局根2万炉は基準地展到3次
	3階	1/22838		1/25830	1/23904		のうち, 建物の1次固有周期に
S s - D (X)	2階	1/15969		1/17391	1/17194		おける加速度応答スペクトルが
	1階	<u>1/15459</u>		1/16031	1/17000		最も大きい基準地震動Ss-D
			(注):下約	泉はX方向	の最大層間変形角		を採用
5 <del>.7</del>	04 =====				• `		
显	24.衣		发形月	<u>(Ү )</u>	<u>)</u>		
ケース	階数	標準特性時	寺岡	削性最大	剛性最小		
	3階	1/35235		1/37400	1/39326		
S s - D (Y)	2階	1/23969	]	1/24366	1/27203		
	1階	1/21898	]	1/21729	1/24496		
			(注):下約	泉はY方向	の最大層間変形角		
	第25表	免震装置	せん断び	ひずみ			
				特性亦可	韵畦		
ケー	ス	標準特性時	副帖生	ー い 正 る 野 七 の 野	副性最小		
Se-D	(X)	131 67%	100	HX八 59%	168 34%		
$S_s = D$	(Y)	131 67%	109.	59%	168.34%		
<u>(注)</u>	、1/ : 下線け標準		<u>103.</u> 動時それ	ぞれの最+	いいがかずみ		
	・ 1 //// 4 /示干	- 13 1工で4, 14 1工次		CAUV/AX/			

5-7	<b>趰淮侍州</b> 咕	特性変動時				
	惊中村庄时	剛性最大	剛性最小			
S s - D (X)	<u>131.67%</u>	109.59%	<u>168.34%</u>			
S s - D (Y)	131.67%	109. 59%	168.34%			
(注)・下線け煙進特性時 特性変動時それぞれの最大せん断ひずみ						

# 第77表 地震応答解析結果一覧表(基準地震動 Ss-D2)

○ 上部層間変形角

化比米尔	ХJ	デ向	Y方向		
百安(	剛性最大	剛性最小	剛性最大	剛性最小	
8F	1/919	1/1208	1/1036	1/1347	
$7\mathrm{F}$	1/622	1/824	1/712	1/890	
6F	1/536	1/650	1/600	1/766	
5F	1/474	1/588	1/518	1/671	
4F	1/406	1/488	1/420	1/552	
3F	1/407	1/461	1/421	1/532	
2F	1/394	1/530	1/462	1/626	
1F	1/465	1/647	1/542	1/763	

(注):下線は各方向の最大層間変形角

# ○ 免震層せん断ひずみ

士山	ХŻ	テ向	Y方向		
ノ」[1]	剛性最大	剛性最小	剛性最大	剛性最小	
免震層せん断ひずみ	58.97%	91.79%	61.54%	90.77%	

### 第78表 地震応答解析結果一覧表 (基準地震動 Ss-D3)

# ○ 上部層間変形角

四比 米ケ	X J	テ向	Y方向		
阳剱	剛性最大	剛性最小	剛性最大	剛性最小	
8F	1/824	1/1282	1/952	1/1508	
7F	1/526	1/849	1/601	1/989	
6F	1/414	1/702	1/482	1/787	
5F	1/394	1/673	1/456	1/733	
4F	1/404	1/581	1/449	1/628	
3F	1/402	1/515	1/442	1/571	
2F	1/409	1/518	1/473	1/582	
1F	1/524	1/630	1/585	1/711	

(注):下線は各方向の最大層間変形角

### ○ 免震層せん断ひずみ

士山	ХJ	,向	Y方向		
ノ」「「」	剛性最大	剛性最小	剛性最大	剛性最小	
免震層せん断ひずみ	72.82%	106.67%	74.36%	107.69%	

備考
・検討用地震動の相違
島根2号炉は基準地震動5波
のうち、建物の1次固有周期に
おける加速度応答スペクトルが
また大きい其準地震動 S 。 - D
取り入らい金牛地展動53 D
で東方
・検討用地震動の相違
自根9号行け其進地震動5波
のうた 建物の1次田右周期に
いうら、 定初の 1
最も大きい基準地震動Ss-D
を採用

