防波壁及び防波壁通路防波扉における津波荷重の設定方針について

- 1. 津波荷重の算定式
- (1) 津波波圧算定式に関する文献の記載
- 2. 検討方針
- 3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響
- (1) 平面二次元津波シミュレーションによる検討
- (2) 水理模型実験及び断面二次元津波シミュレーションの条件整理
- (3) 水理模型実験による検討
- (4) 断面二次元津波シミュレーションによる検討
- (5) 三次元津波シミュレーションによる検討
- 4. 既往の津波波圧算定式との比較
- (1) 検討概要
- (2) 津波波圧検討フロー
- (3) 朝倉式による津波波圧算定
- (4) 津波波圧の比較 朝倉式 (敷地高以上)
- (5) 谷本式による津波波圧算定
- (6) 津波波圧の比較 谷本式 (敷地高以深)
- (7)まとめ
- 5. 設計で考慮する津波波圧の設定

1. 津波荷重の算定式

津波防護施設の津波荷重の算定式は,朝倉ら(2000)の研究を元にした「港 湾の津波避難施設の設計ガイドライン(国土交通省港湾局,平成25年10月)」 や「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)」等を参考 に設定する。以下に,参考にした文献の津波荷重算定式の考え方と津波防護 施設への適用を示す。

- (1) 津波波圧算定式に関する文献の記載
- a.東日本大震災における津波による建築物被害を踏まえた津波避難ビル等の 構造上の要件に係る暫定指針(平成23年) 構造設計用の進行方向の津波波圧は、次式により算定する。

構造設計用の進行方向の津波波圧 $qz = \rho g$ (a h - z) (第1図)

- h:設計用浸水深
- z:当該部分の地盤面からの高さ(0≤z≤ah)
- a:水深係数
- ρg:海水の単位体積重量

b. 港湾の津波避難施設の設計ガイドライン(平成 25 年 10 月)

文献 a. に基づく。ただし、津波が生じる方向に施設や他の建築物がある 場合や、海岸等から 500m以上離れている場合において、水深係数は 3 以下 にできるとしている。

c.朝倉ら(2000):護岸を越流した津波による波力に関する実験的研究,海岸 工学論文集,第47巻,土木学会,911-915 直立護岸を越流した津波の遡上特性から護岸背後の陸上構造物に作用す る津波波圧について実験水路を用いて検討している。

その結果,非分裂波の場合,フルード数が1.5以上では構造物前面に作用 する津波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分 布の倍率)αは最大で3.0となるとしている。一方,ソリトン分裂波の場 合は,構造物前面に働く津波波圧は,構造物底面近傍で非分裂波のαを1.8 倍した値となるとしている(第2図及び第3図)。

第2図 非分裂波の場合の津波水平波圧

d.NRA技術報告「防潮堤に作用する津波波圧評価に用いる水深係数について」(平成28年12月)

持続波圧を対象としてフルード数が1を超える場合の防潮堤に対する作 用波圧の評価方法を明確にするため、水理試験及び解析を実施した結果、従 来の評価手法でフルード数が1以下になることが確認できれば、水深係数は 3を適用できるとされている。

e.防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)

防波堤の津波波圧の適用の考え方として、ソリトン分裂波が発生する場合 は修正谷本式を、そうでない場合において津波が防波堤を越流する場合には 静水圧差による算定式を、越流しない場合は谷本式を用いることとしている。 (第4図~第5図)。

第4図 防波堤に対する津波荷重算定手順

 $\eta^* = 3.0 a_J$

 $p_1 = \begin{cases} 2.2 \rho_0 g a_I & : 谷本式 \\ 3.0 \rho_0 g a_I & : 修正谷本式 \end{cases}$

 $p_2 = \rho_0 g \eta_B$

 $p_u = p_1$

 $p_L = p_2$

2. 検討方針

島根原子力発電所の防波壁等*の設計で考慮する津波荷重は、「水理模型実 験及び津波シミュレーションによる津波波圧」と「既往の津波波圧算定式に よる津波波圧」を比較・検証することで設定する。

既往の津波波圧算定式は,ソリトン分裂波や砕波の発生有無により,算定 式の適用性が異なる。そのため,島根原子力発電所における基準津波の特性 及び沿岸の陸海域の地形を考慮した科学的根拠に基づく,水理模型実験及び 断面二次元津波シミュレーションを実施し,ソリトン分裂波及び砕波の有無 を確認する。

また,島根原子力発電所は輪谷湾を中心とした半円状の複雑な地形である。 そのため,三次元津波シミュレーションにより,複雑な地形特性を考慮した 三次元的な流況による津波波圧への影響を確認し,水理模型実験及び断面二 次元津波シミュレーションによる津波波圧の妥当性を確認する。第6図に検 討フローを,第1表に検討項目及び検討内容を示す。

※防波壁及び防波壁通路防波扉を「防波壁等」という。

3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響
(1) 平面二次元津波シミュレーションによる検討 目的:「防波堤の耐津波設計ガイドライン」に基づくソリトン分裂波の発生確認
(2)水理模型実験及び断面二次元津波シミュレーションの条件整理 目的:地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し,不確かさを考慮した検討条件を整理
(3) 水理模型実験による検討 目的:津波波形の検証によるソリトン分裂波・砕波の発生確認及び津波波圧の算定
(4) 断面二次元津波シミュレーションによる検討 目的:水理模型実験の再現性の確認,津波波形の検証によるソリトン分裂波・砕波の発生確認及び津波波圧の算定
(5) 三次元津波シミュレーションによる妥当性確認 目的:島根原子力発電所の複雑な地形や三次元的な流況による津波波圧への影響を確認し, 3.(3)章及び3.(4)章により算定 される津波波圧の妥当性確認
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
目的:水理模型実験及び津波シミュレーションと既往の津波波圧算定式の津波波圧を比較
\checkmark
5. 設計で考慮する津波波圧の設定

第6図 検討フロー

	検討項目	検討内容
3.	ソリトン分裂波及び砕波の発生,並びに津波波圧への	影響
	(1) 平面二次元津波シミュレーション による検討	平面二次元津波シミュレーション結果及び海底勾配を用いて,「防波堤の耐津波設 計ガイドライン」に基づき,ソリトン分裂波の発生有無を確認する。
	(2) 水理模型実験及び断面二次元津波 シミュレーションの条件整理	水理模型実験及び断面二次元津波シミュレーションの追加実施に当たって,地形 特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し,不確かさ を考慮した検討条件を設定する。
	(3) 水理模型実験による検討	流体の挙動を直接確認でき,サイト特性に応じた評価が可能となる水理模型実験 を追加実施し,水位の時刻歴波形からソリトン分裂波及び砕波の発生有無を確認 するとともに,防波壁及び施設護岸位置における津波波圧を算定する。
	(4) 断面二次元津波シミュレーション による検討	水理模型実験結果について、ソリトン分裂波及び砕波を表現可能な断面二次元 津波シミュレーション(CADMAS-SURF(Ver.5.1))を追加実施し、再現性を確認す るとともに、防波壁及び施設護岸位置における津波波圧を算定する。
	(5) 三次元津波シミュレーションによる検討 による妥当性確認	複雑な地形特性及び津波特性に応じた評価が可能である三次元津波シミュレーションCADMAS-SURF/3D(Ver.1.5)を追加実施し、3.(3)章及び3.(4)章による津波波圧と比較することで妥当性を確認する。
4. 既往の津波波圧算定式との比較		敷地高以上の構造物については、津波シミュレーション及び水理模型実験により防 波壁に作用する波圧を直接算定し、陸上構造物に作用する津波波圧算定式(朝 倉式)により算定した津波波圧と比較する。 敷地高以深の構造物については、津波シミュレーション及び水理模型実験により敷 地高以深の構造物に作用する波圧を直接算定し、海中構造物に作用する津波波 圧算定式(谷本式)により算定した津波波圧と比較する。
5.	設計で考慮する津波波圧の設定	防波壁等について保守的な設計を行う観点から,上記の検討結果を踏まえた設計 用津波波圧を設定する。

第1表 検討項目及び検討内容

津波シミュレーション及び水理模型実験の長所・短所を整理したうえで, 島根原子力発電所におけるソリトン分裂波及び砕波の発生確認,津波波圧の 確認に係る検討内容を第2表に示す。

第2表 津波シミュレーション解析及び水理模型実験の長所・短所

解析手法	長所	短所	長所・短所を踏まえた検討内容
平面二次元 津波シミュレーション	 広範囲にわたる地形のモデル化が可能 複雑な不規則波形及び平面的な流況の 再現が可能 解析時間が短い 審査における実績がある 	・ソリトン分裂波及び砕波の発生有無の確認が困難 ・津波波圧の直接評価が不可能	・基準津波の策定 (入力津波高さ・流速) ・「防波堤の耐津波設計ガイドライン」に 基づくソリトン分裂波の発生確認
水理模型実験	・ソリトン分裂波及び砕波の発生有無の確認が可能 ・津波波圧を直接評価可能 ・審査における実績がある	・複雑な地形や構造物のモデル化が困難 ・複雑な不規則波形の再現が困難 ・三次元的な流況の再現が不可能 ・実験に時間を要する	・科学的根拠に基づくソリトン分裂波及 び砕波の発生確認 ・津波波圧の確認
断面二次元 津波シミュレーション	・複雑な不規則波形の再現が可能 ・ソリトン分裂波及び砕波の発生有無の確 認が可能 ・津波波圧を直接評価可能 ・解析時間が短い ・審査における実績がある	・複雑な地形や構造物のモデル化が困難 ・三次元的な流況の再現が不可能	 ・水理模型実験の再現性確認 ・科学的根拠に基づくソリトン分裂波及び砕波の発生確認 ・津波波圧の確認
三次元 津波シミュレーション	・複雑な地形や構造物のモデル化が可能 ・複雑な不規則波形及び三次元的な流況 の再現が可能 ・複雑な地形及び三次元的な流況等を踏 まえた津波波圧を直接評価可能	・解析に時間を要する ・計算機能力を踏まえて解析範囲に限界が ある ・審査における実績がない	・複雑な地形特性及び津波特性を踏 まえた津波波圧の確認

ソリトン分裂波は津波の伝播過程で複数の波に分裂し,波高が増幅する現象 である。また,砕波は波が浅海域を進行する際に,波高が高くなると波が砕け, 波高が急激に小さくなる現象である。いずれも構造物へ衝撃的な波圧を作用さ せる可能性がある現象である。第7図にソリトン分裂波及び非分裂波の概要を 示す。

非分裂波の場合の構造物に作用する津波波圧分布は、津波高さに依存した 直線形状となる。一方、ソリトン分裂波が生じた場合は、構造物の底面近傍 では非分裂波を 1.8 倍した波圧が作用し、水平波力は非分裂波に比べて約 20%大きくなる可能性がある。

第7図 ソリトン分裂波及び非分裂波

護岸を越流した津波による波力に関する実験的研究,朝倉ほか(2000)より引用 ※ n_{max}後の水位の上昇は反射波を示す。

- 3. ソリトン分裂波及び砕波の発生,並びに津波波圧への影響
- (1) 平面二次元津波シミュレーションによる検討

沖合から伝播してくる津波が,サイト前面においてソリトン分裂波を伴う か否かの判定に当たっては,「防波堤の耐津波設計ガイドライン」において, 以下に示す①かつ②の条件に合致する場合,ソリトン分裂波が発生するとさ れている。

条件①:津波高さが水深の60%程度以上

条件②:海底勾配 1/100 程度以下

条件①について検討した結果を第3表,第8図及び第9図に示す。地点1 ~3では津波高さは水深の60%以下となるが,水深が10mよりも浅い地点1' ~3'では護岸の反射波の影響により津波高さが水深の60%以上となる。

- - - - - - - - - - - - - - - - - - -	(1)水涩	(2)津波	返高さ※1	(2)/(1)		
地黑	(1)/小木	防波堤有	防波堤無	防波堤有	防波堤無	
地点1	16m	5.0m	4.0m	31.3%	25.0%	
地点2	16m	6.0m	6.0m	37.5%	37.5%	
地点3	17m	5.0m	7.0m	29.4%	41.2%	
₩占※2	2 (1)-1/37	(2)津沥	皮高さ ^{※1}	(2)/(1)		
也是"		防波堤有	防波堤無	防波堤有	防波堤無	
				1,5		
地点1'	4.0m	7.5m	6.0m	187.5%	150.0%	
地点1' 地点2'	4.0m 6.0m	7.5m 6.0m	6.0m 6.0m	187.5% 100.0%	150.0% 100.0%	

第3表 津波高さと水深の割合

※1 平面二次元津波シミュレーションによる津波高さを保守的に評価した値

※2 地点1~3の南方向における護岸前面位置

第8図 基準津波による最高水位分布(基準津波1:防波堤有)

第9図 基準津波による最高水位分布(基準津波1:防波堤無)

条件②について検討した結果を第10図及び第11図に示す。

また,平面二次元津波シミュレーションの結果より,津波高さの最大値は EL.+11.13m(基準津波1)であり,朔望平均満潮位(EL.+0.58m)と潮位のば らつき(0.14m)を考慮した入力津波 EL.+11.9m(≒11.85m)に高潮ハザードの 裕度(0.64m)を考慮しても,防波壁の天端高さは EL.+15.0m であるため津波 は越流しない。

発電所前面の海底地形として,沖合 2,500m から施設近傍までの平均勾配 (A-A 断面)が約 1/35(>1/100)となった。

また,前項の発電所前面地点1'~3'から沖合200mまでの海底勾配は最小で約1/20(>1/100)となった。

「防波堤の耐津波設計ガイドライン」の条件①かつ条件②の条件に合致し ないため、ソリトン分裂波が発生しないと考えられるが、砕波発生有無の確 認を含めて、科学的根拠に基づいた確認を行うために、水理模型実験及び断 面二次元津波シミュレーションを追加実施する。

(2) 水理模型実験及び断面二次元津波シミュレーションの条件整理

地形特性及び津波特性の観点から津波波圧に影響するサイト特性を整理し, 不確かさを含めて実験条件及び解析条件を設定する。

水理模型実験及び断面二次元津波シミュレーションに使用する基準津波の 選定に当たっては、ソリトン分裂波や砕波の発生及び津波波圧への影響要因 である津波高さ及び流速を指標とした。

基準津波のうち津波波圧に対して支配的となる水位上昇側の基準津波を対象とし、各防波壁前面位置の結果について整理した。整理結果より、3号炉においては基準津波1(防波堤有)、1,2号炉においては基準津波1(防波堤無)を選定した。基準津波(水位上昇側)における津波高さと流速を第4表に示す。

基準津波			地形変化	津江	皮高さ	流速			
		津波波源	防波堤	最高水位 (EL. m)	発生位置	最大流速 (m/s)	発生位置	備考	
		日本海東縁部 	有	10.7	3号北側	9.0	3号炉北側	3号炉の検討で選定	
	1		無	11.9	1, 2号炉 北側	9.8	1, 2号炉 北側	1・2号炉の検討で選定	
	2		有	9.0	3号炉東側	5.7	1, 2号炉 北側		
	5		無	11.5	1,2号炉 北側	6.2	1, 2号炉 北側		

第4表 基準津波(水位上昇側)における津波高さと流速

基準津波1(防波堤有,防波堤無)による津波高さを防波壁全域において 評価するため,水理模型実験及び断面二次元津波シミュレーションにおける 津波高さについては,基準津波1よりも大きいケースとして,津波高さが防 波壁天端高さである EL.+15.0m となる波圧検討用津波(15m津波)を設定し た。

また、水理模型実験では、防波壁前面での浸水深及びフルード数算定を目 的に、防波壁がない状態での津波遡上状況を確認するケースも併せて実施し た。津波波圧に影響する不確かさの考慮内容一覧表及び検討ケース一覧表を 第5表に示す。

第5表 津波波圧に影響する不確かさの考慮内容一覧表及び検討ケース一覧表 不確かさの考慮内容一覧表(3号炉)

分類	項目	サイト特性	不確かさの考慮内容	比較する 検討ケース
地形	周辺地形	防波堤の有無	<u>防波壁周辺の地形変状の不確かさを考慮</u> ⇒基準津波1(防波堤有)及び基準津波1(防波堤無)	1, 2
津波	波形	振幅 (津波高さ)	<u>津波高さの不確かさを考慮</u> ⇒基準津波1(防波堤有) 及び波圧検討用津波(15m津波)	1, 3
		波形	短周期	 津波周期の不確かさを考慮 ⇒基準津波1(防波堤有) 及び基準津波1(防波堤有)の半周期

検討ケース一覧表(3号炉)

検討 ケース	津波	波形 (周期)	防波堤	敷地護岸	防波壁	水理模型 実験	断面二次元津波 シミュレーション
ケース①	甘准净次 1		有	有	有	0	0
ケース②	▲ 举 华 / 丰 / 仪 Ⅰ		無	有	有	0	
ケース③		基準津波1	有	有	有	0	0
ケース④※			有	有	無	0	10 <u></u>
ケース⑤※	波圧検討用津波 (15m津波)		有	無	無	0	
ケース⑥		基準津波 1 の半周期	有	有	有	0	-

※通過波計測ケース

不確かさの考慮内容一覧表(1,2号炉)

分類	項目	サイト特性	不確かさの考慮内容	比較する 検討ケース
地形	周辺地形	防波堤の有無	1,2号炉前面に位置する防波堤は無いものとして評価 するため、地形変状の不確かさは考慮しない	_
津波	波形	振幅 (津波高さ)	<u>津波高さの不確かさを考慮</u> ⇒基準津波1(防波堤無) 及び波圧検討用津波(15m津波)	7,8
		短周期	 津波周期の不確かさを考慮 ⇒基準津波1(防波堤無) 及び基準津波1(防波堤無)の半周期 	8, 11

