	まとめ資料比較表 〔第4条 地震による損傷の防止	別紙-7〕 実線・・設備運用又は体制等の 波線・・記載表現,設備名称の	<u> 目違(設計方針の相違)</u> 目違(実質的な相違なし)
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<u>別紙-6</u> 機器・配管系設備に関するその他手法の相違点につい て	<u>別紙-5</u> 機器・配管系における手法の変更点について (耐震)	別紙-7 機器・配管系における手法の変更点について	
		且次	
		<u>1. はじめに</u>	
		2. 手法の相違点	
		3. 手法の変更項目に対する島根2号炉への適用性	
		添付資料-1 原子炉建物天井クレーンへの非線形時刻歴応答解	
		析の適用について	
		添付資料-2 取水槽ガントリクレーンへの非線形時刻歴応答解	
		析の適用について	
		<u>添付資料-3</u> ポンプ等の応答解析モデルの精緻化について	
		<u>添付資料-4</u> 容器等の応力解析へのFEMモデルの適用につい	
		<u></u>	
		添付資料-5 原子炉建物-大型機器連成解析モデルの変更につ	
		L'IT.	
		添付資料-6 最新知見として得られた減衰定数の採用について	
		添付資料-7 水平方向と鉛直方向の動的地震力の二乗和平方根	
		法による組合せについて	
		添付資料-8 等価繰返し回数の評価方針について	
		添付資料-9 多入力の時刻歴応答解析の適用について	
1. はじめに	1. はじめに	1. はじめに	
<u>今回工認における機器・配管系設備</u> の耐震評価において既工認	今回工認における機器・配管系の耐震評価において, 既工認か	機器・配管系の耐震評価において既工認から評価手法を変更す	
から評価手法を変更する <u>予定のもののうち</u> , <u>他プラントを含めた</u>	ら評価手法を変更するものについて、「別紙1既工認との手法の	るものについて,「別紙-1 設置変更許可申請における既許可か	・記載方針の相違
認可実績のあるものについて本資料にて整理する。	相違点の整理について(設置変更許可申請段階での整理)」の整理	らの変更点及び既工認との手法の相違点の整理について」の整理	【柏崎 6/7】
	結果を踏まえ、以下に結果を示すものである。	結果を踏まえ,手法の相違点及び島根2号炉としての適用性の確	柏崎 6/7 には島根 2
		認結果を示す。	号炉の別紙1に該当す
			る資料なし
2. 手法の相違点	2. 手法の相違点	2. 手法の相違点	
(1) 原子炉建屋クレーンへの非線形時刻歴応答解析の適用	(1) 原子炉建屋クレーンへの非線形時刻歴応答解析の適用	(1) クレーン類への非線形時刻歴応答解析の適用	
原子炉建屋クレーンの解析では、より詳細な手法を用いる観点	原子炉建屋クレーンの解析では、より詳細な手法を用いる観点	原子炉建物天井クレーン及び取水槽ガントリクレーンの解析で	・評価方針の相違
から, 脱線防止ラグ等の構造変更を踏まえ, 浮き上がり及び滑り	から、すべり及び浮き上がりの条件を考慮した非線形時刻歴応答	は、より詳細な手法を用いる観点から、 <u>すべり及び浮上りの</u> 条件	【柏崎 6/7,東海第二】
条件を考慮した非線形時刻歴応答解析にて評価を実施する。原子	解析にて評価を実施する。原子炉建屋クレーンの非線形時刻歴応	を考慮した非線形時刻歴応答解析にて評価を実施する。クレーン	島根2号炉では,原子
炉建屋クレーンの非線形時刻歴応答解析の適用については,大間1	答解析の適用については、他プラントを含む既工認において適用	類への非線形時刻歴応答解析の適用は,他プラントを含む既工認	炉建物天井クレーンに
<u>号炉の建設工認</u> において適用実績がある手法である。(添付資料1	実績がある手法である(詳細は添付資料1参照)。	あるいは新規制工認において適用実績がある手法である(詳細は	加え,取水槽ガントリク

4条-別紙7-1

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
参照)		添付資料-1参照)。なお、取水槽ガントリクレーンについては、既	レーンにも非線形時刻
		工認の実績として参照した大間1号炉建設工認の原子炉建屋天井	歴解析を適用するため
		クレーンと主要構造に差異がある(詳細は添付資料・2参照)。	記載
(2) <u>立形</u> ポンプの解析モデルの精緻化	(2) ポンプ等の解析モデルの精緻化	(2) ポンプ等の応答解析モデルの精緻化	
既工認において、立形ポンプについては設備の寸法、質量情報	最新の工認実績等を踏まえ,ポンプ等の一部設備に対して解析	最新の工認実績を踏まえ、ポンプ等の一部設備に対して応答解	
に基づき、ケーシング部とローター(軸)部を2軸でモデル化し	モデルの質点数の変更,設備の支持構造に沿った解析モデルの精	析モデルの変更を行う。応答解析モデルの変更については、他プ	
ているが,今回の評価では,JEAG4601-1991追補版に基づき取付フ	<u> 徴化を行う。多質点モデルによる地震応答解析モデルの適用は</u> ,	ラントを含む既工認において適用実績がある手法である(詳細は	
ランジ部を回転ばねとして考慮する等のモデルの精緻化を行って	他プラントを含む既工認において適用実績がある手法である(詳	添付資料-3.参照)。	
いる。本解析モデルは、大間1 号炉の建設工認において適用実績	細は添付資料2参照)。		
がある手法である。(添付資料2 参照)			
	(3) 容器等の応力解析へのFEMモデルの適用	(3) 容器等の応力解析へのFEMモデルの適用	・評価手法の相違
	既工認において、公式等による評価にて耐震計算を実施してい	既工認において、公式等による評価にて耐震計算を実施してい	【柏崎 6/7】
	た設備について、3次元FEMモデル、多質点モデルを適用した	た設備について、3次元FEMモデル等を適用した耐震評価を実	島根2号炉では,公式
	耐震評価を実施する。FEMモデルを用いて応力解析を行う手法	施する。FEMモデルを用いた応力解析手法は、他プラントを含	等による評価からFE
	は、他プラントを含む既工認において適用実績がある手法である	む既工認において適用実績がある手法である(詳細は添付資料:4	Mモデル等を適用した
	(詳細は添付資料3.3参照)。	参照)。	耐震評価に変更したた
			め記載
	<u>(4) 解析コードの変更</u>		・評価手法の相違
	今回工認における原子炉格納容器,原子炉圧力容器等の主要設		【東海第二】
	備の耐震評価に適用する解析コードについては、建設時に適用し		島根2号炉では,原子
	た解析コードから他ブラントを含む既工認において適用実績があ		炉格納容器,原子炉圧力
	る解析コードに変更する(詳細は添付資料4参照)。		谷器等の主要設備に,既
			上認において適用美績
			のある解析コードを使
			用しているため、記載な
			し(以下①の相遅
		 (4)	 ・評価手述の相違
		「「 <u>「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」</u>	「IIII」」(1997) 10座 【柏崎 6/7 東海筆一】
		て 既丁認では建設丁程の関係上 原子恒核納容架	▲根2号恒でけ 野丁
		<u>、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、</u>	認で用いた2種類のエ
		ルを用いていたが、今回工認では、原子炬格納容器-原子炬圧力	デルから、今回工認でけ
		容器-炉内構造物モデルを用いる。これに合わせて. 原子炉圧力	1つに統合したモデル
		容器スタビライザ及び原子炉格納容器スタビライザのばね定数算	に変更。また、モデル設
		 出方法について, 最新の工認実績を踏まえた算出方法に変更する。	 定に必要なPCV及び
		本手法は、他プラントを含む既工認あるいは新規制工認において	RPVスタビライザの
	1		<u> </u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		適用実績がある手法である。	ばね定数算出方法につ
			いて最新工認実績を踏
			まえ変更(以下②の相
			違)
		また、鉛直方向に動的地震力が導入されたことから、原子炉本	・記載方針の相違
		<u>体及び炉内構造物について、鉛直方回の応答を適切に評価する観</u>	【相崎 6/7, 果海第二】
		<u> 尽ぐ、水平万向応谷</u> 解研モアルとは別に鉛直万向応谷解研モアル (厚了 に按 她 宏 昭 -	新国方回の応答解析 エデルについて 拍岐
		(原于炉格納谷益-原于炉庄刀谷益-炉内構造物モアル)を材に	
		<u>に休用し、 </u> <u> 西世地長期に対 りる計画を 美</u> 施 りる <u> 。 </u> <u> 西世万円心谷</u> <u> </u> <u> </u> 振工デルは <u> </u>	0/1 は(3)頃, 米西弗一の(7) 頂に自想の早后と
		<u>小てノルは、他ノノン下を古む以上誌にわいて適用美禎がのる子</u> 注である(詳細け添付資料-5参昭)	の(1)頃に岡根25炉2 同笙の内容を記載
			时中小小小子。而戴
(3) 最新知見として得られた減衰定数の採用	(5) 最新知見として得られた減衰定数の採用	(5) 最新知見として得られた減衰定数の採用	
最新知見として得られた減衰定数を採用する設備は以下のとお	最新知見として得られた減衰定数を採用する設備は以下のとお	配管系、原子炉建物天井クレーン及び燃料取替機について、最	
りであり、その値は、振動試験結果等を踏まえ、設計評価用とし	りであり、その値は、振動試験結果等を踏まえ、設計評価用とし	新知見として得られた減衰定数を採用する。…その値は、振動試験	
て安全側に設定した減衰定数を採用したものである。また、鉛直	て安全側に設定した減衰定数を採用したものである。	結果等を踏まえ、設計評価用として安全側に設定した減衰定数を	
方向の動的地震力を適用することに伴い、鉛直方向の設計用減衰	また,鉛直方向の動的地震力を適用することに伴い,鉛直方向	採用したものである。また、鉛直方向の動的地震力を適用するこ	
定数についても新たに設定している。	の設計用減衰定数についても新たに設定している。	とに伴い、鉛直方向の設計用減衰定数についても新たに設定して	
		いる。	
原子炉建屋クレーン、燃料取替機及び配管系の減衰定数並びに	天井クレーン、燃料取替機及び配管系の減衰定数並びに鉛直方	上記の減衰定数の設定は、他プラントを含む既工認において適	
鉛直方向の設計用減衰定数は大間1 号炉において適用実績があ	<u>向の設計用減衰定数</u> は他プラントを含む既工認において適用実績	用実績がある手法である(詳細は添付資料-6参照)。	
る。(添付資料3 参照)	がある(詳細は添付資料 <u>5</u> 参照)。		
①原子炉建屋クレーンの減衰定数	①天井クレーンの減衰定数		
②燃料取替機の減衰定数	②燃料取替機の減衰定数		
③配管系の減衰定数	③配管系の減衰定数		
(4) 水平方向と鉛直方向の動的地震力の一乗和平方根_(SRSS)」法	(6) 水平方向と鉛直方向の動的地震刀の一乗和平方根法による	(6) 水平方向と鉛直方向の動的地震力の一乗和平方根法による	
による祖公司20世 - - - - - - - - - - - - -	相合で ムロて初の延年では、公古七白の動的地震力が道1 されたこし。	<u> </u>	
<u>「一回工説の計画では</u> ,」 如直方向の動的地震力が導入されたこと	<u>「一回工総の計画では</u> , 」如直方向の動的地震力が導入されたこと から、水平方向と松声方向の地震力の組み合わせとして一時分の	」 「「「」」 「「」」 「」」 「」」 「」」 「」」 「」」	
る SRSS 決に上る荷重の組み合わせけ 大間1 号恒の建設工設に	いろ SRSS注に上ろ荷重の組み合わせけ 他プラントを全た	低(以) 「SKSS」という。) 伝を用いる。 SKSS伝える何 重の組合せけ 他プラントを会む既丁認において適甲実績がある	
おいて適用主績がある手法である (添付資料4 参昭)	WT認において適用実績がある手法である(詳細け添付資料6参	単次加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		(7) 等価繰返し回数の評価方針	・記載方針の相違
		基準地震動の見直しに伴い、耐震評価における疲労評価に適用	【柏崎 6/7,東海第二】
		する等価繰返し回数を見直す。適用する等価繰返し回数の設定法	島根2号炉では,設置
		は他プラントを含む既工認において適用実績がある手法である	許可段階で等価繰返し
		(詳細は添付資料-8参照)。	回数の評価について記
			載(以下③の相違)
(5) 水平方向応答解析モデルとは別に鉛直方向応答解析モデルを	(7) 鉛直方向応答解析モデルの追加		・評価手法の相違
<u>追加</u>			【柏崎 6/7,東海第二】
	今回工認では,鉛直方向に動的地震動が導入されたことから,		鉛直方向の応答解析
体及び炉内構造物について、鉛直方向応答を適切に評価する観点	原子炉本体及び炉内構造物について、鉛直方向の応答を適切に評		モデルについては,島根
で、水平方向応答解析モデルとは別に鉛直方向応答解析モデルを			2号炉では(4)項に同等
新たに採用し鉛直地震動に対する評価を実施する。鉛直方向応答			の内容を記載
	直方向応答解析モデルは他プラントを含む既工認にて適用実績が		
資料5 参照)	あるモデルである。(詳細は添付資料7参照)。		
	(8) 炉内構造物への極限解析による評価の適用		・評価手法の相違
			【東海第二】
	た炉内構造物について,3次元FEMモデルを適用した極限解析		島根2号炉では,極限
			解析を使用しないため
			記載なし(以下④の相
	法である(詳細は添付資料8参照)。		違)
		(8) 多入力の時刻歴応答解析手法の適用	・評価手法の相違
		三軸粘性ダンパを設置した配管系の地震応答解析において、多	【柏崎 6/7,東海第二】
		入力の時刻歴応答解析手法を適用する。なお、本解析手法は、原	島根2号炉では,多入
		子炉建物等の建物・構築物の地震応答解析において、他プラント	力の時刻歴応答解析手
		を含む既工認にて適用実績がある(詳細は添付資料-9参照)。	法も手法の変更点とし
			て記載(以下⑤の相違)
	3. 手法の変更項目に対する <u>東海第二発電所</u> への適用性	3. 手法の変更項目に対する島根2号炉への適用性	・記載方針の相違
	手法の変更点について、以下に示す3項目に分別した上で、東	手法の変更点について,以下に示す3項目に分別した上で, 島	【柏崎 6/7】
	<u>海第二発電所</u> としての適用性を示す。	根2号炉としての適用性を示す。	島根2号炉では,手法
	(1) 先行プラントの知見反映を基本として変更する手法	(1) 先行プラントの知見反映を基本として変更する手法	の変更項目の適用性ま
	先行プラントで適用されている知見を反映する目的の変更項目	先行プラントで適用されている知見を反映する変更項目につい	で検討
	については, 従来からの耐震設計手法に基づき, 評価対象施設を	ては,評価対象施設に応じて質点系モデル, FEMモデル等によ	
	質点系モデル, 有限要素法モデルに置換し, 地震応答解析を実施	り適切にモデル化し、適切な解析手法を用いて地震応答解析を実	
	することにより評価は可能であるため、東海第二発電所への適用	施することから, 島根2号炉への適用に際して問題となることは	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			に際して問題となることはない。	ない。	
			・クレーンの時刻歴応答解析の適用	 ・クレーン類への非線形時刻歴応答解析の適用 	
			・ポンプ等の応答解析モデルの精緻化	・ポンプ等の応答解析モデルの精緻化	
			・容器等の応力解析へのFEMモデルの適用	・容器等の応力解析へのFEMモデルの適用	
			・ 解析コードの変更		・評価手法の相違
					【柏崎 6/7,東海第二】
					①の相違
				・原子炉建物-大型機器連成解析モデルの変更	・評価手法の相違
					【柏崎 6/7,東海第二】
					②の相違
				・等価繰返し回数の評価方針	・記載方針の相違
					【柏崎 6/7,東海第二】
					③の相違
			(2) 鉛直方向地震の動的な取扱いを踏まえて適用する手法	(2) 鉛直方向地震の動的な取扱いを踏まえて適用する手法	
			平成18年9月の耐震設計審査指針改訂から鉛直方向地震力に対	平成18年9月の耐震設計審査指針改訂から鉛直方向地震力に	
			する動的に取扱いがされており、大間1号炉及び新規制基準での	対する動的な取扱いがされており、大間1号炉建設上設及びPW	
			<u>上認において</u> PWRフラントで適用実績があり, <u>東海第二発電所</u>	Rブラントの新規制上認で適用実績があり、 <u>島根2号炉</u> への適用	
			への適用に除して問題となることはない。	に除して問題となることはない。	
			・水平方回と鉛直方回の動的地震刀の一乗和平方根による組合せ	・水平方向と鉛直方向の動的地震刀の一乗和平方根による組合せ	玉伝イはったも
			・ <u>鉛直方向応答解析</u> モデルの追加	・原子炉建物一大型機器連成解析モデルの変更	・評価手法の相遅
					【 伯崎 b/ i, 泉 御 弗 一】
			(2) トル現実的な広気を増烧する知られた反田するモ汁	(2) トル租実的な広気を増援する組長から採用する手洗	2001相连
			(3) より先天的な心谷を保険りる観点から抹用りる于伝。 鼻部知見として得られた減重定粉の採用	(3) より先天町な心谷で侯族りる観点から休用りる于伝 。 長新知見として得られた演奏字粉の採用	
			a. 取利和先として待ちれた阀裂足数の採用 今回工契においてけ 配答系 王共クレーン及び燃料取基機の	a. 取利和元として特ちないに限殺足数の採用 配管系 百子恒建物玉井クレーン及び燃料取基機の減衰完数け	
			減衰定数け 振動試験結果等を踏まえて設定した減衰定数を採用	振動試験結果等を踏まえて設定した減衰定数を採用する	
			する。		
			アン・ アン アン		
			<i>績があり、また炉型、プラントごとによる設計方針について大き</i>	あり、また炉型、プラントごとによる設計方針について大きな差	
			な差はない。また、最新知見として採用する減衰定数の設定の検	はない。また、最新知見として採用する減衰定数の設定の検討に	
			討に際して、BWRプラントの配管系を踏まえた検討も実施して	際して、BWRプラントの配管系を踏まえた検討も実施しており、	
			おり、適用に際して問題となることはない。	適用に際して問題となることはない。	
			天井クレーン及び燃料取替機の減衰定数の設定に際しては、振	原子炉建物天井クレーン及び燃料取替機の減衰定数の設定に際	
			動試験を用いた検討を実施している。振動試験の試験体は、実機	しては、振動試験を用いた検討を実施している。振動試験の試験	
			と同等の振動特性である試験体を用いることにより、減衰定数の	体は、実機と同様の振動特性である試験体を用いることにより、	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	データを採取している。	減衰定数のデータを採取している。	
	東海第二発電所として適用する天井クレーン及び燃料取替機につ	<u>島根2号炉の原子炉建物</u> 天井クレーン及び燃料取替機 <u>は</u> ,振動試	
	いて、振動試験に用いた試験体と同等の構造仕様であることを確	験に用いた試験体と同様の構造,,仕様であることを確認しており,	
	認しており、最新知見として得られた減衰定数の適用に際して問	最新知見として得られた減衰定数の適用に際して問題となること	
	題となることはない(試験等の詳細は,添付資料5点に記載)。なお,	はない(試験等の詳細は,添付資料-6に記載)。なお、本減衰定数	
	本減衰定数の適用は, 大間1号炉及び天井クレーンに対しては新	の適用は大間1号炉建設工認及びPWRプラントの新規制工認に	
	規制基準での工認において PWR プラントで適用実績がある。	おいて適用実績がある。	
		<u>b. 多入力の時刻歴応答解析手法の適用</u>	・評価手法の相違
		三軸粘性ダンパを設置した配管系の地震応答解析において、多	【柏崎 6/7,東海第二】
		入力の時刻歴応答解析手法を適用する。本解析手法は、原子炉建	⑤の相違
		物等の建物・構築物の地震応答解析において、他プラントを含む	
		既工認にて適用実績がある。	
	ト 極限解析に上ろ評価の適用		 ・ 証価 ・ 注 価 ・ は ・ 加 ・ は ・
	<u> 極限</u> 解析による評価については IEAG4601 及びISME設		【東海第二】
	計・建設規格で規定されており適用に際して問題となることはな		④の相違
	いただし、他の手法に比べて適用実績及び審査実績が少ないこ		0 VILE
	・ <u> ・ と た に し 、 に に し 、 に に し 、 に に し 、 に に し 、 に に し 、 に に し 、 に に し 、 に に し 、 に に し 、 に に し 、 に に い 、 に に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 に い 、 い 、</u>		
3. 添付資料	4. 添付資料		
添付資料1 原子炉建屋クレーンへの非線形時刻歴応答解析の適用	(1) 原子炉建屋クレーンへの非線形時刻歴応答解析の適用につ		
	L'IT		
添付資料2 立形ポンプの解析モデルの精緻化	(2) ポンプ等の解析モデルの精緻化について		
	(3) 容器等の応力解析へのFEMモデルの適用について		
	(4) 解析コードの変更について		
添付資料3 最新知見として得られた減衰定数を採用するもの	(5) 最新知見として得られた減衰定数の採用について		
添付資料4 水平方向と鉛直方向の動的地震力の二乗和平方根	(6) 水平方向と鉛直方向の動的地震力の二乗和平方根法による		
<u>(SRSS)法による組み合わせ</u>	組合せについて		
添付資料5 鉛直方向応答解析モデルを追加したもの	(7) 鉛直方向応答解析モデルの追加について		
	(8) 炉内構造物への極限解析による評価の適用について		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	添付資料1	
添付資料1 <u>原子炉建屋クレーン</u> への非線形時刻歴応答解析の適 用	原子炉建屋クレーンへの非線形時刻歴応答解析の適用について	原子炉建物天井クレーンへの非線形時刻歴 いて
 概要 <u>原子炉建屋クレーン(第1.1 図</u>)の耐震評価は,既工認では鉛 直方向は静的地震力のみであったことから簡便に手計算により 実施していた。 今回工認では,鉛直動的地震力を考慮する必要があること及び クレーンの車輪部の構造変更によりレール上に固定されていな いという構造上の特徴を踏まえ,鉛直方向の地震力に対する車輪 部の浮き上がり挙動を考慮した解析モデル(第1.2 図)を用いた 非線形時刻歴応答解析により評価を実施する。 なお,本モデル及び評価手法は大間1号炉の建設工認にて適用 例があり,大間1号炉と柏崎刈羽の6号及び7号炉の原子炉建屋 クレーンは類似構造であることから,柏崎刈羽6号及び7号炉に も適用可能である。 	 概要 原子炉建屋クレーン(第1-1 図)の耐震評価は,既工認では鉛 直方向は静的地震力のみであったことから簡便に手計算により 実施していた。 今回工認では,鉛直方向の動的地震力を考慮する必要があるこ と及びクレーンの車輪部がレール上に固定されていないという 構造上の特徴を踏まえ,鉛直方向の地震力に対する車輪部の浮き 上がり挙動を考慮した解析モデル(第1-2 図)を用いた非線形時 刻歴応答解析により評価を実施する。 なお,本モデル及び評価手法は大間1号炉の既工認にて適用例 があり,大間1号炉と東海第二発電所の原子炉建屋クレーンは類 似構造であることから,東海第二発電所の原子炉建屋クレーンに も適用可能である。 	1. 概要 <u>島根2号炉原子炉建物天井クレーン(以</u> いう。)(第1-1図)の耐震評価は,既工 いて静的地震力のみ考慮していたことから 実施していた。今回工認では,鉛直方向に 慮する必要があること及びクレーンがレー ないという構造上の特徴を踏まえ,鉛直方「 の <u>浮上り</u> 挙動を考慮した解析モデル(第1) 形時刻歴応答解析により評価を実施する。 なお,天井クレーンへの非線形時刻歴応名 号炉建設工認,東海第二新規制工認におい
第1.1 図 原子炉建屋クレーン (7号炉の例)	A contraction with the traction of the tr	横行方向 サドル 上行方向 第1—1図 原子炉建物天井クレ

号炉	備考
添付資料—1	
歴応答解析の適用につ	
(下「天井クレーン」と 認では、鉛直方向につ ら手計算により評価を ついて動的地震力を考 ール上に固定されてい 向地震力に対する車輪 (-2 図)を用いた非線	
Arr C) 面/H 夫祖 / A & J る 。 ガーダ W(面) S(南) E(東)	
/一/概要図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
モデル化 レ レ レ レ レ レ レ 第1.2 図 今回工認の解析モデル	第1-2 図 今回工認の解析モデル	第1-2図 原子炉建物天井クレーンの今回工認における 解析モデル	
2. 原子炉建屋クレーンの構造 大間1号炉と柏崎刈羽の6号及び7号炉の原子炉建屋クレー ンは,第2.1 図に示すとおり原子炉建屋に設置された走行レール 上をガーダ及びサドルが走行し、ガーダ上に設置された横行レー ル上をトロリが横行する <u>構造であり、いずれも</u> 同様の構造(添付 資料(1))となっており、地震力に対し以下の挙動を示す。	2. 原子炉建屋クレーンの構造 大間1号炉と東海第二発電所の原子炉建屋クレーンは,第1-3 図に示すとおり原子炉建屋に設置された走行レール上をガーダ 及びサドルが走行し,ガーダ上に設置された横行レールをトロリ が横行する構造であり,いずれも同様の構造(別紙1参照)とな っており,…地震力に対し以下の挙動を示す。	 2. クレーン構造 2.1 原子炉建物天井クレーンの構造 島根2号炉と大間1号炉の天井クレーンは、第2-1図に示す 通り原子炉建物に設置された走行レール上をガーダ及びサドルが走行し、ガーダ上に設置された横行レール上をトロリが横行す る同様の構造となっており、地震力に対し以下の挙動を示す。島 根2号炉原子炉建物天井クレーンの主要諸元については添付資料(1-1)に示す。 	
 (1) 走行方向の水平力 (a) クレーンは走行レール上に乗っているだけで固定されていないため、走行方向の水平力がクレーンに加わっても、クレーンはレール上をすべるだけで、クレーン自身にはレールと走行車輪間の最大静止摩擦力以上の水平力は加わらない。 (b) クレーンの走行車輪は、駆動輪又は従動輪である。 (c) 駆動輪は、電動機及び減速機等の回転部分と連結されているため、地震の加速度が車輪部に加わると回転部分が追随できず、最大静止摩擦力以上の力が加わればレール上をすべる。 	 (1) 走行方向の水平力 a. クレーンは走行レール上に乗っているだけで固定されていないため、走行方向の水平力がクレーンに加わっても、クレーンはレール上をすべるだけで、クレーン自身にはレールと走行車輪間の最大静止摩擦力以上の水平力は加わらない。 b. クレーンの走行車輪は、駆動輪又は従動輪である。 c. 駆動輪は、電動機及び減速機等の回転部分と連結されているため、地震の加速度が車輪部に加わると回転部分が追随できず、最大静止摩擦力以上の力が加わればレール上をすべる。 	 (1) 走行方向の水平荷重 a. 天井クレーンは走行レール上に乗っており固定されていないため、走行方向の水平荷重が天井クレーンに加わっても、天井クレーンは走行レール上をすべり、天井クレーン自体には走行レールー走行車輪間の最大静止摩擦力以上の荷重は作用しない。 b. 天井クレーンの走行車輪は、駆動輪及び従動輪である。 c. 走行車輪の駆動輪は、電動機及び減速機等の回転部分と連結されているため、最大静止摩擦力以上の地震慣性力が車輪部に加わった場合、回転部分が追随できず、走行レール上をすべる。 	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(2) 横行方向の水平力	(2) 横行方向の<u>水平力</u>	(2) 横行方向の水平荷重	
a. ガーダ関係	a. ガーダ関係	a. ガーダ関係	
(a) 横行方向は, 走行レールに対して直角方向で <u>あるため</u> , ガー	(a) 横行方向は,走行レールに対して直角方向であるため,ガ	(a) 横行方向は, 走行レールに対して直角方向であり, ガーダは	
ダは建屋と固定されているものとし、水平力がそのままガーダに	ーダは建屋と固定されているものとし、水平力がそのままガーダ	横行方向が走行レールにより拘束される。このため横行方向の地	
作用する。	に作用する。	震慣性力が,そのままガーダに作用する。	
b. トロリ関係	b. トロリ関係	b. トロリ関係	
(a) トロリはガーダ上の横行レール上に乗っているだけで固定	(a) トロリはガーダの上に乗って <u>いるだけで</u> ガーダとは固定さ	(a) トロリはガーダ <u>の上</u> に乗って <u>おり, ガーダとは</u> 固定されて	
されていないため、水平力がトロリに加わっても、トロリはレー	れていないため、水平力がトロリに加わっても、トロリはレール	いないため,横行方向の荷重がトロリに加わっても,トロリは横	
ル上をすべるだけで、トロリ自身にはレールと横行車輪間の最大	上をすべるだけで、トロリ自身にはレールと横行車輪間の最大静	行レール上をすべり、トロリ自体には横行レール一横行車輪間の	
静止摩擦力以上の水平力は加わらない。	止摩擦力以上の水平力は加わらない。	最大静止摩擦力以上の荷重は作用しない。	
(b) トロリの横行車輪は, 駆動輪又は従動輪である。	(b) トロリの横行車輪は,駆動輪又は従動輪である。	(b) トロリの横行車輪は, 駆動輪及び従動輪である。	
(c) トロリの駆動輪は、電動機及び減速機等の回転部分と連結さ	(c) トロリの駆動輪は、電動機及び減速機等の回転部分と連結	(c) トロリの駆動輪は、電動機及び減速機等の回転部分と連結さ	
れているため、地震の加速度が車輪部に加わると回転部分が追随	されているため、地震の加速度が車輪部に加わると回転部分が追	れているため,最大静止摩擦力以上の地震慣性力が車輪部に加わ	
できず、最大静止摩擦力以上の力が加わればレール上をすべる。	随できず、最大静止摩擦力以上の力が加わればレール上をすべ	<u>った場合</u> ,回転部分が追随できず,横行レール上をすべる。	
	る。		
(3) <u>鉛直力</u>	(3) <u>鉛直力</u>	(3) 鉛直荷重	
クレーン及びトロリは、レール上に乗っているだけで固定され	ガーダ及びトロリは、レールと固定されていないことから、鉛	a. 島根2号炉天井クレーンは、トロリストッパ及び落下防止ラ	
ていないことから, 鉛直方向の地震力によってレールから浮き上	直方向の地震力によってレールから浮き上がる可能性がある。	グにより浮上りを防止する構造としていたが、鉛直方向に動的な	
がる可能性がある。		地震動を考慮することにより鉛直方向地震力が大きくなったこ	
		とから、浮上りを許容することで耐震性を確保する構造に変更し	
また, 柏崎刈羽6号及び7号炉の原子炉建屋クレーンは, こ	また、東海第二発電所の原子炉建屋クレーンは、今後実施する	た。これにより、トロリ及びガーダは、レールと固定されていな	
れまでに実施した耐震強化工事によりトロリストッパ及び脱線	耐震補強工事により、大間1号炉のトロリストッパ及び脱線防止	いことから、鉛直方向の地震力によってレールから浮き上がる可	
防止ラグの構造変更を行っており、車輪まわりのトロリストッパ	ラグと同様な構造変更を行うことにより、車輪まわりのトロリス	<u>能性があるが、車輪周りのトロリストッパ及び落下防止ラグの間</u>	
及び <u>脱線防止ラグとレールの間の取り合い</u> 構造は,認可実績のあ	トッパ及び落下防止金具とレールの間の取り合い構造は,認可実	の取合い構造は,許認可実績のある大間1号炉の原子炉建屋天井	
る大間1号炉の原子炉建屋クレーンと同様の構造となっている	績のある大間1号炉の <u>原子炉建屋クレーン</u> と同様の構造と <u>なる</u>	<u>クレーン</u> と同様の構造となっていることから、車輪 <u>周り</u> を含めた	
ことから、車輪まわりを含めた地震応答解析モデルは大間1号炉	ことから、車輪まわりを含めた地震応答解析モデルは大間1号炉	応答解析モデルは大間1号炉と同様にモデル化することができ	
と同様にモデル化することができる。(構造変更の概要は添付資	と同様にモデル化することができる(構造変更の概要は別紙2参	る。島根2号炉天井クレーンの構造変更の概要を添付資料(1-2)	
料(2)参照。)	照)。	<u>に示す</u> 。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版	j)		島根原子力発	笔雨 2号炉		備考
3. 解析評価方針	3. 解析評価方針		3. 解析評価方針				
			3.1 原子炉建物天井クレーンの評価方針				
(1) 評価方法	(1) 評価方法		(1) 評価方法				
既工認、今回工認及び大間1号炉建設工認の評価方法を第3.1	既工認と今回工認の評価方法を第1-1表に示	す。今回工認では、	既工認,今回工	「認及び大間1号	身炉建設工認の語	評価方法を第 3-1	
表に示す。今回丁認では、鉛直動的地震力を考慮する必要がある	鉛直方向の動的地震力を考慮する必要がある	こと及びクレーン	表に示す。今回「	[™] = [™] T認では、鉛直 ⁻	方向の動的地震	力を考慮する必要	
2と及びクレーンの車輪部の構造を変更しておりレールトに因	の車輪部の構造を変更しておりレールトに因	定されていたいと	がある - レ 及び	レールトに固定	されていたい	という構造上の特	
		ルマサナス市幹如の	かめること及い		これしていない。	のぶしれ光動な考	
たされていないていう構造上の特徴を踏まえ、如直方向の地震力	(1) 博坦上の村田を踏まえ、西国方向の地震)			三万円の地長川		の仔上り手動を与	
に対する単輪部の <u>浮さ上かり</u> 挙動を考慮した3 次元FEM 解析モ	<u>浮き上かり、衝突の</u> 挙動を考慮した3次元FE	M解析モアルを用	■ 億した3次元F	EM解析モアル	を用いた非緑	杉時刻歴応答解析	
デルを用いた非線形時刻歴応答解析により評価を実施する。	いた非線形時刻歴応答解析により評価を実施す	-3.	により評価を実施	施する。			
第3.1表 既工認,今回工認及び大間1号炉建設工認の評価方法の	第1-1表 既工認と今回工認の評価方	法の比較	第3-1表 島	根2号炉既工認	,今回工認及ひ	大間1号炉建設	
比較				工認の評価	「方法の比較		
柏崎刈羽6号及び7号炉 土町1号屋	市场体ーを使用し		百日	十間1号/6	島根	2号炉	
項目 町工設 今回工設 (建設工認)	項 目	大間1号炉			既工認	今回工認	
解析手法 手計算による評価 非線形時刻歴応答解析 同左	舩坂毛井 公式等による 非線形時刻歴	同左	解析手法	非線形 時刻歴応答解析	手計算による 評価	非線形 時刻歴応答解析	
解析モデル - 3 次元 FEM 解析モデル 同左	アイン 評価 応答解析	IM/ZL.	解析モデル	3次元FEM解析		3次元FEM解析	
車輪-レール間の すべり考慮 すべり,浮き上がり, 同左	解析モデル - 3 次元FEM 解析モデル - 解析モデル	同左		モデル		モデル	
境界条件 衝突考慮	車輪-レール間の境 ナゴル来感 すべり,浮き上が		 単輪-レール間の 境界条件 	すべり, 浮上り, 衝突考慮	すべり考慮	すべり, 浮上り, 衝突考慮	
地震力 地震力 動的地震力 同左	界条件 り、衝突考慮	问左	水平	動的地震力	動的地震力	動的地震力	
<td>地震力 水平 動的地震力 動的地震力</td> <td>同左</td> <td>鉛直</td> <td>動的地震力</td> <td>静的地震力</td> <td>動的地震力</td> <td></td>	地震力 水平 動的地震力 動的地震力	同左	鉛直	動的地震力	静的地震力	動的地震力	
入力する地震動 るクレーン設置位 レーン設置位置の床応 同左		同左	入力地震動	原子炉建物における クレーン設置位置の	原子炉建物における クレーン設置位置の	原子炉建物における クレーン設置位置の	
置の床応答加速度 答加速度時刻歴	定数 鉛直 - 2.0 %**2	同左		床応答加速度	床応答加速度	床応答加速度	
減衰定数 水平 1.0% ^{※1} 2.0% ^{※2} □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	解析プログラム - Abaqus	同左	減衰 水平	2.0%	1.0% ^{注1}	2.0% ^{注2}	
Abaqus	(Ver. 6. 5-4)		正数 鉛直	2.0% ABAQUS		ABAQUS	
解析プログラム - (6 号炉: Ver.6.11-1) Abaqus (Ver.6.5-4) (Ver.6.5-4)			解析プログラム	(Ver. 6.5-4)	-	(Ver. 6. 11-1)	
(7 号炉: Ver.6.5-4)							
 ※1:既工認では剛であることを確認した上で動的震度を適用し	※1:既工認では剛として耐震評価を実施して	いるため減衰定数	 注1:既工認では	は剛であること	を確認した上で	動的震度を適用し	
ているため減衰定数は評価に使用していない。	は使用していない。		ているため	 加. 減衰定数は 		ていない。	
※2・別紙6の添付資料3 にて適用性を説明	※9、添付資料5にて適用性を説明		注9.沃付資料-	6「最新知見と	して得られた減	一点の必要についた。	
				いて海田姓な	ジェートz		
			······································	四川生を	现约2000		
(2) 地震応答解析モデル	(2) 地震応答解析モデル		(2) 地震応答解析モデル				
<u>クレーン</u> を構成する主要部材をビーム要素でモデル化し、車輪	<u>クレーン</u> を構成する主要部材をビーム要素で	モデル化し、車輪	輪 天井クレーンを構成する主要部材はビーム要素でモデル化す				
部はレール上に乗っており固定されておらず、すべり及び浮き上	部はレール上に乗っており固定されておらず、	<u>すべり, 浮き上が</u>	<u>」る。車輪部はレールに乗っており、すべり及び浮上り等の非線形</u>				
がり挙動を考慮する構造であることから、ギャップ要素及びば	り及び衝突の挙動を示す構造であることから、	ギャップ要素,ば	ば 挙動が生じる構造であることから、ギャップ要素, ばね要素及び				
ね,減衰要素でモデル化する。クレーンの解析モデルを <u>第3.1</u> 図	ね要素及び減衰要素でモデル化する。クレーン	の解析モデルを第	減衰要素でモデ	ル化する。天井	クレーンの解析	テモデルを <u>第_3-1</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
に示す。 なお、今回工認の <u>原子炉建屋クレーン</u> のモデル化は、大間1号 炉と <u>同一の</u> 設定方法 <u>とする。(</u> 車輪部の非線形要素については <u>参</u> <u>考文献(1)参照。)</u>	 1-4図に示す。 なお、今回工認の原子炉建屋クレーンのモデル化は、大間1号 炉と同一の設定方法とする(車輪部の非線形要素については別紙 3参照)。 	図に示す。なお、今回工認の天井クレーンのモデル化は、大間1 号炉建設工認と同様の設定方法である。車輪部の非線形要素については <u>添付資料(1-3)に示す</u> 。	
<figure><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></figure>	<image/> <complex-block><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></complex-block>	<image/> <text><text><text></text></text></text>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(3) 地盤物性等の不確かさに対する検討方針	(3) 地盤物性等の不確かさに対する検討方針	32 地盤物性等の不確かさに対する検討方針	
スペクトルモーダル解析等では、床応答加速度は地盤物性等の	スペクトルモーダル解析等では、床応答加速度は地盤物性等の	スペクトルモーダル解析では,床応答加速度は地盤物性等の不	
不確かさによる固有周期のシフトを考慮して周期方向に±10%拡	不確かさによる固有周期のシフトを考慮して周期方向に±10%	確かさによる固有周期の変動を考慮して周期方向に±10%拡幅	
幅したものを用いている。	拡幅したものを用いている。	した設計用床応答曲線を用いている。	
本評価では設計用床応答スペクトルを用いない時刻歴応答解	本評価では設計用床応答スペクトルを用いない時刻歴応答解	本評価では,時刻歴応答解析を採用することから,今回工認で	
析を採用することから, 今回工認では地盤物性等の不確かさによ	析を採用することから, 地盤物性等の不確かさに対する考慮を適	は地盤物性等の不確かさによる固有周期の変動の影響を考慮し,	
る建屋固有周期のシフトの影響も考慮し、機器評価への影響が大	切に考慮した上で、評価を行う。	機器評価への影響が大きい地震動に対し,ASME Boiler and	
きい地震動に対しASME Boiler and Pressure Vessel Code SECTION	<u>なお</u> ,今回工認では地盤物性等の不確かさによる建屋固有周期	Pressure Vessel Code SECTION ${\rm I\!I\!I}$, DIVISION1 $-$ NONMANDATORY	
III, DIVISION 1-NONMANDATORY APPENDIX N_(ARTICLE N-1222.3 Time	のシフトの影響も考慮し、機器評価への影響が大きい地震動に対	APPENDIX N_(ARTICLE N-1222.3 Time History Broadening)_{ $\mathcal{Z}}$	
History Broadening)に規定された,設計用床応答スペクトルで	f L A S M E Boiler Pressure Vessel Code SECTION III,	規定された手法 <u>等により</u> 検討を行う <u>…Time</u> History	
考慮されている拡幅±10%に相当する地震入力のゆらぎを仮定す	DIVISION1-NONMANDATORY APPENDIX N-1222.3 Time History	Broadeningの概念を第3-2図に示す。	
る手法等による検討を行う予定である。	Broadening に規定された設計用床応答スペクトルで考慮されて	なお, <u>上記変動を</u> 考慮した設計用床応答 <u>曲線</u> の谷間にクレーン	
なお, ゆらぎを考慮した設計用床応答スペクトルの谷間にクレ	いる拡幅±10%に相当するゆらぎを仮定する手法による検討を	の固有周期が存在する場合は、ASMEの規定に基づき、ピーク	
ーンの固有周期が存在する場合は, ASME の規程に基づきピーク	行う予定である。また、ゆらぎを考慮した設計用床応答スペクト	位置が固有周期にあたる場合の検討も行う。	
位置が固有周期にあたるようにゆらぎを考慮した評価も行う。	<u>ル</u> の谷間にクレーンの固有周期が存在する場合は、ASMEの規		
	程に基づきピーク位置が固有周期にあたるようにゆらぎを考慮		
	した評価も行う。本検討方針に対する東海第二発電所の原子炉建		
	屋クレーンへの適用性については詳細設計段階で説明する。		

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	東海第二発電所 (2018.9.18版)	島根原子力発電所 2 ASME B&PV Code Sec. III Appendix-N 2017 より引用 オリジナルの床応答 イリジナルの床応答の時刻歴波に加えて時間刻みを±10%シフトさせた時刻 歴波を作成 オリジナルの床応答の時刻歴波に加えて時刻歴波 イリジナルの床応答の時刻歴波に加えて時刻想 日有周期と合致するよう 開整した時刻歴波 日有周期と合致するよう 開整した時刻歴波 日有周期が床応答スペクトルビークの谷間に存在する 機器の固有周期が床応答スペクトルビークの谷間に存在する (1) (2) (3) (3) (4) (5) (5) (7)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
4. 添付資料	4. 別紙	4. 添付資料	
(1) 原子炉建屋クレーンの主要諸元	(1) 原子炉建屋クレーンの主要諸元	(1-1) 島根2号炉原子炉建物天井クレーンの主要諸元	
(2) 原子炉建屋クレーンの耐震強化工事による構造変更	(2) 原子炉建屋クレーンの耐震補強工事による構造変更	(1-2) 島根2号炉原子炉建物天井クレーンの構造変更	
(3) クレーン車輪部の非線形要素(摩擦…接触…減衰)	(3) クレーン車輪部の非線形要素(摩擦…接触…減衰)	(1-3) クレーン車輪部の非線形要素(摩擦, 接触, 減衰)	
(4) 原子炉建屋クレーンの地震時挙動に関する補足説明	(4) 原子炉建屋クレーンの地震時挙動に関する補足説明	(1-4) クレーンの地震時挙動に関する補足説明	
5. 参考文献	5. 参考文献	5. 参考文献	
(1) 平成19 年度 原子力施設等の耐震性評価技術に関する試験	(1) 平成19年度 原子力施設等の耐震性評価技術に関する試験	(1) 平成19年度 原子力施設等の耐震性評価技術に関する試験	
及び調査 動的上下動耐震試験(クレーン類)に係る報告書(08 耐	及び調査動的上下動耐震試験(クレーン類)に関わる報告書(08	及び調査 動的上下動耐震試験(クレーン類)に係る報告書(08	
部報-0021, (独) 原子力安全基盤機構)	耐部報-0021, (独) 原子力安全基盤機構)	耐部報-0021,(独)原子力安全基盤機構)	
(2) 平成20 年度 原子力施設等の耐震性評価技術に関する試験	(2) 平成20年度原子力施設等の耐震性評価技術に関する試験及	(2) 平成20年度 原子力施設等の耐震性評価技術に関する試験	
及び調査 動的上下動耐震試験 (クレーン類) に係る報告書 (09 耐	び調査動的上下動耐震試験(クレーン類)に関わる報告書(08耐	及び調査動的上下動耐震試験(クレーン類)に係る報告書(09	
┃ 部報-0008, (独)原子力安全基盤機構)	部報-0021,(独)原子力安全基盤機構)	耐部報-0008,(独)原子力安全基盤機構)	

柏崎刈羽]原子力	発電所	6/7長	寺炉 (20 1	17.12.20版)		康	〔海第二発電所	(2018.9.18版))		島根原子力	発電所 2号炉		備考
添	付資料	(1) 原子	炉建屋ク	レーンの主	主要諸元		別紙	1 原子炉建屋	クレーンの主要	話元	添付資料(1	-1) 島根2号炉	原子炉建物天井ク	フレーンの主要諸	構造・仕様の相違
走 サド	W ガーダ 行レール ル 進行ブ	W トロ 横行レール		h h h h k tri tri	n H		H H		Wt huy 11	V g		L 2 D D D WE H-5 WE		トロリ W t	
		۲ 	大間	柏峰	· 「利羽		仕	様	大間1号炉	東海第二発電所	K				
	仕様	督昰	1号炉	6 号炉	7 号炉		トロリ	質量 W to (torn)	80.0	48.0	横行方向			サドル	
h¤	y	Wt(ton) 高さ	80.0	86.5	80.0			w t (ton) 高さ	2.815	2.280				H	
		h(m) スパン	2.815	5.8	2.515			h (m) スパン	2.010	5.0				✓ 走行方向	
		l1(m) スパン	4.6	5.4	4.6			1 1 (m)	7.7	5.6		<i>任</i>	十期1号炉	良担り只応	
ガー	Ķ	l ₂ (m) 質量 Wg(ton)	190	226	190	_		1 2 (m)	4.6	4.1		红 禄 質量 Wt (ton)	80	高很之方炉 56	
		wg(ton) 高さ H(m)	2.5	2.6	2.8		ガーダ	質量 Wg(ton)	190	118.0	トロリ	高さ h (m) スパン l 1 (m)	2.8	3.4	
		スパン L1(m)	34.9	34.9	34.9			高さ H (m)	2.5	1.915		スパン 1 2 (m)	4.6	4.9	
		スパン L2(m)	9.38	6.47	9.38			スパン	34.9	39.5	<i></i>	資重 Wg (ton) 高さ H (m)	2. 5	2. 4	
総質	量	W(ton)	270.0	312.5	270.0			L 1 (m) スパン	0.29	6.9		スパン L1 (m) スパン L2 (m)	34.9	34.9	
						-		L 2 (m)	9.00	0.2	総	質量 W (ton)	270	205	
							総貨重	W(ton)	270. 0	166. 0					

号炉		備考
天井クレーンの	の構造変	
K Þ 9 18	落下防止ラグ及び トロリストッパの 形状を変更	
2 後 オーダ 第下防止ラグ 横行レール		
<u>4</u> -4		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
添付資料(3) クレーン車輪部の非線形要素(摩擦・接触・減衰) クレーン車輪部のモデル化では、すべり、浮き上がり及び衝突の挙動を模擬するためギャップ要素を用いる。また、接触部位の局所変形による接触剛性をばね要素で、衝突による減衰効果を減衰要素で模擬し、第1.1 図に示すように、ギャップ要素と直列に配置する。	<u>別紙3</u> クレーン車輪部の非線形要素(摩擦・接触・減衰) クレーン車輪部のモデル化では、すべり、浮き上がり及び衝突 の挙動を模擬するためギャップ要素を用いる。また、接触部位の 局所変形による接触剛性をバネ要素で、衝突による減衰効果を減 衰要素で模擬し、 <u>別図 1-1</u> に示すように、ギャップ要素と直列に 配置する。	 添付資料(1-3) クレーン車輪部の非線形要素(摩擦,接触,減 衰) クレーン車輪部のモデル化では、すべり、浮上り及び衝突の挙 動を模擬するためギャップ要素を用いる。また、接触部位の局所 変形による接触剛性をばね要素で、衝突による減衰効果を減衰要 素で模擬し、<u>第 3-1 添図</u>に示すように、ギャップ要素と直列に 配置する。 	
・ 節点 ・ * ギャップ要素 ・ : ゴロ要素 ・ : ゴロ要素 ・ : ゴロ要素 ・ : 国定点(回要動入力点) 第1.1 図 車輪部の非線形要素 2. 車輪とレール間の摩擦特性 クレーンの車輪には電動機及び減速機等の回転部分と連結された駆動輪と、回転部分と連結されていない従動輪の2 種類がある(第1.2 図)。このうち駆動輪は回転が拘束されているため、 地震の加速度を車輪部に入れると回転部分が追随できず、最大静 止摩擦力以上の力が加わればレール上をすべる。 ここで、摩擦係数は既工認と同様の0.3 を用いる。	 ・:節点 :ビーム要素 :ビーム要素 :ビーム要素 :バネ要素 :バネ要素 :バネ要素 :バネ要素 :減衰要素 別図1-1 車輪部の非線形要素 1. 車輪とレール間の摩擦特性 クレーンの車輪には電動機、減速機等の回転部分と連結された 駆動輪と、回転部分と連結されている :01-2 参照)。このうち駆動輪は回転が拘束されているため、地 このうち駆動輪は回転が拘束されているため、地	第二、中央 第二、中央 「「「」」」」」」」」」 「」」」」」 第3-1 孫図 丁二 第3-1 孫図 丁二 第3-1 孫図 丁二 丁二	

号炉	備考
7向(N S 方向)	
「防止ラグ	
の概要図	
*等の耐震性評価技術に (クレーン類)に <u>係る</u> 全基盤機構)」を参照し, ばね要素 <u>を考慮し,</u> クレ 貢動数が 20Hz 相当にな	
・力施設等の耐震性評価 討震試験(クレーン類) 子力安全基盤機構)」に (試験結果 <u>より</u> 評価した 5発係数の関係式には次	
っる。 の関係を <u>第_3-3_添図</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
$ \begin{bmatrix} 1.0 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 $	herefore for the second state of the secon	$\hat{g}_{0,0}$ \hat	
 添付資料(4) 原子炉建屋クレーンの地震時挙動に関する補足説 明 1 車輪とレールとの摩擦力及び落下防止部材との接触による摩 	<u>別紙4</u> 原子炉建屋クレーンの地震時挙動に関する補足説明 1 車輪とレールとの摩擦力及び落下防止部材との接触による	<u>添付資料(1-4) クレーン</u> の地震時挙動に関する補足説明	
1. 単幅について 物力の老庫について			
クレーンけレール上を車輪で移動する構造であるため 建屋に	クレーンけ レールトを車輪で移動する構造であるため 建屋	クレーンけレールトを車輪で移動する構造であるため、地震時	
固定されておらず 地震時にはレールに沿う方向にはすべりが発	に固定されておらず 地震時にはレールに沿う方向にはすべりが	にはレールに沿う方向にすべりが発生し、最大静止摩擦力以上の	
生し、摩擦力以上の荷重を受けたい構造である。	発生」。摩擦力以上の荷重を受けたい構造である。	荷面を受けたい構造である。	
クレーン本体とランウェイガーダ間の取り合い部を例とする	クレーン本体とランウエイガーダ間の取り合い部を例とする	天井クレーン本体とランウェイガーダ間の取合い部を例とす	
と、すべりを想定する面としては、鉛直方向(車輪~レール間)	と、すべりを想定する面としては、鉛直方向(車輪からレール間)	ると、すべりを想定する面としては、鉛直方向(車輪-レール間)	
と水平方向(脱線防止ラグ~ランウェイガーダ間)が挙げられる。	と水平方向(落下防止金具からランウエイガーダ間)が挙げられ	及び水平方向(落下防止ラグーランウェイガーダ間)が挙げられ	
(第1 図)	る (別図 1-4 参照)。	る (第 4-1 添図)。	
鉛直方向加速度が1Gを上回りクレーン本体が浮き上がりの挙動	鉛直方向加速度が 1G を上回りクレーン本体が浮き上がりの挙動	速度が1Gを上回りクレーン本体が浮き上がるわずかな時間帯	
を示すごく僅かな時間帯を除き、常に車輪はレール上面に接触し	を示すごく僅かな時間帯を除き、常に車輪はレール上面に接触し	を除き、常に車輪はレール上面に接触し垂直抗力Nが発生する。	
垂直抗力Nが発生する状態であることから、摩擦係数μ (=0.30)	垂直抗力Nが発生する状態であることから、摩擦係数 μ (=0.30)	したがって, 摩擦係数 µ (=0.30) 一定の条件の下, 垂直抗力N	
一定の条件の下, 垂直抗力Nを時々刻々変化させた摩擦力f (= µ N)	一定の条件の下,垂直抗力Nを時々刻々変化させた摩擦力f(=	を時々刻々変化させた摩擦力f (= µ N)を考慮している。	
を考慮している。	µN)を考慮している。		
これに対して,水平方向には常時作用する荷重が無く,水平方	これに対して,水平方向には常時作用する荷重が無く,水平方	これに対し、水平方向には常時作用する荷重はなく、水平方向	
向(横行方向)の地震力が作用し <u>脱線防</u> 止ラグがランウェイガー	向(横行方向)の地震力が作用し落下防止金具がランウエイガー	(横行方向)の地震力が作用し落下防止ラグがランウェイガーダ	
ダ側面に接触する際にのみ垂直抗力Rが発生する。しかしながら、	ダ側面に接触する際にのみ水平抗力Rが発生する。しかしなが	側面に接触する際にのみ垂直抗力Rが発生する。しかし,地震力	
地震力は交番荷重であること及び,接触後も部材間の跳ね返りが	ら,地震力は交番荷重で <u>あること及び</u> 接触後も部材間の跳ね返り	は交番荷重であり、接触後も部材間の跳ね返りが発生することか	