# 第79表 地震応答解析結果一覧表 (基準地震動 Ss-F1)

○ 上部層間変形角

<b>飞比米</b> 左	ХJ	テ向	Y方向		
阳安风	剛性最大	剛性最小	剛性最大	剛性最小	
8F	1/806	1/1051	1/890	1/1144	
$7\mathrm{F}$	1/514	1/674	1/554	1/720	
6F	1/402	1/527	1/442	1/567	
5F	1/343	1/488	1/382	1/517	
4F	1/317	1/476	1/343	1/508	
3F	1/312	1/458	1/339	1/511	
2F	1/364	1/531	1/388	1/576	
1F	1/473	1/694	1/539	1/764	

(注):下線は各方向の最大層間変形角

### ○ 免震層せん断ひずみ

士占	ХŻ	テ向	Y方向		
刀叩	剛性最大	剛性最小	剛性最大	剛性最小	
免震層せん断ひずみ	70.77%	81.03%	70.26%	77.44%	

### <u>第80表</u> 地震応答解析結果一覧表(基準地震動 Ss-F2)

○ 上部層間変形角

四七 米ケ	ХJ	テ向	Y方向		
旧政	剛性最大	剛性最小	剛性最大	剛性最小	
8F	1/667	1/954	1/710	1/1174	
7F	1/438	1/614	1/460	1/747	
6F	1/364	1/483	1/387	1/595	
5F	1/346	1/445	1/370	1/546	
4F	1/320	1/428	1/339	1/513	
3F	1/301	1/428	1/324	1/487	
2F	1/317	1/450	1/346	1/489	
1F	1/391	1/534	1/440	1/598	

(注):下線は各方向の最大層間変形角

# ○ 免震層せん断ひずみ

士山	ХJ	与向	Y方向		
万円	剛性最大	剛性最小	剛性最大	剛性最小	
免震層せん断ひずみ	120.00%	137.44%	122. 56%	136. 41%	

備考
・検討用地震動の相違
島根2号炉は基準地震動5波
のうち,建物の1次固有周期に
おける加速度応答スペクトルが
最も大きい基準地震動 Ss-D
を採用
・検討用地震動の相違
島根2号炉は基準地震動5波
のうち,建物の1次固有周期に
おける加速度応答スペクトルが
島も大きい基準地震動Ss-D
取り入らい室中地展動53 5
でます

# 第81表 地震応答解析結果一覧表 (基準地震動 Ss-F3)

○ 上部層間変形角

四比 米ケ	ХJ	5向	Y方向		
阳安风	剛性最大	剛性最小	剛性最大	剛性最小	
8F	1/791	1/1221	1/878	1/1374	
7F	1/546	1/831	1/594	1/913	
6F	1/487	1/732	1/535	1/807	
5F	1/525	1/802	1/575	1/871	
4F	1/548	1/897	1/586	1/931	
3F	1/572	1/769	1/600	1/807	
2F	1/561	1/814	1/664	1/888	
1F	1/643	1/1026	1/738	1/1187	

(注):下線は各方向の最大層間変形角

### ○ 免震層せん断ひずみ

1	Xナ	ラ向	Y方向		
力回	剛性最大	剛性最小	剛性最大	剛性最小	
免震層せん断ひずみ	26.67%	29.23%	26.15%	29.74%	

### 第82表 地震応答解析結果一覧表(基準地震動 Ss-N1)

○ 上部層間変形角

[]比米分	ХJ	5向	Y方向		
阳剱	剛性最大	剛性最小	剛性最大	剛性最小	
8F	1/710	1/1102	1/844	1/1247	
7F	1/463	1/704	1/542	1/779	
6F	1/380	1/556	1/450	1/620	
5F	1/380	1/527	1/435	1/582	
4F	1/379	1/528	1/407	1/574	
3F	1/366	1/534	1/401	1/588	
2F	1/369	1/503	1/433	1/588	
1F	1/422	1/587	1/496	1/691	

(注):下線は各方向の最大層間変形角

# ○ 免震層せん断ひずみ

大山	ХJ	ラ向	Y方向		
	剛性最大	剛性最小	剛性最大	剛性最小	
免震層せん断ひずみ	79.49%	97.44%	81.54%	98.97%	
	10.1070	011 11/0	01.01/0	00.0170	