検討ケース一覧表(1,2号炉)

検討 ケース	津波高さ	波形 (周期)	防波堤	敷地護岸	防波壁	水理模型 実験	断面二次元津波 シミュレーション
ケース⑦	基準津波1		無	有	有	0	0
ケース⑧	- 波圧検討用津波 (1 5 m津波)	基準津波1	無	有	有	0	0
ケース⑨*			無	有	無	0	—
ケース⑩*			無	無	無	0	
ケース⑪		基準津波 1 の半周期	無	有	有	0	-

※通過波計測ケース

【目的及び入射津波の造波】

水理模型実験は、ソリトン分裂波や砕波の発生の有無及び防波壁が受ける 津波波圧への有意な影響の有無,並びにフルード数の把握を目的に実施する。

水理模型実験における再現範囲は施設護岸から離れた沖合約 2.5km の位置 とし、入力津波高さが最大となる基準津波1(防波堤有・無)の平面二次元津 波シミュレーションから求めた同地点における津波波形(最大押し波1波) を入力する。

実験における入射津波は、同地点の水位と流速を用いて入射波成分と反射 波成分に分離し、入射波成分を造波する。

入射津波高さについては、基準津波1(防波堤有・無)と、不確かさを考慮 した波圧検討用津波(15m津波)を設定する。波圧検討用津波(15m津 波)は、基準津波1(防波堤有・無)と同周期として防波壁前面における反射 波を含む遡上高が EL.+15m となるよう振幅を調整する。なお、本波圧検討用 津波(15m津波)は、防波壁等の設計用津波波圧として用いるものではな い。

周期については、基準津波1(防波堤有・無)の周期と、不確かさを考慮した基準津波1(防波堤有・無)の半周期を設定する。入射津波の造波波形図を 第12図及び第13図に示す。

第12図(1) 入射津波の造波波形図(防波堤有)

第12図(2) 入射津波の造波波形図(防波堤有)拡大図

第13図(1) 入射津波の造波波形図(防波堤無)

第13図(2) 入射津波の造波波形図(防波堤無)拡大図

- (3) 水理模型実験による検討
- a. 検討断面

島根原子力発電所前面の海底地形及び津波の伝播特性を踏まえ、本実験の 検討断面は、防波壁の延長方向に直交し、海底地形を示す等水深線ともほぼ 直交する南北方向とする。水理模型実験における検討断面位置を第14図及 び第15図に示す。

第14図 検討断面位置図(海底地形:防波堤無)

第15図 検討断面図

b. 実験条件

実験施設の水路は、長さ50m×幅0.6m×高さ1.2mとし、沖合約2.5kmから 陸側の範囲を再現するために、実験縮尺(幾何縮尺)は1/100とする。3号 炉側の実験モデル図を第16図に、1,2号炉側の実験モデル図を第17図に 示す。

水理模型実験の実験装置例の写真を第18図及び第19図に示す。

第18図(1) 実験施設写真(3号炉)

第18図(2) 実験施設写真(1,2号炉)

正面より

側面より第19図(1) 実験模型(3号炉)

正面より

側面より 第19図(2) 実験模型(1,2号炉)

- c. 水理模型実験の結果
- (a) ソリトン分裂波及び砕波の確認【ケース①】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。ま た、水理模型実験(H10地点)と同等な水深における平面二次元津波シミュレ ーション(地点1)の時刻歴波形を比較した結果、同等の津波を再現できて いることを確認した。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について, 緩やかに上昇していることを確認した。実験条件を第6表に,時刻歴波形を 第20図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁		
ケース①	甘油油油		有	有	有		
ケース②	基準津波1		無	有	有		
ケース③		基準津波1	有	有	有		
ケース④※	波圧		有	有	無		
ケース⑤*	検討用津波 (15m津波)		有	無	無		
ケース⑥	(1311/ = //x)	基準津波 1 の半周期	有	有	有		
※通過波計測ケース							

第6表 実験条件 (ケース①)

第20図 水理模型実験における水位の時刻歴波形 (ケース①)

(b) ソリトン分裂波及び砕波の確認【ケース②】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について, 緩やかに上昇していることを確認した。実験条件を第7表に,時刻歴波形を 第21図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁	
ケース①	甘油油油		有	有	有	
ケース②	基华洋波 1		無	有	有	
ケース③		基準津波1	有	有	有	
ケース④※	波圧		有	有	無	
ケース⑤※	検討用津波		有	無	無	
ケース⑥	(1311/ = //x)	基準津波1 の半周期	有	有	有	
※通過波計測ケース						

第7表 実験条件 (ケース②)

第21図 水理模型実験における水位の時刻歴波形 (ケース②)

(c) ソリトン分裂波及び砕波の確認【ケース③】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認したことから,波圧を算定して影響を確認する。実験条件を第8表 に,時刻歴波形を第22図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁		
ケース①	甘油油山		有	有	有		
ケース②	举华/丰/Q 1		無	有	有		
ケース③		基準津波1	有	有	有		
ケース④※	波圧		有	有	無		
ケース⑤※	検討用津波		有	無	無		
ケース⑥	(1511/ = // X)	基準津波 1 の半周期	有	有	有		

第8表 実験条件 (ケース③)

第22図 水理模型実験における水位の時刻歴波形 (ケース③)

(d) ソリトン分裂波及び砕波の確認【ケース④】

防波壁が無い状態での津波遡上状況の把握を目的に,通過波実験を行い, 水位・フルード数の確認を行った。

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12 地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認した。実験条件を第9表に,時刻歴波形を第23図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース①	甘准进油 1		有	有	有
ケース②	奉华洋波 I		無	有	有
ケース③		基準津波1	有	有	有
ケース④*	波圧		有	有	無
ケース⑤※	検討用津波 (15m津波)		有	無	無
ケース⑥	(1311/=//x)	基準津波 1 の半周期	有	有	有

第9表 実験条件(ケース④)

第23図 水理模型実験における水位の時刻歴波形 (ケース④)

防波壁位置における浸水深及び同時刻におけるフルード数の時刻歴波形を 確認した。その結果,越流開始直後の浸水深が浅い時間帯においてはフルー ド数が大きいが,最大浸水深と同時刻におけるフルード数は1以上となるこ とを確認した。最大浸水深及び同時刻におけるフルード数を第10表及び第 24図に示す。

朝倉らの研究*によると,津波波圧算定で使用する水深係数(水平波圧指標) について,以下のとおり記載されている。

・非分裂波の場合,フルード数が1.5以上では陸上構造物前面に作用する津 波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍 率)は最大で3.0となる。

防波壁の構造成立性確認に当たっては,最大浸水深と同時刻におけるフル ード数は1.5以下であるが,津波波圧算定で使用する水深係数を3.0とする。 ※朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海 岸工学論文集,第47巻,土木学会,PP.911-915

	フルード数 (最大浸水深時)
1回目	1.175
2回目	1.175
3回目	1.178

第10表 最大浸水深と同時刻におけるフルード数

第24図 最大浸水深及び同時刻におけるフルード数 (進行波成分)の時刻歴波形

(e) ソリトン分裂波及び砕波の確認【ケース⑤】

反射波の影響を受けない状態でのソリトン分裂波及び砕波の発生有無の確認のため、施設護岸及び防波壁無による通過波実験を行い、発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。実験条件を第11表に、時刻歴波形を第25図に示す。

	-				
検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース①	甘洪寺池1		有	有	有
ケース②	一 埜 竿 洋 次 ↓		無	有	有
ケース③		基準津波1	有	有	有
ケース④*	波圧		有	有	無
ケース⑤ [※]	検討用津波 (15m津波)		有	無	無
ケース⑥	(1311/#//x)	基準津波1 の半周期	有	有	有
※通過波計測ケース					

第11表 実験条件 (ケース⑤)

第一波 入射波 第二波 Η1 10.0m H2 H3 Η4 Н5 Н6 水位(m, EL.) 8H 0 H Н9 H10 H11 H12 H13 0 60 120 180 240 300 360 時間(sec)

第25図 水理模型実験における水位の時刻歴波形 (ケース⑤)

(f) ソリトン分裂波及び砕波の確認【ケース⑥】

不確かさケースとして,極端に周期を短くした場合の検討(基準津波1の 半周期)を実施した。

発電所沖合から防波壁の近傍において、ソリトン分裂波を示す波形がなく、 水位は緩やかに上昇していることを確認した(H1~H12)。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認したことから,波圧を算定して影響を確認する。実験条件を第12 表に,時刻歴波形を第26図に示す。

毎Ⅰ ∠ 衣 夫阙朱忤(クーへ)	6)
-------------------------	---	---

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース①	甘淮油油1		有	有	有
ケース②	基準津波1		無	有	有
ケース③		基準津波1	有	有	有
ケース④**			有	有	無
ケース⑤*			有	無	無
ケース⑥	(1 3 m/=//x)	基準津波 1 の半周期	有	有	有
※通過波計測ケース					

第26図 水理模型実験における水位の時刻歴波形 (ケース⑥)

(g) 波圧の算定結果

水理模型実験において計測した防波壁に作用する波圧分布を第27図に示 す。なお、第27図は横軸の波圧と縦軸の標高を津波による浸水深で無次元 化を図った。水理模型実験により算定した3号炉前面の防波壁における波圧 分布は直線型となり、ソリトン分裂波や砕波発生時にみられる波圧の増加が みられないため、ソリトン分裂波や砕波による津波波圧への有意な影響はな いことを確認した。

第27図 水理模型実験により算定した波圧分布

(h) ソリトン分裂波及び砕波の確認【ケース⑦】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12 地点)。ま た、水理模型実験(H10 地点)と同等な水深における平面二次元津波シミュレ ーション(地点 3)の時刻歴波形を比較した結果、同等の津波を再現できてい ることを確認した。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。また、第一波の反射波と第二波の入射波がぶつかった後の 波形について、緩やかに上昇していることを確認した。実験条件を第13表 に、時刻歴波形を第28回に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基進津波 1	無	有	有
ケース⑨*	波圧 検討用津波 (15m津波)		無	有	無
ケース ^{100*}			無	無	無
ケース⑪		基準津波1 の半周期	無	有	有
	•		*)	通過波計測	則ケース

第13表 実験条件 (ケース⑦)

第28図 水理模型実験における水位の時刻歴波形 (ケース⑦)

(i) ソリトン分裂波及び砕波の確認【ケース⑧】

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。また、第一波の反射波と第二波の入射波がぶつかった後の 波形について乱れを確認したことから、波圧を算定して影響を確認する。実 験条件を第14表に、時刻歴波形を第29図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧			無	有	有
ケース⑨*	波圧		無	有	無
ケース:⑩*	検討用津波 (15m津波)		無	無	無
ケース⑪	(1010+02)	基準津波1 の半周期	無	有	有
※通過波計測ケース					

第14表 実験条件 (ケース⑧)

第29図 水理模型実験における水位の時刻歴波形 (ケース⑧)

(j) ソリトン分裂波及び砕波の確認【ケース⑨】

防波壁がない状態での津波遡上状況の把握を目的に,通過波実験を行い, 水位・フルード数の確認を行った。

発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。

防波壁前面の H13 地点においても、ソリトン分裂波及び砕波は発生しない ことを確認した。また、第一波の反射波と第二波の入射波がぶつかった後の 波形について乱れを確認した。実験条件を第15表に、時刻歴波形を第30 図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基準津波 1	無	有	有
ケース⑨*	波圧		無	有	無
ケース:10*	んユ 検討用津波 (15m津波)		無	無	無
ケース⑪	(1011141)	基準津波 1 の半周期	無	有	有

第15表 実験条件 (ケース⑨)

第30図 水理模型実験における水位の時刻歴波形 (ケース⑨)

防波壁位置における浸水深及び同時刻におけるフルード数の時刻歴波形を 確認した。その結果,越流開始直後の浸水深が浅い時間帯においてはフルー ド数が大きいが,最大浸水深と同時刻におけるフルード数は1.5以上となる ことを確認した。最大浸水深及び同時刻におけるフルード数を第16表及び 第31図に示す。

朝倉らの研究*によると,津波波圧算定で使用する水深係数(水平波圧指標) について,以下のとおり記載されている。

・非分裂波の場合,フルード数が1.5以上では陸上構造物前面に作用する津 波波圧分布を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍 率)は最大で3.0となる。

島根原子力発電所においては、最大浸水深と同時刻におけるフルード数は 1.5以上であることから、津波波圧算定で使用する水深係数を3.0とする。 ※朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究、海 岸工学論文集、第47巻、土木学会、PP.911-915

	フルード数 (最大浸水深時)
1回目	1.657
2回目	1.657
3回目	1.531

第16表 最大浸水深と同時刻におけるフルード数

第31図 最大浸水深及び同時刻におけるフルード数 (進行波成分)の時刻歴波形
(k) ソリトン分裂波及び砕波の確認【ケース⑪】

反射波の影響を受けない状態でのソリトン分裂波及び砕波の発生有無の確認のため、施設護岸及び防波壁無による通過波実験を行い、発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波形がなく、水位は緩やかに上昇していることを確認した(H1~H12地点)。実験条件を第17表に、時刻歴波形を第32図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基進津波 1	無	有	有
ケース⑨ [※]	波圧		無	有	無
ケース⑩*	検討用津波 (15m津波)		無	無	無
ケース⑪	(基準津波1 の半周期	無	有	有

第17表 実験条件 (ケース10)

[※]通過波計測ケース

第32図 水理模型実験における水位の時刻歴波形 (ケース⑩)

(1) ソリトン分裂波及び砕波の確認【ケース①】

不確かさケースとして,極端に周期を短くした場合の検討(基準津波1の 半周期)を実施した。

発電所沖合から防波壁の近傍において、ソリトン分裂波を示す波形がなく、 水位は緩やかに上昇していることを確認した(H1~H12)。

また,第一波の反射波と第二波の入射波がぶつかった後の波形について乱 れを確認したことから,波圧を算定して影響を確認する。実験条件を第18 表に,時刻歴波形を第33図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧	波圧 検討用津波 (1 5 m津波)	基準津波 1	無	有	有
ケース⑨*			無	有	無
ケース⑩*			無	無	無
ケース⑪		基準津波1 の半周期	無	有	有

第18表 実験条件 (ケース⑪)

※通過波計測ケース

第33図 水理模型実験における水位の時刻歴波形 (ケース⑪)

(m) 波圧の算定結果

水理模型実験において計測した防波壁に作用する波圧分布を第34図に示 す。水理模型実験により算定した1,2号炉前面の防波壁における波圧分布は、 直線型の波圧分布となりソリトン分裂波や砕波発生時にみられる波圧増加が みられないため、ソリトン分裂波や砕波による津波波圧への有意な影響はな いことを確認した。

周期の不確かさ

第34図 水理模型実験により算定した波圧分布

(4) 断面二次元津波シミュレーションによる検討

水理模型実験と同じ条件(ケース①,③,⑦及び⑧)について,断面二次 元津波シミュレーションを実施した。

- (a) ソリトン分裂波及び砕波の確認【ケース①】 ケース①の解析結果は、以下のとおり、水理模型実験と同等の津波を再現 できていることを確認した(H1~H13 地点)。
 - ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12地点)。
 - ・防波壁前面のH13地点においても、ソリトン分裂波及び砕波は発生しない。
 - ・第一波の反射波と第二波の入射波がぶつかった後の波形について,緩やか に上昇している。

解析条件を第19表に、時刻歴波形を第35図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース①	甘油油油		有	有	有
ケース②	奉华津波 1		無	有	有
ケース③		基準津波1	有	有	有
ケース④ [※]	波圧 検討用津波 (15m津波)・		有	有	無
ケース⑤※			有	無	無
ケース⑥		基準津波1 の半周期	有	有	有
※通過波計測ケース					

第19表 解析条件 (ケース①)

第35図 断面二次元津波シミュレーションにおける 水位の時刻歴波形 (ケース①)

- (b) ソリトン分裂波及び砕波の確認【ケース③】 ケース③の解析結果は、以下のとおり、水理模型実験と同等の津波を再現 できていることを確認した(H1~H13 地点)。
 - ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12)。
 - ・防波壁前面のH13においても、ソリトン分裂波及び砕波は発生しない。
 - 第一波の反射波と第二波の入射波がぶつかった後の波形について乱れが確認できる。

解析条件を第20表に、時刻歴波形を第36図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース①	基準津波1		有	有	有
ケース②			無	有	有
ケース③		基準津波1	有	有	有
ケース④※	波圧		有	有	無
ケース⑤*	検討用津波 (15m津波)		有	無	無
ケース⑥	(1011)+/(x)	基準津波 1 の半周期	有	有	有
※通過波計測ケース					

第20表 解析条件 (ケース③)

 赤線:実験結果	Ł
 青線:解析結果	Į

第36図 断面二次元津波シミュレーションにおける 水位の時刻歴波形 (ケース③)

(c) 波形の水面勾配

3号炉の防波壁を対象として、ケース①(基準津波1(防波堤有))の断面二 次元津波シミュレーション結果を基に波形の水面勾配を確認する。

津波の水位時刻歴波形から水位上昇量が大きくなる時刻に着目し、水位分 布を確認した結果、水面勾配は最大で1.40°であり、松山ら(2005)における 水面勾配の砕波限界30°~40°に比べて十分に小さい。

基準津波の時刻歴波形や水位分布からソリトン分裂波や砕波と考えられる 挙動は認められない。

以上より,3号炉護岸前面ではソリトン分裂波及び砕波は発生しない。

第37図 最大水面勾配確認結果(3号炉)