4条-別紙7-20

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
発生することから、側面の接触時間はごく僅かな時間となる。ま	が発生することから、側面の接触時間はごく僅かな時間となる。	ら,側面の接触時間はごく <u>わず</u> かな時間となる。また、大きな摩	
た、大きな摩擦力が発生するためには、横行方向の地震力により	また、大きな摩擦力が発生するためには、横行方向の地震力によ	擦力が発生するためには、横行方向の地震力により瞬間的に <u>垂直</u>	
瞬間的に垂直抗力Rが発生する間に、走行方向の大きな地震力が	り瞬間的に水平抗力Rが発生する間に,走行方向の大きな地震力	抗力Rが発生する間に,走行方向 <u>に</u> 大きな地震力が同時に <u>発生</u> す	
同時に作用することが必要であることから、各方向地震動の非同	が同時に作用することが必要であることから,各方向地震動の非	ることが必要であることから、各方向地震動の非同時性を考慮	
時性を考慮し、側面の接触による摩擦力は考慮していない。側面	同時性を考慮し、側面の接触による摩擦力は考慮していない。	し、側面の接触による摩擦力は考慮しない。側面の接触による摩	
の接触による摩擦力の影響を小さいと判断している妥当性につ		擦力の影響については詳細設計段階で確認を行う。	
いては詳細設計段階にて念のため確認を行う。			
なお,基準地震動Ss による地震力に対して,駆動輪に接続さ	なお,基準地震動S _s による地震力に対して,駆動輪に接続さ	なお, 基準地震動Ssによる地震力に対して, 駆動輪に接続さ	
れる電動機及び減速機等の回転部分が破損し駆動輪が自由に回	れる電動機及び減速機等の回転部分が破損し駆動輪が自由に回	れる電動機及び減速機等の回転部分が破損し,…駆動輪が自由に回	
転する可能性も考えられるが、その場合は駆動輪が回転すること	転する可能性も考えられるが、その場合は駆動輪が回転すること	転する可能性も考えられるが、その場合は駆動輪が回転すること	
により摩擦力は低減することから,上記のように摩擦力を考慮し	により摩擦力は低減することから,上記のように摩擦力を考慮し	により摩擦力は低減する。したがって,上記のような摩擦力を考	
た評価を行うことで保守的な評価となると言える。	た評価を行うことで保守的な評価となると言える。	慮した評価を行うことで保守的な評価になる。	
接触時の接触面拡大図	~~~~~		
水平方向の接触面 ガーダ	垂直抗力N	水平方向 の接触面	
		鉛直方向 の接触面 単二 単二 単二 単 重直抗力R	
鉛直方向 水平方向 脱線防止ラグ		新正方向 水平方向	
729=177-9	客下防止金具 接触時の接触面拡大図	落下防止ラグ	
		フンワエイカータ	
第1 図 鉛直方向と水平方向の接触面	別図 1-4 鉛直方向と水平方向との接触面	<u>第4-1 添図</u> 鉛直方向と水平方向の接触面	
2. レール等の破損による解析条件への影響について	2. レール等の破損による解析条件への影響について	2. レール等の破損による解析条件への影響について	
クレーンのモデル化にあたっては、車輪がレール上にあり、レ	クレーンのモデル化にあたっては、車輪がレール上にあり、レ	クレーンのモデル化に当たり、車輪がレール上にあり、レール	
ール直角方向に対しては脱線防止ラグ又はトロリストッパが接	ール直角方向に対しては落下防止金具又はトロリストッパが接	直角方向に対し落下防止ラグあるいはトロリストッパの支持機	
触して機能することを前提としている。	触して機能することを前提としている。	能が維持されていることを前提としている。	
ここでは、地震応答解析モデルの前提としている「レール上に	ここでは、地震応答解析モデルの前提としている「レール上に	本項では、地震応答解析モデルの前提としている「レール上に	
車輪が乗っていること」が、脱線防止ラグ又はトロリストッパの	車輪が乗っていること」が落下防止金具又はトロリストッパの健	車輪がある」ことが, 落下防止ラグあるいはトロリストッパの健	
健全性を確認することで満足されることを, クレーン本体とラン	全性を確認することで満足されることを, クレーン本体とランウ	全性を確認することで満足されることを天井クレーン本体とラ	
ウェイガーダ間の取り合い部を例として示す。	エイガーダ間の取り合い部を例として示す。	ンウ <u>エ</u> イガーダ間の <u>取合い</u> 部を例として示す。	
<u>クレーン</u> 横行方向に地震力が作用する際は、車輪がレール上に	<u>クレーン</u> 横行方向に地震力が作用する際は、車輪がレール上に	<u>天井クレーン</u> 横行方向に地震力が作用する <u>とき</u> は、車輪がレー	
乗り上がる挙動が想定されるが, <u>脱線防止ラグ</u> がランウェイガー	乗り上がる挙動が想定されるが, <u>落下防止金具</u> がランウエイガー	ル上に乗り上がる挙動が想定されるが, <u>落下防止ラグ</u> がランウ <u>エ</u>	
ダに接触することで,横行方向の移動量は制限される。脱線防止	ダに接触することで,横行方向の移動量は制限される。落下防止	イガーダに接触することにより横行方向の移動量は制限される。	
ラグは構造強度部材として基準地震動Ss によって生じる地震力	金具は構造強度部材として基準地震動Ssによって生じる地震力	<u>落下防止ラグ</u> は構造強度部材として基準地震動Ssにより生じ	
に対して,許容応力を満足する設計としており,地震で破損する	に対して,許容応力を満足する設計としており、地震で破損する	る地震力に対して耐震性が成立する設計としており、地震で破損	

4条-別紙7-21

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
ことは無いため、脱線防止ラグとランウェイガーダ間のギャップ	ことは無いため、落下防止金具とランウエイガーダ間のギャップ	することは <u>ない</u> ため, <u>落下防止ラグ</u> とランウ <u>エ</u> イガーダ間のギャ	
量 に相当する移動量となった場合であっても、構造上車輪はレー	量に相当する移動量となった場合であっても、構造上車輪 <u>は</u> レー	ップに相当する移動量となった場合でも構造上車輪がレールか	
ル上から落ちることは無い。(第2.図)	ル上から落ちることは無い(別図 1-5.参照)。	ら <u>落下する</u> ことは <u>ない(第 4-2 添図参照</u>)。	
クレーン本体ガーダとトロリストッパの寸法も同様の関係と	本体ガーダとトロリストッパの寸法も同様の関係となってい		
tratuse	- Zam		
また,脱線防止ラグとランウェイガーダが接触するより前に,	また,落下防止金具とランウエイガーダが接触するより前に,	また, <u>落下防止ラグ</u> とランウエイガーダが接触する前に車輪か	
車輪からレールに荷重が伝わることとなるが、車輪のつばとレー	車輪からレールに荷重が伝わることとなるが、車輪のつばとレー	らレールに荷重が伝わることとなるが、車輪のつばとレールが接	
ルが接触(移動量12.5mm)してから <u>脱線</u> 防止ラグとランウェイガ	ルが接触(移動量12.5mm)してから落下防止金具とランウエイガ	触(移動量 12.5mm)してから <u>落下防止ラグ</u> とランウ <u>エ</u> イガーダが	
ーダが接触(移動量35mm)し移動が制限されるまでの移動量は	ーダが接触(移動量 35mm) し移動が制限されるまでの移動量は	接触(移動量 35mm) し移動が制限されるまでの移動量は 22.5mm	
22.5mm_(=35mm-12.5mm)_程度であることから,脱線防止ラグが接	22.5mm (=35mm-12.5mm) 程度であることから,落下防止金具が	程度であることから、 落下防止 ラグが 接触して 機能する前に鋼製	
触して機能する前に鋼製部材であるレールが大きく破損するこ	接触して機能する前に鋼製部材であるレールが大きく破損する	部材であるレールが大きく破損することはないと考えられる。	
とは無いと考えられる。	ことは無いと考えられる。このように、車輪のつばの有無によら		
	ず構造強度部材である落下防止金具が機能することで車輪がレ		
	ール上にとどまる設計であることから、車輪のつばは地震応答解		
	析の前提条件に影響するものでは無い。		
以上より,地震時に <u>脱線</u> 防止ラグがランウェイガーダに接触し	以上より、地震時に落下防止金具がランウエイガーダに接触し	以上より,地震時に <u>落下防止ラグ</u> がランウ <u>エ</u> イガーダに接触し	
て機能する前に、車輪がすべり面であるレールから落下すること	て機能する前に、車輪がすべり面であるレールから落下すること	て機能する前に、車輪がすべり面であるレールから落下すること	
や, レールが大きく破損することが無いことから, 脱線防止ラグ	や, レールが大きく破損することが無いことから、落下防止金具	やレールが大きく破損することがないことから、落下防止ラグが	
が機能する前に地震応答解析モデルの前提を満足しなくなるお	が機能する前に地震応答解析モデルの前提を満足しなくなるお	機能する前に地震応答解析モデルの前提を満足しなくなるおそ	
それは無いと判断しているが、地震時に脱線防止ラグがランウェ	それは無いと言える。	れはないと考えられるが, 地震時に落下防止ラグがランウェイガ	
イガーダに接触して機能する前の車輪とレールの接触による影		ーダに接触して機能する前の車輪とレールの接触による影響に	
響については、詳細設計段階にて念のため確認を行う。		ついては、詳細設計段階にて念のため確認を行う。	

号炉	備考
落下防止ラグ	
ガーダ	
ゴがレールに接触	
)	
とランウ <u>エ</u> イガーダが n)	
防止の概念図 建1	
とを示すための概念図 t実物とは異なる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	別紙-9	添付資料—2	
	女川原子力発電所2号炉		
	世界がホンノ主門型ノレーンへの	<u>取水慣力ントリクレーンへの</u> 非線形時刻歴応各時位の適用について	
	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
	目次	目次	
	1. はじめに・・・・・ 1	1. はじめに	
	2. 基本方針	2. 基本方針	
	2.1 要求事項	2.1 要求事項	
	2.2 構造の概要······3	2.2 構造の概要	
		<u>2.2.1 取水槽ガントリクレーンの主要構造</u>	
		2.2.2 単軸粘性ダンパ	・設備構成の相違
		<u>2.2.3</u> 転倒防止装置の構造	【女川 2】
		<u>2.2.4 トロリストッパ</u>	島根2号炉の取水槽
		<u>2.2.5 ホイストレール・車輪</u>	ガントリクレーンは, 脱
			線防止装置ではなく転
	2.3 評価方針 ····· 5	2.3 評価方針	倒防止装置により転倒
	2.4 適用規格 ····· 6	2.4 適用規格	を防止する点,吊上げ装
	3. <u>耐震評価</u> 方法······7	3. 応答解析の方法	置としてホイストが存
	3.1 解析方法及び解析モデル	3.1 解析方法及び解析モデル	在する点,単軸粘性ダン
	3.1.1 解析方法の詳細 7	3.1.1 解析方法の詳細	パを設置している点が _ 、
	3.1.2 解析モデル及び諸元	3.1.2 解析モデル及び諸元	
	3.1.3 解析モデルの境界条件・・・・・ 9	3.1.3 解析モデルの境界条件	(以下,①の相違)
	2.9. 評価計免却位		・記載古針の知造
	<u>3.2 計恤风家司位</u> 11 2.2 入力地震動	29 入力批電動	
			▲ ● 根 2 号 恒 で け 同 様
	4 評価方法 19	4 耐震評価の方法	の内容を43に記載
	4.1.評価方針	4.1 評価方針	
	4.2 荷重の組合せ····································	4.2 荷重の組合せ	
		4.3 評価対象部位	・記載方針の相違
			【女川 2】
			女川2では,同様の内
			容を3.2に記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	4許容限界 ······ 19	<u>4.4</u> 許容限界	
		4.4.1 許容応力	
		<u>4.4.2 許容浮上り量</u>	
			司法律よったがあ
	4.4.冬如の証研士社 20	4.4.4 単軸柏性タンパの計谷限外 4.5.4 単軸柏性タンパの計谷限外	
		1.5.1 <u>取べ頂バッパン</u> レース及び自動粘性ダンパクレビス部	・設備構成の相違
		の応力評価方法	【女川 2】
			①の相違
			C THAT
	4.4.2 脱線防止装置及びトロリストッパの浮上がり評価方法	<u>4.5.2</u> トロリの <u>浮上り</u> 評価方法	・設備構成の相違
			【女川 2】
	4.4.3 吊具の荷重評価方法 ・・・・・ 22	<u>4.5.3</u> 吊具の荷重評価方法	①の相違
		4.5.4 単軸粘性ダンパの変位及び荷重評価方法	
	5. 評価結果 · · · · · · · · · 23	5. <u>評価条件・</u> 評価結果	
		5.1 評価条件	・記載方針の相違
		5.2 評価結果	【女川 2】
			島根2号炉では,評価
			結果に加えて,評価条件
	送 LH 次 出	· 沃什· 次 业]	についても記載する
	你 小 賃 科 沃什姿料 1 みたて東の概要		(以下, ②の相違)
			 記載古針の相違
			■
			3)で記載している
	 添付資料3 海水ポンプ室門型クレーンへの非線形時刻歴解析の適	 (2-2) 取水槽ガントリクレーンへの非線形時刻歴応答解析の適	
	用性	用性	
		(2-3) 取水槽ガントリクレーンの解析ケースの設定	・記載方針の相違
			【女川 2】
			女川2では添付資料2
	添付資料4 海水ポンプ室門型クレーンの地震時挙動に関する補足		で記載している

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20片	反) 女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	説明		
		(2-4) 取水槽ガントリクレーン車輪部の非線形要素(摩擦,接	・記載方針の相違
			【女川 2】
		(2-5) 取水槽ガントリクレーン本体及びトロリのすべりの影響	女川2では,参考資料
		について	 1,参考資料3に記載
	1. はじめに	1. はじめに	
	設計基準対象施設のうち <u>耐震重要度分類</u> Sクラスに属する施	設計基準対象施設のうちSクラスに属する施設、その間接支持	
	設,その間接支持構造物及び屋外重要土木構造物(以下「Sクラ	構造物及び屋外重要土木構造物(以下「Sクラス施設等」という。)	
	ス施設等」という。)が下位クラス施設の波及的影響によってその	が下位クラス施設の波及的影響によってその安全機能を損なわな	
	安全機能を損なわないこと、また、重大事故等対処施設のうち常	いこと、また、重大事故等対処施設のうち常設耐震重要重大事故	
	設耐震重要重大事故防止設備及び常設重大事故緩和設備並びにこ	防止設備及び常設重大事故緩和設備並びにこれらが設置される常	
	れらが設置される常設重大事故等対処施設(以下「重要 SA 施設」	設重大事故等対処施設(以下「重要SA施設」という。)が下位ク	
	という。)が下位クラス施設の波及的影響によって重大事故等に対	ラス施設の波及的影響によって重大事故等に対処するために必要	
	処するために必要な機能を損なわないことについては,「上位クラ	な機能を損なわないことについては、「 <u>別紙-9</u> 下位クラス施設	
	ス施設の安全機能への下位クラス施設の波及的影響の検討」(以下	の波及的影響の検討について」(以下「波及的影響検討」という。)	
	「波及的影響検討」という。)の適合性評価において確認している。	において確認している。	
	波及的影響検討において抽出された下位クラス施設のうち、女	波及的影響検討において抽出された下位クラス施設のうち、鳥	
	<u>川2号炉の海水ポンプ室門型クレーン</u> について <u>は、基準地震動 Ss</u>	根2号炉の取水槽ガントリクレーンの耐震評価について, 取水槽	
	に対して十分な構造強度を有することを確認することでSクラス	ガントリクレーンがレール上に固定されていないという構造上の	
	施設等及び重要 SA 施設(以下「上位クラス施設」という。)へ地	特徴を踏まえ、鉛直方向地震力に対する車輪の浮上り等の挙動を	
	震時に影響を及ぼさないことを説明する。	考慮した応答解析の方法及び耐震評価の方法について示す。また、	
		耐震評価を実施し,構造成立性の見通しを示す。なお,取水槽ガ	・設備構成の相違
		<u>ントリクレーンに設置する単軸粘性ダンパの詳細については、「別</u>	【女川 2】
		紙-18 機器・配管系への制震装置の適用について」に示す。	①の相違
	2. 基本方針	2. 基本方針	
	2.1 要求事項	2.1 要求事項	
	<u>海水ポンプ室門型クレーンは海水ポンプ室を跨ぐ形で</u> 設置され	取水槽ガントリクレーンは,取水槽海水ポンプエリア及び取水	
	ており,海水ポンプ室補機ポンプエリアに設置している非常用海	<u> </u>	
	水ポンプ等のメンテナンスに使用される設備である。海水ポンプ	ポンプ等のメンテナンスに使用される設備である。取水槽ガント	
	<u>室門型クレーンの設置位置について第2.1-1図に示す。</u>	<u>リクレーン</u> の設置位置について <u>第2-1図</u> に示す。	
	発電所の運転中など非常用海水ポンプ等のメンテナンスを実施	発電所の運転中など原子炉補機海水ポンプ等のメンテナンスを	
	しない期間は、海水ポンプ室門型クレーンは図中に示す通常待機	実施しない期間は、取水槽ガントリクレーンは待機位置に待機し	
	位置に待機しているため,周辺の上位クラス施設とは十分な離隔	ており、周辺の上位クラス施設とは十分な離隔距離があることか	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	距離があることから波及的影響を及ぼすおそれはない。一方で、	ら波及的影響を及ぼすおそれはない。一方で、定期検査中など原	
	定期検査中など非常用海水ポンプ等のメンテナンスを実施する期	子炉補機海水ポンプ等のメンテナンスを実施する期間には、上位	
	間には、上位クラス施設が設置されている補機ポンプエリア付近	クラス施設が設置されている取水槽海水ポンプエリア付近に位置	
	に位置することとなる。そのため、海水ポンプ室門型クレーンが	することとなるため、取水槽ガントリクレーンが地震に伴う損傷、	
	地震に伴う損傷落下によって補機ポンプエリアに設置されてい	落下によって上位クラス施設へ波及的影響を及ぼさないことが要	
	る上位クラス施設へ波及的影響を及ぼさないことが要求される。	求される。	
	 シエルシノヘルロスへ取及の影響を及ばさないことが要求される。 第2.1-1 図 海水ボンブ室門型クレーンの設置位置概要 2.2 構造の概要 進水ボンブ室門型クレーンは剛脚, 揺脚, ガーダ及びトロリなどの構造体で構成されている。全体構造図を第2.2-1 図に示す。 剛脚, 揺脚はその上部にあるガーダを支持し, 下部には走行装置が設置されている。剛脚はガーダと剛接合, 揺脚はクレーン走行方向の軸回りに摺動回転可能な継手でガーダと接合されている。 	メークシーション メークシーション メークシーション シークシーション メークシーション シークシーション シークシーション シークシーション シークシーション シークシーシン シークシーシン シークシーシン シーシーシン シークシーシン シーシーシン シーシーシン シーシーシーシン シーシーシン	 ・設備構成の相違 【女川2】 ①の相違 ・設備構成の相違 【女川2】 ①の相違 ・設備構成の相違 【女川2】 「助脚, 招脚の2種があるが, 島根2号炉取水槽ガントリクレーンには揺
			脚はない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
			(以下, ③の相違)
	ガーダは剛脚, 揺脚の上部に設置されており, その上面にトロリ	ガーダは脚の上部にあり、その上面にトロリが移動するための	
	が移動するための横行レールが設置されている。トロリは横行レ	横行レールが <u>設置されており、下部にはホイストレールが</u> 設置さ	・設備構成の相違
	ール上に位置しており、非常用海水ポンプ等のメンテナンス時等	れている。原子炉補機海水ポンプ等のメンテナンス時には, トロ	【女川 2】
	に吊荷を巻き上げるための巻上げ装置を有している。非常用海水	リに設置された巻上げ装置(主巻),又はホイストを使用して,ワ	 の相違
	ポンプ等のメンテナンス時には、トロリに設置された巻上げ装置	イヤロープ及びフックを介し、吊荷の吊上げ、吊下げ、移動等の	
	とワイヤロープ及び主巻フックを介し、吊荷の吊上げ、吊下げ、	作業を実施する。	
	移動等の作業を実施する。		
		取水槽ガントリクレーンは大型の構造物であり,制震装置の設	・設備構成の相違
		置による地震荷重の低減が耐震性向上に有効である。取水槽ガン	【女川 2】
		トリクレーンの応答は、走行レールの直交方向に脚が変形する振	①の相違
		動モードが支配的であり、ガーダと脚の間にブレースを介して単	
		軸粘性ダンパを制震装置として設置する。	
		単軸粘性ダンパ取付部の構造を第2-3図に示す。ダンパ本体の	
		長さは標準設計の約1.5mとし,これに約10mのブレースを接続し	
		ている。単軸粘性ダンパとガーダの接続、ブレースと脚の接続部	
		にはクレビスと呼ぶ回転部を設けている。このクレビスは単軸粘	
		性ダンパの伸縮方向と直交する一方向にはピンを軸として自由に	
		回転可能となっている。また、ピンの軸受部は球面軸受となって	
		おり、クレビスの回転方向以外の方向にも約3度の許容回転角度	
		を有することで、単軸粘性ダンパに伸縮方向以外の荷重が加わら	
		ない構造としている。	
		単軸粘性ダンパ及び取付部材の質量は適切に地震応答解析モデ	
		ルに反映する。	
	また、クレーン本体は海水ポンプ室の東側と西側に敷設された	<u>取水槽ガントリ</u> クレーン本体は, <u>取水槽海水ポンプエリアの北</u>	
	走行レール上を <u>剛脚, 揺脚</u> 下部にある走行装置並びに車輪によっ	側と取水槽循環水ポンプエリア南寄りに敷設された走行レール上	
	て移動する。トロリについてはガーダ上面の横行レール上をトロ	を脚下部にある走行装置及び車輪によって東西方向に移動する。	
	リ下部にある走行装置並びに車輪によって移動する。	トロリは, ガーダ上面の横行レール上を横行装置及び横行車輪に	
		よって <u>南北方向に</u> 移動する。 <u>ホイストは、ガーダ下に設置された</u>	・設備構成の相違
		ホイストレールに沿って,南北方向に移動する。	【女川 2】
			①の相違
	<u>さらに</u> , クレーン本体, トロリの脱輪による転倒もしくは落下	また, 取水槽ガントリクレーン本体の地震による転倒を防止する	
	を防止するため、それぞれ脱線防止装置、トロリストッパが設置	ため、本体下部に転倒防止装置が設置されており、地震時に浮上	・設備構成の相違
	されており、地震発生時に浮上がりが起こった場合でも脱輪によ	りが生じた場合でも転倒しない構造となっている。トロリにはト	【女川 2】
	る転倒もしくは落下を生じない構造となっている。	ロリストッパを設置しており,浮上りによる脱線·落下を防止す	①の相違
		<u>る</u> 構造となっている。	
	なお、本資料で示す評価結果は、改造工事実施後の状態に対す	なお、本資料で示す取水槽ガントリクレーンの構造は、改造後	
	<u>る</u> ものである。改造 <u>工事</u> の概要を添付資料 <u>1</u> に示す。	の状態のものである。改造箇所の概要を添付資料((2-1))に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		第2-2図 取水槽ガントリクレーンの構造	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		ダンパ部 ブレース部 約 1500 約 10000 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		単軸粘性ダンパ及びブレースの構造	
		<u>第2-3図 単軸粘性ダンパ取付部の構造</u>	・設備構成の相違 【女川 2】 ①の相違
		2.2.2 単軸粘性ダンパ 単軸粘性ダンパの仕様を第2-1表に示す。単軸粘性ダンパの基 本構成,動作を第2-4図に示す。単軸粘性ダンパは,ピストン, ロッドが軸方向に移動することにより,シリンダ内面とピストン の外面の間に形成されるオリフィス部を粘性流体が流れ,その抵 抗力により減衰性能を発揮するものである。単軸粘性ダンパの粘 性体は化学的に安定であり,消防法で定められている危険物に該	 ・設備構成の相違 【女川 2】 ①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所	2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
			当しない。	
			第2-1表 単軸粘性タンハの仕様 定格荷重 全長 外径 質量 許容荷重 許容変位 (kN) (mm) (mm) (kg) (kN) (mm) 220 1535 224 533 300 100	・設備構成の相違 【女川 2】 ①の相違
			シリンダ オリフィス部 ピストン ロッド 充填剤	
			充填剤の流れ	
			充填剤の流れ	
			<u>第2-4図 単軸粘性ダンパの動作原理</u>	・設備構成の相違 【女川 2】 ①の相違
			2.2.3 転倒防止装置の構造 取水槽ガントリクレーン本体車輪部には、地震によって浮上り が発生した場合でも転倒しないように転倒防止装置が取り付けら	・設備構成の相違 【女川 2】 ①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2	2 号炉(2020. 2. 7 版)	島根原子力発電所 2号炉	備考
			れており, 浮上りによる脱線・転倒を防止する構造となっている。	
			転倒防止装置の構造を第2-5図に示す。	
			転倒防止装置 一 一 一 一 一 一 一 一 一 一 一 一 一	
			<u>第2-5図 転倒防止装置の構造</u>	 ・設備構成の相違 【女川 2】 ①の相違
			 2.2.4 トロリストッパ トロリの車輪部には、地震によって浮上りが発生した場合でも 落下しないようにトロリストッパを設置し、浮上りによる脱線・ 落下を防止する構造とする。トロリストッパの概略構造を第2-6 図に示す。 	・記載方針の相違 【女川 2】 女川 2 では, 3.1 にト ロリストッパを記載
			トロリ 横行車輪 <i>ガーダ</i> トロリストッパ	
			<u>第2-6 図 トロリストッパの概略構造</u>	 ・記載方針の相違 【女川 2】 女川 2 では,第3.1-2 図にトロリストッパを 記載
			2.2.5 ホイストレール・車輪 ホイストは、ホイスト車輪がホイストレールを挟み込むことに より懸架されている。ホイストレール及びホイスト車輪の構造を 第 2-7 図に示す。	・設備構成の相違 【女川 2】 ①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		ホイストレール ホイスト車輪(従動輪) ホイスト車輪(駆動輪)	
	2.3 評価方針 <u>海水ポンプ室門型クレーン</u> の評価に <u>ついて</u> は,「2.2 構造の概 要」にて示した <u>海水ポンプ室門型クレーン</u> の構造を踏まえ作成し た「3.1 解析方法及び解析モデル」に示す解析モデルを用いて解 析を行う。解析によって得られた結果を用いて「3.2 評価対象部 位」に示す構造部位について発生する応力を算出し,許容限界以 内であることを確認する。応力評価の方法と評価結果については, <u>それぞれ「4.評価方法」と「5.評価結果」に示す。</u> <u>海水ポンプ室門型クレーン</u> の耐震評価 <u>方法のフローを第2.3-1</u> 図に示す。	 第2-7図 ホイストレール及び車輪の構造 2.3 評価方針 取水槽ガントリクレーンの耐震評価にあたっては、「2.2 構造の概要」にて示した取水槽ガントリクレーンの構造を踏まえ作成した「3.1 解析方法及び解析モデル」に示す解析モデルを用いて地 震応答解析を行う。解析によって得られた結果を用いて「4. 耐震 評価方法」に示す方法により応力、荷重等が許容限界以内であることを確認する。 取水槽ガントリクレーンの耐震評価フローを第2-8 図に示す。 	 ・設備構成の相違 【女川 2】 ①の相違
	解析モデル設定 設計用地震動 多質点はりモデルの作成 地震応答解析 地震応答解析 地震応答解析 地震力による荷重 地震と組み合わせる荷重 成力の算出 広力の算出 海水ポンプ室門型クレーンの構造強度評価 第2.3-1 図 海水ポンプ室門型クレーンの耐震評価フロー	解析モデル設定 設計用地震動 3次元FEN解析モデルの作成 地震応答解析 地震に含荷重 地震によって わせる荷重 地震によって わせる荷重 トロリの 浮上り量 成立の算出 耐震評価 第2-8 図 取水槽ガントリクレーンの耐震評価フロー	 ・設備構成の相違 【女川 2】 ①の相違

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女)	川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	2.4 適用規格		2.4 適用規格 取水槽ガントリクレーンの設計には、以下の規格(以下「JE AG4601等」という。)を適用する。	
	 ・「発電用原子 (社)日本機構 ・「原子力発電 JEAG4601・補・ ・「原子力発電 気協会 ・「原子力発電 日本電気協会 	力設備規格 設計・建設規格 JSME S NC 1-2005/2007」 或学会 所耐震設計技術指針 重要度分類・許容応力編 -1984」(社)日本電気協会 所耐震設計技術指針 JEAG4601-1987」(社)日本電 :所耐震設計技術指針 JEAG4601-1991 追補版」(社)	 ・「原子力発電所耐震設計技術指針」JEAG4601-1987」 (社)日本電気協会 ・「原子力発電所耐震設計技術指針 重要度分類・許容応力 編 JEAG4601・補-1984」(社)日本電気協会 ・「原子力発電所耐震設計技術指針 JEAG4601-1991追 補版」(社)日本電気協会 ・「発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年 追補版を含む))<第I編 軽水炉規格>JSME S NC1-2005 /2007」(日本機械学会) 	
	 3. 耐震評価方 3.1 解析方法 海水ポンプ 重評価に用い、 下に示す。 	法 及び解析モデル 室門型クレーンの応力評価に用いる地震荷重及び荷 る加速度を算定するための地震応答解析について以	 応答解析の方法 1 解析方法及び解析モデル 取水槽ガントリクレーンの地震応答解析方法及び解析モデルについて以下に示す。 	
	 3.1.1 解析方法 (1) 海水ポンゴ が発生する 価するため 析を適用す 応答解析の (2) クレーンゴ 定されてい 解析に当力 	去の詳細 プ室門型クレーンは、地震加速度によって浮上がり 5 可能性があるため、その浮上がり状況を適切に評 5 に、多質点はりモデルによる非線形時刻歴応答解 -る。海水ポンプ室門型クレーンへの非線形時刻歴 つ適用性については添付資料3.に示す。 本体及びトロリの車輪部はレール上に乗っており固 いないため、すべりが発生する構造であることから、 -っては車輪、レールのすべり状況を考慮する。	 3.1.1 解析方法の詳細 (1) 取水槽ガントリクレーンは、地震時に浮上りが発生する可能性があり、浮上り状況を適切に評価するために3次元FEM解析モデルによる非線形時刻歴応答解析を適用する。取水槽ガントリクレーンへの非線形時刻歴応答解析の適用性については添付資料(2-2)に示す。 (2) 取水槽ガントリクレーン本体及びトロリの車輪部はレール上に乗っており固定されていないため、すべりが発生する構造であることから、解析にあたっては車輪、レールのすべり状況を考慮する。 	
	 (3) 吊具の評(トラス要素 施し, 吊り 行う。また き) にのみ けない設定 	西を行う場合は、トロリにワイヤロープを模擬した このでするなででは、これを用いて評価を こ、ワイヤロープについては、引張方向(鉛直下向 本荷重を受け、圧縮方向(鉛直上向き)の荷重を受 ことする。	(3) 吊具の評価を行う場合は、トロリに設置された主巻、ホイス トレールに設置されたホイストにワイヤロープを模擬したト ラス要素と吊荷を模擬した質点を設けて地震応答解析を実施 し、吊具に発生する張力を算出し、これを用いて評価を行う。 また、ワイヤロープについては、引張方向(鉛直下向き)に のみ荷重を受け、圧縮方向(鉛直上向き)の荷重を受けない	 ・設備構成の相違 【女川 2】 ①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		設定とする。	
		(4) 単軸粘性ダンパの減衰性能は,抵抗力が速度の 0.1 乗に比例	・設備構成の相違
		<u>するダッシュポットとばねを直列に接続した Maxwell モデル</u>	【女川 2】
		<u>でモデル化する。単軸粘性ダンパの Maxwell モデルを第 3-1</u>	①の相違
		図に示す。なお、単軸粘性ダンパの減衰性能とモデル化の詳	
		細については,別紙-18「機器・配管系への制震装置の適用	
		について」に示す。	
		(5) 減衰定数については,既往の研究等によって妥当性が	・記載方針の相違
		確認され、クレーン類に適用実績のある値として水	【女川 2】
		<u>平,鉛直方向ともに2.0%とし,</u>	女川 2 では, 3.3(1)
			に記載
		レイリー減衰を設定する。レイリー減衰は、質量マトリクス	・記載方針の相違
		<u>及び剛性マトリクスの線形結合により、以下の式で表される。</u>	【女川 2】
			島根2号炉ではレイ
		$[C] = \alpha[M] + \beta[K]$	リー減衰についても詳
			細に記載
		[C]: 減衰マトリクス	(以下,⑤の相違)
		<u>[M]:質量マトリクス</u>	
		<u>[K]</u> :剛性マトリクス	
		<u>α, β:係数</u>	
		係数 α , β は、取水槽カントリクレーンの固有振動数において、	
		適用する減衰定数とレイリー減衰か一致するように以下の式 	
		$\underline{CX} \otimes 2 \otimes \underline{C}$	
		$h = \frac{\alpha}{2\omega_n} + \frac{\beta\omega_n}{2}$	
		h: 減衰比	
		$\overline{\omega_n}$:固有値解析により求められた n 次モードの固有	
		具体的には,取水槽ガントリクレーンの固有値解析の結果か	
		<u>ら、NS方向の1 次固有振動数(1.97Hz)及び鉛直方向の1</u>	
		<u> 次固有振動数(4.48Hz)において減衰比が 2.0%となるように</u>	
		<u>係数α,</u> βを設定する。設定したレイリー減衰の各固有振動数	
		における減衰比を第3-2図に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	 (4) 解析コードは「ABAQUS Ver6.11」を使用する。 (5) 耐震評価については、トロリ位置及び吊荷有無によって地震時の挙動が変化する可能性があるため、第3.1-1 表に示すとおり、トロリ位置3パターン(剛脚側, 揺脚側, 中央), 吊荷 有無2パターン(吊荷有, 吊荷無)を考慮し, 全6ケースの 評価を実施する。 	 (6) 解析コードはABAQUS (Ver. 6.11-1) を使用する。 (7) 地震応答解析にあたっては、トロリ及びホイストの位置や吊荷の有無によって地震時の応答が変化する可能性があるため、トロリ及びホイストの位置並びに吊荷の有無を考慮し解析ケースを設定する(添付資料(2-3))。トロリとホイストを同時に使用することはないため、いずれかが吊荷有りの場合は、もう一方は待機位置で吊荷なしとする。なお、吊荷の質量はそれぞれの最大質量を設定する。解析ケースを第3-1表に示す。 	・設備構成の相違 【女川 2】 ①の相違
	(6) 耐震評価に用いる寸法は公称値を使用する。 第3.1-1 表 海水ポンプ室門型クレーンの耐震評価ケース 新聞物象 クレーン本体,車輪部, 浮上がり、及び吊具 「「「」「位置」」「「「「「有有無」」」「「」」」」」」」」」 「「」」「位置」」「「「「「「」」」」」」」」」 「」」「」」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 </td <td>(8) 耐震評価に用いる寸法は公称値を使用する。 k c k: ばね剛性 ●●●●●●●● c: 速度の 0.1 乗に比例する ダッシュポットの滅衰係数 第3-1図 単軸粘性ダンパの Maxwell モデル 第3-1支 取水槽ガントリクレーンの解析ケース 第3-1支 取水槽ガントリクレーンの解析ケース ケース 位置 日荷機位置 なし 1 待機位置 2 中央 3 待機位置 3 待機位置 0 0.50t) 1 1 0 1 1 1</td> <td> ・設備構成の相違 【女川 2】 ①の相違 </td>	(8) 耐震評価に用いる寸法は公称値を使用する。 k c k: ばね剛性 ●●●●●●●● c: 速度の 0.1 乗に比例する ダッシュポットの滅衰係数 第3-1図 単軸粘性ダンパの Maxwell モデル 第3-1支 取水槽ガントリクレーンの解析ケース 第3-1支 取水槽ガントリクレーンの解析ケース ケース 位置 日荷機位置 なし 1 待機位置 2 中央 3 待機位置 3 待機位置 0 0.50t) 1 1 0 1 1 1	 ・設備構成の相違 【女川 2】 ①の相違
		0.01 0.01	・記載方針の相違 【女川 2】 ⑤の相違
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
--------------------------------	--	--	----
	3.1.2 解析モデル及び諸元	3.1.2 解析モデル及び諸元	
	解析モデルはクレーン本体をはり要素でモデル化した多質点は	取水槽ガントリクレーンの解析モデルは, 取水槽ガントリクレ	
	りモデルとする。解析モデル概要図を第3.1-1図に示す。クレー	<u>ーン本体を質点及び</u> はり要素でモデル化した <u>3次元FEM解析</u> モ	
	ン諸元及び解析モデル諸元を <u>第3.1-2</u> 表及び <u>第3.1-3</u> 表に示す。	デルとする。取水槽ガントリクレーンの地震応答解析モデルの概	
		要を <u>第3-3図</u> に示す。 <u>取水槽ガントリクレーン</u> 諸元及び解析モデ	
	hu hu G G <td< th=""><th>ル諸元を<u>第3-2表</u>及び<u>第3-3表</u>に示す。 <u>第3-3図 取水槽ガントリクレーンの地震応答解析モデル</u></th><th></th></td<>	ル諸元を <u>第3-2表</u> 及び <u>第3-3表</u> に示す。 <u>第3-3図 取水槽ガントリクレーンの地震応答解析モデル</u>	
	第 3.1-1 図 海水ポンプ室門型クレーンの解析モデル概要図 (トロリ位置:剛脚側, 吊荷有無:吊荷有(ケース1)) 第 3.1-2 表 クレーン諸元	<u>第 3-2 表 取水槽ガントリクレーン</u> 諸元	
	部位 質量 (t)	部位 質量 (t)	
	クレーン本体(脚,ガーダ等含む) 150.9 トロリ 28.8	取水槽ガントリクレーン本体 (脚,ガーダ等含む) 162.5	
	吊具 2.0	トロリ 17.8 吊具(主巻ワイヤ,フック) 2.0	
	R荷(定格荷重) 95.0	ホイスト 3.5 吊具(ホイストワイヤ,フック) 0.7	
	合計 276.7	吊荷(最大荷重) 50 合計 236.5	
	第3.1-3 表 解析モデル諸元	第3-3表取水槽ガントリクレーン解析モデル諸元	
	部材 桃理性依氮 (MPa) 町面一次モーメント(cm ³) 町面積 (cm ²) 剛脚(代表断面*) 201000 弱軸廻り (cm ²) 播脚(代表断面*) 201000 「活脚(大表断面*) 201000 「「溶連結材 201000 「「溶連結材 201000 「指脚側) ガーダ 201000 * 剛脚及び揺脚における中央位置における断面	部材 紙理性性係数 (MPa) 断面量(mm ²) ガーダ 202000 脚 202000 ガーダ継ぎ 202000 脚下部継ぎ 202000	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	3.1.3 解析モデルの境界条件	3.1.3 解析モデルの境界条件	
	クレーン本体車輪部(駆動輪,従動輪)と走行レール,トロリ	走行車輪(駆動輪、従動輪)と走行レール、横行車輪(駆動輪、	
	<u>車輪部</u> (駆動輪,従動輪)と横行レールにおける解析モデルの境	従動輪)と横行レール、ホイスト車輪(駆動輪,従動輪)とホイ	・設備構成の相違
	界条件をそれぞれ <u>第3.1-4表,第3.1-5</u> 表に示す。	<u>ストレール</u> における解析モデルの境界条件をそれぞれ <u>第3-4表</u> ,	【女川 2】
		<u>第3-5表,第3-6表</u> に示す。	①の相違
	<u>クレーン本体車輪部</u> においては, <u>Y方向</u> (クレーン本体走行方	<u>走行車輪</u> においては, <u>EW方向</u> (クレーン本体走行方向)及び	
	向)及びZ方向(鉛直方向)について、それぞれすべり、浮上が	鉛直方向について,それぞれすべり,浮上りを考慮しているため,	
	りを考慮しているため,非拘束条件としている。また, <u>X方向</u> (ク	非拘束条件としている。また, <u>NS方向</u> (クレーン本体走行方向)	
	レーン本体走行方向の直交方向)についてはクレーン本体車輪部	に直交する方向)については、走行車輪と走行レールとの間隙(片	
	と走行レールとの間隙(片側約 <u>17.5mm)及び脱線防止装置と躯</u>	側約13mm)が小さく,地震時には走行車輪と走行レールが接触し	
	体の間隙(片側約20mm)は非常に狭く,地震時には,クレーン	て荷重が伝達されるため, <u>すべりを生じない</u> 拘束条件としている。	
	本体車輪部と走行レールが接触して荷重が伝達されるため、拘束		
	条件としている。		
	<u>一方, トロリ車輪部</u> においては, <u>X方向</u> (トロリ <u>走行</u> 方向)及	<u>横行車輪</u> においては, <u>NS方向</u> (トロリ <u>横行</u> 方向)及び鉛直方	
	びZ方向(鉛直方向)について、それぞれすべり、浮上がりを考	向について、それぞれすべり、浮上りを考慮して非拘束条件とし	
	慮して非拘束条件としている。また, <u>Y方向</u> (トロリ <u>走行</u> 方向 <u>の</u>)	ている。また, <u>EW方向</u> (トロリ <u>横行</u> 方向 <u>に直交する</u> 方向)につ	
	直交方向)については、トロリ車輪部と横行レールの間隙(片側	いては, 横行車輪と横行レールの間隙(片側約 9mm) が小さく,	
	約 9mm), トロリストッパと躯体の間隙(片側約 32 mm)が非常に	地震時には横行車輪と横行レールが接触して荷重が伝達されるた	
	<u>狭く</u> ,地震時には <u>,…トロリ車輪部</u> と横行レールが接触し,…荷重が	<u>め</u> ,すべりを生じない拘束条件としている。	
	伝達されることから,すべりを生じない拘束条件としている。		
		ホイスト車輪においては, NS方向(ホイスト横行方向)及び	・設備構成の相違
		<u>鉛直方向について、それぞれすべり、浮上りを考慮して非拘束条</u>	【女川 2】
		<u>件としている。また、EW方向(ホイスト横行方向に直交する方</u>	①の相違
		向) については、ホイスト車輪とホイストレールの間隙(片側約)	
		5mm)が小さく,地震時にはホイスト車輪とホイストレールが接触	
		して荷重が伝達されるため、すべりを生じない拘束条件としてい	
		<u> </u>	
	クレーン本体車輪部及びトロリ車輪部の概要図について、第	<u>走行車輪,横行車輪及びホイスト車輪の構造概要を第3-4図</u> に	・設備構成の相違
	3.1-2 図に示す。	示す。	【女川 2】
			①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所	〒 2号炉(2	2020. 2. 7 肋	<u>z</u>)		島根原子ス	力発電所 2号炉		備考
第 3. 1-	第3.1-4 表 境界条件(クレーン本体車輪部と走行レール)				第3-4表 境界条件(走行車輪(クレーン本体車輪)と走行レー			-	
*	X力 33位* (クレーンオ	方向 本体走行方向 (2	Y 方向 クレーン本体	Z方向			ル)		
	の直交 ① (取動論)	(方向) 走	_{走行方向)} 非拘束	(鉛直方向)	部位注1	NS方向 (クレーン本体走行方向の	EW方向 (クレーン本体走行方向)	鉛直方向	
クレーン本6 車輪部と走行 レール	① (家動輪) 拘 (家動輪) ・走行レー ③ (従動輪) ・ころわる	束 ール及び 止装置に	すべり考慮 μ=0.3 非拘束	非拘束 ・浮上がり考慮	駆動輪	直交方向) 【拘束】	【非拘束】 すべり考慮 µ=0.3	【非拘束】	
* 部位欄の番	④(従動輪) よる拘り 番号①~④は、図 3.1-1 中の①	* ~④に対応。	迫促移動 μ=0		従動輪	- 走行レールによる - 拘束	【非拘束】 追従による移動 ^{11 =0}	浮上り考慮	
μ:摩擦係数					注 1 : 部位) μ : 摩擦(こついては, 第 2−3 챪 系数	<u>从</u> 図参照		
第.3	.1-5 表 境界条件	(トロリ車輪	論部と横行い	~~~~~/\)	第3-5表	境界条件(横行	車輪(トロリ車輪)」と横行レール)	
部	3位* X方 (トロリ走)	· 向 (トロ 行方向) 直	Y 方向 コリ走行方向の 重交方向)	Z 方向 (鉛直方向)	部位 ^{注1}	NS方向 (トロリの横行方向)	 EW方向 (トロリ横行方向の 直交方向) 	鉛直方向	
トロリ車輪部	⑤(駆動輪) 非拘 ⑤(駆動輪) ・すべり ⑥(駆動輪) μ=	束 0 考慮 0.3 ・横行 l	拘束	非拘束	駆動輪	【非拘束】 すべり考慮 µ=0.3	【拘束】 横行レールによる	【非拘束】	
	 ⑦(従動輪) 第初 ・追従 ⑧(従動輪) μ= 	R F L S S S S S S S S S S S S S S S S S S	る拘束	・仔上かり考慮	従動輪	【非拘束】 追従による移動 μ=0	拘束	存上りち應、	
* 部位欄の番 µ : 摩擦係数	号⑤~⑧は, 図 3.1−1 中の⑤~	~⑧に対応。			注 1 :部位 μ :摩擦(こついては,第 2-3 済 系数	國参照		
					<u>第3-6</u>	表境界条件(オ	イスト車輪とホイ	<u>、ストレール)</u>	・設備構成の相違
					部位 注1	NS方向 (ホイストの横行方向)	EW方向 (ホイスト横行方向の 直交方向)	鉛直方向	【女川 2】 ①の相違
					駆動輪	【非拘束】 すべり考慮 µ=0.3	【拘束】 - ホイストレール	【非拘束】	
					従動輪	【非拘束】 追従による移動 μ=0	による拘束	存上りろ慮	
					注1:部位 <i>µ</i> :摩擦	については,第 2-7 係数	図参照		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	クレーン本体車輪部トロリ車輪部	走行車輪 横行車輪 ホイスト車輪	
	fite fite fite fite fite fite fite fite		 ・設備構成の相違 【女川 2】 ①の相違
	 3.2 評価対象部位 海水ボンブ室門型クレーンの耐震評価は、クレーン運転時においてクレーン本体の損傷、転倒及び吊荷の落下により、海水ポンプ等が損傷することを防止するため、以下を評価対象部位として 選定し、評価を実施する。 (1) クレーン本体 クレーン本体については、剛脚、揺脚、下部連結材及びガーダの応力評価を実施する。 (2) 脱線防止装置、トロリストッパ クレーン本体走行軸直交方向の荷重を負担するクレーン本体の 脱線防止装置及びトロリ走行軸直交方向の荷重を負担するトロリストッパについて応力評価を実施する。 また、脱線防止の観点から浮上がりの評価を実施する。浮上がりの評価では、クレーン本体の浮上がり量と脱線防止装置の許容 浮上がり高さを比較する。トロリも同様に浮上がり量とトロリストッパの許容浮上がり高さを比較する。 (3) 吊具 吊具については、ワイヤローブ及び主巻フックの荷重評価を実施する。 なお、海水ポンプ室門型クレーンの耐震評価部位については、 第 2.2-1 図中に示している。 		 記載方針の相違 【女川 2】 島根 2 号炉では,同様の内容を 4.3 に記載

柏崎刈羽原子力発電所 6/	/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
怕呵刈初凉丁刀宠电/	/ (万)//	(2017.12.20 hg)	3.3 入力地震動 <u>海水ポンプ室門型クレーン</u> の耐震評価に適用する地震動に係る 事項を以下に示す。 (1) 適用する地震動について 耐震評価に用いる地震動は、上位クラス施設の設計に適用する 基準地震動 Ss とする。本検討では、女川2号炉の基準地震動 Ss 相当*による評価結果(暫定値)を示す。		 ・地震動の相違 【女川 2】 女川 2 では, 暫定の地 震動を使用しているが,
			評価に用いる入力地震波は,海水ポンプ室門型クレーン走行レ ールの設置位置を考慮して海水ポンプ室の最上部の節点 (965, 1921)」より求められる応答加速度時刻歴を適用する。海水 ポンプ室の地震応答解析モデル図を第3.3-1 図に,入力加速度時 刻歴波形を <u>第3.3-2~5 図</u> に示す。	取水槽ガントリクレーンの地震応答解析に適用する地震動は基 準地震動Ssとし,取水槽ガントリクレーン走行レールの設置位 置を考慮して取水槽最上部の節点より求められる応答加速度時刻 歴を適用する。取水槽のNS断面の地震応答解析モデルを第3-5 図に示す。この解析モデルより求めた基準地震動Ss-DのNS 方向,鉛直方向の入力加速度時刻歴波形を第3-6回,第3-7回 に,床応答スペクトルを第3-8回に示す。なお、地震応答解析に おいては、南北レール位置の床応答スペクトルがほぼ同等のため、 取水槽ガントリクレーンの固有周期における応答加速度が大きい 南側レール位置(節点 10095)の加速度時刻歴を用いる。	島根2号炉では,おおむ ね妥当と認められた基 準地震動Ssを使用す る(以下,④の相違) ・記載方針の相違 【女川2】 島根2号炉では,時刻 歴波に加え,床応答スペ クトルを記載
				<u>また,取水槽EW断面の地震応答解析モデルにより求めたEW</u> <u>方向の入力加速度時刻歴波形を第3-9図に示す。</u>	 ・記載方針の相違 【女川2】 島根2号炉では,EW 方向の応答加速度時刻 歴も記載
			<u>減衰定数については,既往の研究等によって妥当性が確認され,</u> <u>先行のクレーン類に適用実績のある値として水平,鉛直方向とも</u> <u>に 2.0%を適用する。</u>		・記載方針の相違 【女川2】 島根2号炉では同様 の内容を3.1.1に記載
			なお,工認段階では,女川2号炉の基準地震動Ss-D1~N1(全 7波)に対して評価を実施する。また,審査結果を踏まえて設定 する海水ポンプ室の地震応答解析モデルの解析結果を適用すると		・地震動の相違 【女川 2】 ④の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	ともに、地盤の不確かさ等の影響についても検討する。		
	*平成 25 年 12 月 27 日申請時の基準地震動 Ss - 1,2		
	(2) 地震動の入力方向について	(2) 地震動の入力方向	
	水平方向及び鉛直方向の3方向同時入力(X方向(トロリ走行	水平2方向及び鉛直方向の3方向同時入力(<u>NS方向, EW</u> 方	
	方向), Y方向(クレーン本体走行方向), Z方向(鉛直方向))に	<u>向</u> , 鉛直方向)により評価を実施する。	
	より評価を実施する。		
	なお、クレーン本体の走行車輪と走行レールは固定されていな	なお、クレーン本体の走行車輪と走行レールは固定されていな	
	いため、走行方向においては、各時刻における最大静止摩擦力以	いため、走行方向においては、各時刻における最大静止摩擦力以	
	上の水平力が加わった場合,クレーン本体は走行レール上を <u>滑る</u> 。	上の <u>地震慣性力</u> が加わった場合、クレーン本体は走行レール上を	
		すべる。	
	(3) 時刻歴応答解析の保守性について	(3) 地盤物性等の不確かさに対する検討方針	
	床応答スペクトルを適用して評価する設備においては、地盤物	スペクトルモーダル解析では、床応答加速度は地盤物性等の不	
	性等の不確かさを考慮して、評価に用いる床応答スペクトルを生	確かさによる固有周期の変動を考慮して周期方向に±10%拡幅	
	10%拡幅したものを用いている。このため、海水ホンフ室門型クレ	した設計用床心谷曲線を用いる。取水槽カントリクレーンの地震	
	ーンの耐震評価に時刻歴応答解析手法を適用するに当たっては、 次には、「一つの耐震評価に時刻歴応答解析手法を適用するに当たっては、	心	
	<u>海水ホンク室門型クレーン評価への影響が大きい地震動に対し</u>	用するか、制農装置により取水槽カントリクレーンに付与される	・設備構成の相違
	ASME Boller and Pressure Vessel Code SECTIONII, DIVISION	<u>減衰が入さくなるにめ、地盤物性等の</u> 个確かさによる固有周期の	
	1-NONMANDATORY APPENDIX N (ARTICLE N-1222.3 lime History) Duration の相字な会昭し、広広答え。2.1.1.の技幅八の考慮八	<u>変則</u> の影響は	①の相違
	Broadening) 仍規定 经参照し, 床心合人、 / 下ルの孤幅分の与應分	ASME BOILER and Pressure Vessel Code Section III, DIVISIONI	
	として、時刻産加速度仮を时間軸万円に上10%シノトさせた時刻	-NORMANDATORY AFFENDIA N (ARTICLE N-1222.5 TIME HIStory Presidenting) に相定された手社な欧士会 影響な確認する	
	産加速度放による胜加く計画する。 なお、+10%シストさせた床底落スペクトルの公開にクレーン	broadening) <u></u>	
	の固有周期が左在する場合け ASMF の相定に基づきピーク位置が		
	固有周期にあたろように考慮した評価も行うたど 時刻歴応答解		
	析の保守性に配慮した詳細な検討を丁認段階で実施する。	Time History Broadeningの概念を第3-10図に示す。	
	参考として、上記 ASME 規格の抜粋. 第 3.3-6 図に Time History		
	Broadening の概念図を示す。		

异炉		
1		
	hhu	
50	60	70
data data a		
panantan	()w/w	
50	60	70
歷波形		
5点 1009	5))	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	ktr and a second seco		