備考
・検討用地震動の相違
島根2号炉は基準地震動5波
のうち,建物の1次固有周期に
おける加速度応答スペクトルが
最も大きい基準地震動Ss-D
を採用
・検討用地震動の相違
島根2号炉は基準地震動5波
のうち,建物の1次固有周期に
おける加速度応答スペクトルが
島も大きい基準地震動Ss-D
取り入らい室中地展動53 5
でます

女川原子力発電所 2号炉(2020.2.7版)			島根原子力発電所 2号炉						備考	
<ul> <li>女川原子力発電所 2号炉(2020.2.7版)</li> <li>5.まとめ</li> <li>地震応答解析により評価された結果の最大応答値を<u>第83</u>表に示す。</li> <li>アクセスルートへの影響の観点からは、以下のように評価する。</li> <li>「震災建築物の被災度区分判定基準及び復旧技術指針」((一財)日本建築防災協会)において、</li> <li>鉄骨構造物(ラーメン構造)が被災度区分「大破」と判定される残留変形角の目安となる値は</li> <li>1/30である。今回の解析結果による最大層間変形角は、上記の指針に基づく評価基準値である</li> <li>残留変形角1/30を大幅に下回っており、建屋は倒壊しない。以上のことから、アクセスルートへの影響はないことを確認した。</li> </ul>			島根原子力発電所 2 号炉     5. まとめ     地震応答解析により評価された結果の最大応答値を <u>第 26 表</u> に示す。 <u>保管場所への影響の観点からは、以下のように評価する。     「鉄筋コンクリート造建物の耐震性能評価指針(案)・同解説」((社)日本建築学会)におい     て、安全限界状態とされる層間変形角は1/75である。</u> 今回の解析結果による最大層間変形角は, <u>この1/75</u> を大幅に下回っている。 <u>また、「免震構造の試評価例及び試設計例」((独) INES、2014)において免震装置の設計目標値     であるせん断ひずみは166%(免震装置標準特性時)及び250%(免震装置の特性変動時)である。</u>				・上部構造の評価基準値の相違 島根2号炉の免震重要棟は鉄 骨鉄筋コンクリートであるた め、「鉄筋コンクリート造建物の 耐震性能評価指針(案)・同解説」 に基づく基準値を設定 ・免震装置の評価基準値の相違			
	であるせん断ひすみは166%(免農装置標準特性時)及び250%(免農装置の特性変動時, 今回の解析結果による免農装置の最大せん断ひずみはこの値を下回っている。 以上のことから,建物は倒壊せず,保管場所への影響はないことを確認した。					<u>]っている。</u> : を確認した。		島根2号炉の免震重要棟は免 震装置が標準特性時のケースも 実施しているため,標準特性時 における評価基準値を設定		
	第.83	表 最大応答値一覧				第 26 表	最大応答値一覧			
<ul> <li>○ X 万回</li> <li>部位</li> </ul>	項目	最大応答値	評価基準値		部位	項目 最大層間変形角	最大応答値 1/15459 (Ss−D(X) 1陛	評価基準値		
上部構造	最大層間変形角	1/300 (Ss-D1, 3F, 剛性最大)	1/30		上部構造	<ul> <li>(X方向)</li> <li>最大層間変形角</li> <li>(Y方向)</li> </ul>	(3 s D (A), 1 Pa, 標準特性時) 1/21729 (S s - D (Y), 1 階, 副性最大)	- 1/75		
免震層	せん断ひずみ	147% (Ss-D1, 剛性最小)	250%		免震装置	せん断ひずみ (標準特性時) せん断ひずみ	$ \begin{array}{c} 132\% \\ (S \ s - D \ (X)) \\ 169\% \end{array} $	166%		
○ Y方向						(特性変動時)	(Ss-D(X), 剛性最小)	250%		
部位	項目	最大応答値	評価基準値							
上部構造	最大層間変形角	1/324 (Ss-F2, 3F, 剛性最大)	1/30							
免震層	せん断ひずみ	147% (Ss-D1, 剛性最小)	250%							

女川原子力発電所	2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		別添2	
	1号炉原子炉建物	外装材 基準地震動Ssに対する耐震性能評価検討	
		省廠	「別沃 2 1 号 「 同 子 何 建 物
			<ul> <li>小旅2 1 か。赤1 が 建物</li> <li>外装材 基準地震動Ssに対す</li> </ul>
			る耐震性能評価検討」は東海第
			二との比較を行うため省略