(d) ソリトン分裂波及び砕波の確認【ケース⑦】

ケース⑦の解析結果は、以下のとおり、水理模型実験と同等の津波を再現できていることを確認した(H1~H13地点)。

・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12地点)。

・防波壁前面のH13地点においても、ソリトン分裂波及び砕波は発生しない。

・第一波の反射波と第二波の入射波がぶつかった後の波形について,緩やか に上昇している。

解析条件を第21表に、時刻歴波形を第38図に示す。

検討 ケース	津波	波形 (周期)	防波堤	施設 護岸	防波壁
ケース⑦	基準津波1		無	有	有
ケース⑧		基進津波 1	無	有	有
ケース⑨※	波圧 検討用津波 (15m津波)		無	有	無
ケース ^{100*}			無	無	無
ケース⑪	(101111+112)	基準津波 1 の半周期	無	有	有
				過波計測	リケース

第21表 解析条件 (ケース⑦)

第38図 断面二次元津波シミュレーションにおける 水位の時刻歴波形 (ケース⑦)

- (e) ソリトン分裂波及び砕波の確認【ケース⑧】 ケース⑧の解析結果は、以下のとおり、水理模型実験と同等の津波を再現 できていることを確認した(H1~H13 地点)。
 - ・発電所沖合から防波壁の近傍において、ソリトン分裂波及び砕波を示す波 形がなく、水位は緩やかに上昇している(H1~H12)。
 - ・防波壁前面のH13においても、ソリトン分裂波及び砕波は発生しない。
 - 第一波の反射波と第二波の入射波がぶつかった後の波形について乱れが確認できる。

解析条件を第22表に、時刻歴波形を第39図に示す。

第22表 解析条件 (ケース⑧)

(f) 波形の水面勾配

1,2号炉を対象として、ケース⑦(基準津波1(防波堤無))の断面二次元津 波シミュレーション結果を基に波形の水面勾配を確認する。

津波の水位時刻歴波形から水位上昇量が大きくなる時刻に着目し、水位分 布を確認した結果、水面勾配は最大で1.83°であり、松山ら(2005)における 水面勾配の砕波限界 30°~40°に比べて十分に小さい。

基準津波の時刻歴波形や水位分布からソリトン分裂波や砕波現象と考えら れる挙動は認められない。

以上より、1,2号炉護岸前面ではソリトン分裂波及び砕波は発生しない。

第40図 最大水面勾配確認結果(1,2号炉)

(g) 波圧の算定結果

断面二次元津波シミュレーションにより算定した防波壁(敷地高以上)及 び施設護岸(敷地高以深)に作用する波圧分布を第41図に示す。また,比 較対象として同じ条件による水理模型実験結果(3号炉の敷地高以深を除く) による波圧分布も示す。なお,敷地高以深の図については横軸の波圧と縦軸 の標高を静水面からの津波高さで無次元化を図った。

断面二次元津波シミュレーションにより算定した波圧分布は,水理模型実 験と同等の波圧分布であり,再現性があることを確認した。

直線型の波圧分布となることから,ソリトン分裂波や砕波による津波波圧 への有意な影響はないことを確認した。

第41図(1) 敷地高以上における波圧分布の比較

第41図(2) 敷地高以深における波圧分布の比較

- (5) 三次元津波シミュレーションによる検討
 - (a) 検討概要

前項で行った水理模型実験及び断面二次元津波シミュレーションでは,島 根原子力発電所の代表断面について検討した。島根原子力発電所は輪谷湾を 中心とした半円状の複雑な地形であるため,三次元津波シミュレーションを 実施して,複雑な地形や三次元的な流況による津波波圧への影響を確認し, 水理模型実験及び断面二次元津波シミュレーションによる津波波圧の妥当性 を確認する。

入射津波については、基準津波1(防波堤有,防波堤無)の場合、敷地への 浸水が局所的であり、防波壁等への津波波圧の影響の確認ができないことか ら、波圧検討用津波(15m津波)を設定する。なお、波圧検討用津波(1 5m津波)により算定した波圧は、防波壁等の設計用津波波圧として用いる ものではない。

解析モデルについては、島根原子力発電所の陸海域の地形特性を再現した モデルとする。

(b) 解析条件等

三次元津波シミュレーション概要図を第42図に示す。

第42図(1) 発電所前面の海底地形

第42図(3) 入射津波の造波波形図(防波堤無)

第42図(4) 解析モデル図(防波堤有)の例

解析モデルについては、防波壁位置における津波高さ及び津波波圧を算定 するため、陸海域の地形等の特性(1,2号炉前面が入り組んだ複雑な地形) を再現して海底地形及び敷地をモデル化するとともに、防波壁等の形状及び 高さを再現した地形とする。解析条件を第23表に示す。

第23表 解析条件

モデル化領域	南北方向:2,175m, 東西方向:1,125m		
格子間隔	$\Delta x=6.25m, \ \Delta y=6.25m, \ \Delta z=1.0\sim2.0m$		
解析時間 1079秒(基準津波1の押し波最大波)			

(c) 津波水位

波圧検討用津波(15m津波)を用いた三次元津波シミュレーションにより抽出された防波壁前面における最高水位位置を第43図に,最高水位分布 を第44図に示す。なお,代表として防波堤有の結果を示す。

第43図 三次元津波シミュレーションにおける断面位置及び最高水位位置

第44図(1) 防波壁前面における最高水位分布(3号炉北側前面)

第44図(2) 防波壁前面における最高水位分布(1,2号炉前面)

第44図(3) 防波壁前面における最高水位分布(3号炉東側前面)

(d) 津波波圧

防波壁平面位置を第45図に,波圧検討用津波(15m津波)を用いた三次元津波シミュレーションにより直接算定された最大波圧分布を第46図に示す。

第46図(2) 防波壁に作用する標高別の最大波圧分布(1,2号炉前面)

第46図(3) 防波壁に作用する標高別の最大波圧分布(3号炉東側前面)

(e) 津波波圧(標高毎)

波圧検討用津波(15m津波)を用いた三次元津波シミュレーションにより防波壁に作用する波圧(標高毎)を直接算定した結果を第47図に示す。

第47図(1) 防波壁に作用する波圧分布(3号炉北側前面)

第47図(2) 防波壁に作用する波圧分布(1,2号炉北側前面)

第47図(3) 防波壁に作用する波圧分布(3号炉東側前面)

(参考) 三次元津波シミュレーションによる津波の作用状況

三次元津波シミュレーションによる最大波到達時刻の津波の作用状況を第48図に示す。

第48図(1)津波の作用状況(3号炉北側前面最大波到達時刻)

第48図(2)津波の作用状況(1,2号炉前面最大波到達時刻)

第48図(3)津波の作用状況(3号炉東側前面最大波到達時刻)

(f) 津波波圧比較

3号炉北側前面及び1,2号炉前面の敷地高以上及び敷地高以深における,三 次元津波シミュレーション,断面二次元津波シミュレーション及び水理模型 実験(3号炉北側前面の敷地高以深を除く)により算定した波圧分布の比較結 果を第49図に示す。

複雑な地形を考慮した三次元的な流況を評価できる三次元津波シミュレー ションの結果を踏まえても、水理模型実験及び断面二次元津波シミュレーシ ョンによる津波波圧と同等又は包絡されることを確認した。これらの結果よ り、島根原子力発電所の複雑な地形や三次元的な流況による影響は認められ ないため、水理模型実験及び断面二次元津波シミュレーションによる敷地高 以上の津波波圧は妥当であると判断した。

第49図 敷地高以上及び敷地高以深における波圧分布比較

- 4. 既往の津波波圧算定式との比較
- (1) 検討概要

既往の津波波圧算定式の妥当性を確認するため、水理模型実験、断面二次 元及び三次元津波シミュレーションによる波圧と比較検討する。なお、津波 波圧の算定に当たっては、波圧検討用津波(15m津波)を用いる。島根原子 力発電所の防波壁の位置図を第50図に、断面図を第51図に示す。

第51図(1) 防波壁(多重鋼管杭式擁壁)断面図

(2) 津波波圧検討フロー

既往の津波波圧算定式は,第52図に示すフローにて妥当性を確認する。 水理模型実験,断面二次元及び三次元津波シミュレーションにより防波壁 及び施設護岸に作用する波圧を直接算定し,朝倉式(敷地高以上)及び谷本 式(敷地高以深)により算定した津波波圧と比較する。

(3) 朝倉式による津波波圧算定

朝倉式は、津波の通過波の浸水深に応じて波圧を算定する式であり、「通 過波の浸水深」を最大浸水深(入力津波高さ-敷地標高)の 1/2 と保守的に 仮定して*津波波圧を算定する。

朝倉式の概念図を第53図に,朝倉式における津波波圧の考え方を第54 図に示す。

朝倉式

 $q_{z} = \rho g (a \eta - z)$ ここに, q_{z} :津波波圧 (kN/m²) η : 浸水深 (通過波の浸水深=最大浸水深の 1/2) (m) z : 当該部分の地盤面からの高さ(m) (0 $\leq z \leq a h$) a : 水深係数 (最大:3) ρg :海水の単位体積重量 (kN/m³)

非分裂波の場合の津波水平波圧

第54図 朝倉式における津波波圧の考え方

※朝倉式による津波波圧算定(参考)

朝倉式で用いる「通過波の浸水深」と、入力津波高さから敷地標高を引いた「最大浸水深の1/2」について、水理模型実験から比較した結果を第24表及び第25表に示す。

・3号炉の水理模型実験

ケース③:防波壁がある場合の最大浸水深hの1/2 ケース④:防波壁位置の通過波の浸水深

第24表	保守的な浸水深r	の水理模型実験によ	る確認結果	(3 号炉)

実験 ケース	最大 浸水深 h	h/2	浸水深η
ケース③	8.397m	4.199m	4.199m (最大浸水深の1/2)
ケース④			3.643m (通過波の浸水深)

・1,2号炉の水理模型実験

ケース⑧:防波壁がある場合の最大浸水深hの1/2

ケース⑨:防波壁位置の通過波の浸水深

第25表 保守的な浸水深ηの水理模型実験による確認結果(1,2号炉)

実験 ケース	最大 浸水深 h	h/2	浸水深η
ケース⑧	6.511m	3.256m	3.256m (最大浸水深の1/2)
ケース⑨			2.015m (通過波の浸水深)

上記より、「最大浸水深の1/2」が「通過波の浸水深」より保守的な値となることを確認した。

(4) 津波波圧の比較 朝倉式 (敷地高以上)

3号炉北側前面の敷地高以上における,朝倉式により算定した波圧分布と 水理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレー ションにより算定した波圧分布の比較結果を第55図に示す。

水理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレ ーションによる波圧分布は,朝倉式による波圧分布に包絡されることを確認 した。

第55図 無次元最大波圧分布(3号炉北側前面)

1,2号炉前面の敷地高以上における,朝倉式により算定した波圧分布と水 理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレーシ ョンにより算定した波圧分布の比較結果を第56図に示す。

水理模型実験,断面二次元津波シミュレーション及び三次元津波シミュレ ーションによる波圧分布は,朝倉式による波圧分布に包絡されることを確認 した。

第56図 無次元最大波圧分布(1,2号炉前面)

3号炉東側前面の敷地高以上における,朝倉式により算定した波圧分布と 三次元津波シミュレーションにより算定した波圧分布の比較結果を第57図 に参考として示す。

三次元津波シミュレーションによる波圧分布は,朝倉式による波圧分布に 包絡されることを確認した。

第57図 無次元最大波圧分布(3号炉東側前面)

(5) 谷本式による津波波圧算定

谷本式は,構造物前面の津波高さ(津波シミュレーション)に応じて波圧 を算定する式である。谷本式を以下に示す。

なお,谷本式で使用する入射津波の静水面上の高さ(2 a₁)は,各津波シ ミュレーションにより抽出された護岸前面の最高水位を使用する。谷本式に よる波圧分布を第58図に示す。

【谷本式】

 $\eta^*=3.0 a_{I}$ $P_{1}=2.2\rho_{0}g a_{I}$ $Pu=P_{1}$ ここに、 η^* :静水面上の波圧作用高さ(m) a_{I} :入射津波の静水面上の高さ(振幅)(m) $\rho_{0}g$:海水の単位体積重量(kN/m³) Pu:直立壁前面下端における揚圧力^{**}(kN/m²)

※島根原子力発電所の防波壁は、岩盤又は改良地盤により支持されており十分 に止水性があるため揚圧力は考慮しない。

第58図 谷本式による波圧分布 (背面水位が押し波時に静水面より下がらない場合)

- ・島根原子力発電所の防波壁背後は敷地であるため,港湾外の波圧を算定した 図を引用した。
- ・なお、「背面水位が押し波時に静水面より下がる場合」でも港外側に作用す る津波波圧は同じである。

(6) 津波波圧の比較 谷本式 (敷地高以深)

敷地高以深における断面二次元津波シミュレーション,三次元津波シミュ レーション,水理模型実験(1,2号炉),既往の算定式(谷本式)により算定 した波圧分布を第59図に示す。

3号炉及び1,2号炉の波圧分布の比較結果より,谷本式による波圧分布が 全ての波圧を包絡することを確認できたため,敷地高以深の津波波圧算定に は谷本式を用いる。

第59図 断面二次元津波シミュレーション,三次元津波シミュレーション, 水理模型実験(1,2号炉),既往の算定式(谷本式)により算定した波圧分布

(7) まとめ

津波は波浪に比べて周期が長いことから、その波力は水位の上昇による静水圧として評価される場合が多い。しかし、実際には流れに伴う動的な影響や作用の継続時間による影響が考えられ、精度よく波力を評価するためには、 水理模型実験等を行うことが望ましいため、水理模型実験、断面二次元津波 シミュレーション及び三次元津波シミュレーションを実施した。

敷地高以上(防波壁前面)においては,敷地標高や遡上水深等により津波 波圧への影響が大きいことから,朝倉式に用いる通過波の浸水深において, 最大浸水深(津波高さ一敷地高さ)×1/2を用いることで,水理模型実験,断 面二次元津波シミュレーション及び三次元津波シミュレーションにより算定 される波圧に対して保守性を確保している。

敷地高以深(護岸前面)においては、水理模型実験、断面二次元津波シミ ュレーション及び三次元津波シミュレーションの結果、いずれもばらつきの 小さい線形の波圧分布となり、これらの実験や解析手法の差異による波圧分 布に有意な差異はない。また、3号炉の水理模型実験では、敷地高以深の波 圧を測定できていないが、護岸前面で緩やかな水位上昇を示しており、1、 2号炉の津波シミュレーション及び水理模型実験と同様な波圧分布になると 考えられることから、いずれも谷本式により算定される波圧分布に包絡され ると判断した。以上のことから、津波波圧を谷本式で評価することの保守性 を確認した。 5. 設計で考慮する津波波圧の設定

水理模型実験の結果,科学的根拠に基づきソリトン分裂波や砕波が発生し ないことを確認した。また,津波波圧については,敷地高以上の波圧分布は 直線型となり,敷地高以深の波圧分布については海水位までは直線型,静水 面以深では一定となり,津波波圧への有意な影響がないことを確認した。

断面二次元津波シミュレーション解析の結果,水理模型実験を再現でき, 時刻歴波形,水位分布及び水面勾配からソリトン分裂波や砕波が発生しない ことを確認した。また,波圧分布についても水理模型実験と同様に津波波圧 への有意な影響はないことを確認した。

三次元津波シミュレーション解析の結果,水理模型実験及び断面二次元津 波シミュレーションによる波圧分布と同等,又は包絡されることを確認した。 この結果より,島根原子力発電所の複雑な地形や三次元的な流況による影響 は認められないため,水理模型実験及び断面二次元津波シミュレーションに よる津波波圧は妥当であると判断した。

水理模型実験及び津波シミュレーション結果による津波波圧は,既往の津 波波圧算定式による津波波圧に包絡されることを確認した。

上記検討結果を踏まえ,防波壁等の設計で考慮する津波波圧を以下のとお り設定する。

- ・敷地高以上については、平面二次元津波シミュレーション解析で設定した入力津波高さに基づき、朝倉式により津波波圧を設定し、敷地高以深については、平面二次元津波シミュレーション解析で設定した入力津波高さに基づき、谷本式により津波波圧を設定する。
- ・防波壁及び防波壁通路防波扉の設計用津波波圧の算定に用いる津波高さは、 平面二次元津波シミュレーション結果による入力津波高さ(EL.+11.9m)に 潮位のばらつきを考慮した「EL.+12.6m」を用いる。

津波波圧設定フローを第60図に,波圧算定イメージ(3号炉前面)を第 61図に示す。

第60図 津波波圧設定フロー

浸水防護重点化範囲内に設置する海域と接続する低耐震クラス機器及び配管の 津波流入防止対策について

1. 概要

内郭防護においては,海域と接続する低耐震クラス(浸水防止機能を除く)の機器及び配管が地震により損傷して保有水が溢水するとともに,損傷箇所 を介して津波が流入する事象を想定する。

ここでは、地震による配管損傷後に津波が襲来した場合の浸水防護重点化 範囲への直接的な津波の流入に対する対策について説明する。

2. 海域と接続する配管

海域と接続する低耐震クラスの機器及び配管が設置される浸水防護重点 化範囲としてタービン建物(耐震Sクラスの設備を設置するエリア),取水 槽循環水ポンプエリア及び取水槽海水ポンプエリアがある。

浸水防護重点化範囲であるタービン建物(耐震Sクラスの設備を設置する エリア),取水槽循環水ポンプエリア及び取水槽海水ポンプエリアに設置さ れる海域と接続する低耐震クラスの機器及び配管を表1,図1に示す。なお, 海域と接続する機器及び配管については,外郭防護1の「取水路・放水路等 の経路からの津波の流入防止」において耐震Sクラスの機器及び配管も含め 特定しており,それらの機器及び配管と同じである。