炉	備考

				-
柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号
				6 - 北側レール位置(節点番号10299) 一南側レール位置(節点番号1095) - 次固有周期:0.509[s 4 1 0 0 0 0 0 0 0 0 0 0 0 1 四有周期(s)
				水平方向(NS)
				水平方向(NS) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	4. 評価方法	 <u>耐震評価の</u>方法 	
	4.1 評価方針	4.1 評価方針	
	海水ポンプ室門型クレーンについては、「3. 耐震評価方法」に記	取水槽ガントリクレーンは、「3. 応答解析の方法」に記載の地震	
	載の地震応答解析によって得られた各部位の荷重を用いて公式に	応答解析によって得られた各部位の荷重及び浮上り量を用いて評	
	よる応力評価を実施する。	価する。各部位の応力は荷重を用いて公式により計算する。	
	<u>また</u> ,許容限界については JSME S NC1-2005/2007 及び JEAG4601	<u>応力の</u> 許容限界については JSME S NC1-2005/2007 及び	
	を参照し、その他の支持構造物の許容応力を適用する。	JEAG4601 を参照し,その他の支持構造物の許容応力を適用する。	
	評価に適用する温度条件は、設備の使用環境を考慮して設定す	評価に適用する温度条件は、設備の使用環境を考慮して設定す	
	る。	る。また,地震応答解析により算出したトロリの浮上り量,単軸	・設備構成の相違
		粘性ダンパの変位及び荷重,並びに吊具の荷重がそれぞれの許容	【女川 2】
		限界以下であることを確認する。	①の相違
	4.2 荷重の組合せ	4.2 荷重の組合せ	
	海水ポンプ室門型クレーンの耐震評価に当たっては地震荷重と	<u>取水槽ガントリクレーン</u> の耐震評価に <u>あたっては</u> ,地震荷重と	
	組み合わせる荷重として以下を考慮する。	組み合わせる荷重として以下を考慮する。	
	 ・自重 	 ・自重 	
	・積雪荷重	・積雪荷重	
		<u>4.3 評価対象部位</u>	・記載方針の相違
		取水槽ガントリクレーンの耐震評価は、取水槽ガントリクレ	【女川 2】
		ーン運転時において本体の損傷、転倒及び吊荷の落下により原	女川2では,同様の内
		子炉補機海水ポンプ等の上位クラス施設が損傷することを防止	容を3.2に記載
		するため、以下を評価対象部位として選定し、評価を実施する。	
		(1) 取水榑ガントリクレーン本体	
		取水槽ガントリクレーン本体については ガーダ 脚 ガーダ	
		継ぎ、下部脚継ぎの応力評価を実施する。	
		(2) 転倒防止装置, 走行レール, トロリ	・設備構成の相違
		クレーンの本体の転倒を防止する転倒防止装置の応力評価を実	【女川 2】
		施する。また、走行車輪からクレーン走行方向と直交する方向の	①の相違
		荷重並びに転倒防止装置から上方向の荷重を受ける走行レールの	0 · ILE
		応力評価を実施する。なお、トロリストッパとホイストレールに	
		ついては、詳細設計中のため、詳細設計段階において評価を実施	
		トロリの落下防止の観点から、トロリの浮上り景を管出し、許	
		☆浮上り量と比較する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		(3) 吊具	
		吊具については、トロリ主巻のワイヤ及びフックの荷重評価を	
		実施する。なお、ホイストワイヤ及びフックについては詳細設計	
		中のため、詳細設計段階において評価を実施する。	
			・乳供様式の扣着
			「「「「」」の
		単軸 柏住 クノハについては、タノハに主しる取入何里、取入後	
		12を計谷限外と比較りる。	①仍相连
		また、取付部であるノレースとクレビス部の応力評価を実施す	
		る。クレビス部については、断面積か小さくタンハの抵抗刀によ	
		り曲けモーメントとせん断力を受けるビンを評価部位とする(第	
		4−1 ×).	
		構造物側取付部 <u> <u> <!--</u--></u></u>	
		第4-1図 クレビス部の荷重伝達	・設備構成の相違
			【女川 2】
			①の相違
	4.3 許容限界	<u>4.4</u> 許容限界	
		<u>4.4.1 許容応力</u>	
	海水ポンプ室門型クレーンの各部位の評価に用いる許容応力を	取水槽ガントリクレーンの各部位の評価に用いる許容応力を第	
	<u>第4.3-1</u> 表に示す。 <u>また,浮上がりの許容限界としてクレーン本</u>	<u>4-1</u> 素に示す。	・設備構成の相違
	体及びトロリの許容浮上がり高さを第4.3-2表に示す。		【女川 2】
			①の相違
	第4.3-1 表 許容応力(その他の支持構造物)	<u>第4-1表</u> 許容応力(その他の支持構造物)	
	許容応力*	許容応力状 許容応力	
	許容応力状態 (ボルト以外)	態 (ホルト以か)	
		IVAS 引張 せん断 圧縮 曲げ 支圧 IVAS 15.6* 15.6* 15.6* 15.6* 15.6*	
	IVAS 1.5ft 1.5fs 1.5fc 1.5fb	1.5・It 1.5・Is 1.5・Ic 1.5・Ip 注記:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。	
	* 応力の組合せが考えられる場合には,組合せ応力に対しても評価を行う。	f_t , f_s , f_c , f_b , f_p は, $F値をF = \min[S_y, 0.7S_u]$ として, $F値より算出した値 f_t^*$, $f_s^*, f_c^*, f_b^*, f_p^*$ は, 上記F値の $S_y を 1.2S_y と読み替え算出した値 S_y: 材料の設計降伏点 S_u: 材料の設計引張強さ$	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20)版) 女川	原子力発電所 2号	·炉(2020.2	2.7版)	島根原子力多	ě電所 2号炉	備考
					4.4.2 許容浮上り量		
					トロリ(横行車輪)の許容浮	上り量を第4-2表に示す。	
		<u>第4.3-2</u> 表許容法	浮上がり高	さ	第4-2表 トロ	リの許容浮上り量	
		許容法	孚上がり高さ	(mm)		許容浮上り量(mm)	
	クレー	ン本体			トロリ(横行車輪) 注1:トロリストッパの形状設計中のための	<u>150^{注1}</u> - ふ動完値	
		<u>а </u>					
	* 形	大検討中のため暫定値					
					 4 4 3 吊旦の許容荷重		
	海水ポンプ室	門型クレーンの吊具	し(ワイヤロ	ープ. 主巻フック)	トロリ主巻のワイヤ及びフッ	クの許容荷重を第 4-3 表に示す。	
	の許容限界は、		対して設け	+られた安全率を考		innin F H F + Calin Time + - / 0	
	慮して設定する	。許容荷重を <u>第 4.</u> 3	-3 表に示す	t.			
		<u>第4.3-3</u> 表吊具	の許容荷重	1	第4-3表		
	評価部位	定格荷重(t) 07+	安全率	許容荷重(kN)		許容荷重 (kN)	
	ワイヤロープ	(吊荷定格 95t+	6.37	6. 059×10^{3}	主巻ワイヤ	4.08×10^{3}	
	主巻フック	<u>主巻フック 2t)</u> 95t	5. 55	5. 170×10^3	主巻フック	4.98×10^{3}	
					 4 4 4 単軸粘性ダンパの許容	見見	 設備構成の相違
					単軸粘性ダンパの許容限界を	<u>***</u> 第 4-4 表に示す。	【女川 2】
							①の相違
					第 4-4 表 単軸料	性ダンパの許容限界	・設備構成の相違
					计数本语	お肉共子	【女川 2】
					100mm	計谷何里 300kN	 ①の相違
						JOOKN	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	4.4 各部の評価方法	4.5 各部の評価方法	
	4.4.1 クレーン本体, 脱線防止装置及びトロリストッパの応力評	4.5.1 取水槽ガントリクレーン本体,転倒防止装置,走行レール,	・設備構成の相違
	価方法	トロリストッパ,単軸粘性ダンパブレース及び単軸粘性ダンパク	【女川 2】
		<u>レビス部</u> の応力評価方法	(1)の相違
	(1) 引張応力	(1) 引張応力	
	$\sigma_t = \frac{F_1}{A_t}$	$\sigma_t = \frac{F_t}{A_t}$	
	$\sigma_t \leq f_t$	$\sigma_t \leq f_t$	
	F ₁ :部材に発生する引張荷重		
	A _t : 引張荷重が作用する断面積	$F_t:$ 部材に発生する引張荷重	
	σ _t :部材に発生する引張応力 £ :部材の許容引張応力	A _t :引張荷重が作用する断面積	
	-1 - MALL - REALINGERS	$\sigma_t:$ 部材に発生する引張応力	
		$f_t: 部材の許容引張応力(=1.5.f_t*)$	
	(2) 圧縮応力	(2) 圧縮応力	
	$\sigma_c = \frac{F_2}{L}$	$\sigma_c = \frac{F_c}{A}$	
	A_c	A_c $\sigma \leq f$	
	$O_c = J_c$	$O_c = J_c$	
	F ₂ : 部材に発生する圧縮荷重 A. : 圧縮荷重が作用する断面積	F. : 部材に発生する圧縮荷重	
	σ_c :部材に発生する圧縮応力	A _c : 圧縮荷重が作用する断面積	
	f _e :部材の許容圧縮応力	σ _c :部材に発生する圧縮応力	
		$f_c: 部材の許容圧縮応力(座屈)(=1.5 \cdot f_c^*)$	
		<u>ここで, f の算出万法を示す。</u>	 記載万針の相違 【カ川2】
		a. 圧縮材の細長比が限界細長比以下の場合	女川2は,許容圧縮応
		$((\lambda)^2)F$	力の算出方法の記載な
		$f_{c} = \left\{ 1 - 0.4 \left(\frac{\pi}{\Lambda} \right) \right\} \frac{1}{\nu}$	l
		$f_c:$ 許容圧縮応力	
		l_{k}	
		$\lambda = \frac{1}{i}$	
		<u>l_k:座屈長さ</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所	2号炉(2020.2.7版)	島根原	子力発電所 2号炉	備考
			<u>i</u> :座屈朝	由についての断面二次半	<u>卢径</u>
			<u>A:限界約</u>	<u>1長比</u>	
			1	$E^2 E$	
			$\Lambda = \sqrt{\frac{1}{6}}$.6 <i>F</i>	
			<u>F</u> :材料の	設計降伏点,設計引張	強さにより定まる
			<u>値</u>		
			<u>E</u> :材料の	》縦弾性係数	
			<u>v:以下</u> (つ式により計算した値 っ	
			$\nu = 1.$	$5 + \frac{2}{3} \left(\frac{\lambda}{\Lambda}\right)^2$	
				5 (1)	
			b. 圧縮材の細長比が限界	細長比を超える場合の	場合
			f - 0	$277E\left(\frac{\Lambda}{2}\right)^2$	
			$I_{c} = 0.$	$\frac{1}{\lambda}$	
			<u>λ及</u>	び <u>Λ:a. と同様</u>	
			許容圧縮応力の	尊定諸元を第4-5表に	示す。
					<u> </u>
			第4-5表	許容圧縮応力の算出諸	<u>者元</u>
			評価部位 対象長さ	座屈長さ 回転に対す 座屈長さ	- 断面二次半径
				る条件** l _k	選定断面
			ブレース ブレースの	の 両端自由 し	ブレース部の 断面
			合計長さ	1端自由 0.01	
			5	他端拘束 0.8 <i>1</i>	(最小断面) ガーダ継ぎ
			ガーダ継ぎ ガーダ継ぎ	さ 両端拘束 0.651	
			脚下部継ぎ 脚下部継ぎ	さ 両端拘束 0.651	脚下部継ぎ 断面 あんしゅう あんしょう あんしょう しょうしょう しょう
				※移動に対する条件は	全て拘束とした。
	(3) 曲げ広力		(3) 曲げ広力		
	$\sigma = \frac{M}{M}$			М	
	$O_b = Z$			$\sigma_b = \frac{\pi}{Z}$	
	$\sigma_{_b} \leq f_{_b}$			$\sigma_b \leq f_b$	
			M:部材に発生	ミする曲げモーメント	
			Z:曲げモー>	ントが作用する断面の)断面係数

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	 M:部材に発生する曲げモーメント 2:曲げモーメントが作用する断面の断面係数 σ_b:部材に発生する曲げ応力 f_b:部材の許容曲げ応力 	σ _b :部材に発生する曲げ応力 f _b :部材の許容曲げ応力 <u>(=1.5.f_b*)</u>	
	 (4) せん断応力 <i>τ</i> = <i>Q Λ τ</i> ≤ <i>f σ</i> ≤ <i>f σ τ</i> ≤ <i>f σ τ</i> ≤ <i>f σ τ σ σ</i>	(4) せん断応力	
	(5) 組合せ応力 引張応力と曲げ応力の組合せ応力 $\frac{\sigma_i}{1.5f_i} + \frac{\sigma_b}{1.5f_i} \leq 1$ 圧縮応力と曲げ応力の組合せ応力 $\frac{\sigma_c}{1.5f_c} + \frac{\sigma_b}{1.5f_i} \leq 1$ 垂直応力とせん断応力の組合せ応力 $\sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2} \leq f_i$ σ_{x}, σ_{y} : 互いに直交する垂直応力 $\tau_{xy}: \sigma_{x}, \sigma_{y}$ の作用する面内のせん断応力	(5) 組合せ応力 引張応力と曲げ応力の組合せ応力 $\frac{\sigma_t + \sigma_b}{f_t} \leq 1$ 圧縮応力と曲げ応力の組合せ応力 $\frac{\sigma_c}{f_c} + \frac{\sigma_b}{f_b} \leq 1$ 垂直応力とせん断応力の組合せ応力 $\sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2} \leq f_t$	
	(6) 支圧応力	σ_x, σ_y : 互いに直交する垂直応力 $\tau_{xy}: \sigma_x, \sigma_y$ の作用する面内のせん断応力 (6)支圧応力 $\sigma_P = \frac{F_P}{A_P}$ $\sigma_P \leq f_P$ F_P : 部材に発生する支圧荷重	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	$\sigma_p = \frac{F_3}{A_p}$ $\sigma_p \leq f_p$ $F_3 : 部材に発生する支圧荷重$ $A_p : 支圧荷重が作用する断面積$ $\sigma_p : 部材に発生する支圧応力$ $f_p : 部材の許容支圧応力$	 A_p:支圧荷重が作用する断面積 σ_p:部材に発生する支圧応力 f_p:部材の許容支圧応力 (=1.5 · f_p*) 	
	 4.4.2 脱線防止装置及びトロリストッパの浮上がり評価方法 クレーン本体車輪部及びトロリ車輪部には、地震によって浮上 がりが発生した場合でも脱線しないように、脱線防止装置もしく はトロリストッパが取り付けられており、レール直交方向への移 動、脱線を防止する構造となっている。 浮上がりの評価では、クレーン本体及びトロリそれぞれが脱線 しないことを確認するため、地震応答解析結果によって算出され た各車輪部の浮上がり量が許容浮上がり高さ(脱線防止装置もし くはトロリストッパと接触する対象物との鉛直方向の重なり高 さ)を上回らないことを確認する。 	4.5.2 トロリの浮上り評価方法 トロリに浮上りが生じても落下しないことを評価するため、地 震応答解析にて算出したトロリの浮上がり量が許容浮上り量以下 であることを確認する。許容浮上り量の概念図を第4-2図に示 す。	・設備構成の相違 【女川 2】 ①の相違
	田田 山田田 二 ジータルビハビ と 31.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	トロリ 横行車輪 許容浮上り高さ ガーダ 新容浮上り高さ ガーダ 新容子上り量の概念図	
	4.4.3 吊具の荷重評価方法 吊具の荷重評価では地震応答解析によって得られる吊具部分の 最大荷重が許容荷重 <u>を上回らない</u> ことを確認する。 ワイヤロープに作用する荷重は、ロープに取り付けられたエコ ライザ(平衡装置)とロープシーブ(滑車)の回転により <u></u> 自動 的に荷重を釣り合い状態に保つため、12本掛けのワイヤロープに 均等に荷重が作用するものとして評価する。	 4.5.3 吊具の荷重評価方法 吊具の荷重評価では, 地震応答解析によって得られる吊具部分の最大荷重が許容荷重以下であることを確認する。 主巻のワイヤロープに作用する荷重は, ロープに取り付けられたエコライザシーブ(平衡装置)とクラブシーブ(滑車)の回転により自動的に荷重を釣り合い状態に保つため, 12本掛けのワイヤロープに均等に荷重が作用するものとして評価する。ホイストのワイヤロープについても同様に評価する。 	

柏崎刈羽原子力発電所 6/	~7 号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
			ワイヤロープは長さを長く設定すると固有周期が大きくなり,	ワイヤロープは長さを長く設定すると固有周期が大きくなり,	
			短く設定すると固有周期が小さくなるという特徴を踏まえ、地震	短く設定すると固有周期が小さくなるという特徴を踏まえ、地震	
			応答との関係から、吊具に対して応答が厳しくなる最大吊り上げ	応答との関係から、吊具に対して応答が厳しくなる最大吊り上げ	
			時のワイヤロープ長さ (ワイヤロープ短) での地震応答解析結果	時のワイヤロープ長さでの地震応答解析結果を用いて荷重評価を	
			を用いて荷重評価を実施する。	実施する。	
			5. 評価結果	 4.5.4 単軸粘性ダンパの変位及び荷重評価方法 単軸粘性ダンパの変位及び荷重評価は、地震応答解析によって 得られる最大変位及び最大荷重が許容限界以下であることを確認する。 5. 評価条件・評価結果 5.1 評価条件 地震応答解析の条件を第5-1表に示す。入力地震波として、取水槽ガントリクレーンの固有振動数において床応答加速度の大きい基準地震動Ss-Dを用い、解析ケースは吊荷荷重が最大となる第3-1表のケース2とした。また、ダンパ性能のばらつきとし 	 ・設備構成の相違 【女川 2】 ①の相違 ・記載方針の相違 【女川 2】 ②の相違
				て±20%を考慮し、ダンパ性能標準、+20%、-20%の3ケース	
				を実施した。 第5-1表 応答解析の条件	 記載方針の相違
					【女川 2】
				項目 内容 入力地震波 基準地震動Ss-D	 ②の相違
				取水槽ガントリクレーンの 解析ケース トロリ位置中央 吊荷あり (50t) ダンパ性能 ボイスト待機位置 吊荷なし (第 3-1 表のケース 2) ダンパ性能 ダンパ性能標準, ±20%	
				(3ケース)	
				<u>固有値解析の結果を第5-2表に、振動モードを第5-1図に示</u>	・記載万針の相違
				<u>す。なお、固有値解析は、単軸粘性ダンパを初期剛性と等しいば</u>	
				<u>ねに直き換えて実施した。</u> 「日本海」のないことの「「「「「」」	女川2は,固有値解析
			<u> 一 </u> <u> 一 </u> <u> 一 </u> <u> 一 </u> <u> </u> <u> </u> <u> </u> <u> </u>	「「「「「「」」」」 「「」」 「「」」 「「」」 「」」 「」」 「」」	の結果の記載なし
			▲川乙万州の産産地展期 SS 相当「に対して谷前州の先生心力か 新家内力な下回ステレー派上がり宣されず家派上がり宣されて同	<u> 既</u> たを下凹つしいつことから、 <u> 取</u> 水慣ルントリクレーンは、島根	
			計谷心力を下回ること, 存上かり局さか計谷存上かり高さを下回	<u> こ万別の</u> 基準地展期うらに対しく損傷・洛トゼす上位クフス施設 - 対現的影響な現実されいことの見違いで得た	
			<u>ること及い市具の発生何単か計谷何単を下回ることを確認した。</u>	へ波及旳影響を及はさないことの見通しを得た。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	<u>なお, 揺脚とガーダ接続部の揺動可能な構造(ピン結合でモデル</u> <u>化)によって, クレーン全体が倒壊するなどの不安定な挙動を示 していないことを確認した。</u>	なお脚において裕度が比較的小さい部位が存在するが、当該部 位は断面の補強を計画しており、詳細設計を反映して、追加の補 強を検討する。裕度が小さい脚下部の補強について、第5-2回に 示す。	 ・設備構成の相違 【女川 2】 ③の相違 ・記載方針の相違 【女川 2】 島根 2 号炉では裕度 が小さい部位を記載
	以上より,海水ポンプ室門型クレーンは,女川2号炉の基準地 震動 Ss に対して損傷・落下せず上位クラス施設へ波及的影響を 及ぼさないことの見通しを得た。 今後は工認段階で,基準地震動 Ss - D1~N1(全7波)に対する 耐震評価を実施して,地震による波及的影響を及ぼさないことを 説明する。評価の際には,審査結果を踏まえて設定する海水ポン プ室の地震応答解析モデルによる解析結果を適用するとともに, 地盤の不確かさ等についても検討する。また,時刻歴応答解析の 保守性に配慮した詳細な検討を行う。 * 平成 25 年 12 月 27 日申請時の基準地震動 Ss - 1,2	詳細設計段階においては,第3-1表のすべてのケースについ て,基準地震動 <u>Ssの5</u> 波に対する耐震評価を実施して,地震に よる波及的影響を及ぼさないことを <u>確認</u> する。評価の際には,地 盤の不確かさ <u>も考慮し</u> ,時刻歴応答解析の保守性に配慮した詳細 な検討を行う。	 ・地震動の相違【女川 2】 ④の相違 ・地震動の相違 【女川 2】 ④の相違
		<u>第5-2表 取水槽ガントリクレーンの一次固有周期</u> <u>水平方向 鉛直方向</u> 0.509s 0.223s (1.97Hz) (4.48Hz)	 ・記載方針の相違 【女川2】 女川2は,固有周期の 記載なし
		水平一次モード 鉛直一次モード 第 5-1 図 振動モード図	 ・記載方針の相違 【女川 2】

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)				島根原子力発電所 2号炉				備考		
											女川2は,振動モード
											図の記載なし
	第.5	-1 表 海水ポ	ンプ室門型	クレーンの耐虐	豪評価結果*	第5-3表 取水槽ガントリクレーンの耐震評価結果					
				- 評	評価部位		発生値	許容限界			
		評価部位 	評価項目	発生値	許容限界		ガーダ	曲げ応力	111 (MPa)	280 (MPa)	
		ガーダ	曲げ	238 (MPa)	276 (MPa)	_		せん断応力	29 (MPa)	161 (MPa)	
			せん断	47 (MPa)	159 (MPa)	-		月張応刀 	4 (MPa)	280 (MPa)	
				81 (MPa)	270 (MFa)	-		<u> 上相応力</u> 曲げ広力	43 (MPa)	220 (MPa) 280 (MPa)	
		岡川脚	曲げ	172 (MPa)	276 (MPa)	-	840	せん断応力	61 (MPa)	161 (MPa)	
			組合せ	0.72 (-)	1 (-)	-	加切	組合せ応力			
			引張	9 (MPa)	276 (MPa)			(垂直+せん断)	253 (MPa)	280 (MPa)	
		155 Bio		109 (MPa)	207 (MPa)			組合せ応力	0.93 (-)	1 (-)	
	クレーン	活脚	曲げ	139 (MPa)	276 (MPa)	 取水槽ガン		(曲げ+圧縮) <u> </u> 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	4 (MD-)	- ())	
	本体		組合せ	0.82 (-)	1 (-)	トリクレー		5 張応刀	4 (MPa)	280 (MPa)	
			引張	20 (MPa)	276 (MPa)	ン本体	ガーダ継ぎ	<u> 二 </u>	101 (MPa)	215 (MFa)	
		下部連結材	圧縮	12 (MPa)	246 (MPa)			<u>組合</u> せ広力		1 ()	
		(剛脚側)	曲げ	151 (MPa)	276 (MPa)			(曲げ+圧縮)	0.36 (-)	1 (-)	
			組合せ	0.59 (-)	1 (-)	-		引張応力	11 (MPa)	280 (MPa)	
			引張	19 (MPa)	276 (MPa)	-		圧縮応力	22 (MPa)	263 (MPa) *	
		「部連棺材	山ボ	10 (MPa)	242 (MPa)	-		世け応刀	219 (MPa)	280 (MPa)	
		(14/14/14/1		0.52 (-)	1 (-)	-	脚下部継ぎ	組合社広力	36 (MPa)	161 (MPa)	
			曲げ	218 (MPa)	336 (MPa)			(垂直+せん断)	229 (MPa)	280 (MPa)	
		脱線防止装置			104 (MD)	-		組合せ応力 (曲げ+圧縮)	0.81 (-)	1 (-)	
	車輪部		せん断	8 (MPa)	194 (MPa)		坊止装置	組合せ応力	70 (MPa)	357 (MPa)	
		トロリストッパ	圧縮	37 (MPa)	276 (MPa)	走行	ドレール	組合せ応力	360 (MPa)	546 (MPa)	
	7	 レーン木体	浮上がり	12 (mm)				浮上り	2.8 (mm)	150 (mm)	
		<u>トロリ</u>	浮上がり	22 (mm)			9170-9	荷重	(kN)	4.08×10 (kN)	
		ワイヤロープ	荷重	3.276×10^3 (kN)	6.059 \times 10 ³ (kN)	中共	主巻フック	荷重	1.35×10^{3}	4.98×10^{3}	
	吊具	主巻フック	荷重	3.209×10^3 (kN)	5.170×10^3 (kN)	-		変位	41 (mm)	100 (mm)	
	* 平成	25年12月27日申	請時の基準地震	動 Ss - 1,2 による쿁	f 定評価		本体	荷重	261 (kN)	300 (kN)	
						片郫桁柘	ブレース	圧縮応力	18 (MPa)	74 (MPa) *	
						チャーロコエ ダンパ		曲げ応力	264 (MPa)	651 (MPa)	
							クレビス部	せん断応力	93 (MPa)	375 (MPa)	
							(ピン)	組合せ応力	309 (MPa)	651 (MPa)	
								(単位「ビル例)			

木	白崎刈羽原子力発電所	6 / 7 号炉	(2017, 12, 20版)	女川原子力発電所	2号炬(2020.2.7版)	島根原子力発電所 2月
		-, -,				
						第 5-2 図 裕度が小さい脚下部

炉	備考
の補強計画	 記載方針の相違 【女川 2】 島根 2 号炉では裕度 が小さい部位を記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	2/21 改造 (2/2) 改造 (1/2) 改造 (1/2) (1/2) (1/2)	トリクレーンの改造箇所 (2/2) 成造内容 改造後 成造内容 南下部継ぎの補 頭下部継ぎの補 魚、ホイストの交 魚	
		1774冊ガン1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		女川原-	子力発電所	2 号炉	(2020. 2. 7 別	反)	島根原子力発電所	2号
		評估	面ケース選	定の考えた	<u> </u>	添付資料2		
	海水	ポンプ室門型	型クレーン	の耐震評価	fiにおいては	t, トロリ位置,		
	吊荷有新	無及びワイー	ヤロープ長	さによって	「地震時の挙	動が変化する		
	可能性	があるため,	添付 2-1	表に示す	12 通りの評	極ケースにつ		
	いて, 青	評価の要否を	を検討した	• 0				
	ワイ・	ヤロープ短の	の場合は吊	荷定格質量	と (約 100t)	がガーダの振	Ę	
	動と一位	本化(ガータ	ダ及び吊荷	固有振動数	(* : 2.9Hz)	して付加質量		
	として	動き,ガータ	ずの振動質	量が約160	t となるの	こ対し, ワイヤ		
	ローブ:	長の場合は7	ガータの振	動モードと	お荷振動モ	ードが別々に		
	現れ(ス	/ータ側固有 の垢動質量!	振動数*: ナ約 60+ ト	5.5HZ, 市作 - たるため	可則固有 振馬 ロイヤロー	J釵*:1.5HZ), -プ毎の担合の		
	カガ保	宇的な設定し	レたろ.	- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2110	ノ应り物ロい		
	した	がって、今回	- なる。 可の評価対	象はワイキ	マロープ短の)場合の6ケー		
	スとし,	ワイヤロー	ープ長の場	合の評価ク	ースについ	ては評価対象		
	外とし	た。						
	* 固有	「振動数はト	ロリ位置ロ	中央のケー	ス			
	<u>添</u> 作	† 2-1 表 海	水ポンプ	室門型クレー	ーンの耐震	評価ケース 		
			ワイヤロ	ロープ短	ワイヤロ	ロープ長		
			吊荷有	吊荷無	吊荷有	吊荷無		
		剛脚側	0	0		_		
	トロリ位	揺脚側	0	0	_	_		
	直	中央	0	0		_		
				〇:評	 価対象,一:言	 平価対象外		

炉	備考
	・記載方針の相違 【女川2】 島根2号炉では,同様 の内容を添付資料(2- 3)に記載
	・記載方針の相違 【女川2】 島根2号炉では,同様 の内容を第3-1 添表に 記載

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	添付資料3.		
	海水ポンプ室門型クレーンへの非線形時刻歴解析の適用性	添付資料(2-2) 取水槽ガントリクレーンへの非線形時刻歴応答	
		解析の適用性	
	1. 概要	1. 概要	
	女川2号炉海水ポンプ室門型クレーン(以下「門型クレーン」		
	という。)が上位クラス施設へ波及的影響を及ぼさないことを確認		
	するため,基準地震動 Ss に対して十分な構造強度を有すること		
	を確認する必要がある。構造図を添付 3-1 図に示す。		
	<u>門型クレーン</u> がレール上に固定されていないという構造上の特	取水槽ガントリクレーンの耐震評価にあたっては,当該クレー	
	徴を踏まえ、水平方向へのすべりと鉛直方向の車輪部の浮上がり	シがレール上に固定されていないという構造上の特徴を踏まえ,	
	を考慮した解析モデルによる非線形時刻歴解析を適用する。解析	水平方向へのすべりと鉛直方向の車輪部の浮上りを考慮した解析	
	モデル概要図を <u>添付 3-2</u> 図に示す。	モデルによる非線形時刻歴応答解析を適用する。構造図を第2-1	
		<u>添図に</u> 解析モデルの概要を <u>第2-2</u> 添図に示す。	
		本資料では、先行審査実績のあるクレーン類と構造、評価方法	
		等の比較を行い、取水槽ガントリクレーンへの非線形時刻歴応答	
		解析の適用性を示す。	
	派付 3-1 図 海水ポンプ室門型クレーン構造図	<u>第2-1 添図 取水槽ガントリクレーン構造図</u>	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
		びつうしていた。 低付 3-2 図 非線形時刻歴応答解析に用いる解析モデル概要図	第2-2 添図 非線形時刻歴応答解析に用いる解析モデル概要図	
		2. 先行実績(大間1号炉原子炉建屋クレーン)との構造比較 門型クレーンに非線形時刻歴解析を適用するにあたって、先行 実績として大間1号炉原子炉建屋クレーン(以下「原子炉建屋クレーン」という。)で適用実績があるため、それぞれの構造や特徴 を比較し、適用性について確認する。	 先行審査実績のあるクレーン類との構造比較 取水槽ガントリクレーンに非線形時刻歴応答解析を適用するに あたって、クレーン類に非線形時刻歴応答解析を適用した先行審 査実績として大間1号炉原子炉建屋天井クレーン(以下「原子炉 建屋天井クレーン」という。)及び設置変更許可審査中である女川 2号炉海水ポンプ室門型クレーン(以下「海水ポンプ室門型クレ ーン」という。)があるため、それぞれの構造や特徴を比較し、 適用性について確認する。 	
		 2.1 全体構造について (1)構造概要 原子炉建屋クレーンは、トロリ式天井クレーンに分類されるものであり、2本のレール上を走行する方式である。走行レール間はガーダと呼ばれる部材が渡された桁構造で、ガーダ下部に設けられている車輪を介して走行レール上に設置されている。また、ガーダ上部には横行レールとトロリが設置され、吊荷の吊上げ、 	 2.1 全体構造について (1)構造概要 原子炉建屋<u>天井</u>クレーンは、トロリ式天井クレーンに分類されるものであり、2本のレール上を走行する方式である。走行レール間はガーダと呼ばれる部材が渡された桁構造で、ガーダ下部に設けられている車輪を介して走行レール上に設置されている。また、ガーダ上部には横行レールとトロリが設置され、吊荷の吊上 	
		 吊下げ及び移動が行われる。 門型クレーンは、トロリ式橋型クレーンに分類されるものであり、2本のレール上を走行する方式である。走行レール間はトロリ式天井クレーンと同様にガーダが渡された桁構造となっている。ガーダ下部には脚が設けられており、この脚の下部の車輪を介して走行レール上に設置されている。ガーダ上部にはトロリ式 天井クレーンと同じく横行レールとトロリが設置され、吊荷の吊 	げ、吊下げ及び移動が行われる。 <u>海水ポンプ室</u> 門型クレーン <u>及び取水槽ガントリクレーン</u> は、ト ロリ式橋型クレーンに分類されるものであり、2本のレール上を 走行する方式である。走行レール間はトロリ式天井クレーンと同 様にガーダが渡された桁構造となっている。ガーダ下部には脚が 設けられており、この脚の下部の車輪を介して走行レール上に設 置されている。ガーダ上部にはトロリ式天井クレーンと同じく横	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	上げ、吊下げ及び移動が行われる。	行レールとトロリが設置され、吊荷の吊上げ、吊下げ及び移動が	
		行われる。	
	両設備の概要図について <u>添付 3-3</u> 図に示す。	これらの設備の概要図について第2-3 添図に示す。	
	(2) 全体構造	(2) 全体構造	
	原子炉建屋クレーンの本体構造はガーダ、サドルと呼ばれる鋼	原子炉建屋天井クレーンの本体構造はガーダ、サドルと呼ばれ	
	構造物が主体となっている。トロリ本体も同様に鋼構造物で構成	る鋼構造物が主体となっている。トロリ本体も同様に鋼構造物で	
	されている。ガーダは走行レール上に、トロリは横行レール上に	構成されている。ガーダは走行レール上に、トロリは横行レール	
	ともに4箇所にある車輪を介して固定されずに設置されているこ	上にともに4箇所にある車輪を介して固定されずに設置されて起	
	とから地震時には水平方向にすべり,鉛直方向に浮上がりが発生	<u>り</u> …地震時には水平方向にすべり,鉛直方向に <u>浮上り</u> が発生する	
	する。	可能性がある。	
	門型クレーンの本体構造はガーダ <u>,サドル</u> 及び脚と呼ばれる鋼	海水ポンプ室門型クレーンの本体構造はガーダ及び脚と呼ばれ	
	構造物が主体となっている。トロリ本体も同様に鋼構造物で構成	る鋼構造物が主体となっている。トロリ本体も同様に鋼構造物で	
	されている。脚は走行レール上に、トロリは横行レール上にとも	構成されている。脚は走行レール上に、トロリは横行レール上に	
	に4箇所にある車輪を介して固定されずに設置されていることか	ともに4箇所にある車輪を介して固定されずに設置されており,	
	ら地震時には,原子炉建屋クレーンと同様,水平方向にすべり,	地震時には水平方向にすべり, 鉛直方向に浮上りが発生する可能	
	鉛直方向に浮上がりが発生する。	性がある。	
		取水槽ガントリクレーンの本体構造はガーダ及び脚と呼ばれる	
		鋼構造物が主体となっている。トロリ本体も同様に鋼構造物で構	
		成されている。脚は走行レール上に、トロリは横行レール上にと	
		もに4箇所にある車輪を介して固定されずに設置されている。取	
		水槽ガントリクレーンは,走行方向の駆動輪,従動輪の間に転倒	
		防止装置が設置されているが、地震時には原子炉建屋天井クレー	
		ンと同様、車輪は水平方向にすべり、鉛直方向に浮上りが発生す	
		る可能性がある。	
	(3) 構造の特徴比較	(3) 構造の特徴比較	
	原子炉建屋クレーンと門型クレーンの構造について特徴を比較	原子炉建屋天井クレーン、海水ポンプ室門型クレーン及び取水	
	した結果を添付 3-1 表に示す。	槽ガントリクレーンの構造について特徴を比較した結果を第2-1	
		派表に示す。	
	<u>両設備の違いは脚の有無だけであり</u> ,それ以外の構造物として	原子炉建屋天井クレーンと取水槽ガントリクレーンの違いは脚	
	の特徴は類似している。また,レールと4箇所の車輪が固定され	<u>及び単軸粘性ダンパの有無が挙げられる。また,原子炉建屋天井</u>	・設備構成の相違
	ずに接触し、水平方向にすべり、鉛直方向に浮上がりが発生する	クレーンでは、レールが破損した場合でも脱線防止ラグがガーダ	【女川 2】
	挙動は両クレーンで類似している。	に当たって脱線を防ぐ構造であるのに対し、取水槽ガントリクレ	①の相違
		ーンの転倒防止装置では、レールを掴むことで転倒を防止する構	
		造になっている点が異なっている。なお、取水槽ガントリクレー	
		ンの転倒防止装置の構造は、伊方3号炉海水ピットクレーンの浮	
		上り防止装置と同等の構造である。それ以外の構造物としての特	
		徴は類似しており、レールと4箇所の車輪が固定されずに接触し、	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2 号
		水平方向にすべり,鉛直方向に浮上りが発 ンで類似している。 <u>海水ポンプ室門型クレーンと取水槽ガン</u> 単軸粘性ダンパの有無が挙げられる。また レーンは,原子炉建屋天井クレーンの脱線 の脱線防止装置を設置しており,取水槽ガ 造が異なっている。それ以外の構造物とし り,ともに鉛直方向に浮上る可能性がある。
	<complex-block></complex-block>	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		の構造概要図

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所	币 2号炉(20:	20. 2. 7 版)		島根原子力	力発電所 2号炉	i
	添付 3-1	麦 構造の特徴	比較		第2-1 添表	構造の特徴比	較
	原子炉建 ・2本のレール	屋クレーン 間を跨ぐ桁構造	門型クレーン		大間1号炉 原子炉建屋天井	女川2号炉 海水ポンプ室門型	島根2号炉 取水槽ガントリ
	構造概要 ・ カータ上にト ・ 車輪を介して ・ ガーダ ・ サドル ・ トロリ	レール上に設置	司左 ・ガーダ ・サドル ・トロリ ・ <u>脚</u> コニ	構造概要	 クレージ ・2本のレール間を跨 ぐ桁構造 ・ガーダ上にトロリを 設置 ・車輪を介してレール 	「一 クレーン」	同左
	構造形状 鋼構造物(反素) 溶接構造物 * 下線は相違点を示す。	<u>銅利)</u> [7]	可 <u>左</u> 司 <u>左</u>	主要構造物	 に設置 ・ガーダ ・サドル ・トロリ ・脱線防止ラグ ・トロリストッパ 	・ガーダ ・サドル ・トロリ ・脚 ・脱線防止装置 ・トロリストッパ	 ・ガーダ ・トロリ ・ホイスト ・脚 ・単軸粘性ダンパ ・転倒防止装置 ・トロリストッパ
				構造形状	鋼構造物(炭素鋼) 溶接構造物	同左	同左
	 示す荷重伝達機能も同様であい。 (1) クレーン本体走行方向のの a. クレーン本体 (a) クレーン本体は走行レーいないため、走行方向のの は走行レール上を滑るだの 	5る <u>と考えられ</u>)水平力 -ル上に乗って、)水平力が加わ・ ごけで、クレー、	る。 いるだけで固定されて っても,クレーン本体 ン本体には走行レール	れており, (1) 走行方 a. クレー: (a) クレー いため ーン本	以下に示す荷重伝 「向 <u>(EW方向)</u> の ン本体 ・ン本体は走行レー ,走行方向 <u>(EW</u> 	達機構も同様でお 水平力 ル上に乗って <u>おい</u> <u>方向)</u> の水平力だ をすべり,クレー	うる。 2固定されていな が加わっても,クレ ーン本体には走行レ
	と走行車輪間の最大静止		水平力は加わらない。	ールと	走行車輪間の最大	*************************************	の荷重は作用しな
	 (b) クレーン本体の走行車輛 (c) 駆動輪は,電動機及び減ため,地震力が車輪部に 大静止摩擦力以上の水平 (d) 従動輪は回転が拘束され に合わせて自由に回転す 	 iは、駆動輪又	は従動輪である。 部分と連結されている 部分が追随できず,最 走行レール上を <u>滑る</u> 。 ,クレーン本体の動き レーン本体走行方向の	 (b) クレー (c) 駆動輔 ため, 場合, (d) 従動輔 に合わ 	・ン本体の走行車輪 は、電動機及び減 最大静止摩擦力以 回転部分が追随で は回転が拘束され ・せて自由に回転す	は, 駆動輪 <u>及び</u> 後 速機等の回転部分 上の <u>地震慣性力が</u> きず, 走行レール ていないため, な ることからクレー	
	水平力をクレーン本体に	.伝達しない。		水平力	をクレーン本体に	伝達しない。	
	(a) トロリはクレーン本体の された横行レール上に設)走行レールに; ;置しているこ。	対して直交方向に設置 とから, <u>クレーン本体</u>	(a) トロリ された	はクレーン本体の 横行レール上に設	走行レールに対し 置していることź	して直交方向に設置 から,走行方向 <u>(圧</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	<u>の</u> 走行方向の地震力はガーダ本体・横行レールを介してトロ	<u>W方向)</u> の地震力はガーダ本体・横行レールを介してトロリ	
	リへ作用する。	へ作用する。	
	(2) トロリ走行方向の水平力	(2) <u>横行方向(NS方向)</u> の水平力	
	a. クレーン本体	a. クレーン本体	
	(a) クレーン本体は横行レールに対して直交方向に設置された走	(a) クレーン本体は横行レールに対して直交方向に設置された走	
	行レール上に設置していることから, <u>トロリ走行方向</u> の地震	行レール上に設置していることから, <u>横行方向(NS方向)</u>	
	力は走行レールを介してクレーン本体へ作用する。	の地震力は走行レールを介してクレーン本体へ作用する。	
	b. トロリ	b. トロリ	
	(a) トロリは <u>ガーダ上の</u> 横行レール上に乗って <u>いるだけで</u> 横行レ	(a) トロリは横行レール上に乗って <u>おり,</u> 横行レールとは固定さ	
	ールとは固定されていないため、水平力がトロリに加わって	れていないため, <u>横行方向(NS方向)の</u> 水平力がトロリに	
	も、トロリは横行レール上を <u>滑るだけで</u> 、トロリ本体には横	加わっても、トロリは横行レール上を <u>すべり</u> 、トロリ本体に	
	行レールと横行車輪間の最大静止摩擦力以上の水平力は加わ	は横行レールと横行車輪間の最大静止摩擦力以上の荷重は作	
	らない。	用しない。	
	(b) トロリの横行車輪は, 駆動輪 <u>又は</u> 従動輪である。	(b) トロリの横行車輪は、駆動輪 <u>及び</u> 従動輪である。	
	(c) トロリの駆動輪は、電動機及び減速機等の回転部分と連結さ	(c) トロリの駆動輪は、電動機及び減速機等の回転部分と連結さ	
	れているため、 <u>地震力が車輪部に加わると回転部分が追随で</u>	れているため,最大静止摩擦力以上の <u>地震慣性力が車輪部に</u>	
	<u>きず</u> ,最大静止摩擦力以上の水平力が加われば横行レール上	加わった場合、回転部分が追随できず、横行レール上をすべ	
	を潰る。	<u>ನ್</u> .	
	(d) 従動輪は回転が拘束されていないため、トロリの動きに合わ	(d) 従動輪は回転が拘束されていないため、トロリの動きに合わ	
	せて自由に回転することから _{2m} トロリ <u>走行</u> 方向の水平力をト	せて自由に回転することからトロリ横行方向の水平力をトロ	
	ロリ本体に伝達しない。	リ本体に伝達しない。	
	(3) 鉛直力	(3) 鉛直力	
	クレーン本体及びトロリは、レールと固定されていないことか	クレーン本体及びトロリは、レールと固定されていないことか	
	ら, 鉛直方向の地震力によってはレールから浮上がる可能性があ	ら,鉛直方向の地震力によってレールから浮上る可能性がある。	
	る。		
	2.3 単輪よわりの構造比較	2.3 単無よわりの構定比較	
	本所 が手法は単輪よわりのす へり ~ <u>注上かり</u> を考慮した非緑形	本解析手伝は単幅よわりのすへりや <u>注上り</u> を考慮しに非緑形解	
	解析であり、単輪よわりの特徴を踏まえたモデル化か必要である	がであり、単輪よわりの特徴を踏まえたセアル化か必要であるこ し、シーナやし、 、 、 。 たない 部 ハナ りた し、 デー 医スにひ 見 ア い	
	ことから、単輪とレールの接触部分について、原子炉建屋クレー	とから、単輪とレールの接触部分を対象として、原子炉建屋大开	
	シと門型グレーンについて詳細に構造比較を行う。原子炉建屋グ	クレーシと 取水慣 カントリクレーシについ に 詳細に 構造 比較 を 行	
	レーン及び円型グレーンの単輪よわりの模式図を添付 3-4 図に示	2.	
	尿ナ炉建産クレーンの単輪まわりは、走行装置が前後左右の4 開に町用とした構体でため。 タナない時間いられ ぎょうすれ こまれ	尿ナ炉建 <u>産</u> た <u></u> ホノレーンの単輪まわりは、走行装置が前後左右	
	隅に配直された構造であり、谷走行装置は2輪すつの車輪で構成	の4隅に配直された構造であり、谷走行装置は2輪すつの車輪で	
	されている。車輪と走行レール間には鉛直上向きの拘束がなく浮	構成されている。車輪と走行レール間には鉛直上向きの拘束がな 	
	上かりが発生する構造となっており、クレーンと走行レールの接	く <u>浮上り</u> が発生する可能性がある構造となっており、クレーンと	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	触点は、ともに鋼製部材である車輪と走行レールの接触となる。	走行レールの接触点は、ともに鋼製部材である車輪と走行レール	
		の接触となる。	
	また,車輪については,駆動装置が設置された駆動輪(2輪分)	また,車輪については,駆動装置が設置された駆動輪(2 隅分)	
	とクレーンの動きに追随して回転する従動輪(6輪分)があり,	とクレーンの動きに追随して回転する従動輪(2隅分)があり,	
	全体の1/4の車輪で駆動力を伝達する機構となっている。	全体の半分の車輪で駆動力を伝達する機構となっている。	
	トロリの車輪まわりは、前後左右で1輪ずつ配置された構造と	トロリの車輪まわりは,前後左右で1輪ずつ配置された構造と	
	なっており、クレーン本体の車輪と同様に鉛直方向の拘束がない	なっており、クレーン本体の車輪と同様に鉛直方向の拘束がない	
	ため浮上がりが発生する構造となっている。駆動輪と従動輪につ	ため浮上りが発生する可能性がある構造となっている。駆動輪と	
	いてもクレーン本体の車輪と同様に前後で役割の異なる車輪が配	従動輪についてもクレーン本体の車輪と同様に前後で役割の異な	
	置されている。	る車輪が配置されている。	
	クレーン本体車輪まわり及びトロリ車輪まわりには、脱線防止	クレーン本体車輪まわり及びトロリ車輪まわりには、脱線防止	
	装置もしくはトロリストッパが設置されているため、車輪がレー	装置若しくはトロリストッパが設置されているため、車輪がレー	
	ルから浮上がる現象が発生した場合でも、脱線を防止する構造と	ルから <u>浮上る</u> 現象が発生した場合でも、脱線を防止する構造とな	
	なっている。	っている。	
	(2) <u>門型クレーン</u>	(2) 取水槽ガントリクレーン	
	門型クレーンの本体車輪まわりは, 添付 3-4 図に示すとおり走	<u>取水槽ガントリクレーン</u> の本体車輪まわりは, <u>第2-3 添図</u> に示	
	行装置が前後左右の4隅に配置された構造であり、各走行装置は	すとおり走行装置が前後左右の4隅に配置された構造であり,各	
	2輪ずつの車輪で構成されている。車輪とレール間は鋼製部材同	走行装置は2輪ずつの車輪で構成されている。車輪とレール間は	
	士の接触で上向きの拘束がなく, 浮上がりが発生する点や駆動輪	鋼製部材同士の接触で上向きの拘束がなく浮上りが発生する可能	
	と従動輪で車輪が構成されている点など、原子炉建屋クレーンと	<u>性がある</u> 点や駆動輪と従動輪 <u>が半数ずつ</u> で車輪が構成されている	
	同一の構造となっている。トロリの車輪まわりについても車輪(駆	点など,原子炉建屋 <u>天井</u> クレーンと <u>同様</u> の構造 <u>である</u> 。トロリの	
	動輪、従動輪)配置や接触状況などについて同一構造となってい	車輪まわりについても車輪(駆動輪、従動輪)配置や接触状況等	
	<u>z</u> .	について同様の構造である。	
	門型クレーン本体車輪まわり及びトロリ車輪まわりについて	<u>取水槽ガントリクレーン本体車輪の間には転倒防止装置が設置</u>	・設備構成の相違
	は,,改造工事として脱線防止装置を設置するため,原子炉建屋ク	されており、走行レールを掴むことで、転倒・脱線を防止する構	【女川 2】
	レーンと同様に、車輪がレールから浮上がる現象が発生した場合	<u>造となっている。この構造は原子炉建屋天井クレーンと異なって</u>	 の相違
	でも, 脱線を防止する構造である。	いるが、伊方3号炉海水ピットクレーンの浮上り防止装置と同様	
		の構造である。取水槽ガントリクレーンの転倒防止装置と伊方3	
		号炉海水ピットクレーンの浮上り防止装置の構造を第 2-4 添図	
		に示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	 先行実績(大間1号炉原子炉建屋クレーン)との評価較 1 評価方法の比較 原子炉建屋クレーンと門型クレーンの評価方法の比較 2 表に示す。門型クレーンの解析手法や解析モデル、 などの解析評価の基本となる設定は原子炉建屋クレーン 評価方法である。 	 	・設備構成の相違 【女川 2】 ①の相違
	入力地震動はそれぞれの設備を設置している箇所の地用するため、評価方法の差異にはあたらない。		
	解析モデル 3次元 FEM 解析モデル 同左 車輪ーレール間の 境界条件 すべり,浮上がり,衝突考慮 同左 地震力 水平 鉛直 動的地震力 同左	解析手法 非線形時刻歴応答解析 同左 同左 解析モデル 3次元FEM解析 モデル 同左 同左 車輪-レール間の すべり、浮上り、衝突 同左 同左	
	入力地震動 ボイル 元主にも50.87 と 2000年 協会の加速度時刻歴 減衰定数 水平 鉛直 2.0% 同左 解析プログラム ABAQUS Ver. 6.5-4 ABAQUS Ver6.11-1	水平 動的地震力 同左 同左 地震力 氷平 動的地震力 同左 同左 少 鉛直 動的地震力 同左 同左 人力地震動 原子炉建屋におけるク 海水ボンラ室におけるク 取水槽におけるクレ 人力地震動 レーン設置位置の加速 レーン設置位置の加速度 でい設置位置の加速度 渡衰 水平 2.0% 同左 同左 寝数 松車 2.0% 同左 同左 脳析プロプラム A B A Q U S (Ver. 6.5 - 4) A B A Q U S (Ver. 6.11 - 1) 同左	
	 3.2 地震応答解析モデルの比較 原子炉建屋クレーン及び<u>門型クレーン</u>の解析モデル概 <u>3-5</u>図に示す。 <u>門型クレーン</u>は原子炉建屋クレーンと同様に、クレー 構成部材をはり要素でモデル化している。また、車輪部 	3.2 地震応答解析モデルの比較 第子炉建屋天井クレーン及び取水槽ガントリクレーンの解析モデルの概要を第2-5 添図に示す。 シの主要 取水槽ガントリクレーンは原子炉建屋天井クレーンと同様に、ク いてのいて	
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
--------------------------------	--	--	----
	も原子炉建屋クレーンと同様に水平方向のすべり及び鉛直方向の	輪部についても原子炉建屋天井クレーンと同様に水平方向のすべ	
	<u>浮上がり</u> を考慮するため、ギャップ要素及びばね, 減衰要素でモ	り及び鉛直方向の浮上りを考慮するため、ギャップ要素, ばね及	
	デル化している。なお、車輪部の非線形要素については参考資料	び減衰要素でモデル化している。なお、車輪部の非線形要素につ	
	1に詳細を示す。	いては <u>添付資料(2-4)</u> に詳細を示す。	
		「	
	4. 非線形時刻歴解析の適用性(まとめ)	4. 非線形時刻歴応答解析の適用性(まとめ)	
	<u>女川2号炉海水ポンプ室門型クレーン</u> に対して非線形時刻歴解	<u>島根2号炉取水槽ガントリクレーン</u> に対して非線形時刻歴 <u>応答</u>	
	析を適用するにあたり,先行実績(大間1号炉原子炉建屋クレー	解析を適用するにあたり,先行 <u>審査</u> 実績(大間1号炉原子炉建屋	
	ン)との構造及び評価方法の比較を行った。	天井クレーン, 女川2号炉海水ポンプ室門型クレーン)との構造	
		及び評価方法の比較を行った。	
	前述の2項のとおり、全体構造、荷重伝達及び車輪まわりの構	全体構造、荷重伝達及び車輪まわりの構造について比較した結	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	造について比較した結果、先行実績のある原子炉建屋クレーンに	果,先行審査実績のある原子炉建屋天井クレーンに対して,取水	
	対して,門型クレーンは、クレーン本体の鋼構造物として脚が存	<i>槽ガントリクレーンは、クレーン</i> 本体の鋼構造物として脚が存在	
	在 <u>することのみが</u> 差異であり,これ以外の全体構造,荷重伝達及	<u>し単軸粘性ダンパを有する点及び脱線防止ラグと転倒防止装置の</u>	・設備構成の相違
	び車輪まわり構造が同様であることを確認した。なお、クレーン	構造が異なる点において差異があるが,これ以外の全体構造,荷	【女川 2】
	本体の鋼構造物として脚が存在することについては、適切に解析	重伝達及び車輪まわりの構造が同等であることを確認した。なお、	①の相違
	モデルに反映することで問題はない。	脚 <u>及び単軸粘性ダンパ</u> が存在することについては,適切に解析モ	・設備構成の相違
		デルに反映することとし,単軸粘性ダンパを有する構造物の解析	【女川 2】
		手法については、別紙-18「機器・配管系への制震装置の適用に	①の相違
		<u>ついて」に示す。</u>	
	また,前述の3項のとおり,評価方法及び解析モデルについて	また,評価方法及び解析モデルについて比較した結果,解析モ	
	比較した結果,解析モデルの設定方法として, <u>3次元</u> はり要素に	デルの設定方法として、はり要素によるモデル化、水平方向のす	
	よるモデル化,水平方向のすべり,鉛直方向の浮上がりの挙動を	べり, 鉛直方向の浮上り等の挙動を考慮する非線形要素の考え方	
	考慮する非線形要素の考え方が同様であることを確認した。	が同様であることを確認した。	
		なお,原子炉建屋天井クレーンの脱線防止ラグ及び海水ポンプ	・設備構成の相違
		<u>室門型クレーンの脱線防止装置と取水槽ガントリクレーンの転倒</u>	【女川 2】
		防止装置は構造が異なるが、転倒防止装置は伊方3号炉海水ピッ	 の相違
		トクレーンの浮上り防止装置と同等の構造となっており、浮上り	
		が発生し、浮上り防止装置の爪部とレールが接触しない限りは、	
		応力が発生しない構造であり、モデル化が適切であることを確認	
		<u>した。</u>	
	<u>したがって,女川2号炉海水ポンプ室門型クレーン</u> の耐震評価	以上のことから,島根2号炉取水槽ガントリクレーンの耐震評価	
	として、先行実績のある非線形時刻歴解析を適用することは妥当	として,先行審査実績のある非線形時刻歴応答解析を適用するこ	
	であると考えられる。	とは妥当であると考える。	
	5 关考文献		
	(1) 平成 19 年度 原子力施設等の耐震性評価技術に関する試験及		
	17.調査 動的上下動耐震試驗(クレーン類)に係ろ報告書(08		
	耐部報-0021 (独) 原子力安全基般機構)		
	(2) 平成 20 年度 原子力施設等の耐震性評価技術に関する試験及		
	び調査 動的上下動耐震試驗 (クレーン類) に係ろ報告書 (09		
	耐部報-0008. (独)原子力安全基盤機構)		
	(3) 天井クレーンのすべりを伴う地震時挙動(火力原子力発		
	電 Vol40 No.6 小森ほか)		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版) 女川原子力発電	 島根原子力発電所	2 号炉	備考
		添付資料(2-3) 取水槽ガントリク1	レーンの解析ケースの設定	・記載方針の相違
				【女川 2】
		取水槽ガントリクレーンの地震応答剤	解析にあたっては, トロリ及	女川 2 は同様の内容
		びホイストの位置や吊荷の有無によっ	て地震時の挙動が変化する	を添付資料2に記載
		可能性があるため、トロリ及びホイス	トの位置並びに吊荷の有無	
		に応じた解析ケースを設定する必要が	ある。設定した解析ケース	
		を第3-1 添表に示す。 取水槽ガントリ	クレーン使用時の状況を踏	
		まえて解析ケースについて検討した内	容を以下に示す。	
		取水槽ガントリクレーンを使用する場	昜合,まずクレーン本体が待	
		機位置から吊り上げ対象物に向けて走	行方向(EW方向)に移動	
		する。クレーン本体の移動中は、トロ	リ及びホイストはそれぞれ	
		の待機位置にある。このような状態を	踏まえた解析ケースとして,	
		トロリ及びホイストがいずれも待機位	置で吊荷なしの条件を設定	
		する。(ケース1)		
		トロリにより吊荷を吊り上げる場合に	は、トロリを横行方向(NS	
		方向) に対象物の直上まで移動させ,	対象物を吊り上げた後、ト	
		ロリ位置はそのままでクレーン本体が	を走行方向(EW方向)に点	
		検等の作業エリアへ移動する。また,	ホイストにより吊荷を吊り	
		上げる場合もトロリの場合と同様に,	ホイストを横行方向(NS	
		方向) に対象物の直上まで移動させ,	対象物を吊り上げた後、ホ	
		イスト位置はそのままでクレーン本体	が走行方向(EW方向)に	
		点検等の作業エリアへ移動する。トロ	リとホイストを同時に使用	
		することはないため, トロリを使用す	る場合にはホイストは待機	
		位置,ホイストを使用する場合にはト	ロリは待機位置から移動し	
		ない。トロリ及びホイストの待機位置	について第 3-1 添図に示	
		す。以上のトロリ及びホイストの使用	状態を踏まえた解析ケース	
		として, トロリ及びホイストのいずれ	かは最大質量の吊荷有りと	
		し、もう一方は待機位置で吊荷なしの	条件を設定する。なお、吊	
		荷有りの場合のトロリ及びホイストの	位置は中央付近であるため	
		ガーダの中央とする。(ケース2,3)		
		第3-1 法書 町水博ガントリカ1	ノーンの耐雲評価ケース	・記載方針の相違
			200	
		ケース トロリ	ホイスト	▲ 女川 9 でけ 同様の内
		1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	11/2 市何月無(質重) 待機位置 なし	タ川4 Cta, 凹体の内 のを沃付 9-1 まに記載
		2 中央 有り (50t)	待機位置なし	在で110円4 1 火に記戦
		3 待機位置 なし	中央 有り(17t)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号
		<u>第3-1 添図 取水槽ガントリクレーンの</u>
	[添付資料 4 添付資料 4	
	<u>海水ボンプ室門型クレーンの地震時挙動に関する補足説明</u>	
	1. 車輪とレールとの摩擦力及び脱線防止部材との接触による摩擦	
	カの考慮について	
	門型クレーンはレール上を車輪で移動する構造であり、レール	
	と車輪は固定されていないため、地震時には走行方向(レール長	
	手方向)にはすべりが発生し、摩擦力以上の荷重を受けない構造	
	である。	
	門型クレーン本体車輪部とレール間の取り合い部を例とする	
	と、すべりを想定する面としては、鉛直方向(本体車輪~レール	
	間)と水平方向(脱線防止装置~レール躯体間)が挙げられる。	
	(添付 4-1 図)	
	鉛直方向には自重が常時下向きに加わっており、地震による鉛	
	直方向加速度が1Gを上回りクレーン本体が浮上がり挙動を示す	
	ごく僅かな時間帯を除き、常に車輪はレール上面に接触し垂直抗	
	力N が発生する状態であることから,摩擦係数 μ (=0.3) 一定の	
	条件の下,垂直抗力Nを時々刻々変化させた摩擦力f(=µN)を	
	考慮している。	
	これに対して、水平方向には常時作用する荷重が無く、水平方	
	向(横行方向)の地震力が作用し、脱線防止装置がレール躯体に	