これらの機器及び配管については、地震により損傷した場合には、その後 襲来する津波が、損傷箇所を介し浸水防護重点化範囲内に直接流入すること から、基準地震動Ssによる地震力に対してバウンダリ機能を保持する等の 設計とする。
海域と接続する低耐震クラス の機器及び配管を設置する浸 水防護重点化範囲	左記に設置する低耐震クラス の機器及び配管	耐震 クラス [*]
	タービン補機海水系配管	Cクラス
タービン建物 (耐震Sクラスの設備を設置	原子炉補機海水系配管 (放水配管)	Cクラス
するエリア)	高圧炉心スプレイ補機海水系 配管(放水配管)	Cクラス
	液体廃棄物処理系配管	Cクラス
取水槽循環水	循環水ポンプ及び配管	Cクラス
ポンプエリア	タービン補機海水系配管	Cクラス
取水槽海水	タービン補機海水ポンプ及び 配管	Cクラス
ホンフエリア	除じんポンプ及び配管	Cクラス

表1 海域と接続する基準地震動Ssによる地震力に対して バウンダリ機能を保持する等の設計とする機器及び配管

※ 浸水防止機能を除く

3. 津波流入防止対策

循環水系は,基準地震動Ssによる地震力に対してバウンダリ機能を保持する設計とし、津波の流入を防止する。

タービン補機海水系は、インターロックによりポンプ出口弁を閉止し、ポン プ及びポンプからポンプ出口弁までの配管を基準地震動Ssによる地震力に 対してバウンダリ機能を保持するとともに、出口側配管の逆止弁及び逆止弁か ら放水槽までの配管を基準地震動Ssによる地震力に対してバウンダリ機能 を保持することにより津波の流入を防止する(図2参照)。海域活断層に想定 される地震による津波襲来に係る時系列を図3に、日本海東縁部に想定される 地震による津波襲来に係る時系列を図4に示す。

また,インターロックによるポンプ出口弁の閉止については,津波襲来前に 確実に閉止するため,多重化・多様化を図る。

液体廃棄物処理系については,出口側配管の逆止弁及び逆止弁から放水槽ま での配管を基準地震動Ssによる地震力に対してバウンダリ機能を保持する ことにより津波の流入を防止する。

原子炉補機海水系配管(放水配管)及び高圧炉心スプレイ補機海水系配管(放水配管)については,基準地震動Ssによる地震力に対してバウンダリ機能を 保持する設計とし,津波の流入を防止する。

除じん系については,基準地震動Ssによる地震力に対してバウンダリ機能 を保持する設計とし、津波の流入を防止する。

この結果,浸水防護重点化範囲であるタービン建物(耐震Sクラス施設を設 置するエリア),取水槽循環水ポンプエリア,取水槽海水ポンプエリアにおい て,循環水系,原子炉補機海水系,高圧炉心スプレイ補機海水系及び除じん系 の機器及び配管は地震により破損することなく,タービン補機海水系,液体廃 棄物処理系については,地震により配管が損傷した後に,津波が襲来した場合 でも,タービン建物(耐震Sクラスの設備を設置するエリア),取水槽循環水 ポンプエリア及び取水槽海水ポンプエリアに流入しない。対策及び取・放水路 からの流入防止結果を表2に,対策概要図を図5に示す。

図2 タービン補機海水系 インターロック概要図

時系列	 ▼地震(海域活断層) ▼海域活断層から想定される地震による津波襲来 約1分約2分 			時系列	 ▼地震(敷地近傍) ▼溢水発生 ▼地震後点検 ↓S 約1分 1日 	 ▼日本海東縁部 に想定される 地震による津 波襲来 > 	
タービン 補機海水系	インター ロックに よるポン プ停止及 び弁閉止	↓ 津波流入 ↓ なし	1	タービン 補機海水系	インター ロックに よるポン プ停止及 び弁閉止	津波流入 なし	

図3 海域活断層から想定 される地震による津波襲来 に係る時系列 図4 日本海東縁部に想定 される地震による津波襲来 に係る時系列

表2 海域と接続する基準地震動Ssによる地震力に対して バウンダリ機能を保持する等の設計とする配管に対する対策

浸水防護重点化	继导,可答	计生	流入防止結果			
範囲	(茂石) * 自己官	刈束	取水路	放水路		
	タービン補機海水 系配管	 インターロックによる 電動弁閉止 逆止弁閉止 基準地震動Ssによる 地震力に対してバウン ダリ機能を保持 	〇 (インターロックに よる隔離,バウンダ リ機能を保持)	〇 (逆止弁による 隔離,バウンダリ機 能を保持)		
タービン建物 (耐震 S クラス の設備を設置す るエリア)	液体廃棄物処理系 配管	 ・逆止弁閉止 ・基準地震動Ssによる 地震力に対してバウン ダリ機能を保持 	_ (接続なし)	○ (逆止弁による 隔離,バウンダリ機 能を保持)		
	原子炉補機海水系 配管(放水配管)	 基準地震動Ssによる 地震力に対してバウン ダリ機能を保持 	○ (バウンダリ機能を 保持)	○ (バウンダリ機能を 保持)		
	高圧炉心スプレイ 補機海水系配管(放 水配管)	 基準地震動Ssによる 地震力に対してバウン ダリ機能を保持 	〇 (バウンダリ機能保 持)	○ (バウンダリ機能を 保持)		
	循環水ポンプ及び 配管	 ・基準地震動Ssによる 地震力に対してバウン ダリ機能を保持 	○ (バウンダリ機能を 保持)	○ (バウンダリ機能を 保持)		
取水槽循環水 ポンプエリア	タービン補機海水 系配管	 インターロックによる 電動弁閉止 逆止弁閉止 基準地震動Ssによる 地震力に対してバウン ダリ機能を保持 	○ (インターロックに よる隔離,バウンダ リ機能を保持)	○ (逆止弁による 隔離, バウンダリ機 能を保持)		
取水槽海水	タービン補機海水 ポンプ及び配管	 基準地震動Ssによる 地震力に対してバウン ダリ機能を保持 ・逆止弁閉止 	 (バウンダリ機能を 保持)	 (逆止弁による 隔離, バウンダリ機 能を保持)		
~~~ <i>/ / / / /</i>	除じんポンプ及び 配管	<ul> <li>・基準地震動Ssによる 地震力に対してバウン</li> <li>ダリ機能を保持</li> </ul>	○ (バウンダリ機能を 保持)	(接続なし)		





## タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循環水ポン プエリアに設置する耐震Sクラスの設備に対する浸水影響について

#### 1. 概要

耐震Sクラスの設備を内包する建物及び区画として,原子炉建物,タービン 建物(耐震Sクラスの設備を設置するエリア),廃棄物処理建物(耐震Sクラス の設備を設置するエリア),制御室建物(耐震Sクラスの設備を設置するエリア), 取水槽海水ポンプエリア,取水槽循環水ポンプエリア及び屋外配管ダクト(B ーディーゼル燃料貯蔵タンク~原子炉建物,タービン建物~排気筒,タービン 建物~放水槽)並びにA,B-非常用ディーゼル発電機(燃料移送系),高圧炉 心スプレイ系ディーゼル発電機(燃料移送系)及び排気筒を設置するエリアが あり,これらの範囲を浸水防護重点化範囲と設定している。

このうち、タービン建物(耐震Sクラスの設備を設置するエリア)及び取水 槽循環水ポンプエリアについては、海域と接続する低耐震クラスの機器及び配 管であるタービン補機海水系等を設置しており、地震時には配管等の破損によ る保有水の溢水及び破損箇所を介した津波の流入を想定する範囲となる。

そのため、タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽 循環水ポンプエリアに設置する耐震Sクラスの設備について、地震・津波時の 浸水状況を考慮した浸水に対して、同区画に設置される津波防護対象設備の浸 水による機能喪失要因の網羅的な抽出を踏まえ、浸水による影響がないことを 確認する。タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽 循環水ポンプエリアに設置する耐震Sクラスの設備を表1に、その配置を図1 に示す。

なお、タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循 環水ポンプエリアに設置する耐震Sクラスの配管に、電動弁等の浸水により機 能喪失する設備は設置していない。

表1 タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循環 水ポンプエリアに設置する耐震Sクラスの設備

設置区画	設備					
	百乙后结继海水조	配管・手動弁				
	尿丁炉 柵機	ケーブル				
	「真正に心えプレイ捕燃海水系」	配管・手動弁				
タービン建物	同止が心ハノレイ油液体小ホ	ケーブル				
、	非常用ディーゼル発電機(燃 料移送系)	配管・手動弁				
	高圧炉心スプレイ系ディーゼ	配管・手動弁				
	ル発電機(燃料移送系)	ケーブル				
	非常用ガス処理系	配管・手動弁				
	原子炉補機海水系	配管・手動弁 (ストレーナ含む)				
取水槽循環水		ケーブル				
ポンプエリア	高圧炉心スプレイ補機海水系	配管・手動弁 (ストレーナ含む)				
		ケーブル				



図1 タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循 環水ポンプエリアに設置する耐震Sクラスの設備の配置

## 5条-別添1-添付28-2

2. 耐震Sクラスの設備に対する浸水による機能喪失要因

抽出された耐震Sクラスの設備の浸水による影響有無を評価するため、機能 喪失要因を抽出した。

タービン建物(耐震Sクラスの設備を設置するエリア)及び取水槽循環水ポ ンプエリアにおける地震・津波時の浸水状況を踏まえた範囲に設置する耐震S クラスの設備に対する浸水による機能喪失要因を表2に示す。津波流入により 生じる漂流物による配管等の損傷の可能性については、タービン建物(耐震S クラスの設備を設置するエリア)及び取水槽循環水ポンプエリアに津波を流入 させない対策(添付資料27参照)を実施することから、当該エリアに津波の流入 はなく、漂流物は生じない。

			機能要	使失要因	
設備	設置区画	系統	水圧による 損傷	電気接続部の 没水	
		原子炉補機海水系			
		高圧炉心スプレイ 補機海水系			
	タービン建物 (耐震 S クラ	非常用ガス処理系	₩霅•津波時		
配管・手 動弁 (ストレー	スの設備を設 置するエリ ア)	非常用ディーゼル 発電機(燃料移送 系)	の浸水によ る水頭圧(外 圧)により,	_	
ナ含む)		高圧炉心スプレイ系 ディーゼル発電機 (燃料移送系)	デ レイ系 配官の構造 ーゼル発電機 料移送系)		
	取水槽	原子炉補機海水系			
	循環水ポンプ エリア	高圧炉心スプレイ 補機海水系			
		原子炉補機海水系			
	タービン建物 (耐震Sクラ スの設備を設	高圧炉心スプレイ 補機海水系	地震・津波時の温水による	地震・津波時の	
ケーブル	置するエリ ア)	高圧炉心スプレイ 系ディーゼル発電 機(燃料移送系)	水頭圧(外圧) により、ケー ブルの構造的	浸水が電気接続 部に接すること で、機能喪失す る可能性があ	
	取水槽	原子炉補機海水系	損傷の可能性 がある。	る。51111日かる) る。	
	循環水ポンプ エリア	高圧炉心スプレイ 補機海水系			

表2 耐震Sクラスの設備に対する浸水による機能喪失要因

### 5条-別添1-添付28-3

3. 機能喪失要因に対する評価

地震・津波時の浸水状況を踏まえ,抽出された機能喪失要因に対する評価を 実施した。

(1) 水圧による損傷に対する評価及びケーブルの電気接続部の没水に対する 評価

タービン建物(耐震Sクラスの設備を設置するエリア)に設置される耐震S クラスの設備の水圧による損傷に対する評価及びケーブルの電気接続部に対 する評価については、「第9条 溢水による損傷の防止等 9.4 タービン建物 に設置されている防護対象設備について」において説明しており、地震・津波 時の浸水による水圧に対して機能喪失しないこと、また電気接続部がないこと を確認している。同様に、取水槽循環水ポンプエリアに設置される耐震Sクラ スの設備の水圧による損傷に対する評価については、「第9条 溢水による損 傷の防止等 添付資料1 機能喪失判定の考え方と選定された溢水防護対象 設備について」において説明しており、地震・津波時の浸水による水圧に対し て機能喪失しないことを確認している。具体的な内容を図2、図3に示す。

#### (2) 配管及びケーブルの溢水影響について

#### a. 評価条件について

9.1 項及び 9.2 項の評価より,タービン建物における最大の溢水水位 EL5.9mに相当する水頭圧を外圧条件とした。

b. 評価結果

(a) 配管

没水時の外圧に対する健全性評価の例を表 9-20 に示す。なお, 弁は配管 に比べ肉厚であるため, 配管の評価に包含される。配管の製造最小厚さか ら外圧に対する許容圧力を算出し, 没水時の外圧に対する健全性を確認し た。

#### (b) ケーブル

ケーブルはシース(難燃性特殊耐熱ビニル)で覆った構造であり,非常 時の環境条件(静水圧換算:18m以上)を考慮した設計であるため,没水時 の外圧により機能喪失しない。また,海水に対する影響については,海水 による浸水試験(試験時間:200時間)を実施し,外観及び絶縁抵抗に影響 がないことを確認している。なお,没水するケーブルについては溢水によ り機能を喪失する接続部(端子部)がないことを確認した。

表 9-20 タービン建物に敷設される配管の外圧に対する許容圧力									
系統	原子炉補機 海水系配管	原子炉補機         高圧炉心スプ         非常用ディー           海水系配管         レイ補機海水         ゼル発電機系           系配管         配管		非常用ガス 処理系配管					
外径 Do[mm]	711.2	267.4	60.5	406.4					
板厚 t[mm]	9.5	9.3	5.5	9.5					
製造上最小厚さ ts[mm]	8.5	8.13	4.81	8.31					
付録材料図 表 Part7 により 定まる値 B	9.7	55	110	34					
材質	質 SM41C		STPT42	STPT42					
水頭圧[MPa]	0.06	0.06	0.06	0.06					
許容圧力[MPa] ^{**} 0.15		2.22	11.6	0.92					
許容圧力>水頭圧 判定	0	0	0	0					

※「発電用原子力設備規格 設計・建設規格 (JSME S NC1-2005/2007)」

「PPC-3411 直管(2)外圧を受ける直管」を準用した以下の式を用い、製造上の最小厚さから 許容圧力を算定した値

$$t_s = \frac{3P_e D_0}{4B}$$

Pe:許容圧力[MPa] ts:製造上の最小厚さ[mm] Do:管の外径[mm] B:付録材料図 表 Part7により定まる値

#### 9条--別添1-9-21

図2 タービン建物(耐震Sクラスの設備を設置するエリア)に設置される耐 震Sクラスの設備の水圧による損傷に対する評価及びケーブルの電気接続部 に対する評価

## 5条-別添1-添付28-5

2.3 溢水影響評価の対象外とする理由

(1)「①溢水により機能を喪失しない」による対象外

溢水により機能を喪失しないとした防護対象設備について,没水時の健全性を 評価した。表 2-4 に示すように,各建物の最大階高(当該床から上階床までの階 高さのうち最大となる値)に相当する水頭圧を外圧条件とした。

表 2-4 各建物の外圧条件

建物	水頭圧[m]	最大階高		
原子炉建物	8	3 階~4 階		
廃棄物処理建物	7	2 階~3 階		
取水槽	10	床~防水壁天端		

a. 配管及び弁

配管及び弁の没水時の外圧に対する健全性評価の例を表 2-5 に示す。 「発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007」に基づ き算出した機器の外圧に対する許容圧力が溢水水位による外圧を上回るため, 健全性を維持できる。なお,弁は配管に比べ肉厚であるため,配管の評価に包 含される。

表 2-5 配管の没水時の外圧による影響評価結果(代表例)

建物	原子炉建物	廃棄物処理建物	取水槽							
代表配管**1	700A-RSW-7A	200A-RCW-61A	700A-RSW-2A							
外径 Do[mm]	711.2	216.3	711.2							
板厚 t[mm]	9.5	8.2	9.5							
製造上最小厚さ ts[mm]	8.5	7.17	8.5							
付録材料図 表 Part7 に より定まる値 B	15.9	89.5	16.6							
材質	SM41C	STPT42	SM41C							
許容圧力[MPa] ^{*2}	0.25	3.95	0.26							
水頭圧[MPa]	0.08	0.07	0.10							
許容圧力>水頭圧判定	正判定 〇 〇									
※1 評価を実施するにあたり,各建物 る配管を代表として選定した。な:	の対象配管のうち, お,評価では内圧は	保守的に外径(Do)/板) は大気圧とした。	享(t)が最大とな							
※2 「発電用原子力設備規格 設計・建 圧を受ける直管」を準用した以下の	設規格(JSME S NC1 の式を用い,製造上	-2005/2007) PPC-341 :最小厚さから許容圧力	1 直管 (2)外 」を算定した値							
$t_S = \frac{3P_e D_0}{4B}$	Pe:許容圧力 [MPa ts:製造上の最小理 Do:管の外径 [mm B:付録材料図 表	a] 厚さ[mm] 1] Part7 により定まる値								
9 条-別添 1-添付 1-24										
図3 取水槽循環水ポンプエリン	アに設置され	る耐震Sクラス	の設備の水圧に							
よる損	よる損傷に対する評価									

## 5条-別添1-添付28-6

1号炉取水槽流路縮小工について

#### 1. はじめに

1号炉取水槽流路縮小工(以下,「流路縮小工」と記す)は,1号炉取水路を遡上 する津波に対して,1号炉取水槽から敷地への津波の到達,流入を防止するために設 置することから,2号炉申請の中で津波防護施設として整理している。流路縮小工の 設置位置を図1に示す。



図1 流路縮小工設置位置

- 2. 流路縮小工設置による1号炉への影響について
- (1) 流路縮小工の構造概要
- a. 流路縮小工の構造(図2参照)
  - (a) 既設部

流路縮小工の既設部は、鋼製の取水管とする。

(b)新設部

流路縮小工の新設部は,開口率5割程度とした縮小板,取付板及び固定ボル トで構成する鋼製の構造物とし,取水管端部に設置する。

新設部材の設置は、取水管フランジの両側に取り付けた縮小板と取付板を固 定ボルトで固定する。



図2 1号炉取水槽流路縮小工の構造例

5条-別添1-添付29-2

- (2) 流路縮小工設置による1号炉取水機能への影響について
  - a.1号炉取水機能への影響について

1号炉に貯蔵中の使用済燃料の冷却は十分進んでおり,崩壊熱による発熱量は 小さいため,使用済燃料プールの冷却が停止しても,その水温の上昇は緩やかな 状況であるため,ここでは流路縮小工設置による原子炉補機海水ポンプへの取水 性について評価した。

(a) 原子炉補機海水ポンプの取水性評価

流路縮小工設置後は、1号炉循環水ポンプは全台停止する運用とすることか ら、表1に示すとおり、流速が小さくなり、損失水頭は低下するため、流路縮 小工設置により取水槽内の水位が低下することはなく、原子炉補機海水ポンプ の取水機能への影響はない。

流路縮小工	循環水ポンプ状態	流量(m³/s)	水路断面積(m²)	流速(m/s)					
設置前	ポンプ運転時	28	約 17.63	約 1.59					
設置後	ポンプ停止時	1	約 8.81	約 0.11					

表1 流路縮小工設置による1号炉取水機能への影響

- (b) 海生生物の付着による閉塞の可能性
  - 1号炉取水槽の流路縮小工の開口部は,1箇所あたり直径約2.4m程度であり, これまでの取水設備の点検結果から,海生生物の付着代は最大で5cm程度であ ることを確認していることから,海生生物の付着による閉塞の可能性はない。 なお,流路縮小工設置後においても定期的な点検と清掃を行う。 以上より,海生生物による流路縮小工の閉塞の可能性はない。
- (3) 原子炉施設保安規定への影響

流路縮小工設置による1号炉における保安管理に関する事項として,原子炉施設 保安規定(以下「保安規定」という。)上の影響について以下のとおりまとめた。 a.1号炉の保安確保における該当条文

- (a) 第143 条(使用済燃料プールの水位および水温)
  - ・使用済燃料プールの水位がオーバーフロー水位付近にあること
  - ・使用済燃料プールの水温が65℃以下
- b. 保安規定上直接影響がある条文

上記 a.の該当条文の結果から流路縮小工設置に伴い関連する条文を以下に示す。

(a) 第143 条(使用済燃料プールの水位および水温)

・使用済燃料プールの冷却水として,原子炉補機冷却系を使用しており,流 路縮小工の設置により通水面積が小さくなるため,関連する。

c. 保安規定上の影響

(2)の結果から流路縮小工設置後においても,海水系(原子炉補機冷却海水系) に必要な流量は確保されていることから,保安規定上要求される事項への影響が ないことを確認した。

3. 流路縮小工の保守管理について

流路縮小工については,津波防護施設としての機能及び1 号炉取水機能を維持していくため,別途定める保全計画に基づき,適切に管理していく。

具体的には,流路縮小工の縮小板・取付板は腐食代を確保するとともに,縮小板・ 取付板・固定ボルトは腐食防止のため塗装を行う。固定ボルト及び固定ボルト近傍 部材の腐食による固定ボルトの脱落を防止するため,固定ボルトの径を大きくする, 本数を増やす等の対応を実施することとし,対応方法は詳細設計段階において決定 する。また,潜水士により取水槽内の定期的な点検・清掃を行い,縮小板や固定ボ ルト等の流路縮小工の各部位を確認する。固定ボルトに塗装の劣化や腐食等の傾向 が確認された場合には,当該ボルトを交換する。

4. 流路縮小工(取水槽)の開口面積について

流路縮小工は、1号炉取水路から敷地への津波の流入を防止することに加え、1 号炉の補機冷却海水ポンプの取水機能に影響を与えないことが求められる。

管路計算の結果を踏まえて, 流路縮小工の開口面積を4.4m²とする構造としている。 (2) a. (a) に示す通り, 循環水ポンプを停止運用とすることにより, 原子炉 補機海水ポンプの必要流量に対し, 十分な開口面積を確保している。

5. 流路縮小工部の異常の検知性について

流路縮小工部が閉塞する可能性はないと評価しているものの,仮に閉塞を仮定し た場合の検知性について検討する。

流路縮小工が閉塞した場合,取水槽水位が低下傾向を示すため,「取水槽水位低」 の警報が中央制御室において発報することにより検知可能であり,保安規定に紐づ くQMS文書「設備別運転要領書 別冊 警報発生時の措置」に基づき対応が可能 である。 6. まとめ

流路縮小工を設置することによる影響について、以下のとおり確認した。

(1) 1号炉取水機能への影響

1号炉に貯蔵中の使用済燃料の冷却は十分進んでおり,崩壊熱による発熱量は小 さいため,使用済燃料プールの冷却が停止しても,その水温の上昇は緩やかな状況 であることを踏まえ,流路縮小工の設置による取水機能への影響を以下のとおり確 認した。

- a. 非常用海水系の取水機能への影響はない。
- b. 海生生物による流路縮小工部の閉塞の可能性はない。
- (2) 流路縮小工設置後においても,原子炉補機冷却海水系に必要な流量は確保されていることから,保安規定上要求される事項への影響がないことを確認した。
- (3) 流路縮小工については、津波防護施設としての機能及び1 号炉取水機能を維持していくため、別途定める保全計画に基づき、適切に管理していく。
- (4) 流路縮小工の開口面積(4.4m²) は,原子炉補機冷却海水ポンプの必要流量から 十分な開口面積である。
- (5)流路縮小工部が閉塞する可能性はないと評価しているものの,仮に閉塞を仮定 した場合の検知性について評価し,中央制御室で異常を検知(警報の確認)し た後,保安規定に紐づくQMS文書「設備別運転要領書 別冊 警報発生時の 措置」に基づき対応が可能であることを確認した。

#### 1号炉取水槽流路縮小工の構造成立性

1号炉取水槽流路縮小工(以下,「流路縮小工」と記す)は津波防護施設であるこ とから,基準地震動Ssによる地震荷重や基準津波による津波荷重に対し,構成する 部材がおおむね弾性域内に収まるよう設計する。