分炉	備考
シロリ,ホイスト待機位	 備考 ・設備構成の相違 【女川 2】 ①の相違 ・設備構成の相違 【女川 2】 ①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	接触する場合に垂直抗力R が発生する。		
	しかしながら、地震力は交番荷重であること及び、接触後も部		
	材間の跳ね返りが発生することから、側面の接触時間はごく僅か		
	な時間となる。また、大きな摩擦力が発生するためには、横行方		
	向の地震力により瞬間的に垂直抗力Rが発生する間に,走行方向		
	の大きな地震力が同時に作用する必要があることから、各方向地		
	震力の非同時性を考慮し、側面の接触による摩擦力は考慮してい		
	ない。		
	なお,基準地震動 Ss による地震力に対して,駆動輪に接続さ		
	れる電動機及び減速機等の回転部が破損し駆動輪が自由に回転す		
	る可能性も考えられるが、その場合、摩擦力は低減することから、		
	上記のように摩擦力を考慮した評価を行うことで保守的な評価と		
	なっていると考える。		
	新直方向接触面 垂直方向接触面 先行車輪 垂直抗力N 上行車輪 重直抗力N 上行車輪 重直抗力N 上行レール 重直抗力N 水平方向接触面 上行レール枢体 水平方向接触面 水平方向接触面		
	<u> 添付 4-1 図 鉛直方向と水平方向の接触面</u>		 ・設備構成の相違 【女川 2】 ①の相違
	2. レール等の破損による解析条件への影響について		
	門型クレーンのモデル化にあたっては, 車輪がレール上にあり,		
	レール直角方向に対しては脱線防止装置またはトロリストッパが		
	接触して機能することを前提としている。		
	ここでは、地震応答解析モデルの前提としている「レール上に		
	車輪が乗っていること」が、脱線防止装置またはトロリストッパ		
	の健全性を確認することで満足されることを、門型クレーン本体		
	車輪部を例に示す。		
	門型クレーンに地震力が作用する際は、車輪がレール上に乗り		
	上がる挙動が想定されるが、脱線防止装置がレール躯体に接触す		
	ることで横行方向の移動量は制限される。脱線防止装置は、構造		
	強度部材として基準地震動 Ss によって生じる地震力に対して許		
	容応力を満足する設計としており、地震で破損することは無いた		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	め、脱線防止装置とレール躯体間のギャップ量に相当する移動量		
	となった場合でも車輪がレール上から落ちることは無い。(添付		
	4-2 図)		
	上記については、トロリ車輪部についても同様である。		
	また、脱線防止装置とレール躯体が接触する前に車輪からレー		
	ルに荷重が伝わることになるが、車輪のつばとレールが接触(移		
	動量 17.5 mm) してから脱線防止装置とレール躯体が接触(移動		
	量 20 mm) し,移動量が制限されるまでの移動量は 2.5 mm (=20.0		
	mm-17.5 mm)程度であることから,脱線防止装置が接触して機能		
	する前に鋼製部材であるレールが大きく破損することは無いと考		
	える。このように、車輪のつばの有無によらず構造強度部材であ		
	る脱線防止装置が機能することで車輪がレールにとどまる設計で		
	あることから、車輪のつばは地震応答解析の前提条件に影響する		
	ものではない。		
	以上より、地震時に脱線防止装置がレール躯体に接触して機能		
	する前に車輪がすべり面であるレールから落下することや、レー		
	ルが大きく破損することが無いことから脱線防止装置が機能する		
	前に地震応答解析モデルの前提を満足しなくなるおそれは無いと		
	考える。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	17.5mm 車輪 走行レール 生行レール駆体 し (a) 通常時		
	(b) 地震力により単幅のつばかレールに接触(水平移動量17.5mm)		
	 (c) 地震力により脱線防止装置とレール躯体が接触(水平移動量 20.0 mm) (本図は車輪がレールから外れないことを示すための概念図であり、構造物の大きさや間隙については実物と異なる。) 		・設備構成の相違 【女川 2】 ①の相違
	参考資料1		
	クレーン車輪部の非線形要素の設定について	<u>添付資料(2-4)</u> 取水槽ガントリクレーン車輪部の非線形要素	
	1 車輪部の非線形要表の考え方		
	<u>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</u>	取水槽ガントリクレーン車輪部のモデル化では すべり 浮上	
	及び衝突の挙動を模擬するためギャップ要素を用いる。また. 接	り及び衝突の挙動を模擬するためギャップ要素を用いる。また、	
	触部位の局所変形による接触剛性をばね要素で、衝突による減衰	 接触部位の局所変形による接触剛性をばね要素で, 衝突による減	
	効果を減衰要素で模擬し、参考1-1 図に示すようにギャップ要素	衰効果を減衰要素で模擬し、第 <u>4-1</u> 添図に示すように <u>、</u> ギャップ	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
			と直列に配置する。	要素と直列に配置する。	
			クレーン車輪部の接触形態は、車輪(曲面形状)とレール(平		
			面形状)による鋼材同士の接触であり,先行実績(大間1号炉原		
			子炉建屋クレーン)と同様であることから、非線形要素設定につ		
			いては先行実績と同様の考え方を適用している。		
			なお、各要素(ギャップ要素、ばね要素、減衰要素)の詳細設		
			定については2.以降に記載する。		
				節点	
			● : 鏑点	━━━━ ギャップ要素	
			↓ :ばね要素		
				T	
			·····································		
			参考 1-1 図 クレーン車輪部の非線形要素図	第4-1 添図 車輪部の非線形要素	
			2. 車輪とレール間の摩擦特性(ギャップ要素)	 車輪とレール間の摩擦特性 	
			クレーンの車輪には、電動機及び減速機等の回転部分と連結さ	取水槽ガントリクレーンの車輪には電動機及び減速機等の回転	
				部分と連結された駆動輪と,回転部分と連結されていない従動輪	
			る。このうち駆動輪は回転が拘束されているため,地震力が車輪	の2種類がある。第4-2添図に取水槽ガントリクレーンの概要図	
			部に加わると回転部分が追随できず最大静止摩擦力以上の水平力	<u>を示す。</u> このうち駆動輪は回転が拘束されているため,最大静止	
			が加わればレール上をすべる。	摩擦力以上の <u>地震慣性力が加わった場合,</u> レール上をすべる <u>挙動</u>	
			摩擦係数は実機の縮小試験体を用いて加振試験を行った既往研	东示丈。	
			究 (1) を踏まえ, 0.3 と設定した。既往研究においては、摩擦係数	ここで、摩擦係数は原子炉建物天井クレーンと同様の 0.3 を用い	
			として 0.11~0.19 の値が確認されているが、摩擦係数の大きい	<u>a</u> .	
			方がクレーン本体へ加わる水平力が大きくなるため、保守的に0.3		
			L L tem		
			既往研究における試験体(原子炉建屋クレーンタイプ)と門型		
			クレーンの構造上の差異(門型クレーンには脚が存在)から門型		
			クレーンは地震動に対して多少のロッキング挙動を示す可能性は		
			あるが、接触形態(車輪(曲面形状)とレール(平面形状)によ		
			る鋼材同士の接触)は変わらないことから摩擦係数への影響は軽		
			微であると考えられる。		
			なお、摩擦係数0.3 は、女川2号炉原子炉建屋クレーンの既工		
			認(静的解析*)及び先行実績(大間1号炉(動的解析))におい		
			ても同様に適用されている。		
			* すべり方向の水平力として最大静止摩擦力(鉛直方向荷重×摩		

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
		擦係数(0.3))を用いてクレーン本体及びトロリを評価		
		 擦係数(0.3))を用いてクレーン本体及びトロリを評価 がっていたいでは、今回の設定方法のほか、ヘルツの接触理論により荷重に着目して設定する方法、荷重やトロリ浮上がり量等の 試験結果と同等になるようにパラメータスタディを行って設定す る方法などを検討しているが、いずれの設定方法でも接触剛性(ば れ要素)の差異がほとんどないことが確認されている。 なお、今回の接触剛性(ばね要素)の設定方法は、先行実績(大 間1号炉)においても同様に適用されている。 	 第4-2 添図 取水槽ガントリクレーンの概要図 2. 車輪とレールの接触剛性 接触剛性は「平成 20 年度 原子力施設等の耐震性評価技術に関 する試験及び調査 動的上下動耐震試験(クレーン類)に係る報 告書(09 耐部報-0008,(独)原子力安全基盤機構)」を参照し、 車輪とレールの衝突時の剛性を模擬したばね要素を考慮し、クレ ーン質量で構成される1自由度系の固有振動数が 20Hz <u>相当</u>にな るように設定<u>する</u>。 	
		4. 車輪とレール間の衝突による減衰 (減衰要素) 減衰は, クレーン類の非線形応答挙動を検討した既往研究 ⁽³⁾ を踏まえ, 車輪の反発係数から換算される減衰比を設定した。既 往研究においては, 車輪及びレールを模擬した試験体を用いて, 重力加速度を利用した反発試験 (参考1-3 図) を実施し, 車輪と レール間の反発係数から減衰比を確認している。 なお, 反発係数と減衰比の関係式は次式のとおり。また, 反発 係数と減衰比の関係を参考1-4 図に示す。 $e = exp(-\frac{h\pi}{\sqrt{1-h^2}})$ e:反発係数, h:減衰比	3. 車輪とレール間の衝突による減衰 衝突による減衰は「平成 19 年度 原子力施設等の耐震性評価技 術に関する試験及び調査 動的上下動耐震試験 (クレーン類) に 係る報告書 (08 耐部報-0021,(独) 原子力安全基盤機構)」にて 実施した要素試験のうち,車輪反発係数試験結果より評価した反 発係数から算出する。 なお,減衰比と反発係数の関係式には次式を用いる。 $e = exp\left(-\frac{h \pi}{\sqrt{1-h^2}}\right)$ ここで, eは反発係数, hは減衰比である。 上記の式で表される反発係数と減衰比との関係を第 4-3 添図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
伯呵 <i>利利示于万</i> 先电所 07775於 (2017.12.20 版)	 既往研究の反発係数試験から得られた反発係数は、0.62~0.65 であり、減衰比に換算すると0.12~0.13 となる。 ここで、反発係数と減衰比の関係は、反発係数が大きいほど衝 突時のエネルギー消散が小さく、減衰比が小さくなるため、車輪 とレール間の衝突による減衰は、保守的に反発係数0.7 (減衰比 0.113)を適用する。 		
	1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 万発係数 と減衰比の関係*	fl = 1 - 3 孫図 反発係数と減衰比の関係	

⁴条-別紙7-82

 ▲ 「平泉」の学校、原本力振発変化の構成場合に認知した認知意 第20-2021、2000元で加速な数(クレーン第)に係る場合力 第20-2021、2000元で加速な数 (大力な学校の構成場合におります。 の目的 第20-2021、2000元で加速な数 (大力はてきたいます。 の目的 アクレーンの中への マーンの中への マーンの中への マーンの中への マーンの中への マーンの中への マーンの中への マーンの中への マーンの中への マーンの中への マーンの 「「「「「「」」」 マーンの マーン マーンの マーン マーン	柏崎刈羽原子力発電所 6	/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号
 <u>12支払、数約,12,12支目の支払支払金数(数)</u> <u>15支にない。(数)</u> <u>15支にない。(本)</u> <u>15支にない</u> <u>15 ju</u> <u>15 ju</u>				* 『平成 19 年度 原子力施設等の耐震性評価技術に関する試験及	
 ・ (独) (理) (御) (兄子力会全主部総裁) 上立二式引用 ・ (本) (如) (私) (小 (本) (本) (本) (本) (本) (本) (本) (本) (本) (* (* (* (* (* (* (* (* (* (* (* (* (*				び調査動的上下動耐震試験(クレーン類)に係る報告書(08 耐	
 主要支入器 (1) 天井クレーンのすべりを伴う批響時送過(次力原子力を 低いなは 26.6 ホッジ5.57) (2) 「平成20 中金 原子力成支後の研防性評価技術に関する32% 及び請求 低的上下動前得試験(クレーン税)に係る報告書(88 前該第一008.0 (初)原子力没を基盤協問)」 (3) 「平成10 中金 原子力成支後の研防性評価技術に関する32% 及び請求 系的上下動前書試験(クレーン税)に係る報告書(88 前該第一002.1 (法)原子力没を基盤協問)」 4. 転用防止装置の場合・モラルイに 広気防止と環境、第一年は認知に対していの間には関係が 発生していたの間には関係が 発生していたの間には関係が 発生していため間に対応する2000 方面)に対す「ドローフによ 考慮は発生しない、 取出の間に参考して、第一4点のに 対応する「第二本語の主要性については、レール直文力 細により面低する情報となっており、 していることのでは、ビール直文力 細により面低する情報となっており、 の一方面には対す「ドローフによ 考慮は発生しない、 取出の間に参考して、第 4-4 条回に ラル化を行う。 第 4-4 条回に ラル化を行う。 第 4-4 条回に ラル化を行う。 				部報-0021, (独)原子力安全基盤機構)』より一部引用	
 5. 素支払数 (1) 天正クレーンのオペッタを伴う地震等空能(次力原子力発 電、1010 № 6 小輪になか) (2) 「支払20 年度「原子力施設等の能設付計価技術に関する試験 友切調査 他の68 (公園原子方施設等の能設付計価技術に関する試験 及び調査 通知上午飯間裏は数(クレーン版)に係る報告書(98 耐部準-0021 (次)原子方次全温監徴第)) (3) 「早次19 年度「原子力施設等の能設付計価技術に対する試験 及び調査 通知上午飯間裏は数(クレーン版)に係る報告書(98 耐部準-0021 (次)原子方次全温監徴第)) (4) 転留防土装置20 福祉・モランル化に 転倒の上装置は、第4-4 総図に示計 レール原則をジームで行み込む場合で の完整の小部とレールの防には消防が 発生してレール開発と知識の防止装置の活法される。 水平方面については、レール取支か したしず、原制防止装置については、 広範の開放と考慮して、第4-4 施図に プル化を行う。 (4) 正式単小方面 (5) 原本の「第50」 第4000000000000000000000000000000000000					
 (1) 天孫クレースのすべり 次月 (万) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大					
 (1) になる 20 年夏 原子力施設等の消費性評価技術に弱する実験 及び調査 数的上下表面優式数 (クレーン第) に係る報告書 (08 前衛報-0025,(00)原子力安全基礎機構)) (3) 国家 日 8 度 デカ施設等の消費性評価技術に防止る素報告書 (08 前節報-0021,(00)原子力安全基礎機構)) (4) 転気防止装置の構造・モデル化圧 転気防止装置の構造・モデル化に 転気防止装置の構造・モデル化に 転気防止装置の構造・モデル化に 転気防止装置の構造・モデル化に 転気防止装置の構造・モデル化に 転気防止装置の構造・モデル化に 転気防止装置の構造・モデル化に 転気防止装置の構造・モデル化に (4) 転気防止装置の構造・モデル化に (5) レールの構造と毎月時に装置の ると検証力向の構造が構造される。 水平方時については、レールは支持 軸により回転する構造される。 水平方時については、レールは支持 軸により回転する構造される。 水平方時については、レールは支持 軸により回転する構造される。 (5) レールの構造に表示 (4) 単位の構造した、第4-4 絵は デル化を行う。 (4) 単位の構造 転換防止装置の 				(1) 大井クレーンのすべりを伴う地震時季動(火力原子力発	
 (2) 1-40(3) 年後、関イカ進会学の制度に構成す(2)の学校 及び調査 動的上下動間接受後(クレーン第)に係る報告書(0) 前部単-0021,(後)原イカ安全基整整物)」 (3) 1-97(3) 年度(3)年4月、(2)の「大力安全基整整物)」 4. 転倒防止装置の構造・モデル化に 転回防止装置の構造・モデル化に 転回防止装置の構造・モデル化に 転回防止装置の構造・モデル化に 転回防止装置の構造・モデル化に 転回防止装置の構造・モデル化に 取用にまたい。 なりについては、レール環路を アームで構み込む構造で のた端の小部とレールの調査と転的広装価の ると気能力的の存却に体達される。 水平方向については、レール度文力 転により回転する構造とない 以上上り、転回防止装置については 頭部の倒酸を考慮した、第4-4 振興に デル化を行う。 (4) 転用の上装置の 					
 (2) (時間等 数90-11 字動画集会な(19) (19) (14) (14) (14) (14) (14) (14) (14) (14				(2) 平成 20 年度 原于刀施設寺の胴展性評価技術に関する試験	
 (1) 印本 1003、(安)広丁力友主型成(市) (2) 印本 10 年支 原子力放発の(耐気性管由(状化)用する状象 及び調査 動的上下動耐気状験(クレーン第)に係る報告書(08 耐部第-0021,(金))原子力安全式爆獲構)」 <u>4 転倒防止装置の構造・モデル化に</u> 転倒防止装置は、第4-4 箱間に示す レール環路をアームでは大砂への間には関係が を生してレールの場合を時間に上装置の のた場の(加速とレールの間には関係が なましてレールの場合を時間に上装置の ると新直方向の確重が伝達される。 水平方向については、レールに支入 競により回転する構造となっており、 ーン定行方向)にはガイドローラによ 変電は発生しない、 以上より、転間防止装置については 取筒の間隙を考慮して、第4-4 諸国に デル化を行う。 <u>第1-1 部区 転的防止装置</u>の 				及び調査 期的上下期附展訊號(クレーン類)に係る報告書(09)	
 (1) (十次19 年後に下う力強大学の上に見ついまたに通びたいにおうなみを使 及び調査を勤めに予想[編3]数(クレーン)に広る(報告書(0)8) 前部報・0021,(彼)原子力安全基準機構)) 4. 転勤防止装置の構造・モデル化に 転勤防止装置の構造・モデル化に 転勤防止装置の構造・モデル化に 転勤防止装置の構造・モデル化に の気喘の(常差シールの町には通知等 の気 と知道力(均の構造メールで)の可には関係 のると知道力(均の構造メールで)の可には関係 のると知道力(均の構造メールで)の可には関係 の気 によった、(第 4 - 4 添加に表明)にまた で)したい不可認定をついては、レールを定文の 前面により回転する構造となっており、 ーンを行方的には対イドローフによ 満面は発生しない。 以上より、転到防止装置については 頭部の間隙を考慮して、第 4 - 4 添加に表面に ごか化を行う。 1. 単一の重要に ので)のでので)ので)ので)ので)ので)ので)ので)ので)ので)ので)ので)ので					
 (人) ((金) 原子力安全基準機構)」 (金) 原子力安全基準機構)」 (金) 転回防止装置の構造・モデル化に 研修力は装置は、第 4-4 派回に対し、少の原語をデームで快み込む構造で の先端の爪部とレールの間には関係が 発生してレール明語と転倒防止装置の ると紹直力向の背面が伝達される。 水平方方向>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>				(3) 十成19 牛皮 原丁刀池改寺の耐展住計画1211に戻りる武鞅	
 ・				→ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
 4. 転倒防止装置の構造・モブル化と 転倒防止装置は、第4-4 紙図に示す レール頭部をデームで挟み込む構造で の先場の爪部とレール面には問題が 発生してレール面が多く構造される。 水平方向については、レール直交方 軸により回転する構造されっており。 ーン走行方向、にはオドローラによ 荷重は発生しない。 以上より、転倒防止装置については 頭部の問題を考慮して、第4-4 紙図に デル化を行う。 第4-4 紙図 第4-4 紙図 第4-4 紙図 					
転倒防止装置は、第4-4 新国に示す レール頭部をアームで挟み込む構造で の先端の爪部とレールの間には関隊が 発生してレール頭を転倒防止装置の ると鈴面方向の荷面が伝達される。 水平方向については、レール直交为 軸により回転する構造となっており、 ーン走行方向)にはガイドローラによ 荷重は発生しない。 以上より、転倒防止装置については 頭部の間隙を考慮して、第4-4 新国に デル化を行う。					 4. 転倒防止装置の構造・モデル化について
 レール頭部をアームで挟み込む構造で の先端の爪部とレールの間には開放が 発生してレール頭部と転倒防止装置の ると納直方向の荷重が伝達される。 本平方向については、レール直交方 軸により回転する構造となっており、 ーン走行方向)にはガイドローラによ 荷重は発生しない。 以上より、転倒防止装置については 頭部の間隙を考慮して、第4-4 添図に デル化を行う。 					転倒防止装置は,第4-4添図に示すよう
 の先端の爪部とレールの間には間隙が 発生してレール頭部と転倒防止装置の ると約直方向の荷重が伝達される。 水平方向については、レール直交方 軸により回転する構造となっており、 ーン走行力向)にはガイドローラによ 荷重は発生しない。 以上より、転倒防止装置については 頭部の間隙を考慮して、第4-4 添図に デル化を行う。 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					 レール頭部をアームで挟み込む構造である。
第生してレール頭部と転倒防止装置の ると鉛直方向の荷重が伝達される。 水平方向については、レール直交方 軸により回転する構造となっており、 ーン走行方向)にはガイドローラによ 荷重は発生しない。 以上より、転倒防止装置については 頭部の開除を考慮して、第4-4 添図に デル化を行う。 第4-4 添図 転倒防止装置の 第4-4 添図 転倒防止装置の					の先端の爪部とレールの間には間隙がある。
ると鉛直方向の帯重が伝達される。 本平方向については、レール直交方 軸により回転する構造となっており、 ーン走行方向)にはガイドローラによ 潜重は発生しない。 以上より、転倒防止装置については 頭部の開除を考慮して、第4-4 添図に デル化を行う。 第4-4 添図 転倒防止装置の 第4-4 添図 転倒防止装置の					発生してレール頭部と転倒防止装置のアー.
水平方向については、レール直交方 軸により回転する構造となっており、 ーン走行方向)にはガイドローラによ 荷面は発生しない。 以上より、転倒防止装置については 頭部の間隙を考慮して、第4-4 添図に デル化を行う。 第4-4 添図 転倒防止装置の					ると鉛直方向の荷重が伝達される。
 軸により回転する構造となっており、 ーン走行方向)にはガイドローラによ 荷重は発生しない。 以上より、転倒防止装置については 頭部の間隙を考慮して、第4-4 添図に デル化を行う。 重要素のの間隙を考慮して、第4-4 添図に デル化を行う。 重要素のの一次の成本の構造して、第4-4 添図に 年のの上次関係通知 第4-4 添図 転倒防止装置の 					水平方向については、レール直交方向には
 ーン走行方向)にはガイドローラによ 荷重は発生しない。 以上より,転倒防止装置については 頭部の間隙を考慮して,第4-4 添図に デル化を行う。 					軸により回転する構造となっており、レーク
荷重は発生しない。 以上より,転倒防止装置については 頭部の間隙を考慮して,第4-4 添図に デル化を行う。 レーレーン レーン					ーン走行方向)にはガイドローラによって注
以上より,転倒防止装置については 頭部の間隙を考慮して,第4-4 添図に デル化を行う。					荷重は発生しない。
頭部の間隙を考慮して,第4-4 添図に デル化を行う。					以上より、転倒防止装置については、鉛
デル化を行う。 デル化を行う。					頭部の間隙を考慮して,第4-4添図に示す:
年前の正要と構造図 第 4 - 4 添図 転倒防止装置の					デル化を行う。
第 4-4 添図 転倒防止装置の					
第 4-4 添図 転倒防止装置の					
<u> 転倒防止装置構造図</u> 第 4-4 添図 転倒防止装置の					走行レール
転倒防止装置構造図 第4-4 添図 転倒防止装置の					「「「「「」」ガイドローフ」「「「」」」「「」」」「「」」」「「」」」「「」」」「「」」」」「」」」「
<u>第4-4 添図 転倒防止装置の</u>					転倒防止装置構造図 転倒
					 第 4-4 添図 転倒防止装置の構造

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号
	参考資料2	
	地震時の本体車輪部及び脱線防止装置が衝突する躯体側の評価に <u>ついて</u>	
	 門型クレーンに地震力が作用した際は、まず走行車輪とレール が接触し、さらには車輪がレールに乗り上がって脱線防止装置が レール躯体に衝突する挙動が考えられる。門型クレーンは、構造 強度部材である脱線防止装置が健全であることでレールからの脱 輪による転倒もしくは落下を生じない構造であることを確認して いるが、地震時に本体車輪部各部位及び脱線防止装置が衝突する 躯体側に発生する応力について評価を行った。 (1)本体車輪部の評価について 評価の結果、本体車輪部は地震時に健全であることを確認した。 (2)脱線防止装置が衝突する躯体側の評価について レール躯体は、H鋼とコンクリートで構成されており、脱線防 止装置衝突時にはH鋼とコンクリート両者に荷重が作用するが、 保守的にレール躯体上部のH鋼フランジ端部のみに荷重が作用す るものとして、H鋼のフランジとウェブの境界部のせん断、H鋼 フランジの面内の圧縮の評価を行った。 評価の結果、レール躯体が脱線防止装置の衝突に対して健全で あることを確認した。 	
	車輪 ロッカビン 中	
	* 平成 20 平 12 月 21 日甲請時の基準地展期 Ss - 1,2 による暫足評価	

步炉	備考
	・設備構成の相違
	【女川 2】
	 ①の相違

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
			参考資料3		
			<u>クレーン</u> 本体及びトロリのすべり <u>量評価</u> について	添付資料(2-5) 取水槽ガントリクレーン本体及びトロリのすべ	
				りの影響について	
			<u>クレーン</u> 本体及びトロリがすべりによって走行レール端部及び	取水槽ガントリクレーン本体及びトロリがすべりによって走行レ	
			横行レール端部に衝突した場合, クレーン本体の転倒, トロリの	ール端部及び横行レール端部に衝突した場合, 取水槽ガントリク	
			落下により上位クラス <u>設備</u> へ波及的影響を及ぼすおそれがある。	レーン本体の転倒、トロリの落下により上位クラス施設へ波及的	
				影響を及ぼすおそれがある <u>ことから</u> ,取水槽ガントリクレーン本	・方針の相違
			そこで, 地震応答解析におけるクレーン本体及びトロリのすべ	体及びトロリのすべりによるレール端部への衝突の有無を確認す	【女川 2】
			り量がクレーン本体及びトロリがレール端部に最も接近した作業	<u>る。</u> 取水槽ガントリクレーンの走行範囲を第5-1添図に示す。	女川2は,すべり量の
			状態における走行レール端部及び横行レール端部までの離隔距離		評価を実施しているが,
			(許容基準値)を上回らないことを確認する。		島根 2 号炉取水槽ガン
			<u>クレーン本体の場合は、走行レール端部に最も接近する作業状</u>		トリクレーンは走行レ
			<u>態として、高圧炉心スプレイ補機冷却海水ポンプ(西側)の吊上</u>		ール端部までの距離が
			時を想定する。また、トロリの場合は、横行レール端部に最も接		大きいことから, レール
			近する作業状態として、原子炉補機冷却海水ポンプ吊上げ時を想		端部について衝突する
			<u>定する。</u>		ことはない。トロリにつ
					いては,詳細設計段階で
					すべり量を評価する(以
					下,⑥の相違)
				時よ嫌ふとまた」、 よ地がよるの町部は目して約 00 できか	十年一月十十
			評価の結果、クレーン本体及びトロリともに計谷基準値を満足	取水槽から走行レール端部よどの距離は取小で約30m であり、	
			してわり、うへりにより上位クラス設備への波及的影響を及ぼう	取水槽 カントリクレーンがすべりによって定日レール 端部に 側矢	【女川2】
			<u>ふてんいふないこと</u> を確認した。	$\frac{9922111110}{2}$	しの相違
			たお 木検討でけ其進地震動 Se - D1 ~ N1 (全 7 波) のうち設備		・ 地 雪 動 の 相 遠
			$ \overline{A}$ 評価の観点で選定した其進地電動 Ss - D2 に上り評価を行ってい		【女川 2】
			Aが T認段階においては 基準地震動 Ss - D1~N1 (全7波) に		④の相違
			おけろすべり量評価を実施するすべり量が増大し、現状の許容		
			基準値を満足できない場合は走行装置の構造変更等による対策を	トロリについては、詳細設計段階においてすべり量を算出し	・方針の相違
			<u></u> 実施する。	レール端部との適切な離隔距離を確保する。	【女川 2】
					6 の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	<complex-block></complex-block>	<complex-block></complex-block>	

柏崎刈羽原子力発電所 6 / 7 号炉 (2017.12.20 版)		女川原子力発電所	近 2号炉(2020.	2.7版)	島根原	子力発電所 2-	号
				参考資料4			
	Ë	た行実績との構造/評	平価手法比較(BWR	プラント)			
	項目	大関1号炉 原子炉建屋クレーン	他崎刈羽6号及び7号炉 原子炉建屋クレーン	女川2号却 海水ボンブ面門型クレーン			
	構造概要	 2本のレール間を時ぐ桁構造 ガーダ上にトロリを設置 支持たん)ズレールトレビア 	同起	同左			
	主要構造物	 ・ 車種を用してレール上に数数 ・ ガーダ ・ サドル 	回 た	 ガーダ サドル 			
		• Fat	P ^a lia	- トロリ - 胆			
	構 構造形状 決	前構造物 (高密詞) 容接構造物	同左	间左			
	H:			+ 12μ y−y b=1			
	構造低時間						
				A to Be			
	 解析手法 解析モデル 	平飛杉均須匹ご答解析 3次元 FEM 解析モデル	同左 同左	同左 同左			
	車輪-レール間の 現界条件	すべり、涼上がり、衝突考慮	同左	同化			
	街	動的地震力 クレーン設置位置の加速度時刻歴	同左	<u>間</u> 左 間 左			
	法 法 述 就套定数 40.00	2.0%	同左	間伝			
		ABAQUS Yoy, 6, 5-4	AEBAGIS Ver6. 11-1 (6号句) AEBAGIS Ver. 6. 5-4 (7号句)	ABAQUS Yer 6, 11-1			
	時刻歴の保守性検討	-	考慮 LSBE Time History Reportenting	考慮 FSF Time History Bread-mine			
			news time around progening	come time interney incombiling			
	項目	先行実績との構造/	評価手法比較(PWR				
	傳這模要	 ガーダ上にトロリを設置 車種を介してレール上に設置 ガーダ 	同左	同左			
	主要構造物	・ パータ ・ サドル ・ トロリ	四九	阿左			
	構 構造形状 造		间化	同左			
	此 較 構造相略因						
	 解析予法 	非線形時刻間応答解析 3次元 FEM 解析モデル	非線形時刻歴応著解析 (一部スペクトルモーダル解析を併用) 回左	非線形時刻塑芯等解析 同左			
	車輪ーレール間の 境界条件 本平	すべり、浮上ぶり、衝突考慮	同左.	四左			
	地震力 <u>鉛直</u> 沿直 評	動的地震力 クレーン設備位置の加速度時刻経	同左 回左	月左 同左			
	街 減衰定数 水平 手	2.0%	同左	同左 ABAQUS Ver6, 11-1			
	法 解析プログラム 比 軟	ONRELIP 考慮	(92A:	(ANMES は既住毎以において、固者周期や本輪部営業等に対して地 期応等相新結果と接触試験結果を比較した検証が実施されており、適 用性に問題ないと考える。) 考慮			
	時刻歴の保守性検討	シープスペクトルと認確なとして考慮 水平方向びら加点方向の進歩して考慮 水平方向びら加点方向の進歩力に伴うシレーンの単動を指える、水 中方向は、タレージングレールとせてるため水子方向の加速度の影 部にからいものな超力が用いた影響を使って必要があります。 ため、約40、約40、約40、約40、約40、約40、約40、約40、約40、 か加速をからくつき 必要として知道な必要であり、加速がから、 か加速をからくつき 必要として知道な必要であり、	-	XME Time History Broadening ・反相当身が理想クレーンは、ウレーンはレール上を个べるため、水 不力の現宅をはじて非規則特性を有していることに加え、岸上は5 事態を考慮しているため、知道の内容等におしても赤細胞特性を有 していることから、ASMEの中法を高に保守性を検討。			
		 *:「平成 19 年度 原子力施設等 「平成 20 年度 原子力施設等 	○の耐損性評価技術に関する試験及び調査 動的上下動耐損試験(タの耐損性評価技術に関する試験及び調査 動的上下動耐損試験(タ	レーン類)に係る極含書(08副部種-0021,(後)原子力安全基盤練構)」 レーン類)に係る報告書(09副部種-0008,(総)原子力安全基盤練構)」			

疗炉	備考	
	・記載方針の相違 【女川 2】 島根 2 号炉では, 同様 の内容を添付資料(2- 2)に記載	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料.2.	添付資料—3	
添付資料2 <u>立形</u> ポンプの解析モデルの精緻化	ポンプ等の解析モデルの精緻化について	ポンプ <u>等の応答</u> 解析モデルの精緻化 <u>について</u>	
	1. 立形ポンプの解析モデルの精緻化	1. 立形ポンプの応答解析モデルの精緻化	
既工認における立形ポンプの解析モデルは、実機構造を踏まえ	既工認における <u>高圧炉心スプレイポンプ,低圧炉心スプレイポ</u>	既工認における <u>立形ポンプの応答</u> 解析モデルは, <u>実機構造を踏</u>	
た振動特性とするため、設備の寸法、質量情報に基づき、主要部	ンプ及び残留熱除去系ポンプの解析モデルは、立形ポンプの構造	まえた振動特性とするため、設備の寸法、質量情報に基づき、主	
であるローター,インナーケーシング及びディスチャージケーシ	を模擬したバレル部及びポンプケーシングによる質点系モデル	要部であるロータ、インナーケーシング及びディスチャージケー	
ングを相互にばね等で接続した多質点系モデルとして構築して	を構築していた。	シングを相互にばね等で接続した多質点モデルとして構築して	
いた。		いた。	
今回工認では,最新の知見に基づくモデル化を行う観点から,	今回工認では,最新の知見に <u>よる</u> モデル化を行う観点から,J	今回工認では,最新の知見に基づくモデル化を行う観点から,	
既工認モデルに対してJEAG4601-1991 追補版に基づ <u>くモデルの</u>	EAG4601-1981 追補版に基づき, モデルの精緻化を行う(第2-1	既工認モデルに対してJEAG4601-1991追補版に基づき,	
精緻化を行う。(第1図参照)	図参照)。	フランジ部分の剛性を回転ばねとして考慮する。また、鉛直方向	
		の動的地震力を適用することに伴い、鉛直方向の固有周期を算出	
		する為,新たに鉛直ばねを考慮している(第1-1図参照)。なお,	
		解析結果より、鉛直方向は十分な剛性を有している。	
<u>なお</u> ,本解析モデルは大間1号炉の建設工認にて適用実績があ	<u>なお</u> ,本解析モデルは大間1号炉 <u>の既工認</u> 及び東海第二 <u>発電所</u>	本解析モデルは、大間1号炉建設工認及び東海第二新規制工認	
る。	の立形ポンプのうち、非常用ディーゼル発電機海水ポンプ及び残	にて適用実績がある。	
	留熱熱除去系海水ポンプの既工認にて適用実績がある(第 2-2 図		
	参照)。		
		ディスチャージケーシング ディスチャージケーシング ディスチャージケーシング	
ローター ディスチャージ ケーシング 日 11 ディスチャージャーシング			
E動機数付ボルト E動機数付ボルト Employed Employed			
ボンフ取(計点) 「市 フ取(計点) 「「「」」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「」 「」 「			
1日初江 0531 (はわとして考慮) ストッパ (ビン支持)		ページョンジョン マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マ	
		$ \begin{array}{c c} \underline{\neg} \underline{\neg} \underline{\wedge} \underline{\wedge} \underline{\gamma} \\ \underline{\neg} \underline{\neg} \underline{\wedge} \underline{\neg} \underline{\gamma} \\ \underline{\neg} \underline{\vee} \underline{\vee} \underline{\neg} \underline{\gamma} \\ \underline{\neg} \underline{\neg} \underline{\neg} \underline{\neg} \underline{\neg} \\ \underline{\neg} \underline{\neg} \underline{\neg} \underline{\neg} \\ \underline{\neg} \underline{\neg} \underline{\neg} \underline{\neg} \\ \neg$	
シーズー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
構造図 解析モデル 構造図 解析モデル			
(a) 既工認 (b) 今回工認	構造概要図 今回工認の解析モデル 既工認の解析モデル	構造図 既工認解析モデル 今回工認解析モデル	
第1 図 百乙后堵機必却海水ポンプ細たテジュ図 (7 日后の店)	第9.1回 ナビャンプの智士と言い回	- 1 1 回 母の教院ナキンプたがmffにィビッ回	
毎1.区原丁炉佃陵田到供水小シノ胜灯七ブル区(1.万炉の例)	<u> 東谷山区 ビルハッノノの時別モナル区</u> (京도伝さスプレノポンプ細たエジルの左)	<u> 現1-1凶、</u> 次軍恐怖 ムルノノ 心合胜 が モアル凶	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版) 島根原子力発電所 2号炉 備考
・ ・

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	<u>残留熱除去系熱交換器</u> <u>愛定</u> <u>マロー マロー マロー マロー マロー マロー マロー マロー </u>	
	中国 </td <td></td>	

导炉	備考
	・資料構成の相違
	【東海第二】
	①の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
	3. 原子炉格納容器ベント管の解析モデルの精緻化	
	原子炉格納容器のベント管の支持構造図を第2-5図に示す。ベ	
	<u>ント管はダイヤフラム・フロアにより支持され,ブレージングに</u>	
	て水平方向を拘束されている。	
	第2-6図にベント管の解析モデル図を示す。今回工認において	
	は, 柏崎刈羽5号の既工認実績を踏まえて, 集中質量を用いる質	
	 ルを用いた地震応答解析により評価を行う。	
	原子炉格納容器	
	КŢХУN	
	~FZJU	
	×214	
	第 2-5 図 ベント管概要図	
	ダイヤフラム・フロア ダイヤフラム・フロア	
	$\bigcirc \mathfrak{z}$	
	→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	今回工認の解析モデル 既工認の解析モデル	
	<u> 弟 2-6 凶 ペント 常解 析 モ テル 凶</u>	

导炉	備考	
	・資料構成の相違	
	【東海第二】	
	①の相違	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			添付資料3	添付資料—4	
			容器等の応力解析へのFEMモデルの適用について	容器等の応力解析へのFEMモデルの適用について	
			既工認において,公式等による評価にて耐震計算を実施してい	既工認において、公式等による評価にて耐震計算を実施してい	
			た設備について,至近の既工認の適用実績を踏まえて,3次元F	た設備について, 至近の既工認の適用実績を踏まえて, 3次元F	
			EMモデル, <u>多質点モデル</u> を適用した耐震評価を実施する。FE	EMモデルを適用した耐震評価を実施する。FEMモデルを用い	
			Mモデルを用いる手法等は、大間1号炉を含めて他BWRでの適	る手法は、大間1号炉建設工認及び東海第二新規制工認において	
			用実績がある手法である。	適用実績がある手法である。	
			1. 谷谷、 $OFEMT/DOBR$	1. 谷谷、のFEMモノルの適用 ディーゼル発電機の仕屋乳供でなるディーゼル燃料ディタン	・海田乳借の担造
			ハーノノルエノロック、リノレッション・リェンハ、ノクヒヘ		・週用設備の相運
			バック寺の原丁炉俗納谷益平仲に取りく谷博垣初亚びにノイー	2 <u>人のノイービルが付加限クノク业のに尿ナル価徴の利求が</u> な 協思について、小学院による計算では対応値を招きて見るひでも	
				接触について, 公式守による訂昇ては町谷嶋と短える元公グでの ることから 特徴な証価を行うためにRFMエデルな適用する	5 次九F EMモノル を適用する設備が思わ
			レリバーン、天機の形状をフェル安米に(保護し、JSML等		を適用する政備が共な る(以下 ①の相違)
			に至りて材料的元を子えててアルにすることにより、心倉牌付を 行う。広ダ報転に用いる解析エデル図の例を第 2-1 図に云オトト	<u> </u>	3(以下,①吵怕连)
			1) \int_{∞} 加合性例に用いる性例に \int_{∞} 四句の例を π_{3} -1 因に小りここ たに第 $2-1$ 主及び第 $2-2$ 主に報告期 西な子士	<u>「力」 加<u></u> 加<u></u> 加<u></u> 加<u></u> 加<u></u> 加<u></u> 加<u></u> 加<u></u> 加<u></u> 加<u></u></u>	
			DICH J I XX U H J Z X C 肝闭 枫安 径 小 9。	1. 一種一種水が成化/ J_{3} NCI 2003/2007/ 一等に差 $J < \eta$ 化相	
				Le 子 Le C L / Le f a c c le s f , <u>m</u> / 所 e f f 。 <u>m</u> / 所 f f f f f · m / 所 f f f f f f f f f f f f f f f f f f	
				に用いる脾例でアル因を <u>第1-1因で第1-5</u> 因に小りここもに, 第1-1 志。第1-2 志に留近脛面をテオ	
				加工工業に肝が成安を示す。	
					・適用設備の相違
			_(パーソナルエアロックのFEMモデルの例)		【東海第二】
					 ①の相違
			1		1

怕呵利初床丁刀光电灯 0/15炉 (2011.12.20 M)	東海第二系	ě電所(2018. 9. 18 版)	島根原子力発電所	24
	第 3-1 表 原子	炉格納容器のFEM解析概要		
	項目	内容		
	適用部位	パーソナルエアロック取付部		
		サプレッション・チェンバアクセスハ		
		ッチ取付部		
		イクイプメントハッチ取付部		
		配管貫通部取付部		
		電気配線貫通部取付部		
		上部シアラグ取付部		
		下部シアラグ取付部		
	解析コード	NASTRAN		
	地震条件	別途実施する地震応答解析から得られ		
		る地震力(荷重,加速度)を入力とす		
		る。		

予炉	備考
	・適用設備の相違
	【東海第二】
	(1)の相違

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電	電所(2018. 9. 18 版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発音 第 3-2 表 DG用材 項目 適用部位 解析コード 地震条件	 直所(2018.9.18版) 直接類容器のFEM解析概要 内容 非常用ディーゼル発電機用始動空気だ め及び燃料油デイタンク 高圧炉心スプレイ系ディーゼル発電機 用始動空気だめ及び燃料油デイタンク Abaqus 別途実施する原子炉建屋地震応答解析 から得られる加速度を入力とする。 	島根原子力発電所 2号炉 ・ ・ ・	備考
			項目 内容 適用部位 胴板(脚取付部) 解析コード ABAQUS (Ver. 6.5-4) 地震条件 別途実施する原子炉建物地震応答解析から得られる加速度を入力する。	

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			第1-2 図 解析モデル(A, Hーディーゼル燃料貯蔵タンク) 第1-2 表 解析概要(A, Hーディーゼル燃料貯蔵タンク) 項目 内容 適用部位 胴板(脚取付部) 解析コード ABAQUS (Ver. 6.5-4) 地震条件 別途実施する排気筒基礎地震応答解析から得られる加速度を入力する。	
			ア 朋友 皆板 丁 「方板」 丁 第1 即 」	
			第1-3 図 解析モデル(原子炉補機冷却系熱交換器) 第1-3 表 解析概要(原子炉補機冷却系熱交換器) 項目 内容 適用部位 胴板(脚取付部) 解析コード ABAQUS (Ver. 6.5-4) 地震条件 別途実施する原子炉建物地震応答解析から得られる加速度を入力する。	

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			2. ベントヘッダ及びダウンカマへのFEMモデルの適用	・適用設備の相違
			<u>ベント系の評価において、公式等による計算では許容値を超え</u>	【東海第二】
			る見込みであることから、精緻な評価を行うため、原子炉格納容	 ①の相違
			器ベント管,ベントヘッダ,ダウンカマ,ベントヘッダサポート	
			及びダウンカマサポートを模擬したFEMモデルを適用する。	
			モデル化範囲は構造の対称性を考慮して 180°とし,形状不連	
			続部であるベント管とベントヘッダの結合部,ベントヘッダとダ	
			ウンカマの結合部及びベントヘッダの実機形状をシェル要素で	
			モデル化し、ベント管、ダウンカマ、ベントヘッダサポート及び	
			ダウンカマサポートはビーム要素でモデル化する。	
			応答解析及び応力解析に用いる解析モデル図を第 2-1 図に示	
			すとともに、第2-1表に解析概要を示す。	
			$K > h < y \neq y \neq x = h$ $K > h < y \neq y \neq x = h$ $K > h < y \neq y \neq y = h$ $K > h < y \neq y \neq y = h$ g = y = y = y = y = y = y = y = y = y =	
			<u>第 2-1 図 解析モデル(ベントヘッダ及びダウンカマ)</u>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子力発電所 2-
					<u>第2-1表</u> 解析概要
				項目	月 内 ジ
				適用部位	ベントヘッダ (ベント管;
					ベントヘッダ強め輪取付
					ベントヘッダとダウンカ
				解析コード	NASTRAN (Ver. 201
				地震条件	別途実施する原子炉建物
					から得られる加速度を入
				3. 原子炉格納	P容器電気配線貫通部へのF
				原子炉格納容	器における電気配線貫通音
				等による計算で	がは許容値を超える見込みて
				格納容器胴部と	スリーブとの取付部を精維
				形状をシェル要	「素により模擬したFEMモ
				モデル化範囲	は、モデルの境界条件が応
				しない範囲とす	る。応力解析に用いる解析
				<u>に示すとともに</u>	, 第3-1表に解析概要を
				<u>第 3-1 図</u>	解析モデル(原子炉格納容

号炉	備考
五 五 乙	・適用設備の相違
容	【東海第二】
	①の相違
部	
マの結合部	
13)	
1-大型機器連成解析	
力する。	
アンバナニジャの法田	
<u>EMIT7 ////週用</u>	
ゆの評価において、公式	
ごめることから, 原子炉	
なに評価するため,実機	
デルを適用する。	
、力評価点の応力に影響	
〒モデル図を第 3-1 図	
示す。	
電気配線貫通部	
<u>器電気配線貫通部)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		第 3-1 表 解析概要 項目 内容 適用部位 原子炉格納容器胴とスリーブとの取付部(胴側) 解析コード NASTRAN (Ver. 2005) 地震条件 別途実施する原子炉建物-大型機器連成解析 から得られる加速度を入力する。	 ・適用設備の相違 【東海第二】 ①の相違
	2. 原子炉圧力容器内構造物への多質点モデルの適用 原子炉圧力容器内構造物であるジェットポンプ,炉心スプレイ スパージャ及び出力領域計装検出器(LPRM)について,実機 形状を質点とはり要素に置き換えた多質点モデルにて応答解析 を行う。応答解析に用いる解析モデル図の例を第3-2図に示すと ともに第3-3表に解析概要を示す。		 ・資料構成の相違 【東海第二】 島根2号炉における 原子炉圧力容器内部構 造物の解析モデルについては,既工認から多 質点モデルであり,今
	上部格子板 上部格子板 ブランジャ 1 カバーチューブ 5 板正用導管 9 ワシジャ 10 ロー 1 ウレ支持板 10		回工認と既工認でモデ ルの変更はないため本 資料には含まない(以 下,②の相違)
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二	発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	<u>第 3-3 表</u> 原子	炉圧力容器内構造物解析概要		・資料構成の相違
				【東海第二】
		内容		 ②の相違
	適用部位			
		高圧炉心スプレイスパージャ*1		
		低圧炉心スプレイスパージャ*1		
		出力領域計装検出器**		
	解析コード	NASTRAN (*1に適用)		
		SAP-IV (*2に適用)		
	地震条件	別途実施する地震応答解析から得られ		
		る加速度を入力とする。		
				1

まとめ資料比較表 「第4条 地震に上ろ指復の防止 別紙-7〕

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料 7	添付資料-5	
添付資料5 鉛直方向応答解析モデルを追加したもの	<u>鉛直方向応答解析モデルの追加について</u>	原子炉建物-大型機器連成解析モデルの変更について	・資料構成の相違
1. 原子炉建屋 - 炉内構造物系連成 鉛直方向地震応答解析モデ			【柏崎 6/7,東海第二】
ルの追加について			島根2号炉では, P
1.1 概要	1. 概要	<u>1. はじめに</u>	C V 及びR P V スタビ
	今回工認では、鉛直方向の地震動及び地震力に対して動的な取		ライザのばね定数の変
	扱いが必要となるため、鉛直方向の応答に対して動的な取扱いが		更を含め,水平方向の
	必要となる設備については、応答を適切に模擬できる解析モデル		大型機器連成解析モデ
	を適用したうえで評価を行う。		ルを変更することか
	また、鉛直方向の応答解析モデルの代表例として、原子炉建屋		ら,鉛直方向の大型機
	一炉内構造物系連成の地震応答解析モデルの適用方針を示す。		器連成解析モデルの追
			加と合わせて記載する
	2. 原子炉建屋-炉内構造物系連成の地震応答解析モデルの適用		(以下,①の差異)
	方針		
原子炉格納容器内の原子炉圧力容器等の大型機器は、一般機器	原子炉格納容器内の原子炉圧力容器等の大型機器は,一般機器	原子炉建物内の原子炉格納容器(以下「PCV」という。),原	
や配管等に比べて質量が大きく、原子炉建屋との相互作用を考慮	や配管等に比べて質量が大きく、原子炉建屋との相互作用を考慮	子炉圧力容器(以下「RPV」という。)及びガンマ線遮蔽壁等	
した地震応答の算定が必要である。そのため、既工認において、	した地震応答の算定が必要である。そのため、既工認において、	の大型機器は、建物質量に対しその質量が比較的大きく、また、	
原子炉圧力容器(炉心支持構造物及び炉内構造物等含む),原子	原子炉圧力容器(炉心支持構造物及び炉内構造物含む),原子炉	支持構造上からも建物との連成が無視できないため、原子炉建物	
炉遮蔽壁及び原子炉本体基礎等の大型機器・構造物の耐震設計で	遮蔽壁及び原子炉本体基礎等の大型機器・構造物の耐震設計で	との連成系で解析するためのモデル(以下「大型機器連成解析モ	
は、水平方向の動的地震力については原子炉建屋と大型機器を連	は,水平方向の動的地震力については原子炉建屋と大型機器を連	デル」という。)を設定し,地震応答解析を行う。	
成させた多質点モデルによる時刻歴応答解析を行うことで動的	成させた多質点モデルによる時刻歴応答解析を行うことで動的		
地震力を算定し, 鉛直方向については静的震度による地震荷重を	地震力を算定し, 鉛直方向については静的震度による地震荷重を		
算定していた。	算定していた。		
今回工認においては、耐震設計審査指針が改訂され、鉛直方向	今回工認においては、新たに鉛直方向の動的地震力に対する考		
の動的地震力に対する考慮が必要となったことから、鉛直方向に	慮が必要となったことから, 鉛直方向についても水平方向と同様		
ついても水平方向と同様に動的地震力の算定を行う。鉛直方向の	に動的地震力の算定を行う。鉛直方向の地震応答解析モデルにつ		
地震応答解析モデルについては、鉛直方向の各応力評価点におけ	いては、鉛直方向の各応力評価点における軸力を算定するため、		
る軸力を算定するため、従来の水平方向モデルをベースに新たに	従来の水平方向モデルをベースに新たに多質点モデルを作成す		
多質点モデルを作成する。	- Sem		
			1
			1

実線・・設備運用又は体制等の相違(設計方針の相違)