ここでは、地震荷重や流水圧等の津波荷重により流路縮小工を構成する部材が曲げ やせん断等により損傷する以外に、津波時流速が作用した場合の構造成立性に関する 既往知見について整理するとともに、それを踏まえ、流路縮小工の各部位が損傷して 要求機能を喪失しうる事象(例えば、津波による作用水圧や縮小部の流速により躯体 安定性が確保できない等)を整理する。これらの損傷モードの発生可能性を評価し、 設計・施工上の配慮事項を整理した上で、構造成立性を示す。

(1) 津波時流速が作用した場合の構造成立性に関する既往知見の整理

流路縮小工の各部位が損傷して要求機能を喪失しうる事象の抽出にあたり、津波 時流速が作用した場合の構造成立性に関する既往知見を整理した結果を以下に示 す。

- ・津波時には、流路縮小工による開口部を高流速の津波が通過する。「水門鉄管技術基準(水圧鉄管・鉄鋼構造物編)平成29年版((社)水門鉄管協会)」によれば、水圧鉄管の固定台(アンカーブロック)の設計において、考慮すべき外力として、管の重量(管傾斜による推力)や湾曲部に作用する遠心力等に加え、管内流水の摩擦による推力が挙げられる。
- ・津波時には、流路縮小工による開口部を高流速の津波が通過する。「建設省河 川砂防技術基準(案)同解説 設計編[I]」によれば、ダムの放水設備につい て、流水に接する構造物の表面は、流水による洗掘や摩耗の軽減に配慮して設 計するとともに、流速が大きい場合には、渦や流水による摩耗や浸食の対策を 考える必要があるとしている。島根2号炉の津波時に流入する海水については、 参考資料に示すとおり、輪谷湾の底質は岩及び砂礫で構成されており、島根2 号炉の基準津波における砂移動の検討結果から取水口及び取水槽付近の砂の 最大堆積厚さが小さく、砂の流入は少ないことから、海水に含まれる砂等によ る影響は小さいと判断する。
- ・流路縮小工は、流路断面が縮小されることから、流路縮小工前面と流路縮小工
   による開口部の間で津波流速の変化が生じる。「ダム・堰施設技術基準(案)
   平成23年版((社)ダム・堰施設技術協会)」によれば、高流速の水が流れ

#### 5条-別添1-添付29-6

る放流管内では,管路の湾曲や壁面の凹凸によって局所的に圧力降下が生じ, その下流は負圧となって空洞を生じ,水の流れが圧力の高いところに移動する と水蒸気の気泡は急激に圧潰され壁面に著しい損傷を与えるとしている。

- (2) 要求機能を喪失しうる事象の抽出
- 前述を踏まえ,流路縮小工各部位が損傷により要求機能を喪失しうる事象を抽出 し、これに対する設計・施工上の配慮を整理した。表1~表3に整理結果を示す。
  - 表1 地震荷重や津波荷重により要求機能を喪失しうる事象と 設計・施工上の配慮事項(新設の鋼製部材)



表2 地震荷重や津波荷重により要求機能を喪失しうる事象と 設計・施工上の配慮事項(取水管)



## 5条-別添1-添付29-7

# 表3 津波時流速により要求機能を喪失しうる事象と

## 設計・施工上の配慮事項(流路縮小工全体)

設備の名称	要求機能を喪失しうる事象	設計・施工上の配慮	照査
	<ul> <li>・急縮部・急拡部で発生する砂や貝を含んだ渦や流水による 摩耗(エロージョン摩耗※1)によって形状に変化が生じ、津波 防護機能を喪失する。</li> <li>         ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>	・「建設省河川砂防技術基準(案)同解説設計編[1]」によれば、 渦や流水による摩耗は経年劣化による損傷である。常時の流路縮小 工による開口部の流速が0.11m/sと遅いこと、前述のとおり流水に砂 がほとんど含まれないこと及び貝については定期的な清掃により貝を除 去する保守管理方針とすることから、摩耗による流路縮小工の健全 性々の影響は小さいと判断する。 ・津波は短期的な事象であるが、安全側に以下の配慮を行う。「水門 鉄管技術基準(水圧鉄管・鉄鋼構造物編)平成29年版 ((社)水門鉄管協会)しによれば、管の摩耗による板厚の減少に 対して余裕厚を確保する方法が用いられていることから、新設の鋼製 部材に対して適切な余裕厚を詳細設計段階で設定する。	_
流路縮小工 全体	・急縮部に高速な津波が流れ込むことよる局部的な圧力降 下によって、その下流は負圧となって空洞を生じ(キャビテー ション)、圧力が高まる急抗部付近に移動すると、水蒸気 の気泡は急激に圧潰され、壁面に損傷を与えることにより、 形状に変化が生じ、流路縮小性能を喪失する(ビッチング損 傷)。	・「ダム・堰施設技術基準(案)平成23年版((社)ダム・堰施設 技術協会)」によれば、円形断面で出口面積が3~4m ² 未満の放 流管を「小容量放流管」とし、小断面で管内流速が10m/sを超える 場合は圧力降下を生じる可能性があるとしている。一方で、流路縮 小工は円形断面で出口面積が4.5m ² 程度を確保し、管路解析の 結果から1号炉取水槽における津波時の流速が最大でも9.4m/sで あることから、圧力降下が生じる可能性は小さく、キャビテーションによ る流路縮小工の健全性への影響は小さいと判断する。	_

※1:Iロージョン摩耗とは、液体粒子・固体粒子あるいは液体の流れが角度をなして物体表面に衝突することで生じる摩耗である、

- (3) 流路縮小工全体の構造成立性の見通しの確認
- a. 概要及び評価方針

流路縮小工全体の構造成立性の見通しについて以下に示す。

流路縮小工は、津波防護施設であり、津波時及び地震時において開口面積を確保する必要があるため、部材が降伏しないことが求められる。流路縮小工は開口率5割程度とした縮小板、取付板及び固定ボルトで構成する鋼製部材を取水管端部に設置し、取水管は取水槽北側壁を貫通して設置していることから、取水槽北側壁が間接支持部材となり、部材が終局状態に至らないことが求められる。

なお,流路縮小工は鋼材で構成することから,部材の許容限界は「鋼構造設計 規準-許容応力度設計法-((社)日本建築学会,2005 改定)」に基づき設定し, 取水槽北側壁は鉄筋コンクリート部材で構成されていることから,部材の許容限 界は「原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル(土木 学会,2005)」に基づき設定する。

以上のことから,構造成立性の見通しの確認における,各部位に必要な性能に 係る許容限界は,表4に示すとおり設定する。



流路縮小工拡大イメージ図図1 流路縮小工及び流路縮小工を間接支持する部材

## 5条-別添1-添付29-9

表4 構造成立性の見通しの確認における要求機能に応じた許容限界

	要求性能に対する		谪田其淮		
ē平1叫×J3Kē文11用( 亩P1⊥/ )	目標性能	曲げ	せん断	引張	適用基準
流路縮小工(縮小板)	部材が降伏しない	許容応力度	許容応力度	-	鋼構造設計規準
流路縮小工(取水管)	部材が降伏しない	許容応力度	許容応力度	許容応力度	鋼構造設計規準

## b. 縮小板のモデル化方針

流路縮小工の縮小板は、図2に示すとおり、取水管端部のフランジを挟んで取 付板とボルト接合し、鋼製部材が地震荷重や津波荷重により一体的に応答するモ ードとなることから、有孔円の固定板としてモデル化する。



図2 縮小板のモデル化方針

c. 荷重組合せ

流路縮小工の設計においては,以下のとおり,常時荷重,地震荷重及び津波荷 重を適切に組合せて設計を行う。

①地震時:常時荷重+地震荷重

②津波時:常時荷重+津波荷重

③重畳時:常時荷重+津波荷重+余震荷重

また,設計に当たっては,その他自然現象との組合せを適切に考慮する(添付 資料 20 参照)。

d. 荷重条件

流路縮小工の設計において考慮する荷重は、以下のように設定する。

(a) 常時荷重

自重を考慮する。

(b) 地震荷重

基準地震動Ssを考慮する。なお,構造成立性の見通しの確認においては, 基準地震動Ssのうち,流路縮小工の水平方向1次固有周期における加速度 応答スペクトルが最も大きい基準地震動Ss-Dを用いる。

(c) 津波荷重

津波時の静水圧,流水圧及び流水の摩擦による推力を考慮する。

静水圧は、津波時及び重畳時において、以下の管路計算により算定された 流路縮小工の上流側と下流側の水位差から算定し、上流側と下流側の水位差 が最大となる時の水位差から求める。なお、重畳時は管路計算における流路 縮小工上流側の水位が最大となる時の水位差からも算定する。

- ・津波時(対象:日本海東縁部に想定される地震による津波(基準津波1,
   2,3,5,及び6))
- 流路縮小工上流側EL.+7.51m,流路縮小工下流側EL.-0.75m
- ・重畳時(対象:海域活断層から想定される地震による津波(基準津波4)) 流路縮小工上流側EL.+1.64m,流路縮小工下流側EL.+1.63m

流水圧は,流路縮小工が水中の部材で構成されることから,「港湾の施設の技術上の基準・同解説(日本港湾協会)」に基づく評価式により算定する。 なお,津波の流速は,管路計算による流路縮小工地点の最大流速に基づき保 守的に,津波時は9.5m/s,重畳時は5.5m/sと設定する。

流水の摩擦による推力は、「水門鉄管技術基準(水圧鉄管・鉄鋼構造物編) 平成29年版((社)水門鉄管協会)」に基づく評価式により算定する。

(d) 余震荷重

海域活断層から想定される地震による津波荷重に組み合わせる余震荷重 として,弾性設計用地震動Sdによる荷重を設定する(添付資料22参照)。

- e. 評価方法
  - (a) 地震時

地震時の検討では,基準地震動Ssに対する地震応答解析を実施し,部材の発生応力度が許容限界を超えないことを確認する。

地震時の縮小板に作用する水平方向荷重イメージは図3に示すとおりで あり、動水圧は以下のWestergaard 式から算定する。

•動水圧 (Westergaard 式)

(Westergaard 式)  $p_w = \frac{7}{8} \times c \times \gamma_w \times \sqrt{(h \times y)} \times Kh$ ここに,  $p_w$  : 動水圧(tf/m²) Kh : 水平震度 c : 補正係数 L/h < 1.5 or Bch : c=L/(1.5h)  $L/h \ge 1.5 \text{ or } Bch : c=1.0$ L : 水路幅(m)  $\gamma_w$  : 内水の単位体積重量(tf/m³) h : 水深(m) y : 水面から動水圧を求める点までの深さ(m)



図3 地震時の流路縮小工の縮小板に作用する水平方向荷重イメージ

(b) 津波時

津波時の検討では,入力津波による津波荷重を作用させ,部材の発生応力 度が許容限界を超えないことを確認する。

津波時の縮小板に作用する水平方向荷重イメージは図4に示すとおりで あり、流水圧及び流水の摩擦による推力は下式から算定する。

・流体力

$$F_D = \frac{1}{2} C_D \rho_0 A U^2$$

- F_D:流体力(kN), C_D:抗力係数(保守的に最大値 2.01 とする)
- ρ。: 水の密度(海水 1.03t/m³)
- A:流れの方向の物体の投影面積(m²),U:流速(m/s)

・推力

$$P = \frac{2fQ^2}{g\pi D^3}L$$

- P:流水の摩擦による推力(kN)
- f:流水の摩擦抵抗係数 (=0.2D^{-1/3})
- L:貫通部長さ(m), Q:流量(m³/s), D:貫通部直径(m)



図4 津波時の流路縮小工の縮小板に作用する水平方向荷重イメージ

(c) 重畳時

重畳時の検討では,余震荷重及び津波荷重を作用させ,部材の発生応力度が 許容限界を超えないことを確認する。

重畳時の縮小板に作用する水平方向荷重イメージは図5に示すとおりであ り、構造成立性の見通しの確認では、流路縮小工に作用する荷重が大きい、管 路計算による流路縮小工上流側の水位が最大となる時の静水圧及び動水圧を 考慮する。



図5 重畳時の流路縮小工の縮小板に作用する水平方向荷重イメージ

(d) 作用荷重を踏まえた構造成立性の見通しの確認における検討ケースの絞り込み

流路縮小工の縮小板に作用する地震時,津波時及び重畳時の荷重について, 水平方向の荷重を比較すると,表5に示すとおり,津波時の作用荷重が大きい ことから,構造成立性の見通しの確認においては,津波時について評価を行う とともに,南北方向を評価対象断面に設定する。

表5 地震時,津波時及び重畳時における流路縮小工の縮小板に作用する 水平方向荷重比較

		地震時						津波時			重畳時					
	流路縮小工 縮小板	=12=+		荷重内訳		荷香	荷重内訳		方舌	古香 シーナ		荷重内訳			荷香	荷重
	概算重量	震度	水平 慣性力	動水圧	静水圧	合計	静水圧	流水庄*	合計	震度	水平 慣性力	動水圧	静水圧	流水庄*	何里 合計	評価
	25kN	Kh= 0.71	18 kN	634 kN	34 kN	686 kN	609 kN	682 kN	1291 kN	Kh= 0.36	9 kN	391 kN	1 kN	229 kN	630 kN	重畳時 < 地震時 < 津波時
										.t-						

## f. 評価式

評価式を以下に示す。

- (a) 流路縮小工(縮小板)
  - ・曲げに対する評価式

縮小板に生じる曲げ応力度を下式から算定し,表6に示す鋼材の短期許容 応力度以下であることを確認する。

$$\sigma = \frac{M}{Z}$$

ここに, σ:曲げ応力度

M:曲げモーメント

Z:断面係数

表6 曲げに対する短期許容応力度

使用材料	短期許容応力度 (N/mm ² )		
	曲げ		
SS400(板厚t≦40mm)	235		

・せん断に対する評価式

縮小板に生じるせん断応力度を下式から算定し,表7に示す短期許容応力度以 下であることを確認する。

$$\tau = \frac{Q}{A}$$

ここに, τ: せん断応力度

Q: せん断力

A:断面積

表7 せん断に対する短期許容応力度

使用材料	短期許容応力度 (N/mm ² )		
	せん断		
SS400(板厚t≤40mm)	135		

(b) 流路縮小工(取水管)

・引張に対する評価式

取水管に生じる引張応力度を下式から算定し,表8に示す短期許容応力度 以下であることを確認する。

$$\sigma_t = \frac{T}{A}$$

ここに, σt:引張応力度

T:引張力

A:断面積

表8 引張に対する短期許容応力度

使用材料	短期許容応力度 (N/mm ² )		
	引張		
SS400(板厚t≦40mm)	235		

g. 評価結果

評価結果を表9に示す。

流路縮小工は,地震荷重より大きい津波荷重に対して十分な安定性を有してお り,構造成立性の見通しがあることを確認した。

なお,本評価結果は暫定条件を用いた評価結果であることから,正式条件を用 いた評価結果は詳細設計段階で示す。

評価対象 部位	仕様(案)	照查結果					
		照査項目	最大発生値 (N/mm²)	許容値 (N/mm²)	照査値(発生値)/ (許容値)	判定 (照査値<1.00)	
縮小板	SS400 (板厚 t=40mm)	曲げ	137	235	0.59	ОК	
		せん断	3	135	0.03	ок	
取水管	SS400 (板厚 t=24mm)	引張	5	235	0.03	ОК	

表9 流路縮小工に関する評価結果(津波時)

(参考1) 基準津波に伴う取水槽及び取水口周辺の砂移動評価

参考に,島根2号炉における基準津波に伴う取水槽及び取水口周辺の砂移動評価に ついて以下に示す。



・基準津波を評価対象として、砂移動の数値シミュレーションを実施した結果のうち、取水口位置における最大堆積厚さを下表に示す。								
甘油油油	神道	防波堤 の有無	砂移動モデル	浮遊砂 上限濃度	取水口堆積	層厚さ(m)※1	評価結	果図
李华/丰/队	<i>山</i> 又,胡平				2亏炉取水口 (東)	2亏炉取水口 (西)	堆積度良 分布図等	時刻歴   波形
			恭井(また)(1000)	1%	0.00	0.00	P9	P25
		有	膝弁はか(1996)	5%	0.00	0.00	P9	P26
基準津波	地方自治体独自の波源モデルに基づく検討		高橋ほか(1999)	1%	0.02[0.020]	0.02[0.011]	P10	P27
1	(鳥取県(2012))		藤井(まわ)(1009)	1%	0.00	0.00	P11	P28
		無	腺开はの(1990)	5%	0.00	0.00	P11	P29
			高橋ほか(1999)	1%	0.00	0.00	P12	P30
the add table and			藤井(まわ)(1009)	1%	0.00	0.00	P13	P31
基 华 洋 波 2	地震発生領域の運動を考慮した検討 (断層長さ350km)	有	膝开はか(1990)	5%	0.00	0.00	P13	P32
-	(B) B DC OOK		高橋ほか(1999)	1%	0.01	0.00	P14	P33
甘油油油		有	藤井ほか(1998)	1%	0.00	0.00	P15	P34
基準津波	・地震発生領域の運動を考慮した検討 (断層長さ350km)			5%	0.00	0.00	P15	P35
Ŭ			高橋ほか(1999)	1%	0.00	0.00	P16	P36
		有	藤井ほか(1998)	1%	0.00	0.00	P17	P37
				5%	0.00	0.00	P17	P38
基準津波	土木学会に基づく検討		高橋ほか(1999)	1%	0.00	0.00	P18	P39
4	(F-Ⅲ~F-V 断層)		藤井(まか(1008)	1%	0.00	0.00	P19	P40
		無	膝弁はか(1998)	5%	0.00	0.00	P19	P41
			高橋ほか(1999)	1%	0.00	0.00	P20	P42
甘油油油	地電発生のはのはまたまでしたかけ	無	藤井(まか(1009)	1%	0.00	0.00	P21	P43
基华洋波 5	地辰先生限域の運動を考慮しに快討 (断層長さ350km)		膝开はか(1990)	5%	0.00	0.00	P21	P44
			高橋ほか(1999)	1%	0.00	0.00	P22	P45
甘油油油	世界改大体はの注動する虎した検討	無	藤井ほか(1998)	1%	0.00	0.00	P23	P46
埜竿洋波   6	地展光土限線の運動を考慮しに快討 (断層長さ350km)			5%	0.00	0.00	P23	P47
L			高橋ほか(1999)	1%	0.00	0.00	P24	P48
					※1 計算結	果は小数第3位*	で切り上げっ	て示す。

・取水口位置における最大堆積厚さは、基準津波1での高橋ほか(1999)の浮遊砂上限濃度1%の2号炉取水口(東)において0.02mであり、 海底面から取水口呑口下端までの高さ(5.50m)※2に対して十分に小さく、取水への影響はないことを確認した。

※2 海底面: T.P.-18.00m, 取水口呑口下端: T.P.-12.50m

基準津波を評価対象として, 高橋ほか(1999)の手法に基づき数値シミュレーションを実施し, 取水槽における砂の堆積厚さを算定た。							
波源	上昇側・下降側	防波堤の 有無	ポンプ 運転状況	砂移動モデル	浮遊砂 上限濃度	取水槽における 砂の堆積厚さ(m)*1	評価結果図時刻歷波形
		友	運転			0.02[0.0161]	P53
	上見側	H	停止			0.00	P53
	工开网	400	運転			0.01	P54
其淮津波1		705	停止			0.00	P54
金牛/牛/(人)	下降側	*	運転			0.02[0.0162]	P55
		1	停止			0.00	P55
		無	運転	高橋ほか (1999)	1%	0.01	P56
			停止			0.00	P56
其進津波の	上昇側	*	運転			0.01	P57
<b>圣牛</b> /丰/仪Z		11	停止			0.00	P57
其進速波な	下降側	=	運転			0.01	P58
盔牛/年/队3		11	停止			0.00	P58
	下降側	+	運転			0.00	P59
其進法法		11	停止			0.00	P59
盔竿/手/仪4		ATT.	運転			0.00	P60
		兼	停止			0.00	P60
甘油油油店	上昇側	Arr.	運転			0.00	P61
▲ 华洋波5		無	停止			0.00	P61
基準津波6	下降側	無	運転			0.00	P62
			1 停止		 ※1 計	U.00 ・算結果は小数第3位でも	<u>P62</u> 初り上げて示す。

・取水槽における最大堆積厚さは、基準津波1(水位下降側)で0.02mとなり、取水槽底面から補機海水ポンプ下端までの高さ(0.50m) ※2に対して十分に小さく、取水への影響はないことを確認した。

※2 取水槽底面高さ: T.P.-9.80m, 補機海水ポンプ下端: T.P.-9.30m

(参考2)港湾基準における流水圧の適用性について

流路縮小工に作用する津波による流水圧は,「港湾の施設の技術上の基準・同解説 (日本港湾協会)」に基づく評価式により算定する。

同基準によると、「水中又は水面付近の部材及び施設に作用する流れによる力は、 流速の2乗に比例する力であり、流れの方向に作用する抗力がある」としている。ま た、「流れによる抗力は、粘性による表面抵抗と圧力による形状抵抗の和として表さ れ、抗力係数は物体の形状、粗度、流れの方向、レイノルズ数などによって異なり、 レイノルズ数が 10³程度より大きい場合は、物体の形状に応じて 0.2~2.01 の値を標 準値として用いることができる」としている。