波線・・記載表現,設備名称の相違(実質的な相違なし)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
1.2 地震応答解析モデルについて	3. 地震応答解析モデルについて		
原子炉建屋,原子炉圧力容器及び原子炉本体基礎の概略断面図	原子炉建屋,原子炉格納容器の概略断面図を第7-1図,原子炉	原子炉建物、PCV、RPV及びRPVペデスタルの概略断面	
を <u>第1図,原子炉圧力容器内部</u> 構造物の構造図を <u>第2図</u> に示す。	圧力容器内部構造物の構造図を第7-2図に示す。	図を第1-1図に, R P V 内部構造物の構造図を第1-2図に示す。	
		また,原子炉建物-大型機器連成解析に係る手順を第 1-3 図に	
		示すe	
水平方向の解析モデルにおいては、原子炉圧力容器、原子炉遮	水平方向の解析モデルにおいては、原子炉圧力容器、原子炉遮	原子炉本体及び炉内構造物の水平方向の地震応答解析モデル	
蔽壁,原子炉本体基礎は第3図,第4図に示すような多質点モデル	蔽壁,原子炉本体基礎は第7-3図に示すような多質点モデルにて	について, 既工認では建設工程の関係上, 原子炉格納容器 – 原子	
にてモデル化する。原子炉圧力容器は原子炉圧力容器スタビライ	モデル化する。原子炉圧力容器は原子炉圧力容器スタビライザと	<u>炉圧力容器モデル(以下「PCV-RPVモデル」という。)と</u>	
<u> ザと等価なばねで原子炉遮蔽壁と結ばれ、原子炉本体基礎と剛に</u>	等価なばねで原子遮蔽壁と結ばれ、原子炉本体基礎と剛に結合さ	原子炉圧力容器-炉内構造物モデル(以下「RPV-Rinモデ	
結合される。原子炉本体基礎はその下端において原子炉建屋基礎	れる。原子炉本体基礎は、その下端において原子炉建屋基礎版上	ル」という。)の2種類のモデルを用いていたが、今回工認では、	・資料構成の相違
スラブ上端と剛に結合され,更にダイヤフラムフロアの剛性と等	端と剛に結合され、さらにダイヤフラム・フロアの剛性と等価な	<u>原子炉格納容器-原子炉圧力容器-炉内構造物モデル(以下「P</u>	【柏崎 6/7,東海第二】
価なばねにより原子炉格納容器を介して原子炉建屋に支持され	ばねにより原子炉格納容器を介して原子炉建屋に支持される。	<u>CV-RPV-Rinモデル」という。)を用いる。これに合わ</u>	 の相違
Sem.		<u>せて,原子炉圧力容器スタビライザ (以下「RPVスタビライザ」</u>	
		<u>という。)及び原子炉格納容器スタビライザ(以下「PCVスタ</u>	
		ビライザ」という。)のばね定数算出方法について、最新の工認	
		実績を踏まえた算出方法に変更する。本手法は、他プラントを含	
		む既工認あるいは新規制工認において適用実績がある手法であ	
鉛直方向モデルの解析モデルにおいても水平方向の解析モデ	鉛直方向の解析モデルにおいても水平方向の解析モデルと同	<u>る。</u>	・島根2号炉における
ルと同様に第5図に示すような多質点モデルにてモデル化する。	様に第7-4図に示すような多質点モデルにてモデル化する。原子	また、鉛直方向に動的地震力が導入されたことから、原子炉本	「2.2 鉛直方向の大
原子炉圧力容器は、原子炉本体基礎と剛に結合される。原子炉本	炉圧力容器は、原子炉本体基礎と剛に結合される。原子炉本体基	体及び炉内構造物について、鉛直方向の応答を適切に評価する観	型機器連成モデルの概
体基礎は、その下端において原子炉建屋基礎スラブ上端と剛に結	礎は,その下端において原子炉建屋基礎版上端と剛に結合され,	点で、水平方向応答解析モデルとは別に鉛直方向の地震応答解析	要」と対応
合され、原子炉建屋に支持される。	原子炉建屋に支持される。	モデル(PCV-RPV-Rinモデル)を新たに採用し,鉛直	
なお,鉛直方向の地震応答解析モデルは,大間1号炉の建設工		地震動に対する評価を実施する。鉛直方向応答解析モデルは、他	
認において適用例がある。		プラントを含む既工認あるいは新規制工認において適用実績が	
		ある手法である。	
2. その他機器・配管系の鉛直方向地震応答解析モデルについて			・資料構成の相違
その他機器・配管系の設備については、設備の構造上の特徴を			【柏崎 6/7】
踏まえ必要に応じて鉛直方向の地震応答解析モデルを作成する。			島根2号炉では、鉛
			直方向の大型機器連成
			解析モデルの追加につ
			いて説明する。その他
			の機器・配管系につい
			ても設備の構造上の特
			徴を踏まえて必要に応
			じて鉛直方向の地震応
			答解析モデル作成する

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2-
			建物諸元 ・原子炉建物の質点質量・剛性 ・地盤ばね
			大型機器連成解析モデルの設定
			基準地震動Ss 単性設計用却 基準地震動Ssに対する 大型機器連成解析 勇
			応答値の算出 ・応答加速度 ・応答曲げモーメント ・応答変位 ・応答軸力 ・応答せん断力 ・応答
			▲ 基準地震動Ssによる 耐震評価 第1-3図 原子炉建物-大型機器

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		2. 水平及び鉛直方向における大型機器連成解析モデル	・資料構成の相違
		2.1 水平方向の大型機器連成解析モデルの概要及び既工認から	【柏崎 6/7,東海第二】
		<u>の変更</u>	本項 2.1 では,水平
		水平方向の大型機器連成解析モデルを第2.1-1図及び第2.1-2	方向の大型機器連成解
		図に示す。水平方向の大型機器連成解析モデルは、PCV、RP	析モデルの変更につい
		V,ガンマ線遮蔽壁, RPVペデスタルをモデル化し, RPV内	て記載する
		の燃料集合体、制御棒案内管、制御棒駆動機構ハウジング、気水	
		分離器,スタンドパイプ及び炉心シュラウドについてもモデル化	
		する。これらをシュラウドサポートと等価な回転ばねを介してR	
		PVと結合する。PCVはシヤラグ及びウェルシールベローズと	
		等価なばねにより原子炉建物と結合され、下端は原子炉建物と剛	
		に結合される。RPVは、RPVスタビライザと等価なばねによ	
		りガンマ線遮蔽壁上端と結合され、ガンマ線遮蔽壁はPCVスタ	
		ビライザと等価なばねによりPCVに結合される。また、RPV	
		は燃料交換ベローズと等価なばねによりPCV に直接結合され	
		る。RPVの下端は、RPVペデスタル上端に剛に結合されてお	
		り、RPVペデスタルは、その下端において原子炉建物と剛に結	
		合される。また、制御棒駆動機構ハウジングは制御棒駆動機構ハ	
		ウジングレストレントビームによりRPVペデスタルと結合され	
		る。	
		建設工認において,原子炉建物-大型機器連成解析モデルを用	
		いた水平方向の地震応答解析は、工認申請の進捗に合わせて、P	
		CV-RPVモデル, RPV-Rinモデルの2種類の応答解析	
		モデルを用いて実施していた。しかし、今回工認では建設工認の	
		ように設計進捗に応じたモデルの使い分けの必要がないこと及び	
		実機に合わせて構造体をモデル化できることから, RPV-R i	
		nモデルにPCVを追加したPCV-RPV-Rinモデルを水	
		平方向の大型機器連成解析モデルとする。建設工認及び今回工認	
		の原子炉建物-大型機器連成解析モデルを第 2.1-1 表に示す。	
		今回工認で用いるPCV-RPV-Rinモデルの質点位置,質	
		量、断面特性は、既工認のPCV-RPVモデル(炉内構造物は	
		RPVの付加質量として考慮)及びRPV-Rinモデル(PC	
		Vは原子炉建物の付加質量として考慮)と同等であるため, PC	
		V-RPV-Rinモデルを採用することによる地震応答への影	
		響は十分小さい。なお、水平方向の大型機器連成解析モデルとし	
		てのPCV-RPV-Rinモデルの適用は,東海第二の新規制	
		工認において適用実績がある。	
		大型機器連成解析モデルを設定する場合には, 既工認のモデル	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			諸元を適用することを基本とするが、解析モデルを最新化するた	
			め先行プラントにおいて適用実績のあるモデル化手法を参照し、	
			今回工認では, RPVスタビライザ及びPCVスタビライザのば	
			ね定数を精緻化する。	
			なお、今回工認においてPCV-RPV-Rinモデル(スタ	
			ビライザのばね定数変更を含む)を適用するにあたり、機器・配	
			管系への影響を検討し、地震応答への影響が十分小さいことを確	
			認した (
			第2.1-1表 建設工認及び今回工認における原子炉建物-大型	
			機器連成解析モデル	
			建設工認 今回工認 PCV-RPVモデル RPV-Rinモデル PCV-RPVモデル PCV-RPV-Rinモデル	
			 ・原子炉建物(PCVを付加質・原子炉建物 量として考慮) ・PCV 	
			・原子炉建物 ・ガンマ線遮蔽壁 ・ガンマ線遮蔽壁 ・PCV ・RPVペデスタル ・RPVペデスタル	
			モデル化範囲 ・ガンマ線遮蔽壁 ・RPV ・原PV ・炉内構造物(気水分離器及び ・炉内構造物(気水分離器及び	
			・ R P V (炉内構造物を付加貨 スタンドハイフ、炉心シュフ スタンドハイフ、炉心シュフ 量として考慮) ウド、燃料集合体、制御棒案 ウド、燃料集合体、制御棒案	
			・計御棒駆動機構ハウジング ・制御棒駆動機構ハウジング	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
第4 図 原子炉建量一炉内構造物系速成 地震応答解析モデル (水 子方向(EW)) (7 号炉の例)		第2.1-2 図 大型機器連成解析モデル 第2.1-2 図 大型機器連成解析モデル 第2.1-2 図 大型機器連成解析モデル 既工認では、鉛直方向については静的標定していたが、今回工認においては、新た 力に対する考慮が必要となったことから、 平方向と同様に動的地震力の算定を行う。 成解析モデルを第2.2-1 図に示す。鉛直 析モデルについては、鉛直方向の各応力翻定するため、水平方向モデルをベースに親 成し、水平方向と同様のPCV-RPV- PCVの下端は、原子炉建物と剛に結合さ ートの下端は、原子炉建物と剛に結合さ ートの下端は、原子炉建物と剛に結合さ RPVペデスタルの下端は、原子炉建物と なお、鉛直方向の大型機器連成解析モデ 設工認及び東海第二の新規制工認においての

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
			第 3-1 図 水平方向の大型機器連成解析モ
			<u>の設定</u> <u>(1)PCV,ガンマ線遮蔽壁及び</u> F
			前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前

柏崎刈羽原子力発電所 6/7号炉 (2	2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
			Rate Rate <th< td=""></th<>
			 第 3−2 図 鉛直方向の大型機器連成解析=
			の設定
			<u>(1) PCV, ガンマ線遮蔽壁及び</u>]
			前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		4. 構造物間ばね定数の設定(既工認から変更ある部位)	
		4.1 RPVスタビライザ	・資料構成の相違
		<u>4.1.1 RPVスタビライザの構造</u>	【柏崎 6/7,東海第二】
		R P V スタビライザは、ガンマ線遮蔽壁頂部に円周状に8箇所	本項 4.1 では, RP
		設置され、RPV付属構造物であるスタビライザブラケットをあ	Vスタビライザのばね
		らかじめ初期締付荷重を与えたサラバネを介して両側から挟み	定数について、既工認
		込む構造であり、サラバネを介して地震時の水平方向荷重をガン	からの変更を踏まえ,
		マ線遮蔽壁へ伝達させる機能を有する。RPVスタビライザの概	ばね定数算出方法を記
		略図を第4.1.1-1図に,構造図を第4.1.1-2図に示す。	載する
		Image: constraint of the second of the sec	
		PCVスタビライザ 110 ガンマ線遮蔽壁	
		P C V 平面図	
		第 4.1.1-1 図 RPVスタビライザ概略図	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
			スタビライザ ヨーク ブラケット ガセット ガウット ガセット アラケット アウット アウット アウット RPVスタビライザ分解
			大角ナット スリーブ サラバネ シム ヨーク シム スタビライザブラケッ RPVスタビライザ平面I
			ロッド ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
			4.1.2 既工認と今回工認での変更点 RPVスタビライザのばね定数について を第4.1.2-1表に示す。既工認では、RT 性に大きく寄与するロッド、サラバネのみ が、今回工認ではガンマ線遮蔽壁ブラケッ を追加で考慮する。 なお、上記ばね定数算出方法は大間1号 炉建設工認及び東海第二の新規制工認に表

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			第4.1.2-1表 R P V スタビライザばね定数の変更点 既工認 今回工認	
			理論式による 計算方法 (各部材の剛性を直列ばねとして 同左 合成)	
			評価部材 (赤枠部) (赤枠部)	
			ばね定数 9.6×10 ⁶ [kN/m] 6.8×10 ⁶ [kN/m]	
			4.1.3 既工認におけるばね定数算出方法	
			既工認では、サラバネ及びロッドを主たる支持部材と考え、	存
			4.1.3-1図に示すようなばね定数算出モデルを設定している。	
			サラバネ(K_s)及びロッド(K_R)について, RPVスタビライ	т
			1 基の片側分のばね定数(K _{1half})を直列ばねで定義して以下	
			となる。	
			$K \perp h \perp l \mid f = \frac{K \cdot S \cdot K \cdot R}{K \cdot S + K \cdot R}$	
			RPVスタビライザ1基の両側分のばね定数(K ₁)を片側分の)
			ばね定数(K _{1half})の並列ばねで定義して以下となる。	
			$K_1 = K_{1 h a 1 f} + K_{1 h a 1 f} = \frac{2 \cdot K_S \cdot K_R}{K_S + K_R}$	
			RPVスタビライザ8基分の全体でのばね定数(K)を荷重・	_
			変位の関係から算出する。第4.1.3-2図のとおりRPVスタビ	ź
			イザに強制変位 x を負荷した場合に強制変位と同じ方向に生じ	
			る全体荷重Wを算出する。	
			90°及び270°の位置に設置されたRPVスタビライザに生じ	,
			る荷重をW ₁ ,45°,135°,225°及び315°の位置に設置された	
			$RPVスタビライザに生じる荷重をW_2'とし、荷重W_2'の強制$	j1]
			変位 x と同じ方向の分力を W_2 とする。	
			強制変位 x を負荷したときの45°, 135°, 225°及び315°の	
			位置に設置されたRPVスタビライザに生じる接線方向の変位	
			は $\mathbf{x} \cdot \cos \alpha$ であることから、荷重 \mathbf{W}_2' は以下のとおりとなる。	,
			$W_2 = K_1 \cdot x \cdot \cos \alpha$	
			第4.1.3-2図内の拡大図の関係から強制変位 x と同じ方向の	
			分力W₂は以下のとおりとなる。	

柏崎刈羽原子力発電所	6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2-
				W ₂ =W ₂ 'cos α =K ₁ ・x・cos ² α 従って, RPVスタビライザ全体のばね おりとなる。 W=2・W ₁ +4・W ₂ =2・(K ₁ ・x)+4・(K ₁ ・K ₂ = $\frac{W}{x}$ =4K ₁ =4・ $\frac{2 \cdot Ks \cdot KR}{Ks + KR}$ = $\frac{8 \cdot Ks \cdot FR}{Ks + KR}$
				スタビライザ フラケット サセット 大角ナット フランヤ
				<u>第4.1.3-1図</u> 既工認におけるばれ W2 ⁺ W1 RPVスダビライザ 強制変位 x 270° W2 W2 W2 W1 K1-X M2 90°
				<u>180°</u> 第4.1.3−2 図 水平荷重

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		4.1.4 今回工認におけるばね定数算出方法	
		(1) RPVスタビライザのばね定数算出方法	
		今回工認においては、サラバネ及びロッドの他にRPVからの	
		外力の支持に寄与する部材を評価対象範囲に追加する。今回工認	
		におけるばね定数算出モデルを第 4.1.4-4 図に示す。サラバネ	
		(K_s) 及びロッド (K_R) に加え, ガセット (K_G) , ヨーク(引張方	
		向K _{YT} , 圧縮方向K _{YC}), スリーブ(K _{SL}), 六角ナット(K _H),	
		ワッシャ(K _w)について, RPVスタビライザ1基の片側分のば	
		ね定数(K _{1half})を直列ばねで定義して以下のように表す。(2)	
		にて各評価部材のばね定数の算出方法を示し、算出結果を第	
		4.1.4-1表に示す。なお、縦弾性係数は「発電用原子力設備規格	
		設計・建設規格(2005 年版(2007 年追補版を含む))(以下「JSME2005	
		/2007 年版」という。)の値を用いる。	
		$K_{1half(T)} = \frac{1}{\frac{1}{K_{H}} + \frac{1}{K_{SL}} + \frac{1}{K_{W}} + \frac{1}{K_{S}} + \frac{1}{K_{R}} + \frac{1}{K_{G}} + \frac{1}{K_{YT}}} (引張側)$ $K_{1half(C)} = \frac{1}{\frac{1}{K_{H}} + \frac{1}{K_{SL}} + \frac{1}{K_{W}} + \frac{1}{K_{S}} + \frac{1}{K_{R}} + \frac{1}{K_{G}} + \frac{1}{K_{YC}}} (E縮側)$ また, RPVスタビライザ1基の両側分のばね定数(K ₁)を	
		片側分のばね定数の並列ばね及びガンマ線遮蔽壁ブラケット(K	
		_B),シム(K _{SM})の直列ばねで定義して以下のように表す。	
		K1= 1 $\frac{1}{K_{1 h a 1 f (T)} + K_{1 h a 1 f (C)}} + \frac{1}{K_B} + \frac{1}{K_{SM}}$ 8基分全体でのばね定数は次式のように表される。	
		$K = 4K_{1} = \frac{4}{\frac{1}{K_{1 h a l f (T)} + K_{1 h a l f (C)}} + \frac{1}{K_{B}} + \frac{1}{K_{SM}}}$	
		ここで、	
		K : R P V スタビライザ 8 基分のばね定数	
		K_1 : R P V スタビライザ1 基分のばね定数	
		K _{1half} : RPVスタビライザ1基分(片側分)のばね定数	
		K _s : サラバネのばね定数	
		K _R : ロッドのばね定数	
		K _G : ガセットのばね定数	
		K _{YT} : ヨークのばね定数(引張方向)	
		K _{YC} : ヨークのばね定数 (圧縮方向)	
		K _{sL} : スリーブのばね定数	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		K _H : 六角ナットのばね定数	
		K _w : ワッシャのばね定数	
		K _B : ガンマ線遮蔽壁ブラケットのばね定数	
		K _{SM} : シムのばね定数	
		である。	
		(2) 評価部材のばね定数算出方法	
		a. サラバネ	
		メーカ試験結果よりサラバネー枚あたりのばね定数は,	
		kg/mm]である。	
		<u>R P V スタビライザの片側にサラバネは並列ばねになるよう</u>	
		に	
		出する。	
		b. ロッド	
		ロッドの軸方向ばね定数は,以下の式に基づき算出する。	
		$K = \frac{E}{E}$	
		$\frac{L_{R}}{L_{R1}} + \frac{L_{R2}}{L_{R2}}$	
		A _{R1} A _{R2}	
		ここで,	
		A _{R1} : 丸棒部断面積	
		A R 2: ねじ部断面積	
		L R 1: 丸棒部長さ	
		L _{R2} :丸棒部先端~スリーブの六角ナット側端面の距離	
		E:縦弾性係数	
		フセットは, 第4.1.4-1 凶に示す計算モデルを用いてFEM	
		解析による何里-変位関係から昇出する。 	
		And And A	
		断面A-A 与 A	
		<u></u> 第4.1.4-1 図 ガヤットの構造	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
			d. ヨーク	
			ヨークのばね定数は, 第 4.1.4-2 図のとおり分割した①~④	
			のそれぞれのばね定数を計算し、直列ばねとして引張ばね定数	
			(Kyr)と圧縮ばね定数(Kyc)を算出する。	
			第 4.1.4-2 図 ヨークのばね定数算出のための計算モデル分割	
			i)引張	
			ヨークの引張によるばね定数は、以下の式に基づき算出する。	
			$K_{YT} = \frac{1}{\frac{1}{K_{YS1}} + \frac{1}{K_{YTE}} + \frac{2}{K_{YB}} + \frac{2}{K_{YS2}}}$	
			くこく, Kysi:①及び②のねじ部のせん断によろばね定数	
			$\left(=\frac{A_{YS1}}{R_{Y}}\right)$	
			・ Ays2:①及び②のねじ穴側面積	
			Ry: ねじ穴半径	
			Gy: せん断弾性係数	
			Куте: ③及び④の引張りによるばね定数	
			$\left(=\frac{A_{\rm YTE} \cdot E}{L_{\rm YTE}}\right)$	
			A _{YTE} : ③及び④の断面積	
			L _{YTE} : ③及び④の長さ	
			Кув: ①及び②の曲げによるばね定数	
			I : 断面二次モーメント	
			E:縦弾性係数	
			以下は, 第4.1.4-3 図を参照。	

柏崎刈羽原子力発電所	6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
				Kys2:①及び②の板部のせん断によるばね定数	
				t y: ①及び②の板部の長さ	
				Gy: せん断弾性係数	
				I : 断面二次モーメント	
				<u> なんしんの図のみででのの世がにとてがわ会粉計算でごれ</u>	
				第4.1.4-3 図 ①及び②の曲りによるは44足数計算モアル	
				 ii) 圧縮	
				ヨークの圧縮によるばね定数は、以下の式に基づき算出する。	
				$K_{YC} = K_{YS1}$	
				e. スリーブ	
				スリーブの軸方向ばね定数は、以下の式に基づき算出する。	
				$K_{s_1} = \frac{E}{L}$	
				$\frac{\Delta L}{A_{SL1}} + \frac{L_{SL2}}{A_{SL2}}$	
				>L1>L2	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		Asl1: 座繰り穴側断面積	
		Asl2:貫通穴側断面積	
		L _{SL1} : 座繰り穴深さ	
		L s L 2 : 貫通穴深さ	
		E:縦弾性係数	
		f. 六角ナット	
		六角ナットのせん断によるばね定数は、以下の式に基づき算出	
		する。	
		$A_{\mu} \cdot G_{\mu}$	
		$K_{H} = \frac{R_{H}}{R_{H}}$	
		ここで.	
		A _H :ねじ穴側面積	
		R _H :穴の半径	
		G _H : せん断弾性係数	
		g. ワッシャ	
		ワッシャの軸方向ばね定数は、以下の式に基づき算出する。	
		$A_{\rm w} \cdot E$	
		$K_{W} = \frac{-W}{L_{W}}$	
		v	
		ここで.	
		Aw: 断面積	
		Lw:板厚	
		E:縦弾性係数	
		h. ガンマ線遮蔽壁ブラケット	
		ガンマ線遮蔽壁ブラケットによるばね定数は、以下の式に基づ	
		き算出する。	
		$A_{\rm p} \cdot G_{\rm p}$	
		$K_{B} = \frac{L_{B}}{L_{B}}$	
		ここで,	
		Ав: 断面積	
		L _B : ガンマ線遮蔽壁~RPVスタビライザ端部の距離	
		G _B : せん断弾性係数	
		i. シム	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		シムの軸方向ばね定数は、以下の式に基づき算出する。	
		$A_{SM} \cdot E$	
		$r_{SM} - t_{SM}$	
		ここで,	
		A _{SM} : 断面積	
		t sm:厚さ	
		E:縦弾性係数	
		(3) RPVスタビライザのばね定数算出結果	
		(2)で算出した各部材のばね定数並びに(1)で算出したRPV	
		スタビライザ1基及び全体のばね定数の算出結果を下表に示す。	
		第4.1.4-1 表 各部材のばね定数	
		[単位:kN/m]	
		RPVスタビライザの部材 既工認 今回工認 サラバネ(K ₀) 2.3×10 ⁶ 同左	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		ガセット (K ₆) - 3.3×10 ⁷ ヨークのげわ定数 (引張方向) (K _{YT}) - 4.3×10 ⁶	
		ヨークのばね定数(圧縮方向)(K_{vc}) - 6.7×10^7	
		スリーブのばね定数(K _{sL}) - 7.1×10 ⁷ 六角ナットのばね定数(K _{sl}) - 4.0×10 ⁷	
		ワッシャのばね定数(Kw) - 5.8×10 ⁸	
		ガンマ線遮蔽壁ブラケット(K _B) - 8.8×10 ⁶ シムのばね定数(K _{SM}) - 2.8×10 ⁸	
		RPVスタビライザ1基分のばね定数 2.4×10 ⁶ 1.7×10 ⁶	
		RPVスタビライザ全体のばね定数 9.6×10 ⁶ 6.8×10 ⁶	
		削述の計算結果に基づざ, RPVスタビフイサのはね定数を	
		6.8×10°[kN/m]と設定する。なお、既上認と比べて今回上認のは	
		ね定数か小さくなっているか、今回上認ではカセット、ヨーク、	
		スリーフ、六角ナット、リッシャ、ガンマ緑遮徹壁フラケット、	
		シムの剛性を考慮して、直列はね成分が増えたことにより全体の	
		はね定数が低下した。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
		スタビライザブラケット フタビライザブラケット ガセット 大角ナット マッシャ で一 KH KSL KW KS KR KG KYT KB KSM Kyc Ko W-W-W-W-W-W-W-W-W
		第4.1.4-4図 今回工認におけるは 第4.1.4-4図 今回工認におけるは 4.2 PCVスタビライザ 4.2.1 PCVスタビライザの構造 PCVスタビライザはガンマ線遮蔽壁 されたトラス状の構造物であり、多角形面ガンマ線遮蔽壁に作用する水平地震荷重 能を有する。PCVスタビライザの概略E す。PCVスタビライザの構成部材として ガンマ線遮蔽壁との取り合い部であるガイ との取り合い部である内側シヤラグかられ とガンマ線遮蔽壁の取付け部及び内側シー
		-2図に示す。

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		第十9年の登録を見るとうくず 第十9年の登録を見るとしょ 第十9年の登録を見るとのを見まままままままままままままままままままままままままままままままままままま	
		PCV RPVスタビライザ PCVスタビライザ PCVスタビライザ ルッ アンマ線遮蔽壁	
		PCV平面図 ガセットプレート パイプ ガンマ線遮蔽壁 PCVスタビライザ構造図	
		<u>第 4.2.1-1 図 PCVスタビライザ概略図</u>	

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所 (2018. 9. 18 版)	島根原子力発電所 2号炉	備考
			て適用実績がある。	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018. 9. 18版)	島根原子力発電所 2
				<u>第4.2.2-1表</u> PCVスタビラ
				既工認
				手計算 (固定音 (1対のトラス(パイプ2本)の荷重-変 位関係により算出)
				評価 荷重 44
				む
			4.1 4.1 図 本 の	2.3 既工認におけるばね定数算出方法 2.3.1 計算モデルの範囲 既工認におけるばね定数算出のモデルイ こ示す。PCVスタビライザのうち、1 についてモデル化し、パイプの断面剛 街重一変位関係からばね定数を算出する
				PCV平面図 既工iii 4.9.3.1-1.1図 既工ixはたばわ定
				<u>1.3.2 算出方法</u> 死工認におけるばね定数算出モデルを第 すのトラス (パイプ2本)において、水 δ が生じた際の荷重及び変位の算出式に δ 1 = δ s i n θ F = $\sigma \cdot A = E \cdot \frac{\delta}{L} \cdot A$ W = 2 · F · s i n θ こで、 : トラスの荷重方向の変位

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		δ1:トラスの長さ方向の変位	
		<i>θ</i> :パイプ角度	
		W :1対のトラスに生じる荷重	
		F :パイプに生じる荷重	
		E : 縦弾性係数	
		L :パイプの長さ	
		A :パイプの断面積	
		上記の式より、1対のトラス(パイプ2本)における荷重-変	
		位関係の式は以下となる。	
		$W = 2 \cdot E \cdot \frac{\delta}{L} \cdot A \cdot s \text{ i } n \theta = 2 \cdot \frac{EA}{L} \cdot s \text{ i } n^2 \theta \cdot \delta$	
		よって,1対のトラス (パイプ2本) におけるばね定数(K1)は	
		以下となる。	
		$K_1 = \frac{W}{\delta} = 2 \cdot \frac{EA}{L} \cdot s i n^2 \theta$	
		以上上り PCVスタビライザ全体でのげわ定数(K)け以下と	
		E A E A	
		$K = 4 K_1 = 4 \cdot 2 \cdot \frac{D R}{L} \cdot s \text{ i } n^2 \theta = 8 \cdot \frac{D R}{L} \cdot s \text{ i } n^2 \theta$	
		・ ・	
		<u> 府4.2.3.2⁻¹ 因 成工部にわけるはほど数昇山てノル</u>	
		<u>4.2.4 今回工認におけるばね定数算出方法</u> <u>4.2.4.1 解析モデルの範囲</u>	
		今回工認におけるばね定数算出モデルを第 4.2.4.1-1 図に示	
		す。PCVスタビライザの構成部材であるパイプ,ガセットプレ	
		ート及び内側シヤラグを 360°全体でモデル化する。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		なお,今回評価に用いるFEM解析には「NASTRAN Ver.2005」 を使用する。	
		FCV = m R	
		<u> 第4.2.4.1-1図 今回上認におけるはね定效算出のモデル化範</u> <u>囲</u>	
		4.2.4.2 解析モデル 解析モデルの諸元を第4.2.4.2-1 表に,解析モデル図を第 4.2.4.2-1 図に示す。パイプは断面特性を考慮したビーム要素, ガセットプレート及び内側シヤラグはシェル要素によりモデル 化する。	
		第4.2.4.2-1表 FEM解析モデルの諸元 節点数 要素数 使用要素タイプ 19,336 18,768 パイプ ビーム要素 内側シヤラグ シェル要素	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
			全体図
			レクション しんしょう しんしょ しんしょ

柏崎刈羽原子力発電所 6,	/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2-
				第4.2.4.3-1表 各構成部材の材 構成部材 材質 縦弾性係数1 パイプ STS410 (STS42) 2.01× ガセットプレート SM400B (SM41B) 2.01× 内側シャラグ SGV480 (SGV49) 2.01×
				 モデル中心と剛体結合 イレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレーレー
				<u>4.2.4.4 解析結果</u> 強制変位を負荷させた際の変形図を第4. の図では変形前の形状を赤線,変形後の形 は,剛体結合されたモデル中心の反力とし 結果から得た荷重-変位関係から,PCV 数を3.5×10 ⁶ [kN/m]と設定する。
				Y to x
				第4.2.4.4—1 図 変刊

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		4.2.4.5 ばね定数低下に係る要因の考察	
		4.2.4.5.1 要因考察	
		既工認と比べて今回工認(FEM解析)のばね定数が低下した	
		要因を考察するため,部材の剛性の考慮有無や結合方法等を変更	
		した参考モデル(I-1,2及びⅡ)を用いてばね定数を算出し	
		た。	
		要因の考察に用いた解析モデルの概要を第 4.2.4.5.1-1 表に	
		示す。また、各解析モデルにより算出されたばね定数を第	
		4.2.4.5.1-1図に示す。	
		<u>第4.2.4.5.1-1 表 解析モデルの概要</u>	
		モデル名称 参考モデルI-1 参考モデルI-2 参考モデルII 今回工器モデル トラス1対について、ガ トラス1対について、ガ トラス1対について、ガ トラス1対について、ガ トラス1対について、ガ トラス1対について、カ トラス1 トラス1 <t< td=""><td></td></t<>	
		たモデル 題し、パイプの曲け及び レート及び内側シヤラグ び内側シャラグの剛性を せん断剛性を考慮したモ の剛性を考慮したモデル 考慮したモデル	
		ガセットプレート /内側シヤラグ – 剛体 剛性考慮 剛性考慮	
		パイプとの取り合 い部 ビン結合 剛結合 剛結合 <	
		バイプ 軸変形を考慮 (長さ L=3749mm) 構成 形, 面门, セン(例)を 考慮 構成 形, 面门, セン(例)を 考慮 構成 形, 面门, セン(例)を 考慮 構成 形, 面目, モン(例)を 考慮 構成 形, 面目, モン(例)を 考慮 (長さ L=3749mm) (長さ L=2574.1mm) (長さ L=2574.1mm) (長さ L=2574.1mm) (長さ L=2574.1mm)	
		ドロシャラダ 「(個)シャラダ 「(個)シャラダ 「(個) 」(個) 「(個)	
		バイブ取り合い部:ビン結合 バイブ取り合い部:開助合 バイブ取り合い部:開助合 バイブ取り合い部:開助合 内側シャラダは数:6 方向形成 内国シャラダ:6 方向形成 内国シャラダ:6 方向形成 内国シャラダ:6 方向形成	
		《解析結果の考察》	
		① 既工認と参考モデル I - 1 の比較・考察	
		参考モデル I-1により算出されたばね定数は既工認と同値	
		であるため、 FEM解析モデルは既工認の計算モデルと同等	
		である。	
		② 参考モデルI-1と参考モデルI-2の比較・考察	
		参考モデル I-2 では、ガセットプレート及び内側シヤラグを	
		剛体としてモデル化したことによりパイプ長が短くなったた	
		め,ばね定数の値が参考モデル I-1より大きくなる。	
		③ 参考モデル I - 2 と参考モデル Ⅱの比較・考察	
		参考モデルⅡでは、ガセットプレート及び内側シヤラグに剛性	
		を考慮することにより、ばね定数の値が参考モデル I-2より	
		小さくなる。	
		④ 参考モデルⅡと今回工認モデルの比較・考察	
		本来ガセットプレートは隣り合うパイプの荷重を受け持つこ	
		ととなるが(第 4.2.4.5.1-2 図 (b) 参照),参考モデルⅡで	

は、1対のトラスのみの荷重を受け持つモデル化を行っており (第4.2.4.5.1-2 図 (a) 参照),隣り合うパイプからの荷重 を考慮していない。このためガセットプレートの変形が小さく なり、ばね定数の値が今回工認モデルより大きくなる。 PCVスタビライザを構成する各部材の剛性を考慮すること により、現実的なばね定数を算出した。その中でも、ガセットプ レート及び内側シヤラグの剛性を考慮したことが、ばね定数低下 に大きく寄与している。 以上の考察より、今回工認のばね定数は妥当なものであること を確認した。
 (第4.2.4.5.1-2図(a)参照),隣り合うパイプからの荷重 を考慮していない。このためガセットプレートの変形が小さく なり,ばね定数の値が今回工認モデルより大きくなる。 PCVスタビライザを構成する各部材の剛性を考慮すること により,現実的なばね定数を算出した。その中でも、ガセットプ レート及び内側シヤラグの剛性を考慮したことが、ばね定数低下 に大きく寄与している。 以上の考察より、今回工認のばね定数は妥当なものであること を確認した。
を考慮していない。このためガセットプレートの変形が小さく なり、ばね定数の値が今回工認モデルより大きくなる。 PCVスタビライザを構成する各部材の剛性を考慮すること により、現実的なばね定数を算出した。その中でも、ガセットプ レート及び内側シヤラグの剛性を考慮したことが、ばね定数低下 に大きく寄与している。 以上の考察より、今回工認のばね定数は妥当なものであること を確認した。
なり、ばね定数の値が今回工認モデルより大きくなる。 PCVスタビライザを構成する各部材の剛性を考慮すること により、現実的なばね定数を算出した。その中でも、ガセットプ レート及び内側シヤラグの剛性を考慮したことが、ばね定数低下 に大きく寄与している。 以上の考察より、今回工認のばね定数は妥当なものであること を確認した。
PCVスタビライザを構成する各部材の剛性を考慮すること により、現実的なばね定数を算出した。その中でも、ガセットプ レート及び内側シヤラグの剛性を考慮したことが、ばね定数低下 に大きく寄与している。 以上の考察より、今回工認のばね定数は妥当なものであること を確認した。
PCVスタビライザを構成する各部材の剛性を考慮すること により、現実的なばね定数を算出した。その中でも、ガセットプ レート及び内側シヤラグの剛性を考慮したことが、ばね定数低下 に大きく寄与している。 以上の考察より、今回工認のばね定数は妥当なものであること を確認した。
により,現実的なばね定数を算出した。その中でも,ガセットプ レート及び内側シヤラグの剛性を考慮したことが,ばね定数低下 に大きく寄与している。 以上の考察より,今回工認のばね定数は妥当なものであること を確認した。
レート及び内側シヤラグの剛性を考慮したことが,ばね定数低下 に大きく寄与している。 以上の考察より,今回工認のばね定数は妥当なものであること を確認した。
に大きく寄与している。 以上の考察より,今回工認のばね定数は妥当なものであること を確認した。
以上の考察より,今回工認のばね定数は妥当なものであること を確認した。
を確認した。
[时件,人口如何~]
項目 既工認 参考モデル 参考モデル 今回工認
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}$
10 7.5 7.7 ばね定数 [×10 ⁶ kN/m]
$0 \frac{1}{\pi (1^{2})^{2}} \qquad \pi (1^{2})^{2} \qquad \pi (1$
Con Contraction of the second
7° 3° 3°
<u>第4.2.4.5.1-1 図 各解析モデルのばね定数</u>
ドイブ育金方向 一般の合うがくプからの荷面も生じる
強制変化力向 パイプ菌虫方向 強制変化力向 パイプ菌虫方向 なイプ菌虫方向
 (a) 参考モデルⅡ (b) 今回工認モデル
第4.2.4.5.1-2図 参考モデルⅡと今回工認モデルの荷重伝達

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	20版) 東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		5. 構造物間ばね定数の設定(既工認から変更ない部位)	・資料構成の相違
		既工認からばね定数の算出方法に変更がない部位のうち、主要	【柏崎 6/7,東海第二】
		部位であるシヤラグ及び制御棒駆動機構ハウジングレストレン	本項5.では,既工認
		トビームを代表としてばね定数の算出方法を説明する。	から変更がないばね定
		なお,縦弾性係数は建設時の適用基準(昭和 55 年通商産業省	数の算出方法を記載す
		告示第 501 号)の値を用いる。	3
		<u>5.1 シャラグ</u>	
		<u>5.1.1 シヤラグの構造</u>	
		シャラグは、ドライウェル上部に周方向に8箇所設置され、P	
		CV外側のメイルシヤラグが原子炉建物側のフィメイルシヤラ	
		グと嵌め合い構造となっており,水平方向のうち PC V 周方向の	
		変位を拘束し、径方向変位は拘束されない構造である。(第5.1.1	
		-1 図参照)	
		フィメイルシヤラグ	
		フィメイルシャラグ	
		メイルシャラグ A矢視図	
		<u> 舟 3.1.1~1 因 シャック 祝安因</u>	
		5.1.2 ばね定数の筧出方法	
		シャラグのばね定数は、せん断荷重から求めた荷重一変位の関	
		係により筧出すろ、たお、シャラグのげね定数筧出方法について	
		 	
		↓ せん断力(F)を受ける際のせん断変形の式から求める荷重-変	
		位関係より、第5.1.2-1 図に示すメイルシャラグ及びフィメイ	
		ルシャラグの各部に対するシャラグ1 基分のばね定数 (k) を (k)	
		出する。	
		$\nu = \frac{1}{G} \int_0^x \left(\frac{\kappa \cdot F}{A} \right) dx = \frac{\kappa \cdot F}{G} \left(\frac{l_1}{A_1} + \frac{l_2}{A_2} + \frac{l_3}{A_2} \right)$	
		$E = C \left(1 + 1 + 1 \right)^{-1}$	
		$k = \frac{\Gamma}{\nu} = \frac{G}{\kappa} \left(\frac{I_1}{A_1} + \frac{I_2}{A_2} + \frac{I_3}{A_2} \right)$	
		トップ、シャラガ&其今体のげわ空粉(IZ)は田国中にシャラ	
		よつし、シャノク 0 本主体のはね止殺(K) は円向 状にンヤフ	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		グが配置されていることから、次のとおりとなる。	
		$K=4 \cdot k$	
		ここで,	
		ν : せん断ひずみ	
		G : せん断弾性係数	
		κ : 断面の形状係数	
		a ₁ :フィメイルシヤラグの幅	
		$a_{2}: a_{1} + a_{3}$	
		a ₃ :メイルシヤラグの幅	
		11:フィメイルシヤラグの長さ	
		12:シャラグ接触面の長さ	
		1 ₃ :メイルシャラグの長さ	
		h :シヤラグ接触面の長さ	
		A ₁ :フィメイルシヤラグの断面積(=a ₁ h)	
		$A_2 : A_1 + A_3 (= a_2 h)$	
		A ₃ :メイルシヤラグの断面積(=a ₃ h)	
		第5.1.2-1 図 シヤラグばね定数算出概念図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		5.2 制御棒駆動機構ハウジングレストレントビーム	
		5.2.1 制御棒駆動機構ハウジングレストレントビームの構造	
		制御棒駆動機構ハウジングレストレントビーム(以下「CRD	
		ハウジングレストレントビーム」という。)は、8箇所のブラケ	
		ットで R P V ペデスタルと溶接により固定された構造物であり,	
		構成部材としてはCRDハウジングレストレントビーム, サポー	
		ト,ブラケットからなる。	
		CRDハウジングレストレントビームは, CRDハウジングの	
		水平方向地震荷重を受けるが、CRDハウジングレストレントビ	
		ームはCRDハウジングを接触のみで支持しているため, 圧縮方	
		向の荷重は伝達するが引張方向の荷重は伝達しない構造である。	
		CRDハウジングレストレントビームの構造を第5.2.1-1図に	
		示す。	
		CPDハウジンガレストレントビーム	
		CRDハウジングレストレシトビーム RPVペデスタル ボルト固定 サポート マラケット CRDハウジング A部詳細	
		<u>第5.2.1-1図 CRDハウジングレストレントビームの構造</u>	
		<u>5.2.2 CRDハウジングレストレントビームのばね定数算出</u> <u>方法</u>	
		してロハリシングレストレントしてムのはね足数は、FEM併	
		のばわ完粉管出古注について一匹丁認から亦面けたい	
		のはね足数昇山刀伝について、成工芯がり友文はない。	
		<u>5.2.3 計算方法</u> 計算機コード「SAP-IV」により,各部材ごとに断面積,断	
		町 _ 伏七一メント, 里重等を与えるビーム要素モアルで解析す	
		る。	
		5.2.4 計算条件	
		5.2.4.1 解析モデル	
		解析モデルの概要を第5.2.4.1-1図に示す。	
		解析モデルはCRDハウジングレストレントビームの対称性	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		5.2.5 解析結果 ばね定数は、全水平荷重Wを最大変位量 δ で割ることにより求 める。ばね定数を以下に示す。 また、変形前(荷重付与前)及び変形後のモデル形状を第 5.2.5 -1 図に示す。 ばね定数: $K = \frac{W}{\delta} = 7.16 \times 10^5 [kN/m]$	
		BEIGENL (1) (1) (1) (1) (1) (1) (1) 変形前 変形液 (1) (1) (1)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		参考資料 (5-1)	・資料構成の相違
			【柏崎 6/7,東海第二】
		原子炉建物-大型機器連成解析モデルの変更に伴う地震応答への	参考資料(5-1)では,
		影響について	水平方向の大型機器連
			成解析モデルの変更に
		<u>1. はじめに</u>	伴う地震応答への影響
		原子炉建物-大型機器連成解析モデルを既工認から変更するこ	について記載する
		とに伴い、地震応答への影響を確認する。	
		2. 入力地震動	
		基準地震動Ssのうち,応答加速度が全周期帯において概ね支	
		配的であるSs-Dを代表波として選定する。	
		3. 影響検討方法	
		とに伴う地震応答の影響を確認するため、表1に示す影響検討モ	
		デル1及び2を用いた固有値解析及び地震応答解析を行い,表2	
		に示す影響検討ケースで各影響検討モデルの解析結果を今回工認	
		モデルと比較することにより、地震応答への影響について検討し	
		た。	
		影響検討ケース1は、PCV-RPVモデルをPCV-RPV	
		-Rinモデルに変更したことによる地震応答への影響を検討す	
		ることを目的として,表1に示す影響検討モデル1と今回工認モ	
		デルを比較する。ばね定数は、どちらのモデルも精緻化した値を	
		適用する。	
		影響検討ケース2は、PCV及びRPVスタビライザのばね定	
		数を変更したことによる地震応答への影響を検討することを目的	
		として,表1に示す影響検討モデル2と今回工認モデルを比較す	
		る。解析モデルは、どちらもPCV-RPV-Rinモデルとし、	
		影響検討モデル2では、スタビライザのばね定数として既工認の	
		値を適用し、今回工認モデルでは、スタビライザのばね定数とし	
		て精緻化した値を適用する。	
		表1の解析モデルのモデル図については,第1-1-1~2図に	
		て P C V - R P V モデルを示し,第1-2-1~2図にて P C V - R	
		PV-Rinモデルを示す。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		備考			
		影響検討 モデル <u>1</u> P	解析モデパ C V - R P Vモデル	表1 影響検討モデル エタビライザ ばね定数 モデル維 精緻化値 関	レ 元 その他 端考 二認と同じ	
		2 P — P	CV - RPV - Ri	nモデル 既工認と同じ 既 nモデル 精緻化値 既	工認と同じ 工認と同じ 今回工認モデル	
				表2 影響検討ケース	ζ.	
		影響検討 ケース	比較対象モデル	比較目的	検討結果 固有値解析 地震応答解析	
		1 影響	響検討モデル1と 回工認モデル	PCV-RPVモデルをPCV- RPV-Rinモデルに変更にし たことによる地震応答への影響を 検討	第 1-1-1~ 第 1-1-2表 第 2-1-1~ 第 2-1-1~ 第 2-1-2表 第 2-1-12 図	
		2 影響	響検討モデル2と 回工認モデル	PCV及びRPVスタビライザ のばね定数を変更したことによ る地震応答への影響を検討	第1-2-1~ 第1-2-2表 第2-2-1~ 第2-2-1~ 第2-2-2表 第2-2-20図 第2-2-20図	
		<u>4. 検討</u> (1)影	<u> 「 結果</u> ジ 響 検 討 ケー	× 1		
		第1-1	1-1~第1-	-1-2 表並びに第 2-1	-1~第 2-1-12 図に	
		示す固有	「値解析結果:	から、影響検討モデル	1と今回工認モデルに	
		おける各	振動モード	の変形状態は一致して	おり、固有周期の変動	
		も小さい	(最大4%)	変動)ことがわかる。		
		また,	第 2-1-1~	~第2-1-2表に示す#	也震応答解析結果から,	
		各部位の	荷重が概ね	一致している (最大 10)	%変動) ことがわかる。	
		したがっ	οζ, ΡΟΥ	-RPVモデルをPC	V-RPV-Rinモ	
		デルに変	「更したこと」	こよる地震応答への影	響は軽微である。	
		(2)影	響検討ケー	ス2		
		第 1-5	2-1~第1-	-2-2 表並びに第 2-2	-1~第 2-2-20 図に	
		示す固有	「値解析結果:	から、PCV及びRP	Vスタビライザのばね	
		定数を変	「更した結果」	各振動モードの変形	状態は一致することが	
		わかる。	また、各振	動モードのうち原子炉	圧力容器の応答が卓越	
		する振動	トモードで固?	有周期が長くなる(最	大9%)が,その他の	
		振動モー	- ドの固有周期	朝の変動は小さいこと	がわかる。	
		また,	第 2-2-1~	~第2-2-2表に示す#	也震応答解析結果から,	
		PCV及				
		り, PC	V, RPV	及びシヤラグの荷重等	が変動するが,最大で	
		も 36%	(PCVスタ	ビライザ) であること	がわかる。	
		地震応	答解析結果	こ示す荷重のうち, R I	PV支持スカート基部,	
		ガンマ線	國藏蔽壁基部	R P Vペデスタル基	部,シャラグでは,影	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		響検討モデル2(①)と今回工認モデル(②)の荷重の比率(②)	
		(①)がNS方向とEW方向で異なり、NS方向の荷重は大きく	
		なる(比率(②/①)が1より大きい)のに対し、EW方向の荷	
		重は小さくなる(比率(②/①)が1より小さい)。	
		また、今回工認モデルにおけるRPVスタビライザとPCVス	
		タビライザでは、NS方向とEW方向のいずれでも荷重が小さく	
		なり(比率(②/①)が1より小さい),NS方向よりEW方向の	
		荷重が小さい(比率(②/①)がNS方向よりEW方向のほうが	
		小さい)。	
		これらの要因として、ばね定数変更により固有周期と床応答ス	
		ペクトルが変化し、固有周期と床応答スペクトルとの関係により、	
		NS方向とEW方向で荷重の変化の傾向に違いが生じていること	
		や、RPV及びPCVスタビライザのばね定数が低下したことに	
		より、これらが分担する荷重が小さくなることが考えられる。	
		第 2-3-1 図にRPVスタビライザとPCVスタビライザが接	
		続するガンマ線遮蔽壁頂部(質点番号 53)における影響検討モデ	
		ル2及び今回工認モデルの基準地震動Ss-Dの床応答スペクト	
		ルを示す。また、第2-3-1表に、影響検討モデル2(①)と今	
		回工認モデル(2)における, RPVの振動が卓越する最も低い	
		振動数の第4次モードの固有周期と床応答加速度及びその比率	
		(②/①)を示す。NS方向はスタビライザばね定数の変更に伴	
		い応答加速度が大きくなるが、EW方向は小さくなっており、こ	
		のような違いが荷重の変化の傾向に影響したものと考えられる。	
		以上の考察のとおり、ばね定数の変更に対して妥当な結果が得	
		られている。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		R 53.500 п 0 <td< th=""><th></th></td<>	
		第1-1-1図 PCV-RPVモデル (NS方向) E 63.50% E 51.70% E 34.80% E 30.50% E 3	
		EL 15.300 EL 15.300 EL 15.300 EL 15.300 EL 15.300 EL 15.300 EL 15.300 EL 15.300 EL 15.300 EL 15.300 度子伊圧力容器 ペテスタル 第子伊圧力容器 ペテスタル 第子伊圧力容器 ペテスタル 第子伊圧力容器 ペテスタル	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉					備考	
		<u>第1-1-1表</u> 固有値解析結果(影響検討ケース1,NS方向)						
		み	、数	①影響検討モデル1	②今回工認モデル	固有周期の	卢越郊位	
		1	2	固有周期[秒]	固有周期[秒]	(2∕1)	中國印江	
		1	1	0.219	0.219	1.00	原子炉建物	
		_	2	-	0. 202	—	燃料集合体	
		_	3	_	0. 135	—	炉心シュラウド	
		2	4	0.113	0.110	0.97	R P V	
		3	5	0.098	0.098	1.00	原子炉建物	
		4	6	0.069	0.069	1.00	原子炉建物	
		_	7	_	0.066	—	制御棒案内管	
		5	8	0.058	0.057	0.98	R P V	
		6	9	0.052	0.052	1.00	原子炉建物	
		_	10	—	0.050	_	燃料集合体	
		第	1 - 1	-2表 固有值解	解析結果(影響検	討ケース 1	,EW方向)	
		次	:数	①影響検討モデル1	②今回工認モデル	固有周期の	卣越部位	
		1	2	固有周期[秒]	固有周期[秒]	(2/1)		
		_	1	-	0. 204	_	燃料集合体	
		1	2	0.202	0.200	0.99	原子炉建物	
		_	3	_	0.135	_	炉心シュラウド	
		2	4	0.113	0.109	0.96	R P V	
		3	5	0.093	0. 093	1.00	原子炉建物	
		4	6	0.067	0.067	1.00	原子炉建物	
		_	7		0.057	_	前御俸柔内官	
		5	0	0.058	0.057	0.98	R P V	
		0	9 10	0.051	0.051	1.00	尿丁炉建物 	
			10		0.000		MM X D P	
								1
								1
								1
								1
								1
								L

柏崎刈羽原子力発電所	6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)		島根	原子力発電所	2 号炉		備考
				第1-2-1表 固有値解析結果(影響検討ケース2,NS方向)					
				1/2 4/4	①影響検討モデル2	②今回工認モデル	固有周期	·녹 +·하······ /	
				伏奴	固有周期[秒]	固有周期[秒]	の比率 (②/①)	早越部位	
				1	0.219	0.219	1.00	原子炉建物	
				2	0.202	0.202	1.00	燃料集合体	
				3	0.135	0.135	1.00	炉心シュラウド	
				4	0.102	0.110	1.08	R P V	
				5	0.095	0.098	1.03	原子炉建物	
				6	0.069	0.069	1.00	原子炉建物	
				7	0.066	0.066	1.00	制御棒案内管	
				8	0.056	0.057	1.02	R P V	
				9	0.052	0.052	1.00	原子炉建物	
				10	0.050	0.050	1.00	燃料集合体	
				第1-	2-2表 固有值的	解析結果(影響検	討ケース	2, EW方向)	
					 ①影響検討モデル2 	②今回工認モデル	固有周期		
				次数	固有周期[秒]	固有周期[秒]	の比率 (②/①)	卓越部位	
				1	0.204	0.204	1.00	燃料集合体	
				2	0.200	0.200	1.00	原子炉建物	
				3	0.135	0.135	1.00	炉心シュラウド	
				4	0.100	0.109	1.09	R P V	
				5	0.091	0.093	1.02	原子炉建物	
				6	0.067	0.067	1.00	原子炉建物	
				7	0.066	0.066	1.00	制御棒案内管	
				8	0.055	0.057	1.04	R P V	
				9	0.051	0.051	1.00	原子炉建物	
				10	0.050	0.050	1.00	燃料集合体	
				1					1
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考						
--------------------------------	---------------------	--	----						
		1 原子伊隆物 2 原子伊格納容器 3 ガンマ徽政編建及び原子伊圧力容器ペデスタル 4 原子伊圧力容器							
		固有周期(s);0.219							
		1 1 φφ. φ							
		- • •							
		••••••••••••••••••••••••••••••••••••••							
		φφφφ φφφφ							
		bb.							
		第 2-1-1 図 (a) 影響検討モデル1 第1次振動モード図							
		1. 原子や理論 6. 厚心シュラクドP26期 2. 原子や理論者 7. 厚心シュラクドF26期 3. ガンマ線差磁理及び第子炉圧力容器ペデスタル 8. 新興特理動機構へウジング(外側) 4. 原子や圧力容器 9. 整料集合株 5. 気水分離認、スタンドパイプ、 10. 割解検索内管							
		シュラウド〜ッド及びロムシュラウド上部則 11 新御林駆動機構ハウジング(1940) 固有周期(s);0,219							
		1 1 9.9							
		$q \phi - q \phi - q \phi = 2$							
		¢							
		<u>第2-1-1図(b) 今回工認モデル第1次振動モード図</u>							
		<u>(NS方向)</u>							
			•						