流路縮小工は水中に設置する構造物であること,管路計算による流路縮小工地点の 最大流速発生時における縮小板付近のレイノルズ数が10⁶~10⁷のオーダーであること から,流路縮小工は同基準における流水圧の適用性があると判断する。

なお,流水圧の算定に当たっては,保守的に抗力係数の最大値である 2.01 を採用 する。 1号炉取水管端部への流路縮小工設置による入力津波高さ低減効果について

1.1号炉取水施設の概要

1号炉取水管端部への流路縮小工の設置に伴い,取水槽内の水位を確認する。1号 炉取水施設の平面図,断面図及び管路解析モデルについては添付資料6に示す。

#### 2. 計算条件

計算条件については、添付資料6のとおりとする。

3. 計算結果

1号炉取水管端部への流路縮小工設置を考慮した管路計算の結果,最大の入力津波 高さに外郭防護の裕度評価において参照する高さである0.64mを考慮しても,1号炉 取水槽の天端高さであるEL.+8.8mを越えないことを確認した(表1参照)。

また,1号炉取水槽の浸水範囲を図1に,最大水位上昇量を示したケースの時刻歴 波形を図2に示す。なお,対策前の取水槽の時刻歴波形を図3に示す。

波源			貝付着 有無	循環水ポン プ運転状況	1 号炉取水槽の入力津波高さ EL. (m)		
		防波堤 有無			対策後**	(参考) 対策前	
					取水槽	取水槽	
	基準津波       日本       東       基準津波	有り	有り	停止	+6.3	+7.2	
			無し	停止	+6.4	+7.7	
日		<u>Ашт.</u> 1	有り	停止	+6.8	+8.2	
本海		無し	無し	停止	+7.0	+9.2	
東縁		有り	有り	停止	+6.0	+6.8	
部	2		無し	停止	+6.1	+7.3	
	基準津波	^皮 無し	有り	停止	+6.4	+7.6	
5	5		無し	停止	+6.7	+8.1	
		方の	有り	停止	+2.7[+2.61]	+3.0	
	基準津波	有り	無し	停止	+2.7[+2.68]	+3.0	
汯	4	無し	有り	停止	+2.5	+3.4	
海域活断層			無し	停止	+2.7[+2.67]	+3.8	
		有り	有り	停止	+2.5	+2.6	
	海域沽断層 上昇側最大		無し	停止	+2.5	+2.6	
	となるケー ス	無し	有り	停止	+2.5	+3.2	
				無し	停止	+2.6	+3.5

表1 基準津波による取水槽水位の結果

※下線部が最大水位上昇量の値



図1 1号炉取水槽流路縮小工による浸水範囲**

[※] 漸拡ダクト部,除じん機系+ポンプ室の最大水位上昇量を図に示す。(基準津波1 防波堤無し 貝無し)





1号炉取水槽に設置する流路縮小工に関する水理模型実験の実施について

1号炉取水槽に設置する流路縮小工について,生じる損失は火力・原子力発電所土 木構造物の設計(電力土木技術協会),作用する流水圧は港湾の施設の技術上の基準・ 同解説(日本港湾協会)に基づき設定しており,当該損失及び流水圧の妥当性を詳細 設計段階において水理模型実験により確認する。

模型実験における流れの状態は、津波による最大水位上昇時は満管状態の流れによ るものであることから、実験においても満管状態の流れを想定する。

模型実験の相似則はフルード則を用い,縮尺の詳細については,実験装置の性能等 を踏まえて設定する。模型実験の概要図を図1,実験条件の概要を表1に示す。



図1 模型実験概要図

実験条件	内容		
計 게 正日	・損失水頭		
司 侧填口	・流水圧		
広わ世能	管路流れ		
の応復しれた態	(満管状態の流れ)		
相似則	フルード則		
模型縮尺	1/10 程度		

表1 実験条件の概要

1号炉取水槽内へ堰を設置した場合の入力津波高さ低減効果について

#### 1. 検討概要

1号炉取水槽への流路縮小工は,取水管端部に設置することとするが,当初選定していた取水槽内に堰を設置した場合の入力津波高さ低減効果を確認する。1号炉取水施設の平面図を図1,断面図を図2,管路計算モデルを図3に示す。

2. 計算条件

計算条件については、添付資料6のとおりとする。ただし、1号取水槽内へ流路縮 小工を設置した場合の各損失は表1の損失水頭表のとおりとする。1号取水槽内の流 路縮小工による損失を表2及び図4に示す。

3. 計算結果

1号炉取水槽内へ堰を設置した場合を考慮した管路計算の結果,最大の入力津波高 さに外郭防護の裕度評価において参照する高さである0.64mを考慮しても,1号炉取 水槽の天端高さであるEL.+8.8mを越えないことを確認した。(表1参照)1号炉 取水槽の浸水範囲を図5に,最大水位上昇量を示したケースの時刻歴波形を図6に示 す。なお,対策前の取水槽の時刻歴波形を図7に示す。

4. 結果の考察

1号取水槽へ堰を設置によることにより、図8に示すとおり、漸拡ダクト部の水位 は堰を設置しない場合に比較し、一時的に水位が上昇し、その影響により、図9に示 すとおり、取水槽への津波の流入量は減少することを確認した。

除じん系+ポンプ室及び漸拡ダクト部の最大水位は,取水槽への津波の流入量の減 少及び堰の設置による損失から,堰を設置しない場合と比較し,低減することを確認 した。

以上より,1号炉取水槽へ堰を設置した場合において,漸拡ダクト部の取水槽ピットにて入力津波高さは許容値以下であり,閉止板等の対策工を設置する必要はないことを確認した。


図1 平面図(1号炉取水施設)



図2 断面図(1号炉取水施設)



図3 1号炉取水施設の管路計算モデル

#### 5条-別添1-添付29-25

場所	流量	種類	係数			断面積 (m ² )		損失水頭(m)※		モデル化
	(m 7 s)	流λ	F	15官 0500	2 5 0 500	1亏官 75.398	2 <u>亏官</u> 75.398	15官	<u>2亏官</u> 0.000	節占210
		急縮	F	0.480	0.480	12 566	12 566	0.000	0.000	筋占210
		7.5×Th		0.014	0.014					
取水口	0.500	摩擦	長さ(m)	2.600	2.600	12.566	12.566	0.000	0.000	節点2,10
			径深(m)	1.000	1.000					
		屈折	F	0.986	0.986	12.566	12.566	0.000	0.000	節点2,10
		急縮	F	0.140	0.140	8.814	8.814	0.000	0.000	節点2,10
			粗度係数(m ^{-1/3} ⋅s)	0.014	0.014					
		摩擦	長さ(m)	127.075	102.915	8.814	8.814	0.000	0.000	管路1~6 管路7~12
			径深(m)	0.838	0.838					
		曲がり	F _{b1}	0.135	0.135	8 8 1 4	8 8 1 4	0.000	0.000	節占311
		面 / 5 · 5	F _{b2}	0.279	0.319	0.014	0.014	0.000	0.000	L1,0,m1
		曲がり	F _{b1}	0.135	0.135	8 8 1 4	8 8 1 4	0 000	0 000	節占412
取水管	0.500		F _{b2}	0.571	0.366	0.014		0.000	0.000	AP 38( 4, 12
	0.000	曲がり	F _{b1}	0.135	0.135	8.814	8.814	0.000	0.000	節点5.13
			F _{b2}	0.412	0.379	0.014 0.01				
		曲がり	F _{b1}	0.135	0.135	8.814	8.814	0.000	0.000	節点6,14
			F _{b2}	0.413	0.413					
		曲がり	F _{b1}	0.135	0.135	8.814	8.814	0.000	0.000	節点7,15
			F _{b2}	0.413	0.413					
		急拡	F	0.543	0.543	8.814	8.814	0.000	0.000	節点8,16
		摩擦	粗度係数(m ^{-1/3} ·s)	0.015	0.015				0.000	
				9.100	9.100	41.667	41.667	0.000	0.000	節点8,16
				1.682	1.682					
		摩擦	粗度係数(m ^{// °} ·s)	1 700	1,700	50.000	50.000 0.000	0.000	0.000	節点8,16
				1.700	1.700	50.000		0.000		
		摩擦	1/1×(Ⅲ) 	0.015	0.015					
			相反示数(m ·s) 長さ(m)	1 000	1,000	31.250 31.250		31.250 0.000	0.000	節占816
			径梁(m)	0.805	0.805					
			# 度 係 数(m ^{-1/3} ⋅ c)	0.015	0.000					
		·500	<u>– – – – – – – – – – – – – – – – – – – </u>	2.000	2.000	33.333 33.333		33.333 0.000	0.000 節 5	節点8.16
取水槽	0.500		径深(m)	0.820	0.820					
			ピアの水平断面形状による係数	0.920	0.920					節点8,16
		ピヤー	 ピア直前の水路幅(m)	6.859	6.859	45.455	45.455	0.000	0.000	
				6.059	6.059					
			F _{ge}	0.280	0.280					節点8,16
		漸拡	F _{se}	0.204	0.204	33.500	33.500	0.000	0.000	
		漸縮	F	0.020	0.020	42.557	42.557	0.000	0.000	節点8,16
		急縮	F	0.100	0.100	32.237	32.237	0.000	0.000	節点8,16
		***	F _{ge}	0.200	0.200	20.027	20.027	0.000	0.000	第 占 0 1 0
		闸北	F _{se}	0.003	0.003	32.237	32.237	0.000	0.000	1,5元10
		流出	F	1.000	1.000	34.185	34.185	0.000	0.000	節点8,16
			上流水深(m) 注1)	4.360	4.360					
			下流水深(m) 注1)	4.351	4.351					
流路縮小エ	0.500	スルース   ゲート	ゲート開度(m)	1.200	1.200	9.540	9.540	0.009	0.009	節点19,20
			流出幅(m)	7.950	7.950					
			流量係数	0.006	0.006					
송計 0.009 0.009										

# 表1 1号炉取水施設の損失水頭表 (貝付着無し,循環水ポンプ停止時)

注1) 流路縮小工の堤頂を基準

※小数点以下4桁目を四捨五入で表示

	公式	係数	根拠
スルース ゲートに よる流量 公式	$Q = C_1 a B \sqrt{2gh_0}$	Q:流量(m3/s) $C_1:流量係数a:ゲートの開き(m)B:流出幅(m)h: 上流水深(m)$	土木学会水理 公式集(平成 11年版) p.254-255
		0	【四日の別】

表 2 損失水頭算定公式



 $C_1$ :流量係数 a:ゲートの開き(m) $h_0$ :上流水深(m)  $h_2$ :下流水深(m)

図4 スルースゲートによる流量係数(土木学会水理公式集(平成11年版) p. 255)^注

注) スルースゲートの流量公式 $Q = C_1 a B \sqrt{2gh_0}$  により,流量Q,ゲートの開きa,流出幅B及び上流水深 $h_0$ が既知の場合,流量係数 $C_1$ が決定される。さらに,図の関係から下流水深 $h_2$ が決定されるため,スルースゲートによる損失水頭 $\Delta h = h_0 - h_2$ が算定される。

波源				循環水ポン プ運転状況	1号炉取水槽の入力津波高さ EL. (m)				
		防波堤	貝付着				(参考) 対策前		
		有無	有無		漸拡ダ (東ルート) (池4)	[*] クト部 (西ルート) (池5)	除じん機系+ ポンプ室 (池3)	取水槽	
			有り	停止	+6.6	+6.6	+6.5	+7.2	
	甘滩油油	有り	無し	停止	+6.9	+6.9	+6.8	+7.7	
	率毕伴似 1		有り	停止	+7.4	+7.4	+7.3	+8.2	
本海市		無し	無し	停止	$\frac{+7.9}{[+7.86]}$	+7.8	$\frac{+7.7}{[+7.65]}$	+9.2	
禄	基準津波	<ul><li>準津波</li><li>2</li></ul>	有り	停止	+6.2	+6.2	+6.1	+6.8	
司印	2		無し	停止	+6.5	+6.4	+6.3	+7.3	
	基準津波	<b>4</b> 年1	有り	停止	+5.4	+5.3	+5.3	+7.6	
	5		無し	停止	+7.3	+7.2	+7.1	+8.1	
		右り	有り	停止	+2.7	+2.7	+2.7	+3.0	
	基準津波	有り	無し	停止	+2.7	+2.6	+2.6	+3.0	
沅	4	4年1	有り	停止	+2.9	+2.9	+2.9	+3.4	
<b>一</b> 域		無し	無し	停止	+3.1	+3.1	+3.1	+3.8	
断屋		右り	有り	停止	+2.4	+2.4	+2.4	+2.6	
眉	海域沽断層 上昇側最大	伯ワ	無し	停止	+2.4	+2.3	+2.3	+2.6	
	となるケー ス	<b>4</b> 冊 1	有り	停止	+2.8	+2.8	+2.8	+3.2	
		無し	無し	停止	+3.0	+2.9	+2.9	+3.5	

表3 基準津波による取水槽水位の結果

※下線部が最大水位上昇量の値



図5 1号炉取水槽流路縮小工による浸水範囲※

[※] 漸拡ダクト部,除じん機系+ポンプ室の最大水位上昇量を図に示す。 (基準津波1 防波堤無し 貝無し)



漸拡ダクト (東ルート)



除じん機系+ポンプ室

図6 時刻歴波形(基準津波1 防波堤無し 貝付着無し)





図8 取水槽水位最大となる押し波1波あたりの水位 (漸拡ダクト部,除じん機系+ポンプ室,高さに係る数値はEL.)



図9 取水槽水位が最大となる押し波1波あたりの流量 (取水管部,取水槽への流入方向の流量を正とする)

#### 取水槽除じん機エリア防水壁及び取水槽除じん機エリア水密扉の 設計方針及び構造成立性の見通しについて

#### 1. はじめに

(1)防水壁及び水密扉に要求される機能

鋼構造の取水槽除じん機エリア防水壁(以下,「防水壁」とする)及び取 水槽除じん機エリア水密扉(以下,「水密扉」とする)は2号炉取水槽に設 置する。防水壁及び水密扉の平面位置図を第1図に,概要図を第2図に示 す。

浸水防止設備として防水壁及び水密扉に求められる要求機能は,取水口 から流入する津波の敷地への浸水を防止すること,基準地震動Ssに対し 要求される機能を損なうおそれがないよう,構造物全体として十分な構造 強度を有することである。

上記の機能を確保するため、入力津波に対し余裕を考慮した防水壁及び 水密扉の高さを確保するとともに、構造体の境界部等の止水性を維持し、 基準地震動Ssに対し止水性を損なわない構造強度を有した構造物とする。



#### 5条-別添1-添付30-1



第2図 防水壁及び水密扉の概要図

## 5条-別添1-添付30-2

(2) 防水壁及び水密扉の高さの設定方針

防水壁及び水密扉の高さは,設置位置の入力津波高さに設計裕度を考慮 して決定し,入力津波高さは,基準津波による取水口位置の水位変動量に 基づき,流入経路の水理特性を考慮した管路解析を踏まえて設定する。防 水壁及び水密扉の高さは,入力津波高さに対して余裕を考慮した高さとす る。入力津波高さと防水壁及び水密扉の高さの関係を第1表に示す。

 
 設置位置
 入力津波高さ
 防水壁高さ
 高さの裕度

 2号炉取水槽 除じん機エリア
 EL.+10.6m
 EL.+11.3m
 +0.7m

第1表 入力津波高さと防水壁及び水密扉高さの関係

(3) 防水壁及び水密扉の設計の基本的考え方

防水壁及び水密扉は,地震荷重や津波荷重に対して十分な耐震性・遮水 性が要求されるため,高強度で軽量かつ十分に遮水性のある鋼板及び鋼桁 を用い,取水槽に固定した鋼製支柱により支持される構造とする。

また,取水槽の管理用出入口である水密扉は,人力で容易に開閉作業が 可能な鋼製の扉構造とするとともに,常時閉運用とする。

- 2. 防水壁及び水密扉の概要
- (1)防水壁

防水壁は,高強度で軽量かつ十分に遮水性のある鋼板を,取水槽に設置 したH形鋼支柱にボルト接合により設置する構造とし,H型鋼支柱と鋼板 との間に止水ゴムを設置して止水性を確保する。

嵩上げ箇所は、H形鋼支柱を溶接接合にて嵩上げし、既設部同様、鋼板 を支柱にボルト接合により設置する構造とし、支柱と鋼板との間は止水ゴ ムを設置して止水性を確保するとともに、シーリングを施工して止水性を 高める。また、鋼板と鋼板の隙間は鋼板を追加してボルト接合するととも に、止水ゴムを隙間に設置して止水性を確保する。

また,H形鋼支柱下端のベースプレート及び鋼板下端固定材(等辺山形 鋼)と取水槽の間には止水ゴムを設置することで止水性を確保する。さら に,ベースプレートを含めた鋼板下端全長にシーリングを施すことで止水 性を高める。

各部位の役割を第2表に,防水壁の構造例を第3図に示す。

部位	役割
鋼板	止水機能の保持
梁・日形鋼支柱・固定ボルト	鋼板等の支持
ベースプレート	日形鋼支柱の支持
基礎ボルト	鋼板及びベースプレートの支持
止水ゴム	止水機能の保持(鋼板と日形鋼支柱間等)

第2表 防水壁の各部位の役割









<u> B-B断面</u>図







防水壁の構造例 第3図

## 5条-別添1-添付30-5

#### (2) 水密扉

取水槽の管理用出入口として,鋼製扉を用いた開閉可能な構造とする。 取水槽に溝形鋼の縦柱を設置したうえで,鋼板と梁を溶接接合して構成 する鋼製扉を取り付ける。また,鋼製扉周囲に止水ゴムを設置し,別途設 置する戸当たり(溝形鋼)との接触面で閉時の止水性を確保する。

嵩上げ箇所は,鋼製扉(鋼板及び梁),溝形鋼縦柱及び戸当たり(溝形鋼) をそれぞれ溶接接合して嵩上げする。

各部位の役割を第3表に、水密扉の構造例を第4図に示す。

部位	役割
鋼製扉(鋼板·梁)	止水機能の保持
溝形鋼縦柱・締付けボルト・戸当たり(溝形鋼)	鋼製扉の支持
止水ゴム	止水機能の保持(鋼製扉と戸当たり間)

第3表 水密扉の各部位の役割



5条-別添1-添付30-7

- 3. 防水壁及び水密扉の設計方針及び構造成立性の見通し
- (1)検討ケース及び荷重の組合せ

防水壁及び水密扉における検討ケース及び荷重の組合せは、以下のとお りとする。

①地震時:常時荷重+地震荷重+風荷重

②津波時:常時荷重+津波荷重

なお,防水壁及び水密扉の設計において考慮する荷重は,以下のとおり 設定する。

①常時荷重

自重を考慮する。

②地震荷重

基準地震動Ssを考慮する。

③風荷重

「第6条 外部からの衝撃による損傷の防止」において規定する設計基準風速に伴う荷重を地震時に考慮する。津波時は,水圧作用側が 海面下にあることから,風荷重は考慮しない。

④津波荷重

入力津波高さに基づき算定される静水圧を考慮する。

⑤余震荷重

海域活断層に想定される地震による入力津波高さは、2号炉取水槽 において最大でもEL.+4.9mであり、防水壁及び水密扉の設置標高が EL.+8.8mであるため、海域活断層に想定される地震による津波の影 響を受けないことから、余震荷重を考慮しない。

(2) 損傷モードの抽出と許容限界

地震時及び津波時に防水壁及び水密扉が維持すべき機能を喪失してしま う事象(損傷モード)を仮定し、その損傷モードに対しての設計・施工上 の配慮を整理した。また、損傷モードの整理結果を踏まえ、構造成立性の 見通しの確認における主要な照査項目と許容限界を整理した。

防水壁及び水密扉に関する損傷モード及び構造成立性の見通しに関する 許容限界を第4~7表に示す。

部位の名称	要求機能を喪失する事象	設計・施工上の配慮	構造成立性の見通し の確認における照査
	・鋼板に作用する地震荷重や津波荷重により,鋼板が曲げ破壊又 はせん断破壊することで止水機能を喪失する。	・鋼板に生じる断面力による応力度が,許容限界以下であることを確認する。	0
	<ul> <li>・H形鋼支柱間の応答差や地盤条件変化部における相対変位により、鋼板にねじれが発生し損傷することで止水機能を喪失する。</li> </ul>	<ul> <li>・支柱は取水槽に固定し、取水槽は十分な支持性能を有する岩盤</li> <li>に設置されていることから、支柱間の応答差や地盤条件変化部による影響は小さいと判断する。</li> </ul>	_
H形鋼 支柱	<ul> <li>・銅板から伝達する荷重及び支柱自体に作用する荷重により、銅製</li> <li>支柱が曲げ・軸力による破壊又はせん断破壊し、鋼板の支持性能</li> <li>を喪失する。</li> </ul>	・銅製支柱に生じる断面力による応力度が,許容限界以下であることを確認する。	0