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
				1 原子切逢物 2 原子切逢物 3 ガンマ雑連新確認と5原子伊圧力容器ペデスタル
				4 原子炉压力容器
				固有周期 (s) ;0.113
				1 1
				¶
				1 1 aaa
				ά φφφ φ
				¢ ••••••• • •
				a
				•••••••••••••••••• ••••••••••••••••••
				ab
				φφ
				<u>第2-1-2図(a)</u> 影響検討モアル1
				<u>(NS方向)</u>
				1 原子が地称 2 原子が地称 3 ガンマ報道盛空及び原子が圧力容器ペデスタル 8 制御林電動機構へウ 2
				4 原子切正力容器 9 燃料金付件 5 気水分離湯、スタンドバイブ, 10 前却称変内管 シュラウドヘッド及び切心シュラウド上部頃 11 前御神駆動機構へ
				固有周期 (s);0.110
				1 1
				φ φ
				•···•••···••••••••••••••••••••••••••••
				φφφ φ φ 3 φ ρ
				•···••••••••••••••••••••••••••••••••••
				φφ
				dddd
				-L. 0. L.
				第 2-1-2 図(b) 今回工認モデル 第
				(NS方向)
			1	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2 号炉 ^{1. 原子啤} ^{2. 男子啤 M # # # # # # # # # # # # # # # # # #}	備考
		第2-1-3図(a) 影響検討モデル1 第3次振動モード図	
		$\begin{array}{c} 1 & \mathbb{R} + f \Psi k \phi + 2 \\ 2 & \mathbb{R} + f \Psi k \phi + 2 \\ 3 & \mathbb{R} - f \Psi k \phi + 2 \\ 3 & \mathbb{R} - f \Psi k \phi + 2 \\ 4 & \mathbb{R} + f \Psi k - 2 \\ 6 & \mathbb{R} + f \Psi k \phi + 2 \\ 6 & \mathbb{R} + f \Psi k \phi + 2 \\ 6 & \mathbb{R} + f \Psi k \phi + 2 \\ 6 & \mathbb{R} + f \Psi k \phi + 2 \\ 6 & \mathbb{R} + f \Psi k \phi + 2 \\ 6 & \mathbb{R} + f \Psi k \phi + 2 \\ 6 & \mathbb{R} + f \Psi k \phi + 2 \\ 1 & \mathbb{R} + f \Psi k$	
		<u>(NS方问)</u>	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2 身
			1 原子印建物 2 原子印度物路器
			3 ガンマ 戦略構成及び第十901上719日のヘウスタル 4 第7日7日2月18日 12日4713月19日(二) - 0 2010
			108/41.04(149/14(s); 0.060)
			第 2-1-4 図 (a) 影響給封モデル1
			<u>第214因(a) 影響候的セブル1</u> (NS方向)
			1 原子伊隆物 6 年心シュラウナ中 2 原子伊隆物理3 (原子中圧力容器・マテスタル 3 度ンク地路内理3 (原子中圧力容器・マテスタル 4 原子中圧力容器 5 気が発電)、スタンドバイプ、 10 新聞神秘部推構・ (日本力学にンド及び形心シュラウト上部則 5 ムッラウド〜ッド及び形心シュラウト上部則 11 新聞神秘部推構・ (日本力)(日本)(日本)(日本)(日本)(日本)(日本)(日本)(日本)(日本)(日本
			<u>第2-1-4図(b)</u> 今回工認モデル
			<u>_(NS方向)</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子炉建物 2 原子炉降納容器 3 ガン・準連連要数以原子炉圧力容器ペデスタル 4 原子炉圧力容器	
		因有周期(s);0.058	
		↓ ↓ ↓	
		ððð	
		第 2−1−5 図 (a) 影響給討モデル1 第 5 次振動モード図	
		<u></u>	
		1 原子が建物 6 が心シュラウド中間層 2 原子が場所容器 7 が心シュラウドド部国 3 ガンマ酸道電視及び原子印圧力容器ペデスタル 8 初期種原則機構へのジンプ(外回) 4 四子形につき際 8 利用種原則機構へのジング(外回)	
		 (本) 「加入(本)」(本) 「1 (本)」(本) 「1 (本)」(本) 「1 (本)」(*)」(*)」(*)」(*)」(*)」(*)」(*)」(*)」(*)」(*	
		6	
		φ φ	
		1 1	
		$\begin{bmatrix} \mathbf{q} \cdots \mathbf{q} \cdots \mathbf{q} \cdots \mathbf{q} & \mathbf{q} & \begin{bmatrix} \vec{q} & \\ \mathbf{q} & \mathbf{p} \end{bmatrix} \\ \mathbf{q} & \mathbf{q} \cdots \mathbf{q} \cdots \mathbf{q} & \mathbf{q} & \begin{bmatrix} \mathbf{q} & \\ \mathbf{q} & \mathbf{q} \end{bmatrix} \\ \mathbf{q} & \mathbf{q} \cdots \mathbf{q} \cdots \mathbf{q} & \mathbf{q} & \begin{bmatrix} \mathbf{q} & \\ \mathbf{p} & \mathbf{q} \end{bmatrix} $	
		第 2-1-5 図(b) 今回工認モデル 第 8 次振動モード図	
		_(NS方向)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子伊隆納香萄 2 原子伊隆納香萄 3 ガン・単義連環境び原子伊圧力容器ペデスタル 4 原子伊圧力容器	
		固有周期(s);0.052	
		<u> 第2-1-6図(a) 影響検討モアル1 第6次振動モート図</u> (NS方向)	
		1 原子伊鶴島 6. ポスシンコウクド印刷第 2 原子伊鶴島市 アレビンコウトド電料 3 ガンマ認識確認及び原子伊圧力容器ペデスタク 8. 福岡崎原加橋県・ウジング(外側) 4 原子伊圧力容器 9. 野井県会作 5 気水分構築、スタンドバイブ、 10. 新岡崎原型防縄県・ウジング(外側) 5 気水分構築、スタンドバイブ、 10. 新岡崎原型防縄県小ウジング(外側) 6 有人間期(*s);0.052 11. 新岡崎原型防縄県小ウジング(外側)	
		第 2-1-6 図 (b) 今回工認モデル 第 9 次振動モード図	
		(NS方向)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子が壊物 2 原子が略納容器 3 ガンマ爆進機能及5原子加圧力容器ペデスタル 4 原子が圧力容器	
		固有周期(s);0.202	
		第 2-1-7 図 (a) 影響検討モデル1 第 2 小 小	
		<u>(EW方向)</u>	
		1. 原子伊隆物 6 年心シェクラド中間刷 2. 原子伊極術容器 7 年心シェククド中間刷 3. ガンマ縦銃電気(5原子伊圧方容器-ジアメタル 8 初時伸低低機(小ウンジグ(外面) 4. 展子伊圧方容 5. 気気分離3. スタンドベイズ, 10 初時中板(3時候)、ウジング(内面) ジェクリ(ハッド及びからショクタド上部刷 11 初時中板(3時候)、ウジング(内面) 因有因用(s);0.200	
		<u>第2-1-7図(b) 今回工認モデル 第2次振動モード図</u> (EW方向)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子が場約 2 原子が場納容器 3 ガンマ客議機能及び原子が圧力容器ペデスタル 4 原子が行た容器	
		固有网期(s);0.113	
		第2-1-8図(a) 影響検討モデル1 第2次振動モード図	
		<u>第210因(a) 影響候的ビグル1 第2代派動 - 一因</u> (EW方向)	
		1. 原子伊隆特 6. 形心ジェクラド中国料 2. 房子伊隆術会員 7. 折心ジェクラド中国料 3. ガンマ秘密電気び原子伊近方容晶 8. 局静脈転動構体ハウジンダ/内印 4. 房子伊江方容晶 9. 燃料場合作 5. 気気が高額、スタンドパイプ、 10. 制静脉症内管 シニラクドヘッド及びがシジェクラド上記制 11. 制静脉振動構体ハウジンダ(内伯) 岡子周期 (s) : 0. 109	
		<u>第2-1-8図(b) 今回工認モデル 第4次振動モード図</u> <u>(EW方向)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		 原子伊隆朝 第子伊隆朝容器 3 分ッペ離離職業以7第子印圧力容器ペデスタル 4 第4月14日 作時幣 	
		5 m i # i # i # i # i # i # i # i # i # i	
		<u>第 2-1-9 図(a) 影響検討モデル 1 第 3 次振動モード図</u>	
		<u>(EW方向)</u>	
		1 原子切造物 6 新心シュラクド中期間 2 東子切造物 7 年心シュラクド中期間 3 ガンマ電道観察び(原子炉圧力容器ペダスタル 8 回帰用電動機構・クジング(外側) 4 英スク回動。スタンドイイブ, 10 利用単数加機構・クジング(外側) 5 英スクジドへンド及び切らシュラクド上面明 11 利用単電動機構、クジング(外側) 同者[周期](s);0,093	
		第 2-1-9 図 (b) 今回丁認モデル 第5次振動モード図	
		<u> </u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子炉 壊析 2 原子炉 統納容器 3 ガンマ 総議課題及び第子炉圧力容器ペデスタル 4 原子炉圧力容易	
		阔有周期(s);0.067	
		<u>(EW方向)</u>	
		1 原子が後約 2 原子が後約 3 パンマ報告報告題 4 原子が正方容器・デスタル 4 原子が正方容器・デスタル 5 気が入発題。スタンドイブ、 10 朝鮮新会計管 シュラウドーンド及び応シュラウド上部詞 配有周期(s); 0.067	
		<u>第2-1-10図(b) 今回工認モデル 第6次振動モード図</u> <u>(EW方向)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		 原子切逢物 累子切逢物等器 オンベ濾道機能要び原子が圧力容器ペデスタル 単子切除力容器 	
		因有 阿 朔(s);0.058	
		1 1	
		0 • • • • • • • • • • • • • • • • • • •	
		•·····••	
		······	
		<u>第2-1-11図(a) 影響検討モデル1 第5次振動モード図</u>	
		<u>(EW方向)</u>	
		1 原子伊達物 6 死心シュラウド中間隔 6 2010 - 10000000000000000000000000000000	
		2 原丁学術的容益 3 ガンマ経営産業長び原子が圧力容器ペデスタル 8 前時単単類角構、ウジング(外類) 4 原子が圧力容温 5 気水分離器、スタンドレイブ, 10 前時単葉内管 シュ分グドム、ド及び炉心シュラウド上部洞 11 前時単葉肉構成、ウジング(内類)	
		因有[周期](s);0.057	
		aab 2 a 4	
		│ *** [*] 第 2−1−11 図(b) 今回工認モデル 第 8 次振動モード図	
		<u>(EW方向)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子研集物 2 原子研集物理 3 ガン・構造振電及び原子研圧力容器ペデスタル 4 原子研圧力容器	
		固有周期(s);0.051	
		1 原子が豊新 2 原子の豊新 3 原子の単純常語 3 原子の単純常語など原子や圧力容器ペデスタル 4 原子で収力容器 4 原子で収力容器 5 気水の増額、スタンドバイブ、 5 気水の増額、スタンドバイブ、 5 気水の増額、スタンドバイブ、 5 周期時年代皆 5 気水の増額、スタンドバイブ、 10 朝期時年代皆 5 気水の増額、スタンドバイブ、 10 朝期時年代皆 5 気水の増額、スタンドバイブ、 10 朝期時年代皆 5 気水の増額、スタンドバイブ、 10 朝期時年代皆	
		第 2-1-12 図 (b) 今回工認モデル 第 9 次振動モード図	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子印稿物 6 伊ムシュラクド中発展 2 原子印稿内容器 7 伊ムシュラクド中発展 3 ガンマ・被装置整整式原子行に力容器ペデスタル 8 時期線医転換パクジング(小回) 4 原子印度ご存容器 5 気気:分離気、スタンドペイプ、 10 時間確認内障 ショカクドッッド及び印むシュックド上取詞 11 前原種都原換機ペックジング(小回) 固有周期(s);0,219	
		第 2-2-1 図 (a) 影響検討モデル2 第 1 次振動モード図	
		1 原子が電物 6 歩んシュラクド中間間 2 原子が電動等 3 ボン・増減を優異及び第子が圧力容器ペデスタル 8 野球爆撃振動機構、ウジング(54m) 4 原子が圧力容器 9 監持集合体 5 気水力の解除、スタンドバイブ、 10 解除体型化構成 ジェラウドへッド及びがムシュラクド上部例 11 解除体型振動機構、ウジング(1900) 固有問題(6);0.219	
		第 2-2-1 図 (b) 今回工認モデル 第1次振動モード図	
		<u>(NS方向)</u>	

			-	T
柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 25
柏崎刈羽原子力発電所	6 / 7 号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)	島根原子力発電所 25 1.原初時間 3.月がで構成での子戸に力達・ゲステル 4.月が日本語 3.月がで構成での子戸に力達・ゲステル 5.月が日本語 5.月が日本 5
				<u>第 2-2-2 図 (a) 影響検討モデル2</u> (NS方向)
				1 原子学編物 6 供心シュラウド中 2 原子学塔納2 原子学任治会社 7 好心シュラウド中 3 ガンマ湯変種2 原子子ゲニカ容易ペデスタル 8 新鮮電気の計算 4 原子伊ビ方容器 9 気外分類3、メシンドパイプ、 10 新鮮地震所留 シュラウドヘッド 2 ビアグレンスラウド上朝料 11 新鮮地震所留 逆、コウドヘッド 2 (1) 2 (1) 2 (1) 1 (1)
				<u>第2-2-2図(b)</u> 今回工認モデル 第 (NS方向)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1. 原子伊隆特 6 年くシェクシド中装飾 2. 原子伊隆特保留 3. ガンマル装置電気の原子伊圧力容器ペデスタル 8 特許解整数構造・ウジング(540) 4. 原子伊圧力容器 5 気大分配 9 差許構造体 5. 気大分類に スタンドレイブ, 10 制得導致作用 シュラウドルッド及び却なションウア上達成 国有用資源(5.); 10.135	
		1 1 ee	
		<u>第2-2-3図(a) 影響検討モデル2 第3次振動モード図</u> <u>(NS方向)</u>	
		1 原子厚幾物 6 をレシュラウド中間限 7 厚ノシュラウド中間限 7 厚ノシュラウド中間限 7 厚ノシュラウド中間限 7 厚ノショフウド中間限 7 厚ノショフウド中間限 7 厚ノショフウド中間限 8 新規編集構構体・ウジング(外間) 8 新規編集構構体・ウジング(外間) 5 気人会どパイプ, 10 制制線整大階 ジュラウドへ・ド及し少レシュラウド上部則 11 制制線整整機構・ウジング(外間) 固有周期(s); 0.135	
		<u>第2-2-3図(b) 今回工認モデル 第3次振動モード図</u> (NS方向)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 数子が振動行業 6 0% レシュウクド中装置 2 振うが振動行業 7 0% レシュウクド中装置 3 ガン・水漆装置数(700-700.5) 25% ペアメタル 8 時期総数30% ペアメジン (140) 4 ボライル(15.4) 26 (140) 9 数形振気(140) 5 (大力の発音、スタンドレイブ、 10 時期第次10% ビニカウ ドへ、ド及10% レジェクウド上部回 11 時期等期10% 広ラ ジ ドヘッド及10% レジェクウド上部回 11 時期等期10% 第二 10 第二 10 10 11 第1	
		第 2-2-4 図(a) 影響検討モデル2 第4次振動モード図 (NS方向)	
		1 第子が準約 2 第子が単純な単 3 第子が「単純な単語」が第子が日力容易ペデスタル 4 第子が「加速な構築」が第子が日力容易ペデスタル 4 第子が「加速な構築」が第子が日力容易ペデスタル 5 素がの構築、スタンドペイプ、 5 素がの構築、スタンドペイプ、 5 素がの構築、スタンドペイプ、 5 素がの構築、スタンドペイプ、 5 素がの構築、スタンドペイプ、 5 素がの構築、スタンドペイプ、 1 朝鮮の単な物理なが生まっ 5 ペークジング(PHB) 1 前期の単本の単体のデジング(PHB) 1 前期の単本の単体のデジング(PHB)	
		第 2-2-4 図 (b) 今回工認モデル 第4次振動モード図 (N S 方向)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1. 第千字連絡 6. (死シシスラクドで接頭 1. 第千字連絡 7 (死シシスラクド下接頭 2. 第子ッマ勘定電気び第千炉圧力容器・ペデスタル 8 (新理解解機構成・ウジング(54個) 4. 第子・学道工作電話 9 (第十集合) 5. 気水分解話、スタンドイイズ 10 (新門株式作業・ヘラジング(54個) 5. 気水分解話、スタンドイイズ 10 (新門株式作業・ヘラジング(54個) 1. 新好時電気液構・ヘラジング(54個) 1. 新好時電気液構・ヘラジング(54個) 1. 新好時電気液構・ヘラジング(54個)	
		<u>第2-2-5図(a) 影響検討モデル2 第5次振動モード図</u> <u>(NS方向)</u>	
		1. 原子が整約 6. 炉心シュラクド中間間 2. 原子が整約 7. 炉心シュラクド下部間 3. ガン・資源差録20.0万県子炉上力容描ペジスタル 8. 修計準額転換用・ウジング(外値) 4. 展子が加強力、スタンドパイプ、 9. 燃料機能合体 5. 気水力増加、スタンドパイプ、 10. 修御御御知後(ボハウジング(外値) ジェックラドーのド人口が 10. 修御御御取後通・ハウジング(外値) 匹名用周期(s); 0.098 11. 修御御知後(ホックジング(外値)	
		<u></u>	

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号
				1 第子が開始 1 第子が開始 1 第子が開始 1 第一次の時代20 1 第二次の時代20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				第2-2-6図(a) 影響検討モデル2 (NS方向)
				1.原子伊織物 6.例心シュラウド中原 2.原子伊織物容績 7.外のビュラウド中原 3.ガンマ構成最美な5原子伊圧力容容ペジスタル 8.前機構態影響構成 4.原子伊圧力容器 9.気気が発展、スタンドンイズ、 10.前機能影響構成 5.気気が発展、スタンドンイズ、 10.前機能感情で シュラウドへッド及19年心ションウド上配例 11.前脚環線影響機構へ 固有周期(s.); 0.069
				<u>第 2-2-6 図(b) 今回工認モデル</u> <u>(NS方向)</u>

柏崎刈羽原子力発電所 6	/7号炉 (2017.1	2.20版)	東海第二発電所	斤(2018.9.18版)	島根原子力発電所 2 号
					1 原子伊羅倫 6 伊心シュラクド中省 2 原子伊羅倫 6 伊心シュラクド中省 3 ガンベル会議職役な5原子伊圧力容器ペデスタル 8 昭純単語の結構 ペク 4 原子中枢二力容器 5 気が分解聴、スタンドバイブ、 10 約線構築合作 2 シュラクドトッド及び形心シュラクド上的副 11 約線線整約機構へ 出有 周期 (s);0.066
					<u> 第2-2-7 図(a) 影響検討モデル2</u> <u>(NS方向)</u>
					1 原子が進物 3 原子が準結後数 (原子が正力な基ペゲスタル 3 ガン・学家建築権及 (原子が正力な基ペゲスタル 4 原子が加工力な基本 5 数大製金化 5 数大製金化 5 数大製金化 5 数大製金化 5 次 2 ジャンマンプ、 10 物調体取換数構べつ 10 物調体取換数構成で 11 の
					第2-2-7図(b) 今回工認モデル
					<u>(NS方向)</u>

· 枯崎川羽佰乙力惑雲正	(2017 12 20 時)	吉海第一発電話 (9010 0 10 ℃)	自坦百乙力戏電前 05
仰啊小小小丁刀光电灯 0/(万炉	(2011.12.20 瓜)	朱(毋宥→光电内 (2010.3.18 版)	「「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「
			2 原子中国新時間 7 年心シックルドド 3 ボン・マーム電気機能及び原子中圧力容易ペデスタル 5 度が振電から調わ 4 原子中国工力容易 9 というイブ、 10 範疇構成力で 5 欠水力分解為、スタクトンドイブ、 10 範疇構成力で 5 欠水力分解入、スタクトンド人で、 10 範疇構成力で 5 欠水力分析入力、 11 範疇構成力で 5 欠小力のドルブレームションクド上類詞 11 範疇構成力で 11 範疇構成力で
			<u>第2-2-8図(a) 影響検討モデル2</u>
			(NS方向)
			 1.原子学雑物 5.デナギ結約23 3.ガンマ油蒸馏及及原子炉上力容者ペデスタル 4.原子学年約28 5.原子学年約26 5.原子学年126 5.原子学年126 5.原子学年126 5.原子学年126 5.原子学年126 5.原子学年126 5.原子学年126 6.原子学年126 7.デンマングドナー第26 4.原子学年126 7.デンジングドナーの 7.デンジングレンジングドナーの 7.デンジングレンジングドナーの 7.デンジングドナーの 7.デンジングドナーの 7.デンジングドナーの 7.デンジングレンジングレンジング 7.デンジングレンジングレンジングレンジング 7.デンジングレンジングンジングレンジングレンジング 7.デンジングンジンジングンジングレンジングンジングンジングンジングンジングンジングン
			第2-2-8図(b) 今回工認モデル (NS方向)

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2
				1. 原子伊維物 6. 97-62/03-79 と中心 2. 男子伊維物物 7. 97-62-03-97 と中心 3. 97-79-45-978-97-97 - 8. 6. 197-197- 4. 同子伊廷丁な登録 9. 197-197-197-198-199-199-199-199-199-199-199-199-199
				第2-2-9図(a) 影響検討モデル2 (NS方向)
				1 原子修築物 6 原心シュラウ 10 2 原子修築物理 7 原心シュラウ 11 3 ガンマ海道電源及び用子停止力容量ペジェタル 8 制度振動機構 4 原子停口力容量 5 先大容異別、スタン ドイブ、 10 制得施室内管 ジェンク ドンッド及び使心シュラウド上部項 11 制得施室物構 国有局別(a);0.052
				<u>第 2-2-9 図(b) 今回工認モデル (NS方向)</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12	.20版) 東海第二発電所(2018.9.18	版) 島根原子力発電所 2 昇
		第2-2-10 図 (a) 影響検討モデル2 (NS方向)
		1 原子伊竜物 6 がらジュラウド中国 2 房子伊国納2番 7 約くシュラウド下国 3 ガン・電査総数気房子板正力容益ペゲスタル 8 対導用取動機(の-) 4 房子伊圧力容量 5 気水の構築、スタンドバイプ、 10 転調体数内管 シュラウドケッド及び巻シシュラウド上部属 11 転調体駆動構合、 固有周期(s);0.050
		<u>第2-2-10図(b) 今回工認モデル (NS方向)</u>

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2長
			1 原子伊達物 6 伊心シュラクド中 2 原子伊德術等語 3 ガンマ離議職業及び原子伊圧力容器ペデスタル 4 原子伊征力容器 4 原子伊征力容器 5 気力効振為、スタンドバイブ, 10 前期確認的構成へ 10 前期確認的構成へ 10 前期確認的構成へ 10 前期確認的構成へ 10 前期確認的構成へ 10 前期であり、2020
			第2-2-11 図 (a) 影響検討モデル2
			<u></u>
			 1. ВЕРРЕВА В. ВЕРРЕВАВИ В. ВЕРРЕВАВИ В. ВЕРРЕВАВИ В. ВЕРРЕВАВИ В. ВЕРРЕВАВИ В. ВЕРРЕВАВИ В. ВЕРРЕВАВИ В. ВЕРРЕВАВИ В. ВЕРЕВАВИИ В. ВЕРЕBALING В. ВЕРЕBALING B. BERNERS B. B
			<u>第2-2-11図(b) 今回工認モデル</u> <u>(EW方向)</u>

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2 异
			1 原子炉換約 6 原之シュラウヤ市 2 原子炉換約容易 7 炉心シュラウヤ市 3 ガンマ酸蒸焼及原子所圧力容易 9 燃料時 4 原子炉に力容易 9 燃料水合体 5 気水分類局、メシンドバイブ、 10 前時確認時期へ 5 気水分類局、メシンドバイブ、 10 前時確認時期へ 6 気水分類局、メシンドバイブ、 11 前時棒電加購 6 気水分類局、シントクロークションクドン主義期 11 前時棒電加購 6 気水分類局、メントの一般 11 前時棒電加購
			$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
			<u> </u>
			 1. 原子学場物 1. 原子学場物 1. デン・容差感覚及のドナビ上の言語・デスタル 1. デン・容差感覚及のドナビ上の言語・デスタル 1. 新算得電動構成・2 1. 新算報告報 1. 新算報電動構成・2 1. 新算報電動構成の・2 1. 新算報電動構成の・2 1. 新算報電動構成の・2 1. 新算報電気構成の・2 1. 新算報 1. 新算報
			<u>第2-2-12図(b) 今回工認モデル (EW方向)</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子が塩物 2 原子が影響な 3 ガン・端連載発表び原子が圧力容弱ペデスタル 4 原子が圧力容弱 5 気気分解認、スタンドパイプ、 5 気気分解説、スタンドパイプ、 5 気気分解説、 5 気気分解説 5 気気分解説 5 気気分解説 5 気気分解説 5 気気分 5 気気分 5 気気分解説 5 気気分 5 気気分解説 5 気気分 5 気気 5 気気 5 気気分 5 気気分 5 気気 5 気気 5 気気分 5 気気分 5 気気 5 気気分 5 気気分 5 気気 5 気気 5 気気分 5 気気分 5 気気分 5 気気 5 気気分 5 気気分 5 気気 5 気気 5 気気分 5 気気 5 気気	
		• • • • • • • • • • • • • • • • • • •	
		• • • • 5 • • • • 5 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	
		<u>第2-2-13図(a) 影響検討モデル2 第3次振動モード図</u>	
		<u>(EW方向)</u>	
		1 原子伊瑞物 6 年心シュラウド中地解 2 原子伊瑞納瑞羅 7 年心シュラウド中地解 3 ガン・学講道課題及「原子伊圧力容器・デアメタル 8 約林振振機構・ウジング(外組) 4 原子伊圧力容器 9 原料電力作 5 気水の振器、スタンドイプ, 10 初時相応的機構・ウジング(外組) ジュウカドヘッド及び切るシュラウド上部例 11 初時相応的機構・ヘウジング(外組) 固有内別別(a);0.135	
		• • • • • • • • • • • • • • • • • • •	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		<u>第2-2-13図(b) 今回工認モデル 第3次振動モード図</u> (EW方向)	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		 1 原子伊地特 6 伊心シュラクド中間県 2 原子伊地特容器 7 伊心シュラクド中間県 3 ガンマ源倉籠泉以原子伊氏力容器ペプスタル 8 割時林枢動構成・ウジング(外和) 4 原子伊氏力容器 9 燃料集合件 5 気力発展・タンドイズ, 10 樹野修常内智 シュラクドヘンド及びがシュラクド上部県 11 樹野修築動構体・ウジング(内和) 2 岡子同間(s); 5,000 	
		<u>第2-2-14 図(a) 影響検討モデル2 第4次振動モード図</u> (EW方向)	
		 2 単子や動物電源 (SFF)中国力容器ペダスタル s 向射物電気機構、クジング(外間) 3 ガン・学識電視波及(SFF)中国力容器ペダスタル s 向射電気機構、クジング(外間) 4 単子や回力電源 5 気水方分(SF, スタンドバイブ, io 動射電気(増加、クジング(外間) 5 気水方分(SF, スタンドバイブ, io 動射電気(増加、クジング(内面)) 図 有(利)別(s); 0, 109 	
		<u>第2-2-14図(b) 今回工認モデル 第4次振動モード図</u> <u>(EW方向)</u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子理場物 6 部心シェラウド中周期 2 原子理場約容器 7 部心シェラウド中周期 3 オシマ電磁機変近原子部圧力容器ペダスタル 8 高利用極影機構へウジング(外国) 6 原子作助方容器 9 シドバイズ, 10 割用極影用機(水) 5 気気分離高、スタンドバイズ, 10 割用極影用管 シェラクドットド(200 ジェコクド上説明 11 割同極影動機構へウジング(内面) 図名有周期(s_s);0.091	
		第2-2-15 図 (a) 影響検討モデル2 第5次振動モード図	
		<u>(EW方向)</u>	
		1. ************************************	

柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2 長
			1 屋子が植物 6 採えシュラクド中等 2 屋子が植物 6 採えシュラクド中等 7 駅にシュラクド中等 7 駅にシュラクド中等 7 駅にシュラクド中等 7 駅にシュラクド中等 7 駅にシュラクド中等 7 駅にシュラクド中等 7 駅にションテンド 8 気が分離場、メタンドバイブ、 10 朝鮮体現所学 シュラクドーッド及び印ムシュラクド上部国 11 朝鮮体現地構成へ 固有周期(s);0.067
			1 1 1 1 1 1
			1 原子伊建新 6 野心シュラウド中国 2 原子伊建新 7 野シュラウド中国 3 ガン・電波電電気(7原子伊圧力容器・ゲズタル 8 時期単型時構造へ) 4 原子伊圧力容器 5 気気を分離高、スタンドレイブ、 10 朝鮮年度内管 シュラウドッッド及び炉シシュラウド上部料 11 前期非限動構造へ) 因ず(周)項(名);0,067
			<u>第2-2-16図(b) 今回工認モデル</u> (EW方向)

柏崎刈羽原子力発電所	6/7号炉	(2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 25
				1. 原子伊隆納 6 好心シュラウド中期 2. 原子伊隆納 7 好心シュラウド中期 3. タン中海道線電気 (原子伊圧力容器ペデスタル 3. 男子伊加力容器 5. 気が入分開器、スタンドバイズ, 10 局料報告作用 シュラウドヘッド及び形心シュラウド上部則 11 刮削棒電動構成へ) 因者有周期 (s) ;0.066
				<u>第 2-2-17 図(a) 影響検討モデル 2</u>
				<u>(EW方向)</u>
				 1 原子印織物 6 印心シュラウド中間 2 原子印刷物容 3 ガン・今福建電気2原子甲に力音器ペデスタル 4 原子印記が留 5 気水分の器、スタンドハイプ、 9 高利米合作 9 気水分(ボーク) ドスロルシュラウド上部図 11 副御柳宏漁織州へ 11 副御柳宏漁織州へ 11 副御柳宏漁織州へ
				<u>第 2-2-17 図(b) 今回工認モデル</u> (EW方向)

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		<complex-block></complex-block>	
		<figure><text><text><text></text></text></text></figure>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		1 原子中国物 2 原子中国物管器 1 ガン・2 端底像を気留子中圧力容器ペデスタル 4 原子中に力容器 5 気水分類器、スタンドパイプ、 5 気水分類器、スタンドパイプ、 5 気水分類器、スタンドパイプ、 10 期料象染物構構、ハウジング(内组) 因有周期(s); 0,051	
		<u> </u>	
		1 原子中植物 6 40-5シュラクド中間料 2 原子中植物容量 7 00-5シュラクド中間料 3 ガンマ検護機能及び原子ウビル方容器ペゲスタル 8 的同種総配機構ハクジング(540) 4 原子中止力容量 9 約年後合件 5 気気分離素、スタンドバイブ、 10 朝田神差が増 シュラクドハッド及びがくシュククド上部周 11 朝田神差が増 国内海道(南)、ウジング(540) 11 朝田神差が増 シュラクドハッド及びがくシュラクドン部周 11 朝田神差が増 岡有周期(s):0.051 11	
		<u> 第2-2-19 図(b) 今回上認モテル 第9次振動モード図</u> (EW方向)	

<u>第2-2-20図(a)影響検討モ</u> (EW)
1. 原子が地物 2. 原子が秘密部 3. ガン・報道電視炎(原子が圧力容器ペデスタル 3. 第シー報道視炎(東子がビステ) 4. S (気を少数)、スタンドイズ 5. 気を少数)、スタンドレズ、 5. 気を少数(ホーズ)、 6. 日内閉閉(s。); 0. 0.50
<u>第2-2-20図(b) 今回工認</u> <u>(EW力</u>

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)		島根原子之	力発電所 2号	~炉		備考
		第2-1-1表	主要設備の地	震応答解析結果	果 (影響検討ケ	ース1,	
			N	[S方向]			
		主要設備・部位	荷重	 ①影響検討モデル1 	②今回工認モデル	比率	
		R P V支持スカート	せん断力 (kN)	12200	11500	0.94	
			モーメント(kN・m) せん断力(kN)	120000 23400	23200	0. 93 0. 99	
			モーメント(kN・m) せん断力 (kN)	428000 35300	426000 33600	1.00	
		ガンマ線遮蔽壁基部	モーメント(kN・m)	140000	134000	0.96	
		R P V ペデスタル 基部	せん断力 (kN) モーメント(kN・m)	40400 459000	38600 435000	0.96 0.95	
		R P V スタビライザ	反力 (kN)	12000	10800	0.90	
		シャラグ	反力(kN) 反力(kN)	28900	28400	0.94	
				応答	値は有効数字4桁目	を四捨五入	
		第2-1-2表	主要設備の地	震応答解析結果	果 (影響検討ケ	ース1,	
			E	W方向)			
		主要設備・部位	荷重	①影響検討モデル1	②今回工認モデル	比率 (②/①)	
		R P V支持スカート	せん断力 (kN)	11800	11100	0.94	
			モーメント (kN・m) せん断力 (kN)	26700	102000 24900	0.91 0.93	
		PCV 基部	モーメント (kN・m) せん断力 (bN)	465000	428000	0.92	
		ガンマ線遮蔽壁基部	モーメント (kN・m)	143000	133000	0.93	
		RPVペデスタル 基部	せん断力 (kN) モーメント (kN・m)	39500 464000	37100 439000	0.94	
		RPVスタビライザ	反力 (kN)	11200	10900	0.97	
		PCVスタビライザ シヤラグ	反力 (kN) 反力 (kN)	17300 24800	18100 25300	1.05 1.02	
				応答	答値は有効数字4桁目	を四捨五入	
							1

柏崎刈羽原子力発電所 6/7号炉	(2017. 12. 20 版)	東海第二発電所(2018.9.18版)		島根原子力	発電所 2号烷	戸		備考
						/		
			<u>第2-2-1表</u>	主要設備の地震	<u> 《応答解析結果</u>	(影響検討ケ	ース2,	
				<u>N S</u>	<u> 3 方向)</u>	T		
			主要設備・部位	荷重	①影響検討モデル2	②今回工認モデル	比率 (②/①)	
			炉心シュラウド	せん断力 (kN)	5500	5780	1.05	
			下部胴下端 RPV支持スカート	セーメント (RN・m) せん断力 (kN)	9610	11500	1.08	
			基部	モーメント (kN・m)	93800	112000	1.19	
			PCV基部	モル厨力(kN) モーメント(kN・m)	426000	426000	1.00	
			ガンマ線遮蔽壁基部	せん断力 (kN)	28200	33600	1.19	
			R P Vペデスタル	セーメンド (RN・III) せん断力 (kN)	32600	38600	1. 18	
			基部	モーメント (kN・m)	369000	435000	1.18	
			RFVスタビライザ PCVスタビライザ	反力 (kN) 反力 (kN)	19200	18100	0.91	
			シヤラグ	反力 (kN)	21600	28400	1.31	
			<u> </u> 於村朱百神	爱位 (㎜)	21.9 応答値	22.0 直は有効数字4桁目	1.03 を四捨五入	
			第2-2-2表	主要設備の地震	 底答解析結果	(影響検討ケ	ース2,	
				F.V	V方向)			
			第 2-2-2 表	長 主要設備の地震応答	新御子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子	rース2, EW方向)	
			主要設備・部位	荷重	①影響検討モデル2	②今回工認モデル	比率	
			炉心シュラウド	せん断力 (kN)	5270	5700	1.08	
			下部胴下端	モーメント (kN・m)	31900	30400	0.95	
			R P V 支持スカート 基部	セん研力 (kN) モーメント (kN・m)	107000	102000	0.96	
			PCV基部	せん断力 (kN)	24800	24900	1.00	
			シュックをおみます。	セン斯力 (kN)	431000 39400	428000 33600	0.99	
			カンマ線遮蔽壁基部	モーメント (kN・m)	137000	133000	0.97	
			RPVヘデスタル 基部	せん断力 (kN) モーメント (kN・m)	42900	439000	0.86	
			RPVスタビライザ	反力 (kN)	16000	10900	0.68	
			シヤラグ	反力 (kN) 反力 (kN)	33700	25300	0.64	
			燃料集合体	変位 (mm)	25.1	26.9	1.07	
					心合胆	は有効数子4桁日々	と四倍五八	

柏崎刈羽原子力発電所 6/7号炉 (201	17.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉				備考	
			45 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	割やデル 2 足やデル 割やデル 2 町道道や一 × : 数 数やデル 2 町道道や一 × : 数	27.8 0.10 固有周期 [秒]	32.0	NS方向	
			45 30 30 15 0 0.05 第 2-3-1 区	Perfina Reffina R	39.7 0.10 國有周期[秒] 蕨壁頂部(質 クトル(減衰 蕨壁頂部(質	30.4 (点番号 53) (1%) (点番号 53) (<u>EW方向</u> 0.15 こおける床応 こおけるRP	
			<u>Vが卓越</u>	<u>する第4次振</u> NS	<u>動モードの固</u> _{方向}	<u>有周期と床応</u> EW	<u>答加速度</u>	
				影響検討モ	今回工認モ	影響検討モ	今回工認モ	
			固有周期 (秒)	テル2(①) 0.102	テル(2)) 0.110	テル2(①) 0.100	テル(2)) 0.109	
			加速度 (G)	27.8	32.0	39. 7	30.4	
			加速度の比率 (2/①)	1.	15	0.	77	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考												
	添付資料.5	添付資料—6													
添付資料3.最新知見として得られた減衰定数を採用するもの	最新知見として得られた減衰定数 <u>の</u> 採用 <u>について</u>	最新知見として得られた減衰定数の採用について													
1. 概要 今回工認では,以下の設備について最新知見として得られた減 衰定数を採用する。これらの変更は,振動試験結果を踏まえ設計 評価用として安全側に設定した減衰定数を最新知見として反映 したものであり,大間1号炉の建設工認において適用実績があ る。	1. 概要 今回工認では,以下の設備について最新知見として得られた減 衰定数を採用する。これらの変更は,振動試験結果を踏まえ設計 評価用として安全側に設定した減衰定数を最新知見として反映 したものであり,大間1号炉の建設工認並びに配管及び建屋クレ ーンについては新規制工認におけるPWRプラントでの適用実 績がある。	1. 概要 今回工認では,以下の設備について最新知見として得られた 減衰定数を採用する。これらの変更は,振動試験結果を踏まえ 設計評価用として安全側に設定した減衰定数を最新知見として 反映したものであり,大間1号炉の建設工認 <u>及び東海第二の新</u> 規制工認において適用実績がある。													
 原子炉建屋クレーンの減衰定数^{※1} 燃料取替機の減衰定数^{※1} 配管系の減衰定数^{※2} 	 原子炉建屋クレーン及び使用済燃料乾式貯蔵建屋クレーン (以下「建屋クレーン」という。)の減衰定数^{※1} 燃料取替機の減衰定数^{※1} 配管系の減衰定数^{※1, ※2} 	 ①原子炉建物天井クレーンの減衰定数^{達1} ②燃料取替機の減衰定数^{達1} ③配管系の減衰定数^{達2達3} 													
 ※1 電力共通研究「鉛直地震動を受ける設備の耐震評価手法に 関する研究(H7~H10)」 ※2 電力共通研究「機器・配管系に対する合理的耐震評価法の 研究(H12~H13)」 	 ※1 電力共通研究「鉛直地震動を受ける設備の耐震評価手法に 関する研究(H7~H10)」 ※2 電力共通研究「機器・配管系に対する合理的耐震評価手法 に関する研究(H12~H13)」 	 注1:電力共通研究「鉛直地震動を受ける設備の耐震評価手法に 関する研究(H7~H10)」 注2:電力共通研究「機器・配管系に対する合理的耐震評価法の 研究(H12~H13)」 注3:(財)原子力工学試験センター「BWR再循環系配管耐震 実証試験(S55~S60)」 	・資料構成の相違 【柏崎 6/7,東海第二】 阜根2号恒では 全												
なお、本資料に記載する①~③の内容については、「大間原子 力発電所1号機の工事計画認可申請に関わる意見聴取会」におい て聴取されたものである。 また、鉛直方向の動的地震力を適用することに伴い、鉛直方向 の設計用減衰定数についても大間1号炉と同様に新たに設定し ている。	なお,本資料に記載する①~③の内容については,「大間原子 力発電所1号機の工事計画認可申請に関わる意見聴取会」におい て聴取されたものである。 また,鉛直方向の動的地震力を適用することに伴い,鉛直方向 の設計用減衰定数についても大間1号炉と同様に新たに設定し ている。	なお、本資料に記載する①~③の内容については、「大間原子 力発電所1号機の工事計画認可申請に関わる意見聴取会」におい て聴取されたものである。 また、鉛直方向の動的地震力を適用することに伴い、鉛直方向 の設計用減衰定数についても大間1号炉と同様に新たに設定し ている。	局低25かでは、金 属保温材に対する試験 の内容を、本資料に含 む(以下、①の相違)												
 今回工認で用いる設計用減衰定数 最新知見として反映した原子炉建屋クレーン,燃料取替機及び 配管系の設計用減衰定数を第1表及び第2表に示す。 	 今回<u>の評価</u>で用いた設計用減衰定数 最新知見として反映した建屋クレーン,燃料取替機及び配管系 の設計用減衰定数を<u>第5-1</u>表及び<u>第5-2</u>表に示す。 	 今回工認で用いた設計用減衰定数 最新知見として反映した原子炉建物天井クレーン,燃料取替機 及び配管系の設計用減衰定数を第2-1表及び第2-2表に示す。 													
柏崎刈羽原子力	発電所 6,	/7号炉	(2017.12.	20版)		東海第二発電	電所(2018.	. 9. 18 版)			島根原	原子力発電所	2 号炉		備考
------------------	----------------	--------	------------------------	-------------------------------	-----------------	-----------------------------	----------	----------------------------	--------------	----------------------------------	--------------	---------------	--------------------	----------------------	----
第1 表 原子炉建屋	とクレーン及	び燃料取替	捧機の設計 月	用減衰定数	第5-1表 發	<u> </u> 崖屋クレーン	及び燃料取	な替機の設計	用減衰定数	第2-1表	原子炉建物	天井クレーン	及び燃料取替	替機の設計用	
												減衰定数			
		郭封田建	吉<i>定</i>米 (∞)				設計用減調	裛定数(%)				設計用減衰	定数 (%)		
設備	水平	方向			設備	水平力	方向	鉛直フ	方向	設備	水 JEAG	平方向	J E A G	方向	
	JEAG4601*1	柏崎刈羽*2	JEAG4601*1	柏崎刈羽*2		J E A G 4601 ^{* 1}	東海第二*2	J E A G 4601 ^{*1}	東海第二*2		4 6 0 1 * 1	島根2号炉	4601 ^{洼1}	島 根 2 号 炉	
原子炉建屋クレーン 燃料取基機	1.0	2.0	-	2.0 1 5(2 0)* ³	建屋クレーン	1.0	2.0	-	2.0	原 子 炉 建 物 天 井 ク レ ーン	1.0	2.0	-	2.0	
MWT 1-9A E 194	1.0	2.0		1.0(2.0)	検索してたた総	1.0	2.0	_	1 5 (2 0) *3	燃料取替機	1.0	2.0	-	$1.5(2.0)^{\pm 2}$	
					xx111 4X 101102	1.0	2.0		1.5 (2.0)	□:新たに	設定したも	\mathcal{O}			
											<u>G4601</u>	から見直した	もの		
注記1:原子力発電	፤ 所耐震設言	+技術指針	JEAG4601-1	1991 追補版	<u>注記*1</u> :厉	〔子力発電所ī	耐震設計技	術指針JEム	AG4601-1991	<u>注1</u> :原子	·力発電所耐	震設計技術指導	針JEAG4	6 0 1 - 1991	
(社団法人日本電気	協会)				追	補版(社団法	去人日本電台	気協会) に定	まる設計用減	追補	前版(社団法	人日本電気協	会)		
					惠	定数									
*2:柏崎刈羽原	原子力発電府	所6 号及び	7 号炉		<u>*2</u> :東	海第二発電应	所にて適用	する設計用調	载定数						
<u>*3:()</u> 外は,	燃料取替榜	幾のトロリイ	立置が端部	にある場合	* 3 : (外は,燃	於料取替機0	りトロリ位置	が端部にある	注2: 括弧	[外は, 燃料	取替機のトロ	リ位置が端音	Sにある場合 _{em}	
				1	場	合					e r	-			
<u></u> 内は,	燃料取替植	幾のトロリ	位置が中央	部にある場		内は,燃	料取替機0	ワトロリ位置	が中央部にあ	<u>括</u> 弧	心内は、燃料	取替機のトロ	リ位置が中央	い部にある場	
台					5	場合				合。	~				
							」:新たに	設定したもの							
							J:JEA	G4601からり	見直したもの						
					l					1					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.	. 20版)	東海第二発電所(2018.9	. 18 版)				島根原子力]発電所	2 号炉			備考
第2表 配管系の設計用減衰定数		<u>第5-2表</u> 配管系の	>設計月	月減衰定	数			<u>第2-2表</u> 配管	管系の設	計用減衰	定数		
設計用減衰沈	定数(注1)(%)		1	設計用減衰定	主数*1 (%)					設計用減衰	定数 ^{注3} (%)		
配管区分 保温材無	保温材有(注2)		」 「 」 EAG	東海		「有 ^{*2} 東海		配管区分	保護	晶材無	保温林	材有 ^{注4}	
JEAG 柏崎 4601*1 刈羽*2	JEAG 柏崎 4601 ^{*1} 刈羽 ^{*2}	オンフィン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン	4601*3	第二*4	4601*3	第二*4			JEAG 4601 ^{注1}	島根 2 号炉	JEAG 4601 ^{注1}	島根 2 号炉	
I 支持具がスナバ及び架構レストレイント主体の配管系 で、その数が4個以上のもの 2.0 同左	2.5 3.0	 配管系で,支持具(スナッバ又は架構レストレイント)の数が4個以上のもの スナッバ,架構レストレイント,ロッドレス 	2.0	同左	2. 5	3.0		支持具がスナッパ及び架構レストレイン I ト主体の配管系で、その数が4個以上の もの	2.0	同左	2.5	3.0	
スナバ,架構レストレイント,ロッドレストレイント,ハンガ Ⅲ 等を有する配管系で,アンカ及びUボルトを除いた支持 具の数が4個以上であり,配管区分Ⅰに属さないもの	1.5 2.0	トレイント、ハンガ等を有する配管系で、ア ンカ及びUボルトを除いた支持具の数が4個 以上であり、配管区分Iに属さないもの	1.0	同左	1.5	2.0		スナッバ,架構レストレイント,ロッド レストレイント,ハンガ等を有する配管					
Ⅲ*3 Uボルトを有する配管系で,架構で水平配管の自重を – 2.0	- 3.0	■ Uボルトを有する配管系で、架構で水平配管 の自重を受けるUボルトの数が4個以上のも の*5	-	2.0	-	3. 0		 II 系で、アンカ及びUボルトを除いた支持 具の数が4個以上であり、配管区分Iに 属さないもの 	1.0	同左	1.5	2.0	
IV 配管区分 I, II 及びIII に属さないもの 0.5 同左	1.0 1.5		0.5	同左	1.0	1.5	п	II ^{注2} Uボルトを有する配管系で,架構で水平 配管の自重を受けるUボルトの数が4個	_	2.0	_	3. 0	
								 IV 配管区分Ⅰ,Ⅱ及びⅢに属さないもの 	0.5	同左	1.0	1.5	
		□:新	たに設	定した	もの			□:新たに設定したもの					
		🗆 : J	EAG	4601 カ	ら見直	したもの		□: JEAG4601か	<u>ら見直し</u>	たもの			
 注記 *1: 原子力発電所耐震設計技術指針 JEAG4601-1 (社団法人 日本電気協会) *2: 柏崎刈羽原子力発電所6 号及び7 号炉 *3: 区分Ⅲ(Uボルトを有する配管系)につい に設定したものであり,現行 JEAG4601 では まれている。 	1991 追補版 いては <u>,</u> 新た は区分IVに含 <u>もの</u> <u>し</u> 直したもの	 *1:水平方向及び鉛直方向の 用。 *2:保温材による付加減衰定 温材使用割合が40%以下 属保温材使用割合が40%以下 素子力発電所耐震設計技 版(社団法人 日本電気 *4:東海第二発電所にて適用 *5:区分Ⅲ(Uボルトを有す 設定したものであり,現 まれる。 	 22 数のを術品する する する する よ 」 」 と し こ こ	目減衰5 配管全 1.0% る場合 JEA 注まる 計用減 系)に AG460	医数は同じ 長に対す G 4601- 設計用 G 4601- 設計用 ては「 ては「 1 では「] じ値を使 する金属係 するが,金 いっよ。 1991 追補 減衰定数。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		 注1:原子力発電所耐震設設 追補版(社団法人日) 注2:区分Ⅲについては新 EAG4601では 	計技 術 気 協 た に 没 Ⅳ に	針 J E A 会) されたも	、G 4 6 0 のであり う。	1-1991 ,現行 J	
(注1) 水平方向及び鉛直方向の設計用減衰定数は 用 (注2) 保温材による付加減衰定数は,配管全長に 保温材使用割合が40%以下の場合1.0%を適用 <u>する</u> が, 使用割合が40%を超える場合は0.5%とする。	は同じ値を使 ニ対する金属 金属保温材							<u>注3:水平方向及び鉛直方</u> 用。 注4:保温材有の設計用減 付加減衰定数として 属保温材による付加 する金属保温材使用	 「向の設言 衰定数は , 1.0% 減衰定数 割合が4 	計用減衰 , 無機多 を考慮し は, 配管 0%以下の	定数は同 孔質保温 たもので ブロック D場合1.0	じ値を使 材による ある。金 全長に対 0%を適用	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		してよいが,金属保温材使用割合が40%を超える場合は	
		<u>0.5%とする。</u>	
(適用条件)	(適用条件)	(適用条件)	
a) 適用対象がアンカからアンカまでの独立した振動系であるこ	a. 適用対象がアンカからアンカまでの独立した振動系である	<u>a</u> 適用対象がアンカからアンカまでの独立した振動系であるこ	
と。	こと。	と。	
大口径管から分岐する小口径管は,その口径が大口径管の口径	大口径管から分岐する小口径管は,その口径が大口径管の口	大口径管から分岐する小口径管は、その口径が大口径管の口	
の1/2 倍以下である場合,その分岐部をアンカ相当とする独立	径の 1/2 倍以下である場合,その分岐部をアンカ相当とする	径の1/2倍以下である場合、その分岐部をアンカ相当とす	
の振動系とみなしてよい。	独立の振動系とみなしてよい。	る独立の振動系とみなしてよい。	
b) 配管系全体として,配管系支持具の位置及び方向が局所的に	b. 配管系全体として,配管系支持具の位置及び方向が局所的に	<u>b</u> 配管系全体として,配管系支持具の位置及び方向が局所的に	
集中していないこと。	集中していないこと。	集中していないこと。	
c) 配管系の支持点間の間隔が次の条件を満たすこと。	c. 配管系の支持点間の間隔が次の条件を満たすこと。	<u>…</u> 配管系の支持点間の間隔が次の条件を満たすこと。	
配管系全長/(配管区分ごとに定められた支持具の支持点数)	配管系全長/(配管区分ごとに定められた支持具の支持点	配管系全長/(配管区分ごとに定められた支持具の支持点	
≦15 (m/支持点)	数)≦15(m/支持点)	数) ≦15(m/支持点)	
ここで、支持点とは、支持具が取り付けられている配管節点	ここで、支持点とは、支持具が取付けられている配管節点を	ここで,支持点とは,支持具が <u>取り付け</u> られている配管節点	
をいい,複数の支持具が取り付けられている場合も1支持点と	いい,複数の支持具が <u>取付け</u> られている場合も1支持点とする。	をいい,複数の支持具が <u>取り付け</u> られている場合も1支持点	
する。		とする。	
d) 配管と支持構造物の間のガタの状態等が施工管理規程に基づ	d. 配管と支持構造物の間のガタの状態等が施工管理規程に基	<u>d</u> 配管と支持構造物の間のガタの状態等が施工管理規程に基づ	
き管理されていること。ここで、施工管理規程とは、支持装置の	づき管理されていること。ここで、施工管理規程とは、支持装	き管理されていること。ここで、施工管理規程とは、支持装	
設計仕様に要求される内容を反映した施工要領等をいう。	置の設計仕様に要求される内容を反映した施工要領等をいう。	置の設計仕様に要求される内容を反映した施工要領等をい	
		う。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
3. 設計用減衰定数の考え方	3. 設計用減衰定数の考え方	3. 設計用減衰定数の設定の考え方	
(1) 原子炉建屋クレーン及び燃料取替機の設計用減衰定数	(1) 建屋クレーン及び燃料取替機の設計用減衰定数	3.1 原子炉建物天井クレーン及び燃料取替機の設計用減衰定数	
a既工認の設計用減衰定数		(1) 既工認の設計用減衰定数	
原子力発電所耐震設計技術指針 JEAG4601-1991 追補版 (社団法	_a原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(以	原子力発電所耐震設計技術指針JEAG4601-1991 追補	
人 日本電気協会)(以下「JEAG4601」という。)において原子炉	下「JEAG4601」という。)に基づく設計用減衰定数	版(以下JEAG4601という。)におけるクレーン類は溶接	
建屋クレーン及び燃料取替機は溶接構造物として分類されてい	JEAG4601 において建屋クレーン及び燃料取替機は溶接構	構造物に分類されるため、設計用減衰定数は 1.0%と規定されて	
<u>る</u> ため,設計用減衰定数は1.0%と規定されている。 <u>既工認では、</u>	造物として分類されているため,設計用減衰定数は1.0%が適用	いる。ただし、既工認においては原子炉建物天井クレーン、燃料	・既工認における評価
上記の設計用減衰定数 1.0%を適用していた。	される。	取替機ともに水平方向に剛構造であり,上記減衰定数を適用した	手法の相違
		応答解析は実施していない。	【柏崎 6/7】
			島根2号炉における
<u>b.</u> 設計用減衰定数の <u>見直し</u>	<u>b</u> 設計用減衰定数の <u>見直し</u>	(2) 設計用減衰定数の変更	原子炉建物天井クレー
原子炉建屋クレーン及び燃料取替機の減衰定数に寄与する要	建屋クレーン及び燃料取替機の減衰定数に寄与する要素には,	<u>原子炉建物天井</u> クレーン及び燃料取替機の減衰 <u>特性</u> に寄与す	ン及び燃料取替機につ
素には、材料減衰と部材間に生じる構造減衰に加え、車輪とレー	材料減衰と部材間に生じる構造減衰に加え, 車輪とレール間のガ	る要素には、材料減衰とクレーンを構成する部材間に生じる構造	いては、それぞれ水平
ル間のガタや摩擦による減衰があり,溶接構造物としての 1.0%	タや摩擦による減衰があり,溶接構造物としての1.0%より大きな	減衰に加え、車輪とレール間のガタや摩擦による減衰があり、溶	方向に剛構造であり,
より大きな減衰定数を有すると考えられることから、実機を試験	減衰定数を有すると考えられることから,実機を試験体とした振	接構造物としての 1.0%よりも大きな減衰定数を有すると考えら	既工認において、減衰
体とした振動試験が実施された。	動試験が実施された。	れることから、実機を試験体とした振動試験が実施された。	定数を適用した応答解
振動試験の結果, 原子炉建屋クレーンの減衰定数については水	振動試験の結果, 建屋クレーンの減衰定数については水平	振動試験の結果, <u>原子炉建物天井</u> クレーンの減衰定数について	析は実施していない
平 2.0%, 鉛直 2.0%が得られた。また, 燃料取替機の減衰定数に	2.0%, 鉛直 2.0%が得られた。また, 燃料取替機の減衰定数につい	は,水平 2.0%, 鉛直 2.0%が得られ <u>ている</u> 。また, 燃料取替機	
ついては水平 2.0%, 鉛直 <u>1.5%</u> (燃料取替機のトロリ位置が <u>端部</u>	ては水平 2.0%, 鉛直 <u>1.5%</u> (燃料取替機のトロリ位置が <u>端部</u> にあ	については <u></u> ,水平 2.0%, 鉛直 <u>2.0</u> % (燃料取替機のトロリ位置	
にある場合), <u>2.0%</u> (燃料取替機のトロリ位置が <u>中央部</u> にある場	る場合), <u>2.0%</u> (燃料取替機のトロリ位置が <u>中央部</u> にある場合)	が中央部にある場合),鉛直1.5%(燃料取替機のトロリ位置が端	
合)が得られた。	が得られた。	部にある場合)が得られている。	
c. 相崎刈羽原子力発電所6号及び7号炉への適用性			
振動試験の概略と、振動試験における試験体と相崎刈羽原子力	振動試験の概要並びに振動試験における試験体、東海第二発電	振動試験の概略と、振動試験における試験体と島根2号炉及び	
発電所6号及び7号炉, 亚びに先行認可実績のある大間1号炉	所の美機及び先行認可美績のある大間1号炉の美機との仕様の	先行認可美績のある大間1号炉の実機との仕様の比較を参考貸	
の実機との仕様の比較を参考資料1,2に示す。	比較を参考資料1及び参考資料2に示す。	料 <u>(6-1), (6-2)</u> に示す。	
相畸刈羽原子刀発電所6号及び7号炉の原子炉建屋クレーン	東海第一発電所における建屋クレーン及び燃料取替機につい	<u> 島根2号炉の原子炉建物大井</u> クレーン及び燃料取替機につい	
及び燃料取替機については、試験結果の適用性か確認されている	ては、試験結果の適用性か確認されている大間1号炉の原子炉建	ては、試験結果の適用性か確認されている大間1号炉の原子炉建	
大間1号炉の原子炉建屋クレーンと同等の基本仕様であり, 重量	屋クレーン及び燃料取替機と同等の基本仕様を有する。	屋クレーン及び燃料取替機と同等の基本仕様であり、重量比(ト	
比(トロリ重量/総重量)との比較から振動特性は同等である。		ロリ重量/総重量)の比較から振動特性は同等である。	
ここで、原子炉建屋クレーン(トロリ甲央/端部)及び燃料取		ここで、原子炉建物大井クレーン(トロリ中央/端部)及び燃	
		料取管機(トロリ甲央位置)の鉛直方向の減衰定数については,	
振幅の増加に伴い減衰比は増加する傾向が試験結果から得られ		心資振幅の増加に伴い減衰比は増加する傾向が試験結果から得	
ており, 租崎刈羽原子刀発電所6号及び7号炉の応答振幅はこの		<u>られており、局限2万炉の心谷振幅はこの試験における応答振幅</u>	
試験における心谷振幅よりも大きくなる。			
一般的に構造物の減衰は、材料減衰及び構造減衰によるものが		一般的に構造物の源衰は、材料減衰及び構造減衰によるものが	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
支配的であると考えられる。材料減衰は、材料が変形する際の内		支配的であると考えられる。材料減衰は、材料が変形する際の内	
部摩擦による減衰であり、減衰比は振幅によらず一定となる。一		部摩擦による減衰であり、減衰比は振幅によらず一定となる。一	
方の構造減衰は、部材の接合部における摩擦現象によって発生		方,構造減衰は,部材の接合部における摩擦現象によって発生し,	
し、振幅とともに増大すると言われている。		振幅とともに増大すると言われている。	
実機のクレーン類は,機上に駆動部品や搭載機器類(取付器具,		実機のクレーン類は,機上に駆動部品や搭載機器類(取付器具,	
電気盤,巻上機,ワイヤロープ,燃料取替機マストチューブ等)		電気盤, 巻上機, ワイヤロープ, 燃料取替機マストチューブ等)	
を多数持つ構造であり、振幅とともに増大する構造減衰を期待で		を多数持つ構造であり、振幅とともに増大する構造減衰を期待で	
きると考えられる。		きると考えられる。	
また,燃料取替機のトロリ端部位置については,試験結果から		また、燃料取替機のトロリ端部位置については、試験結果から	
明確な応答振幅に対する増加傾向は確認できていないものの、燃		明確な応答振幅に対する増加傾向が確認できていないものの、燃	
料取替機にはボルト締結部等の摩擦減衰を期待できる電気盤等		料取替機にはボルト締結部等の摩擦減衰を期待できる電気盤等	
の上部構造物が多数設置されていることから、応答振幅の増加に		の上部構造物が多数設置されていることから、応答振幅の増加に	
伴い減衰比は少なくとも増加する傾向となり 1.5%以上で推移す		伴い減衰比は少なくとも増加する傾向となり、1.5%以上で推移	
ると考えられる。		すると考えられる。	
さらに,水平方向の減衰定数については原子炉建屋クレーン及		さらに,水平方向の減衰定数については,原子炉建物天井クレ	
び燃料取替機ともに鉛直方向よりも大きい減衰が得られている。		ーン及び燃料取替機ともに鉛直方向よりも大きい減衰が得られ	
		<u>This</u>	
従って,今回の評価における原子炉建屋クレーンの減衰定数に	従って,今回の評価における建屋クレーンの減衰定数について	したがって,今回工認における原子炉建物天井クレーンの減衰	
ついては水平 2.0%, 鉛直 2.0%を用いる。また, 燃料取替機の減	は水平 2.0%, 鉛直 2.0%を用いる。また, 燃料取替機の減衰定数	定数については水平 2.0%, 鉛直 2.0%を用いる。また, 燃料取	
<u>衰定数</u> については水平 2.0%, 鉛直 1.5% (燃料取替機のトロリ位	については水平 1.5%(燃料取替機のトロリ位置が端部にある場	替機については水平 20%, 鉛直 1.5% (燃料取替機のトロリ位	
置が端部にある場合),2.0%(燃料取替機のトロリ位置が中央部	合),2.0%(燃料取替機のトロリ位置が中央部にある場合)を用	置が端部にある場合),鉛直2.0%(燃料取替機のトロリ位置が中	
にある場合)を用いる。	いる。	央部にある場合)を用いる。	
(2) 配管系の設計用減衰定数	(2) 配管系の設計用減衰定数	<u>3.2</u> 配管系の設計用減衰定数	
<u>a</u> 既工認の設計用減衰定数	<u>a. JEAG4601に基づく</u> 設計用減衰定数	(1) 既工認の設計用減衰定数	
JEAG4601 における配管系の設計用減衰定数は, 配管支持装置の	JEAG4601における配管系の設計用減衰定数は,配管支持装	JEAG4601における配管系の設計用減衰定数は,配管支	
種類や個数によって3区分に分類されており、さらに保温材を設	置の種類や個数によって3区分に分類されており、さらに保温材	持装置の種類や個数によって3区分に分類されており、さらに保	
置した場合の設計用減衰定数が規定されている。	を設置した場合の設計用減衰定数が規定されている。	温材を設置した場合の設計用減衰定数が規定されている。	
既工認では、上記の設計用減衰定数を適用していた。		既工認では、上記の設計用減衰定数を適用していた。	
b今回の評価で用いる設計用減衰定数	<u>b.</u> 今回の評価で用いる設計用減衰定数	(2) 今回工認で用いる設計用減衰定数	
以下, (a), (b) に示す項目については, 配管系の振動試験	以下, (a), (b) に示す項目については, 配管系の振動試験の	以下, <u>a</u> , <u>b</u> に示す項目について, 配管系の振動試験の研究成	
の研究成果に基づき, JEAG4601 に規定する値を見直し設定する。 	研究成果に基づき, JEAG4601 に規定する値を見直し設定す	果に基づき, JEAG4601に規定する値を見直し設定する。	
	る。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
<u>(a)</u> Uボルト支持配管系	<u>(a)</u> Uボルト支持の配管系	<u>a</u> Uボルト支持配管系	
JEAG4601 におけるUボルト支持配管系の設計用減衰定数は,	JEAG4601 におけるUボルト支持配管系の設計用減衰定数	JEAG4601におけるUボルト支持配管系の設計用減衰定	
0.5%と規定されている。	は, 0.5%と規定されている。	数は,0.5%と規定されている。	
Uボルト支持配管系の減衰に寄与する要素には,主に配管支持	Uボルト支持 <u>の</u> 配管系の減衰に寄与する要素には,主に配管支	Uボルト支持配管系の減衰に寄与する要素には,主に配管支持	
部における摩擦があり、架構レストレイントを支持具とする配管	持部における摩擦があり,架構レストレイントを支持具とする配	部における摩擦があり、架構レストレイントを支持具とする配管	
系と同程度の減衰定数を有すると考えられることから、振動試験	管系と同程度の減衰定数を有すると考えられることから、振動試	系と同程度の減衰定数を有すると考えられることから、振動試験	
等が実施され,減衰定数 2.0%が得られた。	験等が実施され,減衰定数 2.0%が得られた。	等が実施され、減衰定数 2.0%が得られた。	
振動試験で用いられたUボルトについては, 原子力発電所で採	振動試験で用いられたUボルトについては, 原子力発電所で採	振動試験で用いられたUボルトについては,原子力発電所で採	
用されている代表的なものを用いていることから、振動試験等に	用されている代表的なものを用いていることから、振動試験等に	用されている代表的なものを用いていることから、振動試験等に	
より得られた減衰定数を適用できると判断し、今回の評価におけ	より得られた減衰定数を適用できると判断し、今回の評価におけ	より得られた減衰定数を適用できると判断し、今回工認における	
るUボルト支持配管系の設計用減衰定数は…振動試験結果から得	るUボルト支持配管系の設計用減衰定数は…振動試験結果から得	Uボルト支持配管系の設計用減衰定数は振動試験結果から得られ	
られた減衰定数 2.0%を設定する。	られた減衰定数 2.0%を設定する。	た減衰定数 2.0%を設定する。	
なお, 参考として振動試験結果の概略を参考資料3に示す。	<u>なお</u> , 参考として振動試験結果の概略を参考資料 <u>3</u> に示す。	参考として振動試験の概略を参考資料(6-3)に示す。	
(b) 保温材を設置した配管系	(b) 保温材を設置した配管系	<u>b</u> 保温材を設置した配管系	
JEAG4601 における保温材を設置した <u>配管系の</u> 設計用減衰定数	JEAG4601における保温材を設置した設計用減衰定数は,振	JEAG4601における保温材を設置した配管系の設計用	
は、振動試験の結果に基づき、保温材を設置していない配管系に	動試験の結果に基づき、保温材を設置していない配管系に比べ設	減衰定数は、振動試験の結果に基づき、保温材を設置していない	
比べ設計用減衰定数を 0.5%付加できることが規定されている。	計用減衰定数を 0.5%付加できることが規定されている。	配管系に比べ設計用減衰定数を 0.5%付加できることが規定され	
		ている。	
その後,保温材の有無に関する減衰定数の試験データが拡充さ	その後,保温材の有無に関する減衰定数の試験データが拡充さ	その後,保温材の有無に関する減衰定数の試験データが拡充さ	
れ、保温材を設置した場合に付加できる設計用減衰定数を見直す	れ、保温材を設置した場合に付加できる設計用減衰定数を見直す	れ、保温材を設置した場合に付加できる設計用減衰定数の検討が	
ための検討が行われた。	ための検討が行われた。	行われた。	
今回の評価における保温材を設置した場合に付加する設計用	今回の評価における保温材を設置した場合に付加する設計用	今回工認における保温材を設置した場合に付加する設計用付	
付加減衰定数は、振動試験結果から得られた減衰定数 1.0%を,	付加減衰定数は、振動試験結果から得られた減衰定数1.0%を, 保	加減衰定数は、振動試験結果から得られた減衰定数1.0%を保温	
保温材無の場合に比べて付加することとする。	温材無の場合に比べて付加することとする。	材無の場合に比べて付加することとする。 <u>また,金属保温材が施</u>	
		工されている場合は、金属保温材が施工されている配管長さが配	
		管全長に対して40%以下の場合は1.0%を付加し,配管全長に対	
		して 40%を超える場合には 0.5%を付加する。	
なお, 振動試験結果の概略を参考資料4に示す。	なお, 振動試験結果の概略を参考資料4に示す。	参考として振動試験の概略を参考資料 <u>(6-4)及び参考資料(6</u>	・資料構成の相違
		<u>-5)</u> に示す。	【柏崎 6/7,東海第二】
			 の相違
<u>c. 柏崎刈羽原子力発電所6 号及び7号炉</u> への適用性	<u>c. 東海第二発電所</u> への適用性	<u>(3)</u> <u>島根2号炉</u> への適用性	
減衰定数の検討においては、要素試験結果から減衰定数を算出	減衰定数の検討においては、要素試験結果から減衰定数を算出	減衰定数の検討においては、要素試験結果から減衰定数を算出	
するための評価式を求め、その上で, 実機配管系の解析を行い,	するための評価式を求め、その上で, 実機配管系の解析を行い,	するための評価式を求め,その上で実機配管系の解析を行い,減	
減衰定数を求めている。	減衰定数を求めている。	衰定数を求めている。	
まず要素試験においては,原子力発電所で採用されている代表	要素試験においては, 原子力発電所で採用されている代表的な	<u>まず</u> ,要素試験においては,原子力発電所で採用されている代	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
的な4タイプ(参考資料3.補足参照)を選定しており、 <u>拍崎刈羽</u>	4 タイプ(参考資料3補足参照)を選定しており, 東海第二発電所	表的な4タイプ(参考資料(6-3)補足参照)を選定しており、島	
原子力発電所 6 号及び 7 号炉においても, この4タイプのUボ	においても,この4タイプのUボルトを採用している。	<u>根2号炉</u> においてもこの4タイプのUボルトを採用している。	
ルトを採用している。			
次に実機配管系の解析対象とした28モデルには、 <u>ABWRプ</u>	<u>また,</u> 実機配管系の解析対象とした 28 モデルには, BWRプ	<u>次に</u> 実機配管系の解析対象とした 28 モデルには、BWRプラ	
ラントと同一設計であるBWRプラントの実機配管も含まれて	ラントの実機配管も含まれており,配管仕様(口径,肉厚,材質),	ントの実機配管が含まれており,…また配管仕様(口径,肉厚,材	
いるまた配管仕様(口径,肉厚,材質),支持間隔・配管ルー	支持間隔・配管ルートについては、様々な配管剛性や振動モード	質),支持間隔,配管ルートも異なっており,様々な配管剛性や	
トも異なっており、様々な配管剛性や振動モードに対応してい	に対応した検討を実施している。(参考資料3.参照)	振動モードに対応している(参考資料(6-3)参照)。	
<u>る。</u> (参考資料 <u>3</u> 参照)			
従って,今回検討した設計用減衰定数は <u>柏崎刈羽原子力発電所</u>	従って,今回検討した設計用減衰定数は <u>東海第二発電所</u> へ適用	したがって,今回検討した設計用減衰定数は <u>島根2号炉</u> へ適用	
6 号及び7 号炉へ適用可能と判断し, 柏崎刈羽原子力発電所6 号	可能であり、東海第二発電所における配管の設計用減衰定数とし	可能と判断し, 島根2号炉における配管系の設計用減衰定数とし	
及び7 号炉における配管の設計用減衰定数として設定する。	て設定する。	て設定する。	

柏崎刈羽原子力発電	前 6/	7 号炉	(2017.12)	20版)	東	海第二	発電所(2018. 9. 18	8版)			島根	原子力発育	電所 2号;	炉		備考
4. 鉛直方向の設計用源	成衰定数に	ついて			4. 鉛直方向の設	計用減	衰定数に・	ついて			4	. 鉛直方向の設計用源	載衰定数に	ついて			
今回工認では、鉛直丸	「向の動的	地震力を通	適用するこ	ことに伴い,	今回工認では,	鉛直方	向の動的:	地震力を	適用する	っことに伴い,		今回工認では、鉛直力	方向の動的	」地震力を通	箇用するこ	とに伴い,	
 鉛直方向の設計用減衰症	三数を新た	に設定して	ている。		鉛直方向の設計用	減衰定	数を新た	に設定し [、]	ている。	今回工認で適	i 金	沿直方向の設計用減衰気	宦数を新た	に設定して	こいる。		
					田する設計田減衰	定数に	ついて	IFAG4	601 に担	定されている		機器・配管系の設計目	日減衰定数	▼を笛 4−1	表に示す		
					小11200000000000000000000000000000000000			キャテナ			-		11120.23.0			2	
					<u> 取 可 用 順 表 に 数 と </u>		<u> </u>		₽								
鉛直方向の設計用減氢	長定数は、	基本的にオ	K半方向と	:同様とする	鉛直方向の設計	用減衰	定数は、	基本的に7	水半方向	」と同様とする		鉛直方向の設計用減す	表定数は,	基本的に水	<半方向と	:同様とする	
が電気盤や燃料集合体等	等の鉛直地	也震動に対	・し剛体挙	:動する設備	が電気盤や燃料集	《合体等	の鉛直地	1震動に対	けし剛体	挙動する設備	t.	が,…電気盤や燃料集合体	本等の鉛直	地震動に対	すし剛体挙	塗動とする設	
は1.0%とする。また,原	京子炉建屋	クレーン,	燃料取春	棒機及び配管	は1.0%とする。ま	た,建	屋クレー	ン,燃料国	取替機及	び配管系につ	前	備は 1.0%とする。また	と,原子炉	運物天井ク	フレーン,	燃料取替機	
系については、既往の話	式験等によ	り確認され	れている	値を用いる。	いては,既往の試	験等に	より確認	されてい	る値を用	いる。	Ţ	及び配管系については,	既往試験	等により確	崔認されて	いる値を用	
(第3表)											ι	いる。					
Caldina and Caldin												U 0					
		ьъ 1.88 ч	日后の7			-n.⇒L m3). L. HH	1 8 6 0	74-10-7-32)			⊓シ┶╧┍┶╨				
なお、これらの設計用	减表定数	は…大間Ⅰ	号炉 の気	設上認にて	なお、これらの	設計用	咸 表 定 数 (は、一大間	1号炉の	建設上認にて	-	なお、これらの設計用	用减衰定数	【は大間1月	5炉建設」	-認及 <u> 公果</u> 海	
適用例がある。					適用例がある。						を こ 、	第二新規制工認において	て適用実績	がある。			
第3表機	器・配管	系の設計用	月減衰定数	Ż	第 5−3	表機	器・配管	系の設計	用減衰定	数		第4-1表 柞	機器・配管	奈の設計 月	用減衰定数	汝	
			-					設計用減3	衰定数(%)								
		設計用減衰	長定数(%)		∋ru	(些	水平	方向	鉛	這方向		設 借	-#*	設計用減衰	定数(%)	11111111111111111111111111111111111111	
設備	水平	方向 	<u> いたまで</u>	方向	政 /	VĦ	JEAG	今回工認	JEAG	今回工認		1.又 7/用	既工認	今回工認	既工認	今回工認	
溶接構造物	1.0	同左	54. J. pic	う国工廠	※ 按 構 迭 物		4601	同左	4601	1.0		溶接構造物	1.0	同左	_	1.0	
ボルト及びリベット構造物	2.0	同左	_	2.0	ボルト及びリベット	·構造物	2.0	同左		2.0		ボルト及びリベット構造物	2.0	同左	_	2.0	
ポンプ・ファン等の機械装置	1.0	同左	-	1.0	ポンプ・ファン等の	機械装置	1.0	同左	-	1.0		ボンプ・ファン等の機械装置	1.0	同左	_	1.0	
燃料集合体	7.0	同左	-	1.0	燃料集合体		7.0	同左	-	1.0		制御棒駆動機構	3.5	同左	_	1.0	
前 仰 悴聚動機構 雷気盤	4.0	同左	_	1.0	 而仰徑學動機傳 電気盤		3.5 4.0	同左	_	1.0		電気盤	4.0	同左	_	1.0	
使用済燃料貯蔵ラック	1.0	Ss:7.0		-	建屋クレーン		1.0	2.0	-	2.0		原子炉建物天井クレーン	1.0	2.0	_	2.0	
		Sd:5.0			燃料取替機		1.0	2.0	-	1.5 (2.0) *		燃料取替機 配管系	1.0	2.0	_	$1.5(2.0)^{\pm}$ 0.5~3.0	
原子炉建屋クレーン	1.0	2.0	-	2.0	配管糸		0.5~2.0	0.5~3.0	-	0.5~3.0		Ine Pr. A.L.					
燃料取替機	1.0	2.0	_	1.5(2.0)*													
	0.0 2.0	0.0 0.0		0.0 0.0							Ĩ]:新たに設定したもの					
注記 *:() 外は、燃	料取替機0	つトロリ位	置が端部	にある場合	注記*:()		燃料取春	季機のト г	コリ位置	が端部にある	ž	主:括弧外は、燃料取替	機のトロリ	リ位置が端音	形にある場	合。	
()内は、燃	料取基機0	つトロリ位	置が中央	部にあろ場	場合						1	括弧内は、燃料取者	歩機のトロ	リ位置が中	中央部にあ	る場合。	
						あい		夫地の トェ	111台署・	が由山立にな							
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ^r 1/2,	邓尔平中又省	予防党のノトト	コン江闾。	が中天前にめ	,						
					る場	合											



柏崎	「羽原	子力	発電	所	6	/7	7 号炸	沪	(20	17.1	2.20	)版)						東	海第	5_3	発電	弎所	(20	18.	9.18	8版)									島	退原	子力	発電	所	2号	号炉					 ĺ	備考	
																									参考	考資料	對−1	(2)	<u>/2)</u>	~																		
ž.										1				○建	屋	クレ	ーン	の	試験	体。	と実	ミ機	との	仕様	影比輔	較																						
(2/										۸. 1	ц Г С	た 周 比		建	屋	クレ	ーン	/は	,ガ	ーク	ダ2	本_	上に	$F \square$	ュリス	が設置	置され	いてい	る構造	E I	_																	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				, <u>Ξ</u> ,						4 	するとぬ 減嗽精情	に持され <i>い</i> 引し、滅3	いたいる。	であ	っる。	表	2-1	に	天井	っし	/-	ーン	試験	体,	東海	毎第二	二発電	意所及で	び大間	1	-152			-	1						垂	囲り	し 支 腕	2ú				
考え					R	7	비			- IN VE 4-	59発生。 消散が	のみで支 量に比例	を確認し	1号	炉	の建	屋ク	レ	ーン	$\mathcal{O}$	主要	夏な	仕様	を元	下す。	þ					为		7	5	AL AN						とよろけ	である	物に対し 「 下 が 」	う 御 麗				
			7	HD		Ę				に行った。	演校に	車輪部(の総質)	こなること																		仕様		²⁷	H			1	黄行方向			の腰筋	る幕感し	ンは第1 シェン	1 1 1				
垣の原一	地教					X-				大 単 ト ム	よる審点 たる日本	しく走行 ジレーン	司程度(																		é			ALL ALL		Ń	E	N.			つガタ.	のガタ 発生す	ひたし 一 ち ろー	虹風に				
1 月 1 日	<u>つ仕様の</u> 舗 地		1	- W	<u>I</u>		1000			<ul> <li>(幸福)</li> </ul>	に産産にいた。	「屋に対助」	の実機と																				-	E.	14		1 al	/			<i>一対</i> 葉	ータまくした	。 米 市 、 、 、 、 、 、 、 、 、 、 、 、 、	機同				
並びにナ	シ実機の		Ň						$\setminus$	1 H W	やひガダ 小な相求	ーンは通 でめ、横川	11 号炉(		г			r							兆んら	による 端支持	置入す				クレ イ ト	C E			N.		A R	\$			1, <i>H</i>	リ, ガ 間にす	倒するたちたい	声の実 し				
1 号炉	屋クレー			義一てし				1.	Ē	N.HH.	ガータ fli ダとの鏡	天井クレ る。そのi	ある大間 する。												生すると	留対運動	112 212 212 212 212 212 212 212 212 212				天 井		Ж	1 E 4				1				口 年 一 一 。	「山田」である。「山田」である。」。	周1-7-				
5 号及び	乳子炉建			M ^g	H-H		I.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	走行ろ	Ĩ	, 101, J231-	例寸る。 記的とな	「実績の 応適用-							No	-		E		こより発	強いな	おい				<b>赴物</b> [					THE	X		<i>p</i>		「「」「」「」」。	「草蔵坂 レーノ いたる	振が響き動しをする。	8 8 8 7 8				
発電所一	号炉の県				走行し、		+ K.A			作業等	4 幹 漢 城 いら、トロ	「星に比」	先行認可 沿直 2.09					1			XF	/Van	2 TOM		造減速	ーダとの	and い の 認 回 記 m い の に 動				加速			1	N N N				<b>E行方向</b>		はのお	対の対した、	「しょ」で、「こう」で、「こう」で、「」として、「」で、「」で、「」で、「」で、「」で、「」で、「」で、「」で、「」で、「」で	実績の 適用す				
³ 原子力	2大間 1									4-0-44-04	高めい	の振動賃 1 次モー	€体及び ≥ 2.0%, ∮	複		.ter			-			1-1	1		こよる構	ロリとガ	ようと				原子				R	行レール	-	··· 1	14		(構治部	(構造部) (構造のは) (当べば) (と)因う	「立中」では、「日本」では、「日本」である。」である。」とうので、ころのでは、ころので、ころうでは、ころので、ころので、ころので、ころので、ころので、ころので、ころので、ころので	(1惑可 .0%を)				
柏崎刈3	恒進び									· 構 ~ 4	御御御御御御御御御御御御御御御御御御御御御御御御御御御御をを見てる ひんちょう ひんしん しょうしん しょうしん しょうしん しょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう しょうしょう ひょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	グレーン Kとなる	は, 課題 (は, 大日	0 H		論				Y.		A Pas	/		「登録」	5, と	Mail Nor Mail Nor Nor Nor Nor Nor Nor Nor Nor	°e,			<u>б</u>					₩.		*			- 対 <i>葉</i> (	- ダ 等 G t 固 定 権	ネーレー キャン・キャン・キャン・キャン・キャン・キャン・キャン・キャン・キャン・キャン・	えび先 鉛直2				
<b>试</b> 颗体,	<u>をび7号</u> / 大間	<u>1 号炉</u> 80.0	2.815	7.7	4.6	2.5	34.9	9.38	270.0 0.296	1 H	(ガーダ)。 (発生す)	レギーは	黄星の片	仕様					W	The second			1	1	等のガタ	ることか	ため、指 ため、指 酸ニアレ				日子										ビルガー	ドロカーズーズの予定	「「「」」で、「」」で、「」」で、「」」で、「」」で、「」」で、「」」で、「」	試験体 2.0%,				
	所 6 号 3 建屋クレー	17					+				ローナー	動エネル 共のたわ	賃量と総5 用減衰症	$\sim$						IL BE		Y]	Left hill		ガーガ	構造であ	あってのよう	豊 し し			目	80.0	2.815	7.7	4.6	190.0	34.9	9.38	270. (	0.296	オレオ	ニイルキ ュリ、ナ 専性に声	「とう」で、「とう」で、「とう」で、「とう」で、「こう」で、「して」」で、」、「」」で、」、」、「」」、」、」、」、」、」、」、」、」、」、」、」	5年は,				
ر بل بل	- 力発電 原子炉 山羽	7 号负 80.0	2.518	7.7	4.6	2.8	34.9	9.38	270.0	イ       	東朝朝	倒し、振 一叉中	のトロリ貨 の設計							R	老田1	-	ALL A		hαy,	生する	る。周辺でなる	0			大 ど 「				_	_	_				口帽派	「「「」」 「」」 「」」 「」」	「「「「」」」を見て、「」」のは、「」」のは、」。	総理 me 然とし-				
語であい	利利原子 実機 拍感が	<u>ل</u> و د	02	~ ~	÷ 3		6	2	17	א א ג	stra。 ほうルーノ	画面に比回来にあ	シーン	屋ク											料減衰,	べりが発	にお支配	CIMES			河及	56.0	393	5.6	4.85	49.0	24.9	7.3	205.0	). 273	メカス	さわる。 こおいて の消散/	「「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」」、「」」」、「」」」、「」」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」、「	質量と ^彩 威疲定渉				
でであ	なと拍感い	6 号 86.	2.4(	5.5	5.4	2.6	34.	6.4	312 0.27	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	円で表3 はなく,レ	はトロリ費 - 水平方1 2ろ。	行 何建屋 子炉建屋	幾建		号機	離るし	0	15 7	9	0	9	8	8	時の約	間にす	「次モー」	変 来 つ 上				8	~						~	0	に来られ	おって そう そう ション ひょう そう ション ルン イン かい かい かい かい かい かい ちょう ちょう ちょう ちょう ちょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	ドンレニュー	トロリ傷				
設置され	うな影響	40.3 1.0	0.0	5.8 (巻用)	(田参用) 1 日	3 87	3.0	6.9	52.5 270	4	権害し	ネレギー は上下 ることにす	炉の原子 炉の原子	実		大間1	原子物	80	2.8	4	10	34	9.9	0.2	の構造	すと単	となる. 曲1型	(C T INP			横2	0	0	8	(馬) (第用)	. 2	, 0	6	2	023	しまつ	マキの1 天井ク よる上	を書総て、「「」」で、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「	e / -				
士様比較	井 ※ 茶 が - - - - - - - - - - - - -	~ ~		" #	2.5(南			~	0.	イ 	「数日本)」は固定	道教工で開きるよう		汝		シート	機構開 く	0.	975 0	6	0. 0	42	6	600	ガーダ第	く、 トー	方が最大	かべい べい べい 、 、 、 、 、 、 、 、 、 、 、 、 、			した	71	r.	5. 5.	3.0(王 2.5(雑	191	3 5	×.	262	0.5	北 火 )	数エイ	はるに キャッシュ	キクレー キクレー				
5機との作 本の 上に	11日本 11日本 11日本 11日本 11日本 11日本 11日本 11日本	Vo.1,2 43.5	2.265	5.8	4.1	1.32	33.0	7.06	148.0	10.1 10.1	チーと描 - ダ、トロ 5。	動による 管時の 振 比に 影響	所6号及 所6号及	試験		実機建居	の記述	30	0.9	eri	19	20	.7	0.3	いたは	言ではない	もたわ	5 世纪21 適用する			後体	1									ドレビー	キ に 「 で 日 が 日 が 日 な 日 な	「御友」を	≡物天J 連物天∃				
驟体と決 (一ダ 2.)			0 0			-				た方	朝日 <i>本レ</i> には、ガー 常えらわい	相対選 39,地語 66世の 86世の	力発電 力発電 - 力発電	$\sim$		潮	「「「	8.0	280	L1	8.0 E	9.5	6.2 M 0	289	消散工学	固定構造し、 撤働	し、彼思 一ダ中央 豊の中日	표~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			高式馬	43.5	2.265	5.8	4.1	104.5	33.0	7.06	148.0	0.294	ちんけ) エネルジ	ィチャック そらん, かいか,	の相利調査が	見 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一				
ー くび、 よ	مرور د مرور د	御御	Wt(ton 応用) h(m)	x x (iii) x x x x x x x x x x x x x x x x x x	Li(m) 運通	Wg(tor 声さ	L (m)	スパン L ₂ (目)	W(ton) Wt/W	七般の考	町に破り において 因子とま	「一ダとの」 「茶したま 一 ンの絵	山沼原子 刘羽原子				原子 クリ	4	61 45	F (E	= •	.7 6	0 9	0	\$15.	、ロリは いる。 動ご比例	Birthur 回共にガ 5。 事と総由	e c ma m 6, 鉛直:				1								M	と較の と振動:	こ形して いい うち	ターズの かけん うちょう うちょう ひょう ひょう ひょう ひょう うちょう うちょう うちょ	号炉の   号炉の				
<b>暦屋クレー</b> 屋グレー	年 後								変更と	実機のよ	は、一般 クレーン が大きい	トロリとガしの主義に	「「「「」」、「「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」	井ク		2	No3	71.0	3.0 6.8	(主巻用) (補助)巻用	191.5	33.0	8.9 060 E	0.270	比で表さ	ーダ, 1 考えらす ロリ館量	水平力量	平2.0%			7	t (t)	HU (E)	× ^{(Ⅲ}		(±)	(j)		t)	Wt	幾とのJ 一般的J	殻田( 第件す) しとガー	「シカシン」	- □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
医子后 御御子子		hul			7-7-	2			総質量 ドロリリ 総質量	実験体と	減また。 あまた で、王 昭 で、王 昭	いてん、 論支持は またaU価	上表げ	Ж	A birth LL-	実験体		$\left  \right $	_	3 2 2				+	ないその	ては、ガーマは、ガーマがはトレイはトレート	ま上下・翌けるこ	ました					南 石 一	<u>к</u> – 1	入 — 管	( ) e	Ξ ×	чĶц	M	質量 2 5の比	本と実行	С. 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1	で す り い の い し い に い い い い に い い い い い い い い い い い	то, 1 5°, 1				
											-74 <u>=</u> ₩	-87 -42		2-1		一般用	No1,2	43.5	2.265 5.8	4.1	1 20	33.0	7,06	0, 294	消散工法	において が大きい 勝日ネリ	東に、「「「」」である。	康定数(			Γħ.		1	-			ガーク		総質量	トロリ総領	【試験( 減点	唐 東 市 市 で い い い	こそ的ようたかも	「七支。」				
														表	.  -						_			+	ネルキと	クレーン 長も影響 による洋	中の指摘用の比べ														I		, , , , , , , , , , , , , , , , , , ,					
																		Wt (ton)	5 h (m) ~ l ₁ (m)	≥ 12 (m)	Ws (ton)	LI (III)	V L2 (m)	L/Hr	考え方	の建屋の建屋の建築性についた。	、地震であった。	第一番 「 し、 一																				
																镞		重量	高ペス	XIX	重量	間、スパ	XXX		の比較の	一つ構造制が減速	マンちょう	^{つ, жи}																				
																ŧ			(1)			H-	史	重量と both	sと実機 観比は,	日本の消していていた。	「「「」、「」、「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	Edv5,																				
																			4			ガー	143	トロリ」 総重量	「影響性」	北王之子	は 10 10 10 10 10 10 10 10 10 10	1																				
															L			L							10																							



酸素的業務の本平方向の減衰には、ト のの加加においたな業績。 のの加加においても必ず、1966、トロリに酸素 部では応等機構。の加加において、 部では応等機構。の加加において、 3.1%という減損が得られている。 本平方用の減損だは、振用レイム。 、 、 、 、 、 、 、 、 、 、 、 、 、	
トロジル電力中央の場合では、溶液範疇にした かって演奏はとの時代の事業でし、溶液範疇に応いて、 a.dom、で実験はとの約公はが得られている。 なるm、で実験はとの約公はが得られている。 におい確実はなりにの場合では、応診範疇に係らす。 しおい能力に加い場合では、応診範疇に始られ におい確実がにおけが原られている。 におい確実がないたがした。 一般では認定すないのでいたが、 一般では認定すないのでいたが、 一般では認定すないでいた。 一般では認定するのです。 前子目前に行っている。 前子目前に行っている。 前子目前に低っす。 前子目前に低いす。	
A トチューブ マストチューブ マリッジ (リーウ) (リーウ) (リーウ) (ローカ) (リーウ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (ローカ) (	

柏崎	<b></b> 新刈羽	原子	力発	電所	6	/7	号灯	ī	(201	7.12	2.20版)	)					東洋	海第	二発育	電所	斤(20	)18.9.	18版)	)							F	島根	原子	力発'	電所	f 2号炉	備考	
																						乽	影考資料	料-2	(2/	(2)												
10									]				○燃	(料)	取替	疹機(	の試験	験体	と実材	機と	の仕	様比輔	詨															
2/2) UT127									125.	語の	世数か を 中 上	てきな	炵	(料)	取替	を機り	は、こ	フレ	ーム棒	溝造	<u>ま</u> のブ	リッシ	ジ上に	トロリ	が設置	呈され												
- 2 (2				1	素旺方角				た し 人 題	, <i>J'</i> IJ ₂ ,	用減速3	<b>к</b> 9 6J	てい	いる	構造	言でる	ある。	,表	3−1 ≬	こ燃	《料取	替機詞	式験体,	,東海	第二発	電所	ſ		.8.1							ロの なた ご定 低の減		
資料				儀行方向		*			い間に	きの方が	る。後、後、後、後、後、後、後、後、後、後、後、一般でした。 ちょうちょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう ひょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	はそれ 用する。	及て	バ大	間1	号	炉の炸	然料	取替	幾の	)主要	な仕様	羕を示	す。							加月	~	走行方师			るる。以少 2°用 験、設。。場 上な し減 で応計。ト合 とい だ衰 は答用		
老者				4	1200 C				ロ   1   1   1   1   1   1   1   1   1   1	ある場合		<b>課動 Ss</b> 色) を適J															痰				1 1 1		1			べしした。 ふないいのの、 たまた。 が、 が、 が、 に に のので に に に した。 た した。 た した。 た した。 た した。 た した。 た した。 た のか。 た に た いで。 た の の で た い で や の の の の の で 。 で の の の で 。 が の の に の の の が の が の に の の の の に		
回の続き (1000年)			東行レール			1-1	12 a		離出滅	(12)-12)	なっている。この説言しての読み」の説法	の基準 5。 にある場															140				*	A sarr	<u>.</u>			るにく減デ 衰平 る試替()とトな衰一 尨方 。 繁機()き ちゅうほう 数格 うちょう たち 一番 おにる		
· · · · · · · · · · · · · · · · · · ·	教授		Wt B#1AF		HIN	A H	1	-	- hallo	の中央	ペビナト 水平力向 大平力向 御田 田 山	、実際の大いのが、															様の			ゴレール	<u>Fi</u>		A.	- 1	\	をの比ゆる 計% えな燃いす場は┉は、用% えな燃けい 用シ らな料める おろおろう (減水 れ。取者)		
並びにサ	の仕様の		1				魚田レール		ろれるざ	<i>ind</i> (17, 1	威比 2:0 8-1-た。 マンパン,	いい るが 一部であ で 「一部であ									の構造	ている	自の減せした	でわよってある			9 (†			- 東			NO.	200	$\frac{1}{7}$	に うて べれ ら に る べ 号 部 彡 減 ん て い い 記 る べ 号 部 ジ 暮 ひ か 切 に 割 う 書 ジ 喜 ひ ち ひ お ひ ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち		
442	■の実機				A Land	1-1/12	/		シングが	調したけ	m Ju Fu Fu Ju Fu	麓みわっ 江蘭用戸 猿のトロ									トロリ( 類ある。	となっ、鉛直力	水平力  。 動特性	MARIE NATION			素機	葡考	W (				ſ	H H	/	が合に展ぶ こ向 等速島記滅・比幅得 とう 等速島記		
· 死告 9 y	間1号/				「「日本語」	-*/			「「「」	1方向に	r 0.40m 船直方  - 用減炭( 吸から, 1	に、「「「「」」を見て、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」で、		Ê		1		-			れる。 ひ 2 種	) 知上	した。 たした 前ので	で、 戦地震動 考えられ 位置が			中取書		hu!			<u> </u>		Ŧ_*/		造るの、減、たち、たちのない。 であるので、たち、たちのない。 でした、たち、たち、たち、たち、たち、たち、たち、たち、たち、たち、たち、たち、たち		
力 第一章	ÉCNIC大		業時代			[			東東北に	53。 鉛値	置しべ)、 「 「 たらい」 で た。 で た。 で た。 で ため、 で ため、 い で ため、 い で から、 で から、 で から、 で から、 で から、 で から、 で から、 で から、 で か の 、 い で か い 一 で 品 で に の 。 一 話	200Gal) 得られけ ', 2.0%()					= 1	North North			あえらる場合の	実比 2.( バリケない	1.5%と 対東定数	際の期のによって			然彩		THE			A	「チュー」 「チュー」	-/		はした。 (1) 11 11 11 11 11 11 11 11 11 11 11 11 1		
山羽厩子	7号炉3		79 2 (H-5)	20					松桃篱	2 種類	、 戸谷楼 教が少な 御人で たろしとか 静穂の 香 橋 の 香	鉛直約1 吉果より 50場合)	墖	4			ŝ,	1	•		チえると リのあ	。 「で蔵録 タ点数は	衰定数 設計用値 以上とた	が、実			6 旦		ホイスト			ч	<b>≣</b> \$∕/	/		「「「「「「」」」、「「」」、「」」、「」」、「」」、「」」、「」」、「」」、		
c. 拍嚥X	5 号及び								よる 構造 	る場合の	「向いあり データーデーター」 の設計用の の数計用	00Gal, この試験後 「編書にこる	4						l az		影響を1週に下口	い 1 1 1 1 1 1 1 1 1	(計用減 力向の は同範1	にたいるに実施工での			[ 出]		補助	200			_/			<ul> <li>シックカンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシ</li></ul>		
橋試驗在	発電所 (参考)	号炉 7.0	262.	3.0	0.0	075	5.16	1.43	「離」	40(11	は増加何 いるが、 「救比が 「救比が」 「平方向の 「「おけ」	大平約100、上部100位置が	「様の		儒	v We			T	7	東方にいる語	馬くなーレイシア	50、影を水正。	, 東西 実施さ 場らわけ 2.0%			副			ς (μ) β	4					シュント・1:2月11-21-21-21-21-21-21-21-21-21-21-21-21-2		
然和肢体	月原子力 大間 大間	2	2			62		4 9	\$0. <i>4</i> .43	に結婚	壊壊比1 11の 11の 11の 11の 11の 11の 11の 11の 11の 1	ベラ () あるたこ 譲のた	大総子	1 K		1			T		遠が減ブリット	敷払ば 整満 調 の ちた た	5224	) にて3 果より( 5場合),			۲. W	氒								「「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」		
た あ。 ろその あ。	相 馬 利 天 後	号/炉 20.0	.795	3.0	28.5	.005	5.16	4.6	グリッジタ	1) y 5' 0	町に伴い (歳比が?) うず 1.5% し回じ 2 6 号及で	国連度 し 回値向行 際料取者	日林	I S		1120		- 10 C	=¥/		5構造制	に、減少に、減少に、減少。	たたい、回ち回し、	00 Gal 御籤結 別にある			河及	間1号 27.0	5. 795	3.0	3.0	40.0	2.075	15.16	67.0	またな、「なった」では、「なって」を考えている。 きょう かんしょう いちょう しょうしょう にゅうしょう いいろう しょう たい 読いい 感になる ごう 感になる いい		
	緊急ない	2	2			2	-		, hel	5場合, 7	(編の増) (編の増) (6%の減 (編に係) が直方向 の発電所	rでは低が E比も増け 直 1.5%()	¥Ψ]				M. N		1		熟こよる 1がある	かに比べ 面向にあ %の減速	が得ら、約6、5	10.5. 上記の 置が識問			も	×	_	_						▲ 「「」」の「」」の「」」を発展した。 「」」の「」」であるない、「」」のなるない、「」」のないた。 「」」のはいい、「」」では、「」」、「」」、「」」、「」」、「」」、「」」、「」、「」、「」、「」		
だれてい	^{非取替機}	5 号炉 16.1	4.163	2.8	30.4	2.917	15.16	4.8 46.5		2005401	時 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	で、実験 #12.0%、約点	大峰水							Π	タや離せていていてい	もる場合 は増加例 で3.6	)減衰比 ため、 の比較が	Gal, 第 Gal, 第 5ため, ロリ団			根2	2 号炉 5. 1	795	0	9.	.5	005	.6	.6	材らトしを致しの、サ施結け、料わ豆で平とての、サ施結は、減だうは方して減、イオキリー酸だうは方した減、ズカよう		
間就的	※	<u> </u>							構造の 本 前 の お	中央にとっている。	題しては 巡しては 週しては、 ちょう。0.07 ちょうない ちょうない	る。また御礼にある。また	τ <del>η</del>		祖	27.0	5.795 3.0	40.0	2.075 15.16 4.43	67.0	等のガ	ロリが3 減減比小	%程度の ド少ない	約 100 100 100 100 100 100 100 100 100 10			間と	島根: 13	2 2 2	6	6	27	5.	4	40	構験中向を蔵向。 よどの構造で央にる意定のに、 のではに、 のではの構成に、 のたい酸」、のには、 しているがに、 しているが、 (参加)ので、 (参加)ので、 (参加)ので、 (参加)ので、 (参加)の		
地敷	就驗体	15.5	4.795	3.0	23.6	2.005	12.46	4.6 39.1	を留み	ブリッジ さ高くな	C方向に 技術館で 一々点後 「東京後春(	馬さられ 「「「「「「「「「「」」 「「「「「」」」	<b>後</b> 大		<b>激</b>						ブリッジ	部に下	ず1.5 タ点数は 取精織	(水平) (水平) 増加通			魚体									骨るッ銘の数銘の 、の、線通の小路のが約020~、200~約000~~200~~200~~200~~200~~200~		
どの仕様、									5 1ッジ蜂の	に て に に に に に に に に に に に に に	合は合い。 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の、 (1)の (1)の、 (1)の、 (1)の (1)の、 (1)の (1)の (1)の、 (1)の (1)の、 (1)の (1)の (1)の、 (1)の (1)の (1)の、 (1)の) (1)の (1)の (1)の (1)の) (1)の (1)の (1	あると ³ 果から, 千囲減寂			し	0	533	0.0	415 .36 .6	0.	1月, 7日,	いの 語 で 語 言 語 の 語 合 語 の に の 語 の に の 語 の に の に の 品 語	に除っ、ビー・	- - - - - - - - - - - - - -			記述	試懸体 15.5	4. 795	3.0	2.6	23.6	2.005	4.6	39.1	ジて、場数万場べ 点直る63等果ブ合を向合ル で約た。60なり、6000、1000、1000、1000、1000、1000、1000、100		
よと実機∂ - ∆構造の		質量 Wt(ton)	か (E)H	II(m)	l ₂ (m) 質量 Wg(ton)	副は H(m)	Z/%/	L ₂ (m) W(ton)	(の考え <del>)</del> ごは、プリ	デーダ2	がある場の減度比し、ためる場合がある場合がある場合である場合である場合でなった。	5 傾向に 試験結 機の設計	麸松	2	東海	15	4.0	×1 %	13 13 4	212	実、トロ-タとし	<b>ノ</b> ラック 「空港」 「空港」	25255	的速度。 第一世。 後 一世。 後			替機		_	_					_	── ジグにしが減をが擬 性詞面鉛 方リよてあ衰水あ幅 の」に直」かっはる定式る良い。 観鉛あい		
の試験社	十 章								義の比較	に減速比 5場合に	モンロリーモンション	きくな? となる。 然料取替	日本		*				0 0		オ料演員	0方が、 では、成 減度比	こは、点子のたく	一治信い 後では他の い間加に			学取							(II)	6	敷てう向ト設。4、 のは位に口計。6条増の き、置関う用%う答 用006%。		
4取替機 取替機 加		hul			ざんじて			調査	負体と実材 時取替機	で得られば	シッチーンション キーション キーション シック きょう きょう うちょう うちょう うちょう うちょう うちょう うちょう う	5巻は大 東レベル 上から, ₈	(秋):		の語る	15.6	4.79 3.0	23.6	2.0024	39.1	構造の	る場合のに関してた方向の	に関して 実比が得	た。調わて水田で、調査でのための			燃料	接 一一一次 一一次	L N L N L N L	日 (三) (二) (三) (二) (三)	1 2 (r スパン (r	質量 Wg (j	る日に		17 17	-   診院は領中かと端濠 号(濠米水)のつい直手での「部山」のついす。 水比平 一方の「小」のの「小」のの「水」である。 「かいっち」、いには、ヘーーのの「キー」		
■ 然料 数料									■読録	製品	い。 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	した「「「「「」」」で、「「」」」」で、「「」」」」」」」」」」」」」」」」」」」	-	•		(u	. 3 3			1	骨組み で得らえ	リがあ. 直方向( 5。水平	した。 直方向1 %の減退 驟体と	象(すこ) あっま) 数としつ									رد (ز		上。 「」 「」	と取造あッる値ッ向た島に伴と、実権減るジェ方ジの。根ベいし、考替減るジェ方ジの。根ベいし、特機資。のと向の減 3 ルメびて		
													*	, ,	鎌	l量 W _t (to	朝いて見	山 山 山 山 山 山	BOH B CペンLa	WT (ton)	の薄記。	で下日 多かか。	武数と 合、約 で3.1 表の試	えるれるが、気気を見ていた。						4			Ц Ц		総質」	「」」」」 り2 ~め 木数 加増衰() 懲燃の種ブて、ブ平と次速幅定() 你料構築リい銘リ方しに度に数		
															牡	题	- K K	< 缸 ,	- K K	-	力 ブリッ 異なる	の中央 ある場 を2.0	用減速 ある場 い 目 に 一	るい おろ。 設計用														
																	ĻпJ		JU 95	総質量	の地で、 ては、	リッシュリッシュ	の設計でした。	同にあっておいて、														
														L							約日期	、「山田市」	市地回転に上国に上国に	「なる個」「「なる個」「「「なる」」「「「」」」「「」」」「「」」」」「「」」」」」」」」」」	1420													
																				totale 1	なと実機 単取替機 まトロリ	1210~121~12~22~22~22~22~22~22~22~22~22~22~22	そのが ない きょう かん いき かん いっか かい うち	ま大きく しから,	を適用													
																				in here's 1	戦響は	あって、	ほんご (15.6) 登 えいの	をおってい	場合)													
																				(	0																	
																																					I	









号炉	備考
Dタイプ (Uプレート)	
R84 (R58)	
<u>Uプレート</u> 150A(100A) (材質: SS400)	
配管	
口径	
32 A	
50 A	
150 A	
40 A	
100 A	
150A, 80A	
200 A	
200A, 80A	
32 A	





柏崎刈羽原子力発電所 6/	7号炉 (2017.12.20版)		東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/	7 号炉 (2017. 12. 20 版) 参考資料 3 (8/8) 型 3 7 Sch80 型 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N	<u>参考資料-3 (8/8)</u> 実機配管系の解析モデル図 (u配管)	東海第二発電所 (2018. 9. 18 版) 東海第二発電所 (2018. 9. 18 版) Imgentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes Ingentes	島根原子力発電所 2 号炉	備考
実機実機		実機配管	C 3 R		