梁	・鋼板から伝達する荷重により、梁が曲げ破壊又はせん断破壊することで鋼板の支持性能を喪失する。	・梁に生じる断面力による応力度が,許容限界以下であることを確認 する。	0
固定ボルト	・鋼板から伝達する荷重により、固定ボルトがせん断破壊し、鋼板の 支持性能を喪失する。	<ul> <li>・固定ボルトに生じる断面力による応力度が、許容限界以下となるよう、固定ボルトの仕様を詳細設計段階で決定する。</li> </ul>	_
ベースプレート	<ul> <li>・H形鋼支柱から伝達する荷重により、ベースプレートが曲げ破壊又 はせん断破壊することでH形鋼支柱の支持機能を喪失する。</li> </ul>	<ul> <li>・ペースプレートに生じる断面力による応力度が、許容限界以下となるよう、ペースプレートの仕様を詳細設計段階で決定する。</li> </ul>	_
基礎ボルト	<ul> <li>・ペースプレートから伝達する荷重により、ボルトが引抜き又はせん断 破壊し、防水壁全体の支持機能を喪失する。</li> </ul>	・基礎ボルトに生じる断面力による応力度が、許容限界以下となるよう、基礎ボルトの仕様を詳細設計段階で決定する。	_

第4表 防水壁に関する損傷モード

第5表 防水壁の構造成立性の見通しに関する許容限界

評価対象部位	役割	照查項目	設計で用いる許容限界	適用基準
鋼板	止水機能の 保持	曲げ・ せん断	曲げ:短期許容応力度以下 せん断:短期許容応力度以下	鋼構造設計規準
H形鋼支柱・ 梁	鋼板の支持	曲げ・ せん断	曲げ:短期許容応力度以下 せん断:短期許容応力度以下	鋼構造設計規準

## 第6表 水密扉に関する損傷モード

部位の名称	要求機能を喪失する事象	設計・施工上の配慮	構造成立性の見通し の確認における照査
鋼製扉 (鋼板,梁)	<ul> <li>・鋼製扉に作用する地震荷重や津波荷重により, 鋼製扉が 曲げ破壊又はせん断破壊することで止水機能を喪失する。</li> </ul>	・鋼製扉に生じる断面力による応力度が、許容限界以下であることを確認する。	0
溝形鋼縦柱	・鋼製扉から伝達する荷重及び縦柱自体に作用する荷重によ り縦柱が曲げ破壊又はせん断破壊し,鋼製扉の支持性能を 喪失する。	・溝形鋼縦柱に生じる断面力による応力度が,許容限界以下であることを確 認する。	0
締付けボルト	・鋼製扉から伝達する荷重により,締付けボルトが破断し,鋼 製扉の支持性能を喪失する。	<ul> <li>・締付けボルトに生じる断面力による応力度が、許容限界以下となるよう、締 付けボルトの仕様を詳細設計段階で決定する。</li> </ul>	-
戸当たり (溝形鋼)	<ul> <li>・銅製扉から伝達する荷重、戸当たり自体に作用する荷重及び防水壁から伝達する荷重により、戸当たりが曲げ破壊又は せん断破壊し、銅製扉の支持性能を要失する。</li> </ul>	・戸当たりに生じる断面力による応力度が、許容限界以下であることを詳細設 計段階で確認する。 ・戸当たりは、防水壁のH形鋼支柱に溶接接合して剛性を高めることから、構 造成立性の確認においては、防水壁のH形鋼支柱の評価に代表させる。	_
止水ゴム	<ul> <li>・津波時の水圧が作用することにより、止水ゴムが損傷し、止 水機能を喪失する。</li> </ul>	<ul> <li>・止水ゴムに生じる水圧が、メーカー規格及び基準並びに必要に応じて実施する性能試験を参考に定めた許容水圧以下となるよう、止水ゴムの仕様を詳細設計段階で決定する。</li> </ul>	_

## 第7表 水密扉の構造成立性の見通しに関する許容限界

評価対象部位	役割	照査項目	設計で用いる許容限界	適用基準
鋼製扉(鋼板,梁)	止水機能の保持	曲げ・ せん断	曲げ:短期許容応力度以下 せん断:短期許容応力度以下	鋼構造設計規準
溝形鋼縦柱	鋼板の支持	曲げ・ せん断	曲げ:短期許容応力度以下 せん断:短期許容応力度以下	鋼構造設計規準

(3) 防水壁及び水密扉のモデル化方針

防水壁は,高強度で軽量かつ十分に遮水性のある鋼板を,基礎ボルトに て取水槽に固定したH形鋼支柱とボルト接合し,鋼板と取水槽を分離させ た構造とする。

よって、防水壁の挙動としては、剛性と質量が異なる鋼板やH形鋼支柱 等の鋼製部材が地震動により一体的に応答するモードとなることから、第 5図に示す梁のモデルにより、その挙動を適切に評価することが可能であ る。



梁(H形鋼支柱を支点とする単純梁でモデル化)

第5図 防水壁の解析モデル

水密扉について、鋼製扉は鋼板を溝形鋼に溶接接合した一体構造とし、 戸当たりは取水槽にボルトで固定するとともに、防水壁のH形鋼支柱に溶 接接合して剛性を高めた構造とする。鋼製扉及び戸当たりは、取水槽に基 礎ボルトで固定した縦柱と締付けボルトにて接合する。

よって、水密扉の挙動についても、地震動により一体的に応答するモードとなることから、第6回に示す梁や版のモデルにより、その挙動を適切に評価することが可能である。



鋼板(梁を支点とする単純梁でモデル化)





5条-別添1-添付30-11

- (4) 評価方法
  - a. 地震時

地震時の検討では、基準地震動Ssに対し、部材の発生応力度が許容限 界を超えないことを確認する。防水壁及び水密扉の構造成立性の見通しの 確認においては、第7図に示すイメージのとおり、基準地震動Ssに対す る2号炉取水槽の地震応答解析から得られた取水槽上端の最大応答加速度 を防水壁及び水密扉に作用させて評価する。



第7図 地震時の荷重作用イメージ

b. 津波時

津波時の検討では、基準津波に対し、部材の発生応力度が許容限界を超 えないことを確認する。構造成立性の見通しの確認においては、第8回に 示すイメージのとおり、2号炉取水槽の最大入力津波高さ(EL.+10.60m) に参照する裕度(0.64m)を考慮した水位EL.+11.3mによる静水圧を防水 壁及び水密扉に作用させて評価する。



第8図 津波時の荷重作用イメージ

c. 作用荷重を踏まえた構造成立性の見通しの確認における検討ケースの絞 り込み

地震時及び津波時における作用荷重を比較すると,第8表に示すとおり, 津波時の作用荷重の方が大きいことから,構造成立性の見通しの確認にお いては,津波時について評価を行う。

第8表 地震時と津波時の作用荷重比較

			地震時		津波時					
浸水防止壁	荷重荷重		下谜		荷香	下谜	評価			
仰异里里	設計震度	慣性力	風荷重 合力	(水平慣性力 +風荷重)	モーメント	設計水位	(静水圧合力)	モーメント		
5.5 kN	Kh=1.30 Kv=0.69	Ph=7.15 kN Pv=3.80 kN	6.41 kN	13.56 kN	16.95 kN∙m	EL·+11.30m	47.34 kN	39.45 kN∙m	地震時荷重 < 津波時荷重	

(5) 評価式

防水壁及び水密扉の評価は,前述のとおり,「鋼構造設計規準-許容応力 度設計法-((社)日本建築学会,2005改定)」に基づき行う。評価式の概 要を以下に示す。

・曲げに対する評価式

防水壁及び水密扉の各部位に生じる曲げ応力度を下式から算定し,第 9表に示す鋼材の短期許容応力度以下であることを確認する。

$$\sigma = \frac{M}{Z}$$

ここに, σ:曲げ応力度

- M:曲げモーメント
- Z:断面係数
  - 第9表 曲げに対する短期許容応力度

防水壁及び水密扉の	短期許容応力度 (N/mm ² )
使用材料	曲げ
SS400(板厚t≤40mm)	235

・せん断に対する評価式

防水壁及び水密扉の各部位に生じるせん断応力度を下式から算定し,第 10表に示す短期許容応力度以下であることを確認する。

$$\tau = \frac{Q}{A}$$

ここに, τ: せん断応力度

- Q: せん断力
- A:断面積

第10表 せん断に対する短期許容応力度

防水壁及び水密扉の	短期許容応力度 (N/mm ² )
1史用材料	せん断
SS400(板厚t≦40mm)	135

・応力度の組合せに対する評価式

防水壁及び水密扉の各部位に生じる曲げ応力度及びせん断応力度から, 組合せ応力度を下式から算定し,第11表に示す短期許容応力度以下であ ることを確認する。

$$\sigma_{\rm X} = \sqrt{\left(\frac{\rm M}{\rm Z}\right)^2 + 3 \cdot \left(\frac{\rm Q}{\rm A}\right)^2}$$

ここに、  $\sigma_x$ :組合せ応力度

第11表	組合せ応力度に対す	る短期許容応力度

防水壁及び水密扉の	短期許容応力度 (N/mm ² )	
使用材料	組合せ	
SS400(板厚t≦40mm)	235	

(6) 評価結果

防水壁及び水密扉は,第12表に示すとおり,地震荷重や津波荷重に対し て十分な安定性を有しており,構造成立性の見通しがあることを確認した。 なお,本評価結果は暫定条件を用いた評価結果であることから,正式条 件を用いた評価結果は詳細設計段階で示す。

評価対象部位			照查結果				
		仕様(案)	照査項目	最大発生値 (N/mm ² )	許容値 (N/mm²)	照査値(発生値)/ (許容値)	判定 (照査値<1.00)
	御=5		曲げ	32.2	235	0.14	ОК
	<b>当</b> 时代X	PL-9	せん断	0.4	135	0.01	ОК
			曲げ	158.1	235	0.68	ОК
	梁	L-65×65×8	せん断	1.4	135	0.02	ОК
防水壁			組合せ	158.1	235	0.68	ОК
		H-200×200×8×12	曲げ	83.6	235	0.36	ОК
H形鋼支柱	H形鋼支柱		せん断	33.6	135	0.25	ОК
			組合せ	101.9	235	0.44	ОК
				74.4	235	0.32	ОК
	鋼板	板 PL-9	せん断	0.8	135	0.01	ОК
	水変扇 梁		曲げ	31.7	235	0.14	ОК
水密扉		[-150×75×6.5×10	せん断	11.5	135	0.09	ОК
			組合せ	37.5	235	0.16	ОК
		萬形鋼縦柱 [−250×90×9×13	曲げ	59.1	235	0.26	ОК
	溝形鋼縦柱		せん断	11.7	135	0.09	ОК
			組合せ	62.5	235	0.27	ОК

第12表 防水壁及び水密扉の評価結果

施設護岸の漂流物評価における遡上域の範囲及び流速について

#### 1. 概要

非常用冷却海水系の海水ポンプの取水性へ影響を及ぼす可能性については, 施設護岸の設備等が漂流物となる可能性を踏まえ評価している。ここでは,施 設護岸の設備等が漂流物となる可能性の評価のうち滑動評価に用いる流速を確 認する。

2. 検討内容

遡上域の範囲(最大水位上昇量分布)を保守的に評価するため,地震による 荷揚場周辺の沈下及び初期潮位を考慮した津波解析を実施した。解析に当たっ ては,荷揚場付近の水位上昇量が大きい基準津波1(防波堤有無)を対象とし た。解析条件を以下に示す。

- ・荷揚場周辺の沈下については、防波壁前面を一律1m沈下させたケースを 用いる。
- ・初期潮位については, 朔望平均満潮位+0.58m に潮位のばらつき+0.14m を 考慮する。

基準津波1(防波堤有無)における施設護岸の最大水位上昇量分布(拡大図) を図1に示す。図1より,防波堤有りに比べ,防波堤無しの方が最大水位上昇 量は大きく,遡上範囲が広いことから,防波堤無しの流速を評価する。



## 5条-別添1-添付31-2

3. 確認結果

遡上域における流速分布を図2に、主な荷揚場漂流物の配置を図3に示す。 流速の抽出にあたっては、荷揚場漂流物の配置を踏まえ、遡上域である荷揚 場周辺の12地点(図4参照)を選定し各地点の最大流速を抽出した。

図2に示すとおり, 遡上域における流速は概ね8.0m/s以下であるが, 遡上域の一部において8.0m/sを超える流速が確認できる。各地点における最大流速抽出結果を表1に示す。

表1に示すとおり、東西方向の流速は荷揚場へ押し波として遡上する西方向 (取水口反対方向)の流速が速く支配的であることがわかる。一方、東方向(取 水口方向)の流れとなる引き波では、地点10に示す4.8m/sが最大流速となる が、漂流物評価に用いる流速は、最大流速(11.9m/s)とする。

最大流速を示す地点7及び取水口方向への最大流速を示す地点10について, 浸水深・流速の時刻歴波形及び各地点における最大流速発生時の水位分布・流 速ベクトルをそれぞれ図5,図6に示す。

なお,図5に示すとおり,最大流速(11.9m/s)を示す地点における8.0m/sを 超える時間は極めて短い(1秒以下である)。



5条-別添1-添付31-3



図4 流速抽出地点

# 5条-別添1-添付31-4

Vx方向		Vy方向	全方向最大流速(m/s)			
地点	地点 最大流速 (m/s)	最大流速 (m/s)	Vx方向 流速	Vy方向 流速	全方向流速 (√Vx²+Vy²)	
1	-4.2	2.1	-4.2	1.9	4.6	
2	-4.0	2.5	-4.0	1.4	4.2	
3	-6.7	2.1	-6.7	-0.8	6.8	
4	-3.6	3.7	-3.2	3.4	4.6	
5	-3.6	3.8	-3.6	3.7	5.1	
6	-5.5	4.1	-5.5	2.7	6.1	
7	-11.8	3.4	-11.8	1.1	11.9	
8	-5.3	1.5	-5.3	1.3	5.4	
9	-5.9	1.9	-5.9	1.6	6.1	
10	4.8	-7.6	4.8	-7.6	9.0	
11	-8.9	2.5	-8.9	-1.2	9.0	
12	-2.7	5.1	-1.4	5.1	5.3	

表1 各地点の流速評価結果



図5 地点7(最大流速を示す地点)における浸水深・流速時刻歴波形及び最 大流速発生時刻における水位分布・流速ベクトル



図6 地点10(取水口方向への最大流速を示す地点)における浸水深・流速時 刻歴波形及び最大流速発生時刻における水位分布・流速ベクトル

添付資料 32

海水ポンプの実機性能試験について

1. はじめに

ポンプ長尺化に伴うベルマウス下端への耐震サポート設置による影響については,実機性能試験によりポンプ性能に影響を及ぼさないことを確認した。 以下にその内容を示す。

 耐震サポートについて 耐震サポートは海水ポンプ長尺化に伴う耐震性確保のために、ベルマウス部 に取付けるものである。耐震サポートの構造を図1に示す。

図1 耐震サポート構造図 (RSW ポンプの例)

3. 実機性能試験について

実機ポンプを,耐震サポートを設置した状態でピットに設置し,ポンプ性能(全揚程と吐出量,軸動力,ポンプ効率,振動)が,判定基準を満足していること及びポンプが安定した運転状態であることを確認した。試験装置の概略図と試験時における耐震サポート設置状況を図2に,確認結果を表1に示す。 本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

5条-別添1-添付32-1



図2 試験装置概略図

	試験項目	判定基準	試験結果	判定
全揚程と 吐出量				合格
軸動力				合格
ポンプ 効率				合格
振動				合格

表1 試験結果

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

#### 原子炉補機海水ポンプの取水性能試験

1. 概要

原子炉補機海水ポンプ(RSWポンプ)の取水性能を確認するため、実機R SWポンプを用いた試験を実施した。実機RSWポンプ取水性能試験では、基 準津波襲来による引き波を模擬した水位低下時の取水可能水位を確認した。

その結果,水位低下中においても連続渦は確認されず,RSWポンプベルマウス下端(EL.-9.3m)付近まで取水が可能であることを確認した。

ここでは、その試験内容を示す。

- 2. 原子炉補機海水ポンプ(RSWポンプ)の取水試験について
  - a. 試験内容

基準津波襲来による引き波を模擬した取水槽における時系列を想定し,模 擬試験水槽の水位を徐々に低下させ,RSWポンプの運転パラメータ等を確 認した。津波を模擬した試験水槽の水位変化とRSWポンプの試験確認項目 を表1に示す。

津波時の2号取水槽の想定時系列		津波模擬試験水槽		
取水槽水位	取水槽の状態	試験水槽の状態	試験確認項目	
【引き波】	・引き波による取水	<ul> <li>RSW ポンプと水位調整</li> </ul>	・RSW ポンプ流量,電流等	
通常水位~	槽水位低下	ポンプにより試験水槽	ポンプ運転パラメータ	
取水槽取水管下端		水位低下		
水位(EL7.3m)				
【引き波】	・RSW ポンプによる	<ul> <li>RSW ポンプと水位調整</li> </ul>	・RSW ポンプの取水可能水	
取水槽取水管下端	取水槽貯留構造部	ポンプにより試験水槽	位(取水停止水位)	
水位(EL7.3m)~	の水位低下	水位低下	・RSW ポンプ流量,電流等	
RSW ポンプ取水可能			ポンプ運転パラメータ	
水位				

表1 津波を模擬した試験水槽の水位変化とRSWポンプの試験確認項目

#### b. 試験結果

図1に示す試験装置を用い、ポンプ取水性能試験を行った。試験時の状態 を図2に,試験中のポンプ流量と水位の関係を図3に示す。RSWポンプは, RSWポンプベルマウス下端(EL.-9.3m)付近まで定格流量を取水し, その後,再冠水しても、定格流量が取水可能であった。また、その他の運転 パラメータについても、水位低下中に連続渦などは確認されず、運転試験後 に実施したポンプ開放点検による外観点検でも部品に異常は確認されなか った。



図1 ポンプ取水性能試験装置

<u>v</u> 9	診験時の実能
즈 고	武家ですとした影

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

図3 試験中のポンプ流量と水位変化

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

海水ポンプの吸込流速が砂の沈降速度を上回る範囲について

1. はじめに

海水ポンプの長尺化に伴う海水ポンプ近傍への砂の堆積については、ベルマ ウス下端近傍の取水槽床面においても海水ポンプの吸込流速が砂の沈降速度 を上回っており、海水ポンプ下端に到達する砂はポンプに吸込まれることから、 ベルマウス下端近傍に砂は堆積しないと評価している。

ここでは、評価内容について示す。

2. 砂の沈降速度について

砂の沈降速度はRubey 式より算出する。砂の粒径及び密度は,基準津波に伴う砂移動評価において設定した値(0.3mm)を用いる。砂の諸元及び沈降速度 を表1に示す。表1より,砂の沈降速度は0.05m/sとなる。 Rubey 式:

$$w_0 = \sqrt{(s-1)gd} \left( \sqrt{\frac{2}{3} + \frac{36\nu^2}{(s-1)gd^3}} - \sqrt{\frac{36\nu^2}{(s-1)gd^3}} \right)$$

表1 砂の諸元及び沈降速度

粒径 d	砂密度 σ	海水密度 ρ	重力加速度 g	動粘性係数 ν	沈降速度 w。
[mm]	$[kg/m^3]$	$[kg/m^3]$	$[m/s^2]$	$[m^2/s]$	[m/s]
0.3	2, 760	1,030	9.8	$1.0 \times 10^{-6}$	0.05

3. 海水ポンプの吸込流速が砂の沈降速度を上回る範囲について

海水ポンプ定格流量 Q を吸込面積 S で除した吸込流速 V が,砂の沈降速度 w。 と等しくなる直径 D を算出する。算出の概要を図1に,算出結果を表2に示す。

表2に示すとおり,原子炉補機海水系,高圧炉心スプレイ補機海水系の各々 ポンプから直径約2.99m,約0.86mの範囲は,ポンプの吸込流速が,砂の沈降速 度を上回ることから,この範囲は砂が堆積しないと考えられる。

マリンマウス径:d  
マリンマウス径:d  
取水槽床面までの  
距離:h  
取込流速が砂の沈降速度と等しくなる直径:D  
:吸込面積 
$$S = D\pi h + (D^2 - d^2) \times \frac{\pi}{4}$$
  
ポンプ吸込流速  $V = \frac{Q}{S}$   
 $V = \frac{Q}{S} = w_0$   
 $\frac{Q}{D\pi h + (D^2 - d^2) \times \frac{\pi}{4}} = w_0$   
 $D^2 + 4hD - \left(d^2 + \frac{4Q}{\pi w_0}\right) = 0$   
 $D = -2h + \sqrt{(-2h)^2 + \left(d^2 + \frac{4Q}{\pi w_0}\right)}$ 

Dが上記の範囲内の吸込流速は、砂の沈降速度を上回る

図1 ポンプ吸込流速が砂の沈降速度と等しくなる直径算出の概要

海水ポンプ	流量 Q [m³/s]	ベルマウス径 d [m]	取水槽床面までの 距離 h [m]	吸込流速が砂の沈降速度と 等しくなる直径 D [m]
原子炉補機 海水系	0. 567	0.75	0.50	2. 99
高圧炉心ス プレイ補機 海水系	0. 093	0.34	0. 50	0. 86

表2 海水ポンプ諸元及び吸込流速が砂の沈降速度と等しくなる直径