号炉	備考
参考資料(6-4)	_
【減簸結果(88, 128, 208)】 ○応答変位 30 mi以上の領域 保温材による付加減衰定数は1.0%以上,応答変位の漸増又は一定の値を示す傾向。 ○応答変位 30 mi以下の領域(小応答領域) 減衰データにぼらつきがあり,付加減衰定数1.0%以下の場合がある。 減衰データにぼらつきがあり,付加減衰定数1.0%以下の場合がある。 (該計用減衰定数の設定】 小応答領域については,配管の強度上問題とならないことから,保温材による付加減衰定数は1.0%とする。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	(金属保温材及び無機多孔質保温材入 なた保温材による付加減炭産業に患っき、設計用減産産業の検討を行った。 なた保温材による付加減炭産業に患っき、設計用減産産業の検討を行った。 い酸素を再現した解析モデルを用いて固有酸素析を行った結果、一次モードが 、酸酸素を再現した解析モデルを用いて固有酸素析を行った結果、一次モードが 、酸酸素を再現した解析モデルを用いて固有酸素析を行った結果、一次モードが 、酸酸素を用した解析モデルを用いて固有酸素析を行った結果、一次モードが 、デーレビニンドのなどのなどの、しか、シャードが 、 、 、 、 、 、 、 、 、 、 、 、 、	備考 ・資料構成の相違 【柏崎 6/7,東海第二】 ①の相違
		正式 正式	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料.6	添付資料—7	
添付資料 4			
水平方向と鉛直方向の動的地震力の二乗和平方根	水平方向と鉛直方向の動的地震力の二乗和平方根法による組合	水平方向と鉛直方向の動的地震力の二乗和平方根法による組合	
<u>(SRSS)</u> 法による <u>組み合わせ</u>	世について	世について	
1. 概要	1. 概要	1. 概要	
今回工認の耐震設計では、これまで静的な取扱いのみであった	今回工認の耐震設計では、これまで静的な取扱いのみであった	今回工認の耐震設計では、これまで静的な取扱いのみであった	
鉛直方向の地震力について、動的な地震力を考慮することとなる	鉛直方向の地震力について、動的な地震力を考慮することとなる。	鉛直方向の地震力について、動的な地震力を考慮することに伴	
とともに、水平方向及び鉛直方向の動的な地震力による荷重を適	とともに、水平方向及び鉛直方向の動的な地震力による荷重を適	い、水平方向及び鉛直方向の動的な地震力による荷重を適切に組	
切に組み合わせることが必要となる。	切に組み合わせることが必要となる。	み合わせることが必要となる。	
従来の水平方向及び鉛直方向の荷重の組み合わせは、静的な地	従来の水平方向及び鉛直方向の荷重の組合せは、静的な地震力	従来の水平方向及び鉛直方向の荷重の組合せは、静的地震力に	
震力による鉛直方向の荷重には地震継続時間や最大加速度の生	による鉛直方向の荷重には地震継続時間や最大加速度の生起時	よる鉛直方向の荷重には地震継続時間や最大加速度の発生時刻	
起時刻のような時間の概念がなかったことから、水平方向及び鉛	刻のような時間の概念がなかったことから、水平方向及び鉛直方	のような時間の概念がなかったことから、水平方向及び鉛直方向	
直方向の地震力による荷重の最大値同士の絶対値の和としてい	向の地震力による荷重の最大値同士の絶対値の和としていた(以	の地震力による荷重の最大値同士の絶対値和としていた(以下	
た。(以下「絶対値和法」という。)	下「絶対値和法」という。)。	「絶対値和法」という。)。	
一方、水平方向及び鉛直方向の両者がともに動的な地震力であ	一方、水平方向及び鉛直方向の両者がともに動的な地震力であ	一方,水平方向及び鉛直方向がともに動的地震力である場合,	
る場合、両者の最大加速度の生起時刻に差があるという実挙動を	る場合、両者の最大加速度の生起時刻に差があるという実挙動を	両者の最大加速度の発生時刻に差があるという実挙動を踏まえ	
踏まえると,従来と同じように絶対値和法を用いるのではなく,	踏まえると,従来と同じように絶対値和法を用いるのではなく,	ると、従来と同じように絶対値和法を用いるのではなく、時間的	
時間的な概念を取り入れた荷重の <u>組み合わせ法</u> を検討する必要	時間的な概念を取り入れた荷重の組み合わせ法を検討する必要	な概念を取り入れた荷重の組合せ方法を検討する必要がある。	
がある。	がある。		
本資料では、水平方向及び鉛直方向の動的地震力の組み合わせ	本資料では、水平方向及び鉛直方向の動的地震力の組合せに関	本資料では、水平方向及び鉛直方向の動的地震力の組合せに関	
に関する既往研究 ⁽¹⁾ をもとに、二乗和平方根法(以下「SRSS法	する既往研究 ⁽¹⁾ をもとに、二乗和平方根法(以下「SRSS法	する既往研究(1)をもとに、二乗和平方根(以下「SRSS	
(Square Root of the Sum of the Squares)」という。) による	(Square Root of the Sum of the Squares)」という。)による	(Square Root of the Sum of the Squares)」という。)法によ	
組み合わせ法の妥当性について説明するものである。	組合せ法の妥当性を説明するものである。	る組合せの妥当性について説明するものである。	
なお、SRSS 法による組み合わせは、大間1号炉の建設工認に	なお, SRSS法による組合せは, 大間1号炉の既工認におい	なお, SRSS法によ <u>る荷重の組合せ</u> は,大間1号炉建設工認	
おいて適用実績のある手法である。	て適用実績のある手法である。	及び東海第二新規制工認において適用実績のある手法である。	
2. 柏崎刈羽原子力発電所で用いる荷重の組み合わせ法	2. 東海第二発電所で用いる荷車の組合せ法	2. 島根2号炉で用いる荷重の組合せ方法	
柏崎刈羽原子力発電所では、静的な地震力による荷重の組合せ	東海第二発電所では、静的な地震力による荷重の組合せについ	<u> 最根2号炉では</u> ,静的地震力による荷重の組合せについては,	
については、従来どおり絶対値和法を用いて評価を行う。また、	ては、従来どおり絶対値和法を用いて評価を行う。また、動的な	従来通り絶対値和法を用いて評価を行う。また、動的地震力によ	
動的な地震力による荷重の組合せについては、既往知見に基づ	地震力による荷重の組合せについては、既往知見に基づき, SR	る荷重の組合せについては、既往知見に基づきSRSS法を用い	
き,SRSS 法を用いて評価を行う <u>ことも可能である</u> 。	SS法を用いて評価を行う。	て評価を行う。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
3. 水平方向及び鉛直方向の地震力による荷重の組み合わせ法に	3. 水平方向及び鉛直方向の地震力による荷重の組合せ法に関	3. 水平方向及び鉛直方向の地震力による荷重の組合せ方法に	
関する研究の成果	する研究の成果	関する研究の成果	
3.1 荷重の組み合わせ法の概要	3.1 荷重の組合せ法の概要	3.1 荷重の <u>組合せ方法</u> の概要	
絶対値和法とSRSS 法の概要を以下に示す。	絶対値和法とSRSS法の概要を以下に示す。	荷重の組合せ方法として,絶対値和法及びSRSS法の概要を	
		以下に示す。	
(1) 絶対値和法	(1) 絶対値和法	(1) 絶対値和法	
本手法は、水平方向及び鉛直方向の地震力による最大荷重(又	本手法は、水平方向及び鉛直方向の地震力による最大荷重(又	本手法は、水平方向及び鉛直方向の地震力による最大荷重(又	
は応力)※を絶対値和で組み合わせる方法である	は応力) ※を絶対値和で組み合わせる方法である。	は応力) ^注 を絶対値和で組み合わせる方法である。	
この方法は、水平方向及び鉛直方向の地震力による最大荷重が	この方法は、水平方向及び鉛直方向の地震力による最大荷重が	この方法は、水平方向及び鉛直方向の地震力による最大荷重が	
同時刻に同位相で生じることを仮定しており,組合せ法の中で最	同時刻に同位相で生じることを仮定しており、組合せ法の中で最	同時刻に同位相で発生することを仮定しており,組合せ方法の中	
も大きな荷重を与える。本手法は、主に地震力について時間の概	も大きな荷重を与える。本手法は、主に地震力について時間の概	では最も大きな荷重を与える。本手法は、主に地震力について時	
念がない静的地震力による荷重の組合せに使用する。	念がない静的地震力による荷重の組合せに使用する。	間の概念がない静的地震力による荷重の組合せに使用する。	
	組合せ荷重(又は応力)= $ \mathbf{M}_{\mathrm{H}} $ max+ $ \mathbf{M}_{\mathrm{V}} $ max	組合せ荷重(又は応力)=   M _H   max +   M _V   max	
M _H :水平方向地震力による荷重(又は応力)	M _H :水平方向地震力による荷重(又は応力)	M _H :水平方向地震力による荷重(又は応力)	
Mv:鉛直方向地震力による荷重(又は応力)	M _v :鉛直方向地震力による荷重(又は応力)	M _v :鉛直方向地震力による荷重(又は応力)	
本手法は、水平方向及び鉛直方向の地震力による最大何重(又	本手法は、水平方向及び鉛直方向の地震力による最大何里(又	本手法は,水平方向及び鉛直方向の地震力による最大何重(又)	
は応力) ≪を一来和平力根で組み合わせる方法である。 この主法は、よっ主告れざいま士白の世界上による見しままの	「は応力」 ≪を一来和平力根で組み合わせる力法である。		
この方法は、水平方向及び鉛直方向の地震力による東入何里の	この方法は、水平方向及び鉛直方向の地震力による取入何里の	この方法は、水平方向及び鉛直方向の地震力による東入何里の	
<u>生</u> 起時刻に時間的なすれかめるという美挙動を考慮しており、水 エナロルズの支土白地震動の日時1,112,127,121,115,157,1157,1157,1157,115	<u>生</u> 起時刻に時間的なすれかめるという美挙動を考慮しており、水 或士白来びの支土白地震動の同時1 古による時初度は飲知だし	金生時刻に時間的なすれかめるという美挙動を考慮しており、水 またもればいまた白地震動の日時1,1によれ時に広知がおける	
平方回及び鉛直方回地晨期の回時入力による時刻燈心谷解析結	平方回及び鉛直方回地震動の回時入力による時刻歴応合解析と	半方回及び鉛直方回地晨期の回時入力による時刻歴応合解析症	
未どの比較にわいく半均的な何里を与える。本手法は <u></u> 動的 <u></u> が地 電力によるまま同力の知久時に体出する	の比較にわいて半均的な何里を与える。半手伝は…動的企地展力	太どの比較にわいく平均的な何里を与える。本手法は動的地震力     は     たと、     ボチョールの知久はには     田ナス	
長力による何里向士の組合セに使用する。	による何里の組合セに使用する。	による何里向工の組合でに使用する。	
組合せ荷重(又は応力) = $\sqrt{(M_H)_{max}^2 + (M_V)_{max}^2}$	組合せ荷重(又は応力) $=\sqrt{(M_H) \max^2 + (M_V) \max^2}$	組合せ荷重(又は応力) = $\sqrt{(M_{ m H})_{{ m max}^2} + (M_{ m V})_{{ m max}^2}}$	
Mн:水平方向地震力による荷重(又は応力)	M _H :水平方向地震力による荷重(又は応力)	M _H :水平方向地震力による荷重(又は応力)	
Mv:鉛直方向地震力による荷重(又は応力)	M _v :鉛直方向地震力による荷重(又は応力)	M _v :鉛直方向地震力による荷重(又は応力)	
※:荷重の段階で組み合わせる場合と,,,荷重により発生した応	※:荷重の段階で組み合わせる場合と…荷重による発生した応力	注:荷重の段階で組み合わせる場合と荷重により発生した応力の	
力の段階で組み合わせる場合がある <u>。(次頁の「補足」参</u>	の段階で組み合わせる場合がある。	段階で組み合わせる場合がある (次頁補足参照)。	
照)			
応力で組み合わせる場合は、妥当性を確認した上で適用す	応力の段階で組み合わせる場合は、その妥当性を確認した上	応力で組み合わせる場合は、その妥当性を確認した上で適用	
る。	で用いる。	まる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
(補足)荷重または応力による組み合わせについて	(補足)荷重または応力による組合せについて	(補足)荷重又は応力による組合せについて	
水平方向及び鉛直方向の動的地震力を SRSS で組み合わせる際,	水平方向及び鉛直方向の動的地震力をSRSS法で組み合わ	水平方向及び鉛直方向の動的地震力をSRSS法で組み合わ	
評価対象の機器の形状や部位に応じて荷重の段階で組み合わせ	せる際,評価対象の機器の形状や部位に応じて荷重の段階で組み	せる際,評価対象機器の形状や部位に応じて荷重の段階で組み合	
る場合と,,,荷重により発生した応力の段階で組み合わせる場合が	合わせる場合と,,,荷重により発生した応力の段階で組み合わせる	わせる場合と荷重により発生した応力の段階で組み合わせる場	
ある。ここでは、その使い分けについて具体例を用いて説明する。	場合がある。ここでは,…その使い分けについて具体例を用いて説	合がある。ここではその使い分けについて、具体例を用いて説明	
	明する。	する。	
A. 荷重の段階で組み合わせを行う場合	A. 荷重の段階で組合せを行う場合	A. 荷重の段階で <u>組合せ</u> を行う場合	
横形ポンプの基礎ボルトの引張応力の評価を例とすると,,以下	横形ポンプの基礎ボルトの引張応力の評価を例とすると,,以下	横形ポンプの基礎ボルトの引張応力の評価を例とする _{***} 以下の	
の式で示すように水平方向地震力と鉛直方向地震力の組み合わ	の式で示すように水平方向地震力と鉛直方向地震力の組合せは,	式で示すように水平方向地震力と鉛直方向地震力の組合せは、荷	
<u></u> 性は,荷重である水平方向地震力によるモーメント (m・g・CH・	荷重である水平方向地震力によるモーメント (m・g・C _H ・h) と鉛	重である水平方向地震力によるモーメント(m・g・CH・h)	
h)と鉛直方向地震力によるモーメント(m・g・Cv・l1)を組み合	直方向地震力によるモーメント $(\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{C}_{\mathbf{V}} \cdot 1_1)$ を組み合わせる。	と鉛直方向地震力によるモーメント(m・g・CV・11)を組	
わせる。		み合わせる。	
本手法については, 非同時性を考慮する地震荷重についてのみ	本手法については、非同時性を考慮する地震荷重についてのみ	本手法については, 非同時性を考慮する地震荷重についてのみ	
SRSS しており,実績のある妥当な手法である。	SRSSしており、実績のある妥当な手法である。	SRSSしており、実績のある妥当な手法である。	
【絶対和】	【絶対値和法】	【絶対値和法】	
$F_{b} = \frac{1}{L} \{ mg(C_{H}h + C_{V}l_{1}) + mgC_{p}(h + l_{1}) + M_{P} - mgl_{1} \} \qquad \cdots  (\vec{\pi} \text{ A} \cdot 1)$	$Fb = \frac{1}{L} \{ m g (C_Hh + C_Vl_1) + m g Cp(h+l_2) + Mp - mg l_1 \}$	$F_{b} = \frac{1}{L} \{ m g (C_{H} h + C_{V} l_{1}) + m g C_{P} (h + l_{1}) + M_{P} - m g l_{1} \}$	
		····(式 A-1)	
【SRSS 法】	【SRSS法】	【SRSS法】	
$F_b = \frac{1}{L} \{ mg \sqrt{(C_H h)^2} + (C_V l_1)^2 + mg C_p (h + l_1) + M_P - mg l_1 \} \qquad \cdots ( \vec{x} A \cdot 2)$	$Fb = \frac{1}{L} \{ m g \sqrt{(C_H h)^2 + (C_V l_1)^2} + m g Cp (h+l_2) + Mp - mg l_1 \}$	$F_{b} = \frac{1}{L} \left\{ m g \sqrt{(C_{H} h)^{2} + (C_{V} l_{1})^{2}} + m g C_{P} (h + l_{1}) + M_{P} - m g l_{1} \right\}$	
Cv ▲ Fb : 基礎ボルトに生じる引張力		····(式 A-2)	
CH:水平方向震度           Cv:鉛面白廣度           Cv:鉛面白廣度           Cv:鉛面白原皮		ここで.	
	C vi         ・ 重心位置         Fb: 基礎ボルトに生じる引張力 Cu: 水平方向震度	F、: 基礎ボルトに生じる引張力	
6(留支点)         In, l2: 重心と基礎ボルト間の水平方向距離           L         :支点としている基礎ボルトより最大	C _V : 鉛直力可濃度 C _P : ポンプ振動による震度 g:重力加速度	C ₁₁ :水平方向震度	
引張応力がかかる基礎ボルトまでの 距離 100000000000000000000000000000000000	h: 銀付面から重心までの距離 1,12: 重心と基礎ボルト間の水平方向 距離 距離	$C_{\rm v}$ :鉛直方向震度	
$M_{P}: \vec{x} \vee \vec{y} = M_{P}$	L:支点としている基礎ボルトより最 大引張広力がかかる基礎ボルトま での距離	С р: ポンプ振動による震度	
L	■ :機器の運転時質量 ■ ℓ ₁	M _P :ポンプ回転により働くモーメント	
第 A 図 横形ポンプに作用する震度		g : 重力加速度	
		- h : 据付面から重心までの距離	
		1, 1 ₂ :重心と基礎ボルト間の水平方向距離	
		L : 支点とする基礎ボルトから最大引張応力がかかる基礎	
		ボルトまでの距離	
		m :機器の運転時質量	
		<u></u>	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		Cr       ・ 重心位置         転倒支点       F b         レ       1         レ       1         レ       1         レ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1         ビ       1	
<ul> <li>B. 応力による組み合わせを行う場合 横置円筒形容器の脚の組合せ応力の評価を例とすると, 脚に は,水平方向地震力による曲げモーメント Mn 及び鉛直方向荷重</li> <li>P1,鉛直方向地震力による鉛直荷重(R1+ms1g) Cv が作用する。(第 B-1 図)</li> </ul>	<ul> <li>B. 応力による組合せを行う場合 横置円筒形容器の脚部の組合せ応力の評価を例とすると, 脚部 には水平方向地震力による曲げモーメントM₁₁及び鉛直方向荷重</li> <li>P₁, 鉛直方向地震力による鉛直荷重(R₁+m_{a1}g)C_Vが作用する。 (図B-1)</li> </ul>	<ul> <li>B. 応力による<u>組合せ</u>を行う場合 横置円筒形容器の脚の組合せ応力の評価を例とする_a, 脚には, 水平方向地震力による曲げモーメントM₁₁及び鉛直方向荷重</li> <li>P₁, 鉛直方向地震力による鉛直荷重 が作用する。</li> </ul>	
Mu       Pl     (R1+ms1g)       Cv       第1脚	$P_{1} \downarrow \downarrow$		
<u>第 B-1 図</u> 横置円筒容器の脚部に作用する荷重	図 <u>B-1</u> 横置円筒 <u>系</u> 容器の脚部に作用する荷重	図 <u>B-1</u> 横置円筒形容器の脚部に作用する荷重	
水平地震力による圧縮応力 σ s2 及び鉛直方向地震力による圧 縮応力 σ s4 は <u>式 B-1</u> , <u>式 B-2</u> で表され,脚の組合せ応力の評価の 際はこれらの応力を SRSS 法により組み合わせて <u>式 B-4 を</u> 用いて 評価を行う。	水平方向地震力による応力 $\sigma_{s2}$ 及び鉛直方向地震力による応 力 $\sigma_{s4}$ は式B-1及び式B-2で表され、脚部の組合せ応力の 評価の際は、これらの応力をSRSS法により組み合わせて式B -4を用いて評価を行う。	水平地震力による圧縮応力σs2及び鉛直方向地震力による 圧縮応力σs4は <u>以下の式</u> で表され,脚の組合せ応力の評価の際 はこれらの応力をSRSS法により組み合わせて評価を行う。	

Here 
$$2 + j = 0$$
 $k = 0$  $k =$ 

号炉	備考
…(式B-1)	
…(式B-2)	
$\overline{2^2}$ (式 B-3)	
s 2 ² …(式 B-4)	
「作用した場合の脚の組	
「縮応力 」る曲げ及び圧縮応力の	
こる圧縮応力 こるせん断応力 2.作用する曲げモーメン	
け根部に作用する鉛直	



号炉	備考
2及び鉛直方向地震力	
うに、ともに脚の外表	
·評価点,同一応力成分	
S法により行うことは	
■ σ s z 曲げ+圧縮による応力	
価占の工始内力	
個点の圧潤応力	
$\frac{R_1 + m_{s1g}}{A_s} Cv$	
価点の圧縮応力	
-る地震力による応力	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
3.2 SRSS 法の妥当性	3.2 SRSS法の妥当性	3.2 SRSS法の妥当性	
既往研究では、実機配管系に対して、水平及び鉛直地震動によ	既往研究では、実機配管系に対して、水平及び鉛直地震動によ	既往研究-(1)-では、実機配管系に対して、水平及び鉛直地震動	
る最大荷重を SRSS 法により組み合わせた場合と水平及び鉛直地	る最大荷重をSRSS法により組み合わせた場合と水平及び鉛	による最大荷重をSRSS法により組み合わせた場合と水平及	
震動の同時入力による時刻歴応答解析法により組み合わせた場	直方向地震動の同時入力による時刻歴応答解析法により組み合	び鉛直地震動の同時入力による時刻歴応答解析法により組み合	
合との比較検討を以下の通り行っている。	わせた場合との比較検討を以下の通り行っている。	わせた場合との比較検討を以下のとおり行っている。	
(1) 解析対象配管系モデル	(1) 解析対象配管系モデル	(1) 解析対象配管系モデル	
解析対象とした配管は、代表プラントにおける格納容器内の配	解析対象とした配管は、代表プラントにおける原子炉格納容器	解析対象とした配管は、代表プラントにおける格納容器内の給	
<u>管系で</u> 給水系(FDW) <u>×</u> 2 本,残留熱除去系(RHR)及び主蒸気系	内の <u>配管系で</u> 給水系(FDW) <u>×</u> 2 本,残留熱除去系(RHR)	水系(FDW)2本,残留熱除去系(RHR) <u>1本</u> 及び主蒸気系	
(MS) の計 4 本の配管モデルである。当該配管系は <u>,,,,耐震</u> ,S ク	及び主蒸気系(MS)の計4本の配管モデルである。当該配管系	(MS) <u>1</u> 本の計4本の配管モデルである。当該配管系はSクラ	
ラスに分類されるものである。	は <u>, 耐震</u> Sクラスに分類されるものである。	スに分類されるものである。	
(2) 入力地震動	(2) 入力地震	(2) 入力地震動	
解析に用いた入力地震動は、地震動の違いによる影響を確認す	解析に用いた入力地震動は、地震動の違いによる影響を確認す	解析に用いた入力地震動は, 地震動の違いによる影響を確認す	
るため、兵庫県南部地震(松村組観測波)、人工波及びエルセン	るため、兵庫県南部地震(松村組観測波)、人工波及びエルセン	るため、兵庫県南部地震(松村組観測波)、人工波及びエルセン	
トロ波の3波を用いた。機器・配管系への入力地震動となる原子	トロ波の3波を用いた。機器・配管系への入力地震動となる原子	トロ波の3波を用いた。機器・配管系への入力地震動となる原子	
炉建屋中間階の応答波の例を <u>第1-1 図~第1-3</u> 図に示す。	炉建屋中間階の応答波の例を第6-1図から第6-3図に示す。	炉建屋中間階の応答波の例を <u>第3-1(1)図~第3-1(3)図</u> に示す。	
(3) 解析結果	(3) 解析結果	(3) 解析結果	
解析結果を <u>第2-1 図~第2-4 図</u> に示す。 <u>第2-1 図~第2-4 図</u>	解析結果を第6-4図から第6-7図に示す。第6-4図から第6-7	解析結果を <u>第3-2(1)図~第3-2(4)図</u> に示す。 <u>第3-2(1)図~</u>	
は、水平方向及び鉛直方向の応力に対して、同時入力による時刻	図は、水平方向及び鉛直方向の応力に対して、同時入力による時	第 3-2(4)図は、水平方向及び鉛直方向の応力に対して、同時入	
歴応答解析法及び SRSS 法により組み合わせた結果をまとめたも	刻歴応答解析法及びSRSS法により組み合わせた結果をまと	力による時刻歴応答解析法及びSRSS法により組み合わせた	
のであり、参考までに絶対値和法による結果も併記した。	めたものであり、参考までに絶対値和法による結果も併記した。	結果をまとめたものであり、参考までに絶対値和法による結果も	
		併記した。	
<u>第 2-1 図~第 2-4 図</u> より,いずれの配管系においても最大応	<u>第6-4図から第6-7図</u> より,いずれの配管系においても最大応	<u>第 3-2(1)図~第 3-2(4)図</u> より,いずれの配管系においても	
力発生点においては、時刻歴応答解析法に対して SRSS 法の方が	力発生点においては、時刻歴応答解析法に対してSRSS法の方	最大応力発生点においては,時刻歴応答解析法に対してSRSS	
約1.1 倍から約1.4 倍の比率で上回る結果となった。	が約1.1倍から約1.4倍の比率で上回る結果となった。最大応力	法の方が約 1.1 <u>~</u> 1.4 倍の比率で上回る結果となった。最大応力	
最大応力発生点における SRSS 法と同時入力による時刻歴応答	発生点におけるSRSS法と同時入力による時刻歴応答解析と	発生点におけるSRSS法と同時入力による時刻歴応答解析法	
解析法との評価結果の比較を <u>第1.表</u> に示す。また,最大応力発生	の評価結果の比較を第6-1表に示す。また、最大応力発生点の部	との結果の比較を <u>第 3-1 表</u> に示す。また,最大応力発生点の部	
点の部位を <u>第 3-1 図~第 3-4 図</u> に示す。	位を <u>第6-8図から第6-11図</u> に示す。	位を <u>第3-3(1)図~第3-3(4)図</u> に示す。	
さらに, 配管系全体の傾向を確認するため, 配管系の主要な部	さらに, 配管系全体の傾向を確認するため, 配管系の主要な部	さらに、配管系全体の傾向を確認するため、配管系の主要な部	
位における発生応力の比較を第4図に示す。第4図は,第2-1図	位における発生応力の比較を <u>第6-12</u> 図に示す。 <u>第6-12</u> 図は, <u>第</u>	位における発生応力の比較を <u>第3-4図</u> に示す。 <u>第3-2(1)図~第</u>	
<u>~第2-4</u> 回に基づき,各配管モデルの節点の応力値をプロットし	6-4 図から第6-7 図に基づき,各配管モデルの節点の応力値をプ	3-2(4)図に基づき,各配管モデルの節点の応力値をプロットし	
たものである。 <u>第.4.図</u> より, SRSS 法は発生応力の低い領域では	ロットしたものである。第 6-12 図より, SRSS法は発生応力	たものである。第 <u>3-4</u> 図より、SRSS法は発生応力の低い領	
同時入力による時刻歴応答解析法に対して平均的な結果を与え,	の低い領域では同時入力による時刻歴応答解析法に対して平均	域では同時入力による時刻歴応答解析法に対して平均的な結果	
発生応力の増加に伴い保守的な結果を与える傾向にあることが	的な結果を与え、発生応力の増加に伴い保守的な結果を与える傾	を与え,発生応力の増加に伴い, 保守的な結果を与える傾向にあ	







<b>寻炉</b>	備考
刻歷法	
III AS	
Se 61 62	
波)	
<u>WAS</u>	
56 61 63	
IIAS	
56 61 63	
ける発生応力 ラント)	



号炉	備考
间歷法	
IIAS	
_	
507 421 423	
皮)	
IIAS	
507 421 423	
IIAS	
_	
507 421 423	
する発生応力	
ント)	



<b></b>	備考
刻歷法	
IIIAS	
A A	
25 26 27 28	
波)	
<b>II</b> AS	
8	
20 20 2/ 28	
IAS	
25 26 27 28	
ける発生応力	
マント)	



号炉	備考
刻歷法	
шаs	
67 73 75	
波)	
III AS	
*	
67 73 75	
IIIAS	
87 73 75	
する発生応力	
ラント)	
	1



<b>寻</b> 炉		備考
時入力時刻歴法の比較		
発生点	SRSS法	
	/同時入力	
No.28)	1.08	
No.26)	1.08	
No.26)	1.08	
No.10)	1.15	
No.10)	1.20	
No.10)	1.18	
No.28)	1.15	
No.28)	1.15	
No.28)	1.18	
No.18)	1.35	
No.18)	1.37	
No.18)	1.34	
A A A A A A A A A A A A A A A A A A A		
, 代表	Aプラント)	




4条-別紙7-217

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
4. <u>柏崎刈羽原子力発電所</u> における水平方向及び鉛直方向の最大	4. <u>東海第二発電所</u> における水平方向及び鉛直方向の最大応答	4. <u>島根2号炉</u> における水平方向及び鉛直方向の最大応答値の	
応答値の生起時刻の差について	値の生起時刻の差について	発生時刻の差について	
<u>柏崎刈羽原子力発電所</u> における水平方向及び鉛直方向の最大	東海第二発電所における水平方向及び鉛直方向の最大応答値	<u>島根2号炉</u> における水平方向及び鉛直方向の最大応答 <u>加速度</u>	
応答値の生起時刻の差について 7. 号炉の原子炉建屋を例に, 拍崎	の生起時刻の差について、原子炉建屋を例に、原子炉建屋の施設	の発生時刻の差について、原子炉建物を例に、 <u>島根2号炉</u> の施設	
<u>刈羽原子力発電所</u> の施設の耐震性評価において支配的な地震動	の耐震性評価において <u>主要</u> な地震動である基準地震動 <u>S_s</u> -D,	の耐震評価において <u>支配的</u> な地震動である基準地震動 <u>Ss-D</u>	
である基準地震動 <u>Ss-1, 2</u> に対する水平方向及び鉛直方向の最大	<u>S_s-21 及びS_s-22</u> に対する水平方向及び鉛直方向の最大応答	に対する水平方向及び鉛直方向の最大応答加速度の発生時刻の	
応答値の生起時刻の差を確認した。ここで、機器・配管系の耐震	値の生起時刻の差を確認した。ここで、機器・配管系の耐震評価	差を確認した。ここで、機器・配管系の耐震評価に用いる水平方	
評価に用いる水平方向の設計用震度は、全ての地震動に対する南	に用いる水平方向の設計用震度は、全ての地震動に対する南北方	向の設計用震度は、すべての地震動に対する南北方向及び東西方	
北方向と東西方向の最大応答加速度を包絡した値を用いること	向と東西方向の最大応答加速度を包絡した値を用いることを踏	向の最大応答加速度を包絡した値を用いることを踏まえ、水平方	
を踏まえ、水平方向の最大応答値の <u>生起</u> 時刻については、 <u>Ss-1,2</u>	まえ、水平方向の最大応答値の生起時刻については、基準地震動	向の最大応答値の <u>発生</u> 時刻については、 <u>Ss-DによるNS</u> 方向	
並びに南北方向及び東西方向を通じた最大応答加速度の生起時	<u>Ss-D, Ss-21及びSs-22における南北</u> 方向及び東西方向を	及び <u>EW</u> 方向の最大応答加速度の <u>発生</u> 時刻を用いた。	
刻を用いた。	通じた最大応答加速度の <u>生起</u> 時刻を用いた。 <u>なお、基準地震動S</u>		・記載方針の相違
	<u>s-31は、水平方向に卓越する応答を示すものの、他検討に用い</u>		【東海第二】
	る基準地震動S _s に比べて地震継続時間が短く,鉛直方向の最大		島根2号炉では,耐
	応答値の生起時刻との差が開く方向になるため、本検討には用い		震評価において支配的
	ていない(詳細は別紙2参照)。		な地震動であるSs-Dに
<u>第5図及び第2表</u> に示すように、水平方向及び鉛直方向の最	<u>第 6-13 図</u> 及び <u>第 6-2 表</u> に示すように,水平方向及び鉛直方向	<u>第4-1</u> 図及び第4-1表に示すように,水平方向及び鉛直方向	ついて,発生時刻の差
大応答値の生起時刻には約6秒~約17秒の差があり、拍崎刈羽	の最大応答値の生起時刻には約0.9秒~約41秒の差があり、東	の最大応答値の発生時刻には約1~16秒の差があり, 島根2号炉	を確認している(以下,
原子力発電所においても水平方向及び鉛直方向の最大応答値の	海第二発電所においても水平方向及び鉛直方向の最大応答値の	においても水平方向及び鉛直方向の最大応答値の発生時刻には	①の相違)
生起時刻には差があることを確認した。	生起時刻には差があることを確認した。	差があることを確認した。	



柏崎刈翔	羽原子力発電所	6/7号炉 (20	17.12.20版)		東海第二発電所	(2018. 9. 18 版	()	島根原子力発電所 2号炉				備考
第2表	最大応答値の生起	応答値の生起時刻の差(7号炉原子炉建屋) 第6-2表 最大応答値の生起時刻の差		」の差	第4-1表 最大応答値の発生時刻の差							
位置	最大応答値の生	上起時刻(秒)		位要	最大応答値の	生起時刻(秒)			最大応答値の	発生時刻(sec)	発生時刻の差	
(m)	水平方向	鉛直方向	- 生起時刻の差(秒)	1立直 (m)	水平方向	鉛直方向	― 生起時刻の差(秒)	1立直(m)	水平方向 95 0	鉛直方向 10_1	(sec)	
40.7	18.7	6.0	19.7	63.65	73.0	68.6	4.4	42.8	20.8	10.1	1.5	
45.7	10.7	0.0	12.1	57.00	61.9	68.6	6.7	34.8	14.6	10.1	4.5	
38.2	18.7	6.0	12.7	46.50	61.9	61.0	0.9	30.5	14.6	10.1	4.5	
91.7	22.5	6.0	16.5	38.80	19.9	61.0	41.1	23.8	14.6 8.5	10.1	4.5	
51.7	22.0	0.0	10.5	34.70	73.0	61.0	12.0	10.1	8.5	10.1	1.6	
23.5	22.5	6.0	16.5	29.00	20.0	61.0	41.0	8.8	8.5	10.1	1.6	
10.1	00 5	6.0	10.5	20.30	63.3	68.7	5.4	1.3	8.5	10.1	1.6	
18.1	22.5	6.0	6.01	14.00	63.3	68.7	5.4	-4.7	8.5	10.1	1.6	
12.3	22.5	16.1	6.4	8.20	53.8	74.5	20.7					
	22.4	10.1		2.00	53.8	74.5	20.7					
4.8	22.4	16.1	6.3	-4.00	53.8	69.4	15.6					
-1.7	22.4	16.1	6.3	-9.00	53.8	69.4	15.6					
-8.2	22.5	16.1	6.4									
-13.7	22.5	16.1	6.4									
F ましみ				F 士卜功								
$\begin{array}{c} 0,  \mathbf{x} \in \mathcal{O} \\ 0,  \mathbf{x} \in \mathcal{O} \end{array}$				$\begin{array}{c} 0,  \mathbf{z} \in \boldsymbol{\omega} \\ 0,  \mathbf{z} \in \boldsymbol{\omega} \end{array}$	白体一水子下一			$\mathbf{x} \in \mathbf{x}$	白垣の日にくい			
以上から	,	発電所では、水平	・方回及び鉛直方回	以上から,東洋	一角一角電力でに	は,水平万回及	い鉛直方回の動的	以上より、島根2号炉では、水平方向及び鉛直方向の動的地震				
の動的な地	震力の荷重の組み	合わせ法として S	RSS 法を用いるこ	な地震力の荷重	の組合せ法とし	て S R S S 法	を用いることとす	力による荷重	の組合せ方法と	してSRSS法を	を適用する。	
ととする。				る。								
6. 参考文南	犬			6. 参考文献				6. 参考文南	2			
(1)電力	共通研究 「鉛直地)	震動を受ける設備	の耐震評価手法に	(1) 電力共通研究「鉛直地震動を受ける設備の耐震評価手法に			(1) 電力共通研究「鉛直地震動を受ける設備の耐震評価手法に					
関する研究	(ステップ2)」(	平成7 年~平成1	10 年)	関する研究	(ステップ2)」(	(平成7年~平)	成 10 年)	関する研究	充(ステップ2)	」(平成7年~平	成 10 年)	
7. 参考資料	4			7. 別紙				7. 参考資料	k			
(会去) 新	※ 御順山栽油地電に	トス柏崎川河百乙	カ惑雪部の水亚古	则紙 1 南北州-	日本可洋油地電灯	テトス宙海笠一	「惑雲正の水亚古向	(	地震にトス自根	百二十双重正の	12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
(一方)が			力光电内の水平力				光电所の水平力向		地長による血瓜		「十刀両及い如直力	
回及び鉛直	カ回の東大応谷値	の生起時刻の差に	~)() (	及び鉛に	旦方回の最大応省	合個の生起時刻	リの差について	□](/)貞	反大応管値の生起	『 時刻の 差につい	C	
				<u> 別紙 2 東海第</u>	二発電所における	る水平方向及び	「鉛直方向の最大応					
				答値の	主起時刻の差に~	ついて(補足該	2明)					

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		東海第	三発電所	(2018.9.1	18版)			島根	限子力発行	電所 2号	炉		備考
参考資料						別紙1	参考資料			参考資料			
(参考)新潟県中越沖地震による柏崎刈羽原子力発電所の水平ス	東北地方太平	<u> </u>	による東	海第二発電	所の水平	方向及び鉛	(参考)2000	年鳥取県	西部地震に	よる <u>島根</u>	原子力発電	所2号炉の	
向及び鉛直方向の最大応答値の生起時刻の差について	直方向の最大	大応答値の	生起時刻	の差につい	て		水半方向及び	「鉛直方向	の最大応答	「値の発生」	時刻の差に	ついて	
	1 みじみに						1 けじみに	-					
1. はしめに 	1. はしめに 宙流第一系	冬雪正でけ	- 亚武 93	2 年 2 日 1	1 日にす-	北州七十元法	1. はしめに 自相百乙力務電話2号 (同本)は 2000 年 10 日 6 日に良販 (日本)						
	加速20-27	の観測記録	、 が得られ	ていろ、本	ユーロル (C.A.: : 資料でけ	東北地方大	<u> </u>						
越沖地震による柏崎刈羽原子力発電所の水平方向及び鉛直方向	平洋沖地震(	こよる東海	毎第二発電	「所の水平」	方向及び銀	沿直方向の最	西部地震による	こる島根原	子力発電剤	い。 新2号炉の	)水平方向	及び鉛直方	
の最大応答値の生起時刻の差について参考として確認する。	大応答値の生	上起時刻の	差につい	て参考とし	て確認す	る。	向の最大応答	「値の発生」		こついて参	考として確	認する。	
2. 確認結果	2. 確認結果	:					2. 確認結果	i.					
参考第1 表に示すように,水平方向及び鉛直方向の最大応答(	別表 6-1 1	に示すよう	うに, 東海領	第二発電所	において	観測された実	参考第1表	ミに示すよ	うに,水平	方向及び	沿直方向の	最大応答値	
の生起時刻には約1秒~約4秒の差があり, 柏崎刈羽原子力発電	地震について	<水平	方向及び	鉛直方向の	最大応答伯	値の生起時刻	の発生時刻に	は約1秒	~約2秒の	をがあり	島根原子	力発電所2	
所において観測された実地震についても、水平方向及び鉛直方で	には 0.6 秒	及び 4.2	秒の差がる	あることが	確認される	た(地震計の	<u> </u>	観測され	た実地震に	こついても	水平方向	及び鉛直方	
の最大応答値の生起時刻には差があることを確認した。	設置位置を別	川図 6-1 13	<u>こ,観測さ</u>	れた加速度	時刻歷波	形を別図 6-2	向の最大応答	「値の発生」	時刻には差	きがあるこ	とを確認し	た。	
	に示す。)。ま	た,最大応	「答値の生	起時刻の差	が比較的	小さな EW-UD							
		り差 0.6 枚	少について	,別凶 6-	3 にて水-	半方向及び鉛							
	した回の最大 の したし、 したの したの したの したの したの したの したの したの したの したの したの したの したの したの したの したの 	へ応答値の	9. <u>生</u> 起時刻	には差かめ	ることを	確認した。							
	则丰 6-1 甫	᠂ᠰᡃᡃᡃᡰᡟᡃ᠊ᡃ᠋ᡷ᠊ᢣ᠋᠂	亚油地震0	の細測記録	における	書十古交庙の	<u> </u>	丰 2000	在自昉旧可	「立地雪の	細測記 <i>得</i> 17	おける	
参与第122 <u>利荷示丁感性地長</u> の範囲に跡における取入心各値。 生記時刻の差	小孩 0 1 未	4 起時刻の差			2557		亡気気症の	1111112度の 発生時刻の	範囲心跡で )差	-401) 0			
		<u>≂</u> (),(1+)/⊥	-			]	した         した <thした< th="">         した         した         した</thした<>			)差(秒)			
位置     最大応答値の生起時刻(秒)     生起時刻の差(秒)		最大応答	値の生起時刻	則 (秒) □	生起時刻	の差(秒)	[位置] (m)	南北方向 (NS)	東西方向	鉛直方向 (UD)	N S - U D	EW-UD	
(m)         南北方向         東西方向         鉛直方向         NS-UD         EW-UD           (NS)         (EW)         (UD)         NS-UD         EW-UD	位置(m)	南北方向	東西方向	鉛直方向	NS-UD	EW-UD	島根2号炉 順子恒建物	20 455	19 325	18 380	9 075	0.945	
6号炉 -8.2         32.3         33.4         34.6         2.3         1.2		(105)	(EW)	(0D)			(EL 1.3m)	101100					
7 号炉         33.0         39.7         35.3         2.3         4.4	-4.0	87.0	91.8	91.2	4.2	0.6							
	(RB01)												





号炉	備考
)·县十街 28 (om/o ² )	
10 110 120 130 140	
):最大值 31 (cm/s²)	
-	
0 110 120 130 140	
):最大值 27 (cm/s ² )	
-	
0 110 120 130 140	
記録加速度時刻歷波形	
L_1.3m)	



寻炉	備考

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
〇:最大値 267 (cm/s [*] )			
20 30 40 50 60 70 時間(s) NS方向			
$\bigcirc: \& f(i) 356 (cm/s^2)$			
20 50 40 50 00 70 時間(s) EW方向 ○:最大値 355 (cm/s ² )			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
時間(s) 鉛直方向 (記録の主要動を含む 50 秒間を表示)			
参考第 2-2 図 原子炉建屋基礎版上の地震観測記録加速度時刻歴 波形 (7号炉) (7-R2:T.M.S.L8.2m)			

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	<u>別紙 2</u>		・記載方針の相違
	東海第二発電所における水平方向及び鉛直方向の最大応答値の		【東海第二】
	<u>生起</u> 時刻の差について(補足説明)		①の相違
	本資料では東海第二発電所における水平方向及び鉛直方向の		
	最大応答値の生起時刻の差について、4項で選定した基準地震動		
	<u>Ss-D, Ss-21</u> 及びSs-22の3波に加えて, 基準地震動		
	<u>Ss-31</u> も加えた場合の水平方向及び鉛直方向の生起時刻の差		
	<u>について説明する。</u>		
	4項で示した同様の手法にて水平方向と鉛直方向の最大応答		
	値の生起時刻の差を別図 6-4 及び別表 6-2 に示す。別表 6-2 に		
	<u>は4項で整理した基準地震動Ss-D, Ss-21及びSs-22</u>		
	の3波で整理した生起時刻の差についても記載した。		
	<u>別図 6-4 に示すとおりSs-31 は、地震継続時間が短く、水</u>		
	平方向の最大応答値の生起時刻は約9秒となり,他Ssよりも早		
	い時刻で最大応答値の生起時刻が生じる。またSs-31の鉛直		
	方向については、他のSsの応答加速度値と比べても小さな傾向		
	を示す。このためSs-31の水平方向の最大応答値の生起時刻 9		
	秒と他Ssの鉛直方向の最大応答値の生起時間を用いて評価す		
	ると、生起時刻の差として大きくなる傾向となる。		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	原子炉建屋(EL4.0 m) 原子炉建屋(EL4.0 m) 原子炉建屋モデル (水平方向)		<ul> <li>・記載方針の相違</li> <li>【東海第二】</li> <li>①の相違</li> </ul>
	Friede (EL 4.0 m)Friede (EL 4.0 m)Friede (EL 4.0 m)Friede Stripte (EL 4.0 m)Friede Stripte (EL 4.0 m)BI区 6-4 原子炉建屋の応答値 (EL 4.0 m)		

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)			3.9.18版)		島根原子力発電所 2号炉	備考
	別表 6-2 S s − 31 考慮時の最大応答値の生起時刻の差			応答値の生	起時刻の差		・記載方針の相違
	C21 老虐咗の捡計				【東海第二】		
	位置	最大応			S _s 3波時の		①の相違
	(m)	生起時刻	刻 (秒)	生起時刻	<ul><li>生起時刻</li><li>の差(秒)</li></ul>		
		水平方向	鉛直方向	の左(桜)			
	63.65	73.0	68.6	4.4	4.4		
	57.00	61.9	68.6	6.7	6.7		
	46.50	8.6	61.0	52.4	0.9		
	38.80	8.7	61.0	52.3	41.1		
	34.70	8.7	61.0	52.3	12.0		
	29.00	8.6	68.7	60 1	5.4		
	14.00	8.7	68.7	60.0	5.4		
	8.20	8.6	74.5	65.9	20.7		
	2.00	8.6	74.5	65.9	20.7		
	-4.00	8.6	69.4	60.8	15.6		
	-9.00	8.6	69.4	60.8	15.6		
							l

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
	参考資料3	添付資料—8	
	等価繰返し回数の評価方針について	等価繰返し回数の評価方針について	
		1. 基本的な考え万	
	<u>女川2号炉</u> の耐震評価における疲労評価では、原子力発電所耐	<u> 最根2号炉</u> の耐震評価における疲労評価では、原子力発電所耐	
	[ 震設計技術指針 JEAG4601-1987 (以下, 「JEAG4601」という。)の	震設計技術指針JEAG4601-1987(以下ⅠJEAG460	
	手順のうち, 等価繰返し回数を用いた評価としている。 	1」という。)の手順のうち、等価繰返し回数を用いた評価とし	
	今回上認で用いる等価繰返し回数は, JEAG4601 のピーク応力	今回上認で用いる等価繰返し回数は、JEAG4601のビー	
	法に基づき等価繰返し回数を算定する。等価繰返し回数は、設備	ク応力法に基づき等価繰返し回数を算定する。等価繰返し回数	
	のビーク応力、固有周期、減衰定数、応答変位時刻歴によって値	は、設備のビーク応力、固有周期、減衰定数、応答変位時刻歴に	
	が異なるため、保守性を持たせた「一律に設定する等価繰返し回	よって値が異なるため、保守性を持たせた「一律に設定する等価	
	数」を用いることを基本とする。また、より精緻に波方評価を行	繰返し回数」を用いることを基本とする。また、より精緻に疲労	
	う場合は、「個別に設定する等価繰返し回数」を用いる。適用す	評価を行う場合は、「個別に設定する等価繰返し回数」を用いる。	
	る等価繰返し回数の使い分けの考え方を参考 3-1 図に示す。	適用する等価繰返し回数の使い分けの考え方を <u>第1</u> 図に示す。	
	なお, 建設時における <u>女川2号炉</u> の等価繰返し回数は, <u>先行 BWR</u>	なお、建設時における島根2号炉の等価繰返し回数は、建設時	
	ブラントにおける等価繰返し回数(OBE※1回当たりの繰返し回	の基準地震動S1及びS2に対する <u>原子炉建物</u> の等価繰返し回	・評価手法の相違
	数を10回としてブラントライフ中5回発生すると仮定し、余裕	数を「昭和 55 年度 耐震設計の標準化に関する調査報告書」(以	【女川 2】
	を持って6回発生する場合の60回を設定)を踏襲し、60回と設	<u> 卜 「標準化報告書」という。)に基づき算出し、保守性を持たせ</u>	局根2号炉では, 建
	定している。また、等価繰返し回数を60回に設定することの確	た一律の等価繰返し回数として 100 回を設定している。	設工認において原子炉
	認として, JEAG4601 のピーク応力法に基づき建設時の基準地震		建物の等価繰返し回数
	動 S1 及び S2 に対する <u>原子炉格納容器</u> の等価繰返し回数を算出		を算出している(以下,
	し, S1 に対して 10 回未満, S2 に対して 20 回未満であること		(1)の相違)
	を確認しており、疲労評価にあたっては、基準地震動 S1 及び S2		
	に対してそれぞれ等価繰返し回数 60 回を用いた評価を行ってい		
	$\frac{S_{\circ}}{S_{\circ}}$		
	<u>XOBE : Operating basis earthquake</u>		
	2. 等恤繰返し回致の評価方針	2. 等価繰返し回致の評価万針	
	等恤繰返し回数の算定方法について, JEAG4601 に「地震動の	等  ・  等  ・  ・  ・  ・  ・  ・  ・  ・  ・  ・  ・	
	等 は 繰返し 回数を 用いる 場合にはビーク 応力法あるいはエネル	震動の等価繰返し回数を用いる場合にはピーク応力法あるいは	
	キー 換算法 が 用いられる 」 と 記載 されており 、 女川 2 号 炉 で は 、	エネルギー換算法が用いられる」と記載されており、島根2号炉	
	ビーク応力法を用いて算定する方針とする。 	では、ビーク応力法を用いて算定する方針とする。	
			I

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2号炉	備考
	2.2 算定フロー及び算定条件	2.2 算定フロー及び算定条件	
	JEAG4601 に記載されているピーク応力法を用いた等価繰返し	JEAG4601に記載されているピーク応力法を用いた等	
	回数の算定フローを参考 3-2 図に示す。	価繰返し回数の算定フローを第2図に示す。	
	当該フローに基づき, <u>女川2号炉</u> の耐震評価における疲労評価	当該フローに基づき, <u>島根2号炉</u> の耐震評価における疲労評価	
	に用いる等価繰返し回数として「一律に設定する等価繰返し回	に用いる等価繰返し回数として「一律に設定する等価繰返し回	
	数」又は「個別に設定する等価繰返し回数」を設定する。なお,	数」又は「個別に設定する等価繰返し回数」を設定する。なお,	
	等価繰返し回数の算定に当たっては,「昭和55 年度 耐震設計の	等価繰返し回数の算定に当たっては、標準化報告書における等価	
	標準化に関する調査報告書」における等価繰返し回数の算定方法	繰返し回数の算定方法を参考とする。	
	を参考とする。		
	女川2号炉の等価繰返し回数の算定条件,「昭和55年度」耐震	<u>島根2号炉の等価繰返し回数の算定条件と標準化報告書との</u>	
	設計の標準化に関する調査報告書」及び建設時における等価繰返	比較結果を第1表に示す。	
	し回数の確認に用いた算定条件との比較結果を参考 3-1 表に示		
	す。		
	等価繰返し回数の算定結果については、詳細設計段階で示す。	等価繰返し回数 <u>は,詳細設計段階で設定する。</u> なお,暫定的に	・記載方針の相違
		一律に設定する等価繰返し回数を使用する場合,基準地震動Ss	【女川 2】
		による評価において 150 回,弾性設計用地震動 S d による評価に	島根2号炉では,暫
		おいて 300 回を適用する。	定的に使用する等価繰
			返し回数を記載してい
			る
	3. 留意事項		・評価手法の相違
	東北地方太平洋沖地震等の地震による設備への疲労影響は、十		【女川 2】
	<u>分に小さいことを確認しているが,疲れ累積係数による疲労評価</u>		島根2号炉では東北
	を実施する場合は,許容限界(Uf=1.0)に対して余裕があること		地方太平洋沖地震によ
	にも留意する。		る設備への疲労影響は
			ない

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版)	島根原子力発電所 2
	Image: space of the space of	Image: state



柏崎刈羽原子力発電所 6/7号炉	(2017.12.20版)	女川原子力発電所 2号炉 (2020.2.7版)	島根原子力発電所 2号炉	備考
		東井県町設定           東井県町設定           東井県市の市井市           東田県市の市井市           東田県市の市井市           東田県市の市井市           東田県市の市井市           東田県市の市井市           東田県市           東田県市           東田県市           東田県市           東田県市           東田県市           東田市           東田市	Example of the set	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	女川原子力発電所 2号炉(2020.2.7版) 島根原子力発電所 2号炉	備考
柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)		備考 ・評価手法の相違 【女川 2】 ①の相違
	現した、 現した、 にはたいののにおける 「「「」」」 「「」」」」 「「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」 「」」 「」 「」」 「」	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版) 東海第二発電所 (2018.9.18版)	島根原子力発電所 2号炉	備考
	添付資料-9	・対象設備の相違
		【柏崎 6/7,東海第二】
	多入力の時刻歴応答解析の適用について	島根2号炉では,三軸
	- Hurr	粘性ダンパを設置した
		配管糸の地震応谷解析
	今回上認じは、二軸柏性タンハを設直した配官糸の地震心合解	にわいし、多人刀の時刻
	们にわいて、多八刀の時刻虚心各胜何于伝を適用するにの、平貢	
	はいて、この時間子伝を説明する。なわ、本時間子伝は、床丁ゲ 建物等の建物・構築物の地震応答解析において 他プラントを会	
	たい日本にて適用実績がある。	
2	2. 多入力の時刻歴応答解析法	
	多入力の時刻歴応答解析では, 基準とする入力点 (基準入力点)	
	に対する配管系の相対変位及び入力点の相対変位を用いると、地	
	震による慣性力を受ける配管系の運動方程式は以下となる。	
	$[M]\{\ddot{x}_{a}\} + [C]\{\dot{x}_{a}\} + [K]\{x_{a}\} = -[M]\{I\}\ddot{y}_{0} - [\widetilde{C}]\{\dot{x}_{b}\} - [\widetilde{K}]\{x_{b}\} $	
	$[M]_{,}[C]_{,}[K]_{,}$ :配管系の質量、減衰、剛性マトリクス	
	{ <i>I</i> }: 単位ベクトル	
	$\{x_a\}$ :基準入力点に対する配管系の相対変位ベクトル	
	$\{\mathbf{r}\}$	
	(**):基準入力点に対する入力点の相対変位ベクトル	
	$y_0$ , the set of th	
	「「「基準八万点の祀対変位」	
	$\begin{bmatrix} \tilde{c} \end{bmatrix}$ . 入力占の相対速度に対応した減衰マトリクス	
	$\left[ \widetilde{K}  ight]_{: ]$ 、入力点の相対変位に対応した剛性マトリクス	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		式(1)の左辺は地震による慣性力を受ける配管系の運動方程	
		式である。右辺第一項は、基準入力点の加速度を用いており、右	
		辺第二項及び右辺第三項は、入力点の相対変位、相対速度により	
		生じる力を表している。式(1)は,単一入力の場合と同様に,	
		モード座標系の運動方程式に変換することが可能であり、今回の	
		評価では、モード空間での連成した運動方程式に対して時間積分	
		を行う方法を適用する。	
		3. 多入力の場合の2自由度系の運動方程式の例	
		多入力の時刻歴応答解析手法は、いくつかの定式化が可能であ	
		るが、前項に示した系全体の絶対変位を「基準とする支持点の絶	
		対変位」と「基準とする支持点からの相対変位」の和で表す場合	
		の定式化について、多入力の場合の2自由度系の運動方程式の例	
		を以下に示す。対象とする2自由度系を図3-1に示す。	
		なお、系を静的平衡関係から得られる疑似静的変位と動的変位	
		の和で定義することを特徴とする Clough の方法が J E A G 4 6	
		01 ^{注1} に示されているが,変位等の定義の仕方が異なるだけであ	
		り,系の運動方程式としては,式(1)と同等である(参考資料	
		(9-1)参照)。	
		注1:原子力発電所耐震設計技術指針JEAG4601-1987	
		(社団法人日本電気協会)	
		支持占1 支持占2	
		$ \begin{array}{c} \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
		$c_1$ $c_2$ $c_3$	
		$X_{a1}$ $X_{a2}$	
		y	
		y         : 基準とする支持点1の絶対変位           r         r         : 支持占1に対すろ条質占の相対変位	
		$x_{b1}$ , $x_{b2}$ : 支持点1に対する各支持点の相対変位 $(x_{b1}=0)$	
		$m_1$ , $m_2$ :質量	
		$k_1, k_2, k_3:$ ばね定数	
		$c_1$ , $c_2$ , $c_3$ : 減衰係数	
		図 3-1 多入力の場合の2自由度系	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
		地震による慣性力を受ける配管系の運動方程式を以下に示す。	
		$\begin{cases} m_{1}(\ddot{x}_{a1}+\ddot{y})+c_{1}(\dot{x}_{a1}-\dot{x}_{b1})-c_{2}(\dot{x}_{a2}-\dot{x}_{a1})+k_{1}(x_{a1}-x_{b1})-k_{2}(x_{a2}-x_{a1})=0 \\ m_{2}(\ddot{x}_{a2}+\ddot{y})+c_{2}(\dot{x}_{a2}-\dot{x}_{a1})-c_{3}(\dot{x}_{b2}-\dot{x}_{a2})+k_{2}(x_{a2}-x_{a1})-k_{3}(x_{b2}-x_{a2})=0 \end{cases} (2)$	
		基準とする支持点1に関する項を右辺に移項して整理すると,	
		$ \begin{cases} m_{1}\ddot{x}_{a1} + (c_{1} + c_{2})\dot{x}_{a1} - c_{2}\dot{x}_{a2} + (k_{1} + k_{2})x_{a1} - k_{2}x_{a2} - c_{1}\dot{x}_{b1} - k_{1}x_{b1} = -m_{1}\ddot{y} \\ m_{2}\ddot{x}_{a2} - c_{2}\dot{x}_{a1} + (c_{2} + c_{3})\dot{x}_{a2} - k_{2}x_{a1} + (k_{2} + k_{3})x_{a2} - c_{3}\dot{x}_{b2} - k_{3}x_{b2} = -m_{2}\ddot{y} \end{cases} $ (4)	
		となる。式(4)および式(5)を行列式で表現すると,	
		$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{x}_{a1} \\ \ddot{x}_{a2} \end{bmatrix} + \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 + c_3 \end{bmatrix} \begin{bmatrix} \dot{x}_{a1} \\ \dot{x}_{a2} \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix} \begin{bmatrix} x_{a1} \\ x_{a2} \end{bmatrix}$	
		$+\begin{bmatrix} -c_{1} & 0\\ 0 & -c_{3} \end{bmatrix} \begin{bmatrix} \dot{x}_{b1}\\ \dot{x}_{b2} \end{bmatrix} + \begin{bmatrix} -k_{1} & 0\\ 0 & -k_{3} \end{bmatrix} \begin{bmatrix} x_{b1}\\ x_{b2} \end{bmatrix} = -\begin{bmatrix} m_{1} & 0\\ 0 & m_{2} \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} \ddot{y} $ (6)	
		となる。	
		ここで、入力点の相対速度に対応した減衰マトリクスを、 $\begin{bmatrix}  ilde{c} \end{bmatrix}$ 入 力点の相対変位に対応した剛性マトリクスを $\begin{bmatrix}  ilde{K} \end{bmatrix}$ としたうえでこ れらを右辺に移項すると、以下の式となる。	
		$[M]\{\ddot{x}_{a}\}+[C]\{\dot{x}_{a}\}+[K]\{x_{a}\}=-[M]\{I\}\ddot{y}-[\widetilde{C}]\{\dot{x}_{b}\}-[\widetilde{K}]\{x_{b}\} (7)$	
		式(7)の左辺は質点の変位 x a, 右辺は支持点の変位 x b および y の運動方程式であり,前項に示す式(1)と同様の方程式となる。	

柏崎刈羽原子力発電所 6/7号炉 (2017.12.20版)	東海第二発電所(2018.9.18版)	島根原子力発電所 2号炉	備考
	参考資料(9-1)		
		JEAG4601-1987(抜粋) 6.5.4 地震応答解析法 (3)配管	
		(1) 配 密 A クラス配管の地環底容解析手法として設計において最も多く用いられている方法は、「6.5.4(1) 窒湿剤 外の機器」で述べた時対風解析法による場合もある。配管系は、多数の文好点にて文持 おていることから多入力解析を用いることが合理的と考えられる。この多入力解析 たついては、いくつかった。だれるが、ETEを対象とした多入力解析 たついては、いくつかった。だれるが、ETEを対象とした多く力解析の場合は Clough により 健実された方法を用いることが多い。この Clough の方法は、系を静仰 再関係から得られる気気論的変位と 動の変位の和で変更したことを特徴とするもの さ、 肥松で10 年 KU = - MHG ₆ (6.5.4.8) となる. M : 電量マトリクス C. : (成長マトリクス G. : (成長マトリクス) G. : (たて扱って後に基金(ならな) G. : (たて扱って になる) (たては、G. : (たて扱って) G. : (たて、G. : (たて) G. : (たて扱って) G. : (たて、G. : (たて) G. : (たて扱って) G. : (たて) G. : (たて) G. : (たて扱って) G. : (たて) G. : (たて扱って) G. : (たて) G. : (たT) G. : (たT	